WorldWideScience

Sample records for skeletal development

  1. Expression of Gla proteins during fish skeletal development

    OpenAIRE

    Gavaia, Paulo J.

    2006-01-01

    Senegal sole skeletal development; Skeletal malformations; Skeletal malformation in mediterranean species; Senegal sole skeletal deformities; Zebra fish as model system: skeletal development; Identification of bone cells / skeletal development; Spatial - temporal pattern of bgp expression; Single cell resolution: localization of bgp mRNA; Single cell resolution: Immunolocalization of Bgp; Single cell resolution: localization of mgp mRNA; Single cell resolution: Immunolocalization of Mgp; An i...

  2. Radiology of postnatal skeletal development. Pt. 6

    International Nuclear Information System (INIS)

    McCarthy, S.M.; Ogden, J.A.; Yale Univ., New Haven, CT; Yale Univ., New Haven, CT

    1982-01-01

    Thirty-six pairs of proximal radioulnar and elbow units from cadavers and prepared skeletons ranging in age from full-term neonates to fourteen years, were studied morphologically and roentgenographically. Air/cartilage interfacing was used to demonstrate the osseous and cartilaginous portions of the developing epiphyses. These roentgenographic aspects are discussed and illustrated to provide a reference index. The skeletal development is outlined with regard to the diagnosis of several traumatic skeletal diseases as dislocation of elbow or radial head. Moteggia fracture dislocation and Nursemaid's elbow. (orig./WU)

  3. Role of skeletal muscle in lung development.

    Science.gov (United States)

    Baguma-Nibasheka, Mark; Gugic, Dijana; Saraga-Babic, Mirna; Kablar, Boris

    2012-07-01

    Skeletal (striated) muscle is one of the four basic tissue types, together with the epithelium, connective and nervous tissues. Lungs, on the other hand, develop from the foregut and among various cell types contain smooth, but not skeletal muscle. Therefore, during earlier stages of development, it is unlikely that skeletal muscle and lung depend on each other. However, during the later stages of development, respiratory muscle, primarily the diaphragm and the intercostal muscles, execute so called fetal breathing-like movements (FBMs), that are essential for lung growth and cell differentiation. In fact, the absence of FBMs results in pulmonary hypoplasia, the most common cause of death in the first week of human neonatal life. Most knowledge on this topic arises from in vivo experiments on larger animals and from various in vitro experiments. In the current era of mouse mutagenesis and functional genomics, it was our goal to develop a mouse model for pulmonary hypoplasia. We employed various genetically engineered mice lacking different groups of respiratory muscles or lacking all the skeletal muscle and established the criteria for pulmonary hypoplasia in mice, and therefore established a mouse model for this disease. We followed up this discovery with systematic subtractive microarray analysis approach and revealed novel functions in lung development and disease for several molecules. We believe that our approach combines elements of both in vivo and in vitro approaches and allows us to study the function of a series of molecules in the context of lung development and disease and, simultaneously, in the context of lung's dependence on skeletal muscle-executed FBMs.

  4. Radiology of postnatal skeletal development. Pt. 7

    International Nuclear Information System (INIS)

    Ogden, J.A.; Phillips, S.B.

    1983-01-01

    Twenty-four pairs of scapulae from fetal specimens and 35 pairs of scapulae from postnatal cadavers ranging in age from full-term neonates to 14 years, were studied morphologically and roentgenographically. Air-cartilage interfacing was used to demonstrate both the osseous and cartilaginous contours. When the entire chondro-osseous dimensions, rather than just the osseous dimensions, were measured, the scapula had a height-width ratio ranging from 1.36 to 1.52 (average 1.44) during most of fetal development. The exceptions were three stillborns with camptomelic, thanatophoric, and achondrogenic dwarfism in which the ratio averaged 0.6. At no time during fetal development was the glenoid cavity convex; it always had a concave articular surface. However, the osseous subchrondral countour was often flat or slightly convex. In the postnatal period the height-width ratio averaged 1.49. The ratio remained virtually unchanged throughout skeletal growth and maturation. In a patient with unilateral Sprengel's deformity the ratio for the normal side was 1.5, while the abnormal was 1.0. The cartilaginous glenoid cavity was always concave during postnatal development, even in the specimens with major structural deformities, although the subchondral osseous contour was usually flat or convex during the first few years of postnatal development. Ossification of the coracoid process began with the development of a primary center at three to four months. A bipolar physis was present between the primary coracoid center and the primary scapular center until late adolescence. (orig.)

  5. Radiology of postnatal skeletal development. Pt. 7

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.A.; Phillips, S.B.

    1983-02-01

    Twenty-four pairs of scapulae from fetal specimens and 35 pairs of scapulae from postnatal cadavers ranging in age from full-term neonates to 14 years, were studied morphologically and roentgenographically. Air-cartilage interfacing was used to demonstrate both the osseous and cartilaginous contours. When the entire chondro-osseous dimensions, rather than just the osseous dimensions, were measured, the scapula had a height-width ratio ranging from 1.36 to 1.52 (average 1.44) during most of fetal development. The exceptions were three stillborns with camptomelic, thanatophoric, and achondrogenic dwarfism in which the ratio averaged 0.6. At no time during fetal development was the glenoid cavity convex; it always had a concave articular surface. However, the osseous subchrondral countour was often flat or slightly convex. In the postnatal period the height-width ratio averaged 1.49. The ratio remained virtually unchanged throughout skeletal growth and maturation. In a patient with unilateral Sprengel's deformity the ratio for the normal side was 1.5, while the abnormal was 1.0. The cartilaginous glenoid cavity was always concave during postnatal development, even in the specimens with major structural deformities, although the subchondral osseous contour was usually flat or convex during the first few years of postnatal development. Ossification of the coracoid process began with the development of a primary center at three to four months. A bipolar physis was present between the primary coracoid center and the primary scapular center until late adolescence.

  6. Role of skeletal muscle in ear development.

    Science.gov (United States)

    Rot, Irena; Baguma-Nibasheka, Mark; Costain, Willard J; Hong, Paul; Tafra, Robert; Mardesic-Brakus, Snjezana; Mrduljas-Djujic, Natasa; Saraga-Babic, Mirna; Kablar, Boris

    2017-10-01

    The current paper is a continuation of our work described in Rot and Kablar, 2010. Here, we show lists of 10 up- and 87 down-regulated genes obtained by a cDNA microarray analysis that compared developing Myf5-/-:Myod-/- (and Mrf4-/-) petrous part of the temporal bone, containing middle and inner ear, to the control, at embryonic day 18.5. Myf5-/-:Myod-/- fetuses entirely lack skeletal myoblasts and muscles. They are unable to move their head, which interferes with the perception of angular acceleration. Previously, we showed that the inner ear areas most affected in Myf5-/-:Myod-/- fetuses were the vestibular cristae ampullaris, sensitive to angular acceleration. Our finding that the type I hair cells were absent in the mutants' cristae was further used here to identify a profile of genes specific to the lacking cell type. Microarrays followed by a detailed consultation of web-accessible mouse databases allowed us to identify 6 candidate genes with a possible role in the development of the inner ear sensory organs: Actc1, Pgam2, Ldb3, Eno3, Hspb7 and Smpx. Additionally, we searched for human homologues of the candidate genes since a number of syndromes in humans have associated inner ear abnormalities. Mutations in one of our candidate genes, Smpx, have been reported as the cause of X-linked deafness in humans. Our current study suggests an epigenetic role that mechanical, and potentially other, stimuli originating from muscle, play in organogenesis, and offers an approach to finding novel genes responsible for altered inner ear phenotypes.

  7. Peripheral endocannabinoids regulate skeletal muscle development and maintenance

    Directory of Open Access Journals (Sweden)

    Dongjiao Zhao

    2010-12-01

    Full Text Available As a principal tissue responsible for insulin-mediated glucose uptake, skeletal muscle is important for whole-body health. The role of peripheral endocannabinoids as regulators of skeletal muscle metabolism has recently gained a lot of interest, as endocannabinoid system disorders could cause peripheral insulin resistance. We investigated the role of the peripheral endocannabinoid system in skeletal muscle development and maintenance. Cultures of C2C12 cells, primary satellite cells and mouse skeletal muscle single fibers were used as model systems for our studies. We found an increase in cannabinoid receptor type 1 (CB1 mRNA and endocannabinoid synthetic enzyme mRNA skeletal muscle cells during differentiation. We also found that activation of CB1 inhibited myoblast differentiation, expanded the number of satellite cells, and stimulated the fast-muscle oxidative phenotype. Our findings contribute to understanding of the role of the endocannabinoid system in skeletal muscle metabolism and muscle oxygen consumption, and also help to explain the effects of the peripheral endocannabinoid system on whole-body energy balance.

  8. Insights into skeletal muscle development and applications in regenerative medicine.

    Science.gov (United States)

    Tran, T; Andersen, R; Sherman, S P; Pyle, A D

    2013-01-01

    Embryonic and postnatal development of skeletal muscle entails highly regulated processes whose complexity continues to be deconstructed. One key stage of development is the satellite cell, whose niche is composed of multiple cell types that eventually contribute to terminally differentiated myotubes. Understanding these developmental processes will ultimately facilitate treatments of myopathies such as Duchenne muscular dystrophy (DMD), a disease characterized by compromised cell membrane structure, resulting in severe muscle wasting. One theoretical approach is to use pluripotent stem cells in a therapeutic setting to help replace degenerated muscle tissue. This chapter discusses key myogenic developmental stages and their regulatory pathways; artificial myogenic induction in pluripotent stem cells; advantages and disadvantages of DMD animal models; and therapeutic approaches targeting DMD. Furthermore, skeletal muscle serves as an excellent paradigm for understanding general cell fate decisions throughout development. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Radiology of postnatal skeletal development. Pt. 5

    International Nuclear Information System (INIS)

    McCarthy, S.M.; Ogden, J.A.

    1982-01-01

    Thirty-one pairs of distal humeri were obtained from human cadavers ranging in age from fullterm neonates to fourteen years. These were studied morphologically and roentgenographically. Specimen roentgenography using air/cartilage interfacing demonstrated both osseous and cartilaginous components of the epiphyses. These roentgenographic aspects of development are discussed and illustrated to provide a basic reference index. The supracondylar region is characterized by a fossa which initially is in both metaphysis and epiphysis, but migrates to the metaphysis completely within the first year On either side of the fossa are osseous columns, which contrast with the broad metaphyseal bone above the columns. Within the fossa, anteriorly and posteriorly, are fat pads which may be elevated by intraarticular hematoma or reactive joint fluid. The physeal contour initially is transverse and smooth. Lappet formation progressively demarcates the epicondylar physeal regions, with the medial one becoming a functionally, but not histologically separate region. The capitellum is the first region to develop a secondary ossification center. This progressively expands into the trochlear portion of the epiphysis, a factor which predisposes to lateral condyle fracture propagation across the trochlear articular surface. The trochlea characteristically ossifies by multiple foci which fuse over time, often creating an irregular appearance to the developing ossification center. Epicondylar ossification tends to be from solitary foci. The lateral epicondylar center fuses with the capitellar center, whereas the medial epicondyle tends to be a functionally separate entity throughout development and does not normally fuse to the trochlear ossification center. (orig.)

  10. Applying Next Generation Sequencing to Skeletal Development and Disease

    OpenAIRE

    Bowen, Margot Elizabeth

    2013-01-01

    Next Generation Sequencing (NGS) technologies have dramatically increased the throughput and lowered the cost of DNA sequencing. In this thesis, I apply these technologies to unresolved questions in skeletal development and disease. Firstly, I use targeted re-sequencing of genomic DNA to identify the genetic cause of the cartilage tumor syndrome, metachondromatosis (MC). I show that the majority of MC patients carry heterozygous loss-of-function mutations in the PTPN11 gene, which encodes a p...

  11. Radiology of postnatal skeletal development. Pt. 12

    International Nuclear Information System (INIS)

    Ogden, J.A.

    1984-01-01

    The development of the second cervical vertebra is complex. The dens (odontoid process) develops two primary ossification centers that usually coalesce within three months following birth. These centers are separated from the primary ossification center of the vertebral centrum by a cartilaginous region - the dentocentral synchondrosis. This synchondrosis is a slow growing, bipolar physis similar to the triradiate catilage of the acetabulum. It contributes to the overall heights of both the dens as well as the vertebral body. Anatomically the dentocentral synchondrosis is below the level of the C1-C2 articulations. This cartilaginous structure is continuous throughout the vertebral body with similar cartilage in both the facet regions as well as the neurocentral synchondroses. These various cartilaginous continuities progressively close - first, the connections to the facet regions, next the neurocentral synchondroses, and finally the dentocentral synchondrosis. Remnants of the incompletely closed dentocentral synchondrosis must be distinguished from a fracture, which usually propagates along this structure as a physeal injury in infants and children. The cartilaginous epiphysis at the tip of the dens may be transverse or may form a cleft ('V') shape. At eight to ten years, a secondary ossification center - the ossiculum terminale - develops in this proximal dens epiphysis. Fusion of the ossiculum terminale with the rest of the dens occurs between ten and thirteen years. (orig.)

  12. Radiology of postnatal skeletal development. Pt. 11

    International Nuclear Information System (INIS)

    Ogden, J.A.

    1984-01-01

    Forty-four first cervical vetebra were removed from cadavers and skeletons ranging in age from full-term neonates to 14 years. These were studied roentgenographically to duplicate anterio-posterior and transverse appearances without superimposition of the skull or other vertebra. Ossification was present in both posterior (neural) arches at birth. These ossification centers extended toward the rudimentary spinous process to form the posterior synchondrosis. Each also extended anteriorly into the articular facet region. The posterior ossification centers formed all the bone present in the facets. Anteriomedial to each facet a neurocentral synchondrosis formed on each side of the expanding anterior ossification center. The anterior ossification center appeared between six months and two years. Normally a single center formed. However anterior ossification was sometimes multifocal. Infrequently the posterior centers extended into the anterior arch and met as a single anterior synchondrosis. By four to six years the posterior synchondrosis and the anterior neurocentral synchondroses were fused. All three synchondroses fused at approximately the same time, although the posterior one often slightly preceded the anterior ones. Accordingly, the spinal canal of C1 reached maximum size at this stage of development. Further growth was then limited to periosteal addition on the external surface, leading to thickening and increased height, but without significantly altering the size of the spinal canal. (orig.)

  13. Radiology of postnatal skeletal development. Pt. 10

    International Nuclear Information System (INIS)

    Ogden, J.A.; Shriners Hospitals for Crippled Children, Tampa, FL

    1984-01-01

    The patella initially ossifies at between three and five years, commencing as multiple foci that rapidly coalesce. As the patellar ossification center enlarges the expanding margins may be irregular and associated with accessory ossification centers. These are most common superolaterally and may lead to the development of a bipartite patella. The bipartite patella has cartilaginous continuity despite the appearance of osseous discontinuity. The patella expands to all cartilaginous contours during late adolescence when the epiphyseal ossification centers around the knee are also in the final stages of maturation. The only cartilage not replaced is that occupying the superior two-thirds of the articular surface (the lower one-third is covered by the fat pad). The subchondral plate does not assume the actual articular contours until the late stages of osseous maturation (after ten to twelve years). Accordingly, typical measurements such as medial and lateral angulation cannot be accurately done prior to the final stages of patellar ossification expansion and maturation. The tibial tuberosity begins ossification at between seven and nine years as a distal focus. This progressively enlarges proximally and anteriorly, while the main tibial ossification center concomitantly expands downward into the tuberosity. A section of epiphyseal cartilage usually remains between these two ossification centers until close to physeal maturity. The anterior chondro-osseous region at the site of patellar tendon attachment is a biomechanically susceptible region that may be acutely or chronically traumatized to create an Osgood-Schlatter lesion. The physis associated with the tibial tuberosity is histologically modified in a proximal to distal gradation of columnar adaptation to specific biomechanical demands in this region. Closure of the tuberosity physis occurs in a proximal to distal direction. (orig.)

  14. Wnt Signaling in Skeletal Muscle Development and Regeneration.

    Science.gov (United States)

    Girardi, Francesco; Le Grand, Fabien

    2018-01-01

    Wnt is a family of signaling molecules involved in embryogenesis, adult tissue repair, and cancer. They activate canonical and noncanonical Wnt signaling cascades in target cells. Several studies, within the last decades, showed that several Wnt ligands are involved in myogenesis and both canonical and noncanonical Wnt pathways regulate muscle formation and the maintenance of adult tissue homeostasis. In this review, we provide a comprehensive overview of the roles of Wnt signaling during muscle development and an updated description of Wnt functions during muscle repair. Lastly, we discuss the crosstalk between Wnt and TGFβ signaling pathways in skeletal muscle. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Passive stiffness of rat skeletal muscle undernourished during fetal development

    Directory of Open Access Journals (Sweden)

    Ana Elisa Toscano

    2010-01-01

    Full Text Available OBJECTIVES: The aim of the study was to investigate the effect of fetal undernutrition on the passive mechanical properties of skeletal muscle of weaned and young adult rats. INTRODUCTION: A poor nutrition supply during fetal development affects physiological functions of the fetus. From a mechanical point of view, skeletal muscle can be also characterized by its resistance to passive stretch. METHODS: Male Wistar rats were divided into two groups according to their mother's diet during pregnancy: a control group (mothers fed a 17% protein diet and an isocaloric low-protein group (mothers fed a 7.8% protein diet. At birth, all mothers received a standardized meal ad libitum. At the age of 25 and 90 days, the soleus muscle and extensor digitorum longus (EDL muscles were removed in order to test the passive mechanical properties. A first mechanical test consisted of an incremental stepwise extension test using fast velocity stretching (500 mm/s enabling us to measure, for each extension stepwise, the dynamic stress (σd and the steady stress (σs. A second test consisted of a slow velocity stretch in order to calculate normalized stiffness and tangent modulus from the stress-strain relationship. RESULTS: The results for the mechanical properties showed an important increase in passive stiffness in both the soleus and EDL muscles in weaned rat. In contrast, no modification was observed in young adult rats. CONCLUSIONS: The increase in passive stiffness in skeletal muscle of weaned rat submitted to intrauterine undernutrition it is most likely due to changes in muscle passive stiffness.

  16. Role of Thyroid Hormones in Skeletal Development and Bone Maintenance.

    Science.gov (United States)

    Bassett, J H Duncan; Williams, Graham R

    2016-04-01

    The skeleton is an exquisitely sensitive and archetypal T3-target tissue that demonstrates the critical role for thyroid hormones during development, linear growth, and adult bone turnover and maintenance. Thyrotoxicosis is an established cause of secondary osteoporosis, and abnormal thyroid hormone signaling has recently been identified as a novel risk factor for osteoarthritis. Skeletal phenotypes in genetically modified mice have faithfully reproduced genetic disorders in humans, revealing the complex physiological relationship between centrally regulated thyroid status and the peripheral actions of thyroid hormones. Studies in mutant mice also established the paradigm that T3 exerts anabolic actions during growth and catabolic effects on adult bone. Thus, the skeleton represents an ideal physiological system in which to characterize thyroid hormone transport, metabolism, and action during development and adulthood and in response to injury. Future analysis of T3 action in individual skeletal cell lineages will provide new insights into cell-specific molecular mechanisms and may ultimately identify novel therapeutic targets for chronic degenerative diseases such as osteoporosis and osteoarthritis. This review provides a comprehensive analysis of the current state of the art.

  17. Expression of Pannexin 1 and Pannexin 3 during skeletal muscle development, regeneration, and Duchenne muscular dystrophy.

    Science.gov (United States)

    Pham, Tammy L; St-Pierre, Marie-Eve; Ravel-Chapuis, Aymeric; Parks, Tara E C; Langlois, Stéphanie; Penuela, Silvia; Jasmin, Bernard J; Cowan, Kyle N

    2018-05-10

    Pannexin 1 (Panx1) and Pannexin 3 (Panx3) are single membrane channels recently implicated in myogenic commitment, as well as myoblast proliferation and differentiation in vitro. However, their expression patterns during skeletal muscle development and regeneration had yet to be investigated. Here, we show that Panx1 levels increase during skeletal muscle development becoming highly expressed together with Panx3 in adult skeletal muscle. In adult mice, Panx1 and Panx3 were differentially expressed in fast- and slow-twitch muscles. We also report that Panx1/PANX1 and Panx3/PANX3 are co-expressed in mouse and human satellite cells, which play crucial roles in skeletal muscle regeneration. Interestingly, Panx1 and Panx3 levels were modulated in muscle degeneration/regeneration, similar to the pattern seen during skeletal muscle development. As Duchenne muscular dystrophy is characterized by skeletal muscle degeneration and impaired regeneration, we next used mild and severe mouse models of this disease and found a significant dysregulation of Panx1 and Panx3 levels in dystrophic skeletal muscles. Together, our results are the first demonstration that Panx1 and Panx3 are differentially expressed amongst skeletal muscle types with their levels being highly modulated during skeletal muscle development, regeneration, and dystrophy. These findings suggest that Panx1 and Panx3 channels may play important and distinct roles in healthy and diseased skeletal muscles. © 2018 Wiley Periodicals, Inc.

  18. Cell death induced by gamma irradiation of developing skeletal muscle

    International Nuclear Information System (INIS)

    Olive, M.; Blanco, R.; Rivera, R.; Cinos, C.; Ferrer, I.

    1995-01-01

    Newborn Sprague-Dawley rats were exposed to a single dose of 2 Gy gamma rays and killed from 6 h to 5 d later. Increased numbers of dying cells, characterised by their extreme chromatin condensation and often nuclear fragmentation were seen in skeletal muscle 6 h after irradiation. Dying cells decreased to nearly normal values 48 h later. In situ labelling of nuclear DNA fragmentation identified individual cells bearing fragmented DNA. The effects of gamma rays were suppressed following cycloheximide i.p. at a dose of 1 μg/g body weight given at the time of irradiation. Taken together, the present morphological and pharmacological results suggest that gamma ray induced cell death in skeletal muscle is apoptotic, and that the process is associated with protein synthesis. Finally, proliferating cell nuclear antigen-immunoreactive cells, which were abundant in control rats, decreased in number 48 h after irradiation. However, a marked increase significantly above normal age values was observed at the 5th day, thus suggesting that regeneration occurs following irradiation-induced cell death in developing muscle. (author)

  19. MicroRNA transcriptome profiles during swine skeletal muscle development

    Directory of Open Access Journals (Sweden)

    Sonstegard Tad S

    2009-02-01

    Full Text Available Abstract Background MicroRNA (miR are a class of small RNAs that regulate gene expression by inhibiting translation of protein encoding transcripts. To evaluate the role of miR in skeletal muscle of swine, global microRNA abundance was measured at specific developmental stages including proliferating satellite cells, three stages of fetal growth, day-old neonate, and the adult. Results Twelve potential novel miR were detected that did not match previously reported sequences. In addition, a number of miR previously reported to be expressed in mammalian muscle were detected, having a variety of abundance patterns through muscle development. Muscle-specific miR-206 was nearly absent in proliferating satellite cells in culture, but was the highest abundant miR at other time points evaluated. In addition, miR-1 was moderately abundant throughout developmental stages with highest abundance in the adult. In contrast, miR-133 was moderately abundant in adult muscle and either not detectable or lowly abundant throughout fetal and neonate development. Changes in abundance of ubiquitously expressed miR were also observed. MiR-432 abundance was highest at the earliest stage of fetal development tested (60 day-old fetus and decreased throughout development to the adult. Conversely, miR-24 and miR-27 exhibited greatest abundance in proliferating satellite cells and the adult, while abundance of miR-368, miR-376, and miR-423-5p was greatest in the neonate. Conclusion These data present a complete set of transcriptome profiles to evaluate miR abundance at specific stages of skeletal muscle growth in swine. Identification of these miR provides an initial group of miR that may play a vital role in muscle development and growth.

  20. Histone Deacetylases in Bone Development and Skeletal Disorders

    Science.gov (United States)

    Bradley, Elizabeth W.; Carpio, Lomeli R.; van Wijnen, Andre J.; McGee-Lawrence, Meghan E.; Westendorf, Jennifer J.

    2015-01-01

    Histone deacetylases (Hdacs) are conserved enzymes that remove acetyl groups from lysine side chains in histones and other proteins. Eleven of the 18 Hdacs encoded by the human and mouse genomes depend on Zn2+ for enzymatic activity, while the other 7, the sirtuins (Sirts), require NAD2+. Collectively, Hdacs and Sirts regulate numerous cellular and mitochondrial processes including gene transcription, DNA repair, protein stability, cytoskeletal dynamics, and signaling pathways to affect both development and aging. Of clinical relevance, Hdacs inhibitors are United States Food and Drug Administration-approved cancer therapeutics and are candidate therapies for other common diseases including arthritis, diabetes, epilepsy, heart disease, HIV infection, neurodegeneration, and numerous aging-related disorders. Hdacs and Sirts influence skeletal development, maintenance of mineral density and bone strength by affecting intramembranous and endochondral ossification, as well as bone resorption. With few exceptions, inhibition of Hdac or Sirt activity though either loss-of-function mutations or prolonged chemical inhibition has negative and/or toxic effects on skeletal development and bone mineral density. Specifically, Hdac/Sirt suppression causes abnormalities in physiological development such as craniofacial dimorphisms, short stature, and bone fragility that are associated with several human syndromes or diseases. In contrast, activation of Sirts may protect the skeleton from aging and immobilization-related bone loss. This knowledge may prolong healthspan and prevent adverse events caused by epigenetic therapies that are entering the clinical realm at an unprecedented rate. In this review, we summarize the general properties of Hdacs/Sirts and the research that has revealed their essential functions in bone forming cells (e.g., osteoblasts and chondrocytes) and bone resorbing osteoclasts. Finally, we offer predictions on future research in this area and the utility of

  1. Proteomic Analysis of Chicken Skeletal Muscle during Embryonic Development

    Directory of Open Access Journals (Sweden)

    Hongjia Ouyang

    2017-05-01

    Full Text Available Embryonic growth and development of skeletal muscle is a major determinant of muscle mass, and has a significant effect on meat production in chicken. To assess the protein expression profiles during embryonic skeletal muscle development, we performed a proteomics analysis using isobaric tags for relative and absolute quantification (iTRAQ in leg muscle tissues of female Xinghua chicken at embryonic age (E 11, E16, and 1-day post hatch (D1. We identified 3,240 proteins in chicken embryonic muscle and 491 of them were differentially expressed (fold change ≥ 1.5 or ≤ 0.666 and p < 0.05. There were 19 up- and 32 down-regulated proteins in E11 vs. E16 group, 238 up- and 227 down-regulated proteins in E11 vs. D1 group, and 13 up- and 5 down-regulated proteins in E16 vs. D1 group. Protein interaction network analyses indicated that these differentially expressed proteins were mainly involved in the pathway of protein synthesis, muscle contraction, and oxidative phosphorylation. Integrative analysis of proteome and our previous transcriptome data found 189 differentially expressed proteins that correlated with their mRNA level. The interactions between these proteins were also involved in muscle contraction and oxidative phosphorylation pathways. The lncRNA-protein interaction network found four proteins DMD, MYL3, TNNI2, and TNNT3 that are all involved in muscle contraction and may be lncRNA regulated. These results provide several candidate genes for further investigation into the molecular mechanisms of chicken embryonic muscle development, and enable us to better understanding their regulation networks and biochemical pathways.

  2. Human age estimation combining third molar and skeletal development.

    Science.gov (United States)

    Thevissen, P W; Kaur, J; Willems, G

    2012-03-01

    The wide prediction intervals obtained with age estimation methods based on third molar development could be reduced by combining these dental observations with age-related skeletal information. Therefore, on cephalometric radiographs, the most accurate age-estimating skeletal variable and related registration method were searched and added to a regression model, with age as response and third molar stages as explanatory variable. In a pilot set up on a dataset of 496 (283 M; 213 F) cephalometric radiographs, the techniques of Baccetti et al. (2005) (BA), Seedat et al. (2005) (SE), Caldas et al. (2007) and Rai et al. (2008) (RA) were verified. In the main study, data from 460 (208 F, 224 M) individuals in an age range between 3 and 26 years, for which at the same day an orthopantogram and a cephalogram were taken, were collected. On the orthopantomograms, the left third molar development was registered using the scoring system described by Gleiser and Hunt (1955) and modified by Köhler (1994) (GH). On the cephalograms, cervical vertebrae development was registered according to the BA and SE techniques. A regression model, with age as response and the GH scores as explanatory variable, was fitted to the data. Next, information of BA, SE and BA + SE was, respectively, added to this model. From all obtained models, the determination coefficients and the root mean squared errors were calculated. Inclusion of information from cephalograms based on the BA, as well as the SE, technique improved the amount of explained variance in age acquired from panoramic radiographs using the GH technique with 48%. Inclusion of cephalometric BA + SE information marginally improved the previous result (+1%). The RMSE decreased with 1.93, 1.85 and 2.03 years by adding, respectively, BA, SE and BA + SE information to the GH model. The SE technique allows clinically the fastest and easiest registration of the degree of development of the cervical vertebrae. Therefore, the choice of

  3. Obscurin Depletion Impairs Organization of Skeletal Muscle in Developing Zebrafish Embryos

    Directory of Open Access Journals (Sweden)

    Maide Ö. Raeker

    2011-01-01

    Full Text Available During development, skeletal myoblasts differentiate into myocytes and skeletal myotubes with mature contractile structures that are precisely oriented with respect to surrounding cells and tissues. Establishment of this highly ordered structure requires reciprocal interactions between the differentiating myocytes and the surrounding extracellular matrix to form correctly positioned and well-organized attachments from the skeletal muscle to the bony skeleton. Using the developing zebrafish embryo as a model, we examined the relationship between new myofibril assembly and the organization of the membrane domains involved in cell-extracellular matrix interactions. We determined that depletion of obscurin, a giant muscle protein, resulted in irregular cell morphology and disturbed extracellular matrix organization during skeletal muscle development. The resulting impairment of myocyte organization was associated with disturbance of the internal architecture of the myocyte suggesting that obscurin participates in organizing the internal structure of the myocyte and translating those structural cues to surrounding cells and tissues.

  4. Obscurin Depletion Impairs Organization of Skeletal Muscle in Developing Zebrafish Embryos

    Science.gov (United States)

    Raeker, Maide Ö.; Russell, Mark W.

    2011-01-01

    During development, skeletal myoblasts differentiate into myocytes and skeletal myotubes with mature contractile structures that are precisely oriented with respect to surrounding cells and tissues. Establishment of this highly ordered structure requires reciprocal interactions between the differentiating myocytes and the surrounding extracellular matrix to form correctly positioned and well-organized attachments from the skeletal muscle to the bony skeleton. Using the developing zebrafish embryo as a model, we examined the relationship between new myofibril assembly and the organization of the membrane domains involved in cell-extracellular matrix interactions. We determined that depletion of obscurin, a giant muscle protein, resulted in irregular cell morphology and disturbed extracellular matrix organization during skeletal muscle development. The resulting impairment of myocyte organization was associated with disturbance of the internal architecture of the myocyte suggesting that obscurin participates in organizing the internal structure of the myocyte and translating those structural cues to surrounding cells and tissues. PMID:22190853

  5. Primary skeletal muscle cells cultured on gelatin bead microcarriers develop structural and biochemical features characteristic of adult skeletal muscle.

    Science.gov (United States)

    Kubis, Hans-Peter; Scheibe, Renate J; Decker, Brigitte; Hufendiek, Karsten; Hanke, Nina; Gros, Gerolf; Meissner, Joachim D

    2016-04-01

    A primary skeletal muscle cell culture, in which myoblasts derived from newborn rabbit hindlimb muscles grow on gelatin bead microcarriers in suspension and differentiate into myotubes, has been established previously. In the course of differentiation and beginning spontaneous contractions, these multinucleated myotubes do not detach from their support. Here, we describe the development of the primary myotubes with respect to their ultrastructural differentiation. Scanning electron microscopy reveals that myotubes not only grow around the surface of one carrier bead but also attach themselves to neighboring carriers, forming bridges between carriers. Transmission electron microscopy demonstrates highly ordered myofibrils, T-tubules, and sarcoplasmic reticulum. The functionality of the contractile apparatus is evidenced by contractile activity that occurs spontaneously or can be elicited by electrostimulation. Creatine kinase activity increases steadily until day 20 of culture. Regarding the expression of isoforms of myosin heavy chains (MHC), we could demonstrate that from day 16 on, no non-adult MHC isoform mRNAs are present. Instead, on day 28 the myotubes express predominantly adult fast MHCIId/x mRNA and protein. This MHC pattern resembles that of fast muscles of adult rabbits. In contrast, primary myotubes grown on matrigel-covered culture dishes express substantial amounts of non-adult MHC protein even on day 21. To conclude, primary myotubes grown on microcarriers in their later stages exhibit many features of adult skeletal muscle and characteristics of fast type II fibers. Thus, the culture represents an excellent model of adult fast skeletal muscle, for example, when investigating molecular mechanisms of fast-to-slow fiber-type transformation. © 2015 International Federation for Cell Biology.

  6. Sall4-Gli3 system in early limb progenitors is essential for the development of limb skeletal elements

    OpenAIRE

    Akiyama, Ryutaro; Kawakami, Hiroko; Wong, Julia; Oishi, Isao; Nishinakamura, Ryuichi; Kawakami, Yasuhiko

    2015-01-01

    The limb skeletal elements that have unique morphology and distinct locations are developed from limb progenitors, derived from the lateral plate mesoderm. These skeletal elements arise during limb development. In this study, we show genetic evidence that function of Sall4 is essential prior to limb outgrowth for development of the anterior-proximal skeletal elements. Furthermore, genetic interaction between Sall4 and Gli3 is upstream of establishing Shh (Sonic hedgehog) expression, and there...

  7. Insulin-like growth factors in embryonic and fetal growth and skeletal development (Review).

    Science.gov (United States)

    Agrogiannis, Georgios D; Sifakis, Stavros; Patsouris, Efstratios S; Konstantinidou, Anastasia E

    2014-08-01

    The insulin-like growth factors (IGF)-I and -II have a predominant role in fetal growth and development. IGFs are involved in the proliferation, differentiation and apoptosis of fetal cells in vitro and the IGF serum concentration has been shown to be closely correlated with fetal growth and length. IGF transcripts and peptides have been detected in almost every fetal tissue from as early in development as pre‑implantation to the final maturation stage. Furthermore, IGFs have been demonstrated to be involved in limb morphogenesis. However, although ablation of Igf genes in mice resulted in growth retardation and delay in skeletal maturation, no impact on outgrowth and patterning of embryonic limbs was observed. Additionally, various molecular defects in the Igf1 and Igf1r genes in humans have been associated with severe intrauterine growth retardation and impaired skeletal maturation, but not with truncated limbs or severe skeletal dysplasia. The conflicting data between in vitro and in vivo observations with regard to bone morphogenesis suggests that IGFs may not be the sole trophic factors involved in fetal skeletal growth and that redundant mechanisms may exist in chondro- and osteogenesis. Further investigation is required in order to elucidate the functions of IGFs in skeletal development.

  8. Development and external validation of nomograms to predict the risk of skeletal metastasis at the time of diagnosis and skeletal metastasis-free survival in nasopharyngeal carcinoma.

    Science.gov (United States)

    Yang, Lin; Xia, Liangping; Wang, Yan; He, Shasha; Chen, Haiyang; Liang, Shaobo; Peng, Peijian; Hong, Shaodong; Chen, Yong

    2017-09-06

    The skeletal system is the most common site of distant metastasis in nasopharyngeal carcinoma (NPC); various prognostic factors have been reported for skeletal metastasis, though most studies have focused on a single factor. We aimed to establish nomograms to effectively predict skeletal metastasis at initial diagnosis (SMAD) and skeletal metastasis-free survival (SMFS) in NPC. A total of 2685 patients with NPC who received bone scintigraphy (BS) and/or 18F-deoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) and 2496 patients without skeletal metastasis were retrospectively assessed to develop individual nomograms for SMAD and SMFS. The models were validated externally using separate cohorts of 1329 and 1231 patients treated at two other institutions. Five independent prognostic factors were included in each nomogram. The SMAD nomogram had a significantly higher c-index than the TNM staging system (training cohort, P = 0.005; validation cohort, P system (P skeletal metastasis, which may improve counseling and facilitate individualized management of patients with NPC.

  9. Relative Skeletal Muscle Mass Is Associated with Development of Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Byung Sam Park

    2013-12-01

    Full Text Available BackgroundVisceral adiposity is related to insulin resistance. Skeletal muscle plays a central role in insulin-mediated glucose disposal; however, little is known about the association between muscle mass and metabolic syndrome (MS. This study is to clarify the clinical role of skeletal muscle mass in development of MS.MethodsA total of 1,042 subjects were enrolled. Subjects with prior MS and chronic diseases were excluded. After 24 months, development of MS was assessed using NCEP-ATP III criteria. Skeletal muscle mass (SMM; kg, body fat mass (BFM; kg, and visceral fat area (VFA; cm2 were obtained from bioelectrical analysis. Then, the following values were calculated as follows: percent of SMM (SMM%; %: SMM (kg/weight (kg, skeletal muscle index (SMI; kg/m2: SMM (kg/height (m2, skeletal muscle to body fat ratio (MFR: SMM (kg/BFM (kg, and skeletal muscle to visceral fat ratio (SVR; kg/cm2: SMM (kg/VFA (cm2.ResultsAmong 838 subjects, 88 (10.5% were newly diagnosed with MS. Development of MS increased according to increasing quintiles of BMI, SMM, VFA, and SMI, but was negatively associated with SMM%, MFR, and SVR. VFA was positively associated with high waist circumference (WC, high blood pressure (BP, dysglycemia, and high triglyceride (TG. In contrast, MFR was negatively associated with high WC, high BP, dysglycemia, and high TG. SVR was negatively associated with all components of MS.ConclusionRelative SMM ratio to body composition, rather than absolute mass, may play a critical role in development of MS and could be used as a strong predictor.

  10. A contemporary Colombian skeletal reference collection: A resource for the development of population specific standards.

    Science.gov (United States)

    Sanabria-Medina, Cesar; González-Colmenares, Gretel; Restrepo, Hadaluz Osorio; Rodríguez, Juan Manuel Guerrero

    2016-09-01

    Several authors who have discussed human variability and its impact on the forensic identification of bodies pose the need for regional studies documenting the global variation of the attributes analyzed osteological characteristics that aid in establishing biological profile (sex, ancestry, biological age and height). This is primarily accomplished by studying documented human skeletal collections in order to investigate secular trends in skeletal development and aging, among others in the Colombian population. The purpose of this paper is to disclose the details of the new "Contemporary Colombian Skeletal Reference Collection" that currently comprises 600 identified skeletons of both sexes, who died between 2005 and 2008; and which contain information about their cause of death. This collection has infinite potential for research, open to the national and international community, and still has pending opportunities to address a variety of topics such as studies on osteopathology, bone trauma and taphonomic studies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Development of severe skeletal defects in induced SHP-2-deficient adult mice: a model of skeletal malformation in humans with SHP-2 mutations

    Directory of Open Access Journals (Sweden)

    Timothy J. Bauler

    2011-03-01

    SHP-2 (encoded by PTPN11 is a ubiquitously expressed protein tyrosine phosphatase required for signal transduction by multiple different cell surface receptors. Humans with germline SHP-2 mutations develop Noonan syndrome or LEOPARD syndrome, which are characterized by cardiovascular, neurological and skeletal abnormalities. To study how SHP-2 regulates tissue homeostasis in normal adults, we used a conditional SHP-2 mouse mutant in which loss of expression of SHP-2 was induced in multiple tissues in response to drug administration. Induced deletion of SHP-2 resulted in impaired hematopoiesis, weight loss and lethality. Most strikingly, induced SHP-2-deficient mice developed severe skeletal abnormalities, including kyphoses and scolioses of the spine. Skeletal malformations were associated with alterations in cartilage and a marked increase in trabecular bone mass. Osteoclasts were essentially absent from the bones of SHP-2-deficient mice, thus accounting for the osteopetrotic phenotype. Studies in vitro revealed that osteoclastogenesis that was stimulated by macrophage colony-stimulating factor (M-CSF and receptor activator of nuclear factor kappa B ligand (RANKL was defective in SHP-2-deficient mice. At least in part, this was explained by a requirement for SHP-2 in M-CSF-induced activation of the pro-survival protein kinase AKT in hematopoietic precursor cells. These findings illustrate an essential role for SHP-2 in skeletal growth and remodeling in adults, and reveal some of the cellular and molecular mechanisms involved. The model is predicted to be of further use in understanding how SHP-2 regulates skeletal morphogenesis, which could lead to the development of novel therapies for the treatment of skeletal malformations in human patients with SHP-2 mutations.

  12. Cavin4b/Murcb Is Required for Skeletal Muscle Development and Function in Zebrafish.

    Science.gov (United States)

    Housley, Michael P; Njaine, Brian; Ricciardi, Filomena; Stone, Oliver A; Hölper, Soraya; Krüger, Marcus; Kostin, Sawa; Stainier, Didier Y R

    2016-06-01

    Skeletal muscles provide metazoans with the ability to feed, reproduce and avoid predators. In humans, a heterogeneous group of genetic diseases, termed muscular dystrophies (MD), lead to skeletal muscle dysfunction. Mutations in the gene encoding Caveolin-3, a principal component of the membrane micro-domains known as caveolae, cause defects in muscle maintenance and function; however it remains unclear how caveolae dysfunction underlies MD pathology. The Cavin family of caveolar proteins can form membrane remodeling oligomers and thus may also impact skeletal muscle function. Changes in the distribution and function of Cavin4/Murc, which is predominantly expressed in striated muscles, have been reported to alter caveolae structure through interaction with Caveolin-3. Here, we report the generation and phenotypic analysis of murcb mutant zebrafish, which display impaired swimming capacity, skeletal muscle fibrosis and T-tubule abnormalities during development. To understand the mechanistic importance of Murc loss of function, we assessed Caveolin-1 and 3 localization and found it to be abnormal. We further identified an in vivo function for Murc in Erk signaling. These data link Murc with developmental defects in T-tubule formation and progressive muscle dysfunction, thereby providing a new candidate for the etiology of muscular dystrophy.

  13. Cavin4b/Murcb Is Required for Skeletal Muscle Development and Function in Zebrafish.

    Directory of Open Access Journals (Sweden)

    Michael P Housley

    2016-06-01

    Full Text Available Skeletal muscles provide metazoans with the ability to feed, reproduce and avoid predators. In humans, a heterogeneous group of genetic diseases, termed muscular dystrophies (MD, lead to skeletal muscle dysfunction. Mutations in the gene encoding Caveolin-3, a principal component of the membrane micro-domains known as caveolae, cause defects in muscle maintenance and function; however it remains unclear how caveolae dysfunction underlies MD pathology. The Cavin family of caveolar proteins can form membrane remodeling oligomers and thus may also impact skeletal muscle function. Changes in the distribution and function of Cavin4/Murc, which is predominantly expressed in striated muscles, have been reported to alter caveolae structure through interaction with Caveolin-3. Here, we report the generation and phenotypic analysis of murcb mutant zebrafish, which display impaired swimming capacity, skeletal muscle fibrosis and T-tubule abnormalities during development. To understand the mechanistic importance of Murc loss of function, we assessed Caveolin-1 and 3 localization and found it to be abnormal. We further identified an in vivo function for Murc in Erk signaling. These data link Murc with developmental defects in T-tubule formation and progressive muscle dysfunction, thereby providing a new candidate for the etiology of muscular dystrophy.

  14. The expression of myosin genes in developing skeletal muscle in the mouse embryo

    International Nuclear Information System (INIS)

    Lyons, G.E.; Ontell, M.; Cox, R.; Sassoon, D.; Buckingham, M.

    1990-01-01

    Using in situ hybridization, we have investigated the temporal sequence of myosin gene expression in the developing skeletal muscle masses of mouse embryos. The probes used were isoform-specific, 35S-labeled antisense cRNAs to the known sarcomeric myosin heavy chain and myosin alkali light chain gene transcripts. Results showed that both cardiac and skeletal myosin heavy chain and myosin light chain mRNAs were first detected between 9 and 10 d post coitum (p.c.) in the myotomes of the most rostral somites. Myosin transcripts appeared in more caudal somites at later stages in a developmental gradient. The earliest myosin heavy chain transcripts detected code for the embryonic skeletal (MHCemb) and beta-cardiac (MHC beta) isoforms. Perinatal myosin heavy chain (MHCpn) transcripts begin to accumulate at 10.5 d p.c., which is much earlier than previously reported. At this stage, MHCemb is the major MHC transcript. By 12.5 d p.c., MHCpn and MHCemb mRNAs are present to an equal extent, and by 15.5 d p.c. the MHCpn transcript is the major MHC mRNA detected. Cardiac MHC beta transcripts are always present as a minor component. In contrast, the cardiac MLC1A mRNA is initially more abundant than that encoding the skeletal MLC1F isoform. By 12.5 d p.c. the two MLC mRNAs are present at similar levels, and by 15.5 d p.c., MLC1F is the predominant MLC transcript detected. Transcripts for the ventricular/slow (MLC1V) and another fast skeletal myosin light chain (MLC3F) are not detected in skeletal muscle before 15 d p.c., which marks the beginning of the fetal stage of muscle development. This is the first stage at which we can detect differences in expression of myosin genes between developing muscle fibers. We conclude that, during the development of the myotome and body wall muscles, different myosin genes follow independent patterns of activation and acculumation

  15. Skeletal development in Acropora palmata (Lamarck 1816): a scanning electron microscope (SEM) comparison demonstrating similar mechanisms of skeletal extension in axial versus encrusting growth

    Science.gov (United States)

    Gladfelter, E. H.

    2007-12-01

    Many Acropora palmata colonies consist of an encrusting basal portion and erect branches. Linear growth of the skeleton results in extension along the substrate (encrusting growth), lengthening of branches (axial growth) and thickening of branches and crust (radial growth). Scanning Electron Microscopy is used to compare the mechanisms of skeletal extension between encrusting growth and axial growth. In encrusting growth, the distal margin of the skeleton lacks corallites (which develop about 1 mm from the edge); in contrast, in axial growth, axial corallites along the branch tip form the distal portion of the skeleton. In both locations, the distal margin of the skeleton consists of a lattice-like structure composed of rods that extend from the body of the skeleton and bars that connect these rods. An actively extending skeleton is characterized by sharply pointed rods and partially developed bars. Distal growth of rods (and formation of bars) is effected by the formation of new sclerodermites. Each sclerodermite begins with the deposition of fusiform crystals (that range in length from 1 to 5 μm). These provide a surface for nucleation and growth of spherulitic tufts, clusters of short (<1 μm long) aragonite needles. The needles that are oriented perpendicular to the axis of the skeletal element (rod or bar), and perpendicular to the overlying calicoblastic epithelium, continue extension to appear on the surface of the skeleton as 10-15 μm wide bundles (of needle tips) called fasciculi. However, some crusts that abut competitors for space have a different morphology of skeletal elements (rods and bars). The distal edge of these crusts terminates in blunt coalescing rods, and bars that are fully formed. Absence of fusiform crystals, lack of sharply pointed rods and bars, and full development of sclerodermites characterize a skeletal region that has ceased, perhaps only temporarily, skeletal extension.

  16. Transcriptional profiling identifies differentially expressed genes in developing turkey skeletal muscle

    Directory of Open Access Journals (Sweden)

    Velleman Sandra G

    2011-03-01

    Full Text Available Abstract Background Skeletal muscle growth and development from embryo to adult consists of a series of carefully regulated changes in gene expression. Understanding these developmental changes in agriculturally important species is essential to the production of high quality meat products. For example, consumer demand for lean, inexpensive meat products has driven the turkey industry to unprecedented production through intensive genetic selection. However, achievements of increased body weight and muscle mass have been countered by an increased incidence of myopathies and meat quality defects. In a previous study, we developed and validated a turkey skeletal muscle-specific microarray as a tool for functional genomics studies. The goals of the current study were to utilize this microarray to elucidate functional pathways of genes responsible for key events in turkey skeletal muscle development and to compare differences in gene expression between two genetic lines of turkeys. To achieve these goals, skeletal muscle samples were collected at three critical stages in muscle development: 18d embryo (hyperplasia, 1d post-hatch (shift from myoblast-mediated growth to satellite cell-modulated growth by hypertrophy, and 16wk (market age from two genetic lines: a randombred control line (RBC2 maintained without selection pressure, and a line (F selected from the RBC2 line for increased 16wk body weight. Array hybridizations were performed in two experiments: Experiment 1 directly compared the developmental stages within genetic line, while Experiment 2 directly compared the two lines within each developmental stage. Results A total of 3474 genes were differentially expressed (false discovery rate; FDR Conclusions The current study identified gene pathways and uncovered novel genes important in turkey muscle growth and development. Future experiments will focus further on several of these candidate genes and the expression and mechanism of action of

  17. Emerging new tools to study and treat muscle pathologies: genetics and molecular mechanisms underlying skeletal muscle development, regeneration, and disease.

    Science.gov (United States)

    Crist, Colin

    2017-01-01

    Skeletal muscle is the most abundant tissue in our body, is responsible for generating the force required for movement, and is also an important thermogenic organ. Skeletal muscle is an enigmatic tissue because while on the one hand, skeletal muscle regeneration after injury is arguably one of the best-studied stem cell-dependent regenerative processes, on the other hand, skeletal muscle is still subject to many degenerative disorders with few therapeutic options in the clinic. It is important to develop new regenerative medicine-based therapies for skeletal muscle. Future therapeutic strategies should take advantage of rapidly developing technologies enabling the differentiation of skeletal muscle from human pluripotent stem cells, along with precise genome editing, which will go hand in hand with a steady and focused approach to understanding underlying mechanisms of skeletal muscle development, regeneration, and disease. In this review, I focus on highlighting the recent advances that particularly have relied on developmental and molecular biology approaches to understanding muscle development and stem cell function. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  18. Leptin administration affects growth and skeletal development in a rat intrauterine growth restriction model: preliminary study.

    Science.gov (United States)

    Bar-El Dadon, Shimrit; Shahar, Ron; Katalan, Vered; Monsonego-Ornan, Efrat; Reifen, Ram

    2011-09-01

    Skeletal abnormalities are one of the hallmarks of growth delay during gestation. The aim of this study was to determine changes induced by leptin in skeletal growth and development in a rat model of intrauterine growth retardation (IUGR) and to elucidate the possible underlying mechanisms. Intrauterine growth retardation was induced prepartum and the effects of leptin to mothers prenatally or to offspring postnatally were studied. Radii were harvested and tested mechanically and structurally. Tibias were evaluated for growth-plate morphometry. On day 40 postpartum, total bone length and mineral density and tibial growth-plate width and numbers of cells within its zones of offspring treated with leptin were significantly greater than in the control group. Postnatal leptin administration in an IUGR model improves the structural properties and elongation rate of bone. These findings could pave the way to preventing some phenotypic presentations of IUGR. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. [Size of lower jaw as an early indicator of skeletal class III development].

    Science.gov (United States)

    Stojanović, Zdenka; Nikodijević, Angelina; Udovicić, Bozidar; Milić, Jasmina; Nikolić, Predrag

    2008-08-01

    Malocclusion of skeletal class III is a complex abnormality, with a characteristic sagital position of the lower jaw in front of the upper one. A higher level of prognatism of the lower jaw in relation to the upper one can be the consequence of its excessive length. The aim of this study was to find the differences in the length of the lower jaw in the children with skeletal class III and the children with normal sagital interjaw relation (skeletal class I) in the period of mixed dentition. After clinical and x-ray diagnostics, profile tele-x-rays of the head were analyzed in 60 examinees with mixed dentition, aged from 6 to 12 years. The examinees were divided into two groups: group 1--the children with skeletal class III and group 2--the children with skeletal class I. The length of the lower jaw, upper jaw and cranial base were measured. The proportional relations between the lengths measured within each group were established and the level of difference in the lengths measured and their proportions between the groups were estimated. No significant difference between the groups was found in the body length, ramus and the total length of the lower jaw. Proportional relation between the body length and the length of the lower jaw ramus and proportional relation between the forward cranial base and the lower jaw body were not significantly different. A significant difference was found in proportional relations of the total length of the lower jaw with the total lengths of cranial base and the upper jaw and proportional relation of the length of the lower and upper jaw body. Of all the analyzed parameters, the following were selected as the early indicators of the development of skeletal class III on the lower jaw: greater total length of the lower jaw, proportional to the total lengths of cranial base and theupper jaw, as well as greater length of the lower jaw body, proportional to the length of the upper jaw body.

  20. Sall4-Gli3 system in early limb progenitors is essential for the development of limb skeletal elements.

    Science.gov (United States)

    Akiyama, Ryutaro; Kawakami, Hiroko; Wong, Julia; Oishi, Isao; Nishinakamura, Ryuichi; Kawakami, Yasuhiko

    2015-04-21

    Limb skeletal elements originate from the limb progenitor cells, which undergo expansion and patterning to develop each skeletal element. Posterior-distal skeletal elements, such as the ulna/fibula and posterior digits develop in a Sonic hedgehog (Shh)-dependent manner. However, it is poorly understood how anterior-proximal elements, such as the humerus/femur, the radius/tibia and the anterior digits, are developed. Here we show that the zinc finger factors Sall4 and Gli3 cooperate for proper development of the anterior-proximal skeletal elements and also function upstream of Shh-dependent posterior skeletal element development. Conditional inactivation of Sall4 in the mesoderm before limb outgrowth caused severe defects in the anterior-proximal skeletal elements in the hindlimb. We found that Gli3 expression is reduced in Sall4 mutant hindlimbs, but not in forelimbs. This reduction caused posteriorization of nascent hindlimb buds, which is correlated with a loss of anterior digits. In proximal development, Sall4 integrates Gli3 and the Plzf-Hox system, in addition to proliferative expansion of cells in the mesenchymal core of nascent hindlimb buds. Whereas forelimbs developed normally in Sall4 mutants, further genetic analysis identified that the Sall4-Gli3 system is a common regulator of the early limb progenitor cells in both forelimbs and hindlimbs. The Sall4-Gli3 system also functions upstream of the Shh-expressing ZPA and the Fgf8-expressing AER in fore- and hindlimbs. Therefore, our study identified a critical role of the Sall4-Gli3 system at the early steps of limb development for proper development of the appendicular skeletal elements.

  1. MicroRNA-128 targets myostatin at coding domain sequence to regulate myoblasts in skeletal muscle development.

    Science.gov (United States)

    Shi, Lei; Zhou, Bo; Li, Pinghua; Schinckel, Allan P; Liang, Tingting; Wang, Han; Li, Huizhi; Fu, Lingling; Chu, Qingpo; Huang, Ruihua

    2015-09-01

    MicroRNAs (miRNAs or miRs) play a critical role in skeletal muscle development. In a previous study we observed that miR-128 was highly expressed in skeletal muscle. However, its function in regulating skeletal muscle development is not clear. Our hypothesis was that miR-128 is involved in the regulation of the proliferation and differentiation of skeletal myoblasts. In this study, through bioinformatics analyses, we demonstrate that miR-128 specifically targeted mRNA of myostatin (MSTN), a critical inhibitor of skeletal myogenesis, at coding domain sequence (CDS) region, resulting in down-regulating of myostatin post-transcription. Overexpression of miR-128 inhibited proliferation of mouse C2C12 myoblast cells but promoted myotube formation; whereas knockdown of miR-128 had completely opposite effects. In addition, ectopic miR-128 regulated the expression of myogenic factor 5 (Myf5), myogenin (MyoG), paired box (Pax) 3 and 7. Furthermore, an inverse relationship was found between the expression of miR-128 and MSTN protein expression in vivo and in vitro. Taken together, these results reveal that there is a novel pathway in skeletal muscle development in which miR-128 regulates myostatin at CDS region to inhibit proliferation but promote differentiation of myoblast cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Development and validation of an n-dodecane skeletal mechanism for spray combustion applications

    KAUST Repository

    Luo, Zhaoyu; Som, Sibendu K.; Sarathy, Mani; Plomer, Max; Pitz, William J.; Longman, Douglas E.; Lu, Tianfeng

    2014-01-01

    relation graph with expert knowledge (DRGX) and sensitivity analysis was employed for the present skeletal reduction. The skeletal mechanism was first extensively validated in 0-D and 1-D combustion systems, including auto-ignition, jet stirred reactor (JSR

  3. Skeletal development of the glenoid and glenoid-coracoid interface in the pediatric population: MRI features

    Energy Technology Data Exchange (ETDEWEB)

    Kothary, Shefali [Mount Sinai Beth Israel, Department of Radiology, New York, NY (United States); Radiology Department, NYU Langone Medical Center: Hospital for Joint Disease, New York, NY (United States); Rosenberg, Zehava Sadka; Poncinelli, Leonardo L. [NYU Hospital for Joint Disease, Radiology Department, New York, NY (United States); Radiology Department, NYU Langone Medical Center: Hospital for Joint Disease, New York, NY (United States); Kwong, Steven [School of Medicine, NYU Langone Medical Center, New York, NY (United States); Radiology Department, NYU Langone Medical Center: Hospital for Joint Disease, New York, NY (United States)

    2014-09-15

    To assess the MRI appearance of normal skeletal development of the glenoid and glenoid-coracoid interface in the pediatric population. To the best of our knowledge, this has not yet been studied in detail in the literature. An IRB-approved, HIPAA-compliant retrospective review of 105 consecutive shoulder MRI studies in children, ages 2 months to 18 years was performed. The morphology, MR signal, and development of the following were assessed: (1) scapular-coracoid bipolar growth plate, (2) glenoid and glenoid-coracoid interface secondary ossification centers, (3) glenoid advancing osseous surface. The glenoid and glenoid-coracoid interface were identified in infancy as a contiguous, cartilaginous mass. A subcoracoid secondary ossification center in the superior glenoid was identified and fused in all by age 12 and 16, respectively. In ten studies, additional secondary ossification centers were identified in the inferior two-thirds of the glenoid. The initial concavity of the glenoid osseous surface gradually transformed to convexity, matching the convex glenoid articular surface. The glenoid growth plate fused by 16 years of age. Our study, based on MRI, demonstrated a similar pattern of development of the glenoid and glenoid coracoid interface to previously reported anatomic and radiographic studies, except for an earlier development and fusion of the secondary ossification centers of the inferior glenoid. The pattern of skeletal development of the glenoid and glenoid-coracoid interface follows a chronological order, which can serve as a guideline when interpreting MRI studies in children. (orig.)

  4. A gene network switch enhances the oxidative capacity of ovine skeletal muscle during late fetal development

    Directory of Open Access Journals (Sweden)

    Bidwell Christopher A

    2010-06-01

    Full Text Available Abstract Background The developmental transition between the late fetus and a newborn animal is associated with profound changes in skeletal muscle function as it adapts to the new physiological demands of locomotion and postural support against gravity. The mechanisms underpinning this adaption process are unclear but are likely to be initiated by changes in hormone levels. We tested the hypothesis that this developmental transition is associated with large coordinated changes in the transcription of skeletal muscle genes. Results Using an ovine model, transcriptional profiling was performed on Longissimus dorsi skeletal muscle taken at three fetal developmental time points (80, 100 and 120 d of fetal development and two postnatal time points, one approximately 3 days postpartum and a second at 3 months of age. The developmental time course was dominated by large changes in expression of 2,471 genes during the interval between late fetal development (120 d fetal development and 1-3 days postpartum. Analysis of the functions of genes that were uniquely up-regulated in this interval showed strong enrichment for oxidative metabolism and the tricarboxylic acid cycle indicating enhanced mitochondrial activity. Histological examination of tissues from these developmental time points directly confirmed a marked increase in mitochondrial activity between the late fetal and early postnatal samples. The promoters of genes that were up-regulated during this fetal to neonatal transition were enriched for estrogen receptor 1 and estrogen related receptor alpha cis-regulatory motifs. The genes down-regulated during this interval highlighted de-emphasis of an array of functions including Wnt signaling, cell adhesion and differentiation. There were also changes in gene expression prior to this late fetal - postnatal transition and between the two postnatal time points. The former genes were enriched for functions involving the extracellular matrix and immune

  5. Development and validation of an n-dodecane skeletal mechanism for spray combustion applications

    KAUST Repository

    Luo, Zhaoyu

    2014-03-04

    n-Dodecane is a promising surrogate fuel for diesel engine study because its physicochemical properties are similar to those of the practical diesel fuels. In the present study, a skeletal mechanism for n-dodecane with 105 species and 420 reactions was developed for spray combustion simulations. The reduction starts from the most recent detailed mechanism for n-alkanes consisting of 2755 species and 11,173 reactions developed by the Lawrence Livermore National Laboratory. An algorithm combining direct relation graph with expert knowledge (DRGX) and sensitivity analysis was employed for the present skeletal reduction. The skeletal mechanism was first extensively validated in 0-D and 1-D combustion systems, including auto-ignition, jet stirred reactor (JSR), laminar premixed flame and counter flow diffusion flame. Then it was coupled with well-established spray models and further validated in 3-D turbulent spray combustion simulations under engine-like conditions. These simulations were compared with the recent experiments with n-dodecane as a surrogate for diesel fuels. It can be seen that combustion characteristics such as ignition delay and flame lift-off length were well captured by the skeletal mechanism, particularly under conditions with high ambient temperatures. Simulations also captured the transient flame development phenomenon fairly well. The results further show that ignition delay may not be the only factor controlling the stabilisation of the present flames since a good match in ignition delay does not necessarily result in improved flame lift-off length prediction. The work of Zhaoyu Luo, Sibendu Som, Max Plomer, William J. Pitz, Douglas E. Longman and Tianfeng Lu was authored as part of their official duties as Employees of the United States Government and is therefore a work of the United States Government. In accordance with 17 USC. 105, no copyright protection is available for such works under US Law. S. Mani Sarathy hereby waives his right to

  6. Smyd3 is required for the development of cardiac and skeletal muscle in zebrafish.

    Directory of Open Access Journals (Sweden)

    Tomoaki Fujii

    Full Text Available Modifications of histone tails are involved in the regulation of a wide range of biological processes including cell cycle, cell survival, cell division, and cell differentiation. Among the modifications, histone methylation plays a critical role in cardiac and skeletal muscle differentiation. In our earlier studies, we found that SMYD3 has methyltransferase activity to histone H3 lysine 4, and that its up-regulation is involved in the tumorigenesis of human colon, liver, and breast. To clarify the role of Smyd3 in development, we have studied its expression patterns in zebrafish embryos and the effect of its suppression on development using Smyd3-specific antisense morpholino-oligonucleotides. We here show that transcripts of smyd3 were expressed in zebrafish embryos at all developmental stages examined and that knockdown of smyd3 in embryos resulted in pericardial edema and defects in the trunk structure. In addition, these phenotypes were associated with abnormal expression of three heart-chamber markers including cmlc2, amhc and vmhc, and abnormal expression of myogenic regulatory factors including myod and myog. These data suggest that Smyd3 plays an important role in the development of heart and skeletal muscle.

  7. Reactive oxygen species are involved in lipopolysaccharide-induced intrauterine growth restriction and skeletal development retardation in mice.

    Science.gov (United States)

    Xu, De-Xiang; Chen, Yuan-Hua; Zhao, Lei; Wang, Hua; Wei, Wei

    2006-12-01

    Maternal infection is a cause of adverse developmental outcomes including embryonic resorption, intrauterine fetal death, and preterm labor. Lipopolysaccharide-induced developmental toxicity at early gestational stages has been well characterized. The purpose of the present study was to investigate the effects of maternal lipopolysaccharide exposure at late gestational stages on intrauterine fetal growth and skeletal development and to assess the potential role of reactive oxygen species in lipopolysaccharide-induced intrauterine fetal growth restriction and skeletal development retardation. The timed pregnant CD-1 mice were intraperitoneally injected with lipopolysaccharide (25 to 75 microg/kg per day) on gestational day 15 to 17. To investigate the role of reactive oxygen species on lipopolysaccharide-induced intrauterine fetal growth restriction and skeletal development retardation, the pregnant mice were injected with alpha-phenyl-N-t-butylnitrone (100 mg/kg, intraperitoneally) at 30 minutes before lipopolysaccharide (75 microg/kg per day, intraperitoneally), followed by an additional dose of alpha-phenyl-N-t-butylnitrone (50 mg/kg, intraperitoneally) at 3 hours after lipopolysaccharide. The number of live fetuses, dead fetuses, and resorption sites was counted on gestational day 18. Live fetuses in each litter were weighed. Crown-rump and tail lengths were examined and skeletal development was evaluated. Maternal lipopolysaccharide exposure significantly increased fetal mortality, reduced fetal weight and crown-rump and tail lengths of live fetuses, and retarded skeletal ossification in caudal vertebrae, anterior and posterior phalanges, and supraoccipital bone in a dose-dependent manner. Alpha-phenyl-N-t-butylnitrone, a free radical spin-trapping agent, almost completely blocked lipopolysaccharide-induced fetal death (63.2% in lipopolysaccharide group versus 6.5% in alpha-phenyl-N-t-butylnitrone + lipopolysaccharide group, P intrauterine growth restriction

  8. Development of a skeletal multi-component fuel reaction mechanism based on decoupling methodology

    International Nuclear Information System (INIS)

    Mohan, Balaji; Tay, Kun Lin; Yang, Wenming; Chua, Kian Jon

    2015-01-01

    Highlights: • A compact multi-component skeletal reaction mechanism was developed. • Combined bio-diesel and PRF mechanism was proposed. • The mechanism consists of 68 species and 183 reactions. • Well validated against ignition delay times, flame speed and engine results. - Abstract: A new coupled bio-diesel surrogate and primary reference fuel (PRF) oxidation skeletal mechanism has been developed. The bio-diesel surrogate sub-mechanism consists of oxidation sub-mechanisms of Methyl decanoate (MD), Methyl 9-decenoate (MD9D) and n-Heptane fuel components. The MD and MD9D are chosen to represent the saturated and unsaturated methyl esters respectively in bio-diesel fuels. Then, a reduced iso-Octane oxidation sub-mechanism is added to the bio-diesel surrogate sub-mechanism. Then, all the sub-mechanisms are integrated to a reduced C_2–C_3 mechanism, detailed H_2/CO/C_1 mechanism and reduced NO_x mechanism based on decoupling methodology. The final mechanism consisted of 68 species and 183 reactions. The mechanism was well validated with shock-tube ignition delay times, laminar flame speed and 3D engine simulations.

  9. Loss of ATRX in chondrocytes has minimal effects on skeletal development.

    Directory of Open Access Journals (Sweden)

    Lauren A Solomon

    Full Text Available BACKGROUND: Mutations in the human ATRX gene cause developmental defects, including skeletal deformities and dwarfism. ATRX encodes a chromatin remodeling protein, however the role of ATRX in skeletal development is currently unknown. METHODOLOGY/PRINCIPAL FINDINGS: We induced Atrx deletion in mouse cartilage using the Cre-loxP system, with Cre expression driven by the collagen II (Col2a1 promoter. Growth rate, body size and weight, and long bone length did not differ in Atrx(Col2cre mice compared to control littermates. Histological analyses of the growth plate did not reveal any differences between control and mutant mice. Expression patterns of Sox9, a transcription factor required for cartilage morphogenesis, and p57, a marker of cell cycle arrest and hypertrophic chondrocyte differentiation, was unaffected. However, loss of ATRX in cartilage led to a delay in the ossification of the hips in some mice. We also observed hindlimb polydactily in one out of 61 mutants. CONCLUSIONS/SIGNIFICANCE: These findings indicate that ATRX is not directly required for development or growth of cartilage in the mouse, suggesting that the short stature in ATR-X patients is caused by defects in cartilage-extrinsic mechanisms.

  10. Epigenetic Control of Skeletal Development by the Histone Methyltransferase Ezh2*

    Science.gov (United States)

    Dudakovic, Amel; Camilleri, Emily T.; Xu, Fuhua; Riester, Scott M.; McGee-Lawrence, Meghan E.; Bradley, Elizabeth W.; Paradise, Christopher R.; Lewallen, Eric A.; Thaler, Roman; Deyle, David R.; Larson, A. Noelle; Lewallen, David G.; Dietz, Allan B.; Stein, Gary S.; Montecino, Martin A.; Westendorf, Jennifer J.; van Wijnen, Andre J.

    2015-01-01

    Epigenetic control of gene expression is critical for normal fetal development. However, chromatin-related mechanisms that activate bone-specific programs during osteogenesis have remained underexplored. Therefore, we investigated the expression profiles of a large cohort of epigenetic regulators (>300) during osteogenic differentiation of human mesenchymal cells derived from the stromal vascular fraction of adipose tissue (AMSCs). Molecular analyses establish that the polycomb group protein EZH2 (enhancer of zeste homolog 2) is down-regulated during osteoblastic differentiation of AMSCs. Chemical inhibitor and siRNA knockdown studies show that EZH2, a histone methyltransferase that catalyzes trimethylation of histone 3 lysine 27 (H3K27me3), suppresses osteogenic differentiation. Blocking EZH2 activity promotes osteoblast differentiation and suppresses adipogenic differentiation of AMSCs. High throughput RNA sequence (mRNASeq) analysis reveals that EZH2 inhibition stimulates cell cycle inhibitory proteins and enhances the production of extracellular matrix proteins. Conditional genetic loss of Ezh2 in uncommitted mesenchymal cells (Prrx1-Cre) results in multiple defects in skeletal patterning and bone formation, including shortened forelimbs, craniosynostosis, and clinodactyly. Histological analysis and mRNASeq profiling suggest that these effects are attributable to growth plate abnormalities and premature cranial suture closure because of precocious maturation of osteoblasts. We conclude that the epigenetic activity of EZH2 is required for skeletal patterning and development, but EZH2 expression declines during terminal osteoblast differentiation and matrix production. PMID:26424790

  11. Spop promotes skeletal development and homeostasis by positively regulating Ihh signaling.

    Science.gov (United States)

    Cai, Hongchen; Liu, Aimin

    2016-12-20

    Indian Hedgehog (Ihh) regulates chondrocyte and osteoblast differentiation through the Glioma-associated oncogene homolog (Gli) transcription factors. Previous in vitro studies suggested that Speckle-type POZ protein (Spop), part of the Cullin-3 (Cul3) ubiquitin ligase complex, targets Gli2 and Gli3 for degradation and negatively regulates Hedgehog (Hh) signaling. In this study, we found defects in chondrocyte and osteoblast differentiation in Spop-null mutant mice. Strikingly, both the full-length and repressor forms of Gli3, but not Gli2, were up-regulated in Spop mutants, and Ihh target genes Patched 1 (Ptch1) and parathyroid hormone-like peptide (Pthlh) were down-regulated, indicating compromised Hh signaling. Consistent with this finding, reducing Gli3 dosage greatly rescued the Spop mutant skeletal defects. We further show that Spop directly targets the Gli3 repressor for ubiquitination and degradation. Finally, we demonstrate in a conditional mutant that loss of Spop results in brachydactyly and osteopenia, which can be rescued by reducing the dosage of Gli3. In summary, Spop is an important positive regulator of Ihh signaling and skeletal development.

  12. NPPB and ACAN, two novel SHOX2 transcription targets implicated in skeletal development.

    Directory of Open Access Journals (Sweden)

    Miriam Aza-Carmona

    Full Text Available SHOX and SHOX2 transcription factors are highly homologous, with even identical homeodomains. Genetic alterations in SHOX result in two skeletal dysplasias; Léri-Weill dyschondrosteosis (LWD and Langer mesomelic dysplasia (LMD, while no human genetic disease has been linked to date with SHOX2. SHOX2 is, though, involved in skeletal development, as shown by different knockout mice models. Due to the high homology between SHOX and SHOX2, and their functional redundancy during heart development, we postulated that SHOX2 might have the same transcriptional targets and cofactors as SHOX in limb development. We selected two SHOX transcription targets regulated by different mechanisms: 1 the natriuretic peptide precursor B gene (NPPB involved in the endochondral ossification signalling and directly activated by SHOX; and 2 Aggrecan (ACAN, a major component of cartilage extracellular matrix, regulated by the cooperation of SHOX with the SOX trio (SOX5, SOX6 and SOX9 via the protein interaction between SOX5/SOX6 and SHOX. Using the luciferase assay we have demonstrated that SHOX2, like SHOX, regulates NPPB directly whilst activates ACAN via its cooperation with the SOX trio. Subsequently, we have identified and characterized the protein domains implicated in the SHOX2 dimerization and also its protein interaction with SOX5/SOX6 and SHOX using the yeast-two hybrid and co-immunoprecipitation assays. Immunohistochemistry of human fetal growth plates from different time points demonstrated that SHOX2 is coexpressed with SHOX and the members of the SOX trio. Despite these findings, no mutation was identified in SHOX2 in a cohort of 83 LWD patients with no known molecular defect, suggesting that SHOX2 alterations do not cause LWD. In conclusion, our work has identified the first cofactors and two new transcription targets of SHOX2 in limb development, and we hypothesize a time- and tissue-specific functional redundancy between SHOX and SHOX2.

  13. NPPB and ACAN, two novel SHOX2 transcription targets implicated in skeletal development.

    Science.gov (United States)

    Aza-Carmona, Miriam; Barca-Tierno, Veronica; Hisado-Oliva, Alfonso; Belinchón, Alberta; Gorbenko-del Blanco, Darya; Rodriguez, Jose Ignacio; Benito-Sanz, Sara; Campos-Barros, Angel; Heath, Karen E

    2014-01-01

    SHOX and SHOX2 transcription factors are highly homologous, with even identical homeodomains. Genetic alterations in SHOX result in two skeletal dysplasias; Léri-Weill dyschondrosteosis (LWD) and Langer mesomelic dysplasia (LMD), while no human genetic disease has been linked to date with SHOX2. SHOX2 is, though, involved in skeletal development, as shown by different knockout mice models. Due to the high homology between SHOX and SHOX2, and their functional redundancy during heart development, we postulated that SHOX2 might have the same transcriptional targets and cofactors as SHOX in limb development. We selected two SHOX transcription targets regulated by different mechanisms: 1) the natriuretic peptide precursor B gene (NPPB) involved in the endochondral ossification signalling and directly activated by SHOX; and 2) Aggrecan (ACAN), a major component of cartilage extracellular matrix, regulated by the cooperation of SHOX with the SOX trio (SOX5, SOX6 and SOX9) via the protein interaction between SOX5/SOX6 and SHOX. Using the luciferase assay we have demonstrated that SHOX2, like SHOX, regulates NPPB directly whilst activates ACAN via its cooperation with the SOX trio. Subsequently, we have identified and characterized the protein domains implicated in the SHOX2 dimerization and also its protein interaction with SOX5/SOX6 and SHOX using the yeast-two hybrid and co-immunoprecipitation assays. Immunohistochemistry of human fetal growth plates from different time points demonstrated that SHOX2 is coexpressed with SHOX and the members of the SOX trio. Despite these findings, no mutation was identified in SHOX2 in a cohort of 83 LWD patients with no known molecular defect, suggesting that SHOX2 alterations do not cause LWD. In conclusion, our work has identified the first cofactors and two new transcription targets of SHOX2 in limb development, and we hypothesize a time- and tissue-specific functional redundancy between SHOX and SHOX2.

