WorldWideScience

Sample records for size photomultiplier tube

  1. photomultiplier tubes

    CERN Multimedia

    photomultiplier tubes. A device to convert light into an electric signal (the name is often abbreviated to PM). Photomultipliers are used in all detectors based on scintillating material (i.e. based on large numbers of fibres which produce scintillation light at the passage of a charged particle). A photomultiplier consists of 3 main parts: firstly, a photocathode where photons are converted into electrons by the photoelectric effect; secondly, a multiplier chain consisting of a serie of dynodes which multiply the number of electron; finally, an anode, which collects the resulting current.

  2. photomultiplier tube

    CERN Multimedia

    photomultiplier tubes. A device to convert light into an electric signal (the name is often abbreviated to PM). Photomultipliers are used in all detectors based on scintillating material (i.e. based on large numbers of fibres which produce scintillation light at the passage of a charged particle). A photomultiplier consists of 3 main parts: firstly, a photocathode where photons are converted into electrons by the photoelectric effect; secondly, a multiplier chain consisting of a serie of dynodes which multiply the number of electron; finally, an anode, which collects the resulting current.

  3. Photomultiplier tubes for Low Level Cerenkov Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Strindehag, O

    1965-03-15

    Tube backgrounds of several 2-inch photomultiplier types having S11, 'S' , S13 and S20 cathodes are compared by measuring signal and background pulse height distributions at pulse heights corresponding to a few photo-electrons. The reference signal is generated by means of a {beta}-source and a plexiglass radiator. It is found that comparatively good results are obtained with selected tubes of the EMI types 6097B and 9514B having equivalent dark current dc values down to 10{sup -12} input lumens. Special interest is devoted to the correlation between the measured tube backgrounds and the dark current dc values of the tubes, as a good correlation between these parameters simplifies the selection of photomultiplier tubes. The equivalent dark currents of the tested tubes extend over the range 10{sup -12} to 10{sup -9} input lumens. Although the investigation deals with photomultiplier tubes intended for use in low level Cerenkov detectors it is believed that the results could be valuable in other fields where photomultiplier tubes are utilized for the detection of weak light pulses.

  4. Photomultiplier tubes for Low Level Cerenkov Detectors

    International Nuclear Information System (INIS)

    Strindehag, O.

    1965-03-01

    Tube backgrounds of several 2-inch photomultiplier types having S11, 'S' , S13 and S20 cathodes are compared by measuring signal and background pulse height distributions at pulse heights corresponding to a few photo-electrons. The reference signal is generated by means of a β-source and a plexiglass radiator. It is found that comparatively good results are obtained with selected tubes of the EMI types 6097B and 9514B having equivalent dark current dc values down to 10 -12 input lumens. Special interest is devoted to the correlation between the measured tube backgrounds and the dark current dc values of the tubes, as a good correlation between these parameters simplifies the selection of photomultiplier tubes. The equivalent dark currents of the tested tubes extend over the range 10 -12 to 10 -9 input lumens. Although the investigation deals with photomultiplier tubes intended for use in low level Cerenkov detectors it is believed that the results could be valuable in other fields where photomultiplier tubes are utilized for the detection of weak light pulses

  5. Scintillation probe with photomultiplier tube saturation indicator

    International Nuclear Information System (INIS)

    Ruch, J.F.; Urban, D.J.

    1996-01-01

    A photomultiplier tube saturation indicator is formed by supplying a supplemental light source, typically an light emitting diode (LED), adjacent to the photomultiplier tube. A switch allows the light source to be activated. The light is forwarded to the photomultiplier tube by an optical fiber. If the probe is properly light tight, then a meter attached to the indicator will register the light from the LED. If the probe is no longer light tight, and the saturation indicator is saturated, no signal will be registered when the LED is activated. 2 figs

  6. Characterization of the ETEL D784UKFLB 11 in. photomultiplier tube

    Energy Technology Data Exchange (ETDEWEB)

    Barros, N.; Kaptanoglu, T. [University of Pennsylvania, Philadelphia, PA 19104 (United States); Kimelman, B. [Muhlenberg College, Allentown, PA 18104 (United States); Klein, J.R. [University of Pennsylvania, Philadelphia, PA 19104 (United States); Moore, E.; Nguyen, J. [University of California, Davis, Davis, CA 95616 (United States); Stavreva, K. [University of Pennsylvania, Philadelphia, PA 19104 (United States); Svoboda, R., E-mail: rsvoboda@physics.ucdavis.edu [University of California, Davis, Davis, CA 95616 (United States)

    2017-04-21

    Water Cherenkov and scintillator detectors are a critical tool for neutrino physics. Their large size, low threshold, and low operational cost make them excellent detectors for long baseline neutrino oscillations, proton decay, supernova and solar neutrinos, double beta decay, and ultra-high energy astrophysical neutrinos. Proposals for a new generation of large detectors rely on the availability of large format, fast, cost-effective photomultiplier tubes. The Electron Tubes Enterprises, Ltd (ETEL) D784KFLB 11 in. Photomultiplier Tube has been developed for large neutrino detectors. We have measured the timing characteristics, relative efficiency, and magnetic field sensitivity of the first fifteen prototypes.

  7. Scintillation counter: photomultiplier tube alignment

    International Nuclear Information System (INIS)

    Olson, R.E.

    1975-01-01

    A scintillation counter, particularly for counting gamma ray photons, includes a massive lead radiation shield surrounding a sample-receiving zone. The shield is disassembleable into a plurality of segments to allow facile installation and removal of a photomultiplier tube assembly, the segments being so constructed as to prevent straight-line access of external radiation through the shield into the sample receiving zone. Provisions are made for accurately aligning the photomultiplier tube with respect to one or more sample-transmitting bores extending through the shield to the sample receiving zone. A sample elevator, used in transporting samples into the zone, is designed to provide a maximum gamma-receiving aspect to maximize the gamma detecting efficiency. (auth)

  8. Light Production in the Double Chooz Photomultiplier Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, E.; Cerrada, M.; Crespo, J. I.; Gil-Botella, I.; Jimenez, S.; Lopez, M.; Novella, P.; Palomares, C.; Santorelli, R.; Verdugo, A.

    2012-09-13

    In this document we present a study of the phenomenon of light emission (called glowing) in the bases of the Hamamatsu R7081MOD-ASSY photomultiplier tubes (PMTs) used in the Double Chooz experiment. The tests have been carried out at the CIEMAT laboratories over a photomultiplier tube of the same model. We have studied the phenomenon making first a characterization of it, and then focusing on the dependence of the rate and the amount of emitted light versus voltage and temperature. In addition, we have looked for the possible existence of an ultraviolet component in the light which would be harmful for the experiment because it could be able to excite the scintillator liquid. Finally, we propose and test a method to reduce the light emission using a cover on the base of the photomultiplier tube.. (Author)

  9. Externally mounted radioactivity detector for MWD employing radial inline scintillator and photomultiplier tube

    International Nuclear Information System (INIS)

    Meisner, J.E.; Mumby, E.S.; Groeschel, V.E.

    1991-01-01

    Improved radioactivity well logging may be achieved by mounting a scintillator and photomultiplier tube in a single case interfacing with a hole extending through a drill collar at the lower end of a drill string so that measurements can be made while drilling. Radioactive sources (when required for well logging) are mounted in cavities which open to the exterior of the drill collar. Light from the scintillator is coupled directly to the aligned photomultiplier tube both of which are mounted in a case extending radially within the drill collar and sealingly engaging an electronics housing within the drill collar and the drill collar wall surrounding the hole. The scintillator is of greater diameter than the photomultiplier tube. A frustoconical light pipe connects the scintillator and the photomultiplier tube, channeling scintillation in the crystal to the photomultiplier to provide an amplified detection capability over that for a scintillator having the same diameter as the photomultiplier tube. (author)

  10. An anti-Cherenkov photomultiplier tube

    International Nuclear Information System (INIS)

    Selove, W.; Cormell, L.R.; Dris, M.; Kononenko, W.; Robinson, B.; Yost, B.T.

    1982-01-01

    We have designed a special photomultiplier tube (PMT), with very much reduced sensitivity to Cherenkov light produced in the end window. These PMTs have been produced for us by EMI, and have been used in a modular calorimeter array. The design eliminates a 'hot-spot' problem which was of intolerable magnitude in our application. (orig.)

  11. Linearity measurement of the XP 1210 fast photomultiplier tube

    International Nuclear Information System (INIS)

    Breuze, G.; Sawine, P.

    1969-01-01

    A new X Y method of photomultipliers linearity measurement has been tested which is more suitable for fast photomultiplier tubes. The XP 1210 gives a linearity limit of 70 mA for the gain 10, i.e. 3.5 V for a 50 Ω charge impedance

  12. Study of large hemispherical photomultiplier tubes for the ANTARES neutrino telescope

    Science.gov (United States)

    Aguilar, J. A.; Albert, A.; Ameli, F.; Amram, P.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardellier-Desages, F. E.; Aslanides, E.; Aubert, J.-J.; Bailey, D.; Basa, S.; Battaglieri, M.; Becherini, Y.; Bellotti, R.; Beltramelli, J.; Bertin, V.; Billault, M.; Blaes, R.; Blanc, F.; de Botton, N.; Boulesteix, J.; Bouwhuis, M. C.; Brooks, C. B.; Bradbury, S. M.; Bruijn, R.; Brunner, J.; Burgio, G. F.; Cafagna, F.; Calzas, A.; Capone, A.; Caponetto, L.; Carmona, E.; Carr, J.; Cartwright, S. L.; Castorina, E.; Cavasinni, V.; Cecchini, S.; Charvis, P.; Circella, M.; Colnard, C.; Compère, C.; Coniglione, R.; Cooper, S.; Coyle, P.; Cuneo, S.; Damy, G.; van Dantzig, R.; Deschamps, A.; de Marzo, C.; Denans, D.; Destelle, J.-J.; de Vita, R.; Dinkelspiler, B.; Distefano, C.; Drogou, J.-F.; Druillole, F.; Engelen, J.; Ernenwein, J.-P.; Falchini, E.; Favard, S.; Feinstein, F.; Ferry, S.; Festy, D.; Flaminio, V.; Fopma, J.; Fuda, J.-L.; Gallone, J.-M.; Giacomelli, G.; Girard, N.; Goret, P.; Graf, K.; Hallewell, G.; Hartmann, B.; Heijboer, A.; Hello, Y.; Hernández-Rey, J. J.; Herrouin, G.; Hößl, J.; Hoffmann, C.; Hubbard, J. R.; Jaquet, M.; de Jong, M.; Jouvenot, F.; Kappes, A.; Karg, T.; Karkar, S.; Karolak, M.; Katz, U.; Keller, P.; Kooijman, P.; Korolkova, E. V.; Kouchner, A.; Kretschmer, W.; Kuch, S.; Kudryavtsev, V. A.; Lafoux, H.; Lagier, P.; Lahmann, R.; Lamare, P.; Languillat, J.-C.; Laschinsky, H.; Laubier, L.; Legou, T.; Le Guen, Y.; Le Provost, H.; Le van Suu, A.; Lo Nigro, L.; Lo Presti, D.; Loucatos, S.; Louis, F.; Lyashuk, V.; Marcelin, M.; Margiotta, A.; Maron, C.; Massol, A.; Masullo, R.; Mazéas, F.; Mazure, A.; McMillan, J. E.; Migneco, E.; Millot, C.; Milovanovic, A.; Montanet, F.; Montaruli, T.; Morel, J.-P.; Morganti, M.; Moscoso, L.; Musumeci, M.; Naumann, C.; Naumann-Godo, M.; Nezri, E.; Niess, V.; Nooren, G. J.; Ogden, P.; Olivetto, C.; Palanque-Delabrouille, N.; Papaleo, R.; Payre, P.; Petta, C.; Piattelli, P.; Pineau, J.-P.; Poinsignon, J.; Popa, V.; Potheau, R.; Pradier, T.; Racca, C.; Raia, G.; Randazzo, N.; Real, D.; van Rens, B. A. P.; Réthoré, F.; Riccobene, G.; Rigaud, V.; Ripani, M.; Roca-Blay, V.; Rolin, J.-F.; Romita, M.; Rose, H. J.; Rostovtsev, A.; Ruppi, M.; Russo, G. V.; Sacquin, Y.; Salesa, F.; Salomon, K.; Saouter, S.; Sapienza, P.; Shanidze, R.; Schuller, J.-P.; Schuster, W.; Sokalski, I.; Spurio, M.; Stolarczyk, T.; Stubert, D.; Taiuti, M.; Thompson, L. F.; Tilav, S.; Valdy, P.; Valente, V.; Vallage, B.; Vernin, P.; Virieux, J.; de Vries, G.; de Witt Huberts, P.; de Wolf, E.; Zaborov, D.; Zaccone, H.; Zakharov, V.; Zornoza, J. D.; Zúñiga, J.

    2005-12-01

    The ANTARES neutrino telescope, to be immersed depth in the Mediterranean Sea, will consist of a three-dimensional matrix of 900 large area photomultiplier tubes housed in pressure-resistant glass spheres. The selection of the optimal photomultiplier was a critical step for the project and required an intensive phase of tests and developments carried out in close collaboration with the main manufacturers worldwide. This paper provides an overview of the tests performed by the collaboration and describes in detail the features of the photomultiplier tube chosen for ANTARES.

  13. First characterization of the Hamamatsu R11265 multi-anode photomultiplier tube

    International Nuclear Information System (INIS)

    Calvi, M.; Cassina, L.; Giachero, A.; Gotti, C.; Maino, M.; Matteuzzi, C.; Pessina, G.

    2014-01-01

    The characterization of the new Hamamatsu R11265-103-M64 multi-anode photomultiplier tube is presented. The sample available in our laboratory was tested and in particular the response to single photon was extensively studied. The gain, the anode uniformity and the dark current were measured. The tube behaviour in a longitudinal magnetic field up to 100 G was studied and the gain loss due to the ageing was quantified. The characteristics and performance of the photomultiplier tube make the R11265-103-M64 particularly tailored for an application in high energy physics experiments, such as in the LHCb Ring Imaging Cherenkov (RICH) detector at LHC. - Highlights: • We tested the new Hamamatsu R11265-103-M64 multi-anode photomultiplier tube. • We studied the response to single photon, the gain and the anode uniformity. • The tube behaviour in a longitudinal magnetic field up to 100 G was studied. • The gain loss due to the aging was quantified

  14. Model independent approach to the single photoelectron calibration of photomultiplier tubes

    Energy Technology Data Exchange (ETDEWEB)

    Saldanha, R.; Grandi, L.; Guardincerri, Y.; Wester, T.

    2017-08-01

    The accurate calibration of photomultiplier tubes is critical in a wide variety of applications in which it is necessary to know the absolute number of detected photons or precisely determine the resolution of the signal. Conventional calibration methods rely on fitting the photomultiplier response to a low intensity light source with analytical approximations to the single photoelectron distribution, often leading to biased estimates due to the inability to accurately model the full distribution, especially at low charge values. In this paper we present a simple statistical method to extract the relevant single photoelectron calibration parameters without making any assumptions about the underlying single photoelectron distribution. We illustrate the use of this method through the calibration of a Hamamatsu R11410 photomultiplier tube and study the accuracy and precision of the method using Monte Carlo simulations. The method is found to have significantly reduced bias compared to conventional methods and works under a wide range of light intensities, making it suitable for simultaneously calibrating large arrays of photomultiplier tubes.

  15. Photomultiplier tube having a plurality of sensing areas

    International Nuclear Information System (INIS)

    1976-01-01

    A single photomultiplier tube having four sensing areas each of which produces its own independent electrical signal that is related to the quantity of sensed matter that impinges on its area is described

  16. A superconducting supercollider calorimeter photomultiplier tube preamplifier circuit

    Energy Technology Data Exchange (ETDEWEB)

    Panescu, D; Lackey, J; Robl, P; Smith, W H [Wisconsin Univ., Madison, WI (United States). Physics Dept.

    1992-07-15

    This study presents the design of the front end amplifier for a scintillator calorimeter with photomultiplier tube (PMT) readout. The design is based on analytical computations and SPICE simulations, and is checked against tests performed on a prototyped circuit. We were looking to achieve (1) a very low droop within the 4 ns after the integration of the photomultiplier tube (PMT) signal was completed, (2) a very low noise figure for the whole amplifier in a 100 MHz bandwidth, (3) an input impedance optimized for the PMT which is actually used, (4) baseline restoration as quick as possible at the output of the clip amps, (5) no loss of information due to the saturation at intermediary stages (e.g. integrator), and (6) an output driving 100 {Omega} twisted pair cables, or 50 {Omega} coaxial cables, in order to transmit the signal to switched capacitor arrays for analog storage. (orig.).

  17. photomultiplier tube

    CERN Multimedia

    A device to convert light into an electric signal (the name is often abbreviated to PM). Photomultipliers are used in all detectors based on scintillating material (i.e. based on large numbers of fibres which produce scintillation light at the passage of a charged particle). A photomultiplier consists of 3 main parts: firstly, a photocathode where photons are converted into electrons by the photoelectric effect; secondly, a multiplier chain consisting of a serie of dynodes which multiply the number of electron; finally, an anode, which collects the resulting current.

  18. photomultiplier tube

    CERN Multimedia

    Philips. 150AVP. A device to convert light into an electric signal (the name is often abbreviated to PM). Photomultipliers are used in all detectors based on scintillating material (i.e. based on large numbers of fibres which produce scintillation light at the passage of a charged particle). A photomultiplier consists of 3 main parts: firstly, a photocathode where photons are converted into electrons by the photoelectric effect; secondly, a multiplier chain consisting of a serie of dynodes which multiply the number of electron; finally, an anode, which collects the resulting current.

  19. Substitution of photomultiplier tubes by photodiodes

    International Nuclear Information System (INIS)

    Teixeira, D.L.

    1990-04-01

    The application of Si semiconductors, either of the conventional or the avalanche type, as light amplifiers in radiation detection, has been studied aiming the substitution of photomultiplier (PM) tubes by photodiodes. The objective of this work is to compare the response of photodiodes and PM tubes when coupled to scintillation crystals. A Hamamatsu Si photodiode, model S 1337-66 B Q, was coupled to a Harshaw NaI (TI) scintillation crystal of window diameter equal to 25,4 mm. Its performance was evaluated by specially designed associated electronics, compatible with the photodiode characteristics. X-ray beams from 30 to 111 KeV were used to determine the response and the repeatability of the scintillator-photodiode and the scintillator-PM tube systems. The repeatability was found to be within 0,27% for the photodiode and 0,57% for the PM tube. This work confirmed that photodiodes can be used as light amplifiers, provided their characteristics, such as light spectrum response, are considered. It also shows that further studies are necessary in order to identify the applications in radiation detection where PM tubes might be replaced by photodiodes. (author)

  20. Performance of the hybrid photomultiplier tube (HPMT)

    Energy Technology Data Exchange (ETDEWEB)

    Schomaker, R.J. [B.V. Delft Electronische Producten, Roden (Netherlands)

    1995-12-31

    The HPMT, which may be an alternative for PhotoMultiplier Tubes (PMT`s) in many applications, is a vacuum tube in which the latest technologies of photocathodes and photodiodes are combined. Photo-electrons are accelerated and bombarding a reversely biased PIN diode, where they create many electron-hole-pairs. The resulting charge pulse can be amplified and further processed. The HPMT shows many superior characteristics compared to regular PMT`s, because it does not suffer the statistical fluctuations common for electron multiplication processes. An energy resolution of up to 14 photo-electrons will be presented, together with striking figures for dynamic range and timing behavior.

  1. Test of digital neutron–gamma discrimination with four different photomultiplier tubes for the NEutron Detector Array (NEDA)

    Energy Technology Data Exchange (ETDEWEB)

    Luo, X.L., E-mail: luo.xiaoliang@physics.uu.se [Department of Instrument Science and Technology, College of Mechatronics and Automation, National University of Defense Technology, Changsha (China); Department of Physics and Astronomy, Uppsala University, SE-75120 Uppsala (Sweden); Modamio, V. [INFN, Laboratori Nazionali di Legnaro, I-35020 Legnaro, Padova (Italy); Nyberg, J. [Department of Physics and Astronomy, Uppsala University, SE-75120 Uppsala (Sweden); Valiente-Dobón, J.J. [INFN, Laboratori Nazionali di Legnaro, I-35020 Legnaro, Padova (Italy); Nishada, Q. [Department of Physics and Astronomy, Uppsala University, SE-75120 Uppsala (Sweden); Angelis, G. de [INFN, Laboratori Nazionali di Legnaro, I-35020 Legnaro, Padova (Italy); Agramunt, J. [IFIC-CSIC, University of Valencia, Valencia (Spain); Egea, F.J. [IFIC-CSIC, University of Valencia, Valencia (Spain); Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul (Turkey); Erduran, M.N.; Ertürk, S. [Nigde Universitesi, Fen-Edebiyat Falkültesi, Fizik Bölümü, Nigde (Turkey); France, G. de [GANIL, CEA/DSAM and CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 05 (France); Gadea, A. [IFIC-CSIC, University of Valencia, Valencia (Spain); González, V. [Department of Electronic Engineering, University of Valencia, E-46071 Valencia (Spain); Hüyük, T. [IFIC-CSIC, University of Valencia, Valencia (Spain); Jaworski, G. [Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa (Poland); Heavy Ion Laboratory, University of Warsaw, ul. Pasteura 5A, 02-093 Warszawa (Poland); Moszyński, M. [Heavy Ion Laboratory, University of Warsaw, ul. Pasteura 5A, 02-093 Warszawa (Poland); National Centre for Nuclear Research, A. Soltana 7, PL 05-400 Otwock-Swierk (Poland); and others

    2014-12-11

    A comparative study of the neutron–γ discrimination performance of a liquid scintillator detector BC501A coupled to four different 5 in. photomultiplier tubes (ET9390kb, R11833-100, XP4512 and R4144) was carried out. Both the Charge Comparison method and the Integrated Rise-Time method were implemented digitally to discriminate between neutrons and γ rays emitted by a {sup 252}Cf source. In both methods, the neutron–γ discrimination capabilities of the four photomultiplier tubes were quantitatively compared by evaluating their figure-of-merit values at different energy regions between 50 keVee and 1000 keVee. Additionally, the results were further verified qualitatively using time-of-flight to distinguish γ rays and neutrons. The results consistently show that photomultiplier tubes R11833-100 and ET9390kb generally perform best regarding neutron–γ discrimination with only slight differences in figure-of-merit values. This superiority can be explained by their relatively higher photoelectron yield, which indicates that a scintillator detector coupled to a photomultiplier tube with higher photoelectron yield tends to result in better neutron–γ discrimination performance. The results of this work will provide reference for the choice of photomultiplier tubes for future neutron detector arrays like NEDA.

  2. Actively-stabilized photomultiplier tube base for vacuum operation

    International Nuclear Information System (INIS)

    Bryan, M.A; Morris, C.L.; Idzorek, G.C.

    1992-01-01

    An actively stabilized photomultiplier tube (PMT) base design for an Amperex XP-2262B PMT is described. Positive-negative-positive transistors are used as low-impedance current sources to maintain constant voltages on the last three dynodes. This technique results in a highly stable, low-power tube base ideal for use with low-duty-factor beams, such as those found at the Clinton P. Anderson Meson Physics Facility. Furthermore, because of the low power usage of this large design, these bases can be sealed in a heat-conductive, electrically insulating material and used in a vacuum

  3. Characterization of New-Generation Silicon Photomultipliers for Nuclear Security Applications

    Science.gov (United States)

    Wonders, Marc A.; Chichester, David L.; Flaska, Marek

    2018-01-01

    Silicon photomultipliers have received a great deal of interest recently for use in applications spanning a wide variety of fields, including nuclear safeguards and nonproliferation. For nuclear-related applications, the ability of silicon photomultipliers to discriminate neutrons from gamma rays using pulse shape discrimination when coupled with certain organic scintillators is a characteristic of utmost importance. This work reports on progress characterizing the performance of twenty different silicon photomultipliers from five manufacturers with an emphasis on pulse shape discrimination performance and timing. Results are presented on pulse shape discrimination performance as a function of overvoltage for 6-mm x 6-mm silicon photomultipliers, and the time response to stilbene is characterized for silicon photomultipliers of three different sizes. Finally, comparison with a photomultiplier tube shows that some new-generation silicon photomultipliers can perform as well as photomultiplier tubes in neutron-gamma ray discrimination.

  4. Characterization of the Hamamatsu R11265-103-M64 multi-anode photomultiplier tube

    International Nuclear Information System (INIS)

    Cadamuro, L; Calvi, M; Cassina, L; Giachero, A; Gotti, C; Khanji, B; Maino, M; Matteuzzi, C; Pessina, G

    2014-01-01

    The aim of this paper is to fully characterize the new multi-anode photomultiplier tube R11265-103-M64, produced by Hamamatsu. Its high effective active area (77%), its pixel size, the low dark signal rate and the capability to detect single photon signals make this tube suitable for an application in high energy physics, such as for RICH detectors. Four tubes and two different bias voltage dividers have been tested. The results of a standard characterization of the gain and the anode uniformity, the dark signal rate, the cross-talk and the device behaviour as a function of temperature have been studied. The behaviour of the tube is studied in a longitudinal magnetic field up to 100 Gauss. Shields made of a high permeability material are also investigated. The deterioration of the device performance due to long time operation at intense light exposure is studied. A quantitative analysis of the variation of the gain and the dark signals rate due to the aging is described

  5. Characterization of New-Generation Silicon Photomultipliers for Nuclear Security Applications

    Directory of Open Access Journals (Sweden)

    Wonders Marc A.

    2018-01-01

    Full Text Available Silicon photomultipliers have received a great deal of interest recently for use in applications spanning a wide variety of fields, including nuclear safeguards and nonproliferation. For nuclear-related applications, the ability of silicon photomultipliers to discriminate neutrons from gamma rays using pulse shape discrimination when coupled with certain organic scintillators is a characteristic of utmost importance. This work reports on progress characterizing the performance of twenty different silicon photomultipliers from five manufacturers with an emphasis on pulse shape discrimination performance and timing. Results are presented on pulse shape discrimination performance as a function of overvoltage for 6-mm x 6-mm silicon photomultipliers, and the time response to stilbene is characterized for silicon photomultipliers of three different sizes. Finally, comparison with a photomultiplier tube shows that some new-generation silicon photomultipliers can perform as well as photomultiplier tubes in neutron-gamma ray discrimination.

  6. An efficient high-voltage power supply for a photomultiplier tube

    NARCIS (Netherlands)

    Ainutdinov, VM; Vonsovskii, NN; Kompaniets, KG; Kozyr, AI; Mikhailov, YV

    2003-01-01

    An adjustable power supply for a photomultiplier tube operating in the pulsed spectrometric mode with a wide range of linearity is described. The power consumed by the source is 50 mW. The output voltage is varied from 800 to 2000 V. The maximum ripple amplitude is 2.5 mV.

  7. A novel readout concept for multianode photomultiplier tubes with pad matrix anode layout

    Energy Technology Data Exchange (ETDEWEB)

    Popov, Vladimir [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States)]. E-mail: Popov@jlab.org; Majewski, Stan [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Welch, Benjamin L. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States)

    2006-11-01

    We have developed a new analog readout concept for multianode photomultiplier tubes with a pad matrix anode layout. This new readout technique is the result of a modification of a technique previously developed at the Detector Group of Jefferson Lab (V. Popov, US patent No: 6,747,263 B1) [V. Popov, S. Majewski, A.G. Weisenberger, Readout Electronics for Multianode Photomultiplier Tubes with Pad Matrix Anode Layout, Thomas Jefferson National Accelerator Facility, IEEE 2003 Medical Imaging Conference Record, November 2003]. The new analog readout circuit provides the same analog conversion of matrix 2-D output into X and Y projective output with a significant reduction of analog outputs. The old readout network consists of resistors' matrix and current collecting amplifiers, and it provides decoupling of each anode output into two directions (one to X and one to Y coordinates), but a decoupling function that is carried out independent of photomultiplier tube gains nonuniformity. A newly developed readout network (US patent pending) also consists of resistors' matrix and current collecting amplifiers, but the new matrix includes an additional dumping resistor that provides an excess current from anode pad grounding. As a result, we subtract an extra current of high-gain pads in order to move the pads gain to an absolute minimum value for a given photomultiplier tube. This gain equalization procedure reduces image distortion related to gain nonuniformity. The new readout technique was used in several new radiation imaging detectors designed in the Detector Group of Jefferson Lab. It shows a visible readout uniformity and linearity improvement. The test results of an initial evaluation of this readout that is applied for data readout of four H8500 Hamamtsu PSPMT are presented.

  8. Recent measurements on the Hamamatsu 13 in., R8055, PhotoMultiplier Tubes

    International Nuclear Information System (INIS)

    Tsagli, S.; Aggouras, G.; Anassontzis, E.G.; Ball, A.E.; Chinowsky, W.; Fahrun, E.; Grammatikakis, G.; Green, C.; Grieder, P.; Katrivanos, P.; Koske, P.; Ludvig, J.; Markopoulos, E.; Minkowsky, P.; Nygren, D.; Papageorgiou, K.; Przybylski, G.; Resvanis, L.K.; Siotis, I.; Sopher, J.; Staveris, T.; Tsagli, V.; Zhukov, V.A.

    2006-01-01

    The key component of NESTOR, the deep-sea Cherenkov neutrino telescope, built in the Mediterranean, NW of Greece, is the optical module. The NESTOR Optical Module employs a PhotoMultiplier Tube (PMT) in a transparent glass pressure housing. The Hamamatsu PMT R8055-01, 13 in. photomultiplier was selected for NESTOR to replace the old 15'' Hamamatsu PMTs (R2018-03). Extensive tests have been made on the sensitivity, uniformity, time resolution and noise rates of 162 R8055-01 13 in. PMTs

  9. Preliminary studies of microchannel plate photomultiplier tube neutron detectors for flight test applications

    International Nuclear Information System (INIS)

    Dolan, K.W.

    1978-10-01

    Electrical, mechanical, thermal, and neutron response data indicate that microchannel plate photomultiplier tubes are viable candidates as miniature, ruggedized neutron detectors for flight test applications in future weapon systems

  10. An overview of current developments in position-sensitive hybrid photon detectors and photo-multiplier tubes

    CERN Document Server

    Gys, Thierry

    1999-01-01

    Current developments in position-sensitive hybrid photon detectors and photo-multiplier tubes have stimulated increased interest from a variety of fields such as astronomy, biomedical imaging and high- energy physics. These devices are sensitive to single photons over a photon energy spectrum defined by the transmission of the optical entrance window and the photo-cathode type. Their spatial resolution ranges from a few millimeters for pad hybrid photon detectors and multi-anode photo-multiplier tubes down to a few tens of microns for pixel hybrid photon detectors and electron-bombarded charge-coupled devices. Basic technological and design aspects are assessed in this paper. (21 refs).

  11. Test of multi-anode photomultiplier tubes for the LHCb scintillator pad detector

    CERN Document Server

    Aguiló, Ernest; Comerma-Montells, A; Garrido, Lluis; Gascon, David; Graciani, Ricardo; Grauges, Eugeni; Vilasis Cardona, Xavier; Xirgu, Xavier; Bohner, Gerard; Bonnefoy, Romeo; Borras, David; Cornat, Remi; Crouau, Michel; Deschamps, Olivier; Jacquet, Philippe; Lecoq, Jacques; Monteil, Stephane; Perret, Pascal; Reinmuth, Guy

    2005-01-01

    The LHCb experiment (The LHCb Technical Proposal, CERN/LHCC 98-4) is designed to study B meson physics in the LHC proton-proton collider at CERN. The Scintillator Pad Detector (SPD) has been designed to complete the calorimeter information performing an e/gamma identification for the experiment level-0 trigger system. The detection technology consists in transmitting scintillation light by means of both Wavelength Shifting and clear fibers to fast multi- anode photomultiplier tubes. In this paper, it is described the instrumentation and setup used to characterize the baseline photomultiplier solution (Hamamatsu R5900-00-M64) together with the scintillators and optical fibers for the SPD at LHCb.

  12. A simple method to improve the spatial uniformity of venetian-blind photomultiplier tubes

    International Nuclear Information System (INIS)

    Santos, J.M.F. dos; Veloso, J.F.C.A.; Morgado, R.E.

    1996-01-01

    An improvement in the uniformity of venetian-blind photomultiplier tubes has been achieved by reducing the voltage difference between the first and second dynodes. The method has been applied to a gas proportional scintillation counter (GPSC) instrumented with a venetian-blind photomultiplier (PMT). When exposed to a 20-mm collimated 5.9-keV x-ray beam, an overall improvement in energy resolution for the GPSC/PMT combination from 20% to 11.5% was achieved. An alternative method that reduces the photocathode-to-first-dynode voltage was less effective and resulted in a severe degradation of detector energy resolution

  13. Silicon photomultiplier as a detector of Cherenkov photons

    International Nuclear Information System (INIS)

    Korpar, S.; Dolenec, R.; Hara, K.; Iijima, T.; Krizan, P.; Mazuka, Y.; Pestotnik, R.; Stanovnik, A.; Yamaoka, M.

    2008-01-01

    A novel photon detector-i.e. the silicon photomultiplier-whose main advantage over conventional photomultiplier tubes is the operation in high magnetic fields, has been tested as a photon detector in a proximity focusing RICH with aerogel radiator. This type of RICH counter is proposed for the upgrade of the Belle detector at the KEK B-factory. Recently produced silicon photomultipliers show less noise and have larger size, which are important issues for a large area photon detector. We measured the single photon pulse height distribution, the timing resolution and the position sensitivity for different silicon photomultipliers (Hamamatsu MPPC HC025, HC050, and HC100). The silicon photomultipliers were then used to detect Cherenkov photons emitted by cosmic ray particles in a proximity focusing aerogel RICH. Various light guides were investigated in order to increase the detection efficiency

  14. Modeling the low-light response of photomultiplier tubes

    Science.gov (United States)

    Maxwell, Patrick; Niculescu, Ioana

    2017-09-01

    A number of crucial experiments exploring the intricate tomography of protons and neutrons will be carried out in Hall A at Jefferson Lab using the SuperBigBite Spectrometer (SBS), a large acceptance magnetic spectrometer sporting 0.5% momentum and 0.5 mr angular resolution. As part of the standard SBS detector package the Gas Ring Imaging Cherenkov (GRINCH) detector will help identify particles produced in the experiments. To determine which photomultiplier (PMT) tubes would be used in GRINCH, more than 900 29 mm 9125B PMTs were tested. Two models, were used to fit test data. For the parameters relevant to this study, results from both models were found to be equivalent, and will be discussed here.

  15. Lowering the radioactivity of the photomultiplier tubes for the XENON1T dark matter experiment

    Energy Technology Data Exchange (ETDEWEB)

    Aprile, E.; Contreras, H.; Goetzke, L.W.; Fernandez, A.J.M.; Messina, M.; Plante, G.; Rizzo, A. [Columbia University, Physics Department, New York, NY (United States); Agostini, F. [INFN-Laboratori Nazionali del Gran Sasso (Italy); Gran Sasso Science Institute, L' Aquila (Italy); Bologna Univ., Department of Physics and Astrophysics, Bologna (Italy); INFN, Bologna (Italy); Alfonsi, M. [Nikhef and the University of Amsterdam, Amsterdam (Netherlands); Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik and Exzellenzcluster PRISMA, Mainz (Germany); Arazi, L.; Budnik, R.; Duchovni, E.; Gross, E.; Itay, R.; Landsman, H.; Lellouch, D.; Levinson, L.; Priel, N.; Vitells, O. [Weizmann Institute of Science, Department of Particle Physics and Astrophysics, Rehovot (Israel); Arisaka, K.; Lyashenko, A.; Meng, Y.; Pantic, E.; Teymourian, A.; Wang, H. [University of California, Physics and Astronomy Department, Los Angeles, CA (United States); Arneodo, F.; Di Giovanni, A. [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Auger, M.; Barrow, P.; Baudis, L.; Behrens, A.; Galloway, M.; Kessler, G.; Kish, A.; Mayani, D.; Pakarha, P.; Piastra, F. [University of Zurich, Physik-Institut, Zurich (Switzerland); Balan, C.; Cardoso, J.M.R.; Lopes, J.A.M.; Santos, J.M.F. dos [University of Coimbra, Department of Physics, Coimbra (Portugal); Bauermeister, B.; Fattori, S.; Geis, C.; Grignon, C.; Oberlack, U.; Schindler, S. [Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik and Exzellenzcluster PRISMA, Mainz (Germany); Beltrame, P. [Weizmann Institute of Science, Department of Particle Physics and Astrophysics, Rehovot (Israel); University of Edinburgh, Edinburgh (United Kingdom); Brown, A.; Lang, R.F.; Macmullin, S.; Pienaar, J.; Reichard, S.; Reuter, C. [Purdue University, Department of Physics and Astronomy, West Lafayette, IN (United States); Brown, E.; Levy, C. [Rensselaer Polytechnic Institute, Department of Physics, Applied Physics and Astronomy, Troy, NY (United States); Wilhelms-Universitaet Muenster, Institut fuer Kernphysik, Muenster (Germany); Bruenner, S.; Hampel, W.; Kaether, F.; Lindemann, S.; Lindner, M.; Undagoitia, T.M.; Rauch, L.; Schreiner, J.; Simgen, H.; Weber, M. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Bruno, G. [INFN-Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, L' Aquila (Italy); Wilhelms-Universitaet Muenster, Institut fuer Kernphysik, Muenster (Germany); Buetikofer, L.; Coderre, D.; Schumann, M. [University of Bern, Albert Einstein Center for Fundamental Physics, Bern (Switzerland); Colijn, A.P.; Decowski, M.P.; Tiseni, A.; Tunnell, C. [Nikhef and the University of Amsterdam, Amsterdam (Netherlands); Cussonneau, J.P.; Le Calloch, M.; Masbou, J.; Lavina, L.S.; Thers, D. [Universite de Nantes, Subatech, Ecole des Mines de Nantes, CNRS/In2p3, Nantes (France); Ferella, A.D.; Fulgione, W.; Laubenstein, M. [INFN-Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, L' Aquila (Italy); Fieguth, A.; Murra, M.; Rosendahl, S.; Weinheimer, C. [Wilhelms-Universitaet Muenster, Institut fuer Kernphysik, Muenster (Germany); Garbini, M.; Massoli, F.V.; Sartorelli, G.; Selvi, M. [Bologna Univ., Department of Physics and Astrophysics, Bologna (Italy); INFN, Bologna (Italy); Miguez, B.; Molinario, A.; Trinchero, G. [INFN-Torino and Osservatorio Astrofisico di Torino, Turin (Italy); Naganoma, J.; Shagin, P.; Wall, R. [Rice University, Department of Physics and Astronomy, Houston, TX (United States); Orrigo, S.E.A. [University of Coimbra, Department of Physics, Coimbra (Portugal); IFIC, CSIC-Universidad de Valencia, Valencia (Spain); Persiani, R. [Universite de Nantes, Subatech, Ecole des Mines de Nantes, CNRS/In2p3, Nantes (FR); Bologna Univ., Department of Physics and Astrophysics, Bologna (IT); INFN, Bologna (IT); Collaboration: XENON Collaboration

    2015-11-15

    The low-background, VUV-sensitive 3-inch diameter photomultiplier tube R11410 has been developed by Hamamatsu for dark matter direct detection experiments using liquid xenon as the target material. We present the results from the joint effort between the XENON collaboration and the Hamamatsu company to produce a highly radio-pure photosensor (version R11410-21) for the XENON1T dark matter experiment. After introducing the photosensor and its components, we show the methods and results of the radioactive contamination measurements of the individual materials employed in the photomultiplier production. We then discuss the adopted strategies to reduce the radioactivity of the various PMT versions. Finally, we detail the results from screening 286 tubes with ultra-low background germanium detectors, as well as their implications for the expected electronic and nuclear recoil background of the XENON1T experiment. (orig.)

  16. Replacement of a photomultiplier tube in a 2-inch thallium-doped sodium iodide gamma spectrometer with silicon photomultipliers and a light guide

    Directory of Open Access Journals (Sweden)

    Chankyu Kim

    2015-06-01

    Full Text Available The thallium-doped sodium iodide [NaI(Tl] scintillation detector is preferred as a gamma spectrometer in many fields because of its general advantages. A silicon photomultiplier (SiPM has recently been developed and its application area has been expanded as an alternative to photomultiplier tubes (PMTs. It has merits such as a low operating voltage, compact size, cheap production cost, and magnetic resonance compatibility. In this study, an array of SiPMs is used to develop an NaI(Tl gamma spectrometer. To maintain detection efficiency, a commercial NaI(Tl 2′ × 2′ scintillator is used, and a light guide is used for the transport and collection of generated photons from the scintillator to the SiPMs without loss. The test light guides were fabricated with polymethyl methacrylate and reflective materials. The gamma spectrometer systems were set up and included light guides. Through a series of measurements, the characteristics of the light guides and the proposed gamma spectrometer were evaluated. Simulation of the light collection was accomplished using the DETECT 97 code (A. Levin, E. Hoskinson, and C. Moison, University of Michigan, USA to analyze the measurement results. The system, which included SiPMs and the light guide, achieved 14.11% full width at half maximum energy resolution at 662 keV.

  17. Failure Investigation & Design Optimization of a Photo-Multiplier Tube Assembly Under Thermal Loading

    Science.gov (United States)

    Dahya, Kevin

    2004-01-01

    Analysis of GLAST ACD Photo-Multiplier Tube (PMT) assembly under thermal loading demonstrates that the glass tube experiences high stresses due to Coefficient of Thermal Expansion mismatch, as well as increased stress due to high stiffness and incompressibility of potting compound. Further investigation shows adverse loading effects due to the magnetic shield, a thin piece of steel wrapped around the PMT. This steel, Mu Metal, contained an overlap region that directly attributed to crack propagation in the outside surface of the tube. Sensitivities to different configurations were studied to reduce the stress and provide a more uniform loading throughout the PMT to ensure mission success. Studies indicate substituting a softer and more compressible potting compound and moving the Mu metal from the glass tube to the outside wall of the aluminum housing yields lower stress.

  18. Characterization and optimization of Silicon Photomultipliers and small size scintillator tiles for future calorimeter applications

    CERN Document Server

    AUTHOR|(CDS)2095312; Horváth, Ákos

    For the active layers of highly granular sampling calorimeters, small scintillator tiles read out by Silicon Photomultipliers (SiPM) can be an interesting and cost effective alternative to silicon sensors. At CERN a test setup was realized for the development of new generations of calorimeters to characterize new types of Silicon Photomultipliers in terms of gain, noise, afterpulses and crosstalk and to study the impact of scintillator wrappings and the tile size on the measured light yield and uniformity. In this thesis work, the experimental setup is described and the steps for commissioning the equipment are discussed. Then, the temperature dependence of the Silicon Photomultiplier response will be investigated, including the dependence of bare Silicon Photomultipliers as well as Silicon Photomultipliers coupled to scintillator tiles. Finally, the tile-photomultiplier response for different tile sizes and coating options will be evaluated. The experimental setup will be extended to allow for the characteri...

  19. Lowering the radioactivity of the photomultiplier tubes for the XENON1T dark matter experiment

    NARCIS (Netherlands)

    Aprile, E.; et al., [Unknown; Alfonsi, M.; Colijn, A.P.; Decowski, M.P.; Tiseni, A.; Tunnell, C.

    2015-01-01

    The low-background, VUV-sensitive 3-inch diameter photomultiplier tube R11410 has been developed by Hamamatsu for dark matter direct detection experiments using liquid xenon as the target material. We present the results from the joint effort between the XENON collaboration and the Hamamatsu company

  20. Comparative study of new 130mm diameter fast photomultipliers for neutron detectors

    International Nuclear Information System (INIS)

    Moszynski, M.; Costa, G.J.; Guillaume, G.; Heusch, B.; Huck, A.; Mouatassim, S.

    1991-01-01

    The present paper is a summary of the test measurements carried out using new 130 mm diameter fast photomultiplier tubes manufactured by Philips (France), EMI (England) and Hamamatsu (Japan), along with a comparison to the results obtained with the well known XP 2041 Philips model. These tubes will be used in large size neutron detectors

  1. Development of 2D-ACAR apparatus using position-sensitive photomultiplier tubes

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, Yasuyoshi; Saito, Haruo; Iwata, Tetsuya; Nagashima, Yasuyuki; Hyodo, Toshio [Tokyo Univ. (Japan). Coll. of Arts and Sciences; Uchida, Hiroshi; Omura, Tomohide

    1997-03-01

    A new two-dimensional angular correlation of annihilation radiation apparatus is described. Position-sensitive photomultiplier tubes coupled with two-dimensional arrays of small BGO scintillator blocks make simple and compact position-sensitive {gamma}-ray detectors. With a sample-detector distance of 5m, an angular resolution of 1.1 mrad FWHM and a coincidence count rate of {approx}2.4 c.p.s. per mCi are obtained. Its performance is demonstrated by the result of a test measurement for KI crystal in which non-localized positronium exists at low temperatures. (author)

  2. Method and device for demounting in a radiation detector a photomultiplier tube

    International Nuclear Information System (INIS)

    Persyk, D.E.; Stoub, E.W.

    1986-01-01

    A device is described for demounting in a radiation detector a photomultiplier tube which is bonded with its scintillation crystal assembly by means of an elastic light transparent adhesive, comprising: (a) a music wire of about 0.01 to 0.03 inch diameter which forms a noose between its wire ends, the noose being provided for being placed aroung the bond; and (b) twisting means connected with both wire ends for twisting them such that the noose becomes smaller thereby sharing the bond

  3. Low-temperature study of 35 photomultiplier tubes for the ZEPLIN III experiment

    International Nuclear Information System (INIS)

    Araujo, H.M.; Bewick, A.; Davidge, D.; Dawson, J.; Ferbel, T.; Howard, A.S.; Jones, W.G.; Joshi, M.; Lebedenko, V.; Liubarsky, I.; Quenby, J.J.; Sumner, T.J.; Neves, F.

    2004-01-01

    A set of 35 photomultiplier tubes (ETL D730/9829Q), intended for use in the ZEPLIN III Dark Matter detector, was tested from room temperature down to -100 deg. C, with the aim of confirming their suitability for detecting xenon scintillation light at 175 nm while immersed in the cryogenic liquid. A general improvement of both gain and quantum efficiency at the xenon scintillation wavelength was observed with cooling, the best combined effect being 40%, while little change was noted in the timing properties and dark current. Saturation of response due to accumulation of charge in the resistive bialkali photocathodes was seen at an average photocurrent of 10 8 photoelectrons/s for the device with best quantum efficiency, whereas an order of magnitude higher current was required to saturate the least sensitive one. Variations in photocathode thickness from tube to tube could account for this behaviour, as well as the fact that the quantum efficiency improves the most for devices with poorest efficiency at room temperature

  4. Silicon photomultipliers for scintillating trackers

    Energy Technology Data Exchange (ETDEWEB)

    Rabaioli, S., E-mail: simone.rabaioli@gmail.com [Universita degli Studi dell' Insubria, Via Valleggio, 11 - 22100 Como (Italy); Berra, A.; Bolognini, D. [Universita degli Studi dell' Insubria, Via Valleggio, 11 - 22100 Como (Italy); INFN sezione di Milano Bicocca (Italy); Bonvicini, V. [INFN sezione di Trieste (Italy); Bosisio, L. [Universita degli Studi di Trieste and INFN sezione di Trieste (Italy); Ciano, S.; Iugovaz, D. [INFN sezione di Trieste (Italy); Lietti, D. [Universita degli Studi dell' Insubria, Via Valleggio, 11 - 22100 Como (Italy); INFN sezione di Milano Bicocca (Italy); Penzo, A. [INFN sezione di Trieste (Italy); Prest, M. [Universita degli Studi dell' Insubria, Via Valleggio, 11 - 22100 Como (Italy); INFN sezione di Milano Bicocca (Italy); Rashevskaya, I.; Reia, S. [INFN sezione di Trieste (Italy); Stoppani, L. [Universita degli Studi dell' Insubria, Via Valleggio, 11 - 22100 Como (Italy); Vallazza, E. [INFN sezione di Trieste (Italy)

    2012-12-11

    In recent years, silicon photomultipliers (SiPMs) have been proposed as a new kind of readout device for scintillating detectors in many experiments. A SiPM consists of a matrix of parallel-connected pixels, which are independent photon counters working in Geiger mode with very high gain ({approx}10{sup 6}). This contribution presents the use of an array of eight SiPMs (manufactured by FBK-irst) for the readout of a scintillating bar tracker (a small size prototype of the Electron Muon Ranger detector for the MICE experiment). The performances of the SiPMs in terms of signal to noise ratio, efficiency and time resolution will be compared to the ones of a multi-anode photomultiplier tube (MAPMT) connected to the same bars. Both the SiPMs and the MAPMT are interfaced to a VME system through a 64 channel MAROC ASIC.

  5. Silicon photomultipliers for scintillating trackers

    Science.gov (United States)

    Rabaioli, S.; Berra, A.; Bolognini, D.; Bonvicini, V.; Bosisio, L.; Ciano, S.; Iugovaz, D.; Lietti, D.; Penzo, A.; Prest, M.; Rashevskaya, I.; Reia, S.; Stoppani, L.; Vallazza, E.

    2012-12-01

    In recent years, silicon photomultipliers (SiPMs) have been proposed as a new kind of readout device for scintillating detectors in many experiments. A SiPM consists of a matrix of parallel-connected pixels, which are independent photon counters working in Geiger mode with very high gain (∼106). This contribution presents the use of an array of eight SiPMs (manufactured by FBK-irst) for the readout of a scintillating bar tracker (a small size prototype of the Electron Muon Ranger detector for the MICE experiment). The performances of the SiPMs in terms of signal to noise ratio, efficiency and time resolution will be compared to the ones of a multi-anode photomultiplier tube (MAPMT) connected to the same bars. Both the SiPMs and the MAPMT are interfaced to a VME system through a 64 channel MAROC ASIC.

  6. Demonstration and evaluation of solid state photomultiplier tube for uranium exploration instrumentation. National uranium resources evaluation. Final report

    International Nuclear Information System (INIS)

    Polichar, R.M.

    1982-06-01

    The purpose of this program has been to evaluate the recently developed solid state photomultiplier tube (SSPMT) technology as a potential improvment to future uranium exploration instrumentation. To this end, six SSPMTs have been constructed and evaluated in a manner similar to that of conventional phototubes. Special regard has been placed on the measurement of pulse height resolution and the factors that affect it in tube design and manufacture. The tubes were subjected to a number of tests similar to those performed on conventional photomultiplier tubes. The results indicate that good, high-resolution spectra can be obtained from the tubes and that they behave generally in a predictable manner. They exhibited a linear gain increase with applied potential. They show only slight dependence of performance with applied potential. Their sensitivity is, for the most part, uniform and predictable. However, several characteristics were found that were not predictable. These include a general drop in measured quantum efficiency, a worsening resolution with operation, and a bump in the sensitivity curve corresponding to the shape of the projected dimension of the anode. The SSPMT remains an attractive new technology in gamma-ray spectroscopy, and promises to make significant improvements in the area of uranium exploration instrumentation. 16 figures, 5 tables

  7. Low-temperature study of 35 photomultiplier tubes for the ZEPLIN III experiment

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, H.M. E-mail: h.araujo@imperial.ac.uk; Bewick, A.; Davidge, D.; Dawson, J.; Ferbel, T.; Howard, A.S.; Jones, W.G.; Joshi, M.; Lebedenko, V.; Liubarsky, I.; Quenby, J.J.; Sumner, T.J.; Neves, F

    2004-04-01

    A set of 35 photomultiplier tubes (ETL D730/9829Q), intended for use in the ZEPLIN III Dark Matter detector, was tested from room temperature down to -100 deg. C, with the aim of confirming their suitability for detecting xenon scintillation light at 175 nm while immersed in the cryogenic liquid. A general improvement of both gain and quantum efficiency at the xenon scintillation wavelength was observed with cooling, the best combined effect being 40%, while little change was noted in the timing properties and dark current. Saturation of response due to accumulation of charge in the resistive bialkali photocathodes was seen at an average photocurrent of 10{sup 8} photoelectrons/s for the device with best quantum efficiency, whereas an order of magnitude higher current was required to saturate the least sensitive one. Variations in photocathode thickness from tube to tube could account for this behaviour, as well as the fact that the quantum efficiency improves the most for devices with poorest efficiency at room temperature.

  8. Design and testing of a magnetic shield for the Thomson scattering photomultiplier tubes in the stray fields of the ERASMUS tokamak

    International Nuclear Information System (INIS)

    Desoppere, E.; Van Oost, G.

    1983-01-01

    A multiple coaxial shield system has been designed for the photomultiplier tubes of the ERASMUS tokamak Thomson scattering diagnostic. A stray field of 75 x 10 -4 T was reduced to 0.01 x 10 -4 T for a field parallel to the tube axis, and to 0.03 x 10 -4 T for a perpendicular field

  9. Report on the performance and operating characteristics of the Burle C83061E QUANTACON trademark photomultiplier tube

    International Nuclear Information System (INIS)

    Sandberg, V.D.; Thompson, T.N.; Helvy, F.A.

    1989-01-01

    The Burle C83061E QUANTACON trademark is a 10.4 inch diameter photomultiplier tube with improved photoelectron collection optics. We report here on the first tests of this newly developed tube. We find the single photoelectron charge resolution to be excellent, with a peak to (noise) valley ratio exceeding 3 and with a transit time spread of less than 2.3 ns (FWHM) for full photocathode illumination at the single photoelectron level. A design for a fast anode pulse base is also presented. 11 refs., 8 figs

  10. Preparatory Study of Photomultiplier Tubes of 10-inch and 3-inch Diameter for KM3NeT Underwater Neutrino Telescope

    International Nuclear Information System (INIS)

    Aiello, S.; Giordano, V.; Leonora, E.

    2015-01-01

    Large area photomultipliers are widely used in neutrino and astro-particle detectors to measure Cherenkov light in media like water or ice. The key element of these detectors are the so-called 'optical module', which consists of a photodetector enclosed in a transparent pressure-resistant container to protect it and ensure good light transmission. KM3NeT collaboration aims to construct an underwater 'hybrid' neutrino telescope by using two models detection unit. The 'tower' detection unit will be composed of large area 10-inch photomultipliers tube enclosed into 13-inch glass vessel sphere. In the 'string' detection unit instead, the light detector will be the 'digital optical module' (DOM) a glass vessel of 17-inch with 31 photomultipliers of 3- inch diameter looking upwards and downwards. The choice of two different kinds of photomultipliers, obliges us to investigate their main characteristics. Noise pulses at the anode of each photomultiplier strongly affect the performance of the detector. A large study was conducted on noise pulses of large area photomultipliers, considering time and charge distributions of dark pulses, pre-pulses, delayed pulses, and after-pulses. The contribution to noise pulses due to the presence of the external glass vessels was also studied. Moreover the presence of the Earth's magnetic field should modify quantities like gain and transit time spread in photomultipliers and we will deeply investigate on this. (authors)

  11. Stabilisation of photo-multiplying gain; Stabilisation du gain des pbotomultiplicateurs

    Energy Technology Data Exchange (ETDEWEB)

    Tretiakoff, O; Bailly du Bois, B [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1956-07-01

    The use of photomultiplier tubes in experimental physics is thwarted by their high responsiveness to changes in the feeding tension. Their use can be extended a great deal by a simple efficient stabilizing device which allows them to work in the same way as Geiger-Mueller tubes without losing the advantageous characteristics of photomultiplier tubes. (author) [French] L'utilisation des tubes photomultiplicateurs en physique experimentale se heurte a l'obstacle que constitue leur extreme sensibilite aux variations de la tension d'alimentation. Un systeme de stabilisation simple et efficace, permettant d'apparenter leurs caracteristiques a celles des compteurs Geiger-Muller tout en conservant les avantages propres aux tubes photomultiplicateurs, peut elargir considerablement leur domaine d'emploi. (auteur)

  12. Characterization of photo-multiplier tube as ex-vessel radiation detector in tokamak

    Science.gov (United States)

    Jo, Jungmin; Cheon, MunSeong; Kim, Junghee; An, YoungHwa; Park, Seungil; Chung, Kyoung-Jae; Hwang, Y. S.

    2017-09-01

    Feasibility of using conventional photo-multiplier tubes (PMTs) without a scintillator as an ex-vessel radiation detector in a tokamak environment is studied. Basic irradiation tests using standard gamma ray sources and a d-d neutron generator showed that the PMT is responding both to gamma photons and neutrons, possibly due to the direct generation of secondary electrons inside the PMT by the impingement of high energy photons. Because of the selective sensitivity of the PMT to hard x-ray and neutrons in ohmic and neutral beam injected plasmas, respectively, it is shown that the PMT with certain configuration can be utilized either to monitor the fluctuation in the fusion neutron generation rate or to study the behavior of runaway electrons in tokamaks.

  13. Characterization of the Hamamatsu 8" R5912-MOD Photomultiplier tube

    Science.gov (United States)

    Kaptanoglu, Tanner

    2018-05-01

    Current and future neutrino and direct detection dark matter experiments hope to take advantage of improving technologies in photon detection. Many of these detectors are large, monolithic optical detectors that use relatively low-cost, large-area, and efficient photomultiplier tubes (PMTs). A candidate PMT for future experiments is a newly developed prototype Hamamatsu PMT, the R5912-MOD. In this paper we describe measurements made of the single photoelectron time and charge response of the R5912-MOD, as well as detail some direct comparisons to similar PMTs. Most of these measurements were performed on three R5912-MOD PMTs operating at gains close to 1 × 107. The transit time spread (σ) and the charge peak-to-valley were measured to be on average 680ps and 4.2 respectively. The results of this paper show the R5912-MOD is an excellent candidate for future experiments in several regards, particularly due to its narrow spread in timing.

  14. Timing coincidence studies with fast photomultipliers

    International Nuclear Information System (INIS)

    Raoof, M.A.; Raoof, S.A.

    1981-01-01

    The time response of RCA C70045D photomultipliers was studied using a subnanosecond light flasher. The tubes, which have an output rise time of approximately 0.5 ns, were used in coincidence to study the variations in the fwhm of the time spectrum over a certain dynamic range of pulse amplitudes for both leading edge and constant fraction discrimination. A comparison has also been made for the measured time resolutions with some of the other fast photomultipliers. (orig.)

  15. A method to stabilise the performance of negatively fed KM3NeT photomultipliers

    Science.gov (United States)

    Adrián-Martínez, S.; Ageron, M.; Aiello, S.; Albert, A.; Ameli, F.; Anassontzis, E. G.; Andre, M.; Androulakis, G.; Anghinolfi, M.; Anton, G.; Ardid, M.; Avgitas, T.; Barbarino, G.; Barbarito, E.; Baret, B.; Barrios-Martí, J.; Belias, A.; Berbee, E.; van den Berg, A.; Bertin, V.; Beurthey, S.; van Beveren, V.; Beverini, N.; Biagi, S.; Biagioni, A.; Billault, M.; Bondì, M.; Bormuth, R.; Bouhadef, B.; Bourlis, G.; Bourret, S.; Boutonnet, C.; Bouwhuis, M.; Bozza, C.; Bruijn, R.; Brunner, J.; Buis, E.; Buompane, R.; Busto, J.; Cacopardo, G.; Caillat, L.; Calamai, M.; Calvo, D.; Capone, A.; Caramete, L.; Cecchini, S.; Celli, S.; Champion, C.; Cherubini, S.; Chiarella, V.; Chiarelli, L.; Chiarusi, T.; Circella, M.; Classen, L.; Cobas, D.; Cocimano, R.; Coelho, J. A. B.; Coleiro, A.; Colonges, S.; Coniglione, R.; Cordelli, M.; Cosquer, A.; Coyle, P.; Creusot, A.; Cuttone, G.; D'Amato, C.; D'Amico, A.; D'Onofrio, A.; De Bonis, G.; De Sio, C.; Di Capua, F.; Di Palma, I.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti-Hasankiadeh, Q.; Drakopoulou, E.; Drouhin, D.; Durocher, M.; Eberl, T.; Eichie, S.; van Eijk, D.; El Bojaddaini, I.; Elsaesser, D.; Enzenhöfer, A.; Favaro, M.; Fermani, P.; Ferrara, G.; Frascadore, G.; Furini, M.; Fusco, L. A.; Gal, T.; Galatà, S.; Garufi, F.; Gay, P.; Gebyehu, M.; Giacomini, F.; Gialanella, L.; Giordano, V.; Gizani, N.; Gracia, R.; Graf, K.; Grégoire, T.; Grella, G.; Grmek, A.; Guerzoni, M.; Habel, R.; Hallmann, S.; van Haren, H.; Harissopulos, S.; Heid, T.; Heijboer, A.; Heine, E.; Henry, S.; Hernández-Rey, J. J.; Hevinga, M.; Hofestädt, J.; Hugon, C. M. F.; Illuminati, G.; James, C. W.; Jansweijer, P.; Jongen, M.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U. F.; Keller, P.; Kieft, G.; Kießling, D.; Koffeman, E. N.; Kooijman, P.; Kouchner, A.; Kreter, M.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Leisos, A.; Leonora, E.; Clark, M. Lindsey; Liolios, A.; Llorens Alvarez, C. D.; Lo Presti, D.; Löhner, H.; Lonardo, A.; Lotze, M.; Loucatos, S.; Maccioni, E.; Mannheim, K.; Manzali, M.; Margiotta, A.; Margotti, A.; Marinelli, A.; Mariš, O.; Markou, C.; Martínez-Mora, J. A.; Martini, A.; Marzaioli, F.; Mele, R.; Melis, K. W.; Michael, T.; Migliozzi, P.; Migneco, E.; Mijakowski, P.; Miraglia, A.; Mollo, C. M.; Mongelli, M.; Morganti, M.; Moussa, A.; Musico, P.; Musumeci, M.; Nicolau, C. A.; Olcina, I.; Olivetto, C.; Orlando, A.; Orzelli, A.; Pancaldi, G.; Paolucci, A.; Papaikonomou, A.; Papaleo, R.; Păvălaš, G. E.; Peek, H.; Pellegrini, G.; Pellegrino, C.; Perrina, C.; Pfutzner, M.; Piattelli, P.; Pikounis, K.; Poma, G. E.; Popa, V.; Pradier, T.; Pratolongo, F.; Pühlhofer, G.; Pulvirenti, S.; Quinn, L.; Racca, C.; Raffaelli, F.; Randazzo, N.; Real, D.; Resvanis, L.; Reubelt, J.; Riccobene, G.; Rossi, C.; Rovelli, A.; Saldaña, M.; Salvadori, I.; Samtleben, D. F. E.; Sánchez García, A.; Sánchez Losa, A.; Sanguineti, M.; Santangelo, A.; Santonocito, D.; Sapienza, P.; Schimmel, F.; Schmelling, J.; Schnabel, J.; Sciacca, V.; Sedita, M.; Seitz, T.; Sgura, I.; Simeone, F.; Sipala, V.; Spisso, B.; Spurio, M.; Stavropoulos, G.; Steijger, J.; Stellacci, S. M.; Stransky, D.; Taiuti, M.; Tayalati, Y.; Terrasi, F.; Tézier, D.; Theraube, S.; Timmer, P.; Töonnis, C.; Trasatti, L.; Travaglini, R.; Trovato, A.; Tsirigotis, A.; Tzamarias, S.; Tzamariudaki, E.; Vallage, B.; Van Elewyck, V.; Vermeulen, J.; Versari, F.; Vicini, P.; Viola, S.; Vivolo, D.; Volkert, M.; Wiggers, L.; Wilms, J.; de Wolf, E.; Zachariadou, K.; Zani, S.; Zornoza, J. D.; Zúñiga, J.

    2016-12-01

    The KM3NeT research infrastructure, currently under construction in the Mediterranean Sea, will host neutrino telescopes for the identification of neutrino sources in the Universe and for studies of the neutrino mass hierarchy. These telescopes will house hundreds of thousands of photomultiplier tubes that will have to be operated in a stable and reliable fashion. In this context, the stability of the dark counts has been investigated for photomultiplier tubes with negative high voltage on the photocathode and held in insulating support structures made of 3D printed nylon material. Small gaps between the rigid support structure and the photomultiplier tubes in the presence of electric fields can lead to discharges that produce dark count rates that are highly variable. A solution was found by applying the same insulating varnish as used for the high voltage bases directly to the outside of the photomultiplier tubes. This transparent conformal coating provides a convenient and inexpensive method of insulation.

  16. Characterization of photomultiplier tubes with a realistic model through GPU-boosted simulation

    Science.gov (United States)

    Anthony, M.; Aprile, E.; Grandi, L.; Lin, Q.; Saldanha, R.

    2018-02-01

    The accurate characterization of a photomultiplier tube (PMT) is crucial in a wide-variety of applications. However, current methods do not give fully accurate representations of the response of a PMT, especially at very low light levels. In this work, we present a new and more realistic model of the response of a PMT, called the cascade model, and use it to characterize two different PMTs at various voltages and light levels. The cascade model is shown to outperform the more common Gaussian model in almost all circumstances and to agree well with a newly introduced model independent approach. The technical and computational challenges of this model are also presented along with the employed solution of developing a robust GPU-based analysis framework for this and other non-analytical models.

  17. Characterization of Multianode Photomultiplier Tubes for a Cherenkov Detector

    Science.gov (United States)

    Benninghoff, Morgen; Turisini, Matteo; Kim, Andrey; Benmokhtar, Fatiha; Kubarovsky, Valery; Duquesne University Collaboration; Jefferson Lab Collaboration

    2017-09-01

    In the Fall of 2017, Jefferson Lab's CLAS12 (CEBAF Large Acceptance Spectrometer) detector is expecting the addition of a RICH (ring imaging Cherenkov) detector which will allow enhanced particle identification in the momentum range of 3 to 8 GeV/c. RICH detectors measure the velocity of charged particles through the detection of produced Cherenkov radiation and the reconstruction of the angle of emission. The emitted Cherenkov photons are detected by a triangular-shaped grid of 391 multianode photomultiplier tubes (MAPMTs) made by Hamamatsu. The custom readout electronics consist of MAROC (multianode read out chip) boards controlled by FPGA (Field Programmable Gate Array) boards, and adapters used to connect the MAROC boards and MAPMTs. The focus of this project is the characterization of the MAPMTs with the new front end electronics. To perform these tests, a black box setup with a picosecond diode laser was constructed with low and high voltage supplies. A highly automated procedure was developed to acquire data at different combinations of high voltage values, light intensities and readout electronics settings. Future work involves using the collected data in calibration procedures and analyzing that data to resolve the best location for each MAPMT. SULI, NSF.

  18. Performance of a C4F8O gas radiator ring imaging Cherenkov detector using multi-anode photomultiplier tubes

    International Nuclear Information System (INIS)

    Artuso, M.; Boulahouache, C.; Blusk, S.; Butt, J.; Dorjkhaidav, O.; Menaa, N.; Mountain, R.; Muramatsu, H.; Nandakumar, R.; Randrianarivony, K.; Sia, R.; Skwarnicki, T.; Stone, S.; Wang, J.C.; Zhang, K.

    2006-01-01

    We report on tests of a novel ring imaging Cherenkov (RICH) detection system consisting of a 3-m-long gaseous C 4 F 8 O radiator, a focusing mirror, and a photon detector array based on Hamamatsu multi-anode photomultiplier tubes. This system was developed to identify charged particles in the momentum range from 3 to 70GeV/c for the BTeV experiment

  19. Testing of Photomultiplier Tubes in a Magnetic Field

    Science.gov (United States)

    Waldron, Zachary; A1 Collaboration

    2016-09-01

    The A1 collaboration at MAMI in Mainz, Germany has designed a neutron detector that can be used in experiments to measure the electric form factor of the neutron. They will measure elastic scattering from the neutron, using the polarized electron beam from MAMI at A1's experimental hall. The detector will be composed of two walls of staggered scintillator bars which will be read out by photomultiplier tubes (PMT), connected to both ends of each scintillator via light guides. The experiment requires a magnetic field with strength of 1 Tesla, 2m away from the first scintillator wall. The resulting fringe field is sufficient to disrupt the PMTs, despite the addition of Mu Metal shielding. The effects of the fringe field on these PMTs was tested to optimize the amplification of the PMTs. A Helmholtz Coil was designed to generate a controlled magnetic field with equivalent strength to the field that the PMTs will encounter. The PMTs were read out using a multi-channel analyzer, were tested at various angles relative to the magnetic field in order to determine the optimal orientation to minimize signal disruption. Tests were also performed to determine: the neutron detector response to cosmic radiation; and the best method for measuring a magnetic field's strength in two dimensions. National Science Foundation Grant No. IIA-1358175.

  20. Future photomultiplier assemblies and associated electrons in large experiments

    International Nuclear Information System (INIS)

    Duteil, P.; Hammarstroem, R.; Innocenti, P.G.; Michelini, A.; Smith, B.; Soso, F.

    1977-01-01

    The results are presented of a working group study on reducing costs of proposed counter experiments in high-energy physics where several thousand photomultipliers are involved. Photomultiplier design is briefly discussed and new designs are presented for tube housings and high-voltage supplies. An outline presentation is given of a simplified electronics system, based on the Eurocard, for fast logic, data handling, and associated power supplies, suitable for photomultipliers or wire counters. Substantial savings in cost are shown to be possible without affecting performance but with some loss in convenience. (Auth.)

  1. Towards Optical Partial Discharge Detection with Micro Silicon Photomultipliers

    Directory of Open Access Journals (Sweden)

    Ming Ren

    2017-11-01

    Full Text Available Optical detection is reliable in intrinsically characterizing partial discharges (PDs. Because of the great volume and high-level power supply of the optical devices that can satisfy the requirements in photosensitivity, optical PD detection can merely be used in laboratory studies. To promote the practical application of the optical approach in an actual power apparatus, a silicon photomultiplier (SiPM-based PD sensor is introduced in this paper, and its basic properties, which include the sensitivity, pulse resolution, correlation with PD severity, and electromagnetic (EM interference immunity, are experimentally evaluated. The stochastic phase-resolved PD pattern (PRPD for three typical insulation defects are obtained by SiPM PD detector and are compared with those obtained using a high-frequency current transformer (HFCT and a vacuum photomultiplier tube (PMT. Because of its good performances in the above aspects and its additional advantages, such as the small size, low power supply, and low cost, SiPM offers great potential in practical optical PD monitoring.

  2. Studies of relative gain and timing response of fine-mesh photomultiplier tubes in high magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Sulkosky, V.; Allison, L.; Barber, C.; Cao, T.; Ilieva, Y.; Jin, K.; Kalicy, G.; Park, K.; Ton, N.; Zheng, X.

    2016-08-01

    We investigated the use of Hamamatsu fine-mesh photomultiplier tube assemblies H6152-70 and H6614-70 with regards to their gain and timing resolution in magnetic fields up to 1.9 T. Our results show that the H6614-70 assembly can operate reliably in magnetic fields exceeding 1.5 T, while preserving a reasonable timing resolution even with a gain reduction of a factor of ~100. The reduction of the relative gain of the H6152-70 is similar to the H6614-70's near 1.5 T, but its timing resolution worsens considerably at this high field.

  3. A new hybrid photomultiplier tube as detector for scintillating crystals

    International Nuclear Information System (INIS)

    De Notaristefani, F.; Vittori, F.; Puertolas, D.

