WorldWideScience

Sample records for size conventions flaws

  1. Determination of Flaw Size from Thermographic Data

    Science.gov (United States)

    Winfree, William P.; Howell, Patricia A.; Zalameda, Joseph N.

    2014-01-01

    Conventional methods for reducing the pulsed thermographic responses of delaminations tend to overestimate the size of the flaw. Since the heat diffuses in the plane parallel to the surface, the resulting temperature profile over the flaw is larger than the flaw. A variational method is presented for reducing the thermographic data to produce an estimated size for the flaw that is much closer to the true size of the flaw. The size is determined from the spatial thermal response of the exterior surface above the flaw and a constraint on the length of the contour surrounding the flaw. The technique is applied to experimental data acquired on a flat bottom hole composite specimen.

  2. Reliably detectable flaw size for NDE methods that use calibration

    Science.gov (United States)

    Koshti, Ajay M.

    2017-04-01

    Probability of detection (POD) analysis is used in assessing reliably detectable flaw size in nondestructive evaluation (NDE). MIL-HDBK-1823 and associated mh18232 POD software gives most common methods of POD analysis. In this paper, POD analysis is applied to an NDE method, such as eddy current testing, where calibration is used. NDE calibration standards have known size artificial flaws such as electro-discharge machined (EDM) notches and flat bottom hole (FBH) reflectors which are used to set instrument sensitivity for detection of real flaws. Real flaws such as cracks and crack-like flaws are desired to be detected using these NDE methods. A reliably detectable crack size is required for safe life analysis of fracture critical parts. Therefore, it is important to correlate signal responses from real flaws with signal responses form artificial flaws used in calibration process to determine reliably detectable flaw size.

  3. Ultrasonic simulation studies for sizing of planar flaws in thick carbon steel welds

    International Nuclear Information System (INIS)

    Prakash, Alok

    2015-01-01

    Ultrasonic non-destructive testing typically involves detection of flaws that may affect the integrity of component under test. Once detected, the flaw is sized for its critical dimensions and its nature. The detection of flaw in the component by ultrasonic test is based on the principle of echo or reflection. Once the echo from a flaw is received, there are several approaches for analyzing the signal so that more and accurate information is obtained on the size of the flaw and its nature. The 6dB drop method is commonly used for sizing of flaws. This technique is based on determining the end points where the ultrasonic signal amplitude from the flaw drops to half of the peak amplitude. Though this method works well for large flaws whose size is larger than the beam width, it has a tendency to oversize the flaw which is smaller than the beam dimensions. In addition to beam divergence, flaw sizing also depends upon the orientation of the flaw with respect to incident sound beam. The paper describes the results of simulation studies on ultrasonic response from planar flaws of various orientations, their imaging and the methodology to be adopted for their accurate depth sizing. The paper also describes the experimental results to validate the flaw sizing approach

  4. Modeling the X-ray Process, and X-ray Flaw Size Parameter for POD Studies

    Science.gov (United States)

    Koshti, Ajay M.

    2014-01-01

    Nondestructive evaluation (NDE) method reliability can be determined by a statistical flaw detection study called probability of detection (POD) study. In many instances, the NDE flaw detectability is given as a flaw size such as crack length. The flaw is either a crack or behaving like a crack in terms of affecting the structural integrity of the material. An alternate approach is to use a more complex flaw size parameter. The X-ray flaw size parameter, given here, takes into account many setup and geometric factors. The flaw size parameter relates to X-ray image contrast and is intended to have a monotonic correlation with the POD. Some factors such as set-up parameters, including X-ray energy, exposure, detector sensitivity, and material type that are not accounted for in the flaw size parameter may be accounted for in the technique calibration and controlled to meet certain quality requirements. The proposed flaw size parameter and the computer application described here give an alternate approach to conduct the POD studies. Results of the POD study can be applied to reliably detect small flaws through better assessment of effect of interaction between various geometric parameters on the flaw detectability. Moreover, a contrast simulation algorithm for a simple part-source-detector geometry using calibration data is also provided for the POD estimation.

  5. A study on the measurement of flaw sizes by acoustical holography

    International Nuclear Information System (INIS)

    Yamamoto, M.; Ando, T.; Enami, K.; Yajima, M.; Fukui, S.

    1978-01-01

    As a means of evaluating the safety of flawed pressure vessels and other structures against fracture, fracture mechanics has come to be applied. For the application of fracture mechanics it is necessary to get information concerning the sizes and shapes of flaws. The ultrasonic flaw detection method which is widely used as a nondestructive inspection method cannot measure the sizes and shapes of flaws accurately. Considering that acoustical holography is an useful means for the measurement of flaws, we performed basic tests on this method and obtained the following results: (1) The measured values of artificial flaws (flat bottom drilled holes: 5 -- 36 mm) made on a steel plate with a thickness of 150 mm showed a good linear relation with their actual sizes and scatter in the measured values was +-3 -- 6 mm. (2) The measured values of fatigue cracks (length: 5 -- 57 mm) introduced into a steel plate with thickness of 150 mm also showed a good linear relation with their actual sizes and scatter in the measured values was +-3 mm. (3) It was found that acoustical holography can also be applied to heavy section cast steels. (4) The method of correcting distortion caused by curved surface was investigated by computer-aided simulation and it was considered that such distortion can be corrected by radial scanning of a transducer. (auth.)

  6. Evaluation of Effect by Internal Flow on Ultrasonic Testing Flaw Sizing in Piping

    International Nuclear Information System (INIS)

    Lee, Jeong Seok; Yoon, Byung Sik; Kim, Yong Sik

    2013-01-01

    In this study, the ultrasonic amplitude difference between air filled and water filled piping in nuclear power plant is compared by modeling approach. In this study, ultrasonic amplitude differences between air and water filled pipe are evaluated by modeling approach. Consequently, we propose the following results. The ultrasonic amplitude difference between air and water filled condition is measured by lower than 1 dB in modeling calculation. The flaw length sizing error between air and water filled condition shows same results based on 12 dB drop method even thought the amplitude difference is 1 dB. Most of the piping welds in nuclear power plants are inspected periodically using ultrasonic techniques to detect service-induced flaws such as IGSCC cracking. The inspection results provide information such as location, maximum amplitude response, ultrasonic length, height and finally the nature or flaw pattern. The founded flaw in ultrasonic inspection is accepted or rejected based on these information. Specially, the amplitude of flaw response is very important to estimate the flaw size. Currently the ultrasonic inspections in nuclear power plant components are performed by specific inspection procedure which describing inspection technique include inspection system, calibration methodology and flaw characterizing methodology. To perform ultrasonic inspection during in-service inspection, reference gain should be established before starting ultrasonic inspection by requirement of ASME code. This reference gain used as basic criteria to evaluate flaw sizing. Sometimes, a little difference in establishing reference gain between calibration and field condition can lead to deviation in flaw sizing. Due to this difference, the inspection result may cause flaw sizing error

  7. Statistical flaw strength distributions for glass fibres: Correlation between bundle test and AFM-derived flaw size density functions

    International Nuclear Information System (INIS)

    Foray, G.; Descamps-Mandine, A.; R’Mili, M.; Lamon, J.

    2012-01-01

    The present paper investigates glass fibre flaw size distributions. Two commercial fibre grades (HP and HD) mainly used in cement-based composite reinforcement were studied. Glass fibre fractography is a difficult and time consuming exercise, and thus is seldom carried out. An approach based on tensile tests on multifilament bundles and examination of the fibre surface by atomic force microscopy (AFM) was used. Bundles of more than 500 single filaments each were tested. Thus a statistically significant database of failure data was built up for the HP and HD glass fibres. Gaussian flaw distributions were derived from the filament tensile strength data or extracted from the AFM images. The two distributions were compared. Defect sizes computed from raw AFM images agreed reasonably well with those derived from tensile strength data. Finally, the pertinence of a Gaussian distribution was discussed. The alternative Pareto distribution provided a fair approximation when dealing with AFM flaw size.

  8. Flaw-size measurement in a weld samples by ultrasonic frequency analysis

    International Nuclear Information System (INIS)

    Adler, L.; Cook, K.V.; Whaley, H.L. Jr.; McClung, R.W.

    1975-01-01

    An ultrasonic frequency-analysis technique was developed and applies to characterize flaws in an 8-in. (203-mm) thick heavy-section steel weld specimen. The technique applies a multitransducer system. The spectrum of the received broad-band signal is frequency analyzed at two different receivers for each of the flaws. From the two spectra, the size and orientation of the flaw are determined by the use of an analytic model proposed earlier. (auth)

  9. Determination of Flaw Size and Depth From Temporal Evolution of Thermal Response

    Science.gov (United States)

    Winfree, William P.; Zalameda, Joseph N.; Cramer, Elliott; Howell, Patricia A.

    2015-01-01

    Simple methods for reducing the pulsed thermographic responses of flaws have tended to be based on either the spatial or temporal response. This independent assessment limits the accuracy of characterization. A variational approach is presented for reducing the thermographic data to produce an estimated size for a flaw that incorporates both the temporal and spatial response to improve the characterization. The size and depth are determined from both the temporal and spatial thermal response of the exterior surface above a flaw and constraints on the length of the contour surrounding the delamination. Examples of the application of the technique to simulation and experimental data acquired are presented to investigate the limitations of the technique.

  10. Ultrasonic signal processing for sizing under-clad flaws

    International Nuclear Information System (INIS)

    Shankar, R.; Paradiso, T.J.; Lane, S.S.; Quinn, J.R.

    1985-01-01

    Ultrasonic digital data were collected from underclad cracks in sample pressure vessel specimen blocks. These blocks were weld cladded under different processes to simulate actual conditions in US Pressure Water Reactors. Each crack was represented by a flaw-echo dynamic curve which is a plot of the transducer motion on the surface as a function of the ultrasonic response into the material. Crack depth sizing was performed by identifying in the dynamic curve the crack tip diffraction signals from the upper and lower tips. This paper describes the experimental procedure, digital signal processing methods used and algorithms developed for crack depth sizing

  11. Probabilistic Estimation of Critical Flaw Sizes in the Primary Structure Welds of the Ares I-X Launch Vehicle

    Science.gov (United States)

    Pai, Shantaram S.; Hoge, Peter A.; Patel, B. M.; Nagpal, Vinod K.

    2009-01-01

    The primary structure of the Ares I-X Upper Stage Simulator (USS) launch vehicle is constructed of welded mild steel plates. There is some concern over the possibility of structural failure due to welding flaws. It was considered critical to quantify the impact of uncertainties in residual stress, material porosity, applied loads, and material and crack growth properties on the reliability of the welds during its pre-flight and flight. A criterion--an existing maximum size crack at the weld toe must be smaller than the maximum allowable flaw size--was established to estimate the reliability of the welds. A spectrum of maximum allowable flaw sizes was developed for different possible combinations of all of the above listed variables by performing probabilistic crack growth analyses using the ANSYS finite element analysis code in conjunction with the NASGRO crack growth code. Two alternative methods were used to account for residual stresses: (1) The mean residual stress was assumed to be 41 ksi and a limit was set on the net section flow stress during crack propagation. The critical flaw size was determined by parametrically increasing the initial flaw size and detecting if this limit was exceeded during four complete flight cycles, and (2) The mean residual stress was assumed to be 49.6 ksi (the parent material s yield strength) and the net section flow stress limit was ignored. The critical flaw size was determined by parametrically increasing the initial flaw size and detecting if catastrophic crack growth occurred during four complete flight cycles. Both surface-crack models and through-crack models were utilized to characterize cracks in the weld toe.

  12. Microstructure, flaw tolerance, and reliability of Ce-TZP and Y-TZP ceramics

    International Nuclear Information System (INIS)

    Readey, M.J.; McCallen, C.L.

    1995-01-01

    Ce-TZP and Y-TZP ceramics were heat-treated for various times and temperatures in order to vary the microstructure. Flaw tolerance was investigated using the indentation-strength test. Reliability was quantified using conventional two-parameter Weibull statistics. Some Ce-TZP specimens were indented at slightly elevated temperatures where no transformation was observed. Results indicated that the Ce-TZP specimens were extremely flaw tolerant, and showed a relatively high Weibull modulus that scaled with both R-curve behavior and flaw tolerance. Y-TZP, on the other hand, with very little if any R-curve behavior or flaw tolerance, had a low Weibull modulus. The results also show that flaw history, i.e., whether or not a transformation zone exists along the wake of the crack, has a significant influence on strength. Strength was much less dependent on initial crack size when the crack had an associated transformation zone, whereas strength was highly dependent on cracks typical of natural processing defects. It is argued that the improvement in reliability, flaw tolerance, and dependence on flaw history are all ramifications of pronounced R-curve behavior

  13. Methods to establish flaw tolerances

    International Nuclear Information System (INIS)

    Varga, T.

    1978-01-01

    Three conventional methods used to establish flaw tolerances are compared with new approaches using fracture mechanics. The conventional methods are those based on (a) non-destructive testing methods; (b) fabrication and quality assurance experience; and (c) service and damage experience. Pre-requisites of fracture mechanics methods are outlined, and summaries given of linear elastic mechanics (LEFM) and elastoplastic fracture mechanics (EPFM). The latter includes discussion of C.O.D.(crack opening displacement), the J-integral and equivalent energy. Proposals are made for establishing flaw tolerances. (U.K.)

  14. Data analysis algorithms for flaw sizing based on eddy current rotating probe examination of steam generator tubes

    International Nuclear Information System (INIS)

    Bakhtiari, S.; Elmer, T.W.