  14. Identification of Histone Deacetylase 2 as a Functional Gene for Skeletal Muscle Development in Chickens

    Directory of Open Access Journals (Sweden)

    Md. Shahjahan

    2016-04-01

    Full Text Available A previous genome-wide association study (GWAS exposed histone deacetylase 2 (HDAC2 as a possible candidate gene for breast muscle weight in chickens. The present research has examined the possible role of HDAC2 in skeletal muscle development in chickens. Gene expression was measured by quantitative polymerase chain reaction in breast and thigh muscles during both embryonic (four ages and post-hatch (five ages development and in cultures of primary myoblasts during both proliferation and differentiation. The expression of HDAC2 increased significantly across embryonic days (ED in breast (ED 14, 16, 18, and 21 and thigh (ED 14 and 18, and ED 14 and 21 muscles suggesting that it possibly plays a role in myoblast hyperplasia in both breast and thigh muscles. Transcript abundance of HDAC2 identified significantly higher in fast growing muscle than slow growing in chickens at d 90 of age. Expression of HDAC2 during myoblast proliferation in vitro declined between 24 h and 48 h when expression of the marker gene paired box 7 (PAX7 increased and cell numbers increased throughout 72 h of culture. During induced differentiation of myoblasts to myotubes, the abundance of HDAC2 and the marker gene myogenic differentiation 1 (MYOD1, both increased significantly. Taken together, it is suggested that HDAC2 is most likely involved in a suppressive fashion in myoblast proliferation and may play a positive role in myoblast differentiation. The present results confirm the suggestion that HDAC2 is a functional gene for pre-hatch and post-hatch (fast growing muscle development of chicken skeletal muscle.

  15. Methods for the determination of skeletal muscle blood flow: development, strengths and limitations

    DEFF Research Database (Denmark)

    Gliemann, Lasse; Mortensen, Stefan P.; Hellsten, Ylva

    2018-01-01

    Since the first measurements of limb blood flow at rest and during nerve stimulation were conducted in the late 1800s, a number of methods have been developed for the determination of limb and skeletal muscle blood flow in humans. The methods, which have been applied in the study of aspects...... such as blood flow regulation, oxygen uptake and metabolism, differ in terms of strengths and degree of limitations but most have advantages for specific settings. The purpose of this review is to describe the origin and the basic principles of the methods, important aspects and requirements of the procedures....... One of the earliest methods, venous occlusion plethysmography, is a noninvasive method which still is extensively used and which provides similar values as other more direct blood flow methods such as ultrasound Doppler. The constant infusion thermodilution method remains the most appropriate...

  16. Evaluation of solitary rib lesions in CA. breast patients for development of skeletal metastasis

    International Nuclear Information System (INIS)

    Fatima, A.; Fatima, S.; Khursheed, K.; Jafri, S.; Asghar, S.

    2004-01-01

    Determination of nature of single or double rib lesion on a bone scan is important but very difficult. In case of breast carcinoma rib lesion have particular importance, as they are one of the most common sites of metastasis. On the contrary surgical trauma and radiotherapy can induce metabolic changes, which can lead to rib lesions of benign etiology. As it is known that breast carcinoma patients having skeletal metastasis have worse prognosis so it is particularly important to differentiate between malignant and benign rib lesions. In this study etiology of rib lesions detected on bone scan was analyzed retrospectively patients. Study population consisted of breast cancer patients having solitary rib lesions on baseline or follow-up bone scan were included in the study. The etiology of solitary rib involvement was established using all the clinical, radiological and biochemical data available. The clinical and serial scintigraphic data were collected and analyzed for correlation in forty-two patients. Patients were followed up for at least two subsequent bone scans. Out of total study population nine patients (21.42%) developed skeletal metastasis on follow-up. Rest of the study population is disease free till last follow-up. All these patients developed metastasis within two years of appearance of the rib lesions. Correlation between sites of initial rib lesion, uptake pattern, size of tumor, mode of primary therapy, age of involvement, interval from initial therapy, biochemical and radiological findings was done. Correlation was seen between sites of uptake, uptake pattern, mode of primary therapy and biochemical findings with subsequent outcome of the patient. It is concluded from our study that solitary rib lesion have low incidence of malignancy if other risk factors are absent. (authors)

  17. Growth hormone mediates pubertal skeletal development independent of hepatic IGF-1 production.

    Science.gov (United States)

    Courtland, Hayden-William; Sun, Hui; Beth-On, Mordechay; Wu, Yingjie; Elis, Sebastien; Rosen, Clifford J; Yakar, Shoshana

    2011-04-01

    Deficiencies in either growth hormone (GH) or insulin-like growth factor 1 (IGF-1) are associated with reductions in bone size during growth in humans and animal models. Liver-specific IGF-1-deficient (LID) mice, which have 75% reductions in serum IGF-1, were created previously to separate the effects of endocrine (serum) IGF-1 from autocrine/paracrine IGF-1. However, LID mice also have two- to threefold increases in GH, and this may contribute to the observed pubertal skeletal phenotype. To clarify the role of GH in skeletal development under conditions of significantly reduced serum IGF-1 levels (but normal tissue IGF-1 levels), we studied the skeletal response of male LID and control mice to GH inhibition by pegvisomant from 4 to 8 weeks of age. Treatment of LID mice with pegvisomant resulted in significant reductions in body weight, femur length (Le), and femur total area (Tt.Ar), as well as further reductions in serum IGF-1 levels by 8 weeks of age, compared with the mean values of vehicle-treated LID mice. Reductions in both Tt.Ar and Le were proportional after treatment with pegvisomant. On the other hand, the relative amount of cortical tissue formed (RCA) in LID mice treated with pegvisomant was significantly less than that in both vehicle-treated LID and control mice, indicating that antagonizing GH action, either directly (through GH receptor signaling inhibition) or indirectly (through further reductions in serum/tissue IGF-1 levels), results in disproportionate reductions in the amount of cortical bone formed. This resulted in bones with significantly reduced mechanical properties (femoral whole-bone stiffness and work to failure were markedly decreased), suggesting that compensatory increases of GH in states of IGF-1 deficiency (LID mice) act to protect against a severe inhibition of bone modeling during growth, which otherwise would result in bones that are too weak for normal and/or extreme loading conditions. Copyright © 2011 American Society for

  18. SoxB2 in sea urchin development: implications in neurogenesis, ciliogenesis and skeletal patterning.

    Science.gov (United States)

    Anishchenko, Evgeniya; Arnone, Maria Ina; D'Aniello, Salvatore

    2018-01-01

    Current studies in evolutionary developmental biology are focused on the reconstruction of gene regulatory networks in target animal species. From decades, the scientific interest on genetic mechanisms orchestrating embryos development has been increasing in consequence to the fact that common features shared by evolutionarily distant phyla are being clarified. In 2011, a study across eumetazoan species showed for the first time the existence of a highly conserved non-coding element controlling the SoxB2 gene, which is involved in the early specification of the nervous system. This discovery raised several questions about SoxB2 function and regulation in deuterostomes from an evolutionary point of view. Due to the relevant phylogenetic position within deuterostomes, the sea urchin Strongylocentrotus purpuratus represents an advantageous animal model in the field of evolutionary developmental biology. Herein, we show a comprehensive study of SoxB2 functions in sea urchins, in particular its expression pattern in a wide range of developmental stages, and its co-localization with other neurogenic markers, as SoxB1 , SoxC and Elav . Moreover, this work provides a detailed description of the phenotype of sea urchin SoxB2 knocked-down embryos, confirming its key function in neurogenesis and revealing, for the first time, its additional roles in oral and aboral ectoderm cilia and skeletal rod morphology. We concluded that SoxB2 in sea urchins has a neurogenic function; however, this gene could have multiple roles in sea urchin embryogenesis, expanding its expression in non-neurogenic cells. We showed that SoxB2 is functionally conserved among deuterostomes and suggested that in S. purpuratus this gene acquired additional functions, being involved in ciliogenesis and skeletal patterning.

  19. Identification and profiling of microRNAs and their target genes from developing caprine skeletal Muscle.

    Directory of Open Access Journals (Sweden)

    Yanhong Wang

    Full Text Available Goat is an important agricultural animal for meat production. Functional studies have demonstrated that microRNAs (miRNAs regulate gene expression at the post-transcriptional level and play an important role in various biological processes. Although studies on miRNAs expression profiles have been performed in various animals, relatively limited information about goat muscle miRNAs has been reported. To investigate the miRNAs involved in regulating different periods of skeletal muscle development, we herein performed a comprehensive research for expression profiles of caprine miRNAs during two developmental stages of skeletal muscles: fetal stage and six month-old stage. As a result, 15,627,457 and 15,593,721 clean reads were obtained from the fetal goat library (FC and the six month old goat library (SMC, respectively. 464 known miRNAs and 83 novel miRNA candidates were identified. Furthermore, by comparing the miRNA profile, 336 differentially expressed miRNAs were identified and then the potential targets of the differentially expressed miRNAs were predicted. To understand the regulatory network of miRNAs during muscle development, the mRNA expression profiles for the two development stages were characterized and 7322 differentially expressed genes (DEGs were identified. Then the potential targets of miRNAs were compared to the DEGs, the intersection of the two gene sets were screened out and called differentially expressed targets (DE-targets, which were involved in 231 pathways. Ten of the 231 pathways that have smallest P-value were shown as network figures. Based on the analysis of pathways and networks, we found that miR-424-5p and miR-29a might have important regulatory effect on muscle development, which needed to be further studied. This study provided the first global view of the miRNAs in caprine muscle tissues. Our results help elucidation of complex regulatory networks between miRNAs and mRNAs and for the study of muscle

  20. Androgen effects on skeletal muscle: implications for the development and management of frailty

    Directory of Open Access Journals (Sweden)

    Matthew DL O'Connell

    2014-04-01

    Full Text Available Androgens have potent anabolic effects on skeletal muscle and decline with age in parallel to losses in muscle mass and strength. This loss of muscle mass and function, known as sarcopenia, is the central event in development of frailty, the vulnerable health status that presages adverse outcomes and rapid functional decline in older adults. The potential role of falling androgen levels in the development of frailty and their utility as function promoting therapies in older men has therefore attracted considerable attention. This review summarizes current concepts and definitions in muscle ageing, sarcopenia and frailty, and evaluates recent developments in the study of androgens and frailty. Current evidence from observational and interventional studies strongly supports an effect of androgens on muscle mass in ageing men, but effects on muscle strength and particularly physical function have been less clear. Androgen treatment has been generally well-tolerated in studies of older men, but concerns remain over higher dose treatments and use in populations with high cardiovascular risk. The first trials of selective androgen receptor modulators (SARMs suggest similar effects on muscle mass and function to traditional androgen therapies in older adults. Important future directions include the use of these agents in combination with exercise training to promote functional ability across different populations of older adults, as well as more focus on the relationships between concurrent changes in hormone levels, body composition and physical function in observational studies.

  1. Effect of young maternal age and skeletal growth on placental growth and development.

    Science.gov (United States)

    Hayward, C E; Greenwood, S L; Sibley, C P; Baker, P N; Jones, R L

    2011-12-01

    Teenagers are susceptible to delivering small-for-gestational-age infants. Previous studies implicate continued skeletal growth as a contributory factor, and impaired placental development was the primary cause of fetal growth restriction in growing adolescent sheep. The aims of this study were to examine the impact of young maternal age and growth on placental development. Placentas were collected from 31 teenagers, of which 12 were growing and 17 non-growing based on knee height measurements. An adult control group (n = 12) was included. Placental weight and morphometric measurements of villous, syncytiotrophoblast, fibrin and vessel areas, as well as indices of proliferation and apoptosis, were analysed in relation to maternal growth and age. Growing teenagers had a higher birthweight:placental weight ratio than non-growing teenagers (p adult and teenage pregnancies. Maternal smoking, a potential confounding factor, did not exert a major influence on the placental parameters examined, except for a stimulatory effect on placental proliferation (p development, and is consistent with our recent observations that maternal growth was not detrimental to fetal growth. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Spatial distribution of "tissue-specific" antigens in the developing human heart and skeletal muscle. I. An immunohistochemical analysis of creatine kinase isoenzyme expression patterns

    NARCIS (Netherlands)

    Wessels, A.; Vermeulen, J. L.; Virágh, S.; Kálmán, F.; Morris, G. E.; Man, N. T.; Lamers, W. H.; Moorman, A. F.

    1990-01-01

    Using monoclonal antibodies against the M and B subunit isoforms of creatine kinase (CK) we have investigated their distribution in developing human skeletal and cardiac muscle immunohistochemically. It is demonstrated that in skeletal muscle, a switch from CK-B to CK-M takes place around the week 8

  3. [Treatment of pelvic Ewing's sarcoma in children and the effect on the skeletal growth and development].

    Science.gov (United States)

    Fu, Jun; Guo, Zheng; Wang, Zhen; Li, Xiang-dong; Li, Jing; Chen, Guo-jing; Wu, Zhi-gang

    2012-12-01

    To explore the effect of neo-adjuvant chemotherapy and computer-assisted surgery on children and adolescents with primary pelvic Ewing's sarcoma, and assess the therapeutic effect on the pelvic skeletal growth and development. This is a retrospective analysis of 10 children with primary pelvic Ewing's sarcoma treated between Jan 2001 and Oct 2010 at the Department of Oncologic Orthopaedics at Xijing Hospital. There were 3 girls and 7 boys in the age of 7 to 16 years (average 12.7 years). All patients were pathologically diagnosed as Ewing's sarcoma. There were two cases in the sacroiliac joint, one in the ilium, one in the pubic bone, and 6 cases in peri-acetabular area including 5 below the triradiate cartilage and one above the triradiate cartilage, without cartilage invasion. All patients underwent neo-adjuvant chemotherapy, resection and reconstruction surgery and postoperative chemotherapy. CDP, ADM and IFO regimen chemotherapy were given as the main treatment. Five cases were treated by traditional resection and reconstruction, and after 2008, five cases were treated by computer-assisted surgery. During the reconstruction, the hip rotation center was put at a depressed location. All of the 10 cases underwent postoperative radiotherapy in a dose of 45-55 Gy. All patients were followed-up for 12-72 months (mean: 37.8 months). One child had tumor recurrence and lung metastasis and 9 patients had no evidence of disease (NED). After neo-adjuvant chemotherapy, the oncologic statuses (RECIST) were: 1 CR, 8 PR and 1 SD. The functional recoveries after surgery (Enneking's) were: 4 cases excellent, 4 good, 1 fair and 1 poor. Five cases who underwent computer-assisted surgery achieved a good reconstruction without local recurrence. There were no effects on skeletal growth in 8 cases. An unbalanced hip rotational center occurred in one case, and a compemsatory scoliosis was found in another case. There were no serious complications in all patients. The comprehensive

  4. Expression of Wnt signaling skeletal development genes in the cartilaginous fish, elephant shark (Callorhinchus milii).

    Science.gov (United States)

    D'Souza, Damian G; Rana, Kesha; Milley, Kristi M; MacLean, Helen E; Zajac, Jeffrey D; Bell, Justin; Brenner, Sydney; Venkatesh, Byrappa; Richardson, Samantha J; Danks, Janine A

    2013-11-01

    Jawed vertebrates (Gnasthostomes) are broadly separated into cartilaginous fishes (Chondricthyes) and bony vertebrates (Osteichthyes). Cartilaginous fishes are divided into chimaeras (e.g. ratfish, rabbit fish and elephant shark) and elasmobranchs (e.g. sharks, rays and skates). Both cartilaginous fish and bony vertebrates are believed to have a common armoured bony ancestor (Class Placodermi), however cartilaginous fish are believed to have lost bone. This study has identified and investigated genes involved in skeletal development in vertebrates, in the cartilaginous fish, elephant shark (Callorhinchus milii). Ctnnb1 (β-catenin), Sfrp (secreted frizzled protein) and a single Sost or Sostdc1 gene (sclerostin or sclerostin domain-containing protein 1) were identified in the elephant shark genome and found to be expressed in a number of tissues, including cartilage. β-catenin was also localized in several elephant shark tissues. The expression of these genes, which belong to the Wnt/β-catenin pathway, is required for normal bone formation in mammals. These findings in the cartilaginous skeleton of elephant shark support the hypothesis that the common ancestor of cartilaginous fishes and bony vertebrates had the potential for making bone. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  5. Molecular events underlying skeletal muscle atrophy and the development of effective countermeasures

    Science.gov (United States)

    Booth, F. W.; Criswell, D. S.

    1997-01-01

    Skeletal muscle adapts to loading; atrophying when exposed to unloading on Earth or in spaceflight. Significant atrophy (decreases in muscle fiber cross-section of 11-24%) in humans has been noted after only 5 days in space. Since muscle strength is determined both by muscle cross-section and synchronization of motor unit recruitment, a loss in muscle size weakens astronauts, which would increase risks to their safety if an emergency required maximal muscle force. Numerous countermeasures have been tested to prevent atrophy. Resistant exercise together with growth hormone and IGF-I are effective countermeasures to unloading as most atrophy is prevented in animal models. The loss of muscle protein is due to an early decrease in protein synthesis rate and a later increase in protein degradation. The initial decrease in protein synthesis is a result of decreased protein translation, caused by a prolongation in the elongation rate. A decrease in HSP70 by a sight increase in ATP may be the factors prolonging elongation rate. Increases in the activities of proteolytic enzymes and in ubiquitin contribute to the increased protein degradation rate in unloaded muscle. Numerous mRNA concentrations have been shown to be altered in unloaded muscles. Decreases in mRNAs for contractile proteins usually occur after the initial fall in protein synthesis rates. Much additional research is needed to determine the mechanism by which muscle senses the absence of gravity with an adaptive atrophy. The development of effective countermeasures to unloading atrophy will require more research.

  6. Physiological and methodological aspects of rate of force development assessment in human skeletal muscle.

    Science.gov (United States)

    Rodríguez-Rosell, David; Pareja-Blanco, Fernando; Aagaard, Per; González-Badillo, Juan José

    2017-12-20

    Rate of force development (RFD) refers to the ability of the neuromuscular system to increase contractile force from a low or resting level when muscle activation is performed as quickly as possible, and it is considered an important muscle strength parameter, especially for athletes in sports requiring high-speed actions. The assessment of RFD has been used for strength diagnosis, to monitor the effects of training interventions in both healthy populations and patients, discriminate high-level athletes from those of lower levels, evaluate the impairment in mechanical muscle function after acute bouts of eccentric muscle actions and estimate the degree of fatigue and recovery after acute exhausting exercise. Notably, the evaluation of RFD in human skeletal muscle is a complex task as influenced by numerous distinct methodological factors including mode of contraction, type of instruction, method used to quantify RFD, devices used for force/torque recording and ambient temperature. Another important aspect is our limited understanding of the mechanisms underpinning rapid muscle force production. Therefore, this review is primarily focused on (i) describing the main mechanical characteristics of RFD; (ii) analysing various physiological factors that influence RFD; and (iii) presenting and discussing central biomechanical and methodological factors affecting the measurement of RFD. The intention of this review is to provide more methodological and analytical coherency on the RFD concept, which may aid to clarify the thinking of coaches and sports scientists in this area. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  7. A new take on an old story: chick limb organ culture for skeletal niche development and regenerative medicine evaluation

    Directory of Open Access Journals (Sweden)

    EL Smith

    2013-09-01

    Full Text Available Scientific research and progress, particularly in the drug discovery and regenerative medicine fields, is typically dependent on suitable animal models to develop new and improved clinical therapies for injuries and diseases. In vivo model systems are frequently utilised, but these models are expensive, highly complex and pose a number of ethical considerations leading to the development and use of a number of alternative ex vivo model systems. The ex vivo embryonic chick long bone and limb bud models have been utilised in the scientific research field as a model to understand skeletal development for over eighty years. The rapid development of avian skeletal tissues, coupled with the ease of experimental manipulation, availability of genome sequence and the presence of multiple cell and tissue types has seen such model systems gain significant research interest in the last few years in the tissue engineering field. The models have been explored both as systems for understanding the developmental bone niche and as potential testing tools for tissue engineering strategies for bone repair and regeneration. This review details the evolution of the chick limb organ culture system and presents recent innovative developments and emerging techniques and technologies applied to these models that are aiding our understanding of skeletal developmental and regenerative medicine research and application.

  8. Dentofacial transverse development in Koreans according to skeletal maturation: A cross-sectional study.

    Science.gov (United States)

    Hwang, Soonshin; Noh, Yoonjeong; Choi, Yoon Jeong; Chung, Chooryung; Lee, Hye Sun; Kim, Kyung-Ho

    2018-01-01

    The aim of this study was to establish the normative data of dentofacial transverse dimensions according to the skeletal maturation stage in Korean adolescents with good occlusion, assess gender differences and determine correlations between transverse variables. A total of 577 Korean subjects between ages 7 to 19 years and exhibiting skeletal Class I occlusion were categorized by skeletal maturation index (SMI) of Fishman using hand-wrist radiographs. Dentofacial transverse dimensions were assessed using posteroanterior cephalograms. Independent two-sample t -tests were used to analyze differences between genders. Pearson correlation coefficient was used to determine the correlation between transverse measurements. Dentofacial transverse norms relevant to skeletal maturation stages were established. The average maxillomandibular width difference and ratio at growth completion was 22.16 mm and 77.01% for males; 23.70 mm and 74.06% for females, respectively. Males had greater facial, maxillary and mandibular widths compared to females at every SMI stage. The maxillary and mandibular intermolar widths showed the strongest correlation for both sexes (r = 0.826 for males, r = 0.725 for females). Dentofacial transverse norms of Korean adolescents were established according to developmental stage. All dentofacial widths were greater in males at growth completion. Maxillary and mandibular intermolar widths were strongly correlated. This study may serve as a guideline for the assessment of dentofacial transverse growth according to skeletal maturation stage in Korean adolescents with good occlusion.

  9. Effects of benzo(a)pyrene on the skeletal development of Sebastiscus marmoratus embryos and the molecular mechanism involved

    International Nuclear Information System (INIS)

    He Chengyong; Zuo Zhenghong; Shi Xiao; Li Ruixia; Chen Donglei; Huang Xin; Chen Yixin; Wang Chonggang

    2011-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental contaminants, which have been known to be carcinogenic and teratogenic. However, the skeletal development toxicity of PAHs and the mechanism involved remain unclear. In fishes, the neurocranial and craniofacial skeleton develop as cartilage. The signaling molecules of hedgehog (Hh) family play crucial roles in regulating skeletal development. In the present study, rockfish (Sebastiscus marmoratus) embryos were exposed to benzo(a)pyrene (BaP) for 7 days at environmental levels (0.05, 0.5 and 5 nmol/L) which resulted in craniofacial skeleton deformities. BaP exposure reduced the cell proliferation activity in the craniofacial skeleton as detected by quantitative PCR and in situ hybridization. The expression of Sonic hedgehog (Shh), rather than Indian hedgehog (Ihh), was down-regulated in the craniofacial skeleton in the 0.5 and 5 nmol/L groups. Consistent with the Shh results, the expression of Ptch1 and Gli2 was decreased by BaP exposure and BMP4 was presented on changes in the 0.5 and 5 nmol/L groups. These results suggested that BaP could impair the expression and function of Shh signaling pathway, perturbing the proliferation of chondrocytes and so disturbing craniofacial skeletal development.

  10. Effects of benzo(a)pyrene on the skeletal development of Sebastiscus marmoratus embryos and the molecular mechanism involved

    Energy Technology Data Exchange (ETDEWEB)

    He Chengyong [Key Laboratory of Ministry of Education for Subtropical Wetland Ecosystem Research, School of Life Sciences, Xiamen University, Xiamen (China); Zuo Zhenghong [Key Laboratory of Ministry of Education for Subtropical Wetland Ecosystem Research, School of Life Sciences, Xiamen University, Xiamen (China); State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen (China); Shi Xiao; Li Ruixia; Chen Donglei; Huang Xin; Chen Yixin [Key Laboratory of Ministry of Education for Subtropical Wetland Ecosystem Research, School of Life Sciences, Xiamen University, Xiamen (China); Wang Chonggang, E-mail: cgwang@xmu.edu.cn [Key Laboratory of Ministry of Education for Subtropical Wetland Ecosystem Research, School of Life Sciences, Xiamen University, Xiamen (China); State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen (China)

    2011-01-25

    Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental contaminants, which have been known to be carcinogenic and teratogenic. However, the skeletal development toxicity of PAHs and the mechanism involved remain unclear. In fishes, the neurocranial and craniofacial skeleton develop as cartilage. The signaling molecules of hedgehog (Hh) family play crucial roles in regulating skeletal development. In the present study, rockfish (Sebastiscus marmoratus) embryos were exposed to benzo(a)pyrene (BaP) for 7 days at environmental levels (0.05, 0.5 and 5 nmol/L) which resulted in craniofacial skeleton deformities. BaP exposure reduced the cell proliferation activity in the craniofacial skeleton as detected by quantitative PCR and in situ hybridization. The expression of Sonic hedgehog (Shh), rather than Indian hedgehog (Ihh), was down-regulated in the craniofacial skeleton in the 0.5 and 5 nmol/L groups. Consistent with the Shh results, the expression of Ptch1 and Gli2 was decreased by BaP exposure and BMP4 was presented on changes in the 0.5 and 5 nmol/L groups. These results suggested that BaP could impair the expression and function of Shh signaling pathway, perturbing the proliferation of chondrocytes and so disturbing craniofacial skeletal development.

  11. FA composition of heart and skeletal muscle during embryonic development of the king penguin.

    Science.gov (United States)

    Decrock, Frederic; Groscolas, Rene; Speake, Brian K

    2002-04-01

    Since the yolk lipids of the king penguin (Aptenodytes patagonicus) naturally contain the highest concentrations of DHA and EPA yet reported for the eggs of any avian species, the effects of this (n-3)-rich yolk on the FA profiles of the embryonic heart and skeletal muscle were investigated. The concentrations (mg/g wet tissue) of phospholipid (PL) in the developing heart and leg muscle of the penguin doubled between days 27 and 55 from the beginning of egg incubation (i.e., from the halfway stage of embryonic development to 2 d posthatch), whereas no net increase occurred in pectoral muscle. During this period, the concentration of TAG in heart decreased by half but increased two- and sixfold in leg and pectoral muscle, respectively. The most notable change in cholesteryl ester concentration occurred in pectoral muscle, increasing ninefold between days 27 and 55. Arachidonic acid (ARA) was the major polyunsaturate in PL of the penguin's heart, where it formed about 20% (w/w) of FA at day 55. At the equivalent developmental stage, the heart PL of the chicken contained a 1.3-fold greater proportion of ARA, contained a fifth less DHA, and was almost devoid of EPA, whereas the latter FA was a significant component (7% of FA) of penguin heart PL. Similarly, in PL of leg and pectoral muscle, the chicken displayed about 1.4-fold more ARA, up to 50% less DHA, and far less EPA in comparison with the penguin. Thus, although ARA-rich PL profiles are achieved in the heart and muscle of the penguin embryo, these profiles are significantly affected by the high n-3 content of the yolk.

  12. Impact of electromagnetic radiation exposure during pregnancy on embryonic skeletal development in rats

    Directory of Open Access Journals (Sweden)

    Ali SAEED H Alchalabi

    2017-03-01

    Full Text Available Objective: To evaluate the teratogenic effect of mobile phone radiation exposure during pregnancy on embryonic skeletal development at the common used mobile phone frequency in our environment. Methods: Sixty female Sprague-Dawley rats were distributed into three experiment groups; control and two exposed groups (1 h/day, 2 h/day exposure groups (n=20/ each group and exposed to whole body radiation during gestation period from day 1- day 20. Electromagnetic radiofrequency signal generator was used to generate 1 800 MHz GSM-like signals at specific absorption rate value 0.974 W/kg. Animals were exposed during experiment in an especial designed Plexiglas box (60 cm × 40 cm × 30 cm. At the end of exposure duration at day 20 of pregnancy animals were sacrificed and foetuses were removed, washed with normal saline and processed to Alizarin red and Alcian blue stain. Skeleton specimens were examined under a stereo microscope and skeleton's snaps were being carefully captured by built in camera fixed on the stereo microscope. Results: Intrauterine exposure to electromagnetic radiation lead to variation in degree of ossification, mineralization, formation of certain parts of the skeleton majorly in head and lesser in other parts. Deformity and absence of formation of certain bones in the head, ribs, and coccygeal vertebrae were recorded in skeleton of foetuses from exposed dams compare to control group. Conclusions: The electromagnetic radiation exposure during pregnancy alter the processes of bone mineralization and the intensity of bone turnover processes, and thus impact embryonic skeleton formation and development directly.

  13. Increase in relative skeletal muscle mass over time and its inverse association with metabolic syndrome development: a 7-year retrospective cohort study.

    Science.gov (United States)

    Kim, Gyuri; Lee, Seung-Eun; Jun, Ji Eun; Lee, You-Bin; Ahn, Jiyeon; Bae, Ji Cheol; Jin, Sang-Man; Hur, Kyu Yeon; Jee, Jae Hwan; Lee, Moon-Kyu; Kim, Jae Hyeon

    2018-02-05

    Skeletal muscle mass was negatively associated with metabolic syndrome prevalence in previous cross-sectional studies. The aim of this study was to investigate the impact of baseline skeletal muscle mass and changes in skeletal muscle mass over time on the development of metabolic syndrome in a large population-based 7-year cohort study. A total of 14,830 and 11,639 individuals who underwent health examinations at the Health Promotion Center at Samsung Medical Center, Seoul, Korea were included in the analyses of baseline skeletal muscle mass and those changes from baseline over 1 year, respectively. Skeletal muscle mass was estimated by bioelectrical impedance analysis and was presented as a skeletal muscle mass index (SMI), a body weight-adjusted appendicular skeletal muscle mass value. Using Cox regression models, hazard ratio for developing metabolic syndrome associated with SMI values at baseline or changes of SMI over a year was analyzed. During 7 years of follow-up, 20.1% of subjects developed metabolic syndrome. Compared to the lowest sex-specific SMI tertile at baseline, the highest sex-specific SMI tertile showed a significant inverse association with metabolic syndrome risk (adjusted hazard ratio [AHR] = 0.61, 95% confidence interval [CI] 0.54-0.68). Furthermore, compared with SMI changes metabolic syndrome development were 0.87 (95% CI 0.78-0.97) for 0-1% changes and 0.67 (0.56-0.79) for > 1% changes in SMI over 1 year after additionally adjusting for baseline SMI and glycometabolic parameters. An increase in relative skeletal muscle mass over time has a potential preventive effect on developing metabolic syndrome, independently of baseline skeletal muscle mass and glycometabolic parameters.

  14. Development of a porcine skeletal muscle cDNA microarray: analysis of differential transcript expression in phenotypically distinct muscles

    Directory of Open Access Journals (Sweden)

    Stear Michael

    2003-03-01

    Full Text Available Abstract Background Microarray profiling has the potential to illuminate the molecular processes that govern the phenotypic characteristics of porcine skeletal muscles, such as hypertrophy or atrophy, and the expression of specific fibre types. This information is not only important for understanding basic muscle biology but also provides underpinning knowledge for enhancing the efficiency of livestock production. Results We report on the de novo development of a composite skeletal muscle cDNA microarray, comprising 5500 clones from two developmentally distinct cDNA libraries (longissimus dorsi of a 50-day porcine foetus and the gastrocnemius of a 3-day-old pig. Clones selected for the microarray assembly were of low to moderate abundance, as indicated by colony hybridisation. We profiled the differential expression of genes between the psoas (red muscle and the longissimus dorsi (white muscle, by co-hybridisation of Cy3 and Cy5 labelled cDNA derived from these two muscles. Results from seven microarray slides (replicates correctly identified genes that were expected to be differentially expressed, as well as a number of novel candidate regulatory genes. Quantitative real-time RT-PCR on selected genes was used to confirm the results from the microarray. Conclusion We have developed a porcine skeletal muscle cDNA microarray and have identified a number of candidate genes that could be involved in muscle phenotype determination, including several members of the casein kinase 2 signalling pathway.

  15. Development of Guidelines for Skeletal Survey in Young Children With Intracranial Hemorrhage.

    Science.gov (United States)

    Paine, Christine Weirich; Scribano, Philip V; Localio, Russell; Wood, Joanne N

    2016-04-01

    As evidenced by the variation and disparities in evaluation, there is uncertainty in determining which young children with intracranial hemorrhage (ICH) should undergo evaluation with skeletal survey (SS) for additional injuries concerning for abuse. We aimed to develop guidelines for performing initial SS in children <24 months old presenting with ICH by combining available evidence from the literature with expert opinion. Using the RAND/UCLA Appropriateness Method, a multispecialty panel of 12 experts used the literature and their own clinical expertise to rate the appropriateness of performing SS for 216 scenarios characterizing children <24 months old with ICH. After a moderated discussion of initial ratings, the scenarios were revised. Panelists re-rated SS appropriateness for 74 revised scenarios. For the 63 scenarios in which SS was deemed appropriate, the panel rated the necessity of SS. Panelists concluded that SS is appropriate for 85% (63), uncertain for 15% (11), and inappropriate for 0% of scenarios. Panelists determined that SS is necessary in all scenarios deemed appropriate. SS was deemed necessary for infants <6 months old and for children <24 months old with subdural hemorrhage that is not tiny and under a skull fracture. For children 6 to 23 months old with epidural hemorrhage, necessity of SS depended on the child's age, history of trauma, signs/symptoms, and ICH characteristics. The resulting clinical guidelines call for near-universal evaluation in children <24 months old presenting with ICH. Detailed, validated guidelines that are successfully implemented may decrease variation and disparities in care. Copyright © 2016 by the American Academy of Pediatrics.

  16. Morphological and skeletal abnormalities induced by α/β arteether on developing chick embryo

    Directory of Open Access Journals (Sweden)

    Vishram Singh

    2018-01-01

    Full Text Available Introduction: Malaria continues to be one of the India's leading public health problem.α/β artether is one of the most common antimalarial drug used worldwide to treat chloroquine resistant malaria and malaria falciparum. The present study was designed to assess the teratogenic effects of α/β artether on developing chick embryo. Material and Methods: The study was performed on 300 fertilized eggs of white leg horn chicken.The eggs were divided in to five experimental groups A, B, C, D, E having 30 eggs each and five control groups a,b,c,d,e one each for every experimental group respectively having 30 eggs each. On 5th day of incubation eggs from experimental groups A, B, C, D and E were exposed to α/β artether with dose of 0.00039 mg, 0.000585 mg, 0.00078 mg, 0.00097 mg and 0.00117 mg whereas the control groups were treated with same amount of normal saline. Results: The results showed growth retardation and some significant morphological abnormalities like scanty feathers, subcutaneous hemorrhage and skeletal abnormalities like poor ossification of the bones, kyphosis and lordosis. Discussion: The drug is toxic specially when used in higher dose and for a long period. At present there is no alternative drug available for the treatment of chloroquine resistant malaria and malaria falciparum except α/β artether. Therefore α/β artether and other artemisinins should be used only after establishment of proper diagnosis in recommended dose only not in higher dose and not for a long duration.

  17. Development of skeletal system for mesh-type ICRP reference adult phantoms

    Science.gov (United States)

    Yeom, Yeon Soo; Wang, Zhao Jun; Tat Nguyen, Thang; Kim, Han Sung; Choi, Chansoo; Han, Min Cheol; Kim, Chan Hyeong; Lee, Jai Ki; Chung, Beom Sun; Zankl, Maria; Petoussi-Henss, Nina; Bolch, Wesley E.; Lee, Choonsik

    2016-10-01

    The reference adult computational phantoms of the international commission on radiological protection (ICRP) described in Publication 110 are voxel-type computational phantoms based on whole-body computed tomography (CT) images of adult male and female patients. The voxel resolutions of these phantoms are in the order of a few millimeters and smaller tissues such as the eye lens, the skin, and the walls of some organs cannot be properly defined in the phantoms, resulting in limitations in dose coefficient calculations for weakly penetrating radiations. In order to address the limitations of the ICRP-110 phantoms, an ICRP Task Group has been recently formulated and the voxel phantoms are now being converted to a high-quality mesh format. As a part of the conversion project, in the present study, the skeleton models, one of the most important and complex organs of the body, were constructed. The constructed skeleton models were then tested by calculating red bone marrow (RBM) and endosteum dose coefficients (DCs) for broad parallel beams of photons and electrons and comparing the calculated values with those of the original ICRP-110 phantoms. The results show that for the photon exposures, there is a generally good agreement in the DCs between the mesh-type phantoms and the original voxel-type ICRP-110 phantoms; that is, the dose discrepancies were less than 7% in all cases except for the 0.03 MeV cases, for which the maximum difference was 14%. On the other hand, for the electron exposures (⩽4 MeV), the DCs of the mesh-type phantoms deviate from those of the ICRP-110 phantoms by up to ~1600 times at 0.03 MeV, which is indeed due to the improvement of the skeletal anatomy of the developed skeleton mesh models.

  18. Presentation : Development of an age-specific genome-scale model of skeletal muscle metabolism

    NARCIS (Netherlands)

    Cabbia, A.; van Riel, N.A.W.

    2017-01-01

    Skeletal myocytes are among the most metabolically active cell types, implicated in nutrient balance, contributing to the insulin-stimulated clearance of glucose from the blood, and secreting myokines that contribute in regulating inflammation and the ageing process. The loss of muscle mass and

  19. The role of the renin-angiotensin system in the development of insulin resistance in skeletal muscle.

    Science.gov (United States)

    Henriksen, Erik J; Prasannarong, Mujalin

    2013-09-25

    The canonical renin-angiotensin system (RAS) involves the initial action of renin to cleave angiotensinogen to angiotensin I (ANG I), which is then converted to ANG II by the angiotensin converting enzyme (ACE). ANG II plays a critical role in numerous physiological functions, and RAS overactivity underlies many conditions of cardiovascular dysregulation. In addition, ANG II, by acting on both endothelial and myocellular AT1 receptors, can induce insulin resistance by increasing cellular oxidative stress, leading to impaired insulin signaling and insulin-stimulated glucose transport activity. This insulin resistance associated with RAS overactivity, when coupled with progressive ß-cell dysfunction, eventually leads to the development of type 2 diabetes. Interventions that target RAS overactivity, including ACE inhibitors, ANG II receptor blockers, and, most recently, renin inhibitors, are effective both in reducing hypertension and in improving whole-body and skeletal muscle insulin action, due at least in part to enhanced Akt-dependent insulin signaling and insulin-dependent glucose transport activity. ANG-(1-7), which is produced from ANG II by the action of ACE2 and acts via Mas receptors, can counterbalance the deleterious actions of the ACE/ANG II/AT1 receptor axis on the insulin-dependent glucose transport system in skeletal muscle. This beneficial effect of the ACE2/ANG-(1-7)/Mas receptor axis appears to depend on the activation of Akt. Collectively, these findings underscore the importance of RAS overactivity in the multifactorial etiology of insulin resistance in skeletal muscle, and provide support for interventions that target the RAS to ameliorate both cardiovascular dysfunctions and insulin resistance in skeletal muscle tissue. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. Role of Active Contraction and Tropomodulins in Regulating Actin Filament Length and Sarcomere Structure in Developing Zebrafish Skeletal Muscle.

    Science.gov (United States)

    Mazelet, Lise; Parker, Matthew O; Li, Mei; Arner, Anders; Ashworth, Rachel

    2016-01-01

    Whilst it is recognized that contraction plays an important part in maintaining the structure and function of mature skeletal muscle, its role during development remains undefined. In this study the role of movement in skeletal muscle maturation was investigated in intact zebrafish embryos using a combination of genetic and pharmacological approaches. An immotile mutant line (cacnb1 (ts25) ) which lacks functional voltage-gated calcium channels (dihydropyridine receptors) in the muscle and pharmacological immobilization of embryos with a reversible anesthetic (Tricaine), allowed the study of paralysis (in mutants and anesthetized fish) and recovery of movement (reversal of anesthetic treatment). The effect of paralysis in early embryos (aged between 17 and 24 hours post-fertilization, hpf) on skeletal muscle structure at both myofibrillar and myofilament level was determined using both immunostaining with confocal microscopy and small angle X-ray diffraction. The consequences of paralysis and subsequent recovery on the localization of the actin capping proteins Tropomodulin 1 & 4 (Tmod) in fish aged from 17 hpf until 42 hpf was also assessed. The functional consequences of early paralysis were investigated by examining the mechanical properties of the larval muscle. The length-force relationship, active and passive tension, was measured in immotile, recovered and control skeletal muscle at 5 and 7 day post-fertilization (dpf). Recovery of muscle function was also assessed by examining swimming patterns in recovered and control fish. Inhibition of the initial embryonic movements (up to 24 hpf) resulted in an increase in myofibril length and a decrease in width followed by almost complete recovery in both moving and paralyzed fish by 42 hpf. In conclusion, myofibril organization is regulated by a dual mechanism involving movement-dependent and movement-independent processes. The initial contractile event itself drives the localization of Tmod1 to its sarcomeric

  1. Role of active contraction and tropomodulins in regulating actin filament length and sarcomere structure in developing zebrafish skeletal muscle

    Directory of Open Access Journals (Sweden)

    Lise eMazelet

    2016-03-01

    Full Text Available Whilst it is recognised that contraction plays an important part in maintaining the structure and function of mature skeletal muscle, its role during development remains undefined. In this study the role of movement in skeletal muscle maturation was investigated in intact zebrafish embryos using a combination of genetic and pharmacological approaches. An immotile mutant line (cacnb1ts25 which lacks functional voltage-gated calcium channels (dihydropyridine receptors in the muscle and pharmacological immobilisation of embryos with a reversible anaesthetic (Tricaine, allowed the study of paralysis (in mutants and anaesthetised fish and recovery of movement (reversal of anaesthetic treatment. The effect of paralysis in early embryos (aged between 17-24 hours post fertilisation, hpf on skeletal muscle structure at both myofibrillar and myofilament level was determined using both immunostaining with confocal microscopy and small angle X-ray diffraction. The consequences of paralysis and subsequent recovery on the localisation of the actin capping proteins Tropomodulin 1 &4 (Tmod in fish aged from 17hpf until 42hpf was also assessed. The functional consequences of early paralysis were investigated by examining the mechanical properties of the larval muscle. The length-force relationship, active and passive tension, was measured in immotile, recovered and control skeletal muscle at 5 and 7 day post fertilisation (dpf. Recovery of muscle function was also assessed by examining swimming patterns in recovered and control fish. Inhibition of the initial embryonic movements (up to 24 hpf resulted in an increase in myofibril length and a decrease in width followed by almost complete recovery in both moving and paralysed fish by 42hpf. In conclusion, myofibril organisation is regulated by a dual mechanism involving movement-dependent and movement-independent processes. The initial contractile event itself drives the localisation of Tmod1 to its sarcomeric

  2. STIM1 as a key regulator for Ca2+ homeostasis in skeletal-muscle development and function

    Directory of Open Access Journals (Sweden)

    Kiviluoto Santeri

    2011-04-01

    Full Text Available Abstract Stromal interaction molecules (STIM were identified as the endoplasmic-reticulum (ER Ca2+ sensor controlling store-operated Ca2+ entry (SOCE and Ca2+-release-activated Ca2+ (CRAC channels in non-excitable cells. STIM proteins target Orai1-3, tetrameric Ca2+-permeable channels in the plasma membrane. Structure-function analysis revealed the molecular determinants and the key steps in the activation process of Orai by STIM. Recently, STIM1 was found to be expressed at high levels in skeletal muscle controlling muscle function and properties. Novel STIM targets besides Orai channels are emerging. Here, we will focus on the role of STIM1 in skeletal-muscle structure, development and function. The molecular mechanism underpinning skeletal-muscle physiology points toward an essential role for STIM1-controlled SOCE to drive Ca2+/calcineurin/nuclear factor of activated T cells (NFAT-dependent morphogenetic remodeling programs and to support adequate sarcoplasmic-reticulum (SR Ca2+-store filling. Also in our hands, STIM1 is transiently up-regulated during the initial phase of in vitro myogenesis of C2C12 cells. The molecular targets of STIM1 in these cells likely involve Orai channels and canonical transient receptor potential (TRPC channels TRPC1 and TRPC3. The fast kinetics of SOCE activation in skeletal muscle seem to depend on the triad-junction formation, favoring a pre-localization and/or pre-formation of STIM1-protein complexes with the plasma-membrane Ca2+-influx channels. Moreover, Orai1-mediated Ca2+ influx seems to be essential for controlling the resting Ca2+ concentration and for proper SR Ca2+ filling. Hence, Ca2+ influx through STIM1-dependent activation of SOCE from the T-tubule system may recycle extracellular Ca2+ losses during muscle stimulation, thereby maintaining proper filling of the SR Ca2+ stores and muscle function. Importantly, mouse models for dystrophic pathologies, like Duchenne muscular dystrophy, point towards an

  3. The role of mitochondrial DNA damage at skeletal muscle oxidative stress on the development of type 2 diabetes.

    Science.gov (United States)

    Dos Santos, Julia Matzenbacher; de Oliveira, Denise Silva; Moreli, Marcos Lazaro; Benite-Ribeiro, Sandra Aparecida

    2018-04-20

    Reduced cellular response to insulin in skeletal muscle is one of the major components of the development of type 2 diabetes (T2D). Mitochondrial dysfunction involves in the accumulation of toxic reactive oxygen species (ROS) that leads to insulin resistance. The aim of this study was to verify the involvement of mitochondrial DNA damage at ROS generation in skeletal muscle during development of T2D. Wistar rats were fed a diet containing 60% fat over 8 weeks and at day 14 a single injection of STZ (25 mg/kg) was administered (T2D-induced). Control rats received standard food and an injection of citrate buffer. Blood and soleus muscle were collected. Abdominal fat was quantified as well as glucose, triglyceride, LDL, HDL, and total cholesterol in plasma and mtDNA copy number, cytochrome b (cytb) mRNA, 8-hydroxyguanosine, and 8-isoprostane (a marker of ROS) in soleus muscle. T2D-induced animal presented similar characteristics to humans that develop T2D such as changes in blood glucose, abdominal fat, LDL, HDL and cholesterol total. In soleus muscle 8-isoprostane, mtDNA copy number and 8-hydroxyguanosine were increased, while cytb mRNA was decreased in T2D. Our results suggest that in the development of T2D, when risks factors of T2D are present, intracellular oxidative stress increases in skeletal muscle and is associated with a decrease in cytb transcription. To overcome this process mtDNA increased but due to the proximity of ROS generation, mtDNA remains damaged by oxidation leading to an increase in ROS in a vicious cycle accounting to the development of insulin resistance and further T2D.

  4. Role and Mechanisms of Actions of Thyroid Hormone on the Skeletal Development

    OpenAIRE

    Kim, Ha-Young; Mohan, Subburaman

    2013-01-01

    The importance of the thyroid hormone axis in the regulation of skeletal growth and maintenance has been well established from clinical studies involving patients with mutations in proteins that regulate synthesis and/or actions of thyroid hormone. Data from genetic mouse models involving disruption and overexpression of components of the thyroid hormone axis also provide direct support for a key role for thyroid hormone in the regulation of bone metabolism. Thyroid hormone regulates prolifer...

  5. Constitutive activation of IKK2/NF-κB impairs osteogenesis and skeletal development.

    Directory of Open Access Journals (Sweden)

    Gaurav Swarnkar

    Indian hedgehog and alkaline phosphatase, and the early markers Aggrecan and type-II collagen were reduced in Cre+IKK2ca_w/f and Cre+IKK2ca_f/f mice. Altogether, the in-vitro, in vivo and ex-vivo evidence suggest that IKK2ca perturbs osteoblast and chondrocyte maturation and impairs skeletal development.

  6. Development of an in vitro potency assay for human skeletal muscle derived cells.

    Science.gov (United States)

    Thurner, Marco; Asim, Faheem; Garczarczyk-Asim, Dorota; Janke, Katrin; Deutsch, Martin; Margreiter, Eva; Troppmair, Jakob; Marksteiner, Rainer

    2018-01-01

    Potency is a quantitative measure of the desired biological function of an advanced therapy medicinal product (ATMP) and is a prerequisite for market approval application (MAA). To assess the potency of human skeletal muscle-derived cells (SMDCs), which are currently investigated in clinical trials for the regeneration of skeletal muscle defects, we evaluated acetylcholinesterase (AChE), which is expressed in skeletal muscle and nervous tissue of all mammals. CD56+ SMDCs were separated from CD56- SMDCs by magnetic activated cell sorting (MACS) and both differentiated in skeletal muscle differentiation medium. AChE activity of in vitro differentiated SMDCs was correlated with CD56 expression, fusion index, cell number, cell doubling numbers, differentiation markers and compared to the clinical efficacy in patients treated with SMDCs against fecal incontinence. CD56- SMDCs did not form multinucleated myotubes and remained low in AChE activity during differentiation. CD56+ SMDCs generated myotubes and increased in AChE activity during differentiation. AChE activity was found to accurately reflect the number of CD56+ SMDCs in culture, their fusion competence, and cell doubling number. In patients with fecal incontinence responding to SMDCs treatment, the improvement of clinical symptoms was positively linked with the AChE activity of the SMDCs injected. AChE activity was found to truly reflect the in vitro differentiation status of SMDCs and to be superior to the mere use of surface markers as it reflects not only the number of myogenic SMDCs in culture but also their fusion competence and population doubling number, thus combining cell quality and quantification of the expected mode of action (MoA) of SMDCs. Moreover, the successful in vitro validation of the assay proves its suitability for routine use. Most convincingly, our results demonstrate a link between clinical efficacy and the AChE activity of the SMDCs preparations used for the treatment of fecal

  7. Improvement of maternal vitamin D status with 25-hydroxycholecalciferol positively impacts porcine fetal skeletal muscle development and myoblast activity.

    Science.gov (United States)

    Hines, E A; Coffey, J D; Starkey, C W; Chung, T K; Starkey, J D

    2013-09-01

    There is little information available regarding the influence of maternal vitamin D status on fetal skeletal muscle development. Therefore, we investigated the effect of improved vitamin D status resulting from 25-hydroxycholecalciferol (25OHD3) supplementation of dams on fetal skeletal muscle developmental characteristics and myoblast activity using Camborough 22 gilts (n = 40) randomly assigned to 1 of 2 corn-soybean meal-based diets. The control diet (CTL) contained 2,500 IU cholecalciferol (D3)/kg diet, whereas the experimental diet contained 500 IU D3/kg diet plus 50 µg 25OHD3/kg diet. Gilts were fed 2.7 kg of their assigned diet once daily beginning 43 d before breeding through d 90 of gestation. On gestational d 90 (± 1), fetal LM and semitendinosus muscle samples were collected for analysis of developmental characteristics and myoblast activity, respectively. No treatment difference was observed in fetal LM cross-sectional area (P = 0.25). Fetuses from 25OHD3-supplemented gilts had more LM fibers (P = 0.04) that tended to be smaller in cross-sectional area compared with CTL fetuses (P = 0.11). A numerical increase in the total number of Pax7+ myoblasts was also observed in fetuses from 25OHD3-supplemented gilts (P = 0.12). Myoblasts derived from the muscles of fetuses from 25OHD3-fed dams displayed an extended proliferative phase in culture compared with those from fetuses of dams fed only D3 (P importance of maternal vitamin D status on the development of fetal skeletal muscle.

  8. Identification of mechanosensitive genes during skeletal development: alteration of genes associated with cytoskeletal rearrangement and cell signalling pathways.

    Science.gov (United States)

    Rolfe, Rebecca A; Nowlan, Niamh C; Kenny, Elaine M; Cormican, Paul; Morris, Derek W; Prendergast, Patrick J; Kelly, Daniel; Murphy, Paula

    2014-01-20

    Mechanical stimulation is necessary for regulating correct formation of the skeleton. Here we test the hypothesis that mechanical stimulation of the embryonic skeletal system impacts expression levels of genes implicated in developmentally important signalling pathways in a genome wide approach. We use a mutant mouse model with altered mechanical stimulation due to the absence of limb skeletal muscle (Splotch-delayed) where muscle-less embryos show specific defects in skeletal elements including delayed ossification, changes in the size and shape of cartilage rudiments and joint fusion. We used Microarray and RNA sequencing analysis tools to identify differentially expressed genes between muscle-less and control embryonic (TS23) humerus tissue. We found that 680 independent genes were down-regulated and 452 genes up-regulated in humeri from muscle-less Spd embryos compared to littermate controls (at least 2-fold; corrected p-value ≤0.05). We analysed the resulting differentially expressed gene sets using Gene Ontology annotations to identify significant enrichment of genes associated with particular biological processes, showing that removal of mechanical stimuli from muscle contractions affected genes associated with development and differentiation, cytoskeletal architecture and cell signalling. Among cell signalling pathways, the most strongly disturbed was Wnt signalling, with 34 genes including 19 pathway target genes affected. Spatial gene expression analysis showed that both a Wnt ligand encoding gene (Wnt4) and a pathway antagonist (Sfrp2) are up-regulated specifically in the developing joint line, while the expression of a Wnt target gene, Cd44, is no longer detectable in muscle-less embryos. The identification of 84 genes associated with the cytoskeleton that are down-regulated in the absence of muscle indicates a number of candidate genes that are both mechanoresponsive and potentially involved in mechanotransduction, converting a mechanical stimulus

  9. A multiplexed chip-based assay system for investigating the functional development of human skeletal myotubes in vitro.

    Science.gov (United States)

    Smith, A S T; Long, C J; Pirozzi, K; Najjar, S; McAleer, C; Vandenburgh, H H; Hickman, J J

    2014-09-20

    This report details the development of a non-invasive in vitro assay system for investigating the functional maturation and performance of human skeletal myotubes. Data is presented demonstrating the survival and differentiation of human myotubes on microscale silicon cantilevers in a defined, serum-free system. These cultures can be stimulated electrically and the resulting contraction quantified using modified atomic force microscopy technology. This system provides a higher degree of sensitivity for investigating contractile waveforms than video-based analysis, and represents the first system capable of measuring the contractile activity of individual human muscle myotubes in a reliable, high-throughput and non-invasive manner. The development of such a technique is critical for the advancement of body-on-a-chip platforms toward application in pre-clinical drug development screens. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Dual role of delta-like 1 homolog (DLK1) in skeletal muscle development and adult muscle regeneration

    DEFF Research Database (Denmark)

    Andersen, Ditte Caroline; Laborda, Jorge; Baladron, Victoriano

    2013-01-01

    skeletal muscle regeneration by substantial enhancement of the myogenic program and muscle function, possibly by means of an increased number of available myogenic precursor cells. By contrast, Dlk1 fails to alter the adipogenic commitment of muscle-derived progenitors in vitro, as well as intramuscular......Muscle development and regeneration is tightly orchestrated by a specific set of myogenic transcription factors. However, factors that regulate these essential myogenic inducers remain poorly described. Here, we show that delta-like 1 homolog (Dlk1), an imprinted gene best known for its ability...... fat deposition during in vivo regeneration. Collectively, our results suggest a novel and surprising dual biological function of DLK1 as an enhancer of muscle development, but as an inhibitor of adult muscle regeneration....

  11. Influence of nasoalveolar molding on skeletal development in patients with unilateral cleft lip and palate at 5 years of age.

    Science.gov (United States)

    Akarsu-Guven, Bengisu; Arisan, Arda; Ozgur, Figen; Aksu, Muge

    2018-04-01

    The aim of this retrospective study was to assess the influence of presurgical nasoalveolar molding (NAM) on skeletal development in patients with operated unilateral cleft lip and palate at 5 years of age. Lateral cephalometric radiographs of 26 unilateral cleft lip and palate patients who had undergone presurgical NAM (NAM group) and 20 unilateral cleft lip and palate patients who did not have any presurgical NAM (non-NAM group) were analyzed. The radiographs were digitally traced using Quick Ceph Studio software (version 3.5.1.r (1151); Quick Ceph Systems, San Diego, Calif). Independent samples t tests were performed for statistical analysis. No significant differences were observed in sagittal and vertical skeletal measurements between the NAM and non-NAM groups. NAM resulted in no significant difference in skeletal development in unilateral cleft lip and palate patients compared with those without NAM in early childhood. Copyright © 2018. Published by Elsevier Inc.

  12. Metabolic reprogramming as a novel regulator of skeletal muscle development and regeneration.

    Science.gov (United States)

    Ryall, James G

    2013-09-01

    Adult skeletal muscle contains a resident population of stem cells, termed satellite cells, that exist in a quiescent state. In response to an activating signal (such as physical trauma), satellite cells enter the cell cycle and undergo multiple rounds of proliferation, followed by differentiation, fusion, and maturation. Over the last 10-15 years, our understanding of the transcriptional regulation of this stem cell population has greatly expanded, but there remains a dearth of knowledge with regard to the initiating signal leading to these changes in transcription. The recent renewed interest in the metabolic regulation of both cancer and stem cells, combined with previous findings indicating that satellite cells preferentially colocalize with blood vessels, suggests that satellite cell function may be regulated by changes in cellular metabolism. This review aims to describe what is currently known about satellite cell metabolism during changes in cell fate, as well as to describe some of the exciting findings in other cell types and how these might relate to satellite cells. © 2013 The Author Journal compilation © 2013 FEBS.

  13. A study on the development of normal mandible in children by skeletal scintigraphy

    International Nuclear Information System (INIS)

    Gao Yiming; Qiu Weiliu; Shen Guofang; Tang Yousheng; Tian Weijia; Wang Hui; Feng Guowei; Pu Mingfang

    2000-01-01

    Objective: To study the developmental characters of the normal mandible in growing children. Methods: Twenty growing children undergoing skeletal scintigraphic study for isolated bone disease other than bones of the head and neck at hospital and turned out with normal results finally were studied. The 99 Tc m -MDP uptakes in the mandibular condyle, ramus, body and the fourth lumbar vertebra in these cases were quantitated and a ratio of the uptake in the three mandibular regions to that in the fourth lumbar vertebra was obtained. Results: The analysis results showed that the 99 Tc m -MDP uptake ratios of the three mandibular regions decreased in linear fashion with age increasing and leveled off after age of 20. The regression equations are: the mandibular condyle, Y-circumflex = -0.052 2X + 1.792 8; the mandibular ramus, Y-circumflex = -0.015 1X + 0.766 7; the mandibular body, Y-circumflex = -0.014 2X + 0.741 0. There was no significant difference of the 99 Tc m -MDP uptake ratio between the two sides of the mandible and between the male and female. Conclusion: The results suggest that the ideal time to undergo orthognathic surgery should be at the age of 20 or so if the circumstance of the deformity is not quite clear

  14. The use of near-infrared spectroscopy in understanding skeletal muscle physiology: recent developments.

    Science.gov (United States)

    Ferrari, Marco; Muthalib, Makii; Quaresima, Valentina

    2011-11-28

    This article provides a snapshot of muscle near-infrared spectroscopy (NIRS) at the end of 2010 summarizing the recent literature, offering the present status and perspectives of the NIRS instrumentation and methods, describing the main NIRS studies on skeletal muscle physiology, posing open questions and outlining future directions. So far, different NIRS techniques (e.g. continuous-wave (CW) and spatially, time- and frequency-resolved spectroscopy) have been used for measuring muscle oxygenation during exercise. In the last four years, approximately 160 muscle NIRS articles have been published on different physiological aspects (primarily muscle oxygenation and haemodynamics) of several upper- and lower-limb muscle groups investigated by using mainly two-channel CW and spatially resolved spectroscopy commercial instruments. Unfortunately, in only 15 of these studies were the advantages of using multi-channel instruments exploited. There are still several open questions in the application of NIRS in muscle studies: (i) whether NIRS can be used in subjects with a large fat layer; (ii) the contribution of myoglobin desaturation to the NIRS signal during exercise; (iii) the effect of scattering changes during exercise; and (iv) the effect of changes in skin perfusion, particularly during prolonged exercise. Recommendations for instrumentation advancements and future muscle NIRS studies are provided.

  15. Improvement of livestock breeding strategies using physiologic and functional genomic information of the muscle regulatory factors gene family for skeletal muscle development

    NARCIS (Netherlands)

    Pas, te M.F.W.; Soumillon, A.

    2001-01-01

    A defined number of skeletal muscle fibers are formed in two separate waves during prenatal development, while postnatal growth is restricted to hypertrophic muscle fiber growth. The genes of the MRF (muscle regulatory factors) gene family, consisting of 4 structurally related transcription factors

  16. The skeletal system

    NARCIS (Netherlands)

    Nikkels, PGJ

    2015-01-01

    Skeletal dysplasias are a group of disorders with a disturbance in development and/or growth of cartilage and/or bone. Epiphysis, metaphysis, and diaphysis of long bones are affected in a generalized manner with or without involvement of membranous bone of the skull. A dysostosis affects one or some

  17. Biphasic regulation of development of the high-affinity saxitoxin receptor by innervation in rat skeletal muscle

    International Nuclear Information System (INIS)

    Sherman, S.J.; Catterall, W.A.

    1982-01-01

    Specific binding of 3 H-saxitoxin (STX) was used to quantitate the density of voltage-sensitive sodium channels in developing rat skeletal muscle. In adult triceps surae, a single class of sites with a KD . 2.9 nM and a density of 21 fmol/mg wet wt was detected. The density of these high-affinity sites increased from 2.0 fmol/mg wet wt to the adult value in linear fashion during days 2-25 after birth. Denervation of the triceps surae at day 11 or 17 reduced final saxitoxin receptor site density to 10.4 or 9.2 fmol/mg wet wt, respectively, without changing KD. Denervation of the triceps surae at day 5 did not alter the subsequent development of saxitoxin receptor sites during days 5-9 and accelerated the increase of saxitoxin receptor sites during days 9-13. After day 13, saxitoxin receptor development abruptly ceased and the density of saxitoxin receptor sites declined to 11 fmol/wg wet wt. These results show that the regulation of high-affinity saxitoxin receptor site density by innervation is biphasic. During the first phase, which is independent of continuing innervation, the saxitoxin receptor density increases to 47-57% of the adult level. After day 11, the second phase of development, which is dependent on continuing innervation, gives rise to the adult density of saxitoxin receptors

  18. The effects of Capn1 gene inactivation on skeletal muscle growth, development, and atrophy, and the compensatory role of other proteolytic systems.

    Science.gov (United States)

    Kemp, C M; Oliver, W T; Wheeler, T L; Chishti, A H; Koohmaraie, M

    2013-07-01

    Myofibrillar protein turnover is a key component of muscle growth and degeneration, requiring proteolytic enzymes to degrade the skeletal muscle proteins. The objective of this study was to investigate the role of the calpain proteolytic system in muscle growth development using μ-calpain knockout (KO) mice in comparison with control wild-type (WT) mice, and evaluate the subsequent effects of silencing this gene on other proteolytic systems. No differences in muscle development between genotypes were observed during the early stages of growth due to the up regulation of other proteolytic systems. The KO mice showed significantly greater m-calpain protein abundance (P proteolytic systems to ensure muscle protein homeostasis in vivo. Furthermore, these data contribute to the existing evidence of the importance of the calpain system's involvement in muscle growth, development, and atrophy. Collectively, these data suggest that there are opportunities to target the calpain system to promote the growth and/or restoration of skeletal muscle mass.

  19. Excess TSH causes abnormal skeletal development in young mice with hypothyroidism via suppressive effects on the growth plate.

    Science.gov (United States)

    Endo, Toyoshi; Kobayashi, Tetsuro

    2013-09-01

    Hypothyroidism in the young leads to irreversible growth failure. hyt/hyt Mice have a nonfunctional TSH receptor (TSHR) and are severely hypothyroid, but growth retardation was not observed in adult mice. We found that epiphysial cartilage as well as cultured chondrocytes expressed functional TSHR at levels comparable to that seen in the thyroid, and that addition of TSH to cultured chondrocytes suppressed expression of chondrocyte differentiation marker genes such as Sox-9 and type IIa collagen. Next, we compared the long bone phenotypes of two distinct mouse models of hypothyroidism: thyroidectomized (THYx) mice and hyt/hyt mice. Although both THYx and hyt/hyt mice were severely hypothyroid and had similar serum Ca(2+) and growth hormone levels, the tibia was shorter and the proliferating and hypertrophic zones in the growth plate was significantly narrower in THYx mice than in hyt/hyt mice. Supplementation of hyt/hyt mice thyroid hormone resulted in a wider growth plate compared with that of wild-type mice. Expressions of chondrocyte differentiation marker genes Sox-9 and type IIa collagen in growth plate from THYx mice were 52 and 60% lower than those of hyt/hyt mice, respectively. High serum TSH causes abnormal skeletal development in young mice with hypothyroidism via suppressive effects on the growth plate.

  20. Accuracy of dental development for estimating the pubertal growth spurt in comparison to skeletal development: a systematic review and meta-analysis.

    Science.gov (United States)

    Bittencourt, MarcosAlan Vieira; Cericato, GrazielaOro; Franco, Ademir; Girão, RafaelaSilva; Lima, Anderson Paulo Barbosa; Paranhos, LuizRenato

    2018-05-01

    This study aimed to search for scientific evidence concerning the accuracy of dental development for estimating the pubertal growth spurt. It was conducted according to the statements of PRISMA. An electronic search was performed in six databases, including the grey literature. The PICOS strategy was used to define the eligibility criteria and only observational studies were selected. Out of 1,416 identified citations, 10 articles fulfilled the criteria and were included in this systematic review. The association between dental development and skeletal maturity was considered strong in seven studies, and moderate in two, although the association with the pubertal growth spurt had been verified in only four articles. According to half of the studies, the tooth that provided the greater association with the ossification centres was the lower canine. The meta-analysis performed also indicated a positive association, being stronger in females [0.725 (0.649-0.808)]. However, when the method used for dental evaluation was considered, it was possible to verify greater correlation coefficients for Nolla [0.736 (0.666-0.814)] than for Demirjian [0.631 (0.450-0.884)], at the boys sample. The heterogeneity test reached high values (Q = 51.00), suggesting a potential bias within the studies. Most of individual studies suggested a strong correlation between dental development and skeletal maturation, although the association with the peakof pubertal growth spurtwas clearly cited only in some of them. However, due to the high heterogeneity found among the studies included in this meta-analysis, a pragmatic recommendation about the use of dental stages is not possible.

  1. Contrasting expression of membrane metalloproteinases, MT1-MMP and MT3-MMP, suggests distinct functions in skeletal development.

    Science.gov (United States)

    Yang, Maozhou; Zhang, Bingbing; Zhang, Liang; Gibson, Gary

    2008-07-01

    Membrane-type 1 matrix metalloproteinase (MT1-MMP) is the most ubiquitous and widely studied of the membrane-type metalloproteinases (MT-MMPs). It was thus surprising to find no published data on chicken MT1-MMP. We report here the characterization of the chicken gene. Its low sequence identity with the MT1-MMP genes of other species, high GC content, and divergent catalytic domain explains the absence of data and our difficulties in characterizing the gene. The absence of structural features in the chicken gene that have been suggested to be critical for the activation of MMP-2 by MT1-MMP; for the effect of MT1-MMP on cell migration and for the recycling of MT1-MMP suggest these features are either not essential or that MT1-MMP does not perform these functions in chickens. Comparison of the expression of chicken MT1-MMP with MT3-MMP and with MMP-2 and MMP-13 has confirmed the previously recognized co-expression of MT1-MMP with MMP-2 and MMP-13 in fibrous and vascular tissues, particularly those surrounding the developing long bones in other species. By contrast, MT3-MMP expression differs markedly from that of MT1-MMP and of both MMP-2 and MMP-13. MT3-MMP is expressed by chondrocytes of the developing articular surface. Similar expression patterns of this group of MT-MMPs and MMPs have been observed in mouse embryos and suggest distinct and specific functions for MT1-MMP and MT3-MMP in skeletal development.

  2. Phenotypic characterization of miR-92a-/- mice reveals an important function of miR-92a in skeletal development.

    Directory of Open Access Journals (Sweden)

    Daniela Penzkofer

    Full Text Available MicroRNAs (miRNAs, miRs emerged as key regulators of gene expression. Germline hemizygous deletion of the gene that encodes the miR-17∼92 miRNA cluster was associated with microcephaly, short stature and digital abnormalities in humans. Mice deficient for the miR-17∼92 cluster phenocopy several features such as growth and skeletal development defects and exhibit impaired B cell development. However, the individual contribution of miR-17∼92 cluster members to this phenotype is unknown. Here we show that germline deletion of miR-92a in mice is not affecting heart development and does not reduce circulating or bone marrow-derived hematopoietic cells, but induces skeletal defects. MiR-92a-/- mice are born at a reduced Mendelian ratio, but surviving mice are viable and fertile. However, body weight of miR-92a-/- mice was reduced during embryonic and postnatal development and adulthood. A significantly reduced body and skull length was observed in miR-92a-/- mice compared to wild type littermates. µCT analysis revealed that the length of the 5th mesophalanx to 5th metacarpal bone of the forelimbs was significantly reduced, but bones of the hindlimbs were not altered. Bone density was not affected. These findings demonstrate that deletion of miR-92a is sufficient to induce a developmental skeletal defect.

  3. Physiological and methodological aspects of rate of force development assessment in human skeletal muscle

    DEFF Research Database (Denmark)

    Rodríguez-Rosell, David; Pareja-Blanco, Fernando; Aagaard, Per

    2018-01-01

    Rate of force development (RFD) refers to the ability of the neuromuscular system to increase contractile force from a low or resting level when muscle activation is performed as quickly as possible, and it is considered an important muscle strength parameter, especially for athletes in sports re......, which may aid to clarify the thinking of coaches and sports scientists in this area....

  4. Normal skeletal development and imaging pitfalls of the calcaneal apophysis: MRI features

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Ignacio [Musculoskeletal Research Fellow at NYU Langone Medical Center, New York, NY (United States); Centro de Diagnostico Dr. Enrique Rossi, Buenos Aires (Argentina); Rosenberg, Zehava [NYU Langone Medical Center, New York, NY (United States); Zember, Jonathan [Albert Einstein College of Medicine Jacobi Medical Center, Bronx, NY (United States)

    2016-04-15

    Heel pain in children and secondary MR imaging (MRI) of the hindfoot have been increasing in incidence. Our purpose is to illustrate the, previously unreported, MRI stages in development of the posterior calcaneal apophysis, with attention to imaging pitfalls. This should aid in distinguishing normal growth from true disease. Consecutive ankle MRIs in children <18 years, from 2008-2014, were subdivided into 0≤5, 5≤10, 10≤15 and 15≤18 age groups and retrospectively reviewed for development of the calcaneal apophysis. 204 ankle MRI studies in 188 children were identified. 40 studies were excluded with final cohort of 164 studies in 154 patients (82 boys, 72 girls). The calcaneal apophysis was cartilaginous until age 5. Foci of decreased as well as increased signal were embedded in cartilage, prior to ossification. Early, secondary ossification centers appeared in plantar third of the apophysis in 100 % of children by age 7. Increased T2 signal in the ossifications was seen in 30 % of children. Apohyseal fusion began at 12 and was complete in 78 % of 14≤15 year olds and in 88 % of 15≤18 year olds. Curvilinear low signal in the ossification centers, paralleling, but distinguished from growth plate, and not be confused with fracture line, was common. Development of the posterior calcaneus follows a unique sequence. Apophyseal fusion occurs earlier than reported in the literature. Familiarity with this maturation pattern, in particular the apophyseal increased T2 signal and the linear low signal paralleling the growth plate, will avoid misinterpreting it for pathology. (orig.)

  5. Normal skeletal development and imaging pitfalls of the calcaneal apophysis: MRI features

    International Nuclear Information System (INIS)

    Rossi, Ignacio; Rosenberg, Zehava; Zember, Jonathan

    2016-01-01

    Heel pain in children and secondary MR imaging (MRI) of the hindfoot have been increasing in incidence. Our purpose is to illustrate the, previously unreported, MRI stages in development of the posterior calcaneal apophysis, with attention to imaging pitfalls. This should aid in distinguishing normal growth from true disease. Consecutive ankle MRIs in children <18 years, from 2008-2014, were subdivided into 0≤5, 5≤10, 10≤15 and 15≤18 age groups and retrospectively reviewed for development of the calcaneal apophysis. 204 ankle MRI studies in 188 children were identified. 40 studies were excluded with final cohort of 164 studies in 154 patients (82 boys, 72 girls). The calcaneal apophysis was cartilaginous until age 5. Foci of decreased as well as increased signal were embedded in cartilage, prior to ossification. Early, secondary ossification centers appeared in plantar third of the apophysis in 100 % of children by age 7. Increased T2 signal in the ossifications was seen in 30 % of children. Apohyseal fusion began at 12 and was complete in 78 % of 14≤15 year olds and in 88 % of 15≤18 year olds. Curvilinear low signal in the ossification centers, paralleling, but distinguished from growth plate, and not be confused with fracture line, was common. Development of the posterior calcaneus follows a unique sequence. Apophyseal fusion occurs earlier than reported in the literature. Familiarity with this maturation pattern, in particular the apophyseal increased T2 signal and the linear low signal paralleling the growth plate, will avoid misinterpreting it for pathology. (orig.)

  6. Skeletal muscle performance and ageing.

    Science.gov (United States)

    Tieland, Michael; Trouwborst, Inez; Clark, Brian C

    2018-02-01

    The world population is ageing rapidly. As society ages, the incidence of physical limitations is dramatically increasing, which reduces the quality of life and increases healthcare expenditures. In western society, ~30% of the population over 55 years is confronted with moderate or severe physical limitations. These physical limitations increase the risk of falls, institutionalization, co-morbidity, and premature death. An important cause of physical limitations is the age-related loss of skeletal muscle mass, also referred to as sarcopenia. Emerging evidence, however, clearly shows that the decline in skeletal muscle mass is not the sole contributor to the decline in physical performance. For instance, the loss of muscle strength is also a strong contributor to reduced physical performance in the elderly. In addition, there is ample data to suggest that motor coordination, excitation-contraction coupling, skeletal integrity, and other factors related to the nervous, muscular, and skeletal systems are critically important for physical performance in the elderly. To better understand the loss of skeletal muscle performance with ageing, we aim to provide a broad overview on the underlying mechanisms associated with elderly skeletal muscle performance. We start with a system level discussion and continue with a discussion on the influence of lifestyle, biological, and psychosocial factors on elderly skeletal muscle performance. Developing a broad understanding of the many factors affecting elderly skeletal muscle performance has major implications for scientists, clinicians, and health professionals who are developing therapeutic interventions aiming to enhance muscle function and/or prevent mobility and physical limitations and, as such, support healthy ageing. © 2017 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.