    2002-01-01

    In this work, we have attentively studied the performance of a new hybrid photomultiplier tube (HPMT) as detector for photons from scintillating crystals. The HPMT is equipped with a YAP window in order to improve light collection and increase measured light response from scintillating crystals. Several measurements have been performed on BGO, LSO, CsI(Tl) and NaI(Tl) planar crystals having three different surface treatments as well as on YAP : Ce and CsI(Tl) matrices. Such crystals have been coupled to two HPMTs, one equipped with a YAP window (Y-HPMT) and the other with a conventional quartz window (Q-HPMT). Measurements on crystals coupled to the Y-HPMT have shown a consistent improvement of the light response, thanks to the presence of the YAP window. Indeed, the light response measured with the Y-HPMT was on average equal to 1.5, 2.1 and 2.6 times that obtained with the Q-HPMT for planar crystals with white painted (diffusive), fine ground and polished rear surfaces, respectively. With regards to crystal matrices, we measured a light response increase of about 1.2 times

  4. Monte Carlo calculations of the optical coupling between bismuth germanate crystals and photomultiplier tubes

    International Nuclear Information System (INIS)

    Derenzo, S.E.; Riles, J.K.

    1981-10-01

    The high density and atomic number of bismuth germanate (Bi 4 Ge 3 O 12 or BGO) make it a very useful detector for positron emission tomography. Modern tomograph designs use large numbers of small, closely-packed crystals for high spatial resolution and high sensitivity. However, the low light output, the high refractive index (n=2.15), and the need for accurate timing make it important to optimize the transfer of light to the photomultiplier tube (PMT). We describe the results of a Monte Carlo computer program developed to study the effect of crystal shape, reflector type, and the refractive index of the PMT window on coupling efficiency. The program simulates total internal, external, and Fresnel reflection as well as internal absorption and scattering by bubbles

  5. Evaluation of candidate photomultiplier tubes for the upgrade of the CDF end plug calorimeter

    International Nuclear Information System (INIS)

    Koska, W.; Delchamps, S.W.; Freeman, J.; Kinney, W.; Lewis, D.; Limon, P.; Strait, J.; Fiori, I.; Gallinaro, M.; Shen, Q.

    1994-01-01

    The Collider Detector at Fermilab is upgrading its end plug calorimeter from a gas detector system to one using scintillating tiles and wavelength shifting fibers. This tile-fiber calorimeter will be read out through 1,824 photomultiplier tubes. The performance requirements of the calorimeter require that the PMTs have good response to light in the 500 nm region, provide adequate amplification for signals from minimum ionizing particles yet provide linear response for peak anode currents up to 25 mA at a gain of 50,000, and fit into the restricted space at the rear of the plugs. This paper will describe the evaluation process used to determine the adequacy of the commercially available PMTs which appeared to meet these performance requirements

  6. Blocking of photomultiplier tubes; Blocage de tubes photomultiplicateurs

    Energy Technology Data Exchange (ETDEWEB)

    Andrivet, J [Commissariat a l' Energie Atomique, Limeil-Brevannes (France). Centre d' Etudes

    1968-07-01

    Development of a very simple apparatus having a single transistor. The gain is reduced by a factor of 1.5 to 3 x 10{sup 2} for the photomultipliers XP 1002, and of 10{sup 3} to 10{sup 4} for the photomultipliers 56-AVP and TVP. Blocking can be achieved in 40 ns if necessary (using a TRS-350 transistor), and the time required to return to the initial gain can be no longer than 40 ns with a TRS-200, for the blocking of several micro-seconds for example. 1000 {mu}s and above can be obtained with switching times which are longer but which can be less than 150 ns if needs be. An outside insulated supply can be avoided if the recurrence is low. A standard pulse generator is used for triggering. There is no other electronic equipment, and the device can be fitted easily into the space of the voltage divider. (author) [French] Etude et realisation d'un montage tres simple utilisant un seul transistor. Le gain est reduit d'un facteur 1.5 a 3.10{sup 2} sur des photomultiplicateurs XP 1002, et 10{sup 3} a 10{sup 4} sur les photomultiplicateurs 56 AVP et TVP. Le blocage peut etre atteint en 40 ns si necessaire (avec un transistor TRS-350), et le temps de retour au gain initial peut ne pas depasser 40 ns avec un TRS-200, pour des blocages de plusieurs micro-secondes, par exemple. On peut obtenir plus de 1000 {mu}s avec des temps de commutation plus importants, mais qui peuvent si besoin est ne pas etre superieurs a 150 ns. L'alimentation exterieure isolee peut etre evitee si la recurrence est faible. Pour le declenchement on utilise un generateur d'impulsions standard. Il n'y a aucune autre electronique, et le montage s'integre aisement dans l'encombrement du pont d'alimentation. (auteur)

  7. Front-end circuit for position sensitive silicon and vacuum tube photomultipliers with gain control and depth of interaction measurement

    International Nuclear Information System (INIS)

    Herrero, Vicente; Colom, Ricardo; Gadea, Rafael; Lerche, Christoph W.; Cerda, Joaquin; Sebastia, Angel; Benlloch, Jose M.

    2007-01-01

    Silicon Photomultipliers, though still under development for mass production, may be an alternative to traditional Vacuum Photomultipliers Tubes (VPMT). As a consequence, electronic front-ends initially designed for VPMT will need to be modified. In this simulation, an improved architecture is presented which is able to obtain impact position and depth of interaction of a gamma ray within a continuous scintillation crystal, using either kind of PM. A current sensitive preamplifier stage with individual gain adjustment interfaces the multi-anode PM outputs with a current division resistor network. The preamplifier stage allows to improve front-end processing delay and temporal resolution behavior as well as to increase impact position calculation resolution. Depth of interaction (DOI) is calculated from the width of the scintillation light distribution, which is related to the sum of voltages in resistor network input nodes. This operation is done by means of a high-speed current mode scheme

  8. Characterization of 900 four-anode photomultiplier tubes for use in 2013 hadronic forward calorimeter upgrade.

    CERN Document Server

    AUTHOR|(CDS)2081071

    The first 900 four-anode Photomultiplier Tubes (PMTs) have been evaluated for use in the 2013 Hadronic Forward (HF) calorimeter upgrade. HF is a part of the Compact Muon Solenoid (CMS), which is one of the two large general-purpose particle detectors of the Large Hadron Collider (LHC) at CERN in Geneva, Switzerland. HF requires 1728 PMTs. These small tubes are the sensitive light detectors that provide the output signals of HF. Before installing PMTs in HF, their quality control demands need to be satisfied. These tests, done at the University of Iowa, are designed in three categories to test seventeen different parameters for each PMT. The three most basic and most important groups of parameters are: dark current, gain (anode and cathode), and timing. There are secondary tests which are performed on a smaller percentage of the PMTs such as surface uniformity, double pulse and single photo-electron resolution. The PMTs that meet the specifications of HF will be sent to CERN where they are expected to be in us...

  9. Non-descanned multifocal multiphoton microscopy with a multianode photomultiplier tube

    International Nuclear Information System (INIS)

    Cha, Jae Won; Yew, Elijah Y. S.; Kim, Daekeun; Subramanian, Jaichandar; Nedivi, Elly; So, Peter T. C.

    2015-01-01

    Multifocal multiphoton microscopy (MMM) improves imaging speed over a point scanning approach by parallelizing the excitation process. Early versions of MMM relied on imaging detectors to record emission signals from multiple foci simultaneously. For many turbid biological specimens, the scattering of emission photons results in blurred images and degrades the signal-to-noise ratio (SNR). We have recently demonstrated that a multianode photomultiplier tube (MAPMT) placed in a descanned configuration can effectively collect scattered emission photons from each focus into their corresponding anodes significantly improving image SNR for highly scattering specimens. Unfortunately, a descanned MMM has a longer detection path resulting in substantial emission photon loss. Optical design constraints in a descanned geometry further results in significant optical aberrations especially for large field-of-view (FOV), high NA objectives. Here, we introduce a non-descanned MMM based on MAPMT that substantially overcomes most of these drawbacks. We show that we improve signal efficiency up to fourfold with limited image SNR degradation due to scattered emission photons. The excitation foci can also be spaced wider to cover the full FOV of the objective with minimal aberrations. The performance of this system is demonstrated by imaging interneuron morphological structures deep in the brains of living mice

  10. Non-descanned multifocal multiphoton microscopy with a multianode photomultiplier tube

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Jae Won; Yew, Elijah Y. S. [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA (United States); Kim, Daekeun [Department of Mechanical Engineering, Dankook University (Korea, Republic of); Subramanian, Jaichandar [Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA (United States); Nedivi, Elly [Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA (United States); Departments of Brain and Cognitive Sciences, and Biology, Massachusetts Institute of Technology, Cambridge, MA (United States); So, Peter T. C. [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA (United States); Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA (United States)

    2015-08-15

    Multifocal multiphoton microscopy (MMM) improves imaging speed over a point scanning approach by parallelizing the excitation process. Early versions of MMM relied on imaging detectors to record emission signals from multiple foci simultaneously. For many turbid biological specimens, the scattering of emission photons results in blurred images and degrades the signal-to-noise ratio (SNR). We have recently demonstrated that a multianode photomultiplier tube (MAPMT) placed in a descanned configuration can effectively collect scattered emission photons from each focus into their corresponding anodes significantly improving image SNR for highly scattering specimens. Unfortunately, a descanned MMM has a longer detection path resulting in substantial emission photon loss. Optical design constraints in a descanned geometry further results in significant optical aberrations especially for large field-of-view (FOV), high NA objectives. Here, we introduce a non-descanned MMM based on MAPMT that substantially overcomes most of these drawbacks. We show that we improve signal efficiency up to fourfold with limited image SNR degradation due to scattered emission photons. The excitation foci can also be spaced wider to cover the full FOV of the objective with minimal aberrations. The performance of this system is demonstrated by imaging interneuron morphological structures deep in the brains of living mice.

  11. Characterisation of the Hamamatsu photomultipliers for the KM3NeT Neutrino Telescope

    NARCIS (Netherlands)

    Aiello, S.; Akrame, S.E.; Amélineau, F.; Anassontzis, E.G.; Andre, M.; Androulakis, G.; Anghinolfi; Anton, G.; Ardid, M.; Aublin, J.; Avgitas, T.; Baars, M.; Bagatelas, C.; Barbarino, G.; Baret, B.; Barrios-Martí, J.; Belias, A.; Berbee, E.; van den Berg, A.; Bertin, V.; Biagi, S.; Biagioni, A.; Biernoth, C.; Bormuth, R.; Boumaaza, J.; Bourret, S.; Bouwhuis, M.; Bozza, C.; Brânzas, H.; Briukhanova, N.; Bruijn, R.; Brunner, J.; Buis, E.; Buompane, R,; Busto, J.; Calvo, D.; Capone, A.; Caramete, L.; Celli, S.; Chabab, M.; Cherubini, S.; Chiarella, V.; Chiarusi, T.; Circella, M.; Cocimano, R.; Coelho, J.A.B.; Coleiro, A.; Molla, M.C.; Coniglione, R.; Coyle, P.; Creusot, A.; Cuttone, G.; D’Onofrio, A.; Dallier, R.; De Sio, C.; Di Palma, I.; Díaz, A.F.; Distefano, C.; Domi, A.; Donà, R.; Donzaud, C.; Dornic, D.; Dörr, M.; Durocher, M.; Eberl, T.; Van Eijk, D.; El Bojaddaini, I.; Elsaesser, D.; Enzenhöfer, A.; Ferrara, G.; Fusco, L.A.; Gal, T.; Garufi, F.; Gauchery, S.; Geißelsöder, S.; Gialanella, L.; Giorgio, E.; Giuliante, A.; Gozzini, S.R.; Gracia-Ruiz, R.; Graf, K.; Grasso, D.; Grégoire, T.; Grella, G.; Hallmann, S.; van Haren, H.; Heid, T.; Heijboer, A.; Hekalo, A.; Hernandez-Rey, J.J.; Hofestädt, J.; Illuminati, G.; James, C.W.; Jongen, M.; Jongewaard, B.; de Jong, M.; de Jong, P.; Kadler, M.; Kalaczynski, P.; Kalekin, O.; Katz, U.F.; Khan Chowdhury, N.R.; Kieft, G.; Kießling, D.; Koffeman, E.N.; Kooijman, P.; Kouchner, A.; Kreter, M.; Kulikovskiy, V.; Lahmann, R.; Le Breton, A.; Leone, F.; Leonora, E.; Levi, G.; Lincetto, M.; Lonardo, A.; Longhitano, F.; Lotze, M.; Loucatos, S.; Maggi, G.; Manczak, J.; Mannheim, K.; Margiotta, A.; Marinelli, A.; Markou, C.; Martin, L.; Martínez-Mora, J.A.; Martini, A.; Marzaioli, F.; Mele, R.; Melis, K.W.; Migliozzi, P.; Migneco, E.; Mijakowski, P.; Mollo, C.M.; Morganti, M.; Moser, M.; Moussa, A.; Muller, R.; Musumeci, M.; Nauta, L.; Navas, S.; Nicolau, C.A.; Nielsen, C.; Organokov, M.; Orlando, A.; Panagopoulos, V.; Papalashvili, G.; Papaleo, R.; Pavalas, G.E.; Pellegrini, G.; Pellegrino, C.; Pérez Romero, J.; Perrin-Terrin, M.; Piattelli, P.; Pikounis, K.; Pisanti, O.; Poirè, C.; Polydefki, G.; Poma, G.E.; Popa, V.; Post, M.; Pradier, T.; Pühlhofer, G.; Pulvirenti, S.; Quinn, L.; Raffaelli, F.; Randazzo, N.; Razzaque, S.; Real, D.; Resvanis, L.; Reubelt, J.; Riccobene, G.; Richer, M.; Rovelli, A.; Salvadori, I.; Samtleben, D.F.E.; Sánchez-Losa, A.; Sanguineti, M.; Santangelo, A.; Sapienza, P.; Schermer, B.; Sciacca, V.; Seneca, J.; Sgura, I.; Shanidze, R.; Sharma, A.; Simeone, F.; Sinopoulou, A.; Spisso, B.; Spurio, M.; Stavropoulos, D.; Steijger, J.; Stellacci, S.M.; Strandberg, B.; Stransky, D.; Stüven, T.; Taiuti, M.; Tatone, F.; Tayalati, Y.; Tenllado, E.; Thakore, T.; Timmer, P.; Trovato, A.; Tsagkli, S.; Tzamariudaki, E.; Tzanetatos, D.; Valieri, C.; Vallage, B.; Van Elewyck, V.; Versari, F.; Viola, S.; Vivolo, D.; Volkert, M.; de Waardt, L.; Wilms, J.; de Wolf, E.; Zaborov, D.; Zornoza, J.D.; Zúñiga, J.

    2018-01-01

    The Hamamatsu R12199-02 3-inch photomultiplier tube is the photodetector chosen for the first phase of the KM3NeT neutrino telescope. About 7000 photomultipliers have been characterised for dark count rate, timing spread and spurious pulses. The quantum efficiency, the gain and the peak-to-valley

  12. Geneva University - Silicon photomultiplier : features and applications

    CERN Multimedia

    Université de Genève

    2012-01-01

    GENEVA UNIVERSITY École de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 Genève 4 Tél.: (022) 379 62 73 Fax: (022) 379 69 92   Wednesday 7 March 2012 SEMINAIRE DE PHYSIQUE CORPUSCULAIRE 11.15 a.m. - Science II, Auditoire 1S081, 30, quai Ernest-Ansermet, 1211 Genève 4 SILICON PHOTOMULTIPLIER : FEATURES AND APPLICATIONS Dr Giulio SARACINO   University of Naples, Federico II   Silicon photomultipliers were developed about ten years ago and their use, unlike traditional photomultiplier tubes, is increasing more and more. They are an evolution of the avalanche photodiode working in Geiger mode regime. Hundreds of such diodes are connected in parallel, allowing single photon response, high detection efficiency, high gain at low bias voltage and very good timing performance. In spite of their Geiger regime, they can be considered linear devices, until the number of photon...

  13. A prototype detector using the neutron image intensifier and multi-anode type photomultiplier tube for pulsed neutron imaging

    International Nuclear Information System (INIS)

    Ishikawa, Hirotaku; Sato, Hirotaka; Hara, Kaoru Y.; Kamiyama, Takashi

    2016-01-01

    We developed a neutron two-dimensional (2-D) detector for pulsed neutron imaging as a prototype detector, which was composed of a neutron image intensifier and a multi-anode type photomultiplier tube. A neutron transmission spectrum of α-Fe plate was measured by the prototype detector, and compared with the one measured by a typical neutron 2-D detector. The spectrum was in reasonable agreement with the one measured by the typical detector in the neutron wavelength region above 0.15 nm. In addition, a neutron transmission image of a cadmium indicator was obtained by the prototype detector. The usefulness of the prototype detector for pulsed neutron imaging was demonstrated. (author)

  14. A position-sensitive scintillation detector for two-dimensional angular correlation of annihilation radiation using metal-package position-sensitive photomultiplier tubes

    International Nuclear Information System (INIS)

    Inoue, Koji; Nagai, Yasuyoshi; Saito, Haruo; Nagashima, Yasuyuki; Hyodo, Toshio; Muramatsu, Shinichi; Nagai, Shota

    1999-01-01

    We have constructed and tested a prototype of a new position sensitive γ-ray detector which consists of an array of 2.6x2.6x18 mm 3 BGO scintillator blocks, a light guide, and four metal-package position-sensitive photomultiplier tubes (R5900-00-C8) recently developed by Hamamatsu Photonics Co. Ltd. Scalability of the detector of this type makes it possible to construct a larger detector using many PS-PMTs, which will be useful for the two-dimensional angular correlation of annihilation radiation apparatus

  15. A novel ZVS high voltage power supply for micro-channel plate photomultiplier tubes

    International Nuclear Information System (INIS)

    Pei, Chengquan; Tian, Jinshou; Liu, Zhen; Qin, Hong; Wu, Shengli

    2017-01-01

    A novel resonant high voltage power supply (HVPS) with zero voltage switching (ZVS), to reduce the voltage stress on switching devices and improve conversion efficiency, is proposed. The proposed HVPS includes a drive circuit, a transformer, several voltage multiplying circuits, and a regulator circuit. The HVPS contains several secondary windings that can be precisely regulated. The proposed HVPS performed better than the traditional resistor voltage divider, which requires replacing matching resistors resulting in resistor dispersibility in the Micro-Channel Plate (MCP). The equivalent circuit of the proposed HVPS was established and the operational principle analyzed. The entire switching element can achieve ZVS, which was validated by a simulation and experiments. The properties of this HVPS were tested including minimum power loss (240 mW), maximum power loss (1 W) and conversion efficiency (85%). The results of this research are that the proposed HVPS was suitable for driving the micro-channel plate photomultiplier tube (MCP-PMT). It was therefore adopted to test the MCP-PMT, which will be used in Daya Bay reactor neutrino experiment II in China.

  16. A novel ZVS high voltage power supply for micro-channel plate photomultiplier tubes

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Chengquan [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi’an 710049 (China); Tian, Jinshou [Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi' an 710119 (China); Liu, Zhen [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi’an 710049 (China); Qin, Hong [School of Computer Science and Technology, Xi' an University of Science and Technology, Xi' an 710054 (China); Wu, Shengli, E-mail: slwu@mail.xjtu.edu.cn [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi’an 710049 (China)

    2017-04-11

    A novel resonant high voltage power supply (HVPS) with zero voltage switching (ZVS), to reduce the voltage stress on switching devices and improve conversion efficiency, is proposed. The proposed HVPS includes a drive circuit, a transformer, several voltage multiplying circuits, and a regulator circuit. The HVPS contains several secondary windings that can be precisely regulated. The proposed HVPS performed better than the traditional resistor voltage divider, which requires replacing matching resistors resulting in resistor dispersibility in the Micro-Channel Plate (MCP). The equivalent circuit of the proposed HVPS was established and the operational principle analyzed. The entire switching element can achieve ZVS, which was validated by a simulation and experiments. The properties of this HVPS were tested including minimum power loss (240 mW), maximum power loss (1 W) and conversion efficiency (85%). The results of this research are that the proposed HVPS was suitable for driving the micro-channel plate photomultiplier tube (MCP-PMT). It was therefore adopted to test the MCP-PMT, which will be used in Daya Bay reactor neutrino experiment II in China.

  17. Analogue saturation limit of single and double 10 mm microchannel plate photomultiplier tubes

    Energy Technology Data Exchange (ETDEWEB)

    Milnes, J. S., E-mail: james.milnes@photek.co.uk; Conneely, T. M. [Photek Ltd., 26 Castleham Road, St Leonards on Sea, East Sussex TN38 9NS (United Kingdom); Horsfield, C. J. [AWE Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom)

    2016-11-15

    Photek are a well-established supplier of microchannel plate (MCP) photomultiplier tubes (PMTs) to the inertial confinement fusion community. The analogue signals produced at the major inertial confinement fusion facilities cover many orders of magnitude, therefore understanding the upper saturation limit of MCP-PMTs to large low rate signals takes on a high importance. Here we present a study of a single and a double MCP-PMT with 10 mm diameter active area. The saturation was studied for a range of optical pulse widths from 4 ns to 100 ns and at a range of electron gain values: 10{sup 3} to 10{sup 4} for the single and 10{sup 4} to 10{sup 6} for the double. We have shown that the saturation level of ∼1.2 nC depends only on the integrated charge of the pulse and is independent of pulse width and gain over this range, but that the level of charge available in deep saturation is proportional to the operating gain.

  18. VUV-sensitive silicon-photomultipliers for the nEXO-experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wrede, Gerrit; Bayerlein, Reimund; Hufschmidt, Patrick; Jamil, Ako; Schneider, Judith; Wagenpfeil, Michael; Ziegler, Tobias; Hoessl, Juergen; Anton, Gisela; Michel, Thilo [ECAP, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (Germany)

    2016-07-01

    The nEXO (next Enriched Xenon Observatory) experiment will search for the neutrinoless double beta decay of Xe-136 with a liquid xenon TPC (Time ProjectionChamber). The sensitivity of the experiment is related to the energy resolution, which itself depends on the accuracies of the measurements of the amount of drifting electrons and the number of scintillation photons with their wavelength being in the vacuum ultraviolet band. Silicon Photomultipliers (SiPM) shall be used for the detection of the scintillation light, since they can be produced extremely radiopure. Commercially available SiPM do not fulfill all requirements of the nEXO experiment, thus a dedicated development is necessary. To characterize the silicon photomultipliers, we have built a test apparatus for xenon liquefaction, in which a VUV-sensitive photomultiplier tube can be operated together with the SiPM. In this contribution we present our apparatus for the SiPM characterization measurements and our latest results on the test of the silicon photomultipliers for the detection of xenon scintillation light.

  19. First results of systematic studies done with silicon photomultipliers

    International Nuclear Information System (INIS)

    Bosio, C.; Gentile, S.; Kuznetsova, E.; Meddi, F.

    2008-01-01

    Multicell avalanche photodiode structure operated in Geiger mode usually referred as silicon photomultiplier is a new intensively developing technology for photon detection. Insensitivity to magnetic fields, low operation voltage and small size make silicon photomultipliers very attractive for high-energy physics, astrophysics and medical applications. The presented results are obtained during the first steps taken in order to develop a setup and measurement procedures which allow to compare properties of diverse samples of silicon photomultipliers available on market. The response to low-intensity light was studied for silicon photomultipliers produced by CPTA (Russia), Hamamatsu (Japan), ITC-irst (Italy) and SensL (Ireland).

  20. A high speed, wide dynamic range digitizer circuit for photomultiplier tubes

    Energy Technology Data Exchange (ETDEWEB)

    Yarema, R.J.; Foster, G.W.; Knickerbocker, K.; Sarraj, M.; Tschirhart, R.; Whitmore, J.; Zimmerman, T. [Fermi National Accelerator Lab., Batavia, IL (United States); Lindgren, M. [Univ. of California, Los Angeles, CA (United States). Physics Dept.

    1994-06-01

    High energy physics experiments running at high interaction rates frequently require long record lengths for determining a level 1 trigger. The easiest way to provide a long event record is by digital means. In applications requiring wide dynamic range, however, digitization of an analog signal to obtain the digital record has been impossible due to lack of high speed, wide range FADCs. One such application is the readout of thousands of photomultiplier tubes in fixed target and colliding beam experiment calorimeters. A circuit has been designed for digitizing PMT signals over a wide dynamic range (17--18 bits) with 8 bits of resolution at rates up to 53 MHz. Output from the circuit is in a floating point format with a 4 bit exponent and an 8 bit mantissa. The heart of the circuit is a full custom integrated circuit called the QIE (Charge Integrator and Encoder). The design of the QIE and associated circuitry reported here permits operation over a 17 bit dynamic range. Tests of the circuit with a PMT input and a pulsed laser have provided respectable results with little off line correction. Performance of the circuit for demanding applications can be significantly enhanced with additional off line correction. Circuit design, packaging issues, and test results of a multirange device are presented for the first time.

  1. A high speed, wide dynamic range digitizer circuit for photomultiplier tubes

    International Nuclear Information System (INIS)

    Yarema, R.J.; Foster, G.W.; Knickerbocker, K.; Sarraj, M.; Tschirhart, R.; Whitmore, J.; Zimmerman, T.; Lindgren, M.

    1994-06-01

    High energy physics experiments running at high interaction rates frequently require long record lengths for determining a level 1 trigger. The easiest way to provide a long event record is by digital means. In applications requiring wide dynamic range, however, digitization of an analog signal to obtain the digital record has been impossible due to lack of high speed, wide range FADCs. One such application is the readout of thousands of photomultiplier tubes in fixed target and colliding beam experiment calorimeters. A circuit has been designed for digitizing PMT signals over a wide dynamic range (17--18 bits) with 8 bits of resolution at rates up to 53 MHz. Output from the circuit is in a floating point format with a 4 bit exponent and an 8 bit mantissa. The heart of the circuit is a full custom integrated circuit called the QIE (Charge Integrator and Encoder). The design of the QIE and associated circuitry reported here permits operation over a 17 bit dynamic range. Tests of the circuit with a PMT input and a pulsed laser have provided respectable results with little off line correction. Performance of the circuit for demanding applications can be significantly enhanced with additional off line correction. Circuit design, packaging issues, and test results of a multirange device are presented for the first time

  2. LHCb: Characterisation and magnetic field properties of Multianode Photomultiplier tubes for the use in LHCb Upgrade RICH detectors

    CERN Multimedia

    Eisenhardt, S; Morris, A; Needham, M; Neill, J

    2013-01-01

    A key feature of the LHCb upgrade, scheduled for 2019, is to remove the first level trigger and its data reduction from 40MHz to 1MHz, which is implemented in the on-detector readout electronics. The consequence for the LHCb Ring Imaging Cherenkov (RICH) detectors is that the Hybrid Photon Detectors need to be replaced as the readout chip is embedded in the tubes. Baseline for replacement are Multianode Photomultiplier tubes (MaPMT) and new readout electronics. Here we report about characterisation studies of the model Hamamatsu R11265 in the effort to qualify them for use in the LHCb RICH upgrade. Comparisons to the known model R7600 are also made. Two types of readout electronics are used. Most measurements to characterise the properties of the MaPMTs are taken with a VME based reference readout, using a x100 linear amplification and the CAEN V792 12-bit charge integrating digitiser. This allows to derive the signal properties from fits to the single photon spectra. In addition a prototype readout using the...

  3. Stability and lifetime testing of photomultiplier detectors for the Earth observing system SOLSTICE program

    Science.gov (United States)

    Hadler, Joshua A.; van de Kop, Toni; Drake, Virginia A.; McClintock, William E.; Murphy, John; Rodgers, Paul

    1998-10-01

    The primary objective of the Earth Observing System (EOS) Solar Stellar Irradiance Comparison Experiment (SOLSTICE) is to accurately measure the absolute value of the solar UV irradiance at the top of the earth's atmosphere for a minimum mission lifetime of 5 years. To meet this objective, SOLSTICE employs a unique design to determine changes in instrument performance by routinely observing a series of early-type stars and comparing the irradiances directly with the solar value. Although the comparison techniques allows us to track instrument performance, the success of the SOLSTICE experiment depends upon photomultiplier detectors which have graceful degradation properties. Therefore, we have established a laboratory program to evaluate the characteristics of photomultiplier tubes which are exposed to long term fluxes similar to those we expected to encounter in flight. Three types of Hamamatsu photomultiplier tubes were tested as candidates for use in the EOS-SOLSTICE project. The results of these studies: pulse height distribution; quantum efficiency; surface maps,; and lifetime analysis are presented in this paper.

  4. Time fluctuations in the response of photomultiplier tubes Dario 56 AVP, XP 1021, XP 1210

    International Nuclear Information System (INIS)

    Breuze, G.; Sawine, P.

    1969-01-01

    The authors have studied experimentally the intrinsic time resolving power of 3 photomultiplier tubes, Dario 56 AVP, XP 1021, XP 1210 at various excitation levels produced by a source of short light pulses. They show, in agreement with present theories, that there exists an optimal resolving power for a certain trigger threshold, and they check the law governing the variations of this resolving power with the average number of photo-electrons emitted by light pulse, up to the limiting case of a single photo-electron. The results obtained show the progress which has been made by the constructor between the 56 AVP and the XP 1210 models: for 100 photo-electrons per pulse, for example, the times of resolution are 260 x 10 -12 s and 75 x 10 -12 s respectively; whereas the rise time for the anode pulses decreases from 2,3 to 1,2 x 10 -9 s. The intermediate tube XP 1021 has also a particularly good performance with respect to the 56 AVP, which it resembles very much both in its price and by its outer aspect. The authors stress finally the difficulties encountered in measuring with accuracy the time characteristics of PM as fast as the XP 1210, and in particular the limitation imposed by the light source. (author) [fr

  5. A new trend in photomultiplier techniques and its implications in future collider experiments

    International Nuclear Information System (INIS)

    Kuroda, K.

    1989-01-01

    A recent trend in photomultiplier techniques, characterized by immunity to magnetic fields and position sensitivity of modern photomultiplier tubes, would potentially have great importance in future collider experiments. This article presents a survey on the actual status of the art, and some implications of such new techniques in future high-energy experiments. As an example of applications, our recent project of constructing an ultrafast scintillating-fibre detector on the basis of upgraded position-sensitive PMTs is outlined. (orig.)

  6. Noise in the Measurement of Light with Photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Robben, F

    1968-05-15

    In order to be able to compare measurements derived from the anode current of a photomultiplier with measurement derived from photoelectron pulse counting, a systematic investigation of the properties of some photomultiplier tubes has been made. This has led to a correlation of the properties of a photomultiplier based on the quantum efficiency {eta}, the gain G, a photoelectron loss factor S and an effective dark rate D. In terms of these quantities the signal to noise ratio of an experimental measurement can be calculated, given the light flux and measurement technique. The fluctuations in a photomultiplier output are divided into two parts; Poisson fluctuations, and those due to excess noise. It is experimentally shown, from measurements on a 931A photomultiplier, that the excess noise exceeds the Poisson fluctuations only at very low frequencies, or long DC measurement times (> 10 s), for both pulse counting and anode current measurements. The Poisson fluctuations are found to be approximately the same for both pulse counting and anode current measurements, at both high light levels where the dark current, or dark pulses, are negligible, as well as at low light levels where the dark current is dominant. The excess noise is found to be somewhat greater in the case of anode current measurements. Thus both pulse counting and anode current measurement techniques have nearly identical noise properties, as far as the photomultiplier is concerned, and selection of either experimental technique depends primarily on the properties of the electronic equipment. By use of a synchronous detection technique, the variance of the pulse count was measured experimentally to an accuracy of {+-} 4 %, and was shown to be in agreement with that predicted by Poisson statistics.

  7. Modeling Photo-multiplier Gain and Regenerating Pulse Height Data for Application Development

    Science.gov (United States)

    Aspinall, Michael D.; Jones, Ashley R.

    2018-01-01

    Systems that adopt organic scintillation detector arrays often require a calibration process prior to the intended measurement campaign to correct for significant performance variances between detectors within the array. These differences exist because of low tolerances associated with photo-multiplier tube technology and environmental influences. Differences in detector response can be corrected for by adjusting the supplied photo-multiplier tube voltage to control its gain and the effect that this has on the pulse height spectra from a gamma-only calibration source with a defined photo-peak. Automated methods that analyze these spectra and adjust the photo-multiplier tube bias accordingly are emerging for hardware that integrate acquisition electronics and high voltage control. However, development of such algorithms require access to the hardware, multiple detectors and calibration source for prolonged periods, all with associated constraints and risks. In this work, we report on a software function and related models developed to rescale and regenerate pulse height data acquired from a single scintillation detector. Such a function could be used to generate significant and varied pulse height data that can be used to integration-test algorithms that are capable of automatically response matching multiple detectors using pulse height spectra analysis. Furthermore, a function of this sort removes the dependence on multiple detectors, digital analyzers and calibration source. Results show a good match between the real and regenerated pulse height data. The function has also been used successfully to develop auto-calibration algorithms.

  8. Batch production of microchannel plate photo-multipliers

    Energy Technology Data Exchange (ETDEWEB)

    Frisch, Henry J.; Wetstein, Matthew; Elagin, Andrey

    2018-03-06

    In-situ methods for the batch fabrication of flat-panel micro-channel plate (MCP) photomultiplier tube (PMT) detectors (MCP-PMTs), without transporting either the window or the detector assembly inside a vacuum vessel are provided. The method allows for the synthesis of a reflection-mode photocathode on the entrance to the pores of a first MCP or the synthesis of a transmission-mode photocathode on the vacuum side of a photodetector entrance window.

  9. Extension of photomultiplier tube dynamic range for the LHAASO-KM2A electromagnetic particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Hongkui, E-mail: lvhk@ihep.ac.cn [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Sheng, Xiangdong; He, Huihai; Liu, Jia [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Zhongquan [Shandong University, Jinan 250100 (China); Hou, Chao; Zhao, Jing [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2015-05-01

    In the Large High Altitude Air Shower Observatory (LHAASO), the 1 km{sup 2} array (KM2A) requires linear measurement of optical intensity with a wide dynamic range. Over 5000 photomultiplier tubes (PMTs) are employed in this experiment and developed as “two outputs” device (anode and dynode) to meet the relevant requirements. In this study, the linearity of the anode and the eighth dynode (DY8), which is limited by space charge effects and mainly related to the relative dynode voltage ratios of the PMT divider, is examined. A voltage divider for the Hamamatsu R11102 PMT is designed and a dramatically enhanced linearity is demonstrated. Test results show that this design can cover a wide dynamic range from 20 to 2×10{sup 5} photoelectrons and achieve a peak anode current of 380 mA at a PMT gain of 10{sup 5}, which satisfies the requirements of KM2A electromagnetic particle detectors. The circuit design has been successfully simulated using the simulation software Multisim. The details of PMT performance tests and simulations are described.

  10. Extension of photomultiplier tube dynamic range for the LHAASO-KM2A electromagnetic particle detectors

    Science.gov (United States)

    Lv, Hongkui; Sheng, Xiangdong; He, Huihai; Liu, Jia; Zhang, Zhongquan; Hou, Chao; Zhao, Jing

    2015-05-01

    In the Large High Altitude Air Shower Observatory (LHAASO), the 1 km2 array (KM2A) requires linear measurement of optical intensity with a wide dynamic range. Over 5000 photomultiplier tubes (PMTs) are employed in this experiment and developed as "two outputs" device (anode and dynode) to meet the relevant requirements. In this study, the linearity of the anode and the eighth dynode (DY8), which is limited by space charge effects and mainly related to the relative dynode voltage ratios of the PMT divider, is examined. A voltage divider for the Hamamatsu R11102 PMT is designed and a dramatically enhanced linearity is demonstrated. Test results show that this design can cover a wide dynamic range from 20 to 2×105 photoelectrons and achieve a peak anode current of 380 mA at a PMT gain of 105, which satisfies the requirements of KM2A electromagnetic particle detectors. The circuit design has been successfully simulated using the simulation software Multisim. The details of PMT performance tests and simulations are described.

  11. Extension of photomultiplier tube dynamic range for the LHAASO-KM2A electromagnetic particle detectors

    International Nuclear Information System (INIS)

    Lv, Hongkui; Sheng, Xiangdong; He, Huihai; Liu, Jia; Zhang, Zhongquan; Hou, Chao; Zhao, Jing

    2015-01-01

    In the Large High Altitude Air Shower Observatory (LHAASO), the 1 km 2 array (KM2A) requires linear measurement of optical intensity with a wide dynamic range. Over 5000 photomultiplier tubes (PMTs) are employed in this experiment and developed as “two outputs” device (anode and dynode) to meet the relevant requirements. In this study, the linearity of the anode and the eighth dynode (DY8), which is limited by space charge effects and mainly related to the relative dynode voltage ratios of the PMT divider, is examined. A voltage divider for the Hamamatsu R11102 PMT is designed and a dramatically enhanced linearity is demonstrated. Test results show that this design can cover a wide dynamic range from 20 to 2×10 5 photoelectrons and achieve a peak anode current of 380 mA at a PMT gain of 10 5 , which satisfies the requirements of KM2A electromagnetic particle detectors. The circuit design has been successfully simulated using the simulation software Multisim. The details of PMT performance tests and simulations are described

  12. Photocopia-A Unibody Mono-material Compact and Scalable Photomultiplier

    Energy Technology Data Exchange (ETDEWEB)

    Mulhollan, Gregory [Saxet Surface Science

    2014-12-01

    The Photocopia photomultiplier tube (PMT) takes advantage of two of the many unique properties of the hydrogenated amorphous silicon-germanium (a-SiGe) photoemitter material: its mechanical flexibility and mostly substrate-independent properties. The a-SiGe photoemitter has high secondary electron (SE) yield. It can be used both as the photocathode and as the gain medium. The active material can be grown on a flat, thin unibody substrate, formed and then “rolled up” ex situ. The completed structure would then be activated and sealed within a tube. The Ge component can be increased to enhance red-sensitivity. Compact sizes are possible, minimizing magnetic field effects. The Photocopia PMT will be a low cost alternative to MCPs for TOF detectors and provide better timing discrimination for Cherenkov detectors. Retention of the ability to activate to a normal photoyield state upon flexing (bending) the substrate of the a-SiGe material after growth, but prior to activation has been shown. The SE coefficient of the activated material has been characterized over the voltage range suitable for utilization as the gain material. The time response of the material is suited to PMT use.

  13. Method and apparatus for sizing nuclear fuel rod cladding tubes

    International Nuclear Information System (INIS)

    Koehler, L.

    1976-01-01

    Nuclear fuel rod cladding tubes are sized internally to diameters precisely fitting nuclear fuel pellets with which the tubes are charged by externally applying hydraulic pressure to short lengths of each tube. The pressure is applied while the tube is stationary. The tube is then moved to bring a new length within the hydraulic pressure zone. The volume of the hydraulic liquid used and the pressure applied to this liquid is such that the liquid is compressed slightly so that the length being sized yields, the expansion of the liquid then completing the sizing. The lengths being sized step-by-step are internally supported by either the fuel pellets or a mandrel having the same diameter as the pellets

  14. Sensitivity of a multi-photomultiplier optical module for KM3NeT

    NARCIS (Netherlands)

    Löhner, H.; Mjos, A.

    2009-01-01

    For the KM3NeT neutrino telescope an optical module with a number of small photomultiplier tubes (multi-PMT optical module) will be advantageous for various reasons, e.g. reduced background rate, a larger number of coincidence hits, and sensitivity to ultra-high energy neutrinos. The properties of

  15. A small animal PET prototype based on Silicon Photomultipliers

    International Nuclear Information System (INIS)

    Marcatili, S; Belcari, N.; Bisogni, M.G.; Del Guerra, A.; Collazuol, G.; Pedreschi, E.; Spinella, F.; Sportelli, G.; Marzocca, C.

    2011-01-01

    Next generation PET scanners should full fill very high requirements in terms of spatial, energy and timing resolution. Modern scanner performances are inherently limited by the use of standard photomultiplier tubes. The use of Silicon Photomultiplier (Si P M) matrices is proposed for the construction of a small animal PET system consisting of two detector heads based on Lyso continuos crystals. The use of large area multi-pixel Silicon Photomultiplier (Si P M) detectors requires the development of a multichannel Digital Acquisition system (DAQ) as well as of a dedicated front-end in order not to degrade the intrinsic detector capabilities. At the University of Pisa and INFN Pisa we developed a DAQ board for the read-out of 2 64-pixel Si P M matrices in time coincidence for Positron Emission Tomography (PET) applications. The proof of principles is based on 64-pixel detectors, but the whole system has been conceived to be easily scalable to a higher number of channels. Here we describe the Group-V INFN DASi P M 2 (Development and Application of Si P M) project and related results.

  16. Development of gaseous photomultiplier

    International Nuclear Information System (INIS)

    Tokanai, F.; Sumiyoshi, T.; Sugiyama, H.; Okada, T.

    2014-01-01

    We have been developing gaseous photomultiplier tubes (PMTs) with alkali photocathode combined with micropattern gas detectors (MPGDs). The potential advantage of the gaseous PMT is that it can achieve a very large effective area with adequate position and timing resolutions. In addition, it will be easily operated under a very high magnetic field, compared with the conventional vacuum-based PMT. To evaluate the gaseous PMTs filled with Ne and Ar based gas mixture, we have developed gaseous PMTs with an alkali photocathode combined with MPGDs such as a glass capillary plate, GEM, and Micromegas detector. We describe the recent development of the gaseous PMTs, particularly the production of the photocathode, gas gain, ion and photon feedbacks, quantum efficiency, and the characteristics in the magnetic field environment. (author)

  17. The characterisation of the multianode photomultiplier tubes for the RICH-1 upgrade project at COMPASS

    Science.gov (United States)

    Abbon, P.; Alexeev, M.; Angerer, H.; Birsa, R.; Bordalo, P.; Bradamante, F.; Bressan, A.; Chiosso, M.; Ciliberti, P.; Colantoni, M. L.; Dafni, T.; Dalla Torre, S.; Delagnes, E.; Denisov, O.; Deschamps, H.; Diaz, V.; Dibiase, N.; Duic, V.; Eyrich, W.; Ferrero, A.; Finger, M.; Finger, M.; Fischer, H.; Gerassimov, S.; Giorgi, M.; Gobbo, B.; Hagemann, R.; von Harrach, D.; Heinsius, F. H.; Joosten, R.; Ketzer, B.; Kolosov, V. N.; Königsmann, K.; Konorov, I.; Kramer, D.; Kunne, F.; Lehmann, A.; Levorato, S.; Maggiora, A.; Magnon, A.; Mann, A.; Martin, A.; Menon, G.; Mutter, A.; Nähle, O.; Nerling, F.; Neyret, D.; Panzieri, D.; Paul, S.; Pesaro, G.; Pizzolotto, C.; Polak, J.; Rebourgeard, P.; Robinet, F.; Rocco, E.; Schiavon, P.; Schill, C.; Schoenmeier, P.; Schroeder, W.; Silva, L.; Slunecka, M.; Sozzi, F.; Steiger, L.; Sulc, M.; Svec, M.; Takekawa, S.; Tessarotto, F.; Teufel, A.; Wollny, H.

    2008-09-01

    A major upgrade of the Cherenkov photon detection system of COMPASS RICH-1 has been performed and it has been in operation since the 2006 physics run. The inner part of the photon detector has been replaced by a different technology in order to measure Cherenkov photons at high photoelectron rates, up to several times 10 6 per second and per channel. Cherenkov photons from 200 to 750 nm are detected by 576 multianode photomultiplier tubes (MAPMTs) with 16 channels each, coupled to individual fused silica lens telescopes and fast, high sensitivity and high time resolution electronics read-out. To guarantee an optimal performance of the complete system, parameters like dark current, gain, uniformity, relative quantum efficiency have been measured for a totality of more than 600 MAPMTs (about 10 000 channels) in a fully automated test-stand, developed for this purpose. The ideal working point for each individual pixel could be ascertained by these measurements. In 2006 the newly equipped detector exhibited an excellent performance: about 56 detected photons per ring at saturation and a time resolution of better than 1 ns. We report about the MAPMT characterisation and the quality control set-up, protocol and results.

  18. Silicon Photomultipliers (SiPM) as novel photodetectors for PET

    International Nuclear Information System (INIS)

    Del Guerra, Alberto; Belcari, Nicola; Giuseppina Bisogni, Maria; Corsi, Francesco; Foresta, Maurizio; Guerra, Pedro; Marcatili, Sara; Santos, Andres; Sportelli, Giancarlo

    2011-01-01

    Next generation PET scanners should fulfill very high requirements in terms of spatial, energy and timing resolution. Modern scanner performances are inherently limited by the use of standard photomultiplier tubes. The use of Silicon Photomultipliers (SiPMs) is proposed for the construction of a 4D-PET module of 4.8x4.8 cm 2 aimed to replace the standard PMT based PET block detector. The module will be based on a LYSO continuous crystal read on two faces by Silicon Photomultipliers. A high granularity detection surface made by SiPM matrices of 1.5 mm pitch will be used for the x-y photon hit position determination with submillimetric accuracy, while a low granularity surface constituted by 16 mm 2 SiPM pixels will provide the fast timing information (t) that will be used to implement the Time of Flight technique (TOF). The spatial information collected by the two detector layers will be combined in order to measure the Depth of Interaction (DOI) of each event (z). The use of large area multi-pixel Silicon Photomultiplier (SiPM) detectors requires the development of a multichannel Data Acquisition system (DAQ) as well as of a dedicated front-end in order not to degrade the intrinsic detector capabilities and to manage many channels. The paper describes the progress made on the development of the proof of principle module under construction at the University of Pisa.

  19. A silicon photomultiplier readout for time of flight neutron spectroscopy with {gamma}-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Pietropaolo, A.; Gorini, G. [Dipartimento di Fisica ' ' G. Occhialini' ' and CNISM, Universita Degli Studi di Milano-Bicocca, Piazza della Scienza 3, 20126 Milano (Italy); Festa, G.; Andreani, C.; De Pascale, M. P.; Reali, E. [Dipartimento di Fisica and Centro NAST, Universita degli Studi di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133, Roma (Italy); Grazzi, F. [Istituto dei Sistemi Complessi-Consiglio Nazionale delle Ricerche, Via Madonna del Piano n.10, I-50019 Sesto Fiorentino, Firenze (Italy); Schooneveld, E. M. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire, OX11 0QX (United Kingdom)

    2009-09-15

    The silicon photomultiplier (SiPM) is a recently developed photosensor used in particle physics, e.g., for detection of minimum ionizing particles and/or Cherenkov radiation. Its performance is comparable to that of photomultiplier tubes, but with advantages in terms of reduced volume and magnetic field insensitivity. In the present study, the performance of a gamma ray detector made of an yttrium aluminum perovskite scintillation crystal and a SiPM-based readout is assessed for use in time of flight neutron spectroscopy. Measurements performed at the ISIS pulsed neutron source demonstrate the feasibility of {gamma}-detection based on the new device.

  20. A model for the Global Quantum Efficiency for a TPB-based wavelength-shifting system used with photomultiplier tubes in liquid argon in MicroBooNE

    Science.gov (United States)

    Pate, S. F.; Wester, T.; Bugel, L.; Conrad, J.; Henderson, E.; Jones, B. J. P.; McLean, A. I. L.; Moon, J. S.; Toups, M.; Wongjirad, T.

    2018-02-01

    We present a model for the Global Quantum Efficiency (GQE) of the MicroBooNE optical units. An optical unit consists of a flat, circular acrylic plate, coated with tetraphenyl butadiene (TPB), positioned near the photocathode of a 20.2-cm diameter photomultiplier tube. The plate converts the ultra-violet scintillation photons from liquid argon into visible-spectrum photons to which the cryogenic phototubes are sensitive. The GQE is the convolution of the efficiency of the plates that convert the 128 nm scintillation light from liquid argon to visible light, the efficiency of the shifted light to reach the photocathode, and the efficiency of the cryogenic photomultiplier tube. We develop a GEANT4-based model of the optical unit, based on first principles, and obtain the range of probable values for the expected number of detected photoelectrons (NPE) given the known systematic errors on the simulation parameters. We compare results from four measurements of the NPE determined using alpha-particle sources placed at two distances from a TPB-coated plate in a liquid argon cryostat test stand. We also directly measured the radial dependence of the quantum efficiency, and find that this has the same shape as predicted by our model. Our model results in a GQE of 0.0055±0.0009 for the MicroBooNE optical units. While the information shown here is MicroBooNE specific, the approach to the model and the collection of simulation parameters will be widely applicable to many liquid-argon-based light collection systems.

  1. The photomultiplier handbook

    CERN Document Server

    Wright, A G

    2017-01-01

    Photomultipliers are extremely sensitive light detectors that can detect single photons. In multiplying the charge produced by incident light by up to 100 million times, these devices are essential to a wide range of functions, from medical instrumentation to astronomical observations. This complete and authoritative guide will provide students, practitioners, and researchers with a deeper understanding of the operating principles of these devices. Authored by an experienced user and manufacturer of photomultipliers, this handbook gives the reader insights into photomultiplier behaviour as a means to optimize performance. Diffuse and low level light sources are best served with a photomultiplier for the detection of single photon emissions. Light detection and electron multiplication are statistical in nature and the mathematics of these processes is derived from first principles. The book covers other related topics such as scintillation counting, light guides, and large area detectors. The usually complicat...

  2. Photomultiplier pulse Read Out system for the preshower detector of the LHCb experiment

    International Nuclear Information System (INIS)

    Ajaltouni, Z.; Bohner, G.; Cornat, R.; Deschamps, O.; Lecoq, J.; Monteil, S.; Perret, P.

    2003-01-01

    The second generation experiment for CP violation studies in B decays, LHCb, is a 20-m-long single-arm spectrometer to be installed on the future Large Hadron Collider at CERN. For its precision measurement purpose, it combines precise vertex location and particle identification, in addition to a performance trigger system able to cope with high flux. The first level of trigger is mainly based on the fast response of the calorimetric subsystem. Of major importance is the 6000 channels preshower detector that aims to validate the electromagnetic nature of calorimetric showers. It consists of two-radiation-length lead sheet in front of a scintillator plane. Scintillator signals are extracted from plastic cells using wavelength-shifting fibres coupled to multi-anode photomultiplier tubes. The preshower Read Out system has to cope with fluctuating photomultiplier pulses caused by small amounts of photoelectrons, in addition to strong constraints imposed by the 40 MHz LHC bunch-crossing frequency. A special Read Out electronics including perfect 40 MHz integrators able to shape fluctuating photomultiplier pulses has been designed, and successfully realized. The temporal shape of photomultiplier pulse and the upstream Read Out system for preshower are described in this document

  3. An amplifier for VUV photomultiplier operating in cryogenic environment

    International Nuclear Information System (INIS)

    Arneodo, F.; Benabderrahmane, M.L.; Dahal, S.; Di Giovanni, A.; D'Inzeo, M.; Franchi, G.; Pazos Clemens, L.

    2016-01-01

    We present the characterisation of an amplifier potentially interesting for noble liquid detectors. The design has been conceived considering the requirements of low power consumption (less than 30 mW), low noise, amplification factor of 10 at 100 MHz and use of commercial components. The amplifier has been integrated onto an electronic board with a voltage divider to operate an Hamamatsu R11410 photomultiplier tube (used in XENON1T, Aprile et al. (2014) [1] dark matter experiment).

  4. An amplifier for VUV photomultiplier operating in cryogenic environment

    Energy Technology Data Exchange (ETDEWEB)

    Arneodo, F.; Benabderrahmane, M.L.; Dahal, S. [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Di Giovanni, A., E-mail: adriano.digiovanni@nyu.edu [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); D' Inzeo, M.; Franchi, G. [Age Scientific srl – Capezzano Pianore (Italy); Pazos Clemens, L. [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates)

    2016-07-11

    We present the characterisation of an amplifier potentially interesting for noble liquid detectors. The design has been conceived considering the requirements of low power consumption (less than 30 mW), low noise, amplification factor of 10 at 100 MHz and use of commercial components. The amplifier has been integrated onto an electronic board with a voltage divider to operate an Hamamatsu R11410 photomultiplier tube (used in XENON1T, Aprile et al. (2014) [1] dark matter experiment).

  5. Measurement of the ratio h / e with a photomultiplier tube and a set of LEDs

    International Nuclear Information System (INIS)

    Loparco, F; Malagoli, M S; Rainò, S; Spinelli, P

    2017-01-01

    We propose a laboratory experience aimed at undergraduate physics students to understand the main features of the photoelectric effect and to perform a measurement of the ratio h / e , where h is Planck’s constant and e is the electron charge. The experience is based on the method developed by Millikan for his measurements of the photoelectric effect in the years from 1912 to 1915. The experimental setup consists of a photomultiplier tube (PMT) equipped with a voltage divider properly modified to set variable retarding potentials between the photocathode and the first dynode, and a set of LEDs emitting at different wavelengths. The photocathode is illuminated with the various LEDs and, for each wavelength of the incident light, the output anode current is measured as a function of the retarding potential applied between the cathode and the first dynode. From each measurement, a value of the stopping potential for the anode current is derived. Finally, the stopping potentials are plotted as a function of the frequency of the incident light, and a linear fit is performed. The slope and the intercept of the line allow one to respectively evaluate the ratio h / e and the ratio W / e , where W is the work function of the photocathode. (paper)

  6. Photomultiplier gain stabilisation

    International Nuclear Information System (INIS)

    Le Baud, P.; Sautiez, B.

    1958-07-01

    By the control and adjustment of magnetic deflection applied to the electron beam of a photomultiplier it has proved possible to flatten the gain curve, forming plateaux at levels dependent upon the voltage at intake. It should be possible to add this simple device to most photomultipliers on the market today. (author) [fr

  7. A position sensitive detector using a NaI(Tl)/photomultiplier tube combination for the energy range 200 keV to 10 MeV

    International Nuclear Information System (INIS)

    Court, A.J.; Dean, A.J.; Yearworth, M.; Younis, F.; Chiappetti, L.; Perotti, F.; Villa, G.; Ubertini, P.; La Padula, C.

    1988-01-01

    The performance of the position sensitive detector for the ZEBRA low energy gamma-ray imaging telescope is described. The detector consists of 9 position sensitive NaI(Tl) elements each 5.8x5.0x56.0 cm viewed at either end of the long axis by 2 in. photomultiplier tubes. The total active area is 2470 cm 2 with an average positional resolution of 2.1 cm and energy resolution of 15% FWHM at 661.6 keV. The method of flight calibration is described together with the provision within the on-board electronics to correct for sources of error in the calculation of event energy loss and position. The results presented are obtained from the calibration phase of the ZEBRA telescope project. (orig.)

  8. Silicon photomultiplier readout of a monolithic 270 x 5 x 5 cm{sup 3} plastic scintillator bar for time of flight applications

    Energy Technology Data Exchange (ETDEWEB)

    Roeder, Marko; Bemmerer, Daniel; Heidel, Klaus; Stach, Daniel; Wagner, Andreas; Weinberger, David [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Cowan, Thomas E.; Gohl, Stefan; Reinicke, Stefan [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); TU Dresden (Germany); Reinhardt, Tobias P.; Zuber, Kai [TU Dresden (Germany); Collaboration: R3B-Collaboration

    2016-07-01

    The detection of 200-1000 MeV neutrons requires large amounts of detector material because of the long nuclear interaction length of these particles. In the example of the NeuLAND neutron time-of-flight detector at FAIR, this is accomplished by using 3000 scintillator bars of 270 x 5 x 5 cm{sup 3} size made of the fast plastic polyvinyltoluene. In the present work, we investigated whether silicon photomultiplier (SiPM) photosensors can replace fast timing photomultiplier tubes. The response of the system consisting of scintillator, SiPM, and preamplifier was studied using 30 MeV single electrons provided by the ELBE superconducting electron linac. The results were interpreted by a simple Monte Carlo simulation, and the time resolution was found to obey an inverse-square-root scaling law with the number of fired pixels. In the electron beam tests, a time resolution of σ{sub t}=136 ps was reached with a pure SiPM readout, well within the design parameters for NeuLAND.

  9. Tube vibration in industrial size test heat exchanger

    International Nuclear Information System (INIS)

    Halle, H.; Wambsganss, M.W.

    1980-03-01

    Tube vibration data from tests of a specially built and instrumented, industrial-type, shell-and-tube heat exchanger are reported. The heat exchanger is nominally 0.6 m (2 ft) in dia and 3.7 m (12 ft) long. Both full tube and no-tubes-in-window bundles were tested for inlet/outlet nozzles of different sizes and with the tubes supported by seven, equally-spaced, single-segmental baffles. Prior to water flow testing, natural frequencies and damping of representative tubes were measured in air and water. Flow testing was accomplished by increasing the flow rates in stepwise fashion and also by sweeping through a selected range of flow rates. The primary variables measured and reported are tube accelerations and/or displacements and pressure drop through the bundle. Tests of the full tube bundle configuration revealed tube rattling to occur at intermediate flow rates, and fluidelastic instability, with resultant tube impacting, to occur when the flow rate exceeded a threshold level; principally, the four-span tubes were involved in the regions immediately adjacent to the baffle cut. For the range of flow rates tested, fluidelastic instability was not achieved in the no-tubes-in-window bundle; in this configuration the tubes are supported by all seven baffles and are, therefore, stiffer

  10. Visual accumulation tube for size analysis of sands

    Science.gov (United States)

    Colby, B.C.; Christensen, R.P.

    1956-01-01

    The visual-accumulation-tube method was developed primarily for making size analyses of the sand fractions of suspended-sediment and bed-material samples. Because the fundamental property governing the motion of a sediment particle in a fluid is believed to be its fall velocity. the analysis is designed to determine the fall-velocity-frequency distribution of the individual particles of the sample. The analysis is based on a stratified sedimentation system in which the sample is introduced at the top of a transparent settling tube containing distilled water. The procedure involves the direct visual tracing of the height of sediment accumulation in a contracted section at the bottom of the tube. A pen records the height on a moving chart. The method is simple and fast, provides a continuous and permanent record, gives highly reproducible results, and accurately determines the fall-velocity characteristics of the sample. The apparatus, procedure, results, and accuracy of the visual-accumulation-tube method for determining the sedimentation-size distribution of sands are presented in this paper.

  11. The influence of chest tube size and position in primary spontaneous pneumothorax

    DEFF Research Database (Denmark)

    Riber, Sara S.; Riber, Lars P S; Olesen, Winnie H.

    2017-01-01

    Background: Optimal chest tube position in the pleural cavity is largely unexplored for the treatment of primary spontaneous pneumothorax (PSP). We investigated whether type, size and position of chest tubes influenced duration of treatment for PSP. Methods: A retrospective follow-up study of all...... patients admitted with PSP over a 5-year period. Traumatic, iatrogenic and secondary pneumothoraxes were excluded. Gender, age, smoking habits, type and size of chest tube used (pigtail catheter or surgical chest tube) were recorded from the patients' charts. All chest X-rays upon admittance...... and immediately following chest tube placement were retrieved and re-evaluated for size of pneumothorax (categorized into five groups) and location of the chest tube tip (categorized as upper, middle or lower third of the pleural cavity). All data were analysed in a Cox proportional hazards regression model...

  12. Tests of crossed-wire position sensitive photomultipliers for scintillating fiber particle tracking

    International Nuclear Information System (INIS)

    Perdrisat, C.F.; Koechner, D.; Majewski, S.; Pourang, R.; Wilson, C.D.; Zorn, C.

    1995-01-01

    Several applications of two Hamamatsu position sensitive photomultiplier tubes to the detection of high energy particles with scintillating fibers are discussed. The PMTs are of the multiwire anode grid design, type R2486 and R4135. These tubes were tested with both single samples and arrays of 2 and 3 mm diameter scintillating fibers. Measurements of position resolution of the PMTs using either the charge digitization or the delay line readout techniques were made. The results indicate an intrinsic inability of the technique to reconstruct the actual position of a fiber on the photocathode when its location falls halfway between two grid wires. A way to overcome this limit is suggested. (orig.)

  13. Photomultiplier protector for a fluorometer

    International Nuclear Information System (INIS)

    Priarone, P.; St John, P.A.

    1982-01-01

    The photometer is adapted for sensing radiation emitted by a chemical sample held in a cuvette received in a first compartment and includes a highly sensitive photomultiplier in a second compartment adjacent the first compartment for detecting fluorescent radiation emitted by the chemical sample and passing through an opening between the compartments. A mechanical protector assembly is provided for protecting the photomultiplier from ambient light and includes a movable light shield movable between a first position blocking the opening and a second position not blocking the opening. A knob is provided for moving the light shield to the first position to protect the photomultiplier from light entering from the first compartment when the first compartment is opened for insertion or removal of a cuvette, and for moving the light shield to the second position not blocking the opening to permit radiation emitted by the chemical sample to impinge upon the photomultiplier in the second compartment. The photometer also includes a mechanical interlocking assembly for ensuring that the first compartment cannot be opened unless the light shield is in the first position to prevent ambient light from entering the second compartment from the first compartment and reaching the photomultiplier

  14. Advances in CMOS solid-state photomultipliers for scintillation detector applications

    Energy Technology Data Exchange (ETDEWEB)

    Christian, James F.; Stapels, Christopher J.; Johnson, Erik B.; McClish, Mickel; Dokhale, Purushotthom; Shah, Kanai S.; Mukhopadhyay, Sharmistha; Chapman, Eric [Radiation Monitoring Devices, 44 Hunt Street, Watertownm, MA 02472 (United States); Augustine, Frank L., E-mail: JChristian@RMDInc.co [Augustine Engineering, 2115 Park Dale Ln, Encinitas, CA 92024 (United States)

    2010-12-11

    Solid-state photomultipliers (SSPMs) are a compact, lightweight, potentially low-cost alternative to a photomultiplier tube for a variety of scintillation detector applications, including digital-dosimeter and medical-imaging applications. Manufacturing SSPMs with a commercial CMOS process provides the ability for rapid prototyping, and facilitates production to reduce the cost. RMD designs CMOS SSPM devices that are fabricated by commercial foundries. This work describes the characterization and performance of these devices for scintillation detector applications. This work also describes the terms contributing to device noise in terms of the excess noise of the SSPM, the binomial statistics governing the number of pixels triggered by a scintillation event, and the background, or thermal, count rate. The fluctuations associated with these terms limit the resolution of the signal pulse amplitude. We explore the use of pixel-level signal conditioning, and characterize the performance of a prototype SSPM device that preserves the digital nature of the signal. In addition, we explore designs of position-sensitive SSPM detectors for medical imaging applications, and characterize their performance.

  15. Test on 2,000 photomultipliers for the CDF endplug calorimeter upgrade

    International Nuclear Information System (INIS)

    Fiori, I.

    1997-01-01

    A systematic test of various characteristics, such as gain, dark current, maximum peak current, stability and relative quantum efficiency, has been made to evaluate about 2,000 photomultiplier tubes for the upgraded CDF Endplug calorimeters. The phototubes are Hamamatsu R4125,19mm diameter with green-extended photocathode. In this report we discuss the distribution of the major characteristics measured and the failure mode. Comparisons between independent measurements made on some of the characteristics are used to evaluate the quality of the measurement itself

  16. Optimization of Performance Parameters for Large Area Silicon Photomultipliers

    Science.gov (United States)

    Janzen, Kathryn

    2008-10-01

    The goal of the GlueX experiment is to search for exotic hybrid mesons as evidence of gluonic excitations in an effort to better understand confinement. A key component of the GlueX detector is the electromagnetic barrel calorimeter (BCAL) located immediately inside a superconducting solenoid of approximately 2.5T. Because of this arrangement, traditional vacuum photomultiplier tubes (PMTs) which are affected significantly by magnetic fields cannot be used on the BCAL. The use of Silicon photomultipliers (SiPMs) as front-end detectors has been proposed. While the largest SiPMs that have been previously employed by other experiments are 1x1 mm^2, GlueX proposes to use large area SiPMs each composed of 16 - 3x3 mm^2 cells in a 4x4 array. This puts the GlueX collaboration in the unique position of driving the technology for larger area sensors. In this talk I will discuss tests done in Regina regarding performance parameters of prototype SiPM arrays delivered by SensL, a photonics research and development company based in Ireland, as well as sample 1x1 mm^2 and 3x3 mm^2 SiPMs.

  17. The relative impact of sizing errors on steam generator tube failure probability

    International Nuclear Information System (INIS)

    Cizelj, L.; Dvorsek, T.

    1998-01-01

    The Outside Diameter Stress Corrosion Cracking (ODSCC) at tube support plates is currently the major degradation mechanism affecting the steam generator tubes made of Inconel 600. This caused development and licensing of degradation specific maintenance approaches, which addressed two main failure modes of the degraded piping: tube rupture; and excessive leakage through degraded tubes. A methodology aiming at assessing the efficiency of a given set of possible maintenance approaches has already been proposed by the authors. It pointed out better performance of the degradation specific over generic approaches in (1) lower probability of single and multiple steam generator tube rupture (SGTR), (2) lower estimated accidental leak rates and (3) less tubes plugged. A sensitivity analysis was also performed pointing out the relative contributions of uncertain input parameters to the tube rupture probabilities. The dominant contribution was assigned to the uncertainties inherent to the regression models used to correlate the defect size and tube burst pressure. The uncertainties, which can be estimated from the in-service inspections, are further analysed in this paper. The defect growth was found to have significant and to some extent unrealistic impact on the probability of single tube rupture. Since the defect growth estimates were based on the past inspection records they strongly depend on the sizing errors. Therefore, an attempt was made to filter out the sizing errors and to arrive at more realistic estimates of the defect growth. The impact of different assumptions regarding sizing errors on the tube rupture probability was studied using a realistic numerical example. The data used is obtained from a series of inspection results from Krsko NPP with 2 Westinghouse D-4 steam generators. The results obtained are considered useful in safety assessment and maintenance of affected steam generators. (author)

  18. First characterization of the SPADnet sensor: a digital silicon photomultiplier for PET applications

    Science.gov (United States)

    Gros-Daillon, E.; Maingault, L.; André, L.; Reboud, V.; Verger, L.; Charbon, E.; Bruschini, C.; Veerappan, C.; Stoppa, D.; Massari, N.; Perenzoni, M.; Braga, L. H. C.; Gasparini, L.; Henderson, R. K.; Walker, R.; East, S.; Grant, L.; Jatekos, B.; Lorincz, E.; Ujhelyi, F.; Erdei, G.; Major, P.; Papp, Z.; Nemeth, G.

    2013-12-01

    Silicon Photomultipliers have the ability to replace photomultiplier tubes when used as light sensors in scintillation gamma-ray detectors. Their timing properties, compactness, and magnetic field compatibility make them interesting for use in Time-of-Flight Magnetic Resonance Imaging compatible Positron Emission Tomography. In this paper, we present a new fully digital Single Photon Avalanche Diode (SPAD) based detector fabricated in CMOS image sensor technology. It contains 16x8 pixels with a pitch of 610x571.2 μm2. The Dark Count Rate and the Photon Detection Probability of each SPAD has been measured and the homogeneity of these parameters in the entire 92000 SPAD array is shown. The sensor has been optically coupled to a single LYSO needle and a LYSO array. The scintillator crystal was irradiated with several gamma sources and the resulting images and energy spectra are presented.

  19. Development of gamma spectrometer using silicon photomultiplier (SiPM)

    International Nuclear Information System (INIS)

    Kim, Chan Kyu

    2011-02-01

    Gamma spectroscopy is used to determine the identity and quantity of gamma-emitters in nuclear physics, geochemistry and astrophysics. The scintillation detectors are being used as a gamma spectrometer generally, because of their higher gamma-ray detection efficiency and cheaper price than germanium semi-conductor detectors. A typical scintillation detector is composed of a scintillator, a window, and a photodetector. The photomultiplier (PM) tube has been the most widely used as a photodetector because of its advantages like high sensitivity, high signal-to-noise ratio, and wide dynamic range. Recently, the Silicon Photomultiplier (SiPM) is being studied as a substitute of PM tube. The SiPM has almost same performance compared to PM tube but it has additional advantages; low operating voltage, small volume, and cheap production cost. In this research, the gamma spectrometer using SiPM instead of PM tube is developed. The use of SiPM as a photodetector makes the gamma spectrometer smaller, cheaper, easier to use. For photon transport and collection from the large area scintillator to the small area SiPM, a light guide is applied in this gamma spectrometer system. Before fabrication of light guide, DETECT simulation is performed to study and prospect characteristics of light guide structure. And actual light guides are fabricated on the basis of this simulation result. Poly(methyl methacrylate) (PMMA) is chosen as material of light guide, 5 sample light guides are fabricated in different lengths and coatings. As a scintillator crystal, same NaI(Tl) crystal is chosen. For measurement and analysis of gamma spectrometer system, 3 gamma spectrometer systems are composed: PM tube-based system, PM tube-based system with the light guide, SiPM-based system with the light guide. Through comparison between the results of each gamma spectrometer, the performances of gamma spectrometer system are analyzed by each component. Measurement results of the second system is well

  20. Depth-Sizing Technique for Crack Indications in Steam Generator Tubing

    International Nuclear Information System (INIS)

    Cho, Chan Hee; Lee, Hee Jeong; Kim, Hong Deok

    2009-01-01

    The nuclear power plants have been safely operated by plugging the steam generator tubes which have the crack indications. Tube rupture events can occur if analysts fail to detect crack indications during in-service inspection. There are various types of crack indication in steam generator tubes and they have been detected by the eddy current test. The integrity assessment should be performed using the crack-sizing results from eddy current data when the crack indication is detected. However, it is not easy to evaluate the crack-depth precisely and consistently due to the complexity of the methods. The current crack-sizing methods were reviewed in this paper and the suitable ones were selected through the laboratory tests. The retired steam generators of Kori Unit 1 were used for this study. The round robin tests by the domestic qualified analysts were carried out and the statistical models were introduced to establish the appropriate depth-sizing techniques. It is expected that the proposed techniques in this study can be utilized in the Steam Generator Management Program

  1. Photomultiplier pulse Read Out system for the preshower detector of the LHCb experiment

    CERN Document Server

    Ajaltouni, Ziad J; Cornat, R; Deschamps, O; Lecoq, J; Monteil, S; Perret, P

    2003-01-01

    The second generation experiment for CP violation studies in B decays, LHCb, is a 20-m-long single-arm spectrometer to be installed on the future Large Hadron Collider at CERN. For its precision measurement purpose, it combines precise vertex location and particle identification, in addition to a performance trigger system able to cope with high flux. The first level of trigger is mainly based on the fast response of the calorimetric subsystem. Of major importance is the 6000 channels preshower detector that aims to validate the electromagnetic nature of calorimetric showers. It consists of two- radiation-length lead sheet in front of a scintillator plane. Scintillator signals are extracted from plastic cells using wavelength-shifting fibres coupled to multi-anode photomultiplier tubes. The preshower Read Out system has to cope with fluctuating photomultiplier pulses caused by small amounts of photoelectrons, in addition to strong constraints imposed by the 40 MHz LHC bunch- crossing frequency. A special Read...