    2009-01-01

    Computer-aided data analysis tools can help improve the efficiency and reliability of flaw sizing based on nondestructive examination data. They can further help produce more consistent results, which is important for both in-service inspection applications and for engineering assessments associated with steam generator tube integrity. Results of recent investigations at Argonne on the development of various algorithms for sizing of flaws in steam generator tubes based on eddy current rotating probe data are presented. The research was carried out as part of the activities under the International Steam Generator Tube Integrity Program (ISG-TIP) sponsored by the U.S. Nuclear Regulatory Commission. A computer-aided data analysis tool has been developed for off-line processing of eddy current inspection data. The main objectives of the work have been to a) allow all data processing stages to be performed under the same user interface, b) simplify modification and testing of signal processing and data analysis scripts, and c) allow independent evaluation of viable flaw sizing algorithms. The focus of most recent studies at Argonne has been on the processing of data acquired with the +Point probe, which is one of the more widely used eddy current rotating probes for steam generator tube examinations in the U.S. The probe employs a directional surface riding differential coil, which helps reduce the influence of tubing artifacts and in turn helps improve the signal-to-noise ratio. Various algorithms developed under the MATLAB environment for the conversion, segmentation, calibration, and analysis of data have been consolidated within a single user interface. Data acquired with a number of standard eddy current test equipment are automatically recognized and converted to a standard format for further processing. Because of its modular structure, the graphical user interface allows user-developed routines to be easily incorporated, modified, and tested independent of the

  15. Eddy Current Flaw Characterization Using Neural Networks

    International Nuclear Information System (INIS)

    Song, S. J.; Park, H. J.; Shin, Y. K.

    1998-01-01

    Determination of location, shape and size of a flaw from its eddy current testing signal is one of the fundamental issues in eddy current nondestructive evaluation of steam generator tubes. Here, we propose an approach to this problem; an inversion of eddy current flaw signal using neural networks trained by finite element model-based synthetic signatures. Total 216 eddy current signals from four different types of axisymmetric flaws in tubes are generated by finite element models of which the accuracy is experimentally validated. From each simulated signature, total 24 eddy current features are extracted and among them 13 features are finally selected for flaw characterization. Based on these features, probabilistic neural networks discriminate flaws into four different types according to the location and the shape, and successively back propagation neural networks determine the size parameters of the discriminated flaw

  16. A procedure to detect flaws inside large size marble blocks by ultrasound

    OpenAIRE

    Bramanti, Mauro; Bozzi, Edoardo

    1999-01-01

    In stone and marble industry there is considerable interest in the possibility of using ultrasound diagnostic techniques for non-destructive testing of large size blocks in order to detect internal flaws such as faults, cracks and fissures. In this paper some preliminary measurements are reported in order to acquire basic knowledge of the fundamental properties of ultrasound, such as propagation velocity and attenuation, in the media here considered. We then outline a particular diagnostic pr...

  17. A dynamic fatigue study of soda-lime silicate and borosilicate glasses using small scale indentation flaws

    International Nuclear Information System (INIS)

    Dabbs, T.P.; Lawn, B.R.; Kelly, P.L.

    1982-01-01

    The dynamic fatigue characteristics of two glasses, soda-lime silicate and borosilicate, in water have been studied using a controlled indentation flaw technique. It is argued that the indentation approach offers several advantages over more conventional fatigue testing procedures: (i) the reproducibility of data is relatively high, eliminating statistics as a basis of analysis: (ii) the flaw ultimately responsible for failure is well defined and may be conveniently characterised before and after (and during, if necessary) the strength test; (iii) via adjustment of the indentation load, the size of the flaw can be suitably predetermined. Particular attention is devoted to the third point because of the facility it provides for systematic investigation of the range of flaw sizes over which macroscopic crack behaviour remains applicable. The first part of the paper summarises the essential fracture mechanics theory of the extension of an indentation flaw to failure. In the next part of the paper the results of dynamic fatigue tests on glass rods in distilled water are described. Data are obtained for Vickers indentation loads in the range 0.05 to 100 N, corresponding to contact dimensions of 2 to 100 μm. Finally, the implications of the results in relation to the response of 'natural' flaws are discussed. (author)

  18. Flaw distribution development from vessel ISI data

    International Nuclear Information System (INIS)

    Foulds, J.R.; Kennedy, E.L.; Basin, S.L.; Rosinski, S.T.

    1991-01-01

    Previous attempts to develop flaw distributions for use in the structural integrity evaluation of pressurized water reactor (PWR) vessels have aimed at the estimation of a ''generic'' distribution applicable to all vessels. In contrast, this paper describes the analysis of vessel-specific in-service inspection (ISI) data for the development of a flaw distribution reliably representative of the condition of the particular vessel inspected. The application of the methodology may be extended to other vessels, but has been primarily developed for PWR reactor vessels. For this study, the flaw data analyzed included data obtained from three recently performed PWR vessel ISIs and from laboratory inspection of selected weldment sections of the Midland reactor vessel. The variability in both the character of the reviewed data (size range of flaws, number of flaws) and the UT (ultrasonic test) inspection system performance identified a need for analyzing the inspection results on a vessel-, or data set-specific basis. For this purpose, traditional histogram-based methods were inadequate, and a new methodology that can accept a very small number of flaws (typical of vessel-specific ISI results) and that includes consideration of inspection system flaw detection reliability, flaw sizing accuracy and flaw detection threshold, was developed. Results of the application of the methodology to each of the four PWR reactor vessel cases studied are presented and discussed

  19. Diagram Size vs. Layout Flaws: Understanding Quality Factors of UML Diagrams

    DEFF Research Database (Denmark)

    Störrle, Harald

    2016-01-01

    , though, is our third goal of extending our analysis aspects of diagram quality. Method: We improve our definition of diagram size and add a (provisional) definition of diagram quality as the number of topographic layout flaws. We apply these metrics on 60 diagrams of the five most commonly used types...... of UML diagram. We carefully analyze the structure of our diagram samples to ensure representativeness. We correlate diagram size and layout quality with modeler performance data obtained in previous experiments. The data set is the largest of its kind (n-156). Results: We replicate earlier findings......, and extend them to two new diagram types. We provide an improved definition of diagram size, and provide a definition of topographic layout quality, which is one more step towards a comprehensive definition of diagram quality as such. Both metrics are shown to be objectively applicable. We quantify...

  20. Evaluation of flaws in carbon steel piping. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Zahoor, A.; Gamble, R.M.; Mehta, H.S.; Yukawa, S.; Ranganath, S.

    1986-10-01

    The objective of this program was to develop flaw evaluation procedures and allowable flaw sizes for ferritic piping used in light water reactor (LWR) power generation facilities. The program results provide relevant ASME Code groups with the information necessary to define flaw evaluation procedures, allowable flaw sizes, and their associated bases for Section XI of the code. Because there are several possible flaw-related failure modes for ferritic piping over the LWR operating temperature range, three analysis methods were employed to develop the evaluation procedures. These include limit load analysis for plastic collapse, elastic plastic fracture mechanics (EPFM) analysis for ductile tearing, and linear elastic fracture mechanics (LEFM) analysis for non ductile crack extension. To ensure the appropriate analysis method is used in an evaluation, a step by step procedure also is provided to identify the relevant acceptance standard or procedure on a case by case basis. The tensile strength and toughness properties required to complete the flaw evaluation for any of the three analysis methods are included in the evaluation procedure. The flaw evaluation standards are provided in tabular form for the plastic collapse and ductile tearing modes, where the allowable part through flaw depth is defined as a function of load and flaw length. For non ductile crack extension, linear elastic fracture mechanics analysis methods, similar to those in Appendix A of Section XI, are defined. Evaluation flaw sizes and procedures are developed for both longitudinal and circumferential flaw orientations and normal/upset and emergency/faulted operating conditions. The tables are based on margins on load of 2.77 and 1.39 for circumferential flaws and 3.0 and 1.5 for longitudinal flaws for normal/upset and emergency/faulted conditions, respectively.

  1. Evaluation of flaws in carbon steel piping. Final report

    International Nuclear Information System (INIS)

    Zahoor, A.; Gamble, R.M.; Mehta, H.S.; Yukawa, S.; Ranganath, S.

    1986-10-01

    The objective of this program was to develop flaw evaluation procedures and allowable flaw sizes for ferritic piping used in light water reactor (LWR) power generation facilities. The program results provide relevant ASME Code groups with the information necessary to define flaw evaluation procedures, allowable flaw sizes, and their associated bases for Section XI of the code. Because there are several possible flaw-related failure modes for ferritic piping over the LWR operating temperature range, three analysis methods were employed to develop the evaluation procedures. These include limit load analysis for plastic collapse, elastic plastic fracture mechanics (EPFM) analysis for ductile tearing, and linear elastic fracture mechanics (LEFM) analysis for non ductile crack extension. To ensure the appropriate analysis method is used in an evaluation, a step by step procedure also is provided to identify the relevant acceptance standard or procedure on a case by case basis. The tensile strength and toughness properties required to complete the flaw evaluation for any of the three analysis methods are included in the evaluation procedure. The flaw evaluation standards are provided in tabular form for the plastic collapse and ductile tearing modes, where the allowable part through flaw depth is defined as a function of load and flaw length. For non ductile crack extension, linear elastic fracture mechanics analysis methods, similar to those in Appendix A of Section XI, are defined. Evaluation flaw sizes and procedures are developed for both longitudinal and circumferential flaw orientations and normal/upset and emergency/faulted operating conditions. The tables are based on margins on load of 2.77 and 1.39 for circumferential flaws and 3.0 and 1.5 for longitudinal flaws for normal/upset and emergency/faulted conditions, respectively

  2. Detection and Characterization of Flaws in Sprayed on Foam Insulation with Pulsed Terahertz Frequency Electromagnetic Waves

    Science.gov (United States)

    Winfree, William P.; Madaras, Eric I.

    2005-01-01

    The detection and repair of flaws such as voids and delaminations in the sprayed on foam insulation of the external tank reduces the probability of foam debris during shuttle ascent. The low density of sprayed on foam insulation along with it other physical properties makes detection of flaws difficult with conventional techniques. An emerging technology that has application for quantitative evaluation of flaws in the foam is pulsed electromagnetic waves at terahertz frequencies. The short wavelengths of these terahertz pulses make them ideal for imaging flaws in the foam. This paper examines the application of terahertz pulses for flaw detection in foam characteristic of the foam insulation of the external tank. Of particular interest is the detection of voids and delaminations, encapsulated in the foam or at the interface between the foam and a metal backing. The technique is shown to be capable of imaging small voids and delaminations through as much as 20 cm of foam. Methods for reducing the temporal responses of the terahertz pulses to improve flaw detection and yield quantitative characterizations of the size and location of the flaws are discussed.

  3. Nuclear reactor pressure vessel-specific flaw distribution development

    International Nuclear Information System (INIS)

    Rosinski, S.T.

    1992-01-01

    Vessel integrity predictions performed through fracture mechanics analysis of a pressurized thermal shock event have been shown to be significantly sensitive to the overall flaw distribution input. It has also been shown that modem vessel in-service inspection (ISI) results can be used for development of vessel flaw distribution(s) that are more representative of US vessels. This paper describes the development and application of a methodology to analyze ISI data for the purpose of flaw distribution determination. The resultant methodology considers detection reliability, flaw sizing accuracy, and flaw detection threshold in its application. Application of the methodology was then demonstrated using four recently acquired US PWR vessel inspection data sets. Throughout the program, new insight was obtained into several key inspection performance and vessel integrity prediction practice issues that will impact future vessel integrity evaluation. For example, the potential application of a vessel-specific flaw distribution now provides at least one method by which a vessel-specific reference flaw size applicable to pressure-temperature limit curves determination can be estimated. This paper will discuss the development and application of the methodology and the impact to future vessel integrity analyses

  4. Advances in flaw evaluation procedures and acceptance criteria for reactor piping

    International Nuclear Information System (INIS)

    Gamble, R.M.; Zahoor, A.; Norris, D.M.

    1986-01-01

    During the past several years, intergranular stress corrosion cracks (IGSCC) have been detected in stainless steel piping in boiling water reactors (BWRs) and have resulted in an increased number of flaw evaluations. To reduce the outage time associated with evaluating IGSCC, various research and ASME code groups have spent significant effort to provide utility personnel with efficient means to detect, classify, and size flaws, and to determine suitability for return to service for flawed stainless steel piping. One of the several nondestructive evaluation technologies that has received considerable attention is fracture mechanics, the discipline that considers the failure of flawed material. Fracture mechanics can be used to answer two key questions concerning return to service of flawed pipe: (a) what is the largest flaw size that can be returned to service and still maintain adequate safety margins at the applied loads, and (b) how much operating time remains before the crack reaches the largest allowable size? The purpose of this paper is to provide an overview of the recently developed ASME code Section XI flaw size evaluation procedure and acceptance criteria for stainless steel piping and their application by BWR owners to efficiently determine if flaws found by nondestructive examination are acceptable for continued service

  5. Advances in flaw evaluation procedures and acceptance criteria for reactor piping

    Energy Technology Data Exchange (ETDEWEB)

    Gamble, R.M.; Zahoor, A.; Norris, D.M.