  7. The significance of measuring serum IGF1, IGFBP3 and OST for the judgement of abnormal skeletal development and therapeutic monitoring in precocious children

    International Nuclear Information System (INIS)

    Ji Zhiying; Zhao Ruifang; Lv Xiaomei; Gu Fanlei; Cai Depei

    2004-01-01

    monitoring on delaying skeletal maturity and ameliorating skeletal development that to re-examine the change of serum IGF 1 and OST at regular intervals during treatment course

  8. Autoclaved Tumor Bone for Skeletal Reconstruction in Paediatric Patients: A Low Cost Alternative in Developing Countries

    Directory of Open Access Journals (Sweden)

    Masood Umer

    2013-01-01

    Full Text Available We reviewed in this series forty patients of pediatric age who underwent resection for malignant tumors of musculoskeletal system followed by biological reconstruction. Our surgical procedure for reconstruction included (1 wide en bloc resection of the tumor; (2 curettage of tumor from the resected bone; (3 autoclaving for 8 minutes (4 bone grafting from the fibula (both vascularized and nonvascularized fibular grafts used; (5 reimplantation of the autoclaved bone into the host bone defect and fixation with plates. Functional evaluation was done using MSTS scoring system. At final followup of at least 18 months (mean 29.2 months, 31 patients had recovered without any complications. Thirty-eight patients successfully achieved a solid bony union between the graft and recipient bone. Three patients had surgical site infection. They were managed with wound debridement and flap coverage of the defect. Local recurrence and nonunion occurred in two patients each. One patient underwent disarticulation at hip due to extensive local disease and one died of metastasis. For patients with non-union, revision procedure with bone graft and compression plates was successfully used. The use of autoclaved tumor grafts provides a limb salvage option that is inexpensive and independent of external resources and is a viable option for musculoskeletal tumor management in developing countries.

  9. Acetylcholinesterase Regulates Skeletal In Ovo Development of Chicken Limbs by ACh-Dependent and -Independent Mechanisms.

    Directory of Open Access Journals (Sweden)

    Janine Spieker

    Full Text Available Formation of the vertebrate limb presents an excellent model to analyze a non-neuronal cholinergic system (NNCS. Here, we first analyzed the expression of acetylcholinesterase (AChE by IHC and of choline acetyltransferase (ChAT by ISH in developing embryonic chicken limbs (stages HH17-37. AChE outlined formation of bones, being strongest at their distal tips, and later also marked areas of cell death. At onset, AChE and ChAT were elevated in two organizing centers of the limb anlage, the apical ectodermal ridge (AER and zone of polarizing activity (ZPA, respectively. Thereby ChAT was expressed shortly after AChE, thus strongly supporting a leading role of AChE in limb formation. Then, we conducted loss-of-function studies via unilateral implantation of beads into chicken limb anlagen, which were soaked in cholinergic components. After varying periods, the formation of cartilage matrix and of mineralizing bones was followed by Alcian blue (AB and Alizarin red (AR stainings, respectively. Both acetylcholine (ACh- and ChAT-soaked beads accelerated bone formation in ovo. Notably, inhibition of AChE by BW284c51, or by the monoclonal antibody MAB304 delayed cartilage formation. Since bead inhibition of BChE was mostly ineffective, an ACh-independent action during BW284c51 and MAB304 inhibition was indicated, which possibly could be due to an enzymatic side activity of AChE. In conclusion, skeletogenesis in chick is regulated by an ACh-dependent cholinergic system, but to some extent also by an ACh-independent aspect of the AChE protein.

  10. Expression and Regulation of Corticotropin-Releasing Factor Receptor Type 2 beta in Developing and Mature Mouse Skeletal Muscle

    NARCIS (Netherlands)

    Kuperman, Yael; Issler, Orna; Vaughan, Joan; Bilezikjian, Louise; Vale, Wylie; Chen, Alon

    Corticotropin-releasing factor receptor type 2 (CRFR2) is highly expressed in skeletal muscle (SM) tissue where it is suggested to inhibit interactions between insulin signaling pathway components affecting whole-body glucose homeostasis. However, little is known about factors regulating SM CRFR2

  11. Ethnic Differences in Peripheral Skeletal Development Among Urban South African Adolescents: A Ten-Year Longitudinal pQCT Study.

    Science.gov (United States)

    Schoenbuchner, Simon M; Pettifor, John M; Norris, Shane A; Micklesfield, Lisa K; Prentice, Ann; Ward, Kate A

    2017-12-01

    There are no longitudinal pQCT data of bone growth and development from sub-Saharan Africa, where rapid environmental, societal, and economic transitions are occurring, and where fracture rates are predicted to rise. The aim of this study was to compare skeletal development in black and white South African adolescents using longitudinal data from the Birth to Twenty study. The Birth to Twenty Bone Health subcohort consisted of 543 adolescents (261 [178 black] girls, 282 [201 black] boys). Annual pQCT measurements of the radial and tibial metaphysis and diaphysis were obtained between ages 12 and 22 years (distal metaphysis: cross-sectional area [CSA] and trabecular bone mineral density [BMD]; diaphysis: total and cortical CSA, cortical BMD, and polar stress-strain index [SSIp]). Age at peak height velocity (APHV) was calculated to account for differences in maturational timing between ethnic groups and sexes. Mixed-effects models were used to describe trajectories for each pQCT outcome. Likelihood-ratio tests were used to summarize the overall difference in trajectories between black and white participants within each sex. APHV (mean ± SD years) was similar in black (11.8 ± 0.8) and white (12.2 ± 1.0) girls, but delayed in black (14.2 ± 1.0) relative to white boys (13.3 ± 0.8). By 4 years post-APHV, white adolescents had significantly greater cortical CSA and SSIp than black adolescents at the radius. There were no significant differences at the radial metaphysis but there was some divergence, such that black adolescents had greater radial trabecular BMD by the end of follow-up. At the tibia, white adolescents had lower diaphyseal CSA and SSIp, and greater metaphyseal CSA. There was no ethnic difference in tibial trabecular BMD. There are ethnic differences in bone growth and development, independent of maturation, in South African adolescents. This work gives new insights into the possible etiology of childhood fractures, which occur most

  12. Skeletal muscle and fetal alcohol spectrum disorder.

    Science.gov (United States)

    Myrie, Semone B; Pinder, Mark A

    2018-04-01

    Skeletal muscle is critical for mobility and many metabolic functions integral to survival and long-term health. Alcohol can affect skeletal muscle physiology and metabolism, which will have immediate and long-term consequences on health. While skeletal muscle abnormalities, including morphological, biochemical, and functional impairments, are well-documented in adults that excessively consume alcohol, there is a scarcity of information about the skeletal muscle in the offspring prenatally exposed to alcohol ("prenatal alcohol exposure"; PAE). This minireview examines the available studies addressing skeletal muscle abnormalities due to PAE. Growth restriction, fetal alcohol myopathy, and abnormalities in the neuromuscular system, which contribute to deficits in locomotion, are some direct, immediate consequences of PAE on skeletal muscle morphology and function. Long-term health consequences of PAE-related skeletal abnormalities include impaired glucose metabolism in the skeletal muscle, resulting in glucose intolerance and insulin resistance, leading to an increased risk of type 2 diabetes. In general, there is limited information on the morphological, biochemical, and functional features of skeletal abnormalities in PAE offspring. There is a need to understand how PAE affects muscle growth and function at the cellular level during early development to improve the immediate and long-term health of offspring suffering from PAE.

  13. Induced skeletal mutations

    International Nuclear Information System (INIS)

    Selby, P.B.

    1979-01-01

    This paper describes a large-scale experiment that, by means of breeding tests, confirmed that many dominant skeletal mutations are induced by large-dose radiation exposure. The author also discusses: (1) the major advantages and disadvantages of the skeletal method in improving estimates of genetic hazard to man; (2) future uses of the skeletal method; (3) direct estimation of risk beyond the first generation using the skeletal method; and (4) the possibility of using the skeletal method as a quick and easy screen for chemical mutagens

  14. Quantitative skeletal scintiscanning

    International Nuclear Information System (INIS)

    Haushofer, R.

    1982-01-01

    330 patients were examined by skeletal scintiscanning with sup(99m)Tc pyrophosphate and sup(99m)methylene diphosphonate in the years between 1977 and 1979. Course control examinations were carried out in 12 patients. The collective of patients presented with primary skeletal tumours, metastases, inflammatory and degenerative skeletal diseases. Bone scintiscanning combined with the ''region of interest'' technique was found to be an objective and reproducible technique for quantitative measurement of skeletal radioactivity concentrations. The validity of nuclear skeletal examinations can thus be enhanced as far as diagnosis, course control, and differential diagnosis are concerned. Quantitative skeletal scintiscanning by means of the ''region of interest'' technique has opened up a new era in skeletal diagnosis by nuclear methods. (orig./MG) [de

  15. Development and refinement of computer-assisted planning and execution system for use in face-jaw-teeth transplantation to improve skeletal and dento-occlusal outcomes.

    Science.gov (United States)

    Hashemi, Sepehr; Armand, Mehran; Gordon, Chad R

    2016-10-01

    To describe the development and refinement of the computer-assisted planning and execution (CAPE) system for use in face-jaw-teeth transplants (FJTTs). Although successful, some maxillofacial transplants result in suboptimal hybrid occlusion and may require subsequent surgical orthognathic revisions. Unfortunately, the use of traditional dental casts and splints pose several compromising shortcomings in the context of FJTT and hybrid occlusion. Computer-assisted surgery may overcome these challenges. Therefore, the use of computer-assisted orthognathic techniques and functional planning may prevent the need for such revisions and improve facial-skeletal outcomes. A comprehensive CAPE system for use in FJTT was developed through a multicenter collaboration and refined using plastic models, live miniature swine surgery, and human cadaver models. The system marries preoperative surgical planning and intraoperative execution by allowing on-table navigation of the donor fragment relative to recipient cranium, and real-time reporting of patient's cephalometric measurements relative to a desired dental-skeletal outcome. FJTTs using live-animal and cadaveric models demonstrate the CAPE system to be accurate in navigation and beneficial in improving hybrid occlusion and other craniofacial outcomes. Future refinement of the CAPE system includes integration of more commonly performed orthognathic/maxillofacial procedures.

  16. Skeletal muscle tissue engineering: methods to form skeletal myotubes and their applications.

    Science.gov (United States)

    Ostrovidov, Serge; Hosseini, Vahid; Ahadian, Samad; Fujie, Toshinori; Parthiban, Selvakumar Prakash; Ramalingam, Murugan; Bae, Hojae; Kaji, Hirokazu; Khademhosseini, Ali

    2014-10-01

    Skeletal muscle tissue engineering (SMTE) aims to repair or regenerate defective skeletal muscle tissue lost by traumatic injury, tumor ablation, or muscular disease. However, two decades after the introduction of SMTE, the engineering of functional skeletal muscle in the laboratory still remains a great challenge, and numerous techniques for growing functional muscle tissues are constantly being developed. This article reviews the recent findings regarding the methodology and various technical aspects of SMTE, including cell alignment and differentiation. We describe the structure and organization of muscle and discuss the methods for myoblast alignment cultured in vitro. To better understand muscle formation and to enhance the engineering of skeletal muscle, we also address the molecular basics of myogenesis and discuss different methods to induce myoblast differentiation into myotubes. We then provide an overview of different coculture systems involving skeletal muscle cells, and highlight major applications of engineered skeletal muscle tissues. Finally, potential challenges and future research directions for SMTE are outlined.

  17. Assessment of mandibular growth by skeletal scintigraphy

    International Nuclear Information System (INIS)

    Kaban, L.B.; Cisneros, G.J.; Heyman, S.; Treves, S.

    1982-01-01

    Accurate assessment of facial skeletal growth remains a major problem in craniomaxillofacial surgery. Current methods include: (1) comparisons of chronologic age with growth histories of the patient and the family, (2) hand-wrist radiographs compared with a standard, and (3) serial cephalometric radiographs. Uptake of technetium-99m methylene diphosphonate into bone is a reflection of current metabolic activity and blood flow. Therefore, scintigraphy with this radiopharmaceutical might serve as a good method of assessing skeletal growth. Thirty-four patients, ranging in age from 15 months to 22 years, who were undergoing skeletal scintigrams for acute pathologic conditions of the extremities, were used to develop standards of uptake based on age and skeletal maturation. The results indicate that skeletal scintigraphy may be useful in evaluation of mandibular growth

  18. Prenatal programming of skeletal development in the offspring: effects of maternal treatment with beta-hydroxy-beta-methylbutyrate (HMB) on femur properties in pigs at slaughter age.

    Science.gov (United States)

    Tatara, Marcin R; Sliwa, Ewa; Krupski, Witold

    2007-06-01

    Alteration in fetal growth and development in response to prenatal environmental conditions such as nutrition has long-term or permanent effects during postnatal life. The aim of this study was to investigate effects of beta-hydroxy-beta-methylbutyrate (HMB) treatment of sows during the last 2 weeks of pregnancy on programming of skeletal development in the offspring. The study was performed on 141 pigs born by 12 sows of Polish Landrace breed. Two weeks before delivery, pregnant sows were divided into two groups. The first group consisted of control sows (N=6) that were treated with placebo. Sows that were orally treated with beta-hydroxy-beta-methylbutyrate (N=6) at the dosage of 0.05 g/kg of body weight per day belonged to the second group. Newborn piglets were weighed and subjected to blood collection for determination of serum levels of growth hormone (GH), insulin-like growth factor-1 (IGF-1), insulin, leptin, glucose and bone alkaline phosphatase (BAP) activity and lipid profile. At the age of 6 months, the piglets were slaughtered, their femur was isolated for analysis and assessment of lean meat content of carcasses was performed. The effects of maternal administration with HMB on skeletal properties in the offspring were evaluated in relation to bone mineral density and geometrical and mechanical properties. Maternal treatment with HMB increased serum levels of GH, IGF-1 and BAP activity in the newborns by 38.0%, 20.0% and 26.0%, respectively (PHMB administration significantly increased volumetric bone mineral density of the trabecular and cortical bone of femur in the offspring at the age of 6 months (PHMB treatment (PHMB induced higher values of maximum elastic strength and ultimate strength of femur (PHMB-treated sows (PHMB has positive long-term effects on bone tissue and improves volumetric bone mineral density, geometrical and mechanical properties of femur in the offspring. These effects were connected with increased level of GH and IGF-1 in the

  19. Lyophilized skeletal imaging composition

    International Nuclear Information System (INIS)

    Vanduzee, B.F.

    1983-01-01

    This invention encompasses a process for producing a dry-powder skeletal imaging kit. An aqueous solution of a diphosphonate, a stannous reductant, and, optionally, a stabilizer is prepared. The solution is adjusted to a pH within the range 4.2 to 4.8 and the pH-adjusted solution is then lyophilized. The adjustment of pH, within a particular range, during the process of manufacturing lyophilized diphosphonate containing skeletal imaging kits yields a kit which produces a technetium skeletal imaging agent with superior imaging properties. This improved performance is manifested through faster blood clearance and higher skeletal uptake of the technetium imaging agent

  20. Skeletal muscle protease activities in the early growth and development of wild Atlantic salmon (Salmo salar L.).

    Science.gov (United States)

    Lysenko, Liudmila A; Kantserova, Nadezda P; Kaivarainen, Elena I; Krupnova, Marina Yu; Nemova, Nina N

    2017-09-01

    Growth-related dynamics of intracellular protease activities in four year classes of the Atlantic salmon (Salmo salar L. 1758) parr and smolts inhabiting salmon rivers of northwestern Russia (the White Sea basin) were studied. Cathepsin B, cathepsin D, proteasome, and calpain activities in the skeletal muscles of salmon were assessed to investigate their relative contribution to the total protein degradation as well as to young fish growth process. It was confirmed that calpain activity dominates in salmon muscles while proteasome plays a minor role, in contrast to terrestrial vertebrates. Calpain and proteasome activities were maximal at the early post-larval stage (in parrs 0+) and declined with age (parrs 1+ through 2+) dropping to the lowest level in salmon smolts. Annual growth increments and proteolytic activities of calpains and proteasome in the muscles of salmon juveniles changed with age in an orchestrated manner, while lysosomal cathepsin activities increased with age. Comparing protease activities and growth increments in salmon parr and smolts we suggested that the partial suppression of the protein degradation could be a mechanism stimulating efficient growth in smoltifying salmon. Growth and smoltification-related dynamics of protease activities was quite similar in salmon populations from studied spawning rivers, such as Varzuga and Indera; however, some habitat-related differences were observed. Growth increments and protease activities varied in salmon parr 0+ (but not on later ages) inhabiting either main rivers or small tributaries apparently due to habitat difference on the resources for fish growth. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Axial skeletal CT densitometry

    International Nuclear Information System (INIS)

    Lampmann, L.E.H.

    1982-01-01

    Since the discovery of the Roentgen ray a precise and accurate assessment of bone mineral content has been a challenge to many investigators. A number of methods have been developed but no one satisfied. Considering its technical possibilities computed tomography is very promising in determination of bone mineral content (BMC). The new modality enables BMC estimations in the axial skeletal trabecular bone. CT densitometry can be performed on a normal commercially available third generation whole body CT scanner. No dedicated device in a special clinical set-up is necessary. In this study 106 patients, most of them clinically suspected of osteoporosis, were examined. The new method CT densitometry has been evaluated. The results have been correlated to alternative BMC determination methods. (Auth.)

  2. Redox Control of Skeletal Muscle Regeneration.

    Science.gov (United States)

    Le Moal, Emmeran; Pialoux, Vincent; Juban, Gaëtan; Groussard, Carole; Zouhal, Hassane; Chazaud, Bénédicte; Mounier, Rémi

    2017-08-10

    Skeletal muscle shows high plasticity in response to external demand. Moreover, adult skeletal muscle is capable of complete regeneration after injury, due to the properties of muscle stem cells (MuSCs), the satellite cells, which follow a tightly regulated myogenic program to generate both new myofibers and new MuSCs for further needs. Although reactive oxygen species (ROS) and reactive nitrogen species (RNS) have long been associated with skeletal muscle physiology, their implication in the cell and molecular processes at work during muscle regeneration is more recent. This review focuses on redox regulation during skeletal muscle regeneration. An overview of the basics of ROS/RNS and antioxidant chemistry and biology occurring in skeletal muscle is first provided. Then, the comprehensive knowledge on redox regulation of MuSCs and their surrounding cell partners (macrophages, endothelial cells) during skeletal muscle regeneration is presented in normal muscle and in specific physiological (exercise-induced muscle damage, aging) and pathological (muscular dystrophies) contexts. Recent advances in the comprehension of these processes has led to the development of therapeutic assays using antioxidant supplementation, which result in inconsistent efficiency, underlying the need for new tools that are aimed at precisely deciphering and targeting ROS networks. This review should provide an overall insight of the redox regulation of skeletal muscle regeneration while highlighting the limits of the use of nonspecific antioxidants to improve muscle function. Antioxid. Redox Signal. 27, 276-310.

  3. Proteomics of Skeletal Muscle

    DEFF Research Database (Denmark)

    Deshmukh, Atul

    2016-01-01

    , of altered protein expressions profiles and/or their posttranslational modifications (PTMs). Mass spectrometry (MS)-based proteomics offer enormous promise for investigating the molecular mechanisms underlying skeletal muscle insulin resistance and exercise-induced adaptation; however, skeletal muscle......Skeletal muscle is the largest tissue in the human body and plays an important role in locomotion and whole body metabolism. It accounts for ~80% of insulin stimulated glucose disposal. Skeletal muscle insulin resistance, a primary feature of Type 2 diabetes, is caused by a decreased ability...... of muscle to respond to circulating insulin. Physical exercise improves insulin sensitivity and whole body metabolism and remains one of the most promising interventions for the prevention of Type 2 diabetes. Insulin resistance and exercise adaptations in skeletal muscle might be a cause, or consequence...

  4. Exercise Promotes Healthy Aging of Skeletal Muscle

    DEFF Research Database (Denmark)

    Cartee, Gregory D; Hepple, Russell T; Bamman, Marcas M

    2016-01-01

    caused by diseases and lifestyle factors. Secondary aging can exacerbate deficits in mitochondrial function and muscle mass, concomitant with the development of skeletal muscle insulin resistance. Exercise opposes deleterious effects of secondary aging by preventing the decline in mitochondrial...... respiration, mitigating aging-related loss of muscle mass and enhancing insulin sensitivity. This review focuses on mechanisms by which exercise promotes "healthy aging" by inducing modifications in skeletal muscle....

  5. Skeletal imaging composition

    International Nuclear Information System (INIS)

    Vanduzee, B.F.; Degenhardt, C.R.

    1983-01-01

    This invention is based on the discovery that the adjustment of pH, within a particular range, during the process of manufacturing lyophilized diphosphonate-containing skeletal imaging kits yields a kit which produces a technetium skeletal imaging agent with superior imaging properties. This increased performance is manifested through faster blood clearance and higher skeletal uptake of the technetium imaging agent. The process for producing a dry-powder imaging kit comprises the steps of: preparing a solution of a diphosphonate carrier, stannous reductant, and a stabilizer in water; adjusting the pH to between 5.5 and 6.5; and lyophilizing the solution

  6. Pathogenesis of Insulin Resistance in Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Muhammad A. Abdul-Ghani

    2010-01-01

    Full Text Available Insulin resistance in skeletal muscle is manifested by decreased insulin-stimulated glucose uptake and results from impaired insulin signaling and multiple post-receptor intracellular defects including impaired glucose transport, glucose phosphorylation, and reduced glucose oxidation and glycogen synthesis. Insulin resistance is a core defect in type 2 diabetes, it is also associated with obesity and the metabolic syndrome. Dysregulation of fatty acid metabolism plays a pivotal role in the pathogenesis of insulin resistance in skeletal muscle. Recent studies have reported a mitochondrial defect in oxidative phosphorylation in skeletal muscle in variety of insulin resistant states. In this review, we summarize the cellular and molecular defects that contribute to the development of insulin resistance in skeletal muscle.

  7. The skeletal consequences of thyrotoxicosis.

    Science.gov (United States)

    Nicholls, Jonathan J; Brassill, Mary Jane; Williams, Graham R; Bassett, J H Duncan

    2012-06-01

    Euthyroid status is essential for normal skeletal development and the maintenance of adult bone structure and strength. Established thyrotoxicosis has long been recognised as a cause of high bone turnover osteoporosis and fracture but more recent studies have suggested that subclinical hyperthyroidism and long-term suppressive doses of thyroxine (T4) may also result in decreased bone mineral density (BMD) and an increased risk of fragility fracture, particularly in postmenopausal women. Furthermore, large population studies of euthyroid individuals have demonstrated that a hypothalamic-pituitary-thyroid axis set point at the upper end of the normal reference range is associated with reduced BMD and increased fracture susceptibility. Despite these findings, the cellular and molecular mechanisms of thyroid hormone action in bone remain controversial and incompletely understood. In this review, we discuss the role of thyroid hormones in bone and the skeletal consequences of hyperthyroidism.

  8. Primary sacrococcygeal chordoma with unusual skeletal muscle metastasis

    Directory of Open Access Journals (Sweden)

    Lisa Vu, MD

    2014-01-01

    Full Text Available Chordomas are rare neoplasms that do not often metastasize. Of the small percent that do metastasize, they very infrequently involve skeletal muscle. Only a few cases of skeletal muscle metastases have been reported in the literature. We report an unusual case of a patient with a primary sacrococcygeal chordoma who experienced a long period of remission but who subsequently developed recurrence and multiple metastatic lesions to skeletal muscles including the deltoid, triceps, and pectineus.

  9. Skeletal muscle stem cells from animals I. Basic cell biology

    Science.gov (United States)

    Skeletal muscle stem cells from food-producing animals have been of interest to agricultural life scientists seeking to develop a better understanding of the molecular regulation of lean tissue (skeletal muscle protein hypertrophy) and intramuscular fat (marbling) development. Enhanced understanding...

  10. Regulation of an antisense RNA with the transition of neonatal to IIb myosin heavy chain during postnatal development and hypothyroidism in rat skeletal muscle.

    Science.gov (United States)

    Pandorf, Clay E; Jiang, Weihua; Qin, Anqi X; Bodell, Paul W; Baldwin, Kenneth M; Haddad, Fadia

    2012-04-01

    Postnatal development of fast skeletal muscle is characterized by a transition in expression of myosin heavy chain (MHC) isoforms, from primarily neonatal MHC at birth to primarily IIb MHC in adults, in a tightly coordinated manner. These isoforms are encoded by distinct genes, which are separated by ∼17 kb on rat chromosome 10. The neonatal-to-IIb MHC transition is inhibited by a hypothyroid state. We examined RNA products [mRNA, pre-mRNA, and natural antisense transcript (NAT)] of developmental and adult-expressed MHC genes (embryonic, neonatal, I, IIa, IIx, and IIb) at 2, 10, 20, and 40 days after birth in normal and thyroid-deficient rat neonates treated with propylthiouracil. We found that a long noncoding antisense-oriented RNA transcript, termed bII NAT, is transcribed from a site within the IIb-Neo intergenic region and across most of the IIb MHC gene. NATs have previously been shown to mediate transcriptional repression of sense-oriented counterparts. The bII NAT is transcriptionally regulated during postnatal development and in response to hypothyroidism. Evidence for a regulatory mechanism is suggested by an inverse relationship between IIb MHC and bII NAT in normal and hypothyroid-treated muscle. Neonatal MHC transcription is coordinately expressed with bII NAT. A comparative phylogenetic analysis also suggests that bII NAT-mediated regulation has been a conserved trait of placental mammals for most of the eutherian evolutionary history. The evidence in support of the regulatory model implicates long noncoding antisense RNA as a mechanism to coordinate the transition between neonatal and IIb MHC during postnatal development.

  11. Determinants of relative skeletal maturity in South African children.

    Science.gov (United States)

    Hawley, Nicola L; Rousham, Emily K; Johnson, William; Norris, Shane A; Pettifor, John M; Cameron, Noël

    2012-01-01

    The variation of skeletal maturity about chronological age is a sensitive indicator of population health. Age appropriate or advanced skeletal maturity is a reflection of adequate environmental and social conditions, whereas delayed maturation suggests inadequate conditions for optimal development. There remains a paucity of data, however, to indicate which specific biological and environmental factors are associated with advancement or delay in skeletal maturity. The present study utilises longitudinal data from the South African Birth to Twenty (Bt20) study to indentify predictors of relative skeletal maturity (RSM) in early adolescence. A total of 244 black South African children (n=131 male) were included in this analysis. Skeletal maturity at age 9/10 years was assessed using the Tanner and Whitehouse III RUS technique. Longitudinal data on growth, socio-economic position and pubertal development were entered into sex-specific multivariable general linear regression models with relative skeletal maturity (skeletal age-chronological age) as the outcome. At 9/10 years of age males showed an average of 0.66 years delay in skeletal maturation relative to chronological age. Females showed an average of 1.00 year delay relative to chronological age. In males, being taller at 2 years (pdetermining the rate of skeletal maturation during childhood independently of current stature. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. The ATP hydrolysis and phosphate release steps control the time course of force development in rabbit skeletal muscle.

    Science.gov (United States)

    Sleep, John; Irving, Malcolm; Burton, Kevin

    2005-03-15

    The time course of isometric force development following photolytic release of ATP in the presence of Ca(2+) was characterized in single skinned fibres from rabbit psoas muscle. Pre-photolysis force was minimized using apyrase to remove contaminating ATP and ADP. After the initial force rise induced by ATP release, a rapid shortening ramp terminated by a step stretch to the original length was imposed, and the time course of the subsequent force redevelopment was again characterized. Force development after ATP release was accurately described by a lag phase followed by one or two exponential components. At 20 degrees C, the lag was 5.6 +/- 0.4 ms (s.e.m., n = 11), and the force rise was well fitted by a single exponential with rate constant 71 +/- 4 s(-1). Force redevelopment after shortening-restretch began from about half the plateau force level, and its single-exponential rate constant was 68 +/- 3 s(-1), very similar to that following ATP release. When fibres were activated by the addition of Ca(2+) in ATP-containing solution, force developed more slowly, and the rate constant for force redevelopment following shortening-restretch reached a maximum value of 38 +/- 4 s(-1) (n = 6) after about 6 s of activation. This lower value may be associated with progressive sarcomere disorder at elevated temperature. Force development following ATP release was much slower at 5 degrees C than at 20 degrees C. The rate constant of a single-exponential fit to the force rise was 4.3 +/- 0.4 s(-1) (n = 22), and this was again similar to that after shortening-restretch in the same activation at this temperature, 3.8 +/- 0.2 s(-1). We conclude that force development after ATP release and shortening-restretch are controlled by the same steps in the actin-myosin ATPase cycle. The present results and much previous work on mechanical-chemical coupling in muscle can be explained by a kinetic scheme in which force is generated by a rapid conformational change bracketed by two

  13. in Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Espen E. Spangenburg

    2011-01-01

    Full Text Available Triglyceride storage is altered across various chronic health conditions necessitating various techniques to visualize and quantify lipid droplets (LDs. Here, we describe the utilization of the BODIPY (493/503 dye in skeletal muscle as a means to analyze LDs. We found that the dye was a convenient and simple approach to visualize LDs in both sectioned skeletal muscle and cultured adult single fibers. Furthermore, the dye was effective in both fixed and nonfixed cells, and the staining seemed unaffected by permeabilization. We believe that the use of the BODIPY (493/503 dye is an acceptable alternative and, under certain conditions, a simpler method for visualizing LDs stored within skeletal muscle.

  14. Longfin yellowtail (SEriola rivoliana) larval rearing: skeletal development and effects of increasing dietary DHA levels at weaning phase

    OpenAIRE

    Mesa-Rodríguez, Antonio

    2017-01-01

    Programa de doctorado: Acuicultura: producción controlada de animales acuáticos [EN] Seriola rivoliana is considered as relevant species for aquaculture diversification and the information available is limited. The main objective of the present Thesis was to improve longfin yellowtail (S. rivoliana) larval production. In this sense, three specific objectives were established, in order to evaluate the most appropriate larval rearing technique, the obtention of bone development information a...

  15. Traumatic skeletal changes

    International Nuclear Information System (INIS)

    Troeger, J.; Schofer, O.

    1985-01-01

    Skeleton scintiscanning is indicated in the following cases: (1) Suspected bone injury after clinical examination, the radiograph of the skeletal region in question contributing findings that either do not confirm suspision, or make not clear whether the changes observed are traumatic. (2) Polytrauma. (3) When the accident scenario reported by the persons taking care of the child does not sufficiently explain the skeletal changes observed, or when these persons expressly deny the possibility of a trauma being the cause of findings observed. (4) Suspected or proven battered-child syndrome. (orig./MG) [de

  16. Skeletal Stem Cells: Origins, Functions and Uncertainties.

    Science.gov (United States)

    Mohamed, Fatma F; Franceschi, Renny T

    2017-12-01

    The development and maintenance of the skeleton requires a steady source of skeletal progenitors to provide the osteoblasts and chondrocytes necessary for bone and cartilage growth and development. The current model for skeletal stem cells (SSCs) posits that SSC/progenitor cells are present in bone marrow (BM) and other osteogenic sites such as cranial sutures where they undergo self-renewal and differentiation to give rise to the main skeletal tissues. SSCs hold great promise for understanding skeletal biology and genetic diseases of bone as well as for the advancement of bone tissue engineering and regenerative medicine strategies. In the past few years, a considerable effort has been devoted to identifying and purifying skeletal stem cells and determining their contribution to bone formation and homeostasis. Here, we review recent progress in this area with particular emphasis on the discovery of specific SSC markers, their use in tracking the progression of cell populations along specific lineages and the regulation of SSCs in both the appendicular and cranial skeleton.

  17. Skeletal MR imaging: Correlation with skeletal scintigraphy

    International Nuclear Information System (INIS)

    Colletti, P.M.; Raval, J.K.; Ford, P.V.; Benson, R.C.; Kerr, R.M.; Boswell, W.D.; Siegel, M.E.; Ralls, P.W.

    1987-01-01

    Skeletal MR images bone marrow while skeletal scintigraphy uses bone metabolism to demonstrate abnormalities. The purpose of this paper is to correlate these MR and scintigraphic findings. T1 and T2 MR images at 0.5 T were correlated with planar bone scintigraphy (RN) using Tc-99m MDP in 56 patients. Of 23 cases with suspected spinal metastases, 19 were positive by MR imaging, 16 by RN. Individual lesions were shown better by MR imaging in five and by RN in two. These two cases had scoliosis, a potential difficulty with MR imaging. In 14 cases of suspected avascular necrosis (AVN), MR imaging was positive in 13 while RN was positive in ten. One negative case by RN had bilateral AVN by MR imaging. Four skull lesions shown easily by RN were seen only in retrospect on MR images. MR imaging is advantageous in evaluating bones with predominant marrow such as vertebrae or the femoral head, while RN is superior in areas primarily composed of cortical bone such as the skull

  18. Computational radiology in skeletal radiography

    International Nuclear Information System (INIS)

    Peloschek, Ph.; Nemec, S.; Widhalm, P.; Donner, R.; Birngruber, E.; Thodberg, H.H.; Kainberger, F.; Langs, G.

    2009-01-01

    Recent years have brought rapid developments in computational image analysis in musculo-skeletal radiology. Meanwhile the algorithms have reached a maturity that makes initial clinical use feasible. Applications range from joint space measurement to erosion quantification, and from fracture detection to the assessment of alignment angles. Current results of computational image analysis in radiography are very promising, but some fundamental issues remain to be clarified, among which the definition of the optimal trade off between automatization and operator-dependency, the integration of these tools into clinical work flow and last not least the proof of incremental clinical benefit of these methods.

  19. The developing role of knee MRI in musculo-skeletal radiology: the progression to 3-D imaging

    International Nuclear Information System (INIS)

    Kurmis, A.P.

    2001-01-01

    The purpose of this paper, following a comprehensive and systematic review of the available literature, is to provide both a historical record of the development of knee MRI and outline its progression to new 'state of the art' three dimensional reconstruction techniques. while preliminary work has been done to qualitatively- explore the application of 3D knee MR in controlled research settings the true clinical value of such applications has not yet been clearly established. lt was found that in the absence of valid research findings, much of the reported work in this area relied heavily on both anecdotal evidence and hypothetical expressions of likelihood. Much work must still be done to validate the reliability and clinical usefulness of this new diagnostic tool. In following with the reports of previous authors, the likely benefits of a 3-D computer reconstructed model of the knee include improved display of complex anatomical relationships, clarification of anatomical structures, clear demonstration of anatomy/pathology for those unfamiliar with tomographic or sectional images,and reduced examination time. Work has also suggested that 3-D MR may allow accurate pre-surgical classification of lesions while facilitating operative planning and real time intra-operative navigation. Other areas of cutting edge research also include applications toward surgical robotics, simulated surgical procedures, tele surgery, bone and prosthesis modeling, and virtual endoscopy/arthroscopy One of the more practical potential benefits of 3-D image displays may lie in assisting the radiologist to communicate the appearance of normal anatomy or pathological processes to other medical staff likely to be less familiar with the interpretation of routine two dimensional images. Such a method may also prove useful in aiding clinicians to convey their diagnoses and means of treatment to patients. It is hoped that this review will provide a base point from which future work can be

  20. Brief Communication: Skeletal and dental development in a sub-adult western lowland gorilla (Gorilla gorilla gorilla).

    Science.gov (United States)

    Joganic, Jessica L

    2016-01-01

    Non-human primate growth trajectories are often used to estimate the age and life history traits of fossil taxa. The exclusive use of chimpanzee growth patterns to estimate developmental stages for the earliest hominins is problematic because incomplete lineage sorting in the hominoid clade has produced a mosaic human genome that contains different regions shared with any one of the great apes. The accidental death of a sub-adult male western lowland gorilla (Gorilla gorilla gorilla) provides not only an opportunity to compare the degree of dentoskeletal maturation in this individual with published data from conspecifics, but also insight into gorilla growth and development as it applies to modeling that of early hominins. Dental stage was assessed for a sub-adult male western lowland gorilla by comparing dental eruption and calcification to established relative age categories. Ectocranial suture fusion, epiphyseal union, and long bone dimensions were compared to growth standards for wild male gorillas of a similar dental stage to determine developmental timing variability. Results suggest that greater variability exists in developmental rates and patterns and in morphological parameters than is often acknowledged. These results have implications for selecting appropriate models for studying extinct taxa. Ecological and physical characteristics shared between humans and gorillas may make gorilla life history equally valid in a comparative framework and encourage non-exclusive use of chimpanzee life history for paleoanthropological models. © 2015 Wiley Periodicals, Inc.

  1. Skeletal muscle ATP turnover and muscle fiber conduction velocity are elevated at higher muscle temperatures during maximal power output development in humans.

    Science.gov (United States)

    Gray, Stuart R; De Vito, Giuseppe; Nimmo, Myra A; Farina, Dario; Ferguson, Richard A

    2006-02-01

    The effect of temperature on skeletal muscle ATP turnover and muscle fiber conduction velocity (MFCV) was studied during maximal power output development in humans. Eight male subjects performed a 6-s maximal sprint on a mechanically braked cycle ergometer under conditions of normal (N) and elevated muscle temperature (ET). Muscle temperature was passively elevated through the combination of hot water immersion and electric blankets. Anaerobic ATP turnover was calculated from analysis of muscle biopsies obtained before and immediately after exercise. MFCV was measured during exercise using surface electromyography. Preexercise muscle temperature was 34.2 degrees C (SD 0.6) in N and 37.5 degrees C (SD 0.6) in ET. During ET, the rate of ATP turnover for phosphocreatine utilization [temperature coefficient (Q10) = 3.8], glycolysis (Q10 = 1.7), and total anaerobic ATP turnover [Q10 = 2.7; 10.8 (SD 1.9) vs. 14.6 mmol x kg(-1) (dry mass) x s(-1) (SD 2.3)] were greater than during N (P < 0.05). MFCV was also greater in ET than in N [3.79 (SD 0.47) to 5.55 m/s (SD 0.72)]. Maximal power output (Q10 = 2.2) and pedal rate (Q10 = 1.6) were greater in ET compared with N (P < 0.05). The Q10 of maximal and mean power were correlated (P < 0.05; R = 0.82 and 0.85, respectively) with the percentage of myosin heavy chain type IIA. The greater power output obtained with passive heating was achieved through an elevated rate of anaerobic ATP turnover and MFCV, possibly due to a greater effect of temperature on power production of fibers, with a predominance of myosin heavy chain IIA at the contraction frequencies reached.

  2. Effect of tibial bone resection on the development of fast- and slow-twitch skeletal muscles in foetal sheep.

    Science.gov (United States)

    West, J M; Williams, N A; Luff, A R; Walker, D W

    2000-04-01

    To determine if longitudinal bone growth affects the differentiation of fast- and slow-twitch muscles, the tibial bone was sectioned at 90 days gestation in foetal sheep so that the lower leg was permanently without structural support. At 140 days (term is approximately 147 days) the contractile properties of whole muscles, activation profiles of single fibres and ultrastructure of fast- and slow-twitch muscles from the hindlimbs were studied. The contractile and activation profiles of the slow-twitch soleus muscles were significantly affected by tibial bone resection (TIBX). The soleus muscles from the TIBX hindlimbs showed: (1) a decrease in the time to peak of the twitch responses from 106.2 +/- 10.7 ms (control, n = 4) to 65.1 +/- 2.48 ms (TIBX, n = 5); (2) fatigue profiles more characteristic of those observed in the fast-twitch muscles: and (3) Ca2+ - and Sr2+ -activation profiles of skinned fibres similar to those from intact hindlimbs at earlier stages of gestation. In the FDL, TIBX did not significantly change whole muscle twitch contraction time, the fatigue profile or the Ca2+ - and Sr2+ -activation profiles of skinned fibres. Electron microscopy showed an increased deposition of glycogen in both soleus and FDL muscles. This study shows that the development of the slow-twitch phenotype is impeded in the absence of the physical support normally provided by the tibial bone. We suggest that longitudinal stretch is an important factor in allowing full expression of the slow-twitch phenotype.

  3. Lipolysis in Skeletal Muscle

    DEFF Research Database (Denmark)

    Serup, Annette Karen Lundbeck

    chemical structure of DAG. We took advantage of the fact that insulin sensitivity is increased after exercise, and that mice knocked out (KO) of HSL accumulate DAG after exercise, and measured insulin stimulated glucose uptake after treadmill running in skeletal muscle from HSL KO mice and wildtype control...

  4. Exercise Promotes Healthy Aging of Skeletal Muscle.

    Science.gov (United States)

    Cartee, Gregory D; Hepple, Russell T; Bamman, Marcas M; Zierath, Juleen R

    2016-06-14

    Primary aging is the progressive and inevitable process of bodily deterioration during adulthood. In skeletal muscle, primary aging causes defective mitochondrial energetics and reduced muscle mass. Secondary aging refers to additional deleterious structural and functional age-related changes caused by diseases and lifestyle factors. Secondary aging can exacerbate deficits in mitochondrial function and muscle mass, concomitant with the development of skeletal muscle insulin resistance. Exercise opposes deleterious effects of secondary aging by preventing the decline in mitochondrial respiration, mitigating aging-related loss of muscle mass and enhancing insulin sensitivity. This review focuses on mechanisms by which exercise promotes "healthy aging" by inducing modifications in skeletal muscle. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Genetic engineering for skeletal regenerative medicine.

    Science.gov (United States)

    Gersbach, Charles A; Phillips, Jennifer E; García, Andrés J

    2007-01-01

    The clinical challenges of skeletal regenerative medicine have motivated significant advances in cellular and tissue engineering in recent years. In particular, advances in molecular biology have provided the tools necessary for the design of gene-based strategies for skeletal tissue repair. Consequently, genetic engineering has emerged as a promising method to address the need for sustained and robust cellular differentiation and extracellular matrix production. As a result, gene therapy has been established as a conventional approach to enhance cellular activities for skeletal tissue repair. Recent literature clearly demonstrates that genetic engineering is a principal factor in constructing effective methods for tissue engineering approaches to bone, cartilage, and connective tissue regeneration. This review highlights this literature, including advances in the development of efficacious gene carriers, novel cell sources, successful delivery strategies, and optimal target genes. The current status of the field and the challenges impeding the clinical realization of these approaches are also discussed.

  6. Satellite cells in human skeletal muscle plasticity.

    Science.gov (United States)

    Snijders, Tim; Nederveen, Joshua P; McKay, Bryon R; Joanisse, Sophie; Verdijk, Lex B; van Loon, Luc J C; Parise, Gianni

    2015-01-01

    Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodeling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodeling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodeling in the wider context of satellite cell biology whose literature is largely based on animal and cell models.

  7. Radiology of skeletal and soft tissue changes

    International Nuclear Information System (INIS)

    Walker, H.C. Jr.; Coleman, C.C.; Hunter, D.W.

    1986-01-01

    Skeletal complications are very common in renal transplant patients. Loss of bone mass in the posttransplant period places the skeletal system in jeopardy. Osteonecrosis, while not life threatening, often prevents rehabilitation. Spontaneous fractures are frequent but are usually not a major problem except in the diabetic transplant recipient. Septic arthritis and osteomyelitis are usually successfully managed by conservative measures, except when accompanied by severe occlusive vascular disease. Juvenile onset diabetic patients still may develop disabling neuropathic joint disease or occlusive vascular disease after renal transplantation. The authors hope that successful pancreas transplantation will avert these problems in the future

  8. A unified anatomy ontology of the vertebrate skeletal system.

    Directory of Open Access Journals (Sweden)

    Wasila M Dahdul

    Full Text Available The skeleton is of fundamental importance in research in comparative vertebrate morphology, paleontology, biomechanics, developmental biology, and systematics. Motivated by research questions that require computational access to and comparative reasoning across the diverse skeletal phenotypes of vertebrates, we developed a module of anatomical concepts for the skeletal system, the Vertebrate Skeletal Anatomy Ontology (VSAO, to accommodate and unify the existing skeletal terminologies for the species-specific (mouse, the frog Xenopus, zebrafish and multispecies (teleost, amphibian vertebrate anatomy ontologies. Previous differences between these terminologies prevented even simple queries across databases pertaining to vertebrate morphology. This module of upper-level and specific skeletal terms currently includes 223 defined terms and 179 synonyms that integrate skeletal cells, tissues, biological processes, organs (skeletal elements such as bones and cartilages, and subdivisions of the skeletal system. The VSAO is designed to integrate with other ontologies, including the Common Anatomy Reference Ontology (CARO, Gene Ontology (GO, Uberon, and Cell Ontology (CL, and it is freely available to the community to be updated with additional terms required for research. Its structure accommodates anatomical variation among vertebrate species in development, structure, and composition. Annotation of diverse vertebrate phenotypes with this ontology will enable novel inquiries across the full spectrum of phenotypic diversity.

  9. A unified anatomy ontology of the vertebrate skeletal system.

    Science.gov (United States)

    Dahdul, Wasila M; Balhoff, James P; Blackburn, David C; Diehl, Alexander D; Haendel, Melissa A; Hall, Brian K; Lapp, Hilmar; Lundberg, John G; Mungall, Christopher J; Ringwald, Martin; Segerdell, Erik; Van Slyke, Ceri E; Vickaryous, Matthew K; Westerfield, Monte; Mabee, Paula M

    2012-01-01

    The skeleton is of fundamental importance in research in comparative vertebrate morphology, paleontology, biomechanics, developmental biology, and systematics. Motivated by research questions that require computational access to and comparative reasoning across the diverse skeletal phenotypes of vertebrates, we developed a module of anatomical concepts for the skeletal system, the Vertebrate Skeletal Anatomy Ontology (VSAO), to accommodate and unify the existing skeletal terminologies for the species-specific (mouse, the frog Xenopus, zebrafish) and multispecies (teleost, amphibian) vertebrate anatomy ontologies. Previous differences between these terminologies prevented even simple queries across databases pertaining to vertebrate morphology. This module of upper-level and specific skeletal terms currently includes 223 defined terms and 179 synonyms that integrate skeletal cells, tissues, biological processes, organs (skeletal elements such as bones and cartilages), and subdivisions of the skeletal system. The VSAO is designed to integrate with other ontologies, including the Common Anatomy Reference Ontology (CARO), Gene Ontology (GO), Uberon, and Cell Ontology (CL), and it is freely available to the community to be updated with additional terms required for research. Its structure accommodates anatomical variation among vertebrate species in development, structure, and composition. Annotation of diverse vertebrate phenotypes with this ontology will enable novel inquiries across the full spectrum of phenotypic diversity.

  10. A Unified Anatomy Ontology of the Vertebrate Skeletal System

    Science.gov (United States)

    Dahdul, Wasila M.; Balhoff, James P.; Blackburn, David C.; Diehl, Alexander D.; Haendel, Melissa A.; Hall, Brian K.; Lapp, Hilmar; Lundberg, John G.; Mungall, Christopher J.; Ringwald, Martin; Segerdell, Erik; Van Slyke, Ceri E.; Vickaryous, Matthew K.; Westerfield, Monte; Mabee, Paula M.

    2012-01-01

    The skeleton is of fundamental importance in research in comparative vertebrate morphology, paleontology, biomechanics, developmental biology, and systematics. Motivated by research questions that require computational access to and comparative reasoning across the diverse skeletal phenotypes of vertebrates, we developed a module of anatomical concepts for the skeletal system, the Vertebrate Skeletal Anatomy Ontology (VSAO), to accommodate and unify the existing skeletal terminologies for the species-specific (mouse, the frog Xenopus, zebrafish) and multispecies (teleost, amphibian) vertebrate anatomy ontologies. Previous differences between these terminologies prevented even simple queries across databases pertaining to vertebrate morphology. This module of upper-level and specific skeletal terms currently includes 223 defined terms and 179 synonyms that integrate skeletal cells, tissues, biological processes, organs (skeletal elements such as bones and cartilages), and subdivisions of the skeletal system. The VSAO is designed to integrate with other ontologies, including the Common Anatomy Reference Ontology (CARO), Gene Ontology (GO), Uberon, and Cell Ontology (CL), and it is freely available to the community to be updated with additional terms required for research. Its structure accommodates anatomical variation among vertebrate species in development, structure, and composition. Annotation of diverse vertebrate phenotypes with this ontology will enable novel inquiries across the full spectrum of phenotypic diversity. PMID:23251424

  11. Calcium model for mammalian skeletal muscle

    NARCIS (Netherlands)

    Wallinga, W.; Boom, H.B.K.; Heijink, R.J.; van der Vliet, G.H.

    1981-01-01

    A model is presented describing quantitatively the events between excitation and force development in skeletal muscle. It consists of a calcium mediated activation model (c.m.a.m.) in series with a force generator model (f.g.m.). The c.m.a.m. was based on intracellular processes such as cisternal

  12. Diagnostic performance of a computer-assisted diagnosis system for bone scintigraphy of newly developed skeletal metastasis in prostate cancer patients: search for low-sensitivity subgroups.

    Science.gov (United States)

    Koizumi, Mitsuru; Motegi, Kazuki; Koyama, Masamichi; Terauchi, Takashi; Yuasa, Takeshi; Yonese, Junji

    2017-08-01

    The computer-assisted diagnostic system for bone scintigraphy (BS) BONENAVI is used to evaluate skeletal metastasis. We investigated its diagnostic performance in prostate cancer patients with and without skeletal metastasis and searched for the problems. An artificial neural network (ANN) value was calculated in 226 prostate cancer patients (124 with skeletal metastasis and 101 without) using BS. Receiver operating characteristic curve analysis was performed and the sensitivity and specificity determined (cutoff ANN = 0.5). Patient's situation at the time of diagnosis of skeletal metastasis, computed tomography (CT) type, extent of disease (EOD), and BS uptake grade were analyzed. False-negative and false-positive results were recorded. BONENAVI showed 82% (102/124) of sensitivity and 83% (84/101) specificity for metastasis detection. There were no significant differences among CT types, although low EOD and faint BS uptake were associated with low ANN values and low sensitivity. Patients showed lower sensitivity during the follow-up period than staging work-up. False-negative lesions were often located in the pelvis or adjacent to it. They comprised not only solitary, faint BS lesions but also overlaying to urinary excretion. BONENAVI with BS has good sensitivity and specificity for detecting prostate cancer's osseous metastasis. Low EOD and faint BS uptake are associated with low sensitivity but not the CT type. Prostate cancer patients likely to have false-negative results during the follow-up period had a solitary lesion in the pelvis with faint BS uptake or lesions overlaying to urinary excretion.

  13. Skeletal (stromal) stem cells

    DEFF Research Database (Denmark)

    Abdallah, Basem M; Kermani, Abbas Jafari; Zaher, Walid

    2015-01-01

    Skeletal (marrow stromal) stem cells (BMSCs) are a group of multipotent cells that reside in the bone marrow stroma and can differentiate into osteoblasts, chondrocytes and adipocytes. Studying signaling pathways that regulate BMSC differentiation into osteoblastic cells is a strategy....../preadipocyte factor 1 (Dlk1/Pref-1), the Wnt co-receptor Lrp5 and intracellular kinases. This article is part of a Special Issue entitled: Stem Cells and Bone....

  14. Immunology Guides Skeletal Muscle Regeneration

    Directory of Open Access Journals (Sweden)

    F. Andrea Sass

    2018-03-01

    Full Text Available Soft tissue trauma of skeletal muscle is one of the most common side effects in surgery. Muscle injuries are not only caused by accident-related injuries but can also be of an iatrogenic nature as they occur during surgical interventions when the anatomical region of interest is exposed. If the extent of trauma surpasses the intrinsic regenerative capacities, signs of fatty degeneration and formation of fibrotic scar tissue can occur, and, consequentially, muscle function deteriorates or is diminished. Despite research efforts to investigate the physiological healing cascade following trauma, our understanding of the early onset of healing and how it potentially determines success or failure is still only fragmentary. This review focuses on the initial physiological pathways following skeletal muscle trauma in comparison to bone and tendon trauma and what conclusions can be drawn from new scientific insights for the development of novel therapeutic strategies. Strategies to support regeneration of muscle tissue after injury are scarce, even though muscle trauma has a high incidence. Based on tissue specific differences, possible clinical treatment options such as local immune-modulatory and cell therapeutic approaches are suggested that aim to support the endogenous regenerative potential of injured muscle tissues.

  15. Skeletal sarcoidosis; Skelettsarkoidose

    Energy Technology Data Exchange (ETDEWEB)

    Freyschmidt, J. [Klinikum Bremen-Mitte, Beratungsstelle und Referenzzentrum fuer Osteoradiologie, Bremen (Germany); Freyschmidt, P. [Dermatologische Gemeinschaftspraxis, Schwalmstadt (Germany)

    2016-10-15

    Presentation of the etiology, pathology, clinical course, radiology and differential diagnostics of skeletal sarcoidosis. Noncaseating epithelioid cell granulomas can trigger solitary, multiple or disseminated osteolysis, reactive osteosclerosis and/or granulomatous synovitis. The incidence of sarcoidosis is 10-12 per 100,000 inhabitants per year. Skeletal involvement is approximately 14 %. Skeletal involvement occurs almost exclusively in the stage of lymph node and pulmonary manifestation. Most cases of skeletal involvement are clinically asymptomatic. In the case of synovial involvement, unspecific joint complaints (arthralgia) or less commonly arthritis can occur. Typical skin alterations can be diagnostically significant. Punch out lesions osteolysis, coarse destruction and osteosclerosis can occur, which are best visualized with projection radiography and/or computed tomography. Pure bone marrow foci without interaction with the bone can only be detected with magnetic resonance imaging (MRI) and more recently with positron emission tomography (PET), mostly as incidental findings. There is a predeliction for the hand and trunk skeleton. Skeletal tuberculosis, metastases, multiple myeloma, Langerhans cell histiocytosis and sarcoid-like reactions in solid tumors must be differentiated. The key factors for correct diagnosis are thorax radiography, thorax CT and dermatological manifestations. (orig.) [German] Darstellung von Aetiologie, Pathologie, Klinik, Radiologie und Differenzialdiagnose der Skelettsarkoidose. Nichtverkaesende Epitheloidzellgranulome koennen solitaere, multiple oder disseminierte Osteolysen, reaktive Osteosklerosen und/oder eine granulomatoese Synovialitis ausloesen. Inzidenz der Sarkoidose: 10-12/100.000 Einwohner/Jahr. Skelettbeteiligung ca. 14 %. Skelettbeteiligungen kommen fast ausschliesslich im Stadium einer Lymphknoten- und pulmonalen Manifestation vor. Die meisten Skelettbeteiligungen verlaufen klinisch stumm. Bei synovialer

  16. Skeletal surveys in multiple myeloma

    International Nuclear Information System (INIS)

    Sebes, J.I.; Niell, H.B.; Palmieri, G.M.A.; Reidy, T.J.

    1986-01-01

    Thirty-three patients with multiple myeloma were studied with serial skeletal surveys, serum immunoglobulin levels, and postabsorptive urinary hydroxyproline (Spot-HYPRO) determinations. Twenty receiving chemotherapy were also followed with skeletal surveys in order to evaluate bone response to treatment. A close association was found between skeletal findings and changes in immunoglubulin levels with positive correlation in 71% of the patients. A similar association was found between skeletal disease and Spot-HYPRO level changes in 65%. Five of 12 patients (42%) with partial or complete clinical response to chemotherapy, demonstrated improvement in the appearance of skeletal lesions. Positive correlation between the roentgenographic changes and clinical markers of myeloma as well as therapeutic response, indicates that skeletal surveys are useful and effective in monitoring patients with multiple myeloma. (orig.)

  17. Radiographically visualized skeletal changes associated with mucopolysaccharidosis VI in cats

    International Nuclear Information System (INIS)

    Konde, L.J.; Thrall, M.A.; Gasper, P.; Dial, S.M.; McBiles, K.; Colgan, S.; Haskins, M.

    1987-01-01

    The radiographic skeletal form and structure of all cats with mucopolysaccharidosis VI is described. Common manifestations included epiphyseal dysplasia, generalized osteoporosis, abnormal nasal turbinate development, his subluxation, impaired development of skeletal growth, pectus excavatum, hyoid hypoplasia, aplasia, hypoplasia and fragmentation or abnormal ossification of the dens, and aplasia or hypoplasia of frontal and sphenoid sinuses. The skeletal measurements of two affected cats were compared with those of normal, sex-matched littermates, and the measurements of two affected female cats were compared with those of a normal male littermate

  18. Effects of hypodynamic simulations on the skeletal system of monkeys

    Science.gov (United States)

    Young, D. R.; Tremor, J. W.

    1977-01-01

    A research and development program was undertaken to evaluate the skeletal losses of subhuman primates in hypodynamic environments. The goals of the program are: (1) to uncover the mechanisms by which weightlessness affects the skeletal system; (2) to determine the consequences and reversibility of bone mineral losses; and (3) to acquire a body of data needed to formulate an appropriate countermeasure program for the prevention of skeletal deconditioning. Space flight experiment simulation facilities are under development and will be tested for their capability in supporting certain of the requirements for these investigations.

  19. The skeletal ontogeny of Astatotilapia burtoni - a direct-developing model system for the evolution and development of the teleost body plan.

    Science.gov (United States)

    Woltering, Joost M; Holzem, Michaela; Schneider, Ralf F; Nanos, Vasilios; Meyer, Axel

    2018-04-03

    The experimental approach to the evolution and development of the vertebrate skeleton has to a large extent relied on "direct-developing" amniote model organisms, such as the mouse and the chicken. These organisms can however only be partially informative where it concerns secondarily lost features or anatomical novelties not present in their lineages. The widely used anamniotes Xenopus and zebrafish are "indirect-developing" organisms that proceed through an extended time as free-living larvae, before adopting many aspects of their adult morphology, complicating experiments at these stages, and increasing the risk for lethal pleiotropic effects using genetic strategies. Here, we provide a detailed description of the development of the osteology of the African mouthbrooding cichlid Astatotilapia burtoni, primarily focusing on the trunk (spinal column, ribs and epicentrals) and the appendicular skeleton (pectoral, pelvic, dorsal, anal, caudal fins and scales), and to a lesser extent on the cranium. We show that this species has an extremely "direct" mode of development, attains an adult body plan within 2 weeks after fertilization while living off its yolk supply only, and does not pass through a prolonged larval period. As husbandry of this species is easy, generation time is short, and the species is amenable to genetic targeting strategies through microinjection, we suggest that the use of this direct-developing cichlid will provide a valuable model system for the study of the vertebrate body plan, particularly where it concerns the evolution and development of fish or teleost specific traits. Based on our results we comment on the development of the homocercal caudal fin, on shared ontogenetic patterns between pectoral and pelvic girdles, and on the evolution of fin spines as novelty in acanthomorph fishes. We discuss the differences between "direct" and "indirect" developing actinopterygians using a comparison between zebrafish and A. burtoni development.

  20. Skeletal adaptations to bipedalism

    Directory of Open Access Journals (Sweden)

    Vasiljević Perica

    2014-01-01

    Full Text Available Bipedalism is the main characteristic of humans. During evolutin bipedalism emerged probably as an adaptation to a changing environment. Major changes in skeletal system included femur, pelvis, skull and spine. The significance of bipedal locomotion: Bipedalism freed the forelimbs for carrying objects, creation and usage of tools. In the upright position animals have a broader view of the environment and the early detection of predators is crucial for survival. Bipedal locomotion makes larger distances easier to pass, which is very important in the migration of hominids.

  1. Skeletal manifestations of juvenile hypothyroidism and the impact of treatment on skeletal system

    Directory of Open Access Journals (Sweden)

    Manish Gutch

    2013-01-01

    Full Text Available Thyroid hormone mediates growth and development of the skeleton through its direct effects and through its permissive effects on growth hormone. The effect of hypothyroidism on bone is well described in congenital hypothyroidism, but the impact of thyroid hormone deficiency on a growing skeleton, as it happens with juvenile hypothyroidism, is less defined. In addition, the extent to which the skeletal defects of juvenile hypothyroidism revert on the replacement of thyroid hormone is not known. A study was undertaken in 29 juvenile autoimmune hypothyroid patients to study the skeletal manifestations of juvenile hypothyroidism and the impact of treatment of hypothyroidism on the skeletal system of juvenile patients. Hypothyroidism has a profound impact on the skeletal system and delayed bone age, dwarfism, and thickened bands at the metaphyseal ends being the most common findings. Post treatment, skeletal findings like delayed bone age and dwarfism improved significantly, but there were no significant changes in enlargement of sella, presence of wormian bones, epihyseal dysgenesis, vertebral changes and thickened band at the metaphyseal ends. With the treatment of hypothyroidism, there is an exuberant advancement of bone age, the catch up of bone age being approximately double of the chronological age advancement.

  2. Skeletal manifestations of juvenile hypothyroidism and the impact of treatment on skeletal system.

    Science.gov (United States)

    Gutch, Manish; Philip, Rajeev; Philip, Renjit; Toms, Ajit; Saran, Sanjay; Gupta, K K

    2013-10-01

    Thyroid hormone mediates growth and development of the skeleton through its direct effects and through its permissive effects on growth hormone. The effect of hypothyroidism on bone is well described in congenital hypothyroidism, but the impact of thyroid hormone deficiency on a growing skeleton, as it happens with juvenile hypothyroidism, is less defined. In addition, the extent to which the skeletal defects of juvenile hypothyroidism revert on the replacement of thyroid hormone is not known. A study was undertaken in 29 juvenile autoimmune hypothyroid patients to study the skeletal manifestations of juvenile hypothyroidism and the impact of treatment of hypothyroidism on the skeletal system of juvenile patients. Hypothyroidism has a profound impact on the skeletal system and delayed bone age, dwarfism, and thickened bands at the metaphyseal ends being the most common findings. Post treatment, skeletal findings like delayed bone age and dwarfism improved significantly, but there were no significant changes in enlargement of sella, presence of wormian bones, epihyseal dysgenesis, vertebral changes and thickened band at the metaphyseal ends. With the treatment of hypothyroidism, there is an exuberant advancement of bone age, the catch up of bone age being approximately double of the chronological age advancement.

  3. High Sugar Intake and Development of Skeletal Muscle Insulin Resistance and Inflammation in Mice: A Protective Role for PPAR-δ Agonism

    Directory of Open Access Journals (Sweden)

    Elisa Benetti

    2013-01-01

    Full Text Available Peroxisome Proliferator Activated Receptor (PPAR-δ agonists may serve for treating metabolic diseases. However, the effects of PPAR-δ agonism within the skeletal muscle, which plays a key role in whole-body glucose metabolism, remain unclear. This study aimed to investigate the signaling pathways activated in the gastrocnemius muscle by chronic administration of the selective PPAR-δ agonist, GW0742 (1 mg/kg/day for 16 weeks, in male C57Bl6/J mice treated for 30 weeks with high-fructose corn syrup (HFCS, the major sweetener in foods and soft-drinks (15% wt/vol in drinking water. Mice fed with the HFCS diet exhibited hyperlipidemia, hyperinsulinemia, hyperleptinemia, and hypoadiponectinemia. In the gastrocnemius muscle, HFCS impaired insulin and AMP-activated protein kinase signaling pathways and reduced GLUT-4 and GLUT-5 expression and membrane translocation. GW0742 administration induced PPAR-δ upregulation and improvement in glucose and lipid metabolism. Diet-induced activation of nuclear factor-κB and expression of inducible-nitric-oxide-synthase and intercellular-adhesion-molecule-1 were attenuated by drug treatment. These effects were accompanied by reduction in the serum concentration of interleukin-6 and increase in muscular expression of fibroblast growth factor-21. Overall, here we show that PPAR-δ activation protects the skeletal muscle against the metabolic abnormalities caused by chronic HFCS exposure by affecting multiple levels of the insulin and inflammatory cascades.

  4. High sugar intake and development of skeletal muscle insulin resistance and inflammation in mice: a protective role for PPAR- δ agonism.

    Science.gov (United States)

    Benetti, Elisa; Mastrocola, Raffaella; Rogazzo, Mara; Chiazza, Fausto; Aragno, Manuela; Fantozzi, Roberto; Collino, Massimo; Minetto, Marco A

    2013-01-01

    Peroxisome Proliferator Activated Receptor (PPAR)- δ agonists may serve for treating metabolic diseases. However, the effects of PPAR- δ agonism within the skeletal muscle, which plays a key role in whole-body glucose metabolism, remain unclear. This study aimed to investigate the signaling pathways activated in the gastrocnemius muscle by chronic administration of the selective PPAR- δ agonist, GW0742 (1 mg/kg/day for 16 weeks), in male C57Bl6/J mice treated for 30 weeks with high-fructose corn syrup (HFCS), the major sweetener in foods and soft-drinks (15% wt/vol in drinking water). Mice fed with the HFCS diet exhibited hyperlipidemia, hyperinsulinemia, hyperleptinemia, and hypoadiponectinemia. In the gastrocnemius muscle, HFCS impaired insulin and AMP-activated protein kinase signaling pathways and reduced GLUT-4 and GLUT-5 expression and membrane translocation. GW0742 administration induced PPAR- δ upregulation and improvement in glucose and lipid metabolism. Diet-induced activation of nuclear factor-κB and expression of inducible-nitric-oxide-synthase and intercellular-adhesion-molecule-1 were attenuated by drug treatment. These effects were accompanied by reduction in the serum concentration of interleukin-6 and increase in muscular expression of fibroblast growth factor-21. Overall, here we show that PPAR- δ activation protects the skeletal muscle against the metabolic abnormalities caused by chronic HFCS exposure by affecting multiple levels of the insulin and inflammatory cascades.

  5. Growth and development of skeletal anomalies in diploid and triploid Atlantic salmon (Salmo salar) fed phosphorus-rich diets with fish meal and hydrolyzed fish protein

    Science.gov (United States)

    Puvanendran, Velmurugu; Riesen, Guido; Seim, Rudi Ripman; Hagen, Ørjan; Martínez-Llorens, Silvia; Falk-Petersen, Inger-Britt; Fernandes, Jorge M. O.; Jobling, Malcolm

    2018-01-01

    Diploid and triploid Atlantic salmon, Salmo salar were fed high-protein, phosphorus-rich diets (56–60% protein; ca 18g phosphorus kg-1 diet) whilst being reared at low temperature from start-feeding until parr-smolt transformation. Performances of salmon fed diets based on fish meal (STD) or a mix of fishmeal and hydrolysed fish proteins (HFM) as the major protein sources were compared in terms of mortality, diet digestibility, growth and skeletal deformities. Separate groups of diploids and triploids were reared in triplicate tanks (initially 3000 fish per tank; tank biomass ca. 620 g) from 0–2745 degree-days post-start feeding (ddPSF). Growth metrics (weight, length, condition factor) were recorded at ca. 4 week intervals, external signs of deformities to the operculum, jaws and spinal column were examined in parr sampled at 1390 ddPSF, and external signs of deformity and vertebral anomalies (by radiography) were examined in fish sampled at the end of the trial (2745 ddPSF). The triploid salmon generally had a lower mass per unit length, i.e. lower condition factor, throughout the trial, but this did not seem to reflect any consistent dietary or ploidy effects on either dietary digestibility or the growth of the fish. By the end of the trial fish in all treatment groups had achieved a weight of 50+ g, and had completed the parr-smolt transformation. The triploids had slightly, but significantly, fewer vertebrae (Triploids STD 58.74 ± 0.10; HFM 58.68 ± 0.05) than the diploids (Diploids STD 58.97 ± 0.14; HFM 58.89 ± 0.01), and the incidence of skeletal (vertebral) abnormalities was higher in triploids (Triploids STD 31 ± 0.90%; HFM 15 ± 1.44%) than in diploids (Diploids STD 4 ± 0.80%; HFM 4 ± 0.83%). The HFM diet gave a significant reduction in the numbers of triploid salmon with vertebral anomalies in comparison with the triploids fed the STD diet possibly as a result of differences in phosphorus bioavailability between the two diets. Overall, the

  6. An atlas of normal skeletal scintigraphy

    International Nuclear Information System (INIS)

    Flanagan, J.J.; Maisey, M.N.

    1985-01-01

    This atlas was compiled to provide the neophyte as well as the experienced radiologist and the nuclear medicine physician with a reference on normal skeletal scintigraphy as an aid in distinguishing normal variations in skeletal uptake from abnormal findings. Each skeletal scintigraph is labeled, and utilizing an identical scale, a relevant skeletal photograph and radiograph are placed adjacent to the scintigraph

  7. Skeletal Muscle Na+ Channel Disorders

    Directory of Open Access Journals (Sweden)

    Dina eSimkin

    2011-10-01

    Full Text Available Five inherited human disorders affecting skeletal muscle contraction have been traced to mutations in the gene encoding the voltage-gated sodium channel Nav1.4. The main symptoms of these disorders are myotonia or periodic paralysis caused by changes in skeletal muscle fiber excitability. Symptoms of these disorders vary from mild or latent disease to incapacitating or even death in severe cases. As new human sodium channel mutations corresponding to disease states become discovered, the importance of understanding the role of the sodium channel in skeletal muscle function and disease state grows.

  8. Suspected fetal skeletal malformations or bone diseases: how to explore

    International Nuclear Information System (INIS)

    Cassart, Marie

    2010-01-01

    Skeletal dysplasias are a heterogeneous and complex group of conditions that affect bone growth and development and result in various anomalies in shape and size of the skeleton. Although US has proved reliable for the prenatal detection of skeletal abnormalities, the precise diagnosis of a dysplasia is often difficult to make before birth (especially in the absence of a familial history) due to their various phenotypic presentations, the variability in the time at which they manifest and often, the lack of precise molecular diagnosis. In addition to the accuracy of the antenatal diagnosis, it is very important to establish a prognosis. This is a clinically relevant issue as skeletal dysplasias may be associated with severe disability and may even be lethal. We will therefore describe the respective role of two-dimensional (2-D) US, three-dimensional (3-D) US and CT in the antenatal assessment of skeletal malformations. (orig.)

  9. Is skeletal anchorage changing the limit of orthodontics?

    DEFF Research Database (Denmark)

    Melsen, Birte

    2007-01-01

    The limits for orthodontic treatment are often set by the lack of suitable anchorage. The mini-implant is used where conventional anchorage cannot be applied; not as a replacement for conventional anchorage. In patients with lack of teeth and reduced periodontium, skeletal anchorage allows...... and can be loaded immediately. The course will be addressed the following topics: Are the mini-implants replacing conventional anchorage? Why are orthodontic mini-implants necessary? The development of the skeletal anchorage systems The biological basis for the skeletal anchorage systems...... The characteristics of the different skeletal anchorage systems The insertion procedure The indications for the use of orthodontic mini-implants Treatment planning in relation to the use of mini-implants Case presentations...

  10. Meniscus transplantation in skeletally immature patients.

    Science.gov (United States)

    Kocher, Mininder S; Tepolt, Frances A; Vavken, Patrick

    2016-07-01

    Meniscal pathology in skeletally immature patients includes meniscal tears and discoid lateral meniscus. Total or subtotal meniscectomy may occur in patients with discoid lateral meniscus or severe meniscal tears. Meniscal transplantation may be an option in skeletally immature patients status after total or subtotal meniscectomy with knee symptoms or dysfunction. This study focuses on the surgical technique and short-term outcomes of meniscus transplantation in skeletally immature patients. We reviewed our clinical database for skeletally immature patients who had undergone meniscus transplantation with a minimum of 2 years of follow-up. Patients were contacted, invited for a physical exam, and asked to complete a Pedi-IKDC, Lysholm, and Tegner outcomes questionnaire. The study protocol was approved by the responsible institutional review board. Three patients (two females/one male) were eligible for the study, each of whom responded to our invitation indicating availability for physical exam and questionnaire. Two patients had undergone subtotal discoid meniscus resection, leading to early lateral compartment degeneration. One patient developed advanced degeneration after a delay in treatment for a medial bucket-handle tear associated with anterior cruciate ligament rupture. The mean age of the patients at the time of surgery was 12.6±2.3 years. At a mean follow-up of 31±20 months, the mean Pedi-IKDC score was 68.3±4, the mean Lysholm was 55.7±22.3, and the median Tegner was 7 points. There were no indications of growth deformity during the regular postoperative radiological assessments. One patient required subsequent lysis of adhesions along the lateral mini arthrotomy and mobilization under anesthesia. The other two patients were able to return to sports at the same level as before meniscus transplantation and were able to do so within 9 months postoperatively. Over-resection of discoid menisci as well as untreated meniscus injury, the latter typically in

  11. Simvastatin effects on skeletal muscle

    DEFF Research Database (Denmark)

    Larsen, Steen; Stride, Nis; Hey-Mogensen, Martin

    2013-01-01

    Glucose tolerance and skeletal muscle coenzyme Q(10) (Q(10)) content, mitochondrial density, and mitochondrial oxidative phosphorylation (OXPHOS) capacity were measured in simvastatin-treated patients (n = 10) and in well-matched control subjects (n = 9)....

  12. Mechanisms of internal emitter skeletal toxicity

    International Nuclear Information System (INIS)

    Jee, W.S.S.

    1985-01-01

    The purpose of this program is to determine the mechanisms for the induction of skeletal cancers in dogs and man by α-emitting bone-seeking radionuclides from the nuclear fuel cycle. The role of microdistribution of radium-226 and plutonium-239, bone metabolism, bone cell turnover, and localized bone cell dosimetry in bone can induction will be determined. The osteogenic cell dose will be measured in dogs to develop better quantitative dose response information. Skeletal carcinogenesis models will be developed by correlating the local dosimetry, tumor site and incidence, age-dependent skeletal biology (bone morphometry, bone cell at risk, bone cell turnover, residence time and fate, remodeling rate, growth pattern and rate, hormonal influences, manipulation of bone cell populations of the bone modeling and remodeling systems, etc.). The authors will test the hypothesis that the frequency of osteosarcomas is proportional to the average dose delivered to cells at risk. They will also attempt to explain experimentally found toxicity ratios between volume- and bone surface-seeking radionuclides on the basis of radiation dose ratios

  13. Topologically Micropatterned Collagen and Poly(ε-caprolactone) Struts Fabricated Using the Poly(vinyl alcohol) Fibrillation/Leaching Process To Develop Efficiently Engineered Skeletal Muscle Tissue.

    Science.gov (United States)

    Kim, Minseong; Kim, WonJin; Kim, GeunHyung

    2017-12-20

    Optimally designed three-dimensional (3D) biomedical scaffolds for skeletal muscle tissue regeneration pose significant research challenges. Currently, most studies on scaffolds focus on the two-dimensional (2D) surface structures that are patterned in the micro-/nanoscales with various repeating sizes and shapes to induce the alignment of myoblasts and myotube formation. The 2D patterned surface clearly provides effective analytical results of pattern size and shape of the myoblast alignment and differentiation. However, it is inconvenient in terms of the direct application for clinical usage due to the limited thickness and 3D shapeability. Hence, the present study suggests an innovative hydrogel or synthetic structure that consists of uniaxially surface-patterned cylindrical struts for skeleton muscle regeneration. The alignment of the pattern on the hydrogel (collagen) and poly(ε-caprolactone) struts was attained with the fibrillation of poly(vinyl alcohol) and the leaching process. Various cell culture results indicate that the C2C12 cells on the micropatterned collagen structure were fully aligned, and that a significantly high level of myotube formation was achieved when compared to the collagen structures that were not treated with the micropatterning process.