  2. Performance of 8- and 12-dynode stage multianode photo-multipliers

    Energy Technology Data Exchange (ETDEWEB)

    Bibby, J.H. [University of Oxford, Oxford (United Kingdom); Buckley, A. [Cavendish Laboratory, University of Cambridge, Cambridge (United Kingdom); Chamonal, R.J.U. [University of Edinburgh, Edinburgh (United Kingdom)]. E-mail: chamonal@ph.ed.ac.uk; Easo, S. [CCLRC, Rutherford Aplleton Laboratory, Chilton, Didcot, Oxfordshire (United Kingdom); Eisenhardt, S. [University of Edinburgh, Edinburgh (United Kingdom); Gibson, V. [Cavendish Laboratory, University of Cambridge, Cambridge (United Kingdom); Harnew, N. [University of Oxford, Oxford (United Kingdom); Muheim, F. [University of Edinburgh, Edinburgh (United Kingdom); Howard, A. [Imperial College, London (United Kingdom); Lawrence, J. [University of Edinburgh, Edinburgh (United Kingdom); Pickford, A. [University of Glasgow, Glasgow (United Kingdom); Plackett, R. [Imperial College, London (United Kingdom); Price, D.R. [Imperial College, London (United Kingdom); Rademacker, J. [University of Oxford, Oxford (United Kingdom); Smale, N. [University of Oxford, Oxford (United Kingdom); Soler, F.J.P. [University of Glasgow, Glasgow (United Kingdom); CCLRC, Rutherford Aplleton Laboratory, Chilton, Didcot, Oxfordshire (United Kingdom); Somerville, L. [University of Oxford, Oxford (United Kingdom); Storey, J. [Cavendish Laboratory, University of Cambridge, Cambridge (United Kingdom); Websdale, D. [Imperial College, London (United Kingdom); Wotton, S. [Cavendish Laboratory, University of Cambridge, Cambridge (United Kingdom)

    2006-11-01

    We report on studies of 64-channel Multianode Photo-Multiplier Tubes (MaPMTs) as photo-detectors for Ring Imaging CHerenkov (RICH) counters. The newly available 8-dynode stage MaPMT was tested in particle beams at CERN. The MaPMT signals were read out directly with the Beetle1.2 chip which was designed for the LHCb environment and operates at 40MHz. The photon yield and signal losses were determined for a cluster of 3x3 close-packed MaPMTs. The performance of the 8-dynode stage MaPMT was compared to that of the 12-dynode stage MaPMT which has a larger intrinsic gain.

  3. Silicon photomultipliers for positron emission tomography detectors with depth of interaction encoding capability

    International Nuclear Information System (INIS)

    Taghibakhsh, Farhad; Reznik, Alla; Rowlands, John A.

    2011-01-01

    Silicon photomultipliers (SiPMs) are receiving increasing attention in the field of positron emission tomography (PET) detectors. Compared to photomultiplier tubes, they offer novel detector configurations for the extraction of depth of interaction (DOI) information, or enable emerging medical imaging modalities such as simultaneous PET-magnetic resonant imaging (MRI). In this article, we used 2x2x20 mm 3 LYSO scintillator crystals coupled to SiPMs on both ends (dual-ended readout configuration) to evaluate the detector performance for DOI-PET applications. We investigated the effect of scintillator crystal surface finishing on sensitivity and resolution of DOI, as well as on energy and timing resolution. Measurements indicate DOI sensitivity and resolution of 7.1% mm -1 and 2.1±0.6 mm for saw-cut, and 1.3% mm -1 and 9.0±1.5 mm, for polished scintillator crystals, respectively. Energy resolution varies from 19% when DOI is in the center, to 15% with DOI at either end of the saw-cut crystal, while it remains constant at ∼14% for polished scintillators. Based on our results we conclude that 2x2x20 mm 3 saw-cut (without any special side wall polishing) LYSO crystals coupled to 2x2 mm 2 silicon photomultipliers are optimal for isotropic 2 mm resolution DOI-PET applications.

  4. A novel compensation method for the anode gain non-uniformity of multi-anode photomultiplier tubes.

    Science.gov (United States)

    Lee, Chan Mi; Il Kwon, Sun; Ko, Guen Bae; Ito, Mikiko; Yoon, Hyun Suk; Lee, Dong Soo; Hong, Seong Jong; Lee, Jae Sung

    2012-01-07

    The position-sensitive multi-anode photomultiplier tube (MA-PMT) is widely used in high-resolution scintillation detectors. However, the anode gain nonuniformity of this device is a limiting factor that degrades the intrinsic performance of the detector module. The aim of this work was to develop a gain compensation method for the MA-PMT and evaluate the resulting enhancement in the performance of the detector. The method employs a circuit that is composed only of resistors and is placed between the MA-PMT and a resistive charge division network (RCN) used for position encoding. The goal of the circuit is to divide the output current from each anode, so the same current flows into the RCN regardless of the anode gain. The current division is controlled by the combination of a fixed-value series resistor with an output impedance that is much larger than the input impedance of the RCN, and a parallel resistor, which detours part of the current to ground. PSpice simulations of the compensation circuit and the RCN were performed to determine optimal values for the compensation resistors when used with Hamamatsu H8500 MAPMTs. The intrinsic characteristics of a detector module consisting of this MA-PMT and a lutetium-gadolinium-oxyorthosilicate (LGSO) crystal array were tested with and without the gain compensation method. In simulation, the average coefficient of variation and max/min ratio decreased from 15.7% to 2.7% and 2.0 to 1.2, respectively. In the flood map of the LGSO-H8500 detector, the uniformity of the photopeak position for individual crystals and the energy resolution were much improved. The feasibility of the method was shown by applying it to an octagonal prototype positron emission tomography scanner.

  5. Novel scintillators and silicon photomultipliers for nuclear physics and applications

    International Nuclear Information System (INIS)

    Jenkins, David

    2015-01-01

    Until comparatively recently, scintillator detectors were seen as an old-fashioned tool of nuclear physics with more attention being given to areas such as gamma-ray tracking using high-purity germanium detectors. Next-generation scintillator detectors, such as lanthanum bromide, which were developed for the demands of space science and gamma- ray telescopes, are found to have strong applicability to low energy nuclear physics. Their excellent timing resolution makes them very suitable for fast timing measurements and their much improved energy resolution compared to conventional scintillators promises to open up new avenues in nuclear physics research which were presently hard to access. Such 'medium-resolution' spectroscopy has broad interest across several areas of contemporary interest such as the study of nuclear giant resonances. In addition to the connections to space science, it is striking that the demands of contemporary medical imaging have strong overlap with those of experimental nuclear physics. An example is the interest in PET-MRI combined imaging which requires putting scintillator detectors in a high magnetic field environment. This has led to strong advances in the area of silicon photomultipliers, a solid-state replacement for photomultiplier tubes, which are insensitive to magnetic fields. Broad application to nuclear physics of this technology may be foreseen. (paper)

  6. TRitium Activity Measurements with a PhotomultipliEr in Liquids–The TRAMPEL experiment

    International Nuclear Information System (INIS)

    Priester, Florian; Klein, Manuel

    2016-01-01

    Highlights: • We have set up a new test device for measuring of tritiated water samples. • The device is very compact and easy and reliable in operation. • Easy integration in flow-through systems is possible. • The device has been operated at Tritium Laboratory Karlsruhe for several months. • The lower detection limit has been improved with regard to predecessors experiments. - Abstract: A common technique for the determination of the activity of tritiated water (HTO) is liquid scintillation counting (LSC). This implies sample taking, sample preparation and radioactive waste processing afterwards. When handling highly tritiated water special care has to be taken because of possible harmfulness of the sample. Furthermore, LSC devices are mostly large, heavy and expensive. The TRAMPEL experiment aims at measuring the activity of tritiated water in-line without sample taking. The device is intended to be easy to use and operate, quite inexpensive and compact. The measurement principle is based on electrons from β-decay which induce light in commercially available scintillation fibres. The light is detected by a small photomultiplier tube (PMT). A proof-of-principle was set up for static measurements using standard stainless steel parts. The complete device has a volume of less than 0.5 l.

  7. TRitium Activity Measurements with a PhotomultipliEr in Liquids–The TRAMPEL experiment

    Energy Technology Data Exchange (ETDEWEB)

    Priester, Florian, E-mail: florian.priester@kit.edu; Klein, Manuel

    2016-11-01

    Highlights: • We have set up a new test device for measuring of tritiated water samples. • The device is very compact and easy and reliable in operation. • Easy integration in flow-through systems is possible. • The device has been operated at Tritium Laboratory Karlsruhe for several months. • The lower detection limit has been improved with regard to predecessors experiments. - Abstract: A common technique for the determination of the activity of tritiated water (HTO) is liquid scintillation counting (LSC). This implies sample taking, sample preparation and radioactive waste processing afterwards. When handling highly tritiated water special care has to be taken because of possible harmfulness of the sample. Furthermore, LSC devices are mostly large, heavy and expensive. The TRAMPEL experiment aims at measuring the activity of tritiated water in-line without sample taking. The device is intended to be easy to use and operate, quite inexpensive and compact. The measurement principle is based on electrons from β-decay which induce light in commercially available scintillation fibres. The light is detected by a small photomultiplier tube (PMT). A proof-of-principle was set up for static measurements using standard stainless steel parts. The complete device has a volume of less than 0.5 l.

  8. Precise analysis of the metal package photomultiplier single photoelectron spectra

    International Nuclear Information System (INIS)

    Chirikov-Zorin, I.E.; Fedorko, I.; Sykora, I.; Tokar, S.; Menzione, A.

    2000-01-01

    A deconvolution method based on a sophisticated photomultiplier response function was used to analyse the compact metal package photomultiplier spectra taken in single photoelectron mode. The spectra taken by Hamamtsu R5600 and R5900 photomultipliers have been analysed. The detailed analysis shows that the method appropriately describes the process of charge multiplication in these photomultipliers in a wide range of working regimes and the deconvoluted parameters are established with about 1% accuracy. The method can be used for a detailed analysis of photomultiplier noise and for calibration purposes

  9. CLARO: an ASIC for high rate single photon counting with multi-anode photomultipliers

    Science.gov (United States)

    Baszczyk, M.; Carniti, P.; Cassina, L.; Cotta Ramusino, A.; Dorosz, P.; Fiorini, M.; Gotti, C.; Kucewicz, W.; Malaguti, R.; Pessina, G.

    2017-08-01

    The CLARO is a radiation-hard 8-channel ASIC designed for single photon counting with multi-anode photomultiplier tubes. Each channel outputs a digital pulse when the input signal from the photomultiplier crosses a configurable threshold. The fast return to baseline, typically within 25 ns, and below 50 ns in all conditions, allows to count up to 107 hits/s on each channel, with a power consumption of about 1 mW per channel. The ASIC presented here is a much improved version of the first 4-channel prototype. The threshold can be precisely set in a wide range, between 30 ke- (5 fC) and 16 Me- (2.6 pC). The noise of the amplifier with a 10 pF input capacitance is 3.5 ke- (0.6 fC) RMS. All settings are stored in a 128-bit configuration and status register, protected against soft errors with triple modular redundancy. The paper describes the design of the ASIC at transistor-level, and demonstrates its performance on the test bench.

  10. Studies on the construction of a vertex detector of scintillation fibers and a multi-channel photomultiplier XP 4702

    International Nuclear Information System (INIS)

    Pfeiffer, G.

    1991-04-01

    In the last years recent attempts have been made in the development of scintillating fibers and multichannel photomultiplier tubes. A combination of these two components therefore becomes attractive in building a position sensitive detector. For this purpose some investigations were made to prove the capability of such a combination. It has been shown, that both components would be well suited for building a position sensitive detector. (orig.) [de

  11. A new VME-based high voltage power supply for large photomultiplier systems

    International Nuclear Information System (INIS)

    Neumaier, S.; Hubbeling, T.; Kolb, B.W.; Purschke, M.L.; Ippolitov, M.; Blume, C.; Bohne, E.M.; Bucher, D.; Claussen, A.; Peitzmann, T.; Schepers, G.; Schlagheck, H.

    1995-01-01

    We describe a new high voltage power supply, developed for the leadglass calorimeter of the WA98 experiment at CERN. The high voltage is produced for each of the 10,080 photomultiplier tubes of the detector individually, by the same number of active bases with on-board Greinacher voltage multipliers. The full VME-based HV controller system, which addresses each base via bus cables once per second, is miniaturized and fits into a single VME crate. The main advantages of this approach are the low heat dissipation, the considerably reduced amount of cabling and cost, as well as the high stability and low noise of the system. (orig.)

  12. Effect of pore size on performance of monolithic tube chromatography of large biomolecules.

    Science.gov (United States)

    Podgornik, Ales; Hamachi, Masataka; Isakari, Yu; Yoshimoto, Noriko; Yamamoto, Shuichi

    2017-11-01

    Effect of pore size on the performance of ion-exchange monolith tube chromatography of large biomolecules was investigated. Radial flow 1 mL polymer based monolith tubes of different pore sizes (1.5, 2, and 6 μm) were tested with model samples such as 20 mer poly T-DNA, basic proteins, and acidic proteins (molecular weight 14 000-670 000). Pressure drop, pH transient, the number of binding site, dynamic binding capacity, and peak width were examined. Pressure drop-flow rate curves and dynamic binding capacity values were well correlated with the nominal pore size. While duration of the pH transient curves depends on the pore size, it was found that pH duration normalized on estimated surface area was constant, indicating that the ligand density is the same. This was also confirmed by the constant number of binding site values being independent of pore size. The peak width values were similar to those for axial flow monolith chromatography. These results showed that it is easy to scale up axial flow monolith chromatography to radial flow monolith tube chromatography by choosing the right pore size in terms of the pressure drop and capacity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Gain stabilization circuit of measuring devices with photomultipliers

    International Nuclear Information System (INIS)

    Seda, J.; Sabol, J.

    1974-01-01

    A circuit is designed for the stabilization of the gain of measuring devices with photomultipliers, suitable especially for the stabilization of scintillation detection systems, in which the correction signal is applied to the photomultiplier grid placed between the photocathode and the first dynode. (J.K.)

  14. Performances of multi-channel ceramic photomultipliers

    International Nuclear Information System (INIS)

    Comby, G.; Karolak, M.; Piret, Y.; Mouly, J.P.

    1995-09-01

    Ceramic electron multipliers with real metal dynodes and independent channels ware constructed using multilayer ceramic technology. Tests of these prototypes show their capability to form sensitive detectors such as photomultipliers or light intensifiers. Here, we present results for the photocathode sensitivity, dynode activation, gain, linearity range and dynamic characteristics as well as the effect of 3-year aging of the main operational functions. The advantages provided by the ceramic components are discussed. These results motivate the development of a compact 256 pixel ceramic photomultiplier. (author)

  15. Stabilization of the photomultiplier gain of a liquid scintillation counter

    International Nuclear Information System (INIS)

    Alkhazov, I.D.; Dmitriev, V.D.; Kuznetsov, A.V.; Malkin, L.Z.; Petrov, B.F.; Sheremet'ev, A.K.; Shpakov, V.I.

    1987-01-01

    A stabilization system of photomultiplier gain, where light-emitting diode flashes have been used to obtain a reference signal, is described. The diode is placed just in the liquid scintilllator volume. The stabilization system contains several (according to the number of photomultipliers) identical channels, which of them consists of a colorimeter, a control trigger and an integrator with an operational amplifier. Increase of photomultiplier stability is reached by changing voltage of photomultiplier power according to the reference signal amplitude. The level of background and efficiency of neutron detection by a scintillation counter are unchanged when using the stabilization system for 10 days of measurements

  16. Time resolution performance studies of contemporary high speed photomultipliers

    International Nuclear Information System (INIS)

    Leskovar, B.; Lo, C.C.

    1978-01-01

    The time resolution capabilities of prototype microchannel plate and static crossed-field photomultipliers have been investigated. Measurements were made of electron transit time, rise time, time response, single phtoelectron time spread and multiphotoelectron time spread for LEP HR350 proximity focused high gain curved microchannel plate and VPM-154A/1.6L static crossed-field photomultipliers. The experimental data have been compared with results obtained with conventionally designed high speed photomultipliers. Descriptions are given of both the measuring techniques and the measuring systems. 16 refs

  17. Small size neutron tube UNG-1

    International Nuclear Information System (INIS)

    Bespalov, D.F.; Mints, A.Z.; Shkol'nikov, A.S.

    A tube UNG-1 (universal neutron gas-filled) is designed for the use in the well neutron generators IGN-1 and IGN-1-M (a pulse neutron generator). Their serial production in the USSR has been started in 1963. At the same year, the serial production of the tubes UNG-1 has been started. Thus, this tube is the first serial logging accelerating tube in the USSR. A Penning source, equipped with a hot cathode, was selected as an ion source of the tube

  18. SensL B-Series and C-Series silicon photomultipliers for time-of-flight positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, K., E-mail: koneill@sensl.com; Jackson, C., E-mail: cjackson@sensl.com

    2015-07-01

    Silicon photomultipliers from SensL are designed for high performance, uniformity and low cost. They demonstrate peak photon detection efficiency of 41% at 420 nm, which is matched to the output spectrum of cerium doped lutetium orthosilicate. Coincidence resolving time of less than 220 ps is demonstrated. New process improvements have lead to the development of C-Series SiPM which reduces the dark noise by over an order of magnitude. In this paper we will show characterization test results which include photon detection efficiency, dark count rate, crosstalk probability, afterpulse probability and coincidence resolving time comparing B-Series to the newest pre-production C-Series. Additionally we will discuss the effect of silicon photomultiplier microcell size on coincidence resolving time allowing the optimal microcell size choice to be made for time of flight positron emission tomography systems.

  19. Advances in gas avalanche photomultipliers

    CERN Document Server

    Breskin, Amos; Buzulutskov, A F; Chechik, R; Garty, E; Shefer, G; Singh, B K

    2000-01-01

    Gas avalanche detectors, combining solid photocathodes with fast electron multipliers, provide an attractive solution for photon localization over very large sensitive areas and under high illumination flux. They offer single-photon sensitivity and the possibility of operation under very intense magnetic fields. We discuss the principal factors governing the operation of gas avalanche photomultipliers. We summarize the recent progress made in alkali-halide and CVD-diamond UV-photocathodes, capable of operation under gas multiplication, and novel thin-film protected alkali-antimonide photocathodes, providing, for the first time, the possibility of operating gas photomultipliers in the visible range. Electron multipliers, adequate for these photon detectors, are proposed and some applications are briefly discussed.

  20. Time resolution performance studies of contemporary high speed photomultipliers

    International Nuclear Information System (INIS)

    Leskovar, B.; Lo, C.C.

    1977-01-01

    The time resolution capabilities of prototype microchannel plate and static crossed-field photomultipliers have been investigated. Measurements were made of electron transit time, rise time, time response, single photoelectron time spread and multiphotoelectron time spread for LEP HR350 proximity focused high gain curved microchannel plate and VPM-154A/1.6L static crossed-field photomultipliers. The experimental data have been compared with results obtained with conventionally designed RCS 8850 and C31024 high speed photomultipliers. Descriptions are given of both the measuring techniques and the measuring systems

  1. Computed Tomographic Window Setting for Bronchial Measurement to Guide Double-Lumen Tube Size.

    Science.gov (United States)

    Seo, Jeong-Hwa; Bae, Jinyoung; Paik, Hyesun; Koo, Chang-Hoon; Bahk, Jae-Hyon

    2018-04-01

    The bronchial diameter measured on computed tomography (CT) can be used to guide double-lumen tube (DLT) sizes objectively. The bronchus is known to be measured most accurately in the so-called bronchial CT window. The authors investigated whether using the bronchial window results in the selection of more appropriately sized DLTs than using the other windows. CT image analysis and prospective randomized study. Tertiary hospital. Adults receiving left-sided DLTs. The authors simulated selection of DLT sizes based on the left bronchial diameters measured in the lung (width 1,500 Hounsfield unit [HU] and level -700 HU), bronchial (1,000 HU and -450 HU), and mediastinal (400 HU and 25 HU) CT windows. Furthermore, patients were randomly assigned to undergo imaging with either the bronchial or mediastinal window to guide DLT sizes. Using the underwater seal technique, the authors assessed whether the DLT was appropriately sized, undersized, or oversized for the patient. On 130 CT images, the bronchial diameter (9.9 ± 1.2 mm v 10.5 ± 1.3 mm v 11.7 ± 1.3 mm) and the selected DLT size were different in the lung, bronchial, and mediastinal windows, respectively (p study, oversized tubes were chosen less frequently in the bronchial window than in the mediastinal window (6/110 v 23/111; risk ratio 0.38; 95% CI 0.19-0.79; p = 0.003). No tubes were undersized after measurements in these two windows. The bronchial measurement in the bronchial window guided more appropriately sized DLTs compared with the lung or mediastinal windows. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Studies on a silicon-photomultiplier-based camera for Imaging Atmospheric Cherenkov Telescopes

    Science.gov (United States)

    Arcaro, C.; Corti, D.; De Angelis, A.; Doro, M.; Manea, C.; Mariotti, M.; Rando, R.; Reichardt, I.; Tescaro, D.

    2017-12-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) represent a class of instruments which are dedicated to the ground-based observation of cosmic VHE gamma ray emission based on the detection of the Cherenkov radiation produced in the interaction of gamma rays with the Earth atmosphere. One of the key elements of such instruments is a pixelized focal-plane camera consisting of photodetectors. To date, photomultiplier tubes (PMTs) have been the common choice given their high photon detection efficiency (PDE) and fast time response. Recently, silicon photomultipliers (SiPMs) are emerging as an alternative. This rapidly evolving technology has strong potential to become superior to that based on PMTs in terms of PDE, which would further improve the sensitivity of IACTs, and see a price reduction per square millimeter of detector area. We are working to develop a SiPM-based module for the focal-plane cameras of the MAGIC telescopes to probe this technology for IACTs with large focal plane cameras of an area of few square meters. We will describe the solutions we are exploring in order to balance a competitive performance with a minimal impact on the overall MAGIC camera design using ray tracing simulations. We further present a comparative study of the overall light throughput based on Monte Carlo simulations and considering the properties of the major hardware elements of an IACT.

  3. Filter-fluorescer x-ray spectrometer using solid state detectors for γ-ray background reduction

    International Nuclear Information System (INIS)

    Yokoi, Takashi; Kitagawa, Yoneyoshi; Shiraga, Hiroyuki; Matsunaga, Hirohide; Kato, Yoshiaki; Yamanaka, Chiyoe.

    1986-01-01

    Filter-fluorescer x-ray spectrometer using solid state photo-detectors instead of the photomultiplier tubes in order to reduce the γ-ray background noise is reported. A significant reduction of the γ-ray background noise is expected, because solid state photo-detectors are very small in size compared with the photomultiplier tubes. It has been confirmed that the γ-ray background is reduced in the target irradiation experiments with the Gekko MII glass laser. (author)

  4. Position-sensitive gaseous photomultipliers research and applications

    CERN Document Server

    Francke, Tom; Peskov, Vladimir

    2016-01-01

    Gaseous photomultipliers are defined as gas-filled devices capable of recording single ultraviolet (UV) and visible photons with high position resolution. Used in a variety of research areas, these detectors can be paired with computers to treat and store imaging information of UV-light. Position-Sensitive Gaseous Photomultipliers: Research and Applications explores the advancement of gaseous detectors as applied for single photon detection. Emphasizing emerging perspectives and new ways to apply gaseous detectors across research fields, this research-based publication is an essential reference source for engineers, physicists, graduate-level students, and researchers.

  5. Silicon photomultipliers in AMIGA muon counters

    Energy Technology Data Exchange (ETDEWEB)

    Botti, Ana Martina [Institut fuer Kernphysik, Karlsruher Institut fuer Technologie (Germany); Instituto de Tecnologias en Deteccion y Astroparticulas (ITeDA) (Argentina); Collaboration: Pierre-Auger-Collaboration

    2016-07-01

    The project AMIGA (Auger Muons and Infill for the Ground Array) aims to extend the energy range at the Pierre Auger Observatory to observe cosmic rays of lower energies (down to ∝10{sup 17} eV) and to study the transition from extragalactic to galactic cosmic rays. AMIGA is compounded by an infill of surface detectors (employing Cherenkov radiation detection in water) and muon counters. The AMIGA muon counters consist of an array of buried modules composed of 64 scintillator bars, a multi-pixel Photo Multiplier Tube (PMT) and the corresponding electronic of acquisition which works along with the surface detector. Currently, ITeDA is evaluating the feasibility of replacing PMTs with silicon photomultipliers (SiPM) without performing any substantial modification in the digital readout nor in the mechanical design. I present calibration results of a prototype module associated to the surface detector Toune of the Pierre Auger Observatory using a SiPM Hamamatsu S1257-100C plugged to the standard AMIGA front-end electronics. In addition, a study concerning gain stability and temperature variation has also been performed and is reported. I finally discuss a comparison between traces measured by both photodetectors (PMT and SiPM) for modules associated to the surface detector Toune.

  6. Management of environmental aspects as well as impacts in a company of tubes, sized tubes and conicals

    Directory of Open Access Journals (Sweden)

    Marco Aurélio Batista de Sousa

    2007-10-01

    Full Text Available This article aims to describe the application of the Management Method of Environment Impacts and Aspects - MMEIA( GAIA - in a industrial company of medium size. The research is charactarized as exploratory, with a qualitative approach as well as quantitative that is done by a case in a industry that makes tubes, small tubes and conicals paper and sized paper. The data were colected by visits to industry, with the verification of its produtive process, research and documents analysis, interviews non structured with the managers and workers of the company as well as a questionnaire application referent to MMEIA (GAIA method aspects. The results of this mthod application are satisfactory about the observed aspects, although the company presents some questions that still can be improved in its produtice process. One can conclude the at the end of this study the organization started the people sensibilization as well as to the processes improvement, searching ways of developing its activiteies focalized on the environmental development and on the sustentability.

  7. Comparison of different methods for determining the size of a focal spot of microfocus X-ray tubes

    International Nuclear Information System (INIS)

    Salamon, M.; Hanke, R.; Krueger, P.; Sukowski, F.; Uhlmann, N.; Voland, V.

    2008-01-01

    The EN 12543-5 describes a method for determining the focal spot size of microfocus X-ray tubes up to a minimum spot size of 5 μm. The wide application of X-ray tubes with even smaller focal spot sizes in computed tomography and radioscopy applications requires the evaluation of existing methods for focal spot sizes below 5 μm. In addition, new methods and conditions for determining submicron focal spot sizes have to be developed. For the evaluation and extension of the present methods to smaller focal spot sizes, different procedures in comparison with the existing EN 12543-5 were analyzed and applied, and the results are presented

  8. Impact of different rectangular wires on torsional expression of different sizes of buccal tube.

    Science.gov (United States)

    Ajami, Shabnam; Boroujeni, Afshar-Rasti

    2018-01-01

    Torsions in rectangular wires are the essential part of corrections in the finishing stage of treatment. Moreover the greatest amounts of torques are applied in the molar areas. a clinically effective moment is between 5 and 20 Nmm. In this study we have decided to evaluate the impact of different tube sizes and different dimensions of wires with different modulus of elasticities on the amount torsional bond strength of molar tubes. 60 human impacted molar teeth were collected. A buccal tube was bonded on the buccal surface of all the samples by using light cured adhesive resin. After that, the teeth were mounted in a hard acrylic block. According to the size of buccal tube and the rectangular wires to be tested 4 groups will be designed. Torsional force was applied by instron machine. The torque angle at 5Nmm and at 20Nmm point will be calculated: which means, how many degrees of torque is required to reach the maximum 20Nmm moment from the minimum 5Nmm.One-way ANOVA was used to compare torque angle in all of the groups. The least amount of clinically significant angle was 2.2 ᵒ in the 0.017×0.025 SS and the largest amount of it was 23.7 ᵒ in the 0.017×0.025 TMA in 0.018×0.025 slot molar tube. But, this angle was 19.9 ᵒand 13.6 ᵒ in 0.019×0.025 SS and 0.019×0.025 TMA archwire in 0.022×0.028 molar tube. The 0.017×0.025 SS archwire in 0.018×0.025 molar tube had the lowest clinically significant angle. The largest amount was seen in group 0.017×0.025 TMA in 0.018×0.025 slot molar tube. Key words: Torsional efficacy, rectangular wires, buccal tubes, torque angle.

  9. The new versatile general purpose surface-muon instrument (GPS) based on silicon photomultipliers for μSR measurements on a continuous-wave beam.

    Science.gov (United States)

    Amato, A; Luetkens, H; Sedlak, K; Stoykov, A; Scheuermann, R; Elender, M; Raselli, A; Graf, D

    2017-09-01

    We report on the design and commissioning of a new spectrometer for muon-spin relaxation/rotation studies installed at the Swiss Muon Source (SμS) of the Paul Scherrer Institute (PSI, Switzerland). This new instrument is essentially a new design and replaces the old general-purpose surface-muon (GPS) instrument that has been for long the workhorse of the μSR user facility at PSI. By making use of muon and positron detectors made of plastic scintillators read out by silicon photomultipliers, a time resolution of the complete instrument of about 160 ps (standard deviation) could be achieved. In addition, the absence of light guides, which are needed in traditionally built μSR instrument to deliver the scintillation light to photomultiplier tubes located outside magnetic fields applied, allowed us to design a compact instrument with a detector set covering an increased solid angle compared with the old GPS.

  10. Application of CMOS Technology to Silicon Photomultiplier Sensors

    Science.gov (United States)

    D’Ascenzo, Nicola; Zhang, Xi; Xie, Qingguo

    2017-01-01

    We use the 180 nm GLOBALFOUNDRIES (GF) BCDLite CMOS process for the production of a silicon photomultiplier prototype. We study the main characteristics of the developed sensor in comparison with commercial SiPMs obtained in custom technologies and other SiPMs developed with CMOS-compatible processes. We support our discussion with a transient modeling of the detection process of the silicon photomultiplier as well as with a series of static and dynamic experimental measurements in dark and illuminated environments. PMID:28946675

  11. Evaluation of nondestructive evaluation size measurement for integrity assessment of axial outside diameter stress corrosion cracking in steam generator tubes

    International Nuclear Information System (INIS)

    Joo, Kyung Mun; Hong, Jun Hee

    2015-01-01

    Recently, the initiation of outside diameter stress corrosion cracking (ODSCC) at the tube support plate region of domestic steam generators (SG) with Alloy 600 HTMA tubes has been increasing. As a result, SGs with Alloy 600 HTMA tubes must be replaced early or are scheduled to be replaced prior to their designed lifetime. ODSCC is one of the biggest threats to the integrity of SG tubes. Therefore, the accurate evaluation of tube integrity to determine ODSCC is needed. Eddy current testing (ECT) is conducted periodically, and its results could be input as parameters for evaluating the integrity of SG tubes. The reliability of an ECT inspection system depends on the performance of the inspection technique and ability of the analyst. The detection probability and ECT sizing error of degradation are considered to be the performance indices of a nondestructive evaluation (NDE) system. This paper introduces an optimized evaluation method for ECT, as well as the sizing error, including the analyst performance. This study was based on the results of a round robin program in which 10 inspection analysts from 5 different companies participated. The analysis of ECT sizing results was performed using a linear regression model relating the true defect size data to the measured ECT size data.

  12. Evaluation of nondestructive evaluation size measurement for integrity assessment of axial outside diameter stress corrosion cracking in steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Kyung Mun [Korea Hydro and Nuclear Power Company Ltd., Central Research Institute, Daejeon (Korea, Republic of); Hong, Jun Hee [Dept. of mechanical Engineering, Chungnam National University, Daejeon (Korea, Republic of)

    2015-02-15

    Recently, the initiation of outside diameter stress corrosion cracking (ODSCC) at the tube support plate region of domestic steam generators (SG) with Alloy 600 HTMA tubes has been increasing. As a result, SGs with Alloy 600 HTMA tubes must be replaced early or are scheduled to be replaced prior to their designed lifetime. ODSCC is one of the biggest threats to the integrity of SG tubes. Therefore, the accurate evaluation of tube integrity to determine ODSCC is needed. Eddy current testing (ECT) is conducted periodically, and its results could be input as parameters for evaluating the integrity of SG tubes. The reliability of an ECT inspection system depends on the performance of the inspection technique and ability of the analyst. The detection probability and ECT sizing error of degradation are considered to be the performance indices of a nondestructive evaluation (NDE) system. This paper introduces an optimized evaluation method for ECT, as well as the sizing error, including the analyst performance. This study was based on the results of a round robin program in which 10 inspection analysts from 5 different companies participated. The analysis of ECT sizing results was performed using a linear regression model relating the true defect size data to the measured ECT size data.

  13. Evaluation of new 5 inch photomultiplier for use in threshold Cherenkov detectors with aerogel radiator

    International Nuclear Information System (INIS)

    Wojtsekhowski, B.; Zorn, C.; Flyckt, S.O.

    2000-01-01

    A cost effective alternative to UV-sensitive 5 inch PMTs often used with threshold Aerogel Cherenkov detectors has been developed and tested. The photomultiplier -XP4572-is a variation of the Photonis XP4512 glass window tube with improved electron collection efficiency. Fast timing and high gain were only moderately compromised. The effective quantum efficiency has been measured as twice that of a Burle 8854 Quantacon when exposed to a Cherenkov spectrum generated by Ru-106 electrons (les;3.54 MeV) through 1 cm of high index, high transparency Matsushita Electric aerogel (n=1.05). This new phototube is being installed in an aerogel-based Cherenkov detector for Hall A at Jefferson Lab

  14. Scintillating fibre detectors using position-sensitive photomultipliers

    International Nuclear Information System (INIS)

    Agoritsas, V.; Bergdolt, A.M.; Bing, O.; Bravar, A.; Ditta, J.; Drevenak, R.

    1995-01-01

    Scintillating fibre technology has made substantial progress, and has demonstrated great potential for fast tracking and triggering in high luminosity experiments in Particle Physics. Some recent issues of the RD-17 project at CERN are presented for fast and precise readout of scintillating fibre arrays, as well as for upgrade of position-sensitive photomultipliers. Excellent matching of the scintillating fibre and the position-sensitive photomultiplier, in particular in time characteristics, allowed to achieve excellent detector performances, typically a spatial resolution of ∼ 125 μm with time resolution better than 1 ns and detection efficiency greater than 95%. (author)10 refs.; 25 figs.; 1 tab

  15. Two types of photomultiplier voltage dividers for high and changing count rates

    International Nuclear Information System (INIS)

    Reiter, W.L.; Stengl, G.

    1980-01-01

    We report on the design of two types of voltage distribution circuits for high stability photomultiplier operation. 'Type A' voltage divider is an ohmic voltage divider with high bleeder current (up to 10 mA) and the resistor chain split at one of the last dynodes, usually the dynode where the analog signal is derived from. This simple constructive measure improves the stability of the dynode voltage by a factor of 5 compared with an unsplit conventional resistor chain. 'Type B' is a novel active voltage divider using cold cathode tubes ar regulating elements. This voltage divider exhibits excellent temperature stability (about 10 -4 / 0 C). With 'type B' an equal stability compared with conventional ohmic dividers can be achieved at a bleeder current smaller by one order of magnitude. Of course both concepts, 'type A' and 'type B', can be combined. (orig.)

  16. Current feedback operational amplifiers as fast charge sensitive preamplifiers for photomultiplier read out

    Energy Technology Data Exchange (ETDEWEB)

    Giachero, A; Gotti, C; Maino, M; Pessina, G, E-mail: claudio.gotti@mib.infn.it [INFN - Sezione di Milano-Bicocca, I-20126, Milano (Italy)

    2011-05-01

    Fast charge sensitive preamplifiers were built using commercial current feedback operational amplifiers for fast read out of charge pulses from a photomultiplier tube. Current feedback opamps prove to be particularly well suited for this application where the charge from the detector is large, of the order of one million electrons, and high timing resolution is required. A proper circuit arrangement allows very fast signals, with rise times down to one nanosecond, while keeping the amplifier stable. After a review of current feedback circuit topology and stability constraints, we provide a 'recipe' to build stable and very fast charge sensitive preamplifiers from any current feedback opamp by adding just a few external components. The noise performance of the circuit topology has been evaluated and is reported in terms of equivalent noise charge.

  17. Charge reconstruction in large-area photomultipliers

    Science.gov (United States)

    Grassi, M.; Montuschi, M.; Baldoncini, M.; Mantovani, F.; Ricci, B.; Andronico, G.; Antonelli, V.; Bellato, M.; Bernieri, E.; Brigatti, A.; Brugnera, R.; Budano, A.; Buscemi, M.; Bussino, S.; Caruso, R.; Chiesa, D.; Corti, D.; Dal Corso, F.; Ding, X. F.; Dusini, S.; Fabbri, A.; Fiorentini, G.; Ford, R.; Formozov, A.; Galet, G.; Garfagnini, A.; Giammarchi, M.; Giaz, A.; Insolia, A.; Isocrate, R.; Lippi, I.; Longhitano, F.; Lo Presti, D.; Lombardi, P.; Marini, F.; Mari, S. M.; Martellini, C.; Meroni, E.; Mezzetto, M.; Miramonti, L.; Monforte, S.; Nastasi, M.; Ortica, F.; Paoloni, A.; Parmeggiano, S.; Pedretti, D.; Pelliccia, N.; Pompilio, R.; Previtali, E.; Ranucci, G.; Re, A. C.; Romani, A.; Saggese, P.; Salamanna, G.; Sawy, F. H.; Settanta, G.; Sisti, M.; Sirignano, C.; Spinetti, M.; Stanco, L.; Strati, V.; Verde, G.; Votano, L.

    2018-02-01

    Large-area PhotoMultiplier Tubes (PMT) allow to efficiently instrument Liquid Scintillator (LS) neutrino detectors, where large target masses are pivotal to compensate for neutrinos' extremely elusive nature. Depending on the detector light yield, several scintillation photons stemming from the same neutrino interaction are likely to hit a single PMT in a few tens/hundreds of nanoseconds, resulting in several photoelectrons (PEs) to pile-up at the PMT anode. In such scenario, the signal generated by each PE is entangled to the others, and an accurate PMT charge reconstruction becomes challenging. This manuscript describes an experimental method able to address the PMT charge reconstruction in the case of large PE pile-up, providing an unbiased charge estimator at the permille level up to 15 detected PEs. The method is based on a signal filtering technique (Wiener filter) which suppresses the noise due to both PMT and readout electronics, and on a Fourier-based deconvolution able to minimize the influence of signal distortions—such as an overshoot. The analysis of simulated PMT waveforms shows that the slope of a linear regression modeling the relation between reconstructed and true charge values improves from 0.769 ± 0.001 (without deconvolution) to 0.989 ± 0.001 (with deconvolution), where unitary slope implies perfect reconstruction. A C++ implementation of the charge reconstruction algorithm is available online at [1].

  18. Signal encoding method for a time-of-flight PET detector using a silicon photomultiplier array

    Science.gov (United States)

    Kwon, Sun Il; Lee, Jae Sung

    2014-10-01

    The silicon photomultiplier (SiPM) is a promising photosensor for magnetic resonance (MR) compatible time-of-flight (TOF) positron emission tomography (PET) scanners. The compact size of the SiPM allows direct one-to-one coupling between the scintillation crystal and the photosensor, yielding better timing and energy resolutions than the light sharing methods that have to be used in photomultiplier tube (PMT) PET systems. However, the one-to-one coupling scheme requires a huge volume of readout and processing electronics if no electric signal multiplexing or encoding scheme is properly applied. In this paper, we develop an electric signal encoding scheme for SiPM array based TOF PET detector blocks with the aim of reducing the complexity and volume of the signal readout and processing electronics. In an M×N SiPM array, the output signal of each channel in the SiPM array is divided into two signal lines. These output lines are then tied together in row and column lines. The row and column signals are used to measure the energy and timing information (or vice versa) of each incident gamma-ray event, respectively. Each SiPM channel was directly coupled to a 3×3×20 mm3 LGSO crystal. The reference detector, which was used to measure timing, consisted of an R9800 PMT and a 4×4×10 mm3 LYSO crystal and had a single time resolution of ~200 ps (FWHM). Leading edge discriminators were used to determine coincident events. Dedicated front-end electronics were developed, and the timing and energy resolutions of SiPM arrays with different array sizes (4×4, 8×8, and 12×12) were compared. Breakdown voltage of each SiPM channel was measured using energy spectra within various bias voltages. Coincidence events were measured using a 22Na point source. The average coincidence time resolution of 4×4, 8×8, and 12×12 SiPM arrays were 316 ps, 320 ps, and 335 ps (FWHM), respectively. The energy resolution of 4×4, 8×8, and 12×12 SiPM arrays were 11.8%, 12.5%, and 12.8% (FWHM

  19. Development of on-line wall thickness gauge for small size seamless tube. Shokei seamless netsukan nikuatsukei no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Okumura, T; Konya, N; Oka, H; Kasuya, T [Kawasaki Steel Corp., Tokyo (Japan)

    1991-03-01

    In order to heighten the accuracy of small size seamless tube wall thickness, hot wall thickness gauge was developed to be installed, immediately behind the finishing/rolling mill, for the on-line measurement, of which the method was by the parallel-beam transmissivity of gamma-ray. The measurement unit, aiming at flexible manufacturing system (FMS), is completely automated in correcting the accuracy, changing the sizes, etc. The damping characteristics of gamma-ray beam can be expressed by a characteristic function, taking the outside diameter and wall thickness of subject tube as parameters. The functional calculation, as based on measurement of transmitted quantity of gamma-ray through the three-dimensional steel material, changes, depending upon the outside diameter, wall thickness and material specification of subject tube. System was so applied as to calculate it therefore on a case-by-case basis. Though in the vicinity of tube end, the transmitted quantity of gamma-ray is largely influenced by the horizontal dislocation, that influence is slack in the middle part of tube. Therefore, the cross sectional division was made dense and sparse in the end part and middle part, respectively of tube, which division could diminish the error from several percent to less than 0.1%. The static noise was compressed by the optimized digital filter. That gauge is presently applied for the operational administration of small size seamless tube rolling. 2 refs., 11 figs., 2 tabs.

  20. Dependence of CuO particle size and diameter of reaction tubing on tritium recovery for tritium safety operation

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Cui, E-mail: cdxohc10000@163.com [Shizuoka University, 836 Ohya, Suruga-ku Shizuoka 422-8529 (Japan); Uemura, Yuki; Yuyama, Kenta; Fujita, Hiroe; Sakurada, Shodai; Azuma, Keisuke [Shizuoka University, 836 Ohya, Suruga-ku Shizuoka 422-8529 (Japan); Taguchi, Akira; Hara, Masanori; Hatano, Yuji [University of Toyama, 3190 Gofuku, Toyama 939-8555 (Japan); Chikada, Takumi; Oya, Yasuhisa [Shizuoka University, 836 Ohya, Suruga-ku Shizuoka 422-8529 (Japan)

    2016-12-15

    Highlights: • Influence of CuO particle size and diameter of reaction tubing on the tritium recovery was evaluated. • Reaction rate constant of tritium with CuO particle has been calculated by the combination of experimental results and a simulation code. • Dependence of reaction tubing length on tritium conversion ratio has been explored. - Abstract: Usage of CuO and water bubbler is one of the conventional and convenient methods for tritium recovery. In present work, influence of CuO particle size and diameter of reaction tubing on the tritium recovery was evaluated. Reaction rate constant of tritium with CuO particle has been calculated by the combination of experimental results and a simulation code. Then, these results were applied for exploring the dependence of reaction tubing length on tritium conversion ratio. The results showed that the surface area of CuO has a great influence on the oxidation rate constant. The frequency factor of the reaction would be approximately doubled by reducing the CuO particle size from 1.0 mm to 0.2 mm. Cross section of reaction tubing mainly affected on the duration of tritium at the temperature below 600 K. Reaction tubing with length of 1 m at temperature of 600 K would be suitable for keeping the tritium conversion ratio above 99.9%. The length of reaction tubing can be reduced by using the smaller CuO particle or increasing the CuO temperature.

  1. Study of a high gain microchannel plate photomultiplier having low statistical gain fluctuations

    International Nuclear Information System (INIS)

    Audier, M.

    1980-12-01

    A new photomultiplier configuration which synthesizes the performances of several models is proposed. The principles of microchannel plate photomultipliers are reviewed. The physical phenomena which limit the electron multiplication process in a microchannel and the detection efficiency of the microchannel plates are investigated. The operation of a herring-bone pattern device and of a system of two microchannel plate photomultipliers are described and characterized [fr

  2. Pulse shape discrimination based on fast signals from silicon photomultipliers

    Science.gov (United States)

    Yu, Junhao; Wei, Zhiyong; Fang, Meihua; Zhang, Zixia; Cheng, Can; Wang, Yi; Su, Huiwen; Ran, Youquan; Zhu, Qingwei; Zhang, He; Duan, Kai; Chen, Ming; Liu, Meng

    2018-06-01

    Recent developments in organic plastic scintillators capable of pulse shape discrimination (PSD) enable a breakthrough in discrimination between neutrons and gammas. Plastic scintillator detectors coupled with silicon photomultipliers (SiPMs) offer many advantages, such as lower power consumption, smaller volume, and especially insensitivity to magnetic fields, compared with conventional photomultiplier tubes (PMTs). A SensL SiPM has two outputs: a standard output and a fast output. It is known that the charge injected into the fast output electrode is typically approximately 2% of the total charge generated during the avalanche, whereas the charge injected into the standard output electrode is nearly 98% of the total. Fast signals from SiPMs exhibit better performance in terms of timing and time-correlated measurements compared with standard signals. The pulse duration of a standard signal is on the order of hundreds of nanoseconds, whereas the pulse duration of the main monopole waveform of a fast signal is a few tens of nanoseconds. Fast signals are traditionally thought to be suitable for photon counting at very high speeds but unsuitable for PSD due to the partial charge collection. Meanwhile, the standard outputs of SiPMs coupled with discriminating scintillators have yielded nice PSD performances, but there have been no reports on PSD using fast signals. Our analysis shows that fast signals can also provide discrimination if the rate of charge injection into the fast output electrode is fixed for each event, even though only a portion of the charge is collected. In this work, we achieved successful PSD using fast signals; meanwhile, using a coincidence timing window of less 3 nanoseconds between the readouts from both ends of the detector reduced the influence of the high SiPM dark current. We experimentally achieved good timing performance and PSD capability simultaneously.

  3. Photomultiplier characteristics considerations for the deep underwater muon and neutrino detection system

    International Nuclear Information System (INIS)

    Leskovar, B.

    1980-01-01

    The results of an investigation of the characteristics of photomultipliers for the Deep Underwater Muon and Neutrino Detection (DUMAND) System are discussed. The pulse-height resolution, the afterpulsing phenomena and the gain sensitivity to the ambient magnetic field have been determined for large photocathode area photomultipliers. Furthermore, the transient time difference, the single photoelectron time spread, and the collection and photocathode quantum efficiency uniformity as a function of the position of the photocathode sensing area have been reviewed. Finally, an attempt has been made to estimate the photomultiplier reliability and its lifetime

  4. Cherenkov TOF PET with silicon photomultipliers

    Science.gov (United States)

    Dolenec, R.; Korpar, S.; Križan, P.; Pestotnik, R.

    2015-12-01

    As previously demonstrated, an excellent timing resolution below 100 ps FWHM is possible in time-of-flight positron emission tomography (TOF PET) if the detection method is based on the principle of detecting photons of Cherenkov light, produced in a suitable material and detected by microchannel plate photomultipliers (MCP PMTs). In this work, the silicon photomultipliers (SiPMs) were tested for the first time as the photodetectors in Cherenkov TOF PET. The high photon detection efficiency (PDE) of SiPMs led to a large improvement in detection efficiency. On the other hand, the time response of currently available SiPMs is not as good as that of MCP PMTs. The SiPM dark counts introduce a new source of random coincidences in Cherenkov method, which would be overwhelming with present SiPM technology at room temperature. When the apparatus was cooled, its performance significantly improved.

  5. Very low power, high voltage base for a Photo Multiplier Tube for the KM3NeT deep sea neutrino telescope

    International Nuclear Information System (INIS)

    Timmer, P; Heine, E; Peek, H

    2010-01-01

    The described system is developed in the framework of a deep-sea submerged Very Large Volume neutrino Telescope where photons are detected by a large number of Photo Multiplier Tubes. These PMTs are placed in optical modules (OM). A basic Cockcroft-Walton (CW) voltage multiplier circuit design is used to generate multiple voltages to drive the dynodes of the photomultiplier tube. To achieve a long lifetime and a high reliability the dissipation in the OM must be kept to the minimum. The design is also constrained by size restrictions, load current, voltage range, and the maximum allowable ripple in the output voltage. A surface mount PMT-base PCB prototype is designed and successfully tested. The system draws less than 1.5 mA of supply current at a voltage of 3.3 V with outputs up to -1400 Vdc cathode voltage, a factor 10 less than the commercially available state of the art.

  6. Very low power, high voltage base for a Photo Multiplier Tube for the KM3NeT deep sea neutrino telescope

    CERN Document Server

    Timmer, P; Peek, H

    2010-01-01

    The described system is developed in the framework of a deep-sea submerged Very Large Volume neutrino Telescope where photons are detected by a large number of Photo Multiplier Tubes. These PMTs are placed in optical modules (OM). A basic Cockcroft-Walton (CW) voltage multiplier circuit design is used to generate multiple voltages to drive the dynodes of the photomultiplier tube. To achieve a long lifetime and a high reliability the dissipation in the OM must be kept to the minimum. The design is also constrained by size restrictions, load current, voltage range, and the maximum allowable ripple in the output voltage. A surface mount PMT-base PCB prototype is designed and successfully tested. The system draws less than 1.5 mA of supply current at a voltage of 3.3 V with outputs up to -1400 Vdc cathode voltage, a factor 10 less than the commercially available state of the art

  7. A novel Silicon Photomultiplier with bulk integrated quench resistors: utilization in optical detection and tracking applications for particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Petrovics, Stefan, E-mail: stp@hll.mpg.de [Halbleiterlabor der Max-Planck Gesellschaft, Otto-Hahn-Ring 6, D-81739 Munich (Germany); Andricek, Ladislav [Halbleiterlabor der Max-Planck Gesellschaft, Otto-Hahn-Ring 6, D-81739 Munich (Germany); Diehl, Inge; Hansen, Karsten [DESY, Notkestrasse 85, D-22607 Hamburg (Germany); Jendrysik, Christian [Infineon Technologies AG, Am Campeon 1-12, D-85579 Neubiberg (Germany); Krueger, Katja [DESY, Notkestrasse 85, D-22607 Hamburg (Germany); Lehmann, Raik; Ninkovic, Jelena [Halbleiterlabor der Max-Planck Gesellschaft, Otto-Hahn-Ring 6, D-81739 Munich (Germany); Reckleben, Christian [DESY, Notkestrasse 85, D-22607 Hamburg (Germany); Richter, Rainer; Schaller, Gerhard; Schopper, Florian [Halbleiterlabor der Max-Planck Gesellschaft, Otto-Hahn-Ring 6, D-81739 Munich (Germany); Sefkow, Felix [DESY, Notkestrasse 85, D-22607 Hamburg (Germany)

    2017-02-11

    Silicon Photomultipliers (SiPMs) are a promising candidate for replacing conventional photomultiplier tubes (PMTs) in many applications, thanks to ongoing developments and advances in their technology. Conventional SiPMs are generally an array of avalanche photo diodes, operated in Geiger mode and read out in parallel, thus leading to the necessity of a high ohmic quenching resistor. This resistor enables passive quenching and is usually located on top of the array, limiting the fill factor of the device. In this paper, a novel detector concept with a bulk integrated quenching resistor will be recapped. In addition, due to other advantages of this novel detector design, a new concept, in which these devices will be utilized as tracking detectors for particle physics applications will be introduced, as well as first simulation studies and experimental measurements of this new approach. - Highlights: • A novel SiPM concept with bulk integrated quenching resistor is shown. • First prototypes of these SiPMs as tracking detectors are proposed. • Simulations of the Geiger efficiency suggest feasible operations at low overbias. • First measurements of the electron detection efficiency show promising results. • Measurements are in good agreement with the simulations.

  8. X-ray tube focal spot sizes: comprehensive studies of their measurement and effect of measured size in angiography

    International Nuclear Information System (INIS)

    Doi, K.; Loo, L.N.; Chan, H.P.

    1982-01-01

    Thirty-two focal spot sizes of four x-ray tubes were measured by the pinhole, star pattern, slit, and root-mean-square (RMS) methods under various exposure conditions. The modulation transfer functions (MTFs) and line spread functions (LSFs) were also determined. The star pattern focal spot sizes agreed with the effective sizes calculated from the frequencies at the first minimum of the MTF within 0.04 mm for large focal spots and within 0.01 mm for small focal spots. The focal spot size determined by the slit method was approximately equal to the width of the LSF at the cutoff level of 0.15 +/- 0.06 of the peak value. The RMS method provided the best correlation between the measured focal spot sizes and the corresponding image distributions of blood vessels. The pinhole and slit methods tended to overestimate the focal spot size, but the star pattern method tended to underestimate it. For approximately 90% of the focal spots, the average of the star and slit (or pinhole) focal spot sizes agreed with the RMS focal spot size within +/- 0.1 mm

  9. Fabrication, characterization and testing of silicon photomultipliers for the Muon Portal Project

    International Nuclear Information System (INIS)

    La Rocca, P.; Billotta, S.; Blancato, A.A.; Bonanno, D.; Bonanno, G.; Fallica, G.; Garozzo, S.; Lo Presti, D.; Marano, D.; Pugliatti, C.; Riggi, F.; Romeo, G.; Santagati, G.; Valvo, G.

    2015-01-01

    The Muon Portal is a recently started Project aiming at the construction of a large area tracking detector that exploits the muon tomography technique to inspect the contents of traveling cargo containers. The detection planes will be made of plastic scintillator strips with embedded wavelength-shifting fibres. Special designed silicon photomultipliers will read the scintillation light transported by the fibres along the strips and a dedicated electronics will combine signals from different strips to reduce the overall number of channels, without loss of information. Different silicon photomultiplier prototypes, both with the p-on-n and n-on-p technologies, have been produced by STMicroelectronics during the last years. In this paper we present the main characteristics of the silicon photomultipliers designed for the Muon Portal Project and describe the setup and the procedure implemented for the characterization of these devices, giving some statistical results obtained from the test of a first batch of silicon photomultipliers

  10. Fabrication, characterization and testing of silicon photomultipliers for the Muon Portal Project

    Energy Technology Data Exchange (ETDEWEB)

    La Rocca, P., E-mail: paola.larocca@ct.infn.it [Dipartimento di Fisica e Astronomia - Catania (Italy); INFN - Sezione di Catania (Italy); Billotta, S. [INAF - Osservatorio Astrofisico di Catania (Italy); Blancato, A.A.; Bonanno, D. [Dipartimento di Fisica e Astronomia - Catania (Italy); Bonanno, G. [INAF - Osservatorio Astrofisico di Catania (Italy); Fallica, G. [STMicroelectronics - Catania (Italy); Garozzo, S. [INAF - Osservatorio Astrofisico di Catania (Italy); Lo Presti, D. [Dipartimento di Fisica e Astronomia - Catania (Italy); INFN - Sezione di Catania (Italy); Marano, D. [INAF - Osservatorio Astrofisico di Catania (Italy); Pugliatti, C.; Riggi, F. [Dipartimento di Fisica e Astronomia - Catania (Italy); INFN - Sezione di Catania (Italy); Romeo, G. [INAF - Osservatorio Astrofisico di Catania (Italy); Santagati, G. [Dipartimento di Fisica e Astronomia - Catania (Italy); INFN - Sezione di Catania (Italy); Valvo, G. [STMicroelectronics - Catania (Italy)

    2015-07-01

    The Muon Portal is a recently started Project aiming at the construction of a large area tracking detector that exploits the muon tomography technique to inspect the contents of traveling cargo containers. The detection planes will be made of plastic scintillator strips with embedded wavelength-shifting fibres. Special designed silicon photomultipliers will read the scintillation light transported by the fibres along the strips and a dedicated electronics will combine signals from different strips to reduce the overall number of channels, without loss of information. Different silicon photomultiplier prototypes, both with the p-on-n and n-on-p technologies, have been produced by STMicroelectronics during the last years. In this paper we present the main characteristics of the silicon photomultipliers designed for the Muon Portal Project and describe the setup and the procedure implemented for the characterization of these devices, giving some statistical results obtained from the test of a first batch of silicon photomultipliers.

  11. Thermal Sizing of Heat Exchanger Tubes for Air Natural Convective Cooling System of Emergency Cooling Tank

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myoung Jun; Lee, Hee Joon [Kookmin Univ., Seoul (Korea, Republic of); Moon, Joo Hyung; Bae, Youngmin; Kim, Youngin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    For the long operation of secondary passive cooling system, however, water level goes down by evaporation in succession at emergency cooling tank. At the end there would be no place to dissipate heat from condensation heat exchanger. Therefore, steam cooling heat exchanger is put on the top of emergency cooling tank to maintain appropriate water level by collecting evaporating steam. Steam cooling heat exchanger is installed inside an air chimney and evaporated steam is cooled down by air natural convection. In this study, thermal sizing of steam cooling heat exchanger under air natural convection was conducted by TSCON program for the design of experimental setup as shown in Fig. 2. Thermal sizing of steam cooling heat exchanger tube under air natural convection was conducted by TSCON program for the design of experimental setup. 25 - 1' tubes which has a length 1687 mm was determined as steam cooling heat exchanger at 2 kW heat load and 100 liter water pool in emergency cooling tank (experimental limit condition). The corresponding width of two tubes is 50 mm and has 5 by 5 tube array for heat exchanger.

  12. Thermal Sizing of Heat Exchanger Tubes for Air Natural Convective Cooling System of Emergency Cooling Tank

    International Nuclear Information System (INIS)

    Kim, Myoung Jun; Lee, Hee Joon; Moon, Joo Hyung; Bae, Youngmin; Kim, Youngin

    2014-01-01

    For the long operation of secondary passive cooling system, however, water level goes down by evaporation in succession at emergency cooling tank. At the end there would be no place to dissipate heat from condensation heat exchanger. Therefore, steam cooling heat exchanger is put on the top of emergency cooling tank to maintain appropriate water level by collecting evaporating steam. Steam cooling heat exchanger is installed inside an air chimney and evaporated steam is cooled down by air natural convection. In this study, thermal sizing of steam cooling heat exchanger under air natural convection was conducted by TSCON program for the design of experimental setup as shown in Fig. 2. Thermal sizing of steam cooling heat exchanger tube under air natural convection was conducted by TSCON program for the design of experimental setup. 25 - 1' tubes which has a length 1687 mm was determined as steam cooling heat exchanger at 2 kW heat load and 100 liter water pool in emergency cooling tank (experimental limit condition). The corresponding width of two tubes is 50 mm and has 5 by 5 tube array for heat exchanger

  13. Positron emission tomography camera

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    A positron emission tomography camera having a plurality of detector rings positioned side-by-side or offset by one-half of the detector cross section around a patient area to detect radiation therefrom. Each detector ring or offset ring includes a plurality of photomultiplier tubes and a plurality of scintillation crystals are positioned relative to the photomultiplier tubes whereby each tube is responsive to more than one crystal. Each alternate crystal in the ring is offset by one-half or less of the thickness of the crystal such that the staggered crystals are seen by more than one photomultiplier tube. This sharing of crystals and photomultiplier tubes allows identification of the staggered crystal and the use of smaller detectors shared by larger photomultiplier tubes thereby requiring less photomultiplier tubes, creating more scanning slices, providing better data sampling, and reducing the cost of the camera. The offset detector ring geometry reduces the costs of the positron camera and improves its performance

  14. The development of a high-resolution scintillating fiber tracker with silicon photomultiplier readout

    International Nuclear Information System (INIS)

    Roper Yearwood, Gregorio

    2013-01-01

    In this work I present the design and test results for a novel, modular tracking detector from scintillating fibers which are read out by silicon photomultiplier (SiPM) arrays. The detector modules consist of 0.25 mm thin scintillating fibers which are closely packed in five-layer ribbons. Two ribbons are fixed to both sides of a carbon-fiber composite structure. Custom made SiPM arrays with a photo-detection efficiency of about 50% read out the fibers. Several 860 mm long and 32 mm wide tracker modules were tested in a secondary 12 GeV/c beam at the PS facilities, CERN in November of 2009. During this test a spatial resolution better than 0.05 mm at an average light yield of about 20 photons for a minimum ionizing particle was determined. This work details the characterization of scintillating fibers and silicon photomultipliers of different make and model. It gives an overview of the production of scintillating fiber modules. The behavior of detector modules during the test-beam is analyzed in detail and different options for the front-end electronics are compared. Furthermore, the implementation of the proposed tracking detector from scintillating fibers within the scope of the PERDaix experiment is discussed. The PERDaix detector is a permanent magnet spectrometer with a weight of 40 kg. It consists of 8 tracking detector layers from scintillating fibers, a time-of-flight detector from plastic scintillator bars with silicon photomultiplier readout and a transition radiation detector from an irregular fleece radiator and Xe/CO 2 filled proportional counting tubes. The PERDaix detector was launched with a helium balloon within the scope of the ''Balloon-Experiments for University Students'' (BEXUS) program from Kiruna, Sweden in November 2010. For a few hours PERDaix reached an altitude of 33 km and measured cosmic rays. In May 2011, the PERDaix detector was characterized during a test-beam at the PS-facilities at CERN. This work introduces methods for event

  15. Flow boiling heat transfer of carbon dioxide inside a small-sized microfin tube

    Energy Technology Data Exchange (ETDEWEB)

    Dang, Chaobin; Haraguchi, Nobori; Hihara, Eiji [Department of Human and Engineered Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa-shi, Chiba 277-8563 (Japan)

    2010-06-15

    This study investigated the flow boiling heat transfer of carbon dioxide inside a small-sized microfin tube (mean inner diameter: 2.0 mm; helix angle: 6.3 ) at a saturation temperature of 15 C, and heat and mass flux ranges of 4.5-18 kW m{sup -2} and 360-720 kg m{sup -2} s{sup -1}, respectively. Although, experimental results indicated that heat flux has a significant effect on the heat transfer coefficient, the coefficient does not always increase with mass flux, as in the case of conventional refrigerants such as HFCs or HCFCs. Under certain conditions, the heat transfer coefficient at a high mass flux was lower than that at a lower mass flux, indicating that convective heat transfer had a suppression effect on nucleate boiling. The heat transfer coefficients in the microfin tubes were 1.9{proportional_to}2.3 times the values in smooth tubes of the same diameter under the same experimental conditions, and the dryout quality was much higher, ranging from 0.9 to 0.95. The experimental results indicated that using microfin tubes may considerably increase the overall heat transfer performance. (author)

  16. Automatic test system of the photomultipliers

    International Nuclear Information System (INIS)

    Shiino, Kazuo; Kono, Koji; Ishii, Takanobu; Kasai, Seiji; Yamada, Sakue; Kitamura, Shoichi.

    1990-03-01

    A test system of R580 photomultipliers (PMTs) was constructed for the ZEUS experiment HERA. In this report, we will describe the general feature of the test system, each component of the setup, the procedure of the measurements, the data analyses and the results of the first 800 PMT measurements. (author)

  17. Data analysis algorithms for flaw sizing based on eddy current rotating probe examination of steam generator tubes

    International Nuclear Information System (INIS)

    Bakhtiari, S.; Elmer, T.W.

    2009-01-01

    Computer-aided data analysis tools can help improve the efficiency and reliability of flaw sizing based on nondestructive examination data. They can further help produce more consistent results, which is important for both in-service inspection applications and for engineering assessments associated with steam generator tube integrity. Results of recent investigations at Argonne on the development of various algorithms for sizing of flaws in steam generator tubes based on eddy current rotating probe data are presented. The research was carried out as part of the activities under the International Steam Generator Tube Integrity Program (ISG-TIP) sponsored by the U.S. Nuclear Regulatory Commission. A computer-aided data analysis tool has been developed for off-line processing of eddy current inspection data. The main objectives of the work have been to a) allow all data processing stages to be performed under the same user interface, b) simplify modification and testing of signal processing and data analysis scripts, and c) allow independent evaluation of viable flaw sizing algorithms. The focus of most recent studies at Argonne has been on the processing of data acquired with the +Point probe, which is one of the more widely used eddy current rotating probes for steam generator tube examinations in the U.S. The probe employs a directional surface riding differential coil, which helps reduce the influence of tubing artifacts and in turn helps improve the signal-to-noise ratio. Various algorithms developed under the MATLAB environment for the conversion, segmentation, calibration, and analysis of data have been consolidated within a single user interface. Data acquired with a number of standard eddy current test equipment are automatically recognized and converted to a standard format for further processing. Because of its modular structure, the graphical user interface allows user-developed routines to be easily incorporated, modified, and tested independent of the

  18. Characterization studies of Silicon Photomultipliers and crystals matrices for a novel time of flight PET detector

    CERN Document Server

    Auffray, Etiennette; Cortinovis, Daniele; Doroud, Katayoun; Garutti, Erika; Lecoq, Paul; Liu, Zheng; Martinez, Rosana; Paganoni, Marco; Pizzichemi, Marco; Silenzi, Alessandro; Xu, Chen; Zvolský, Milan

    2015-01-01

    This paper describes the characterization of crystal matrices and silicon photomultiplier arrays for a novel Positron Emission Tomography (PET) detector, namely the external plate of the EndoTOFPET-US system. The EndoTOFPET-US collaboration aims to integrate Time-Of-Flight PET with ultrasound endoscopy in a novel multimodal device, capable to support the development of new biomarkers for prostate and pancreatic tumors. The detector consists in two parts: a PET head mounted on an ultrasound probe and an external PET plate. The challenging goal of 1 mm spatial resolution for the PET image requires a detector with small crystal size, and therefore high channel density: 4096 LYSO crystals individually readout by Silicon Photomultipliers (SiPM) make up the external plate. The quality and properties of these components must be assessed before the assembly. The dark count rate, gain, breakdown voltage and correlated noise of the SiPMs are measured, while the LYSO crystals are evaluated in terms of light yield and en...

  19. Improved positron emission tomography camera

    International Nuclear Information System (INIS)

    Mullani, N.A.

    1986-01-01

    A positron emission tomography camera having a plurality of rings of detectors positioned side-by-side or offset by one-half of the detector cross section around a patient area to detect radiation therefrom, and a plurality of scintillation crystals positioned relative to the photomultiplier tubes whereby each tube is responsive to more than one crystal. Each alternate crystal in the ring may be offset by one-half or less of the thickness of the crystal such that the staggered crystals are seen by more than one photomultiplier tube. This sharing of crystals and photomultiplier tubes allows identification of the staggered crystal and the use of smaller detectors shared by larger photomultiplier tubes thereby requiring less photomultiplier tubes, creating more scanning slices, providing better data sampling, and reducing the cost of the camera. (author)

  20. Effect of particle size, filler loadings and x-ray tube voltage on the transmitted x-ray transmission in tungsten oxide—epoxy composites

    International Nuclear Information System (INIS)

    Noor Azman, N.Z.; Siddiqui, S.A.; Hart, R.; Low, I.M.

    2013-01-01

    The effect of particle size, filler loadings and x-ray tube voltage on the x-ray transmission in WO 3 -epoxy composites has been investigated using the mammography unit and a general radiography unit. Results indicate that nano-sized WO 3 has a better ability to attenuate the x-ray beam generated by lower tube voltages (25–35 kV) when compared to micro-sized WO 3 of the same filler loading. However, the effect of particle size on x-ray transmission was negligible at the higher x-ray tube voltages (40–120 kV). - Highlights: ► Investigated the effect of particle size of WO 3 on the x-ray attenuation ability. ► Nano-sized WO 3 has a better ability to attenuate lower x-ray energies (22–49 kV p ). ► Particle size has negligible effect at the higher x-ray energy range (40–120 kV p ).

  1. An exact formula to describe the amplification process in a photomultiplier tube

    International Nuclear Information System (INIS)

    Rademacker, Jonas

    2002-01-01

    An analytical function is derived that exactly describes the amplification process due to a series of discrete, Poisson-like amplifications like those in a photo multiplier tube (PMT). A numerical recipe is provided that implements this function as a computer program. It is shown how the program can be used as the core element of a faster, simplified routine to fit PMT spectra with high efficiency. The functionality of the method is demonstrated by fitting both, Monte Carlo generated and measured PMT spectra

  2. A new detector concept for silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Sadigov, A., E-mail: saazik@yandex.ru [National Nuclear Research Center, Baku (Azerbaijan); Ahmadov, F.; Ahmadov, G. [National Nuclear Research Center, Baku (Azerbaijan); Ariffin, A.; Khorev, S. [Zecotek Photonics Inc., Vancouver (Canada); Sadygov, Z. [National Nuclear Research Center, Baku (Azerbaijan); Joint Institute for Nuclear Research, Dubna (Russian Federation); Suleymanov, S. [National Nuclear Research Center, Baku (Azerbaijan); Zerrouk, F. [Zecotek Photonics Inc., Vancouver (Canada); Madatov, R. [Institute of Radiation Problems, Baku (Azerbaijan)

    2016-07-11

    A new design and principle of operation of silicon photomultipliers are presented. The new design comprises a semiconductor substrate and an array of independent micro-phototransistors formed on the substrate. Each micro-phototransistor comprises a photosensitive base operating in Geiger mode and an individual micro-emitter covering a small part of the base layer, thereby creating, together with this latter, a micro-transistor. Both micro-emitters and photosensitive base layers are connected with two respective independent metal grids via their individual micro-resistors. The total value of signal gain in the proposed silicon photomultiplier is a result of both the avalanche gain in the base layer and the corresponding gain in the micro-transistor. The main goals of the new design are: significantly lower both optical crosstalk and after-pulse effects at high signal amplification, improve speed of single photoelectron pulse formation, and significantly reduce the device capacitance.

  3. Fast photomultiplier ELUP 151

    International Nuclear Information System (INIS)

    Andreeva, L.I.; Belokon', V.A.; Krasin, E.V.

    1992-01-01

    High-velocity photomultiplier is described. The latter is recommended to be used in nuclear physics, plasma physics, nuclear medical diagnostics and at measurement of fast-occurring process parameters. Main specifications are as follows: range of spectral sensitivity - 0.2-0.7 μm; limit of dinamic characteristic linearity - up to 5A; dark current at +20 deg C ambient temperature - maximum 10-8A, time of anode pulse growth - maximum 8 ns; photocathode quantum yield in the maximum of spectral characteristic (λ max =380-420 nm) - 24-26%; supply voltage - 4-5 kV

  4. Accuracy of single photoelectron time spread measurement of fast photomultipliers

    International Nuclear Information System (INIS)

    Leskovar, B.

    1975-01-01

    The accuracy of time spread measurements of fast photomultipliers was investigated, using single photoelectrons. The effect of the finite light pulse width on the measurement accuracy was determined and discussed. Experimental data were obtained on a special measuring system for light pulse widths ranging from 200 psec to 10 nsec, using fast photomultipliers 8850 and C31024 with optimized operating conditions for minimum transit time spread. A modified exponential function expression and curve-fitting parameters are given, which fit closely the experimentally obtained data over a wide dynamic range of light pulse widths. (U.S.)

  5. The performance of a high speed pipelined photomultiplier readout system in the Fermilab KTe V experiment

    International Nuclear Information System (INIS)

    Whitmore, J.