    1986-01-01

    During the past several years, intergranular stress corrosion cracks (IGSCC) have been detected in stainless steel piping in boiling water reactors (BWRs) and have resulted in an increased number of flaw evaluations. To reduce the outage time associated with evaluating IGSCC, various research and ASME code groups have spent significant effort to provide utility personnel with efficient means to detect, classify, and size flaws, and to determine suitability for return to service for flawed stainless steel piping. One of the several nondestructive evaluation technologies that has received considerable attention is fracture mechanics, the discipline that considers the failure of flawed material. Fracture mechanics can be used to answer two key questions concerning return to service of flawed pipe: (a) what is the largest flaw size that can be returned to service and still maintain adequate safety margins at the applied loads, and (b) how much operating time remains before the crack reaches the largest allowable size. The purpose of this paper is to provide an overview of the recently developed ASME code Section XI flaw size evaluation procedure and acceptance criteria for stainless steel piping and their application by BWR owners to efficiently determine if flaws found by nondestructive examination are acceptable for continued service.

  6. Nuclear reactor pressure vessel flaw distribution development

    International Nuclear Information System (INIS)

    Kennedy, E.L.; Foulds, J.R.; Basin, S.L.

    1991-12-01

    Previous attempts to develop flaw distributions for probabilistic fracture mechanics analyses of pressurized water reactor (PWR) vessels have aimed at the estimation of a ''generic'' distribution applicable to all PWR vessels. In contrast, this report describes (1) a new flaw distribution development analytic methodology that can be applied to the analysis of vessel-specific inservice inspection (ISI) data, and (2) results of the application of the methodology to the analysis of flaw data for each vessel case (ISI data on three PWR vessels and laboratory inspection data on sections of the Midland reactor vessel). Results of this study show significant variation among the flaw distributions derived from the various data sets analyzed, strongly suggesting than a vessel-specific flaw distribution (for vessel integrity prediction under pressurized thermal shock) is preferred over a ''generic'' distribution. In addition, quantitative inspection system flaw sizing accuracy requirements have been identified for developing a flaw distribution from vessel ISI data. The new flaw data analysis methodology also permits quantifying the reliability of the flaw distribution estimate. Included in the report are identified needs for further development of several aspects of ISI data acquisition and vessel integrity prediction practice

  7. A time-domain synthetic aperture ultrasound imaging method for material flaw quantification with validations on small-scale artificial and natural flaws.

    Science.gov (United States)

    Guan, Xuefei; He, Jingjing; Rasselkorde, El Mahjoub

    2015-02-01

    A direct time-domain reconstruction and sizing method of synthetic aperture focusing technique (SAFT) is developed to improve the spatial resolution and sizing accuracy for phased-array ultrasonic inspections. The basic idea of the reconstruction algorithm is to coherently superimpose multiple A-scan measurements, incorporating the phase information of the sampling points. The algorithm involves data mapping and in-phase summation according to time-of-flight (TOF). Data mapping refers to the process of placing each of the sampling points to a two-/three-dimensional grid that represents the geometry model of the object being inspected. The value for each of the cells of the grid is a summation of all sampling points mapped into the cell. A sizing method based on the concept of 6 dB-drop is proposed to characterize the flaw boundary. The extents, orientation and the shape of the flaw can then be inferred to provide more information for life assessment calculations. Lab experiments are performed using a 10 MHz phased-array ultrasonic transducer to collect data from a cylinder material block with closely spaced artificial flaws and from a material block with a natural flaw. The developed method is used to process the experimental data to characterize the flaws. Using the developed method, the improvement of spatial resolution is observed. Results indicate that four closely spaced 0.794 mm-diameter flat-bottomed holes are clearly identified, and the quantification of size and orientation of the natural flaw is very close to the actual measurement made from digital microscopy after cutting the testing piece apart. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Methodology for inferring initial flaw distribution

    International Nuclear Information System (INIS)

    Jouris, G.M.; Shaffer, D.H.

    1980-01-01

    It has been common practice in both deterministic and probabilistic assessment of the integrity of a pressure vessel to assume the presence of a rather large flaw (usually 1/4 the thickness of the vessel wall) in the belt-line region. Although it is highly unlikely that such a large flaw would be present, the assumption is adopted in order to be conservative. A more realistic approach, which can be incorporated in the probabilistic analysis of integrity, is to characterize the depth of a flaw as a random variable and thus allow the probabilities associated with the presence of various size flaws to be reflected in the final estimated probability of vessel failure. This is precisely the motivation for developing the methodology to obtain the distribution of initial flaw depth, which is presented in this paper. It should be mentioned that the methodology developed here is not an end in itself but rather provides an input distribution to be used in a comprehensive integrity assessment. (orig.)

  9. A study on the dimensioning of flaws by acoustical holography

    International Nuclear Information System (INIS)

    Yamamoto, Michio; Ando, Tomozumi; Enami, Koji; Yajima, Minoru; Fukui, Shigetaka.

    1978-01-01

    As a means of evaluating the safety of flawed pressure vessels and other structures against fracture, fracture mechanics has come to be applied. For the application of fracture mechanics it is necessary to get information concerning the sizes and shapes of flaws. The ultrasonic flaw detection method that is widely used as a nondestructive inspection method cannot measure the sizes and shapes of flaws accurately. Considering that acoustical holography is an useful means for the dimensioning of flaws, we performed basic tests on this method and obtained the following results: (1) The measured values of artificial flaws (flat bottom drilled holes: 5 - 36 mm) made on a steel plate of 150 mm thick showed a good linear relation with their actual sizes and scatter in the measured values was +-3 - 6 mm. (2) The measured values of fatigue cracks (length: 5 - 57 mm) introduced into a steel plate of 150 mm thick also showed a good linear relation with their actual sizes and scatter in the measured values was +-3 mm. (3) It was found that acoustical holography can also be applied to heavy section cast steels. (4) The method of correcting distortion caused by curved surface was investigated by computer-aided simulation and it was considered that such distortion can be corrected by radial scanning of a transducer. (author)

  10. A surface flaw sizing study by time-of-flight ultrasonic technique

    International Nuclear Information System (INIS)

    Lamy, C.A.

    1990-07-01

    In this work, sizing of inclined slits and surface cracks in ferritic steel using the ultrasonic time-of-flight technique was studied. The surface cracks were vertical and inclined, nut the slits were only inclined. It was surface Rayleigh wave that was converted to shear wave mode in the material. The specimens with surface crack were submitted to a three four point loading fracture mechanics tests, so that the region of the crack tip became under an increasing tensile stress. Thus, the ultrasonic crack sizing could be compared to the material stress intensity factor (K) of the material for different loadings. Results show that the greater the slope and/or lenght of the slits the greater its subsizing. Vertical cracks int he parent metal are reliably and accuratly sized; in the weld the same remark held if one increases the gain of ultrasonic flaw detector to compensate for the weld attenuation phenomenon. Sizing of inclined cracks in the parent metal shows the same trends of the inclined slits, differing only in slopes over 30 sup(0) where the sizing in surface cracks is no longer reliable. A new appraisal procedure here proposed made reliable these results. The techniques employed in this work lead to reliable and accurate results for sizing of different slits and cracks. It should be noted however that good results are only obtained if a tensile stress state exists in the neighbourhood of the c rack tip. (author)

  11. Improved criteria for the repair of fabrication flaws

    International Nuclear Information System (INIS)

    Doctor, S.R.; Schuster, G.J.; Simonen, F.A.

    2003-01-01

    Section III of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code for nuclear power plant components requires radiographic examinations (RT) of welds and requires repairs for RT indications that exceed code acceptable sizes. This paper describes research that has generated data on welding flaws, which indicated that the largest flaws occur in repaired welds. The fabrication flaws were detected in material removed from cancelled nuclear power plants using high sensitivity Nondestructive Examination (NDE) and validated by complementary NDE and destructive testing. Evidence suggests that repairs are often for small and benign RT indications at locations buried within the vessel or pipe wall. Probabilistic fracture mechanics calculations are described in this paper to predict the increases in vessel failure probabilities caused by the repair-induced flaws. Calculations address failures of embrittled vessel welds for pressurized thermal shock (PTS) transients. In this case small flaws, which are relatively common, can cause brittle fracture, such that the rarely encountered repair flaws of large sizes gave only modestly increased failure probabilities. The paper recommends the use of more discriminating ultrasonic examinations in place of RT examinations along with repair criteria based on a fitness-for-purpose approach that minimize the number of unjustified repairs. (author)

  12. Estimating probable flaw distributions in PWR steam generator tubes

    International Nuclear Information System (INIS)

    Gorman, J.A.; Turner, A.P.L.

    1997-01-01

    This paper describes methods for estimating the number and size distributions of flaws of various types in PWR steam generator tubes. These estimates are needed when calculating the probable primary to secondary leakage through steam generator tubes under postulated accidents such as severe core accidents and steam line breaks. The paper describes methods for two types of predictions: (1) the numbers of tubes with detectable flaws of various types as a function of time, and (2) the distributions in size of these flaws. Results are provided for hypothetical severely affected, moderately affected and lightly affected units. Discussion is provided regarding uncertainties and assumptions in the data and analyses

  13. PWR vessel flaw distribution development

    International Nuclear Information System (INIS)

    Rosinski, S.T.; Kennedy, E.L.; Foulds, J.R.; Kinsman, K.M.

    1990-01-01

    This paper reports on PWR pressure vessels which operate under NRC rules and regulatory guides intended to prevent failure of the vessels. Plants failing to meet the operating criteria specified under these rules and regulations are required to analytically demonstrate fitness for service in order to continue operation. The initial flaw size or distribution of initial vessel flaws is a key input to the required vessel integrity analyses. However, the flaw distribution assumed in the development of the NRC Regulations and recommended for the plant specific analyses is potentially over-conservative. This is because the distribution is based on the limited amount of vessel inspection data available at the time the criteria were being developed and does not take full advantage of the more recent and reliable domestic vessel inspection results. The U.S. Department of Energy is funding an effort through Sandia National Laboratories to investigate the possibility of developing a new flaw distribution based on the increased amount and improved reliability of domestic vessel inspection data. Results of Phase I of the program indicate that state-of-the-art NDE systems' capabilities are sufficient for development of a new flaw distribution that could ultimately provide life extension benefits over the presently required operating practice

  14. Irradiation effects and the duplication of detected flaws in service

    International Nuclear Information System (INIS)

    Mager, T.R.

    1976-01-01

    ASME Code procedure for evaluating the acceptability of flaws detected during in-service inspection is revised. Critical crack size for instability is proposed as criteria for detected flaws in operating plants

  15. Ductile fracture of cylindrical vessels containing a large flaw

    Science.gov (United States)

    Erdogan, F.; Irwin, G. R.; Ratwani, M.

    1976-01-01

    The fracture process in pressurized cylindrical vessels containing a relatively large flaw is considered. The flaw is assumed to be a part-through or through meridional crack. The flaw geometry, the yield behavior of the material, and the internal pressure are assumed to be such that in the neighborhood of the flaw the cylinder wall undergoes large-scale plastic deformations. Thus, the problem falls outside the range of applicability of conventional brittle fracture theories. To study the problem, plasticity considerations are introduced into the shell theory through the assumptions of fully-yielded net ligaments using a plastic strip model. Then a ductile fracture criterion is developed which is based on the concept of net ligament plastic instability. A limited verification is attempted by comparing the theoretical predictions with some existing experimental results.

  16. Ultrasonic flaw detection in a monorail box beam

    Science.gov (United States)

    Zheng, Peng; Greve, David W.; Oppenheim, Irving J.

    2009-03-01

    A steel box beam in a monorail application is constructed with an epoxy grout wearing surface, precluding visual inspection of its top flange. This paper describes a sequence of experimental research tasks to develop an ultrasonic system to detect flaws (such as fatigue cracks) in that flange, and the results of a field test to demonstrate system performance. The problem is constrained by the fact that the flange is exposed only along its longitudinal edges, and by the fact that permanent installation of transducers at close spacing was deemed to be impractical. The system chosen for development, after experimental comparison of alternate technologies, features angle-beam ultrasonic transducers with fluid coupling to the flange edge; the emitting transducers create transverse waves that travel diagonally across the width of the flange, where an array of receiving transducers detect flaw reflections and flaw shadows. The system rolls along the box beam, surveying (screening) the top flange for the presence of flaws. In a first research task, conducted on a full-size beam specimen, we compared waves generated from different transducer locations, either the flange edge or the web face, and at different frequency ranges. At relatively low frequencies, such as 100 kHz, we observed Lamb wave modes, and at higher frequency, in the MHz range, we observed nearlylongitudinal waves with trailing pulses. In all cases we observed little attenuation by the wearing surface and little influence of reflection at the web-flange joints. At the conclusion of this task we made the design decision to use edgemounted transducers at relatively high frequency, with correspondingly short wavelength, for best scattering from flaws. In a second research task we conducted experiments at 55% scale on a steel plate, with machined flaws of different size, and detected flaws of target size for the intended application. We then compared the performance of bonded transducers, fluid

  17. Development of a multi-beam laser ultrasonic inspection system and its application on flaw sizing

    International Nuclear Information System (INIS)

    Chivavibul, Pornthep; Lin, Shan; Fukutomi, Hiroyuki; Higuchi, Sadao; Ogata, Takashi; Fukuchi, Tetsuo

    2006-01-01

    Laser ultrasonic technique is a powerful tool for non-contact, nondestructive testing of materials. It is expected to apply to where the conventional ultrasonic technique is not applicable. However, this technique suffers from low sensitivity. In order to overcome this shortcoming, a multi-beam laser ultrasonic system was developed to increase signal-to-noise ratio (SNR) and steer beam direction. The system consisted of eight pulsed Nd:YAG lasers used for ultrasonic generation, and a two-wave mixing interferometer with a long-pulsed Nd:YAG used for ultrasonic detection. Spatial and temporal control of the firing of the individual lasers permitted the generation of both phased array single pulse and narrow-band ultrasonic signals. The performance of developed system was verified using aluminum specimens with the wave generation in a slight ablation mode. A significant increase in sensitivity was obtained, with an increase in signal amplitude with no change in noise level. In the narrow band case, tone bursts were successfully generated in both surface and bulk waves. Beam steering of bulk waves was also performed, and the directivity was confirmed by visualization using a conventional transducer. The developed system was applied to flaw sizing using two techniques: shadow and short-path of diffraction (SPOD), using aluminum specimens with 2-mm, 5-mm, 8-mm slit depths. The shadow technique accurately measured the 5- and 8-mm slits, but not the 2-mm slit. The SPOD technique, carried out using a 5-MHz normal longitudinal transducer as a detector instead of TWN interferometer, accurately measured slits in all specimens with an error less than 0.5 mm. (author)

  18. Flaw distributions and use of ISI data in RPV integrity evaluations

    International Nuclear Information System (INIS)

    Dimitrijevic, V.; Ammirato, F.