  14. [Skeletal anchorage in the past, today and tomorrow].

    Science.gov (United States)

    Melsen, Birte; Dalstra, Michel

    2017-03-01

    Skeletal anchorage was not introduced as an alternative to conventional anchorage modalities. The first skeletal anchorage was a ligature through a hole in the infrazygomatic crest. This was replaced by surgical screws and finally the TADs, which were optimized with respect to the material and morphology, were developed. A bracket-like head allows for the use of the mini-implant as indirect anchorage, but should not be a tool for lost control resulting from badly planned biomechanics or failing compliance. Skeletal anchorage should serve as an adjunct to correct biomechanics, to enable treatments that could not be performed prior to the introduction of skeletal anchorage. The aim of this study was to test the hypothesis that temporary anchorage mini-screws help maintain bone density, height and width of alveolar processes in the extraction sites, and thus prevent the thinning of the alveolar ridge usually observed. In adult patients with degenerated dentitions the application of skeletal anchorage can allow for the displacement of teeth where no anchorage units are present, but also for the redevelopment and maintenance of atrophic alveolar bone. The basis for the optimal use of skeletal anchorage is that the correct line of action for the desired tooth displacement is defined and the necessary force system constructed either with the skeletal anchorage as direct or as indirect anchorage. After a period, during which osseointegrated implants were used as anchorage for tooth movement and bone maintenance, it was accepted that the mini-implants could serve also as anchorage for skeletal displacements avoiding loading of teeth. © EDP Sciences, SFODF, 2017.

  15. Skeletal maturity assessment using mandibular canine calcification stages

    Directory of Open Access Journals (Sweden)

    Vildana Džemidžić

    2016-11-01

    Full Text Available Objective. The aims of this study were: to investigate the relationship between mandibular canine calcification stages and skeletal maturity; and to evaluate whether the mandibular canine calcification stages may be used as a reliable diagnostic tool for skeletal maturity assessment. Materials and methods. This study included 151 subjects: 81 females and 70 males, with ages ranging from 9 to 16 years (mean age: 12.29±1.86 years. The inclusion criteria for subjects were as follows: age between 9 and 16 years; good general health without any hormonal, nutritional, growth or dental development problems. Subjects who were undergoing or had previously received orthodontic treatment were not included in this study. The calcification stages of the left permanent mandibular canine were assessed according to the method of Demirjian, on panoramic radiographs. Assessment of skeletal maturity was carried out using the cervical vertebral maturation index (CVMI, as proposed by the Hassel-Farman method, on lateral cephalograms. The correlation between the calcification stages of mandibular canine and skeletal maturity was estimated separately for male and female subjects. Results. Correlation coefficients between calcification stages of mandibular canine and skeletal maturity were 0.895 for male and 0.701 for female subjects. Conclusions. A significant correlation was found between the calcification stages of the mandibular canine and skeletal maturity. The calcification stages of the mandibular canine show a satisfactory diagnostic performance only for assessment of pre-pubertal growth phase.

  16. Upon the triple phase skeletal scintigraphy in traumatology

    International Nuclear Information System (INIS)

    Spitz, W.

    1988-01-01

    A broadly established indication catalogue for skeletal scintigraphy in traumatology is resulting from about 1500 skeletal scans. Aside from the exclusion of any osseous lesion, from the differentiation of uncertain X-ray findings, from the determination of the extent of osseous lesions in polytraumatic conditions and from the assessment of the relative fracture age, the follow-up after trauma and therapeutical intervention, the demonstration of battered child syndromes and of soft tissue lesions are of special importance with regard to these topics. For all that, the high sensitivity of the 3-phase skeletal scintigraphy for every enhancement of osseous turnover represents the elementary prerequisite for the employment of this non-invasive technique as an ideal screening method in traumatological diagnostics. The experiences from the past years have resulted in an increased frequency of skeletal scintigraphic studies to a similarly high level, as it is already established in the majority of institutions with respect to oncological problems, In the development of efficient and cost favourable diagnostic strategies with only little burden to the patient, skeletal scintigraphy will in future play an important role within the palette of modern skeletal diagnostics in traumatology. (orig.) [de

  17. Skeletal metastases from hepatoma: frequency, distribution, and radiographic features

    International Nuclear Information System (INIS)

    Kuhlman, J.E.; Fishman, E.K.; Leichner, P.K.; Magid, D.; Order, S.E.; Siegelman, S.S.

    1986-01-01

    Over the past 6 years, the authors evaluated 300 patients with hepatoma as part of phase 1 and 2 treatment protocol trials. Analysis of the available clinical data and radiographic studies revealed 22 patients (7.3%) with skeletal metastases demonstrated by radiography, computed tomography (CT), and/or nuclear scintigraphy. The plain film appearance of skeletal metastases from hepatoma was osteolytic in all cases. CT scanning best demonstrated the expansile, destructive nature of these metastases, which were often associated with large, bulky soft-tissue masses. Skeletal metastases from hepatomas demonstrated increased radiotracer uptake on standard bone scans and were gallium avid, similar to the hepatoma itself. In addition, they could be targeted therapeutically with I-131 antiferritin immunoglobulin. The most frequent sites of skeletal metastases were the ribs, spine, femur, pelvis, and humerus. An initial symptom in ten patients was skeletal pain corresponding to the osseous metastases. In five patients, pathologic fractures of the proximal femur or humerus developed and required total hip replacement or open-reduction internal fixation. Patients with long-standing cirrhosis or known hepatocellular carcinoma who also have skeletal symptoms should be evaluated for possible osseous metastases

  18. Aberrant and alternative splicing in skeletal system disease.

    Science.gov (United States)

    Fan, Xin; Tang, Liling

    2013-10-01

    The main function of skeletal system is to support the body and help movement. A variety of factors can lead to skeletal system disease, including age, exercise, and of course genetic makeup and expression. Pre-mRNA splicing plays a crucial role in gene expression, by creating multiple protein variants with different biological functions. The recent studies show that several skeletal system diseases are related to pre-mRNA splicing. This review focuses on the relationship between pre-mRNA splicing and skeletal system disease. On the one hand, splice site mutation that leads to aberrant splicing often causes genetic skeletal system disease, like COL1A1, SEDL and LRP5. On the other hand, alternative splicing without genomic mutation may generate some marker protein isoforms, for example, FN, VEGF and CD44. Therefore, understanding the relationship between pre-mRNA splicing and skeletal system disease will aid in uncovering the mechanism of disease and contribute to the future development of gene therapy. © 2013 Elsevier B.V. All rights reserved.

  19. Satellite cells in human skeletal muscle plasticity

    Directory of Open Access Journals (Sweden)

    Tim eSnijders

    2015-10-01

    Full Text Available Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodelling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodelling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodelling in the wider context of satellite cell biology whose literature is largely based on animal and cell models.

  20. Effect of experimental hyperthyroidism on protein turnover in skeletal and cardiac muscle.

    Science.gov (United States)

    Carter, W J; Van Der Weijden Benjamin, W S; Faas, F H

    1980-10-01

    Since experimental hyperthyroidism reduces skeletal muscle mass while simultaneously increasing cardiac muscle mass, the effect of hyperthyroidism on muscle protein degradation was compared in skeletal and cardiac muscle. Pulse-labeling studies using (3H) leucine and (14C) carboxyl labeled aspartate and glutamate were carried out. Hyperthyroidism caused a 25%-29% increase in protein breakdown in both sarcoplasmic and myofibrillar fractions of skeletal muscle. Increased muscle protein degradation may be a major factor in the development of skeletal muscle wasting and weakness in hyperthyroidism. In contrast, protein breakdown appeared to be reduced 22% in the sarcoplasmic fraction of hyperthyroid heart muscle and was unchanged in the myofibrillar fraction. Possible reasons for the contrasting effects of hyperthyroidism on skeletal and cardiac muscle include increased sensitivity of the hyperthyroid heart to catecholamines, increased cardiac work caused by the hemodynamic effects of hyperthyroidism, and a different direct effect of thyroid hormone at the nuclear level in cardiac as opposed to skeletal muscle.

  1. Skeletal scintigraphic changes in osteoporosis treated with sodium fluoride: concise communication

    International Nuclear Information System (INIS)

    Schulz, E.E.; Libanati, C.R.; Farley, S.M.; Kirk, G.A.; Baylink, D.J.

    1984-01-01

    An appendicular skeletal response to sodium fluoride (NaF) was detected by total skeletal scintigrams. Twelve postmenopausal osteoporotic women were treated with NaF (88 mg/day) and calcium (1500 mg/day). Total skeletal scintigrams were obtained before and during treatment. Within 4 to 21 mo (mean: 8.3), all 12 patients showed new areas of increased uptake corresponding to metaphyseal regions and short bones of the appendicular skeleton. Nine patients showed an increase in serum alkaline phosphatase activity, which was attributed to an increase in the skeletal isoenzyme. Seven of 12 patients developed bone pain in one or more of the regions of increased uptake. This study establishes that the skeletal scintigram is a sensitive index of the peripheral skeletal response to NaF

  2. Skeletal deformities of acardius anceps: the gross and imaging features

    Energy Technology Data Exchange (ETDEWEB)

    Chen Chihping [Dept. of Medical Research, Mackay Memorial Hospital, Taipei (Taiwan, Province of China); Shih Shinlin [Dept. of Radiology, Mackay Memorial Hospital, Taipei (Taiwan, Province of China); Liu Fenfen [Dept. of Medical Research, Mackay Memorial Hospital, Taipei (Taiwan, Province of China); Jan Sheauwen [Dept. of Medical Research, Mackay Memorial Hospital, Taipei (Taiwan, Province of China); Lin Yunnan [Dept. of Pathology, Mackay Memorial Hospital, Taipei (Taiwan, Province of China); Lan Chungchi [Dept. of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei (Taiwan, Province of China)

    1997-03-01

    A morphology based imaging review is presented of the characteristic skeletal deformities associated with acardius anceps in three acardiac twins. These fetuses demonstrated poorly developed skulls, limb reduction defects, and phocomelia of the upper limbs, as well as narrow thoracic cages with or without the complete development of ribs, clavicles, scapulae, and cervical, thoracic, or lumbar vertebrae. However, their lower limbs and pelvic girdles were almost normal. The authors conclude that skeletal development is likely to be jeopardized in the area adjacent to the heart and in the cephalic portion of the body in fetuses with acardius anceps, and suggest vascular deficiency and hypoperfusion as pathogenetic mechanisms in this type of skeletal deformity. (orig.)

  3. Skeletal deformities of acardius anceps: the gross and imaging features

    International Nuclear Information System (INIS)

    Chen Chihping; Shih Shinlin; Liu Fenfen; Jan Sheauwen; Lin Yunnan; Lan Chungchi

    1997-01-01

    A morphology based imaging review is presented of the characteristic skeletal deformities associated with acardius anceps in three acardiac twins. These fetuses demonstrated poorly developed skulls, limb reduction defects, and phocomelia of the upper limbs, as well as narrow thoracic cages with or without the complete development of ribs, clavicles, scapulae, and cervical, thoracic, or lumbar vertebrae. However, their lower limbs and pelvic girdles were almost normal. The authors conclude that skeletal development is likely to be jeopardized in the area adjacent to the heart and in the cephalic portion of the body in fetuses with acardius anceps, and suggest vascular deficiency and hypoperfusion as pathogenetic mechanisms in this type of skeletal deformity. (orig.)

  4. Dentoskeletal Overjet Measurements of Iraqi Adult Sample with Different Skeletal Jaw Relationship

    Directory of Open Access Journals (Sweden)

    Shahbaa A Mohammed

    2017-11-01

    Full Text Available Background: Many attempts were done to develop a method that actually reflects the sagittal jaw discrepancies without depending on cranial landmarks or dental occlusion. This study aimed to use one of these methods (dentoskeletal overjet for assessing the sagittal jaw relationships of Iraqi adult sample with different skeletal jaw relationship. Materials and method: The sample consisted of 90 digital true lateral cephalometric radiographs of Iraqi individuals with no previous orthodontic treatment. Cephalometric analysis of skeletal sagittal jaw relationship -ANB angle, beta angle and Wits appraisal- will perform for everyone to divide the sample into three groups (skeletal class I, II, III for which the dentoskeletal overjet will be measured. All cephalometric measurements will be done using AutoCAD. Results: Descriptive statistics of all variables with different skeletal jaw relationship showed that mean values of dentoskeletal overjet were (1.15, 3.91 and –2.01 mm for skeletal class I, class II and class III jaw relationship respectively. Accurate reproducibility of dentoskeletal overjet in assessment of jaw skeletal relationship showed that the lowest value was for assessment of skeletal class III jaw relationship (73% and the value for assessment of both skeletal class I and class II was higher (93%. Conclusions: Dentoskeletal overjet could be utilized in accurate representation of skeletal jaw relationship.

  5. Deep bite malocclusion: exploration of the skeletal and dental factors

    International Nuclear Information System (INIS)

    Bhateja, N.K.; Fida, M.; Shaikh, A.

    2016-01-01

    Correction of deep bite is crucial for maintenance of dental hard and soft tissue structures and for prevention of temporomandibular joint disorders. Exploration of underlying skeletal and dental factors is essential for efficient and individualized treatment planning. To date etiological factors of dental and skeletal deep bite have not been explored in Pakistani orthodontic patients. The objectives of this study were to explore frequencies of dental and skeletal etiological factors in deep bite patients and to determine correlations amongst dental and skeletal etiological factors of deep bite. Methods: The study included a total of 113 subjects (males=35; females=78) with no craniofacial syndromes or prior orthodontic treatment. Pre-treatment orthodontic records were used to evaluate various dental and skeletal parameters. Descriptive statistics of each parameter were calculated. The various study parameters were correlated using Pearson's Correlation. Results: Deep curve of Spee was most frequently seen factor of dental deep bite (72.6%), followed by increased coronal length of upper incisors (28.3%), retroclined upper incisors (17.7%), retroclined lower incisors (8%) and increased coronal length of lower incisors (5.3%). Decreased gonial angle was most commonly found factor of skeletal deep bite (43.4%), followed by decreased mandibular plane angle (27.4%) and maxillary plane's clockwise rotation (26.5%). Frankfort mandibular plane angle and gonial angle showed a strong positive correlation (r=0.66, p=0.000). Conclusions: Reduced gonial angle is most frequently seen skeletal factor, signifying the importance of angulation and growth of ramus in development of deep bite. Deep curve of Spee is most frequently seen dental etiological component in deep bite subjects, hence signifying the importance of intruding the lower anterior teeth. (author)

  6. Glucose transporter expression in human skeletal muscle fibers

    DEFF Research Database (Denmark)

    Gaster, M; Handberg, A; Beck-Nielsen, H

    2000-01-01

    , but its expression is markedly reduced around birth and is further reduced to undetectable levels within the first year of life; 2) GLUT-3 protein expression appears at 18 wk of gestation and disappears after birth; and 3) GLUT-4 protein is diffusely expressed in muscle cells throughout gestation, whereas...... after birth, the characteristic subcellular localization is as seen in adult muscle fibers. Our results show that GLUT-1, GLUT-3, and GLUT-4 seem to be of importance during muscle fiber growth and development. GLUT-5 protein was undetectable in fetal and adult skeletal muscle fibers. In adult muscle...... amplification (TSA) technique to detect the localization of glucose transporter expression in human skeletal muscle. We found expression of GLUT-1, GLUT-3, and GLUT-4 in developing human muscle fibers showing a distinct expression pattern. 1) GLUT-1 is expressed in human skeletal muscle cells during gestation...

  7. Secreted Protein Acidic and Rich in Cysteine (SPARC) in Human Skeletal Muscle

    DEFF Research Database (Denmark)

    Jørgensen, Louise H; Petersson, Stine J; Sellathurai, Jeeva

    2009-01-01

    indicated a function of SPARC in skeletal muscle. We therefore found it of interest to study SPARC expression in human skeletal muscle during development and in biopsies from Duchenne and Becker muscular dystrophy and congenital muscular dystrophy, congenital myopathy, inclusion body myositis...

  8. Comprehensive Validation of Skeletal Mechanism for Turbulent Premixed Methane–Air Flame Simulations

    KAUST Repository

    Luca, Stefano; Al-Khateeb, Ashraf N.; Attili, Antonio; Bisetti, Fabrizio

    2017-01-01

    A new skeletal mechanism, consisting of 16 species and 72 reactions, has been developed for lean methane–air premixed combustion from the GRI-Mech 3.0. The skeletal mechanism is validated for elevated unburnt temperatures (800 K) and pressures up

  9. Bio-impedance analysis for appendicular skeletal muscle mass assessment in (pre-) frail elderly people

    NARCIS (Netherlands)

    Baar, van H.; Hulshof, P.J.M.; Tieland, C.A.B.; Groot, de C.P.G.M.

    2015-01-01

    Background & aims Screening populations for skeletal muscle mass (SMM) is important for early detection of sarcopenia. Our aim was to develop an age specific bio-impedance (BI) prediction equation for the assessment of appendicular skeletal muscle mass (ASMM) in (pre-) frail elderly people aged

  10. Skeletal muscle lymphoma: observations at MR imaging

    International Nuclear Information System (INIS)

    Eustace, S.; Winalski, C.S.; McGowen, A.; Lan, H.; Dorfman, D.

    1996-01-01

    We present the MR appearances of three patients with biopsy-proven primary lymphoma of skeletal muscle. In each case lymphoma resulted in bulky expansion of the involved muscle, homogeneously isointense to skeletal muscle on T1-weighted images, homogeneously hyperintense to skeletal muscle on T2-weighted images and diffusely enhancing following intravenous administration of gadopentate dimeglumine. (orig.)

  11. Skeletal manifestations of granulocytic sarcoma (chloroma)

    Energy Technology Data Exchange (ETDEWEB)

    Hermann, G.; Abdelwahab, I.F. (Mount Sinai Medical Center, New York, NY (United States). Dept. of Radiology); Feldman, F. (Columbia Presbyterian Medical Center, New York, NY (United States)); Klein, M.J. (Mount Sinai Medical Center, New York, NY (United States). Dept. of Pathology)

    1991-10-01

    Skeletal manifestations of chloroma were reviewed in five patients. In four cases, a chloroma was the initial manifestation of a systemic disease. In the fifth, an elderly patient developed a bone lesion during a blastic crisis while under treatment for chronic myelogeneous leukemia. Two patients presented with lytic lesions of the ribs, two with lytic lesions of the femur, and one with a predominantly sclerotic lesion of the scapula. The laboratory findings in two patients were within normal limits. All lesions were confirmed by bone biopsy. (orig.).

  12. Story of skeletally substituted benzenes

    Indian Academy of Sciences (India)

    Unknown

    values are extensively used to define aromaticity quantitatively.3 In a recent study on ... studies were directed to unravel the subtle ways in which the stability, reactivity, and ..... The singlet–triplet gaps of all the skeletally substituted benzenes ...

  13. Selection, processing and clinical application of muscle-skeletal tissue

    International Nuclear Information System (INIS)

    Luna Z, D.; Reyes F, M.L.; Lavalley E, C.; Castaneda J, G.

    2007-01-01

    Due to the increase in the average of the world population's life, people die each time to more age, this makes that the tissues of support of the human body, as those muscle-skeletal tissues, when increasing the individual's age go weakening, this in turn leads to the increment of the illnesses like the osteoporosis and the arthritis, that undoubtedly gives as a result more injure of the muscle-skeletal tissues joined a greater number of traffic accidents where particularly these tissues are affected, for that the demand of tissues muscle-skeletal for transplant every day will be bigger. The production of these tissues in the Bank of Radio sterilized Tissues, besides helping people to improve its quality of life saved foreign currencies because most of the muscle-skeletal tissues transplanted in Mexico are of import. The use of the irradiation to sterilize tissues for transplant has shown to be one of the best techniques with that purpose for what the International Atomic Energy Agency believes a Technical cooperation program to establish banks of tissues using the nuclear energy, helping mainly to countries in development. In this work the stages that follows the bank of radio sterilized tissues of the National Institute of Nuclear Research for the cadaverous donor's of muscle-skeletal tissue selection are described, as well as the processing and the clinical application of these tissues. (Author)

  14. Human skeletal muscle releases leptin in vivo

    DEFF Research Database (Denmark)

    Wolsk, Emil; Grøndahl, Thomas Sahl; Pedersen, Bente Klarlund

    2012-01-01

    Leptin is considered an adipokine, however, cultured myocytes have also been found to release leptin. Therefore, as proof-of-concept we investigated if human skeletal muscle synthesized leptin by measuring leptin in skeletal muscle biopsies. Following this, we quantified human skeletal muscle...... was unaltered. During saline infusion the adipose tissue release averaged 0.8 ± 0.3 ng min(-1) 100g tissue(-1) whereas skeletal muscle release was 0.5 ± 0.1 ng min(-1) 100g tissue(-1). In young healthy humans, skeletal muscle contribution to whole body leptin production could be substantial given the greater...

  15. Cardiac troponin T and fast skeletal muscle denervation in ageing.

    Science.gov (United States)

    Xu, Zherong; Feng, Xin; Dong, Juan; Wang, Zhong-Min; Lee, Jingyun; Furdui, Cristina; Files, Daniel Clark; Beavers, Kristen M; Kritchevsky, Stephen; Milligan, Carolanne; Jin, Jian-Ping; Delbono, Osvaldo; Zhang, Tan

    2017-10-01

    Ageing skeletal muscle undergoes chronic denervation, and the neuromuscular junction (NMJ), the key structure that connects motor neuron nerves with muscle cells, shows increased defects with ageing. Previous studies in various species have shown that with ageing, type II fast-twitch skeletal muscle fibres show more atrophy and NMJ deterioration than type I slow-twitch fibres. However, how this process is regulated is largely unknown. A better understanding of the mechanisms regulating skeletal muscle fibre-type specific denervation at the NMJ could be critical to identifying novel treatments for sarcopenia. Cardiac troponin T (cTnT), the heart muscle-specific isoform of TnT, is a key component of the mechanisms of muscle contraction. It is expressed in skeletal muscle during early development, after acute sciatic nerve denervation, in various neuromuscular diseases and possibly in ageing muscle. Yet the subcellular localization and function of cTnT in skeletal muscle is largely unknown. Studies were carried out on isolated skeletal muscles from mice, vervet monkeys, and humans. Immunoblotting, immunoprecipitation, and mass spectrometry were used to analyse protein expression, real-time reverse transcription polymerase chain reaction was used to measure gene expression, immunofluorescence staining was performed for subcellular distribution assay of proteins, and electromyographic recording was used to analyse neurotransmission at the NMJ. Levels of cTnT expression in skeletal muscle increased with ageing in mice. In addition, cTnT was highly enriched at the NMJ region-but mainly in the fast-twitch, not the slow-twitch, muscle of old mice. We further found that the protein kinase A (PKA) RIα subunit was largely removed from, while PKA RIIα and RIIβ are enriched at, the NMJ-again, preferentially in fast-twitch but not slow-twitch muscle in old mice. Knocking down cTnT in fast skeletal muscle of old mice: (i) increased PKA RIα and reduced PKA RIIα at the NMJ; (ii

  16. Intracellular compartmentalization of skeletal muscle glycogen metabolism and insulin signalling

    DEFF Research Database (Denmark)

    Prats Gavalda, Clara; Gomez-Cabello, Alba; Vigelsø Hansen, Andreas

    2011-01-01

    The interest in skeletal muscle metabolism and insulin signalling has increased exponentially in recent years as a consequence of their role in the development of type 2 diabetes mellitus. Despite this, the exact mechanisms involved in the regulation of skeletal muscle glycogen metabolism...... and insulin signalling transduction remain elusive. We believe that one of the reasons is that the role of intracellular compartmentalization as a regulator of metabolic pathways and signalling transduction has been rather ignored. This paper briefly reviews the literature to discuss the role of intracellular...... compartmentalization in the regulation of skeletal muscle glycogen metabolism and insulin signalling. As a result, a hypothetical regulatory mechanism is proposed by which cells could direct glycogen resynthesis towards different pools of glycogen particles depending on the metabolic needs. Furthermore, we discuss...

  17. Bex1 knock out mice show altered skeletal muscle regeneration

    International Nuclear Information System (INIS)

    Koo, Jae Hyung; Smiley, Mark A.; Lovering, Richard M.; Margolis, Frank L.

    2007-01-01

    Bex1 and Calmodulin (CaM) are upregulated during skeletal muscle regeneration. We confirm this finding and demonstrate the novel finding that they interact in a calcium-dependent manner. To study the role of Bex1 and its interaction with CaM in skeletal muscle regeneration, we generated Bex1 knock out (Bex1-KO) mice. These mice appeared to develop normally and are fertile, but displayed a functional deficit in exercise performance compared to wild type (WT) mice. After intramuscular injection of cardiotoxin, which causes extensive and reproducible myotrauma followed by recovery, regenerating muscles of Bex1-KO mice exhibited elevated and prolonged cell proliferation, as well as delayed cell differentiation, compared to WT mice. Thus, our results provide the first evidence that Bex1-KO mice show altered muscle regeneration, and allow us to propose that the interaction of Bex1 with Ca 2+ /CaM may be involved in skeletal muscle regeneration

  18. PLASTICITY OF SKELETAL MUSCLE STUDIED BY STEREOLOGY

    Directory of Open Access Journals (Sweden)

    Ida Eržen

    2011-05-01

    Full Text Available The present contribution provides an overview of stereological methods applied in the skeletal muscle research at the Institute of Anatomy of the Medical Faculty in Ljubljana. Interested in skeletal muscle plasticity we studied three different topics: (i expression of myosin heavy chain isoforms in slow and fast muscles under experimental conditions, (ii frequency of satellite cells in young and old human and rat muscles and (iii capillary supply of rat fast and slow muscles. We analysed the expression of myosin heavy chain isoforms within slow rat soleus and fast extensor digitorum longus muscles after (i homotopic and heterotopic transplantation of both muscles, (ii low frequency electrical stimulation of the fast muscle and (iii transposition of the fast nerve to the slow muscle. The models applied were able to turn the fast muscle into a completely slow muscle, but not vice versa. One of the indicators for the regenerative potential of skeletal muscles is its satellite cell pool. The estimated parameters, number of satellite cells per unit fibre length, corrected to the reference sarcomere length (Nsc/Lfib and number of satellite cells per number of nuclei (myonuclei and satellite cell nuclei (Nsc/Nnucl indicated that the frequency of M-cadherin stained satellite cells declines in healthy old human and rat muscles compared to young muscles. To access differences in capillary densities among slow and fast muscles and slow and fast muscle fibres, we have introduced Slicer and Fakir methods, and tested them on predominantly slow and fast rat muscles. Discussing three different topics that require different approach, the present paper reflects the three decades of the development of stereological methods: 2D analysis by simple point counting in the 70's, the disector in the 80's and virtual spatial probes in the 90's. In all methods the interactive computer assisted approach was utilised.

  19. Stem Cells for Skeletal Muscle Tissue Engineering.

    Science.gov (United States)

    Pantelic, Molly N; Larkin, Lisa M

    2018-04-19

    Volumetric muscle loss (VML) is a debilitating condition wherein muscle loss overwhelms the body's normal physiological repair mechanism. VML is particularly common among military service members who have sustained war injuries. Because of the high social and medical cost associated with VML and suboptimal current surgical treatments, there is great interest in developing better VML therapies. Skeletal muscle tissue engineering (SMTE) is a promising alternative to traditional VML surgical treatments that use autogenic tissue grafts, and rather uses isolated stem cells with myogenic potential to generate de novo skeletal muscle tissues to treat VML. Satellite cells are the native precursors to skeletal muscle tissue, and are thus the most commonly studied starting source for SMTE. However, satellite cells are difficult to isolate and purify, and it is presently unknown whether they would be a practical source in clinical SMTE applications. Alternative myogenic stem cells, including adipose-derived stem cells, bone marrow-derived mesenchymal stem cells, perivascular stem cells, umbilical cord mesenchymal stem cells, induced pluripotent stem cells, and embryonic stem cells, each have myogenic potential and have been identified as possible starting sources for SMTE, although they have yet to be studied in detail for this purpose. These alternative stem cell varieties offer unique advantages and disadvantages that are worth exploring further to advance the SMTE field toward highly functional, safe, and practical VML treatments. The following review summarizes the current state of satellite cell-based SMTE, details the properties and practical advantages of alternative myogenic stem cells, and offers guidance to tissue engineers on how alternative myogenic stem cells can be incorporated into SMTE research.

  20. A modern documented Italian identified skeletal collection of 2127 skeletons: the CAL Milano Cemetery Skeletal Collection.

    Science.gov (United States)

    Cattaneo, Cristina; Mazzarelli, Debora; Cappella, Annalisa; Castoldi, Elisa; Mattia, Mirko; Poppa, Pasquale; De Angelis, Danilo; Vitello, Antonio; Biehler-Gomez, Lucie

    2018-06-01

    The CAL Milano Cemetery Skeletal Collection is a modern and continuously growing identified osteological collection of 2127 skeletons under study in the Laboratorio di Antropologia e Odontologia Forense (LABANOF) in the Department of Biomedical Sciences for Health of the University of Milan (Italy), and part of the Collezione Antropologica LABANOF (CAL). The collection presents individuals of both sexes and of all age groups with a high representation of the elderly and an interesting sample of infants. Each individual is associated with a documentation that includes sex, age-at-death, dates of birth and death, and a death certificate that specifies the exact cause of death and the chain of events that led to it (related pathological conditions or traumatic events). It was also possible to recover for several individuals the autopsy reports and antemortem photographs. This documented osteological collection is of crucial interest in physical and forensic anthropology: it provides unique teaching opportunities and more importantly considerable research possibilities to test and develop sex and age estimation methods, investigate key subjects of forensic relevance and discuss pathological markers, among others. The aim of this paper is to introduce the CAL Milano Cemetery Skeletal Collection as a new identified skeletal collection and present its research and teaching potential. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Developmental expression of the alpha-skeletal actin gene

    Directory of Open Access Journals (Sweden)

    Vonk Freek J

    2008-06-01

    Full Text Available Abstract Background Actin is a cytoskeletal protein which exerts a broad range of functions in almost all eukaryotic cells. In higher vertebrates, six primary actin isoforms can be distinguished: alpha-skeletal, alpha-cardiac, alpha-smooth muscle, gamma-smooth muscle, beta-cytoplasmic and gamma-cytoplasmic isoactin. Expression of these actin isoforms during vertebrate development is highly regulated in a temporal and tissue-specific manner, but the mechanisms and the specific differences are currently not well understood. All members of the actin multigene family are highly conserved, suggesting that there is a high selective pressure on these proteins. Results We present here a model for the evolution of the genomic organization of alpha-skeletal actin and by molecular modeling, illustrate the structural differences of actin proteins of different phyla. We further describe and compare alpha-skeletal actin expression in two developmental stages of five vertebrate species (mouse, chicken, snake, salamander and fish. Our findings confirm that alpha-skeletal actin is expressed in skeletal muscle and in the heart of all five species. In addition, we identify many novel non-muscular expression domains including several in the central nervous system. Conclusion Our results show that the high sequence homology of alpha-skeletal actins is reflected by similarities of their 3 dimensional protein structures, as well as by conserved gene expression patterns during vertebrate development. Nonetheless, we find here important differences in 3D structures, in gene architectures and identify novel expression domains for this structural and functional important gene.

  2. High-fat diet decreases energy expenditure and expression of genes controlling lipid metabolism, mitochondrial function and skeletal system development in the adipose tissue, along with increased expression of extracellular matrix remodelling- and inflammation-related genes.

    Science.gov (United States)

    Choi, Myung-Sook; Kim, Young-Je; Kwon, Eun-Young; Ryoo, Jae Young; Kim, Sang Ryong; Jung, Un Ju

    2015-03-28

    The aim of the present study was to identify the genes differentially expressed in the visceral adipose tissue in a well-characterised mouse model of high-fat diet (HFD)-induced obesity. Male C57BL/6J mice (n 20) were fed either HFD (189 % of energy from fat) or low-fat diet (LFD, 42 % of energy from fat) for 16 weeks. HFD-fed mice exhibited obesity, insulin resistance, dyslipidaemia and adipose collagen accumulation, along with higher levels of plasma leptin, resistin and plasminogen activator inhibitor type 1, although there were no significant differences in plasma cytokine levels. Energy intake was similar in the two diet groups owing to lower food intake in the HFD group; however, energy expenditure was also lower in the HFD group than in the LFD group. Microarray analysis revealed that genes related to lipolysis, fatty acid metabolism, mitochondrial energy transduction, oxidation-reduction, insulin sensitivity and skeletal system development were down-regulated in HFD-fed mice, and genes associated with extracellular matrix (ECM) components, ECM remodelling and inflammation were up-regulated. The top ten up- or down-regulated genes include Acsm3, mt-Nd6, Fam13a, Cyp2e1, Rgs1 and Gpnmb, whose roles in the deterioration of obesity-associated adipose tissue are poorly understood. In conclusion, the genes identified here provide new therapeutic opportunities for prevention and treatment of diet-induced obesity.

  3. Multiple congenital skeletal malformations in a lamb associated with ...

    African Journals Online (AJOL)

    Other malformations included patella absence, resulting in bowing of both fore and hind limbs with poorly developed muscles associated with these skeletal structure. Dystocia was believed to be a result of fetal monstrosity resulting in abnormal posture. The cause of the congenital malformations was not obvious ...

  4. Factors regulating fat oxidation in human skeletal muscle

    DEFF Research Database (Denmark)

    Kiens, Bente; Alsted, Thomas Junker; Jeppesen, Jacob

    2011-01-01

    In modern societies, oversupply of calories leads to obesity and chronic metabolic stress, which may lead to development of disease. Oversupply of calories is often associated with elevated plasma lipid concentrations and accumulation of lipids in skeletal muscle leading to decreased insulin...

  5. Deletion of skeletal muscle SOCS3 prevents insulin resistance in obesity

    DEFF Research Database (Denmark)

    Beck Jørgensen, Sebastian; O'Neill, Hayley M; Sylow, Lykke

    2013-01-01

    Obesity is associated with chronic low-grade inflammation that contributes to defects in energy metabolism and insulin resistance. Suppressor of cytokine signaling (SOCS)-3 expression is increased in skeletal muscle of obese humans. SOCS3 inhibits leptin signaling in the hypothalamus and insulin...... of hyperinsulinemia and insulin resistance because of enhanced skeletal muscle insulin receptor substrate 1 (IRS1) and Akt phosphorylation that resulted in increased skeletal muscle glucose uptake. These data indicate that skeletal muscle SOCS3 does not play a critical role in regulating muscle development or energy...... expenditure, but it is an important contributing factor for inhibiting insulin sensitivity in obesity. Therapies aimed at inhibiting SOCS3 in skeletal muscle may be effective in reversing obesity-related glucose intolerance and insulin resistance....

  6. A skeletal mechanism for biodiesel blend surrogates combustion

    International Nuclear Information System (INIS)

    An, H.; Yang, W.M.; Maghbouli, A.; Li, J.; Chua, K.J.

    2014-01-01

    Highlights: • A skeletal biodiesel reaction mechanism with 112 species was constructed. • The developed mechanism contains the CO, NO x and soot formation kinetics. • It was well validated against detailed reaction mechanism and experimental results. • The mechanism is suitable to simulate biodiesel, diesel and their blend fuels. - Abstract: A tri-component skeletal reaction mechanism consisting of methyl decanoate, methyl-9-decenoate, and n-heptane was developed for biodiesel combustion in diesel engine. It comprises 112 species participating in 498 reactions with the CO, NO x and soot formation mechanisms embedded. In this study, a detailed tri-component biodiesel mechanism was used as the start of mechanism reduction and the reduced mechanism was combined with a previously developed skeletal reaction mechanism for n-heptane to integrate the soot formation kinetics. A combined mechanism reduction strategy including the directed relation graph with error propagation and sensitivity analysis (DRGEPSA), peak concentration analysis, isomer lumping, unimportant reactions elimination and reaction rate adjustment methods was employed. The reduction process for biodiesel was performed over a range of initial conditions covering the pressures from 1 to 100 atm, equivalence ratios from 0.5 to 2.0 and temperatures from 700 to 1800 K, whereas for n-heptane, ignition delay predictions were compared against 17 shock tube experimental conditions. Extensive validations were performed for the developed skeletal reaction mechanism with 0-D ignition delay testing and 3-D engine simulations. The results indicated that the developed mechanism was able to accurately predict the ignition delay timings of n-heptane and biodiesel, and it could be integrated into 3-D engine simulations to predict the combustion characteristics of biodiesel. As such, the developed 112-species skeletal mechanism can accurately mimic the significant reaction pathways of the detailed reaction

  7. On exposure to anorexia nervosa, the temporal variation in axial and appendicular skeletal development predisposes to site-specific deficits in bone size and density: a cross-sectional study.

    Science.gov (United States)

    Seeman, E; Karlsson, M K; Duan, Y

    2000-11-01

    Skeletal development is heterogeneous. Throughout growth, bone size is more maturationally advanced than the mineral being accrued within its periosteal envelope; before puberty, appendicular growth is more rapid than axial growth; during puberty, appendicular growth slows and axial growth accelerates. We studied women with differing age of onset of anorexia nervosa to determine whether this temporal heterogeneity in growth predisposed to the development of deficits in bone size and volumetric bone mineral density (vBMD), which varied by site and severity depending on the age at which anorexia nervosa occurred. Bone size and vBMD of the third lumbar vertebra and femoral neck were measured using dual-energy X-ray absorptiometry in 210 women aged 21 years (range, 12-40 years) with anorexia nervosa. Results were expressed as age-specific SDs (mean +/- SEM). Bone width depended on the age of onset of anorexia nervosa; when the onset of anorexia nervosa occurred (1) before 15 years of age, deficits in vertebral body and femoral neck width did not differ (-0.77+/-0.27 SD and -0.55+/-0.17 SD, respectively); (2) between 15 and 19 years of age, deficits in vertebral body width (-0.95+/-0.16 SD) were three times the deficits in femoral neck width (-0.28+/-0.14 SD; p anorexia nervosa. No deficit in bone width was observed at the femoral neck. Deficits in vBMD at the vertebra and femoral neck were independent of the age of onset of anorexia nervosa but increased as the duration of anorexia nervosa increased, being about 0.5 SD lower at the vertebra than femoral neck. We infer that the maturational development of a region at the time of exposure to disease, and disease duration, determine the site, magnitude, and type of trait deficit in anorexia nervosa. Bone fragility due to reduced bone size and reduced vBMD in adulthood is partly established during growth.

  8. Skeletal maturation, fundamental motor skills and motor coordination in children 7-10 years.

    Science.gov (United States)

    Freitas, Duarte L; Lausen, Berthold; Maia, José António; Lefevre, Johan; Gouveia, Élvio Rúbio; Thomis, Martine; Antunes, António Manuel; Claessens, Albrecht L; Beunen, Gaston; Malina, Robert M

    2015-01-01

    Relationships between skeletal maturation and fundamental motor skills and gross motor coordination were evaluated in 429 children (213 boys and 216 girls) 7-10 years. Skeletal age was assessed (Tanner-Whitehouse 2 method), and stature, body mass, motor coordination (Körperkoordinations Test für Kinder, KTK) and fundamental motor skills (Test of Gross Motor Development, TGMD-2) were measured. Relationships among chronological age, skeletal age (expressed as the standardised residual of skeletal age on chronological age) and body size and fundamental motor skills and motor coordination were analysed with hierarchical multiple regression. Standardised residual of skeletal age on chronological age interacting with stature and body mass explained a maximum of 7.0% of the variance in fundamental motor skills and motor coordination over that attributed to body size per se. Standardised residual of skeletal age on chronological age alone accounted for a maximum of 9.0% of variance in fundamental motor skills, and motor coordination over that attributed to body size per se and interactions between standardised residual of skeletal age on chronological age and body size. In conclusion, skeletal age alone or interacting with body size has a negligible influence on fundamental motor skills and motor coordination in children 7-10 years.

  9. The development of the learning video for the flipped classroom model on student of open university on human skeletal system and muscles

    Science.gov (United States)

    Andrini, V. S.

    2018-05-01

    The objectives of the research are to develop the learning video for the flipped classroom model for Open University’s student and to know the effectiveness of the video. The development of the video used Research and Development ADDIE design (Analyses, Design, Development, Implementation, Evaluation). The sampling used purposive sampling was 28 students in Open University of Nganjuk. The techniques of data collection were the observation data to know the problems of the students, and learning facilities, the test (pre-test and post-test) to know a knowledge aspect, a questionnaire to know advisability of video learning, a structured interview to confirm their answer. The result of the expert of matter and media showed that the average product score was 3.75 of 4 or very good, the small-scale test showed that the average score was 3.60 of 4 and the large-scale test showed that the average score was 3.80 of 4, it had a very good category. The t-test with paired sample test showed that sig. (2-tailed) video for flipped classroom was effective to be implemented.

  10. A Comparison of Hand Wrist Bone Analysis with Two Different Cervical Vertebral Analysis in Measuring Skeletal Maturation

    OpenAIRE

    Pichai, Saravanan; Rajesh, M; Reddy, Naveen; Adusumilli, Gopinath; Reddy, Jayaprakash; Joshi, Bhavana

    2014-01-01

    Background: Skeletal maturation is an integral part of individual pattern of growth and development and is a continuous process. Peak growth velocity in standing height is the most valid representation of the rate of overall skeletal growth. Ossification changes of hand wrist and cervical vertebrae are the reliable indicators of growth status of individual. The objective of this study was to compare skeletal maturation as measured by hand wrist bone analysis and cervical vertebral analysis. M...

  11. Growth of limb muscle is dependent on skeletal-derived Indian hedgehog

    OpenAIRE

    Bren-Mattison, Yvette; Hausburg, Melissa; Olwin, Bradley B.

    2011-01-01

    During embryogenesis, muscle and bone develop in close temporal and spatial proximity. We show that Indian Hedgehog, a bone-derived signaling molecule, participates in growth of skeletal muscle. In Ihh−/− embryos, skeletal muscle development appears abnormal at embryonic day 14.5 and at later ages through embryonic day 20.5, dramatic losses of hindlimb muscle occur. To further examine the role of Ihh in myogenesis, we manipulated Ihh expression in the developing chick hindlimb. Reduction of I...

  12. Congenital anomalies and normal skeletal variants

    International Nuclear Information System (INIS)

    Guebert, G.M.; Yochum, T.R.; Rowe, L.J.

    1987-01-01

    Congenital anomalies and normal skeletal variants are a common occurrence in clinical practice. In this chapter a large number of skeletal anomalies of the spine and pelvis are reviewed. Some of the more common skeletal anomalies of the extremities are also presented. The second section of this chapter deals with normal skeletal variants. Some of these variants may simulate certain disease processes. In some instances there are no clear-cut distinctions between skeletal variants and anomalies; therefore, there may be some overlap of material. The congenital anomalies are presented initially with accompanying text, photos, and references, beginning with the skull and proceeding caudally through the spine to then include the pelvis and extremities. The normal skeletal variants section is presented in an anatomical atlas format without text or references

  13. AMPK in skeletal muscle function and metabolism

    DEFF Research Database (Denmark)

    Kjøbsted, Rasmus; Hingst, Janne Rasmuss; Fentz, Joachim

    2018-01-01

    Skeletal muscle possesses a remarkable ability to adapt to various physiologic conditions. AMPK is a sensor of intracellular energy status that maintains energy stores by fine-tuning anabolic and catabolic pathways. AMPK's role as an energy sensor is particularly critical in tissues displaying...... highly changeable energy turnover. Due to the drastic changes in energy demand that occur between the resting and exercising state, skeletal muscle is one such tissue. Here, we review the complex regulation of AMPK in skeletal muscle and its consequences on metabolism (e.g., substrate uptake, oxidation......, and storage as well as mitochondrial function of skeletal muscle fibers). We focus on the role of AMPK in skeletal muscle during exercise and in exercise recovery. We also address adaptations to exercise training, including skeletal muscle plasticity, highlighting novel concepts and future perspectives...

  14. The exercised skeletal muscle: a review

    Directory of Open Access Journals (Sweden)

    Marina Marini

    2010-09-01

    Full Text Available The skeletal muscle is the second more plastic tissue of the body - second to the nervous tissue only. In fact, both physical activity and inactivity contribute to modify the skeletal muscle, by continuous signaling through nerve impulses, mechanical stimuli and humoral clues. In turn, the skeletal muscle sends signals to the body, thus contributing to its homeostasis. We'll review here the contribute of physical exercise to the shaping of skeletal muscle, to the adaptation of its mass and function to the different needs imposed by different physical activities and to the attainment of the health benefits associated with active skeletal muscles. Focus will primarily be on the molecular pathways and on gene regulation that result in skeletal muscle adaptation to exercise.

  15. Skeletal development of mice lacking bone sialoprotein (BSP--impairment of long bone growth and progressive establishment of high trabecular bone mass.

    Directory of Open Access Journals (Sweden)

    Wafa Bouleftour

    Full Text Available Adult Ibsp-knockout mice (BSP-/- display shorter stature, lower bone turnover and higher trabecular bone mass than wild type, the latter resulting from impaired bone resorption. Unexpectedly, BSP knockout also affects reproductive behavior, as female mice do not construct a proper "nest" for their offsprings. Multiple crossing experiments nonetheless indicated that the shorter stature and lower weight of BSP-/- mice, since birth and throughout life, as well as their shorter femur and tibia bones are independent of the genotype of the mothers, and thus reflect genetic inheritance. In BSP-/- newborns, µCT analysis revealed a delay in membranous primary ossification, with wider cranial sutures, as well as thinner femoral cortical bone and lower tissue mineral density, reflected in lower expression of bone formation markers. However, trabecular bone volume and osteoclast parameters of long bones do not differ between genotypes. Three weeks after birth, osteoclast number and surface drop in the mutants, concomitant with trabecular bone accumulation. The growth plates present a thinner hypertrophic zone in newborns with lower whole bone expression of IGF-1 and higher IHH in 6 days old BSP-/- mice. At 3 weeks the proliferating zone is thinner and the hypertrophic zone thicker in BSP-/- than in BSP+/+ mice of either sex, maybe reflecting a combination of lower chondrocyte proliferation and impaired cartilage resorption. Six days old BSP-/- mice display lower osteoblast marker expression but higher MEPE and higher osteopontin(Opn/Runx2 ratio. Serum Opn is higher in mutants at day 6 and in adults. Thus, lack of BSP alters long bone growth and membranous/cortical primary bone formation and mineralization. Endochondral development is however normal in mutant mice and the accumulation of trabecular bone observed in adults develops progressively in the weeks following birth. Compensatory high Opn may allow normal endochondral development in BSP-/- mice

  16. Rapid development of systemic insulin resistance with overeating is not accompanied by robust changes in skeletal muscle glucose and lipid metabolism.

    Science.gov (United States)

    Cornford, Andrea S; Hinko, Alexander; Nelson, Rachael K; Barkan, Ariel L; Horowitz, Jeffrey F

    2013-05-01

    Prolonged overeating and the resultant weight gain are clearly linked with the development of insulin resistance and other cardiometabolic abnormalities, but adaptations that occur after relatively short periods of overeating are not completely understood. The purpose of this study was to characterize metabolic adaptations that may accompany the development of insulin resistance after 2 weeks of overeating. Healthy, nonobese subjects (n = 9) were admitted to the hospital for 2 weeks, during which time they ate ∼4000 kcals·day(-1) (70 kcal·kg(-1) fat free mass·day(-1)). Insulin sensitivity was estimated during a meal tolerance test, and a muscle biopsy was obtained to assess muscle lipid accumulation and protein markers associated with insulin resistance, inflammation, and the regulation of lipid metabolism. Whole-body insulin sensitivity declined markedly after 2 weeks of overeating (Matsuda composite index: 8.3 ± 1.3 vs. 4.6 ± 0.7, p overeating. Intramyocellular lipids tended to increase after 2 weeks of overeating (triacylglyceride: 7.6 ± 1.6 vs. 10.0 ± 1.8 nmol·mg(-1) wet weight; diacylglyceride: 104 ± 10 vs. 142 ± 23 pmol·mg(-1) wet weight) but these changes did not reach statistical significance. Overeating induced a 2-fold increase in 24-h insulin response (area under the curve (AUC); p overeating.

  17. The diagnosis of skeletal dysplasias: a multidisciplinary approach

    International Nuclear Information System (INIS)

    Mortier, Geert R.

    2001-01-01

    Skeletal dysplasias are heritable connective tissue disorders affecting skeletal morphogenesis and development. They represent a heterogeneous group of genetic disorders with more than 200 different entities being delineated to date. Because of this diversity, the diagnosis of a skeletal dysplasia is usually based on a combination of clinical, radiographic, morphologic, and, in some instances, biochemical and molecular studies. Tremendous advances have been made in the elucidation of the genetic defect of several of these conditions over the past 10 years. This progress has provided us with more insights into the genes controlling normal skeletal development. It also has opened new diagnostic perspectives. For several disorders, identification of the causal gene allows us now to confirm with a molecular test the diagnosis postulated on the basis of clinical, radiographic and/or morphologic studies. It also enables us to establish the diagnosis early in pregnancy. An accurate diagnosis is not only important for proper management of the affected individual but also the cornerstone for adequate genetic counseling

  18. The diagnosis of skeletal dysplasias: a multidisciplinary approach

    Energy Technology Data Exchange (ETDEWEB)

    Mortier, Geert R. E-mail: geert.mortier@rug.ac.be

    2001-12-01

    Skeletal dysplasias are heritable connective tissue disorders affecting skeletal morphogenesis and development. They represent a heterogeneous group of genetic disorders with more than 200 different entities being delineated to date. Because of this diversity, the diagnosis of a skeletal dysplasia is usually based on a combination of clinical, radiographic, morphologic, and, in some instances, biochemical and molecular studies. Tremendous advances have been made in the elucidation of the genetic defect of several of these conditions over the past 10 years. This progress has provided us with more insights into the genes controlling normal skeletal development. It also has opened new diagnostic perspectives. For several disorders, identification of the causal gene allows us now to confirm with a molecular test the diagnosis postulated on the basis of clinical, radiographic and/or morphologic studies. It also enables us to establish the diagnosis early in pregnancy. An accurate diagnosis is not only important for proper management of the affected individual but also the cornerstone for adequate genetic counseling.

  19. Roentgenographic indicators of skeletal maturity in marine mammals (Cetacea)

    International Nuclear Information System (INIS)

    Ogden, J.A.; Conlogue, G.J.; Rhodin, A.G.J.; Yale Univ., New Haven, CT

    1981-01-01

    A new roentgenographic classification (grading) scheme is presented for utilization in studies of skeletal development and maturation in marine mammals, particularly cetaceans. This is based on adequate description of the extent of development and maturation of the various secondary ossification centers, their eventual patterns of fusion, and subsequent remodeling with the metaphysis. The six stages are illustrated schematically and roentgenographically. This scheme may be applied to any cetacean longitudinal bone developing proximal and distal epiphyseal ossification centers. (orig.)

  20. Weighted Mean of Signal Intensity for Unbiased Fiber Tracking of Skeletal Muscles: Development of a New Method and Comparison With Other Correction Techniques.

    Science.gov (United States)

    Giraudo, Chiara; Motyka, Stanislav; Weber, Michael; Resinger, Christoph; Thorsten, Feiweier; Traxler, Hannes; Trattnig, Siegfried; Bogner, Wolfgang

    2017-08-01

    The aim of this study was to investigate the origin of random image artifacts in stimulated echo acquisition mode diffusion tensor imaging (STEAM-DTI), assess the role of averaging, develop an automated artifact postprocessing correction method using weighted mean of signal intensities (WMSIs), and compare it with other correction techniques. Institutional review board approval and written informed consent were obtained. The right calf and thigh of 10 volunteers were scanned on a 3 T magnetic resonance imaging scanner using a STEAM-DTI sequence.Artifacts (ie, signal loss) in STEAM-based DTI, presumably caused by involuntary muscle contractions, were investigated in volunteers and ex vivo (ie, human cadaver calf and turkey leg using the same DTI parameters as for the volunteers). An automated postprocessing artifact correction method based on the WMSI was developed and compared with previous approaches (ie, iteratively reweighted linear least squares and informed robust estimation of tensors by outlier rejection [iRESTORE]). Diffusion tensor imaging and fiber tracking metrics, using different averages and artifact corrections, were compared for region of interest- and mask-based analyses. One-way repeated measures analysis of variance with Greenhouse-Geisser correction and Bonferroni post hoc tests were used to evaluate differences among all tested conditions. Qualitative assessment (ie, images quality) for native and corrected images was performed using the paired t test. Randomly localized and shaped artifacts affected all volunteer data sets. Artifact burden during voluntary muscle contractions increased on average from 23.1% to 77.5% but were absent ex vivo. Diffusion tensor imaging metrics (mean diffusivity, fractional anisotropy, radial diffusivity, and axial diffusivity) had a heterogeneous behavior, but in the range reported by literature. Fiber track metrics (number, length, and volume) significantly improved in both calves and thighs after artifact

  1. Pelvic radiograph in skeletal dysplasias: An approach

    Directory of Open Access Journals (Sweden)

    Manisha Jana

    2017-01-01

    Full Text Available The bony pelvis is constituted by the ilium, ischium, pubis, and sacrum. The pelvic radiograph is an important component of the skeletal survey performed in suspected skeletal dysplasia. Most of the common skeletal dysplasias have either minor or major radiological abnormalities; hence, knowledge of the normal radiological appearance of bony pelvis is vital for recognizing the early signs of various skeletal dysplasias. This article discusses many common and some uncommon radiological findings on pelvic radiographs along with the specific dysplasia in which they are seen; common differential diagnostic considerations are also discussed.

  2. Skeletal stem cells and their contribution to skeletal fragility

    DEFF Research Database (Denmark)

    Aldahmash, A.

    2016-01-01

    Age-related osteoporotic fractures are major health care problem worldwide and are the result of impaired bone formation, decreased bone mass and bone fragility. Bone formation is accomplished by skeletal stem cells (SSC) that are recruited to bone surfaces from bone marrow microenvironment....... This review discusses targeting SSC to enhance bone formation and to abolish age-related bone fragility in the context of using stem cells for treatment of age-related disorders. Recent studies are presented that have demonstrated that SSC exhibit impaired functions during aging due to intrinsic senescence...

  3. Effects of ocean warming and acidification on survival, growth and skeletal development in the early benthic juvenile sea urchin (Heliocidaris erythrogramma).

    Science.gov (United States)

    Wolfe, Kennedy; Dworjanyn, Symon A; Byrne, Maria

    2013-09-01

    Co-occurring ocean warming, acidification and reduced carbonate mineral saturation have significant impacts on marine biota, especially calcifying organisms. The effects of these stressors on development and calcification in newly metamorphosed juveniles (ca. 0.5 mm test diameter) of the intertidal sea urchin Heliocidaris erythrogramma, an ecologically important species in temperate Australia, were investigated in context with present and projected future conditions. Habitat temperature and pH/pCO2 were documented to place experiments in a biologically and ecologically relevant context. These parameters fluctuated diurnally up to 10 °C and 0.45 pH units. The juveniles were exposed to three temperature (21, 23 and 25 °C) and four pH (8.1, 7.8, 7.6 and 7.4) treatments in all combinations, representing ambient sea surface conditions (21 °C, pH 8.1; pCO2 397; ΩCa 4.7; ΩAr 3.1), near-future projected change (+2-4 °C, -0.3-0.5 pH units; pCO2 400-1820; ΩCa 5.0-1.6; ΩAr 3.3-1.1), and extreme conditions experienced at low tide (+4 °C, -0.3-0.7 pH units; pCO2 2850-2967; ΩCa 1.1-1.0; ΩAr 0.7-0.6). The lowest pH treatment (pH 7.4) was used to assess tolerance levels. Juvenile survival and test growth were resilient to current and near-future warming and acidification. Spine development, however, was negatively affected by near-future increased temperature (+2-4 °C) and extreme acidification (pH 7.4), with a complex interaction between stressors. Near-future warming was the more significant stressor. Spine tips were dissolved in the pH 7.4 treatments. Adaptation to fluctuating temperature-pH conditions in the intertidal may convey resilience to juvenile H. erythrogramma to changing ocean conditions, however, ocean warming and acidification may shift baseline intertidal temperature and pH/pCO2 to levels that exceed tolerance limits. © 2013 John Wiley & Sons Ltd.

  4. Grandpaternal-induced transgenerational dietary reprogramming of the unfolded protein response in skeletal muscle

    Directory of Open Access Journals (Sweden)

    Petter S. Alm

    2017-07-01

    Conclusions: Grandpaternal HFD-induced obesity transgenerationally affected the skeletal muscle transcriptome. This finding further highlights the impact of parental exposure to environmental factors on offspring's development and health.

  5. Advances in research on the prenatal development of skeletal muscle in animals in relation to the quality of muscle-based food. II -Genetic factors related to animal performance and advances in methodology

    NARCIS (Netherlands)

    Rehfeldt, C.; Pas, te M.F.W.; Wimmers, K.; Brameld, J.M.; Nissen, P.M.; Berri, C.; Valente, L.M.P.; Power, D.M.; Picard, B.; Stickland, N.C.; Oksbjerg, N.

    2011-01-01

    Selective breeding is an effective tool to improve livestock. Several selection experiments have been conducted to study direct selection responses as well as correlated responses in traits of skeletal muscle growth and function. Moreover, comparisons of domestic with wild-type species and of

  6. Growth Factors and Tension-Induced Skeletal Muscle Growth

    Science.gov (United States)

    Vandenburgh, Herman H.

    1994-01-01

    The project investigated biochemical mechanisms to enhance skeletal muscle growth, and developed a computer based mechanical cell stimulator system. The biochemicals investigated in this study were insulin/(Insulin like Growth Factor) IGF-1 and Steroids. In order to analyze which growth factors are essential for stretch-induced muscle growth in vitro, we developed a defined, serum-free medium in which the differentiated, cultured avian muscle fibers could be maintained for extended periods of time. The defined medium (muscle maintenance medium, MM medium) maintains the nitrogen balance of the myofibers for 3 to 7 days, based on myofiber diameter measurements and myosin heavy chain content. Insulin and IGF-1, but not IGF-2, induced pronounced myofiber hypertrophy when added to this medium. In 5 to 7 days, muscle fiber diameters increase by 71 % to 98% compared to untreated controls. Mechanical stimulation of the avian muscle fibers in MM medium increased the sensitivity of the cells to insulin and IGF-1, based on a leftward shift of the insulin dose/response curve for protein synthesis rates. (54). We developed a ligand binding assay for IGF-1 binding proteins and found that the avian skeletal muscle cultures produced three major species of 31, 36 and 43 kD molecular weight (54) Stretch of the myofibers was found to have no significant effect on the efflux of IGF-1 binding proteins, but addition of exogenous collagen stimulated IGF-1 binding protein production 1.5 to 5 fold. Steroid hormones have a profound effect on muscle protein turnover rates in vivo, with the stress-related glucocorticoids inducing rapid skeletal muscle atrophy while androgenic steroids induce skeletal muscle growth. Exercise in humans and animals reduces the catabolic effects of glucocorticoids and may enhance the anabolic effects of androgenic steroids on skeletal muscle. In our continuing work on the involvement of exogenrus growth factors in stretch-induced avian skeletal muscle growth, we

  7. Structure-function relationship of skeletal muscle provides inspiration for design of new artificial muscle

    Science.gov (United States)

    Gao, Yingxin; Zhang, Chi

    2015-03-01

    A variety of actuator technologies have been developed to mimic biological skeletal muscle that generates force in a controlled manner. Force generation process of skeletal muscle involves complicated biophysical and biochemical mechanisms; therefore, it is impossible to replace biological muscle. In biological skeletal muscle tissue, the force generation of a muscle depends not only on the force generation capacity of the muscle fiber, but also on many other important factors, including muscle fiber type, motor unit recruitment, architecture, structure and morphology of skeletal muscle, all of which have significant impact on the force generation of the whole muscle or force transmission from muscle fibers to the tendon. Such factors have often been overlooked, but can be incorporated in artificial muscle design, especially with the discovery of new smart materials and the development of innovative fabrication and manufacturing technologies. A better understanding of the physiology and structure-function relationship of skeletal muscle will therefore benefit the artificial muscle design. In this paper, factors that affect muscle force generation are reviewed. Mathematical models used to model the structure-function relationship of skeletal muscle are reviewed and discussed. We hope the review will provide inspiration for the design of a new generation of artificial muscle by incorporating the structure-function relationship of skeletal muscle into the design of artificial muscle.

  8. Structure–function relationship of skeletal muscle provides inspiration for design of new artificial muscle

    International Nuclear Information System (INIS)

    Gao, Yingxin; Zhang, Chi

    2015-01-01

    A variety of actuator technologies have been developed to mimic biological skeletal muscle that generates force in a controlled manner. Force generation process of skeletal muscle involves complicated biophysical and biochemical mechanisms; therefore, it is impossible to replace biological muscle. In biological skeletal muscle tissue, the force generation of a muscle depends not only on the force generation capacity of the muscle fiber, but also on many other important factors, including muscle fiber type, motor unit recruitment, architecture, structure and morphology of skeletal muscle, all of which have significant impact on the force generation of the whole muscle or force transmission from muscle fibers to the tendon. Such factors have often been overlooked, but can be incorporated in artificial muscle design, especially with the discovery of new smart materials and the development of innovative fabrication and manufacturing technologies. A better understanding of the physiology and structure–function relationship of skeletal muscle will therefore benefit the artificial muscle design. In this paper, factors that affect muscle force generation are reviewed. Mathematical models used to model the structure–function relationship of skeletal muscle are reviewed and discussed. We hope the review will provide inspiration for the design of a new generation of artificial muscle by incorporating the structure–function relationship of skeletal muscle into the design of artificial muscle. (topical review)

  9. Radiation injury to skeletal muscle

    International Nuclear Information System (INIS)

    Persons, C.C.M.; Wondergem, J.; Leer, J.W.H.

    1997-01-01

    Radiotherapy of neoplasia has increased the mean life expectancy of cancer patients. On the other hand, more reports are published on morbidity of the treatment with regard to normal tissue. Studies on skeletal muscle injury specifically are scarce, but many clinical long term follow-up studies make note of side effects as muscle atrophy, fibrosis and limited function. Furthermore it is suggested that skeletal muscles of children are more prone to radiation injury than those of adult subjects. Effects of radiation on skeletal muscle were studied in rats. On hind limb of young (100 g) and adult (350 g) rats was irradiated with single doses (15-30 Gy), while the other served as control. Follow-up was up to 12 months post treatment. Muscular function in young rats was decreased significantly at 6 months post irradiation, but did not further decrease in the following 6 months. The amount of collagen, on the other hand, was not increased at 6 months, but became highly elevated at 12 months past treatment. This suggests that at 6 months, impaired muscular function may not be explained by increased fibrotic tissues. This is an agreement with results obtained in adult rats, where function was also impaired, without concomitant increase in collagen. In an earlier study, mitochondrial oxygen consumption was dose dependently decreased after irradiation, at 12 months, but not at 6 months post treatment. Furthermore, myosin-actin interaction was measured in skinned fibers. The first results of this study indicate changes in the interaction of contraction proteins, as early as 6 months post treatment. (authors)

  10. Radiological diagnosis of skeletal metastases

    International Nuclear Information System (INIS)

    Soederlund, V.

    1996-01-01

    The clinical management of patients with skeletal metastases puts new demands on imaging. The radiological imaging in screening for skeletal metastases entails detection, metastatic site description and radiologically guided biopsy for morphological typing and diagnosis. Regarding sensitivity and the ease in performing surveys of the whole skeleton, radionuclide bone scintigraphy still is the first choice in routine follow-up of asymptomatic patients with metastatic disease of the skeleton. A negative scan has to be re-evaluated with other findings, with emphasis on the possibility of a false-negative result. Screening for metastases in patients with local symptoms or pain is best accomplished by a combination of radiography and MRI. Water-weighted sequences are superior in sensitivity and in detection of metastases. Standard spin-echo sequences on the other hand are superior in metastatic site description and in detection of intraspinal metastases. MRI is helpful in differentiating between malignant disease, infection, benign vertebral collapse, insufficiency fracture after radiation therapy, degenerative vertebral disease and benign skeletal lesions. About 30% of patients with known cancer have benign causes of radiographic abnormalities. Most of these are related to degenerative diseases and are often easily diagnosed. However, due to overlap in MRI characteristics, bone biopsy sometimes is essential for differentiating between malignant and nonmalignant lesions. Performing bone biopsy and aspiration cytology by radiologist and cytologist in co-operation has proven highly accurate in diagnosing bone lesions. The procedure involves low risk to the patient and provides a morphological diagnosis. Once a suspected metastatic lesion is detected, irrespective of modality, the morphological diagnosis determines the appropriate work-up imaging with respect to the therapy alternatives. (orig./VHE)

  11. Comparative Study of Skeletal Stability between Postoperative Skeletal Intermaxillary Fixation and No Skeletal Fixation after Bilateral Sagittal Split Ramus Osteotomy

    DEFF Research Database (Denmark)

    Hartlev, Jens; Godtfredsen, Erik; Andersen, Niels Trolle

    2014-01-01

    OBJECTIVES: The purpose of the present study was to evaluate skeletal stability after mandibular advancement with bilateral sagittal split osteotomy. MATERIAL AND METHODS: Twenty-six patients underwent single-jaw bilateral sagittal split osteotomy (BSSO) to correct skeletal Class II malocclusion....

  12. In utero undernutrition programs skeletal and cardiac muscle metabolism

    Directory of Open Access Journals (Sweden)

    Brittany eBeauchamp

    2016-01-01

    Full Text Available In utero undernutrition is associated with increased risk for insulin resistance, obesity, and cardiovascular disease during adult life. A common phenotype associated with low birth weight is reduced skeletal muscle mass. Given the central role of skeletal muscle in whole body metabolism, alterations in its mass as well as its metabolic characteristics may contribute to disease risk. This review highlights the metabolic alterations in cardiac and skeletal muscle associated with in utero undernutrition and low birth weight. These tissues have high metabolic demands and are known to be sites of major metabolic dysfunction in obesity, type 2 diabetes, and cardiovascular disease. Recent research demonstrates that mitochondrial energetics are decreased in skeletal and cardiac muscles of adult offspring from undernourished mothers. These effects apparently lead to the development of a thrifty phenotype, which may represent overall a compensatory mechanism programmed in utero to handle times of limited nutrient availability. However, in an environment characterized by food abundance, the effects are maladaptive and increase adulthood risks of metabolic disease.

  13. Chiral Orientation of Skeletal Muscle Cells Requires Rigid Substrate

    Directory of Open Access Journals (Sweden)

    Ninghao Zhu

    2017-06-01

    Full Text Available Reconstitution of tissue morphology with inherent left–right (LR asymmetry is essential for tissue/organ functions. For skeletal muscle, the largest tissue in mammalian organisms, successful myogenesis requires the regulation of the LR asymmetry to form the appropriate muscle alignment. However, the key factor for reproducing the LR asymmetry of skeletal tissues in a controllable, engineering context remains largely unknown. Recent reports indicate that cell chirality may underlie the LR development in tissue morphogenesis. Here, we report that a rigid substrate is required for the chirality of skeletal muscle cells. By using alternating micropatterned cell-adherent and cell-repellent stripes on a rigid substrate, we found that C2C12 skeletal muscle myoblasts exhibited a unidirectional tilted orientation with respect to the stripe boundary. Importantly, such chiral orientation was reduced when soft substrates were used instead. In addition, we demonstrated the key role of actin stress fibers in the formation of the chiral orientation. This study reveals that a rigid substrate is required for the chiral pattern of myoblasts, paving the way for reconstructing damaged muscle tissue with inherent LR asymmetry in the future.

  14. Skeletal muscle proteomics: current approaches, technical challenges and emerging techniques

    LENUS (Irish Health Repository)

    Ohlendieck, Kay

    2011-02-01

    Abstract Background Skeletal muscle fibres represent one of the most abundant cell types in mammals. Their highly specialised contractile and metabolic functions depend on a large number of membrane-associated proteins with very high molecular masses, proteins with extensive posttranslational modifications and components that exist in highly complex supramolecular structures. This makes it extremely difficult to perform conventional biochemical studies of potential changes in protein clusters during physiological adaptations or pathological processes. Results Skeletal muscle proteomics attempts to establish the global identification and biochemical characterisation of all members of the muscle-associated protein complement. A considerable number of proteomic studies have employed large-scale separation techniques, such as high-resolution two-dimensional gel electrophoresis or liquid chromatography, and combined them with mass spectrometry as the method of choice for high-throughput protein identification. Muscle proteomics has been applied to the comprehensive biochemical profiling of developing, maturing and aging muscle, as well as the analysis of contractile tissues undergoing physiological adaptations seen in disuse atrophy, physical exercise and chronic muscle transformation. Biomedical investigations into proteome-wide alterations in skeletal muscle tissues were also used to establish novel biomarker signatures of neuromuscular disorders. Importantly, mass spectrometric studies have confirmed the enormous complexity of posttranslational modifications in skeletal muscle proteins. Conclusions This review critically examines the scientific impact of modern muscle proteomics and discusses its successful application for a better understanding of muscle biology, but also outlines its technical limitations and emerging techniques to establish new biomarker candidates.

  15. Diagnostic imaging of skeletal metastases

    International Nuclear Information System (INIS)

    Scutellari, P. N.; Addonisio, G.; Righi, R.; Giganti, M.

    2000-01-01

    Purpose of this article is to present an algorithm for detection and diagnosis of skeletal metastases, which may be applied differently in symptomatic and asymptomatic cancer patients. February to March 1999 it was randomly selected and retrospectively reviewed the clinical charts of 100 cancer patients (70 women and 30 men; mean age: 63 years, range: 55-87). All the patients had been staged according to TNM criteria and had undergone conventional radiography and bone scan; when findings were equivocal, CT and MRI had been performed too. The primary lesions responsible for bone metastases were sited in the: breast (51 cases), colon (30 cases: 17 men and 13 women), lung (7 cases: 6 men and 1 woman), stomach (4 cases: 2 men and 2 women), skin (4 cases: 3 men and 1 woman), kidney (2 men), pleura (1 woman), and finally liver (1 man). The most frequent radiographic pattern was the lytic type (52%), followed by osteosclerotic, mixed, lytic vs mixed and osteosclerotic vs lytic patterns. The patients were divided into two groups: group A patients were asymptomatic and group B patients had local symptoms and/or pain. Skeletal metastases are the most common malignant bone tumors: the spine and the pelvis are the most frequent sites of metastasis, because of the presence of high amounts of red (hematopoietic active) bone marrow. Pain is the main symptom, even though many bone metastases are asymptomatic. Pathological fractures are the most severe consequences. With the algorithm for detection and diagnosis of skeletal metastases two different diagnostic courses are available for asymptomatic and symptomatic patients. Bone scintigraphy remains the technique of choice in asymptomatic patients in whom skeletal metastases are suspected. However this technique, though very sensitive, is poorly specific, and thus a negative bone scan finding is double-checked with another physical examination: if the findings remain negative, the diagnostic workup is over. On the contrary, in

  16. Space medicine considerations: Skeletal and calcium homeostasis

    Science.gov (United States)

    Schneider, Victor B.

    1989-01-01

    Based on the information obtained from space missions, particularly Skylab and the longer Salyut missions, it is clear that bone and mineral metabolism is substantially altered during space flight. Calcium balance becomes increasingly more negative throughout the flight, and the bone mineral content of the os calcis declines. The major health hazards associated with skeletal changes include the signs and symptoms of hypercalcemia with rapid bone turnover, the risk of kidney stones because of hypercalciuria, the lengthy recovery of lost bone mass after flight, the possibility of irreversible bone loss (particularly the trabecular bone), the possible effects of metastated calcification in the soft tissues, and the possible increase in fracture potential. For these reasons, major efforts need to be directed toward elucidating the fundamental mechanisms by which bone is lost in space and developing more effective countermeasures to prevent both short-term and long-term complications.

  17. Guidelines for genetic skeletal dysplasias for pediatricians

    Directory of Open Access Journals (Sweden)

    Sung Yoon Cho

    2015-12-01

    Full Text Available Skeletal dysplasia (SD is a kind of heterogeneous genetic disorder characterized by abnormal growth, development, differentiation, and maintenance of the bone and cartilage. The patients with SD most likely to be seen by a pediatrician or orthopedic surgeon are those who present with short stature in childhood. Because each category has so many diseases, classification is important to understand SD better. In order to diagnose a SD accurately, clinical and radiographic findings should be evaluated in detail. In addition, genetic diagnosis of SD is important because there are so various SDs with complex phenotypes. To reach an exact diagnosis of SDs, cooperative approach by a clinician, a radiologist and a geneticist is important. This review aims to provide an outline of the diagnostic approach for children with disproportional short stature.

  18. Animal Cancer Models of Skeletal Metastasis

    Directory of Open Access Journals (Sweden)

    Catherine Hibberd

    2013-01-01

    Full Text Available The bony skeleton is one of the most common sites of metastatic spread of cancer and is a significant source of morbidity in cancer patients, causing pain and pathologic fracture, impaired ambulatory ability, and poorer quality of life. Animal cancer models of skeletal metastases are essential for better understanding of the molecular pathways behind metastatic spread and local growth and invasion of bone, to enable analysis of host-tumor cell interactions, identify barriers to the metastatic process, and to provide platforms to develop and test novel therapies prior to clinical application in human patients. Thus, the ideal model should be clinically relevant, reproducible and representative of the human condition. This review summarizes the current in vivo animal models used in the study of cancer metastases of the skeleton.

  19. Skeletal muscle regeneration is modulated by inflammation

    Directory of Open Access Journals (Sweden)

    Wenjun Yang

    2018-04-01

    Full Text Available Skeletal muscle regeneration is a complex process orchestrated by multiple steps. Recent findings indicate that inflammatory responses could play central roles in bridging initial muscle injury responses and timely muscle injury reparation. The various types of immune cells and cytokines have crucial roles in muscle regeneration process. In this review, we briefly summarise the functions of acute inflammation in muscle regeneration. The translational potential of this article: Immune system is closely relevant to the muscle regeneration. Understanding the mechanisms of inflammation in muscle regeneration is therefore critical for the development of effective regenerative, and therapeutic strategies in muscular disorders. This review provides information for muscle regeneration research regarding the effects of inflammation on muscle regeneration. Keywords: Chronic muscle disorders, Cytokines, Immune cells, Inflammation, Muscle regeneration, Muscle stem cells

  20. DNA Methylation in Skeletal Muscle Stem Cell Specification, Proliferation, and Differentiation

    Directory of Open Access Journals (Sweden)

    Rhianna C. Laker

    2016-01-01

    Full Text Available An unresolved and critically important question in skeletal muscle biology is how muscle stem cells initiate and regulate the genetic program during muscle development. Epigenetic dynamics are essential for cellular development and organogenesis in early life and it is becoming increasingly clear that epigenetic remodeling may also be responsible for the cellular adaptations that occur in later life. DNA methylation of cytosine bases within CpG dinucleotide pairs is an important epigenetic modification that reduces gene expression when located within a promoter or enhancer region. Recent advances in the field suggest that epigenetic regulation is essential for skeletal muscle stem cell identity and subsequent cell development. This review summarizes what is currently known about how skeletal muscle stem cells regulate the myogenic program through DNA methylation, discusses a novel role for metabolism in this process, and addresses DNA methylation dynamics in adult skeletal muscle in response to physical activity.