    1997-08-01

    The KTeV fixed target experiment at Fermilab is using an innovative scheme for reading out its 3100 channel CsI electromagnetic calorimeter. This pipelined readout system digitizes photomultiplier tube (PMT) signals over a 16-bit dynamic range with 8-bits of resolution at 53 MHz. The crucial element of the system is a custom Bi-CMOS integrated circuit which, in conjunction with an 8-bit Flash ADC, integrates and digitizes the PMT signal charge over each 18.9 nsec clock cycle (53 MHz) in a deadtimeless fashion.The digitizer circuit is local to the PMT base, and has an in-situ charge integration noise figure of 3 fC/sample. In this article, the readout system will be described and its performance including noise, cross-talk, linearity, stability, and reliability will be discussed

  6. Methods for studying the focal spot size and resolution of diagnostic X-ray tubes

    International Nuclear Information System (INIS)

    Fairbanks, R.; Doust, C.

    1979-01-01

    Attention is given to techniques appropriate for use in the clinical situation. The focal spot size is critical to geometric unsharpness and hence the quality of the finished radiograph, but pinhole imaging of the focal spot is extremely difficult in clinical practice. The resolution of an X-ray tube, although a function of focal spot size, is of more importance in radiography. A comparison is made of various resolution grids suitable for quality control use in X-ray departments. (U.K.)

  7. The PhE4-49B photomultiplier spply providing the protection from the geomagnetic field

    International Nuclear Information System (INIS)

    Georgiev, V.V.; Gladyshev, V.A.

    1980-01-01

    To protect a scintillation detector from the effect of the geomagnetic field it is proposed to use an experimentally selected voltage divider in the FEhU-49B photomultiplier supplying circuit. Employment of such a divider makes it possible to increase the electrostatic field strength in the photomultiplier input chamber which ensures better collection of photoelectrons on the first dynode, to decrease effect of the magnetic field on electron focusing and to increase the first dynode secondary emission coefficient. Selection of photomultiplier supplying conditions is carried out experimentally on a scintillation counter with a plastic scintillator. The potentials of the focusing electrode and the first dynode are adjusted so that the relation between the counting rate at a photomultiplier orientation along the magnetic field lines of force and the counting rate at normal orientation to the lines of force is minimum. Usage of the experimentally selected voltage divider improves the scintillation counter time resolution and decreases the photomultiplier operating supply voltage by 100-150 V. The scintillation counter provided with a proposed divider requires no magnetic shields [ru

  8. Attenuation-based size metric for estimating organ dose to patients undergoing tube current modulated CT exams

    Energy Technology Data Exchange (ETDEWEB)

    Bostani, Maryam, E-mail: mbostani@mednet.ucla.edu; McMillan, Kyle; Lu, Peiyun; Kim, Hyun J.; Cagnon, Chris H.; McNitt-Gray, Michael F. [Departments of Biomedical Physics and Radiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90024 (United States); DeMarco, John J. [Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, California 90095 (United States)

    2015-02-15

    Purpose: Task Group 204 introduced effective diameter (ED) as the patient size metric used to correlate size-specific-dose-estimates. However, this size metric fails to account for patient attenuation properties and has been suggested to be replaced by an attenuation-based size metric, water equivalent diameter (D{sub W}). The purpose of this study is to investigate different size metrics, effective diameter, and water equivalent diameter, in combination with regional descriptions of scanner output to establish the most appropriate size metric to be used as a predictor for organ dose in tube current modulated CT exams. Methods: 101 thoracic and 82 abdomen/pelvis scans from clinically indicated CT exams were collected retrospectively from a multidetector row CT (Sensation 64, Siemens Healthcare) with Institutional Review Board approval to generate voxelized patient models. Fully irradiated organs (lung and breasts in thoracic scans and liver, kidneys, and spleen in abdominal scans) were segmented and used as tally regions in Monte Carlo simulations for reporting organ dose. Along with image data, raw projection data were collected to obtain tube current information for simulating tube current modulation scans using Monte Carlo methods. Additionally, previously described patient size metrics [ED, D{sub W}, and approximated water equivalent diameter (D{sub Wa})] were calculated for each patient and reported in three different ways: a single value averaged over the entire scan, a single value averaged over the region of interest, and a single value from a location in the middle of the scan volume. Organ doses were normalized by an appropriate mAs weighted CTDI{sub vol} to reflect regional variation of tube current. Linear regression analysis was used to evaluate the correlations between normalized organ doses and each size metric. Results: For the abdominal organs, the correlations between normalized organ dose and size metric were overall slightly higher for all three

  9. Development of a composite large-size SiPM (assembled matrix) based modular detector cluster for MAGIC

    Science.gov (United States)

    Hahn, A.; Mazin, D.; Bangale, P.; Dettlaff, A.; Fink, D.; Grundner, F.; Haberer, W.; Maier, R.; Mirzoyan, R.; Podkladkin, S.; Teshima, M.; Wetteskind, H.

    2017-02-01

    The MAGIC collaboration operates two 17 m diameter Imaging Atmospheric Cherenkov Telescopes (IACTs) on the Canary Island of La Palma. Each of the two telescopes is currently equipped with a photomultiplier tube (PMT) based imaging camera. Due to the advances in the development of Silicon Photomultipliers (SiPMs), they are becoming a widely used alternative to PMTs in many research fields including gamma-ray astronomy. Within the Otto-Hahn group at the Max Planck Institute for Physics, Munich, we are developing a SiPM based detector module for a possible upgrade of the MAGIC cameras and also for future experiments as, e.g., the Large Size Telescopes (LST) of the Cherenkov Telescope Array (CTA). Because of the small size of individual SiPM sensors (6 mm×6 mm) with respect to the 1-inch diameter PMTs currently used in MAGIC, we use a custom-made matrix of SiPMs to cover the same detection area. We developed an electronic circuit to actively sum up and amplify the SiPM signals. Existing non-imaging hexagonal light concentrators (Winston cones) used in MAGIC have been modified for the angular acceptance of the SiPMs by using C++ based ray tracing simulations. The first prototype based detector module includes seven channels and was installed into the MAGIC camera in May 2015. We present the results of the first prototype and its performance as well as the status of the project and discuss its challenges.

  10. Photomultiplier tube artifacts on 67Ga-citrate imaging caused by loss of correction floods due to an off-peak status of one head of a dual-head γ-camera.

    Science.gov (United States)

    Glaser, Joseph E; Song, Na; Jaini, Sridivya; Lorenzo, Ruth; Love, Charito

    2012-12-01

    γ-cameras use flood-field corrections to ensure image uniformity during clinical imaging. A loss or corruption of the correction data of one head of a dual-head camera can result in an off-peak artifactual appearance. We present our experience with the occurrence of such an incident on a (67)Ga scan. A patient was referred for a whole-body (67)Ga scan to evaluate for causes of neutropenic fever. Whole-body planar and static images of the head, chest, abdomen, pelvis, and lower extremities in multiple projections were obtained. Whole-body images showed decreased image quality on the anterior view obtained with detector 1 and an unremarkable posterior image obtained with detector 2. A problem with detector 2 was suspected, and additional static images were obtained after rotation of the detector heads. The posterior images taken with detector 1 showed photomultiplier tube outlines. The anterior images taken with detector 2 showed improved count and image quality. It was later found that the uniformity map for detector 2 had been lost and that this software malfunction led to the resulting imaging problem. When artifacts with an off-peak appearance are seen on scintigraphic images, evaluation of possible causes should include not only isotope window settings but also an incorrect or corrupted uniformity map.

  11. Study of the radiation damage of silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Nitschke, Michael; Chmill, Valery; Garutti, Erika; Klanner, Robert; Schwandt, Joern [Institute for Experimental Physics, Hamburg University, Luruper Chaussee 149, D-22761 Hamburg (Germany)

    2016-07-01

    Radiation damage significantly changes the performance of silicon photomultipliers (SiPM). In this work, we first have characterized KETEK SiPMs with a pixel size of 15 x 15 μm{sup 2} using I-V (current-voltage), C/G-V/f (capacitance/impedance-voltage/frequency) and Q-V (charge-voltage) measurements with and without illumination with blue light of 470 nm from an LED. The SiPM parameters determined are DCR (dark count rate), relative PDE (photon detection efficiency), G (Gain), XT (cross-talk), Geiger breakdown characteristics, C{sub pix} (pixel capacitance) and R{sub q} (quenching resistance). Following this first characterization, the SiPMs were irradiated using reactor neutrons with fluences of 10{sup 9}, 10{sup 10}, 10{sup 11}, 5 . 10{sup 11}, and 10{sup 12} n/cm{sup 2}. Afterwards, the same measurements were repeated, and the dependence of the SiPM parameters on neutron fluence was determined. The results are used to optimize the radiation tolerance of SiPMs.

  12. Use of a YAP:Ce matrix coupled to a position-sensitive photomultiplier for high resolution positron emission tomography

    International Nuclear Information System (INIS)

    Del Guerra, A.; Zavattini, G.; Notaristefani, F. de; Giganti, M.; Piffanelli, A.; Pani, R.; Turra, A.

    1996-01-01

    A new scintillation detector system has been designed for application in high resolution Positron Emission Tomography (PET). The detector is a bundle of small YAlO 3 :Ce (YAP) crystals closely packed (0.2 x 0.2 x 3.0 cm 3 ), coupled to a position sensitive photomultiplier tube (PSPMT). The preliminary results obtained for spatial resolution, time resolution, energy resolution and efficiency of two such detectors working in coincidence are presented. These are 1.2 mm for the FWHM spatial resolution, 2.0 ns for the FWHM time resolution and 20% for the FWHM energy resolution at 511 keV. The measured efficiency is (44 ± 3)% with a 150 keV threshold and (20 ± 2)% with a 300 keV threshold

  13. Segmented scintillation detectors with silicon photomultiplier readout for measuring antiproton annihilations

    CERN Document Server

    Sótér, A.; Kobayashi, T.; Barna, D.; Horváth, D.; Hori, M.

    2014-01-01

    The Atomic Spectroscopy and Collisions Using Slow Antiprotons (ASACUSA) experiment at the Antiproton Decelerator (AD) facility of CERN constructed segmented scintillators to detect and track the charged pions which emerge from antiproton annihilations in a future superconducting radiofrequency Paul trap for antiprotons. A system of 541 cast and extruded scintillator bars were arranged in 11 detector modules which provided a spatial resolution of 17 mm. Green wavelength-shifting fibers were embedded in the scintillators, and read out by silicon photomultipliers which had a sensitive area of 1 x 1 mm^2. The photoelectron yields of various scintillator configurations were measured using a negative pion beam of momentum p ~ 1 GeV/c. Various fibers and silicon photomultipliers, fiber end terminations, and couplings between the fibers and scintillators were compared. The detectors were also tested using the antiproton beam of the AD. Nonlinear effects due to the saturation of the silicon photomultiplier were seen a...

  14. The recent development and study of silicon photomultiplier

    International Nuclear Information System (INIS)

    Saveliev, Valeri

    2004-01-01

    Recent developments and results from the study of a Silicon Solid State Photomultiplier (Si-PM) are presented. The basis of this new type of photodetector is a fine structure of microcells operating in the Geiger mode with an internal gain greater than 106. Common signal output allows for the detector to be operated in the proportional mode, and to reach a dynamic range of 1.5x103. Such photodetectors have shown single photon response at room temperature with a fast timing of ∼100ps. They are compact, robust and non-sensitive to magnetic fields. Results show the detection of low-intensity light in single photon mode and the detection of minimal ionizing particles using a scintillation tile for hadron calorimetry. The silicon photomultiplier is suitable for wide application in scintillation calorimetry, medical application, etc

  15. An innovative silicon photomultiplier digitizing camera for gamma-ray astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Heller, M. [DPNC-Universite de Geneve, Geneva (Switzerland); Schioppa, E. Jr; Porcelli, A.; Pujadas, I.T.; Della Volpe, D.; Montaruli, T.; Cadoux, F.; Favre, Y.; Christov, A.; Rameez, M.; Miranda, L.D.M. [DPNC-Universite de Geneve, Geneva (Switzerland); Zietara, K.; Idzkowski, B.; Jamrozy, M.; Ostrowski, M.; Stawarz, L.; Zagdanski, A. [Jagellonian University, Astronomical Observatory, Krakow (Poland); Aguilar, J.A. [DPNC-Universite de Geneve, Geneva (Switzerland); Universite Libre Bruxelles, Faculte des Sciences, Brussels (Belgium); Prandini, E.; Lyard, E.; Neronov, A.; Walter, R. [Universite de Geneve, Department of Astronomy, Geneva (Switzerland); Rajda, P.; Bilnik, W.; Kasperek, J.; Lalik, K.; Wiecek, M. [AGH University of Science and Technology, Krakow (Poland); Blocki, J.; Mach, E.; Michalowski, J.; Niemiec, J.; Skowron, K.; Stodulski, M. [Instytut Fizyki Jadrowej im. H. Niewodniczanskiego Polskiej Akademii Nauk, Krakow (Poland); Bogacz, L. [Jagiellonian University, Department of Information Technologies, Krakow (Poland); Borkowski, J.; Frankowski, A.; Janiak, M.; Moderski, R. [Polish Academy of Science, Nicolaus Copernicus Astronomical Center, Warsaw (Poland); Bulik, T.; Grudzinska, M. [University of Warsaw, Astronomical Observatory, Warsaw (Poland); Mandat, D.; Pech, M.; Schovanek, P. [Institute of Physics of the Czech Academy of Sciences, Prague (Czech Republic); Marszalek, A.; Stodulska, M. [Instytut Fizyki Jadrowej im. H. Niewodniczanskiego Polskiej Akademii Nauk, Krakow (Poland); Jagellonian University, Astronomical Observatory, Krakow (Poland); Pasko, P.; Seweryn, K. [Centrum Badan Kosmicznych Polskiej Akademii Nauk, Warsaw (Poland); Sliusar, V. [Universite de Geneve, Department of Astronomy, Geneva (Switzerland); Taras Shevchenko National University of Kyiv, Astronomical Observatory, Kyiv (Ukraine)

    2017-01-15

    The single-mirror small-size telescope (SST-1M) is one of the three proposed designs for the small-size telescopes (SSTs) of the Cherenkov Telescope Array (CTA) project. The SST-1M will be equipped with a 4 m-diameter segmented reflector dish and an innovative fully digital camera based on silicon photo-multipliers. Since the SST sub-array will consist of up to 70 telescopes, the challenge is not only to build telescopes with excellent performance, but also to design them so that their components can be commissioned, assembled and tested by industry. In this paper we review the basic steps that led to the design concepts for the SST-1M camera and the ongoing realization of the first prototype, with focus on the innovative solutions adopted for the photodetector plane and the readout and trigger parts of the camera. In addition, we report on results of laboratory measurements on real scale elements that validate the camera design and show that it is capable of matching the CTA requirements of operating up to high moonlight background conditions. (orig.)

  16. Silicon Photomultiplier Performance in High ELectric Field

    Science.gov (United States)

    Montoya, J.; Morad, J.

    2016-12-01

    Roughly 27% of the universe is thought to be composed of dark matter. The Large Underground Xenon (LUX) relies on the emission of light from xenon atoms after a collision with a dark matter particle. After a particle interaction in the detector, two things can happen: the xenon will emit light and charge. The charge (electrons), in the liquid xenon needs to be pulled into the gas section so that it can interact with gas and emit light. This allows LUX to convert a single electron into many photons. This is done by applying a high voltage across the liquid and gas regions, effectively ripping electrons out of the liquid xenon and into the gas. The current device used to detect photons is the photomultiplier tube (PMT). These devices are large and costly. In recent years, a new technology that is capable of detecting single photons has emerged, the silicon photomultiplier (SiPM). These devices are cheaper and smaller than PMTs. Their performance in a high electric fields, such as those found in LUX, are unknown. It is possible that a large electric field could introduce noise on the SiPM signal, drowning the single photon detection capability. My hypothesis is that SiPMs will not observe a significant increase is noise at an electric field of roughly 10kV/cm (an electric field within the range used in detectors like LUX). I plan to test this hypothesis by first rotating the SiPMs with no applied electric field between two metal plates roughly 2 cm apart, providing a control data set. Then using the same angles test the dark counts with the constant electric field applied. Possibly the most important aspect of LUX, is the photon detector because it's what detects the signals. Dark matter is detected in the experiment by looking at the ratio of photons to electrons emitted for a given interaction in the detector. Interactions with a low electron to photon ratio are more like to be dark matter events than those with a high electron to photon ratio. The ability to

  17. Study on antioxidant experiment on forged steel tube sheet and tube hole for steam generator

    International Nuclear Information System (INIS)

    Zong Hai; Wang Detai; Ding Yang

    2012-01-01

    Antioxidant experiment on forged steel tube sheet and tube hole for steam generator was studied and the influence of different simulated heat treatments on the antioxidant performance of tube sheet and tube hole was made. The influence of different antioxidant methods on the size of tube hole was drawn. Furthermore, the change of size and weight of 18MnD5 forged steel tube sheet on the condition of different simulated heat treatments was also studied. The analytical results have proved reference information for the use of 18MnD5 material and for key processes of processing tube hole and wearing and expanding U-style tube. (authors)

  18. A fast parallel encoding scheme for the Anger camera

    International Nuclear Information System (INIS)

    Seeger, P.A.

    1983-01-01

    An Anger camera is a position-sensitive scintillation detector with a continuous scintillator and a relatively small number of photomultipliers. Light from any one event disperses through a coupling plate to strike several photomultipliers. An air gap between the scintillator and the disperser limits the divergence of the photons by total internal reflection, and the radius of the distribution is proportional to the thickness of the disperser. The camera layout is illustrated and described. The basic unit for two-dimensional position determination is a ''receptive field'' of seven photomultipliers, the detector illustrated has three overlapping fields. In the standard Anger camera, position is determined by finding the centroid of the photomultiplier signals from weighted sums over all tubes of the array. The simplest case (a single field of seven tubes) is described first and then it is shown how this can be expanded to arbitrary size by combining simple circuits. Attention is drawn to the close analogy of this circuit to the structure (and function) of vertebrate visual cortex. (author)

  19. Progress in ultrafast CsI-photocathode gaseous imaging photomultipliers

    International Nuclear Information System (INIS)

    Dagendorf, V.; Breskin, A.; Chechick, R.; Schmidt-Boecking, H.

    1991-04-01

    A large area low-pressure gas-filled UV-imaging photomultiplier with CsI photocathode is presented. The double step electron photomultiplier with a 10 torr CH 4 gas-filling enables stable high gain operation. The detection efficiency of photon in the wavelength range λ ∼ 170 nm (Xe scintilation light) is about 10% for 200 to 2000 nm thick photocathodes. We investigate the influence of various substrate materials, the thickness of the CsI-layer, the gas pressure and the gas composition on the performance of the photocathode. Furthermore we studied the stability of the photocathode under different operating conditions and its sensitivity to air. Measurements of the timing characteristic of the device yielded an ultimate time resolution of 350 ps (fwhm). (author)

  20. Study of the Light Emission Process from the Double Chooz Photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, E.; Cerrada, M.; Crespo, J. I.; Gil-Botella, I.; Jimenez, S.; Lopez, M.; Novella, P.; Palomares, C.; Santorelli, R.; Verdugo, A.

    2012-09-13

    In this document we present a study of the light emitted by the base of a Hamamatsu R7081MOD-ASSY photomultiplier (PMT) of the same type used in the Double Chooz experiment. Several characteristic features of the light signal have been found in terms of amplitude, length and pulse shape. Additional investigations on the properties of the epoxy used to cover the photomultiplier base have been carried out. A possible explanation of the light emission process is discussed at the end of the study. (Author) 1 ref.

  1. Photoelectron yields of scintillation counters with embedded wavelength-shifting fibers read out with silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Artikov, Akram; Baranov, Vladimir; Blazey, Gerald C.; Chen, Ningshun; Chokheli, Davit; Davydov, Yuri; Dukes, E. Craig; Dychkant, Alexsander; Ehrlich, Ralf; Francis, Kurt; Frank, M. J.; Glagolev, Vladimir; Group, Craig; Hansen, Sten; Magill, Stephen; Oksuzian, Yuri; Pla-Dalmau, Anna; Rubinov, Paul; Simonenko, Aleksandr; Song, Enhao; Stetzler, Steven; Wu, Yongyi; Uzunyan, Sergey; Zutshi, Vishnu

    2018-05-01

    Photoelectron yields of extruded scintillation counters with titanium dioxide coating and embedded wavelength shifting fibers read out by silicon photomultipliers have been measured at the Fermilab Test Beam Facility using 120\\,GeV protons. The yields were measured as a function of transverse, longitudinal, and angular positions for a variety of scintillator compositions and reflective coating mixtures, fiber diameters, and photosensor sizes. Timing performance was also studied. These studies were carried out by the Cosmic Ray Veto Group of the Mu2e collaboration as part of their R\\&D program.

  2. Scintillation hodoscope with working area of 50 x 50 cm based on hodoscopic photomultipliers

    International Nuclear Information System (INIS)

    Borog, V.V.; Vasil'chenko, V.G.; Demekhin, A.V.; Dronov, V.V.; Rykalin, V.I.

    1987-01-01

    The choice of optimum designs for the sensitive elements of large hodoscopes based on hodoscopic photomultipliers is examined. The results of numerical calculations are confirmed by measurement results. The measured space resolution of one of the scintillation-hodoscope designs (with two hodoscopic photomultipliers) with a sensitive volume of 50 x 50 x 2 mm is ≤ +3 mm

  3. X-ray beam size measurements on the Advanced Test Accelerator

    International Nuclear Information System (INIS)

    Struve, K.W.; Chambers, F.W.; Lauer, E.J.; Slaughter, D.R.

    1986-01-01

    The electron beam size has been determined on the Advanced Test Accelerator (ATA) by intercepting the beam with a target and measuring the resulting x-ray intensity as a function of time as the target is moved through the beam. Several types of targets have been used. One is a tantalum rod which extends completely across the drift chamber. Another is a tungsten powder filled carbon crucible. Both of these probes are moved from shot to shot so that the x-ray signal intensity varies with probe position. A third is a larger tantalum disk which is inserted on beam axis to allow determining beam size on a one shot basis. The x-ray signals are detected with an MCP photomultiplier tube located at 90 0 to the beamline. It is sufficiently shielded to reject background x-rays and neutrons. The signals were digitized, recorded and later unfolded to produce plots of x-ray intensity versus probe position for several times during the pulse. The presumption that the x-ray intensity is proportional to beam current density is checked computationally. Details of the probe construction and PMT shielding, as well as sample measurements are given

  4. Influence of connection tubing in modern size exclusion chromatography and its impact on the characterization of mAbs.

    Science.gov (United States)

    Fekete, Szabolcs; Guillarme, Davy

    2018-02-05

    The goal of the study was to evaluate the impact of connection tubing in modern size exclusion chromatography (SEC), since it may strongly impact the apparent column efficiency, as the compounds are not retained in SEC. For this purpose, a reference SEC column of 150×4.6mm, 1.8μm was considered, and various proteins were tested as model compounds. Different tube geometries (lengths and internal diameters) and materials (stainless steel and PEEK) were evaluated in a systematic way. Large proteins always showed larger tube dispersion vs. small molecules, especially when the residence time in the tube was long (at low flow rate). This confirms the need to drastically reduce the tube volume (using the shortest and narrowest connector tubing) to attain the full benefits of UHPSEC columns. In addition, PEEK tubing were found to be more appropriate than stainless steel tubing, since adsorption of proteins was less pronounced, and higher plate count can be obtained. Finally, after a careful system optimization, up to 40% increase of apparent column efficiency can be achieved compared to a regular UHPLC system, when using a 150×4.6mm UHPSEC columns packed with sub-3μm particles. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. System for high-voltage control detectors with large number photomultipliers

    International Nuclear Information System (INIS)

    Donskov, S.V.; Kachanov, V.A.; Mikhajlov, Yu.V.

    1985-01-01

    A simple and inexpensive on-line system for hihg-voltage control which is designed for detectors with a large number of photomultipliers is developed and manufactured. It has been developed for the GAMC type hodoscopic electromagnetic calorimeters, comprising up to 4 thousand photomultipliers. High voltage variation is performed by a high-speed potentiometer which is rotated by a microengine. Block-diagrams of computer control electronics are presented. The high-voltage control system has been used for five years in the IHEP and CERN accelerator experiments. The operation experience has shown that it is quite simple and convenient in operation. In case of about 6 thousand controlled channels in both experiments no potentiometer and microengines failures were observed

  6. Analysis of photon statistics with Silicon Photomultiplier

    International Nuclear Information System (INIS)

    D'Ascenzo, N.; Saveliev, V.; Wang, L.; Xie, Q.

    2015-01-01

    The Silicon Photomultiplier (SiPM) is a novel silicon-based photodetector, which represents the modern perspective of low photon flux detection. The aim of this paper is to provide an introduction on the statistical analysis methods needed to understand and estimate in quantitative way the correct features and description of the response of the SiPM to a coherent source of light

  7. Characterization of Silicon Photomultiplier Detectors using Cosmic Radiation

    Science.gov (United States)

    Zavala, Favian; Castro, Juan; Niduaza, Rexavalmar; Wedel, Zachary; Fan, Sewan; Ritt, Stefan; Fatuzzo, Laura

    2014-03-01

    The silicon photomultiplier light detector has gained a lot of attention lately in fields such as particle physics, astrophysics, and medical physics. Its popularity stems from its lower cost, compact size, insensitivity to magnetic fields, and its excellent ability to distinguish a quantized number of photons. They are normally operated at room temperature and biased above their breakdown voltages. As such, they may also exhibit properties that may hinder their optimal operation which include a thermally induced high dark count rate, after pulse effects, and cross talk from photons in nearby pixels. At this poster session, we describe our data analysis and our endeavor to characterize the multipixel photon counter (MPPC) detectors from Hamamatsu under different bias voltages and temperature conditions. Particularly, we describe our setup which uses cosmic rays to induce scintillation light delivered to the detector by wavelength shifting optical fibers and the use of a fast 1 GHz waveform sampler, the domino ring sampler (DRS4) digitizer board. Department of Education grant number P031S90007.

  8. Sub-aquatic response of a scintillator, fibre optic and silicon photomultiplier based radiation sensor

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Sarah F., E-mail: s.f.jackson@lancaster.ac.uk [Engineering Department, Lancaster University, Lancaster (United Kingdom); Monk, Stephen D., E-mail: s.monk@lancaster.ac.uk [Engineering Department, Lancaster University, Lancaster (United Kingdom); Stanley, Steven J., E-mail: steven.j.stanley@nnl.co.uk [National Nuclear Laboratory, A709 Springfields, Preston (United Kingdom); Lennox, Kathryn, E-mail: kathryn.lennox@nnl.co.uk [National Nuclear Laboratory, A709 Springfields, Preston (United Kingdom)

    2014-07-01

    We describe an attempt at the utilisation of two low level light sensors to improve on the design of a dose monitoring system, specifically for underwater applications with consideration for the effects of water attenuation. The gamma radiation ‘RadLine{sup ®}’ detector consists of an inorganic scintillating crystal coupled to a fibre optic cable which transports scintillation photons, up to hundreds of metres, to an optical sensor. Analysed here are two contemporary technologies; SensL's MiniSL a silicon photomultiplier (SiPM) and a Sens-Tech photon counting photomultiplier tube (PMT). A clinical radiotherapy linear accelerator (linac) is implemented as test beam, subjecting the RadLine{sup ®} to a highly controlled dose rate (ranging from 0 Sv h{sup −1} to 320 Sv h{sup −1}), averaging at 2 MeV in energy. The RadLine's underwater dose monitoring capabilities are tested with the aid of epoxy resin ‘solid water’ phantom blocks, used as a substitute for water. Our results show that the MiniSL SiPM is unsuitable for this application due to extremely high background noise levels, however the Sens-Tech PMT performs satisfactorily and the detected dose rate due to the effects of water attenuation compares strongly with MCNP simulation data and NIST database values. We conclude that the PMT shows promise for its ultimate use in the First Generation Magnox Storage Pond (FGMSP) on the Sellafield site. - Highlights: • RadLine{sup ®} consists of a scintillating crystal coupled to a fibre optic cable and photon detector. • Here the dose monitoring system is trialled with SiPM and PMT type photon detectors. • A clinical linear accelerator (linac) is used as a test beam. • Sub-aquatic response is compared to Monte Carlo simulations and the NIST database.

  9. Improved SPICE electrical model of silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Marano, D., E-mail: davide.marano@oact.inaf.it [INAF, Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania (Italy); Bonanno, G.; Belluso, M.; Billotta, S.; Grillo, A.; Garozzo, S.; Romeo, G. [INAF, Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania (Italy); Catalano, O.; La Rosa, G.; Sottile, G.; Impiombato, D.; Giarrusso, S. [INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, Via U. La Malfa 153, I-90146 Palermo (Italy)

    2013-10-21

    The present work introduces an improved SPICE equivalent electrical model of silicon photomultiplier (SiPM) detectors, in order to simulate and predict their transient response to avalanche triggering events. In particular, the developed circuit model provides a careful investigation of the magnitude and timing of the read-out signals and can therefore be exploited to perform reliable circuit-level simulations. The adopted modeling approach is strictly related to the physics of each basic microcell constituting the SiPM device, and allows the avalanche timing as well as the photodiode current and voltage to be accurately simulated. Predictive capabilities of the proposed model are demonstrated by means of experimental measurements on a real SiPM detector. Simulated and measured pulses are found to be in good agreement with the expected results. -- Highlights: • An improved SPICE electrical model of silicon photomultipliers is proposed. • The developed model provides a truthful representation of the physics of the device. • An accurate charge collection as a function of the overvoltage is achieved. • The adopted electrical model allows reliable circuit-level simulations to be performed. • Predictive capabilities of the adopted model are experimentally demonstrated.

  10. Hodoscope module with miniature photomultipliers

    International Nuclear Information System (INIS)

    Bel'zer, L.I.; Gribushin, A.M.; Zhil'tsov, L.Ya.; Matveeva, E.N.; Philipenko, T.D.; Sinev, N.B.

    1987-01-01

    The experimental Scintillation Magnetic Spectrometer (SMS) installation, whose main element is an extended hodoscope system, is being built for the accelerator of the High Energy Laboratory of the Joint Institute for Nuclear Research. The authors describe the scintillation hodoscope of the SMS installation and present the applicable amplitude and time characteristics of several types of miniature photomultipliers (FEU-58, FEU-60, FEU-114-1, FEU-147-1, and R-1635 (Hamamatsu, Japan)), which were obtained with a 106 Ru radioactive source and standard plastic scintillators of two types, based on oxazoles in polystyrene and in polymethylmethacrylate

  11. Modeling crosstalk and afterpulsing in silicon photomultipliers

    International Nuclear Information System (INIS)

    Rosado, J.; Aranda, V.M.; Blanco, F.; Arqueros, F.

    2015-01-01

    An experimental method to characterize the crosstalk and afterpulsing in silicon photomultipliers has been developed and applied to two detectors fabricated by Hamamatsu. An analytical model of optical crosstalk that we presented in a previous publication has been compared with new measurements, confirming our results. Progresses on a statistical model to describe afterpulsing and delayed crosstalk are also shown and compared with preliminary experimental data

  12. Modeling crosstalk and afterpulsing in silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Rosado, J., E-mail: jaime_ros@fis.ucm.es; Aranda, V.M.; Blanco, F.; Arqueros, F.

    2015-07-01

    An experimental method to characterize the crosstalk and afterpulsing in silicon photomultipliers has been developed and applied to two detectors fabricated by Hamamatsu. An analytical model of optical crosstalk that we presented in a previous publication has been compared with new measurements, confirming our results. Progresses on a statistical model to describe afterpulsing and delayed crosstalk are also shown and compared with preliminary experimental data.

  13. Development of a composite large-size SiPM (assembled matrix) based modular detector cluster for MAGIC

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, A., E-mail: ahahn@mpp.mpg.de [Max Planck Institute for Physics (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Mazin, D., E-mail: mazin@mpp.mpg.de [Max Planck Institute for Physics (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwa-no-Ha, Kashiwa City, Chiba 277–8582 (Japan); Bangale, P., E-mail: priya@mpp.mpg.de [Max Planck Institute for Physics (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Dettlaff, A., E-mail: todettl@mpp.mpg.de [Max Planck Institute for Physics (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Fink, D., E-mail: fink@mpp.mpg.de [Max Planck Institute for Physics (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Grundner, F., E-mail: grundner@mpp.mpg.de [Max Planck Institute for Physics (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Haberer, W., E-mail: haberer@mpp.mpg.de [Max Planck Institute for Physics (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Maier, R., E-mail: rma@mpp.mpg.de [Max Planck Institute for Physics (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); and others

    2017-02-11

    The MAGIC collaboration operates two 17 m diameter Imaging Atmospheric Cherenkov Telescopes (IACTs) on the Canary Island of La Palma. Each of the two telescopes is currently equipped with a photomultiplier tube (PMT) based imaging camera. Due to the advances in the development of Silicon Photomultipliers (SiPMs), they are becoming a widely used alternative to PMTs in many research fields including gamma-ray astronomy. Within the Otto-Hahn group at the Max Planck Institute for Physics, Munich, we are developing a SiPM based detector module for a possible upgrade of the MAGIC cameras and also for future experiments as, e.g., the Large Size Telescopes (LST) of the Cherenkov Telescope Array (CTA). Because of the small size of individual SiPM sensors (6 mm×6 mm) with respect to the 1-inch diameter PMTs currently used in MAGIC, we use a custom-made matrix of SiPMs to cover the same detection area. We developed an electronic circuit to actively sum up and amplify the SiPM signals. Existing non-imaging hexagonal light concentrators (Winston cones) used in MAGIC have been modified for the angular acceptance of the SiPMs by using C++ based ray tracing simulations. The first prototype based detector module includes seven channels and was installed into the MAGIC camera in May 2015. We present the results of the first prototype and its performance as well as the status of the project and discuss its challenges. - Highlights: • The design of the first SiPM large-size IACT pixel is described. • The simulation of the light concentrators is presented. • The temperature stability of the detector module is demonstrated. • The calibration procedure of SiPM device in the field is described.

  14. Photomultipliers gain monitoring at the one percent level with a blue light pulser

    International Nuclear Information System (INIS)

    Berger, J.; Bermond, M.; Besson, P.; Favier, J.; Pessard, H.; Poulet, M.

    1988-07-01

    We describe a method and an experimental layout allowing the monitoring of photomultipliers gain. We use artificial blue light (Spark-gap with filter: 436 ± 20 nm) and three reference detectors. Short term and long term measurements are presented. The results indicate a precision better than 0.5% for the short term and 1.4% for the long term determinations. This gain monitoring system has been developed for a new neutrino oscillation reactor experiment (600 photomultipliers) starting at the Bugey nuclear plant

  15. LHCb : Behaviour of Multi-anode Photomultipliers in Magnetic Fields for the LHCb RICH Upgrde

    CERN Multimedia

    Gambetta, Silvia

    2015-01-01

    A key feature of the LHCb upgrade, scheduled for 2019, is to remove the first level trigger and its data reduction from 40MHz to 1MHz, which is implemented in the on-detector readout electronics. The consequence for the LHCb Ring Imaging Cherenkov (RICH) detectors is that the Hybrid Photon Detectors need to be replaced as the readout chip is inside the detector vacuum. The baseline for replacement are Multianode Photomultiplier tubes (MaPMT) and new readout electronics. The MaPMTs will be located in the fringe field of the LHCb dipole magnet with residual fields up to 25 G. Therefore, their behaviour in magnetic fields is critical. Here we report about studies of the Hamamatsu models R11265 and H12700 in a magnetic field in an effort to qualify them for use in the LHCb RICH upgrade. Comparisons to the known model R7600 are also made. Measurements of the collection efficiency and gain were performed for all three space directions as a function of the magnetic field strength. In addition to measurements with ba...

  16. Characterization of 1600 Hamamatsu 16-anode photomultipliers for the MINOS Far detector

    International Nuclear Information System (INIS)

    Lang, K.; Day, J.; Eilerts, S.; Fuqua, S.; Guillen, A.; Kordosky, M.; Lang, M.; Liu, J.; Opaska, W.; Proga, M.; Vahle, P.; Winbow, A.; Drake, G.; Thomas, J.; Andreopoulos, C.; Saoulidou, N.; Stamoulis, P.; Tzanakos, G.; Zois, M.; Weber, A.; Michael, D.

    2005-01-01

    We are reporting results of the characterization of over 1600 multi-anode R5900-00-M16 photomultipliers manufactured by Hamamatsu Photonics K.K., and installed in the MINOS Far detector. We have conducted extensive tests of the uniformity of gain and collection efficiency of individual anodes, the cross-talk among all 16 channels, the dark noise, and the linearity of response. In our studies we used a blue light-emitting diode to illuminate phototubes through 1.2 mm diameter optical fibers. In this paper, we present summaries of the main characteristics of the tested photomultipliers

  17. Multi-time-over-threshold technique for photomultiplier signal processing: Description and characterization of the SCOTT ASIC

    International Nuclear Information System (INIS)

    Ferry, S.; Guilloux, F.; Anvar, S.; Chateau, F.; Delagnes, E.; Gautard, V.; Louis, F.; Monmarthe, E.; Le Provost, H.; Russo, S.; Schuller, J.-P.; Stolarczyk, Th.; Vallage, B.; Zonca, E.

    2012-01-01

    KM3NeT aims to build a cubic-kilometer scale neutrino telescope in the Mediterranean Sea based on a 3D array of photomultiplier tubes. A dedicated ASIC, named SCOTT, has been developed for the readout electronics of the PMTs: it uses up to 16 adjustable thresholds to digitize the signals with the multi-time-over-threshold technique. Digital outputs of discriminators feed a circular sampling memory and a “first in first out” digital memory for derandomization. At the end of the data processing, the ASIC produces a digital waveform sampled at 800 MHz. A specific study was carried out to process PMT data and has showed that five specifically chosen thresholds are suited to reach the required timing precision. A dedicated method based on the duration of the signal over a given threshold allows an equivalent timing precision at any charge. A charge estimator using the information from the thresholds allows a charge determination within less than 20% up to 60 pe.

  18. Multi-time-over-threshold technique for photomultiplier signal processing: Description and characterization of the SCOTT ASIC

    Science.gov (United States)

    Ferry, S.; Guilloux, F.; Anvar, S.; Chateau, F.; Delagnes, E.; Gautard, V.; Louis, F.; Monmarthe, E.; Le Provost, H.; Russo, S.; Schuller, J.-P.; Stolarczyk, Th.; Vallage, B.; Zonca, E.; Representing the KM3NeT Consortium

    2012-12-01

    KM3NeT aims to build a cubic-kilometer scale neutrino telescope in the Mediterranean Sea based on a 3D array of photomultiplier tubes. A dedicated ASIC, named SCOTT, has been developed for the readout electronics of the PMTs: it uses up to 16 adjustable thresholds to digitize the signals with the multi-time-over-threshold technique. Digital outputs of discriminators feed a circular sampling memory and a “first in first out” digital memory for derandomization. At the end of the data processing, the ASIC produces a digital waveform sampled at 800 MHz. A specific study was carried out to process PMT data and has showed that five specifically chosen thresholds are suited to reach the required timing precision. A dedicated method based on the duration of the signal over a given threshold allows an equivalent timing precision at any charge. A charge estimator using the information from the thresholds allows a charge determination within less than 20% up to 60 pe.

  19. LUCID A Cherenkov Tube Based Detector for Monitoring the ATLAS Experiment Luminosity

    CERN Document Server

    Sbrizzi, A

    2007-01-01

    The LUCID (LUminosity Cherenkov Integrating Detector) apparatus is composed by two symmetric arms deployed at about 17 m from the ATLAS interaction point. The purpose of this detector, which will be installed in january 2008, is to monitor the luminosity delivered by the LHC machine to the ATLAS experiment. An absolute luminosity calibration is needed and it will be provided by a Roman Pot type detector with the two arms placed at about 240 m from the interaction point. Each arm of the LUCID detector is based on an aluminum vessel containing 20 Cherenkov tubes, 15 mm diameter and 1500 mm length, filled with C4F10 radiator gas at 1.5 bar. The Cherenkov light generated by charged particles above the threshold is collected by photomultiplier tubes (PMT) directly placed at the tubes end. The challenging aspect of this detector is its readout in an environment characterized by the high dose of radiation (about 0.7 Mrad/year at 10^33cm^2 s^-1) it must withstand. In order to fulfill these radiation hardness requirem...

  20. Influence of incident light wavelength on time jitter of fast photomultipliers

    International Nuclear Information System (INIS)

    Moszynski, M.; Vacher, J.

    1977-01-01

    The study of the single photoelectron time resolution as a function of the wavelength of the incident light was performed for a 56 CVP photomultiplier having an S-1 photocathode. The light flash from the XP22 light emitting diode generator was passed through passband filters and illuminated the 5 mm diameter central part of the photocathode. A significant increase of the time resolution above 30% was observed when the wavelength of the incident light was changed from 790 nm to 580 nm. This gives experimental evidence that the time jitter resulting from the spread of the initial velocity of photoelectrons is proportional to the square root of the maximal initial energy of photoelectrons. Based on this conclusion the measured time jitter of C31024, RCA8850 and XP2020 photomultipliers with the use of the XP22 light emitting diode at 560 nm light wavelength was recalculated to estimate the time jitter at 400 nm near the maximum of the photocathode sensitivity. It shows an almost twice larger time spread at 400 nm for the C31024 and RCA8850 with a high gain first dynode and an about 1.5 times larger time spread for the XP2020 photomultiplier, than those measured at 560 nm. (Auth.)

  1. Improvements in or relating to radiation detection arrangements

    International Nuclear Information System (INIS)

    Davis, G.P.

    1977-01-01

    A radiation detection arrangement is described that that comprises a number of scintillator devices, and a single multi-channel photomultiplier tube. Light from the scintillator devices is incident on the photocathode through an entrance window in the tube and multiplier entrance separating means are provided whereby light from each of the devices is made to be incident upon the channel entrances of photomultiplier tube. Various geometrical forms for the scintillator devices are described. This arrangement avoids the use of large number of small photomultiplier tubes, which is expensive and gives rise to difficulties in stacking the tubes in closely spaced side-by-side relationship. (U.K.)

  2. Distribution of volatile and non volatile elements in grain-size fractions of Apollo 17 drive tube 74001/2

    International Nuclear Information System (INIS)

    Kraehenbuehl, U.

    1980-01-01

    A study of four samples of double drive tube 74001/2 originating from 12, 25, 38, and 58 cm depths indicates that the concentrations of major and nonvolatile elements are fairly uniform for the four layers and the individual size fractions, while volatile elements as well as Au and Ir are enriched in the smaller grain-size fractions. It is concluded from the measured Au/Ir ratios and from the absence of a surface enrichment of Co that the material in the drive tube 74001/2 is not the result of an impact of an iron meteorite into a lava lake, but originated in at least three volcanic eruptions. No indication of a later disturbance of the stratigraphy of the layers is observed. Exposure ages of 345,000 and 225,000 years result from Ir deposits for the two layers of 74002

  3. Positron emission tomography camera

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    A positron emission tomography camera having a plurality of detector planes positioned side-by-side around a patient area to detect radiation. Each plane includes a plurality of photomultiplier tubes and at least two rows of scintillation crystals on each photomultiplier tube extend across to adjacent photomultiplier tubes for detecting radiation from the patient area. Each row of crystals on each photomultiplier tube is offset from the other rows of crystals, and the area of each crystal on each tube in each row is different than the area of the crystals on the tube in other rows for detecting which crystal is actuated and allowing the detector to detect more inter-plane slides. The crystals are offset by an amount equal to the length of the crystal divided by the number of rows. The rows of crystals on opposite sides of the patient may be rotated 90 degrees relative to each other

  4. Performance studies of varian VPM-154D.6D VPM-154A/1.6L static crossed field photomultipliers

    International Nuclear Information System (INIS)

    Lo, C.C.; Leskovar, B.

    1977-01-01

    Characteristics have been measured for the Varian VPM-154D.6D and VPM-154A/1.6L Static Crossed Field Photomultipliers. Some typical photomultiplier characteristics such as: gain, dark current, quantum efficiency, and rise-time--are compared with data provided by the manufacturer. Photomultiplier characteristics generally not available from the manufacturer, such as: transit time, FWHM of the output pulse, peak output current measurement and multiphotoelectron time resolution were measured and are discussed

  5. Analysis of single-photon time resolution of FBK silicon photomultipliers

    International Nuclear Information System (INIS)

    Acerbi, Fabio; Ferri, Alessandro; Gola, Alberto; Zorzi, Nicola; Piemonte, Claudio

    2015-01-01

    We characterized and analyzed an important feature of silicon photomultipliers: the single-photon time resolution (SPTR). We characterized the SPTR of new RGB (Red–Green–Blue) type Silicon Photomultipliers and SPADs produced at FBK (Trento, Italy), studying its main limiting factors. We compared time resolution of 1×1 mm 2 and 3×3 mm 2 SiPMs and a single SiPM cell (i.e. a SPAD with integrated passive-quenching), employing a mode-locked pulsed laser with 2-ps wide pulses. We estimated the contribution of front-end electronic-noise, of cell-to-cell uniformity, and intrinsic cell time-resolution. At a single-cell level, we compared the results obtained with different layouts. With a circular cell with a top metallization covering part of the edge and enhancing the signal extraction, we reached ~20 ps FWHM of time resolution

  6. Experimental investigation of silicon photomultipliers as compact light readout systems for gamma-ray spectroscopy applications in fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Nocente, M., E-mail: massimo.nocente@mib.infn.it; Gorini, G. [Dipartimento di Fisica “G. Occhialini,” Università degli Studi di Milano-Bicocca, Milano (Italy); Istituto di Fisica del Plasma “P. Caldirola,” EURATOM-ENEA-CNR Association, Milano (Italy); Fazzi, A.; Lorenzoli, M.; Pirovano, C. [Dipartimento di Energia, CeSNEF, Politecnico di Milano, Milano (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Milano (Italy); Tardocchi, M. [Istituto di Fisica del Plasma “P. Caldirola,” EURATOM-ENEA-CNR Association, Milano (Italy); Cazzaniga, C.; Rebai, M. [Dipartimento di Fisica “G. Occhialini,” Università degli Studi di Milano-Bicocca, Milano (Italy); Uboldi, C.; Varoli, V. [Dipartimento di Energia, CeSNEF, Politecnico di Milano, Milano (Italy)

    2014-11-15

    A matrix of Silicon Photo Multipliers has been developed for light readout from a large area 1 in. × 1 in. LaBr{sub 3} crystal. The system has been characterized in the laboratory and its performance compared to that of a conventional photo multiplier tube. A pulse duration of 100 ns was achieved, which opens up to spectroscopy applications at high counting rates. The energy resolution measured using radioactive sources extrapolates to 3%–4% in the energy range E{sub γ} = 3–5 MeV, enabling gamma-ray spectroscopy measurements at good energy resolution. The results reported here are of relevance in view of the development of compact gamma-ray detectors with spectroscopy capabilities, such as an enhanced gamma-ray camera for high power fusion plasmas, where the use of photomultiplier is impeded by space limitation and sensitivity to magnetic fields.

  7. Pulse shape discrimination using EJ-299-33 plastic scintillator coupled with a Silicon Photomultiplier array

    International Nuclear Information System (INIS)

    Liao, Can; Yang, Haori

    2015-01-01

    Recent developments in organic plastic scintillators capable of pulse shape discrimination (PSD) have gained much interest. Novel photon detectors, such as Silicon Photomultipliers (SiPMs), offer numerous advantages and can be used as an alternative to conventional photo multiplier tubes (PMTs) in many applications. In this work, we evaluate the PSD performance of the EJ-299-33 plastic scintillator coupled with a SiPM array. 2D PSD plots as well as the Figure of Merit (FOM) parameters are presented to demonstrate the PSD capability of EJ-299-33 using a SiPM as the light sensor. The best FOM of 0.76 was observed with a 1.0 MeVee (MeV-electron-equivalent) energy threshold, despite the high noise level of the SiPM array. A high-speed digital oscilloscope was used to acquire data, which was then processed offline in MATLAB. A performance comparison between two different PSD algorithms was carried out. The dependence of PSD quality on the sampling rate was also evaluated, stimulated by the interest to implement this setup for handheld applications where power consumption is crucial

  8. Characterization of large-area photomultipliers under low magnetic fields: Design and performance of the magnetic shielding for the Double Chooz neutrino experiment

    International Nuclear Information System (INIS)

    Calvo, E.; Cerrada, M.; Fernandez-Bedoya, C.; Gil-Botella, I.; Palomares, C.; Rodriguez, I.; Toral, F.; Verdugo, A.

    2010-01-01

    A precise quantitative measurement of the effect of low magnetic fields in Hamamatsu R7081 photomultipliers has been performed. These large-area photomultipliers will be used in the Double Chooz neutrino experiment. A magnetic shielding has been developed for these photomultipliers. Its design and performance is also reported in this paper.

  9. Dynamic range broadening for photomultipliers in kinetic spectrophotometry

    International Nuclear Information System (INIS)

    Rumas, V.K.

    1983-01-01

    The circuit of switching on a photomultiplier with prestage modulation developed for kinetic spectrophotometry purposes is described. Distinguishing features of the scheme are wide range of control pulse duration (40 nc - 2.5 mc) and direct transistor photostart by laser light pulse. In the case of PM prestage modulation for the second dynode modulation depth attains 400 while PM opening time constitutes 40 nc

  10. Analysis of single-photon time resolution of FBK silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Acerbi, Fabio, E-mail: acerbi@fbk.eu; Ferri, Alessandro; Gola, Alberto; Zorzi, Nicola; Piemonte, Claudio

    2015-07-01

    We characterized and analyzed an important feature of silicon photomultipliers: the single-photon time resolution (SPTR). We characterized the SPTR of new RGB (Red–Green–Blue) type Silicon Photomultipliers and SPADs produced at FBK (Trento, Italy), studying its main limiting factors. We compared time resolution of 1×1 mm{sup 2} and 3×3 mm{sup 2} SiPMs and a single SiPM cell (i.e. a SPAD with integrated passive-quenching), employing a mode-locked pulsed laser with 2-ps wide pulses. We estimated the contribution of front-end electronic-noise, of cell-to-cell uniformity, and intrinsic cell time-resolution. At a single-cell level, we compared the results obtained with different layouts. With a circular cell with a top metallization covering part of the edge and enhancing the signal extraction, we reached ~20 ps FWHM of time resolution.

  11. Time-resolved single-photon detection module based on silicon photomultiplier: A novel building block for time-correlated measurement systems

    Energy Technology Data Exchange (ETDEWEB)

    Martinenghi, E., E-mail: edoardo.martinenghi@polimi.it; Di Sieno, L.; Contini, D.; Dalla Mora, A. [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Sanzaro, M. [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Pifferi, A. [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2016-07-15

    We present the design and preliminary characterization of the first detection module based on Silicon Photomultiplier (SiPM) tailored for single-photon timing applications. The aim of this work is to demonstrate, thanks to the design of a suitable module, the possibility to easily exploit SiPM in many applications as an interesting detector featuring large active area, similarly to photomultipliers tubes, but keeping the advantages of solid state detectors (high quantum efficiency, low cost, compactness, robustness, low bias voltage, and insensitiveness to magnetic field). The module integrates a cooled SiPM with a total photosensitive area of 1 mm{sup 2} together with the suitable avalanche signal read-out circuit, the signal conditioning, the biasing electronics, and a Peltier cooler driver for thermal stabilization. It is able to extract the single-photon timing information with resolution better than 100 ps full-width at half maximum. We verified the effective stabilization in response to external thermal perturbations, thus proving the complete insensitivity of the module to environment temperature variations, which represents a fundamental parameter to profitably use the instrument for real-field applications. We also characterized the single-photon timing resolution, the background noise due to both primary dark count generation and afterpulsing, the single-photon detection efficiency, and the instrument response function shape. The proposed module can become a reliable and cost-effective building block for time-correlated single-photon counting instruments in applications requiring high collection capability of isotropic light and detection efficiency (e.g., fluorescence decay measurements or time-domain diffuse optics systems).

  12. Time-resolved single-photon detection module based on silicon photomultiplier: A novel building block for time-correlated measurement systems

    International Nuclear Information System (INIS)

    Martinenghi, E.; Di Sieno, L.; Contini, D.; Dalla Mora, A.; Sanzaro, M.; Pifferi, A.

    2016-01-01

    We present the design and preliminary characterization of the first detection module based on Silicon Photomultiplier (SiPM) tailored for single-photon timing applications. The aim of this work is to demonstrate, thanks to the design of a suitable module, the possibility to easily exploit SiPM in many applications as an interesting detector featuring large active area, similarly to photomultipliers tubes, but keeping the advantages of solid state detectors (high quantum efficiency, low cost, compactness, robustness, low bias voltage, and insensitiveness to magnetic field). The module integrates a cooled SiPM with a total photosensitive area of 1 mm"2 together with the suitable avalanche signal read-out circuit, the signal conditioning, the biasing electronics, and a Peltier cooler driver for thermal stabilization. It is able to extract the single-photon timing information with resolution better than 100 ps full-width at half maximum. We verified the effective stabilization in response to external thermal perturbations, thus proving the complete insensitivity of the module to environment temperature variations, which represents a fundamental parameter to profitably use the instrument for real-field applications. We also characterized the single-photon timing resolution, the background noise due to both primary dark count generation and afterpulsing, the single-photon detection efficiency, and the instrument response function shape. The proposed module can become a reliable and cost-effective building block for time-correlated single-photon counting instruments in applications requiring high collection capability of isotropic light and detection efficiency (e.g., fluorescence decay measurements or time-domain diffuse optics systems).

  13. Development and Technology Transfer of the Syncro Blue Tube (Gabriel) Magnetically Guided Feeding Tube

    Science.gov (United States)

    2017-06-01

    suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188...the tube to the 110 cm mark. At the 110 cm mark, secure the tube with medical tape and remove the stylet completely allowing enough tube slack ...and it provides slack that allows tube to advance distally by the effect of natural peristalsis on the bolus-sized balloon. Results: Most feeding

  14. Precision heat forming of tetrafluoroethylene tubing

    Science.gov (United States)

    Ruiz, W. V.; Thatcher, C. S. (Inventor)

    1981-01-01

    An invention that provides a method of altering the size of tetrafluoroethylene tubing which is only available in limited combination of wall thicknesses and diameter are discussed. The method includes the steps of sliding the tetrafluoroethylene tubing onto an aluminum mandrel and clamping the ends of the tubing to the mandrel by means of clamps. The tetrafluorethylene tubing and mandrel are then placed in a supporting coil which with the mandrel and tetrafluorethylene tubing are then positioned in a insulated steel pipe which is normally covered with a fiber glass insulator to smooth out temperature distribution therein. The entire structure is then placed in an event which heats the tetrafluorethylene tubing which is then shrunk by the heat to the outer dimension of the aluminum mandrel. After cooling the aluminum mandrel is removed from the newly sized tetrafluorethylene tubing by a conventional chemical milling process.

  15. Cerenkov Detectors for Fission Product Monitoring in Reactor Coolant Water

    Energy Technology Data Exchange (ETDEWEB)

    Strindehag, O

    1967-09-15

    The expected properties of Cerenkov detectors when used for fission product monitoring in water cooled reactors and test loops are discussed from the point of view of the knowledge of the sensitivity of these detectors to some beta emitting isotopes. The basic theory for calculation of the detector response is presented, taking the optical transmission in the sample container and the properties of the photomultiplier tube into account. Special attention is paid to the energy resolution of this type of Cerenkov detector. For the design of practical detectors the results from several investigations of various window and reflector materials are given, and the selection of photomultiplier tubes is briefly discussed. In the case of optical reflectors and photomultiplier tubes reference is made to two previous reports by the author. The influence of the size and geometry of the sample container on the energy resolution follows from a separate investigation, as well as the relative merits of sample containers with transparent inner walls. Provided that the energy resolution of the Cerenkov detector is sufficiently high, there are several reasons for using this detector type for failed-fuel-element detection. It seems possible to attain the desired energy resolution by careful detector design.

  16. Readout of scintillator light with avalanche photodiodes for positron emission tomography

    International Nuclear Information System (INIS)

    Chen, Ruru; Fremout, A.; Tavernier, S.; Bruyndonckx, P.; Clement, D.; Loude, J.-F.; Morel, C.

    1999-01-01

    The noise properties and other relevant characteristics of avalanche photodiodes have been investigated with the perspective of replacing photomultiplier tubes in positron emission tomography. It is clearly demonstrated that they are a valid alternative to photomultiplier tubes in this application

  17. Muon counting using silicon photomultipliers in the AMIGA detector of the Pierre Auger observatory

    Science.gov (United States)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Badescu, A. M.; Balaceanu, A.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Clay, R. W.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; Dallier, R.; D'Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; del Peral, L.; Deligny, O.; Di Giulio, C.; Di Matteo, A.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D'Olivo, J. C.; Dorofeev, A.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; García, B.; Garcia-Pinto, D.; Gaté, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Glass, H.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Hasankiadeh, Q.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; LaHurd, D.; Latronico, L.; Lauscher, M.; Lebrun, P.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; López Casado, A.; Luce, Q.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Mockler, D.; Molina-Bueno, L.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Müller, G.; Muller, M. A.; Müller, S.; Naranjo, I.; Navas, S.; Nellen, L.; Neuser, J.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, H.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Pȩkala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pereira, L. A. S.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollant, R.; Rautenberg, J.; Ravignani, D.; Reinert, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Rogozin, D.; Rosado, J.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sanabria Gomez, J. D.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Scarso, C.; Schauer, M.; Scherini, V.; Schieler, H.; Schmidt, D.; Scholten, O.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Silli, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Stanca, D.; Stanič, S.; Stasielak, J.; Strafella, F.; Suarez, F.; Suarez Durán, M.; Sudholz, T.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Torri, M.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valbuena-Delgado, A.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yang, L.; Yelos, D.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.

    2017-03-01

    AMIGA (Auger Muons and Infill for the Ground Array) is an upgrade of the Pierre Auger Observatory designed to extend its energy range of detection and to directly measure the muon content of the cosmic ray primary particle showers. The array will be formed by an infill of surface water-Cherenkov detectors associated with buried scintillation counters employed for muon counting. Each counter is composed of three scintillation modules, with a 10 m2 detection area per module. In this paper, a new generation of detectors, replacing the current multi-pixel photomultiplier tube (PMT) with silicon photo sensors (aka. SiPMs), is proposed. The selection of the new device and its front-end electronics is explained. A method to calibrate the counting system that ensures the performance of the detector is detailed. This method has the advantage of being able to be carried out in a remote place such as the one where the detectors are deployed. High efficiency results, i.e. 98% efficiency for the highest tested overvoltage, combined with a low probability of accidental counting (~2%), show a promising performance for this new system.

  18. Pressure tube reactor

    International Nuclear Information System (INIS)

    Susuki, Akira; Murata, Shigeto; Minato, Akihiko.

    1993-01-01

    In a pressure tube reactor, a reactor core is constituted by arranging more than two units of a minimum unit combination of a moderator sealing pipe containing a calandria tube having moderators there between and a calandria tube and moderators. The upper header and a lower header of the calandria tank containing moderators are communicated by way of the moderator sealing tube. Further, a gravitationally dropping mechanism is disposed for injecting neutron absorbing liquid to a calandria gas injection portion. A ratio between a moderator volume and a fuel volume is defined as a function of the inner diameter of the moderator sealing tube, the outer diameter of the calandria tube and the diameter of fuel pellets, and has no influence to intervals of a pressure tube lattice. The interval of the pressure tube lattice is enlarged without increasing the size of the pressure tube, to improve production efficiency of the reactor and set a coolant void coefficient more negative, thereby enabling to improve self controllability and safety. Further, the reactor scram can be conducted by injecting neutron absorbing liquid. (N.H.)

  19. Radiographic apparatus

    International Nuclear Information System (INIS)

    Lapidus, S.N.

    1979-01-01

    Raytheon Company, U.S.A. have patented an on-line electronic system of normalising the responses from the photomultiplier tubes used in conjunction with a scintillator in an X-ray radiographic camera. A problem with present cameras is that the individual photomultipliers have different intensity responses which also change in time with respect to each other. The individual responses of each photomultiplier tube are measured with a uniform sheet of radioactive material in front of the camera. The associated electronic equipment then calculates scaling factors which give all photomultiplier tubes an identical response and then places these factors in an addressable store. The store is then addressed in an on-line mode to produce a visual display of the transmitted X-rays. (U.K.)

  20. Improvement of pump tubes for gas guns and shock tube drivers

    Science.gov (United States)

    Bogdanoff, D. W.

    1990-01-01

    In a pump tube, a gas is mechanically compressed, producing very high pressures and sound speeds. The intensely heated gas produced in such a tube can be used to drive light gas guns and shock tubes. Three concepts are presented that have the potential to allow substantial reductions in the size and mass of the pump tube to be achieved. The first concept involves the use of one or more diaphragms in the pump tube, thus replacing a single compression process by multiple, successive compressions. The second concept involves a radical reduction in the length-to-diameter ratio of the pump tube and the pump tube piston. The third concept involves shock heating of the working gas by high explosives in a cyclindrical geometry reusable device. Preliminary design analyses are performed on all three concepts and they appear to be quite feasible. Reductions in the length and mass of the pump tube by factors up to about 11 and about 7, respectively, are predicted, relative to a benchmark conventional pump tube.

  1. Study of the photo-detection efficiency of FBK High-Density silicon photomultipliers

    International Nuclear Information System (INIS)

    Zappalà, G.; Regazzoni, V.; Acerbi, F.; Ferri, A.; Gola, A.; Paternoster, G.; Zorzi, N.; Piemonte, C.

    2016-01-01

    This work presents a study of the factors contributing to the Photo-Detection Efficiency of Silicon Photomultipliers (SiPMs): Quantum Efficiency, Triggering Probability and Fill Factor. Two different SiPM High-Density technologies are tested, NUV-HD, based on n-on-p junction, and RGB-HD, based on p-on-n junction, developed at FBK, Trento. The quantum efficiency was measured on photodiodes produced along with the SiPMs. The triggering probability, as a function of wavelength and bias voltage, was measured on circular Single Photon Avalanche Diodes (SPADs) with 100% fill factor. Square SPADs, having the same layout of single SiPM cells, were studied to measure the effective fill factor and compare it to the nominal value. The comparison of the circular and square SPADs allows to get the transition region size between the effective active area of the cell and the one defined by the layout.

  2. Progress in GEM-based gaseous photomultipliers

    CERN Document Server

    Chechik, R; Breskin, Amos; Buzulutskov, A F; Guedes, G P; Mörmann, D; Singh, B K

    2003-01-01

    We discuss recent progress in gaseous photomultipliers (GPMTs) comprising UV-to-visible spectral range photocathodes (PCs) coupled to multiple Gas Electron Multipliers (GEM). The PCs may be either semitransparent or reflective ones directly deposited on the first-GEM surface. These detectors provide high gain, even in noble gases, are sensitive to single photons, have nanosecond time resolution, and offer good localization. The operation of CsI-based GPMTs in CF sub 4 opens new applications in Cherenkov detectors, where both the radiator and the photosensor operate in the same gas. The latest results on sealed visible-light detectors, combining bialkali PCs and Kapton-made GEMs are presented.

  3. Fast tracking detector with fiber scintillators and a position sensitive photomultiplier

    International Nuclear Information System (INIS)

    Salomon, M.; Li, V.; Smith, G.; Wu, Y.S.

    1988-11-01

    We have studied the properties of a tracking detector composed of 32 fiber scintillators coupled to a multianode photomultiplier placed in a pion beam at TRIUMF. We measured the efficiency of the detector, as well as its tracking capabilities and double hit resolution

  4. Development of Silicon Photomultipliers and their Applications to GlueX Calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Elton S. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-07-01

    The GlueX experiment is a photoproduction experiment in Hall D at Jefferson Lab that is being commissioned for use with the new 12 GeV accelerator. The purpose of the experiment is to search for Hybrid mesons, which are mesons with quark and gluon degrees of freedom. The barrel calorimeter of GlueX is instrumented with 4000 large-area (1.2 x1.2 cm2) silicon photomultipliers (SiPMs). These photon sensors have properties similar to vacuum photomultipliers, but are unaffected by high magnetic fields. In our experiment they operate in magnetic fields exceeding 1T. After extensive tests with a variety of sensors, we chose the S12045(X) custom SiPM arrays manufactured by Hamamatsu Corporation, also known as multi-pixel photon counters (MPPCs). We will give an overview of this new technology as well as the experience gained during two commissioning periods with beam.

  5. Development of silicon photomultipliers and their applications to GlueX calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Elton S., E-mail: elton@jlab.org [Jefferson Lab, Newport News, VA 23606 (United States)

    2016-07-07

    The GlueX experiment is a photoproduction experiment in Hall D at Jefferson Lab that is being commissioned for use with the new 12 GeV accelerator. The purpose of the experiment is to search for Hybrid mesons, which are mesons with quark and gluon degrees of freedom. The barrel calorimeter of GlueX is instrumented with 4000 large-area (1.2 × 1.2 cm{sup 2}) silicon photomultipliers (SiPMs). These photon sensors have properties similar to vacuum photomultipliers, but are unaffected by high magnetic fields. In our experiment they operate in magnetic fields exceeding 1T. After extensive tests with a variety of sensors, we chose the S12045(X) custom SiPM arrays manufactured by Hamamatsu Corporation, also known as multi-pixel photon counters (MPPCs). We will give an overview of this new technology as well as the experience gained during two commissioning periods with beam.

  6. Erythorbic acid promoted formation of CdS QDs in a tube-in-tube micro-channel reactor

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Yan; Tan, Jiawei; Wang, Jiexin; Chen, Jianfeng [State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029 (China); Sun, Baochang, E-mail: sunbc@mail.buct.edu.cn [State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029 (China); Shao, Lei, E-mail: shaol@mail.buct.edu.cn [State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029 (China)

    2014-12-15

    Erythorbic acid assistant synthesis of CdS quantum dots (QDs) was conducted by homogeneous mixing of two continuous liquids in a high-throughput microporous tube-in-tube micro-channel reactor (MTMCR) at room temperature. The effects of the micropore size of the MTMCR, liquid flow rate, mixing time and reactant concentration on the size and size distribution of CdS QDs were investigated. It was found that the size and size distribution of CdS QDs could be tuned in the MTMCR. A combination of erythorbic acid promoted formation technique with the MTMCR may be a promising pathway for controllable mass production of QDs.

  7. Tube coupling device

    Science.gov (United States)

    Myers, William N. (Inventor); Hein, Leopold A. (Inventor)

    1987-01-01

    A first annular ring of a tube coupling device has a keyed opening sized to fit around the nut region of a male coupling, and a second annular ring has a keyed opening sized to fit around the nut of a female coupling. Each ring has mating ratchet teeth and these rings are biased together, thereby engaging these teeth and preventing rotation of these rings. This in turn prevents the rotation of the male nut region with respect to the female nut. For tube-to-bulkhead locking, one facet of one ring is notched, and a pin is pressed into an opening in the bulkhead. This pin is sized to fit within one of the notches in the ring, thereby preventing rotation of this ring with respect to the bulkhead.

  8. Counting efficiency formulae for two, three or four photomultiplier systems

    International Nuclear Information System (INIS)

    Grau Malonda, A.

    1993-01-01

    Counting efficiency formulae as a function of the non-detection probability and the electron distributions for systems with two, three or dour photomultipliers are obtained in this paper. It is assumed that the photocathode electron emission follows the Poisson distribution. The obtained formulae are basic to compute the counting efficiency in liquid scintillation spectrometers

  9. Optimization of the digital Silicon Photomultiplier for Cherenkov light detection

    International Nuclear Information System (INIS)

    Frach, T

    2012-01-01

    The Silicon Photomultiplier is a promising alternative to fast vacuum photodetectors. We developed a fully digital implementation of the Silicon Photomultiplier. The sensor is based on a single photon avalanche photodiode (SPAD) integrated in a standard CMOS process. Photons are detected directly by sensing the voltage at the SPAD anode using a dedicated cell electronics block next to each diode. This block also contains active quenching and recharge circuits as well as a one bit memory for the selective inhibit of detector cells. A balanced trigger network is used to propagate the trigger signal from all cells to the integrated time-to-digital converter. Photons are detected and counted as digital signals, thus making the sensor less susceptible to temperature variations and electronic noise. The integration with CMOS logic has the added benefit of low power consumption and possible integration of data post-processing in the sensor. In this paper, we discuss the sensor architecture together with its characteristics, and its possible optimizations for applications requiring the detection of Cherenkov light.

  10. Predicting the need for nonstandard tracheostomy tubes in critically ill patients.

    Science.gov (United States)

    Pandian, Vinciya; Hutchinson, Christoph T; Schiavi, Adam J; Feller-Kopman, David J; Haut, Elliott R; Parsons, Nicole A; Lin, Jessica S; Gorbatkin, Chad; Angamuthu, Priya G; Miller, Christina R; Mirski, Marek A; Bhatti, Nasir I; Yarmus, Lonny B

    2017-02-01

    Few guidelines exist regarding the selection of a particular type or size of tracheostomy tube. Although nonstandard tubes can be placed over the percutaneous kit dilator, clinicians often place standard tracheostomy tubes and change to nonstandard tubes only after problems arise. This practice risks early tracheostomy tube change, possible bleeding, or loss of the airway. We sought to identify predictors of nonstandard tracheostomy tubes. In this matched case-control study at an urban, academic, tertiary care medical center, we reviewed 1220 records of patients who received a tracheostomy. Seventy-seven patients received nonstandard tracheostomy tubes (cases), and 154 received standard tracheostomy tubes (controls). Sex, endotracheal tube size, severity of illness, and computed tomography scan measurement of the distance from the trachea to the skin at the level of the superior aspect of the anterior clavicle were significant predictors of nonstandard tracheostomy tubes. Specifically, trachea-to-skin distance >4.4 cm and endotracheal tube sizes ≥8.0 were associated with nonstandard tracheostomy. The findings suggest that clinicians should consider using nonstandard tracheostomy tubes as the first choice if the patient is male with an endotracheal tube size ≥8.0 and has a trachea-to-skin distance >4.4 cm on the computed tomography scan. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Robustness studies of the photomultipliers reading out TileCal, the central hadron calorimeter of the ATLAS experiment

    CERN Document Server

    Di Gregorio, Giulia; The ATLAS collaboration

    2018-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photo-multiplier tubes (PMTs), located in the outer part of the calorimeter. The readout is segmented into about 5000 cells, each one being read out by two PMTs in parallel. The detector readout geometry will not be changed for the Phase II of the High Luminosity Large Hadron Collider (HL-LHC) operation. A challenging goal is to understand whether the full sample of PMTs installed at the beginning of the ATLAS detector operation can be used until completion of the HL-LHC program or not. For this reason, a reliable study of the PMT robustness against ageing is required. Detailed studies modelling the PMT response variation as a function of the integrated anode charge were done. The PMT response evoluti...