    1993-01-01

    A probabilistic method for developing post-inspection flaw distributions has been developed that explicitly accounts for the capability of the inspection procedure to detect and size flaws. This methodology has been used to develop flaw distributions for calculating reactor vessel failure probability under postulated pressurized thermal shock (PTS) conditions. Realistic flaw distributions are important because plant-specific PTS safety assessments are very sensitive to assumptions made about major flaw parameters such as density, size, shape, and location. PTS analysis made in the past do not consider ISI. Two main reasons are (1) lack of a general and approved methodology which provides directions for involvement of ISI results in developing new flaw parameters and (2) lack of confidence in the capability of ISI procedures to detect critical flaws that may be present near the clad-to-base metal interface of the vessel, the location of most concern for PTS conditions. Recent developments in ISI practice, however, have led to substantial improvement in ISI capability and provide a basis for using ISI data to develop plant-specific post-inspection flaw distributions for vessel integrity evaluations. The key components of this evaluation are (1) the generic (preinspection) flaw distribution, (2) a probabilistic flaw detection model, and (3) Bayesian updating of the prior flaw distribution with the detection model to develop a post-inspection flaw distribution. Destructive analysis of RPV weld material was performed to develop data to support the pre-inspection flaw distributions. Since the probability of detection (POD) plays such an important role in the analysis and a high POD is needed to make significant reductions in probability of failure, a procedure was developed to achieve and demonstrate POD greater than 0.9 by using a combination of independent inspection techniques

  19. Reconstructing flaw image using dataset of full matrix capture technique

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tae Hun; Kim, Yong Sik; Lee, Jeong Seok [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2017-02-15

    A conventional phased array ultrasonic system offers the ability to steer an ultrasonic beam by applying independent time delays of individual elements in the array and produce an ultrasonic image. In contrast, full matrix capture (FMC) is a data acquisition process that collects a complete matrix of A-scans from every possible independent transmit-receive combination in a phased array transducer and makes it possible to reconstruct various images that cannot be produced by conventional phased array with the post processing as well as images equivalent to a conventional phased array image. In this paper, a basic algorithm based on the LLL mode total focusing method (TFM) that can image crack type flaws is described. And this technique was applied to reconstruct flaw images from the FMC dataset obtained from the experiments and ultrasonic simulation.

  20. Measurement of flaw size in a weld sample by ultrasonic frequency analysis

    International Nuclear Information System (INIS)

    Whaley, H.L. Jr.; Adler, L.; Cook, K.V.; McClung, R.W.

    1975-05-01

    An ultrasonic frequency analysis technique has been developed and applied to the measurement of flaws in an 8-in.-thick heavy-section steel specimen belonging to the Pressure Vessel Research Committee program. Using the technique the flaws occurring in the weld area were characterized in quantitative terms of both dimension and orientation. Several modifications of the technique were made during the study to include the application of several transducers and to consider ultrasonic mode conversion. (U.S.)

  1. Flaw evaluation methodology for class 2, 3 components in light water reactors

    International Nuclear Information System (INIS)

    Miura, Naoki; Kashima, Koichi; Miyazaki, Katsumasa; Hasegawa, Kunio; Oritani, Naohiko

    2006-01-01

    It is quite important to validate the structural integrity of operating plant components as aged LWR plants are gradually increasing in Japan. The rules on fitness-for-service for nuclear power plants constituted by the JSME provides flaw evaluation methodology. They are mainly focused on Class 1 components, while flaw evaluation criteria for Class 2, 3 components are not consolidated. As such, they also required from the viewpoints of in-service inspection request, reduction of operating cost and systematization of consistent code/standard. In this study, basic concept of flaw evaluation for Class 2, 3 piping was considered, and it is concluded that the same evaluation procedure as Class 1 piping in the current rules is applicable. Some technical issues on practical flaw evaluation for Class 2, 3 piping were listed up, and a countermeasure for each issue was devised. Especially, both allowable flaw sizes in acceptance standards and critical flaw sizes in acceptance criteria have to be determined in consideration of degraded fracture toughness. (author)

  2. Flaw characterization through nonlinear ultrasonics and wavelet cross-correlation algorithms

    Science.gov (United States)

    Bunget, Gheorghe; Yee, Andrew; Stewart, Dylan; Rogers, James; Henley, Stanley; Bugg, Chris; Cline, John; Webster, Matthew; Farinholt, Kevin; Friedersdorf, Fritz

    2018-04-01

    Ultrasonic measurements have become increasingly important non-destructive techniques to characterize flaws found within various in-service industrial components. The prediction of remaining useful life based on fracture analysis depends on the accurate estimation of flaw size and orientation. However, amplitude-based ultrasonic measurements are not able to estimate the plastic zones that exist ahead of crack tips. Estimating the size of the plastic zone is an advantage since some flaws may propagate faster than others. This paper presents a wavelet cross-correlation (WCC) algorithm that was applied to nonlinear analysis of ultrasonically guided waves (GW). By using this algorithm, harmonics present in the waveforms were extracted and nonlinearity parameters were used to indicate both the tip of the cracks and size of the plastic zone. B-scans performed with the quadratic nonlinearities were sensitive to micro-damage specific to plastic zones.

  3. Fracture assessment of shallow-flaw cruciform beams tested under uniaxial and biaxial loading conditions

    International Nuclear Information System (INIS)

    Bass, B.R.; McAfee, W.J.; Williams, P.T.; Pennell, W.E.

    1999-01-01

    A technology to determine shallow-flaw fracture toughness of reactor pressure vessel (RPV) steels is being developed for application to the safety assessment of RPVs containing postulated shallow surface flaws. Matrices of cruciform beam tests were developed to investigate and quantify the effects of temperature, biaxial loading, and specimen size on fracture initiation toughness of two-dimensional (constant depth), shallow, surface flaws. The cruciform beam specimens were developed at Oak Ridge National Laboratory (ORNL) to introduce a far-field, out-of-plane biaxial stress component in the test section that approximates the nonlinear stresses resulting from pressurized-thermal-shock or pressure-temperature loading of an RPV. Tests were conducted under biaxial load ratios ranging from uniaxial to equibiaxial. These tests demonstrated that biaxial loading can have a pronounced effect on shallow-flaw fracture toughness in the lower transition temperature region for an RPV material. The cruciform fracture toughness data were used to evaluate fracture methodologies for predicting the observed effects of biaxial loading on shallow-flaw fracture toughness. Initial emphasis was placed on assessment of stress-based methodologies, namely, the J-Q formulation, the Dodds-Anderson toughness scaling model, and the Weibull approach. Applications of these methodologies based on the hydrostatic stress fracture criterion indicated an effect of loading-biaxiality on fracture toughness; the conventional maximum principal stress criterion indicated no effect. A three-parameter Weibull model based on the hydrostatic stress criterion is shown to correlate with the experimentally observed biaxial effect on cleavage fracture toughness by providing a scaling mechanism between uniaxial and biaxial loading states. (orig.)

  4. Evaluation of constraint methodologies applied to a shallow-flaw cruciform bend specimen tested under biaxial loading conditions

    International Nuclear Information System (INIS)

    Bass, B.R.; McAfee, W.J.; Williams, P.T.; Pennell, W.E.

    1998-01-01

    A technology to determine shallow-flaw fracture toughness of reactor pressure vessel (RPV) steels is being developed for application to the safety assessment of RPVs containing postulated shallow surface flaws. Matrices of cruciform beam tests were developed to investigate and quantify the effects of temperature, biaxial loading, and specimen size on fracture initiation toughness of two-dimensional (constant depth), shallow surface flaws. The cruciform beam specimens were developed at Oak Ridge National Laboratory (ORNL) to introduce a prototypic, far-field. out-of-plane biaxial stress component in the test section that approximates the nonlinear stresses resulting from pressurized-thermal-shock or pressure-temperature loading of an RPV. Tests were conducted under biaxial load ratios ranging from uniaxial to equibiaxial. These tests demonstrated that biaxial loading can have a pronounced effect on shallow-flaw fracture toughness in the lower transition temperature region for RPV materials. The cruciform fracture toughness data were used to evaluate fracture methodologies for predicting the observed effects of biaxial loading on shallow-flaw fracture toughness. Initial emphasis was placed on assessment of stress-based methodologies. namely, the J-Q formulation, the Dodds-Anderson toughness scaling model, and the Weibull approach. Applications of these methodologies based on the hydrostatic stress fracture criterion indicated an effect of loading-biaxiality on fracture toughness, the conventional maximum principal stress criterion indicated no effect

  5. Simulating the x-ray image contrast to setup techniques with desired flaw detectability

    Science.gov (United States)

    Koshti, Ajay M.

    2015-04-01

    The paper provides simulation data of previous work by the author in developing a model for estimating detectability of crack-like flaws in radiography. The methodology is developed to help in implementation of NASA Special x-ray radiography qualification, but is generically applicable to radiography. The paper describes a method for characterizing the detector resolution. Applicability of ASTM E 2737 resolution requirements to the model are also discussed. The paper describes a model for simulating the detector resolution. A computer calculator application, discussed here, also performs predicted contrast and signal-to-noise ratio calculations. Results of various simulation runs in calculating x-ray flaw size parameter and image contrast for varying input parameters such as crack depth, crack width, part thickness, x-ray angle, part-to-detector distance, part-to-source distance, source sizes, and detector sensitivity and resolution are given as 3D surfaces. These results demonstrate effect of the input parameters on the flaw size parameter and the simulated image contrast of the crack. These simulations demonstrate utility of the flaw size parameter model in setting up x-ray techniques that provide desired flaw detectability in radiography. The method is applicable to film radiography, computed radiography, and digital radiography.

  6. Probabilistic assessment of critically flawed LMFBR PHTS piping elbows

    International Nuclear Information System (INIS)

    Balkey, K.R.; Wallace, I.T.; Vaurio, J.K.

    1982-01-01

    One of the important functions of the Primary Heat Transport System (PHTS) of a large Liquid Metal Fast Breeder Reactor (LMFBR) plant is to contain the circulating radioactive sodium in components and piping routed through inerted areas within the containment building. A significant possible failure mode of this vital system is the development of cracks in the piping components. This paper presents results from the probabilistic assessment of postulated flaws in the most-critical piping elbow of each piping leg. The criticality of calculated maximum sized flaws is assessed against an estimated material fracture toughness to determine safety factors and failure probability estimates using stress-strength interference theory. Subsequently, a different approach is also employed in which the randomness of the initial flaw size and loading are more-rigorously taken into account. This latter approach yields much smaller probability of failure values when compared to the stress-strength interference analysis results

  7. Fracture evaluation of an in-service piping flaw caused by microbiologically induced corrosion

    International Nuclear Information System (INIS)

    Rudland, D.L.; Scott, P.M.; Wilkowski, G.M.; Rahman, S.

    1996-01-01

    A pipe fracture experiment was conducted on a section of 6-inch nominal diameter pipe which was degraded by microbiologically induced corrosion (MIC) at a circumferential girth weld. The pipe was a section of one of the service water piping systems to one of the emergency diesel generators at the Haddam Neck (Connecticut Yankee) plant. The experimental results will help validate future ASME Section XI pipe flaw evaluation criteria for other than Class 1 piping. A critical aspect of this experiment was an assessment of the degree of conservatism embodied in the ASME definition of flaw size. The ASME flaw size definition assumes a rectangular shaped, constant depth flaw with a depth equal to its maximum depth for its entire length. Since most service flaws are irregular in shape, this definition may be overly conservative. Results from several fracture prediction models are compared with the experimental results. These results show that, for this case, the ASME Appendix H criteria significantly underpredicted the experimental maximum moment, while other fracture prediction models provided good predictions when accurate pipe, weld and flaw dimensions were used

  8. Currency flaw severity. [Banknotes

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.; Burnett, M.; Goodman, C.; Sherrod, R.; Schmoyer, R.; Harrison, C.; Uppuluri, R.

    1986-01-01

    A survey of currency flaw severity was carried out using 300 banknotes and 37 judges. Each judge assigned each note to one of five flaw severity categories. These categories correspond to severity grades of 1 to 5 with 1 equivalent to ''always accepted'' and 5 ''never accepted.'' An average flaw severity grade for each note was obtained by taking the mean of the severity grades assigned to that note by the 37 judges. Thus, each note has a single numerical real-number flaw grade between 1 and 5. Mathematical modeling of the currency flaw survey results is continuing with some very promising initial results. Our present model handles common excess ink and missing ink flaw types quite well. We plan to extend the model to ink level, mash, setoff and blanket impression flaw types.