  1. Mechanical modeling of skeletal muscle functioning

    NARCIS (Netherlands)

    van der Linden, B.J.J.J.

    1998-01-01

    For movement of body or body segments is combined effort needed of the central nervous system and the muscular-skeletal system. This thesis deals with the mechanical functioning of skeletal muscle. That muscles come in a large variety of geometries, suggest the existence of a relation between muscle

  2. Skeletal stem cells in space and time

    DEFF Research Database (Denmark)

    Kassem, Moustapha; Bianco, Paolo

    2015-01-01

    The nature, biological characteristics, and contribution to organ physiology of skeletal stem cells are not completely determined. Chan et al. and Worthley et al. demonstrate that a stem cell for skeletal tissues, and a system of more restricted, downstream progenitors, can be identified in mice...

  3. Skeletal development and performance of broilers

    International Nuclear Information System (INIS)

    El-Deeb, M.A.

    1989-01-01

    The effect of high dietary copper supplementation has been shown to promote growth rate. The results of the experiments reported herein indicated that copper supplementation of 100 ppm with zinc at the requirement level had no effect on growth rate or bone mineralization. However, when various levels of copper and zinc were added to the diet, significant changes in bone mineralization and liver zinc and copper concentrations occurred. In further studies, the effect of dietary supplementation with vitamin D 3 or its metabolite 1,25(OH) 2 D 3 on the incidence of tibial dyschondroplasia and related bone abnormalities in broiler chicks was investigated. The results indicated that feeding 1,25(OH) 2 D 3 at 5ug/Kg diet as the sole source of vitamin D 3 steroid was sufficient to maintain a calcium homeostasis in the chicks. The effect of growth hormone (GH) injections on the metabolism of tibial epiphyseal growth plant (EGP) in broiler chicks either genetically susceptible or resistant to tibial dyschondroplasia (HTD and LTD respectively) was investigated. GH injection increased 3 H-thymidine uptake, indicating a direct effect of GH on cell replication in EGP

  4. The Skeletal Muscle Satellite Cell

    Science.gov (United States)

    2011-01-01

    The skeletal muscle satellite cell was first described and named based on its anatomic location between the myofiber plasma and basement membranes. In 1961, two independent studies by Alexander Mauro and Bernard Katz provided the first electron microscopic descriptions of satellite cells in frog and rat muscles. These cells were soon detected in other vertebrates and acquired candidacy as the source of myogenic cells needed for myofiber growth and repair throughout life. Cultures of isolated myofibers and, subsequently, transplantation of single myofibers demonstrated that satellite cells were myogenic progenitors. More recently, satellite cells were redefined as myogenic stem cells given their ability to self-renew in addition to producing differentiated progeny. Identification of distinctively expressed molecular markers, in particular Pax7, has facilitated detection of satellite cells using light microscopy. Notwithstanding the remarkable progress made since the discovery of satellite cells, researchers have looked for alternative cells with myogenic capacity that can potentially be used for whole body cell-based therapy of skeletal muscle. Yet, new studies show that inducible ablation of satellite cells in adult muscle impairs myofiber regeneration. Thus, on the 50th anniversary since its discovery, the satellite cell’s indispensable role in muscle repair has been reaffirmed. PMID:22147605

  5. Three-Dimensional Human iPSC-Derived Artificial Skeletal Muscles Model Muscular Dystrophies and Enable Multilineage Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Sara Martina Maffioletti

    2018-04-01

    Full Text Available Summary: Generating human skeletal muscle models is instrumental for investigating muscle pathology and therapy. Here, we report the generation of three-dimensional (3D artificial skeletal muscle tissue from human pluripotent stem cells, including induced pluripotent stem cells (iPSCs from patients with Duchenne, limb-girdle, and congenital muscular dystrophies. 3D skeletal myogenic differentiation of pluripotent cells was induced within hydrogels under tension to provide myofiber alignment. Artificial muscles recapitulated characteristics of human skeletal muscle tissue and could be implanted into immunodeficient mice. Pathological cellular hallmarks of incurable forms of severe muscular dystrophy could be modeled with high fidelity using this 3D platform. Finally, we show generation of fully human iPSC-derived, complex, multilineage muscle models containing key isogenic cellular constituents of skeletal muscle, including vascular endothelial cells, pericytes, and motor neurons. These results lay the foundation for a human skeletal muscle organoid-like platform for disease modeling, regenerative medicine, and therapy development. : Maffioletti et al. generate human 3D artificial skeletal muscles from healthy donors and patient-specific pluripotent stem cells. These human artificial muscles accurately model severe genetic muscle diseases. They can be engineered to include other cell types present in skeletal muscle, such as vascular cells and motor neurons. Keywords: skeletal muscle, pluripotent stem cells, iPS cells, myogenic differentiation, tissue engineering, disease modeling, muscular dystrophy, organoids

  6. Direct and indirect assessment of skeletal muscle blood flow in chronic congestive heart failure

    International Nuclear Information System (INIS)

    LeJemtel, T.H.; Scortichini, D.; Katz, S.

    1988-01-01

    In patients with chronic congestive heart failure (CHF), skeletal muscle blood flow can be measured directly by the continuous thermodilution technique and by the xenon-133 clearance method. The continuous thermodilution technique requires retrograde catheterization of the femoral vein and, thus, cannot be repeated conveniently in patients during evaluation of pharmacologic interventions. The xenon-133 clearance, which requires only an intramuscular injection, allows repeated determination of skeletal muscle blood flow. In patients with severe CHF, a fixed capacity of the skeletal muscle vasculature to dilate appears to limit maximal exercise performance. Moreover, the changes in peak skeletal muscle blood flow noted during long-term administration of captopril, an angiotensin-converting enzyme inhibitor, appears to correlate with the changes in aerobic capacity. In patients with CHF, resting supine deep femoral vein oxygen content can be used as an indirect measurement of resting skeletal muscle blood flow. The absence of a steady state complicates the determination of peak skeletal muscle blood flow reached during graded bicycle or treadmill exercise in patients with chronic CHF. Indirect assessments of skeletal muscle blood flow and metabolism during exercise performed at submaximal work loads are currently developed in patients with chronic CHF

  7. Proteomics of Skeletal Muscle: Focus on Insulin Resistance and Exercise Biology

    Directory of Open Access Journals (Sweden)

    Atul S. Deshmukh

    2016-02-01

    Full Text Available Skeletal muscle is the largest tissue in the human body and plays an important role in locomotion and whole body metabolism. It accounts for ~80% of insulin stimulated glucose disposal. Skeletal muscle insulin resistance, a primary feature of Type 2 diabetes, is caused by a decreased ability of muscle to respond to circulating insulin. Physical exercise improves insulin sensitivity and whole body metabolism and remains one of the most promising interventions for the prevention of Type 2 diabetes. Insulin resistance and exercise adaptations in skeletal muscle might be a cause, or consequence, of altered protein expressions profiles and/or their posttranslational modifications (PTMs. Mass spectrometry (MS-based proteomics offer enormous promise for investigating the molecular mechanisms underlying skeletal muscle insulin resistance and exercise-induced adaptation; however, skeletal muscle proteomics are challenging. This review describes the technical limitations of skeletal muscle proteomics as well as emerging developments in proteomics workflow with respect to samples preparation, liquid chromatography (LC, MS and computational analysis. These technologies have not yet been fully exploited in the field of skeletal muscle proteomics. Future studies that involve state-of-the-art proteomics technology will broaden our understanding of exercise-induced adaptations as well as molecular pathogenesis of insulin resistance. This could lead to the identification of new therapeutic targets.

  8. Selenium regulates gene expression of selenoprotein W in chicken skeletal muscle system.

    Science.gov (United States)

    Ruan, Hongfeng; Zhang, Ziwei; Wu, Qiong; Yao, Haidong; Li, Jinlong; Li, Shu; Xu, Shiwen

    2012-01-01

    Selenoprotein W (SelW) is abundantly expressed in skeletal muscles of mammals and necessary for the metabolism of skeletal muscles. However, its expression pattern in skeletal muscle system of birds is still uncovered. Herein, to investigate the distribution of SelW mRNA in chicken skeletal muscle system and its response to different selenium (Se) status, 1-day-old chickens were exposed to various concentrations of Se as sodium selenite in the feed for 35 days. In addition, myoblasts were treated with different concentrations of Se in the medium for 72 h. Then the levels of SelW mRNA in skeletal muscles (wing muscle, pectoral muscle, thigh muscle) and myoblasts were determined on days 1, 15, 25, and 35 and at 0, 24, 48, and 72 h, respectively. The results showed that SelW was detected in all these muscle components and it increased both along with the growth of organism and the differentiation process of myoblasts. The thigh muscle is more responsive to Se intake than the other two skeletal muscle tissues while the optimal Se supplementation for SelW mRNA expression in chicken myoblasts was 10(-7) M. In summary, Se plays important roles in the development of chicken skeletal muscles. To effect optimal SelW gene expression, Se must be provided in the diet and the media in adequate amounts and neither at excessive nor deficient levels.

  9. Comparative Evaluation of Dental and Skeletal Fluorosis in an Endemic Fluorosed District, Salem, Tamil Nadu.

    Science.gov (United States)

    Ramesh, Maya; Malathi, N; Ramesh, K; Aruna, Rita Mary; Kuruvilla, Sarah

    2017-11-01

    High levels of fluoride in the drinking water, especially ground water, results in skeletal fluorosis which involves the bone and major joints. This study was conducted to assess the prevalence of skeletal fluorosis to compare with dental fluorosis in an endemically fluorosed population in the District of Salem, Tamil Nadu. Institutional ethical clearance was obtained. A total of 206 patients who reported to the Department of Hematology for blood investigations were the participants in this study. Age, sex, place, weight, height, dental fluorosis, and skeletal complaints were noted down. Body mass index was calculated, and statistical analysis was performed. Dental fluorosis was present in 63.1% and absent in 36.9% of the samples reported. Skeletal fluorosis was present in 24.8% and was absent in 75.2%. A large number of the patients had knee pain and difficulty in bending. Chi-square test was used for statistical analysis. Skeletal fluorosis and age were compared and P value was 0.00 and was significant. Dental fluorosis and skeletal fluorosis were compared and P value was found to be 0.000 and significant. There is a need to take measures to prevent dental and skeletal fluorosis among the residents of Salem district. Calcium balance should be maintained, and fluoride intake should be minimized to reduce the symptoms. The government should provide water with low fluoride level for drinking and cooking. Once the symptoms develop, treatment largely remains symptomatic, using analgesics and physiotherapy.

  10. The diagnostic performance of chronologic age in the assessment of skeletal maturity.

    Science.gov (United States)

    Baccetti, Tiziano; Franchi, Lorenzo; De Toffol, Laura; Ghiozzi, Bruno; Cozza, Paola

    2006-01-01

    The aim of this study was to analyze the relationship between chronologic age the and individual skeletal maturity as assessed by means of the cervical vertebral maturation (CVM) method during the circumpubertal period. The evaluated sample of 600 subjects consisted of 100 subjects (50 males and 50 females) for each of 6 age groups, from 9 years through 14 years of age. Individual skeletal maturity for all subjects was determined by using the CVM method. The relationship between chronologic age and the most prevalent CVM stage at each age group was evaluated statistically by means of indicators of diagnostic test performance that specify the ability of a diagnostic test to identify a condition. The diagnostic performance of chronologic age for the detection of the onset of the adolescent peak in skeletal maturation was very low both in males and in females. In male subjects, the chronologic age of 9 years +/- 6 months presented with strong diagnostic power for the identification of a pre-pubertal stage in skeletal maturation. In female subjects, the chronologic age of 14 years +/- 6 months corresponded with a strong probability of a postpubertal stage in skeletal maturation. In males, chronologic age can identify a pre-pubertal stage of skeletal development, and in females a post-pubertal stage. In both males and females, chronologic age cannot recognize the onset of the adolescent peak in skeletal maturation.

  11. mTOR as a Key Regulator in Maintaining Skeletal Muscle Mass

    Directory of Open Access Journals (Sweden)

    Mee-Sup Yoon

    2017-10-01

    Full Text Available Maintenance of skeletal muscle mass is regulated by the balance between anabolic and catabolic processes. Mammalian target of rapamycin (mTOR is an evolutionarily conserved serine/threonine kinase, and is known to play vital roles in protein synthesis. Recent findings have continued to refine our understanding of the function of mTOR in maintaining skeletal muscle mass. mTOR controls the anabolic and catabolic signaling of skeletal muscle mass, resulting in the modulation of muscle hypertrophy and muscle wastage. This review will highlight the fundamental role of mTOR in skeletal muscle growth by summarizing the phenotype of skeletal-specific mTOR deficiency. In addition, the evidence that mTOR is a dual regulator of anabolism and catabolism in skeletal muscle mass will be discussed. A full understanding of mTOR signaling in the maintenance of skeletal muscle mass could help to develop mTOR-targeted therapeutics to prevent muscle wasting.

  12. Comprehensive Validation of Skeletal Mechanism for Turbulent Premixed Methane–Air Flame Simulations

    KAUST Repository

    Luca, Stefano

    2017-08-01

    A new skeletal mechanism, consisting of 16 species and 72 reactions, has been developed for lean methane–air premixed combustion from the GRI-Mech 3.0. The skeletal mechanism is validated for elevated unburnt temperatures (800 K) and pressures up to 4 atm, thereby addressing realistic gas turbine conditions. The skeletal mechanism is obtained by applying the directed relation graph method and performing sensitivity analysis on the detailed mechanism. The mechanism has been validated for flame speed and flame structure in a wide range of conditions and configurations. A good agreement between the skeletal mechanism and GRI-3.0 was obtained. The configurations considered include one-dimension laminar premixed flames, laminar non-premixed counterflow burners, and two- and three-dimensional unsteady configurations with variations of temperature, pressure, and composition. The skeletal mechanism allows for the inclusion of accurate finite rate chemistry in large-scale direct numerical simulations of lean turbulent premixed flames. In a large-scale direct numerical simulation, the use of the skeletal mechanism reduces the memory requirements by more than a factor of 3 and accelerates the simulation by a factor of 7 compared with the detailed mechanism. The skeletal mechanism is suitable for unsteady three-dimensional simulations of methane turbulent premixed, non-premixed, and globally lean partially premixed flames and is available as supplementary material.

  13. Skeletal muscle cutpoints associated with elevated physical disability risk in older men and women.

    Science.gov (United States)

    Janssen, Ian; Baumgartner, Richard N; Ross, Robert; Rosenberg, Irwin H; Roubenoff, Ronenn

    2004-02-15

    The purpose of this study was to determine skeletal muscle cutpoints for identifying elevated physical disability risk in older adults. Subjects included 4,449 older (> or = 60 years) participants from the Third National Health and Nutrition Examination Survey during 1988-1994. Physical disability was assessed by questionnaire, and bioimpedance was used to estimate skeletal muscle, which was normalized for height. Receiver operating characteristics were used to develop the skeletal muscle cutpoints associated with a high likelihood of physical disability. Odds for physical disability were compared in subjects whose measures fell above and below these cutpoints. Skeletal muscle cutpoints of 5.76-6.75 and values in men were 8.51-10.75 and skeletal muscle values, women with moderate- and high-risk skeletal muscle values had odds for physical disability of 1.41 (95% confidence interval (CI): 0.97, 2.04) and 3.31 (95% CI: 1.91, 5.73), respectively. The corresponding odds in men were 3.65 (95% CI: 1.92, 6.94) and 4.71 (95% CI: 2.28, 9.74). This study presents skeletal muscle cutpoints for physical disability risk in older adults. Future applications of these cutpoints include the comparison of morbidity risk in older persons with normal muscle mass and those with sarcopenia, the determination and comparison of sarcopenia prevalences, and the estimation of health-care costs attributable to sarcopenia.

  14. Cerebellar medulloblastoma presenting with skeletal metastasis

    Directory of Open Access Journals (Sweden)

    Barai Sukanta

    2004-04-01

    Full Text Available Medulloblastomas are highly malignant brain tumours, but only rarely produce skeletal metastases. No case of medulloblastoma has been documented to have produced skeletal metastases prior to craniotomy or shunt surgery. A 21-year-old male presented with pain in the hip and lower back with difficulty in walking of 3 months′ duration. Signs of cerebellar dysfunction were present hence a diagnosis of cerebellar neoplasm or skeletal tuberculosis with cerebellar abscess formation was considered. MRI of brain revealed a lesion in the cerebellum suggestive of medulloblastoma. Bone scan revealed multiple sites of skeletal metastases excluding the lumbar vertebrae. MRI of lumbar spine and hip revealed metastases to all lumbar vertebrae and both hips. Computed tomography-guided biopsy was obtained from the L3 vertebra, which revealed metastatic deposits from medulloblastoma. Cerebrospinal fluid cytology showed the presence of medulloblastoma cells. A final diagnosis of cerebellar medulloblastoma with skeletal metastases was made. He underwent craniotomy and histopathology confirmed medulloblastoma.

  15. Overexpression of protein kinase STK25 in mice exacerbates ectopic lipid accumulation, mitochondrial dysfunction and insulin resistance in skeletal muscle

    DEFF Research Database (Denmark)

    Chursa, Urszula; Nuñez-Durán, Esther; Cansby, Emmelie

    2017-01-01

    AIMS/HYPOTHESIS: Understanding the molecular networks controlling ectopic lipid deposition and insulin responsiveness in skeletal muscle is essential for developing new strategies to treat type 2 diabetes. We recently identified serine/threonine protein kinase 25 (STK25) as a critical regulator...... in skeletal muscle, highlighting the potential of STK25 antagonists for type 2 diabetes treatment....

  16. Skeletal muscle tissue transcriptome differences in lean and obese female beagle dogs.

    Science.gov (United States)

    Grant, R W; Vester Boler, B M; Ridge, T K; Graves, T K; Swanson, K S

    2013-08-01

    Skeletal muscle is a large and insulin-sensitive tissue that is an important contributor to metabolic homeostasis and energy expenditure. Many metabolic processes are altered with obesity, but the contribution of muscle tissue in this regard is unclear. A limited number of studies have compared skeletal muscle gene expression of lean and obese dogs. Using microarray technology, our objective was to identify genes and functional classes differentially expressed in skeletal muscle of obese (14.6 kg; 8.2 body condition score; 44.5% body fat) vs. lean (8.6 kg; 4.1 body condition score; 22.9% body fat) female beagle adult dogs. Alterations in 77 transcripts was observed in genes pertaining to the functional classes of signaling, transport, protein catabolism and proteolysis, protein modification, development, transcription and apoptosis, cell cycle and differentiation. Genes differentially expressed in obese vs. lean dog skeletal muscle indicate oxidative stress and altered skeletal muscle cell differentiation. Many genes traditionally associated with lipid, protein and carbohydrate metabolism were not altered in obese vs. lean dogs, but genes pertaining to endocannabinoid metabolism, insulin signaling, type II diabetes mellitus and carnitine transport were differentially expressed. The relatively small response of skeletal muscle could indicate that changes are occurring at a post-transcriptional level, that other tissues (e.g., adipose tissue) were buffering skeletal muscle from metabolic dysfunction or that obesity-induced changes in skeletal muscle require a longer period of time and that the length of our study was not sufficient to detect them. Although only a limited number of differentially expressed genes were detected, these results highlight genes and functional classes that may be important in determining the etiology of obesity-induced derangement of skeletal muscle function. © 2013 The Authors, Animal Genetics © 2013 Stichting International Foundation

  17. Improved Cell Culture Method for Growing Contracting Skeletal Muscle Models

    Science.gov (United States)

    Marquette, Michele L.; Sognier, Marguerite A.

    2013-01-01

    An improved method for culturing immature muscle cells (myoblasts) into a mature skeletal muscle overcomes some of the notable limitations of prior culture methods. The development of the method is a major advance in tissue engineering in that, for the first time, a cell-based model spontaneously fuses and differentiates into masses of highly aligned, contracting myotubes. This method enables (1) the construction of improved two-dimensional (monolayer) skeletal muscle test beds; (2) development of contracting three-dimensional tissue models; and (3) improved transplantable tissues for biomedical and regenerative medicine applications. With adaptation, this method also offers potential application for production of other tissue types (i.e., bone and cardiac) from corresponding precursor cells.

  18. Radiopharmaceutical agents for skeletal scanning

    International Nuclear Information System (INIS)

    Jansen, S.E.; Van Aswegen, A.; Loetter, M.G.; Minnaar, P.C.; Otto, A.C.; Goedhals, L.; Dedekind, P.S.

    1987-01-01

    The quality of bone scan images obtained with a locally produced and with an imported radiopharmaceutical bone agent, methylene diphosphonate (MDP), was compared visually. Standard skeletal imaging was carried out on 10 patients using both agents, with a period of 2 to 7 days between studies with alternate agents. Equal amounts of activity were administered for both agents. All images were acquired on Polaroid film for subsequent evaluation. The acquisition time for standard amount of counts per study was recorded. Three physicians with applicable experience evaluated image quality (on a 4 point scale) and detectability of metastasis (on a 3 point scale). There was no statistically significant difference (p 0,05) between the two agents by paired t-test of Hotelling's T 2 analysis. It is concluded that the imaging properties of the locally produced and the imported MDP are similar

  19. Adipocyte-myocyte crosstalk in skeletal muscle insulin resistance; is there a role for thyroid hormone?

    Science.gov (United States)

    Havekes, Bas; Sauerwein, Hans P

    2010-11-01

    To review original research studies and reviews that present data on adipocyte-myocyte crosstalk in the development of skeletal muscle insulin resistance with a specific focus on thyroid hormone. Adipose tissue communicates with skeletal muscle not only through free fatty acids but also through secretion of various products called adipokines. Adipokines came out as governors of insulin sensitivity and are deregulated in obesity. In addition to well known leptin, adiponectin, interleukin-6 and tumor necrosis factor-alpha, newer adipokines like retinol-binding protein 4 have been associated with insulin resistance. There is mounting evidence that not only adipose tissue but also skeletal muscle produces and secretes biologically active proteins or 'myokines' that facilitate metabolic crosstalk between organ systems. In recent years, increased expression of myostatin, a secreted anabolic inhibitor of muscle growth and development, has been associated with obesity and insulin resistance. Both hypothyroidism and hyperthyroidism affect insulin sensitivity in multiple ways that might overlap adipocyte-myocyte crosstalk. Recent studies have provided new insights in effects of processing of the parent hormone T4 to the active T3 at the level of the skeletal muscle. Adipocyte-myocyte crosstalk is an important modulator in the development of skeletal muscle insulin resistance. Thyroid disorders are very common and may have detrimental effects on skeletal muscle insulin resistance, potentially by interacting with adipocyte-myocyte crosstalk.

  20. Cardiac, Skeletal, and smooth muscle mitochondrial respiration

    DEFF Research Database (Denmark)

    Park, Song-Young; Gifford, Jayson R; Andtbacka, Robert H I

    2014-01-01

    , skeletal, and smooth muscle was harvested from a total of 22 subjects (53±6 yrs) and mitochondrial respiration assessed in permeabilized fibers. Complex I+II, state 3 respiration, an index of oxidative phosphorylation capacity, fell progressively from cardiac, skeletal, to smooth muscle (54±1; 39±4; 15......±1 pmol•s(-1)•mg (-1), prespiration rates were normalized by CS (respiration...... per mitochondrial content), oxidative phosphorylation capacity was no longer different between the three muscle types. Interestingly, Complex I state 2 normalized for CS activity, an index of non-phosphorylating respiration per mitochondrial content, increased progressively from cardiac, skeletal...

  1. Skeletal sequelae of radiation therapy for malignant childhood tumors

    International Nuclear Information System (INIS)

    Butler, M.S.; Robertson, W.W. Jr.; Rate, W.; D'Angio, G.J.; Drummond, D.S.

    1990-01-01

    One hundred forty-three patients who received radiation therapy for childhood tumors, and survived to the age of skeletal maturity, were studied by retrospective review of oncology records and roentgenograms. Diagnoses for the patients were the following: Hodgkin's lymphoma (44), Wilms's tumor (30), acute lymphocytic leukemia (26), non-Hodgkin's lymphoma (18), Ewing's sarcoma (nine), rhabdomyosarcoma (six), neuroblastoma (six), and others (four). Age at the follow-up examination averaged 18 years (range, 14-28 years). Average length of follow-up study was 9.9 years (range, two to 18 years). Asymmetry of the chest and ribs was seen in 51 (36%) of these children. Fifty (35%) had scoliosis; 14 had kyphosis. In two children, the scoliosis was treated with a brace, while one developed significant kyphosing scoliosis after laminectomy and had spinal fusion. Twenty-three (16%) patients complained of significant pain at the radiation sites. Twelve of the patients developed leg-length inequality; eight of those were symptomatic. Three patients developed second primary tumors. Currently, the incidence of significant skeletal sequelae is lower and the manifestations are less severe than reported in the years from 1940 to 1970. The reduction in skeletal complications may be attributed to shielding of growth centers, symmetric field selection, decreased total radiation doses, and sequence changes in chemotherapy

  2. Engineered matrices for skeletal muscle satellite cell engraftment and function.

    Science.gov (United States)

    Han, Woojin M; Jang, Young C; García, Andrés J

    2017-07-01

    Regeneration of traumatically injured skeletal muscles is severely limited. Moreover, the regenerative capacity of skeletal muscle declines with aging, further exacerbating the problem. Recent evidence supports that delivery of muscle satellite cells to the injured muscles enhances muscle regeneration and reverses features of aging, including reduction in muscle mass and regenerative capacity. However, direct delivery of satellite cells presents a challenge at a translational level due to inflammation and donor cell death, motivating the need to develop engineered matrices for muscle satellite cell delivery. This review will highlight important aspects of satellite cell and their niche biology in the context of muscle regeneration, and examine recent progresses in the development of engineered cell delivery matrices designed for skeletal muscle regeneration. Understanding the interactions of muscle satellite cells and their niche in both native and engineered systems is crucial to developing muscle pathology-specific cell- and biomaterial-based therapies. Copyright © 2016 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  3. Skeletal Dysplasias Associated with Mild Myopathy—A Clinical and Molecular Review

    Directory of Open Access Journals (Sweden)

    Katarzyna A. Piróg

    2010-01-01

    Full Text Available Musculoskeletal system is a complex assembly of tissues which acts as scaffold for the body and enables locomotion. It is often overlooked that different components of this system may biomechanically interact and affect each other. Skeletal dysplasias are diseases predominantly affecting the development of the osseous skeleton. However, in some cases skeletal dysplasia patients are referred to neuromuscular clinics prior to the correct skeletal diagnosis. The muscular complications seen in these cases are usually mild and may stem directly from the muscle defect and/or from the altered interactions between the individual components of the musculoskeletal system. A correct early diagnosis may enable better management of the patients and a better quality of life. This paper attempts to summarise the different components of the musculoskeletal system which are affected in skeletal dysplasias and lists several interesting examples of such diseases in order to enable better understanding of the complexity of human musculoskeletal system.

  4. Paraphyseal changes on bone-age studies predict risk of delayed radiation-associated skeletal complications following total body irradiation

    International Nuclear Information System (INIS)

    Kitazono Hammell, Mary T.; Edgar, J.C.; Jaramillo, Diego; Bunin, Nancy

    2013-01-01

    Children undergoing total body irradiation (TBI) often develop delayed skeletal complications. Bone-age studies in these children often reveal subtle paraphyseal changes including physeal widening, metaphyseal irregularity and paraphyseal exostoses. To investigate whether paraphyseal changes on a bone-age study following TBI indicate a predisposition toward developing other radiation-associated skeletal complications. We retrospectively reviewed medical records and bone-age studies of 77 children receiving TBI at our institution between 1995 and 2008 who had at least 2 years of clinical follow-up and one bone-age study after TBI. We graded bone-age studies according to the severity of paraphyseal changes. All documented skeletal complications following TBI were tabulated. Kendall's tau-b was used to examine associations between degree of paraphyseal change and development of a skeletal complication. Kendall's tau analyses showed that physeal widening and metaphyseal irregularity/sclerosis (tau = 0.87, P < 0.001) and paraphyseal exostoses (tau = 0.68, P < 0.001) seen on bone-age studies were significantly positively associated with the development of delayed skeletal complications following TBI. Thirty percent of children with no or mild paraphyseal changes developed a delayed skeletal complication, compared with 58% of children with moderate paraphyseal changes and 90% of children with severe paraphyseal changes. Paraphyseal changes identified on a bone-age study correlate positively with the development of delayed skeletal complications elsewhere in the skeleton following TBI. (orig.)

  5. Robust generation and expansion of skeletal muscle progenitors and myocytes from human pluripotent stem cells.

    Science.gov (United States)

    Shelton, Michael; Kocharyan, Avetik; Liu, Jun; Skerjanc, Ilona S; Stanford, William L

    2016-05-15

    Human pluripotent stem cells provide a developmental model to study early embryonic and tissue development, tease apart human disease processes, perform drug screens to identify potential molecular effectors of in situ regeneration, and provide a source for cell and tissue based transplantation. Highly efficient differentiation protocols have been established for many cell types and tissues; however, until very recently robust differentiation into skeletal muscle cells had not been possible unless driven by transgenic expression of master regulators of myogenesis. Nevertheless, several breakthrough protocols have been published in the past two years that efficiently generate cells of the skeletal muscle lineage from pluripotent stem cells. Here, we present an updated version of our recently described 50-day protocol in detail, whereby chemically defined media are used to drive and support muscle lineage development from initial CHIR99021-induced mesoderm through to PAX7-expressing skeletal muscle progenitors and mature skeletal myocytes. Furthermore, we report an optional method to passage and expand differentiating skeletal muscle progenitors approximately 3-fold every 2weeks using Collagenase IV and continued FGF2 supplementation. Both protocols have been optimized using a variety of human pluripotent stem cell lines including patient-derived induced pluripotent stem cells. Taken together, our differentiation and expansion protocols provide sufficient quantities of skeletal muscle progenitors and myocytes that could be used for a variety of studies. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Diabetic Myopathy: Impact of Diabetes Mellitus on Skeletal Muscle Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Donna M D'Souza

    2013-12-01

    Full Text Available Diabetes mellitus is defined as a group of metabolic diseases that are associated with the presence of a hyperglycemic state due to impairments in insulin function. While the development of each form of diabetes (Type 1 or Type 2 drastically differs, resultant pathologies often overlap. In each diabetic condition a failure to maintain healthy muscle is often observed, and is termed diabetic myopathy. This significant, but often overlooked, complication is believed to contribute to the progression of additional diabetic pathologies due to the vital importance of skeletal muscle for our physical and metabolic well-being. While studies have investigated the link between changes to skeletal muscle metabolic health following diabetes mellitus onset (particularly Type 2 diabetes mellitus, few have examined the negative impact of diabetes mellitus on the growth and reparative capacities of skeletal muscle that often coincides with disease development. Importantly, evidence is accumulating that the muscle progenitor cell population (particularly the muscle satellite cell population is also negatively affected by the diabetic environment, and as such, likely contributes to the declining skeletal muscle health observed in diabetes mellitus. In this review, we summarize the current knowledge surrounding the influence of diabetes mellitus on skeletal muscle growth and repair, with a particular emphasis on the impact of diabetes mellitus on the progenitor cell population of skeletal muscle.

  7. Biogenetically inspired synthesis and skeletal diversification of indole alkaloids.

    Science.gov (United States)

    Mizoguchi, Haruki; Oikawa, Hideaki; Oguri, Hiroki

    2014-01-01

    To access architecturally complex natural products, chemists usually devise a customized synthetic strategy for constructing a single target skeleton. In contrast, biosynthetic assembly lines often employ divergent intramolecular cyclizations of a polyunsaturated common intermediate to produce diverse arrays of scaffolds. With the aim of integrating such biogenetic strategies, we show the development of an artificial divergent assembly line generating unprecedented numbers of scaffold variations of terpenoid indole alkaloids. This approach not only allows practical access to multipotent intermediates, but also enables systematic diversification of skeletal, stereochemical and functional group properties without structural simplification of naturally occurring alkaloids. Three distinct modes of [4+2] cyclizations and two types of redox-mediated annulations provided divergent access to five skeletally distinct scaffolds involving iboga-, aspidosperma-, andranginine- and ngouniensine-type skeletons and a non-natural variant within six to nine steps from tryptamine. The efficiency of our approach was demonstrated by successful total syntheses of (±)-vincadifformine, (±)-andranginine and (-)-catharanthine.

  8. Role of PKCδ in Insulin Sensitivity and Skeletal Muscle Metabolism

    DEFF Research Database (Denmark)

    Li, Mengyao; Vienberg, Sara G; Bezy, Olivier

    2015-01-01

    Protein kinase C (PKC)δ has been shown to be increased in liver in obesity and plays an important role in the development of hepatic insulin resistance in both mice and humans. In the current study, we explored the role of PKCδ in skeletal muscle in the control of insulin sensitivity and glucose......-body insulin sensitivity and muscle insulin resistance and by 15 months of age improved the age-related decline in whole-body glucose tolerance. At 15 months of age, M-PKCδKO mice also exhibited decreased metabolic rate and lower levels of some proteins of the OXPHOS complex suggesting a role for PKCδ...... in the regulation of mitochondrial mass at older age. These data indicate an important role of PKCδ in the regulation of insulin sensitivity and mitochondrial homeostasis in skeletal muscle with aging....

  9. Substrate kinetics in patients with disorders of skeletal muscle metabolism.

    Science.gov (United States)

    Ørngreen, Mette Cathrine

    2016-07-01

    exercise, exercise capacity is worsened, most likely due to the sympatho-adrenergt response, that increases heart rate and blocks gluconeogenesis. Substrate turnover studies in patients with McArdle disease and phosphorylase b kinase deficiency showed that palmitate lipolysis, utilization and plasma concentration was higher and total CHO lower in the patients during exercise vs. healthy subjects. In patients with low muscle mass glucose homeostasis is impaired, and our findings showed that these patients are prone to develop hypoglycaemia during prolonged fasting. The following studies emphasize the importance of skeletal muscle in production of energy, both when skeletal muscle lack important metabolic enzymes (metabolic myopathies), and when skeletal muscle mass is low.

  10. [Molecular mechanisms of skeletal muscle hypertrophy].

    Science.gov (United States)

    Astratenkova, I V; Rogozkin, V A

    2014-06-01

    Enzymes Akt, AMPK, mTOR, S6K and PGC-1a coactivator take part in skeletal muscles in the regulation of synthesis of proteins. The expression of these proteins is regulated by growth factors, hormones, nutrients, mechanical loading and leads to an increase in muscle mass and skeletal muscle hypertrophy. The review presents the results of studies published in the past four years, which expand knowledge on the effects of various factors on protein synthesis in skeletal muscle. The attention is focused on the achievements that reveal and clarify the signaling pathways involved in the regulation of protein synthesis in skeletal muscle. The central place is taken by mTOR enzyme which controls and regulates the main stages of the cascade of reactions of muscle proteins providing synthesis in the conditions of human life. coactivator PGC-1a.

  11. Skeletal muscle glucose uptake during exercise

    DEFF Research Database (Denmark)

    Rose, Adam John; Richter, Erik

    2005-01-01

    The increase in skeletal muscle glucose uptake during exercise results from a coordinated increase in rates of glucose delivery (higher capillary perfusion), surface membrane glucose transport, and intracellular substrate flux through glycolysis. The mechanism behind the movement of GLUT4...

  12. Bone-seeking radiopharmaceuticals in skeletal malignancy: evolution, not revolution

    International Nuclear Information System (INIS)

    MacFarlane, D.

    2003-01-01

    Many advanced malignancies are complicated by skeletal metastases, with attendant pain and disability. External beam radiotherapy is still the most effective treatment for isolated lesions. Bone-seeking radiopharmaceuticals were perceived as a means of delivering radiation to multiple lesions simultaneously. A wide variety of radioisotopes have been used in this endeavor, with myelosuppression being the most significant potential adverse effect. Benefits of treatment are modest, including a transient improvement in pain control and perhaps prolongation of the treatment-free period. This is best demonstrated in prostate cancer with lower responses by skeletal metastases from breast and lung cancers. However, the treatment is yet to produce any improvement in patient survival. Experimental approaches to improve treatment efficacy include combination with cytotoxic therapy, and administration earlier in the course of the disease. Bone seeking radiopharmaceuticals have been used in treatment of advanced osteosarcoma in humans and canines and achieved effective palliation. The myelosuppressive effects of these agents have been exploited in patients with multiple myeloma to assist in attaining myeloablation prior to stem cell transplantation. Development of more potent non-radiolabelled bisphosphonates and recognition of their antitumour effect against several tumours has sparked a recrudescence of interest in their use for bone metastases. Set against these developments, the role of bone-seeking radiopharmaceuticals in skeletal metastases may need to be redefined

  13. A Novel bioreactor with mechanical stimulation for skeletal tissue engineering

    Directory of Open Access Journals (Sweden)

    M. Petrović

    2009-01-01

    Full Text Available The provision of mechanical stimulation is believed to be necessary for the functional assembly of skeletal tissues, which are normally exposed to a variety of biomechanical signals in vivo. In this paper, we present a development and validation of a novel bioreactor aimed for skeletal tissue engineering that provides dynamic compression and perfusion of cultivated tissues. Dynamic compression can be applied at frequencies up to 67.5 Hz and displacements down to 5 m thus suitable for the simulation of physiological conditions in a native cartilage tissue (0.1-1 Hz, 5-10 % strain. The bioreactor also includes a load sensor that was calibrated so to measure average loads imposed on tissue samples. Regimes of the mechanical stimulation and acquisition of load sensor outputs are directed by an automatic control system using applications developed within the LabView platform. In addition, perfusion of tissue samples at physiological velocities (10–100 m/s provides efficient mass transfer, as well as the possibilities to expose the cells to hydrodynamic shear and simulate the conditions in a native bone tissue. Thus, the novel bioreactor is suited for studies of the effects of different biomechanical signals on in vitro regeneration of skeletal tissues, as well as for the studies of newly formulated biomaterials and cell biomaterial interactions under in vivo-like settings.

  14. Skeletal Aging and Osteoporosis Biomechanics and Mechanobiology

    CERN Document Server

    2013-01-01

    The focus of this book is on mechanical aspects of skeletal fragility related to aging and osteoporosis. Topics include: Age-related changes in trabecular structure and strength; age-related changes in cortical material properties; age-related changes in whole-bone structure; predicting bone strength and fracture risk using image-based methods and finite element analysis; animal models of osteoporosis and aging; age-related changes in skeletal mechano responsiveness; exercise and physical interventions for osteoporosis.

  15. Role of Akirin in Skeletal Myogenesis

    Directory of Open Access Journals (Sweden)

    Dingbiao Long

    2013-02-01

    Full Text Available Akirin is a recently discovered nuclear factor that plays an important role in innate immune responses. Beyond its role in innate immune responses, Akirin has recently been shown to play an important role in skeletal myogenesis. In this article, we will briefly review the structure and tissue distribution of Akirin and discuss recent advances in our understanding of its role and signal pathway in skeletal myogenesis.

  16. Skeletal shape correspondence via entropy minimization

    Science.gov (United States)

    Tu, Liyun; Styner, Martin; Vicory, Jared; Paniagua, Beatriz; Prieto, Juan Carlos; Yang, Dan; Pizer, Stephen M.

    2015-03-01

    Purpose: Improving the shape statistics of medical image objects by generating correspondence of interior skeletal points. Data: Synthetic objects and real world lateral ventricles segmented from MR images. Method(s): Each object's interior is modeled by a skeletal representation called the s-rep, which is a quadrilaterally sampled, folded 2-sided skeletal sheet with spoke vectors proceeding from the sheet to the boundary. The skeleton is divided into three parts: up-side, down-side and fold-curve. The spokes on each part are treated separately and, using spoke interpolation, are shifted along their skeletal parts in each training sample so as to tighten the probability distribution on those spokes' geometric properties while sampling the object interior regularly. As with the surface-based correspondence method of Cates et al., entropy is used to measure both the probability distribution tightness and sampling regularity. The spokes' geometric properties are skeletal position, spoke length and spoke direction. The properties used to measure the regularity are the volumetric subregions bounded by the spokes, their quadrilateral sub-area and edge lengths on the skeletal surface and on the boundary. Results: Evaluation on synthetic and real world lateral ventricles demonstrated improvement in the performance of statistics using the resulting probability distributions, as compared to methods based on boundary models. The evaluation measures used were generalization, specificity, and compactness. Conclusions: S-rep models with the proposed improved correspondence provide significantly enhanced statistics as compared to standard boundary models.

  17. Action of Obestatin in Skeletal Muscle Repair: Stem Cell Expansion, Muscle Growth, and Microenvironment Remodeling

    Science.gov (United States)

    Gurriarán-Rodríguez, Uxía; Santos-Zas, Icía; González-Sánchez, Jessica; Beiroa, Daniel; Moresi, Viviana; Mosteiro, Carlos S; Lin, Wei; Viñuela, Juan E; Señarís, José; García-Caballero, Tomás; Casanueva, Felipe F; Nogueiras, Rubén; Gallego, Rosalía; Renaud, Jean-Marc; Adamo, Sergio; Pazos, Yolanda; Camiña, Jesús P

    2015-01-01

    The development of therapeutic strategies for skeletal muscle diseases, such as physical injuries and myopathies, depends on the knowledge of regulatory signals that control the myogenic process. The obestatin/GPR39 system operates as an autocrine signal in the regulation of skeletal myogenesis. Using a mouse model of skeletal muscle regeneration after injury and several cellular strategies, we explored the potential use of obestatin as a therapeutic agent for the treatment of trauma-induced muscle injuries. Our results evidenced that the overexpression of the preproghrelin, and thus obestatin, and GPR39 in skeletal muscle increased regeneration after muscle injury. More importantly, the intramuscular injection of obestatin significantly enhanced muscle regeneration by simulating satellite stem cell expansion as well as myofiber hypertrophy through a kinase hierarchy. Added to the myogenic action, the obestatin administration resulted in an increased expression of vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor 2 (VEGFR2) and the consequent microvascularization, with no effect on collagen deposition in skeletal muscle. Furthermore, the potential inhibition of myostatin during obestatin treatment might contribute to its myogenic action improving muscle growth and regeneration. Overall, our data demonstrate successful improvement of muscle regeneration, indicating obestatin is a potential therapeutic agent for skeletal muscle injury and would benefit other myopathies related to muscle regeneration. PMID:25762009

  18. Generation of skeletal muscle from transplanted embryonic stem cells in dystrophic mice

    International Nuclear Information System (INIS)

    Bhagavati, Satyakam; Xu Weimin

    2005-01-01

    Embryonic stem (ES) cells have great therapeutic potential because of their capacity to proliferate extensively and to form any fully differentiated cell of the body, including skeletal muscle cells. Successful generation of skeletal muscle in vivo, however, requires selective induction of the skeletal muscle lineage in cultures of ES cells and following transplantation, integration of appropriately differentiated skeletal muscle cells with recipient muscle. Duchenne muscular dystrophy (DMD), a severe progressive muscle wasting disease due to a mutation in the dystrophin gene and the mdx mouse, an animal model for DMD, are characterized by the absence of the muscle membrane associated protein, dystrophin. Here, we show that co-culturing mouse ES cells with a preparation from mouse muscle enriched for myogenic stem and precursor cells, followed by injection into mdx mice, results occasionally in the formation of normal, vascularized skeletal muscle derived from the transplanted ES cells. Study of this phenomenon should provide valuable insights into skeletal muscle development in vivo from transplanted ES cells

  19. Human skeletal muscle drug transporters determine local exposure and toxicity of statins.

    Science.gov (United States)

    Knauer, Michael J; Urquhart, Bradley L; Meyer zu Schwabedissen, Henriette E; Schwarz, Ute I; Lemke, Christopher J; Leake, Brenda F; Kim, Richard B; Tirona, Rommel G

    2010-02-05

    The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, or statins, are important drugs used in the treatment and prevention of cardiovascular disease. Although statins are well tolerated, many patients develop myopathy manifesting as muscle aches and pain. Rhabdomyolysis is a rare but severe toxicity of statins. Interindividual differences in the activities of hepatic membrane drug transporters and metabolic enzymes are known to influence statin plasma pharmacokinetics and risk for myopathy. Interestingly, little is known regarding the molecular determinants of statin distribution into skeletal muscle and its relevance to toxicity. We sought to identify statin transporters in human skeletal muscle and determine their impact on statin toxicity in vitro. We demonstrate that the uptake transporter OATP2B1 (human organic anion transporting polypeptide 2B1) and the efflux transporters, multidrug resistance-associated protein (MRP)1, MRP4, and MRP5 are expressed on the sarcolemmal membrane of human skeletal muscle fibers and that atorvastatin and rosuvastatin are substrates of these transporters when assessed using a heterologous expression system. In an in vitro model of differentiated, primary human skeletal muscle myoblast cells, we demonstrate basal membrane expression and drug efflux activity of MRP1, which contributes to reducing intracellular statin accumulation. Furthermore, we show that expression of human OATP2B1 in human skeletal muscle myoblast cells by adenoviral vectors increases intracellular accumulation and toxicity of statins and such effects were abrogated when cells overexpressed MRP1. These results identify key membrane transporters as modulators of skeletal muscle statin exposure and toxicity.

  20. Report writing in skeletal radiology

    International Nuclear Information System (INIS)

    Rowe, L.J.; Yochum, T.R.

    1987-01-01

    The formulation of reports in clinical practice is a standard method of documentation of a patient's history, examination findings, therapeutic regime, and prognosis, as well as other important features. In the practice of producing and interpreting diagnostic radiographs, report writing also serves a number of important roles, which include providing an accurate means of recording findings in instances of 1) medicolegal circumstances; 2) a standard for comparison with previous or later examinations; 3) a permanent record if the radiographs are lost or not immediately available for perusal; 4) communication with other practitioners and health professionals; and 5) expediating the treatment regime by providing a resume of important indications and contraindictions for therapy. In the radiological literature there is a distinct lack of material on report writing and very little as to what would be considered a standard style. Consequently, radiological reporting has increasingly become a subjective, personalized procedure, with each individual modifying the report according to previous training, experience, and needs. It is the purpose of this chapter to provide basic guidelines on the mechanisms of formulating adequate standardized reports in radiological examinations of the skeletal system

  1. Clinical role of skeletal scanning

    Energy Technology Data Exchange (ETDEWEB)

    Ell, P J

    1975-12-01

    Malignant disease very often spreads to the skeleton. This is particularly true for carcinomas of the breast, the lungs, the prostate, and the thyroid. Knowledge of the state of the skeleton in these disorders is therefore desirable since patient management will largely depend on the early detection of bony deposits. Primary bone disease often spreads to soft tissue (lungs), and the early detection of this may alter significantly the therapeutic approach to the primary lesion. Traditionally, x-ray skeletal surveys and serum enzyme measurements provide indices which can be used in the staging of these disorders. Complementary techniques such as mammography, xeroradiography, thermography, and radionuclide imaging have been used to provide further relevant information. A number of benign bone diseases need early assessment in order to institute the best form of treatment. It is of importance to assess the circulation in localized areas of bone and to predict the appearance of avascular necrosis, to understand the healing mechanisms involved in fractures, and to predict the outcome of bone grafting. In this paper the clinical role of bone scanning is reviewed, particular attention being given to the recent advances brought about by the introduction of the /sup 99m/Tc compounds. It is important that the non-specialist should be aware of the great improvement in the results obtained and in the help they can give him in deciding on the best management of each patient as an individual.

  2. Radiological diagnosis of skeletal tuberculosis

    International Nuclear Information System (INIS)

    Numberger, J.

    1982-01-01

    The general X-ray-symptoms follow one another or appear at the same time: Swelling of soft tissues by fungus; toxic perifocal and sometimes parafocal osteoporosis; osteolysis by specific granulation tissues; destruction of adjacent discs and articulation cartilages; formation of sequesters; cold abscess and formation of fistulas because of perforation of the corticalis by liquified tuberculous tissue; bone compression and deformation; amorphous calcifications; perifocal osteosclerosis as a repairing process. The spondylitis tuberculosis is the most frequent form with about 50%; usually narrowing of the discspace is the earliest X-ray-finding. On the second and third place follow the tuberculosis of the hip- and the knee-joint, the rest shows up at other locations of red bone marrow. Very often the perifocal osteoporosis is the earliest X-ray-symptom of joint tuberculosis. All X-ray-findings, even the earliest, in reality are late symptoms, because at that time the disease exists at least some months. Radiologically only the differential diagnosis can be made, final diagnosis is established by histologic examination only. Because the course of untreated skeletal tuberculosis usually is chronic and destructive and, on the other hand early antituberculous chemotherapy as well as surgical treatment show excellent results early radiological suggestion of tuberculosis is of great importance for initiating other diagnostic procedures to establish the diagnosis. (orig./MG) [de

  3. Signalling and the control of skeletal muscle size

    International Nuclear Information System (INIS)

    Otto, Anthony; Patel, Ketan

    2010-01-01

    Skeletal muscle is highly adaptive to environmental stimuli and can alter its mass accordingly. This tissue is almost unique in that it can increase its size through two distinct mechanisms. It can grow through a cellular process mediated by cell fusion, or it can increase its size simply by increasing its protein content. Understanding how these processes are regulated is crucial for the development of potential therapies against debilitating skeletal muscle wasting diseases. Two key signalling molecules, Insulin like Growth Factor (IGF) and GDF-8/myostatin, have emerged in recent years to be potent regulators of skeletal muscle size. In this review we bring together recent data highlighting the important and novel aspects of both molecules and their signalling pathways, culminating in a discussion of the cellular and tissue phenotypic outcomes of their stimulation or antagonism. We emphasise the complex regulatory mechanisms and discuss the temporal and spatial differences that control their action, understanding of which is crucial to further their use as potential therapeutic targets.

  4. Overweight in elderly people induces impaired autophagy in skeletal muscle.

    Science.gov (United States)

    Potes, Yaiza; de Luxán-Delgado, Beatriz; Rodriguez-González, Susana; Guimarães, Marcela Rodrigues Moreira; Solano, Juan J; Fernández-Fernández, María; Bermúdez, Manuel; Boga, Jose A; Vega-Naredo, Ignacio; Coto-Montes, Ana

    2017-09-01

    Sarcopenia is the gradual loss of skeletal muscle mass, strength and quality associated with aging. Changes in body composition, especially in skeletal muscle and fat mass are crucial steps in the development of chronic diseases. We studied the effect of overweight on skeletal muscle tissue in elderly people without reaching obesity to prevent this extreme situation. Overweight induces a progressive protein breakdown reflected as a progressive withdrawal of anabolism against the promoted catabolic state leading to muscle wasting. Protein turnover is regulated by a network of signaling pathways. Muscle damage derived from overweight displayed by oxidative and endoplasmic reticulum (ER) stress induces inflammation and insulin resistance and forces the muscle to increase requirements from autophagy mechanisms. Our findings showed that failure of autophagy in the elderly deprives it to deal with the cell damage caused by overweight. This insufficiently efficient autophagy leads to an accumulation of p62 and NBR1, which are robust markers of protein aggregations. This impaired autophagy affects myogenesis activity. Depletion of myogenic regulatory factors (MRFs) without links to variations in myostatin levels in overweight patients suggest a possible reduction of satellite cells in muscle tissue, which contributes to declined muscle quality. This discovery has important implications that improve the understanding of aged-related atrophy caused by overweight and demonstrates how impaired autophagy is one of the main responsible mechanisms that aggravate muscle wasting. Therefore, autophagy could be an interesting target for therapeutic interventions in humans against muscle impairment diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. The skeletal vascular system - Breathing life into bone tissue.

    Science.gov (United States)

    Stegen, Steve; Carmeliet, Geert

    2017-08-26

    During bone development, homeostasis and repair, a dense vascular system provides oxygen and nutrients to highly anabolic skeletal cells. Characteristic for the vascular system in bone is the serial organization of two capillary systems, each typified by specific morphological and physiological features. Especially the arterial capillaries mediate the growth of the bone vascular system, serve as a niche for skeletal and hematopoietic progenitors and couple angiogenesis to osteogenesis. Endothelial cells and osteoprogenitor cells interact not only physically, but also communicate to each other by secretion of growth factors. A vital angiogenic growth factor is vascular endothelial growth factor and its expression in skeletal cells is controlled by osteogenic transcription factors and hypoxia signaling, whereas the secretion of angiocrine factors by endothelial cells is regulated by Notch signaling, blood flow and possibly hypoxia. Bone loss and impaired fracture repair are often associated with reduced and disorganized blood vessel network and therapeutic targeting of the angiogenic response may contribute to enhanced bone regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Expression of androgen receptor target genes in skeletal muscle

    Directory of Open Access Journals (Sweden)

    Kesha Rana

    2014-10-01

    Full Text Available We aimed to determine the mechanisms of the anabolic actions of androgens in skeletal muscle by investigating potential androgen receptor (AR-regulated genes in in vitro and in vivo models. The expression of the myogenic regulatory factor myogenin was significantly decreased in skeletal muscle from testosterone-treated orchidectomized male mice compared to control orchidectomized males, and was increased in muscle from male AR knockout mice that lacked DNA binding activity (ARΔZF2 versus wildtype mice, demonstrating that myogenin is repressed by the androgen/AR pathway. The ubiquitin ligase Fbxo32 was repressed by 12 h dihydrotestosterone treatment in human skeletal muscle cell myoblasts, and c-Myc expression was decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle, and increased in AR∆ZF2 muscle. The expression of a group of genes that regulate the transition from myoblast proliferation to differentiation, Tceal7 , p57 Kip2, Igf2 and calcineurin Aa, was increased in AR∆ZF2 muscle, and the expression of all but p57 Kip2 was also decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle. We conclude that in males, androgens act via the AR in part to promote peak muscle mass by maintaining myoblasts in the proliferative state and delaying the transition to differentiation during muscle growth and development, and by suppressing ubiquitin ligase-mediated atrophy pathways to preserve muscle mass in adult muscle.

  7. Impact of placental insufficiency on fetal skeletal muscle growth

    Science.gov (United States)

    Hay, William W.

    2016-01-01

    Intrauterine growth restriction (IUGR) caused by placental insufficiency is one of the most common and complex problems in perinatology, with no known cure. In pregnancies affected by placental insufficiency, a poorly functioning placenta restricts nutrient supply to the fetus and prevents normal fetal growth. Among other significant deficits in organ development, the IUGR fetus characteristically has less lean body and skeletal muscle mass than their appropriately-grown counterparts. Reduced skeletal muscle growth is not fully compensated after birth, as individuals who were born small for gestational age (SGA) from IUGR have persistent reductions in muscle mass and strength into adulthood. The consequences of restricted muscle growth and accelerated postnatal “catch-up” growth in the form of adiposity may contribute to the increased later life risk for visceral adiposity, peripheral insulin resistance, diabetes, and cardiovascular disease in individuals who were formerly IUGR. This review will discuss how an insufficient placenta results in impaired fetal skeletal muscle growth and how lifelong reductions in muscle mass might contribute to increased metabolic disease risk in this vulnerable population. PMID:26994511

  8. Signalling and the control of skeletal muscle size

    Energy Technology Data Exchange (ETDEWEB)

    Otto, Anthony [School of Biological Sciences, Hopkins Building, University of Reading, Whiteknights Campus, Reading, Berkshire, RG6 6UB (United Kingdom); Patel, Ketan, E-mail: ketan.patel@reading.ac.uk [School of Biological Sciences, Hopkins Building, University of Reading, Whiteknights Campus, Reading, Berkshire, RG6 6UB (United Kingdom)

    2010-11-01

    Skeletal muscle is highly adaptive to environmental stimuli and can alter its mass accordingly. This tissue is almost unique in that it can increase its size through two distinct mechanisms. It can grow through a cellular process mediated by cell fusion, or it can increase its size simply by increasing its protein content. Understanding how these processes are regulated is crucial for the development of potential therapies against debilitating skeletal muscle wasting diseases. Two key signalling molecules, Insulin like Growth Factor (IGF) and GDF-8/myostatin, have emerged in recent years to be potent regulators of skeletal muscle size. In this review we bring together recent data highlighting the important and novel aspects of both molecules and their signalling pathways, culminating in a discussion of the cellular and tissue phenotypic outcomes of their stimulation or antagonism. We emphasise the complex regulatory mechanisms and discuss the temporal and spatial differences that control their action, understanding of which is crucial to further their use as potential therapeutic targets.

  9. In vitro Differentiation of Functional Human Skeletal Myotubes in a Defined System.

    Science.gov (United States)

    Guo, Xiufang; Greene, Keshel; Akanda, Nesar; Smith, Alec; Stancescu, Maria; Lambert, Stephen; Vandenburgh, Herman; Hickman, James

    2014-01-01

    In vitro human skeletal muscle systems are valuable tools for the study of human muscular development, disease and treatment. However, published in vitro human muscle systems have so far only demonstrated limited differentiation capacities. Advanced differentiation features such as cross-striations and contractility have only been observed in co-cultures with motoneurons. Furthermore, it is commonly regarded that cultured human myotubes do not spontaneously contract, and any contraction has been considered to originate from innervation. This study developed a serum-free culture system in which human skeletal myotubes demonstrated advanced differentiation. Characterization by immunocytochemistry, electrophysiology and analysis of contractile function revealed these major features: A) well defined sarcomeric development, as demonstrated by the presence of cross-striations. B) finely developed excitation-contraction coupling apparatus characterized by the close apposition of dihydropyridine receptors on T-tubules and Ryanodine receptors on sarcoplasmic reticulum membranes. C) spontaneous and electrically controlled contractility. This report not only demonstrates an improved level of differentiation of cultured human skeletal myotubes, but also provides the first published evidence that such myotubes are capable of spontaneous contraction. Use of this functional in vitro human skeletal muscle system would advance studies concerning human skeletal muscle development and physiology, as well as muscle-related disease and therapy.

  10. Generalized skeletal pathology: Results of radionuclide studies

    International Nuclear Information System (INIS)

    Fueger, G.F.; Aigner, R.

    1987-01-01

    Generalized pathological changes may involve the skeleton systematically (bone tissue, bone marrow) or at multiple sites involving destruction or infiltration. Appropriate radionuclide studies include total-body bone or bone marrow scintigraphy, absorptiometry (osteodensitometry) and the 24 h whole-body retention measurement. Established radioindicators are 99m-Tc-(hydroxy)methylendiphosphonate (HMDP or MDP) and 99m-Tc-human serumalbumin-nanocolloid. Absorptiometry of the forearm, extended by computer-assisted transaxial tomography, may be expected to prove as the most efficient method of bone density measurement. The 24 h whole-body retention measurement is useful for the diagnosis and follow-up of metabolic and endocrine osteopathies, if the very same osteotropic 99m-Tc-chelate is used. Whole-body bone scintigraphy today is one of the most important radionuclide studies for diagnosis and follow-up of skeletal metastases. Scintigraphy provides evidence of skeletal metastases several months earlier than radiological examinations. In about 40 percent of patients with cancer of the prostate, scintigraphy provided positive findings of skeletal metastases in the absence of both pain and increased levels of phosphatase. In patients with a history of malignancy, 60 percent of solitary findings on skeletal scintigraphy are metastases. The frequency of false negative findings obtained by whole-body skeletal scintigraphy are metastases. The frequency of false negative findings obtained by whole-body skeletal scintigraphy ranges from 2 to 4%. Compared to skeletal scintigraphy, bone marrow scintigraphy frequently yields significant additional findings in cases of plasmocytoma, histiocytoma, lymphoma and haemoblastoses. (orig.) [de

  11. Effect of statins on skeletal muscle function.

    Science.gov (United States)

    Parker, Beth A; Capizzi, Jeffrey A; Grimaldi, Adam S; Clarkson, Priscilla M; Cole, Stephanie M; Keadle, Justin; Chipkin, Stuart; Pescatello, Linda S; Simpson, Kathleen; White, C Michael; Thompson, Paul D

    2013-01-01

    Many clinicians believe that statins cause muscle pain, but this has not been observed in clinical trials, and the effect of statins on muscle performance has not been carefully studied. The Effect of Statins on Skeletal Muscle Function and Performance (STOMP) study assessed symptoms and measured creatine kinase, exercise capacity, and muscle strength before and after atorvastatin 80 mg or placebo was administered for 6 months to 420 healthy, statin-naive subjects. No individual creatine kinase value exceeded 10 times normal, but average creatine kinase increased 20.8±141.1 U/L (Pmuscle strength or exercise capacity with atorvastatin, but more atorvastatin than placebo subjects developed myalgia (19 versus 10; P=0.05). Myalgic subjects on atorvastatin or placebo had decreased muscle strength in 5 of 14 and 4 of 14 variables, respectively (P=0.69). These results indicate that high-dose atorvastatin for 6 months does not decrease average muscle strength or exercise performance in healthy, previously untreated subjects. Nevertheless, this blinded, controlled trial confirms the undocumented impression that statins increase muscle complaints. Atorvastatin also increased average creatine kinase, suggesting that statins produce mild muscle injury even among asymptomatic subjects. This increase in creatine kinase should prompt studies examining the effects of more prolonged, high-dose statin treatment on muscular performance. URL: http://www.clinicaltrials.gov. Unique identifier: NCT00609063.

  12. External skeletal robusticity of children and adolescents - European references from birth to adulthood and international comparisons.

    Science.gov (United States)

    Mumm, Rebekka; Godina, Elena; Koziel, Slawomir; Musalek, Martin; Sedlak, Petr; Wittwer-Backofen, Ursula; Hesse, Volker; Dasgupta, Parasmani; Henneberg, Maciej; Scheffler, Christiane

    2018-02-20

    Background: In our modern world, the way of life in nutritional and activity behaviour has changed. As a consequence, parallel trends of an epidemic of overweight and a decline in external skeletal robusticity are observed in children and adolescents. Aim: We aim to develop reference centiles for external skeletal robusticity of European girls and boys aged 0 to 18 years using the Frame Index as an indicator and identify population specific age-related patterns. Methods: We analysed cross-sectional & longitudinal data on body height and elbow breadth of boys and girls from Europe (0-18 years, n = 41.679), India (7-18 years, n = 3.297) and South Africa (3-18 years, n = 4.346). As an indicator of external skeletal robusticity Frame Index after Frisancho (1990) was used. We developed centiles for boys and girls using the LMS-method and its extension. Results: Boys have greater external skeletal robusticity than girls. Whereas in girls Frame Index decreases continuously during growth, an increase of Frame Index from 12 to 16 years in European boys can be observed. Indian and South African boys are almost similar in Frame Index to European boys. In girls, the pattern is slightly different. Whereas South African girls are similar to European girls, Indian girls show a lesser external skeletal robusticity. Conclusion: Accurate references for external skeletal robusticity are needed to evaluate if skeletal development is adequate per age. They should be used to monitor effects of changes in way of life and physical activity levels in children and adolescents to avoid negative health outcomes like osteoporosis and arthrosis.

  13. Whole-body MRI in comparison to skeletal scintigraphy for detection of skeletal metastases in patients with solid tumors

    International Nuclear Information System (INIS)

    Ghanem, N.; Altehoefer, C.; Winterer, J.; Schaefer, O.; Bley, T.A.; Langer, M.; Kelly, T.; Moser, E.

    2004-01-01

    The aim of this study was to compare the diagnostic efficacy of whole-body magnetic resonance imaging (WB-MRI) as a new and rapid examination technique with skeletal scintigraphy for detection of skeletal metastases from solid tumors. In 129 patients with solid malignant tumors, WB-MRI was performed for individual comparison with skeletal scintigraphy. Examinations were performed with the innovative AngioSURF trademark rolling table with integrated phased array surface coil and coronary TIRM sequences for different body regions. The results for WB-MRI and skeletal scintigraphy were concordant in 81% of the cases, whereby both procedures excluded skeletal metastases in 43%. WB-MRI and skeletal scintigraphy demonstrated skeletal metastases in 38% of the cases, whereby WB-MRI provided more comprehensive findings in 45%. In 12% of the cases, skeletal scintigraphy was superior to WB-MRI and in 19% the findings were discordant, whereby WB-MRI detected skeletal metastases in 15 cases which had not been found on skeletal scintigraphy. In nine cases, skeletal scintigraphy was positive when the WB-MRI was negative. In 60% of the cases, WB-MRI evidenced tumor-associated findings. WB-MRI represents a promising new staging technique for detection of skeletal metastases, which is more sensitive in many cases than skeletal scintigraphy in detecting and assessing the extent of skeletal metastases - and tumor-associated findings that are relevant for treatment strategy. (orig.) [de

  14. The biorhythm of human skeletal growth.

    Science.gov (United States)

    Mahoney, Patrick; Miszkiewicz, Justyna J; Chapple, Simon; Le Luyer, Mona; Schlecht, Stephen H; Stewart, Tahlia J; Griffiths, Richard A; Deter, Chris; Guatelli-Steinberg, Debbie

    2018-01-01

    Evidence of a periodic biorhythm is retained in tooth enamel in the form of Retzius lines. The periodicity of Retzius lines (RP) correlates with body mass and the scheduling of life history events when compared between some mammalian species. The correlation has led to the development of the inter-specific Havers-Halberg oscillation (HHO) hypothesis, which holds great potential for studying aspects of a fossil species biology from teeth. Yet, our understanding of if, or how, the HHO relates to human skeletal growth is limited. The goal here is to explore associations between the biorhythm and two hard tissues that form at different times during human ontogeny, within the context of the HHO. First, we investigate the relationship of RP to permanent molar enamel thickness and the underlying daily rate that ameloblasts secrete enamel during childhood. Following this, we develop preliminary research conducted on small samples of adult human bone by testing associations between RP, adult femoral length (as a proxy for attained adult stature) and cortical osteocyte lacunae density (as a proxy for the rate of osteocyte proliferation). Results reveal RP is positively correlated with enamel thickness, negatively correlated with femoral length, but weakly associated with the rate of enamel secretion and osteocyte proliferation. These new data imply that a slower biorhythm predicts thicker enamel for children but shorter stature for adults. Our results develop the intra-specific HHO hypothesis suggesting that there is a common underlying systemic biorhythm that has a role in the final products of human enamel and bone growth. © 2017 Anatomical Society.

  15. Engineered skeletal muscle tissue for soft robotics: fabrication strategies, current applications, and future challenges.

    Science.gov (United States)

    Duffy, Rebecca M; Feinberg, Adam W

    2014-01-01

    Skeletal muscle is a scalable actuator system used throughout nature from the millimeter to meter length scales and over a wide range of frequencies and force regimes. This adaptability has spurred interest in using engineered skeletal muscle to power soft robotics devices and in biotechnology and medical applications. However, the challenges to doing this are similar to those facing the tissue engineering and regenerative medicine fields; specifically, how do we translate our understanding of myogenesis in vivo to the engineering of muscle constructs in vitro to achieve functional integration with devices. To do this researchers are developing a number of ways to engineer the cellular microenvironment to guide skeletal muscle tissue formation. This includes understanding the role of substrate stiffness and the mechanical environment, engineering the spatial organization of biochemical and physical cues to guide muscle alignment, and developing bioreactors for mechanical and electrical conditioning. Examples of engineered skeletal muscle that can potentially be used in soft robotics include 2D cantilever-based skeletal muscle actuators and 3D skeletal muscle tissues engineered using scaffolds or directed self-organization. Integration into devices has led to basic muscle-powered devices such as grippers and pumps as well as more sophisticated muscle-powered soft robots that walk and swim. Looking forward, current, and future challenges include identifying the best source of muscle precursor cells to expand and differentiate into myotubes, replacing cardiomyocytes with skeletal muscle tissue as the bio-actuator of choice for soft robots, and vascularization and innervation to enable control and nourishment of larger muscle tissue constructs. © 2013 Wiley Periodicals, Inc.

  16. Characteristics of Skeletal Musculature of Pheasants Hatched from Eggs of Different Eggshell Colour

    Directory of Open Access Journals (Sweden)

    Dragan Zikic

    2016-05-01

    Full Text Available The aim of this paper was to examine morphodinamics of development of skeletal musculature of pheasants hatched from eggs of different eggshell colour. Four groups of pheasant eggs (dark brown, light brown, brown/green and blue/green were incubated. Samples of skeletal musculature of leg and breast were taken during the embryonic and neonatal period of development. From taken samples histological preparations were made. In pheasants hatched from blue/green eggs the smaller diameter of leg and breast muscle cells and the higher volume density of connective tissue in leg and breast muscles were recorded. It was concluded that pheasants hatched from blue/green eggs had the weakest development of skeletal musculature, which can be related to structural differences of eggshell of various colour.

  17. Skeletal coccidioidomycosis: imaging findings in 19 patients

    International Nuclear Information System (INIS)

    Zeppa, M.A.; Greenspan, A.; McGahan, J.P.; Laorr, A.; Steinbach, L.S.

    1996-01-01

    The objective of this study was to describe the distribution and radiologic appearance of skeletal coccidioidomycosis in 19 documented cases. Medical records of 19 patients with clinically confirmed skeletal occidioidomycosis were retrospectively reviewed. The patients were studied with plain radiography, skeletal scintigraphy and MRI. Multiple lesions were seen in 11 of 19 patients (58%). Of a total of 46 lesions, 27 (59%) were described as punched-out lytic, 10 (22%) as permeative/destructive, and 9 (17%) as involving a joint and/or disk space. Lesions were identified in almost every bone (with the exception of the facial bones, ulna, carpus, and fibula) and were most commonly found in the axial skeleton (20 of 46; 43%). Plain radiographs are effective in the initial evaluation of bones and joints, scintigraphic studies can identify disseminated disease, and CT and MRI are effective in determining soft tissue involvement and spinal abnormalities. (orig./MG)

  18. Intraurethral Injection of Autologous Minced Skeletal Muscle

    DEFF Research Database (Denmark)

    Gräs, Søren; Klarskov, Niels; Lose, Gunnar

    2014-01-01

    noted. CONCLUSIONS: Intraurethral injection of minced autologous muscle tissue is a simple surgical procedure that appears safe and moderately effective in women with uncomplicated stress urinary incontinence. It compares well to a more complicated regenerative strategy using in vitro expanded muscle......PURPOSE: Intraurethral injection of in vitro expanded autologous skeletal muscle derived cells is a new regenerative therapy for stress urinary incontinence. We examined the efficacy and safety of a simpler alternative strategy using freshly harvested, minced autologous skeletal muscle tissue...... with its inherent content of regenerative cells. MATERIALS AND METHODS: A total of 20 and 15 women with uncomplicated and complicated stress urinary incontinence, respectively, received intraurethral injections of minced autologous skeletal muscle tissue and were followed for 1 year. Efficacy was assessed...

  19. Increased skeletal muscle capillarization enhances insulin sensitivity

    DEFF Research Database (Denmark)

    Åkerström, Thorbjörn; Laub, Lasse; Vedel, Kenneth

    2014-01-01

    Increased skeletal muscle capillarization is associated with improved glucose tolerance and insulin sensitivity. However, a possible causal relationship has not previously been identified. We therefore investigated whether increased skeletal muscle capillarization increases insulin sensitivity....... Skeletal muscle specific angiogenesis was induced by adding the α1-adrenergic receptor antagonist Prazosin to the drinking water of Sprague Dawley rats (n=33) while 34 rats served as controls. Insulin sensitivity was measured ≥40 h after termination of the 3-week Prazosin treatment, which ensured...... that Prazosin was cleared from the blood stream. Whole-body insulin sensitivity was measured in conscious, unrestrained rats by hyperinsulinemic euglycemic clamp. Tissue specific insulin sensitivity was assessed by administration of 2-deoxy-[(3)H]-Glucose during the plateau phase of the clamp. Whole...

  20. Disease-Induced Skeletal Muscle Atrophy and Fatigue

    NARCIS (Netherlands)

    Powers, Scott K.; Lynch, Gordon S.; Murphy, Kate T.; Reid, Michael B.; Zijdewind, Inge

    2016-01-01

    Numerous health problems including acute critical illness, cancer, diseases associated with chronic inflammation, and neurological disorders often result in skeletal muscle weakness and fatigue. Disease-related muscle atrophy and fatigue is an important clinical problem because acquired skeletal

  1. Occipital projections in the skeletal dysplasias

    International Nuclear Information System (INIS)

    Takamine, Yuji; Field, Fiona M.; Lachman, Ralph S.; Rimoin, David L.

    2004-01-01

    Occipital projections of the cranium have been reported in a number of skeletal dysplasias and syndromes. We observed two cases of atelosteogenesis type I with a bony occipital projection. This finding has neither been noted nor reported in any form of atelosteogenesis. This led us to search the International Skeletal Dysplasia Registry for occipital projections, and we found them in four other syndromes in which they had not been reported. Thus occipital spurs are a non-diagnostic feature that can be found in at least ten distinct disorders as well as a normal variant. (orig.)

  2. Radium-223 in treatment of castration-resistant prostate cancer with skeletal metastases

    Directory of Open Access Journals (Sweden)

    V. B. Matveev

    2017-01-01

    Full Text Available More than 90 % of patients with metastatic castration-resistant prostate cancer (CRPC have radiologically confirmed skeletal metastases. Traditional treatment methods such as administration of painkillers, external beam therapy, bisphosphonates or denosumab, as well as injections of strontium-89 or samarium-153 radionuclides, have only palliative effect and in some cases can postpone development of skeletal complications. Alpha-emitter radium-223 dichloride (Ra-223; alpharadin previously is currently one of the known drugs with proven effectiveness in relation to increasing overall survival of patients with CRPC. Ra-223 was developed specifically for patients with CRPC and symptomatic skeletal metastases. The drug targets the areas of skeletal tissue remodeling. Ra-223 is the therapy of choice in patients with CRPC and skeletal metastases and without confirmed visceral metastases before and after docetaxel chemotherapy. Chemotherapy after treatment with Ra-223 is a possible and satisfactory tolerable treatment option. Combination of Ra-223 with abiraterone, enzalutamide, or denosumab is, apparently, effective and safe, but further studies are necessary.