  12. Design and study of photomultiplier pulse-shaping amplifier powered by the current flowing through a voltage divider

    International Nuclear Information System (INIS)

    Vladimir Popov

    2003-01-01

    A new version of Photomultiplier Tube (PMT) pulse amplifier, entirely powered by the current flowing through the base voltage divider, was designed and tested. This amplifier was designed for application in the JLAB G0 Experiment E00-006 as a part of high voltage base for XP2262 Photonis PMT. According to JLAB G0 experiment requirement, these PMT's operate with plastic scintillators at high counting rate (about MHz). Tests in JLAB experimental Hall C indicate that low energy gamma background cause up to 0.1 mA of PMT average anode current (without amplifier). At this radiation condition, PMT gain decreases by 50% within about 1 month of operation. The amplifier needs to reduce PMT anode current and to shape PMT anode pulse prior to sending it through a long cable line (more then 400 ft of RG-213 and RG-58 coax cables). Shaping of the PMT output pulse helps to reduce attenuation effect of the long cable line without significant reduction of timing accuracy. The results of this study of designed amplifier and PMT plus amplifier system are presented

  13. The influence of tube voltage and phantom size in computed tomography on the dose-response relationship of dicentrics in human blood samples

    International Nuclear Information System (INIS)

    Jost, G; Pietsch, H; Lengsfeld, P; Voth, M; Schmid, E

    2010-01-01

    The aim of this study was to investigate the dose response relationship of dicentrics in human lymphocytes after CT scans at tube voltages of 80 and 140 kV. Blood samples from a healthy donor placed in tissue equivalent abdomen phantoms of standard, pediatric and adipose sizes were exposed at dose levels up to 0.1 Gy using a 64-slice CT scanner. It was found that both the tube voltage and the phantom size significantly influenced the CT scan-induced linear dose-response relationship of dicentrics in human lymphocytes. Using the same phantom (standard abdomen), 80 kV CT x-rays were biologically more effective than 140 kV CT x-rays. However, it could also be determined that the applied phantom size had much more influence on the biological effectiveness. Obviously, the increasing slopes of the CT scan-induced dose response relationships of dicentrics in human lymphocytes obtained in a pediatric, a standard and an adipose abdomen have been induced by scattering effects of photons, which strongly increase with increasing phantom size.

  14. The influence of tube voltage and phantom size in computed tomography on the dose-response relationship of dicentrics in human blood samples

    Energy Technology Data Exchange (ETDEWEB)

    Jost, G; Pietsch, H [TRG Diagnostic Imaging, Bayer Schering Pharma AG, Berlin (Germany); Lengsfeld, P; Voth, M [Global Medical Affairs Diagnostic Imaging, Bayer Schering Pharma AG, Berlin (Germany); Schmid, E, E-mail: Ernst.Schmid@lrz.uni-muenchen.d [Institute for Cell Biology, Center for Integrated Protein Science, University of Munich (Germany)

    2010-06-07

    The aim of this study was to investigate the dose response relationship of dicentrics in human lymphocytes after CT scans at tube voltages of 80 and 140 kV. Blood samples from a healthy donor placed in tissue equivalent abdomen phantoms of standard, pediatric and adipose sizes were exposed at dose levels up to 0.1 Gy using a 64-slice CT scanner. It was found that both the tube voltage and the phantom size significantly influenced the CT scan-induced linear dose-response relationship of dicentrics in human lymphocytes. Using the same phantom (standard abdomen), 80 kV CT x-rays were biologically more effective than 140 kV CT x-rays. However, it could also be determined that the applied phantom size had much more influence on the biological effectiveness. Obviously, the increasing slopes of the CT scan-induced dose response relationships of dicentrics in human lymphocytes obtained in a pediatric, a standard and an adipose abdomen have been induced by scattering effects of photons, which strongly increase with increasing phantom size.

  15. Silicon Photomultipliers: Dark Current and its Statistical Spread

    Directory of Open Access Journals (Sweden)

    Roberto PAGANO

    2012-03-01

    Full Text Available Aim of this paper is to investigate on a statistical basis at the wafer level the relationship existing among the dark currents of the single pixel compared to the whole Silicon Photomultiplier array. This is the first time to our knowledge that such a comparison is made, crucial to pass this new technology to the semiconductor manufacturing standards. In particular, emission microscopy measurements and current measurements allowed us to conclude that optical trenches strongly improve the device performances.

  16. Reduction of space charge effects and tests of larger samples of photomultipliers for the EDDA experiment

    Science.gov (United States)

    Ackerstaff, K.; Bisplinghoff, J.; Bollmann, R.; Cloth, P.; Dohrmann, F.; Diehl, O.; Dorner, G.; Drüke, V.; Engelhardt, H. J.; Eisenhardt, S.; Ernst, J.; Eversheim, P. D.; Filges, D.; Fritz, S.; Gasthuber, M.; Gebel, R.; Gross, A.; Gross-Hardt, R.; Hinterberger, F.; Jahn, R.; Lahr, U.; Langkau, R.; Lippert, G.; Mayer-Kuckuk, T.; Maschuw, R.; Mertler, G.; Metsch, B.; Mosel, F.; Paetz gen. Schieck, H.; Petry, H. R.; Prasuhn, D.; v. Przewoski, B.; Radtke, M.; Rohdjess, H.; Rosendaal, D.; von Rossen, P.; Scheid, H.; Schirm, N.; Schwandt, F.; Scobel, W.; Theis, D.; Weber, J.; Wiedmann, W.; Woller, K.; Ziegler, R.; EDDA Collaboration

    1993-10-01

    For the EDDA experiment at COSY, the response of the small, linear focused photomultipliers Hamamatsu R 1450 and R 1355 has been studied with fast light pulses generating yields up to 2 × 10 3 photoelectrons/cm 2 or peak currents of 24 mA. Linearity was obtained with a tapered bleeder chain at a tolerable loss of gain. The serial test of altogether 140 photomultipliers revealed the close correlation between single electron and amplitude resolution. The influence of the photoelectron statistics on this correlation is discussed.

  17. Statistics of multi-tube detecting systems

    International Nuclear Information System (INIS)

    Grau Carles, P.; Grau Malonda, A.

    1994-01-01

    In this paper three new statistical theorems are demonstrated and applied. These theorems simplify very much the obtention of the formulae to compute the counting efficiency when the detection system is formed by several photomultipliers associated in coincidence and sume. These theorems are applied to several photomultiplier arrangements in order to show their potential and the application. way

  18. Phototube testing for CDF

    International Nuclear Information System (INIS)

    Devlin, T.; Cruz, J.; Joshi, U.; Kazlauskis, K.; Muehleisen, C.; Yang, T.S.; Nodulman, L.

    1988-01-01

    Photomultiplier tubes for the Collider Detector at Fermilab were subjected to preinstallation testing for stability, linearity and other properties. An apparatus is described which provided computer control of light sources, monitoring of environmental conditions and data logging of responses from up to 48 photomultipliers simultaneously. Statistical summaries of the test results are included for 1041 tubes for the central electromagnetic calorimeter and 687 tubes for the endwall hadron calorimeter. (orig.)

  19. Compact Quantum Random Number Generator with Silicon Nanocrystals Light Emitting Device Coupled to a Silicon Photomultiplier

    Science.gov (United States)

    Bisadi, Zahra; Acerbi, Fabio; Fontana, Giorgio; Zorzi, Nicola; Piemonte, Claudio; Pucker, Georg; Pavesi, Lorenzo

    2018-02-01

    A small-sized photonic quantum random number generator, easy to be implemented in small electronic devices for secure data encryption and other applications, is highly demanding nowadays. Here, we propose a compact configuration with Silicon nanocrystals large area light emitting device (LED) coupled to a Silicon photomultiplier to generate random numbers. The random number generation methodology is based on the photon arrival time and is robust against the non-idealities of the detector and the source of quantum entropy. The raw data show high quality of randomness and pass all the statistical tests in national institute of standards and technology tests (NIST) suite without a post-processing algorithm. The highest bit rate is 0.5 Mbps with the efficiency of 4 bits per detected photon.

  20. Formability of Micro-Tubes in Hydroforming

    International Nuclear Information System (INIS)

    Hartl, Christoph; Anyasodor, Gerald; Lungershausen, Joern

    2011-01-01

    Micro-hydroforming is a down-scaled metal forming process, based on the expansion of micro-tubes by internal pressurization within a die cavity. The objective of micro-hydroforming is to provide a technology for the economic mass production of complex shaped hollow micro-components. Influence of size effects in metal forming processes increases with scaling down of metal parts. Investigations into the change in formability of micro-tubes due to metal part scaling down constituted an important subject within the conducted fundamental research work. Experimental results are presented, concerning the analysis of the formability of micro-tubes made from stainless steel AISI 304 with an outer diameter of 800 μm and a wall thickness of 40 μm. An average ratio of tube wall thickness to grain size of 1.54 of up to 2.56 was analyzed. Miniaturised mechanical standard methods as well as bulge tests with internal hydrostatic pressurization of the tubular specimens were applied to analyze the influence of size-dependent effects. A test device was developed for the bulge experiments which enabled the pressurization of micro-tubes with internal pressures up to 4000 bar. To determine the attainable maximum achievable expansion ratio the tubes were pressurized in the bulge tests with increasing internal pressure until instability due to necking and subsequent bursting occurred. Comparisons with corresponding tests of macro-tubes, made from the here investigated material, showed a change in formability of micro-tubes which was attributed to the scaling down of the hydroforming process. In addition, a restricted applicability of existing theoretical correlations for the determination of the maximum pressure at bursting was observed for down-scaled micro-hydroforming.

  1. Characterization of a prototype matrix of Silicon PhotoMultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Dinu, N. [Laboratory of Linear Accelerator (LAL), IN2P3-CNRS, 91898 Orsay (France)], E-mail: dinu@lal.in2p3.fr; Barrillon, P.; Bazin, C. [Laboratory of Linear Accelerator (LAL), IN2P3-CNRS, 91898 Orsay (France); Belcari, N.; Bisogni, M.G. [Universita di Pisa, Dipartimento di Fisica ' E. Fermi' , 56127 Pisa (Italy); INFN, Sezione di Pisa, 56127 Pisa (Italy); Bondil-Blin, S. [Laboratory of Linear Accelerator (LAL), IN2P3-CNRS, 91898 Orsay (France); Boscardin, M. [Fondazione Bruno Kessler (FBK-irst), 38050 Trento (Italy); Chaumat, V. [Laboratory of Linear Accelerator (LAL), IN2P3-CNRS, 91898 Orsay (France); Collazuol, G. [Scuola Normale Superiore (SNS), 56127 Pisa (Italy); INFN, Sezione di Pisa, 56127 Pisa (Italy); De La Taille, C. [Laboratory of Linear Accelerator (LAL), IN2P3-CNRS, 91898 Orsay (France); Del Guerra, A. [Universita di Pisa, Dipartimento di Fisica ' E. Fermi' , 56127 Pisa (Italy); INFN, Sezione di Pisa, 56127 Pisa (Italy); Llosa, G. [Universita di Pisa, Dipartimento di Fisica ' E. Fermi' , 56127 Pisa (Italy); Marcatili, S. [Universita di Pisa, Dipartimento di Fisica ' E. Fermi' , 56127 Pisa (Italy); INFN, Sezione di Pisa, 56127 Pisa (Italy); Melchiorri, M.; Piemonte, C. [Fondazione Bruno Kessler (FBK-irst), 38050 Trento (Italy); Puill, V. [Laboratory of Linear Accelerator (LAL), IN2P3-CNRS, 91898 Orsay (France); Tarolli, A. [Fondazione Bruno Kessler (FBK-irst), 38050 Trento (Italy); Vagnucci, J.F. [Laboratory of Linear Accelerator (LAL), IN2P3-CNRS, 91898 Orsay (France); Zorzi, N. [Fondazione Bruno Kessler (FBK-irst), 38050 Trento (Italy)

    2009-10-21

    This work reports on the electrical as well as the optical characterizations of a prototype matrix of Silicon PhotoMultipliers (SiPM). The electrical test consists of the measurement of the static (breakdown voltage, quenching resistance, post-breakdown dark current) as well as the dynamic characteristics (gain, dark count rate). The optical test consists of the estimation of the photon detection efficiency as a function of wavelength as well as operation voltage.

  2. Characterization of a prototype matrix of Silicon PhotoMultipliers

    International Nuclear Information System (INIS)

    Dinu, N.; Barrillon, P.; Bazin, C.; Belcari, N.; Bisogni, M.G.; Bondil-Blin, S.; Boscardin, M.; Chaumat, V.; Collazuol, G.; De La Taille, C.; Del Guerra, A.; Llosa, G.; Marcatili, S.; Melchiorri, M.; Piemonte, C.; Puill, V.; Tarolli, A.; Vagnucci, J.F.; Zorzi, N.

    2009-01-01

    This work reports on the electrical as well as the optical characterizations of a prototype matrix of Silicon PhotoMultipliers (SiPM). The electrical test consists of the measurement of the static (breakdown voltage, quenching resistance, post-breakdown dark current) as well as the dynamic characteristics (gain, dark count rate). The optical test consists of the estimation of the photon detection efficiency as a function of wavelength as well as operation voltage.

  3. Muon tracking system with Silicon Photomultipliers

    International Nuclear Information System (INIS)

    Arneodo, F.; Benabderrahmane, M.L.; Dahal, S.; Di Giovanni, A.; Pazos Clemens, L.; Candela, A.; D'Incecco, M.; Sablone, D.; Franchi, G.

    2015-01-01

    We report the characterisation and performance of a low cost muon tracking system consisting of plastic scintillator bars and Silicon Photomultipliers equipped with a customised front-end electronics based on a fast preamplifier network. This system can be used as a detector test bench for astroparticle physics and for educational and outreach purposes. We investigated the device behaviour in self-trigger and coincidence mode, without using LED and pulse generators, showing that with a relatively simple set up a complete characterisation work can be carried out. A high definition oscilloscope, which can easily be found in many university physics or engineering departments, has been used for triggering and data acquisition. Its capabilities have been exploited to discriminate real particles from the background

  4. Muon tracking system with Silicon Photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Arneodo, F.; Benabderrahmane, M.L.; Dahal, S. [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Di Giovanni, A., E-mail: adriano.digiovanni@nyu.edu [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Pazos Clemens, L. [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Candela, A.; D' Incecco, M.; Sablone, D. [Gran Sasso National Laboratory of INFN, Assergi (Italy); Franchi, G. [AGE Scientific Srl, Capezzano Pianore (Italy)

    2015-11-01

    We report the characterisation and performance of a low cost muon tracking system consisting of plastic scintillator bars and Silicon Photomultipliers equipped with a customised front-end electronics based on a fast preamplifier network. This system can be used as a detector test bench for astroparticle physics and for educational and outreach purposes. We investigated the device behaviour in self-trigger and coincidence mode, without using LED and pulse generators, showing that with a relatively simple set up a complete characterisation work can be carried out. A high definition oscilloscope, which can easily be found in many university physics or engineering departments, has been used for triggering and data acquisition. Its capabilities have been exploited to discriminate real particles from the background.

  5. The LED and fiber based calibration system for the photomultiplier array of SNO+

    Science.gov (United States)

    Seabra, L.; Alves, R.; Andringa, S.; Bradbury, S.; Carvalho, J.; Clark, K.; Coulter, I.; Descamps, F.; Falk, L.; Gurriana, L.; Kraus, C.; Lefeuvre, G.; Maio, A.; Maneira, J.; Mottram, M.; Peeters, S.; Rose, J.; Sinclair, J.; Skensved, P.; Waterfield, J.; White, R.; Wilson, J.; SNO+ Collaboration

    2015-02-01

    A new external LED/fiber light injection calibration system was designed for the calibration and monitoring of the photomultiplier array of the SNO+ experiment at SNOLAB. The goal of the calibration system is to allow an accurate and regular measurement of the photomultiplier array's performance, while minimizing the risk of radioactivity ingress. The choice in SNO+ was to use a set of optical fiber cables to convey into the detector the light pulses produced by external LEDs. The quality control was carried out using a modified test bench that was used in QC of optical fibers for TileCal/ATLAS. The optical fibers were characterized for transmission, timing and angular dispersions. This article describes the setups used for the characterization and quality control of the system based on LEDs and optical fibers and their results.

  6. Statistics of multi-tube detecting systems

    International Nuclear Information System (INIS)

    Grau Carles, P.; Grau Malonda, A.

    1994-01-01

    In this paper three new statistical theorems are demonstrated and applied. These theorems simplify very much the obtention of the formulae to compute the counting efficiency when the detection system is formed by several photomultipliers associated in coincidence and sum. These theorems are applied to several photomultiplier arrangements in order to show their potential and the application way. (Author) 6 refs

  7. Characterization of three high efficiency and blue sensitive silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Otte, Adam Nepomuk, E-mail: otte@gatech.edu; Garcia, Distefano; Nguyen, Thanh; Purushotham, Dhruv

    2017-02-21

    We report about the optical and electrical characterization of three high efficiency and blue sensitive Silicon photomultipliers from FBK, Hamamatsu, and SensL. Key features of the tested devices when operated at 90% breakdown probability are peak photon detection efficiencies between 40% and 55%, temperature dependencies of gain and PDE that are less than 1%/°C, dark rates of ∼50 kHz/mm{sup 2} at room temperature, afterpulsing of about 2%, and direct optical crosstalk between 6% and 20%. The characteristics of all three devices impressively demonstrate how the Silicon-photomultiplier technology has improved over the past ten years. It is further demonstrated how the voltage and temperature characteristics of a number of quantities can be parameterized on the basis of physical models. The models provide a deeper understanding of the device characteristics over a wide bias and temperature range. They also serve as examples how producers could provide the characteristics of their SiPMs to users. A standardized parameterization of SiPMs would enable users to find the optimal SiPM for their application and the operating point of SiPMs without having to perform measurements thus significantly reducing design and development cycles.

  8. Hamamatsu C11204-01 calibration, test and design of a dedicated LabVIEW interface

    International Nuclear Information System (INIS)

    Nocerino, E.; Barbato, F.C.T.; De Asmundis, R.

    2017-01-01

    In the last 50 years solid state devices have been widely used as radiation detectors (photons, betas, fast electrons and heavy ions) thanks to the advantages they offer with respect to photomultiplier tubes technology. However, despite their benefits (low power consumption, small size, low costs), semiconductors are very sensitive to temperature variations. This means that for those experiments using solid state detectors without any thermal control, the correct operation of the detectors is affected by the environmental condition. To solve this problem Hamamatsu Photonics realized the C11204-01 device: a special voltage supply module for silicon photomultipliers which compensates the overvoltage at different temperatures. In the following work we present the results of the calibration of this device and a test we performed on a silicon photomultiplier, by means of a LabVIEW"T"M interface designed ad hoc for this purpose.

  9. Wide aperture scintillation hodoscope with FEU-143 photomultipliers

    International Nuclear Information System (INIS)

    Afanas'ev, L.G.; Ivanov, M.A.; Karpukhin, V.V.; Komarov, V.I.; Kulikov, A.V.; Yazkov, V.V.

    1993-01-01

    Scintillation hodoscopes with FEU-143 photomultipliers are described. Every of two hodoscopes consists of 8 elements each of length 1400 mm and cross section 56x56 mm. The time and amplitude characteristics were obtained in real conditions of the physical experiment at the Protvino U-70 accelerator. A resolution on time difference between hits of two hodoscopes is 224 ps. A separation of pions and protons by their ionization losses is also provided at momenta less than 1000 MeV/c. 5 refs.; 8 figs.; 1 tab

  10. An innovative silicon photomultiplier digitizing camera for gamma-ray astronomy

    Czech Academy of Sciences Publication Activity Database

    Heller, M.; Schioppa, E.jr.; Porcelli, A.; Pujadas, I.T.; Zietara, K.; della Volpe, D.; Montaruli, T.; Cadoux, F.; Favre, Y.; Aguilar, J.A.; Christov, A.; Prandini, E.; Rajda, P.; Rameez, M.; Bilnik, W.; Blocki, J.; Bogacz, L.; Borkowski, J.; Bulik, T.; Frankowski, A.; Grudzinska, M.; Idzkowski, B.; Jamrozy, M.; Janiak, M.; Kasperek, J.; Lalik, K.; Lyard, E.; Mach, E.; Mandát, Dušan; Marszalek, A.; Medina Miranda, L. D.; Michałowski, J.; Moderski, R.; Neronov, A.; Niemiec, J.; Ostrowski, M.; Pasko, P.; Pech, Miroslav; Schovánek, Petr; Seweryn, K.; Sliusar, V.; Skowron, K.; Stawarz, L.; Stodulska, M.; Stodulski, M.; Walter, R.; Wiecek, M.; Zagdanski, A.

    2017-01-01

    Roč. 77, č. 1 (2017), s. 1-31, č. článku 47. ISSN 1434-6044 R&D Projects: GA MŠk LE13012; GA MŠk LG14019 Institutional support: RVO:68378271 Keywords : silicon photomultiplier * digitizing camera * gamma-ray astronomy Subject RIV: BF - Elementary Particles and High Energy Physics OBOR OECD: Particles and field physics Impact factor: 5.331, year: 2016

  11. Structural Pre-sizing of a Coaxial Double-tube Type Hot Gas Duct

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kee Nam; Kim, Y-W [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-10-15

    The nuclear hydrogen system being researched at KAERI is planning to produce hydrogen in the order of 950 .deg. C by using nuclear energy and a thermo-chemical process, and helium gas is tentatively considered as the choice for the coolant. A hot gas duct (HGD) is a key component connecting the reactor pressure vessel and the intermediate heat exchanger (IHX) for the nuclear hydrogen system. The HGD is a unique component exclusively found in an HTR-module concept where a nuclear core and IHX are placed separately into two pressure vessels, which require a connecting duct between them. A coaxial double-tube type cross vessel is considered for the HGD structure of the nuclear hydrogen system because of its successive extensive experience. In this study, a structural pre-sizing for the primary HGD was carried out. These activities include a predecision on the geometric dimensions, a pre-evaluation on the strength, and a pre-selection on the material of the coaxial double-tube type cross vessel components. A predecision on the geometric dimensions was undertaken based on various engineering concepts, such as a constant flow velocity (CFV) model, a constant flow rate (CFR) model, a constant hydraulic head (CHH) model, and finally a heat balanced (HB) model. For the CFV model, CFR model, and CHH model, the HGD structure might be insensitive to a flow induced vibration (FIV) in the case where there are no pressure differences between the hot and cold helium regions. Also we compared the geometric dimensions from the various models.

  12. Individualized radiation dose control in 256-slice CT coronary angiography (CTCA) in retrospective ECG-triggered helical scans: Using a measure of body size to adjust tube current selection

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing-Lei, E-mail: lijinglei80@126.com [Department of Radiology, Guangdong Academy of Medical Sciences, Guangdong General Hospital, 106 Zhongshan Er Road, Guangzhou 510080 (China); Huang, Mei-Ping, E-mail: huang_meiping@yahoo.com.cn [Department of Radiology, Guangdong Academy of Medical Sciences, Guangdong General Hospital, 106 Zhongshan Er Road, Guangzhou 510080 (China); Liang, Chang-Hong, E-mail: cjr.lchh@vip.163.com [Department of Radiology, Guangdong Academy of Medical Sciences, Guangdong General Hospital, 106 Zhongshan Er Road, Guangzhou 510080 (China); Zhao, Zhen-Jun, E-mail: junabc2006@hotmail.com [Department of Radiology, Guangdong Academy of Medical Sciences, Guangdong General Hospital, 106 Zhongshan Er Road, Guangzhou 510080 (China); Liu, Hui, E-mail: liuhuijiujiu@gmail.com [Department of Radiology, Guangdong Academy of Medical Sciences, Guangdong General Hospital, 106 Zhongshan Er Road, Guangzhou 510080 (China); Cui, Yan-Hai, E-mail: yanhai_cui@126.com [Department of Radiology, Guangdong Academy of Medical Sciences, Guangdong General Hospital, 106 Zhongshan Er Road, Guangzhou 510080 (China); Liu, Qi-Shun, E-mail: liuqishun@yeah.net [Department of Radiology, Guangdong Academy of Medical Sciences, Guangdong General Hospital, 106 Zhongshan Er Road, Guangzhou 510080 (China); Zhang, Jin-E., E-mail: zhjine@yahoo.com.cn [Department of Radiology, Guangdong Academy of Medical Sciences, Guangdong General Hospital, 106 Zhongshan Er Road, Guangzhou 510080 (China); Yang, Lin, E-mail: yanglin001517@163.com [Department of Radiology, Guangdong Academy of Medical Sciences, Guangdong General Hospital, 106 Zhongshan Er Road, Guangzhou 510080 (China); Ivanc, Thomas B., E-mail: Thomas.ivanc@philips.com [CT Clinical Science, Philips Healthcare, Highland Heights, OH (United States); Yanof, Jeffrey H., E-mail: Jeffrey.yanof@philips.com [CT Clinical Science, Philips Healthcare, Highland Heights, OH (United States)

    2012-11-15

    Purpose: To reduce radiation dose for retrospective ECG-triggered helical 256-slice CTCA by determining an optimal body size index to prospectively adjust tube current. Methods: 102 consecutive patients with suspected CAD underwent retrospective ECG-triggered CTCA using 256-slice CT scanner. Six body size indexes including BMI, nipple level (NL) bust, thoracic anteroposterior diameter at NL, chest circumference (CC) at NL, left main and right coronary artery (RCA) origin level were measured and their correlation with noise was evaluated using linear regression. An equation was developed to use this index to adjust tube current. Additional 102 consecutive patients were scanned with the index-based mA s adjustment. A t-test for independent samples was used to compare radiation dose levels with and without the index-based mA s selection method. Results: Linear regression indicated that CC RCA had the best correlation with noise (R{sup 2} = 0.603). Effective radiation dose was reduced from 16.6 {+-} 0.9 to 9.8 {+-} 2.7 mSv (p < 0.01), i.e. 40.9% lower dose with the CC RCA-adapted tube current method. The image quality scores indicated no significant difference with and without the size-based mA s selection method. Conclusion: An accessible measure of body size, such as CC RCA, can be used to adapt tube current for individualized radiation dose control.

  13. Individualized radiation dose control in 256-slice CT coronary angiography (CTCA) in retrospective ECG-triggered helical scans: Using a measure of body size to adjust tube current selection

    International Nuclear Information System (INIS)

    Li, Jing-Lei; Huang, Mei-Ping; Liang, Chang-Hong; Zhao, Zhen-Jun; Liu, Hui; Cui, Yan-Hai; Liu, Qi-Shun; Zhang, Jin-E.; Yang, Lin; Ivanc, Thomas B.; Yanof, Jeffrey H.

    2012-01-01

    Purpose: To reduce radiation dose for retrospective ECG-triggered helical 256-slice CTCA by determining an optimal body size index to prospectively adjust tube current. Methods: 102 consecutive patients with suspected CAD underwent retrospective ECG-triggered CTCA using 256-slice CT scanner. Six body size indexes including BMI, nipple level (NL) bust, thoracic anteroposterior diameter at NL, chest circumference (CC) at NL, left main and right coronary artery (RCA) origin level were measured and their correlation with noise was evaluated using linear regression. An equation was developed to use this index to adjust tube current. Additional 102 consecutive patients were scanned with the index-based mA s adjustment. A t-test for independent samples was used to compare radiation dose levels with and without the index-based mA s selection method. Results: Linear regression indicated that CC RCA had the best correlation with noise (R 2 = 0.603). Effective radiation dose was reduced from 16.6 ± 0.9 to 9.8 ± 2.7 mSv (p < 0.01), i.e. 40.9% lower dose with the CC RCA-adapted tube current method. The image quality scores indicated no significant difference with and without the size-based mA s selection method. Conclusion: An accessible measure of body size, such as CC RCA, can be used to adapt tube current for individualized radiation dose control.

  14. Single-shot beam size measurements using visible-light interferometry at CESR

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.T., E-mail: sw565@cornell.edu [Cornell Laboratory for Accelerator-based Science and Education, Cornell University, Ithaca, NY 14853 (United States); Holtzapple, R. [Physics Department, California Polytechnic State University, San Luis Obispo, CA 93407 (United States); Rubin, D.L. [Cornell Laboratory for Accelerator-based Science and Education, Cornell University, Ithaca, NY 14853 (United States)

    2017-03-01

    A new primary mirror for a visible-light beam size monitor (vBSM) was designed and installed in the Cornell Electron-Positron Storage Ring (CESR). The vertical angular acceptance of the mirror was doubled to allow double-slit interferometry with large slit separation (>12 mm). In addition, the diffraction associated with the first generation mirror has been eliminated. The resolution of the vertical beam size measurements has been dramatically improved but is ultimately limited by the beam motion. Two fast-response detectors, a Photomultiplier Tube (PMT) array and a gated camera, were employed to study the beam motion. The advantages and limitations of both devices are discussed in this paper. The gated camera was also used to measure single-shot beam width and motion of each bunch in a multi-bunch train. We measured significantly more horizontal motion of electron as compared to positron bunch trains in otherwise identical machine condition. This difference may be a signature for the difference between electron cloud build-up for positron bunch trains versus ions effects characteristic of electron bunch trains. - Highlights: • A new extraction mirror for synchrotron radiation was designed and installed in CESR. • The sensitivity of interferometer was increased and the diffraction effect was eliminated. • Two fast-response detectors were employed to study the effect of beam motion. • First time single-shot bunch-by-bunch horizontal beam size measurements using interferometry was observed from gated camera. • The difference in single bunch horizontal dynamics was observed between a positron and an electron train.

  15. Compact Quantum Random Number Generator with Silicon Nanocrystals Light Emitting Device Coupled to a Silicon Photomultiplier

    Directory of Open Access Journals (Sweden)

    Zahra Bisadi

    2018-02-01

    Full Text Available A small-sized photonic quantum random number generator, easy to be implemented in small electronic devices for secure data encryption and other applications, is highly demanding nowadays. Here, we propose a compact configuration with Silicon nanocrystals large area light emitting device (LED coupled to a Silicon photomultiplier to generate random numbers. The random number generation methodology is based on the photon arrival time and is robust against the non-idealities of the detector and the source of quantum entropy. The raw data show high quality of randomness and pass all the statistical tests in national institute of standards and technology tests (NIST suite without a post-processing algorithm. The highest bit rate is 0.5 Mbps with the efficiency of 4 bits per detected photon.

  16. Strategies for shortening the output pulse of silicon photomultipliers

    OpenAIRE

    Antoranz Canales, Pedro; Miranda Pantoja, José Miguel; Yebras Rivera, José Manuel

    2012-01-01

    In this work, three strategies for shortening the output pulse of a silicon photomultiplier (SiPM) are reported. The first strategy is passive filtering, where band-pass filtering removes the lowest frequency components in the signal, getting a noticeable reduction in pulse width (a compression ratio of 10: 1 was obtained). In the second place, a reflectometric scheme is proposed where the amplified signal coming from the SiPM is injected into a signal splitter with one of its stubs connected...

  17. Two-coordinate scintillation hodoscope based on hodoscopical photomultipliers

    International Nuclear Information System (INIS)

    Vishnevskij, N.K.; Ronzhin, A.I.; Semenov, V.K.; Khachaturov, B.A.

    1982-01-01

    The results of investigations of scintillation hodoscope on the basis of hodoscopic photomultipliers (HPM) for simultaneous measuring two coordinates (x and y) of a particle. The hodoscope consists of scintillation electrodes bent at the angle of 135 deg C and made an angle of 90 deg with each other. For measuring X-coordinate the half part of the photocathode is used, the second part is used for measuring Y-coordinate. HPM provides for simultaneous measuring two coordinates of a particle in the working region of 90 mm at using the photocathode with 180 mm long working region along the photocathode. The discrete separation of neighbouring positions in relation to the photocathode is possible at the minimum size of scintillation electrode being equil to >= 2 mm. For suppression of multiparticle background at the information output from the hodoscope as well as for simultaneous observation at the amplitude analyser of spectra of reference signals or X and Y profiles a fast processor cicuit has been developed. High detecting efficiency (about 90%) and low background level have been observed at the processor operation where the presence only of one signal in each of X- or Y projections is required. The two-coordinate hodoscope based on HPM due to its compactness and mobility may be used for expedient and precision beam guidance onto a target, its position control, shape and dimensions directly in the region of a polarized target location

  18. Study of the variation of maximum beam size with quadrupole gradient in the FMIT drift tube linac

    International Nuclear Information System (INIS)

    Boicourt, G.P.; Jameson, R.A.

    1981-01-01

    The sensitivity of maximum beam size to input mismatch is studied as a function of quadrupole gradient in a short, high-current, drift-tube linac (DTL), for two presriptions: constant phase advance with constant filling factor; and constant strength with constant-length quads. Numerical study using PARMILA shows that the choice of quadrupole strength that minimizes the maximum transverse size of the matched beam through subsequent cells of the linac tends to be most sensitive to input mismatch. However, gradients exist nearby that result in almost-as-small beams over a suitably broad range of mismatch. The study was used to choose the initial gradient for the DTL portion of the Fusion Material Irradiation Test (FMIT) linac. The matching required across quad groups is also discussed

  19. Evaluation of sampling schemes for in-service inspection of steam generator tubing

    International Nuclear Information System (INIS)

    Hanlen, R.C.

    1990-03-01

    This report is a follow-on of work initially sponsored by the US Nuclear Regulatory Commission (Bowen et al. 1989). The work presented here is funded by EPRI and is jointly sponsored by the Electric Power Research Institute (EPRI) and the US Nuclear Regulatory Commission (NRC). The goal of this research was to evaluate fourteen sampling schemes or plans. The main criterion used for evaluating plan performance was the effectiveness for sampling, detecting and plugging defective tubes. The performance criterion was evaluated across several choices of distributions of degraded/defective tubes, probability of detection (POD) curves and eddy-current sizing models. Conclusions from this study are dependent upon the tube defect distributions, sample size, and expansion rules considered. As degraded/defective tubes form ''clusters'' (i.e., maps 6A, 8A and 13A), the smaller sample sizes provide a capability of detecting and sizing defective tubes that approaches 100% inspection. When there is little or no clustering (i.e., maps 1A, 20 and 21), sample efficiency is approximately equal to the initial sample size taken. Thee is an indication (though not statistically significant) that the systematic sampling plans are better than the random sampling plans for equivalent initial sample size. There was no indication of an effect due to modifying the threshold value for the second stage expansion. The lack of an indication is likely due to the specific tube flaw sizes considered for the six tube maps. 1 ref., 11 figs., 19 tabs

  20. Performance evaluation of a mouse-sized camera for dynamic studies in small animals

    International Nuclear Information System (INIS)

    Loudos, George; Majewski, Stan; Wojcik, Randy; Weisenberger, Andrew; Sakellios, Nicolas; Nikita, Konstantina; Uzunoglu, Nikolaos; Bouziotis, Penelope; Varvarigou, Alexandra

    2007-01-01

    A mouse sized camera has been built in terms of collaboration between the presenting institutions. The system is used for the performance of dynamic studies in small animals, in order to evaluate novel radiopharmaceuticals. The active area of the detector is approximately 48x96 mm allowing depiction of the entire mouse in a single view. The system is based on two flat-panel Hamamatsu H8500 position sensitive photomultiplier tubes (PSPMT), a pixellated NaI(Tl) scintillator and a copper-beryllium (CuBe) parallel-hole collimator. In this work, the evaluation results of the system are presented, using phantoms and small animals injected with conventional radiophrmaceuticals. Average resolution was ∼1.6 mm on the collimator surface and increased to ∼4.1 mm in 12 cm distance from the detector. The average energy resolution was measured and found to be ∼15.6% for Tc 99m . Results from imaging thin capillaries demonstrated system's high resolution and sensitivity in activity variations was shown. Initial dynamic studies have been carried out in small animals injected with Tc 99m -DTPA and Tc 99m -MDP. The results show system's ability to perform kinetic imaging in small animals

  1. Vibration and wear characteristics of steam generator tubes

    International Nuclear Information System (INIS)

    Choi, Young Hwan

    2003-06-01

    This study investigates the fluid elastic instability characteristics of Steam Generator (SG) U-tubes with defect and the safety assessment of the potential for fretting-wear damages on Steam Generator (SG) U-tubes caused by foreign object in operating nuclear power plants. The operating SG shell-side flow field conditions for determining the fluid elastic instability or fretting-wear parameters such as damping ratio, added mass and flow velocity are obtained from three-dimensional SG flow calculation using the ATHOS3 code. To get the natural frequency, corresponding mode shape and participation factor, modal analyses are performed for the U-tubes either with axial or circumferential flaw with different sizes. Special emphases are on the effects of flaw orientation and size on the modal and instability characteristics of tubes, which are expressed in terms of the natural frequency, corresponding mode shape and stability ratio. Also, the wear rate of U-tube caused by foreign object is calculated using the Archard formula and the remaining life of the tube is predicted, and discussed in this study is the effect of the flow velocity and vibration of the tube on the remaining life of the tube. In addition, addressed is the effect of the internal pressure on the vibration and fretting-wear characteristics of the tube

  2. Dynamic characteristics of steam generator U-tubes with defect

    International Nuclear Information System (INIS)

    Jo, Jong Chull; Jhung, Myung Jo; Kim, Woong Sik; Kim, Hho Jung

    2005-01-01

    This study investigates the fluid elastic instability characteristics of steam generator (SG) U-tubes with defect and the safety assessment of the potential for fretting-wear damages caused by foreign object in operating nuclear power plants. To get the natural frequency, corresponding mode shape and participation factor, modal analyses are performed for the U-tubes either with axial or circumferential flaw with different sizes. Special emphases are on the effects of flaw orientation and size on the modal and instability characteristics of tubes, which are expressed in terms of the natural frequency, corresponding mode shape and stability ratio. Also, the wear rate of U-tube caused by foreign object is calculated using the Archard formula and the remaining life of the tube is predicted, and discussed in this study is the effect of the flow velocity and vibration of the tube on the remaining life of the tube. In addition, addressed in this study is the effect of the internal pressure on the vibration and fretting-wear characteristics of the tube

  3. Development of heat treated Zr-2.5% Nb alloy tubes for pressure tubes

    International Nuclear Information System (INIS)

    Saibaba, N.; Jha, S.K.; Tonpe, S.

    2011-01-01

    Zr-2.5% Nb alloy is the candidate material for pressure tubes of Pressurized Heavy Water Reactors (PHWR), and are manufactured in cold working condition while heat treated pressure tubes are used in RBMK and FUGEN type of reactors. The diametral creep of these tubes is the life limiting factor. This paper presents the extensive work carried out for the optimization of process parameters to manufacture heat treated Zr-2.5% Nb pressure tubes. Extensive dilactometry study was carried out to establish the transus temperature for the alloy and the effect of soaking temperature and cooling rate on the microstructure was characterized. On the basis of the study, water quenching (at 883 deg C) in the a b region with 20-25% primary a phase was selected, further cold worked, aged and finally autoclaved. Mechanical properties of the finished tubes were found to be comparable to the cold worked route. Large number of full sized tubes of about 700 - 800 mm long was produced to establish the repeatability. (author)

  4. Cherenkov luminescence measurements with digital silicon photomultipliers: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Ciarrocchi, Esther; Belcari, Nicola; Guerra, Alberto Del [Department of Physics, University of Pisa, Pisa (Italy); INFN, section of Pisa, Pisa (Italy); Cherry, Simon R. [Department of Biomedical Engineering, University of California, Davis, CA (United States); Lehnert, Adrienne; Hunter, William C. J.; McDougald, Wendy; Miyaoka, Robert S.; Kinahan, Paul E. [Department of Radiology, University of Washington, Seattle, WA (United States)

    2015-11-16

    A feasibility study was done to assess the capability of digital silicon photomultipliers to measure the Cherenkov luminescence emitted by a β source. Cherenkov luminescence imaging (CLI) is possible with a charge coupled device (CCD) based technology, but a stand-alone technique for quantitative activity measurements based on Cherenkov luminescence has not yet been developed. Silicon photomultipliers (SiPMs) are photon counting devices with a fast impulse response and can potentially be used to quantify β-emitting radiotracer distributions by CLI. In this study, a Philips digital photon counting (PDPC) silicon photomultiplier detector was evaluated for measuring Cherenkov luminescence. The PDPC detector is a matrix of avalanche photodiodes, which were read one at a time in a dark count map (DCM) measurement mode (much like a CCD). This reduces the device active area but allows the information from a single avalanche photodiode to be preserved, which is not possible with analog SiPMs. An algorithm to reject the noisiest photodiodes and to correct the measured count rate for the dark current was developed. The results show that, in DCM mode and at (10–13) °C, the PDPC has a dynamic response to different levels of Cherenkov luminescence emitted by a β source and transmitted through an opaque medium. This suggests the potential for this approach to provide quantitative activity measurements. Interestingly, the potential use of the PDPC in DCM mode for direct imaging of Cherenkov luminescence, as a opposed to a scalar measurement device, was also apparent. We showed that a PDPC tile in DCM mode is able to detect and image a β source through its Cherenkov radiation emission. The detector’s dynamic response to different levels of radiation suggests its potential quantitative capabilities, and the DCM mode allows imaging with a better spatial resolution than the conventional event-triggered mode. Finally, the same acquisition procedure and data processing could

  5. Cherenkov luminescence measurements with digital silicon photomultipliers: a feasibility study

    International Nuclear Information System (INIS)

    Ciarrocchi, Esther; Belcari, Nicola; Guerra, Alberto Del; Cherry, Simon R.; Lehnert, Adrienne; Hunter, William C. J.; McDougald, Wendy; Miyaoka, Robert S.; Kinahan, Paul E.

    2015-01-01

    A feasibility study was done to assess the capability of digital silicon photomultipliers to measure the Cherenkov luminescence emitted by a β source. Cherenkov luminescence imaging (CLI) is possible with a charge coupled device (CCD) based technology, but a stand-alone technique for quantitative activity measurements based on Cherenkov luminescence has not yet been developed. Silicon photomultipliers (SiPMs) are photon counting devices with a fast impulse response and can potentially be used to quantify β-emitting radiotracer distributions by CLI. In this study, a Philips digital photon counting (PDPC) silicon photomultiplier detector was evaluated for measuring Cherenkov luminescence. The PDPC detector is a matrix of avalanche photodiodes, which were read one at a time in a dark count map (DCM) measurement mode (much like a CCD). This reduces the device active area but allows the information from a single avalanche photodiode to be preserved, which is not possible with analog SiPMs. An algorithm to reject the noisiest photodiodes and to correct the measured count rate for the dark current was developed. The results show that, in DCM mode and at (10–13) °C, the PDPC has a dynamic response to different levels of Cherenkov luminescence emitted by a β source and transmitted through an opaque medium. This suggests the potential for this approach to provide quantitative activity measurements. Interestingly, the potential use of the PDPC in DCM mode for direct imaging of Cherenkov luminescence, as a opposed to a scalar measurement device, was also apparent. We showed that a PDPC tile in DCM mode is able to detect and image a β source through its Cherenkov radiation emission. The detector’s dynamic response to different levels of radiation suggests its potential quantitative capabilities, and the DCM mode allows imaging with a better spatial resolution than the conventional event-triggered mode. Finally, the same acquisition procedure and data processing could

  6. Short and long range gain monitoring of photomultipliers by means of a light pulser and an optical fibers bunch

    International Nuclear Information System (INIS)

    Besson, P.

    1989-01-01

    The gain monitoring of 8 XP3462 photomultipliers has been studied during a period of 3 months with a spark gap as a light pulser, an optical fibres bunch and 3 reference detectors. One of the reference PM is monitored thanks to a cristal of NaI irradiated by an 241 Am radioactive source, whereas the photodiode and its associated electronic is monitored thanks to a 57 Co source directly coupled to the junction. Two experimental methods have been tested. First the short term method consists in estimating several means of charge distributions and supposes the stability of different optical parameters like quantum efficiency or photoelectrons collection efficiency. The long term method consists in estimating several variances of charge distributions and supposes the validity, at first order, of photomultipliers' equations. In spite of unpropitious experimental conditions (tension switch off, no climatisation..), our results indicate that the short term method provides a precision of about 0.5% for the relative gain value but only during a short period which has been of 20 days. The long term method provides a precision of about 1.5% but is remained available during the 3 months of our experiment. This study has been developed for the new Neutrino oscillation program taking place near the Bugey nuclear plant and using 600 photomultipliers. The conclusions mentioned above are nevertheless valid for any particle detectors using photomultipliers [fr

  7. Fast readout of scintillating fibres using position-sensitive photomultipliers

    International Nuclear Information System (INIS)

    Agoritsas, V.; Akchurin, N.; Bergdolt, A.M.; Bing, O.; Bravar, A.; Ditta, J.; Dufournaud, J.; Dyachenko, V.A.; Giacomich, R.; Gorin, A.M.; Kuroda, K.; Magaudda, D.; Newsom, C.; Okada, K.; Onel, Y.; Penzo, A.; Rakhmatov, V.Ye.; Rykalin, V.I.; Salvato, G.; Savin, A.A.; Schiavon, P.; Sillou, D.; Solovyov, Yu.A.; Takeutchi, F.; Tareb-Reyes, M.; Vasilchenko, V.G.; Yoshida, T.; Zaychenko, A.A.

    1994-01-01

    Major progress has recently been achieved in the fast readout of scintillating fibres using position-sensitive photomultipliers (PSPMs). Experimental results obtained with commercially available PSPMs already show a space resolution better than 200 μm, a time resolution of about 1.5 ns with a detection efficiency higher than 90%, and the possibility of separating double hits with a minimum distance of ∼3 mm. An upgrade of PSPMs based on new dynode structures is also in progress. Results obtained with one new PSPM prototype in a magnetic field are also presented. (orig.)

  8. An Educational Kit Based On a Modular Silicon Photomultiplier System

    International Nuclear Information System (INIS)

    Caccia, Massimo; Chmill, Valery; Ebolese, Amedeo; Martemyanov, Alexander; Risigo, Fabio; Santoro, Romualdo; Locatelli, Marco; Pieracci, Maura; Tintori, Carlo

    2013-06-01

    Silicon Photo-Multipliers (SiPM) are state of the art light detectors with unprecedented single photon sensitivity and photon number resolving capability, representing a breakthrough in several fundamental and applied Science domains. An educational experiment based on a SiPM set-up is proposed in this article, guiding the student towards a comprehensive knowledge of this sensor technology while experiencing the quantum nature of light and exploring the statistical properties of the light pulses emitted by a LED. (authors)

  9. Self-shielding flex-circuit drift tube, drift tube assembly and method of making

    Science.gov (United States)

    Jones, David Alexander

    2016-04-26

    The present disclosure is directed to an ion mobility drift tube fabricated using flex-circuit technology in which every other drift electrode is on a different layer of the flex-circuit and each drift electrode partially overlaps the adjacent electrodes on the other layer. This results in a self-shielding effect where the drift electrodes themselves shield the interior of the drift tube from unwanted electro-magnetic noise. In addition, this drift tube can be manufactured with an integral flex-heater for temperature control. This design will significantly improve the noise immunity, size, weight, and power requirements of hand-held ion mobility systems such as those used for explosive detection.

  10. Silicon photomultipliers in scintillation detectors used for gamma ray energies up to 6.1 MeV

    Science.gov (United States)

    Grodzicka-Kobylka, M.; Szczesniak, T.; Moszyński, M.; Swiderski, L.; Szawłowski, M.

    2017-12-01

    Majority of papers concerning scintillation detectors with light readout by means of silicon photomultipliers refer to nuclear medicine or radiation monitoring devices where energy of detected gamma rays do not exceed 2 MeV. Detection of gamma radiation with higher energies is of interest to e.g. high energy physics and plasma diagnostics. The aim of this paper is to study applicability (usefulness) of SiPM light readout in detection of gamma rays up to 6.1 MeV in combination with various scintillators. The reported measurements were made with 3 samples of one type of Hamamatsu TSV (Through-Silicon Via technology) MPPC arrays. These 4x4 channel arrays have a 50 × 50 μm2 cell size and 12 × 12 mm2 effective active area. The following scintillators were used: CeBr3, NaI:Tl, CsI:Tl. During all the tests detectors were located in a climatic chamber. The studies are focused on optimization of the MPPC performance for practical use in detection of high energy gamma rays. The optimization includes selection of the optimum operating voltage in respect to the required energy resolution, dynamic range, linearity and pulse amplitude. The presented temperature tests show breakdown voltage dependence on the temperature change and define requirements for a power supply and gain stabilization method. The energy spectra for energies between 511 keV and 6.1 MeV are also presented and compared with data acquired with a classic photomultiplier XP5212B readout. Such a comparison allowed study of nonlinearity of the tested MPPCs, correction of the energy spectra and proper analysis of the energy resolution.

  11. Photodetection, photon event localization and position tomography device comprising a gammagraphy camera equipped wit such devices

    International Nuclear Information System (INIS)

    Jatteau, M.R.

    1984-01-01

    This device of photodetection and photon event (and noticeably scintillations) localization comprises at least a photomultiplier tube with unique photomultiplying structure and in front of this tube, a net of juxtaposed conduction metal wires excited by voltage pulses. This net comprises only 2n metallic wires to assure the localization of 2sup(2n) possible positions, and that is one of its characteristics [fr

  12. dc-plasma-sprayed electronic-tube device

    Science.gov (United States)

    Meek, T.T.

    1982-01-29

    An electronic tube and associated circuitry which is produced by dc plasma arc spraying techniques is described. The process is carried out in a single step automated process whereby both active and passive devices are produced at very low cost. The circuitry is extremely reliable and is capable of functioning in both high radiation and high temperature environments. The size of the electronic tubes produced are more than an order of magnitude smaller than conventional electronic tubes.

  13. DEVELOPMENT OF COILED TUBING STRESS ANALYSIS

    Directory of Open Access Journals (Sweden)

    Davorin Matanović

    1998-12-01

    Full Text Available The use of coiled tubing is increasing rapidly with drilling of horizontal wells. To satisfy all requirements (larger mechanical stresses, larger fluid capacities the production of larger sizes and better material qualities was developed. Stresses due to axial forces and pressures that coiled tubing is subjected are close to its performance limits. So it is really important to know and understand the behaviour of coiled tubing to avoid its break, burst or collapse in the well.

  14. Modeling crosstalk in silicon photomultipliers

    International Nuclear Information System (INIS)

    Gallego, L; Rosado, J; Blanco, F; Arqueros, F

    2013-01-01

    Optical crosstalk seriously limits the photon-counting resolution of silicon photomultipliers. In this work, realistic analytical models to describe the crosstalk effects on the response of these photodetectors are presented and compared with experimental data. The proposed models are based on the hypothesis that each pixel of the array has a finite number of available neighboring pixels to excite via crosstalk. Dead-time effects and geometrical aspects of the propagation of crosstalk between neighbors are taken into account in the models for different neighborhood configurations. Simple expressions to account for crosstalk effects on the pulse-height spectrum as well as to evaluate the excess noise factor due to crosstalk are also given. Dedicated measurements were carried out under both dark-count conditions and pulsed illumination. Moreover, the influence of afterpulsing on the measured pulse-height spectrum was studied, and a measurement of the recovery time of pixels was reported. High-resolution pulse-height spectra were obtained by means of a detailed waveform analysis, and the results have been used to validate our crosstalk models.

  15. Evaluation of thin CaF2 (Eu) scintillator for detecting tritium

    International Nuclear Information System (INIS)

    Chiles, M.M.

    1986-10-01

    The primary objective of this project was to investigate the feasibility of using a CaF 2 (Eu) scintillator for detecting low-energy beta particles from tritium. A proof-of-principle detector was designed for flowing tritium-spiked nitrogen gas across the surface of a thin scintillator, which was optically coupled between two low-noise photomultiplier tubes. Electronics for operating the two photomultiplier tubes in coincidence eliminated most of the tube noise pulses and allowed detection of the small pulses from the low-energy tritium beta particles

  16. Characterization of the 10-stages R5900 Hamamatsu photomultipliers for the hadronic ATLAS calorimeter

    International Nuclear Information System (INIS)

    Montarou, G.; Bouhemaid, N.; Grenier, Ph.; Crouau, M.; Muanza, G.S.; Poirot, S.; Vazeille, F.; Gil Botella, I.; Hoz, S.G. de la

    1997-01-01

    The measurements carried out, at Clermont on the R5900 Hamamatsu photomultipliers for the ATLAS hadronic calorimeter are summarised. The TILECAL specifications are given. Amplification measurements, dark current measurements, linearity, magnetic sensitivity and the voltage divider optimisation are presented. (K.A.)

  17. Silicon Photo-Multiplier Radiation Hardness Tests with a White Neutron Beam

    International Nuclear Information System (INIS)

    Montanari, A.; Tosi, N.; Pietropaolo, A.; Andreotti, M.; Baldini, W.; Calabrese, R.; Cibinetto, G.; Luppi, E.; Cotta Ramusino, A.; Malaguti, R.; Santoro, V.; Tellarini, G.; Tomassetti, L.; De Donato, C.; Reali, E.

    2013-06-01

    We report radiation hardness tests performed, with a white neutron beam, at the Geel Electron Linear Accelerator in Belgium on silicon Photo-Multipliers. These are semiconductor photon detectors made of a square matrix of Geiger-Mode Avalanche photo-diodes on a silicon substrate. Several samples from different manufacturers have been irradiated integrating up to about 6.2 x 10 9 1-MeV-equivalent neutrons per cm 2 . (authors)

  18. Heat Exchanger Tube Inspection of Nuclear Power Plants using IRIS Technique

    International Nuclear Information System (INIS)

    Yoon, Byung Sik; Yang, Seung Han; Song, Seok Yoon; Kim, Yong Sik; Lee, Hee Jong

    2005-01-01

    Inspection of heat exchange tubing include steam generator of nuclear power plant mostly performed with eddy current method. Recently, various inspection technique is available such as remote field eddy current, flux leakage and ultrasonic methods. Each of these techniques has its merits and limitations. Electromagnetic techniques are very useful to locate areas of concern but sizing is hard because of the difficult interpretation of an electric signature. On the other hand, ultrasonic methods are very accurate in measuring wall loss damage, and are reliable for detecting cracks. Additionally ultrasound methods is not affected by support plates or tube sheets and variation of electrical conductivity or permeability. Ultrasound data is also easier to analyze since the data displayed is generally the remaining wall thickness. It should be emphasized that ultrasound is an important tool for sizing defects in tubing. In addition, it can be used in situations where eddy current or remote field eddy current is not reliable, or as a flaw assessment tool to supplement the electromagnetic data. The need to develop specialized ultrasonic tools for tubing inspection was necessary considering the limitations of electromagnetic techniques to some common inspection problems. These problems the sizing of wall loss in carbon steel tubes near the tube sheet or support plate, sizing internal erosion damage, and crack detection. This paper will present an IRIS(Internal Rotating Inspection System) ultrasonic tube inspection technique for heat exchanger tubing in nuclear power plant and verify inspection reliability for artificial flaw embedded to condenser tube

  19. GEM-based gaseous photomultipliers for UV and visible photon imaging

    International Nuclear Information System (INIS)

    Moermann, D.; Balcerzyk, M.; Breskin, A.; Chechik, R.; Singh, B.K.; Buzulutskov, A.

    2003-01-01

    We present the current status of our research on GEM-based gaseous photomultipliers. Detectors combining multi-GEM electron multipliers with semi-transparent and reflective photocathodes are discussed. We present recent progress in extending the sensitivity of these detectors into the visible range. We demonstrate the long-term stability of an argon-sealed bi-alkali photo-diode and provide preliminary results of a gas-sealed Kapton-GEM detector with a bi-alkali photocathode. The problem of ion-induced secondary electron emission is addressed

  20. Silicon photomultiplier's gain stabilization by bias correction for compensation of the temperature fluctuations

    International Nuclear Information System (INIS)

    Dorosz, P.; Baszczyk, M.; Glab, S.; Kucewicz, W.; Mik, L.; Sapor, M.

    2013-01-01

    Gain of the silicon photomultiplier is strongly dependent on the value of bias voltage and temperature. This paper proposes a method for gain stabilization just by compensation of temperature fluctuations by bias correction. It has been confirmed that this approach gives good results and the gain can be kept very stable

  1. Method for measuring the focal spot size of an x-ray tube using a coded aperture mask and a digital detector.

    Science.gov (United States)

    Russo, Paolo; Mettivier, Giovanni

    2011-04-01

    The goal of this study is to evaluate a new method based on a coded aperture mask combined with a digital x-ray imaging detector for measurements of the focal spot sizes of diagnostic x-ray tubes. Common techniques for focal spot size measurements employ a pinhole camera, a slit camera, or a star resolution pattern. The coded aperture mask is a radiation collimator consisting of a large number of apertures disposed on a predetermined grid in an array, through which the radiation source is imaged onto a digital x-ray detector. The method of the coded mask camera allows one to obtain a one-shot accurate and direct measurement of the two dimensions of the focal spot (like that for a pinhole camera) but at a low tube loading (like that for a slit camera). A large number of small apertures in the coded mask operate as a "multipinhole" with greater efficiency than a single pinhole, but keeping the resolution of a single pinhole. X-ray images result from the multiplexed output on the detector image plane of such a multiple aperture array, and the image of the source is digitally reconstructed with a deconvolution algorithm. Images of the focal spot of a laboratory x-ray tube (W anode: 35-80 kVp; focal spot size of 0.04 mm) were acquired at different geometrical magnifications with two different types of digital detector (a photon counting hybrid silicon pixel detector with 0.055 mm pitch and a flat panel CMOS digital detector with 0.05 mm pitch) using a high resolution coded mask (type no-two-holes-touching modified uniformly redundant array) with 480 0.07 mm apertures, designed for imaging at energies below 35 keV. Measurements with a slit camera were performed for comparison. A test with a pinhole camera and with the coded mask on a computed radiography mammography unit with 0.3 mm focal spot was also carried out. The full width at half maximum focal spot sizes were obtained from the line profiles of the decoded images, showing a focal spot of 0.120 mm x 0.105 mm at 35

  2. Evaluation of reliability of EC inspection of VVER SG tubes

    International Nuclear Information System (INIS)

    Stanic, D.

    2001-01-01

    Evaluation of eddy current data collected during inspection of VVER steam generators is very complex task because of numerous parameters which have affect on eddy current signals. That was the reason that recently ago INETEC has started related scientific project in order to evaluate the reliability of eddy current (EC) inspection of VVER steam generator (SG) tubing. In the scope of project the following objectives will be investigated: 1. Determination of POD (Probability of detection) of various types degradation cracks, where their basic parameters are variables (basic parameters are depth, length, width, orientation, number) on three different sets of tubes (clean ideal tubes, tubes with pilgering, tubes electroplated with copper) 2. Sizing quality (accuracy, repeatability) (same data sets as defined in 1.) 3. Effect of fill factor on POD and sizing quality. 4. Effect of tube bends on POD and sizing quality. 5. Effect of other tube geometry variations on POD and sizing quality (tube ovality, transition zone region, expanded (rolled) part of tube, dents, dings). Investigation will start with bobbin probe technique which is the most used technique for general purpose VVER tube examination. Since INETEC is the only world company which successfully developed and applied rotating probe technique for VVER SG tubes, scope of the project will be extended on rotating probe technique utilizing 'pancake' and 'point' coil. Method reliability will be investigated first on the huge set of EDM notches representing various defect morphologies and simulating different factors, and the second part will be investigated on sets of degradation defects obtained by artificial corrosion. In the scope of the project the measures for enhancing the method reliability have to be determined. This considers the proper definition of parameters of examination system, as well as establishment of the suitable analysis procedures. This article presents the temporary results of the first part of

  3. Experimental analysis of refrigerants flow boiling inside small sized microfin tubes

    Science.gov (United States)

    Diani, Andrea; Rossetto, Luisa

    2017-07-01

    The refrigerant charge reduction is one of the most challenging issues that the scientific community has to cope to reduce the anthropic global warming. Recently, mini microfin tubes have been matter of research, since they can reach better thermal performance in small domains, leading to a further refrigerant charge reduction. This paper presents experimental results about R134a flow boiling inside a microfin tube having an internal diameter at the fin tip of 2.4 mm. The mass flux was varied between 375 and 940 kg m-2 s-1, heat flux from 10 to 50 kW m-2, vapor quality from 0.10 to 0.99. The saturation temperature at the inlet of the test section was kept constant and equal to 30 °C. R134a thermal and fluid dynamic performances are presented and compared against those obtained with R1234ze(E) and R1234yf and against values obtained during R134a flow boiling inside a 3.4 mm ID microfin tube.

  4. Study of a photomultiplier for the measurement of low light flows by photon counting

    International Nuclear Information System (INIS)

    Haye, Kleber

    1964-01-01

    After a recall of the history of the discovery and use of the photoemission effect, a presentation of the main characteristics of photomultipliers, a discussion of performance and weaknesses of electron multiplier-based cells, this research thesis addresses the study of low light flows. The author tried to determine whether it was possible, at ambient temperature, to reduce the influence of the thermoelectric effect. In order to do so, he made a detailed study of the amplitude spectrum of pulses of photoelectric origin. In order to analyse the influence of temperature of photomultiplier characteristics, he studied, with respect to temperature, the variation of the counting rate corresponding to darkness, the variation of pulse amplitude spectrum, and relative variations of the quantum efficiency for various wavelengths. In parallel with the study by counting, a study has been performed by using the well known mean current measurement [fr

  5. Development of high performance readout ASICs for silicon photomultipliers (SiPMs)

    International Nuclear Information System (INIS)

    Shen, Wei

    2012-01-01

    Silicon Photomultipliers (SiPMs) are novel kind of solid state photon detectors with extremely high photon detection resolution. They are composed of hundreds or thousands of avalanche photon diode pixels connected in parallel. These avalanche photon diodes are operated in Geiger Mode. SiPMs have the same magnitude of multiplication gain compared to the conventional photomultipliers (PMTs). Moreover, they have a lot of advantages such as compactness, relatively low bias voltage and magnetic field immunity etc. Special readout electronics are required to preserve the high performance of the detector. KLauS and STiC are two CMOS ASIC chips designed in particular for SiPMs. KLauS is used for SiPM charge readout applications. Since SiPMs have a much larger detector capacitance compared to other solid state photon detectors such as PIN diodes and APDs, a few special techniques are used inside the chip to make sure a descent signal to noise ratio for pixel charge signal can be obtained. STiC is a chip dedicated to SiPM time-of-flight applications. High bandwidth and low jitter design schemes are mandatory for such applications where time jitter less than tens of picoseconds is required. Design schemes and error analysis as well as measurement results are presented in the thesis.

  6. A method to stabilise the performance of negatively fed KM3NeT photomultipliers

    NARCIS (Netherlands)

    Adrián-Martínez, S.; Ageron, M.; Aiello, S.; Albert, A.; Ameli, F.; Anassontzis, E.G.; Andre, M.; Androulakis, G.; Anghinolfi, M.; Anton, G.; Ardid, M.; Avgitas, T.; Barbarino, G.; Barbarito, E.; Baret, B.; Barrios-Martí, J.; Belias, A.; Berbee, E.; Berg, A. van den; Bertin, V.; Beurthey, S.; Beveren, V. van; Beverini, N.; Biagi, S.; Biagioni, A.; Billault, M.; Bondì, M.; Bormuth, R.; Bouhadef, B.; Bourlis, G.; Bourret, S.; Boutonnet, C.; Bouwhuis, M.; Bozza, C.; Bruijn, R.; Brunner, J.; Buis, E.J.; Buompane, R.; Busto, J.; Cacopardo, G.; Caillat, L.; Calamai, M.; Calvo, D.; Capone, A.; Caramete, L.; Cecchini, S.; Celli, S.; Champion, C.; Cherubini, S.; Chiarella, V.; Chiarelli, L.; Chiarusi, T.; Circella, M.; Classen, L.; Cobas, D.; Cocimano, R.; Coelho, J.A.B.; Coleiro, A.; Colonges, S.; Coniglione, R.; Cordelli, M.; Cosquer, A.; Coyle, P.; Creusot, A.; Cuttone, G.; D'Amato, C.; D'Amico, A.; D'Onofrio, A.; De Bonis, G.; De Sio, C.; Di Capua, F.; Di Palma, I.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti-Hasankiadeh, Q.; Drakopoulou, E.; Drouhin, D.; Durocher, M.; Eberl, T.; Eichie, S.; Van Eijk, D.; El Bojaddaini, I.; Elsaesser, D.; Enzenhöfer, A.; Favaro, M.; Fermani, P.; Ferrara, G.; Frascadore, G.; Furini, M.; Fusco, L.A.; Gal, T.; Galatà, S.; Garufi, F.; Gay, P.; Gebyehu, M.; Giacomini, F.; Gialanella, L.; Giordano, V.; Gizani, N.; Gracia, R.; Graf, K.; Grégoire, T.; Grella, G.; Grmek, A.; Guerzoni, M.; Habel, R.; Hallmann, S.; Haren, H. van; Harissopulos, S.; Heid, T.; Heijboer, A.; Heine, E.; Henry, S.; Hernández-Rey, J.J.; Hevinga, M.; Hofestädt, J.; Hugon, C.M.F.; Illuminati, G.; James, C.W.; Jansweijer, P.; Jongen, M.; Jong, M. de; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.F.; Keller, P.; Kieft, G.; Kießling, D.; Koffeman, E.N.; Kooijman, P.; Kouchner, A.; Kreter, M.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Leisos, A.; Leonora, E.; Clark, M.L.; Liolios, A.; Alvarez, C.D.L.; Lo Presti, D.; Löhner, H.; Lonardo, A.; Lotze, M.; Loucatos, S.; Maccioni, E.; Mannheim, K.; Manzali, M.; Margiotta, A.; Margotti, A.; Marinelli, A.; Mariš, O.; Markou, C.; Martínez-Mora, J.A.; Martini, A.; Marzaioli, F.; Mele, R.; Melis, K.W.; Michael, T.; Migliozzi, P.; Migneco, E.; Mijakowski, P.; Miraglia, A.; Mollo, C.M.; Mongelli, M.; Morganti, M.; Moussa, A.; Musico, P.; Musumeci, M.; Nicolau, C.A.; Olcina, I.; Olivetto, C.; Orlando, A.; Orzelli, A.; Pancaldi, G.; Paolucci, A.; Papaikonomou, A.; Papaleo, R.; Pǎvǎlaš, G.E.; Peek, H.; Pellegrini, G.; Pellegrino, C.; Perrina, C.; Pfutzner, M.; Piattelli, P.; Pikounis, K.; Poma, G.E.; Popa, V.; Pradier, T.; Pratolongo, F.; Pühlhofer, G.; Pulvirenti, S.; Quinn, L.; Racca, C.; Raffaelli, F.; Randazzo, N.; Real, D.; Resvanis, L.; Reubelt, J.; Riccobene, G.; Rossi, C.; Rovelli, A.; Saldaña, M.; Salvadori, I.; Samtleben, D.F.E.; Sánchez García, A.; Sánchez Losa, A.; Sanguineti, M.; Santangelo, A.; Santonocito, D.; Sapienza, P.; Schimmel, F.; Schmelling, J.; Schnabel, J.; Sciacca, V.; Sedita, M.; Seitz, T.; Sgura, I.; Simeone, F.; Sipala, V.; Spisso, B.; Spurio, M.; Stavropoulos, G.; Steijger, J.; Stellacci, S.M.; Stransky, D.; Taiuti, M.; Tayalati, Y.; Terrasi, F.; Tézier, D.; Theraube, S.; Timmer, P.; Tönnis, C.; Trasatti, L.; Travaglini, R.; Trovato, A.; Tsirigotis, A.; Tzamarias, S.; Tzamariudaki, E.; Vallage, B.; Van Elewyck, V.; Vermeulen, J.; Versari, F.; Vicini, P.; Viola, S.; Vivolo, D.; Volkert, M.; Wiggers, L.; Wilms, J.; Wolf, E. de; Zachariadou, K.; Zani, S.; Zornoza, J.D.; Zúñiga, J.

    2016-01-01

    The KM3NeT research infrastructure, currently under construction in the Mediterranean Sea, will host neutrino telescopes for the identification of neutrino sources in the Universe and for studies of the neutrino mass hierarchy. These telescopes will house hundreds of thousands of photomultiplier

  7. Operation and first results of the NEXT-DEMO prototype using a silicon photomultiplier tracking array

    International Nuclear Information System (INIS)

    Álvarez, V; Cárcel, S; Cervera, A; Díaz, J; Ferrario, P; Gil, A; Borges, F I G; Conde, C A N; Dias, T H V T; Fernandes, L M P; Freitas, E D C; Castel, J; Cebrián, S; Dafni, T; Egorov, M; Gehman, V M; Goldschmidt, A; Esteve, R; Evtoukhovitch, P; Ferreira, A L

    2013-01-01

    NEXT-DEMO is a high-pressure xenon gas TPC which acts as a technological test-bed and demonstrator for the NEXT-100 neutrinoless double beta decay experiment. In its current configuration the apparatus fully implements the NEXT-100 design concept. This is an asymmetric TPC, with an energy plane made of photomultipliers and a tracking plane made of silicon photomultipliers (SiPM) coated with TPB. The detector in this new configuration has been used to reconstruct the characteristic signature of electrons in dense gas, demonstrating the ability to identify the MIP and ''blob'' regions. Moreover, the SiPM tracking plane allows for the definition of a large fiducial region in which an excellent energy resolution of 1.82% FWHM at 511 keV has been measured (a value which extrapolates to 0.83% at the xenon Q ββ )

  8. Detection of cosmic ray tracks using scintillating fibers and position sensitive multi-anode photomultipliers

    International Nuclear Information System (INIS)

    Atac, M.; Streets, J.; Wilcer, N.

    1998-02-01

    This experiment demonstrates detection of cosmic ray tracks by using Scintillating fiber planes and multi-anode photomultipliers (MA-PMTs). In a laboratory like this, cosmic rays provide a natural source of high-energy charged particles which can be detected with high efficiency and with nanosecond time resolution

  9. A Note regarding Problems with Interaction and Varying Block Sizes in a Comparison of Endotracheal Tubes

    Directory of Open Access Journals (Sweden)

    Richard L. Einsporn

    2014-01-01

    Full Text Available A randomized clinical experiment to compare two types of endotracheal tubes utilized a block design where each of the six participating anesthesiologists performed tube insertions for an equal number of patients for each type of tube. Five anesthesiologists intubated at least three patients with each tube type, but one anesthesiologist intubated only one patient per tube type. Overall, one type of tube outperformed the other on all three effectiveness measures. However, analysis of the data using an interaction model gave conflicting and misleading results, making the tube with the better performance appear to perform worse. This surprising result was caused by the undue influence of the data for the anesthesiologist who intubated only two patients. We therefore urge caution in interpreting results from interaction models with designs containing small blocks.

  10. Dynamics of explosively imploded pressurized tubes

    Science.gov (United States)

    Szirti, Daniel; Loiseau, Jason; Higgins, Andrew; Tanguay, Vincent

    2011-04-01

    The detonation of an explosive layer surrounding a pressurized thin-walled tube causes the formation of a virtual piston that drives a precursor shock wave ahead of the detonation, generating very high temperatures and pressures in the gas contained within the tube. Such a device can be used as the driver for a high energy density shock tube or hypervelocity gas gun. The dynamics of the precursor shock wave were investigated for different tube sizes and initial fill pressures. Shock velocity and standoff distance were found to decrease with increasing fill pressure, mainly due to radial expansion of the tube. Adding a tamper can reduce this effect, but may increase jetting. A simple analytical model based on acoustic wave interactions was developed to calculate pump tube expansion and the resulting effect on the shock velocity and standoff distance. Results from this model agree quite well with experimental data.