  9. Component flaw evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, K [Babcock and Wilcox Co., Lynchburg, VA (United States). Nuclear Power Div.

    1988-12-31

    This document deals with flaw evaluation during in-service inspection. These flaws can be divided into two groups: defects originating from the manufacturing fabrication stage or service-induced flaws. These are mainly caused by high cycle thermal fatigue and are influenced by the presence of stress corrosion cracking mechanisms such as nozzles or pump shaft. (TEC).

  10. Evaluation of flawed-pipe experiments: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Zahoor, A.; Gamble, R.M.

    1986-11-01

    The purpose of this work was to perform elastic plastic fracture mechanics evaluations of experimental data that have become available from the NRC Degraded Pipe Program, Phase II (DPII) and other NRC and EPRI sponsored programs. These evaluations were used to assess flaw evaluation procedures for austenitic and ferritic steel piping. The results also have application to leak before break fracture mechanics analysis. An improved relationship was developed for computing the J-Integral for pipes containing throughwall flaws and loaded in pure bending. The results from several DPII experiments were compared to predictions based on new J estimation scheme solutions for circumferential, finite length part-throughwall flaws in pipes with bending loading. Comparisons of experimental maximum loads with those predicted using procedures in Paragraph IWB-3640, Section XI of the ASME Code indicate that the Code flaw evaluation procedures and allowables for austenitic steel pipe are appropriate and conservative. However, the comparisons also indicate that the base metal Code allowable loads may be about 15 to 20% high for small diameter piping (less than 8-inch diameter) at allowable a/t larger than about 0.5. The work further indicates that there is justification for reducing the conservatism in IWB-3640 allowable flaw sizes and loads for austenitic steel pipe with submerged or shielded metal arc welds.

  11. Fracture assessment of HSST Plate 14 shallow-flaw cruciform bend specimens tested under biaxial loading conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bass, B.R.; McAfee, W.J.; Williams, P.T.; Pennell, W.E.

    1998-06-01

    A technology to determine shallow-flaw fracture toughness of reactor pressure vessel (RPV) steels is being developed for application to the safety assessment of RPVs containing postulated shallow surface flaws. Matrices of cruciform beam tests were developed to investigate and quantify the effects of temperature, biaxial loading, and specimen size on fracture initiation toughness of two-dimensional (constant depth), shallow, surface flaws. The cruciform beam specimens were developed at Oak Ridge National Laboratory (ORNL) to introduce a far-field, out-of-plane biaxial stress component in the test section that approximates the nonlinear stresses resulting from pressurized-thermal-shock or pressure-temperature loading of an RPV. Tests were conducted under biaxial load ratios ranging from uniaxial to equibiaxial. These tests demonstrated that biaxial loading can have a pronounced effect on shallow-flaw fracture toughness in the lower transition temperature region for an RPV material. The cruciform fracture toughness data were used to evaluate fracture methodologies for predicting the observed effects of biaxial loading on shallow-flaw fracture toughness. Initial emphasis was placed on assessment of stress-based methodologies, namely, the J-Q formulation, the Dodds-Anderson toughness scaling model, and the Weibull approach. Applications of these methodologies based on the hydrostatic stress fracture criterion indicated an effect of loading-biaxiality on fracture toughness; the conventional maximum principal stress criterion indicated no effect. A three-parameter Weibull model based on the hydrostatic stress criterion is shown to correlate the experimentally observed biaxial effect on cleavage fracture toughness by providing a scaling mechanism between uniaxial and biaxial loading states.

  12. Effect of combined loading on pipe flaw evaluation criteria

    International Nuclear Information System (INIS)

    Miura, Naoki; Chung Yeonki

    1999-01-01

    Considering a rational maintenance rule of Light Water Reactor piping, reliable flaw evaluation criteria are essential to determine how a detected flaw is detrimental to continuous plant operation. Ductile fracture is one of the dominant failure modes to be considered for carbon steel piping, and can be analyzed by the elastic-plastic fracture mechanics. Currently the analytical results are provided as flaw evaluation criteria using load correction factors such like the Z-factor in ASME Code Section 6. The present correction factors were conventionally determined taken a conservatism and a simplicity into account, however, the effect of internal pressure which would be an important factor under an actual plant condition was not adequately considered. Recently, a J-estimation scheme, 'LBB.ENGC' for ductile fracture analysis of circumferentially through-wall-cracked pipes subjected to combined loading was newly developed to have a better prediction with more realistic manner. This method is explicitly incorporated the contribution of both bending and tension due to internal pressure by means of the scheme compatible with an arbitrary combined loading history. In this paper, the effect of internal pressure on the flaw evaluation criteria was investigated using the new J-estimation scheme. A correction factor based on the new J-estimation scheme was compared with the present correction factors, and the predictability of the current flaw evaluation criteria was quantitatively evaluated in consideration of internal pressure. (author)

  13. Estimation of the number of physical flaws from periodic ISI data of SG tubes using effective POD

    International Nuclear Information System (INIS)

    Lee, Jae Bong; Park, Jai Hak; Kim, Hong Deok; Chung, Han Sub

    2008-01-01

    It is necessary to know the number of flaws and their size distribution in order to calculate the probability of failure or to estimate the amount of leakage through the tube wall of steam generators. But In-Service Inspection (ISI) flaw data is different from the physical flaw data. In case of a single inspection, it is easy to estimate the number of physical flaws using the POD curve. However, we may be faced with some difficulties in obtaining the number of physical flaws from the periodic in-service inspection data. In this study a method for estimating the number of physical flaws from periodic in-service inspection data is proposed. In order to calculate the number of physical flaws with periodic ISI data, both probabilities of detecting and missing flaws should be considered. And flaw initiation and growth history must be known also. The flaw initiation and growth history can be inferred from appropriate probabilistic flaw growth rate. Two inference methods are proposed and compared. One is Monte Carlo simulation method and the other is transition (stochastic) matrix method. The effective POD, the total possibility of detection considering both probabilities of detecting and missing flaws for each flaw size, can be calculated using above two inference methods. And two methods are compared and the usefulness and convenience are evaluated from several applications

  14. Statistical flaw detection: Application to flaws below curved surfaces

    International Nuclear Information System (INIS)

    Elsley, R.K.; Fertig, K.W.; Linebarger, R.S.; Richardson, J.M.

    1984-01-01

    This chapter presents a practical approach to the optimum detection of flaws in the presence of noise signals. A decision theoretic approach is used to derive a detection algorithm which is adapted to the noise environment in which a particular measurement is being made. An automatic procedure for characterizing the noises and developing the optimum detection algorithm is presented. The proposed method makes use of an explicit knowledge of the noise processes in order to design a flaw detection algorithm which optimally detects flaws in the presence of such noise. It is concluded that this approach will provide a number of advantages in practical testing situations, including the detection of smaller flaws, faster scanning due to the use of less highly focussed transducers, and less need for operator optimization of the measurement process. The described algorithms were implemented on the Digital Ultrasonic Instrument (DUI), which is a high speed all-digital instrument for performing sophisticated calculations on ultrasonic signals

  15. Development of the Automated Ultrasonic Testing System for Inspection of the flaw in the Socket Weldment

    International Nuclear Information System (INIS)

    Lee, Jeong Ki; Park, Moon Ho; Park, Ki Sung; Lee, Jae Ho; Lim, Sung Jin

    2004-01-01

    Socket weldment used to change the flow direction of fluid nay have flaws such as lack of fusion and cracks. Liquid penetrant testing or Radiography testing have been applied as NDT methods for flaw detection of the socket weldment. But it is difficult to detect the flaw inside of the socket weldment with these methods. In order to inspect the flaws inside the socket weldment, a ultrasonic testing method is established and a ultrasonic transducer and automated ultrasonic testing system are developed for the inspection. The automated ultrasonic testing system is based on the portable personal computer and operated by the program based Windows 98 or 2000. The system has a pulser/receiver, 100MHz high speed A/D board, and basic functions of ultrasonic flaw detector using the program. For the automated testing, motion controller board of ISA interface type is developed to control the 4-axis scanner and a real time iC-scan image of the automated testing is displayed on the monitor. A flaws with the size of less than 1mm in depth are evaluated smaller than its actual site in the testing, but the flaws larger than 1mm appear larger than its actual size on the contrary. This tendency is shown to be increasing as the flaw size increases. h reliable and objective testing results are obtained with the developed system, so that it is expected that it can contribute to safety management and detection of repair position of pipe lines of nuclear power plants and chemical plants

  16. Imaging flaws in thin metal plates using a magneto-optic device

    Science.gov (United States)

    Wincheski, B.; Prabhu, D. R.; Namkung, M.; Birt, E. A.

    1992-01-01

    An account is given of the capabilities of the magnetooptic/eddy-current imager (MEI) apparatus in the case of aging aircraft structure-type flaws in 2024-T3 Al alloy plates. Attention is given to images of cyclically grown fatigue cracks from rivetted joints in fabricated lap-joint structures, electrical discharge machining notches, and corrosion spots. Although conventional eddy-current methods could have been used, the speed and ease of MEI's use in these tests is unmatched by such means. Results are displayed in real time as a test piece is scanned, furnishing easily interpreted flaw images.

  17. Elastodynamic models for extending GTD to penumbra and finite size flaws

    International Nuclear Information System (INIS)

    Djakou, A Kamta; Darmon, M; Potel, C

    2016-01-01

    The scattering of elastic waves from an obstacle is of great interest in ultrasonic Non Destructive Evaluation (NDE). There exist two main scattering phenomena: specular reflection and diffraction. This paper is especially focused on possible improvements of the Geometrical Theory of Diffraction (GTD), one classical method used for modelling diffraction from scatterer edges. GTD notably presents two important drawbacks: it is theoretically valid for a canonical infinite edge and not for a finite one and presents discontinuities around the direction of specular reflection. In order to address the first drawback, a 3D hybrid method using both GTD and Huygens secondary sources has been developed to deal with finite flaws. ITD (Incremental Theory of Diffraction), a method developed in electromagnetism, has also been developed in elastodynamics to deal with small flaws. Experimental validation of these methods has been performed. As to the second drawback, a GTD uniform correction, the UTD (Uniform Theory of Diffraction) has been developed in the view of designing a generic model able to correctly simulate both specular reflection and diffraction. A comparison has been done between UTD numerical results and UAT (Uniform Asymptotic Theory of Diffraction) which is another uniform solution of GTD. (paper)

  18. Bounding the conservatism in flaw-related variables for pressure vessel integrity analyses

    International Nuclear Information System (INIS)

    Foulds, J.R.; Kennedy, E.L.

    1993-01-01

    The fracture mechanics-based integrity analysis of a pressure vessel, whether performed deterministically or probabilistically, requires use of one or more flaw-related input variables, such as flaw size, number of flaws, flaw location, and flaw type. The specific values of these variables are generally selected with the intent to ensure conservative predictions of vessel integrity. These selected values, however, are largely independent of vessel-specific inspection results, or are, at best, deduced by ''conservative'' interpretation of vessel-specific inspection results without adequate consideration of the pertinent inspection system performance (reliability). In either case, the conservatism associated with the flaw-related variables chosen for analysis remains examination (NDE) technology and the recently formulated ASME Code procedures for qualifying NDE system capability and performance (as applied to selected nuclear power plant components) now provides a systematic means of bounding the conservatism in flaw-related input variables for pressure vessel integrity analyses. This is essentially achieved by establishing probabilistic (risk)-based limits on the assigned variable values, dependent upon the vessel inspection results and on the inspection system unreliability. Described herein is this probabilistic method and its potential application to: (i) defining a vessel-specific ''reference'' flaw for calculating pressure-temperature limit curves in the deterministic evaluation of pressurized water reactor (PWR) reactor vessels, and (ii) limiting the flaw distribution input to a PWR reactor vessel-specific, probabilistic integrity analysis for pressurized thermal shock loads

  19. Development and application of an LWR reactor pressure vessel-specific flaw distribution

    International Nuclear Information System (INIS)

    Rosinski, S.T.; Kennedy, E.L.; Foulds, J.R.

    1991-01-01

    Previous efforts by the US Department of Energy have shown that the PWR reactor vessel integrity predictions performed through probabilistic fracture mechanics analysis for a pressurized thermal shock event are significantly sensitive to the overall flaw distribution input. It has also been shown that modern vessel in-service inspection (ISI) results can be used for development of vessel flaw distribution(s) that are more representative of US vessels. This paper describes the development and application of a methodology to analyze ISI data for the purpose of flaw distribution determination. The resultant methodology considers detection reliability, flaw sizing accuracy, and flaw detection threshold in its application. Application of the methodology was then demonstrated using four recently acquired US PWR vessel inspection data sets. The methodology helped provide original insight into several key inspection performance and vessel integrity prediction practice issues that will impact future vessel integrity evaluation. This paper briefly discusses the development and application of the methodology and the impact to future vessel integrity analyses

  20. Comparison of COD, R6, and J-contour integral methods of defect assessment, modified to give critical flaw sizes

    International Nuclear Information System (INIS)

    Burdekin, F.M.; Turner, C.E.

    1982-01-01

    A comparative study of the application of different elastic-plastic fracture mechanics methods to the calculation of critical defect sizes in pressure vessels showed widely varying results. The present authors have investigated in detail the reasons for the variations resulting from the use of the CEGB R6, COD design curve, and J-design curve methods to the particular pressure vessel problems. To obtain reasonable agreement between the three methods for the calculation of critical flaw sizes in high stress gradient situations, the published COD method in PD6493 has to be modified to remove its inherent safety factor, and to allow for stress gradients, and a consistent treatment for gross yielding/collapse has to be adopted for all three methods. (author)

  1. Flaw evaluation charts

    International Nuclear Information System (INIS)

    Korosec, D.; Vojvodic Tuma, J.