  3. Expression and functional characterization of Smyd1a in myofibril organization of skeletal muscles.

    Science.gov (United States)

    Gao, Jie; Li, Junling; Li, Bao-Jun; Yagil, Ezra; Zhang, Jianshe; Du, Shao Jun

    2014-01-01

    Smyd1, the founding member of the Smyd family including Smyd-1, 2, 3, 4 and 5, is a SET and MYND domain containing protein that plays a key role in myofibril assembly in skeletal and cardiac muscles. Bioinformatic analysis revealed that zebrafish genome contains two highly related smyd1 genes, smyd1a and smyd1b. Although Smyd1b function is well characterized in skeletal and cardiac muscles, the function of Smyd1a is, however, unknown. To investigate the function of Smyd1a in muscle development, we isolated smyd1a from zebrafish, and characterized its expression and function during muscle development via gene knockdown and transgenic expression approaches. The results showed that smyd1a was strongly expressed in skeletal muscles of zebrafish embryos. Functional analysis revealed that knockdown of smyd1a alone had no significant effect on myofibril assembly in zebrafish skeletal muscles. However, knockdown of smyd1a and smyd1b together resulted in a complete disruption of myofibril organization in skeletal muscles, a phenotype stronger than knockdown of smyd1a or smyd1b alone. Moreover, ectopic expression of zebrafish smyd1a or mouse Smyd1 transgene could rescue the myofibril defects from the smyd1b knockdown in zebrafish embryos. Collectively, these data indicate that Smyd1a and Smyd1b share similar biological activity in myofibril assembly in zebrafish embryos. However, Smyd1b appears to play a major role in this process.

  4. An analysis of correlation between occlusion classification and skeletal pattern

    International Nuclear Information System (INIS)

    Lu Xinhua; Cai Bin; Wang Dawei; Wu Liping

    2003-01-01

    Objective: To study the correlation between dental relationship and skeletal pattern of individuals. Methods: 194 cases were selected and classified by angle classification, incisor relationship and skeletal pattern respectively. The correlation of angle classification and incisor relationship to skeletal pattern was analyzed with SPSS 10.0. Results: The values of correlation index (Kappa) were 0.379 and 0.494 respectively. Conclusion: The incisor relationship is more consistent with skeletal pattern than angle classification

  5. The Correlation of Skeletal and Cardiac Muscle Dysfunction in Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Posner, Andrew D; Soslow, Jonathan H; Burnette, W Bryan; Bian, Aihua; Shintani, Ayumi; Sawyer, Douglas B; Markham, Larry W

    2016-01-01

    Duchenne muscular dystrophy (DMD) is characterized by progressive skeletal muscle and cardiac dysfunction. While skeletal muscle dysfunction precedes cardiomyopathy, the relationship between the progressive decline in skeletal and cardiac muscle function is unclear. This relationship is especially important given that the myocardial effects of many developing DMD therapies are largely unknown. Our objective was to assess the relationship between progression of skeletal muscle weakness and onset of cardiac dysfunction in DMD. A total of 77 DMD subjects treated at a single referral center were included. Demographic information, quantitative muscle testing (QMT), subjective muscle strength, cardiac function, and current and retrospective medications were collected. A Spearman rank correlation was used to evaluate for an association between subjective strength and fractional shortening. The effects of total QMT and arm QMT on fractional shortening were examined in generalized least square with and without adjustments for age, ambulatory status, and duration of corticosteroids and cardiac specific medications. We found a significant correlation between maintained subjective skeletal muscle arm and leg strength and maintained cardiac function as defined by fractional shortening (rho=0.47, p=0.004 and rho=0.48, p=0.003, respectively). We also found a significant association between QMT and fractional shortening among non-ambulatory DMD subjects (p=0.03), while this association was not significant in ambulatory subjects. Our findings allow us to conclude that in this population, there exists a significant relationship between skeletal muscle and cardiac function in non-ambulatory DMD patients. While this does not imply a causal relationship, a possible association between skeletal and cardiac muscle function suggests that researchers should carefully monitor cardiac function, even when the primary outcome measures are not cardiac in nature.

  6. Melanocortin 4 Receptor Activation Attenuates Mitochondrial Dysfunction in Skeletal Muscle of Diabetic Rats.

    Science.gov (United States)

    Zhang, Hao-Hao; Liu, Jiao; Qin, Gui-Jun; Li, Xia-Lian; Du, Pei-Jie; Hao, Xiao; Zhao, Di; Tian, Tian; Wu, Jing; Yun, Meng; Bai, Yan-Hui

    2017-11-01

    A previous study has confirmed that the central melanocortin system was able to mediate skeletal muscle AMP-activated protein kinase (AMPK) activation in mice fed a high-fat diet, while activation of the AMPK signaling pathway significantly induced mitochondrial biogenesis. Our hypothesis was that melanocortin 4 receptor (MC4R) was involved in the development of skeletal muscle injury in diabetic rats. In this study, we treated diabetic rats intracerebroventricularly with MC4R agonist R027-3225 or antagonist SHU9119, respectively. Then, we measured the production of reactive oxygen species (ROS), the levels of malondialdehyde (MDA) and glutathione (GSH), the mitochondrial DNA (mtDNA) content and mitochondrial biogenesis, and the protein levels of p-AMPK, AMPK, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α), sirtuin 1 (SIRT1), and manganese superoxide dismutase (MnSOD) in the skeletal muscle of diabetic rats. The results showed that there was significant skeletal muscle injury in the diabetic rats along with serious oxidative stress and decreased mitochondrial biogenesis. Treatment with R027-3225 reduced oxidative stress and induced mitochondrial biogenesis in skeletal muscle, and also activated the AMPK-SIRT1-PGC-1α signaling pathway. However, diabetic rats injected with MC4R antagonist SHU9119 showed an aggravated oxidative stress and mitochondrial dysfunction in skeletal muscle. In conclusion, our results revealed that MC4R activation was able to attenuate oxidative stress and mitochondrial dysfunction in skeletal muscle induced by diabetes partially through activating the AMPK-SIRT1-PGC-1α signaling pathway. J. Cell. Biochem. 118: 4072-4079, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Oxidative stress (glutathionylation and Na,K-ATPase activity in rat skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Carsten Juel

    Full Text Available Changes in ion distribution across skeletal muscle membranes during muscle activity affect excitability and may impair force development. These changes are counteracted by the Na,K-ATPase. Regulation of the Na,K-ATPase is therefore important for skeletal muscle function. The present study investigated the presence of oxidative stress (glutathionylation on the Na,K-ATPase in rat skeletal muscle membranes.Immunoprecipitation with an anti-glutathione antibody and subsequent immunodetection of Na,K-ATPase protein subunits demonstrated 9.0±1.3% and 4.1±1.0% glutathionylation of the α isoforms in oxidative and glycolytic skeletal muscle, respectively. In oxidative muscle, 20.0±6.1% of the β1 units were glutathionylated, whereas 14.8±2.8% of the β2-subunits appear to be glutathionylated in glycolytic muscle. Treatment with the reducing agent dithiothreitol (DTT, 1 mM increased the in vitro maximal Na,K-ATPase activity by 19% (P<0.05 in membranes from glycolytic muscle. Oxidized glutathione (GSSG, 0-10 mM increased the in vitro glutathionylation level detected with antibodies, and decreased the in vitro maximal Na,K-ATPase activity in a dose-dependent manner, and with a larger effect in oxidative compared to glycolytic skeletal muscle.This study demonstrates the existence of basal glutathionylation of both the α and the β units of rat skeletal muscle Na,K-ATPase. In addition, the study suggests a negative correlation between glutathionylation levels and maximal Na,K-ATPase activity.Glutathionylation likely contributes to the complex regulation of Na,K-ATPase function in skeletal muscle. Especially, glutathionylation induced by oxidative stress may have a role in Na,K-ATPase regulation during prolonged muscle activity.

  8. Myostatin-deficiency in mice increases global gene expression at the Dlk1-Dio3 locus in the skeletal muscle.

    Science.gov (United States)

    Hitachi, Keisuke; Tsuchida, Kunihiro

    2017-01-24

    Myostatin, a member of the transforming growth factor-beta superfamily, is a negative regulator of skeletal muscle growth and development. Myostatin inhibition leads to increased skeletal muscle mass in mammals; hence, myostatin is considered a potential therapeutic target for skeletal muscle wasting. However, downstream molecules of myostatin in the skeletal muscle have not been fully elucidated. Here, we identified the Dlk1-Dio3 locus at the mouse chromosome 12qF1, also called as the callipyge locus in sheep, as a novel downstream target of myostatin. In skeletal muscle of myostatin knockout mice, the expression of mature miRNAs at the Dlk1-Dio3 locus was significantly increased. The increased miRNA levels are caused by the transcriptional activation of the Dlk1-Dio3 locus, because a significant increase in the primary miRNA transcript was observed in myostatin knockout mice. In addition, we found increased expression of coding and non-coding genes (Dlk1, Gtl2, Rtl1/Rtl1as, and Rian) at the Dlk1-Dio3 locus in myostatin-deficient skeletal muscle. Moreover, epigenetic changes, associated with the regulation of the Dlk1-Dio3 locus, were observed in myostatin knockout mice. Taken together, this is the first report demonstrating the role of myostatin in regulating the Dlk1-Dio3 (the callipyge) locus in the skeletal muscle.

  9. Voltage clamp methods for the study of membrane currents and SR Ca2+ release in adult skeletal muscle fibres

    Science.gov (United States)

    Hernández-Ochoa, Erick O.; Schneider, Martin F.

    2012-01-01

    Skeletal muscle excitation-contraction (E-C)1 coupling is a process composed of multiple sequential stages, by which an action potential triggers sarcoplasmic reticulum (SR)2 Ca2+ release and subsequent contractile activation. The various steps in the E-C coupling process in skeletal muscle can be studied using different techniques. The simultaneous recordings of sarcolemmal electrical signals and the accompanying elevation in myoplasmic Ca2+, due to depolarization-initiated SR Ca2+ release in skeletal muscle fibres, have been useful to obtain a better understanding of muscle function. In studying the origin and mechanism of voltage dependency of E-C coupling a variety of different techniques have been used to control the voltage in adult skeletal fibres. Pioneering work in muscles isolated from amphibians or crustaceans used microelectrodes or ‘high resistance gap’ techniques to manipulate the voltage in the muscle fibres. The development of the patch clamp technique and its variant, the whole-cell clamp configuration that facilitates the manipulation of the intracellular environment, allowed the use of the voltage clamp techniques in different cell types, including skeletal muscle fibres. The aim of this article is to present an historical perspective of the voltage clamp methods used to study skeletal muscle E-C coupling as well as to describe the current status of using the whole-cell patch clamp technique in studies in which the electrical and Ca2+ signalling properties of mouse skeletal muscle membranes are being investigated. PMID:22306655

  10. Effects of the belt electrode skeletal muscle electrical stimulation system on lower extremity skeletal muscle activity: Evaluation using positron emission tomography.

    Science.gov (United States)

    Numata, Hitoaki; Nakase, Junsuke; Inaki, Anri; Mochizuki, Takafumi; Oshima, Takeshi; Takata, Yasushi; Kinuya, Seigo; Tsuchiya, Hiroyuki

    2016-01-01

    Lower-extremity muscle weakness in athletes after lower limb trauma or surgery can hinder their return to sports, and the associated muscle atrophy may lead to deterioration in performance after returning to sports. Recently, belt electrode skeletal muscle electrical stimulation (B-SES) which can contract all the lower limb skeletal muscles simultaneously was developed. However, no study has evaluated skeletal muscle activity with B-SES. Since only superficial muscles as well as a limited number of muscles can be investigated using electromyography, we investigated whether positron emission tomography (PET) can evaluate the activity of all the skeletal muscles in the body simultaneously. The purpose of this study was to evaluate the effectiveness of the B-SES system using PET. Twelve healthy males (mean age, 24.3 years) were divided into two groups. The subjects in the control group remained in a sitting position for 10 min, and [(18)F] fluorodeoxyglucose (FDG) was intravenously injected. In the exercise group, subjects exercised using the B-SES system for 20 min daily for three consecutive days as a pre-test exercise. On the measurement day, they exercised for 10 min, received an injection of FDG, and exercised for another 10 min. PET-computed tomography images were obtained in each group 60 min after the FDG injection. Regions of interest were drawn in each lower-extremity muscle. We compared each skeletal muscle metabolism using the standardized uptake value. In the exercise group, FDG accumulation in the gluteus maximus, gluteus medius, gluteus minimus, quadriceps femoris, sartorius, and hamstrings was significantly higher than the muscles in the control (P skeletal muscle activity of the gluteal muscles as well as the most lower-extremity muscles simultaneously. Copyright © 2015 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  11. Inactivation of Stac3 causes skeletal muscle defects and perinatal death in mice

    OpenAIRE

    Reinholt, Brad Michael

    2012-01-01

    The Src homology 3 domain (SH3) and cysteine rich domain (C1) 3 (Stac3) gene is a novel gene copiously expressed in skeletal muscle. The objective of this research was to determine the role of Stac3 in development, specifically in skeletal muscle. We achieved this objective by evaluating the phenotypic effects of Stac3 gene inactivation on development in mice. At birth homozygous Stac3 null (Stac3-/-) mice died perinatally and remained in fetal position with limp limbs, but possessed otherwis...

  12. MicroRNA in Skeletal Muscle: Its Crucial Roles in Signal Proteins, Mus cle Fiber Type, and Muscle Protein Synthesis.

    Science.gov (United States)

    Zhang, Jing; Liu, Yu Lan

    2017-01-01

    Pork is one of the most economical sources of animal protein for human consumption. Meat quality is an important economic trait for the swine industry, which is primarily determined by prenatal muscle development and postnatal growth. Identification of the molecular mechanisms underlying skeletal muscle development is a key priority. MicroRNAs (miRNAs) are a class of small noncoding RNAs that have emerged as key regulators of skeletal muscle development. A number of muscle-related miRNAs have been identified by functional gain and loss experiments in mouse model. However, determining miRNA-mRNA interactions involved in pig skeletal muscle still remains a significant challenge. For a comprehensive understanding of miRNA-mediated mechanisms underlying muscle development, miRNAome analyses of pig skeletal muscle have been performed by deep sequencing. Additionally, porcine miRNA single nucleotide polymorphisms have been implicated in muscle fiber types and meat quality. The present review provides an overview of current knowledge on recently identified miRNAs involved in myogenesis, muscle fiber type and muscle protein metabolism. Undoubtedly, further systematic understanding of the functions of miRNAs in pig skeletal muscle development will be helpful to expand the knowledge of basic skeletal muscle biology and be beneficial for the genetic improvement of meat quality traits. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. The essence of biophysical cues in skeletal muscle tissue engineering

    NARCIS (Netherlands)

    Langelaan, M.L.P.

    2010-01-01

    Skeletal muscle is an appealing topic for tissue engineering because of its variety in applications. Evidently, tissue engineered skeletal muscle can be used in the field of regenerative medicine to repair muscular defects or dystrophies. Engineered skeletal muscle constructs can also be used as a

  14. Tomographic elastography of contracting skeletal muscles from their natural vibrations

    Science.gov (United States)

    Sabra, Karim G.; Archer, Akibi

    2009-11-01

    Conventional elastography techniques require an external mechanical or radiation excitation to measure noninvasively the viscoelastic properties of skeletal muscles and thus monitor human motor functions. We developed instead a passive elastography technique using only an array of skin-mounted accelerometers to record the low-frequency vibrations of the biceps brachii muscle naturally generated during voluntary contractions and to determine their two-dimensional directionality. Cross-correlating these recordings provided travel-times measurements of these muscle vibrations between multiple sensor pairs. Travel-time tomographic inversions yielded spatial variations of their propagation velocity during isometric elbow flexions which indicated a nonuniform longitudinal stiffening of the biceps.

  15. Nutrition and skeletal health in blacks

    Science.gov (United States)

    Vitamin D deficiency is much more common among African Americans than other American groups, but there is as yet little compelling evidence that improving vitamin D status in this group will have an important benefit on skeletal health. It is possible that some African Americans have adaptive physio...

  16. Leucine stimulation of skeletal muscle protein synthesis

    International Nuclear Information System (INIS)

    Layman, D.K.; Grogan, C.K.

    1986-01-01

    Previous work in this laboratory has demonstrated a stimulatory effect of leucine on skeletal muscle protein synthesis measured in vitro during catabolic conditions. Studies in other laboratories have consistently found this effect in diaphragm muscle, however, studies examining effects on nitrogen balance or with in vivo protein synthesis in skeletal muscle are equivocal. This experiment was designed to determine the potential of leucine to stimulate skeletal muscle protein synthesis in vivo. Male Sprague-Dawley rats weighing 200 g were fasted for 12 hrs, anesthetized, a jugular cannula inserted, and protein synthesis measured using a primed continuous infusion of 14 C-tyrosine. A plateau in specific activity was reached after 30 to 60 min and maintained for 3 hrs. The leucine dose consisted of a 240 umole priming dose followed by a continuous infusion of 160 umoles/hr. Leucine infusion stimulated protein synthesis in the soleus muscle (28%) and in the red (28%) and white portions (12%) of the gastrocnemius muscle compared with controls infused with only tyrosine. The increased rates of protein synthesis were due to increased incorporation of tyrosine into protein and to decreased specific activity of the free tyrosine pool. These data indicate that infusion of leucine has the potential to stimulate in vivo protein synthesis in skeletal muscles

  17. Interleukin-6 myokine signaling in skeletal muscle

    DEFF Research Database (Denmark)

    Muñoz-Cánoves, Pura; Scheele, Camilla; Pedersen, Bente K

    2013-01-01

    Interleukin (IL)-6 is a cytokine with pleiotropic functions in different tissues and organs. Skeletal muscle produces and releases significant levels of IL-6 after prolonged exercise and is therefore considered as a myokine. Muscle is also an important target of the cytokine. IL-6 signaling has b...

  18. Difficult diagnoses in the skeletal radiology

    International Nuclear Information System (INIS)

    Freyschmidt, Juergen

    2013-01-01

    The book on difficult diagnoses in the skeletal radiology discusses the path from symptom to diagnoses including image interpretation. Specific case studies concern the skull, the spinal cord, pelvis, shoulder and chest, upper and lower extremities. The used radiological techniques include projecting radiography, computerized tomography, scintiscanning, PET/CT, NNR imaging and ultrasonography.

  19. New Skeletal-Space-Filling Models

    Science.gov (United States)

    Clarke, Frank H.

    1977-01-01

    Describes plastic, skeletal molecular models that are color-coded and can illustrate both the conformation and overall shape of small molecules. They can also be converted to space-filling counterparts by the additions of color-coded polystyrene spheres. (MLH)

  20. [Effects of lycopene on the skeletal system].

    Science.gov (United States)

    Sołtysiak, Patrycja; Folwarczna, Joanna

    2015-02-21

    Antioxidant substances of plant origin, such as lycopene, may favorably affect the skeletal system. Lycopene is a carotenoid pigment, responsible for characteristic red color of tomatoes. It is believed that lycopene may play a role in the prevention of various diseases; despite theoretical premises and results of experimental studies, the effectiveness of lycopene has not yet been clearly demonstrated in studies carried out in humans. The aim of the study was to present the current state of knowledge on the effects of lycopene on the osseous tissue in in vitro and in vivo experimental models and on the skeletal system in humans. Results of the studies indicate that lycopene may inhibit bone resorption. Favorable effects of high doses of lycopene on the rat skeletal system in experimental conditions, including the model of osteoporosis induced by estrogen deficiency, have been demonstrated. The few epidemiological and clinical studies, although not fully conclusive, suggest a possible beneficial effect of lycopene present in the diet on the skeletal system.

  1. The Human Skeletal Muscle Proteome Project

    DEFF Research Database (Denmark)

    Gonzalez-Freire, Marta; Semba, Richard D.; Ubaida-Mohien, Ceereena

    2017-01-01

    Skeletal muscle is a large organ that accounts for up to half the total mass of the human body. A progressive decline in muscle mass and strength occurs with ageing and in some individuals configures the syndrome of ‘sarcopenia’, a condition that impairs mobility, challenges autonomy, and is a ri...

  2. Dysphagia due to diffuseidiopathic skeletal hyperostosis (DISH ...

    African Journals Online (AJOL)

    Diffuse idiopathic skeletal hyperostosis (DISH) or Forestier's disease isa form of degenerative arthritiswith unique spinal and extra spinal manifestations. Dysphagia due to DISH is uncommon but when present DISH should be suspected. Surgical decompression can relieve some of the symptoms. We report a case of a 60 ...

  3. Histological characteristics of diffuse idiopathic skeletal hyperostosis

    NARCIS (Netherlands)

    Kuperus, JS; Westerveld, L Anneloes; Rutges, Joost A; Alblas, Jacqueline; van Rijen, Mattie H; Bleys, Ronald L A W; Oner, F Cumhur; Verlaan, JJ

    Diffuse idiopathic skeletal hyperostosis (DISH) is a predominantly radiographic diagnosis and histological knowledge of DISH is limited. The aim of this study was to describe the histological characteristics of DISH in the spinal column and to study the relation between DISH and intervertebral disc

  4. Signalling role of skeletal muscle during exercise

    NARCIS (Netherlands)

    Catoire, M.

    2014-01-01

    Abstract

    Upon acute exercise skeletal muscle is immediately and heavily recruited, while other organs appear to play only a minor role during exercise. These other organs show significant changes and improvements in function, although they are not directly targeted by

  5. Osteomyelitis in burn patients requiring skeletal fixation

    NARCIS (Netherlands)

    Barret, JP; Desai, MH; Herndon, DN

    Deep and severe burns often present with the exposure of musculoskeletal structures and severe deformities. Skeletal fixation, suspension and/or traction are part of their comprehensive treatment. Several factors put burn patients at risk for osteomyelitis, osteosynthesis material being one of them.

  6. Diffuse idiopathic skeletal hyperostosis in ancient clergymen.

    NARCIS (Netherlands)

    Verlaan, J.J.; Oner, F.C.; Maat, G.J.

    2007-01-01

    Diffuse idiopathic skeletal hyperostosis (DISH) is a common but often unrecognized systemic disorder observed mainly in the elderly. DISH is diagnosed when the anterior longitudinal ligament of the spine is ossified on at least four contiguous spinal levels or when multiple peripheral enthesopathies

  7. Diffuse idiopathic skeletal hyperostosis in ancient clergymen

    NARCIS (Netherlands)

    Verlaan, J.J.; Oner, F.C.; Maat, G.R.J.

    2007-01-01

    Diffuse idiopathic skeletal hyperostosis (DISH) is a common but often unrecognized systemic disorder observed mainly in the elderly. DISH is diagnosed when the anterior longitudinal ligament of the spine is ossified on at least four contiguous spinal levels or when multiple peripheral

  8. Converting skeletal structures to quad dominant meshes

    DEFF Research Database (Denmark)

    Bærentzen, Jakob Andreas; Misztal, Marek Krzysztof; Welnicka, Katarzyna

    2012-01-01

    We propose the Skeleton to Quad-dominant polygonal Mesh algorithm (SQM), which converts skeletal structures to meshes composed entirely of polar and annular regions. Both types of regions have a regular structure where all faces are quads except for a single ring of triangles at the center of each...

  9. Skeletal malformations in fetuses with Meckel syndrome

    DEFF Research Database (Denmark)

    Kjaer, K W; Fischer Hansen, B; Keeling, J W

    1999-01-01

    one foot was normal. Malformations of the cranial base (the basilar part of the occipital bone or the postsphenoid bone) occurred in five cases, and the vertebral bodies in the lumbar region of the spine were malformed (cleft) in three cases. It is proposed that a skeletal analysis be included...

  10. Training induced adaptation in horse skeletal muscle

    NARCIS (Netherlands)

    Dam, K.G. van

    2006-01-01

    It appears that the physiological and biochemical adaptation of skeletal muscle to training in equine species shows a lot of similarities with human and rodent physiological adaptation. On the other hand it is becoming increasingly clear that intra-cellular mechanisms of adaptation (substrate

  11. Longitudinal study of the effects of chronic hypothyroidism on skeletal muscle in dogs.

    Science.gov (United States)

    Rossmeisl, John H; Duncan, Robert B; Inzana, Karen D; Panciera, David L; Shelton, G Diane

    2009-07-01

    To study the effects of experimentally induced hypothyroidism on skeletal muscle and characterize any observed myopathic abnormalities in dogs. 9 female, adult mixed-breed dogs; 6 with hypothyroidism induced with irradiation with 131 iodine and 3 untreated control dogs. Clinical examinations were performed monthly. Electromyographic examinations; measurement of plasma creatine kinase, alanine aminotransferase, aspartate aminotransferase, lactate, and lactate dehydrogenase isoenzyme activities; and skeletal muscle morphologic-morphometric examinations were performed prior to and every 6 months for 18 months after induction of hypothyroidism. Baseline, 6-month, and 18-month assessments of plasma, urine, and skeletal muscle carnitine concentrations were also performed. Hypothyroid dogs developed electromyographic and morphologic evidence of myopathy by 6 months after treatment, which persisted throughout the study, although these changes were subclinical at all times. Hypothyroid myopathy was associated with significant increases in plasma creatine kinase, aspartate aminotransferase, and lactate dehydrogenase 5 isoenzyme activities and was characterized by nemaline rod inclusions, substantial and progressive predominance of type I myofibers, decrease in mean type II fiber area, subsarcolemmal accumulations of abnormal mitochondria, and myofiber degeneration. Chronic hypothyroidism was associated with substantial depletion in skeletal muscle free carnitine. Chronic, experimentally induced hypothyroidism resulted in substantial but subclinical phenotypic myopathic changes indicative of altered muscle energy metabolism and depletion of skeletal muscle carnitine. These abnormalities may contribute to nonspecific clinical signs, such as lethargy and exercise intolerance, often reported in hypothyroid dogs.

  12. Quantitative sonoelastography for the in vivo assessment of skeletal muscle viscoelasticity

    International Nuclear Information System (INIS)

    Hoyt, Kenneth; Kneezel, Timothy; Castaneda, Benjamin; Parker, Kevin J

    2008-01-01

    A novel quantitative sonoelastography technique for assessing the viscoelastic properties of skeletal muscle tissue was developed. Slowly propagating shear wave interference patterns (termed crawling waves) were generated using a two-source configuration vibrating normal to the surface. Theoretical models predict crawling wave displacement fields, which were validated through phantom studies. In experiments, a viscoelastic model was fit to dispersive shear wave speed sonoelastographic data using nonlinear least-squares techniques to determine frequency-independent shear modulus and viscosity estimates. Shear modulus estimates derived using the viscoelastic model were in agreement with that obtained by mechanical testing on phantom samples. Preliminary sonoelastographic data acquired in healthy human skeletal muscles confirm that high-quality quantitative elasticity data can be acquired in vivo. Studies on relaxed muscle indicate discernible differences in both shear modulus and viscosity estimates between different skeletal muscle groups. Investigations into the dynamic viscoelastic properties of (healthy) human skeletal muscles revealed that voluntarily contracted muscles exhibit considerable increases in both shear modulus and viscosity estimates as compared to the relaxed state. Overall, preliminary results are encouraging and quantitative sonoelastography may prove clinically feasible for in vivo characterization of the dynamic viscoelastic properties of human skeletal muscle

  13. Skeletal muscle wasting: new role of nonclassical renin-angiotensin system.

    Science.gov (United States)

    Cabello-Verrugio, Claudio; Rivera, Juan C; Garcia, Dominga

    2017-05-01

    Skeletal muscle can be affected by many physiological and pathological conditions that contribute to the development of muscle weakness, including skeletal muscle loss, inflammatory processes, or fibrosis. Therefore, research into therapeutic treatment alternatives or alleviation of these effects on skeletal muscle is of great importance. Recent studies have shown that angiotensin (1-7) [Ang-(1-7)] - a vasoactive peptide of the nonclassical axis in the renin-angiotensin system (RAS) - and its Mas receptor are expressed in skeletal muscle. Ang-(1-7), through its Mas receptor, prevents or diminishes deleterious effects induced by skeletal muscle disease or injury. Specifically, the Ang-(1-7)-Mas receptor axis modulates molecular mechanisms involved in muscle mass regulation, such as the ubiquitin proteasome pathway, the insulin-like growth factor type 1/Akt (protein kinase B) pathway, or myonuclear apoptosis, and also inflammation and fibrosis pathways. Although further research into this topic and the possible side effects of Ang-(1-7) is necessary, these findings are promising, and suggest that the Ang-(1-7)-Mas axis can be considered a possible therapeutic target for treating patients with muscular disorders.

  14. Impact of Perturbed Pancreatic β-Cell Cholesterol Homeostasis on Adipose Tissue and Skeletal Muscle Metabolism

    Science.gov (United States)

    Cochran, Blake J.; Hou, Liming; Manavalan, Anil Paul Chirackal; Moore, Benjamin M.; Tabet, Fatiha; Sultana, Afroza; Cuesta Torres, Luisa; Tang, Shudi; Shrestha, Sudichhya; Senanayake, Praween; Patel, Mili; Ryder, William J.; Bongers, Andre; Maraninchi, Marie; Wasinger, Valerie C.; Westerterp, Marit; Tall, Alan R.; Barter, Philip J.

    2016-01-01

    Elevated pancreatic β-cell cholesterol levels impair insulin secretion and reduce plasma insulin levels. This study establishes that low plasma insulin levels have a detrimental effect on two major insulin target tissues: adipose tissue and skeletal muscle. Mice with increased β-cell cholesterol levels were generated by conditional deletion of the ATP-binding cassette transporters, ABCA1 and ABCG1, in β-cells (β-DKO mice). Insulin secretion was impaired in these mice under basal and high-glucose conditions, and glucose disposal was shifted from skeletal muscle to adipose tissue. The β-DKO mice also had increased body fat and adipose tissue macrophage content, elevated plasma interleukin-6 and MCP-1 levels, and decreased skeletal muscle mass. They were not, however, insulin resistant. The adipose tissue expansion and reduced skeletal muscle mass, but not the systemic inflammation or increased adipose tissue macrophage content, were reversed when plasma insulin levels were normalized by insulin supplementation. These studies identify a mechanism by which perturbation of β-cell cholesterol homeostasis and impaired insulin secretion increase adiposity, reduce skeletal muscle mass, and cause systemic inflammation. They further identify β-cell dysfunction as a potential therapeutic target in people at increased risk of developing type 2 diabetes. PMID:27702832

  15. Magnetic resonance imaging of the skeletal musculature

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Marc-Andre (ed.) [Univ. Hospital Heidelberg (Germany). Diagnostic and Intverventional Radiology

    2014-07-01

    Comprehensive overview of the value of cutting-edge MRI for the assessment of normal and diseased skeletal muscle. Presents research findings in respect of the role of modern morphological and functional MRI techniques. Provides examples of the added value provided by these techniques when evaluating muscular diseases. Although muscular diseases are a huge and heterogeneous group, in most cases of progressive disease the result is focal or general muscular weakness that presents as an unspecific symptom. Imaging techniques that offer differential diagnostic clues are therefore urgently needed. Despite this, MRI has to date often been assigned a subsidiary role in the diagnostic work-up of these diseases owing to the frequent inability of routine MRI protocols to detect pathognomonic findings. This situation is changing with the advent of modern MRI techniques that offer deeper insights into surrogate pathophysiologic parameters, such as muscular microcirculation, sodium homeostasis, energy and lipid metabolism, and muscle fiber architecture. Much higher levels of acceptance and demand by clinicians can be anticipated for these new techniques in the near future, and radiologists will have to face up to the increasing value of MRI of the skeletal musculature. In this book, recognized experts from around the world provide a comprehensive overview of the value of cutting-edge MRI for the assessment of normal and diseased skeletal muscle. A range of aspects are covered, from the general role of MRI in imaging the skeletal musculature, including in comparison with ultrasonography, through to the current value of MRI in the diagnostic work-up of different diseases. In addition, several chapters present research findings in respect of modern morphological and functional MRI techniques for assessment of the skeletal musculature and provide examples of the added value provided by these techniques when evaluating muscular diseases.

  16. Magnetic resonance imaging of the skeletal musculature

    International Nuclear Information System (INIS)

    Weber, Marc-Andre

    2014-01-01

    Comprehensive overview of the value of cutting-edge MRI for the assessment of normal and diseased skeletal muscle. Presents research findings in respect of the role of modern morphological and functional MRI techniques. Provides examples of the added value provided by these techniques when evaluating muscular diseases. Although muscular diseases are a huge and heterogeneous group, in most cases of progressive disease the result is focal or general muscular weakness that presents as an unspecific symptom. Imaging techniques that offer differential diagnostic clues are therefore urgently needed. Despite this, MRI has to date often been assigned a subsidiary role in the diagnostic work-up of these diseases owing to the frequent inability of routine MRI protocols to detect pathognomonic findings. This situation is changing with the advent of modern MRI techniques that offer deeper insights into surrogate pathophysiologic parameters, such as muscular microcirculation, sodium homeostasis, energy and lipid metabolism, and muscle fiber architecture. Much higher levels of acceptance and demand by clinicians can be anticipated for these new techniques in the near future, and radiologists will have to face up to the increasing value of MRI of the skeletal musculature. In this book, recognized experts from around the world provide a comprehensive overview of the value of cutting-edge MRI for the assessment of normal and diseased skeletal muscle. A range of aspects are covered, from the general role of MRI in imaging the skeletal musculature, including in comparison with ultrasonography, through to the current value of MRI in the diagnostic work-up of different diseases. In addition, several chapters present research findings in respect of modern morphological and functional MRI techniques for assessment of the skeletal musculature and provide examples of the added value provided by these techniques when evaluating muscular diseases.

  17. The skeletal endocannabinoid system: clinical and experimental insights.

    Science.gov (United States)

    Raphael, Bitya; Gabet, Yankel

    2016-05-01

    Recently, there has been a rapidly growing interest in the role of cannabinoids in the regulation of skeletal remodeling and bone mass, addressed in basic, translational and clinical research. Since the first publications in 2005, there are more than 1000 publications addressing the skeletal endocannabinoid system. This review focuses on the roles of the endocannabinoid system in skeletal biology via the cannabinoid receptors CB1, CB2 and others. Endocannabinoids play important roles in bone formation, bone resorption and skeletal growth, and are sometimes age, gender, species and strain dependent. Controversies in the literature and potential therapeutic approaches targeting the endocannabinoid system in skeletal disorders are also discussed.

  18. A compact skeletal mechanism for n -dodecane with optimized semi-global low-temperature chemistry for diesel engine simulations

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Tong; Pei, Yuanjiang; Zhong, Bei-Jing; Som, Sibendu; Lu, Tianfeng; Luo, Kai Hong

    2017-03-01

    A skeletal mechanism with 54 species and 269 reactions was developed to predict pyrolysis and oxidation of n-dodecane as a diesel fuel surrogate involving both high-temperature (high-T) and low-temperature (low-T) conditions. The skeletal mechanism was developed from a semi-detailed mechanism developed at the University of Southern California (USC). Species and reactions for high-T pyrolysis and oxidation of C5-C12 were reduced by using reaction flow analysis (RFA), isomer lumping, and then merged into a skeletal C0-C4 core to form a high-T sub-mechanism. Species and lumped semi-global reactions for low-T chemistry were then added to the high-T sub-mechanism and a 54-species skeletal mechanism is obtained. The rate parameters of the low-T reactions were tuned against a detailed mechanism by the Lawrence Livermore National Laboratory (LLNL), as well as the Spray A flame experimental data, to improve the prediction of ignition delay at low-T conditions, while the high-T chemistry remained unchanged. The skeletal mechanism was validated for auto-ignition, perfectly stirred reactors (PSR), flow reactors and laminar premixed flames over a wide range of flame conditions. The skeletal mechanism was then employed to simulate three-dimensional turbulent spray flames at compression ignition engine conditions and validated against experimental data from the Engine Combustion Network (ECN).

  19. Curcumin ameliorates skeletal muscle atrophy in type 1 diabetic mice by inhibiting protein ubiquitination.

    Science.gov (United States)

    Ono, Taisuke; Takada, Shingo; Kinugawa, Shintaro; Tsutsui, Hiroyuki

    2015-09-01

    What is the central question of this study? We sought to examine whether curcumin could ameliorate skeletal muscle atrophy in diabetic mice by inhibiting protein ubiquitination, inflammatory cytokines and oxidative stress. What is the main finding and its importance? We found that curcumin ameliorated skeletal muscle atrophy in streptozotocin-induced diabetic mice by inhibiting protein ubiquitination without affecting protein synthesis. This favourable effect of curcumin was possibly due to the inhibition of inflammatory cytokines and oxidative stress. Curcumin may be beneficial for the treatment of muscle atrophy in type 1 diabetes mellitus. Skeletal muscle atrophy develops in patients with diabetes mellitus (DM), especially in type 1 DM, which is associated with chronic inflammation. Curcumin, the active ingredient of turmeric, has various biological actions, including anti-inflammatory and antioxidant properties. We hypothesized that curcumin could ameliorate skeletal muscle atrophy in mice with streptozotocin-induced type 1 DM. C57BL/6 J mice were injected with streptozotocin (200 mg kg(-1) i.p.; DM group) or vehicle (control group). Each group of mice was randomly subdivided into two groups of 10 mice each and fed a diet with or without curcumin (1500 mg kg(-1) day(-1)) for 2 weeks. There were significant decreases in body weight, skeletal muscle weight and cellular cross-sectional area of the skeletal muscle in DM mice compared with control mice, and these changes were significantly attenuated in DM+Curcumin mice without affecting plasma glucose and insulin concentrations. Ubiquitination of protein was increased in skeletal muscle from DM mice and decreased in DM+Curcumin mice. Gene expressions of muscle-specific ubiquitin E3 ligase atrogin-1/MAFbx and MuRF1 were increased in DM and inhibited in DM+Curcumin mice. Moreover, nuclear factor-κB activation, concentrations of the inflammatory cytokines tumour necrosis factor-α and interleukin-1β and oxidative

  20. Management of severe skeletal Class III malocclusion with bimaxillary orthognathic surgery

    Directory of Open Access Journals (Sweden)

    Jitesh Haryani

    2016-01-01

    Full Text Available Orthognathic surgery in conjunction with fixed orthodontics is a common indication for interdisciplinary management of severe skeletal Class III malocclusion. A thorough analysis of pretreatment investigations and development of a surgical visual treatment objective is essential to plan the type of surgical technique required. Bimaxillary orthognathic surgery is the most common type of surgical procedure for severe skeletal discrepancies. The present case report is a combined ortho-surgical team management of a skeletally Class III patient. The severity of the case required bilateral upper first premolar extraction for dentoalveolar decompensation and simultaneous “Two-jaw surgery” with maxillary advancement of 4 mm and mandibular setback of 7 mm. Postsurgery, a pleasing good facial profile was achieved with Class II molar relation and positive overjet.

  1. The Recent Understanding of the Neurotrophin's Role in Skeletal Muscle Adaptation

    Directory of Open Access Journals (Sweden)

    Kunihiro Sakuma

    2011-01-01

    Full Text Available This paper summarizes the various effects of neurotrophins in skeletal muscle and how these proteins act as potential regulators of the maintenance, function, and regeneration of skeletal muscle fibers. Increasing evidence suggests that this family of neurotrophic factors influence not only the survival and function of innervating motoneurons but also the development and differentiation of myoblasts and muscle fibers. Muscle contractions (e.g., exercise produce BDNF mRNA and protein in skeletal muscle, and the BDNF seems to play a role in enhancing glucose metabolism and may act for myokine to improve various brain disorders (e.g., Alzheimer's disease and major depression. In adults with neuromuscular disorders, variations in neurotrophin expression are found, and the role of neurotrophins under such conditions is beginning to be elucidated. This paper provides a basis for a better understanding of the role of these factors under such pathological conditions and for treatment of human neuromuscular disease.

  2. A Mechanical Musculo-Skeletal System for a Human-Shaped Robot Arm

    Directory of Open Access Journals (Sweden)

    Koichi Koganezawa

    2014-06-01

    Full Text Available This paper presents a mechanical system with a similar configuration to a human musculo-skeletal system for use in anthropomorphic robots or as artificial limbs for disabled persons. First, a mechanical module called ANLES (Actuator with Non-Linear Elasticity System is introduced. There are two types of ANLES: the linear-type ANLES and rotary-type ANLES. They can be used as a voluntary muscle in a wide-range of musculo-skeletal structures in which at least double actuators work in an antagonistic setup via some elastic elements. Next, an application of the two types of ANLES to a two-degree-of-freedom (DOF manipulator that has a similar configuration to the human elbow joint is shown. The experimental results of the joint stiffness and joint angle control elucidate that the developed mechanism effectively regulates joint stiffness in the same way as a musculo-skeletal system.

  3. Optimizing hyaluronidase dose and plasmid DNA delivery greatly improves gene electrotransfer efficiency in rat skeletal muscle

    DEFF Research Database (Denmark)

    Åkerström, Thorbjörn; Vedel, Kenneth; Needham Andersen, Josefine

    2015-01-01

    Transfection of rat skeletal muscle in vivo is a widely used research model. However, gene electrotransfer protocols have been developed for mice and yield variable results in rats. We investigated whether changes in hyaluronidase pre-treatment and plasmid DNA delivery can improve transfection...... with a homogenous distribution. We also show that transfection was stable over five weeks of regular exercise or inactivity. Our findings show that species-specific plasmid DNA delivery and hyaluronidase pre-treatment greatly improves transfection efficiency in rat skeletal muscle....... efficiency in rat skeletal muscle. We found that pre-treating the muscle with a hyaluronidase dose suitable for rats (0.56. U/g b.w.) prior to plasmid DNA injection increased transfection efficiency by >200% whereas timing of the pre-treatment did not affect efficiency. Uniformly distributing plasmid DNA...

  4. The application of functional MRI in evaluating ischemic injuries of lower limb skeletal muscle

    International Nuclear Information System (INIS)

    Xia Caifeng; Gu Jianping

    2011-01-01

    The ischemic injury of lower limb skeletal muscle is caused by various reasons that lead to limb arterial blood flow insufficiency and subsequent muscle tissue hypoxia. Exact and correct evaluation of the ischemic degree of the skeletal muscle is very important for the physicians to guide the clinical treatment, to assess the therapeutic effect and to judge the prognosis. With the development and updating of scanning hardware and software, together with the use of diffusion-weighted imaging (DWI), diffusion tensor imaging (DTI), perfusion-weighted imaging (PWI), blood oxygen level dependent (BOLD) imaging and magnetic resonance spectroscopy (MRS), etc. the application of MRI has been dramatically expanded both in clinical practice and scientific researches. Nowadays, functional MRI can accurately reflect the physiological structures and pathologic changes in detail. This article aims mainly to make a comprehensive review about the application of these techniques in assessing the ischemic injuries of lower limb skeletal muscle. (authors)

  5. Neonatal epicardial-derived progenitors aquire myogenic traits in skeletal muscle, but not cardiac muscle

    DEFF Research Database (Denmark)

    Andersen, Ditte C; Jensen, Charlotte H; Skovrind, Ida

    2016-01-01

    heart missing regenerative signals essential for directed differentiation of EPDCs. Herein, we aimed to evaluate the myogenic potential of neonatal EPDCs in adult and neonatal mouse myocardium, as well as in skeletal muscle. The two latter tissues have an intrinsic capability to develop and regenerate......, in contrast to the adult heart. METHODS: Highly purified mouse EPDCs were transplanted into damaged neonatal and adult myocardium as well as regenerating skeletal muscle. Co-cultures with skeletal myoblasts were used to distinguish fusion independent myogenic conversion. RESULTS: No donor EPDC...... that EPDCs may be more myogenic than previously anticipated. But, the heart may lack factors for induction of myogenesis of EPDCs, a scenario that should be taken into consideration when aiming for repair of damaged myocardium by stem cell transplantation....

  6. Treatment of inherently unstable open or infected fractures by open wound management and external skeletal fixation.

    Science.gov (United States)

    Ness, M G

    2006-02-01

    To assess the use of external skeletal fixation with open wound management for the treatment of inherently unstable open or infected fractures in dogs. A retrospective review of 10 cases. Fracture stabilisation and wound management required only a single anaesthetic, and despite the challenging nature of these injuries, the final outcome was acceptable or good in every case. However, minor complications associated with the fixator pins were quite common, and two dogs developed complications which required additional surgery. Open management of wounds, even when bone was exposed, proved to be an effective technique, and external skeletal fixators were usually effective at maintaining stability throughout an inevitably extended fracture healing period.

  7. Caveolin-3 is associated with the T-tubules of mature skeletal muscle fibers

    DEFF Research Database (Denmark)

    Ralston, E; Ploug, Thorkil

    1999-01-01

    Caveolae are abundant in skeletal muscle and their coat contains a specific isoform of caveolin, caveolin-3. It has been suggested that during muscle development, caveolin-3 is associated with the T-tubules, but that in adult muscle it is found on the plasma membrane only. We have studied...... the distribution of caveolin-3 in single skeletal muscle fibers from adult rat soleus by confocal immunofluorescence and by immunogold electron microscopy. We found that caveolin-3 occurs at the highest density on the plasma membrane but is also present in the core of the fibers, at the I-band/A-band interface...

  8. Trans arterial embolization of primary and secondary tumors of the skeletal system

    International Nuclear Information System (INIS)

    Radeleff, B.; Eiers, M.; Lopez-Benitez, R.; Noeldge, G.; Hallscheidt, P.; Grenacher, L.; Libicher, M.; Zeifang, F.; Meeder, P.J.; Kauffmann, G.W.; Richter, G.M.

    2006-01-01

    Percutaneous transcatheter al embolization s of primary and secondary bone tumors are important minimal invasive angiographic interventions of the skeletal system. In most of the cases embolization is performed for preoperative devascularization or as a palliative measure to treat tumor-associated pain or other tumor bulk symptoms. The transarterial embolization of primary and secondary tumors of the skeletal system has been developed to a safe and very effective method. Indications, techniques, results and complications of this minimal invasive interventional therapy for treatment of primary and secondary bone tumors are described and discussed and compared with the newer literature and our own results

  9. Diaphragmatic lymphatic vessel behavior during local skeletal muscle contraction.

    Science.gov (United States)

    Moriondo, Andrea; Solari, Eleonora; Marcozzi, Cristiana; Negrini, Daniela

    2015-02-01

    The mechanism through which the stresses developed in the diaphragmatic tissue during skeletal muscle contraction sustain local lymphatic function was studied in 10 deeply anesthetized, tracheotomized adult Wistar rats whose diaphragm was exposed after thoracotomy. To evaluate the direct effect of skeletal muscle contraction on the hydraulic intraluminal lymphatic pressures (Plymph) and lymphatic vessel geometry, the maximal contraction of diaphragmatic fibers adjacent to a lymphatic vessel was elicited by injection of 9.2 nl of 1 M KCl solution among diaphragmatic fibers while Plymph was recorded through micropuncture and vessel geometry via stereomicroscopy video recording. In lymphatics oriented perpendicularly to the longitudinal axis of muscle fibers and located at skeletal muscle contraction (Dmc) decreased to 61.3 ± 1.4% of the precontraction value [resting diameter (Drest)]; however, if injection was at >900 μm from the vessel, Dmc enlarged to 131.1 ± 2.3% of Drest. In vessels parallel to muscle fibers, Dmc increased to 122.8 ± 2.9% of Drest. During contraction, Plymph decreased as much as 22.5 ± 2.6 cmH2O in all submesothelial superficial vessels, whereas it increased by 10.7 ± 5.1 cmH2O in deeper vessels running perpendicular to contracting muscle fibers. Hence, the three-dimensional arrangement of the diaphragmatic lymphatic network seems to be finalized to efficiently exploit the stresses exerted by muscle fibers during the contracting inspiratory phase to promote lymph formation in superficial submesothelial lymphatics and its further propulsion in deeper intramuscular vessels. Copyright © 2015 the American Physiological Society.

  10. Skeletal muscle-specific HMG-CoA reductase knockout mice exhibit rhabdomyolysis: A model for statin-induced myopathy.

    Science.gov (United States)

    Osaki, Yoshinori; Nakagawa, Yoshimi; Miyahara, Shoko; Iwasaki, Hitoshi; Ishii, Akiko; Matsuzaka, Takashi; Kobayashi, Kazuto; Yatoh, Shigeru; Takahashi, Akimitsu; Yahagi, Naoya; Suzuki, Hiroaki; Sone, Hirohito; Ohashi, Ken; Ishibashi, Shun; Yamada, Nobuhiro; Shimano, Hitoshi

    2015-10-23

    HMG-CoA reductase (HMGCR) catalyzes the conversion of HMG-CoA to mevalonic acid (MVA); this is the rate-limiting enzyme of the mevalonate pathway that synthesizes cholesterol. Statins, HMGCR inhibitors, are widely used as cholesterol-reducing drugs. However, statin-induced myopathy is the most adverse side effect of statins. To eludicate the mechanisms underlying statin the myotoxicity and HMGCR function in the skeletal muscle, we developed the skeletal muscle-specific HMGCR knockout mice. Knockout mice exhibited postnatal myopathy with elevated serum creatine kinase levels and necrosis. Myopathy in knockout mice was completely rescued by the oral administration of MVA. These results suggest that skeletal muscle toxicity caused by statins is dependent on the deficiencies of HMGCR enzyme activity and downstream metabolites of the mevalonate pathway in skeletal muscles rather than the liver or other organs. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Skeletal Manifestations of Scurvy: A Case Report from Dubai

    Directory of Open Access Journals (Sweden)

    Shahryar Noordin

    2012-01-01

    Full Text Available Introduction. Nutritional deficiencies are rarely reported in developed countries. We report a child of Pakistani origin brought up in Dubai who developed skeletal manifestations of scurvy due to peculiar dietary habits. Case Presentation. A 4.5 year old boy presented with pain and swelling of multiple joints for three months and inability to walk for two months. Dietary history was significant for exclusive meat intake for the preceding two years. On examination the child’s height and weight were below the 5th percentile for his age. He was pale and tachycardic. There was significant swelling and tenderness over the wrist, knee and ankle joints, along with painful restriction of motion. Basic blood workup was unremarkable except for anemia. However, X-rays showed delayed bone age, severe osteopenia of the long bones, epiphyseal separation, cortical thinning and dense zone of provisional calcification, suggesting a radiological diagnosis of scurvy. The child was started on vitamin C replacement therapy. Over the following two months, the pain and swelling substantially reduced and the child became able to walk. Repeat X-rays showed improvement in the bony abnormalities. Conclusion. Although scurvy is not a very commonly encountered entity in the modern era, inappropriate dietary intake can lead to skeletal abnormalities which may be confused with rickets. A high index of suspicion is thus required for prompt diagnosis of scurvy in patients with bone and joint symptoms.

  12. A Noninvasive In Vitro Monitoring System Reporting Skeletal Muscle Differentiation.

    Science.gov (United States)

    Öztürk-Kaloglu, Deniz; Hercher, David; Heher, Philipp; Posa-Markaryan, Katja; Sperger, Simon; Zimmermann, Alice; Wolbank, Susanne; Redl, Heinz; Hacobian, Ara

    2017-01-01

    Monitoring of cell differentiation is a crucial aspect of cell-based therapeutic strategies depending on tissue maturation. In this study, we have developed a noninvasive reporter system to trace murine skeletal muscle differentiation. Either a secreted bioluminescent reporter (Metridia luciferase) or a fluorescent reporter (green fluorescent protein [GFP]) was placed under the control of the truncated muscle creatine kinase (MCK) basal promoter enhanced by variable numbers of upstream MCK E-boxes. The engineered pE3MCK vector, coding a triple tandem of E-Boxes and the truncated MCK promoter, showed twentyfold higher levels of luciferase activation compared with a Cytomegalovirus (CMV) promoter. This newly developed reporter system allowed noninvasive monitoring of myogenic differentiation in a straining bioreactor. Additionally, binding sequences of endogenous microRNAs (miRNAs; seed sequences) that are known to be downregulated in myogenesis were ligated as complementary seed sequences into the reporter vector to reduce nonspecific signal background. The insertion of seed sequences improved the signal-to-noise ratio up to 25% compared with pE3MCK. Due to the highly specific, fast, and convenient expression analysis for cells undergoing myogenic differentiation, this reporter system provides a powerful tool for application in skeletal muscle tissue engineering.

  13. Regulation of gene expression in vertebrate skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Carvajal, Jaime J., E-mail: jaime.carvajal@icr.ac.uk; Rigby, Peter W.J., E-mail: peter.rigby@icr.ac.uk

    2010-11-01

    During embryonic development the integration of numerous synergistic signalling pathways turns a single cell into a multicellular organism with specialized cell types and highly structured, organized tissues. To achieve this, cells must grow, proliferate, differentiate and die according to their spatiotemporal position. Unravelling the mechanisms by which a cell adopts the correct fate in response to its local environment remains one of the fundamental goals of biological research. In vertebrates skeletal myogenesis is coordinated by the activation of the myogenic regulatory factors (MRFs) in response to signals that are interpreted by their associated regulatory elements in different precursor cells during development. The MRFs trigger a cascade of transcription factors and downstream structural genes, ultimately resulting in the generation of one of the fundamental histotypes. In this review we discuss the regulation of the different MRFs in relation to their position in the myogenic cascade, the changes in the general transcriptional machinery during muscle differentiation and the emerging importance of miRNA regulation in skeletal myogenesis.

  14. Percutaneous and skeletal biocarbon implants

    Science.gov (United States)

    Mooney, V.

    1977-01-01

    Review of carbon implants developed by NASA discussed four different types of implants and subsequent improvements. Improvements could be of specific interest to rehabilitation centers and similar organizations.

  15. Skeletal Stability after Large Mandibular Advancement (> 10 mm) with Bilateral Sagittal Split Osteotomy and Skeletal Elastic Intermaxillary Fixation

    DEFF Research Database (Denmark)

    Schwartz, Kristoffer; Rodrigo, Maria; Jensen, Thomas

    2016-01-01

    OBJECTIVES: The aim of the present study was to assess the skeletal stability after large mandibular advancement (> 10 mm) with bilateral sagittal split osteotomy and skeletal elastic intermaxillary fixation and to correlate the skeletal stability with the vertical facial type. MATERIAL AND METHODS......: A total of 33 consecutive patients underwent bimaxillary surgery to correct skeletal Class II malocclusion with a mandibular advancement (> 10 mm) measured at B-point and postoperative skeletal elastic intermaxillary fixation for 16 weeks. Skeletal stability was evaluated using lateral cephalometric...... radiographs obtained preoperative (T1), 8 weeks postoperatively (T2), and 18 month postoperatively (T3). B-point and pogonion (Pog) was used to measure the skeletal relapse and the mandibular plane angle (MP-angle) was used to determine the vertical facial type. RESULTS: The mean advancement from T1 to T2...

  16. Skeletal muscle mitochondrial bioenergetics and morphology in high fat diet induced obesity and insulin resistance: focus on dietary fat source

    Directory of Open Access Journals (Sweden)

    Rosalba ePutti

    2016-01-01

    Full Text Available It has been suggested that skeletal muscle mitochondria play a key role in high fat diet induced insulin resistance. Two opposite views are debated on mechanisms by which mitochondrial function could be involved in skeletal muscle insulin resistance. In one theory, mitochondrial dysfunction is suggested to cause intramyocellular lipid accumulation leading to insulin resistance. In the second theory, excess fuel within mitochondria in the absence of increased energy demand stimulates mitochondrial oxidant production and emission, ultimately leading to the development of insulin resistance. Noteworthy, mitochondrial bioenergetics is strictly associated with the maintenance of normal mitochondrial morphology by maintaining the balance between the fusion and fission processes. A shift towards mitochondrial fission with reduction of fusion protein, mainly mitofusin 2, has been associated with reduced insulin sensitivity and inflammation in obesity and insulin resistance development. However, dietary fat source during chronic overfeeding differently affects mitochondrial morphology. Saturated fatty acids induce skeletal muscle insulin resistance and inflammation associated with fission phenotype, whereas ω-3 polyunsaturated fatty acids improve skeletal muscle insulin sensitivity and inflammation, associated with a shift toward mitochondrial fusion phenotype. The present minireview focuses on mitochondrial bioenergetics and morphology in skeletal muscle insulin resistance, with particular attention to the effect of different dietary fat sources on skeletal muscle mitochondria morphology and fusion/fission balance.

  17. Energetic aspects of skeletal muscle contraction: implications of fiber types.

    Science.gov (United States)

    Rall, J A

    1985-01-01

    In this chapter fundamental energetic properties of skeletal muscles as elucidated from isolated muscle preparations are described. Implications of these intrinsic properties for the energetic characterization of different fiber types and for the understanding of locomotion have been considered. Emphasis was placed on the myriad of physical and chemical techniques that can be employed to understand muscle energetics and on the interrelationship of results from different techniques. The anaerobic initial processes which liberate energy during contraction and relaxation are discussed in detail. The high-energy phosphate (approximately P) utilized during contraction and relaxation can be distributed between actomyosin ATPase or cross-bridge cycling (70%) and the Ca2+ ATPase of the sacroplasmic reticulum (30%). Muscle shortening increases the rate of approximately P hydrolysis, and stretching a muscle during contraction suppresses the rate of approximately P hydrolysis. The economy of an isometric contraction is defined as the ratio of isometric mechanical response to energetic cost and is shown to be a fundamental intrinsic parameter describing muscle energetics. Economy of contraction varies across the animal kingdom by over three orders of magnitude and is different in different mammalian fiber types. In mammalian skeletal muscles differences in economy of contraction can be attributed mainly to differences in the specific actomyosin and Ca2+ ATPase of muscles. Furthermore, there is an inverse relationship between economy of contraction and maximum velocity of muscle shortening (Vmax) and maximum power output. This is a fundamental relationship. Muscles cannot be economical at developing and maintaining force and also exhibit rapid shortening. Interestingly, there appears to be a subtle system of unknown nature that modulates the Vmax and economy of contraction. Efficiency of a work-producing contraction is defined and contrasted to the economy of contraction

  18. Predicted high-performing piglets exhibit more and larger skeletal muscle fibers

    NARCIS (Netherlands)

    Paredes Escobar, S.P.; Kalbe, C.; Jansman, A.J.M.; Verstegen, M.W.A.; Hees, van H.M.J.; Lösel, D.; Gerrits, W.J.J.; Rehfeldt, C.

    2013-01-01

    Postnatal (muscle) growth potential in pigs depends on the total number and hypertrophy of myofibers in skeletal muscle tissue. In a previous study an algorithm was developed to predict piglet BW at the end of the nursery period (10 wk of age) on the basis of BW at birth, at weaning, and at 6 wk of

  19. Impaired skeletal muscle substrate oxidation in glucose-intolerant men improves after weight loss

    NARCIS (Netherlands)

    Corpeleijn, E.; Mensink, M.; Kooi, M.E.; Roekaerts, P.M.H.J.; Saris, W.H.M.; Blaak, E.E.

    2008-01-01

    Objective: An impaired fatty acid handling in skeletal muscle may be involved in the development of insulin resistance and diabetes mellitus type 2 (DM2). We investigated muscle fatty acid metabolism in glucose-intolerant men (impaired glucose tolerance (IGT)), a prediabetic state, relative to

  20. Finite element model of intermuscular pressure during isometric contraction of skeletal muscle

    NARCIS (Netherlands)

    Jenkyn, T.R.; Koopman, B.; Huijing, P.A.J.B.M.; Lieber, R.L.; Kaufman, K.R.

    2002-01-01

    The measurement of in vivo intramuscular pressure (IMP) has recently become practical and IMP appears well correlated with muscle tension. A numerical model of skeletal muscle was developed to examine the mechanisms producing IMP. Unipennate muscle is modelled as a two-dimensional material continuum

  1. Bilingual Skills Training Program. Barbering/Cosmetology. Module 4.0: Skeletal System.

    Science.gov (United States)

    Northern New Mexico Community Coll., El Rito.

    This module on the skeletal system is the fourth of ten (CE 028 308-318) in the barbering/cosmetology course of a bilingual skill training program. (A Vocabulary Development Workbook for modules 6-10 is available as CE 028 313.) The course is designed to furnish theoretical and laboratory experience. Module objectives are for students to develop…

  2. Transcription factor ZNF25 is associated with osteoblast differentiation of human skeletal stem cells

    DEFF Research Database (Denmark)

    Twine, Natalie A.; Harkness, Linda; Kassem, Moustapha

    2016-01-01

    containing G protein-coupled receptor 5 and RAN-binding protein 3-like. We also observed enrichment in extracellular matrix organization, skeletal system development and regulation of ossification in the entire upregulated set of genes. Consistent with its function as a transcription factor during osteoblast...

  3. Global pathway analysis using DNA microarrays in skeletal muscle of women with polycystic ovary syndrome

    DEFF Research Database (Denmark)

    Skov, Vibe

    2007-01-01

    (study 1), to investigate whether pioglitazone therapy could reverse abnormalities in the transcriptional profile of muscle associated with insulin resistance in skeletal muscle of obese PCOS patients (study 2), and to develop a microarray platform for global gene expression profiling (study 3). In study...... comparable to other commercial and custom made microarrays and is a cost-effective alternative especially in larger epidemiological studies....

  4. Computed tomography guidance for skeletal biopsy

    International Nuclear Information System (INIS)

    Frager, D.H.; Goldman, M.J.; Elkin, C.M.; Cynamon, J.; Leeds, N.E.; Seimon, L.P.; Habermann, E.T.; Schreiber, K.; Freeman, L.M.

    1987-01-01

    Computed tomographic (CT) guided biopsy and abscess drainage of multiple organ systems have been well described. Reports of spinal and skeletal applications have been less common. This study describes the use of CT guidance in the biopsy of various skeletal lesions in 46 patients. Forty-one patients had skinny needle aspirations (18 or 22 gauge) and 23 patients had trephine core biopsies. Sites of the lesions included: thoracic spine - 15 patients, lumbosacral spine - 17 patients, bony pelvis - 6 patients, rib - 2 patients, and long bones - 6 patients. Fast scanners capable of rapid image reconstruction have overcome many constraints. With CT guidance, the physician who performs the procedure receives virtually no ionizing radiation. The exact location of the needle tip is accurately visualized in relation to the lesion being biopsied and to the vital organs. (orig.)

  5. The adipokine leptin increases skeletal muscle mass and significantly alters skeletal muscle miRNA expression profile in aged mice

    International Nuclear Information System (INIS)

    Hamrick, Mark W.; Herberg, Samuel; Arounleut, Phonepasong; He, Hong-Zhi; Shiver, Austin; Qi, Rui-Qun; Zhou, Li; Isales, Carlos M.

    2010-01-01

    Research highlights: → Aging is associated with muscle atrophy and loss of muscle mass, known as the sarcopenia of aging. → We demonstrate that age-related muscle atrophy is associated with marked changes in miRNA expression in muscle. → Treating aged mice with the adipokine leptin significantly increased muscle mass and the expression of miRNAs involved in muscle repair. → Recombinant leptin therapy may therefore be a novel approach for treating age-related muscle atrophy. -- Abstract: Age-associated loss of muscle mass, or sarcopenia, contributes directly to frailty and an increased risk of falls and fractures among the elderly. Aged mice and elderly adults both show decreased muscle mass as well as relatively low levels of the fat-derived hormone leptin. Here we demonstrate that loss of muscle mass and myofiber size with aging in mice is associated with significant changes in the expression of specific miRNAs. Aging altered the expression of 57 miRNAs in mouse skeletal muscle, and many of these miRNAs are now reported to be associated specifically with age-related muscle atrophy. These include miR-221, previously identified in studies of myogenesis and muscle development as playing a role in the proliferation and terminal differentiation of myogenic precursors. We also treated aged mice with recombinant leptin, to determine whether leptin therapy could improve muscle mass and alter the miRNA expression profile of aging skeletal muscle. Leptin treatment significantly increased hindlimb muscle mass and extensor digitorum longus fiber size in aged mice. Furthermore, the expression of 37 miRNAs was altered in muscles of leptin-treated mice. In particular, leptin treatment increased the expression of miR-31 and miR-223, miRNAs known to be elevated during muscle regeneration and repair. These findings suggest that aging in skeletal muscle is associated with marked changes in the expression of specific miRNAs, and that nutrient-related hormones such as leptin

  6. The adipokine leptin increases skeletal muscle mass and significantly alters skeletal muscle miRNA expression profile in aged mice

    Energy Technology Data Exchange (ETDEWEB)

    Hamrick, Mark W., E-mail: mhamrick@mail.mcg.edu [Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Department of Orthopaedic Surgery, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Herberg, Samuel; Arounleut, Phonepasong [Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Department of Orthopaedic Surgery, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); He, Hong-Zhi [Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI (United States); Department of Dermatology, Henry Ford Health System, Detroit, MI (United States); Shiver, Austin [Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Department of Orthopaedic Surgery, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Qi, Rui-Qun [Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI (United States); Department of Dermatology, Henry Ford Health System, Detroit, MI (United States); Zhou, Li [Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI (United States); Department of Dermatology, Henry Ford Health System, Detroit, MI (United States); Department of Internal Medicine, Henry Ford Health System, Detroit, MI (United States); Isales, Carlos M. [Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Department of Orthopaedic Surgery, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); others, and

    2010-09-24

    Research highlights: {yields} Aging is associated with muscle atrophy and loss of muscle mass, known as the sarcopenia of aging. {yields} We demonstrate that age-related muscle atrophy is associated with marked changes in miRNA expression in muscle. {yields} Treating aged mice with the adipokine leptin significantly increased muscle mass and the expression of miRNAs involved in muscle repair. {yields} Recombinant leptin therapy may therefore be a novel approach for treating age-related muscle atrophy. -- Abstract: Age-associated loss of muscle mass, or sarcopenia, contributes directly to frailty and an increased risk of falls and fractures among the elderly. Aged mice and elderly adults both show decreased muscle mass as well as relatively low levels of the fat-derived hormone leptin. Here we demonstrate that loss of muscle mass and myofiber size with aging in mice is associated with significant changes in the expression of specific miRNAs. Aging altered the expression of 57 miRNAs in mouse skeletal muscle, and many of these miRNAs are now reported to be associated specifically with age-related muscle atrophy. These include miR-221, previously identified in studies of myogenesis and muscle development as playing a role in the proliferation and terminal differentiation of myogenic precursors. We also treated aged mice with recombinant leptin, to determine whether leptin therapy could improve muscle mass and alter the miRNA expression profile of aging skeletal muscle. Leptin treatment significantly increased hindlimb muscle mass and extensor digitorum longus fiber size in aged mice. Furthermore, the expression of 37 miRNAs was altered in muscles of leptin-treated mice. In particular, leptin treatment increased the expression of miR-31 and miR-223, miRNAs known to be elevated during muscle regeneration and repair. These findings suggest that aging in skeletal muscle is associated with marked changes in the expression of specific miRNAs, and that nutrient

  7. Spot light on skeletal muscles: optogenetic stimulation to understand and restore skeletal muscle function.

    Science.gov (United States)

    van Bremen, Tobias; Send, Thorsten; Sasse, Philipp; Bruegmann, Tobias

    2017-08-01

    Damage of peripheral nerves results in paralysis of skeletal muscle. Currently, the only treatment option to restore proper function is electrical stimulation of the innervating nerve or of the skeletal muscles directly. However this approach has low spatial and temporal precision leading to co-activation of antagonistic muscles and lacks cell-type selectivity resulting in pain or discomfort by stimulation of sensible nerves. In contrast to electrical stimulation, optogenetic methods enable spatially confined and cell-type selective stimulation of cells expressing the light sensitive channel Channelrhodopsin-2 with precise temporal control over the membrane potential. Herein we summarize the current knowledge about the use of this technology to control skeletal muscle function with the focus on the direct, non-neuronal stimulation of muscle fibers. The high temporal flexibility of using light pulses allows new stimulation patterns to investigate skeletal muscle physiology. Furthermore, the high spatial precision of focused illumination was shown to be beneficial for selective stimulation of distinct nearby muscle groups. Finally, the cell-type specific expression of the light-sensitive effector proteins in muscle fibers will allow pain-free stimulation and open new options for clinical treatments. Therefore, we believe that direct optogenetic stimulation of skeletal muscles is a very potent method for basic scientists that also harbors several distinct advantages over electrical stimulation to be considered for clinical use in the future.

  8. Skeletal muscle atrophy in bioengineered skeletal muscle: a new model system.

    Science.gov (United States)

    Lee, Peter H U; Vandenburgh, Herman H

    2013-10-01

    Skeletal muscle atrophy has been well characterized in various animal models, and while certain pathways that lead to disuse atrophy and its associated functional deficits have been well studied, available drugs to counteract these deficiencies are limited. An ex vivo tissue-engineered skeletal muscle offers a unique opportunity to study skeletal muscle physiology in a controlled in vitro setting. Primary mouse myoblasts isolated from adult muscle were tissue engineered into bioartificial muscles (BAMs) containing hundreds of aligned postmitotic muscle fibers expressing sarcomeric proteins. When electrically stimulated, BAMs generated measureable active forces within 2-3 days of formation. The maximum isometric tetanic force (Po) increased for ∼3 weeks to 2587±502 μN/BAM and was maintained at this level for greater than 80 days. When BAMs were reduced in length by 25% to 50%, muscle atrophy occurred in as little as 6 days. Length reduction resulted in significant decreases in Po (50.4%), mean myofiber cross-sectional area (21.7%), total protein synthesis rate (22.0%), and noncollagenous protein content (6.9%). No significant changes occurred in either the total metabolic activity or protein degradation rates. This study is the first in vitro demonstration that length reduction alone can induce skeletal muscle atrophy, and establishes a novel in vitro model for the study of skeletal muscle atrophy.

  9. Demonstration of a day-night rhythm in human skeletal muscle oxidative capacity.

    Science.gov (United States)

    van Moorsel, Dirk; Hansen, Jan; Havekes, Bas; Scheer, Frank A J L; Jörgensen, Johanna A; Hoeks, Joris; Schrauwen-Hinderling, Vera B; Duez, Helene; Lefebvre, Philippe; Schaper, Nicolaas C; Hesselink, Matthijs K C; Staels, Bart; Schrauwen, Patrick

    2016-08-01

    A disturbed day-night rhythm is associated with metabolic perturbations that can lead to obesity and type 2 diabetes mellitus (T2DM). In skeletal muscle, a reduced oxidative capacity is also associated with the development of T2DM. However, whether oxidative capacity in skeletal muscle displays a day-night rhythm in humans has so far not been investigated. Lean, healthy subjects were enrolled in a standardized living protocol with regular meals, physical activity and sleep to reflect our everyday lifestyle. Mitochondrial oxidative capacity was examined in skeletal muscle biopsies taken at five time points within a 24-hour period. Core-body temperature was lower during the early night, confirming a normal day-night rhythm. Skeletal muscle oxidative capacity demonstrated a robust day-night rhythm, with a significant time effect in ADP-stimulated respiration (state 3 MO, state 3 MOG and state 3 MOGS, p < 0.05). Respiration was lowest at 1 PM and highest at 11 PM (state 3 MOGS: 80.6 ± 4.0 vs. 95.8 ± 4.7 pmol/mg/s). Interestingly, the fluctuation in mitochondrial function was also observed in whole-body energy expenditure, with peak energy expenditure at 11 PM and lowest energy expenditure at 4 AM (p < 0.001). In addition, we demonstrate rhythmicity in mRNA expression of molecular clock genes in human skeletal muscle. Our results suggest that the biological clock drives robust rhythms in human skeletal muscle oxidative metabolism. It is tempting to speculate that disruption of these rhythms contribute to the deterioration of metabolic health associated with circadian misalignment.

  10. Injectable skeletal muscle matrix hydrogel promotes neovascularization and muscle cell infiltration in a hindlimb ischemia model

    Directory of Open Access Journals (Sweden)

    JA DeQuach

    2012-06-01

    Full Text Available Peripheral artery disease (PAD currently affects approximately 27 million patients in Europe and North America, and if untreated, may progress to the stage of critical limb ischemia (CLI, which has implications for amputation and potential mortality. Unfortunately, few therapies exist for treating the ischemic skeletal muscle in these conditions. Biomaterials have been used to increase cell transplant survival as well as deliver growth factors to treat limb ischemia; however, existing materials do not mimic the native skeletal muscle microenvironment they are intended to treat. Furthermore, no therapies involving biomaterials alone have been examined. The goal of this study was to develop a clinically relevant injectable hydrogel derived from decellularized skeletal muscle extracellular matrix and examine its potential for treating PAD as a stand-alone therapy by studying the material in a rat hindlimb ischemia model. We tested the mitogenic activity of the scaffold’s degradation products using an in vitro assay and measured increased proliferation rates of smooth muscle cells and skeletal myoblasts compared to collagen. In a rat hindlimb ischemia model, the femoral artery was ligated and resected, followed by injection of 150 µL of skeletal muscle matrix or collagen 1 week post-injury. We demonstrate that the skeletal muscle matrix increased arteriole and capillary density, as well as recruited more desmin-positive and MyoD-positive cells compared to collagen. Our results indicate that this tissue-specific injectable hydrogel may be a potential therapy for treating ischemia related to PAD, as well as have potential beneficial effects on restoring muscle mass that is typically lost in CLI.

  11. Dicarbonyl stress and glyoxalase enzyme system regulation in human skeletal muscle.

    Science.gov (United States)

    Mey, Jacob T; Blackburn, Brian K; Miranda, Edwin R; Chaves, Alec B; Briller, Joan; Bonini, Marcelo G; Haus, Jacob M

    2018-02-01

    Skeletal muscle insulin resistance is a hallmark of Type 2 diabetes (T2DM) and may be exacerbated by protein modifications by methylglyoxal (MG), known as dicarbonyl stress. The glyoxalase enzyme system composed of glyoxalase 1/2 (GLO1/GLO2) is the natural defense against dicarbonyl stress, yet its protein expression, activity, and regulation remain largely unexplored in skeletal muscle. Therefore, this study investigated dicarbonyl stress and the glyoxalase enzyme system in the skeletal muscle of subjects with T2DM (age: 56 ± 5 yr.; BMI: 32 ± 2 kg/m 2 ) compared with lean healthy control subjects (LHC; age: 27 ± 1 yr.; BMI: 22 ± 1 kg/m 2 ). Skeletal muscle biopsies obtained from the vastus lateralis at basal and insulin-stimulated states of the hyperinsulinemic (40 mU·m -2 ·min -1 )-euglycemic (5 mM) clamp were analyzed for proteins related to dicarbonyl stress and glyoxalase biology. At baseline, T2DM had increased carbonyl stress and lower GLO1 protein expression (-78.8%), which inversely correlated with BMI, percent body fat, and HOMA-IR, while positively correlating with clamp-derived glucose disposal rates. T2DM also had lower NRF2 protein expression (-31.6%), which is a positive regulator of GLO1, while Keap1 protein expression, a negative regulator of GLO1, was elevated (207%). Additionally, insulin stimulation during the clamp had a differential effect on NRF2, Keap1, and MG-modified protein expression. These data suggest that dicarbonyl stress and the glyoxalase enzyme system are dysregulated in T2DM skeletal muscle and may underlie skeletal muscle insulin resistance. Whether these phenotypic differences contribute to the development of T2DM warrants further investigation.