  11. Fouling deposition characteristic by variation of coal particle size and deposition temperature in DTF (Drop Tube Furnace)

    Energy Technology Data Exchange (ETDEWEB)

    Namkung, Hueon; Jeon, Youngshin; Kim, Hyungtaek [Ajou Univ., Suwon (Korea, Republic of). Div. of Energy Systems Research; Xu, Li-hua [IAE, Suwon (Korea, Republic of). Plant Engineering Center

    2013-07-01

    One of the major operation obstacles in gasification process is ash deposition phenomenon. In this investigation, experiment was carried out to examine coal fouling characteristics using a laminar DTF (Drop Tube Furnace) with variation of operating condition such as different coal size, and probe surface temperature. Four different samples of pulverized coal were injected into DTF under various conditions. The ash particles are deposited on probe by impacting and agglomerating action. Fouling grains are made of eutectic compound, which is made by reacting with acid minerals and alkali minerals, in EPMA (Electron Probe Micro-Analysis). And agglomeration area of fouling at top layer is wide more than it of middle and bottom layer. The major mineral factors of fouling phenomenon are Fe, Ca, and Mg. The deposition quantity of fouling increases with increasing particle size, high alkali mineral (Fe, Ca, and Mg) contents, and ash deposition temperature.

  12. A Study on the Profile Change Measurement of Steam Generator Tubes with Tube Expansion Methods

    International Nuclear Information System (INIS)

    Kim, Young Kyu; Song Myung Ho; Choi, Myung Sik

    2011-01-01

    Steam generator tubes for nuclear power plants contain the local shape transitions on their inner or outer surface such as dent, bulge, over-expansion, eccentricity, deflection, and so on by the application of physical force during the tube manufacturing and steam generator assembling and by the sludge (that is, corrosion products) produced during the plant operation. The structural integrity of tubes will be degraded by generating the corrosive crack at that location. The profilometry using the traditional bobbin probes which are currently applied for measuring the profile change of tubes gives us basic information such as axial locations and average magnitudes of deformations. However, the three-dimensional quantitative evaluation on circumferential locations, distributional angle, and size of deformations will have to be conducted to understand the effects of residual stresses increased by local deformations on corrosive cracking of tubes. Steam generator tubes of Korean standard nuclear power plants expanded within their tube-sheets by the explosive expansion method and suffered from corrosive cracks in the early stage of power operation. Thus, local deformations of steam generator tubes at the top of tube-sheet were measured with an advanced rotating probe and a laser profiling system for the two cases where the tubes expanded by the explosive expansion method and hydraulic expansion. Also, the trends of eccentricity, deflection, and over-expansion of tubes were evaluated. The advanced eddy current profilometry was confirmed to provide accurate information of local deformations compared with laser profilometry

  13. Steam generator tube failures

    International Nuclear Information System (INIS)

    MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

    1996-04-01

    A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service

  14. Fabrication of seamless calandria tubes

    International Nuclear Information System (INIS)

    Saibaba, N.; Phanibabu, C.; Bhaskara Rao, C.V.; Kalidas, R.; Ganguly, C.

    2002-01-01

    Full text: Calandria tube is a large diameter, thin walled zircaloy-4 tube and is an important structural component of PHWR type of reactors. These tubes are lifetime components and remain during the full life of the reactor. Calandria tubes are classified as extremely thin walled tubes with a diameter to wall thickness ratio of around 96. Such thin walled tubes are conventionally produced by seam welded route comprising of extrusion of slabs followed by a series of hot and rolling passes, shaping into O-shape and eventual welding. An alternative and superior method of fabricating the calandria tubes, the seamless route, has been developed, which involves hot extrusion of mother blanks followed by three successive cold pilger reductions. Eccentricity correction of the extruded blanks is carried out on a special purpose grinding equipment to bring the wall thickness variation within permissible limits. Predominant wall thickness reductions are given during cold pilgering to ensure high Q-factor values. The texture in the finished tubes could be closely, controlled with an average f r value of 0.65. Pilgering parameters and tube guiding system have been specially designed to facilities rolling of thin walled tubes. Seamless calandria tubes have distinct advantages over welded tubes. In addition to the absence of weld, they are dimensionally more stable, lighter in weight and possess uniform grains with superior grain size. The cycle time from billet to finished product is substantially reduced and the product is amenable to high level of quality assurance. The most significant feature of the seamless route is its material recovery over welded route. Residual stresses measured in the tubes indicate that these are negligible and uniform along the length of the tube. In view of their superior quality, the first charge of seamless calandria tubes will be rolled into the first 500 MWe Pressurised Heavy Water Reactor at Tarapur

  15. Use of Microcuff ® endotracheal tubes in paediatric laparoscopic surgeries

    Directory of Open Access Journals (Sweden)

    Rameshwar Mhamane

    2015-01-01

    Full Text Available Background and Aims: Traditionally, uncuffed endotracheal tubes have been used in children. Cuffed tubes may be useful in special situations like laparoscopy. Microcuff ® endotracheal tube is a specifically designed cuffed endotracheal tube for the paediatric airway. We studied the appropriateness of Microcuff ® tube size selection, efficacy of ventilation, and complications, in children undergoing laparoscopy. Methods: In a prospective, observational study, 100 children undergoing elective laparoscopy were intubated with Microcuff ® tube as per recommended size. We studied appropriateness of size selection, sealing pressure, ability to ventilate with low flow, quality of capnography and post-extubation laryngospasm or stridor. Results: Mean age of the patients was 5.44 years (range 8 months 5 days-9 years 11 months. There was no resistance for tube passage during intubation in any patient. Leak on intermittent positive pressure ventilation at airway pressure ≤20 cm H 2 O was present in all patients. Mean sealing pressure was 11.72 (1.9 standard deviation [SD] cm H 2 O. With the creation of pnemoperitoneum, mean intracuff pressure increased to 12.48 (3.12 SD cm H 2 O. With head low positioning, mean cuff pressure recorded was 13.32 (2.92 SD. Ventilation at low flow (mean flow 1 L/min, plateau-type capnography was noted in all patients. Mean duration of intubation was 83.50 min. Coughing at extubation occurred in 6 patients. Partial laryngospasm occurred in 4 patients, which responded to continuous positive airway pressure via face mask. Severe laryngospasm or stridor was not seen in any patient. Conclusion: Microcuff ® tubes can be safely used in children if size selection recommendations are followed and cuff pressure is strictly monitored. Advantages are better airway seal and effective ventilation, permitting use of low flows.

  16. Eddy current inspection of weld defects in tubing

    Science.gov (United States)

    Katragadda, G.; Lord, W.

    1992-01-01

    An approach using differential probes for the inspection of weld defects in tubing is studied. Finite element analysis is used to model the weld regions and defects. Impedance plane signals are predicted for different weld defect types and compared wherever possible with signals from actual welds in tubing. Results show that detection and sizing of defects in tubing is possible using differential eddy current techniques. The phase angle of the impedance plane trajectory gives a good indication of the sizing of the crack. Data on the type of defect can be obtained from the shape of the impedance plane trajectory and the phase. Depending on the skin depth, detection of outer wall, inner wall, and subsurface defects is possible.

  17. The data acquisition system for the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    Aguilar, J.A.; Albert, A.; Ameli, F.

    2007-01-01

    The ANTARES neutrino telescope is being constructed in the Mediterranean Sea. It consists of a large three-dimensional array of photo-multiplier tubes. The data acquisition system of the detector takes care of the digitisation of the photo-multiplier tube signals, data transport, data filtering, and data storage. The detector is operated using a control program interfaced with all elements. The design and the implementation of the data acquisition system are described

  18. The data acquisition system for the ANTARES neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, J.A. [IFIC, Instituto de Fisica Corpuscular, Edificios Investigacion de Paterna, CSIC, Universitat de Valencia, Apdo. de Correos 22085, 46071 Valencia (Spain); Albert, A. [GRPHE - Groupe de Recherche en Physique des Hautes Energies, Universite de Haute Alsace, 61 Rue Albert Camus, 68093 Mulhouse Cedex (France); Ameli, F. [Dipartimento di Fisica dell' Universita ' La Sapienza' e Sezione INFN, P.le Aldo Moro 2, 00185 Rome (Italy)] (and others)

    2007-01-01

    The ANTARES neutrino telescope is being constructed in the Mediterranean Sea. It consists of a large three-dimensional array of photo-multiplier tubes. The data acquisition system of the detector takes care of the digitisation of the photo-multiplier tube signals, data transport, data filtering, and data storage. The detector is operated using a control program interfaced with all elements. The design and the implementation of the data acquisition system are described.

  19. A 21st Century Approach to Electronic Device Reliability

    Science.gov (United States)

    2013-10-25

    70124 pyroelectric detector, Spectra-650 colorimeter and Oriel 77346 photomultiplier tube. The reason to use multiple detectors is that none of the...580nm. Hence, the pyroelectric detector is used to verify the reading from the Spectra-650 colorimeter for wavelengths longer than 580nm. While the...Spectra-650 is verified, it has a cut- off for lower than 380nm. Finally, by using the Oriel 77346 photomultiplier tube and the colorimeter for the

  20. LYSO crystal calorimeter readout with silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Berra, A., E-mail: alessandro.berra@gmail.com [Università degli Studi dell' Insubria (Italy); INFN sezione di Milano Bicocca (Italy); Bonvicini, V. [INFN sezione di Trieste (Italy); Cecchi, C.; Germani, S. [INFN sezione di Perugia (Italy); Guffanti, D. [Università degli Studi dell' Insubria (Italy); Lietti, D. [Università degli Studi dell' Insubria (Italy); INFN sezione di Milano Bicocca (Italy); Lubrano, P.; Manoni, E. [INFN sezione di Perugia (Italy); Prest, M. [Università degli Studi dell' Insubria (Italy); INFN sezione di Milano Bicocca (Italy); Rossi, A. [INFN sezione di Perugia (Italy); Vallazza, E. [INFN sezione di Trieste (Italy)

    2014-11-01

    Large area Silicon PhotoMultipliers (SiPMs) are the new frontier of the development of readout systems for scintillating detectors. A SiPM consists of a matrix of parallel-connected silicon micropixels operating in limited Geiger–Muller avalanche mode, and thus working as independent photon counters with a very high gain (∼10{sup 6}). This contribution presents the performance in terms of linearity and energy resolution of an electromagnetic homogeneous calorimeter composed of 9∼18X{sub 0} LYSO crystals. The crystals were readout by 36 4×4 mm{sup 2} SiPMs (4 for each crystal) produced by FBK-irst. This calorimeter was tested at the Beam Test Facility at the INFN laboratories in Frascati with a single- and multi-particle electron beam in the 100–500 MeV energy range.

  1. Ultrafast readout of scintillating fibers using upgraded position-sensitive photomultipliers

    International Nuclear Information System (INIS)

    Onel, Y.

    1994-01-01

    Experimental results obtained with commercially available position-sensitive photomultipliers (PSPM) coupled with 0.5 mm diameter scintillating fiber arrays show some promising performances such as space resolution better than 200 μm and time resolution ∼ 1.5 ns with a detection efficiency higher than 90%. Major progress has also been recently achieved with an upgrade of a PSPM based on new grid dynode structures. Two-track spatial resolution has been studied using the upgraded PSPM. Initial studies demonstrate that two tracks separated by a minimum distance of 3 mm are resolved

  2. Small-sized accelerating tube for electron acceleration to 500 keV at pulse duration of 2 ns

    International Nuclear Information System (INIS)

    Pavlovskaya, N.G.; Ehl'yash, S.L.; Dron', N.A.; Sloeva, G.N.

    1978-01-01

    The design and characteristics (current, voltage, current density, electron beam structure, energy spectrum, and dose rate) of a soldered small-size two-electrode 600 kV accelerating tube are considered. A six-stage Arkadiev-Marx generator is the pulse high-voltage supply of nanosecond duration. When using a cathode (diameter of 8 mm) made of tantalum foil 0.02 mm thick and with interelectrode gap of 10 mm, the amplitude of the electron beam current beyond the beryllium anode equals to 1040 A under maximum voltage of 490 kV, current pulse duration of 2 ns, number of electrons is 10 13 . The increased electron density on the anode in a spot of 4 mm in diameter is observed; the current density in the spot reaches 1 kA/cm 2 . The electron energy in the beam beyond the anode is as much as 0.6-0.8 J per pulse, and the dose rate near the outer surface of the outlet window is 10 14 -10 15 rad/s. The use of an intensifying oil spark gap is shown to increase radiation hardness. The accelerating tube provides more than 10 5 shots in a single-switching mode

  3. Forming of Zr-4 alloy guide tube with varied diameters

    International Nuclear Information System (INIS)

    Wei Songyan; Tian Zhenye

    1989-10-01

    A new built-up mould method to manufacture Zr-4 alloy guide tubes with varied diameters at the middle of tube is introduced. The guide tube is used in nuclear power plants for guiding the control rods. This method has many advantages such as simple in forming, low cost of manufacturing, no need of special devices and favour of batch processing. The test results show that the accuracy of size, mechanical properties, resistance to corrosion, grain size and hydrogenate orientation of the end-products can meet the technical needs for nuclear reactor operation

  4. A Design of a PET Detector Using Micro-Channel Plate Photomultipliers with Transmission-Line Readout.

    Science.gov (United States)

    Kim, H; Frisch, H; Chen, C-T; Genat, J-F; Tang, F; Moses, W W; Choong, W S; Kao, C-M

    2010-01-01

    A computer simulation study has been conducted to investigate the feasibility of a positron emission tomography (PET) detector design by using micro-channel plate (MCP) photomultiplier tubes (PMT) with transmission-line (TL) read-out and waveform sampling. The detector unit consisted of a 24×24 array of pixelated LSO crystals, each of which was 4×4×25 mm(3) in size, and two 102×102 mm(2) MCP-PMTs coupled to both sides of the scintillator array. The crystal (and TL) pitch was 4.25 mm and reflective medium was inserted between the crystals. The transport of the optical photons inside the scintillator were simulated by using the Geant4 package. The output pulses of the MCP-PMT/TL unit were formed by applying the measured single photo-electron response of the MCP-PMT/TL unit to each individual photon that interacts with the photo-cathode of the MCP-PMT. The waveforms of the pulses at both ends of the TL strips were measured and analyzed to produce energy and timing information for the detected event. An experimental setup was developed by employing a Photonis Planacon MCP-PMT (XP85022) and a prototype TL board for measuring the single photo-electron response of the MCP-PMT/TL. The simulation was validated by comparing the predicted output pulses to measurements obtained with a single MCP-PMT/TL coupled to an LSO crystal exposed to 511 keV gamma rays. The validated simulation was then used to investigate the performance of the proposed new detector design. Our simulation result indicates an energy resolution of ~11% at 511 keV. When using a 400-600 keV energy window, we obtain a coincidence timing resolution of ~323 ps FWHM and a coincidence detection efficiency of ~40% for normally-incident 511keV photons. For the positioning accuracy, it is determined by the pitch of the TLs (and crystals) in the direction normal to the TLs and measured to be ~2.5 mm in the direction parallel to the TLs. The energy and timing obtained at the front- and back-end of the scintillator

  5. Ultrasonic inspection of inpile tubes

    International Nuclear Information System (INIS)

    Boyd, D.M.; Bossi, H.

    1985-01-01

    The in-service inspection (ISI) of inpile tubes can be performed accurately and safely with a semiautomatic ultrasonic inspection system. The ultrasonic technique uses a set of multiple transducers to detect and size cracks, voids, and laminations radially and circumferentially. Welds are also inspected for defects. The system is designed to inspect stainless steel and Inconel tubes ranging from 53.8 mm (2.12 in.) to 101.6 mm (4 in.) inner diameter with wall thickness on the order of 5 mm. The inspection head contains seven transducers mounted in a surface-following device. Six angle-beam transducers generate shear waves in the tubes. Two of the six are oriented to detect circumferential cracks, and two detect axial cracks. Although each of these four transducers is used in the pulse-echo mode, they are oriented in aligned sets so pitch-catch operation is possible if desired. The remaining angle-beam transducers are angulated to detect flaws that are off axial or circumferential orientation. The seventh transducer is used for longitudinal inspection and detects and sizes laminar-type defects

  6. Micron-pore-sized metallic filter tube membranes for filtration of particulates and water purification.

    Science.gov (United States)

    Phelps, T J; Palumbo, A V; Bischoff, B L; Miller, C J; Fagan, L A; McNeilly, M S; Judkins, R R

    2008-07-01

    Robust filtering techniques capable of efficiently removing particulates and biological agents from water or air suffer from plugging, poor rejuvenation, low permeance, and high backpressure. Operational characteristics of pressure-driven separations are in part controlled by the membrane pore size, charge of particulates, transmembrane pressure and the requirement for sufficient water flux to overcome fouling. With long term use filters decline in permeance due to filter-cake plugging of pores, fouling, or filter deterioration. Though metallic filter tube development at ORNL has focused almost exclusively on gas separations, a small study examined the applicability of these membranes for tangential filtering of aqueous suspensions of bacterial-sized particles. A mixture of fluorescent polystyrene microspheres ranging in size from 0.5 to 6 microm in diameter simulated microorganisms in filtration studies. Compared to a commercial filter, the ORNL 0.6 microm filter averaged approximately 10-fold greater filtration efficiency of the small particles, several-fold greater permeance after considerable use and it returned to approximately 85% of the initial flow upon backflushing versus 30% for the commercial filter. After filtering several liters of the particle-containing suspension, the ORNL composite filter still exhibited greater than 50% of its initial permeance while the commercial filter had decreased to less than 20%. When considering a greater filtration efficiency, greater permeance per unit mass, greater percentage of rejuvenation upon backflushing (up to 3-fold), and likely greater performance with extended use, the ORNL 0.6 microm filters can potentially outperform the commercial filter by factors of 100-1,000 fold.

  7. A study of timing properties of Silicon Photomultipliers

    Science.gov (United States)

    Avella, Paola; De Santo, Antonella; Lohstroh, Annika; Sajjad, Muhammad T.; Sellin, Paul J.

    2012-12-01

    Silicon Photomultipliers (SiPMs) are solid-state pixelated photodetectors. Lately these sensors have been investigated for Time of Flight Positron Emission Tomography (ToF-PET) applications, where very good coincidence time resolution of the order of hundreds of picoseconds imply spatial resolution of the order of cm in the image reconstruction. The very fast rise time typical of the avalanche discharge improves the time resolution, but can be limited by the readout electronics and the technology used to construct the device. In this work the parameters of the equivalent circuit of the device that directly affect the pulse shape, namely the quenching resistance and capacitance and the diode and parasitic capacitances, were calculated. The mean rise time obtained with different preamplifiers was also measured.

  8. Automatic exposure control in CT: the effect of patient size, anatomical region and prescribed modulation strength on tube current and image quality

    International Nuclear Information System (INIS)

    Papadakis, Antonios E.; Perisinakis, Kostas; Damilakis, John

    2014-01-01

    To study the effect of patient size, body region and modulation strength on tube current and image quality on CT examinations that use automatic tube current modulation (ATCM). Ten physical anthropomorphic phantoms that simulate an individual as neonate, 1-, 5-, 10-year-old and adult at various body habitus were employed. CT acquisition of head, neck, thorax and abdomen/pelvis was performed with ATCM activated at weak, average and strong modulation strength. The mean modulated mAs (mAs mod ) values were recorded. Image noise was measured at selected anatomical sites. The mAs mod recorded for neonate compared to 10-year-old increased by 30 %, 14 %, 6 % and 53 % for head, neck, thorax and abdomen/pelvis, respectively, (P mod was lower than the preselected mAs with the exception of the 10-year-old phantom. In paediatric and adult phantoms, the mAs mod ranged from 44 and 53 for weak to 117 and 93 for strong modulation strength, respectively. At the same exposure parameters image noise increased with body size (P < 0.05). The ATCM system studied here may affect dose differently for different patient habitus. Dose may decrease for overweight adults but increase for children older than 5 years old. Care should be taken when implementing ATCM protocols to ensure that image quality is maintained. circle ATCM efficiency is related to the size of the patient's body. (orig.)

  9. Treatment of Snoring with a Nasopharyngeal Airway Tube

    Directory of Open Access Journals (Sweden)

    Macario Camacho

    2016-01-01

    Full Text Available Objective. To study the feasibility of a standard nasopharyngeal airway tube (NPAT as treatment for snoring. Methods. An obese 35-year-old man, who is a chronic, heroic snorer, used NPATs while (1 the patient’s bedpartner scored the snoring and (2 the patient recorded himself with the smartphone snoring app “Quit Snoring.” Baseline snoring was 8–10/10 (10 = snoring that could be heard through a closed door and interrupted the bedpartner’s sleep to the point where they would sometimes have to sleep separately and 60–200 snores/hr. Several standard NPATs were tested, consisting of soft polyvinyl chloride material raging between 24- and 36-French (Fr tubes. Results. The 24 Fr tube did not abate snoring. The 26 Fr tube was able to abate the snoring sound most of the night (smartphone app: 11.4 snores/hr, bedpartner VAS = 2/10. The 28 and 30 Fr tubes abated the snoring sound the entire time worn (smartphone app: 0 snores, bedpartner VAS 0/10 but could not be tolerated more than 2.5 hours. The tube of 36 Fr size could not be inserted, despite several attempts bilaterally. Conclusion. Appropriately sized nasopharyngeal airway tubes may abate the snoring sound; however, as in this patient, they may be too painful and intolerable for daily use.

  10. Calibration, testing, commissioning and first data of ALFA at LHC

    CERN Document Server

    Jakobsen, S; The ATLAS collaboration

    2011-01-01

    The ALFA detector system (Absolute Luminosity For ATLAS) aims for measuring the absolute LHC luminosity with high precision by using pp-scattering under small angles. Scintillating fibers tracking detectors are positioned 240 m from LHC interaction point 1 inside Roman Pots at millimeter distance from the LHC beam axis. The detectors consist of layers of 64 scintillating square fibers of 500 µm size in a U-V configuration. The layers are staggered 10 times to improve the spatial resolution to about 30 micrometers. A total of 11680 scintillating fibers are read out on the 8 ALFA detectors through 184 Multi Anode Photomultiplier Tubes, MAPMTs, of type Hamamatsu R7600-00-M64, 64 channels. Each detector has dedicated scintillating trigger tiles read out by 8 mm Hamamatsu Photomultiplier Tubes (R7400P and R9880U-110) via clear fibers. The gain of the MAPMTs differs up to a factor 3 inside a MAPMT and an additional factor 2 between different MAPMTs. For compensation, ALFA has developed a front-end electronic based...

  11. Estimating probable flaw distributions in PWR steam generator tubes

    International Nuclear Information System (INIS)

    Gorman, J.A.; Turner, A.P.L.

    1997-01-01

    This paper describes methods for estimating the number and size distributions of flaws of various types in PWR steam generator tubes. These estimates are needed when calculating the probable primary to secondary leakage through steam generator tubes under postulated accidents such as severe core accidents and steam line breaks. The paper describes methods for two types of predictions: (1) the numbers of tubes with detectable flaws of various types as a function of time, and (2) the distributions in size of these flaws. Results are provided for hypothetical severely affected, moderately affected and lightly affected units. Discussion is provided regarding uncertainties and assumptions in the data and analyses

  12. Effect of the method of photomultiplier gain control on electron time-of-flight in FEhU-30

    International Nuclear Information System (INIS)

    Gladyshev, D.A.; Li, B.N.

    1979-01-01

    The effect of a method of control of the multiplication factor of a photomultiplier on the electron flight time has been investigated. Presented are the results of measuring the dependence of the electron flight time for the following methods of stabilizing the photomultiplier multiplication: adjustment of multiplication by changing the supply voltage; control of multiplication with the help of a resistor which shunts two neighbouring interdynode gaps, and the control of the multiplication factor by changing a magnetic field caused due to changes in the current flowing through a special solenoid. It has been found that in these methods changes in the flight time constituted 260 and 140 ns. Magnetic-field control does not affect the flight time with an accuracy of up to 20 ps

  13. Characteristics of Pilger Die Materials for Nuclear Zirconium Alloy Tubes

    International Nuclear Information System (INIS)

    Park, Ki Bum; Kim, In Kyu; Park, Min Young; Kahng, Jong Yeol; Kim, Sun Doo

    2011-01-01

    KEPCO Nuclear Fuel Company's (KEPCO NF) tube manufacturing facility, Techno Special Alloy (TSA) Plant, has started cold pilgering operation since 2008. It is obvious that the cold pilgering process is one of the key processes controlling the quality and the characteristics of the tubes manufactured, i.e. nuclear zirconium alloy tube in KEPCO NF. Cold pilgering is a rolling process for forming metal tubes in which diameter and wall thickness are reduced in a number of forming steps, using ring dies at outside of the tube and a curved mandrel at inside to reduce tube cross sections by up to 90 percent. The OD size of tube is reduced by a pair of dies, and ID size and wall thickness is controlled simultaneously by mandrel. During the cold pilgering process, both tools are the critical components for providing qualified tube. Development of pilger die and mandrel has been a significant importance in the zirconium tube manufacturing and a major goal of KEPCO NF. The objective of this study is to evaluate the life time of pilger die during pilgering. Therefore, a comparison of the heat treatment and mechanical properties of between AISI 52100 and AISI H13 materials was made in this study

  14. Incremental change in cross sectional area in small endotracheal tubes: A call for more size options.

    Science.gov (United States)

    Mortelliti, Caroline L; Mortelliti, Anthony J

    2016-08-01

    To elucidate the relatively large incremental percent change (IPC) in cross sectional area (CSA) in currently available small endotracheal tubes (ETTs), and to make recommendation for lesser incremental change in CSA in these smaller ETTs, in order to minimize iatrogenic airway injury. The CSAs of a commercially available line of ETTs were calculated, and the IPC of the CSA between consecutive size ETTs was calculated and graphed. The average IPC in CSA with large ETTs was applied to calculate identical IPC in the CSA for a theoretical, smaller ETT series, and the dimensions of a new theoretical series of proposed small ETTs were defined. The IPC of CSA in the larger (5.0-8.0 mm inner diameter (ID)) ETTs was 17.07%, and the IPC of CSA in the smaller ETTs (2.0-4.0 mm ID) is remarkably larger (38.08%). Applying the relatively smaller IPC of CSA from larger ETTs to a theoretical sequence of small ETTs, starting with the 2.5 mm ID ETT, suggests that intermediate sizes of small ETTs (ID 2.745 mm, 3.254 mm, and 3.859 mm) should exist. We recommend manufacturers produce additional small ETT size options at the intuitive intermediate sizes of 2.75 mm, 3.25 mm, and 3.75 mm ID in order to improve airway management for infants and small children. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Test of a position-sensitive photomultiplier for fast scintillating fiber detector read-out

    International Nuclear Information System (INIS)

    Baehr, J.; Hoffmann, B.; Luedecke, H.; Nahnhauer, R.; Pohl, M.; Roloff, H.E.

    1993-01-01

    A position-sensitive photomultiplier with 256 anode pixels has been used to read out scintillating fibers excited by light emitting diodes, electrons from a β-source and a 5 GeV electron beam. Measurements have been done within a magnetic field up to 0.6 T. Tracking and electromagnetic shower detection capabilities of a simple fiber detector have been studied. (orig.)

  16. Testing and simulation of silicon photomultiplier readouts for scintillators in high-energy astronomy and solar physics

    Science.gov (United States)

    Bloser, P. F.; Legere, J. S.; Bancroft, C. M.; Jablonski, L. F.; Wurtz, J. R.; Ertley, C. D.; McConnell, M. L.; Ryan, J. M.

    2014-11-01

    Space-based gamma-ray detectors for high-energy astronomy and solar physics face severe constraints on mass, volume, and power, and must endure harsh launch conditions and operating environments. Historically, such instruments have usually been based on scintillator materials due to their relatively low cost, inherent ruggedness, high stopping power, and radiation hardness. New scintillator materials, such as LaBr3:Ce, feature improved energy and timing performance, making them attractive for future astronomy and solar physics space missions in an era of tightly constrained budgets. Despite this promise, the use of scintillators in space remains constrained by the volume, mass, power, and fragility of the associated light readout device, typically a vacuum photomultiplier tube (PMT). In recent years, silicon photomultipliers (SiPMs) have emerged as promising alternative light readout devices that offer gains and quantum efficiencies similar to those of PMTs, but with greatly reduced mass and volume, high ruggedness, low voltage requirements, and no sensitivity to magnetic fields. In order for SiPMs to replace PMTs in space-based instruments, however, it must be shown that they can provide comparable performance, and that their inherent temperature sensitivity can be corrected for. To this end, we have performed extensive testing and modeling of a small gamma-ray spectrometer composed of a 6 mm×6 mm SiPM coupled to a 6 mm×6 mm ×10 mm LaBr3:Ce crystal. A custom readout board monitors the temperature and adjusts the bias voltage to compensate for gain variations. We record an energy resolution of 5.7% (FWHM) at 662 keV at room temperature. We have also performed simulations of the scintillation process and optical light collection using Geant4, and of the SiPM response using the GosSiP package. The simulated energy resolution is in good agreement with the data from 22 keV to 662 keV. Above ~1 MeV, however, the measured energy resolution is systematically worse than

  17. Testing and simulation of silicon photomultiplier readouts for scintillators in high-energy astronomy and solar physics

    International Nuclear Information System (INIS)

    Bloser, P.F.; Legere, J.S.; Bancroft, C.M.; Jablonski, L.F.; Wurtz, J.R.; Ertley, C.D.; McConnell, M.L.; Ryan, J.M.

    2014-01-01

    Space-based gamma-ray detectors for high-energy astronomy and solar physics face severe constraints on mass, volume, and power, and must endure harsh launch conditions and operating environments. Historically, such instruments have usually been based on scintillator materials due to their relatively low cost, inherent ruggedness, high stopping power, and radiation hardness. New scintillator materials, such as LaBr 3 :Ce, feature improved energy and timing performance, making them attractive for future astronomy and solar physics space missions in an era of tightly constrained budgets. Despite this promise, the use of scintillators in space remains constrained by the volume, mass, power, and fragility of the associated light readout device, typically a vacuum photomultiplier tube (PMT). In recent years, silicon photomultipliers (SiPMs) have emerged as promising alternative light readout devices that offer gains and quantum efficiencies similar to those of PMTs, but with greatly reduced mass and volume, high ruggedness, low voltage requirements, and no sensitivity to magnetic fields. In order for SiPMs to replace PMTs in space-based instruments, however, it must be shown that they can provide comparable performance, and that their inherent temperature sensitivity can be corrected for. To this end, we have performed extensive testing and modeling of a small gamma-ray spectrometer composed of a 6 mm×6 mm SiPM coupled to a 6 mm×6 mm ×10 mm LaBr 3 :Ce crystal. A custom readout board monitors the temperature and adjusts the bias voltage to compensate for gain variations. We record an energy resolution of 5.7% (FWHM) at 662 keV at room temperature. We have also performed simulations of the scintillation process and optical light collection using Geant4, and of the SiPM response using the GosSiP package. The simulated energy resolution is in good agreement with the data from 22 keV to 662 keV. Above ∼1 MeV, however, the measured energy resolution is systematically

  18. Testing and simulation of silicon photomultiplier readouts for scintillators in high-energy astronomy and solar physics

    Energy Technology Data Exchange (ETDEWEB)

    Bloser, P.F., E-mail: Peter.Bloser@unh.edu; Legere, J.S.; Bancroft, C.M.; Jablonski, L.F.; Wurtz, J.R.; Ertley, C.D.; McConnell, M.L.; Ryan, J.M.

    2014-11-01

    Space-based gamma-ray detectors for high-energy astronomy and solar physics face severe constraints on mass, volume, and power, and must endure harsh launch conditions and operating environments. Historically, such instruments have usually been based on scintillator materials due to their relatively low cost, inherent ruggedness, high stopping power, and radiation hardness. New scintillator materials, such as LaBr{sub 3}:Ce, feature improved energy and timing performance, making them attractive for future astronomy and solar physics space missions in an era of tightly constrained budgets. Despite this promise, the use of scintillators in space remains constrained by the volume, mass, power, and fragility of the associated light readout device, typically a vacuum photomultiplier tube (PMT). In recent years, silicon photomultipliers (SiPMs) have emerged as promising alternative light readout devices that offer gains and quantum efficiencies similar to those of PMTs, but with greatly reduced mass and volume, high ruggedness, low voltage requirements, and no sensitivity to magnetic fields. In order for SiPMs to replace PMTs in space-based instruments, however, it must be shown that they can provide comparable performance, and that their inherent temperature sensitivity can be corrected for. To this end, we have performed extensive testing and modeling of a small gamma-ray spectrometer composed of a 6 mm×6 mm SiPM coupled to a 6 mm×6 mm ×10 mm LaBr{sub 3}:Ce crystal. A custom readout board monitors the temperature and adjusts the bias voltage to compensate for gain variations. We record an energy resolution of 5.7% (FWHM) at 662 keV at room temperature. We have also performed simulations of the scintillation process and optical light collection using Geant4, and of the SiPM response using the GosSiP package. The simulated energy resolution is in good agreement with the data from 22 keV to 662 keV. Above ∼1 MeV, however, the measured energy resolution is

  19. Performance of a monolithic LaBr{sub 3}:Ce crystal coupled to an array of silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Ulyanov, Alexei, E-mail: alexey.uliyanov@ucd.ie [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Morris, Oran [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Department of Computer Science & Applied Physics, Galway-Mayo Institute of Technology, Galway (Ireland); Hanlon, Lorraine; McBreen, Sheila; Foley, Suzanne; Roberts, Oliver J.; Tobin, Isaac; Murphy, David; Wade, Colin [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Nelms, Nick; Shortt, Brian [European Space Agency, ESTEC, 2200 AG Noordwijk (Netherlands); Slavicek, Tomas; Granja, Carlos; Solar, Michael [Institute of Experimental and Applied Physics, Czech Technical University in Prague, 12800 Prague 2 (Czech Republic)

    2016-02-21

    A gamma-ray detector composed of a single 28×28×20 mm{sup 3} LaBr{sub 3}:Ce crystal coupled to a custom built 4×4 array of silicon photomultipliers was tested over an energy range of 30 keV to 9.3 MeV. The silicon photomultipliers were initially calibrated using 20 ns light pulses generated by a light emitting diode. The photodetector responses measured as a function of the number of incident photons were found to be non-linear and consistent with model predictions. Using corrections for the non-linearity of the silicon photomultipliers, the detector showed a linear response to gamma-rays with energies from 100 keV to the maximum available energy of 9.3 MeV. The energy resolution was found to be 4% FWHM at 662 keV. Despite the large thickness of the scintillator (20 mm) and a 5 mm thick optical window, the detector was capable of measuring the positions of the gamma-ray interaction points. The position resolution was measured at 356 keV and was found to be 8 mm FWHM in the detector plane and 11 mm FWHM for the depth of interaction. The detector can be used as a building block of a larger calorimeter system that is capable of measuring gamma-ray energies up to tens of MeV.

  20. The STiC ASIC. High precision timing with silicon photomultipliers

    International Nuclear Information System (INIS)

    Harion, Tobias

    2015-01-01

    In recent years, Silicon Photomultipliers are being increasingly used for Time of Flight measurements in particle detectors. To utilize the high intrinsic time resolution of these sensors in detector systems, the development of specialized, highly integrated readout electronics is required. In this thesis, a mixed-signal application specific integrated circuit, named STiC, has been developed, characterized and integrated in a detector system. STiC has been specifically designed for high precision timing measurements with SiPMs, and is in particular dedicated to the EndoTOFPET-US project, which aims to achieve a coincidence time resolution of 200 ps FWHM and an energy resolution of less than 20% in an endoscopic positron emission tomography system. The chip integrates 64 high precision readout channels for SiPMs together with a digital core logic to process, store and transfer the recorded events to a data acquisition system. The performance of the chip has been validated in coincidence measurements using detector modules consisting of 3.1 x 3.1 x 15 mm 3 LYSO crystals coupled to Silicon Photomultipliers from Hamamatsu. The measurements show an energy resolution of 15% FWHM for the detection of 511 keV photons. A coincidence time resolution of 213 ps FWHM has been measured, which is among the best resolution values achieved to date with this detector topology. STiC has been integrated in the EndoTOFPET-US detector system and has been chosen as the baseline design for the readout of SiPM sensors in the Mu3e experiment.

  1. The Sealed Tube Neutron Generator

    International Nuclear Information System (INIS)

    Tunnell, L.N.; Beyerle, A.; Durkee, R.; Headley, G.; Hurley, P.

    1992-01-01

    A Sealed Tube Neutron Generator (STNG) has been designed and tested at Special Technologies Laboratories (STL) in Santa Barbara, California. Unlike similar tubes that have been used for years in other applications, e.g., by the oil well logging industry, the present device was designed primarily to be part of the Associated Particle Imaging (API) system. Consequently, the size and quality of the neutron spot produced by the STNG is of primary importance. Results from initial measurements indicate that performance goals are satisfied

  2. Radiation Damage Studies of Silicon Photomultipliers

    CERN Document Server

    Bohn, P; Hazen, E.; Heering, A.; Rohlf, J.; Freeman, J.; Los, Sergey V.; Cascio, E.; Kuleshov, S.; Musienko, Y.; Piemonte, C.

    2008-01-01

    We report on the measurement of the radiation hardness of silicon photomultipliers (SiPMs) manufactured by Fondazione Bruno Kessler in Italy (1 mm$^2$ and 6.2 mm$^2$), Center of Perspective Technology and Apparatus in Russia (1 mm$^2$ and 4.4 mm$^2$), and Hamamatsu Corporation in Japan (1 mm$^2$). The SiPMs were irradiated using a beam of 212 MeV protons at Massachusetts General Hospital, receiving fluences of up to $3 \\times 10^{10}$ protons per cm$^2$ with the SiPMs at operating voltage. Leakage currents were read continuously during the irradiation. The delivery of the protons was paused periodically to record scope traces in response to calibrated light pulses to monitor the gains, photon detection efficiencies, and dark counts of the SiPMs. The leakage current and dark noise are found to increase with fluence. Te leakage current is found to be proportional to the mean square deviation of the noise distribution, indicating the dark counts are due to increased random individual pixel activation, while SiPM...

  3. Gastroenteric tube feeding: Techniques, problems and solutions

    Science.gov (United States)

    Blumenstein, Irina; Shastri, Yogesh M; Stein, Jürgen

    2014-01-01

    Gastroenteric tube feeding plays a major role in the management of patients with poor voluntary intake, chronic neurological or mechanical dysphagia or gut dysfunction, and patients who are critically ill. However, despite the benefits and widespread use of enteral tube feeding, some patients experience complications. This review aims to discuss and compare current knowledge regarding the clinical application of enteral tube feeding, together with associated complications and special aspects. We conducted an extensive literature search on PubMed, Embase and Medline using index terms relating to enteral access, enteral feeding/nutrition, tube feeding, percutaneous endoscopic gastrostomy/jejunostomy, endoscopic nasoenteric tube, nasogastric tube, and refeeding syndrome. The literature showed common routes of enteral access to include nasoenteral tube, gastrostomy and jejunostomy, while complications fall into four major categories: mechanical, e.g., tube blockage or removal; gastrointestinal, e.g., diarrhea; infectious e.g., aspiration pneumonia, tube site infection; and metabolic, e.g., refeeding syndrome, hyperglycemia. Although the type and frequency of complications arising from tube feeding vary considerably according to the chosen access route, gastrointestinal complications are without doubt the most common. Complications associated with enteral tube feeding can be reduced by careful observance of guidelines, including those related to food composition, administration rate, portion size, food temperature and patient supervision. PMID:25024606

  4. Gastrostomy Tube (G-Tube)

    Science.gov (United States)

    ... any of these problems: a dislodged tube a blocked or clogged tube any signs of infection (including redness, swelling, or warmth at the tube site; discharge that's yellow, green, or foul-smelling; fever) excessive bleeding or drainage from the tube site severe abdominal pain lasting ...

  5. Effect of interelectrode potentials in the photomultiplier on formation of afterpulses

    International Nuclear Information System (INIS)

    Morozov, V.A.; Morozova, N.V.

    2001-01-01

    The effect of the interelectrode potential difference in the XP2020 photomultiplier on the intensity of formation of afterpulses caused by ion feedback is studied. It is shown that the photocathode - first dynode gap plays a decisive role in this process while the dynode system is of minor importance at pulse currents below a few tens of milliampers. It is also shown that the anomalous ratio between the afterpulse amplitudes and basic pulse amplitudes can be governed by the process of single ion detection. (author)

  6. Simulation of Silicon Photomultiplier Signals

    Science.gov (United States)

    Seifert, Stefan; van Dam, Herman T.; Huizenga, Jan; Vinke, Ruud; Dendooven, Peter; Lohner, Herbert; Schaart, Dennis R.

    2009-12-01

    In a silicon photomultiplier (SiPM), also referred to as multi-pixel photon counter (MPPC), many Geiger-mode avalanche photodiodes (GM-APDs) are connected in parallel so as to combine the photon counting capabilities of each of these so-called microcells into a proportional light sensor. The discharge of a single microcell is relatively well understood and electronic models exist to simulate this process. In this paper we introduce an extended model that is able to simulate the simultaneous discharge of multiple cells. This model is used to predict the SiPM signal in response to fast light pulses as a function of the number of fired cells, taking into account the influence of the input impedance of the SiPM preamplifier. The model predicts that the electronic signal is not proportional to the number of fired cells if the preamplifier input impedance is not zero. This effect becomes more important for SiPMs with lower parasitic capacitance (which otherwise is a favorable property). The model is validated by comparing its predictions to experimental data obtained with two different SiPMs (Hamamatsu S10362-11-25u and Hamamatsu S10362-33-25c) illuminated with ps laser pulses. The experimental results are in good agreement with the model predictions.

  7. Thomson scattering measuring device using high sensitivity photomultipliers: 16% up to 860nm

    International Nuclear Information System (INIS)

    Hesse, M.

    1976-03-01

    Photomultipliers with high quantum efficiency were used to observe the entire rubis laser light spectrum scattered by a plasma. The optical and electronic acquisition device used to study this spectrum is described. The spectra obtained revealed a dissymmetry larger than that expected from relativistic theory. These results could not be interpreted. The diagnostic sensitivity allows the measurement of low electron densities (2.10 12 ecm -3 ) [fr

  8. Fast light pulse measurements and temporal fluctuations in photomultipliers

    International Nuclear Information System (INIS)

    Miehe, J.A.; Sipp, B.

    1975-01-01

    This paper reviews the results on time fluctuations in high gain first dynode photomultipliers used in single photon timing experiments; the theoretical analysis of the measurement of the shape of light pulses is recalled and the previously obtained results concerning time dispersion in the photocathode, first dynode space are discussed. In addition, the influence of the variations of the electron transit time in the multiplier on the time resolution curves of the detector is examined: the curves obtained by leading-edge triggering of the anodic pulse show a strong dependence on the threshold level of the discriminator. A single-photoelectron timing resolution of 270ps is measured using a low leading edge discrimination [fr

  9. Process for forming seamless tubing of zirconium or titanium alloys from welded precursors

    International Nuclear Information System (INIS)

    Sabol, G.P.; Barry, R.F.

    1987-01-01

    A process is described for forming seamless tubing of a material selected from zirconium, zirconium alloys, titanium, and titanium alloys, from welded precursor tubing of the material, having a heterogeneous structure resulting from the welding thereof. The process consists of: heating successive axial segments of the welded tubing, completely through the wall thereof, including the weld, to uniformly transform the heterogeneous, as welded, material into the beta phase; quenching the beta phase tubing segments, the heating and quenching effected sufficiently rapid enough to produce a fine sized beta grain structure completely throughout the precursor tubing, including the weld, and to prevent growth of beta grains within the material larger than 200 micrometers in diameter; and subsequently uniformly deforming the quenched precursor tubing by cold reduction steps to produce a seamless tubing of final size and shape

  10. SENTIRAD-An innovative personal radiation detector based on a scintillation detector and a silicon photomultiplier

    International Nuclear Information System (INIS)

    Osovizky, A.; Ginzburg, D.; Manor, A.; Seif, R.; Ghelman, M.; Cohen-Zada, I.; Ellenbogen, M.; Bronfenmakher, V.; Pushkarsky, V.; Gonen, E.; Mazor, T.; Cohen, Y.

    2011-01-01

    The alarming personal radiation detector (PRD) is a device intended for Homeland Security (HLS) applications. This portable device is designed to be worn or carried by security personnel to detect photon-emitting radioactive materials for the purpose of crime prevention. PRD is required to meet the scope of specifications defined by various HLS standards for radiation detection. It is mandatory that the device be sensitive and simultaneously small, pocket-sized, of robust mechanical design and carriable on the user's body. To serve these specialized purposes and requirements, we developed the SENTIRAD, a new radiation detector designed to meet the performance criteria established for counterterrorist applications. SENTIRAD is the first commercially available PRD based on a CsI(Tl) scintillation crystal that is optically coupled with a silicon photomultiplier (SiPM) serving as a light sensor. The rapidly developing technology of SiPM, a multipixel semiconductor photodiode that operates in Geiger mode, has been thoroughly investigated in previous studies. This paper presents the design considerations, constraints and radiological performance relating to the SENTIRAD radiation sensor.

  11. Automatic exposure control in CT: the effect of patient size, anatomical region and prescribed modulation strength on tube current and image quality

    Energy Technology Data Exchange (ETDEWEB)

    Papadakis, Antonios E. [University Hospital of Heraklion, Department of Medical Physics, Stavrakia, P.O. Box 1352, Heraklion, Crete (Greece); Perisinakis, Kostas; Damilakis, John [University of Crete, Faculty of Medicine, Department of Medical Physics, P.O. Box 2208, Heraklion, Crete (Greece)

    2014-10-15

    To study the effect of patient size, body region and modulation strength on tube current and image quality on CT examinations that use automatic tube current modulation (ATCM). Ten physical anthropomorphic phantoms that simulate an individual as neonate, 1-, 5-, 10-year-old and adult at various body habitus were employed. CT acquisition of head, neck, thorax and abdomen/pelvis was performed with ATCM activated at weak, average and strong modulation strength. The mean modulated mAs (mAs{sub mod}) values were recorded. Image noise was measured at selected anatomical sites. The mAs{sub mod} recorded for neonate compared to 10-year-old increased by 30 %, 14 %, 6 % and 53 % for head, neck, thorax and abdomen/pelvis, respectively, (P < 0.05). The mAs{sub mod} was lower than the preselected mAs with the exception of the 10-year-old phantom. In paediatric and adult phantoms, the mAs{sub mod} ranged from 44 and 53 for weak to 117 and 93 for strong modulation strength, respectively. At the same exposure parameters image noise increased with body size (P < 0.05). The ATCM system studied here may affect dose differently for different patient habitus. Dose may decrease for overweight adults but increase for children older than 5 years old. Care should be taken when implementing ATCM protocols to ensure that image quality is maintained. circle ATCM efficiency is related to the size of the patient's body. (orig.)

  12. Influence of tube spinning on formability of friction stir welded aluminum alloy tubes for hydroforming application

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.S. [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Hu, Z.L., E-mail: zhilihuhit@163.com [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Hubei Key Laboratory of Advanced Technology of Automobile Parts, Wuhan University of Technology, Wuhan 430070 (China); State Key Laboratory of Materials Processing and Die and Mould Technology, Huazhong University of Science and Technology (China); Yuan, S.J. [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Hua, L. [Hubei Key Laboratory of Advanced Technology of Automobile Parts, Wuhan University of Technology, Wuhan 430070 (China)

    2014-06-01

    Due to economic and ecological reasons, the application of tailor-welded blanks of aluminum alloy has gained more and more attention in manufacturing lightweight structures for automotives and aircrafts. In the study, the research was aimed to highlight the influence of spinning on the formability of FSW tubes. The microstructural characteristics of the FSW tubes during spinning were studied by electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM). The formability of the FSW tubes with different spinning reduction was assessed by hydraulic bulge test. It is found that the spinning process shows a grain refinement of the tube. The grains of the FSW tube decrease with increasing thickness reduction, and the effect of grain refinement is more obvious for the BM compared to that of the weld. The difference of grain size and precipitates between the weld and BM leads to an asymmetric W-type microhardness distribution after spinning. The higher thickness reduction of the tube, the more uniform distribution of grains and precipitates it shows, and consequently results in more significant increase of strength. As compared with the result of tensile test, the tube after spinning shows better formability when the stress state changes from uniaxial to biaxial stress state.

  13. Silicon photomultiplier's gain stabilization by bias correction for compensation of the temperature fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Dorosz, P., E-mail: pdorosz@agh.edu.pl [AGH University of Science and Technology, Faculty of Electrical Engineering, Automatics, Computer Science and Electronics, Department of Electronics, 30-059 Krakow (Poland); Baszczyk, M.; Glab, S. [AGH University of Science and Technology, Faculty of Electrical Engineering, Automatics, Computer Science and Electronics, Department of Electronics, 30-059 Krakow (Poland); Kucewicz, W., E-mail: kucewicz@agh.edu.pl [AGH University of Science and Technology, Faculty of Electrical Engineering, Automatics, Computer Science and Electronics, Department of Electronics, 30-059 Krakow (Poland); Mik, L.; Sapor, M. [AGH University of Science and Technology, Faculty of Electrical Engineering, Automatics, Computer Science and Electronics, Department of Electronics, 30-059 Krakow (Poland)

    2013-08-01

    Gain of the silicon photomultiplier is strongly dependent on the value of bias voltage and temperature. This paper proposes a method for gain stabilization just by compensation of temperature fluctuations by bias correction. It has been confirmed that this approach gives good results and the gain can be kept very stable.

  14. Fast CsI-phoswich detector

    International Nuclear Information System (INIS)

    Langenbrunner, J.R.

    1996-01-01

    An improved phoswich radiation detector used pure CsI crystal and a fast plastic scintillator and a single photomultiplier tube. The plastic is arranged to receive incident radiation, and that which passed through then strikes the CsI crystal. Scintillation light from both the plastic and CsI crystal are applied to the photomultiplier tube, with the light from the plastic passing through the crystal without absorption therein. Electronics are provided for analyzing the output of the photomultiplier tube to discriminate responses due to the plastic and the CsI crystal, through short gate and long gate integration, to produce results which are indicative of the characteristics of the different types of incident radiation, even in the presence of large amounts of radiation. The phoswich detector has excellent timing resolution. The scintillators of the CsI- phoswich were chosen for their fast risetimes, of about 3 ns for NE102A, and 30 ns for the pure CsI. 5 figs

  15. Reliability impact of RF tube technology for the NPB

    International Nuclear Information System (INIS)

    Bueck, J.C.

    1989-01-01

    Two reliability options, redundancy and operating margin, are examined to determine their effect on power system configurations using RF tube technology (klystron and klystrode) powered Neutral Particle Beam weapons. Redundance is addressed by providing an additional identical RF tube to the tubes required to power an accelerator RF element (DTL section, RFQ, or CCL). RF elements do not share RF power with other RF elements. Operating margin provides increased reliability by sizing the RF tubes such that tube operating levels may be increased compensate for the loss of a tube. It is shown that power system mass is affected by the choice of reliability measures, that higher power tubes coupled with higher power RF elements may mitigate mass increases, and that redundancy appears preferable to operating margin as a method of improving RF system reliability

  16. Template synthesis of test tube nanoparticles using non-destructive replication.

    Science.gov (United States)

    Wagner, Jonathan; Yao, Jingyuan; Rodgers, David; Hinds, Bruce

    2013-03-01

    Nano test tubes are a promising delivery vehicle for a range of therapeutics, including small molecule drugs and biologics. However, current template synthesis methods of producing nano test tubes are prohibitively expensive and time consuming. Here, non-destructive template replication was used to increase nano test tube yield from porous alumina by more than a hundredfold. We demonstrate how to produce nano test tubes of several sizes and compositions, including hybrid tubes with different inner and outer surfaces for targeted surface chemistry. Nano test tubes were readily suspended and stored in aqueous solutions without the need for chemical treatment. These nano test tubes should find application as delivery vehicles for therapeutics, particularly for processive 'bionanoreactors' loaded with enzymes.

  17. Design and assembly of the optical modules for phase-2 of the NEMO project

    Energy Technology Data Exchange (ETDEWEB)

    Leonora, E., E-mail: emanuele.leonora@ct.infn.it; Aiello, S.

    2013-10-11

    The NEMO collaboration team has undertaken a Phase-2 project, which aims at the realization and installation of a new infrastructure at the Capo Passero (Italy) deep-sea site at a depth of 3500 m. With this objective in mind, a fully equipped tower with 8-storey hosting two optical modules at each end is under construction. Following a well established procedure, 32 optical modules have been assembled. The optical module consists of a large area photomultiplier tube enclosed in a pressure resistant glass sphere with a diameter of 13 in. The photomultiplier is a R7081 type, produced by Hamamatsu, with a photocathode area with a diameter of 10 in. and 10 dynodes. Mechanical and optical contacts between the front of the photomultiplier tube and the glass surface are ensured by an optical bi-component silicone gel. A mu-metal cage is used to shield the photomultiplier against the influence of the Earth's magnetic field.

  18. Technique for joining metal tubing

    Science.gov (United States)

    Wright, H. W.

    1976-01-01

    Uniform wall thickness and uninterrupted heat transfer is achieved by using shaped metal insert as wall material for joint. Insert acts as support during brazing, after which excess material is ground away to bring joint to original tubing size.

  19. Re-examination of demonstration gas discharge tubes

    International Nuclear Information System (INIS)

    Maharaj, H.P.

    1991-01-01

    Gas discharge tubes in which electrons or ions are accelerated at voltages on the order of kilovolts to produce observable atomic effects are potential x-ray sources. These tubes come in various shapes, sizes and designs, and are still in use in science classrooms despite the decline predicted in the 1970s. Because of current applications, a representative sample consisting of fifteen tubes marketed over a recent 2-year period was reexamined for regulatory compliance, product identification and advertising. The results revealed that: poor quality control and design can affect x-ray emissions; and deficiencies exist in product identification, safe use guidelines and operating instructions. This paper reports that these findings, together with the dose estimates, implications and subjective indicators, strongly suggest a user group of unknown size is at increased risk. A combination of enhanced surveillance and promotion of user awareness strategies is adopted to reduce and possible eliminate the potential health risks

  20. Automatic welding of stainless steel tubing

    Science.gov (United States)

    Clautice, W. E.

    1978-01-01

    The use of automatic welding for making girth welds in stainless steel tubing was investigated as well as the reduction in fabrication costs resulting from the elimination of radiographic inspection. Test methodology, materials, and techniques are discussed, and data sheets for individual tests are included. Process variables studied include welding amperes, revolutions per minute, and shielding gas flow. Strip chart recordings, as a definitive method of insuring weld quality, are studied. Test results, determined by both radiographic and visual inspection, are presented and indicate that once optimum welding procedures for specific sizes of tubing are established, and the welding machine operations are certified, then the automatic tube welding process produces good quality welds repeatedly, with a high degree of reliability. Revised specifications for welding tubing using the automatic process and weld visual inspection requirements at the Kennedy Space Center are enumerated.

  1. Uncertainty analysis for probabilistic steam generators tube rupture in LBB applications

    Energy Technology Data Exchange (ETDEWEB)

    Durbec, V.; Pitner, P.; Pages, D. [Electricite de France, 78 - Chatou (France). Research and Development Div.; Riffard, T. [Electricite de France, 69 - Villeurbanne (France). Engineering and Construction Div.; Flesch, B. [Electricite de France, 92 - Paris la Defense (France). Generation and Transmission Div.

    1997-10-01

    Steam Generators (SG) of Pressurized Water Reactors have experienced world wide various types of tube degradations, mainly from stress corrosion cracking; because of this damage, primary-secondary leakage or tube rupture can occur. Safety against the risk of tube rupture is achieved through a combination of periodic in-service inspections (eddy current testing), surveillance of leaks during operation (leak before break concept) and tube plugging. In order to optimize the tube bundle SG maintenance, Electricite de France has developed a specific software named COMPROMIS. The model, based on probabilistic fracture mechanics makes it possible to quantify the influence of in service inspections and maintenance work on the risk of a SG Tube Rupture (SGTR), taking all significant parameters into account as random variables (initial defect size distribution, reliability of non-destructive examinations, crack initiation and propagation, critical sizes, leak before risk of break, etc...). This paper focuses on the leak rate calculation module and presents a sensitivity study of the influence of the leak before break on the conditional failure probability. (author) 8 refs.

  2. Uncertainty analysis for probabilistic steam generators tube rupture in LBB applications

    International Nuclear Information System (INIS)

    Durbec, V.; Pitner, P.; Pages, D.; Riffard, T.; Flesch, B.

    1997-10-01

    Steam Generators (SG) of Pressurized Water Reactors have experienced world wide various types of tube degradations, mainly from stress corrosion cracking; because of this damage, primary-secondary leakage or tube rupture can occur. Safety against the risk of tube rupture is achieved through a combination of periodic in-service inspections (eddy current testing), surveillance of leaks during operation (leak before break concept) and tube plugging. In order to optimize the tube bundle SG maintenance, Electricite de France has developed a specific software named COMPROMIS. The model, based on probabilistic fracture mechanics makes it possible to quantify the influence of in service inspections and maintenance work on the risk of a SG Tube Rupture (SGTR), taking all significant parameters into account as random variables (initial defect size distribution, reliability of non-destructive examinations, crack initiation and propagation, critical sizes, leak before risk of break, etc...). This paper focuses on the leak rate calculation module and presents a sensitivity study of the influence of the leak before break on the conditional failure probability. (author)

  3. Template synthesis of test tube nanoparticles using non-destructive replication

    International Nuclear Information System (INIS)

    Wagner, Jonathan; Rodgers, David; Yao Jingyuan; Hinds, Bruce

    2013-01-01

    Nano test tubes are a promising delivery vehicle for a range of therapeutics, including small molecule drugs and biologics. However, current template synthesis methods of producing nano test tubes are prohibitively expensive and time consuming. Here, non-destructive template replication was used to increase nano test tube yield from porous alumina by more than a hundredfold. We demonstrate how to produce nano test tubes of several sizes and compositions, including hybrid tubes with different inner and outer surfaces for targeted surface chemistry. Nano test tubes were readily suspended and stored in aqueous solutions without the need for chemical treatment. These nano test tubes should find application as delivery vehicles for therapeutics, particularly for processive ‘bionanoreactors’ loaded with enzymes. (paper)

  4. Steam generator tube integrity program: Phase II, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, R.J.; Bickford, R.L.; Clark, R.A.; Morris, C.J.; Simonen, F.A.; Wheeler, K.R.

    1988-08-01

    The Steam Generator Tube Integrity Program (SGTIP) was a three phase program conducted for the US Nuclear Regulatory Commission (NRC) by Pacific Northwest Laboratory (PNL). The first phase involved burst and collapse testing of typical steam generator tubing with machined defects. The second phase of the SGTIP continued the integrity testing work of Phase I, but tube specimens were degraded by chemical means rather than machining methods. The third phase of the program used a removed-from-service steam generator as a test bed for investigating the reliability and effectiveness of in-service nondestructive eddy-current inspection methods and as a source of service degraded tubes for validating the Phase I and Phase II data on tube integrity. This report describes the results of Phase II of the SGTIP. The object of this effort included burst and collapse testing of chemically defected pressurized water reactor (PWR) steam generator tubing to validate empirical equations of remaining tube integrity developed during Phase I. Three types of defect geometries were investigated: stress corrosion cracking (SCC), uniform thinning and elliptical wastage. In addition, a review of the publicly available leak rate data for steam generator tubes with axial and circumferential SCC and a comparison with an analytical leak rate model is presented. Lastly, nondestructive eddy-current (EC) measurements to determine accuracy of defect depth sizing using conventional and alternate standards is described. To supplement the laboratory EC data and obtain an estimate of EC capability to detect and size SCC, a mini-round robin test utilizing several firms that routinely perform in-service inspections was conducted.

  5. Steam generator tube integrity program: Phase II, Final report

    International Nuclear Information System (INIS)

    Kurtz, R.J.; Bickford, R.L.; Clark, R.A.; Morris, C.J.; Simonen, F.A.; Wheeler, K.R.

    1988-08-01

    The Steam Generator Tube Integrity Program (SGTIP) was a three phase program conducted for the US Nuclear Regulatory Commission (NRC) by Pacific Northwest Laboratory (PNL). The first phase involved burst and collapse testing of typical steam generator tubing with machined defects. The second phase of the SGTIP continued the integrity testing work of Phase I, but tube specimens were degraded by chemical means rather than machining methods. The third phase of the program used a removed-from-service steam generator as a test bed for investigating the reliability and effectiveness of in-service nondestructive eddy-current inspection methods and as a source of service degraded tubes for validating the Phase I and Phase II data on tube integrity. This report describes the results of Phase II of the SGTIP. The object of this effort included burst and collapse testing of chemically defected pressurized water reactor (PWR) steam generator tubing to validate empirical equations of remaining tube integrity developed during Phase I. Three types of defect geometries were investigated: stress corrosion cracking (SCC), uniform thinning and elliptical wastage. In addition, a review of the publicly available leak rate data for steam generator tubes with axial and circumferential SCC and a comparison with an analytical leak rate model is presented. Lastly, nondestructive eddy-current (EC) measurements to determine accuracy of defect depth sizing using conventional and alternate standards is described. To supplement the laboratory EC data and obtain an estimate of EC capability to detect and size SCC, a mini-round robin test utilizing several firms that routinely perform in-service inspections was conducted

  6. WWER steam generator tube structural and leakage integrity

    International Nuclear Information System (INIS)

    Splichal, K.; Krhounek, Vl.; Otruba, J.; Ruscak, M.

    1998-01-01

    The integrity of heat exchange tubes may influence the lifetime of WWER steam generators and appears to be an important criterion for the evaluation of their safety and operational reliability. The basic requirements are to assure very low probability of radioactive water leakage, preventing unstable crack growth and sudden tube rupture. These requirements led to development of permissible limits for primary to secondary leak evaluation and heat exchange tubes plugging. The stress corrosion cracking and pitting are the main corrosion damages of WWER heat exchange tubes and are initiated from the outer surface. Both the initiation and crack growth cause thinning of the tube wall and lead to part thickness cracks and through wall cracks, oriented preferentially in the axial direction. The paper presents the leakage and plugging limits for WWER steam generators, which have been determined from leak tests and burst tests. The tubes with axial part-through and through-wall defects have been used. The permissible value of primary to secondary leak rate was evaluated with respect to permissible axial through-wall defect size of WWER 440 and 1000 steam generator tubes. Blocking of the tube cracks by corrosion product particles and other compounds reduces the primary to secondary leak rate. The plugging limits involve the following factors: permissible tube wall thickness which determine further operation of the tubes with defects and assures their integrity under operating conditions and permissible size of a through-wall crack which is sufficiently stable under normal and accident conditions in relation to the critical crack length. For the evaluation of burst test of heat exchange tubes with longitudinal through-wall defects the instability criterion has been used and the dependence of the normalised burst pressure on the normalised length of an axial through-wall defect has been determined. The validity of the criterion of instability for WWER tubes with through

  7. Performance demonstration requirements for eddy current steam generator tube inspection

    International Nuclear Information System (INIS)

    Kurtz, R.J.; Heasler, P.G.; Anderson, C.M.

    1992-10-01

    This paper describes the methodology used for developing performance demonstration tests for steam generator tube eddy current (ET) inspection systems. The methodology is based on statistical design principles. Implementation of a performance demonstration test based on these design principles will help to ensure that field inspection systems have a high probability of detecting and correctly sizing tube degradation. The technical basis for the ET system performance thresholds is presented. Probability of detection and flaw sizing tests are described

  8. The Numerical and Experimental Analysis of Ballizing Process of Steel Tubes

    Directory of Open Access Journals (Sweden)

    Dyl T.

    2017-06-01

    Full Text Available This paper presents chosen results of experimental and numerical research of ballizing process of the steel tubes. Ballizing process is a method of burnishing technology of an internal diameter by precisely forcing a ball through a slightly undersized pre-machined tubes. Ballizing process is a fast, low-cost process for sizing and finishing tubes. It consists of pressing a slightly oversized ball through an unfinished tube to quickly bring the hole to desired size. The ball is typically made from a very hard material such as tungsten carbide or bearing steel. Ballizing process is by cold surface plastic forming of the surface structure, thereby leaving a layer of harder material and reducing its roughness. After theoretical and experimental analysis it was determined that the smaller the diameter of the balls, the bigger intensity of stress and strain and strain rate. The paper presents influence of ballizing process on the strain and stress state and on the surface roughness reduction rate of the steel tubes.

  9. Falling film evaporation on a tube bundle with plain and enhanced tubes

    International Nuclear Information System (INIS)

    Habert, M.

    2009-04-01

    The complexities of two-phase flow and evaporation on a tube bundle present important problems in the design of heat exchangers and the understanding of the physical phenomena taking place. The development of structured surfaces to enhance boiling heat transfer and thus reduce the size of evaporators adds another level of complexity to the modeling of such heat exchangers. Horizontal falling film evaporators have the potential to be widely used in large refrigeration systems and heat pumps, in the petrochemical industry and for sea water desalination units, but there is a need to improve the understanding of falling film evaporation mechanisms to provide accurate thermal design methods. The characterization of the effect of enhanced surfaces on the boiling phenomena occurring in falling film evaporators is thus expected to increase and optimize the performance of a tube bundle. In this work, the existing LTCM falling film facility was modified and instrumented to perform falling film evaporation measurements on single tube row and a small tube bundle. Four types of tubes were tested including: a plain tube, an enhanced condensing tube (Gewa-C+LW) and two enhanced boiling tubes (Turbo-EDE2 and Gewa-B4) to extend the existing database. The current investigation includes results for two refrigerants, R134a and R236fa, at a saturation temperature of T sat = 5 °C, liquid film Reynolds numbers ranging from 0 to 3000, at heat fluxes between 20 and 60 kW/m² in pool boiling and falling film configurations. Measurements of the local heat transfer coefficient were obtained and utilized to improve the current prediction methods. Finally, the understanding of the physical phenomena governing the falling film evaporation of liquid refrigerants has been improved. Furthermore, a method for predicting the onset of dry patch formation has been developed and a local heat transfer prediction method for falling film evaporation based on a large experimental database has been proposed

  10. Feedwater heater tube-to-tubesheet connections

    International Nuclear Information System (INIS)

    Yokell, S.

    1993-01-01

    This paper discusses some practical aspects of expanded, welded, and welded-and-expanded feedwater heater tube-to-tubesheet joints. It outlines elastic-plastic tube expanding theory. It examines uniform-pressure-expanded tube joint strength and correlating roller-expanded joint strength with wall reduction and rolling torque. For materials subject to stress-corrosion cracking (SCC), it recommends heat treating tube ends before expanding. For materials subject to fatigue and tube-end cracking, it advocates two-stage expanding: (1) expanding enough to create firm tube-hole contact over the full tubesheet thickness; and (2) re-expanding at full pressure or torque. The paper emphasizes the desirability of segregating heats of tubing, mapping the tube-heat locations and making the heat map a permanent part of the heater maintenance file. It recommends when to provide TEMA/HEI Power Plant Standard annular grooves for roller-expanding and provides an equation for determining optimum groove width for uniform-pressure expanding. The paper also reviews welding requirements for welds of tubes to tubesheets. The review covers front-face welding before and after expanding and the reasons for welding first. It outlines current thinking about definitions of strength- and seal-welds of front-face welded joint in terms of their functions and load-carrying abilities. It presents a proposal for determining the required size of strength welds for use in Section VIII of the ASME Boiler and Pressure Vessel Code (the Code). It shows why welded-and-expanded feedwater heater tube-to-tubesheet joints should be full-strength and full-depth expanded. It makes recommendations for pressure- and leak-testing. This work also proposes the industry consider butt welding the tubes to the steam-side face of the tubesheet as a regular method of tube joining. The results of a survey of manufacturers practices are appended. 30 refs., 14 figs

  11. Focal spot size reduction using asymmetric collimation to enable reduced anode angles with a conventional angiographic x-ray tube for use with high resolution detectors

    Science.gov (United States)

    Russ, M.; Shankar, A.; Setlur Nagesh, S. V.; Ionita, C. N.; Bednarek, D. R.; Rudin, S.

    2017-03-01

    The high-resolution requirements for neuro-endovascular image-guided interventions (EIGIs) necessitate the use of a small focal-spot size; however, the maximum tube output limits for such small focal-spot sizes may not enable sufficient x-ray fluence after attenuation through the human head to support the desired image quality. This may necessitate the use of a larger focal spot, thus contributing to the overall reduction in resolution. A method for creating a higher-output small effective focal spot based on the line-focus principle has been demonstrated and characterized. By tilting the C-arm gantry, the anode-side of the x-ray field-of-view is accessible using a detector placed off-axis. This tilted central axis diminishes the resultant focal spot size in the anode-cathode direction by the tangent of the effective anode angle, allowing a medium focal spot to be used in place of a small focal spot with minimal losses in resolution but with increased tube output. Images were acquired of two different objects at the central axis, and with the C-arm tilted away from the central axis at 1° increments from 0°-7°. With standard collimation settings, only 6° was accessible, but using asymmetric extended collimation a maximum of 7° was accessed for enhanced comparisons. All objects were positioned perpendicular to the anode-cathode direction and images were compared qualitatively. The increasing advantage of the off-axis focal spots was quantitatively evidenced at each subsequent angle using the Generalized Measured-Relative Object Detectability metric (GM-ROD). This anode-tilt method is a simple and robust way of increasing tube output for a small field-of-view detector without diminishing the overall apparent resolution for neuro-EIGIs.

  12. Panel type X-ray image intensifier tube

    International Nuclear Information System (INIS)

    Wang, S.P.

    1977-01-01

    A panel shaped, proximity type, X-ray image intensifier tube for medical X-ray diagnostic is disclosed. It has all linear components and yet a high brightness gain, in the range of 500 to 20,000 cd-sec/m 2 -R, the tube being comprised of a rugged metallic tube envelope, an inwardly concave metallic input window of full size output display screen, an alkaline-halide scintillator photocathode screen suspended on insulators within the envelope and in between the input window and the output screen, and a high Z glass output window to reduce X-ray backscatter inside and outside of the tube. An X-ray sensitive photographic camera for medical diagnostic use is also disclosed which includes an X-ray sensitive image intensifier means of the proximity type and a reduction type optical system having an effective foral length in excess of 100mm for focusing the emage generated on the output display screen of the image intensifier tube onto a small size but directly viewable photographic film. The parameters of the image intensifier, the optics and the film are specified and linked to each other in a manner which maximizes the image quality for a camera system of this type and at the same time restricts the system speed of the camera to a range of 500 to 5,000 R -1 for the film to achieve a net density of 1.0. (Auth.)