    1999-01-01

    The structural integrity of the primary components in pressurized water reactor nuclear power plant is very important in the respect of safe and efficient operation. These components have to be subjected to periodic controls. In the light of fracture mechanics concept, the acceptance criteria for defects (flaws) are developed. Flaw evaluation procedure is necessary, to evaluate the defects regarding their acceptability for further operation. The objective of the flaw evaluation charts is to provide a series of simple graphs as decision maps. that immediate decision may be taken regarding the acceptability of a detected defects, on the basis of ASME Code XI criteria.(author)

  2. Variable flaw shape analysis for a reactor vessel under pressurized thermal shock loading

    International Nuclear Information System (INIS)

    Yang, C.Y.; Bamford, W.H.

    1984-01-01

    A study has been conducted to characterize the response of semi-elliptic surface flaws to thermal shock conditions which can result from safety injection actuation in nuclear reactor vessels. A methodology was developed to predict the behavior of a flaw during sample pressurized thermal shock events. The effects of a number of key variables on the flaw propagation were studied, including fracture toughness of the material and its gradient through the thickness, irradiation effects, effects of warm prestressing, and effects of the stainless steel cladding. The results of these studies show that under thermal shock loading conditions the flaw always tends to elongate along the vessel inside surface from the initial aspect ratio. However, the flaw shape always remains finite rather than becoming continuously long, as has often been assumed in earlier analyses. The final shape and size of the flaws were found to be rather strongly dependent on the effects of warm prestressing and the distribution of neutron flux. The improved methodology results in a more accurate and more realistic treatment of flaw shape changes during thermal shock events and provides the potential for quantifying additional margins for reactor vessel integrity analyses

  3. Application of elastic and elastic-plastic fracture mechanics methods to surface flaws

    Science.gov (United States)

    McCabe, Donald E.; Ernst, Hugo A.; Newman, James C., Jr.

    Fuel tanks that are a part of the External Tank assembly for the Space Shuttle are made of relatively thin 2219-T87 aluminum plate. These tanks contain about 917 m of fusion weld seam, all of which is nondestructively inspected for flaws and all those found are repaired. The tanks are subsequently proof-tested to a pressure that is sufficiently severe to cause weld metal yielding in a few local regions of the weld seam. The work undertaken in the present project was to develop a capability to predict flaw growth from undetected surface flaws that are assumed to be located in the highly stressed regions. The technical challenge was to develop R-curve prediction capability for surface cracks in specimens that contain the flaws of unusual sizes and shapes deemed to be of interest. The test techniques developed and the elastic-plastic analysis concepts adopted are presented. The flaws of interest were quite small surface cracks that were narrow-deep ellipses that served to exacerbate the technical difficulties involved.

  4. Detecting accuracy of flaws by manual and automatic ultrasonic inspections

    International Nuclear Information System (INIS)

    Iida, K.

    1988-01-01

    As the final stage work in the nine year project on proving tests of the ultrasonic inspection technique applied to the ISI of LWR plants, automatic ultrasonic inspection tests were carried out on EDM notches, surface fatigue cracks, weld defects and stress corrosion cracks, which were deliberately introduced in full size structural components simulating a 1,100 MWe BWR. Investigated items are the performance of a newly assembled automatic inspection apparatus, detection limit of flaws, detection resolution of adjacent collinear or parallel EDM notches, detection reproducibility and detection accuracy. The manual ultrasonic inspection of the same flaws as inspected by the automatic ultrasonic inspection was also carried out in order to have comparative data. This paper reports how it was confirmed that the automatic ultrasonic inspection is much superior to the manual inspection in the flaw detection rate and in the detection reproducibility

  5. Tearing stability analysis of an axial surface flaw in thick-walled pressure vessels

    International Nuclear Information System (INIS)

    Zahoor, A.; Ghassemi, B.B.

    1991-01-01

    This paper presents two fracture mechanics models for evaluation of an axial surface flaw in pressure vessels. The surface flaw is located on the outside surface of the vessel. The first model assumes yielding of the remaining ligament directly ahead of the flaw. The second model assumes contained yielding ahead of the flaw and uses a linear elastic fracture mechanics solution. The former model is suitable for cases where the combination of material toughness, flaw size, and load is such that initiation of flaw growth follows ligament yielding. The latter model is suitable for low-toughness materials where initiation of crack growth and potential tearing instability may occur prior to the yielding of the ligament. Both models are suitable for thick-walled vessels. The paper discusses the applicability regime for both models. The models are then applied to a test vessel and the predicted failure pressure is compared against the pressure attained in the test. Results show that both models can be applied successfully. In particular, the contained yielding model when used with the plane-stress assumption can give reasonable predictions even for cases that involve yielding of the ligament. (orig.)

  6. Tearing stability analysis of an axial surface flaw in thick-walled pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Zahoor, A.; Ghassemi, B.B. (NOVETECH Corp., Rockville, MD (USA))

    1991-04-01

    This paper presents two fracture mechanics models for evaluation of an axial surface flaw in pressure vessels. The surface flaw is located on the outside surface of the vessel. The first model assumes yielding of the remaining ligament directly ahead of the flaw. The second model assumes contained yielding ahead of the flaw and uses a linear elastic fracture mechanics solution. The former model is suitable for cases where the combination of material toughness, flaw size, and load is such that initiation of flaw growth follows ligament yielding. The latter model is suitable for low-toughness materials where initiation of crack growth and potential tearing instability may occur prior to the yielding of the ligament. Both models are suitable for thick-walled vessels. The paper discusses the applicability regime for both models. The models are then applied to a test vessel and the predicted failure pressure is compared against the pressure attained in the test. Results show that both models can be applied successfully. In particular, the contained yielding model when used with the plane-stress assumption can give reasonable predictions even for cases that involve yielding of the ligament. (orig.).

  7. Origin and type of flaws in heat engine ceramic materials and components

    International Nuclear Information System (INIS)

    Govila, R.K.

    1995-01-01

    A number of ceramic materials such as Silicon Nitrides and Carbides, Sialons, Whisker-Reinforced Ceramic Composites and Partially-Stabilized Zirconias (PSZs) have been developed for use as structural components in heat engine applications. The reliability and durability of a structural engine component is critically dependent on the size, density of distribution and location of flaws. This information is critical for the processing and design engineers in order to design structural components using suitable materials and thus minimize stress intensity. In general, the failure initiating flaws are associated or produced due to material impurity, processing methods and parameters, and fabrication techniques (machining and grinding). Examples of each type of flaws associated with material impurity, processing methods and fabrication techniques are illustrated

  8. Flaw shape reconstruction – an experimental approach

    Directory of Open Access Journals (Sweden)

    Marilena STANCULESCU

    2009-05-01

    Full Text Available Flaws can be classified as acceptable and unacceptable flaws. As a result of nondestructive testing, one takes de decision Admit/Reject regarding the tested product related to some acceptability criteria. In order to take the right decision, one should know the shape and the dimension of the flaw. On the other hand, the flaws considered to be acceptable, develop in time, such that they can become unacceptable. In this case, the knowledge of the shape and dimension of the flaw allows determining the product time life. For interior flaw shape reconstruction the best procedure is the use of difference static magnetic field. We have a stationary magnetic field problem, but we face the problem given by the nonlinear media. This paper presents the results of the experimental work for control specimen with and without flaw.

  9. Methods for sorting out the defects according to size in automated ultrasonic testing of large-diameter thin-walled tubes

    International Nuclear Information System (INIS)

    Golovkin, A.M.; Matveev, A.S

    1977-01-01

    Two methods have been considered of identifying defects according to their size in the course of an automated ultrasonic testing, namely, according to the echo-signal amplitude, and according to the conventional depth of a defect. The peculiar features of the second method are analyzed, and its equivalence to the first one is proved. For the purpose of identifying defects according to their conventional width, a technique is suggested of standartizing flaw detectors according to the control reflectors of two sizes

  10. Flaw identification using acoustic emission

    International Nuclear Information System (INIS)

    Woodward, B.; McDonald, N.R.

    1975-01-01

    Acoustic emission 'signatures' contain information about the fine structure of metallurgical source events and their interpretation may provide a means of assessing the severity of internal flaws as well as surface flaws. The ultimate aim of this research on signature analysis is to develop a real time non-destructive testing technique having the capability of flaw recognition as well as flaw location in nuclear reactor components and structures under stress. Thus the requisite, unlike that in most acoustic emission work to date, is for a technique which affords discrimination between acoustic emission from different types of flaws propagating simultaneously. The approach described here requires detailed analysis of the emission signatures in terms of a specific statistical parameter, energy spectral density. In order to realise the full inspection potential of acoustic emission monitoring data obtained from zirconium and steel testpieces have been correlated with metallurgical condition and mechanical behaviour, since the nature of emission signatures is strongly affected by the physical characteristics and internal structure of the material. (Auth.)

  11. On flaw tolerance of nacre: a theoretical study

    Science.gov (United States)

    Shao, Yue; Zhao, Hong-Ping; Feng, Xi-Qiao

    2014-01-01

    As a natural composite, nacre has an elegant staggered ‘brick-and-mortar’ microstructure consisting of mineral platelets glued by organic macromolecules, which endows the material with superior mechanical properties to achieve its biological functions. In this paper, a microstructure-based crack-bridging model is employed to investigate how the strength of nacre is affected by pre-existing structural defects. Our analysis demonstrates that owing to its special microstructure and the toughening effect of platelets, nacre has a superior flaw-tolerance feature. The maximal crack size that does not evidently reduce the tensile strength of nacre is up to tens of micrometres, about three orders higher than that of pure aragonite. Through dimensional analysis, a non-dimensional parameter is proposed to quantify the flaw-tolerance ability of nacreous materials in a wide range of structural parameters. This study provides us some inspirations for optimal design of advanced biomimetic composites. PMID:24402917

  12. Flaws in Commercial Reading Materials.

    Science.gov (United States)

    Axelrod, Jerome

    Three flaws found in commercial reading materials, such as workbooks and kits, are discussed in this paper, and examples of the flaws are taken from specific materials. The first problem noted is that illustrations frequently provide the information that the learner is supposed to supply through phonetic or structural analysis; the illustrations…

  13. Fabrication Flaw Density and Distribution in Weld Repairs

    International Nuclear Information System (INIS)

    Doctor, Steven R.

    2009-01-01

    The Pacific Northwest National Laboratory (PNNL) is developing a generalized flaw distribution for the population of nuclear reactor pressure vessels and for piping welds in the U. S. operating reactors. The purpose of the generalized flaw distribution is to predict component-specific flaw densities. The estimates of fabrication flaws are intended for use in fracture mechanics structural integrity assessments. Structural integrity assessments, such as estimating the frequency of loss-of-coolant accidents, are performed by computer codes that require, as input, accurate estimates of flaw densities. Welds from four different cancelled reactor pressure vessels and a collection of archived pipes have been studied to develop empirical estimates of fabrication flaw densities. This paper describes the fabrication flaw distribution and characterization in the repair weld metal of vessels and piping. This work indicates that large flaws occur in these repairs which are complex in composition and sometimes include cracks on the ends of the repair cavities. Parametric analysis using an exponential fit is performed on the data. Construction records where available were reviewed. It is difficult to make conclusions due to the limited number of construction records reviewed. However, the records reviewed to date show a significant change in repair frequency over the years when the components in this study were fabricated. A description of repair flaw morphology is provided with a discussion of fracture mechanics significance.

  14. Breast tumor size assessment: comparison of conventional ultrasound and contrast-enhanced ultrasound.

    Science.gov (United States)

    Jiang, Yu-Xin; Liu, He; Liu, Ji-Bin; Zhu, Qing-Li; Sun, Qiang; Chang, Xiao-Yan

    2007-12-01

    Accurate assessment of tumor size is necessary when selecting patients for breast-conserving surgery. In the study of breast contrast-enhanced ultrasound (CEUS), we found that tumor size discrepancy between CEUS and conventional ultrasound (US) existed in some breast lesions, for which the reasons are not clear. Breast CEUS examinations were performed in 104 patients with breast lesions. The measurement of the 104 breast tumors on conventional US was obtained and compared with the measurement on CEUS. A difference in measuring tumor size of >3 mm for tumors up to 1.7 cm and 4 mm for tumors >or=1.7 cm, was defined as a significant discrepancy between conventional US and CEUS. The histopathological examination of size discrepancy was performed and the margin characteristics of breast cancers with larger measurements were compared with those with unchanged measurements. Among the 104 lesions (43 malignant, 60 benign, 1 borderline), the size of 27 breast cancers and one granulomatous mastitis appeared larger at CEUS. Pathologic examinations of the region corresponding to the measurement discrepancy were mainly ductal carcinomas in situ (DCIS), invasive carcinoma with a DCIS component, adenosis with lobular hyperplasia in breast cancers and inflammatory cell infiltration in one granulomatous mastitis. Well-defined margin characteristics were significantly different between breast cancers with larger measurements at CEUS and those with unchanged measurements of size (p = 0.002), whereas no significant difference was found between the two groups in ill-defined, spiculated, hyperechoic halo, microlobulated and angulated margins (p = 0.463, 0.117, 0.194, 0.666 and 0.780, respectively). This initial study suggests that significant discrepancy of breast lesion measurement between conventional US and CEUS is more likely presented in breast cancer than benign lesions. The pathologic findings corresponding to the region of size increased at CEUS are malignant in most malignant

  15. China’s Flawed Banking Market Structure Must be Rectified

    Institute of Scientific and Technical Information of China (English)

    于永臻

    2007-01-01

    There is great disparity between China’s banking management efficiency and the top international standard,with relatively low efficiency in credit monetary allocation.In this paper,Yu Yongzhen sets out the hypothesis that"medium-sized banks promote competition".He believes that an important reason for the low efficiency of Chinese banking is the seriously flawed banking market structure.Namely,credit market shares are highly concentrated in the hands of the four major state-owned banks,with very few shares held by medium-sized banks or the badly undeveloped small banks.Full development of medium-sized banks plays a key role in the promotion of competition and efficiency in banking.