  12. The Bone Dysplasia Ontology: integrating genotype and phenotype information in the skeletal dysplasia domain

    Directory of Open Access Journals (Sweden)

    Groza Tudor

    2012-03-01

    Full Text Available Abstract Background Skeletal dysplasias are a rare and heterogeneous group of genetic disorders affecting skeletal development. Patients with skeletal dysplasias suffer from many complex medical issues including degenerative joint disease and neurological complications. Because the data and expertise associated with this field is both sparse and disparate, significant benefits will potentially accrue from the availability of an ontology that provides a shared conceptualisation of the domain knowledge and enables data integration, cross-referencing and advanced reasoning across the relevant but distributed data sources. Results We introduce the design considerations and implementation details of the Bone Dysplasia Ontology. We also describe the different components of the ontology, including a comprehensive and formal representation of the skeletal dysplasia domain as well as the related genotypes and phenotypes. We then briefly describe SKELETOME, a community-driven knowledge curation platform that is underpinned by the Bone Dysplasia Ontology. SKELETOME enables domain experts to use, refine and extend and apply the ontology without any prior ontology engineering experience--to advance the body of knowledge in the skeletal dysplasia field. Conclusions The Bone Dysplasia Ontology represents the most comprehensive structured knowledge source for the skeletal dysplasias domain. It provides the means for integrating and annotating clinical and research data, not only at the generic domain knowledge level, but also at the level of individual patient case studies. It enables links between individual cases and publicly available genotype and phenotype resources based on a community-driven curation process that ensures a shared conceptualisation of the domain knowledge and its continuous incremental evolution.

  13. Distinctive skeletal dysplasia in Cockayne syndrome

    International Nuclear Information System (INIS)

    Silengo, M.C.; Franceschini, P.; Bianco, R.; Biagioli, M.; Pastorin, L.; Vista, N.; Baldassar, A.; Benso, L.

    1986-01-01

    Cockayne syndrom is a well-known autosomal recessive form of dwarfism with senile-like appearance. Skeletal changes such as flattening of vertebral bodies, ivory epiphyses and thickening of cranial vault, have been observed in some patients with this condition. We describe here a 5.5-year-old girl with the typical clinical signs of Cockayne syndrome and a distinctive form of bone dysplasia with major involvment of the spine. (orig.)

  14. Distinctive skeletal dysplasia in Cockayne syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Silengo, M.C.; Franceschini, P.; Bianco, R.; Biagioli, M.; Pastorin, L.; Vista, N.; Baldassar, A.; Benso, L.

    1986-03-01

    Cockayne syndrome is a well-known autosomal recessive form of dwarfism with senile-like appearance. Skeletal changes such as flattening of vertebral bodies, ivory epiphyses and thickening of cranial vault, have been observed in some patients with this condition. We describe here a 5.5-year-old girl with the typical clinical signs of Cockayne syndrome and a distinctive form of bone dysplasia with major involvement of the spine.

  15. Silychristin: Skeletal Alterations and Biological Activities

    Czech Academy of Sciences Publication Activity Database

    Biedermann, David; Buchta, M.; Holečková, Veronika; Sedlák, David; Valentová, Kateřina; Cvačka, Josef; Bednárová, Lucie; Křenková, Alena; Kuzma, Marek; Škuta, Ctibor; Peikerová, Žaneta; Bartůněk, Petr; Křen, Vladimír

    2016-01-01

    Roč. 79, č. 12 (2016), s. 3086-3092 ISSN 0163-3864 R&D Projects: GA ČR(CZ) GA15-03037S; GA MZd(CZ) NV16-27317A; GA MŠk LO1220; GA MŠk LM2015063; GA MŠk(CZ) LD15081 Institutional support: RVO:61388971 ; RVO:68378050 ; RVO:61388963 Keywords : Silychristin * skeletal alterations * biological activities Subject RIV: CC - Organic Chemistry Impact factor: 3.281, year: 2016

  16. Skeletal carbonate mineralogy of Scottish bryozoans

    Science.gov (United States)

    Spencer Jones, Mary; Najorka, Jens; Smith, Abigail M.

    2018-01-01

    This paper describes the skeletal carbonate mineralogy of 156 bryozoan species collected from Scotland (sourced both from museum collections and from waters around Scotland) and collated from literature. This collection represents 79% of the species which inhabit Scottish waters and is a greater number and proportion of extant species than any previous regional study. The study is also of significance globally where the data augment the growing database of mineralogical analyses and offers first analyses for 26 genera and four families. Specimens were collated through a combination of field sampling and existing collections and were analysed by X-ray diffraction (XRD) and micro-XRD to determine wt% MgCO3 in calcite and wt% aragonite. Species distribution data and phylogenetic organisation were applied to understand distributional, taxonomic and phylo-mineralogical patterns. Analysis of the skeletal composition of Scottish bryozoans shows that the group is statistically different from neighbouring Arctic fauna but features a range of mineralogy comparable to other temperate regions. As has been previously reported, cyclostomes feature low Mg in calcite and very little aragonite, whereas cheilostomes show much more variability, including bimineralic species. Scotland is a highly variable region, open to biological and environmental influx from all directions, and bryozoans exhibit this in the wide range of within-species mineralogical variability they present. This plasticity in skeletal composition may be driven by a combination of environmentally-induced phenotypic variation, or physiological factors. A flexible response to environment, as manifested in a wide range of skeletal mineralogy within a species, may be one characteristic of successful invasive bryozoans. PMID:29897916

  17. Role of ERK signaling pathway in up-regulation of γ-AChR during development of resistance to non-depolarizing muscular relaxants in skeletal muscles of burned rats%ERK信号通路在烧伤大鼠骨骼肌对非去极化肌松药抵抗形成时γ-AChR上调中的作用

    Institute of Scientific and Technical Information of China (English)

    靳天; 王宏; 吴进; 李士通

    2016-01-01

    Objective To evaluate the role of ERK signaling pathway in up-regulation of fetal gamma-acetylcholine receptor (μ-AChR) during the development of resistance to non-depolarizing muscular relaxants in skeletal muscles of burned rats.Methods Thirty adult male SPF Sprague-Dawley rats,weighing 230-250 g,aged 9-10 weeks,were randomly divided into 3 groups (n=10 each) using a random number table:control group (C group),burn group (B group) and ERK1/2 inhibitor U0126 group (U group).The surface area of bilateral hindlimbs was shaved,and the tibialis anterior muscle of the right hiudlimb was exposed to 95 ℃ copper for 12 s in anesthetized rats.At 1.5 h after burn,15 mg/kg U0126 was injected intraperitoneally in group U,and the equal volume of dimethyl sulfoxide was given in C and B groups.The tibialis anterior muscle was obtained on 7th day after establishment of the model for determination of the expression of μ-AChR and adult epsilon-AChR (ε-AChR) mRNA in skeletal muscle cells using real-time polymerase chain reaction.The concentration-effect curve of rocuronium was drawn using muscular tension experiment,and the half inhibitory concentration (IC50) and 95% confidence interval were calculated.Resuits Compared with group C,the expression of μ-AChR mRNA in skeletal muscle cells was significantly up-regulated,and the IC50 was significantly increased in group B (P<0.05).Compared with group B,the expression of γ-AChR mRNA in skeletal muscle cells was significantly down-regulated,and the IC50 was significantly decreased in group U (P<0.05).There was no significant difference in the expression of ε-AChR in skeletal muscle cells between the three groups (P>0.05).Conclusion Up-regulation of μ,-AChR is dependent on activation of ERK signaling pathway during the development of resistance to non-depolarizing muscular relaxants in skeletal muscles of burned rats.%目的 评价细胞外信号调节激酶(ERK)信号通路在烧伤大鼠骨骼肌对非去极化肌松药

  18. Mechanical stimulation improves tissue-engineered human skeletal muscle

    Science.gov (United States)

    Powell, Courtney A.; Smiley, Beth L.; Mills, John; Vandenburgh, Herman H.

    2002-01-01

    Human bioartificial muscles (HBAMs) are tissue engineered by suspending muscle cells in collagen/MATRIGEL, casting in a silicone mold containing end attachment sites, and allowing the cells to differentiate for 8 to 16 days. The resulting HBAMs are representative of skeletal muscle in that they contain parallel arrays of postmitotic myofibers; however, they differ in many other morphological characteristics. To engineer improved HBAMs, i.e., more in vivo-like, we developed Mechanical Cell Stimulator (MCS) hardware to apply in vivo-like forces directly to the engineered tissue. A sensitive force transducer attached to the HBAM measured real-time, internally generated, as well as externally applied, forces. The muscle cells generated increasing internal forces during formation which were inhibitable with a cytoskeleton depolymerizer. Repetitive stretch/relaxation for 8 days increased the HBAM elasticity two- to threefold, mean myofiber diameter 12%, and myofiber area percent 40%. This system allows engineering of improved skeletal muscle analogs as well as a nondestructive method to determine passive force and viscoelastic properties of the resulting tissue.

  19. Duplex Alu Screening for Degraded DNA of Skeletal Human Remains

    Directory of Open Access Journals (Sweden)

    Fabian Haß

    2017-10-01

    Full Text Available The human-specific Alu elements, belonging to the class of Short INterspersed Elements (SINEs, have been shown to be a powerful tool for population genetic studies. An earlier study in this department showed that it was possible to analyze Alu presence/absence in 3000-year-old skeletal human remains from the Bronze Age Lichtenstein cave in Lower Saxony, Germany. We developed duplex Alu screening PCRs with flanking primers for two Alu elements, each combined with a single internal Alu primer. By adding an internal primer, the approximately 400–500 bp presence signals of Alu elements can be detected within a range of less than 200 bp. Thus, our PCR approach is suited for highly fragmented ancient DNA samples, whereas NGS analyses frequently are unable to handle repetitive elements. With this analysis system, we examined remains of 12 individuals from the Lichtenstein cave with different degrees of DNA degradation. The duplex PCRs showed fully informative amplification results for all of the chosen Alu loci in eight of the 12 samples. Our analysis system showed that Alu presence/absence analysis is possible in samples with different degrees of DNA degradation and it reduces the amount of valuable skeletal material needed by a factor of four, as compared with a singleplex approach.

  20. Estrogens and Androgens in Skeletal Physiology and Pathophysiology.

    Science.gov (United States)

    Almeida, Maria; Laurent, Michaël R; Dubois, Vanessa; Claessens, Frank; O'Brien, Charles A; Bouillon, Roger; Vanderschueren, Dirk; Manolagas, Stavros C

    2017-01-01

    Estrogens and androgens influence the growth and maintenance of the mammalian skeleton and are responsible for its sexual dimorphism. Estrogen deficiency at menopause or loss of both estrogens and androgens in elderly men contribute to the development of osteoporosis, one of the most common and impactful metabolic diseases of old age. In the last 20 years, basic and clinical research advances, genetic insights from humans and rodents, and newer imaging technologies have changed considerably the landscape of our understanding of bone biology as well as the relationship between sex steroids and the physiology and pathophysiology of bone metabolism. Together with the appreciation of the side effects of estrogen-related therapies on breast cancer and cardiovascular diseases, these advances have also drastically altered the treatment of osteoporosis. In this article, we provide a comprehensive review of the molecular and cellular mechanisms of action of estrogens and androgens on bone, their influences on skeletal homeostasis during growth and adulthood, the pathogenetic mechanisms of the adverse effects of their deficiency on the female and male skeleton, as well as the role of natural and synthetic estrogenic or androgenic compounds in the pharmacotherapy of osteoporosis. We highlight latest advances on the crosstalk between hormonal and mechanical signals, the relevance of the antioxidant properties of estrogens and androgens, the difference of their cellular targets in different bone envelopes, the role of estrogen deficiency in male osteoporosis, and the contribution of estrogen or androgen deficiency to the monomorphic effects of aging on skeletal involution. Copyright © 2017 the American Physiological Society.

  1. Comparison of three methods to assess individual skeletal maturity.

    Science.gov (United States)

    Pasciuti, Enzo; Franchi, Lorenzo; Baccetti, Tiziano; Milani, Silvano; Farronato, Giampietro

    2013-09-01

    The knowledge of facial growth and development is fundamental to determine the optimal timing for different treatment procedures in the growing patient. To analyze the reproducibility of three methods in assessing individual skeletal maturity, and to evaluate any degree of concordance among them. In all, 100 growing subjects were enrolled to test three methods: the hand-wrist, cervical vertebral maturation (CVM), and medial phalanges of the third finger method (MP3). Four operators determined the skeletal maturity of the subjects to evaluate the reproducibility of each method. After 30 days the operators repeated the analysis to assess the repeatability of each method. Finally, one operator examined all subjects' radiographs to detect any concordance among the three methods. The weighted kappa values for inter-operator variability were 0.94, 0.91, and 0.90, for the WRI, CVM, and MP3 methods, respectively. The weighted kappa values for intra-operator variability were 0.92, 0.91, and 0.92, for the WRI, CVM, and MP3 methods, respectively. The three methods revealed a high degree of repeatability and reproducibility. Complete agreement among the three methods was observed in 70% of the analyzed samples. The CVM method has the advantage of not necessitating an additional radiograph. The MP3 method is a simple and practical alternative as it requires only a standard dental x-ray device.

  2. Assessment of skeletal maturation based on cervical vertebrae in CBCT.

    Science.gov (United States)

    Shim, Jocelyne J; Heo, Giseon; Lagravère, Manuel O

    2012-12-01

    Diagnosis of skeletal age in adolescents helps orthodontists select and time treatments. Currently this is done using lateral cephalometric radiographs. This study evaluates the application of the conventional method in cone-beam computer tomographic (CBCT) images to bring forth assessment of skeletal maturation in three-dimensions. Ninety-eight lateral cephalometric radiographs and CBCT scans were collected from orthodontic patients between 11 to 17 years of age over an 18-month period. CBCT scans were examined in seven sagittal slices based on cervical vertebral maturation staging (CVMS). Collected CVMS values were compared with those from corresponding lateral cephalometric radiograph. CVMS measured from CBCT and lateral cephalometric radiographs were the same on average. However, they were not consistent with each other and scored interclass correlation coefficient of 0.155 in validity test. Interoperator reliability was weak (0.581). Adaptation of cervical vertebrae maturation staging in CBCT requires further clarifications or modifications to become consistent with lateral cephalometric examinations and to become a reliable method. Alternatively, a completely new method may be developed consisting of maturational indicators or landmarks unique to CBCT imaging. Copyright © 2012. Published by Elsevier Masson SAS.

  3. CT findings in skeletal cystic echinococcosis

    Energy Technology Data Exchange (ETDEWEB)

    Tuezuen, M.; Hekimoglu, B. [Social Security Hospital, Ankara (Turkey). Dept. of Radiology

    2002-09-01

    Purpose: To evaluate the CT findings of skeletal cystic echinococcosis. Material and Methods: CT findings of 7 patients with pathologically confirmed skeletal cystic echinococcosis were evaluated. Results: There were 4 men and 3 women, aged 36-75 years. Hydatid cysts were located in the spine (n=2), a rib (n=3), the pelvis and a vertebra (n=1), the pelvis and the left femur (n=1). The size of the lesions varied from 1 cm to 15 cm. CT showed well defined, single or multiple cystic lesions with no contrast enhancement, no calcification, no daughter cysts, and no germinal membrane detachment. The cystic lesion had a honeycomb appearance in 2 cases, there was pathologic fracture in 2 cases, bone expansion in 5 cases, cortical thinning in 6 cases, cortical destruction in 6 cases, bone sclerosis in 1 case, and soft tissue extension in 6 cases. Conclusion: Preoperative differential diagnosis of skeletal cystic lesions should include cystic echinococcosis, especially in endemic areas, since this diagnosis may easily be missed unless kept in mind.

  4. Skeletal metastases from primary hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Kim, So Sun; Huh, Jin Do; Kim, Ho Joon; Chun, Byung Hee; Joh, Young Duk; Chang, Hee Kyung; Huh, Man Ha

    1988-01-01

    In order to detect and to evaluate the frequency, the distribution, and the radiological findings of skeletal metastases from hepatocellular carcinoma, the authors retrospectively analyzed radiographic, scintigraphic, and CT findings of 257 patients with hepatocellular carcinoma. The results were as follows: 1. Skeletal metastases were demonstrated in 21 patients (8.2%). 2. Frequent symptoms were pain, limitation of motion, paralysis, and mass. In nine of them the initial symptoms were due to skeletal metastases. 3. The common sites of metastases were spine (13 cases), ribs (8 cases), pelvis (8 cases) and femur (6 cases). Humerus, skull and sternum were also frequently involved. 4. Plain film findings were purely osteolytic in all cases and pathologic fractures were noted in 5 cases. 5. The lesions appear expansible in 7 cases, and 4 of them showed associated soft tissue masses on CT scans. 6. Bone scans were performed in 13 cases of them and showed increased radiotracer uptake in all. 7. Angiographic studies of 3 cases showed hypervascularity of the metastatic lesions as well as the primary hepatic tumor.

  5. Oxidative proteome alterations during skeletal muscle ageing

    Directory of Open Access Journals (Sweden)

    Sofia Lourenço dos Santos

    2015-08-01

    Full Text Available Sarcopenia corresponds to the degenerative loss of skeletal muscle mass, quality, and strength associated with ageing and leads to a progressive impairment of mobility and quality of life. However, the cellular and molecular mechanisms involved in this process are not completely understood. A hallmark of cellular and tissular ageing is the accumulation of oxidatively modified (carbonylated proteins, leading to a decreased quality of the cellular proteome that could directly impact on normal cellular functions. Although increased oxidative stress has been reported during skeletal muscle ageing, the oxidized protein targets, also referred as to the ‘oxi-proteome’ or ‘carbonylome’, have not been characterized yet. To better understand the mechanisms by which these damaged proteins build up and potentially affect muscle function, proteins targeted by these modifications have been identified in human rectus abdominis muscle obtained from young and old healthy donors using a bi-dimensional gel electrophoresis-based proteomic approach coupled with immunodetection of carbonylated proteins. Among evidenced protein spots, 17 were found as increased carbonylated in biopsies from old donors comparing to young counterparts. These proteins are involved in key cellular functions such as cellular morphology and transport, muscle contraction and energy metabolism. Importantly, impairment of these pathways has been described in skeletal muscle during ageing. Functional decline of these proteins due to irreversible oxidation may therefore impact directly on the above-mentioned pathways, hence contributing to the generation of the sarcopenic phenotype.

  6. Extrarenal potassium adaptation: role of skeletal muscle

    International Nuclear Information System (INIS)

    Blachley, J.D.; Crider, B.P.; Johnson, J.H.

    1986-01-01

    Following the ingestion of a high-potassium-content diet for only a few days, the plasma potassium of rats rises only modestly in response to a previously lethal dose of potassium salts. This acquired tolerance, termed potassium adaptation, is principally the result of increased capacity to excrete potassium into the urine. However, a substantial portion of the acute potassium dose is not immediately excreted and is apparently translocated into cells. Previous studies have failed to show an increase in the content of potassium of a variety of tissues from such animals. Using 86 Rb as a potassium analogue, we have shown that the skeletal muscle of potassium-adapted rats takes up significantly greater amounts of potassium in vivo in response to an acute challenge than does that of control animals. Furthermore, the same animals exhibit greater efflux of 86 Rb following the termination of the acute infusion. We have also shown that the Na+-K+-ATPase activity and ouabain-binding capacity of skeletal muscle microsomes are increased by the process of potassium adaptation. We conclude that skeletal muscle is an important participant in potassium adaptation and acts to temporarily buffer acute increases in the extracellular concentration of potassium

  7. Skeletal muscle weakness in osteogenesis imperfecta mice.

    Science.gov (United States)

    Gentry, Bettina A; Ferreira, J Andries; McCambridge, Amanda J; Brown, Marybeth; Phillips, Charlotte L

    2010-09-01

    Exercise intolerance, muscle fatigue and weakness are often-reported, little-investigated concerns of patients with osteogenesis imperfecta (OI). OI is a heritable connective tissue disorder hallmarked by bone fragility resulting primarily from dominant mutations in the proα1(I) or proα2(I) collagen genes and the recently discovered recessive mutations in post-translational modifying proteins of type I collagen. In this study we examined the soleus (S), plantaris (P), gastrocnemius (G), tibialis anterior (TA) and quadriceps (Q) muscles of mice expressing mild (+/oim) and moderately severe (oim/oim) OI for evidence of inherent muscle pathology. In particular, muscle weight, fiber cross-sectional area (CSA), fiber type, fiber histomorphology, fibrillar collagen content, absolute, relative and specific peak tetanic force (P(o), P(o)/mg and P(o)/CSA respectively) of individual muscles were evaluated. Oim/oim mouse muscles were generally smaller, contained less fibrillar collagen, had decreased P(o) and an inability to sustain P(o) for the 300-ms testing duration for specific muscles; +/oim mice had a similar but milder skeletal muscle phenotype. +/oim mice had mild weakness of specific muscles but were less affected than their oim/oim counterparts which demonstrated readily apparent skeletal muscle pathology. Therefore muscle weakness in oim mice reflects inherent skeletal muscle pathology. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Photothermal imaging of skeletal muscle mitochondria.

    Science.gov (United States)

    Tomimatsu, Toru; Miyazaki, Jun; Kano, Yutaka; Kobayashi, Takayoshi

    2017-06-01

    The morphology and topology of mitochondria provide useful information about the physiological function of skeletal muscle. Previous studies of skeletal muscle mitochondria are based on observation with transmission, scanning electron microscopy or fluorescence microscopy. In contrast, photothermal (PT) microscopy has advantages over the above commonly used microscopic techniques because of no requirement for complex sample preparation by fixation or fluorescent-dye staining. Here, we employed the PT technique using a simple diode laser to visualize skeletal muscle mitochondria in unstained and stained tissues. The fine mitochondrial network structures in muscle fibers could be imaged with the PT imaging system, even in unstained tissues. PT imaging of tissues stained with toluidine blue revealed the structures of subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria and the swelling behavior of mitochondria in damaged muscle fibers with sufficient image quality. PT image analyses based on fast Fourier transform (FFT) and Grey-level co-occurrence matrix (GLCM) were performed to derive the characteristic size of mitochondria and to discriminate the image patterns of normal and damaged fibers.

  9. Radiation treatment of painful degenerative skeletal conditions

    International Nuclear Information System (INIS)

    Schaefer, U.; Micke, O.; Willich, N.

    1996-01-01

    The study reported was intended to present own experience with irradiation for treatment of painful degenerative skeletal conditions and examine the long-term effects of this treatment. A retrospective study was performed covering the period from 1985 until 1991, examining 157 patients suffering from painful degenerative skeletal conditions who entered information on the success of their radiation treatment in a questionnaire. 94 of the questionnaires could be used for evaluation. Pain anamnesis revealed periods of more than one year in 45% of the cases. 74% of the patients had been treated without success with drug or orthopedic therapy. Immediately after termination of the radiotherapy, 38% of the patients said to be free of pain or to feel essentially relieved, while at the time the questionnaire was distributed, the percentage was 76%. Thus in our patient material, radiotherapy for treatment of painful degenerative skeletal lesions was successful in 76% of the cases and for long post-treatment periods, including those cases whith long pain anamnesis and unsuccessful conventional pre-treatment. (orig./MG) [de

  10. Insulin Increases Ceramide Synthesis in Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    M. E. Hansen

    2014-01-01

    Full Text Available Aims. The purpose of this study was to determine the effect of insulin on ceramide metabolism in skeletal muscle. Methods. Skeletal muscle cells were treated with insulin with or without palmitate for various time periods. Lipids (ceramides and TAG were isolated and gene expression of multiple biosynthetic enzymes were quantified. Additionally, adult male mice received daily insulin injections for 14 days, followed by muscle ceramide analysis. Results. In muscle cells, insulin elicited an increase in ceramides comparable to palmitate alone. This is likely partly due to an insulin-induced increase in expression of multiple enzymes, particularly SPT2, which, when knocked down, prevented the increase in ceramides. In mice, 14 days of insulin injection resulted in increased soleus ceramides, but not TAG. However, insulin injections did significantly increase hepatic TAG compared with vehicle-injected animals. Conclusions. This study suggests that insulin elicits an anabolic effect on sphingolipid metabolism in skeletal muscle, resulting in increased ceramide accumulation. These findings reveal a potential mechanism of the deleterious consequences of the hyperinsulinemia that accompanies insulin resistance and suggest a possible novel therapeutic target to mitigate its effects.

  11. Functional evaluation of artificial skeletal muscle tissue constructs fabricated by a magnetic force-based tissue engineering technique.

    Science.gov (United States)

    Yamamoto, Yasunori; Ito, Akira; Fujita, Hideaki; Nagamori, Eiji; Kawabe, Yoshinori; Kamihira, Masamichi

    2011-01-01

    Skeletal muscle tissue engineering is currently applied in a variety of research fields, including regenerative medicine, drug screening, and bioactuator development, all of which require the fabrication of biomimic and functional skeletal muscle tissues. In the present study, magnetite cationic liposomes were used to magnetically label C2C12 myoblast cells for the construction of three-dimensional artificial skeletal muscle tissues by an applied magnetic force. Skeletal muscle functions, such as biochemical and contractile properties, were evaluated for the artificial tissue constructs. Histological studies revealed that elongated and multinucleated myotubes were observed within the tissue. Expression of muscle-specific markers, such as myogenin, myosin heavy chain and tropomyosin, were detected in the tissue constructs by western blot analysis. Further, creatine kinase activity increased during differentiation. In response to electric pulses, the artificial tissue constructs contracted to generate a physical force (the maximum twitch force, 33.2 μN [1.06 mN/mm2]). Rheobase and chronaxie of the tissue were determined as 4.45 V and 0.72 ms, respectively. These results indicate that the artificial skeletal muscle tissue constructs fabricated in this study were physiologically functional and the data obtained for the evaluation of their functional properties may provide useful information for future skeletal muscle tissue engineering studies.

  12. Three-Dimensional Human iPSC-Derived Artificial Skeletal Muscles Model Muscular Dystrophies and Enable Multilineage Tissue Engineering.

    Science.gov (United States)

    Maffioletti, Sara Martina; Sarcar, Shilpita; Henderson, Alexander B H; Mannhardt, Ingra; Pinton, Luca; Moyle, Louise Anne; Steele-Stallard, Heather; Cappellari, Ornella; Wells, Kim E; Ferrari, Giulia; Mitchell, Jamie S; Tyzack, Giulia E; Kotiadis, Vassilios N; Khedr, Moustafa; Ragazzi, Martina; Wang, Weixin; Duchen, Michael R; Patani, Rickie; Zammit, Peter S; Wells, Dominic J; Eschenhagen, Thomas; Tedesco, Francesco Saverio

    2018-04-17

    Generating human skeletal muscle models is instrumental for investigating muscle pathology and therapy. Here, we report the generation of three-dimensional (3D) artificial skeletal muscle tissue from human pluripotent stem cells, including induced pluripotent stem cells (iPSCs) from patients with Duchenne, limb-girdle, and congenital muscular dystrophies. 3D skeletal myogenic differentiation of pluripotent cells was induced within hydrogels under tension to provide myofiber alignment. Artificial muscles recapitulated characteristics of human skeletal muscle tissue and could be implanted into immunodeficient mice. Pathological cellular hallmarks of incurable forms of severe muscular dystrophy could be modeled with high fidelity using this 3D platform. Finally, we show generation of fully human iPSC-derived, complex, multilineage muscle models containing key isogenic cellular constituents of skeletal muscle, including vascular endothelial cells, pericytes, and motor neurons. These results lay the foundation for a human skeletal muscle organoid-like platform for disease modeling, regenerative medicine, and therapy development. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Skeletal Muscle Fibre-Specific Knockout of p53 Does Not Reduce Mitochondrial Content or Enzyme Activity

    Directory of Open Access Journals (Sweden)

    Ben Stocks

    2017-12-01

    Full Text Available Tumour protein 53 (p53 has been implicated in the regulation of mitochondrial biogenesis in skeletal muscle, with whole-body p53 knockout mice displaying impairments in basal mitochondrial content, respiratory capacity, and enzyme activity. This study aimed to determine the effect of skeletal muscle-specific loss of p53 on mitochondrial content and enzyme activity. Mitochondrial protein content, enzyme activity and mRNA profiles were assessed in skeletal muscle of 8-week-old male muscle fibre-specific p53 knockout mice (p53 mKO and floxed littermate controls (WT under basal conditions. p53 mKO and WT mice displayed similar content of electron transport chain proteins I-V and citrate synthase enzyme activity in skeletal muscle. In addition, the content of proteins regulating mitochondrial morphology (MFN2, mitofillin, OPA1, DRP1, FIS1, fatty acid metabolism (β-HAD, ACADM, ACADL, ACADVL, carbohydrate metabolism (HKII, PDH, energy sensing (AMPKα2, AMPKβ2, and gene transcription (NRF1, PGC-1α, and TFAM were comparable in p53 mKO and WT mice (p > 0.05. Furthermore, p53 mKO mice exhibited normal mRNA profiles of targeted mitochondrial, metabolic and transcriptional proteins (p > 0.05. Thus, it appears that p53 expression in skeletal muscle fibres is not required to develop or maintain mitochondrial protein content or enzyme function in skeletal muscle under basal conditions.

  14. An Automated System for Skeletal Maturity Assessment by Extreme Learning Machines

    Science.gov (United States)

    Mansourvar, Marjan; Shamshirband, Shahaboddin; Raj, Ram Gopal; Gunalan, Roshan; Mazinani, Iman

    2015-01-01

    Assessing skeletal age is a subjective and tedious examination process. Hence, automated assessment methods have been developed to replace manual evaluation in medical applications. In this study, a new fully automated method based on content-based image retrieval and using extreme learning machines (ELM) is designed and adapted to assess skeletal maturity. The main novelty of this approach is it overcomes the segmentation problem as suffered by existing systems. The estimation results of ELM models are compared with those of genetic programming (GP) and artificial neural networks (ANNs) models. The experimental results signify improvement in assessment accuracy over GP and ANN, while generalization capability is possible with the ELM approach. Moreover, the results are indicated that the ELM model developed can be used confidently in further work on formulating novel models of skeletal age assessment strategies. According to the experimental results, the new presented method has the capacity to learn many hundreds of times faster than traditional learning methods and it has sufficient overall performance in many aspects. It has conclusively been found that applying ELM is particularly promising as an alternative method for evaluating skeletal age. PMID:26402795

  15. An Automated System for Skeletal Maturity Assessment by Extreme Learning Machines.

    Science.gov (United States)

    Mansourvar, Marjan; Shamshirband, Shahaboddin; Raj, Ram Gopal; Gunalan, Roshan; Mazinani, Iman

    2015-01-01

    Assessing skeletal age is a subjective and tedious examination process. Hence, automated assessment methods have been developed to replace manual evaluation in medical applications. In this study, a new fully automated method based on content-based image retrieval and using extreme learning machines (ELM) is designed and adapted to assess skeletal maturity. The main novelty of this approach is it overcomes the segmentation problem as suffered by existing systems. The estimation results of ELM models are compared with those of genetic programming (GP) and artificial neural networks (ANNs) models. The experimental results signify improvement in assessment accuracy over GP and ANN, while generalization capability is possible with the ELM approach. Moreover, the results are indicated that the ELM model developed can be used confidently in further work on formulating novel models of skeletal age assessment strategies. According to the experimental results, the new presented method has the capacity to learn many hundreds of times faster than traditional learning methods and it has sufficient overall performance in many aspects. It has conclusively been found that applying ELM is particularly promising as an alternative method for evaluating skeletal age.

  16. HDAC4-Myogenin Axis As an Important Marker of HD-Related Skeletal Muscle Atrophy

    Science.gov (United States)

    Smeets, Cleo J. L. M.; Franklin, Sophie A.; Bondulich, Marie K.; Jolinon, Nelly; Muller, Thomas; Ahmed, Mhoriam; Dick, James R. T.; Piotrowska, Izabela; Greensmith, Linda; Smolenski, Ryszard T.; Bates, Gillian P.

    2015-01-01

    Skeletal muscle remodelling and contractile dysfunction occur through both acute and chronic disease processes. These include the accumulation of insoluble aggregates of misfolded amyloid proteins that is a pathological feature of Huntington’s disease (HD). While HD has been described primarily as a neurological disease, HD patients’ exhibit pronounced skeletal muscle atrophy. Given that huntingtin is a ubiquitously expressed protein, skeletal muscle fibres may be at risk of a cell autonomous HD-related dysfunction. However the mechanism leading to skeletal muscle abnormalities in the clinical and pre-clinical HD settings remains unknown. To unravel this mechanism, we employed the R6/2 transgenic and HdhQ150 knock-in mouse models of HD. We found that symptomatic animals developed a progressive impairment of the contractile characteristics of the hind limb muscles tibialis anterior (TA) and extensor digitorum longus (EDL), accompanied by a significant loss of motor units in the EDL. In symptomatic animals, these pronounced functional changes were accompanied by an aberrant deregulation of contractile protein transcripts and their up-stream transcriptional regulators. In addition, HD mouse models develop a significant reduction in muscle force, possibly as a result of a deterioration in energy metabolism and decreased oxidation that is accompanied by the re-expression of the HDAC4-DACH2-myogenin axis. These results show that muscle dysfunction is a key pathological feature of HD. PMID:25748626

  17. Measurement of skeletal muscle collagen breakdown by microdialysis

    DEFF Research Database (Denmark)

    Miller, B F; Ellis, D; Robinson, M M

    2011-01-01

    Exercise increases the synthesis of collagen in the extracellular matrix of skeletal muscle. Breakdown of skeletal muscle collagen has not yet been determined because of technical limitations. The purpose of the present study was to use local sampling to determine skeletal muscle collagen breakdown...... collagen breakdown 17–21 h post-exercise, and our measurement of OHP using GC–MS was in agreement with traditional assays....

  18. Archform comparisons between skeletal class II and III malocclusions.

    Directory of Open Access Journals (Sweden)

    Wei Zou

    Full Text Available The purpose of this cross-sectional research was to explore the relationship of the mandibular dental and basal bone archforms between severe Skeletal Class II (SC2 and Skeletal Class III (SC3 malocclusions. We also compared intercanine and intermolar widths in these two malocclusion types. Thirty-three virtual pretreatment mandibular models (Skeletal Class III group and Thirty-five Skeletal Class II group pretreatment models were created with a laser scanning system. FA (the midpoint of the facial axis of the clinical crownand WALA points (the most prominent point on the soft-tissue ridgewere employed to produce dental and basal bone archforms, respectively. Gained scatter diagrams of the samples were processed by nonlinear regression analysis via SPSS 17.0. The mandibular dental and basal bone intercanine and intermolar widths were significantly greater in the Skeletal Class III group compared to the Skeletal Class II group. In both groups, a moderate correlation existed between dental and basal bone arch widths in the canine region, and a high correlation existed between dental and basal bone arch widths in the molar region. The coefficient of correlation of the Skeletal Class III group was greater than the Skeletal Class II group. Fourth degree, even order power functions were used as best-fit functions to fit the scatter plots. The radius of curvature was larger in Skeletal Class III malocclusions compared to Skeletal Class II malocclusions (rWALA3>rWALA2>rFA3>rFA2. In conclusion, mandibular dental and basal intercanine and intermolar widths were significantly different between the two groups. Compared with Skeletal Class II subjects, the mandibular archform was more flat for Skeletal Class III subjects.

  19. Observer variation in skeletal radiology

    Energy Technology Data Exchange (ETDEWEB)

    Cockshott, W.P.; Park, W.M.

    1983-08-01

    The factors that affect observer variation in bone radiology are analysed from data in the literature and on the basis of studies carried out at McMaster University on the hands and sacroiliac joints. A plea is made for presenting results in terms of Kappa statistics so that agreement due purely to chance is eliminated. In the conclusions the main variables that affect concordance are listed so that strategies can be developed to reduce observer variation. This is important in serial studies to ensure that the observer variations are smaller than the effect one wishes to measure.

  20. Skeletal muscle proteomic signature and metabolic impairment in pulmonary hypertension.

    Science.gov (United States)

    Malenfant, Simon; Potus, François; Fournier, Frédéric; Breuils-Bonnet, Sandra; Pflieger, Aude; Bourassa, Sylvie; Tremblay, Ève; Nehmé, Benjamin; Droit, Arnaud; Bonnet, Sébastien; Provencher, Steeve

    2015-05-01

    Exercise limitation comes from a close interaction between cardiovascular and skeletal muscle impairments. To better understand the implication of possible peripheral oxidative metabolism dysfunction, we studied the proteomic signature of skeletal muscle in pulmonary arterial hypertension (PAH). Eight idiopathic PAH patients and eight matched healthy sedentary subjects were evaluated for exercise capacity, skeletal muscle proteomic profile, metabolism, and mitochondrial function. Skeletal muscle proteins were extracted, and fractioned peptides were tagged using an iTRAQ protocol. Proteomic analyses have documented a total of 9 downregulated proteins in PAH skeletal muscles and 10 upregulated proteins compared to healthy subjects. Most of the downregulated proteins were related to mitochondrial structure and function. Focusing on skeletal muscle metabolism and mitochondrial health, PAH patients presented a decreased expression of oxidative enzymes (pyruvate dehydrogenase, p metabolism in PAH skeletal muscles. We provide evidences that impaired mitochondrial and metabolic functions found in the lungs and the right ventricle are also present in skeletal muscles of patients. • Proteomic and metabolic analysis show abnormal oxidative metabolism in PAH skeletal muscle. • EM of PAH patients reveals abnormal mitochondrial structure and distribution. • Abnormal mitochondrial health and function contribute to exercise impairments of PAH. • PAH may be considered a vascular affliction of heart and lungs with major impact on peripheral muscles.

  1. US of the hips in skeletal dysplasias and chromosomal aberrations

    International Nuclear Information System (INIS)

    Langer, R.; Langer, M.F.J.; Zwicker, C.

    1987-01-01

    Since January 1984 all newborns and infants with skeletal dysplasias and chromosomal aberrations were investigated by hip US, in addition to plain x-ray surveys. The authors observed one chondroectodermal dysplasia, one congenital spondyloepiphysial dysplasia, one cleidocranial dysplasia, one fibrochondrogenesis, two diastrophic dysplasias, and eight trisomies. The abnormalities of the hip joints could be demonstrated, and were compared with the findings on plain films. Especially skeletal dysplasias with abundant presence of cartilage were well visible. The newborn with trisomies showed normal hip joints. In the authors' opinion, all newborns with skeletal dysplasias should be investigated by hip sonography, in addition to skeletal radiography

  2. Woman skeletal muscle transcriptome with bed rest and countermeasures.

    Data.gov (United States)

    National Aeronautics and Space Administration — Microgravity has a dramatic impact on human physiology illustrated in particular with skeletal muscle impairment. A thorough understanding of the mechanisms leading...

  3. The chondrocytic journey in endochondral bone growth and skeletal dysplasia.

    Science.gov (United States)

    Yeung Tsang, Kwok; Wa Tsang, Shun; Chan, Danny; Cheah, Kathryn S E

    2014-03-01

    The endochondral bones of the skeleton develop from a cartilage template and grow via a process involving a cascade of chondrocyte differentiation steps culminating in formation of a growth plate and the replacement of cartilage by bone. This process of endochondral ossification, driven by the generation of chondrocytes and their subsequent proliferation, differentiation, and production of extracellular matrix constitute a journey, deviation from which inevitably disrupts bone growth and development, and is the basis of human skeletal dysplasias with a wide range of phenotypic severity, from perinatal lethality to progressively deforming. This highly coordinated journey of chondrocyte specification and fate determination is controlled by a myriad of intrinsic and extrinsic factors. SOX9 is the master transcription factor that, in concert with varying partners along the way, directs the different phases of the journey from mesenchymal condensation, chondrogenesis, differentiation, proliferation, and maturation. Extracellular signals, including bone morphogenetic proteins, wingless-related MMTV integration site (WNT), fibroblast growth factor, Indian hedgehog, and parathyroid hormone-related peptide, are all indispensable for growth plate chondrocytes to align and organize into the appropriate columnar architecture and controls their maturation and transition to hypertrophy. Chondrocyte hypertrophy, marked by dramatic volume increase in phases, is controlled by transcription factors SOX9, Runt-related transcription factor, and FOXA2. Hypertrophic chondrocytes mediate the cartilage to bone transition and concomitantly face a live-or-die situation, a subject of much debate. We review recent insights into the coordination of the phases of the chondrocyte journey, and highlight the need for a systems level understanding of the regulatory networks that will facilitate the development of therapeutic approaches for skeletal dysplasia. Copyright © 2014 Wiley Periodicals

  4. FXIIIA and TGF-beta over-expression produces normal musculo-skeletal phenotype in TG2-/- mice.

    Science.gov (United States)

    Tarantino, U; Oliva, F; Taurisano, G; Orlandi, A; Pietroni, V; Candi, E; Melino, G; Maffulli, N

    2009-04-01

    Transglutaminase (TGs) enzymes and proteins crosslinking have for long time been implicated in the formation of hard tissue development, matrix maturation and mineralization. Among the TGs family members, in the context of connective tissue formation, TG2 and Factor XIII are expressed in cartilage by hypertrophic chondrocytes. Here, we analyse the morphological consequences of TG2 deficiency, during the development of skeletal elements. When TG2 is absent, there are not gross abnormalities in the development of the skeletal system, probably from compensatory mechanisms resulting in increased expression of FXIIIA and TGF-beta 1. In vivo other TGs may be involved in promoting chondrocytes and osteoblast differentiation and matrix mineralisation.

  5. Insulin binding to individual rat skeletal muscles

    International Nuclear Information System (INIS)

    Koerker, D.J.; Sweet, I.R.; Baskin, D.G.

    1990-01-01

    Studies of insulin binding to skeletal muscle, performed using sarcolemmal membrane preparations or whole muscle incubations of mixed muscle or typical red (soleus, psoas) or white [extensor digitorum longus (EDL), gastrocnemius] muscle, have suggested that red muscle binds more insulin than white muscle. We have evaluated this hypothesis using cryostat sections of unfixed tissue to measure insulin binding in a broad range of skeletal muscles; many were of similar fiber-type profiles. Insulin binding per square millimeter of skeletal muscle slice was measured by autoradiography and computer-assisted densitometry. We found a 4.5-fold range in specific insulin tracer binding, with heart and predominantly slow-twitch oxidative muscles (SO) at the high end and the predominantly fast-twitch glycolytic (FG) muscles at the low end of the range. This pattern reflects insulin sensitivity. Evaluation of displacement curves for insulin binding yielded linear Scatchard plots. The dissociation constants varied over a ninefold range (0.26-2.06 nM). Binding capacity varied from 12.2 to 82.7 fmol/mm2. Neither binding parameter was correlated with fiber type or insulin sensitivity; e.g., among three muscles of similar fiber-type profile, the EDL had high numbers of low-affinity binding sites, whereas the quadriceps had low numbers of high-affinity sites. In summary, considerable heterogeneity in insulin binding was found among hindlimb muscles of the rat, which can be attributed to heterogeneity in binding affinities and the numbers of binding sites. It can be concluded that a given fiber type is not uniquely associated with a set of insulin binding parameters that result in high or low binding

  6. Developmental Programming in Response to Intrauterine Growth Restriction Impairs Myoblast Function and Skeletal Muscle Metabolism

    Science.gov (United States)

    Yates, D. T.; Macko, A. R.; Nearing, M.; Chen, X.; Rhoads, R. P.; Limesand, S. W.

    2012-01-01

    Fetal adaptations to placental insufficiency alter postnatal metabolic homeostasis in skeletal muscle by reducing glucose oxidation rates, impairing insulin action, and lowering the proportion of oxidative fibers. In animal models of intrauterine growth restriction (IUGR), skeletal muscle fibers have less myonuclei at birth. This means that myoblasts, the sole source for myonuclei accumulation in fibers, are compromised. Fetal hypoglycemia and hypoxemia are complications that result from placental insufficiency. Hypoxemia elevates circulating catecholamines, and chronic hypercatecholaminemia has been shown to reduce fetal muscle development and growth. We have found evidence for adaptations in adrenergic receptor expression profiles in myoblasts and skeletal muscle of IUGR sheep fetuses with placental insufficiency. The relationship of β-adrenergic receptors shifts in IUGR fetuses because Adrβ2 expression levels decline and Adrβ1 expression levels are unaffected in myofibers and increased in myoblasts. This adaptive response would suppress insulin signaling, myoblast incorporation, fiber hypertrophy, and glucose oxidation. Furthermore, this β-adrenergic receptor expression profile persists for at least the first month in IUGR lambs and lowers their fatty acid mobilization. Developmental programming of skeletal muscle adrenergic receptors partially explains metabolic and endocrine differences in IUGR offspring, and the impact on metabolism may result in differential nutrient utilization. PMID:22900186

  7. Developmental Programming in Response to Intrauterine Growth Restriction Impairs Myoblast Function and Skeletal Muscle Metabolism

    Directory of Open Access Journals (Sweden)

    D. T. Yates

    2012-01-01

    Full Text Available Fetal adaptations to placental insufficiency alter postnatal metabolic homeostasis in skeletal muscle by reducing glucose oxidation rates, impairing insulin action, and lowering the proportion of oxidative fibers. In animal models of intrauterine growth restriction (IUGR, skeletal muscle fibers have less myonuclei at birth. This means that myoblasts, the sole source for myonuclei accumulation in fibers, are compromised. Fetal hypoglycemia and hypoxemia are complications that result from placental insufficiency. Hypoxemia elevates circulating catecholamines, and chronic hypercatecholaminemia has been shown to reduce fetal muscle development and growth. We have found evidence for adaptations in adrenergic receptor expression profiles in myoblasts and skeletal muscle of IUGR sheep fetuses with placental insufficiency. The relationship of β-adrenergic receptors shifts in IUGR fetuses because Adrβ2 expression levels decline and Adrβ1 expression levels are unaffected in myofibers and increased in myoblasts. This adaptive response would suppress insulin signaling, myoblast incorporation, fiber hypertrophy, and glucose oxidation. Furthermore, this β-adrenergic receptor expression profile persists for at least the first month in IUGR lambs and lowers their fatty acid mobilization. Developmental programming of skeletal muscle adrenergic receptors partially explains metabolic and endocrine differences in IUGR offspring, and the impact on metabolism may result in differential nutrient utilization.

  8. An Antibody Blocking Activin Type II Receptors Induces Strong Skeletal Muscle Hypertrophy and Protects from Atrophy

    Science.gov (United States)

    Minetti, Giulia C.; Sheppard, KellyAnn; Ibebunjo, Chikwendu; Feige, Jerome N.; Hartmann, Steffen; Brachat, Sophie; Rivet, Helene; Koelbing, Claudia; Morvan, Frederic; Hatakeyama, Shinji

    2014-01-01

    The myostatin/activin type II receptor (ActRII) pathway has been identified to be critical in regulating skeletal muscle size. Several other ligands, including GDF11 and the activins, signal through this pathway, suggesting that the ActRII receptors are major regulatory nodes in the regulation of muscle mass. We have developed a novel, human anti-ActRII antibody (bimagrumab, or BYM338) to prevent binding of ligands to the receptors and thus inhibit downstream signaling. BYM338 enhances differentiation of primary human skeletal myoblasts and counteracts the inhibition of differentiation induced by myostatin or activin A. BYM338 prevents myostatin- or activin A-induced atrophy through inhibition of Smad2/3 phosphorylation, thus sparing the myosin heavy chain from degradation. BYM338 dramatically increases skeletal muscle mass in mice, beyond sole inhibition of myostatin, detected by comparing the antibody with a myostatin inhibitor. A mouse version of the antibody induces enhanced muscle hypertrophy in myostatin mutant mice, further confirming a beneficial effect on muscle growth beyond myostatin inhibition alone through blockade of ActRII ligands. BYM338 protects muscles from glucocorticoid-induced atrophy and weakness via prevention of muscle and tetanic force losses. These data highlight the compelling therapeutic potential of BYM338 for the treatment of skeletal muscle atrophy and weakness in multiple settings. PMID:24298022

  9. cAMP signaling in skeletal muscle adaptation: hypertrophy, metabolism, and regeneration

    Science.gov (United States)

    Stewart, Randi

    2012-01-01

    Among organ systems, skeletal muscle is perhaps the most structurally specialized. The remarkable subcellular architecture of this tissue allows it to empower movement with instructions from motor neurons. Despite this high degree of specialization, skeletal muscle also has intrinsic signaling mechanisms that allow adaptation to long-term changes in demand and regeneration after acute damage. The second messenger adenosine 3′,5′-monophosphate (cAMP) not only elicits acute changes within myofibers during exercise but also contributes to myofiber size and metabolic phenotype in the long term. Strikingly, sustained activation of cAMP signaling leads to pronounced hypertrophic responses in skeletal myofibers through largely elusive molecular mechanisms. These pathways can promote hypertrophy and combat atrophy in animal models of disorders including muscular dystrophy, age-related atrophy, denervation injury, disuse atrophy, cancer cachexia, and sepsis. cAMP also participates in muscle development and regeneration mediated by muscle precursor cells; thus, downstream signaling pathways may potentially be harnessed to promote muscle regeneration in patients with acute damage or muscular dystrophy. In this review, we summarize studies implicating cAMP signaling in skeletal muscle adaptation. We also highlight ligands that induce cAMP signaling and downstream effectors that are promising pharmacological targets. PMID:22354781

  10. Inadequate Dietary Phosphorus Levels Cause Skeletal Anomalies and Alter Osteocalcin Gene Expression in Zebrafish

    Directory of Open Access Journals (Sweden)

    Juliana M. Costa

    2018-01-01

    Full Text Available Phosphorus (P is an essential mineral for the development and maintenance of the vertebrate skeletal system. Modulation of P levels is believed to influence metabolism and the physiological responses of gene expression. In this study, we investigated the influence of dietary P on skeletal deformities and osteocalcin gene expression in zebrafish (Danio rerio, and sought to determine appropriate levels in a diet. We analyzed a total of 450 zebrafish within 31 days of hatching. Animals were distributed in a completely randomized experimental design that consisted of five replications. After an eight-week experiment, fish were diaphanized to evaluate cranial and spinal bone deformities. Increases in dietary phosphorus were inversely proportional to the occurrence of partial spine fusions, the absence of spine fusions, absence of parallelism between spines, intervertebral spacing, vertebral compression, scoliosis, lordosis, ankylosis, fin caudal insertion, and craniofacial deformities. Additionally, osteocalcin expression was inversely correlated to P levels, suggesting a physiological recovery response for bone mineralization deficiency. Our data showed that dietary P concentration was a critical factor in the occurrence of zebrafish skeletal abnormalities. We concluded that 1.55% P in the diet significantly reduces the appearance of skeletal deformities and favors adequate bone mineralization through the adjustment of osteocalcin expression.

  11. NF-kappaB signaling: a tale of two pathways in skeletal myogenesis.

    Science.gov (United States)

    Bakkar, Nadine; Guttridge, Denis C

    2010-04-01

    NF-kappaB is a ubiquitiously expressed transcription factor that plays vital roles in innate immunity and other processes involving cellular survival, proliferation, and differentiation. Activation of NF-kappaB is controlled by an IkappaB kinase (IKK) complex that can direct either canonical (classical) NF-kappaB signaling by degrading the IkappaB inhibitor and releasing p65/p50 dimers to the nucleus, or causes p100 processing and nuclear translocation of RelB/p52 via a noncanonical (alternative) pathway. Under physiological conditions, NF-kappaB activity is transiently regulated, whereas constitutive activation of this transcription factor typically in the classical pathway is associated with a multitude of disease conditions, including those related to skeletal muscle. How NF-kappaB functions in muscle diseases is currently under intense investigation. Insight into this role of NF-kappaB may be gained by understanding at a more basic level how this transcription factor contributes to skeletal muscle cell differentiation. Recent data from knockout mice support that the classical NF-kappaB pathway functions as an inhibitor of skeletal myogenesis and muscle regeneration acting through multiple mechanisms. In contrast, alternative NF-kappaB signaling does not appear to be required for myofiber conversion, but instead functions in myotube homeostasis by regulating mitochondrial biogenesis. Additional knowledge of these signaling pathways in skeletal myogenesis should aid in the development of specific inhibitors that may be useful in treatments of muscle disorders.

  12. Myogenin regulates exercise capacity and skeletal muscle metabolism in the adult mouse.

    Directory of Open Access Journals (Sweden)

    Jesse M Flynn

    2010-10-01

    Full Text Available Although skeletal muscle metabolism is a well-studied physiological process, little is known about how it is regulated at the transcriptional level. The myogenic transcription factor myogenin is required for skeletal muscle development during embryonic and fetal life, but myogenin's role in adult skeletal muscle is unclear. We sought to determine myogenin's function in adult muscle metabolism. A Myog conditional allele and Cre-ER transgene were used to delete Myog in adult mice. Mice were analyzed for exercise capacity by involuntary treadmill running. To assess oxidative and glycolytic metabolism, we performed indirect calorimetry, monitored blood glucose and lactate levels, and performed histochemical analyses on muscle fibers. Surprisingly, we found that Myog-deleted mice performed significantly better than controls in high- and low-intensity treadmill running. This enhanced exercise capacity was due to more efficient oxidative metabolism during low- and high-intensity exercise and more efficient glycolytic metabolism during high-intensity exercise. Furthermore, Myog-deleted mice had an enhanced response to long-term voluntary exercise training on running wheels. We identified several candidate genes whose expression was altered in exercise-stressed muscle of mice lacking myogenin. The results suggest that myogenin plays a critical role as a high-level transcriptional regulator to control the energy balance between aerobic and anaerobic metabolism in adult skeletal muscle.

  13. Nonshivering thermogenesis in king penguin chicks. I. Role of skeletal muscle.

    Science.gov (United States)

    Duchamp, C; Barré, H; Rouanet, J L; Lanni, A; Cohen-Adad, F; Berne, G; Brebion, P

    1991-12-01

    In cold-acclimatized (CA) king penguin chicks exhibiting nonshivering thermogenesis (NST), protein content and cytochrome oxidase (CO) activity of tissue homogenates were measured together with protein content, CO, and respiration rates of isolated mitochondria from skeletal muscle (gastrocnemius and pectoralis) and liver. The comparison was made with chicks reared at thermoneutrality (TN) for at least 3 wk. In CA chicks showing a NST despite the lack of brown adipose tissue, an increase in thermogenic capacity was observed in skeletal muscle in which the oxidative capacity rose (+28% and +50% in gastrocnemius and pectoralis muscles, respectively), whereas no change occurred in the liver. Oxidative capacity of skeletal muscle increased together with the development of mitochondrial inner membrane plus cristae in muscles of CA chicks contrary to their TN littermates (+30 to +50%). Subsarcolemmal mitochondria of CA chicks had a higher protein content (+65% in gastrocnemius muscle) and higher oxidative capacities than in controls. The lower respiratory control ratio of these mitochondria might result from a low ADP phosphorylation rate. No change occurred in the intermyofibrillar fraction nor in liver mitochondria. These findings together with earlier results obtained in cold-acclimated ducklings indicate the marked and suited adaptation of skeletal muscle and in particular of subsarcolemmal mitochondria allowing them to play a role in NST.

  14. Notch Signaling Mediates Skeletal Muscle Atrophy in Cancer Cachexia Caused by Osteosarcoma

    Directory of Open Access Journals (Sweden)

    Xiaodong Mu

    2016-01-01

    Full Text Available Skeletal muscle atrophy in cancer cachexia is mediated by the interaction between muscle stem cells and various tumor factors. Although Notch signaling has been known as a key regulator of both cancer development and muscle stem cell activity, the potential involvement of Notch signaling in cancer cachexia and concomitant muscle atrophy has yet to be elucidated. The murine K7M2 osteosarcoma cell line was used to generate an orthotopic model of sarcoma-associated cachexia, and the role of Notch signaling was evaluated. Skeletal muscle atrophy was observed in the sarcoma-bearing mice, and Notch signaling was highly active in both tumor tissues and the atrophic skeletal muscles. Systemic inhibition of Notch signaling reduced muscle atrophy. In vitro coculture of osteosarcoma cells with muscle-derived stem cells (MDSCs isolated from normal mice resulted in decreased myogenic potential of MDSCs, while the application of Notch inhibitor was able to rescue this repressed myogenic potential. We further observed that Notch-activating factors reside in the exosomes of osteosarcoma cells, which activate Notch signaling in MDSCs and subsequently repress myogenesis. Our results revealed that signaling between tumor and muscle via the Notch pathway may play an important role in mediating the skeletal muscle atrophy seen in cancer cachexia.

  15. Skeletal metastases of carcinomas of prostate in dependence on tumor size and tumor differentiation

    International Nuclear Information System (INIS)

    Krause, U.

    1981-01-01

    153 patients with carcinoma of the prostate underwent holebody skeletal scintiscanning. It resulted that the tendency to the development of skeletal metastases increases with increasing dedifferentiation of the tumor. Also the tumor size correlated with the metastase identification. The tumor dedifferentiation also increased with the tumor size. The findings proved that the early diagnosis of a carcinoma of the prostate is a necessary prerequisite, because a radical total removal can only be curative when any metastases are absent. The comparative evaluation of the diagnostic methods proved the superiority of the nuclear medical examination. In 68% of the cases the roentgenologic examination led to correctly positive results. This investigation showed with 98% a high diagnostic specificity and therefore it should be applied in addition to scintiscanning in order to obtain supplementary information. The alkaline and the acid phosphatase offering an almost identical informative value resulted to be not useful for establishing an early diagnosis of skeletal metastases. It was found that the determination of the blood sedimentation rate and of the lactate dehydrogenase do also not render possible the early diagnosis of skeletal metastases. (orig./MG) [de

  16. An Overview of the Medical Applications of Marine Skeletal Matrix Proteins

    Directory of Open Access Journals (Sweden)

    M. Azizur Rahman

    2016-09-01

    Full Text Available In recent years, the medicinal potential of marine organisms has attracted increasing attention. This is due to their immense diversity and adaptation to unique ecological niches that has led to vast physiological and biochemical diversification. Among these organisms, marine calcifiers are an abundant source of novel proteins and chemical entities that can be used for drug discovery. Studies of the skeletal organic matrix proteins of marine calcifiers have focused on biomedical applications such as the identification of growth inducing proteins that can be used for bone regeneration, for example, 2/4 bone morphogenic proteins (BMP. Although a few reports on the functions of proteins derived from marine calcifiers can be found in the literature, marine calcifiers themselves remain an untapped source of proteins for the development of innovative pharmaceuticals. Following an overview of the current knowledge of skeletal organic matrix proteins from marine calcifiers, this review will focus on various aspects of marine skeletal protein research including sources, biosynthesis, structures, and possible strategies for chemical or physical modification. Special attention will be given to potential medical applications and recent discoveries of skeletal proteins and polysaccharides with biologically appealing characteristics. In addition, I will introduce an effective protocol for sample preparation and protein purification that includes isolation technology for biopolymers (of both soluble and insoluble organic matrices from coralline algae. These algae are a widespread but poorly studied group of shallow marine calcifiers that have great potential for marine drug discovery.

  17. Skeletal lesions from inhaled plutonium in beagles

    International Nuclear Information System (INIS)

    Dagle, G.E.; Park, J.F.; Weller, R.E.; Ragan, H.A.; McClanahan, B.J.; Fisher, D.R.

    1984-10-01

    The report briefly reviews the skeletal effects observed in ongoing lifespan studies in beagle dogs at 13, 10, and 7 years, respectively, after inhalation exposure to 239 Pu oxide and nitrate or 238 Pu oxide. Plutonium nitrate was chosen to represent soluble material more readily translocated to bone and other tissues than the oxide. Bone lesions related to plutonium exposure were observed only in dogs exposed to 238 Pu oxide and 239 Pu nitrate. The skeleton accumulated approximately 2% ( 239 Pu oxide), 45% ( 238 Pu oxide) or 50% ( 239 Pu nitrate) of the final body burdens at 13, 10, and 7 years, respectively, after exposure. 11 references, 2 figures

  18. Possible uses of skeletal scintigraphy in traumatology

    International Nuclear Information System (INIS)

    Tittel, K.

    1986-01-01

    With customary X-ray examinations bone changes and traumatic lesions remain undetectable so long, because the contour changes are missing or the thickness and density differences are too small. Skeletal scintigraphy helps fill in these gaps in diagnosis, which can be especially important with patients with multiple injuries. The demands for an appropriate radiopharmaceutical are best filled by 99m Tc-methylene diphosphonate. The examination procedure after the injection of a bolus of 10-20 mCi 99m Tc-MDP is described and the indications are listed. (MG) [de

  19. Central skeletal sarcoidosis mimicking metastatic disease

    International Nuclear Information System (INIS)

    Talmi, Danit; Smith, Stacy; Mulligan, Michael E.

    2008-01-01

    Sarcoidosis is a systemic disease that histologically typically shows non-caseating granulomas. The most common radiologic finding is hilar and mediastinal adenopathy. Patients with widely disseminated disease may show involvement of the peripheral appendicular skeleton in 1-13% of such cases. A primary skeletal presentation without other manifestations typical of the disease is rare. We present a case of sarcoidosis in a middle-aged Caucasian man in whom the disease presented with widespread lytic lesions in the axial skeleton and long bones, mimicking metastatic disease. There was no involvement of the peripheral skeleton, skin or lungs. (orig.)

  20. Lactate oxidation in human skeletal muscle mitochondria

    DEFF Research Database (Denmark)

    Jacobs, Robert A; Meinild, Anne-Kristine; Nordsborg, Nikolai B

    2013-01-01

    of four separate and specific substrate titration protocols, the respirometric analysis revealed that mitochondria were capable of oxidizing lactate in the absence of exogenous LDH. The titration of lactate and NAD(+) into the respiration medium stimulated respiration (P = 0.003). The addition...... of exogenous LDH failed to increase lactate-stimulated respiration (P = 1.0). The results further demonstrate that human skeletal muscle mitochondria cannot directly oxidize lactate within the mitochondrial matrix. Alternately, these data support previous claims that lactate is converted to pyruvate within...

  1. Skeletal manifestations of primary malignant fibrous histiocytoma

    International Nuclear Information System (INIS)

    David, R.; Lindell, M.M.; Kumar, R.; Madewell, J.E.; Shirkhoda, A.

    1986-01-01

    Sixty-five patients, aged 18-84 years, with pathologically proved primary malignant fibrous histiocytoma of bone were studied. Tumors were distributed equally between men and women. The plain film, CT, bone scan, and angiographic findings in each patient were reviewed and correlated. The lesions were predominantly in the appendicular skeleton (66%), with about 33% being centrally located. Only one patient had multiple skeletal lesions. Fifty-two percent of the lesions were lytic, 28% were blastic, and 20% had a mixed pattern. This lesion should be recognized by the radiologist as an entity which has a poor prognosis

  2. Chord-based versus voxel-based methods of electron transport in the skeletal tissues

    International Nuclear Information System (INIS)

    Shah, Amish P.; Jokisch, Derek W.; Rajon, Didier A.; Watchman, Christopher J.; Patton, Phillip W.; Bolch, Wesley E.

    2005-01-01

    Anatomic models needed for internal dose assessment have traditionally been developed using mathematical surface equations to define organ boundaries, shapes, and their positions within the body. Many researchers, however, are now advocating the use of tomographic models created from segmented patient computed tomography (CT) or magnetic resonance (MR) scans. In the skeleton, however, the tissue structures of the bone trabeculae, marrow cavities, and endosteal layer are exceedingly small and of complex shape, and thus do not lend themselves easily to either stylistic representations or in-vivo CT imaging. Historically, the problem of modeling the skeletal tissues has been addressed through the development of chord-based methods of radiation particle transport, as given by studies at the University of Leeds (Leeds, UK) using a 44-year male subject. We have proposed an alternative approach to skeletal dosimetry in which excised sections of marrow-intact cadaver spongiosa are imaged directly via microCT scanning. The cadaver selected for initial investigation of this technique was a 66-year male subject of nominal body mass index (22.7 kg m -2 ). The objectives of the present study were to compare chord-based versus voxel-based methods of skeletal dosimetry using data from the UF 66-year male subject. Good agreement between chord-based and voxel-based transport was noted for marrow irradiation by either bone surface or bone volume sources up to 500-1000 keV (depending upon the skeletal site). In contrast, chord-based models of electron transport yielded consistently lower values of the self-absorbed fraction to marrow tissues than seen under voxel-based transport at energies above 100 keV, a feature directly attributed to the inability of chord-based models to account for nonlinear electron trajectories. Significant differences were also noted in the dosimetry of the endosteal layer (for all source tissues), with chord-based transport predicting a higher fraction of

  3. TEAD1-dependent expression of the FoxO3a gene in mouse skeletal muscle

    Directory of Open Access Journals (Sweden)

    Xu Xuewen

    2011-01-01

    Full Text Available Abstract Background TEAD1 (TEA domain family member 1 is constitutively expressed in cardiac and skeletal muscles. It acts as a key molecule of muscle development, and trans-activates multiple target genes involved in cell proliferation and differentiation pathways. However, its target genes in skeletal muscles, regulatory mechanisms and networks are unknown. Results In this paper, we have identified 136 target genes regulated directly by TEAD1 in skeletal muscle using integrated analyses of ChIP-on-chip. Most of the targets take part in the cell process, physiology process, biological regulation metabolism and development process. The targets also play an important role in MAPK, mTOR, T cell receptor, JAK-STAT, calcineurin and insulin signaling pathways. TEAD1 regulates foxo3a transcription through binding to the M-CAT element in foxo3a promoter, demonstrated with independent ChIP-PCR, EMSA and luciferase reporter system assay. In addition, results of over-expression and inhibition experiments suggest that foxo3a is positively regulated by TEAD1. Conclusions Our present data suggests that TEAD1 plays an important role in the regulation of gene expression and different signaling pathways may co-operate with each other mediated by TEAD1. We have preliminarily concluded that TEAD1 may regulate FoxO3a expression through calcineurin/MEF2/NFAT and IGF-1/PI3K/AKT signaling pathways in skeletal muscles. These findings provide important clues for further analysis of the role of FoxO3a gene in the formation and transformation of skeletal muscle fiber types.

  4. Expression and functional characterization of Smyd1a in myofibril organization of skeletal muscles.

    Directory of Open Access Journals (Sweden)

    Jie Gao

    Full Text Available BACKGROUND: Smyd1, the founding member of the Smyd family including Smyd-1, 2, 3, 4 and 5, is a SET and MYND domain containing protein that plays a key role in myofibril assembly in skeletal and cardiac muscles. Bioinformatic analysis revealed that zebrafish genome contains two highly related smyd1 genes, smyd1a and smyd1b. Although Smyd1b function is well characterized in skeletal and cardiac muscles, the function of Smyd1a is, however, unknown. METHODOLOGY/PRINCIPAL FINDINGS: To investigate the function of Smyd1a in muscle development, we isolated smyd1a from zebrafish, and characterized its expression and function during muscle development via gene knockdown and transgenic expression approaches. The results showed that smyd1a was strongly expressed in skeletal muscles of zebrafish embryos. Functional analysis revealed that knockdown of smyd1a alone had no significant effect on myofibril assembly in zebrafish skeletal muscles. However, knockdown of smyd1a and smyd1b together resulted in a complete disruption of myofibril organization in skeletal muscles, a phenotype stronger than knockdown of smyd1a or smyd1b alone. Moreover, ectopic expression of zebrafish smyd1a or mouse Smyd1 transgene could rescue the myofibril defects from the smyd1b knockdown in zebrafish embryos. CONCLUSION/SIGNIFICANCE: Collectively, these data indicate that Smyd1a and Smyd1b share similar biological activity in myofibril assembly in zebrafish embryos. However, Smyd1b appears to play a major role in this process.

  5. Correlation between chronological age, cervical vertebral maturation and Fishman's skeletal maturity indicators in southern Chinese.

    Science.gov (United States)

    Alkhal, Hessa Abdulla; Wong, Ricky W K; Rabie, A Bakr M

    2008-07-01

    To investigate the correlation between chronological age, cervical vertebral maturation (CVM), and Fishman's hand-wrist skeletal maturity indicators in southern Chinese. Four hundred contemporary hand-wrist and lateral cephalometric radiographs of southern Chinese subjects were randomly selected and analyzed. The female subjects were between 10 and 15 years of age, and the male subjects were between 12 and 17 years of age; all subjects were within the circumpubertal period. The CVM was assessed using the method developed by Baccetti and coworkers, but the hand-wrist maturation was assessed using the method developed by Fishman. These two methods and the chronological age were correlated using the Spearman rank correlation analysis. The CVM was significantly correlated with the hand-wrist skeletal age (Spearman r male = 0.9206, female = 0.9363). All patients in the cervical maturation stage (CS3) of CVM were discovered to be in the skeletal maturational indicator (SMI2 or SMI3) stages of hand-wrist maturation (HWM), which was around the peak of the growth spurt. Low correlations were found between the CVM and chronological age (male r = 0.7577; female r = 0.7877) and between the HWM and chronological age (male r = 0.7492; female r = 0.7758). CVM is a valid indicator of skeletal growth during the circumpubertal and has a high correlation with the HWM for the southern Chinese population. However, the low correlations found between the chronological age and both CVM and HWM showed that the chronological age was not suitable to measure skeletal maturity.

  6. Some factors determining the PCr recovery overshoot in skeletal muscle.

    Science.gov (United States)

    Korzeniewski, Bernard; Zoladz, Jerzy A

    2005-07-01

    It has been proposed recently that the phosphocreatine (PCr) overshoot (increase above the resting level) during muscle recovery after exercise is caused by a slow decay during this recovery of the direct activation of oxidative phosphorylation taking place during muscle work. In the present article the factors determining the appearance and size of the PCr overshoot are studied using the computer model of oxidative phosphorylation in intact skeletal muscle developed previously. It is demonstrated that the appearance and duration of this overshoot is positively correlated with the value of the characteristic decay time of the direct activation of oxidative phosphorylation. It is also shown that the size of PCr overshoot is increased by low resting PCr/Cr ratio (what is confirmed by our unpublished experimental data), by high intensity of the direct activation of oxidative phosphorylation, by high muscle work intensity and by low rate of the return of cytosolic pH to the resting value during muscle recovery.

  7. Multiple Epiphyseal Dysplasia (MED: A Rare Type of Skeletal Dysplasia

    Directory of Open Access Journals (Sweden)

    Mohammad Imnul Islam

    2012-06-01

    Full Text Available Multiple epiphyseal dysplasia (MED is a congenital disorder of skeletal development that primarily affects the ends of long bones, causing progressive joint and bone inflammation and short stature. Mutations in several genes are responsible for pathogenesis of this disease. We are reporting a case of MED who presented with the complaints of multiple swelling of the joints which was associated with pain during movement for last seven years. The patient had flexion deformity of all the affected joints along with restriction of movement. These were associated with kyphosis, pectus carnitum, knock-knee and short stature. Radiological findings were suggestive of MED. Counseling was done with the parents regarding the etiology, progression and outcome of the disease.DOI: http://dx.doi.org/10.3329/bsmmuj.v5i1.11025 BSMMU J 2012; 5(1:57-60 

  8. Impaired glycogen synthase activity and mitochondrial dysfunction in skeletal muscle

    DEFF Research Database (Denmark)

    Højlund, Kurt; Beck-Nielsen, Henning

    2006-01-01

    Insulin resistance in skeletal muscle is a major hallmark of type 2 diabetes and an early detectable abnormality in the development of this disease. The cellular mechanisms of insulin resistance include impaired insulin-mediated muscle glycogen synthesis and increased intramyocellular lipid content......, whereas impaired insulin activation of muscle glycogen synthase represents a consistent, molecular defect found in both type 2 diabetic and high-risk individuals. Despite several studies of the insulin signaling pathway believed to mediate dephosphorylation and hence activation of glycogen synthase......, the molecular mechanisms responsible for this defect remain unknown. Recently, the use of phospho-specific antibodies in human diabetic muscle has revealed hyperphosphorylation of glycogen synthase at sites not regulated by the classical insulin signaling pathway. In addition, novel approaches such as gene...

  9. Skeletal traction and intramedullary nailing cost-effectiveness

    African Journals Online (AJOL)

    In the operative group 24 patients had union with one delayed union while in the traction group 12 patients had union, 9 with mal union and 4 delayed union. Conclusion: Intramedullary nailing is more cost-effective than skeletal traction. It met the dominant strategy, because it was significantly less costly than skeletal ...

  10. Cryopreservation of human skeletal muscle impairs mitochondrial function

    DEFF Research Database (Denmark)

    Larsen, Steen; Wright-Paradis, C; Gnaiger, E

    2012-01-01

    functionality after long term cryopreservation (1 year). Skeletal muscle samples were preserved in dimethyl sulfoxide (DMSO) for later analysis. Human skeletal muscle fibres were thawed and permeabilised with saponin, and mitochondrial respiration was measured by high-resolution respirometry. The capacity...

  11. Current opportunities and challenges in skeletal muscle tissue engineering

    NARCIS (Netherlands)

    Koning, Merel; Harmsen, Martin C; van Luyn, Marja J A; Werker, Paul M N

    The purpose of this article is to give a concise review of the current state of the art in tissue engineering (TE) of skeletal muscle and the opportunities and challenges for future clinical applicability. The endogenous progenitor cells of skeletal muscle, i.e. satellite cells, show a high

  12. Muscle Bioenergetic Considerations for Intrinsic Laryngeal Skeletal Muscle Physiology

    Science.gov (United States)

    Sandage, Mary J.; Smith, Audrey G.

    2017-01-01

    Purpose: Intrinsic laryngeal skeletal muscle bioenergetics, the means by which muscles produce fuel for muscle metabolism, is an understudied aspect of laryngeal physiology with direct implications for voice habilitation and rehabilitation. The purpose of this review is to describe bioenergetic pathways identified in limb skeletal muscle and…

  13. Direct effects of doxorubicin on skeletal muscle contribute to fatigue

    NARCIS (Netherlands)

    Norren, van K.; Helvoort, van A.; Argiles, J.M.; Tuijl, van S.; Arts, K.; Gorselink, M.; Laviano, A.; Kegler, D.; Haagsman, H.P.; Beek, E.M.