  13. The feeding tube of cyst nematodes: characterisation of protein exclusion.

    Directory of Open Access Journals (Sweden)

    Sebastian Eves-van den Akker

    Full Text Available Plant parasitic nematodes comprise several groups; the most economically damaging of these are the sedentary endoparasites. Sedentary endoparasitic nematodes are obligate biotrophs and modify host root tissue, using a suite of effector proteins, to create a feeding site that is their sole source of nutrition. They feed by withdrawing host cell assimilate from the feeding site though a structure known as the feeding tube. The function, composition and molecular characteristics of feeding tubes are poorly characterised. It is hypothesised that the feeding tube facilitates uptake of host cell assimilate by acting as a molecular sieve. Several studies, using molecular mass as the sole indicator of protein size, have given contradictory results about the exclusion limits of the cyst nematode feeding tube. In this study we propose a method to predict protein size, based on protein database coordinates in silico. We tested the validity of these predictions using travelling wave ion mobility spectrometry--mass spectrometry, where predictions and measured values were within approximately 6%. We used the predictions, coupled with mass spectrometry, analytical ultracentrifugation and protein electrophoresis, to resolve previous conflicts and define the exclusion characteristics of the cyst nematode feeding tube. Heterogeneity was tested in the liquid, solid and gas phase to provide a comprehensive evaluation of three proteins of particular interest to feeding tube size exclusion, GFP, mRFP and Dual PI. The data and procedures described here could be applied to the design of plant expressed defence compounds intended for uptake into cyst nematodes. We also highlight the need to assess protein heterogeneity when creating novel fusion proteins.

  14. The feeding tube of cyst nematodes: characterisation of protein exclusion.

    Science.gov (United States)

    Eves-van den Akker, Sebastian; Lilley, Catherine J; Ault, James R; Ashcroft, Alison E; Jones, John T; Urwin, Peter E

    2014-01-01

    Plant parasitic nematodes comprise several groups; the most economically damaging of these are the sedentary endoparasites. Sedentary endoparasitic nematodes are obligate biotrophs and modify host root tissue, using a suite of effector proteins, to create a feeding site that is their sole source of nutrition. They feed by withdrawing host cell assimilate from the feeding site though a structure known as the feeding tube. The function, composition and molecular characteristics of feeding tubes are poorly characterised. It is hypothesised that the feeding tube facilitates uptake of host cell assimilate by acting as a molecular sieve. Several studies, using molecular mass as the sole indicator of protein size, have given contradictory results about the exclusion limits of the cyst nematode feeding tube. In this study we propose a method to predict protein size, based on protein database coordinates in silico. We tested the validity of these predictions using travelling wave ion mobility spectrometry--mass spectrometry, where predictions and measured values were within approximately 6%. We used the predictions, coupled with mass spectrometry, analytical ultracentrifugation and protein electrophoresis, to resolve previous conflicts and define the exclusion characteristics of the cyst nematode feeding tube. Heterogeneity was tested in the liquid, solid and gas phase to provide a comprehensive evaluation of three proteins of particular interest to feeding tube size exclusion, GFP, mRFP and Dual PI. The data and procedures described here could be applied to the design of plant expressed defence compounds intended for uptake into cyst nematodes. We also highlight the need to assess protein heterogeneity when creating novel fusion proteins.

  15. Simultaneous velocity and particle size measurement in two phase flows by Laser Anemometry

    Science.gov (United States)

    Ungut, A.; Yule, A. J.; Taylor, D. S.; Chigier, N. A.

    1978-01-01

    A technique for particle size measurement by using Laser Doppler Anemometry is discussed. An additional gate photomultiplier has been introduced at right angles to the optical axis in order to select only those particles passing through the central region of the measurement control volume. Particle sizing measurements have been made in sprays of glass particles using the modified Laser Anemometry system. Measurements in fuel sprays are also reported and compared with the results obtained by a photographic technique. The application of the particle sizing technique to opaque particles is investigated and suitable optical arrangements are suggested. Light scattering characteristics of Laser Anemometry systems for different optical geometries are calculated to select the optimum optical arrangement for the particle sizing measurements.

  16. Intermediate heat exchanger design study of 25 MW straight-tube hexagonal modular type

    International Nuclear Information System (INIS)

    Okamoto, Masaharu; Tanaka, Toshiyuki

    1983-09-01

    The helium-to-helium Intermediate Heat Exchanger(IHX), straight-tube hexagonal modular type was designed at General Atomic Company(GA), which heat duty is 421 MW. For this type IHX, at the selection of basic design, emphasis is placed on cost reduction and size reduction. Then small diameter tube size(11.1 mm), with wall thickness of 1.2 mm is applied to this IHX, necessary for the compact surface geometry. The other side, the helical-tube type IHX was designed at JAERI, which heat duty is 25 MW. This paper discusses the referance design of 25 MW scale IHX, with GA type application. The basic feature of this type IHX is as follows. (1) Thermal stress is reduced, as a result of using small diameter and thin wall thickness tube. (2) The possible improvements can make for higher heat flux, because of short length tube, compare with helical or U-tube type. (3) The simple tube support can use compare with helical or U-tube type. The conclusion reached is that GA type IHX is about one forth compactness and one forth weight compare with helical tube IHX. (author)

  17. TH-C-18A-12: Evaluation of the Impact of Body Size and Tube Output Limits in the Optimization of Fast Scanning with High-Pitch Dual Source CT

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez Giraldo, J [Siemens Medical Solutions USA, Inc (United States); Mileto, A.; Hurwitz, L.; Marin, D. [Duke University Medical Center, Durham NC (United States)

    2014-06-15

    Purpose: To evaluate the impact of body size and tube power limits in the optimization of fast scanning with high-pitch dual source CT (DSCT). Methods: A previously validated MERCURY phantom, made of polyethylene, with circular cross-section of diameters 16, 23, 30 and 37cm, and connected through tapered sections, was scanned using a second generation DSCT system. The DSCT operates with two independently controlled x-ray tube generators offering up to 200 kW power reserve (100 kW per tube). The entire length of the phantom (42cm) was scanned with two protocols using: A)Standard single-source CT (SSCT) protocol with pitch of 0.8, and B) DSCT protocol with high-pitch values ranging from 1.6 to 3.2 (0.2 steps). All scans used 120 kVp with 150 quality reference mAs using automatic exposure control. Scanner radiation output (CTDIvol) and effective mAs values were extracted retrospectively from DICOM files for each slice. Image noise was recorded. All variables were assessed relative to phantom diameter. Results: With standard-pitch SSCT, the scanner radiation output (and tube-current) were progressively adapted with increasing size, from 6 mGy (120 mAs) up to 15 mGy (270 mAs) from the thinnest (16cm) to the thickest diameter (37 cm), respectively. By comparison, using high-pitch (3.2), the scanner output was bounded at about 8 mGy (140 mAs), independent of phantom diameter. Although relative to standard-pitch, the high-pitch led to lower radiation output for the same scan, the image noise was higher, particularly for larger diameters. To match the radiation output adaptation of standard-pitch, a high-pitch mode of 1.6 was needed, with the advantage of scanning twice as fast. Conclusion: To maximize the benefits of fast scanning with high-pitch DSCT, the body size and tube power limits of the system need to be considered such that a good balance between speed of acquisition and image quality are warranted. JCRG is an employee of Siemens Medical Solutions USA Inc.

  18. Study of silicon photomultipliers fast amplifier and thermoregulation

    International Nuclear Information System (INIS)

    D'antone, I.; Fabbri, L.; Foschi, E.; Guandalini, C.; Laurenti, G.; Lax, I.; Levi, G.; Quadrani, L.; Sbarra, Ca.; Sbarra, Cr.; Villa, M.; Zoccoli, A.; Zuffa, M.

    2011-01-01

    The silicon photomultipliers (SiPM) are adopted in various physical applications, from medical physics to astrophysics, for their advantages in terms of cost and weight with respect to traditional photo detectors. Their low bias voltage supply (about 30 V), hardiness and resistance to magnetic field are ideal characteristics for space application. In the frame of INFN-Irst collaboration, some of them have been developed and produced at FBK (Trento-Italy), and have been characterized in the INFN laboratories of Bologna (DaSiPM2 collaboration). The SiPM can be used in conjunction with fibres and counters in high energy physics experiments. To exploit the SiPM time resolution, a fast amplifier has been studied. The SiPM gain depends critically on temperature and a thermal stabilization is also necessary. The use of a thermoelectric cooler module based on a Peltier cell has been investigated, and the results are shown.

  19. Study of capillary tracking detectors with position-sensitive photomultiplier readout

    International Nuclear Information System (INIS)

    Cardini, A.; Cavasinni, V.; Di Girolamo, B.; Dolinsky, S.I.; Flaminio, V.; Golovkin, S.V.; Gorin, A.M.; Medvedkov, A.M.; Pyshev, A.I.; Tyukov, V.E.; Vasilchenko, V.G.; Zymin, K.V.

    1995-01-01

    Measurements have been carried out on light yield and attenuation length in glass capillaries filled with new liquid scintillators (LS) and compared with analogous measurements made on 0.5 mm diameter plastic fibres Kuraray SCSF-38 and 3HF. It is found that, at a distance of 1 m, the light output in the capillary filled with green LS based on 1-methylnaphthalene doped with a new dye 3M15 is greater by a factor of 2 to 3 than for plastic fibres. A tracking detector consisting of a capillary bundle read out by a 100 channel position-sensitive microchannel plate photomultiplier (2MCP-100) has been built and tested in the laboratory using a cosmic ray trigger. A comparison has been made between the performance of such a detector and that of a similar one, read out by a 96 channel Philips XP1724/A photomultiplier. It was found that a bundle made of 20μm diameter capillaries with a tapered end giving a magnification of 2.56, filled with the new IPN+3M15 liquid scintillator, read out by the 2MCP-100, provides a space resolution of σ=170μm, a two-track resolution of the same value and a hit density of n=1.9/mm for tracks crossing the detector at a distance of 20 cm from the photocathode. If the same detector is read out by the Philips XP1724/A, the space resolution becomes 200μm, the two-track resolution 600μm and the hit density n=1.7/mm. The worse performance in the latter case is caused by the larger crosstalk compared with that of the 2MCP-100 PSPM. The results indicate that a LS-filled capillary detector is a very promising device for fast fibre tracking. (orig.)

  20. LASER monitoring system for the ATLAS Tile Calorimeter

    International Nuclear Information System (INIS)

    Viret, S.

    2010-01-01

    The ATLAS detector at the Large Hadron Collider (LHC) at CERN uses a scintillator-iron technique for its hadronic Tile Calorimeter (TileCal). Scintillating light is readout via 9852 photomultiplier tubes (PMTs). Calibration and monitoring of these PMTs are made using a LASER based system. Short light pulses are sent simultaneously into all the TileCal photomultiplier's tubes (PMTs) during ATLAS physics runs, thus providing essential information for ATLAS data quality and monitoring analyses. The experimental setup developed for this purpose is described as well as preliminary results obtained during ATLAS commissioning phase in 2008.

  1. Fracture analysis of HFIR beam tube caused by radiation embrittlement

    International Nuclear Information System (INIS)

    Chang, S.J.

    1994-01-01

    With an attempt to estimate the neutron beam tube embrittlement condition for the Oak Ridge High Flux Isotope Reactor (HFIR), fracture mechanics calculations are carried out in this paper. The analysis provides some numerical result on how the tube has been structurally weakened. In this calculation, a lateral impact force is assumed. Numerical result is obtained on how much the critical crack size should be reduced if the beam tube has been subjected to an extended period of irradiation. It is also calculated that buckling strength of the tube is increased, not decreased, with irradiation

  2. Accuracy of automatic tube compensation in new-generation mechanical ventilators.

    Science.gov (United States)

    Elsasser, Serge; Guttmann, Josef; Stocker, Reto; Mols, Georg; Priebe, Hans-Joachim; Haberthür, Christoph

    2003-11-01

    To compare performance of flow-adapted compensation of endotracheal tube resistance (automatic tube compensation, ATC) between the original ATC system and ATC systems incorporated in commercially available ventilators. Bench study. University research laboratory. The original ATC system, Dräger Evita 2 prototype, Dräger Evita 4, Puritan-Bennett 840. The four ventilators under investigation were alternatively connected via different sized endotracheal tubes and an artificial trachea to an active lung model. Test conditions consisted of two ventilatory modes (ATC vs. continuous positive airway pressure), three different sized endotracheal tubes (inner diameter 7.0, 8.0, and 9.0 mm), two ventilatory rates (15/min and 30/min), and four levels of positive end-expiratory pressure (0, 5, 10, and 15 cm H2O). Performance of tube compensation was assessed by the amount of tube-related (additional) work of breathing (WOBadd), which was calculated on the basis of pressure gradient across the endotracheal tube. Compared with continuous positive airway pressure, ATC reduced inspiratory WOBadd by 58%, 68%, 50%, and 97% when using the Evita 4, the Evita 2 prototype, the Puritan-Bennett 840, and the original ATC system, respectively. Depending on endotracheal tube diameter and ventilatory pattern, inspiratory WOBadd was 0.12-5.2 J/L with the original ATC system, 1.5-28.9 J/L with the Puritan-Bennett 840, 10.4-21.0 J/L with the Evita 2 prototype, and 10.1-36.1 J/L with the Evita 4 (difference between each ventilator at identical test situations, p ventilator (p <.025). Flow-adapted tube compensation by the original ATC system significantly reduced tube-related inspiratory and expiratory work of breathing. The commercially available ATC modes investigated here may be adequate for inspiratory but probably not for expiratory tube compensation.

  3. Automated installation for several photomultiplier photocathode activation by means of one vacuum facility

    International Nuclear Information System (INIS)

    Beschastnov, P.M.; Peryshkin, A.I.; Pyata, E.Eh.; Usov, Yu.V.

    1989-01-01

    An automated installation for simultaneous activation of up to four photocathodes of several photomultipliers by means of one vacuum station with the common furnace is described. Production technology of producing multialkaline photocathode makes up the basis for creating automated technology. The installation is produced on the base of the R110B industrial station and the Electronica-60 microcomputer. Software written in FORTRAN providing for control over all process stages is developed. 6 refs.; 2 figs

  4. Development of sub-nanosecond, high gain structures for time-of-flight ring imaging in large area detectors

    International Nuclear Information System (INIS)

    Wetstein, Matthew

    2011-01-01

    Microchannel plate photomultiplier tubes (MCPs) are compact, imaging detectors, capable of micron-level spatial imaging and timing measurements with resolutions below 10 ps. Conventional fabrication methods are too expensive for making MCPs in the quantities and sizes necessary for typical HEP applications, such as time-of-flight ring-imaging Cherenkov detectors (TOF-RICH) or water Cherenkov-based neutrino experiments. The Large Area Picosecond Photodetector Collaboration (LAPPD) is developing new, commercializable methods to fabricate 20 cm 2 thin planar MCPs at costs comparable to those of traditional photo-multiplier tubes. Transmission-line readout with waveform sampling on both ends of each line allows the efficient coverage of large areas while maintaining excellent time and space resolution. Rather than fabricating channel plates from active, high secondary electron emission materials, we produce plates from passive substrates, and coat them using atomic layer deposition (ALD), a well established industrial batch process. In addition to possible reductions in cost and conditioning time, this allows greater control to optimize the composition of active materials for performance. We present details of the MCP fabrication method, preliminary results from testing and characterization facilities, and possible HEP applications.

  5. The upgrade of the CMS hadron calorimeter with silicon photomultipliers

    CERN Document Server

    Strobbe, N

    2017-01-01

    The upgrade of the hadron calorimeter of the CMS experiment at the CERN Large Hadron Collider is currently underway. The endcap sections will be upgraded in the winter of 2016–2017 and the barrel sections during the second LHC long shutdown in 2019. The existing photosensors will be replaced with about 16 000 new silicon photomultipliers (SiPMs), resulting in the first large installation of SiPMs in a radiation environment. All associated front-end electronics will also be upgraded. This paper discusses the motivation for the upgrade and provides a description 17 of the new system, including the SiPMs with associated control electronics and the front-end readout cards.

  6. Cost of Maple Sap Production for Various Size Tubing Operations

    Science.gov (United States)

    Niel K. Huyler

    2000-01-01

    Reports sap production costs for small (500 to 1,000 taps), medium (1,000 to 5,000), and large (5,000 to 15,000) maple syrup operations that use plastic tubing with vacuum pumping. The average annual operating cost per tap ranged from $4.64 for a 500-tap sugarbush operation to $1.84 for a sugarbush with 10,000 taps. The weighted average was $2.87 per tap or $11.48 per...

  7. Integrating amplifiers for PHENIX lead-glass and lead-scintillator calorimeters

    International Nuclear Information System (INIS)

    Wintenberg, A.L.; Simpson, M.L.; Britton, C.L. Jr.; Palmer, R.L.; Jackson, R.G.

    1995-01-01

    Two types of integrating amplifier systems have been developed for use with lead-glass and lead-scintillator calorimeters with photomultiplier tube readout. Requirements for the amplifier system include termination of the line from the photomultiplier, compact size and low power dissipation to allow multiple channels per chip, dual range outputs producing 10-bit accuracy over a 14-bit dynamic range, rms noise levels of one LSB or less, and compatibility with timing filter amplifiers, tower sum circuits for triggering and calibration circuits to be built on the same integrated circuit (IC). Advantages and disadvantages of an active integrator system are compared and contrasted to those of a passive integrator-based system. In addition, details of the designs and results from prototype devices including an 8-channel active integrator IC fabricated in 1.2 microm Orbit CMOS are presented

  8. Improvement of hydro-turbine draft tube efficiency using vortex generator

    Directory of Open Access Journals (Sweden)

    Xiaoqing Tian

    2015-07-01

    Full Text Available Computational fluid dynamics simulation was employed in a hydraulic turbine (from inlet tube to draft tube. The calculated turbine efficiencies were compared with measured results, and the relative error is 1.12%. In order to improve the efficiency of the hydraulic turbine, 15 kinds of vortex generators were installed at the vortex development section of the draft tube, and all of them were simulated using the same method. Based on the turbine efficiencies, distribution of streamlines, velocities, and pressures in the draft tube, an optimal draft tube was found, which can increase the efficiency of this hydraulic turbine more than 1.5%. The efficiency of turbine with the optimal draft tube, draft tube with four pairs of middle-sized vortex generator, and draft tube without vortex generator under different heads of turbine (5–14 m was calculated, and it was verified that these two kinds of draft tubes can increase the efficiency of this turbine in every situation.

  9. Silicon photo-multiplier radiation hardness tests with a beam controlled neutron source

    International Nuclear Information System (INIS)

    Angelone, M.; Pillon, M.; Faccini, R.; Pinci, D.; Baldini, W.; Calabrese, R.; Cibinetto, G.; Cotta Ramusino, A.; Malaguti, R.; Pozzati, M.

    2010-01-01

    Radiation hardness tests were performed at the Frascati Neutron Generator on silicon Photo-Multipliers that were made of semiconductor photon detectors built from a square matrix of avalanche photo-diodes on a silicon substrate. Several samples from different manufacturers have been irradiated, integrating up to 7x10 10 1-MeV-equivalent neutrons per cm 2 . Detector performance was recorded during the neutron irradiation, and a gradual deterioration of their properties began after an integrated fluence of the order of 10 8 1-MeV-equivalent neutrons per cm 2 was reached.

  10. Partially slotted crystals for a high-resolution γ-camera based on a position sensitive photomultiplier

    International Nuclear Information System (INIS)

    Giokaris, N.; Loudos, G.; Maintas, D.; Karabarbounis, A.; Lembesi, M.; Spanoudaki, V.; Stiliaris, E.; Boukis, S.; Gektin, A.; Pedash, V.; Gayshan, V.

    2005-01-01

    Partially slotted crystals have been designed and constructed and have been used to evaluate the performance with respect to the spatial resolution of a γ-camera based on a position-sensitive photomultiplier. It is shown that the resolution obtained with such a crystal is only slightly worse than the one obtained with a fully pixelized one whose cost, however, is much higher

  11. External glass peening of zircaloy calandria tubes to increase the critical heat flux

    International Nuclear Information System (INIS)

    Fong, R.W.L.; Coleman, C.E.; Nitheanandan, T.; Kroeger, V.D.; Moyer, R.G.; Sanderson, D.B.; Root, J.H.; Rogge, R.B.

    1997-12-01

    Glass-peening the outside surfaces of Zircaloy calandria tubes increases the nucleation sites available for boiling heat transfer and has been demonstrated to enhance the critical heat flux (CHF) in pool-boiling experiments. The objective of this study is to optimise the heat-transfer enhancement by glass peening while ensuring that the microstructure of the peened tube is acceptable for reactor use. Pool-boiling tests were done using small Zircaloy tubes with as-received ('smooth') surfaces and variously peened surfaces, to evaluate two peening parameters, glass-bead size and the coverage of peened surface. Our results showed that the maximum enhancement of CHF (by 60% compared with as-received tubes) was obtained using a glass-bead size of 90-125 μm with a coverage of 100%. The CHF enhancement was found to be insensitive to glass-bead size over a wide range (from 60-90 μm to 125-180 μm). Using a fixed glass-bead size of 125-180 μm to evaluate the influence of peening coverage, the maximum effect on the CHF response was obtained with a coverage of 1 00%. The microstructures of the peened tubes were evaluated using light microscopy, X-ray and neutron diffraction, and mechanical tests. After peening, the microstructure in the subsurface layer (-30 μm) consisted of deformed α-Zr grains, and the crystallographic texture of the grains changed slightly. After stress-relieving at 500 degrees C for 1 h, some recrystallisation had occurred and the residual strains remaining in the tube were low. The tensile and burst properties of glass-peened and stress-relieved tubes were similar to those of as-received tubes. The microstructures introduced by peening and stress relieving were judged to have little effect on creep and growth behaviour. Since there are no deleterious consequences of the glass-peening treatment, the peened and stress-relieved tubes are found to be acceptable for reactor use. (author)

  12. Performance analysis of double basin solar still with evacuated tubes

    International Nuclear Information System (INIS)

    Hitesh N Panchal; Shah, P. K.

    2013-01-01

    Solar still is a very simple device, which is used for solar distillation process. In this research work, double basin solar still is made from locally available materials. Double basin solar still is made in such a way that, outer basin is exposed to sun and lower side of inner basin is directly connected with evacuated tubes to increase distillate output and reducing heat losses of a solar still. The overall size of the lower basin is about 1006 mm x 325 mm x 380 mm, the outer basin is about 1006 mm x 536 mm x 100 mm Black granite gravel is used to increase distillate output by reducing quantity of brackish or saline water in the both basins. Several experiments have conducted to determine the performance of a solar still in climate conditions of Mehsana (latitude of 23 degree 59' and longitude of 72 degree 38'), Gujarat, like a double basin solar still alone, double basin solar still with different size black granite gravel, double basin solar still with evacuated tubes and double basin solar still with evacuated tubes and different size black granite gravel. Experimental results show that, connecting evacuated tubes with the lower side of the inner basin increases daily distillate output of 56% and is increased by 60%, 63% and 67% with average 10 mm, 20 mm and 30 mm size black granite gravel. Economic analysis of present double basin solar still is 195 days. (authors)

  13. Statistics of multi-tube detecting systems; Estadistica de sistemas de deteccion multitubo

    Energy Technology Data Exchange (ETDEWEB)

    Grau Carles, P.; Grau Malonda, A.

    1994-07-01

    In this paper three new statistical theorems are demonstrated and applied. These theorems simplify very much the obtention of the formulae to compute the counting efficiency when the detection system is formed by several photomultipliers associated in coincidence and sum. These theorems are applied to several photomultiplier arrangements in order to show their potential and the application way. (Author) 6 refs.

  14. CFD modeling of a boiler's tubes rupture

    International Nuclear Information System (INIS)

    Rahimi, Masoud; Khoshhal, Abbas; Shariati, Seyed Mehdi

    2006-01-01

    This paper reports the results of a study on the reason for tubes damage in the superheater Platen section of the 320 MW Bisotoun power plant, Iran. The boiler has three types of superheater tubes and the damage occurs in a series of elbows belongs to the long tubes. A three-dimensional modeling was performed using an in-house computational fluid dynamics (CFD) code in order to explore the reason. The code has ability of simultaneous solving of the continuity, the Reynolds-Averaged Navier-Stokes (RANS) equations and employing the turbulence, combustion and radiation models. The whole boiler including; walls, burners, air channels, three types of tubes, etc., was modeled in the real scale. The boiler was meshed into almost 2,000,000 tetrahedral control volumes and the standard k-ε turbulence model and the Rosseland radiation model were used in the model. The theoretical results showed that the inlet 18.9 MPa saturated steam becomes superheated inside the tubes and exit at a pressure of 17.8 MPa. The predicted results showed that the temperature of the steam and tube's wall in the long tubes is higher than the short and medium size tubes. In addition, the predicted steam mass flow rate in the long tube was lower than other ones. Therefore, it was concluded that the main reason for the rupture in the long tubes elbow is changing of the tube's metal microstructure due to working in a temperature higher than the design temperature. In addition, the structural fatigue tension makes the last elbow of the long tube more ready for rupture in comparison with the other places. The concluded result was validated by observations from the photomicrograph of the tube's metal samples taken from the damaged and undamaged sections

  15. Potential steam generator tube rupture in the presence of severe accident thermal challenge and tube flaws due to foreign object wear

    International Nuclear Information System (INIS)

    Liao, Y.; Guentay, S.

    2009-01-01

    This study develops a methodology to assess the probability for the degraded PWR steam generator to rupture first in the reactor coolant pressure boundary, under severe accident conditions with counter-current natural circulating high temperature gas in the hot leg and SG tubes. The considered SG tube flaws are caused by foreign object wear, which in recent years has emerged as a major inservice degradation mechanism for the new generation tubing materials. The first step develops the statistical distributions for the flaw frequency, size, and the flaw location with respect to the tube length and the tube's tubesheet position, based on data of hundreds of flaws reported in numerous SG inservice inspection reports. The next step performs thermal-hydraulic analysis using the MELCOR code and recent CFD findings to predict the thermal challenge to the degraded tubes and the tube-to-tube difference in thermal response at the SG entrance. The final step applies the creep rupture models in the Monte Carlo random walk to test the potential for the degraded SG to rupture before the surge line. The mean and range of the SG tube rupture probability can be applied to estimate large early release frequency in probabilistic safety assessment.

  16. Structural and leakage integrity assessment of WWER steam generator tubes

    International Nuclear Information System (INIS)

    Splichal, K.; Otruba, J.; Keilova, E.; Krhounek, V.; Turek, J.

    1996-01-01

    The leakage and plugging limits were derived for WWER steam generators based on leak and burst tests using tubes with axial part-through and through-wall defects. The following conclusions were arrived at: (i) The permissible primary-to-secondary leak rate with respect to the permissible through-wall defect size of WWER-440 and WWER-1000 steam generator tubes is 8 l/h. (ii) The primary-to-secondary leak rate is reduced by the blocking of the tube cracks by corrosion product particles and other substances. (iii) The rate of crack penetration through the tube wall is higher than the crack widening. (iv) The validity of the criterion of instability for tubes with through-wall cracks was confirmed experimentally. For the WWER-440 and WWER-1000 steam generators, the critical size of axial through-wall cracks, for the threshold primary-to-secondary pressure difference, is 13.8 and 12.0 mm, respectively. (v) The calculated leakage for the rupture of one tube and for the assumed extreme defects is two orders and one order of magnitude, respectively, higher than the proposed primary water leakage limit of 8 l/h. (vi) The experiments gave evidence that the use of the permissible thinning limit of 80% for the heat exchange tube plugging does not bring about uncontrollable leakage or unstable crack growth. This is consistent with experience gained at WWER-440 type nuclear power plants. 4 tabs., 5 figs., 9 refs

  17. Influence of sintering temperature on the characteristics of a-alumina filtration tubes

    International Nuclear Information System (INIS)

    Zarina Abdul Wahid; Rafindde Ramli; Andanastuti Muchtar; Abd Wahab Mohammad

    2005-01-01

    The emerging technology of ceramic membrane filters has created a lot of impact on the materials development and separation industries. Ceramic membrane filters have been used in many separation industry applications particularly in food, dairy, beverages, biotechnology, pharmaceutical and waste treatment industries. This is due to the fact that ceramics are inert and durable and can withstand high temperatures as well as extreme chemical conditions. They also have favourable mechanical properties and lower fouling rates. In this study, ceramic filtration tubes having dimensions of 10 mm outer diameter, 6 mm inner diameter and 880 mm long were prepared from a-alumina using the extrusion technique. The effects of sintering temperature on the pore size, microstructure and porosity of the alumina tube were investigated. The optimum sintering temperature was determined based on the performance of the tubes with regards to porosity, pore size and microstructure. The alumina tubes were sintered at six different temperatures i.e. 1250 degree C, 1300 degree C, 1350 degree C, 1400 degree C, 1450 degree C and 1500 degree C. The porous structures of the alumina tubes were studied using Scanning Electron Microscope (SEM) whereas a Mercury Porosimeter was used to determine the porosity and pore size distribution. (Author)

  18. Non-uniform tube representation of proteins

    DEFF Research Database (Denmark)

    Hansen, Mikael Sonne

    Treating the full protein structure is often neither computationally nor physically possible. Instead one is forced to consider various reduced models capturing the properties of interest. Previous work have used tubular neighborhoods of the C-alpha backbone. However, assigning a unique radius...... might not correctly capture volume exclusion - of crucial importance when trying to understand a proteins $3$d-structure. We propose a new reduced model treating the protein as a non-uniform tube with a radius reflecting the positions of atoms. The tube representation is well suited considering X......-ray crystallographic resolution ~ 3Å while a varying radius accounts for the different sizes of side chains. Such a non-uniform tube better capture the protein geometry and has numerous applications in structural/computational biology from the classification of protein structures to sequence-structure prediction....

  19. Inelastic analysis of finite length and depth cracked tubes

    International Nuclear Information System (INIS)

    Reich, M.; Prachuktam, S.; Gardner, D.

    1977-01-01

    Steam generator tube failure can at times result in reactor safety problems and subsequent premature reactor shutdowns. Typical PWR steam generator units contain thousands of long straight tubes with U-bend sections. These tubes are primarily made from alloy 600 and their sizes vary between 3 / 4 '' and 7 / 8 '' (1.905 cm and 2.223 cm) in diameter with nominal thicknesses of 0.043'' to 0.053'' (0.109 cm to 0.135 cm). Since alloy 600 (and the previously used 304-SS tubes) are ductile, high toughness materials LEFM (linear elastic fracture mechanics) criteria do not apply. This paper concerns itself with the prediction of the failure pressures for typical PWR steam generator tubes with longitudinal finite length and finite depth cracks. Only local plastic overload failure is considered

  20. Silicon photomultiplier arrays for the LHCb scintillating fibre tracker

    CERN Multimedia

    Girard, Olivier Goran; Kuonen, Axel Kevin; Stramaglia, Maria Elena

    2017-01-01

    For the LHCb detector upgrade in 2019, a large scale scintillating fibre tracker read out with silicon photomultipliers is under construction. The harsh radiation environment (neutron and ionising radiation), the 40MHz read-out rate of the trigger less system and the large detector surface of 320m2 impose many challenges. We present the results from lab tests with 1MeV electrons and from the SPS test facility at CERN for the mulitchannel SiPM array that combines peak photo-detection efficiency of 48% and extremely low correlated noise. The measurements were performed with detectors irradiated with neutrons up to a fluence of 12*1011 neq/cm2 and single photon detection was maintained. First results of the characterization of the pre-series of 500 detectors delivered by Hamamatsu and irradiation studies on a large sample will be included.

  1. Characterization of silicon photomultipliers and validation of the electrical model

    Science.gov (United States)

    Peng, Peng; Qiang, Yi; Ross, Steve; Burr, Kent

    2018-04-01

    This paper introduces a systematic way to measure most features of the silicon photomultipliers (SiPM). We implement an efficient two-laser procedure to measure the recovery time. Avalanche probability was found to play an important role in explaining the right behavior of the SiPM recovery process. Also, we demonstrate how equivalent circuit parameters measured by optical tests can be used in SPICE modeling to predict details of the time constants relevant to the pulse shape. The SiPM properties measured include breakdown voltage, gain, diode capacitor, quench resistor, quench capacitor, dark count rate, photodetection efficiency, cross-talk and after-pulsing probability, and recovery time. We apply these techniques on the SiPMs from two companies: Hamamatsu and SensL.

  2. Ultrafast Readout of Scintillating Fibres Using Upgraded Position-Sensitive Photomultipliers

    CERN Multimedia

    2002-01-01

    % RD-17 \\\\ \\\\To design a high rate topological trigger device for the future DIRAC Experiment at CERN an extensive work is in progress on a scintillating-fibre detector using a position-sensitive photomultiplier. Several detector prototypes with different lengths ($<$~50~cm) of sensitive area have been tested at T7S~PS beam. \\\\ \\\\With 0.5~mm diameter fibres a spatial resolution of $\\sim$125~$\\mu$m was obtained with a detection efficiency higher than 95\\%. The time resolution is $\\sim$600~ps, and the track position is properly digitized in real time (about 10~ns) by multi-channel peak sensing circuit. Based on experimental data simulations were also performed a comparison of different types of front-end electronics for multi-channel readout.

  3. Topological trigger device using scintillating fibers and position-sensitive photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, Keiichi; Dufournaud, J; Sillou, D [Laboratoire d' Annecy-le-Vieux de Physique des Particules (LAPP), 74 (France); Agoritsas, V [European Organization for Nuclear Research, Geneva (Switzerland); Bystricky, G; Lehar, F; Lesquen, A de [CEN-Saclay, 91 - Gif-sur-Yvette (France); Giacomich, R; Pauletta, G; Penzo, A; Salvato, G; Schiavon, P; Villari, A [INFN, Messina (Italy) INFN, Trieste (Italy) INFN, Udine (Italy); Gorin, A M; Meschanin, A P; Nurushev, S B; Rakhmatov, V E; Rykalin, V L; Solovyanov, V L; Vasiliev, A N; Vasil' chencko, V G [Institute for High Energy Physics, Serpukhov (USSR); Oshima, N; Yamada, R [Fermi National Accelerator Lab., Batavia, IL (USA); Takeutchi, F [Kyoto-Sanyo Univ., Kyoto (Japan); Yoshida, T [Osaka City Univ. (Japan); Akchurin, N; Onel, Y; Newsom, C

    1991-07-01

    An approach to a high quality of the Level-1 Trigger is investigated on the basis of a topological trigger device. It will be realized by using scintillating fibers and position-sensitive photomultipliers, both considered as potential candidates of new detector-components thanks to their excellent time characteristics and high radiation resistances. The device is characterized in particular by its simple concept and reliable operation supported by the mature technologies emploied. The major interests of such a scheme under LHC environments reside in its capability of selcting high pperpendicular to tracks in real time, its optional immunity against low pperpendicular to tracks and loopers, as well as its effective links to other associated devices in the complex of a vertex detector. (orig.).

  4. Topological trigger device using scintillating fibres and position-sensitive photomultipliers

    CERN Document Server

    Agoritsas, V; Dufournaud, J; Giacomich, R; Gorin, A M; Kuroda, K; Meshchanin, A P; Newsom, C R; Nurushev, S B; Önel, Y M; Oshima, N; Pauletta, G; Penzo, Aldo L; Rakhmatov, V E; Rykalin, V I; Salvato, G; Schiavon, R P; Sillou, D; Solovyanov, V L; Takeutchi, F; Vasilev, V; Vasilchenko, V G; Villari, A C C; Yamada, R; Toshida, T; CERN. Geneva. Detector Research and Development Committee

    1990-01-01

    An approach to a high-quality level-1 trigger is proposed on the basis of a topological device that will be realized by using scintillating fibres and position-sensitive photomultipliers, both of which are considered as potential candidates for new detector components, thanks to their excellent time characteristics and high radiation resistance. The device is characterized, in particular, by its simple concept and reliable functioning, which are a result of the mature technologies employed. In the LHC environment, the major interests of such a scheme reside in its capability to select high ptransv. tracks in real time, in its optional immunity against low ptransv. tracks and loopers, as well as in its effective links to other associated devices within the complex of a vertex detector.

  5. Everything is ok on YouTube! Quality assessment of YouTube videos on the topic of phacoemulsification in eyes with small pupil.

    Science.gov (United States)

    Aykut, Aslan; Kukner, Amber Senel; Karasu, Bugra; Palancıglu, Yeliz; Atmaca, Fatih; Aydogan, Tumay

    2018-01-22

    Usage of YouTube as an educational tool is gaining attention in academic research. To date, there has been no study on the content and quality of eye surgery videos on YouTube. The aim of this study was to analyze YouTube videos on phacoemulsification in eyes with small pupil. We searched for the phrases "small pupil cataract surgery," "small pupil phacoemulsification," "small pupil cataract surgery complications," and "small pupil phacoemulsification complications" in January 2015. Each resulting video was evaluated by all authors, and Krippendorff's alpha was calculated to measure agreement. Videos were classified according to pupil size (small/very small) in the beginning of the surgery, and whether pupillary diameter was large enough to continue surgery safely after pupillary dilation by the surgeon in the video (safe/not safe). Methods of dilatation were also analyzed. Any stated ocular comorbidity or surgical complications were noted. A total of 96 videos were reviewed. No mechanical intervention for pupillary dilatation was performed in 46 videos. Fifty-eight operated eyes had no stated ocular comorbidity. Ninety-five operations ended successfully without major complication. There was fair agreement between the evaluators regarding pupil sizes (Kα = 0.670) but poor agreement regarding safety (Kα = 0.337). YouTube videos on small pupil phacoemulsification have low complication rates when compared to the literature, although no reliable mechanical dilatation methods are used in almost half of these videos. Until YouTube's place in e-learning becomes clearer, we suggest that viewers be cautious regarding small pupil phacoemulsification videos on YouTube.

  6. Evaluation of ECT reliability for axial ODSCC in steam generator tubes

    International Nuclear Information System (INIS)

    Lee, Jae Bong; Park, Jai Hak; Kim, Hong Deok; Chung, Han Sub

    2010-01-01

    The integrity of steam generator tubes is usually evaluated based on eddy current test (ECT) results. Because detection capacity of the ECT is not perfect, all of the physical flaws, which actually exist in steam generator tubes, cannot be detected by ECT inspection. Therefore it is very important to analyze ECT reliability in the integrity assessment of steam generators. The reliability of an ECT inspection system is divided into reliability of inspection technique and reliability of quality of analyst. And the reliability of ECT results is also divided into reliability of size and reliability of detection. The reliability of ECT sizing is often characterized as a linear regression model relating true flaw size data to measured flaw size data. The reliability of detection is characterized in terms of probability of detection (POD), which is expressed as a function of flaw size. In this paper the reliability of an ECT inspection system is analyzed quantitatively. POD of the ECT inspection system for axial outside diameter stress corrosion cracks (ODSCC) in steam generator tubes is evaluated. Using a log-logistic regression model, POD is evaluated from hit (detection) and miss (no detection) binary data obtained from destructive and non-destructive inspections of cracked tubes. Crack length and crack depth are considered as variables in multivariate log-logistic regression and their effects on detection capacity are assessed using two-dimensional POD (2-D POD) surface. The reliability of detection is also analyzed using POD for inspection technique (POD T ) and POD for analyst (POD A ).

  7. Phase 1 upgrade of the CMS forward hadronic calorimeter

    CERN Document Server

    Noonan, Daniel Christopher

    2017-01-01

    The CMS experiment at the Large Hadron Collider at CERN is upgrading the photo- detection and readout system of the forward hadronic calorimeter. The phase 1 upgrade of the CMS forward calorimeter requires the replacement of the current photomultiplier tubes, as well as the installation of a new front-end readout system. The new photomultiplier tubes contain a thinner window as well as multi-anode readout. The front-end electronics will use the QIE10 ASIC which combines signal digitization with timing information. The major components of the upgrade as well as the current status are described in this paper.

  8. [Development and evaluation of an improved high-resolution TOFPET camera: TOFPET II: Progress report, 1984-1985

    International Nuclear Information System (INIS)

    Mullani, N.A.

    1985-01-01

    We have been working to improve the quality of barium fluoride scintillators for the fast component and subsequently improve the coincidence timing. We are now able to obtain approximately 400 psec timing and less than 20% energy resolution for barium fluoride using quartz faced photomultiplier tubes. One major problem with the use of barium fluoride and quartz windows on the PMT's, the coupling of the scintillator to the photomultiplier tube. The best available coupling compound is viscasil from GE which is a silicon grease. It is highly efficient for transmitting the 220 nm uv light from the scintillator

  9. Manufacture of seamless stainless steel tubings and related equipment

    International Nuclear Information System (INIS)

    Wali, D.K.; Chaudhary, S.

    1997-01-01

    Production of seamless tubes for special application is one of the important production activities of Nuclear Fuel Complex (NFC), Hyderabad. NFC had set up facility of Hot Extrusion Press and Cold Pilger Mills with related finishing and inspection equipment for manufacturing quality seamless tubes of zirconium alloy for application in nuclear power reactors in early 70''s. Being aware that the demand for seamless tube in a developing economy gradually increases till it reaches around 30 to 40% of the total requirement of tubes and pipes and also of the fact that manufacturing technology developed for production of zircaloy seamless tubes for nuclear application, can easily be harnessed and spinned off for production of seamless tubes in materials generally difficult to hot roll (in other than extrusion process), NFC augmented its seamless tube manufacturing facility by adding, a vertical piercing press, series of induction furnaces and large size pilger mills to meet existing market demand of power sector, engineering, fertilisers and petro chemical industries and any other specialised applications

  10. Automatic exposure control in CT: the effect of patient size, anatomical region and prescribed modulation strength on tube current and image quality.

    Science.gov (United States)

    Papadakis, Antonios E; Perisinakis, Kostas; Damilakis, John

    2014-10-01

    To study the effect of patient size, body region and modulation strength on tube current and image quality on CT examinations that use automatic tube current modulation (ATCM). Ten physical anthropomorphic phantoms that simulate an individual as neonate, 1-, 5-, 10-year-old and adult at various body habitus were employed. CT acquisition of head, neck, thorax and abdomen/pelvis was performed with ATCM activated at weak, average and strong modulation strength. The mean modulated mAs (mAsmod) values were recorded. Image noise was measured at selected anatomical sites. The mAsmod recorded for neonate compared to 10-year-old increased by 30 %, 14 %, 6 % and 53 % for head, neck, thorax and abdomen/pelvis, respectively, (P < 0.05). The mAsmod was lower than the preselected mAs with the exception of the 10-year-old phantom. In paediatric and adult phantoms, the mAsmod ranged from 44 and 53 for weak to 117 and 93 for strong modulation strength, respectively. At the same exposure parameters image noise increased with body size (P < 0.05). The ATCM system studied here may affect dose differently for different patient habitus. Dose may decrease for overweight adults but increase for children older than 5 years old. Care should be taken when implementing ATCM protocols to ensure that image quality is maintained. • ATCM efficiency is related to the size of the patient's body. • ATCM should be activated without caution in overweight adult individuals. • ATCM may increase radiation dose in children older than 5 years old. • ATCM efficiency depends on the protocol selected for a specific anatomical region. • Modulation strength may be appropriately tuned to enhance ATCM efficiency.

  11. Continuous enzyme reactions with immobilized enzyme tubes prepared by radiation cast-polymerization

    International Nuclear Information System (INIS)

    Kumakura, Minoru; Kaetsu, Isao

    1986-01-01

    Immobilized glucose oxidase tubes were prepared by radiation cast-polymerization of 2-hydroxyethyl methacrylate and tetraethyleneglycol diacrylate monomer at low temperatures. The immobilized enzyme tubes which were spirally set in a water bath were used as reactor, in which the enzyme activity varied with tube size and flow rate of the substrate. The conversion yield of the substrate in continuous enzyme reaction was about 80%. (author)

  12. Failure analysis of retired steam generator tubings

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hong Pyo; Kim, J. S.; Hwang, S. S. and others

    2005-04-15

    Degradation of steam generator leads to forced outage and extension of outage, which causes increase in repair cost, cost of purchasing replacement power and radiation exposure of workers. Steam generator tube rupture incident occurred in Uljin 4 in 2002, which made public sensitive to nuclear power plant. To keep nuclear energy as a main energy source, integrity of steam generator should be demonstrated. Quantitative relationship between ECT(eddy current test) signal and crack size is needed in assesment of integrity of steam generator in pressurized water reactor. However, it is not fully established for application in industry. Retired steam generator of Kori 1 has many kinds of crack such as circumferential and axial primary water stress corrosion crack and outer diameter stress corrosion crack(ODSCC). So, it can be used in qualifying and improving ECT technology and in condition monitoring assesment for crack detected in ISI(in service inspection). In addition, examination of pulled tube of Kori 1 retired steam generator will give information about effectiveness of non welded sleeving technology which was employed to repair defect tubes and remedial action which was applied to mitigate ODSCC. In this project, hardware such as semi hot lab. for pulled tube examination and modification transportation cask for pulled tube and software such as procedure of transportation of radioactive steam generator tube and non-destructive and destructive examination of pulled tube were established. Non-destructive and destructive examination of pulled tubes from Kori 1 retired steam generator were performed in semi hot lab. Remedial actions applied to Kori 1 retired steam generator, PWSCC trend and bulk water chemistry and crevice chemistry in Kori 1 were evaluated. Electrochemical decontamination technology for pulled tube was developed to reduce radiation exposure and enhance effectiveness of pulled tube examination. Multiparameter algorithm developed at ANL, USA was

  13. Optimizing abdominal CT dose and image quality with respect to x-ray tube voltage

    Science.gov (United States)

    Huda, Walter; Ogden, Kent M.

    2004-05-01

    The objective of this study was to identify the x-ray tube voltage that results in optimum performance for abdominal CT imaging for a range of imaging tasks and patient sizes. Theoretical calculations were performed of the contrast to noise ratio (CNR) for disk shaped lesions of muscle, fat, bone and iodine embedded in a uniform water background. Lesion contrast was the mean Hounsfield Unit value at the effective photon energy, and image noise was determined from the total radiation intensity incident on the CT x-ray detector. Patient size ranging from young infants (10 kg) to oversized adults (120 kg), with CNR values obtained for x-ray tube voltages ranging from 80 to 140 kV. Patients of varying sizes were modeled as an equivalent cylinder of water, and the mean section dose (D) was determined for each selected x-ray tube kV value at a constant mAs. For each patient size and lesion type, we identified an optimal kV as the x-ray tube voltage that yields a maximum value of the figure of merit (CNR2/D). Increasing the x-ray tube voltage from 80 to 140 kV reduced lesion contrast by 11% for muscle, 21% for fat, 35% for bone and 52% for iodine, and these reductions were approximately independent of patient size. Increasing the x-ray tube voltage from 80 to 140 kV increased a muscle lesion CNR relative to a uniform water background by a factor of 2.6, with similar trends observed for fat (2.3), bone (1.9) and iodine (1.4). The improvement in lesion CNR with increasing x-ray tube voltage was highest for the largest sized patients. Increasing the x-ray tube voltage from 80 to 140 kV increased the patient dose by a factor of between 5.0 and 6.2 depending on the patient size. For small sized patients (10 and 30 kg) and muscle lesions, best performance is obtained at 80 kV; however, for adults (70 kg) and oversized adults (120 kg), the best performance would be obtained at 140 kV. Imaging fat lesions was best performed at 80 kV for all patients except for oversized adults

  14. Percutaneous transesophageal gastro-tubing (PTEG) as an alternative long-term tube feeding procedure when gastrostomy is not feasible.

    Science.gov (United States)

    Toh Yoon, Ezekiel Wong; Nishihara, Kazuki

    2017-12-01

    Percutaneous transesophageal gastro-tubing (PTEG) is a minimally invasive technique to access the gut via an esophagostomy. However, this procedure is not well known and the literature available is still fairly limited. This observational study was conducted to evaluate our experience using this method as an alternative long-term tube feeding procedure when gastrostomy is not suitable. A total of 15 patients (10 males and 5 females) who underwent PTEG at our institution from 2012 to 2016 were observed and analyzed in this study. The average age was 80.1 (71-93) years. Underlying conditions that required PTEG were previous gastric resection in 11 patients, left diaphragm disorder in 2 patients, interposing transverse colon between the abdominal wall and anterior gastric wall in 1 patient, and severe gastrostomy site leakage in 1 patient. Tube placement was successful in all patients by approaching the left side of the neck, using a 15 Fr size tube. The mean postoperative length of stay was 22 (8-48) days. Postoperative adverse events included accidental tube dislodgement in three patients, tracheoesophageal fistula in one patient, inferior thyroid artery injury in one patient and thyroid gland mispuncture in one patient. There was no procedure-related mortality nor mortality at 30 days. Eight patients were discharged with some oral intake. PTEG is feasible in patients requiring long-term tube feeding for whom gastrostomy is unsuitable. It is an effective long-term tube feeding procedure and should be offered as a more comfortable alternative to nasogastric tubing.

  15. In-depth study of single photon time resolution for the Philips digital silicon photomultiplier

    International Nuclear Information System (INIS)

    Liu, Z.; Pizzichemi, M.; Ghezzi, A.; Paganoni, M.; Gundacker, S.; Auffray, E.; Lecoq, P.

    2016-01-01

    The digital silicon photomultiplier (SiPM) has been commercialised by Philips as an innovative technology compared to analog silicon photomultiplier devices. The Philips digital SiPM, has a pair of time to digital converters (TDCs) connected to 12800 single photon avalanche diodes (SPADs). Detailed measurements were performed to understand the low photon time response of the Philips digital SiPM. The single photon time resolution (SPTR) of every single SPAD in a pixel consisting of 3200 SPADs was measured and an average value of 85 ps full width at half maximum (FWHM) was observed. Each SPAD sends the signal to the TDC with different signal propagation time, resulting in a so called trigger network skew. This distribution of the trigger network skew for a pixel (3200 SPADs) has been measured and a variation of 50 ps FWHM was extracted. The SPTR of the whole pixel is the combination of SPAD jitter, trigger network skew, and the SPAD non-uniformity. The SPTR of a complete pixel was 103 ps FWHM at 3.3 V above breakdown voltage. Further, the effect of the crosstalk at a low photon level has been studied, with the two photon time resolution degrading if the events are a combination of detected (true) photons and crosstalk events. Finally, the time response to multiple photons was investigated.

  16. Analysis of transit time spread on FBK silicon photomultipliers

    International Nuclear Information System (INIS)

    Acerbi, F.; Gola, A.; Ferri, A.; Zorzi, N.; Paternoster, G.; Piemonte, C.

    2015-01-01

    In this paper we studied one of the aspects potentially limiting the single-photon time-resolution (SPTR) of the silicon photomultiplier (SiPM): the transit time spread (TTS). We illuminated the SiPM in different positions with a fast-pulsed laser collimated to a circular spot of 0.2 mm-diameter and acquired bi-dimensional maps of the avalanche-signal arrival time of RGB and RGB-HD SiPMs, produced at FBK. We studied the effect of both the number of bonding wires connecting the device to the package and the layout of the top-metal connection (on the device). We found that the TTS does not simply depend on the trace length between the cell and the bonding pad and it could vary in the range between tens of picoseconds (with 3 bonding connections) to more than one hundred of picoseconds (with one connection)

  17. The performance of silicon photomultipliers in Cherenkov TOF PET

    International Nuclear Information System (INIS)

    Dolenec, Rok; Korpar, Samo; Krizan, Peter; Pestotink, Rok

    2015-01-01

    In time-of-flight positron emission tomography (TOF PET) one of the main factors limiting the time resolution is the time evolution of the scintillation process. This can be avoided by using exclusively the Cherenkov light produced in a suitable material. Sub 100 ps FWHM timing has already been experimentally demonstrated but with a drawback of relatively low detection efficiency due to the photodetectors used. In this work silicon photomultipliers (SiPMs) are considered as a photodetector in Cherenkov TOF PET. The detection efficiency can be significantly improved by using SiPMs, however, at room temperature the SiPM dark counts introduce a significant source of fake coincidences. SiPM samples from different producers were tested in a simple back-to-back setup in combination with lead fluoride Cherenkov radiators. Results for coincidence timing, detection efficiency and effects of dark counts at different temperatures and SiPM overvoltages are presented.

  18. Measurement of amplitude fluctuations in a rapid response photomultiplier

    International Nuclear Information System (INIS)

    Raimbault, P.

    1961-01-01

    In order to measure amplitude fluctuations in a rapid response photomultiplier, two independent random variables are introduced which determine the shape of the anode pulse. The energy of each pulse, which depends directly on the gain and the variance, is the first variable; amplitude fluctuations, functions of the first variable, depend as well on the pulse width which in turn constitutes the second variable. The results obtained on the variations of the maximum impulse, using a steep-edged pulse broadening circuit, and those obtained on the statistical variations of the gain, are compared to show that the variance relative to the maximum amplitude of the signal is greater than that of the gain. Within the limits of these fluctuations are shown the contribution of the secondary emission coefficient of the first dynode, and that of the mean secondary emission coefficient of the multiplier. (author) [fr

  19. A digital silicon photomultiplier with multiple time-to-digital converters

    Energy Technology Data Exchange (ETDEWEB)

    Garutti, Erika [University Hamburg (Germany); Silenzi, Alessandro [DESY, Hamburg (Germany); Xu, Chen [DESY, Hamburg (Germany); University Hamburg (Germany)

    2013-07-01

    A silicon photomultiplier (SiPM) with pixel level signal digitization and column-wise connected time-to-digital converters (TDCs) has been developed for an endoscopic Positron Emission Tomography (PET) detector. A digital SiPM has pixels consist of a single photon avalanche diode (SPAD) and circuit elements to optimize overall dark counts and temporal response. Compared with conventional analog SiPM, digital SiPM's direct signal route from SPAD to TDC improves single photon time resolution. In addition, using multiple TDCs can perform the statistical estimation of the time-of-arrival in multiple photon detection case such as readout of scintillation crystals. Characterization measurements of the prototype digital SiPM and a Monte-Carlo simulation to predict the timing performance of the PET detector are shown.

  20. Analytical models of probability distribution and excess noise factor of solid state photomultiplier signals with crosstalk

    International Nuclear Information System (INIS)

    Vinogradov, S.

    2012-01-01

    Silicon Photomultipliers (SiPM), also called Solid State Photomultipliers (SSPM), are based on Geiger mode avalanche breakdown that is limited by a strong negative feedback. An SSPM can detect and resolve single photons due to the high gain and ultra-low excess noise of avalanche multiplication in this mode. Crosstalk and afterpulsing processes associated with the high gain introduce specific excess noise and deteriorate the photon number resolution of the SSPM. The probabilistic features of these processes are widely studied because of its significance for the SSPM design, characterization, optimization and application, but the process modeling is mostly based on Monte Carlo simulations and numerical methods. In this study, crosstalk is considered to be a branching Poisson process, and analytical models of probability distribution and excess noise factor (ENF) of SSPM signals based on the Borel distribution as an advance on the geometric distribution models are presented and discussed. The models are found to be in a good agreement with the experimental probability distributions for dark counts and a few photon spectrums in a wide range of fired pixels number as well as with observed super-linear behavior of crosstalk ENF.

  1. Time resolution of Burle 85001 micro-channel plate photo-multipliers in comparison with Hamamatsu R2083

    Energy Technology Data Exchange (ETDEWEB)

    V. Baturin; V. Burkert; W. Kim; S. Majewsky; D. Nekrasov; K. Park; V. Popov; E. S. Smith; D. Son; S. S. Stepanyan; C. Zorn

    2005-06-01

    The CLAS detector will require improvements in its particle identification system to take advantage of the higher energies provided by the Jefferson Laboratory accelerator upgrade to 12 GeV. To this end, we have studied the timing characteristics of the micro-channel plate photo-multiplier 85001 from Burle, which can be operated in a high magnetic field environment. For reference and comparison, measurements were also made using the standard PMT R2083 from Hamamatsu using two timing methods. The cosmic ray method, which utilizes three identical scintillating counters 2cm x 3cm x 50cm with PMs at the ends, yields 59.1(0.7)ps. The location method of particles from radiative source with known coordinates has been used to compare timing resolutions of R2083 and Burle-85001. This ''coordinate method'' requires only one counter instrumented with two PMs and it yields 59.5(0.7)ps. For the micro-channel plate photomultiplier from Burle with an external amplification of 10 to the signals, the co ordinate method yields 130(4)ps. This method also makes it possible to estimate the number of primary photo-electrons.

  2. Dark noise rates in irradiated silicon photomultiplier arrays

    Energy Technology Data Exchange (ETDEWEB)

    Bachmann, Sebastian; Comerma, Albert; Gerick, David; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Kecke, Matthieu; Leverington, Blake; Mazorra de Cos, Jose; Mitzel, Dominik; Neuner, Max; Uwer, Ulrich [Physikalisches Institut, Universitaet Heidelberg (Germany); Collaboration: LHCb-Collaboration

    2016-07-01

    The planned downstream tracking system - the Scintillating Fibre Tracker - for the LHCb upgrade uses silicon photomultiplier (SiPM) arrays of 128 channels to read out mats made of 250 μm diameter scintillating fibres. In the LHCb environment the neutron flux degrades the silicon detectors to the edge of an acceptable performance in terms of DCR. Studies have shown that the dark count rate (DCR) of the SiPMs increases linearly with the neutron flux. Towards the end of the designed lifetime of the experiment the DCR per SiPM channel operated at T = -40 C is expected to reach a few MHz after partial annealing. To reduce the impact of the DCR - while at the same time provide efficient hit reconstruction - a clustering algorithm is developed to separate signal from noise. A brief introduction into the custom designed read-out ASIC and the cluster algorithm are presented along with the studies of the dark count cluster rate dependency on the neutron flux, the DCR per channel and the effects of the applied signal thresholds for the clustering algorithm.

  3. Solid-State Photomultiplier with Integrated Front End Electronics

    Science.gov (United States)

    Christian, James; Stapels, Christopher; Johnson, Erik; Mukhopadhyay, Sharmistha; Jie Chen, Xiao; Miskimen, Rory

    2009-10-01

    The instrumentation cost of physics experiments has been reduced per channel, by the use of solid-state detectors, but these cost-effective techniques have not been translated to scintillation-based detectors. When considering photodetectors, the cost per channel is determined by the use of high-voltage, analog-to-digital converters, BNC cables, and any other ancillary devices. The overhead associated with device operation limits the number of channels for the detector system, while potentially limiting the scope of physics that can be explored. The PRIMEX experiment at JLab, which is being designed to measure the radiative widths of the η and η' pseudo-scalar mesons for a more comprehensive understanding of QCD at low energies, is an example where CMOS solid-state photomultipliers (SSPMs) can be implemented. The ubiquitous nature of CMOS allows for on-chip signal processing to provide front-end electronics within the detector package. We present the results of the device development for the PRIMEX calorimeter, discussing the characteristics of SSPMs, the potential cost savings, and experimental results of on-chip signal processing.

  4. Evaluation of a new laser-resistant fabric and copper foil-wrapped endotracheal tube.

    Science.gov (United States)

    Sosis, M B; Braverman, B; Caldarelli, D D

    1996-07-01

    The risk of an endotracheal tube's combustion during laser airway surgery necessitates the use of special anesthetic techniques and equipment to prevent this complication. This study was designed to evaluate the Laser-Trach(TM), a new laser-resistant rubber endotracheal tube for use during laser airway surgery. The Laser-Trach endotracheal tubes that were evaluated were size 6.0 mm internal diameter (ID) red rubber endotracheal tubes which had been commercially wrapped by Kendall-Sheridan (Mansfield, Mass.) with copper foil tape and overwrapped with fabric. The fabric layer was saturated with water prior to our tests, as recommended by the manufacturer. The Laser-Trach endotracheal tubes were compared with plain (bare) size 6.0 mm ID Rusch red rubber endotracheal tubes. The tubes under study were positioned horizontally on wet towels in air and had 5 L x min(-1) of oxygen flowing through them. They were subjected to continuous laser radiation at 40 W from either a CO2 or an Nd-YAG laser. The Nd-YAG laser was propagated via a 600-micron fiber bundle. Each laser was directed perpendicularly at the shaft of the endotracheal tube being studied, and its output was continued until a blowtorch fire occurred or 60 seconds had elapsed. Sixty seconds of CO2 laser fire did not ignite any of the eight Laser-Trach endotracheal tubes tested. However, blowtorch ignition of all eight bare rubber tubes tested occurred after 0.87 +/- 0.21 (mean +/- SD) seconds of CO2 laser fire. Nd-YAG laser contact with the Laser-Trach endotracheal tubes caused the perforation and blowtorch ignition of all eight tubes tested after 18.79 +/- 7.83 seconds. This was a significantly (Presistant to the C02 laser. However, this endotracheal tube is not recommended for use with the Nd-YAG laser.

  5. Fluid structure interaction in tube bundles

    International Nuclear Information System (INIS)

    Brochard, D.; Jedrzejewski, F.; Gibert, R.J.

    1995-01-01

    A lot of industrial components contain tube bundles immersed in a fluid. The mechanical analysis of such systems requires the study of the fluid structure interaction in the tube bundle. Simplified methods, based on homogenization methods, have been developed to analyse such phenomenon and have been validated through experimental results. Generally, these methods consider only the fluid motion in a plan normal to the bundle axis. This paper will analyse, in a first part, the fluid structure interaction in a tube bundle through a 2D finite element model representing the bundle cross section. The influence of various parameters like the bundle size, and the bundle confinement will be studied. These results will be then compared with results from homogenization methods. Finally, the influence of the 3D fluid motion will be investigated, in using simplified methods. (authors). 11 refs., 12 figs., 2 tabs

  6. Tomographic visualization of stress corrosion cracks in tubing

    International Nuclear Information System (INIS)

    Morris, R.A.; Kruger, R.P.; Wecksung, G.W.

    1979-06-01

    A feasibility study was conducted to determine the possibility of detecting and sizing cracks in reactor cooling water tubes using tomographic techniques. Due to time and financial constraints, only one tomographic reconstruction using the best technique available was made. The results indicate that tomographic reconstructions can, in fact, detect cracks in the tubing and might possibly be capable of measuring the depth of the cracks. Limits of detectability and sensitivity have not been determined but should be investigated in any future work

  7. Demonstration for the Applicability of the EPRI ETSS on the SG Tube Wear Defects Formed at the Tube Support Structure

    International Nuclear Information System (INIS)

    Shin, Ki Seok; Cheon, Keun Young; Nam, Min Woo; Min, Kyong Mahn

    2013-01-01

    In this paper, the authorized EPRI ETSS 27906.2 applied to the detection of tapered wear volumetric indications and depth sizing within the free span area, loose part not present was reviewed and applied to the site SG tubes for getting the actual value of the wear depth and providing structural integrity interpretation based on engineering evaluation. The experiment to demonstrate the applicability of EPRI ETSS was performed by the employment of the newly prepared STD tube and resulted in ensuring the effectiveness and equivalency of the EPRI ETSS as well. The authorized EPRI ETSS 27906.2 for getting the actual value of the wear depth and providing structural integrity interpretation based on engineering evaluation was reviewed and applied to the site SG tubes. The testing results were reviewed with the influences of SG tube material and the support structure. The impact of the tube materials was insignificant and that of the tube support structure showed somewhat conservative results. The testing resulted in successful demonstration of applicability of the EPRI ETSS on the SG tube wear defects at the tube support. One of the major flaw mechanisms detected in the currently operating domestic OPR-1000 pressurized water reactors(PWR's) steam generator(SG) tubes is wear defect. In general, wear defect has been constantly detected in the upper tube bundle imposed to the flow induced vibration interaction between tube and its support structure, and the quantity of the affected tubes has also shown the tendency to increase as plant operation life is added. In order to take appropriate measures and maintain the structural integrity for the SG tubes, wear defect is currently categorized as active damage mechanism and the tubes containing 40% or greater wear depth of the nominal tube wall thickness shall be plugged per SGMP(SG Management Program) Recently, a fairly large amplitude of wear defects on the Batwing(BW), one of the upper tube support structures in the SG tubes

  8. Demonstration for the Applicability of the EPRI ETSS on the SG Tube Wear Defects Formed at the Tube Support Structure

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ki Seok; Cheon, Keun Young; Nam, Min Woo [Korea Hydro and Nuclear Power Co. Ltd, Daejeon (Korea, Republic of); Min, Kyong Mahn [Universal Monitoring and Inspection Inc., Daejeon (Korea, Republic of)

    2013-10-15

    In this paper, the authorized EPRI ETSS 27906.2 applied to the detection of tapered wear volumetric indications and depth sizing within the free span area, loose part not present was reviewed and applied to the site SG tubes for getting the actual value of the wear depth and providing structural integrity interpretation based on engineering evaluation. The experiment to demonstrate the applicability of EPRI ETSS was performed by the employment of the newly prepared STD tube and resulted in ensuring the effectiveness and equivalency of the EPRI ETSS as well. The authorized EPRI ETSS 27906.2 for getting the actual value of the wear depth and providing structural integrity interpretation based on engineering evaluation was reviewed and applied to the site SG tubes. The testing results were reviewed with the influences of SG tube material and the support structure. The impact of the tube materials was insignificant and that of the tube support structure showed somewhat conservative results. The testing resulted in successful demonstration of applicability of the EPRI ETSS on the SG tube wear defects at the tube support. One of the major flaw mechanisms detected in the currently operating domestic OPR-1000 pressurized water reactors(PWR's) steam generator(SG) tubes is wear defect. In general, wear defect has been constantly detected in the upper tube bundle imposed to the flow induced vibration interaction between tube and its support structure, and the quantity of the affected tubes has also shown the tendency to increase as plant operation life is added. In order to take appropriate measures and maintain the structural integrity for the SG tubes, wear defect is currently categorized as active damage mechanism and the tubes containing 40% or greater wear depth of the nominal tube wall thickness shall be plugged per SGMP(SG Management Program) Recently, a fairly large amplitude of wear defects on the Batwing(BW), one of the upper tube support structures in the SG

  9. 21 CFR 868.5800 - Tracheostomy tube and tube cuff.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tracheostomy tube and tube cuff. 868.5800 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5800 Tracheostomy tube and tube cuff. (a) Identification. A tracheostomy tube and tube cuff is a device intended to be placed into a...

  10. Investigation of the Geometry of Metal Tube Walls after Necking in Uniaxial Tension

    Directory of Open Access Journals (Sweden)

    Chong Li

    2017-03-01

    Full Text Available Abstract: In order to characterize the deformation and true stress–strain relation of metal tubes, the geometry of tube walls after necking in uniaxial tension need to be determined. The paper investigated the necking process of metal tube. A large number of tensile tests and finite element analysis of 1Cr18Ni9Ti tubes with different sizes were conducted. It was found that the geometry of outer tube wall in the necking region can be described using a logistic regression model. The final geometry of the tube is determined by original tube diameter and wall thickness. The offset of tube walls are affected by two competing factors: volume constancy and necking. The offset distances of outer and inner walls are mainly affected by original wall thickness. The length of the necking zone is more influenced by original tube diameter. Tube elongation at fracture increases slightly as tube diameter gets larger, while the wall thickness has almost no impact on the elongation.

  11. Spill control and intensity monitoring for the Bevatron--Bevalac external particle beams

    International Nuclear Information System (INIS)

    Barale, J.J.; Crebbin, K.C.

    1975-03-01

    Time-intensity modulation in beam spill can be of primary concern in some experiments. The major source of this beam structure is from main-guide field-magnet power supply ripple. If the time constants are appropriate, then final control of beam structure can be accomplished by closed loop control of the intensity of beam spill. The response characteristics of the feedback system will determine the final structure. At high beam fluxes signal to noise ratio of beam detectors, in the feedback loop, can be improved by at least four orders of magnitude by using photomultiplier tubes and a water Cherenkov counter in place of the normal secondary emission monitor. At beam fluxes below 10 10 particles per second (PPS), a plastic scintillator and photomultiplier tube are used in the feedback system. A plastic scintillator and photomultiplier are also used in the beam as intensity monitors. At intensities below about 10 7 PPS standard counting techniques are used. For intensities between 10 6 to 110 9 PPS, the photomultiplier is used as a current source driving an integrating circuit which is then calibrated to read the number of particles per pulse. (U.S.)

  12. Application of probabilistic fracture mechanics to optimize the maintenance of PWR steam generator tubes

    International Nuclear Information System (INIS)

    Pitner, P.; Riffard, T.

    1993-09-01

    This paper describes the COMPROMIS code developed by Electricite de France (EDF) to optimize the tube bundle maintenance of steam generators (SG). The model, based on probabilistic fracture mechanics, makes it possible to quantify the influence of in-service inspections and maintenance work on the risk of an SG tube rupture, taking all significant parameters into account as random variables (initial defect size distribution, reliability of nondestructive detection and sizing, crack initiation and propagation, critical sizes, leak before risk of break, etc). (authors). 14 figs., 4 tabs., 12 refs

  13. FABRICATION OF TUBE TYPE FUEL ELEMENT FOR NUCLEAR REACTORS

    Science.gov (United States)

    Loeb, E.; Nicklas, J.H.

    1959-02-01

    A method of fabricating a nuclear reactor fuel element is given. It consists essentially of fixing two tubes in concentric relationship with respect to one another to provide an annulus therebetween, filling the annulus with a fissionablematerial-containing powder, compacting the powder material within the annulus and closing the ends thereof. The powder material is further compacted by swaging the inner surface of the inner tube to increase its diameter while maintaining the original size of the outer tube. This process results in reduced fabrication costs of powdered fissionable material type fuel elements and a substantial reduction in the peak core temperatures while materially enhancing the heat removal characteristics.

  14. Gamma ray spectroscopy and timing using LSO and PIN photodiodes

    International Nuclear Information System (INIS)

    Moses, W.W.; Derenzo, S.E.; Melcher, C.L.; Manente, R.A.

    1994-11-01

    The high density, high light output, and short decay time of LSO (lutetium orthosilicate, Lu 2 SiO 5 :Ce) make it an attractive scintillator for gamma ray spectroscopy. The low cost, small size, high quantum efficiency, and ruggedness of silicon photodiodes make them attractive photodetectors for this same application, although their high noise (Compared to a photomultiplier tube) reduces their appeal. In this work the authors measure the gamma ray energy resolution, timing accuracy, and conversion factor from gamma energy to number of electron-hole pairs produced with a 3 x 3 x 22 mm 3 LSO scintillator crystal read out with a 3 x 3 mm 2 silicon PIN photodiode. When the detector is excited with 511 keV photons, a photopeak centered at 1,940 e - with 149 keV fwhm is observed and a timing signal with 35 ns fwhm jitter is produced. When the detector is excited with 1,275 keV photons, a photopeak centered at 4,910 e - with 149 keV fwhm is observed and a timing signal with 25 ns fwhm jitter is produced. While these performance measures are inferior to those obtained with photomultiplier tubes, they are acceptable for some applications

  15. Tube plug

    International Nuclear Information System (INIS)

    Zafred, P. R.

    1985-01-01

    The tube plug comprises a one piece mechanical plug having one open end and one closed end which is capable of being inserted in a heat exchange tube and internally expanded into contact with the inside surface of the heat exchange tube for preventing flow of a coolant through the heat exchange tube. The tube plug also comprises a groove extending around the outside circumference thereof which has an elastomeric material disposed in the groove for enhancing the seal between the tube plug and the tube

  16. Ultrasonic inspection of tube to tube plate welds

    International Nuclear Information System (INIS)

    Telford, D.W.; Peat, T.S.