  16. Ultrasonic defect-sizing using decibel drop methods. I

    International Nuclear Information System (INIS)

    Murphy, R.V.

    1987-03-01

    Results are reported of a study performed to investigate the accuracy and repeatability of various ultrasonic decibel (dB) drop sizing methods in determining the length, vertical extent and orientation of artificial and real weld flaws in thin steel sections. Seven artificial flaws and nine real weld flaws were examined; over 200 data plots were produced. The general findings are: a) length and vertical extent are assessed most accurately when using a 14 dB drop from the maximum indication amplitude; b) decibel drops less that 14 dB generally undersize flaws while decibel drops greater than 14 dB generally oversize flaws; c) flaws which are smaller than the width of the sound beam cannot be assessed accurately using dB drop methods; d) large flaws are assessed most accurately when the sound beam strikes the flaws at near normal incidence; e) the vertical extent and orientation of large flaws are plotted most accurately using the beam centre line method as opposed to the beam profile method; and, f) the limitations of dB-drop-sizing methods have considerable ramifications for CAN3-N285.4-M83 and ASME XI evaluation criteria

  17. Thermal-shock experiments with flawed clad cylinders

    International Nuclear Information System (INIS)

    Cheverton, R.D.; Bryson, J.W.; Alexander, D.J.

    1989-01-01

    The life expectancy of LWR pressure vessels is influenced by a reduction in fracture toughness that is the result of radiation damage. As the fracture toughness decreases, the probability of propagation of preexisting flaws (sharp, crack-like defects) in the wall of the vessel increases. The probability of propagation is also influenced by the type of loading condition and the type of flaws that might exist. A loading condition of particular concern is referred to as pressurized thermal shock (PTS), and a flaw of particular concern for PTS loading conditions is a shallow surface flaw. A sudden cooling (thermal shock) of the inner surface of the vessel results in relatively high tensile stresses and relatively low fracture toughness at the inner surface. In addition, the attenuation of the fast-neutron fluence also results in relatively low fracture toughness at the inner surface. Under some circumstances, this combination of high stress and low toughness at the inner surface makes it possible for very shallow surface flaws to propagate. The PTS issue has been under investigation for quite some time, but thus far possible beneficial effects, other than thermal resistance, of the cladding on the inner surface of the vessel have not been included in the analysis of flaw behavior. This document discusses this effect of cladding on surface flaws and crack propagation

  18. Insensitivity to Flaws Leads to Damage Tolerance in Brittle Architected Meta-Materials

    Science.gov (United States)

    Montemayor, L. C.; Wong, W. H.; Zhang, Y.-W.; Greer, J. R.

    2016-02-01

    Cellular solids are instrumental in creating lightweight, strong, and damage-tolerant engineering materials. By extending feature size down to the nanoscale, we simultaneously exploit the architecture and material size effects to substantially enhance structural integrity of architected meta-materials. We discovered that hollow-tube alumina nanolattices with 3D kagome geometry that contained pre-fabricated flaws always failed at the same load as the pristine specimens when the ratio of notch length (a) to sample width (w) is no greater than 1/3, with no correlation between failure occurring at or away from the notch. Samples with (a/w) > 0.3, and notch length-to-unit cell size ratios of (a/l) > 5.2, failed at a lower peak loads because of the higher sample compliance when fewer unit cells span the intact region. Finite element simulations show that the failure is governed by purely tensile loading for (a/w) meta-materials may give rise to their damage tolerance and insensitivity of failure to the presence of flaws even when made entirely of intrinsically brittle materials.

  19. Probabilistic analysis of flaw distribution on structure under cyclic load

    International Nuclear Information System (INIS)

    Kwak, Sang Log; Choi, Young Hwan; Kim, Hho Jung

    2003-01-01

    Flaw geometries, applied stress, and material properties are major input variables for the fracture mechanics analysis. Probabilistic approach can be applied for the consideration of uncertainties within these input variables. But probabilistic analysis requires many assumptions due to the lack of initial flaw distributions data. In this study correlations are examined between initial flaw distributions and in-service flaw distributions on structures under cyclic load. For the analysis, LEFM theories and Monte Carlo simulation are applied. Result shows that in-service flaw distributions are determined by initial flaw distributions rather than fatigue crack growth rate. So initial flaw distribution can be derived from in-service flaw distributions

  20. Supersonic flaw detection device for nozzle

    International Nuclear Information System (INIS)

    Hata, Moriki.

    1996-01-01

    In a supersonic flaw detection device to be attached to a body surface of a reactor pressure vessel for automatically detecting flaws of a welded portion of a horizontally connected nozzle by using supersonic waves, a running vehicle automatically running along a circumferential direction of the nozzle comprises a supersonic flaw detection means for detecting flaws of the welded portion of the nozzle by using supersonic waves, and an inclination angle sensor for detecting the inclination angle of the running vehicle relative to the central axis of the nozzle. The running distance of the vehicle running along the circumference of the nozzle, namely, the position of the running vehicle from a reference point of the nozzle can be detected accurately by dividing the distance around the nozzle by the inclination angle detected by the inclination angle sensor. Accordingly, disadvantages in the prior art, for example, that the detected values obtained by using an encoder are changed by slipping or idle running of the magnet wheels are eliminated, and accurate flaw detection can be conducted. In addition, an operation of visually adjusting the reference point for the device can be eliminated. An operator's exposure dose can be reduced. (N.H.)

  1. Labor security in radiation flaw detection

    International Nuclear Information System (INIS)

    Margulis, U.Ya.; Chistov, E.D.; Partolin, O.F.; Pertsov, V.A.; Momzhiev, B.N.; Sprygaev, I.F.

    1986-01-01

    Problems of ensuring safe labour conditions in radiation flaw detection are considered. Methods for ionizing radiation protection are given calculating techniques for shielding flaw detectors and stationary structures are presented as well. Safe methods of nondestructive testing of items under field conditions, in a shop and special laboratories using gamma- and X-ray flaw detectors, betatrons, electron accelerators are described. Attention is paid to the principles of radiation factor stantardization as well as radiation monitoring. Analysis of accidents and recommendations on their prevention and liquidation of accidental consequences are given

  2. Rail flaw sizing using conventional and phased array ultrasonic testing.

    Science.gov (United States)

    2012-12-01

    An approach to detecting and characterizing internal defects in rail through the use of phased array ultrasonic testing has shown the potential to reduce the risk of missed defects and improve transverse defect characterization. : Transportation Tech...

  3. Effect of combined loading due to bending and internal pressure on pipe flaw evaluation criteria

    International Nuclear Information System (INIS)

    Miura, Naoki; Sakai, Shinsuke

    2006-01-01

    Considering a rational maintenance rule of Light Water Reactor piping, reliable flaw evaluation criteria are essential to determine how a detected flaw is detrimental to continuous plant operation. Ductile fracture is one of the dominant failure modes to be considered for carbon steel piping, and can be analyzed by the elastic-plastic fracture mechanics. Some analytical efforts have been provided as flaw evaluation criteria using load correction factors such like the Z-factors in the JSME codes on fitness-for-service for nuclear power plants or the ASME boiler and pressure vessel code section XI. The present correction factors were conventionally determined taken conservatism and simplicity into account, however, the effect of internal pressure which would be an important factor under an actual plant condition was not adequately considered. Recently, a J-estimation scheme, 'LBB. ENGC' for ductile fracture analysis of circumferentially through-wall-cracked pipes subjected combined loading was newly developed to have a better prediction with more realistic manner. This method is explicitly incorporated the contribution of both bending and tension due to internal pressure by means of the scheme compatible with an arbitrary combined loading history. In this paper, the effect of internal pressure on the flaw evaluation criteria was investigated using the new J-estimation scheme. A correction factor based on the new J-estimation scheme was compared with the present correction factors, and the predictability of the current flaw evaluation criteria was quantitatively evaluated in consideration of internal pressure. (author)

  4. Midland reactor pressure vessel flaw distribution

    International Nuclear Information System (INIS)

    Foulds, J.R.; Kennedy, E.L.; Rosinski, S.T.

    1993-12-01

    The results of laboratory nondestructive examination (NDE), and destructive cross-sectioning of selected weldment sections of the Midland reactor pressure vessel were analyzed per a previously developed methodology in order to develop a flaw distribution. The flaw distributions developed from the NDE results obtained by two different ultrasonic test (UT) inspections (Electric Power Research Institute NDE Center and Pacific Northwest Laboratories) were not statistically significantly different. However, the distribution developed from the NDE Center's (destructive) cross-sectioning-based data was found to be significantly different than those obtained through the UT inspections. A fracture mechanics-based comparison of the flaw distributions showed that the cross-sectioning-based data, conservatively interpreted (all defects considered as flaws), gave a significantly lower vessel failure probability when compared with the failure probability values obtained using the UT-based distributions. Given that the cross-sectioning data were reportedly biased toward larger, more significant-appearing (by UT) indications, it is concluded that the nondestructive examinations produced definitively conservative results. In addition to the Midland vessel inspection-related analyses, a set of twenty-seven numerical simulations, designed to provide a preliminary quantitative assessment of the accuracy of the flaw distribution method used here, were conducted. The calculations showed that, in more than half the cases, the analysis produced reasonably accurate predictions

  5. The influence of finite-length flaw effects on PTS analyses

    International Nuclear Information System (INIS)

    Keeney-Walker, J.; Dickson, T.L.

    1993-01-01

    Current licensing issues within the nuclear industry dictate a need to investigate the effects of cladding on the extension of small finite-length cracks near the inside surface of a vessel. Because flaws having depths of the order of the combined clad and heat affected zone thickness dominate the frequency distribution of flaws, their initiation probabilities can govern calculated vessel failure probabilities. Current pressurized-thermal-shock (PTS) analysis computer programs recognize the influence of the inner-surface cladding layer in the heat transfer and stress analysis models, but assume the cladding fracture toughness is the same as that for the base material. The programs do not recognize the influence cladding may have in inhibiting crack initiation and propagation of shallow finite-length surface flaws. Limited experimental data and analyses indicate the cladding can inhibit the propagation of certain shallow flaws. This paper describes an analytical study which was carried out to determine (1) the minimum flaw depth for crack initiation under PTS loading for semicircular surface flaws in a clad reactor pressure vessel and (2) the impact, in terms of the conditional probability of vessel failure, of using a semicircular surface flaw as the initial flaw and assuming that the flaw cannot propagate in the cladding. The analytical results indicate that for initiation a much deeper critical crack depth is required for the finite-length flaw than for the infinite-length flaw, except for the least severe transient. The minimum flaw depths required for crack initiation from the finite-length flaw analyses were incorporated into a modified version of the OCA-P code. The modified code was applied to the analysis of selected PTS transients, and the results produced a substantial decrease in the conditional probability of failure. This initial study indicates a significant effect on probabilistic fracture analyses by incorporating finite-length flaw results

  6. An interim report on shallow-flaw fracture technology development

    International Nuclear Information System (INIS)

    Pennell, W.E.; Bass, B.R.; Bryson, J.W.; McAfee, W.J.

    1995-01-01

    Shallow-flaw fracture technology is being developed for application to the safety assessment of radiation-embrittled nuclear reactor pressure vessels (RPVS) containing flaws. Fracture mechanics tests on RPV steel, coupled with detailed elastic-plastic finite-element analyses of the crack-tip stress fields, have shown that (1) constraint relaxation at the crack tip of shallow surface flaws results in increased data scatter but no increase in the lower-bound fracture toughness, (2) the nil ductility temperature (NDT) performs better than the reference temperature for nil ductility transition (RT NDT ) as a normalizing parameter for shallow-flaw fracture toughness data, (3) biaxial loading can reduce the shallow-flaw fracture toughness, (4) stress-based dual-parameter fracture toughness correlations cannot predict the effect of biaxial loading on shallow-flaw fracture toughness because in-plane stresses at the crack tip are not influenced by biaxial loading, and (5) a strain-based dual-parameter fracture toughness correlation can predict the effect of biaxial loading on shallow-flaw fracture toughness

  7. Gamma flaw detectors for radiographic control of welded joint quality under mounting conditions

    International Nuclear Information System (INIS)

    Khoroshev, V.N.; Galash, T.F.; Andreev, V.L.; Grigor'ev, V.M.; Medvedev, N.E.