    2009-01-01

    Chemotherapy-induced fatigue is a multidimensional symptom. Oxidative stress has been proposed as a working mechanism for anthracycline-induced cardiotoxicity. In this study, doxorubicin (DOX) was tested on skeletal muscle function. Doxorubicin induced impaired ex vivo skeletal muscle relaxation

  14. Skeletal muscle contraction-induced vasodilation in the microcirculation.

    Science.gov (United States)

    Hong, Kwang-Seok; Kim, Kijeong

    2017-10-01

    Maximal whole body exercise leads skeletal muscle blood flow to markedly increase to match metabolic demands, a phenomenon termed exercise hyperaemia that is accomplished by increasing vasodilation. However, local vasodilatory mechanisms in response to skeletal muscle contraction remain uncertain. This review highlights metabolic vasodilators released from contracting skeletal muscle, endothelium, or blood cells. As a considerable skeletal muscle vasodilation potentially results in hypotension, sympathetic nerve activity needs to be augmented to elevate cardiac output and blood pressure during dynamic exercise. However, since the enhanced sympathetic vasoconstriction restrains skeletal muscle blood flow, intramuscular arteries have an indispensable ability to blunt sympathetic activity for exercise hyperaemia. In addition, we discuss that mechanical compression of the intramuscular vasculature contributes to causing the initial phase of increasing vasodilation following a single muscle contraction. We have also chosen to focus on conducted (or ascending) electrical signals that evoke vasodilation of proximal feed arteries to elevate blood flow in the microcirculation of skeletal muscle. Endothelial hyperpolarization originating within distal arterioles ascends into the proximal feed arteries, thereby increasing total blood flow in contracting skeletal muscle. This brief review summarizes molecular mechanisms underlying the regulation of skeletal muscle blood flow to a single or sustained muscle contraction.

  15. Health Occupations Module. The Skeletal System--I.

    Science.gov (United States)

    Temple Univ., Philadelphia, PA. Div. of Vocational Education.

    This module on the skeletal system is one of eight modules designed for individualized instruction in health occupations education programs at both the secondary and postsecondary levels. This module contains an introduction to the module topic, three objectives (e.g., define the skeletal system and list its functions), and three learning…

  16. Alterations in the morphology of skeletal myofibres after 90 minutes ...

    African Journals Online (AJOL)

    Alterations in the morphology of skeletal myofibres after 90 minutes of ischaemia and '- 3 hours of reperfusion. M.A. Gregory, M. Mars. Abstract. Morphometric, light and electron microscopic methods were employed to determine whether skeletal myofibres were damaged by 90 minutes of tourniquet-mediated ischaemia.

  17. Bone scintigraphy in children with obscure skeletal pain

    International Nuclear Information System (INIS)

    Majd, Massoud

    1979-01-01

    In a group of 82 children with focal or generalized skeletal pain of obscure etiology, the radionuclide skeletal scintigraphy was the only, or the most informative, clue to the diagnosis of a variety of benign and malignant conditions. It is strongly recommended that any unexplained bone or joint pain in children be evaluated by this non-invasive technique [fr

  18. Mitochondrial biogenesis and angiogenesis in skeletal muscle of the elderly

    DEFF Research Database (Denmark)

    Iversen, Ninna; Krustrup, Peter; Rasmussen, Hans N

    2011-01-01

    The aim of this study was to test the hypotheses that 1) skeletal muscles of elderly subjects can adapt to a single endurance exercise bout and 2) endurance trained elderly subjects have higher expression/activity of oxidative and angiogenic proteins in skeletal muscle than untrained elderly peop...

  19. Real time ray tracing of skeletal implicit surfaces

    DEFF Research Database (Denmark)

    Rouiller, Olivier; Bærentzen, Jakob Andreas

    Modeling and rendering in real time is usually done via rasterization of polygonal meshes. We present a method to model with skeletal implicit surfaces and an algorithm to ray trace these surfaces in real time in the GPU. Our skeletal representation of the surfaces allows to create smooth models...

  20. Radiological contribution to skeletal changes in systemic mastocytosis - urticaria pigmentosa

    Energy Technology Data Exchange (ETDEWEB)

    Schratter, M.; Canigiani, G.; Schoenbauer, C.; Mach, K.

    1983-11-01

    Three patients are demonstrated suffering from systemic mastocytosis with skin and skeletal involvement. History, clinical and radiological results are reported. After a brief analysis of the pathogenetic mechanism, the radiological findings on the skeletal system in systemic mastocytosis are discussed. Finally, roentgenological differential diagnosis of the osseous lesions is explained.

  1. Knee radiography in the diagnosis of skeletal dysplasias

    International Nuclear Information System (INIS)

    Kwee, Thomas C.; Beek, Frederik J.A.; Nievelstein, Rutger A.J.; Beemer, Frits A.

    2006-01-01

    Flattening of the epiphyses of long bones is seen in several skeletal dysplasias and standardized measurements on a radiograph of the knee to detect skeletal dysplasias using this feature have been described. Since then only two other studies in which this method was used have been published, and both included only a small number of children and neither had a control group. In addition, the Dutch National Working Group on Skeletal Dysplasias began to have doubts about the reliability of the method. We therefore decided to re-evaluate its accuracy in a population of children with and without a skeletal dysplasia. To determine the diagnostic value of standardized measurements on conventional AP radiographs of the knee in children with a skeletal dysplasia. Subjects and methods: We measured the distal femoral metaphysis and epiphysis according to the published method on conventional AP radiographs of the knee in 45 healthy children and 52 children with a skeletal dysplasia. We compared graphically the height of the distal femoral epiphysis with its width and with the width of the femoral metaphysis. Receiver operating characteristic (ROC) curves were calculated for each group of children. All graphs showed a considerable overlap between children with a skeletal dysplasia and healthy children. The size of the area under the ROC curves for the different groups was small, varying between 0.567 and 0.653. This method does not discriminate between children with a skeletal dysplasia and healthy children. We therefore consider it to be of little diagnostic value. (orig.)

  2. Regulation of PDH, GS and insulin signalling in skeletal muscle

    DEFF Research Database (Denmark)

    Biensø, Rasmus Sjørup

    of inflammation on resting and exercise-induced PDH regulation in human skeletal muscle and 4) The effect of IL-6 on PDH regulation in mouse skeletal muscle. Study I demonstrated that bed rest–induced insulin resistance was associated with reduced insulinstimulated GS activity and Akt signaling as well...

  3. Chance findings in skeletal radiology; Zufallsbefunde in der Skelettradiologie

    Energy Technology Data Exchange (ETDEWEB)

    Freyschmidt, Juergen [Beratungsstelle und Referenzzentrum fuer Osteoradiologie, Bremen (Germany)

    2016-08-01

    The book on chance findings in skeletal radiology covers the following issues: Part (I): Introduction - what are chance findings? Part (II); change findings under different radiological modalities: most frequent skeletal radiological change findings: scintiscanning, radiography and CT, MRT, PET and PET/CT. Part (III): case studies: skull; spinal cord; shoulder/pectoral girdle, chest; pelvis and hip joints; upper extremities; lower extremities.

  4. Highly efficient DNA extraction method from skeletal remains

    Directory of Open Access Journals (Sweden)

    Irena Zupanič Pajnič

    2011-03-01

    Full Text Available Background: This paper precisely describes the method of DNA extraction developed to acquire high quality DNA from the Second World War skeletal remains. The same method is also used for molecular genetic identification of unknown decomposed bodies in routine forensic casework where only bones and teeth are suitable for DNA typing. We analysed 109 bones and two teeth from WWII mass graves in Slovenia. Methods: We cleaned the bones and teeth, removed surface contaminants and ground the bones into powder, using liquid nitrogen . Prior to isolating the DNA in parallel using the BioRobot EZ1 (Qiagen, the powder was decalcified for three days. The nuclear DNA of the samples were quantified by real-time PCR method. We acquired autosomal genetic profiles and Y-chromosome haplotypes of the bones and teeth with PCR amplification of microsatellites, and mtDNA haplotypes 99. For the purpose of traceability in the event of contamination, we prepared elimination data bases including genetic profiles of the nuclear and mtDNA of all persons who have been in touch with the skeletal remains in any way. Results: We extracted up to 55 ng DNA/g of the teeth, up to 100 ng DNA/g of the femurs, up to 30 ng DNA/g of the tibias and up to 0.5 ng DNA/g of the humerus. The typing of autosomal and YSTR loci was successful in all of the teeth, in 98 % dekalof the femurs, and in 75 % to 81 % of the tibias and humerus. The typing of mtDNA was successful in all of the teeth, and in 96 % to 98 % of the bones. Conclusions: We managed to obtain nuclear DNA for successful STR typing from skeletal remains that were over 60 years old . The method of DNA extraction described here has proved to be highly efficient. We obtained 0.8 to 100 ng DNA/g of teeth or bones and complete genetic profiles of autosomal DNA, Y-STR haplotypes, and mtDNA haplotypes from only 0.5g bone and teeth samples.

  5. MR appearance of skeletal neoplasms following cryotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, M.L. [Dept. of Radiology SB-05, Washington Univ., Seattle, WA (United States); Lough, L.R. [Pitts Radiological Associates, Columbia, SC (United States); Shuman, W.P. [Dept. of Radiology, Medical Center Hospital of Vermont, Burlington, VT (United States); Lazerte, G.D. [Dept. of Pathology RC-72, Washington Univ., Medical Center Hospital of Vermont, Burlington, VT (United States); Conrad, E.U. [Dept. of Orthopedic Surgery RK-10, Washington Univ., Medical Center of Vermont, Burlington, VT (United States)

    1994-02-01

    Cryotherapy is an increasingly popular mode of therapy adjunctive to surgical curettage in the treatment of certain skeletal neoplasms, such as giant cell tumors or chondrosarcomas. The magnetic resonance (MR) findings following cryotherapy have not been previously reported. We reviewed the MR findings in seven patients with skeletal neoplasms following curettage and cryotherapy. In six cases we found a zone of varying thickness extending beyond the surgical margins, corresponding to an area of cryoinjury to medullary bone. This zone displayed low signal intensity on T1-weighted images and high signal intensity on T2-weighted images, consistent with the presence of marrow edema. This zone of edema almost certainly reflects underlying thermal osteonecrosis. This zone may vary in size and intensity over time as the area of cryoinjury evolves or resolves. MR is currently the imaging procedure of choice for follow-up of most musculoskeletal neoplasms. Knowledge of the MR findings following cryotherapy should help prevent confusion during the interpretation of follow-up MR examinations. (orig.)

  6. MR appearance of skeletal neoplasms following cryotherapy

    International Nuclear Information System (INIS)

    Richardson, M.L.; Lough, L.R.; Shuman, W.P.; Lazerte, G.D.; Conrad, E.U.

    1994-01-01

    Cryotherapy is an increasingly popular mode of therapy adjunctive to surgical curettage in the treatment of certain skeletal neoplasms, such as giant cell tumors or chondrosarcomas. The magnetic resonance (MR) findings following cryotherapy have not been previously reported. We reviewed the MR findings in seven patients with skeletal neoplasms following curettage and cryotherapy. In six cases we found a zone of varying thickness extending beyond the surgical margins, corresponding to an area of cryoinjury to medullary bone. This zone displayed low signal intensity on T1-weighted images and high signal intensity on T2-weighted images, consistent with the presence of marrow edema. This zone of edema almost certainly reflects underlying thermal osteonecrosis. This zone may vary in size and intensity over time as the area of cryoinjury evolves or resolves. MR is currently the imaging procedure of choice for follow-up of most musculoskeletal neoplasms. Knowledge of the MR findings following cryotherapy should help prevent confusion during the interpretation of follow-up MR examinations. (orig.)

  7. Magnetic resonance findings in skeletal muscle tears

    International Nuclear Information System (INIS)

    De Smet, A.A.

    1993-01-01

    Magnetic resonance (MR) images of skeletal muscle tears can clearly delineate the severity of muscle injury. Although MR imaging is seldom necessary in patients with acute musle trauma, it can be helpful in deciding on clinical management. The two major MR findings in acute muscle tears are deformity of the muscle and the presence of abnormal signal reflecting hemorrhage and edema. In acute tears, methemoglobin within the extravascular blood causes high-signal areas on both T1- and T2-weighted images. With partial tears, the blood may dissect in a distinctive linear pattern along the muscle bundles and fibers. As healing begins, the muscle signal diminishes, first on the T1-weighted images and then on the T2-weighted images. When there is residual abnormal signal on images obtained more than several months after the injury, it is presumed to represent hemorrhage from recurrent tears. In patients with a questionable history of a remote injury, the clinical presentation may be that of persistent pain or a soft tissue mass. In these cases MR imaging may identify the cause of the pain and can exclude a neoplasm by proving that the mass is a hypertrophied or retracted musle. Thus, MR imaging has a limited, but occasionally important role in selected patients with skeletal muscle tears. (orig.)

  8. Hypoxia in Combination With Muscle Contraction Improves Insulin Action and Glucose Metabolism in Human Skeletal Muscle via the HIF-1α Pathway.

    Science.gov (United States)

    Görgens, Sven W; Benninghoff, Tim; Eckardt, Kristin; Springer, Christian; Chadt, Alexandra; Melior, Anita; Wefers, Jakob; Cramer, Andrea; Jensen, Jørgen; Birkeland, Kåre I; Drevon, Christian A; Al-Hasani, Hadi; Eckel, Jürgen

    2017-11-01

    Skeletal muscle insulin resistance is the hallmark of type 2 diabetes and develops long before the onset of the disease. It is well accepted that physical activity improves glycemic control, but the knowledge on underlying mechanisms mediating the beneficial effects remains incomplete. Exercise is accompanied by a decrease in intramuscular oxygen levels, resulting in induction of HIF-1α. HIF-1α is a master regulator of gene expression and might play an important role in skeletal muscle function and metabolism. Here we show that HIF-1α is important for glucose metabolism and insulin action in skeletal muscle. By using a genome-wide gene expression profiling approach, we identified RAB20 and TXNIP as two novel exercise/HIF-1α-regulated genes in skeletal muscle. Loss of Rab20 impairs insulin-stimulated glucose uptake in human and mouse skeletal muscle by blocking the translocation of GLUT4 to the cell surface. In addition, exercise/HIF-1α downregulates the expression of TXNIP , a well-known negative regulator of insulin action. In conclusion, we are the first to demonstrate that HIF-1α is a key regulator of glucose metabolism in skeletal muscle by directly controlling the transcription of RAB20 and TXNIP These results hint toward a novel function of HIF-1α as a potential pharmacological target to improve skeletal muscle insulin sensitivity. © 2017 by the American Diabetes Association.

  9. Dynamics of the Skeletal Muscle Secretome during Myoblast Differentiation

    DEFF Research Database (Denmark)

    Henningsen, Jeanette; Rigbolt, Kristoffer T G; Blagoev, Blagoy

    2010-01-01

    During recent years, increased efforts have focused on elucidating the secretory function of skeletal muscle. Through secreted molecules, skeletal muscle affects local muscle biology in an auto/paracrine manner as well as having systemic effects on other tissues. Here we used a quantitative...... proteomics platform to investigate the factors secreted during the differentiation of murine C2C12 skeletal muscle cells. Using triple encoding stable isotope labeling by amino acids in cell culture, we compared the secretomes at three different time points of muscle differentiation and followed the dynamics...... of the skeletal muscle as a prominent secretory organ. In addition to previously reported molecules, we identified many secreted proteins that have not previously been shown to be released from skeletal muscle cells nor shown to be differentially released during the process of myogenesis. We found 188...

  10. Tissue-specific Role of the Na,K-ATPase α2 Isozyme in Skeletal Muscle*

    Science.gov (United States)

    Radzyukevich, Tatiana L.; Neumann, Jonathon C.; Rindler, Tara N.; Oshiro, Naomi; Goldhamer, David J.; Lingrel, Jerry B.; Heiny, Judith A.

    2013-01-01

    The Na,K-ATPase α2 isozyme is the major Na,K-ATPase of mammalian skeletal muscle. This distribution is unique compared with most other cells, which express mainly the Na,K-ATPase α1 isoform, but its functional significance is not known. We developed a gene-targeted mouse (skα2−/−) in which the α2 gene (Atp1a2) is knocked out in the skeletal muscles, and examined the consequences for exercise performance, membrane potentials, contractility, and muscle fatigue. Targeted knockout was confirmed by genotyping, Western blot, and immunohistochemistry. Skeletal muscle cells of skα2−/− mice completely lack α2 protein and have no α2 in the transverse tubules, where its expression is normally enhanced. The α1 isoform, which is normally enhanced on the outer sarcolemma, is up-regulated 2.5-fold without change in subcellular targeting. skα2−/− mice are apparently normal under basal conditions but show significantly reduced exercise capacity when challenged to run. Their skeletal muscles produce less force, are unable to increase force to match demand, and show significantly increased susceptibility to fatigue. The impairments affect both fast and slow muscle types. The subcellular targeting of α2 to the transverse tubules is important for this role. Increasing Na,K-ATPase α1 content cannot fully compensate for the loss of α2. The increased fatigability of skα2−/− muscles is reproduced in control extensor digitorum longus muscles by selectively inhibiting α2 enzyme activity with ouabain. These results demonstrate that the Na,K-ATPase α2 isoform performs an acute, isoform-specific role in skeletal muscle. Its activity is regulated by muscle use and enables working muscles to maintain contraction and resist fatigue. PMID:23192345

  11. A new forensic collection housed at the University of Coimbra, Portugal: The 21st century identified skeletal collection.

    Science.gov (United States)

    Ferreira, Maria Teresa; Vicente, Ricardo; Navega, David; Gonçalves, David; Curate, Francisco; Cunha, Eugénia

    2014-12-01

    The purpose of this study is to characterize and contextualize the new collection of identified skeletons housed in the Department of Life Sciences at the University of Coimbra, Portugal. The 21st Century Identified Skeletal Collection, which is still being enlarged, is currently composed of 159 complete adult skeletons (age at death range: 29-99 years) of both sexes. The skeletons consist almost exclusively of Portuguese nationals who died between 1995 and 2008. The state of preservation is good and more detailed antemortem information is presently being collected. This collection constitutes a fundamental tool for forensic anthropology research, including development and validation studies of skeletal aging and sexing methods that target elderly adults. Moreover, this collection can also be used in conjunction with the other reference collections housed in the University of Coimbra to investigate secular trends in skeletal development and aging, among others. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Oncological outcomes of patients with Ewing's sarcoma: is there a difference between skeletal and extra-skeletal Ewing's sarcoma?

    Science.gov (United States)

    Pradhan, A; Grimer, R J; Spooner, D; Peake, D; Carter, S R; Tillman, R M; Abudu, A; Jeys, L

    2011-04-01

    The aim of this study was to identify whether there was any difference in patient, tumour, treatment or outcome characteristics between patients with skeletal or extra-skeletal Ewing's sarcoma. We identified 300 patients with new primary Ewing's sarcoma diagnosed between 1980 and 2005 from the centres' local database. There were 253 (84%) with skeletal and 47 (16%) with extra-skeletal Ewing's sarcomas. Although patients with skeletal Ewing's were younger (mean age 16.8 years) than those with extra-skeletal Ewing's sarcoma (mean age 27.5 years), there was little difference between the groups in terms of tumour stage or treatment. Nearly all the patients were treated with chemotherapy and most had surgery. There was no difference in the overall survival of patients with skeletal (64%) and extra-skeletal Ewing's sarcoma (61%) (p = 0.85), and this was also the case when both groups were split by whether they had metastases or not. This large series has shown that the oncological outcomes of Ewing's sarcoma are related to tumour characteristics and patient age, and not determined by whether they arise in bone or soft tissue.

  13. Radiographic correlation of dental and skeletal age: Third molar, an age indicator.

    Science.gov (United States)

    Suma, Gn; Rao, Balaji B; Annigeri, Rajeshwari G; Rao, Dayashankara Jk; Goel, Sumit

    2011-01-01

    Age estimation plays a great role in forensic investigations, orthodontic and surgical treatment planning, and tooth transplantation. Teeth offer an excellent material for age determination by stages of development below the age of 25 years and by secondary changes after the age of 25 years. Third molar is often not included for this purpose due to its notorious developmental patterns. The aim of this study was to evaluate the development of third molar anlage in relation to skeletal maturities and the chronological age. One hundred and fifty-six young individuals, 78 males and 78 females, were selected. The stages of development of all the third molars in every individual were determined from panoramic radiographs. The skeletal development was assessed using hand wrist radiographs. Data were analyzed statistically for mean value, standard deviation and the relationship between the recorded characteristics. A STRONG CORRELATION WAS FOUND BETWEEN THIRD MOLAR DEVELOPMENT AND SKELETAL MATURITY (IN MALES: r=0.88, Pthird molar and 0.89 for mandibular third molar, Page, developmental stages of third molars and maturation of epiphyses of hand. Any of the three parameters could be used for the assessment of other maturities.

  14. Caffeine and length dependence of staircase potentiation in skeletal muscle.

    Science.gov (United States)

    Rassier, D E; Tubman, L A; MacIntosh, B R

    1998-01-01

    Skeletal muscle sensitivity to Ca2+ is greater at long lengths, and this results in an optimal length for twitch contractions that is longer than optimal length for tetanic contractions. Caffeine abolishes this length dependence of Ca2+ sensitivity. Muscle length (ML) also affects the degree of staircase potentiation. Since staircase potentiation is apparently caused by an increased Ca2+ sensitivity of the myofilaments, we tested the hypothesis that caffeine depresses the length dependence of staircase potentiation. In situ isometric twitch contractions of rat gastrocnemius muscle before and after 10 s of 10-Hz stimulation were analyzed at seven different lengths to evaluate the length dependence of staircase potentiation. In the absence of caffeine, length dependence of Ca2+ sensitivity was observed, and the degree of potentiation after 10-Hz stimulation showed a linear decrease with increased length (DT = 1.47 - 0.05 ML, r2 = 0.95, where DT is developed tension). Length dependence of Ca2+ sensitivity was decreased by caffeine when caffeine was administered in amounts estimated to result in 0.5 and 0.75 mM concentrations. Furthermore, the negative slope of the relationship between staircase potentiation and muscle length was diminished at the lower caffeine dose, and the slope was not different from zero after the higher dose (DT = 1.53 - 0.009 ML, r2 = 0.43). Our study shows that length dependence of Ca2+ sensitivity in intact skeletal muscle is diminished by caffeine. Caffeine also suppressed the length dependence of staircase potentiation, suggesting that the mechanism of this length dependence may be closely related to the mechanism for length dependence of Ca2+ sensitivity.

  15. Growth factor involvement in tension-induced skeletal muscle growth

    Science.gov (United States)

    Vandenburgh, Herman H.

    1993-01-01

    Long-term manned space travel will require a better understanding of skeletal muscle atrophy which results from microgravity. Astronaut strength and dexterity must be maintained for normal mission operations and for emergency situations. Although exercise in space slows the rate of muscle loss, it does not prevent it. A biochemical understanding of how gravity/tension/exercise help to maintain muscle size by altering protein synthesis and/or degradation rate should ultimately allow pharmacological intervention to prevent muscle atrophy in microgravity. The overall objective is to examine some of the basic biochemical processes involved in tension-induced muscle growth. With an experimental in vitro system, the role of exogenous and endogenous muscle growth factors in mechanically stimulated muscle growth are examined. Differentiated avian skeletal myofibers can be 'exercised' in tissue culture using a newly developed dynamic mechanical cell stimulator device which simulates different muscle activity patterns. Patterns of mechanical activity which significantly affect muscle growth and metabolic characteristics were found. Both exogenous and endogenous growth factors are essential for tension-induced muscle growth. Exogenous growth factors found in serum, such as insulin, insulin-like growth factors, and steroids, are important regulators of muscle protein turnover rates and mechanically-induced muscle growth. Endogenous growth factors are synthesized and released into the culture medium when muscle cells are mechanically stimulated. At least one family of mechanically induced endogenous factors, the prostaglandins, help to regulate the rates of protein turnover in muscle cells. Endogenously synthesized IGF-1 is another. The interaction of muscle mechanical activity and these growth factors in the regulation of muscle protein turnover rates with our in vitro model system is studied.

  16. MicroCT-Based Skeletal Models for Use in Tomographic Voxel Phantoms for Radiological Protection

    International Nuclear Information System (INIS)

    Bolch, Wesley

    2010-01-01

    The University of Florida (UF) proposes to develop two high-resolution image-based skeletal dosimetry models for direct use by ICRP Committee 2's Task Group on Dose Calculation in their forthcoming Reference Voxel Male (RVM) and Reference Voxel Female (RVF) whole-body dosimetry phantoms. These two phantoms are CT-based, and thus do not have the image resolution to delineate and perform radiation transport modeling of the individual marrow cavities and bone trabeculae throughout their skeletal structures. Furthermore, new and innovative 3D microimaging techniques will now be required for the skeletal tissues following Committee 2's revision of the target tissues of relevance for radiogenic bone cancer induction. This target tissue had been defined in ICRP Publication 30 as a 10-(micro)m cell layer on all bone surfaces of trabecular and cortical bone. The revised target tissue is now a 50-(micro)m layer within the marrow cavities of trabecular bone only and is exclusive of the marrow adipocytes. Clearly, this new definition requires the use of 3D microimages of the trabecular architecture not available from past 2D optical studies of the adult skeleton. With our recent acquisition of two relatively young cadavers (males of age 18-years and 40-years), we will develop a series of reference skeletal models that can be directly applied to (1) the new ICRP reference voxel man and female phantoms developed for the ICRP, and (2) pediatric phantoms developed to target the ICRP reference children. Dosimetry data to be developed will include absorbed fractions for internal beta and alpha-particle sources, as well as photon and neutron fluence-to-dose response functions for direct use in external dosimetry studies of the ICRP reference workers and members of the general public

  17. MicroCT-Based Skeletal Models for Use in Tomographic Voxel Phantoms for Radiological Protection

    Energy Technology Data Exchange (ETDEWEB)

    Bolch, Wesley [Univ. of Florida, Gainesville, FL (United States)

    2010-03-30

    The University of Florida (UF) proposes to develop two high-resolution image-based skeletal dosimetry models for direct use by ICRP Committee 2’s Task Group on Dose Calculation in their forthcoming Reference Voxel Male (RVM) and Reference Voxel Female (RVF) whole-body dosimetry phantoms. These two phantoms are CT-based, and thus do not have the image resolution to delineate and perform radiation transport modeling of the individual marrow cavities and bone trabeculae throughout their skeletal structures. Furthermore, new and innovative 3D microimaging techniques will now be required for the skeletal tissues following Committee 2’s revision of the target tissues of relevance for radiogenic bone cancer induction. This target tissue had been defined in ICRP Publication 30 as a 10-μm cell layer on all bone surfaces of trabecular and cortical bone. The revised target tissue is now a 50-μm layer within the marrow cavities of trabecular bone only and is exclusive of the marrow adipocytes. Clearly, this new definition requires the use of 3D microimages of the trabecular architecture not available from past 2D optical studies of the adult skeleton. With our recent acquisition of two relatively young cadavers (males of age 18-years and 40-years), we will develop a series of reference skeletal models that can be directly applied to (1) the new ICRP reference voxel man and female phantoms developed for the ICRP, and (2) pediatric phantoms developed to target the ICRP reference children. Dosimetry data to be developed will include absorbed fractions for internal beta and alpha-particle sources, as well as photon and neutron fluence-to-dose response functions for direct use in external dosimetry studies of the ICRP reference workers and members of the general public

  18. Osmoregulatory processes and skeletal muscle metabolism

    Science.gov (United States)

    Boschmann, Michael; Gottschalk, Simone; Adams, Frauke; Luft, Friedrich C.; Jordan, Jens

    Prolonged microgravity during space flight is associated with a decrease in blood and extracellular volume. These changes in water and electrolyte balance might activate catabolic processes which contribute finally to the loss of muscle and bone mass and strength. Recently, we found a prompt increase that energy expenditure by about 30% in both normal and overweight men and women after drinking 500 ml water. This effect is mediated by an increased sympathetic nervous system activity, obviously secondary to stimulation of osmosensitive afferent neurons in the liver, and skeletal muscle is possibly one effector organ. Therefore, we tested the hypothesis that this thermogenic response to water is accompanied by a stimulation of aerobic glucose metabolism in skeletal muscle. To this end, 16 young healthy volunteers (8 men) were studied. After an overnight fast (12h), a microdialysis probe was implanted into the right M. quadriceps femoris vastus lateralis and subsequently perfused with Ringer's solution (+50 mM ethanol). After 1h, volunteers were asked to drink 500 ml water (22° C) followed by continuing microdialysis for another 90 min. Dialysates (15 min fractions) were analyzed for [ethanol], [glucose], [lactate], [pyruvate], and [glycerol] in order to assess changes in muscle tissue perfusion (ethanol dilution technique), glycolysis and lipolysis. Blood samples were taken and heart rate (HR) and blood pressure (BP) were monitored. Neither HR and systolic and diastolic BP, nor plasma [glucose], [lactate], [insulin], and [C peptide] changed significantly after water drinking. Also, tissue perfusion and dialysate [glucose] did not change significantly. However, dialysate [lactate] increased by about 10 and 20% and dialysate [pyruvate] by about 100 and 200% in men and women, respectively. In contrast, dialysate [glycerol] decreased by about 30 and 20% in men and women, respectively. Therefore, drinking of 500 ml water stimulates aerobic glucose metabolism and inhibits

  19. Protein kinase N2 regulates AMP kinase signaling and insulin responsiveness of glucose metabolism in skeletal muscle.

    Science.gov (United States)

    Ruby, Maxwell A; Riedl, Isabelle; Massart, Julie; Åhlin, Marcus; Zierath, Juleen R

    2017-10-01

    Insulin resistance is central to the development of type 2 diabetes and related metabolic disorders. Because skeletal muscle is responsible for the majority of whole body insulin-stimulated glucose uptake, regulation of glucose metabolism in this tissue is of particular importance. Although Rho GTPases and many of their affecters influence skeletal muscle metabolism, there is a paucity of information on the protein kinase N (PKN) family of serine/threonine protein kinases. We investigated the impact of PKN2 on insulin signaling and glucose metabolism in primary human skeletal muscle cells in vitro and mouse tibialis anterior muscle in vivo. PKN2 knockdown in vitro decreased insulin-stimulated glucose uptake, incorporation into glycogen, and oxidation. PKN2 siRNA increased 5'-adenosine monophosphate-activated protein kinase (AMPK) signaling while stimulating fatty acid oxidation and incorporation into triglycerides and decreasing protein synthesis. At the transcriptional level, PKN2 knockdown increased expression of PGC-1α and SREBP-1c and their target genes. In mature skeletal muscle, in vivo PKN2 knockdown decreased glucose uptake and increased AMPK phosphorylation. Thus, PKN2 alters key signaling pathways and transcriptional networks to regulate glucose and lipid metabolism. Identification of PKN2 as a novel regulator of insulin and AMPK signaling may provide an avenue for manipulation of skeletal muscle metabolism. Copyright © 2017 the American Physiological Society.

  20. Caffeine at a Moderate Dose Did Not Affect the Skeletal System of Rats with Streptozotocin-Induced Diabetes.

    Science.gov (United States)

    Folwarczna, Joanna; Janas, Aleksandra; Cegieła, Urszula; Pytlik, Maria; Śliwiński, Leszek; Matejczyk, Magdalena; Nowacka, Anna; Rudy, Karolina; Krivošíková, Zora; Štefíková, Kornélia; Gajdoš, Martin

    2017-10-30

    Diabetes may lead to the development of osteoporosis. Coffee drinking, apart from its health benefits, is taken into consideration as an osteoporosis risk factor. Data from human and animal studies on coffee and caffeine bone effects are inconsistent. The aim of the study was to investigate effects of caffeine at a moderate dose on the skeletal system of rats in two models of experimental diabetes induced by streptozotocin. Effects of caffeine administered orally (20 mg/kg aily for four weeks) were investigated in three-month-old female Wistar rats, which, two weeks before the start of caffeine administration, received streptozotocin (60 mg/kg, intraperitoneally) alone or streptozotocin after nicotinamide (230 mg/kg, intraperitoneally). Bone turnover markers, mass, mineral density, histomorphometric parameters, and mechanical properties were examined. Streptozotocin induced diabetes, with profound changes in the skeletal system due to increased bone resorption and decreased bone formation. Although streptozotocin administered after nicotinamide induced slight increases in glucose levels at the beginning of the experiment only, slight, but significant unfavorable changes in the skeletal system were demonstrated. Administration of caffeine did not affect the investigated skeletal parameters of rats with streptozotocin-induced disorders. In conclusion, caffeine at a moderate dose did not exert a damaging effect on the skeletal system of diabetic rats.

  1. Caffeine at a Moderate Dose Did Not Affect the Skeletal System of Rats with Streptozotocin-Induced Diabetes

    Directory of Open Access Journals (Sweden)

    Joanna Folwarczna

    2017-10-01

    Full Text Available Diabetes may lead to the development of osteoporosis. Coffee drinking, apart from its health benefits, is taken into consideration as an osteoporosis risk factor. Data from human and animal studies on coffee and caffeine bone effects are inconsistent. The aim of the study was to investigate effects of caffeine at a moderate dose on the skeletal system of rats in two models of experimental diabetes induced by streptozotocin. Effects of caffeine administered orally (20 mg/kg aily for four weeks were investigated in three-month-old female Wistar rats, which, two weeks before the start of caffeine administration, received streptozotocin (60 mg/kg, intraperitoneally alone or streptozotocin after nicotinamide (230 mg/kg, intraperitoneally. Bone turnover markers, mass, mineral density, histomorphometric parameters, and mechanical properties were examined. Streptozotocin induced diabetes, with profound changes in the skeletal system due to increased bone resorption and decreased bone formation. Although streptozotocin administered after nicotinamide induced slight increases in glucose levels at the beginning of the experiment only, slight, but significant unfavorable changes in the skeletal system were demonstrated. Administration of caffeine did not affect the investigated skeletal parameters of rats with streptozotocin-induced disorders. In conclusion, caffeine at a moderate dose did not exert a damaging effect on the skeletal system of diabetic rats.

  2. Specific association of growth-associated protein 43 with calcium release units in skeletal muscles of lower vertebrates

    Directory of Open Access Journals (Sweden)

    G.A. Caprara

    2014-10-01

    Full Text Available Growth-associated protein 43 (GAP43, is a strictly conserved protein among vertebrates implicated in neuronal development and neurite branching. Since GAP43 structure contains a calmodulin-binding domain, this protein is able to bind calmodulin and gather it nearby membrane network, thus regulating cytosolic calcium and consequently calcium-dependent intracellular events. Even if for many years GAP43 has been considered a neuronal-specific protein, evidence from different laboratories described its presence in myoblasts, myotubes and adult skeletal muscle fibers. Data from our laboratory showed that GAP43 is localized between calcium release units (CRUs and mitochondria in mammalian skeletal muscle suggesting that, also in skeletal muscle, this protein can be a key player in calcium/calmodulin homeostasis. However, the previous studies could not clearly distinguish between a mitochondrion- or a triad-related positioning of GAP43. To solve this question, the expression and localization of GAP43 was studied in skeletal muscle of Xenopus and Zebrafish known to have triads located at the level of the Z-lines and mitochondria not closely associated with them. Western blotting and immunostaining experiments revealed the expression of GAP43 also in skeletal muscle of lower vertebrates (like amphibians and fishes, and that the protein is localized closely to the triad junction. Once more, these results and GAP43 structural features, support an involvement of the protein in the dynamic intracellular Ca2+ homeostasis, a common conserved role among the different species.

  3. Selection, processing and clinical application of muscle-skeletal tissue; Seleccion, Procesamiento y Aplicacion Clinica de Tejido Musculo-Esqueletico

    Energy Technology Data Exchange (ETDEWEB)

    Luna Z, D.; Reyes F, M.L.; Lavalley E, C.; Castaneda J, G. [ININ, Carretera Mexico-Toluca s/n, 52750 La Marquesa, Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: dlz@nuclear.inin. mx

    2007-07-01

    Due to the increase in the average of the world population's life, people die each time to more age, this makes that the tissues of support of the human body, as those muscle-skeletal tissues, when increasing the individual's age go weakening, this in turn leads to the increment of the illnesses like the osteoporosis and the arthritis, that undoubtedly gives as a result more injure of the muscle-skeletal tissues joined a greater number of traffic accidents where particularly these tissues are affected, for that the demand of tissues muscle-skeletal for transplant every day will be bigger. The production of these tissues in the Bank of Radio sterilized Tissues, besides helping people to improve its quality of life saved foreign currencies because most of the muscle-skeletal tissues transplanted in Mexico are of import. The use of the irradiation to sterilize tissues for transplant has shown to be one of the best techniques with that purpose for what the International Atomic Energy Agency believes a Technical cooperation program to establish banks of tissues using the nuclear energy, helping mainly to countries in development. In this work the stages that follows the bank of radio sterilized tissues of the National Institute of Nuclear Research for the cadaverous donor's of muscle-skeletal tissue selection are described, as well as the processing and the clinical application of these tissues. (Author)

  4. Method for assessment of skeletal maturity in children below one year of age

    Energy Technology Data Exchange (ETDEWEB)

    Erasmie, U.; Ringertz, H.

    1980-07-01

    Although there is a continuing clinical interest in the radiological determination of skeletal development in children below one year of age, none of the existing methods is particularly appropriate. We have therefore developed a new and simple method of assessment. This takes into account the dose of radiation and the two aspects of size and maturity of the skeleton; and so we choose to study the lateral view of the tarsus. The calcaneous and talus are ossification centers appearing before birth. The sum of length and height of these centers constitutes the first part of the assessment. The second part of our evaluation includes an appraisal of the cuboid, the third cuneiform and the distal epiphyses of tibia and fibula. For practical purposes we have chosen to relate the two different aspects of skeletal maturity which we have assessed to the weight of the baby.

  5. Glucose-induced insulin resistance of skeletal-muscle glucose transport and uptake

    DEFF Research Database (Denmark)

    Richter, Erik; Hansen, B F; Hansen, S A

    1988-01-01

    in the presence of glucose and insulin. The data indicate that exposure to a moderately increased glucose concentration (12 mM) leads to rapidly developing resistance of skeletal-muscle glucose transport and uptake to maximal insulin stimulation. The effect of glucose is enhanced by simultaneous insulin exposure......, whereas exposure for 5 h to insulin itself does not cause measurable resistance to maximal insulin stimulation.......The ability of glucose and insulin to modify insulin-stimulated glucose transport and uptake was investigated in perfused skeletal muscle. Here we report that perfusion of isolated rat hindlimbs for 5 h with 12 mM-glucose and 20,000 microunits of insulin/ml leads to marked, rapidly developing...

  6. Potassium-transporting proteins in skeletal muscle: cellular location and fiber-type differences

    DEFF Research Database (Denmark)

    Kristensen, Michael; Juel, Carsten

    2010-01-01

    Potassium (K+) displacement in skeletal muscle may be an important factor in the development of muscle fatigue during intense exercise. It has been shown in vitro that an increase in the extracellular K+ concentration ([K+]e) to values higher than approx. 10 mm significantly reduce force developm......Potassium (K+) displacement in skeletal muscle may be an important factor in the development of muscle fatigue during intense exercise. It has been shown in vitro that an increase in the extracellular K+ concentration ([K+]e) to values higher than approx. 10 mm significantly reduce force......, but is suggested primarily to participate in K+ release to the interstitium. Because there is restricted diffusion of K+ to the interstitium, K+ released to the T-tubules during AP propagation will be removed primarily by reuptake mediated by transport proteins located in the T-tubule membrane. The most important...

  7. Overexpression of SMPX in adult skeletal muscle does not change skeletal muscle fiber type or size.

    Directory of Open Access Journals (Sweden)

    Einar Eftestøl

    Full Text Available Mechanical factors such as stretch are thought to be important in the regulation of muscle phenotype. Small muscle protein X-linked (SMPX is upregulated by stretch in skeletal muscle and has been suggested to serve both as a transcription factor and a mechanosensor, possibly giving rise to changes in both fiber size and fiber type. We have used in vivo confocal imaging to study the subcellular localization of SMPX in skeletal muscle fibers of adult rats using a SMPX-EGFP fusion protein. The fusion protein was localized predominantly in repetitive double stripes flanking the Z-disc, and was excluded from all nuclei. This localization would be consistent with SMPX being a mechanoreceptor, but not with SMPX playing a role as a transcription factor. In vivo overexpression of ectopic SMPX in skeletal muscle of adult mice gave no significant changes in fiber type distribution or cross sectional area, thus a role of SMPX in regulating muscle phenotype remains unclear.

  8. Radiographic manifestations of diffuse idiopathic skeletal hyperostosis

    International Nuclear Information System (INIS)

    Ono, Minoru; Kudo, Sho; Russell, W.J.

    1984-09-01

    A relatively high frequency of hyperostosis in various body sites was found in 240 subjects with ''diffuse idiopathic skeletal hyperostosis'' (DISH) in the thoracic spine over an average observation period of 11 years. The onset and initial appearance of DISH in the thoracic spine were identified in 69 cases. The age at onset ranged from 40 to 65 years, and the initial sites involved were usually T9-10 and T10-11. As criteria in differentiating DISH from spondylosis deformans the hyperostoses anterior to the vertebral body itself appeared to be more important than the ''bridges'' anterior to the intervertebral spaces. Although it was difficult to differentiate the early appearance of DISH from spondylosis deformans in some cases, these long-term observations suggest that they are different entities. (author)

  9. Sex hormones and skeletal muscle weakness

    DEFF Research Database (Denmark)

    Sipilä, Sarianna; Narici, Marco; Kjaer, Michael

    2013-01-01

    Human ageing is accompanied with deterioration in endocrine functions the most notable and well characterized of which being the decrease in the production of sex hormones. Current research literature suggests that low sex hormone concentration may be among the key mechanism for sarcopenia...... and muscle weakness. Within the European large scale MYOAGE project, the role of sex hormones, estrogens and testosterone, in causing the aging-related loss of muscle mass and function was further investigated. Hormone replacement therapy (HRT) in women is shown to diminish age-associated muscle loss, loss...... properties. HRT influences gene expression in e.g. cytoskeletal and cell-matrix proteins, has a stimulating effect upon IGF-I, and a role in IL-6 and adipokine regulation. Despite low circulating steroid-hormone level, postmenopausal women have a high local concentration of steroidogenic enzymes in skeletal...

  10. Tissue Engineered Strategies for Skeletal Muscle Injury

    Directory of Open Access Journals (Sweden)

    Umile Giuseppe Longo

    2012-01-01

    Full Text Available Skeletal muscle injuries are common in athletes, occurring with direct and indirect mechanisms and marked residual effects, such as severe long-term pain and physical disability. Current therapy consists of conservative management including RICE protocol (rest, ice, compression, and elevation, nonsteroidal anti-inflammatory drugs, and intramuscular corticosteroids. However, current management of muscle injuries often does not provide optimal restoration to preinjury status. New biological therapies, such as injection of platelet-rich plasma and stem-cell-based therapy, are appealing. Although some studies support PRP application in muscle-injury management, reasons for concern persist, and further research is required for a standardized and safe use of PRP in clinical practice. The role of stem cells needs to be confirmed, as studies are still limited and inconsistent. Further research is needed to identify mechanisms involved in muscle regeneration and in survival, proliferation, and differentiation of stem cells.

  11. Diffuse Idiopathic Skeletal Hyperosteosis: A Review

    Directory of Open Access Journals (Sweden)

    Sevgi İkbali Afşar

    2015-12-01

    Full Text Available Diffuse idiopathic skeletal hyperosteosis (DISH is also known as Forestier disease and is a systemic non-inflammatory disorder seen more commonly in males and elderly. It is characterized by calcification of the anterior longitudinal ligament of the vertebral column and various extraspinal ligaments. It is usually asymptomatic while the most common symptoms are spinal pain, limited range of spinal motion and dysphagia due to esophagus compression. The etiopathogenesis is not clear. It is commonly seen together with diabetes mellitus, obesity, hyperinsulinemia, hypertension and lipid and purine metabolism disorders, indicating an association with metabolic disorders. Recent studies have emphasized that the pathological calcification of the anterior longitudinal ligament plays a role in the pathophysiology. The aim of this study was to summarize new pathogenetic, clinical and therapeutic insights of this disease, based on published literature.

  12. Dysphagia due to Diffuse Idiopathic Skeletal Hyperostosis

    Directory of Open Access Journals (Sweden)

    Masafumi Ohki

    2012-01-01

    Full Text Available Diffuse idiopathic skeletal hyperostosis (DISH is usually asymptomatic. However, rarely, it causes dysphagia, hoarseness, dyspnea, snoring, stridor, and laryngeal edema. Herein, we present a patient with DISH causing dysphagia. A 70-year-old man presented with a 4-month history of sore throat, dysphagia, and foreign body sensation. Flexible laryngoscopy revealed a leftward-protruding posterior wall in the hypopharynx. Computed tomography and magnetic resonance imaging revealed a bony mass pushing, anteriorly, on the posterior hypopharyngeal wall. Ossification included an osseous bridge involving 5 contiguous vertebral bodies. Dysphagia due to DISH was diagnosed. His symptoms were relieved by conservative therapy using anti-inflammatory drugs. However, if conservative therapy fails and symptoms are severe, surgical treatments must be considered.

  13. Mining skeletal phenotype descriptions from scientific literature.

    Directory of Open Access Journals (Sweden)

    Tudor Groza

    Full Text Available Phenotype descriptions are important for our understanding of genetics, as they enable the computation and analysis of a varied range of issues related to the genetic and developmental bases of correlated characters. The literature contains a wealth of such phenotype descriptions, usually reported as free-text entries, similar to typical clinical summaries. In this paper, we focus on creating and making available an annotated corpus of skeletal phenotype descriptions. In addition, we present and evaluate a hybrid Machine Learning approach for mining phenotype descriptions from free text. Our hybrid approach uses an ensemble of four classifiers and experiments with several aggregation techniques. The best scoring technique achieves an F-1 score of 71.52%, which is close to the state-of-the-art in other domains, where training data exists in abundance. Finally, we discuss the influence of the features chosen for the model on the overall performance of the method.

  14. Expanding the phenome and variome of skeletal dysplasia.

    Science.gov (United States)

    Maddirevula, Sateesh; Alsahli, Saud; Alhabeeb, Lamees; Patel, Nisha; Alzahrani, Fatema; Shamseldin, Hanan E; Anazi, Shams; Ewida, Nour; Alsaif, Hessa S; Mohamed, Jawahir Y; Alazami, Anas M; Ibrahim, Niema; Abdulwahab, Firdous; Hashem, Mais; Abouelhoda, Mohamed; Monies, Dorota; Al Tassan, Nada; Alshammari, Muneera; Alsagheir, Afaf; Seidahmed, Mohammed Zain; Sogati, Samira; Aglan, Mona S; Hamad, Muddathir H; Salih, Mustafa A; Hamed, Ahlam A; Alhashmi, Nadia; Nabil, Amira; Alfadli, Fatima; Abdel-Salam, Ghada M H; Alkuraya, Hisham; Peitee, Winnie Ong; Keng, W T; Qasem, Abdullah; Mushiba, Aziza M; Zaki, Maha S; Fassad, Mahmoud R; Alfadhel, Majid; Alexander, Saji; Sabr, Yasser; Temtamy, Samia; Ekbote, Alka V; Ismail, Samira; Hosny, Gamal Ahmed; Otaify, Ghada A; Amr, Khalda; Al Tala, Saeed; Khan, Arif O; Rizk, Tamer; Alaqeel, Aida; Alsiddiky, Abdulmonem; Singh, Ankur; Kapoor, Seema; Alhashem, Amal; Faqeih, Eissa; Shaheen, Ranad; Alkuraya, Fowzan S

    2018-04-05

    PurposeTo describe our experience with a large cohort (411 patients from 288 families) of various forms of skeletal dysplasia who were molecularly characterized.MethodsDetailed phenotyping and next-generation sequencing (panel and exome).ResultsOur analysis revealed 224 pathogenic/likely pathogenic variants (54 (24%) of which are novel) in 123 genes with established or tentative links to skeletal dysplasia. In addition, we propose 5 genes as candidate disease genes with suggestive biological links (WNT3A, SUCO, RIN1, DIP2C, and PAN2). Phenotypically, we note that our cohort spans 36 established phenotypic categories by the International Skeletal Dysplasia Nosology, as well as 18 novel skeletal dysplasia phenotypes that could not be classified under these categories, e.g., the novel C3orf17-related skeletal dysplasia. We also describe novel phenotypic aspects of well-known disease genes, e.g., PGAP3-related Toriello-Carey syndrome-like phenotype. We note a strong founder effect for many genes in our cohort, which allowed us to calculate a minimum disease burden for the autosomal recessive forms of skeletal dysplasia in our population (7.16E-04), which is much higher than the global average.ConclusionBy expanding the phenotypic, allelic, and locus heterogeneity of skeletal dysplasia in humans, we hope our study will improve the diagnostic rate of patients with these conditions.GENETICS in MEDICINE advance online publication, 5 April 2018; doi:10.1038/gim.2018.50.

  15. A metabolic link to skeletal muscle wasting and regeneration

    Directory of Open Access Journals (Sweden)

    René eKoopman

    2014-02-01

    Full Text Available Due to its essential role in movement, insulating the internal organs, generating heat to maintain core body temperature, and acting as a major energy storage depot, any impairment to skeletal muscle structure and function may lead to an increase in both morbidity and mortality. In the context of skeletal muscle, altered metabolism is directly associated with numerous pathologies and disorders, including diabetes, and obesity, while many skeletal muscle pathologies have secondary changes in metabolism, including cancer cachexia, sarcopenia and the muscular dystrophies. Furthermore, the importance of cellular metabolism in the regulation of skeletal muscle stem cells is beginning to receive significant attention. Thus, it is clear that skeletal muscle metabolism is intricately linked to the regulation of skeletal muscle mass and regeneration. The aim of this review is to discuss some of the recent findings linking a change in metabolism to changes in skeletal muscle mass, as well as describing some of the recent studies in developmental, cancer and stem-cell biology that have identified a role for cellular metabolism in the regulation of stem cell function, a process termed ‘metabolic reprogramming’.

  16. Omega-3 Fatty Acids and Skeletal Muscle Health

    Directory of Open Access Journals (Sweden)

    Stewart Jeromson

    2015-11-01

    Full Text Available Skeletal muscle is a plastic tissue capable of adapting and mal-adapting to physical activity and diet. The response of skeletal muscle to adaptive stimuli, such as exercise, can be modified by the prior nutritional status of the muscle. The influence of nutrition on skeletal muscle has the potential to substantially impact physical function and whole body metabolism. Animal and cell based models show that omega-3 fatty acids, in particular those of marine origin, can influence skeletal muscle metabolism. Furthermore, recent human studies demonstrate that omega-3 fatty acids of marine origin can influence the exercise and nutritional response of skeletal muscle. These studies show that the prior omega-3 status influences not only the metabolic response of muscle to nutrition, but also the functional response to a period of exercise training. Omega-3 fatty acids of marine origin therefore have the potential to alter the trajectory of a number of human diseases including the physical decline associated with aging. We explore the potential molecular mechanisms by which omega-3 fatty acids may act in skeletal muscle, considering the n-3/n-6 ratio, inflammation and lipidomic remodelling as possible mechanisms of action. Finally, we suggest some avenues for further research to clarify how omega-3 fatty acids may be exerting their biological action in skeletal muscle.

  17. Insulin-stimulated glucose uptake in healthy and insulin-resistant skeletal muscle

    DEFF Research Database (Denmark)

    Deshmukh, Atul S

    2016-01-01

    transporter protein 4 (GLUT4) to the plasma membrane which leads to facilitated diffusion of glucose into the cell. Understanding the precise signaling events guiding insulin-stimulated glucose uptake is pivotal, because impairment in these signaling events leads to development of insulin resistance and type...... 2 diabetes. This review summarizes current understanding of insulin signaling pathways mediating glucose uptake in healthy and insulin-resistant skeletal muscle....

  18. Hydrocephalus, skeletal anomalies, and mental disturbances in a mother and three daughters: A new syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Ferlini, A.; Zanetti, A.; Milan, M.; Calzolari, E. [Universita di Ferrara, London (United Kingdom)] [and others

    1995-12-04

    We report on a family in which a mother and her 3 daughters have delayed psychomotor development and/or psychosis, hydrocephalus with white matter alterations, arachnoid cysts, skeletal anomalies consisting of brachydactyly, and Sprengel anomaly. Biochemical and cytogenetic analyses were normal on all 4 patients. The pattern of inheritance, clinical manifestations, and variability of expression suggest that this is a new hydrocephalus syndrome possibly transmitted as an X-linked dominant trait. 24 refs., 6 figs., 1 tab.

  19. Ageing in relation to skeletal muscle dysfunction: redox homoeostasis to regulation of gene expression

    OpenAIRE

    Goljanek-Whysall, Katarzyna; Iwanejko, Lesley A.; Vasilaki, Aphrodite; Pekovic-Vaughan, Vanja; McDonagh, Brian

    2016-01-01

    Ageing is associated with a progressive loss of skeletal muscle mass, quality and function?sarcopenia, associated with reduced independence and quality of life in older generations. A better understanding of the mechanisms, both genetic and epigenetic, underlying this process would help develop therapeutic interventions to prevent, slow down or reverse muscle wasting associated with ageing. Currently, exercise is the only known effective intervention to delay the progression of sarcopenia. Th...

  20. Postoperative complications associated with external skeletal fixators in cats.

    Science.gov (United States)

    Beever, Lee; Giles, Kirsty; Meeson, Richard

    2017-07-01

    The objective of this study was to quantify complications associated with external skeletal fixators (ESFs) in cats and to identify potential risk factors. A retrospective review of medical records and radiographs following ESF placement was performed. Case records of 140 cats were reviewed; fixator-associated complications (FACs) occurred in 19% of cats. The region of ESF placement was significantly associated with complication development. Complications developed most frequently in the femur (50%), tarsus (35%) and radius/ulna (33%). Superficial pin tract infection (SPTI) and implant failure accounted for 45% and 41% of all FACs, respectively. SPTI occurred more frequently in the femur, humerus and tibia, with implant failure more frequent in the tarsus. No association between breed, age, sex, weight, fracture type (open vs closed), ESF classification, number of pins per bone segment, degree of fracture load sharing, and the incidence or type of FAC was identified. No association between region of placement, breed, age, sex, weight, fracture type (open vs closed), ESF classification, number of pins per bone segment, fracture load sharing and the time to complication development was identified. Complication development is not uncommon in cats following ESF placement. The higher complication rate in the femur, tarsus and radius/ulna should be considered when reviewing options for fracture management. However, cats appear to have a lower rate of pin tract infections than dogs.

  1. Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production

    DEFF Research Database (Denmark)

    Jing, Enxuan; Emanuelli, Brice; Hirschey, Matthew D

    2011-01-01

    Sirt3 is a member of the sirtuin family of protein deacetylases that is localized in mitochondria and regulates mitochondrial function. Sirt3 expression in skeletal muscle is decreased in models of type 1 and type 2 diabetes and regulated by feeding, fasting, and caloric restriction. Sirt3 knockout...... mice exhibit decreased oxygen consumption and develop oxidative stress in skeletal muscle, leading to JNK activation and impaired insulin signaling. This effect is mimicked by knockdown of Sirt3 in cultured myoblasts, which exhibit reduced mitochondrial oxidation, increased reactive oxygen species......, activation of JNK, increased serine and decreased tyrosine phosphorylation of IRS-1, and decreased insulin signaling. Thus, Sirt3 plays an important role in diabetes through regulation of mitochondrial oxidation, reactive oxygen species production, and insulin resistance in skeletal muscle....

  2. Barium-induced skeletal muscle paralysis in the rat, and its relationship to human familial periodic paralysis

    Science.gov (United States)

    Schott, G. D.; McArdle, B.

    1974-01-01

    An in vivo study of skeletal muscle paralysis induced by intravenous barium chloride has been made in curarized and non-curarized rats. The influence of potassium and calcium chlorides, propranolol, ouabain, and prior adrenalectomy on the paralysis has also been studied. Paralysis is found to be due to a direct effect on skeletal muscle, and to correlate well with the development of hypokalaemia. Possible mechanisms of action of barium are discussed, and attention is drawn to the similarity between barium poisoning and hypokalaemic familial periodic paralysis. PMID:4813426

  3. Effects of acute exercise on gene expression in exercising and non-exercising human skeletal muscle

    NARCIS (Netherlands)

    Catoire, Milene; Mensink, Marco; Boekschoten, Mark; Hangelbroek, Roland; Muller, Michael; Schrauwen, Patricht; Kersten, Sander

    2012-01-01

    Background: Exercising is know to have an effect on exercising skeletal muscle, but unkown is the effect on non-exercising skeletal muscle. Gene expression changes in the non-exercising skeletal muscle would point to a signalling role of skeletal muscle

  4. Unusual Features of Extraarticular Skeletal Tuberculosis: New Classification and Differential Diagnosis

    International Nuclear Information System (INIS)

    Kim, Kun Sang; Park, Soo Soung

    1983-01-01

    Twenty two cases of extra articular skeletal tuberculosis which showed unusual radiological features are reported and classified into several categories with discussion on the differential diagnosis. Radiological patterns of skeletal tuberculosis is so variable that with any kind of skeletal changes the possibility of the skeletal tuberculosis should not be excluded between of lack of its classical patterns.

  5. How is AMPK activity regulated in skeletal muscles during exercise?

    DEFF Research Database (Denmark)

    Jørgensen, Sebastian Beck; Rose, Adam John

    2008-01-01

    AMPK is a metabolic "master" controller activated in skeletal muscle by exercise in a time and intensity dependent manner, and has been implicated in regulating metabolic pathways in muscle during physical exercise. AMPK signaling in skeletal muscle is regulated by several systemic...... and intracellular factors and the regulation of skeletal muscle AMPK in response to exercise is the focus of this review. Specifically, the role of LKB1 and phosphatase PP2C in nucleotide-dependent activation of AMPK, and ionized calcium in CaMKK-dependent activation of AMPK in working muscle is discussed. We also...

  6. Membranous lipodystrophy: skeletal findings on CT and MRI

    Energy Technology Data Exchange (ETDEWEB)

    Nwawka, O.K.; Schneider, Robert; Mintz, Douglas N. [Hospital for Special Surgery, Department of Radiology and Imaging, New York, NY (United States); Bansal, Manjula [Hospital for Special Surgery, Department of Pathology and Laboratory Medicine, New York, NY (United States); Lane, Joseph [Hospital for Special Surgery, Department of Orthopedic Surgery, New York, NY (United States)

    2014-10-15

    Membranous lipodystrophy, also known as Nasu-Hakola disease, is a rare hereditary condition with manifestations in the nervous and skeletal systems. The radiographic appearance of skeletal lesions has been well described in the literature. However, CT and MRI findings of lesions in the bone have not been documented to date. This report describes the radiographic, CT, MRI, and histopathologic skeletal findings in a case of membranous lipodystrophy. With corroborative pathologic findings, a diagnosis of membranous lipodystrophy on imaging allows for appropriate clinical management of disease manifestations. (orig.)

  7. Skeletal Muscle Angiogenesis and Its Relation to Insulin Sensitivity

    DEFF Research Database (Denmark)

    Lindqvist, Anna Maria Charlotte K

    mediator of angiogenesis) are reduced in insulin resistant individuals. Exercise training can improve skeletal muscle capillarization and the angiogenic potential and physical activity has also been proven to enhance muscle insulin sensitivity. Increased skeletal muscle capillarization is associated......) or by overexpression of VEGF-A in the tibialis anterior muscle (transfection; study II) and the effect of the increased muscle capillarization on muscle insulin sensitivity was examined. In study I skeletal muscle specific angiogenesis was induced by administering an α1-adrenergic antagonist (prazosin) to healthy...

  8. Skeletal metastases in pancreatic carcinoma: study by isotopic bone scanning

    Energy Technology Data Exchange (ETDEWEB)

    Hatfield, D R; Deland, F H; Maruyama, Y

    1976-01-01

    A review of the literature of 2,155 reported patients with primary carcinoma of the pancreas, revealed 110 cases or 5 percent to have skeletal metastasis by radiographic or autopsy study. A study conducted over a 2 year period disclosed that 1 case of skeletal metastasis was detected by bone scanning in 16 patients with pancreatic carcinoma. This indicates a minimum skeletal metastasis rate of 6 percent. We feel these percentages are low and can be further defined by the more routine employment of the bone scan to evaluate patients with carcinoma of the pancreas. The true figure may be much higher, perhaps as high as 20 percent.

  9. Growth of Limb Muscle is Dependent on Skeletal-Derived Indian Hedgehog

    Science.gov (United States)

    Bren-Mattison, Yvette; Hausburg, Melissa; Olwin, Bradley B.

    2011-01-01

    During embryogenesis, muscle and bone develop in close temporal and spatial proximity. We show that Indian Hedgehog, a bone-derived signaling molecule, participates in growth of skeletal muscle. In Ihh−/− embryos, skeletal muscle development appears abnormal at embryonic day 14.5 and at later ages through embryonic day 20.5, dramatic losses of hindlimb muscle occur. To further examine the role of Ihh in myogenesis, we manipulated Ihh expression in the developing chick hindlimb. Reduction of Ihh in chicken embryo hindlimbs reduced skeletal muscle mass similar to that seen in Ihh−/− mouse embryos. The reduction in muscle mass appears to be a direct effect of Ihh since ectopic expression of Ihh by RCAS retroviral infection of chicken embryo hindlimbs restores muscle mass. These effects are independent of bone length, and occur when Shh is not expressed, suggesting Ihh acts directly on fetal myoblasts to regulate secondary myogenesis. Loss of muscle mass in Ihh null mouse embryos is accompanied by a dramatic increase in myoblast apoptosis accompanied by a loss of p21 protein. Our data suggest that Ihh promotes fetal myoblast survival during their differentiation into secondary myofibers by maintaining p21 protein levels. PMID:21683695

  10. Skeletal remodelling suggests the turtle's shell is not an evolutionary straitjacket.

    Science.gov (United States)

    Cordero, Gerardo Antonio; Quinteros, Kevin

    2015-04-01

    Recent efforts to decipher the enigma of the turtle's shell revealed that distantly related turtle species deploy diverse processes during shell development. Even so, extant species share in common a shoulder blade (scapula) that is encapsulated within the shell. Thus, evolutionary change in the correlated development of the shell and scapula probably underpins the evolution of highly derived shell morphologies. To address this expectation, we conducted one of the most phylogenetically comprehensive surveys of turtle development, focusing on scapula growth and differentiation in embryos, hatchlings and adults of 13 species. We report, to our knowledge, the first description of secondary differentiation owing to skeletal remodelling of the tetrapod scapula in turtles with the most structurally derived shell phenotypes. Remodelling and secondary differentiation late in embryogenesis of box turtles (Emys and Terrapene) yielded a novel skeletal segment (i.e. the suprascapula) of high functional value to their complex shell-closing system. Remarkably, our analyses suggest that, in soft-shelled turtles (Trionychidae) with extremely flattened shells, a similar transformation is linked to truncated scapula growth. Skeletal remodelling, as a form of developmental plasticity, might enable the seemingly constrained turtle body plan to diversify, suggesting the shell is not an evolutionary straitjacket. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  11. A descriptive study of accidental skeletal injuries and non-accidental skeletal injuries of child maltreatment.

    Science.gov (United States)

    Ghanem, Maha A H; Moustafa, Tarek A; Megahed, Haidy M; Salama, Naglaa; Ghitani, Sara A

    2018-02-01

    Lack of awareness and recognition of child maltreatment is the major reason behind underreporting. All victims often interact with the health care system for routine or emergency care. In several research works, non-accidental fractures are the second most common injury in maltreated children and it is represented up to one-third of cases. To determine the incidence of different types of accidental and non-accidental skeletal injuries among children, estimate the severity of injuries according to the modified injury severity score and to determine the degree of fractures either closed or opened (Gustiloe-Anderson open fracture classification). Moreover, identifying fractures resulting from child abuse and neglect. This aimed for early recognition of non-accidental nature of fractures in child maltreatment that can prevent further morbidity and mortality. A descriptive study was carried out on all children (109) with skeletal injuries who were admitted to both Main Alexandria and El-Hadara Orthopedic and Traumatology University Hospitals during six months. History, physical examination and investigations were done for the patients. A detailed questionnaire was taken to diagnose child abuse and neglect. Gustiloe-Anderson open fracture classification was used to estimate the degree of open fractures. Out of 109 children, twelve cases (11%) were categorized as child maltreatment. One case was physical abuse, eight cases (7.3%) were child neglect and three cases (2.8%) were labour exploitation. Road traffic accidents (RTA) was the commonest cause of skeletal injuries followed by falling from height. Regarding falls, they included 4 cases of stair falls in neglected children and another four cases of falling from height (balcony/window). The remaining 36 cases of falls were accidental. The skeletal injuries were in the form of fractures in 99 cases, dislocation in two cases, both fracture and/or dislocation in three cases, and bone deformity from brachial plexus injury

  12. The effect of pneumatic tourniquets on skeletal muscle physiology.

    Science.gov (United States)

    Patterson, S; Klenerman, L; Biswas, M; Rhodes, A

    1981-01-01

    The effect of 3- and 5-hour pneumatic tourniquets on skeletal muscle physiology was investigated. Maximum isometric tension development, contraction and half relaxation times were measured in the muscles lying immediately under and distal to the tourniquet. On release of the tourniquet no consistent difference between control and experimental muscles was observed with respect to contraction and half relaxation times; however, there was a marked reduction in maximum isometric tension development. On the sixth day after release of a 5-hour tourniquet, isometric tension was reduced to 2--20 per cent of the control value in the distal muscle and to 40--60 per cent of the control value in the compressed muscle. Six days after a 3-hour tourniquet the compressed muscle tension was reduced to approximately 80 per cent of the control value whilst in the distal muscle, tension development varied from normal to 64 per cent of the control value. Thus it is shown that the effect on muscle contraction after a 3-hour tourniquet is not immediately reversed by the restoration of the blood supply. A reduction in muscle strength follows which may take a week or more to recover.

  13. The Pleiotropic Effect of Physical Exercise on Mitochondrial Dynamics in Aging Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Elena Barbieri

    2015-01-01

    Full Text Available Decline in human muscle mass and strength (sarcopenia is one of the principal hallmarks of the aging process. Regular physical exercise and training programs are certain powerful stimuli to attenuate the physiological skeletal muscle alterations occurring during aging and contribute to promote health and well-being. Although the series of events that led to these muscle adaptations are poorly understood, the mechanisms that regulate these processes involve the “quality” of skeletal muscle mitochondria. Aerobic/endurance exercise helps to maintain and improve cardiovascular fitness and respiratory function, whereas strength/resistance-exercise programs increase muscle strength, power development, and function. Due to the different effect of both exercises in improving mitochondrial content and quality, in terms of biogenesis, dynamics, turnover, and genotype, combined physical activity programs should be individually prescribed to maximize the antiaging effects of exercise.

  14. Inhibition of platelet-derived growth factor signaling prevents muscle fiber growth during skeletal muscle hypertrophy.

    Science.gov (United States)

    Sugg, Kristoffer B; Korn, Michael A; Sarver, Dylan C; Markworth, James F; Mendias, Christopher L

    2017-03-01

    The platelet-derived growth factor receptors alpha and beta (PDGFRα and PDGFRβ) mark fibroadipogenic progenitor cells/fibroblasts and pericytes in skeletal muscle, respectively. While the role that these cells play in muscle growth and development has been evaluated, it was not known whether the PDGF receptors activate signaling pathways that control transcriptional and functional changes during skeletal muscle hypertrophy. To evaluate this, we inhibited PDGFR signaling in mice subjected to a synergist ablation muscle growth procedure, and performed analyses 3 and 10 days after induction of hypertrophy. The results from this study indicate that PDGF signaling is required for fiber hypertrophy, extracellular matrix production, and angiogenesis that occur during muscle growth. © 2017 Federation of European Biochemical Societies.

  15. Rickets and/or scurvy-like skeletal lesions in Cooley's anemia

    International Nuclear Information System (INIS)

    Orzincolo, C.; De Sanctis, V.; Vullo, C.; Castaldi, G.; Scutellari, P.N.; Ciaccio, C.

    1990-01-01

    Recently, a new type of skeletal lesions has been described in Cooley's anemia as a possible complication secondary to therapy. In 12 children affected with thalassemia major, who received an intensive transfusional regiment combined with continuous iron chelation therapy (desferoxamine-B: 50-80 mg/kg/day), some radiological abnormalities of the long bones were observed similar to those described in rickets and scurvy. These rickets and/or scurvy-like lesions had never been reported before the introduction of high-dose desferoxamine therapy. The pathogenesis of these lesions is uncertain, but the toxic effect of desferoxamine probably plays an important role in their development. The association of growth retardation and rickets and/or scurvy-like skeletal lesions in Cooley's anemia patients may be used as a valuable clinical criterion in long-term chelation management

  16. Muscle specific microRNAs are regulated by endurance exercise in human skeletal muscle

    DEFF Research Database (Denmark)

    Nielsen, Søren; Scheele, Camilla; Yfanti, Christina

    2010-01-01

    Muscle specific miRNAs, myomiRs, have been shown to control muscle development in vitro and are differentially expressed at rest in diabetic skeletal muscle. Therefore, we investigated the expression of these myomiRs, including miR-1, miR-133a, miR-133b and miR-206 in muscle biopsies from vastus...... lateralis of healthy young males (n = 10) in relation to a hyperinsulinaemic–euglycaemic clamp as well as acute endurance exercise before and after 12 weeks of endurance training. The subjects increased their endurance capacity, VO2max (l min-1) by 17.4% (P improved insulin sensitivity by 19......, but their role in regulating human skeletal muscle adaptation remains unknown....

  17. Characterisation of connective tissue from the hypertrophic skeletal muscle of myostatin null mice.

    Science.gov (United States)

    Elashry, Mohamed I; Collins-Hooper, Henry; Vaiyapuri, Sakthivel; Patel, Ketan

    2012-06-01

    Myostatin is a potent inhibitor of muscle development. Genetic deletion of myostatin in mice results in muscle mass increase, with muscles often weighing three times their normal values. Contracting muscle transfers tension to skeletal elements through an elaborate connective tissue network. Therefore, the connective tissue of skeletal muscle is an integral component of the contractile apparatus. Here we examine the connective tissue architecture in myostatin null muscle. We show that the hypertrophic muscle has decreased connective tissue content compared with wild-type muscle. Secondly, we show that the hypertrophic muscle fails to show the normal increase in muscle connective tissue content during ageing. Therefore, genetic deletion of myostatin results in an increase in contractile elements but a decrease in connective tissue content. We propose a model based on the contractile profile of muscle fibres that reconciles this apparent incompatible tissue composition phenotype. © 2012 The Authors. Journal of Anatomy © 2012 Anatomical Society.

  18. Analysis of MicroRNA Expression Profiles in Weaned Pig Skeletal Muscle after Lipopolysaccharide Challenge

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2015-09-01

    Full Text Available MicroRNAs (miRNAs constitute a class of non-coding RNAs that play a crucial regulatory role in skeletal muscle development and disease. Several acute inflammation conditions including sepsis and cancer are characterized by a loss of skeletal muscle due primarily to excessive muscle catabolism. As a well-known inducer of acute inflammation, a lipopolysaccharide (LPS challenge can cause serious skeletal muscle wasting. However, knowledge of the role of miRNAs in the course of inflammatory muscle catabolism is still very limited. In this study, RNA extracted from the skeletal muscle of pigs injected with LPS or saline was subjected to small RNA deep sequencing. We identified 304 conserved and 114 novel candidate miRNAs in the pig. Of these, four were significantly increased in the LPS-challenged samples and five were decreased. The expression of five miRNAs (ssc-miR-146a-5p, ssc-miR-221-5p, ssc-miR-148b-3p, ssc-miR-215 and ssc-miR-192 were selected for validation by quantitative polymerase chain reaction (qPCR, which found that ssc-miR-146a-5p and ssc-miR-221-5p were significantly upregulated in LPS-challenged pig skeletal muscle. Moreover, we treated mouse C2C12 myotubes with 1000 ng/mL LPS as an acute inflammation cell model. Expression of TNF-α, IL-6, muscle atrophy F-box (MAFbx and muscle RING finger 1 (MuRF1 mRNA was strongly induced by LPS. Importantly, miR-146a-5p and miR-221-5p also showed markedly increased expression in LPS-treated C2C12 myotubes, suggesting the two miRNAs may be involved in muscle catabolism systems in response to acute inflammation caused by a LPS challenge. To our knowledge, this study is the first to examine miRNA expression profiles in weaned pig skeletal muscle challenged with LPS, and furthers our understanding of miRNA function in the regulation of inflammatory muscle catabolism.

  19. Unlocking the coral calcification process: Insights from boron isotope measurements and a skeletal growth model

    Science.gov (United States)

    Mollica, N. R.; Guo, W.; Cohen, A. L.; Huang, K. F.; Foster, G. L.; Donald, H.; Solow, A.

    2017-12-01

    Carbonate skeletons of scleractinian corals are important archives of ocean climate and environmental change. However, corals don't accrete their skeletons directly from ambient seawater, but from a calcifying fluid whose composition is strongly regulated. There is mounting evidence that the carbonate chemistry of this calcifying fluid significantly impacts the amount of carbonate the coral can precipitate, which in turn affects the geochemical composition of the skeleton produced. However the mechanistic link between calcifying fluid (cf) chemistry, particularly the up-regulation of pHcf and thereby aragonite saturation state (Ωcf), and coral calcification is not well understood. We explored this link by combining boron isotope measurements with in situ measurements of seawater temperature, salinity, and DIC to estimate Ωcf of nine Porites corals from four Pacific reefs. Associated calcification rates were quantified for each core via CT scanning. We do not observe a relationship between calcification rates and Ωcf or Ωsw. Instead, when we deconvolve calcification into linear extension and skeletal density, a significant correlation is observed between density and Ωcf, and also Ωsw while extension does not correlate with either. These observations are consistent with the two-step model of coral calcification, in which skeleton is secreted in two distinct phases: vertical extension creating new skeletal elements, followed by lateral thickening of existing elements that are covered by living tissue. We developed a numerical model of Porites skeletal growth that builds on this two-step model and links skeletal density with the external seawater environment via its influence on the chemistry of coral calcifying fluid. We validated the model using existing coral skeletal datasets from six Porites species collected across five reef sites, and quantified the effects of each seawater parameter (e.g. temperature, pH, DIC) on skeletal density. Our findings illustrate

  20. Regulation of the skeletal muscle blood flow in humans

    DEFF Research Database (Denmark)

    Mortensen, Stefan; Saltin, Bengt

    2014-01-01

    In humans, skeletal muscle blood flow is regulated by an interaction between several locally formed vasodilators including nitric oxide (NO) and prostaglandins. In plasma, ATP is a potent vasodilator that stimulates the formation of NO and prostaglandins and very importantly can offset local...... concentration does not increase during exercise. In the skeletal muscle interstitium, there is a marked increase in the concentration of ATP and adenosine and this increase is tightly coupled to the increase in blood flow. The sources of interstitial ATP and adenosine are thought to be skeletal muscle cells...... hyperaemia whereas the role of ATP remains uncertain due to lack of specific purinergic receptor blockers for human use. The purpose of this review is to address the interaction between vasodilator systems and to discuss the multiple proposed roles of ATP in human skeletal muscle blood flow regulation...