    1985-01-01

    To monitor the deterioration of a weld between a tube and tube plate which has been repaired by a repair sleeve inside the tube and brazed at one end to the tube, ultrasound from a crystal at the end of a rod is launched, in the form of Lamb-type waves, into the tube through the braze and allowed to travel along the tube to the weld and be reflected back along the tube. The technique may also be used for the type of heat exchanger in which, during construction, the tubes are welded to the tube plate via external sleeves in which case the ultrasound is used in a similar manner to inspect the sleeve/tube plate weld. an electromagnetic transducer may be used to generate the ultrasound. The ultrasonic head comprising the crystal and an acoustic baffle is mounted on a Perspex (RTM) rod which may be rotated by a stepping motor. Echo signals from the region of deterioration may be isolated by use of a time gate in the receiver. The device primarily detects circumferentially orientated cracks, and may be used in heat exchangers in nuclear power plants. (author)

  17. Lattice Boltzmann simulation of flow across a staggered tube bundle array

    Energy Technology Data Exchange (ETDEWEB)

    Tiftikçi, A.; Kocar, C., E-mail: ckocar@hacettepe.edu.tr

    2016-04-15

    Highlights: • Large eddy simulation of the cross-flow in a staggered tube bundle array in 3D was made. • LBM and FVM are used separately as numerical solvers and the results of each method compared with experimental data. • Effect of lattice model is studied for tube bundle flow. • Filter size effects, mesh size effects are studied for VLES turbulence model. - Abstract: The decision on the magnitude of the grid size is a crucial problem in large eddy simulations. Finer mesh requires excessive memory and causes long simulation time. Large eddy simulation model becomes inefficient when the extent of the flow geometry to be simulated with the lattice-Boltzmann method is large. Thus, in this study, it is proposed to investigate the capabilities of three turbulence models, namely, very large eddy simulation, Van Driest and Smagorinsky–Lilly. As a test case, a staggered tube bundle flow experiment is used for the validation and comparison purposes. Sensitivity analyses (including mesh and filter size) have been made. Furthermore, the effect of lattice model is investigated and it is showed that the D3Q27 and D3Q19 models do not differ significantly in lattice-Boltzmann method for this type of flow. The results of turbulence model comparisons for staggered tube bundle flow showed that very large eddy simulation is superior at low resolution. This paper might be considered as a good validation of the lattice-Boltzmann method. In turbulent flow conditions, the code successfully captures the velocity and stress profiles even if the flow is quite complicated.

  18. Partial body irradiation of small laboratory animals with an industrial X-ray tube

    International Nuclear Information System (INIS)

    Frenzel, Thorsten; Kruell, Andreas; Grohmann, Carsten; Schumacher, Udo

    2014-01-01

    Dedicated precise small laboratory animal irradiation sources are needed for basic cancer research and to meet this need expensive high precision radiation devices have been developed. To avoid such expenses a cost efficient way is presented to construct a device for partial body irradiation of small laboratory animals by adding specific components to an industrial X-ray tube. A custom made radiation field tube was added to an industrial 200 kV X-ray tube. A light field display as well as a monitor ionization chamber were implemented. The field size can rapidly be changed by individual inserts of MCP96 that are used for secondary collimation of the beam. Depth dose curves and cross sectional profiles were determined with the use of a custom made water phantom. More components like positioning lasers, a custom made treatment couch, and a commercial isoflurane anesthesia unit were added to complete the system. With the accessories described secondary small field sizes down to 10 by 10 mm 2 (secondary collimator size) could be achieved. The dosimetry of the beam was constructed like those for conventional stereotactical clinical linear accelerators. The water phantom created showed an accuracy of 1 mm and was well suited for all measurements. With the anesthesia unit attached to the custom made treatment couch the system is ideal for the radiation treatment of small laboratory animals like mice. It was feasible to shrink the field size of an industrial X-ray tube from whole animal irradiation to precise partial body irradiation of small laboratory animals. Even smaller secondary collimator sizes than 10 by 10 mm 2 are feasible with adequate secondary collimator inserts. Our custom made water phantom was well suited for the basic dosimetry of the X-ray tube.

  19. A TDC for the characterization of KM3NeT PMTs

    International Nuclear Information System (INIS)

    Zwart, A.; Heine, E.; Hogenbirk, J.; Jansweijer, P.; Kieft, G.; Mos, S.; Wolf, E. de

    2013-01-01

    The optical modules of the future KM3NeT neutrino telescope will contain many photomultiplier tubes with a diameter of about 3 in. In order to characterize these photomultiplier tubes, a 16 channel Time-Over-Threshold TDC with a GigaBit Ethernet communication channel has been built in an Altera StratixIV evaluation board. The TDC data is packed in UDP packages and sent to the host PC. Control is implemented using I 2 C command packages send to the TDC by the host PC. After execution of I 2 C commands a result package is send back to the host. We will present the TDC setup and first results

  20. Energy independent uniformity improvement for gamma camera systems

    International Nuclear Information System (INIS)

    Lange, K.

    1979-01-01

    In a gamma camera system having an array of photomultiplier tubes for detecting scintillation events and preamplifiers connecting each tube to a weighting resistor matrix for determining the position coordinates of the events, means are provided for summing the signals from all photomultipliers to obtain the total energy of each event. In one embodiment, at least two different percentages of the summed voltage are developed and used to change the gain of the preamplifiers as a function of total energy when energies exceed specific levels to thereby obtain more accurate correspondence between the true coordinates of the event and its coordinates in a display

  1. Electromagnetic shower counter

    CERN Multimedia

    CERN PhotoLab

    1974-01-01

    The octogonal block of lead glass is observed by eight photomultiplier tubes. Four or five such counters, arranged in succession, are used on each arm of the bispectrometer in order to detect heavy particles of the same family as those recently observed at Brookhaven and SLAC. They provide a means of identifying electrons. The arrangement of eight lateral photomultiplier tubes offers an efficient means of collecting the photons produced in the showers and determining, with a high resolution, the energy of the incident electrons. The total width at half-height is less than 6.9% for electrons having an energy of 1 GeV.

  2. Analysis of simulated ECT signals obtained at tubesheet and tube expansion area

    International Nuclear Information System (INIS)

    Song, Sung Chul; Lee, Yun Tai; Jung, Hee Sung; Shin, Young Kil

    2006-01-01

    Steam generator(SG) tubes are expanded inside tubesheet holes by using explosive or hydraulic methods to be fixed in the tubesheet. In the tube expansion process, it is important to minimize the crevice gap between tubesheet and expanded tube. In this paper, absolute and differential signals are predicted by a numerical method for several different locations of tube expansion inside and outside the tubesheet and signal variations due to tubesheet, tube expansion and operating frequency are observed. Results show that low frequency is good for detecting tubesheet location in both types of signals and high frequency is suitable for sizing of tube diameter as well as the detection of transition region. Also learned is that the absolute signal is good for measuring tube diameter, while the differential signal is good for locating the top of tubesheet and both ends of the transition region.

  3. An in vitro comparison of tracheostomy tube cuffs

    Directory of Open Access Journals (Sweden)

    Maguire S

    2015-04-01

    Full Text Available Seamus Maguire,1 Frances Haury,2 Korinne Jew2 1Research and Development, Covidien Respiratory and Monitoring Solutions, Athlone, Ireland; 2Medical Affairs, Covidien Respiratory and Monitoring Solutions, Boulder, CO, USA Introduction: The Shiley™ Flexible adult tracheostomy tube with TaperGuard™ cuff has been designed through its geometry, materials, diameter, and wall thickness to minimize micro-aspiration of fluids past the cuff and to provide an effective air seal in the trachea while also minimizing the risk of excessive contact pressure on the tracheal mucosa. The cuff also has a deflated profile that may allow for easier insertion through the stoma site. This unique design is known as the TaperGuard™ cuff. The purpose of the observational, in vitro study reported here was to compare the TaperGuard™ taper-shaped cuff to a conventional high-volume low-pressure cylindrical-shaped cuff (Shiley™ Disposable Inner Cannula Tracheostomy Tube [DCT] with respect to applied tracheal wall pressure, air and fluid sealing efficacy, and insertion force.Methods: Three sizes of tracheostomy tubes with the two cuff types were placed in appropriately sized tracheal models and lateral wall pressure was measured via pressure-sensing elements on the inner surface. Fluid sealing performance was assessed by inflating the cuffs within the tracheal models (25 cmH2O, instilling water above the cuff, and measuring fluid leakage past the cuff. To measure air leak, tubes were attached to a test lung and ventilator, and leak was calculated by subtracting the average exhaled tidal volume from the average delivered tidal volume. A tensile test machine was used to measure insertion force for each tube with the cuff deflated to simulate clinical insertion through a stoma site.Results: The average pressure exerted on the lateral wall of the model trachea was lower for the taper-shaped cuff than for the cylindrical cuff under all test conditions (P<0.05. The taper

  4. New method for determining avalanche breakdown voltage of silicon photomultipliers

    International Nuclear Information System (INIS)

    Chirikov-Zorin, I.

    2017-01-01

    The avalanche breakdown and Geiger mode of the silicon p-n junction is considered. A precise physically motivated method is proposed for determining the avalanche breakdown voltage of silicon photomultipliers (SiPM). The method is based on measuring the dependence of the relative photon detection efficiency (PDE rel ) on the bias voltage when one type of carriers (electron or hole) is injected into the avalanche multiplication zone of the p-n junction. The injection of electrons or holes from the base region of the SiPM semiconductor structure is performed using short-wave or long-wave light. At a low overvoltage (1-2 V) the detection efficiency is linearly dependent on the bias voltage; therefore, extrapolation to zero PDE rel value determines the SiPM avalanche breakdown voltage with an accuracy within a few millivolts. [ru

  5. Reconstruction of scintillations coordinates in cylindrical large detector with radial arrangement of photomultipliers

    CERN Document Server

    Alekseev, V M; Verbitskij, V S; Verbitskij, S S; Lapik, M A; Tselebrovskij, A N; Lapik, A M; Rusakov, A V; Savopulo, M L; Smirnov, V V; Chubarov, M N

    2002-01-01

    Paper describes algorithm to calculate scintillation coordinates elaborated for a coordinate-sensitive large detector based on liquid scintillator with radial arrangement of nine FEU-174 photomultipliers. Paper contains the simulation results of coordinate resolution dependence in detector centre on energy of gamma-quanta within 0.2-8 MeV range. Using this algorithm one processed the experimental data obtained with application of sup 6 sup 0 Co gamma-radiation source and the results of determination of scintillation coordinates for gamma-quanta beam. The accuracy of coordinate determination in detector centre when applying the descried algorithm constitutes approx 10 mm

  6. High-temperature transient creep properties of CANDU pressure tubes

    International Nuclear Information System (INIS)

    Fong, R.W.L.; Chow, C.K.

    2002-06-01

    During a hypothetical large break loss-of-coolant accident (LOCA), the coolant flow would be reduced in some fuel channels and would stagnate and cause the fuel temperature to rise and overheat the pressure tube. The overheated pressure tube could balloon (creep radially) into contact with its moderator-cooled calandria tube. Upon contact, the stored thermal energy in the pressure tube is transferred to the calandria tube and into the moderator, which acts as a heat sink. For safety analyses, the modelling of fuel channel deformation behaviour during a large LOCA requires a sound knowledge of the high-temperature creep properties of Zr-2.5Nb pressure tubes. To this extent, a ballooning model to predict pressure-tube deformation was developed by Shewfelt et al., based on creep equations derived using uniaxial tensile specimens. It has been recognized, however, that there is an inherent variability in the high-temperature creep properties of CANDU pressure tubes. The variability, can be due to different tube-manufacturing practices, variations in chemical compositions, and changes in microstructure induced by irradiation during service in the reactor. It is important to quantify the variability of high-temperature creep properties so that accurate predictions on pressure-tube creep behaviour can be made. This paper summarizes recent data obtained from high-temperature uniaxial creep tests performed on specimens taken from both unirradiated (offcut) and irradiated pressure tubes, suggesting that the variability is attributed mainly to the initial differences in microstructure (grain size, shape and preferred orientation) and also from tube-to-tube variations in chemical composition, rather than due to irradiation exposure. These data will provide safety analysts with the means to quantify the uncertainties in the prediction of pressure-tube contact temperatures during a postulated large break LOCA. (author)

  7. Heat Exchanger Tube to Tube Sheet Joints Corrosion Behavior

    Directory of Open Access Journals (Sweden)

    M. Iancu

    2013-03-01

    Full Text Available Paper presents the studies made by the authors above the tube to tube sheet fittings of heat exchanger with fixed covers from hydrofining oil reforming unit. Tube fittings are critical zones for heat exchangers failures. On a device made from material tube and tube sheet at real joints dimensions were establish axial compression force and traction force at which tube is extracted from expanded joint. Were used two shapes joints with two types of fittings surfaces, one with smooth hole of tube sheet and other in which on boring surface we made a groove. From extracted expanded tube zones were made samples for corrosion tests in order to establish the corrosion rate, corrosion potential and corrosion current in working mediums such as hydrofining oil and industrial water at different temperatures. The corrosion rate values and the temperature influence are important to evaluate joints durability and also the results obtained shows that the boring tube sheet shape with a groove on hole tube shape presents a better corrosion behavior then the shape with smooth hole tube sheet.

  8. Analytical study of condensation heat transfer on titanium tube with super-hydrophobic surface

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Dae Yun; Park, Hyun Gyu; Lee, Kwon Yeong [Handong Global University, Pohang (Korea, Republic of)

    2016-05-15

    There are many nuclear or fossil power plants which occupy more than 85% among entire power plants in the world. These plants release heat through condenser into nature. The condenser is an important component for cooling the working fluid after the turbine. Its performance is related with material and size of its tubes. To have good performance or to reduce condenser size, it is important to increase condensation heat transfer coefficient on condenser tubes. Ma et al. executed heat transfer experiment in dropwise condensation with non-condensable gas, and studied how the amount of air and pressure difference affect condensation heat transfer coefficient. The more non-condensable gas existed, the condensation heat transfer coefficient was decreased. Shen et al. studied condensation heat transfer at horizontal bundle tubes. Several variables such as coolant velocity, saturated pressure, and surface conditions were studied. As a result, surface modified brass tube and stainless tube showed higher condensation heat transfer coefficient as much as 1.3 and 1.4 times comparing with their bare tubes, in 70 kPa vacuum condition respectively. Rausch et al. studied dropwise condensation on ion-implanted titanium surface. Experimental study is performed to evaluate the performance of surface modified titanium tube in vacuum state. SAM coating is used to make super-hydrophobic surface of titanium tube. Preliminary analysis were performed considering filmwise and dropwise condensations, respectively. Experiment facility is almost prepared and the test result will be shown soon.

  9. Tube spacer grid for a heat-exchanger tube bundle

    International Nuclear Information System (INIS)

    Scheidl, H.

    1976-01-01

    A tube spacer grid for a heat-exchanger tube bundle is formed by an annular grid frame having a groove formed in its inner surface in which the interspaced grid bars have their ends positioned and held in interspaced relationship by short sections of tubes passed through holes axially formed in the grid frame so that the tubes are positioned between the ends of the grid bars in the grooves. The tube sections may be cut from the same tubes used to form the tube bundle. 5 claims, 3 drawing figures

  10. Statistics applied to the testing of cladding tubes

    International Nuclear Information System (INIS)

    Perdijon, J.

    1987-01-01

    Cladding tubes, either steel or zircaloy, are generally given a 100 % inspection through ultrasonic non-destructive testing. This inspection may be completed beneficially with an eddy current test, as this is not sensitive to the same defects as those typically traced by ultrasonic testing. Unfortunately, the two methods (as with other non-destructive tests) exhibit poor precision; this means that a flaw, whose size is close to that denoted as rejection limit, may be accepted or rejected. Currently, rejection, i.e. the measurement above which a tube is rejected, is generally determined through measuring a calibration tube at regular time intervals, and the signal of a given tube is compared to that of the most recently completed calibration. This measurement is thus subject to variations which can be attributed to an actual shift of adjustments as well as to poor precision. For this reason, monitoring instrument adjustments using the so-called control chart method are proposed

  11. Comparison radiation dose of Z-axis automatic tube current modulation technique with fixed tube current multi-detector row CT scanning of lower extremity venography

    International Nuclear Information System (INIS)

    Yoo, Beong Gyu; Kweon, Dae Cheol; Lee, Jong Seok; Jang, Keun Jo; Jeon, Sang Hwan; Kim, Yong Soo

    2007-01-01

    Z-axis automatic tube current modulation technique automatically adjusts tube current based on size of body region scanned. The purpose of the current study was to compare noise, and radiation dose of Multi-Detector row CT (MDCT) of lower extremity performed with Z-axis modulation technique of automatic tube current modulation with manual selection fixed tube current. Fifty consecutive underwent MDCT venography of lower extremity with use of a MDCT scanner fixed tube current and Z-axis automatic tube current modulation technique (10, 11 and 12 HU noise index, 70∼450 mA). Scanning parameters included 120 kVp, 0.5 second gantry rotation time, 1.35:1 beam pitch, and 1 mm reconstructed section thickness. For each subject, images obtained with Z-axis modulation were compared with previous images obtained with fixed tube current (200, 250, 300 mA) and with other parameters identical. Images were compared for noise at five levels: iliac, femoral, popliteal, tibial, and peroneal vein of lower extremity. Tube current and gantry rotation time used for acquisitions at these levels were recorded. All CT examinations of study and control groups were diagnostically acceptable, though objective noise was significantly more with Z-axis automatic tube current modulation. Compared with fixed tube current, Z-axis modulation resulted in reduction of CTDIvol (range, -6.5%∼-35.6%) and DLP (range,-0.2%∼-20.2%). Compared with manually selected fixed tube current, Z-axis automatic tube current modulation resulted in reduced radiation dose at MDCT of lower extremity venography

  12. CFD modeling of a boiler's tubes rupture

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, Masoud; Khoshhal, Abbas; Shariati, Seyed Mehdi [Chemical Engineering Department, Faculty of Engineering, Razi University, Kermanshah (Iran)

    2006-12-15

    This paper reports the results of a study on the reason for tubes damage in the superheater Platen section of the 320MW Bisotoun power plant, Iran. The boiler has three types of superheater tubes and the damage occurs in a series of elbows belongs to the long tubes. A three-dimensional modeling was performed using an in-house computational fluid dynamics (CFD) code in order to explore the reason. The code has ability of simultaneous solving of the continuity, the Reynolds-Averaged Navier-Stokes (RANS) equations and employing the turbulence, combustion and radiation models. The whole boiler including; walls, burners, air channels, three types of tubes, etc., was modeled in the real scale. The boiler was meshed into almost 2,000,000 tetrahedral control volumes and the standard k-{epsilon} turbulence model and the Rosseland radiation model were used in the model. The theoretical results showed that the inlet 18.9MPa saturated steam becomes superheated inside the tubes and exit at a pressure of 17.8MPa. The predicted results showed that the temperature of the steam and tube's wall in the long tubes is higher than the short and medium size tubes. In addition, the predicted steam mass flow rate in the long tube was lower than other ones. Therefore, it was concluded that the main reason for the rupture in the long tubes elbow is changing of the tube's metal microstructure due to working in a temperature higher than the design temperature. In addition, the structural fatigue tension makes the last elbow of the long tube more ready for rupture in comparison with the other places. The concluded result was validated by observations from the photomicrograph of the tube's metal samples taken from the damaged and undamaged sections. (author)

  13. Revisiting resolution in hydrodynamic countercurrent chromatography: tubing bore effect.

    Science.gov (United States)

    Berthod, A; Faure, K

    2015-04-17

    A major challenge in countercurrent chromatography (CCC), the technique that works with a support-free biphasic liquid system, is to retain the liquid stationary phase inside the CCC column (Sf parameter). Two solutions are commercially available: the hydrostatic CCC columns, also called centrifugal partition chromatographs (CPC), with disks of interconnected channels and rotary seals, and the hydrodynamic CCC columns with bobbins of coiled open tube and no rotary seals. It was demonstrated that the amount of liquid stationary phase retained by a coiled tube was higher with larger bore tubing than with small bore tubes. At constant column volume, small bore tubing will be longer producing more efficiency than larger bore tube that will better retain the liquid stationary phase. Since the resolution equation in CCC is depending on both column efficiency and stationary phase retention ratio, the influence of the tubing bore should be studied. This theoretical work showed that there is an optimum tubing bore size depending on solute partition coefficient and mobile phase flow rate. The interesting result of the theoretical study is that larger tubing bores allow for dramatically reduced experiment durations for all solutes: in reversed phase CCC (polar mobile phase), hydrophobic solutes are usually highly retained. These apolar solutes can be separated by the same coil at high flow rates and reduced Sf with similar retention times as polar solutes separated at smaller flow rates and much higher Sf. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Transfer of hydrogen and helium through corrugated, flexible tubes

    International Nuclear Information System (INIS)

    Schippl, K.

    2001-01-01

    The transfer of liquid gas or cold gas through corrugated tubes is an alternative to rigid systems for the use in reactor technique. Advantages: flexibility for easy installation; these tubes together with their associated terminations and hardware are assembled, leak-tested and evacuated at the factory. This permits simple and cost saving installation on site. All tubes are helium leak-tested with a sensitivity of 10E -9 mbar 1/sec. Following the leak test, the vacuum space is pumped down to the operation vacuum level and properly sealed. The vacuum integrity is guaranteed as a result of the high degree of cleanliness observed during production and from the use of a specially selected better material inside the vacuum space. Disadvantage: pressure is limited to 20 bar. To fulfil all rules of the reactor safety, different tests have to be done. Because of the longitudinal weld of the corrugated tube, a bursting test of different sizes gives the best information of the liability of this kind of tube. It can be shown that the bursting pressure of such a tube is more than 5 times higher than the max. working pressure

  15. Ultrasonic Concentration in a Line-Driven Cylindrical Tube

    Energy Technology Data Exchange (ETDEWEB)

    Goddard, Gregory Russ [Portland State Univ., Portland, OR (United States)

    2004-01-01

    The fractionation of particles from their suspending fluid or noninvasive micromanipulation of particles in suspension has many applications ranging from the recovery of valuable reagents from process flows to the fabrication of microelectromechanical devices. Techniques based on size, density, solubility, or electromagnetic properties exist for fulfilling these needs, but many particles have traits that preclude their use such as small size, neutral buoyancy, or uniform electromagnetic characteristics. While separation by those techniques may not be possible, often compressibility differences exist between the particle and fluid that would allow fractionation by acoustic forces. The potential of acoustic separation is known, but due to inherent difficulties in achieving and maintaining accurate alignment of the transduction system, it is rarely utilized. The objective of this project is to investigate the use of structural excitation as a potentially efficient concentration/fractionation method for particles in suspension. It is demonstrated that structural excitation of a cylindrically symmetric cavity, such as a tube, allows non-invasive, fast, and low power concentration of particles suspended in a fluid. The inherent symmetry of the system eliminates the need for careful alignment inherent in current acoustic concentration devices. Structural excitation distributes the acoustic field throughout the volume of the cavity, which also significantly reduces temperature gradients and acoustic streaming in the fluid; cavitation is no longer an issue. The lowest-order coupled modes of a long cylindrical glass tube and fluid-filled cavity, driven by a line contact, are tuned, via material properties and aspect ratio, to achieve a coupled dipolar vibration of the system, shown to generate efficient concentration of particles to the central axis of the tube. A two dimensional elastodynamic model of the system was developed and subsequently utilized to optimize particle

  16. Studies on the use of nuclear fuel kernels in cladding tubes

    International Nuclear Information System (INIS)

    Thomas, G.

    1981-12-01

    Two approaches for using UO 2 -kernels in cladding tubes have been investigated, viz. the preparation of dense sphere-pacs and direct pelletizing (spherical). A theoretical study on the packing of spheres of different sizes showed that practical experiments were required. Model tests were, therefore, carried out, mostly with glass spheres. The most important results obtained are: A packing density of 80% can be exceeded if spheres of two sizes are used; quick and simple packing can be achieved with the mixing chute presented here; spheres pacs with a density of 90% for LWR cannot be prepared with kernels of practicable sizes; packing results can be translated to other tube diameters and to spheres and tubes made of other materials. The only suitable way to prepare dense pellets from kernels is pressing with a floating matrix at about 10 kbar, followed by removal under residual load. The kernels used should be produced without PVA and be reduced between 500 0 C and 800 0 C. Sintering is best accomplished in a limited oxidizing atmosphere at 1100 0 C with subsequent reduction. Stable pellets with up to 96% of their theoretical density could be produced this way. (orig.) [de

  17. An experimental study of aerosol penetration through horizontal tubes and strom-type loops

    International Nuclear Information System (INIS)

    Wong, F.S.; McFarland, A.R.; Anand, N.K.

    1996-01-01

    Because some designers of aerosol transport systems use the assumption that aerosol penetration through a system is maximized of the flow Reynolds number is 2,800, we have conducted tests to determine if such an assumption is appropriate. Although we do not believe that optimal performance of an aerosol sample transport system can be presented solely in terms of the Reynolds number, we have presented our results in terms of that parameter to compare our work with the results of an earlier study. Two types of experiments were performed. First, the penetration of liquid aerosol particles through horizontal tubes was experimentally investigated for a range of design and operational conditions. For a particle size of 10 μm aerodynamic diameter, the maximum penetration through a 6.7 mm diameter tube was associated with a Reynolds number of approximately 2,000; the maximum penetration through a tube of 15.9 mm occurred at a Reynolds number of about 3,000; and the maximum penetration through a 26.7 mm diameter tube occurred at about 4,000. It was also experimentally demonstrated that for a fixed flow rate through a horizontal tube, there is an optimum tube diameter for which the aerosol penetration is a maximum. An early study dealing with aerosol particle penetration through a 16.8 mm inside diameter loop of tubing (two vertical tubes, two horizontal tubes and three 90 degrees bends) suggested there was a fixed Reynolds number for optimal aerosol penetration independent of particle size. Those experiments were repeated here and the agreement with those tests is excellent. 16 refs., 8 figs., 3 tabs

  18. Savannah River reactor process water heat exchanger tube structural integrity margin Task Number 92-005-1

    International Nuclear Information System (INIS)

    Mertz, G.E.; Barnes, D.M.; Sindelar, R.L.

    1992-02-01

    Twelve process water heat exchangers are designed to remove heat generated in the reactor tank. Each heat exchanger has approximately 9000, 1/2 inch diameter x 0.049 inches thick tubes. Minimum structural tubing requirements and the leak rate through postulated tubing defects are developed in this report A comparison of the structural requirements and the defect size calculated to produce leak rates of 0.5 lbs./day demonstrate adequate structural margins against gross tube rupture. Commercial nuclear experience with pressurized water reactor (PWR) steam generator plugging criteria are used for guidance in performing this analysis. It is important to note that the SRS reactors are low energy systems with normal operating pressures of 203 psig at 130 degree F while the PWR is a high energy system with operating pressures near 2200 psig at 600 degree F. Clearly the PVM steam generator has loadings which are more severe than the SRS heat exchangers. Consistent with the Regulatory Guide 1.121 criteria both wastage (wall thinning) and cracking are addressed. Structural limits on wall thinning and crack size are developed to preclude gross rupture. ASME Section XI criteria, with the factors of safety recommended by Regulatory Guide 1.121 are used to develop the allowable crack size criteria. Normal operating conditions (pressure, dead weight, and hydraulic drag) are considered with seismic and water hammer accident conditions. Both the wall thinning and crack size criteria are developed for the end-of-evaluation period. Allowances for corrosion, wear, or crack growth have not been included in this analysis Structurally, the tubing is over designed and can tolerate large defects with adequate margins against gross rupture. The structural margins of heat exchanger tubing are evident by contrasting the tubing's structural capacity, per the ASME Code, with its operating conditions/configuration

  19. Characterization of Sensitivity Encoded Silicon Photomultiplier (SeSP) with 1-Dimensional and 2-Dimensional Encoding for High Resolution PET/MR

    Science.gov (United States)

    Omidvari, Negar; Schulz, Volkmar

    2015-06-01

    This paper evaluates the performance of a new type of PET detectors called sensitivity encoded silicon photomultiplier (SeSP), which allows a direct coupling of small-pitch crystal arrays to the detector with a reduction in the number of readout channels. Four SeSP devices with two separate encoding schemes of 1D and 2D were investigated in this study. Furthermore, both encoding schemes were manufactured in two different sizes of 4 ×4 mm2 and 7. 73 ×7. 9 mm2, in order to investigate the effect of size on detector parameters. All devices were coupled to LYSO crystal arrays with 1 mm pitch size and 10 mm height, with optical isolation between crystals. The characterization was done for the key parameters of crystal-identification, energy resolution, and time resolution as a function of triggering threshold and over-voltage (OV). Position information was archived using the center of gravity (CoG) algorithm and a least squares approach (LSQA) in combination with a mean light matrix around the photo-peak. The positioning results proved the capability of all four SeSP devices in precisely identifying all crystals coupled to the sensors. Energy resolution was measured at different bias voltages, varying from 12% to 18% (FWHM) and paired coincidence time resolution (pCTR) of 384 ps to 1.1 ns was obtained for different SeSP devices at about 18 °C room temperature. However, the best time resolution was achieved at the highest over-voltage, resulting in a noise ratio of 99.08%.

  20. Substrate engineering for Ni-assisted growth of carbon nano-tubes

    Energy Technology Data Exchange (ETDEWEB)

    Kolahdouz, Z.; Kolahdouz, M. [Department of Electrical and Computer Engineering, Nano-electronic Laboratory, University of Tehran, Tehran (Iran, Islamic Republic of); Ghanbari, H. [Tarbiat Modarres University, Tehran (Iran, Islamic Republic of); Mohajerzadeh, S. [Department of Electrical and Computer Engineering, Nano-electronic Laboratory, University of Tehran, Tehran (Iran, Islamic Republic of); Naureen, S. [School of Information and Communication Technology, KTH (Royal Institute of Technology) Kista (Sweden); Radamson, H.H., E-mail: rad@kth.se [School of Information and Communication Technology, KTH (Royal Institute of Technology) Kista (Sweden)

    2012-10-01

    The growth of carbon multi-walled nano-tubes (MWCNTs) using metal catalyst (e.g. Ni, Co, and Fe) has been extensively investigated during the last decade. In general, the physical properties of CNTs depend on the type, quality and diameter of the tubes. One of the parameters which affects the diameter of a MWCNT is the size of the catalyst metal islands. Considering Ni as the metal catalyst, the formed silicide layer agglomerates (island formation) after a thermal treatment. One way to decrease the size of Ni islands is to apply SiGe as the base for the growth. In this study, different methods based on substrate engineering are proposed to change/control the MWCNT diameters. These include (i) well-controlled oxide openings containing Ni to miniaturize the metal island size, and (ii) growth on strained or partially relaxed SiGe layers for smaller Ni silicide islands.

  1. SCC analysis of Alloy 600 tubes from a retired steam generator

    Science.gov (United States)

    Hwang, Seong Sik; Kim, Hong Pyo

    2013-09-01

    Steam generators (SG) equipped with Alloy 600 tubes of a Korean nuclear power plants were replaced with a new one having Alloy 690 tubes in 1998 after 20 years of operation. To set up a guide line for an examination of the other SG tubes, a metallographic examination of the defected tubes was carried out. A destructive analysis on 71 tubes was addressed, and a relation among the stress corrosion crack (SCC) defect location, defect depth, and location of the sludge pile was obtained. Tubes extracted from the retired SG were transferred to a hot laboratory. Detailed nondestructive analysis examinations were taken again at the laboratory, and the tubes were then destructively examined. The types and sizes of the cracks were characterized. The location and depth of the SCC were evaluated in terms of the location and height of the sludge. Most axial cracks were in the sludge pile, whereas the circumferential ones were around the top of the tube sheet (TTS) or below the TTS. Average defect depth of the axial cracks was deeper than that of the circumferential ones. Axial cracks at tube support plate (TSP) seem to be related with corrosion/sludge in crevice like at the TTS region. Circumferential cracks at TSP seem to be caused by tube denting at the upper part of the TSP. Tubes not having clear ECT signals for quantifying an ECT data-base. Tubes having no ECT signal. Tubes with a large ECT signal. Tubes with various types and sizes of flaws (primary water stress corrosion cracking (PWSCC), outside diameter stress corrosion cracking (ODSCC), Pit). Tubes with distinct PWSCC or ODSCC. Tubes were extracted from the RSG based on the field ECT with the criteria, and transferred to a hot laboratory at the Korea Atomic Energy Research Institute (KAERI) for destructive examination. A comprehensive ECT inspection was performed again at the hot laboratory to confirm the location of the cracks obtained from a field inspection. These exact locations of the defects were marked on the

  2. Surgeon Design Interface for Patient-Specific Concentric Tube Robots.

    Science.gov (United States)

    Morimoto, Tania K; Greer, Joseph D; Hsieh, Michael H; Okamura, Allison M

    2016-06-01

    Concentric tube robots have potential for use in a wide variety of surgical procedures due to their small size, dexterity, and ability to move in highly curved paths. Unlike most existing clinical robots, the design of these robots can be developed and manufactured on a patient- and procedure-specific basis. The design of concentric tube robots typically requires significant computation and optimization, and it remains unclear how the surgeon should be involved. We propose to use a virtual reality-based design environment for surgeons to easily and intuitively visualize and design a set of concentric tube robots for a specific patient and procedure. In this paper, we describe a novel patient-specific design process in the context of the virtual reality interface. We also show a resulting concentric tube robot design, created by a pediatric urologist to access a kidney stone in a pediatric patient.

  3. Fuel cladding tube and fuel rod for BWR type reactor

    International Nuclear Information System (INIS)

    Urata, Megumu; Mitani, Shinji.

    1995-01-01

    A fuel cladding tube has grooves fabricated, on the surface thereof, with a predetermined difference between crest and bottom (depth of the groove) in the circumferential direction. The cross sectional shape thereof is sinusoidal. The distribution of the grain size of iron crud particles in coolants is within a range about from 2μm to 12μm. If the surface roughness of the fuel cladding tube (depth of the groove) is determined greater than 1.6μm and less than 12.5, iron cruds in coolants can be positively deposited on the surface of the fuel cladding tube. In addition, once deposited iron cruds can be prevented from peeling from the surface of the fuel cladding tube. With such procedures, iron cruds deposited and radioactivated on the fuel cladding tube can be prevented from peeling, to prevent and reduce the increase of radiation dose on the surface of the pipelines without providing any additional device. (I.N.)

  4. Viscosity measurement in the capillary tube viscometer under unsteady flow

    International Nuclear Information System (INIS)

    Park, Heung Jun; Yoo, Sang Sin; Suh, Sang Ho

    2000-01-01

    The objective of the present study is to develop a new device that the viscous characteristics of fluids are determined by applying the unsteady flow concept to the traditional capillary tube viscometer. The capillary tube viscometer consists of a small cylindrical reservoir, capillary tube, a load cell system that measures the mass flow rate, interfaces, and computer. Due to the small size of the reservoir the height of liquid in the reservoir decreases as soon as the liquid in the reservoir drains out through the capillary and the mass flow rate in the capillary decreases as the hydrostatic pressure in the reservoir decreases resulting in a decrease of the shear rate in the capillary tube. The instantaneous shear rate and driving force in the capillary tube are determined by measuring the mass flow rate through the capillary, and the fluid viscosity is determined from the measured flow rate and the driving force

  5. The Strip Silicon Photo-Multiplier: An innovation for enhanced time and position measurement

    Energy Technology Data Exchange (ETDEWEB)

    Doroud, K., E-mail: Katayoun.Doroud@cern.ch [CERN, Geneva (Switzerland); Williams, M.C.S. [CERN, Geneva (Switzerland); INFN, Bologna (Italy); Yamamoto, K. [Solid State Division, Hamamatsu Photonics K.K., Hamamatsu (Japan)

    2017-05-01

    There is considerable R&D concerning precise time measurement from a variety of detectors, and in particular for the Silicon PhotoMultiplier (SiPM). In this paper we discuss a new geometry for the SiPM in the form of a strip. A strip can be read out at both end, with each end coupled to an individual TDC (time to digital converter). The time difference is related to the position of the firing SPAD along the length of the strip, while the average of the two times gives the time of the hit. Results from the testing of the first prototype Strip SiPMs are presented in this paper.

  6. Rac1 controls epithelial tube length through the apical secretion and polarity pathways

    Directory of Open Access Journals (Sweden)

    Kévin Sollier

    2016-01-01

    Full Text Available The morphometric parameters of epithelial tubes are critical to the physiology and homeostasis of most organs. In addition, many human diseases are associated with tube-size defects. Here, we show that Rac1 limits epithelial tube elongation in the developing fly trachea by promoting Rab5-dependent endocytosis of the apical determinant Crumbs. Rac1 is also involved in a positive feedback loop with the septate junction protein Coracle. Thereby, Rac1 precludes paracellular diffusion and contributes to the septate junction-dependent secretion of the chitin-modifying enzymes Vermiform and Serpentine, which restrict epithelial tube length independently of Crumbs. Thus, Rac1 is a critical component of two important pathways controlling epithelial tube morphogenesis.

  7. A sampling ultra-high-speed streak camera based on the use of a unique photomultiplier

    International Nuclear Information System (INIS)

    Marode, Emmanuel

    An apparatus reproducing the ''streak'' mode of a high-speed camera is proposed for the case of a slit AB whose variations in luminosity are repetitive. A photomultiplier, analysing the object AB point by point, and a still camera, photographing a slit fixed on the oscilloscope screen parallel to the sweep direction are placed on a mobile platform P. The movement of P assures a time-resolved analysis of AB. The resolution is of the order of 2.10 -9 s, and can be improved [fr

  8. Preparation of metallic uranium tubes; Elaboration des tubes d'uranium metallique

    Energy Technology Data Exchange (ETDEWEB)

    Lerouge, G; Decours, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The production furnace is an induction heated vacuum furnace having a capacity at the moment of 250 kg. Previously the crucible was heated by the inductor, the mould being outside the inductor. The tubes thus produced contained cavities, the alloy structure was fine; this was cold-mould casting, At the moment the top of the moulds are pre-heated, this is the so called hot-mould casting. This method has the advantage of eliminating the cavities but leads to a less fine microstructure. The alloy used for the 18 x 40 mm and 23 x 43 mm tubes is U-Mo (1.1 per cent). Since the moulds are now heated at the top, the solidification of the metal is very slow in this zone leading to a pronounced {gamma} grain, whereas towards the base the faster cooling leads to a smaller {gamma} grain. The {gamma} structure depends essentially on the solidification rate and on the time spent in this zone. In order to obtain a fine and homogeneous grain along the whole length of the tube, a controlled cooling treatment is effected. It consists in heating the uranium tubes in the {gamma} place and then in cooling them at a rate of between 20 and 50 deg C/mm down to 400 deg C. The 77 x 95 mm and 54 x 70 mm annular elements are at the moment being produced for research purposes. Their preparation is similar to that of 18 x 40 mm and 23 x 43 mm elements. The 77 x 95 mm tubes are at the moment made from U-Cr alloy (0.1 per cent); because of their size, their preparation is carried out in 600 mm diameter furnaces. (authors) [French] Le four d'elaboration est un four sous vide chaufffe par induction, dont la capacite actuelle est de 250 kg. Anterieurement le creuset seul etait chauffe par l'inducteur, les moules etaient hors de l'inducteur. Les tubes obtenus presentaient des cavites, la structure de l'alliage etait fine, c'etait la coulee en moules froids. Actuellement on prechauffe le haut des moules, c'est la coulee dite en moules chauds. Cette facon de faire a l'avantage de supprimer les cavites

  9. An assessment of in-tube flow boiling correlations for ammonia-water mixtures and their influence on heat exchanger size

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Modi, Anish; Jensen, Jonas Kjær

    2016-01-01

    on the required heat exchanger size (surface area)is investigated during numerical design. For this purpose, two case studies related to the use of the Kalina cycle are considered: a flue gas based heat recovery boiler for acombined cycle power plant and a hot oil based boiler for a solar thermal power plant......Heat transfer correlations for pool and flow boiling are indispensable for boiler design. The correlations for predicting in-tube flow boiling heat transfer ofammonia-water mixtures are not well established in the open literature and there is a lack of experimental measurements for the full range...... of composition, vapor qualities, fluid conditions, etc. This paper presents a comparison of several flow boiling heat transfer prediction methods (correlations) for ammonia-water mixtures. Firstly, these methods are reviewed and compared at various fluid conditions. The methods include: (1) the ammonia...

  10. A microfluidic tubing method and its application for controlled synthesis of polymeric nanoparticles.

    Science.gov (United States)

    Wang, Jidong; Chen, Wenwen; Sun, Jiashu; Liu, Chao; Yin, Qifang; Zhang, Lu; Xianyu, Yunlei; Shi, Xinghua; Hu, Guoqing; Jiang, Xingyu

    2014-05-21

    This report describes a straightforward but robust tubing method for connecting polydimethylsiloxane (PDMS) microfluidic devices to external equipment. The interconnection is irreversible and can sustain a pressure of up to 4.5 MPa that is characterized experimentally and theoretically. To demonstrate applications of this high-pressure tubing technique, we fabricate a semicircular microfluidic channel to implement a high-throughput, size-controlled synthesis of poly(lactic-co-glycolic acid) (PLGA) nanoparticles ranging from 55 to 135 nm in diameter. This microfluidic device allows for a total flow rate of 410 mL h(-1), resulting in enhanced convective mixing which can be utilized to precipitate small size nanoparticles with a good dispersion. We expect that this tubing technique would be widely used in microfluidic chips for nanoparticle synthesis, cell manipulation, and potentially nanofluidic applications.

  11. Development of a geometry-compensated neutron time-of-flight detector for ICF applications with approximately 200 ps time response

    International Nuclear Information System (INIS)

    Murphy, T.J.; Lerche, R.A.

    1992-01-01

    Current-mode neutron time-of-flight detectors are used on Nova for neutron yield, ion temperature, and neutron emission time measurements. Currently used detectors are limited by the time response of the microchannel plate photomultiplier tubes used with the scintillators, scintillator decay time, scintillator thickness, and oscilloscope response time. A change in the geometry of the scintillator allows one to take advantage of the increased time resolution made possible by more advanced transient recorders and microchannel plate photomultiplier tubes. A prototype detector has been designed to incorporate these changes, and could potentially yield time resolution of less than 150 ps. Experimental results are presented demonstrating an ion temperature measurement of a direct-drive DT implosion on Nova

  12. Optimization of the detector and associated electronics used for high-resolution liquid-scintillation alpha spectroscopy

    International Nuclear Information System (INIS)

    Thorngate, J.H.; Christian, D.J.

    1977-01-01

    The performance of various reflector geometries, light coupling liquids, photomultiplier tubes, preamplifiers and linear amplifiers were compared and the configuration found that optimized the combination of pulse-height resolution and pulse-shape discrimination. The best combination used a hemispherical reflector, filled with distilled water, coupled to an 8575 photomultiplier tube, the output of which was conditioned by a special integrating preamplifier and a double-delay-line linear amplifier. Careful choice of the scintillator, sample preparation procedures, and electronic apparatus can produce liquid-scintillation alpha spectroscopy with a pulse-height resolution of 300 keV, or less, and, by using pulse-shape discrimination, background levels as low as 0.01 counts/min. (author)

  13. Scintillation counter, maximum gamma aspect

    International Nuclear Information System (INIS)

    Thumim, A.D.

    1975-01-01

    A scintillation counter, particularly for counting gamma ray photons, includes a massive lead radiation shield surrounding a sample-receiving zone. The shield is disassembleable into a plurality of segments to allow facile installation and removal of a photomultiplier tube assembly, the segments being so constructed as to prevent straight-line access of external radiation through the shield into radiation-responsive areas. Provisions are made for accurately aligning the photomultiplier tube with respect to one or more sample-transmitting bores extending through the shield to the sample receiving zone. A sample elevator, used in transporting samples into the zone, is designed to provide a maximum gamma-receiving aspect to maximize the gamma detecting efficiency. (U.S.)

  14. Scintillation counter, segmented shield

    International Nuclear Information System (INIS)

    Olson, R.E.; Thumim, A.D.

    1975-01-01

    A scintillation counter, particularly for counting gamma ray photons, includes a massive lead radiation shield surrounding a sample-receiving zone. The shield is disassembleable into a plurality of segments to allow facile installation and removal of a photomultiplier tube assembly, the segments being so constructed as to prevent straight-line access of external radiation through the shield into radiation-responsive areas. Provisions are made for accurately aligning the photomultiplier tube with respect to one or more sample-transmitting bores extending through the shield to the sample receiving zone. A sample elevator, used in transporting samples into the zone, is designed to provide a maximum gamma-receiving aspect to maximize the gamma detecting efficiency. (U.S.)

  15. A TDC for the characterization of KM3NeT PMTs

    Energy Technology Data Exchange (ETDEWEB)

    Zwart, A.; Heine, E.; Hogenbirk, J.; Jansweijer, P.; Kieft, G.; Mos, S. [Nikhef, Science Park 105,1098 XG Amsterdam (Netherlands); Wolf, E. de, E-mail: e.dewolf@nikhef.nl [Nikhef, Science Park 105,1098 XG Amsterdam (Netherlands); University of Amsterdam, Science Park 904,1098 XH Amsterdam (Netherlands)

    2013-10-11

    The optical modules of the future KM3NeT neutrino telescope will contain many photomultiplier tubes with a diameter of about 3 in. In order to characterize these photomultiplier tubes, a 16 channel Time-Over-Threshold TDC with a GigaBit Ethernet communication channel has been built in an Altera StratixIV evaluation board. The TDC data is packed in UDP packages and sent to the host PC. Control is implemented using I{sup 2}C command packages send to the TDC by the host PC. After execution of I{sup 2}C commands a result package is send back to the host. We will present the TDC setup and first results.

  16. The sensitivity calibration of the ultra-fast quench plastic scintillation detector for D-T neutrons

    International Nuclear Information System (INIS)

    Tang Changhuan; Yan Meiqiong; Xie Chaomei

    1998-01-01

    The authors introduce some characteristics of ultra-fast quench plastic scintillation detectors. When the detectors are composed of different scintillators, light guides and microchannel plate photomultiplier tube (MCP-PMT), their sensitivities to D-T neutrons are calibrated by a pulse neutron tube with a neutron pulse width about 10 ns

  17. Thermoluminescence dosimeter reader

    International Nuclear Information System (INIS)

    Robertson, M.E.A.; Marshall, J.; Brabants, J.A.P.; Davies, M.E.

    1975-01-01

    An electric circuit arrangement is described including a photomultiplier tube and a high voltage source therefor also includes a feedback loop from the output of the tube to the high voltage source, and loop providing automatic gain stabilization for the tube. The arrangement is used in a dosimeter reader to provide sensitivity correction for the reader each time the reader is to be used

  18. Tube holding system

    International Nuclear Information System (INIS)

    Cunningham, R.C.

    1978-01-01

    A tube holding rig is described for the lateral support of tubes arranged in tight parcels in a heat exchanger. This tube holding rig includes not less than two tube supporting assemblies, with a space between them, located crosswise with respect to the tubes, each supporting assembly comprising a first set of parallel components in contact with the tubes, whilst a second set of components is also in contact with the tubes. These two sets of parts together define apertures through which the tubes pass [fr

  19. Investigation of FIV Characteristics on a Coaxial Double-tube Structure

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kee Nam; Kim, Yong Wan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Sang Chul [ABLEMAX Co., Seoul (Korea, Republic of)

    2009-10-15

    A Very High Temperature Gas Cooled Reactor (VHTR) has been selected as a high energy heat source of the order of 950 .deg. C for nuclear hydrogen generation, which can produce hydrogen from water or natural gas. A primary hot gas duct (HGD) as a coaxial double-tube type cross vessel is a key component connecting a reactor pressure vessel and an intermediate heat exchanger in the VHTR. In this study, a structural sizing methodology for the primary HGD of the VHTR is suggested in order to modulate a flow-induced vibration (FIV). And as an example, a structural sizing of the horizontal HGD with a coaxial double-tube structure was carried out using the suggested method. These activities include a decision of the geometric dimensions, a selection of the material, and an evaluation of the strength of the coaxial double-tube type cross vessel components. Also in order to compare the FIV characteristics of the proposed design cases, a fluid-structure interaction (FSI) analysis was carried out using the ADINA code.

  20. The rheological characterisation of non-newtonian slurries using a novel balanced beam tube viscometer

    International Nuclear Information System (INIS)

    Slatter, P.T.

    1986-09-01

    The novel Balanced Beam Tube Viscometer (BBTV), developed at the University of Cape Town, has been further developed and refined. Extensive work has been done in the following areas: (i) The effective length of BBTV tubes. (ii) Interpretation of the data obtained using the BBTV in both the laminar and turbulent flow regimes. (iii) Comparison with the rotary type viscometer. Kaolin clay and uranium tailings, slimes and slurries of different particle size range and concentration have been successfully characterised by yield-pseudoplastic rheologies using the BBTV. The BBTV is in fact a miniature pipeline and it has been shown that it is capable of producing valid turbulent flow data and indicating the laminar/turbulent transition region in the two tube sizes

  1. HF electronic tubes. Technologies, grid tubes and klystrons

    International Nuclear Information System (INIS)

    Lemoine, Th.

    2009-01-01

    This article gives an overview of the basic technologies of electronic tubes: cathodes, electronic optics, vacuum and high voltage. Then the grid tubes, klystrons and inductive output tubes (IOT) are introduced. Content: 1 - context and classification; 2 - electronic tube technologies: cathodes, electronic optics, magnetic confinement (linear tubes), periodic permanent magnet (PPM) focussing, collectors, depressed collectors; 3 - vacuum technologies: vacuum quality, surface effects and interaction with electrostatic and RF fields, secondary emission, multipactor effect, thermo-electronic emission; 4 - grid tubes: operation of a triode, tetrodes, dynamic operation and classes of use, 'common grid' and 'common cathode' operation, ranges of utilisation and limitations, operation of a tetrode on unadjusted load, lifetime of a tetrode, uses of grid tubes; 5 - klystrons: operation, impact of space charge, multi-cavity klystrons, interaction efficiency, extended interaction klystrons, relation between interaction efficiency, perveance and efficiency, ranges of utilization and power limitations, multi-beam klystrons and sheet beam klystrons, operation on unadjusted load, klystron band pass and lifetime, uses; 6 - IOT: principle of operation, ranges of utilisation and limitations, interaction efficiency and depressed collector IOT, IOT lifetime and uses. (J.S.)

  2. A new repair criterion for steam generator tubes with axial cracks based on probabilistic integrity assessment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Su; Oh, Chang-Kyun [KEPCO Engineering and Construction Company, Inc., 269, Hyeoksin-ro, Gimcheon, Gyeongsangbuk-do 39660 (Korea, Republic of); Chang, Yoon-Suk, E-mail: yschang@khu.ac.kr [Department of Nuclear Engineering, College of Engineering, Kyung Hee University, 1732 Deokyoungdaero, Giheung, Yongin, Gyeonggi 446-701 (Korea, Republic of)

    2017-03-15

    Highlights: • Probabilistic assessment was performed for axially cracked steam generator tubes. • The threshold crack sizes were determined based on burst pressures of the tubes. • A new repair criterion was suggested as a function of operation time. - Abstract: Steam generator is one of the major components in a nuclear power plant, and it consists of thousands of thin-walled tubes. The operating record of the steam generators has indicated that a number of axial cracks due to stress corrosion have been frequently detected in the tubes. Since the tubes are closely related to the safety and also the efficiency of a nuclear power plant, an establishment of the appropriate repair criterion for the defected tubes and its applications are necessary. The objective of this paper is to develop an accurate repair criterion for the tubes with axial cracks. To do this, a thorough review is performed on the key parameters affecting the tube integrity, and then the probabilistic integrity assessment is carried out by considering the various uncertainties. In addition, the sizes of critical crack are determined by comparing the burst pressure of the cracked tube with the required performance criterion. Based on this result, the new repair criterion for the axially cracked tubes is defined from the reasonably conservative value such that the required performance criterion in terms of the burst pressure is able to be met during the next operating period.

  3. Accuracy of endoscopic intraoperative assessment of urologic stone size.

    Science.gov (United States)

    Patel, Nishant; Chew, Ben; Knudsen, Bodo; Lipkin, Michael; Wenzler, David; Sur, Roger L

    2014-05-01

    Endoscopic treatment of renal calculi relies on surgeon assessment of residual stone fragment size for either basket removal or for the passage of fragments postoperatively. We therefore sought to determine the accuracy of endoscopic assessment of renal calculi size. Between January and May 2013, five board-certified endourologists participated in an ex vivo artificial endoscopic simulation. A total of 10 stones (pebbles) were measured (mm) by nonparticipating urologist (N.D.P.) with electronic calibers and placed into separate labeled opaque test tubes to prevent visualization of the stones through the side of the tube. Endourologists were blinded to the actual size of the stones. A flexible digital ureteroscope with a 200-μm core sized laser fiber in the working channel as a size reference was placed through the ureteroscope into the test tube to estimate the stone size (mm). Accuracy was determined by obtaining the correlation coefficient (r) and constructing an Altman-Bland plot. Endourologists tended to overestimate actual stone size by a margin of 0.05 mm. The Pearson correlation coefficient was r=0.924, with a p-valuestones (stones (≥4 mm), r=0.911 vs r=0.666. Altman-bland plot analysis suggests that surgeons are able to accurately estimate stone size within a range of -1.8 to +1.9 mm. This ex vivo simulation study demonstrates that endoscopic assessment is reliable when assessing stone size. On average, there was a slight tendency to overestimate stone size by 0.05 mm. Most endourologists could visually estimate stone size within 2 mm of the actual size. These findings could be generalized to state that endourologists are accurately able to intraoperatively assess residual stone fragment size to guide decision making.

  4. Studies of a Next-Generation Silicon-Photomultiplier-Based Time-of-Flight PET/CT System.

    Science.gov (United States)

    Hsu, David F C; Ilan, Ezgi; Peterson, William T; Uribe, Jorge; Lubberink, Mark; Levin, Craig S

    2017-09-01

    This article presents system performance studies for the Discovery MI PET/CT system, a new time-of-flight system based on silicon photomultipliers. System performance and clinical imaging were compared between this next-generation system and other commercially available PET/CT and PET/MR systems, as well as between different reconstruction algorithms. Methods: Spatial resolution, sensitivity, noise-equivalent counting rate, scatter fraction, counting rate accuracy, and image quality were characterized with the National Electrical Manufacturers Association NU-2 2012 standards. Energy resolution and coincidence time resolution were measured. Tests were conducted independently on two Discovery MI scanners installed at Stanford University and Uppsala University, and the results were averaged. Back-to-back patient scans were also performed between the Discovery MI, Discovery 690 PET/CT, and SIGNA PET/MR systems. Clinical images were reconstructed using both ordered-subset expectation maximization and Q.Clear (block-sequential regularized expectation maximization with point-spread function modeling) and were examined qualitatively. Results: The averaged full widths at half maximum (FWHMs) of the radial/tangential/axial spatial resolution reconstructed with filtered backprojection at 1, 10, and 20 cm from the system center were, respectively, 4.10/4.19/4.48 mm, 5.47/4.49/6.01 mm, and 7.53/4.90/6.10 mm. The averaged sensitivity was 13.7 cps/kBq at the center of the field of view. The averaged peak noise-equivalent counting rate was 193.4 kcps at 21.9 kBq/mL, with a scatter fraction of 40.6%. The averaged contrast recovery coefficients for the image-quality phantom were 53.7, 64.0, 73.1, 82.7, 86.8, and 90.7 for the 10-, 13-, 17-, 22-, 28-, and 37-mm-diameter spheres, respectively. The average photopeak energy resolution was 9.40% FWHM, and the average coincidence time resolution was 375.4 ps FWHM. Clinical image comparisons between the PET/CT systems demonstrated the high

  5. 3D-Printed Broadband Dielectric Tube Terahertz Waveguide with Anti-Reflection Structure

    Science.gov (United States)

    Vogt, Dominik Walter; Leonhardt, Rainer

    2016-11-01

    We demonstrate broadband, low loss, and close-to-zero dispersion guidance of terahertz (THz) radiation in a dielectric tube with an anti-reflection structure (AR-tube waveguide) in the frequency range from 0.2 to 1.0 THz. The anti-reflection structure (ARS) consists of close-packed cones in a hexagonal lattice arranged on the outer surface of the tube cladding. The feature size of the ARS is in the order of the wavelength between 0.2 and 1.0 THz. The waveguides are fabricated with the versatile and cost efficient 3D-printing method. Terahertz time-domain spectroscopy (THz-TDS) measurements as well as 3D finite-difference time-domain simulations (FDTD) are performed to extensively characterize the AR-tube waveguides. Spectrograms, attenuation spectra, effective phase refractive indices, and the group-velocity dispersion parameters β 2 of the AR-tube waveguides are presented. Both the experimental and numerical results confirm the extended bandwidth and smaller group-velocity dispersion of the AR-tube waveguide compared to a low loss plain dielectric tube THz waveguide. The AR-tube waveguide prototypes show an attenuation spectrum close to the theoretical limit given by the infinite cladding tube waveguide.

  6. Application of probabilistic fracture mechanics to estimate the risk of rupture of PWR steam generator tubes

    International Nuclear Information System (INIS)

    Pitner, P.; Riffard, T.; Granger, B.

    1992-01-01

    This paper describes the COMPROMIS code developed by Electricite de France (EDF) to optimize the tube bundle maintenance of steam generators. The model, based on probabilistic fracture mechanics, makes it possible to quantify the influence of in-service inspections and maintenance work on the risk of an SG tube rupture, taking all significant parameters into account as random variables (initial defect size distribution, reliability of non-destructive detection and sizing, crack initiation and propagation, critical sizes, leak before risk of break, etc.). (authors). 5 refs., 8 figs., 3 tabs

  7. Characterization of Bubble Size Distributions within a Bubble Column

    Directory of Open Access Journals (Sweden)

    Shahrouz Mohagheghian

    2018-02-01

    Full Text Available The current study experimentally examines bubble size distribution (BSD within a bubble column and the associated characteristic length scales. Air was injected into a column of water via a single injection tube. The column diameter (63–102 mm, injection tube diameter (0.8–1.6 mm and superficial gas velocity (1.4–55 mm/s were varied. Large samples (up to 54,000 bubbles of bubble sizes measured via 2D imaging were used to produce probability density functions (PDFs. The PDFs were used to identify an alternative length scale termed the most frequent bubble size (dmf and defined as the peak in the PDF. This length scale as well as the traditional Sauter mean diameter were used to assess the sensitivity of the BSD to gas injection rate, injector tube diameter, injection tube angle and column diameter. The dmf was relatively insensitive to most variation, which indicates these bubbles are produced by the turbulent wakes. In addition, the current work examines higher order statistics (standard deviation, skewness and kurtosis and notes that there is evidence in support of using these statistics to quantify the influence of specific parameters on the flow-field as well as a potential indicator of regime transitions.

  8. Assembly Manual for the Berkeley Lab Cosmic Ray Detector

    International Nuclear Information System (INIS)

    Collier, Michael

    2002-01-01

    The Berkeley Lab Cosmic Ray Detector consists of 3 main components that must be prepared separately before they can be assembled. These components are the scintillator, circuit board, and casing. They are described in the main sections of this report, which may be completed in any order. Preparing the scintillator paddles involves several steps--cutting the scintillator material to the appropriate size and shape, preparing and attaching Lucite cookies (optional), polishing the edges, gluing the end to the photomultiplier tube (optional), and wrapping the scintillator. Since the detector has 2 paddles, each of the sections needs to be repeated for the other paddle

  9. High-intensity focused ultrasound ablation around the tubing.

    Science.gov (United States)

    Siu, Jun Yang; Liu, Chenhui; Zhou, Yufeng

    2017-01-01

    High-intensity focused ultrasound (HIFU) has been emerging as an effective and noninvasive modality in cancer treatment with very promising clinical results. However, a small vessel in the focal region could be ruptured, which is an important concern for the safety of HIFU ablation. In this study, lesion formation in the polyacrylamide gel phantom embedded with different tubing (inner diameters of 0.76 mm and 3 mm) at varied flow speeds (17-339 cm/s) by HIFU ablation was photographically recorded. Produced lesions have decreased length (~30%) but slightly increased width (~6%) in comparison to that without the embedded tubing. Meanwhile, bubble activities during the exposures were measured by passive cavitation detection (PCD) at the varied pulse repetition frequency (PRF, 10-30 Hz) and duty cycle (DC, 10%-20%) of the HIFU bursts. High DC and low flow speed were found to produce stronger bubble cavitation whereas no significant influence of the PRF. In addition, high-speed photography illustrated that the rupture of tubing was produced consistently after the first HIFU burst within 20 ms and then multiple bubbles would penetrate into the intraluminal space of tubing through the rupture site by the acoustic radiation force. Alignment of HIFU focus to the anterior surface, middle, and posterior surface of tubing led to different characteristics of vessel rupture and bubble introduction. In summary, HIFU-induced vessel rupture is possible as shown in this phantom study; produced lesion sizes and shapes are dependent on the focus alignment to the tubing, flow speed, and tubing properties; and bubble cavitation and the formation liquid jet may be one of the major mechanisms of tubing rupture as shown in the high-speed photography.

  10. Simulation and Analysis of ECT Signals Obtained at Tubesheet and Tube Expansion Area

    International Nuclear Information System (INIS)

    Song, Sung Chul; Lee, Yun Tai; Jung, Hee Sung; Shin, Young Kil

    2006-01-01

    Steam generator (SG) tubes are expanded inside tubesheet holes by using explosive or hydraulic methods to be fixed in a tubesheet. In the tube expansion process, it is important to minimize the crevice gap between expanded tube and tube sheet. In this paper, absolute and differential signals are computed by a numerical method for several different locations of tube expansion inside and outside a tubesheet and signal variations due to tubesheet, tube expansion and operating frequencies are observed. Results show that low frequency is good for detecting tubesheet location in both types of signals and high frequency is suitable for sizing of tube diameter as well as the detection of transition region. Also learned is that the absolute signal is good for measuring tube diameter, while the differential signal is good for locating the top of tubesheet and both ends of the transition region. In the case of mingled anomaly with tube expansion and tubesheet, low frequency inspection is found to be useful to analyze the mixed signal

  11. Amplitude-to-code converter for photomultipliers operating at high loadings

    International Nuclear Information System (INIS)

    Arkhangel'skij, B.V.; Evgrafov, G.N.; Pishchal'nikov, Yu.M.; Shuvalov, R.S.

    1982-01-01

    An 11-bit amplitude-to-code converter intended for the analysis of photomultiplier pulses under high loadings is described. To decrease the volume of digit electronics in the converter an analog memory on capacities is envisaged. A well-known bridge circuit with diodes on the main carriers is selected as a gating circuit. The gate control is realized by a switching circuit on fast-response transistors with boundary frequency of 1.2-1.5 GHz. The converter main characteristics are given, namely, maximum output signal amplitude equal to -1.5 V, minimum pulse selection duration of 10 ns, maximum number of counts at Usub(input)=-1.0 V and tsub(selection)=50 ns amounting to 1400, integral nonlinearity of +-0.1%, conversion temperature instability of 0.2%/deg C in the temperature range of (+10-+40) deg C, maximum time of data storage equal to 300 ms, conversion coefficient instability of 0.42 counts, number of channels in a unit CAMAC block equal to 12

  12. Ultrafast readout of scintillating fibres using upgraded position-sensitive photomultipliers

    CERN Document Server

    Agoritsas, V; Ditta, J; Dufournaud, J; Giacomich, R; Gorin, A M; Kuroda, K; Meshchanin, A P; Newsom, C R; Nurushev, S B; Önel, Y M; Okada, K; Oshima, N; Pauletta, G; Penzo, Aldo L; Rakhmatov, V E; Rykalin, V I; Salvato, G; Schiavon, R P; Sillou, D; Solovyanov, V L; Takeutchi, F; Vasilev, V; Vasilchenko, V G; Villari, A C C; Yamada, R; Yoshida, T; CERN. Geneva. Detector Research and Development Committee

    1991-01-01

    In view of the new possibilities for event detection and tracking in future multi-TeV collider experiments, we propose to improve the performance of position-sensitive photomultipliers and, with it, to realize an ultrafast readout device of scintillating fibres; this should play a unique role in the complex of a future vertex detector, owing to its inherent subnanosecond resolving time as well as its capability of an extremely high counting rate. Our proposal is first aimed at upgrading the position-sensitive PM, in particular its space and time resolutions. Full advantage of the new phototube will be demonstrated in its immediate application to a generic prototype of a scintillating-fibre detector. Our programme also includes intensive R&D on a real-time digitization of the multihit topology, which should provide an essential back-up to the vertex tracking at extremely high rates, one of the most difficult problems relevant to the expected high performance of the LHC.

  13. Photoelectron yields of scintillation counters with embedded wavelength-shifting fibers read out with silicon photomultipliers

    Science.gov (United States)

    Artikov, Akram; Baranov, Vladimir; Blazey, Gerald C.; Chen, Ningshun; Chokheli, Davit; Davydov, Yuri; Dukes, E. Craig; Dychkant, Alexsander; Ehrlich, Ralf; Francis, Kurt; Frank, M. J.; Glagolev, Vladimir; Group, Craig; Hansen, Sten; Magill, Stephen; Oksuzian, Yuri; Pla-Dalmau, Anna; Rubinov, Paul; Simonenko, Aleksandr; Song, Enhao; Stetzler, Steven; Wu, Yongyi; Uzunyan, Sergey; Zutshi, Vishnu

    2018-05-01

    Photoelectron yields of extruded scintillation counters with titanium dioxide coating and embedded wavelength shifting fibers read out by silicon photomultipliers have been measured at the Fermilab Test Beam Facility using 120 GeV protons. The yields were measured as a function of transverse, longitudinal, and angular positions for a variety of scintillator compositions, reflective coating mixtures, and fiber diameters. Timing performance was also studied. These studies were carried out by the Cosmic Ray Veto Group of the Mu2e collaboration as part of their R&D program.

  14. Report on the lunar ranging at McDonald Observatory. [spark gap configuration and photomultiplier system

    Science.gov (United States)

    Silverberg, E. C.

    1977-01-01

    Range measurements to an accuracy of 5 cm were achieved following improvements in the laser oscillator configuration and the photomultiplier system. Modifications to the laser include a redesigned pockel cell mount to eliminate stressing of the cell crystal; an improved electrically triggered spark gap for sharpening the electrical pulse; the use of a brewster plate in the cavity to eliminate pre-pulsing; improved alignment for the oscillator system; and increased cavity lifetime through thin film polarizer technology. Laser calibration data are presented along with the lunar laser operations log for June to October 1977.

  15. Characterization of Bubble Size Distributions within a Bubble Column

    OpenAIRE

    Shahrouz Mohagheghian; Brian R. Elbing

    2018-01-01

    The current study experimentally examines bubble size distribution (BSD) within a bubble column and the associated characteristic length scales. Air was injected into a column of water via a single injection tube. The column diameter (63–102 mm), injection tube diameter (0.8–1.6 mm) and superficial gas velocity (1.4–55 mm/s) were varied. Large samples (up to 54,000 bubbles) of bubble sizes measured via 2D imaging were used to produce probability density functions (PDFs). The PDFs were used to...

  16. Performance demonstration tests for eddy current inspection of steam generator tubing

    International Nuclear Information System (INIS)

    Kurtz, R.J.; Heasler, P.G.; Anderson, C.M.

    1996-05-01

    This report describes the methodology and results for development of performance demonstration tests for eddy current (ET) inspection of steam generator tubes. Statistical test design principles were used to develop the performance demonstration tests. Thresholds on ET system inspection performance were selected to ensure that field inspection systems would have a high probability of detecting and and correctly sizing tube degradation. The technical basis for the ET system performance thresholds is presented in detail. Statistical test design calculations for probability of detection and flaw sizing tests are described. A recommended performance demonstration test based on the design calculations is presented. A computer program for grading the probability of detection portion of the performance demonstration test is given

  17. Thermal characterization of rods, tubes and spheres using pulsed infrared thermography

    International Nuclear Information System (INIS)

    Apinaniz, E; Mendioroz, A; Madariaga, N; Oleaga, A; Celorrio, R; Salazar, A

    2008-01-01

    In this work we analyse the accuracy of an extension of the flash method to measure the thermal diffusivity of rods, tubes and spheres, which was recently proposed by the authors. We have performed measurements in a wide set of calibrated samples of different sizes and we have found that a lower limiting size of the radius can be established for the validity of the method. On the other hand, a procedure to retrieve the thermal conductivity of tubes, based on filling them with a contrast liquid (water), is proposed. Moreover, the thermal contact resistance between the two layers of coated cylinders is also obtained. Measurements on calibrated samples confirm the validity of the two latest methods

  18. Performance demonstration tests for eddy current inspection of steam generator tubing

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, R.J.; Heasler, P.G.; Anderson, C.M.

    1996-05-01

    This report describes the methodology and results for development of performance demonstration tests for eddy current (ET) inspection of steam generator tubes. Statistical test design principles were used to develop the performance demonstration tests. Thresholds on ET system inspection performance were selected to ensure that field inspection systems would have a high probability of detecting and and correctly sizing tube degradation. The technical basis for the ET system performance thresholds is presented in detail. Statistical test design calculations for probability of detection and flaw sizing tests are described. A recommended performance demonstration test based on the design calculations is presented. A computer program for grading the probability of detection portion of the performance demonstration test is given.

  19. An integrated circuit/microsystem/nano-enhanced four species radiation sensor for inexpensive fissionable material detection

    Science.gov (United States)

    Waguespack, Randy Paul

    2011-12-01

    Small scale radiation detectors sensitive to alpha, beta, electromagnetic, neutron radiation are needed to combat the threat of nuclear terrorism and maintain national security. There are many types of radiation detectors on the market, and the type of detector chosen is usually determined by the type of particle to be detected. In the case of fissionable material, an ideal detector needs to detect all four types of radiation, which is not the focus of many detectors. For fissionable materials, the two main types of radiation that must be detected are gamma rays and neutrons. Our detector uses a glass or quartz scintillator doped with 10B nanoparticles to detect all four types of radiation particles. Boron-10 has a thermal neutron cross section of 3,840 barns. The interaction between the neutron and boron results in a secondary charge particle in the form of an alpha particle to be emitted, which is detectable by the scintillator. Radiation impinging on the scintillator matrix produces varying optical pulses dependent on the energy of the particles. The optical pulses are then detected by a photomultiplier (PM) tube, creating a current proportional to the energy of the particle. Current pulses from the PM tube are differentiated by on-chip pulse height spectroscopy, allowing for source discrimination. The pulse height circuitry has been fabricated with discrete circuits and designed into an integrated circuit package. The ability to replace traditional PM tubes with a smaller, less expensive photomultiplier will further reduce the size of the device and enhance the cost effectiveness and portability of the detector.

  20. Chest tube care in critically ill patient: A comprehensive review

    Directory of Open Access Journals (Sweden)

    Hanan Mohammed Mohammed

    2015-10-01

    Full Text Available Breathing is automatic. We don’t usually think too much about it unless we develop a problem. Lack of adequate ventilation and impairment of our respiratory system can quickly become life-threatening. There are many clinical conditions that may necessitate the use of chest tubes. When there is an accumulation of positive pressure in the chest cavity (where it should normally be negative pressure between pleurae, a patient will require chest drainage. Chest tubes may be inserted to drain body fluids or to facilitate the re-expansion of a lung. It is important for the clinician to determine the most appropriate tube size to use prior to intubation. The position of the chest tube is related to the function that the chest tube performs. When managing the care of patients who have chest tubes it is important to fully understand what to do in case problems arise. It is also important to be able to assess when the chest tube is ready to be discontinued. Nurses and other healthcare professionals who are responsible for the safe delivery of care should be knowledgeable about respiratory pathophysiology, signs of respiratory compromise, and the care and management of interventions that may be utilized to ensure adequate respiration.