    1978-01-01

    Main characteristics are presented of gamma flaw detector models used for radiographic control of the quality of welded steel and pipeline joints during assembly. Specially developed experimental models, operating with 75 Se, 90 Sr, 170 Tm, 137 Cs and 192 Ir sources are considered. The new instruments have been made on a single structural base, which creates a foundation for standardizing individual units of radiation heads, manual control panels, containers, exterior packings, devices and accessories, maintenance techniques, and repair techniques. They are distinguished by small sizes and weight, possibility of using a set of radiation sources ensuring control of 3-40 mm thick joints, and reliable protection. Special devices permit to reduce 2-3-folds the time needed for installing and orienting the flaw detectors. The expected economic effect from implementation of the new gamma flaw detectors into industry will amount to 1.5-10.0 thousand roubles per annum for one detector at approximate cost of each detector equal to 3.5-6.0 thousand roubles

  8. Recent changes in French flaw evaluation procedures: RSE-M

    International Nuclear Information System (INIS)

    Faidy, C.

    2001-01-01

    After a general presentation of the RSE-M, the French Code which describes the rules for in-service inspection of nuclear power plant components, this paper will be focused on the major new developments of the flaw evaluation procedure: critical crack size evaluation, material properties, safety factors and the major validation tasks done to support the RSE-M, edition 2000. The paper will conclude on on-going development in this area. (author)

  9. Recent changes in French flaw evaluation procedures: RSE-M

    Energy Technology Data Exchange (ETDEWEB)

    Faidy, C. [Electricite de France (EDF-SEPTEN), 69 - Villeurbanne (France)

    2001-07-01

    After a general presentation of the RSE-M, the French Code which describes the rules for in-service inspection of nuclear power plant components, this paper will be focused on the major new developments of the flaw evaluation procedure: critical crack size evaluation, material properties, safety factors and the major validation tasks done to support the RSE-M, edition 2000. The paper will conclude on on-going development in this area. (author)

  10. Effect of combined loading due to bending and internal pressure on pipe flaw evaluation criteria

    International Nuclear Information System (INIS)

    Miura, Naoki; Sakai, Shinsuke

    2008-01-01

    Considering a rule for the rationalization of maintenance of Light Water Reactor piping, reliable flaw evaluation criteria are essential for determining how a detected flaw will be detrimental to continuous plant operation. Ductile fracture is one of the dominant failure modes that must be considered for carbon steel piping and can be analyzed by elastic-plastic fracture mechanics. Some analytical efforts have provided various flaw evaluation criteria using load correction factors, such as the Z-factors in the JSME codes on fitness-for-service for nuclear power plants and the section XI of the ASME boiler and pressure vessel code. The present Z-factors were conventionally determined, taking conservativity and simplicity into account; however, the effect of internal pressure, which is an important factor under actual plant conditions, was not adequately considered. Recently, a J-estimation scheme, LBB.ENGC for the ductile fracture analysis of circumferentially through-wall-cracked pipes subjected to combined loading was developed for more accurate prediction under more realistic conditions. This method explicitly incorporates the contributions of both bending and tension due to internal pressure by means of a scheme that is compatible with an arbitrary combined-loading history. In this study, the effect of internal pressure on the flaw evaluation criteria was investigated using the new J-estimation scheme. The Z-factor obtained in this study was compared with the presently used Z-factors, and the predictability of the current flaw evaluation criteria was quantitatively evaluated in consideration of the internal pressure. (author)

  11. Evaluation of flaws in ferritic piping: ASME Code Appendix J, Deformation Plasticity Failure Assessment Diagram (DPFAD)

    International Nuclear Information System (INIS)

    Bloom, J.M.

    1991-08-01

    This report summarizes the methods and bases used by an ASME Code procedure for the evaluation of flaws in ferritic piping. The procedure is currently under consideration by the ASME Boiler and Pressure Vessel Code Committee of Section 11. The procedure was initially proposed in 1985 for the evaluation of the acceptability of flaws detected in piping during in-service inspection for certain materials, identified in Article IWB-3640 of the ASME Boiler and Pressure Vessel Code Section 11 ''Rules for In-service Inspection of Nuclear Power Plant Components.'' for which the fracture toughness is not sufficiently high to justify acceptance based solely on the plastic limit load evaluation methodology of Appendix C and IWB-3641. The procedure, referred to as Appendix J, originally included two approaches: a J-integral based tearing instability (J-T) analysis and the deformation plasticity failure assessment diagram (DPFAD) methodology. In Appendix J, a general DPFAD approach was simplified for application to part-through wall flows in ferritic piping through the use of a single DPFAD curve for circumferential flaws. Axial flaws are handled using two DPFAD curves where the ratio of flaw depth to wall thickness is used to determine the appropriate DPFAD curve. Flaws are evaluated in Appendix J by comparing the actual pipe applied stress with the allowable stress with the appropriate safety factors for the flaw size at the end of the evaluation period. Assessment points for circumferential and axial flaws are plotted on the appropriate failure assessment diagram. In addition, this report summarizes the experimental test predictions of the results of the Battelle Columbus Laboratory experiments, the Eiber experiments, and the JAERI tests using the Appendix J DPFAD methodology. Lastly, this report also provides guidelines for handling residual stresses in the evaluation procedure. 22 refs., 13 figs., 5 tabs

  12. RID-41 gamma flaw detector

    International Nuclear Information System (INIS)

    Glebov, V.N.; Zubkov, V.S.; Majorov, A.N.; Murashev, A.I.; Firstov, V.G.; Yampol'skij, V.V.; Goncharov, V.I.; Sakhanov, A.S.

    1978-01-01

    The design is described and the main characteristics are given of a universal stationary hose-type gamma flow detector with a 60 Co source from 3O to 4g0 Ci for high-productive control of thick-walled products from steel and other materials. The principal units of the instrument are a radiation head, a control panel, and a charge-exchange container. The flaw detector may be used both in shield chambers and in shop or mounting conditions on complying with due requirements of radiation protection. The high activity of the source at relatively small dimensions of its active part ensures good detection of defects. The high radioscopy rate permits to use the flaw detector in conditions of increased background radiation, e.g. during routine repairs and inspections at nuclear power plants. The instrument may also be used in radiometric complexes, and produces a considerable economic effect. This flaw-detector corresponds to ISO and IAEA requirements and may be delivered for export

  13. Development of flaw evaluation and acceptance procedures for flaw indications in the cooling water system at the Savannah River site K reactor

    International Nuclear Information System (INIS)

    Tandon, S.; Bamford, W.H.; Cowfer, C.D.; Ostrowski, R.

    1993-01-01

    This paper describes the methodology used in determining the criteria for acceptance of inspection indications in the K-Reactor Cooling Water System at the Savannah River Plant. These criteria have been developed in a manner consistent with the development of similar criteria in the ASME Code Section XI for commercial light water reactors, but with a realistic treatment of the operating conditions in the cooling water system. The technical basis for the development of these criteria called ''Acceptance Standards'' is contained in this paper. A second portion of this paper contains the methodology used in the construction of flaw evaluation charts which have been developed for each specific line size in the cooling water system. The charts provide the results of detailed fracture mechanics calculations which have been completed to determine the largest flaw which can be accepted in the cooling water system without repair. These charts are designed for use in conjunction with in-service inspections of the cooling water system, and only require inspection results to determine acceptability

  14. Vitamin D and depression: a systematic review and meta-analysis comparing studies with and without biological flaws.

    Science.gov (United States)

    Spedding, Simon

    2014-04-11

    Efficacy of Vitamin D supplements in depression is controversial, awaiting further literature analysis. Biological flaws in primary studies is a possible reason meta-analyses of Vitamin D have failed to demonstrate efficacy. This systematic review and meta-analysis of Vitamin D and depression compared studies with and without biological flaws. The systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The literature search was undertaken through four databases for randomized controlled trials (RCTs). Studies were critically appraised for methodological quality and biological flaws, in relation to the hypothesis and study design. Meta-analyses were performed for studies according to the presence of biological flaws. The 15 RCTs identified provide a more comprehensive evidence-base than previous systematic reviews; methodological quality of studies was generally good and methodology was diverse. A meta-analysis of all studies without flaws demonstrated a statistically significant improvement in depression with Vitamin D supplements (+0.78 CI +0.24, +1.27). Studies with biological flaws were mainly inconclusive, with the meta-analysis demonstrating a statistically significant worsening in depression by taking Vitamin D supplements (-1.1 CI -0.7, -1.5). Vitamin D supplementation (≥800 I.U. daily) was somewhat favorable in the management of depression in studies that demonstrate a change in vitamin levels, and the effect size was comparable to that of anti-depressant medication.

  15. The behavior of shallow flaws in reactor pressure vessels

    International Nuclear Information System (INIS)

    Rolfe, S.T.

    1991-11-01

    Both analytical and experimental studies have shown that the effect of crack length, a, on the elastic-plastic toughness of structural steels is significant. The objective of this report is to recommend those research investigations that are necessary to understand the phenomenon of shallow behavior as it affects fracture toughness so that the results can be used properly in the structural margin assessment of reactor pressure vessels (RPVs) with flaws. Preliminary test results of A 533 B steel show an elevated crack-tip-opening displacement (CTOD) toughness similar to that observed for structural steels tested at the University of Kansas. Thus, the inherent resistance to fracture initiation of A 533 B steel with shallow flaws appears to be higher than that used in the current American Society of Mechanical Engineers (ASME) design curves based on testing fracture mechanics specimens with deep flaws. If this higher toughness of laboratory specimens with shallow flaws can be transferred to a higher resistance to failure in RPV design or analysis, then the actual margin of safety in nuclear vessels with shallow flaws would be greater than is currently assumed on the basis of deep-flaw test results. This elevation in toughness and greater resistance to fracture would be a very desirable situation, particularly for the pressurized-thermal shock (PTS) analysis in which shallow flaws are assumed to exist. Before any advantage can be taken of this possible increase in initiation toughness, numerous factors must be analyzed to ensure the transferability of the data. This report reviews those factors and makes recommendations of studies that are needed to assess the transferability of shallow-flaw toughness test results to the structural margin assessment of RPV with shallow flaws. 14 refs., 8 figs

  16. Flaw evolution monitoring by acoustic emission technique

    International Nuclear Information System (INIS)

    Ghia, S.; Sala, A.; Lucia, A.

    1986-01-01

    Flaw evolution monitoring during mechanical fatigue test has been performed by acoustic emission (AE) technique. Testing on 1:5 reduced scale vessel containing fabrication defects was carried out in the frame of an European program for pressure component residual life evaluation. Characteristics of AE signals associated to flaw evolution are discussed

  17. Influence of circumferential flaw length on internal burst pressure of a wall-thinned pipe

    Energy Technology Data Exchange (ETDEWEB)

    Tsuji, Masataka, E-mail: tsuji-m@u-fukui.ac.jp [Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, Fukui (Japan); Meshii, Toshiyuki [Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, Fukui (Japan)

    2013-02-15

    Highlights: ► The effect of θ on p{sub f} was examined by experimental analysis and FEA. ► Here θ is the circumferential angle of a flaw, p{sub f} is the internal burst pressure. ► p{sub f} decreased as θ increased in some cases. ► The effect of θ on p{sub f} should be taken into consideration in evaluating p{sub f}. -- Abstract: This paper examines the effect of the circumferential angle of a flaw θ on the internal burst pressure p{sub f} of pipes with artificial wall-thinned flaws. The effect of θ has conventionally been regarded as unimportant in the evaluation of the p{sub f} of wall-thinned straight pipes. Therefore, a burst pressure equation for an axial crack inside a cylinder (Fig. 1, left), such as Kiefner's equation (Kiefner et al., 1973), has been widely applied (ANSI/ASME B31.G., 1991; Hasegawa et al., 2011). However, the following implicit assumptions notably exist when applying the equation to planar flaws in situations with non-planar flaws. 1)The fracture mode of the non-planar flaw under consideration is identical to that of the crack. 2)The effect of θ on p{sub f}, which is not considered for an axial crack, is small or negligible. However, the experimental results from the systematic burst tests for carbon steel pipes with artificial wall-thinned flaws examined in this paper showed that these implicit assumptions may be incorrect. In this paper the experimental results are evaluated in further detail. The purpose of the evaluation was to clarify the effect of θ on p{sub f}. Specifically, the significance of the flaw configuration (axial length δ{sub z} and wall-thinning ratio t{sub 1}/t) was studied for its effects on θ and p{sub f}. In addition, a simulation of this effect was conducted using a large strain elastic-plastic Finite Element Analysis (FEA) model. As observed from the experimental results, θ tended to affect p{sub f} in cases with large δ{sub z}, and t{sub 1}/t was also correlated with a decrease in p{sub f

  18. Vitamin D and Depression: A Systematic Review and Meta-Analysis Comparing Studies with and without Biological Flaws

    Directory of Open Access Journals (Sweden)

    Simon Spedding

    2014-04-01

    Full Text Available Efficacy of Vitamin D supplements in depression is controversial, awaiting further literature analysis. Biological flaws in primary studies is a possible reason meta-analyses of Vitamin D have failed to demonstrate efficacy. This systematic review and meta-analysis of Vitamin D and depression compared studies with and without biological flaws. The systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA guidelines. The literature search was undertaken through four databases for randomized controlled trials (RCTs. Studies were critically appraised for methodological quality and biological flaws, in relation to the hypothesis and study design. Meta-analyses were performed for studies according to the presence of biological flaws. The 15 RCTs identified provide a more comprehensive evidence-base than previous systematic reviews; methodological quality of studies was generally good and methodology was diverse. A meta-analysis of all studies without flaws demonstrated a statistically significant improvement in depression with Vitamin D supplements (+0.78 CI +0.24, +1.27. Studies with biological flaws were mainly inconclusive, with the meta-analysis demonstrating a statistically significant worsening in depression by taking Vitamin D supplements (−1.1 CI −0.7, −1.5. Vitamin D supplementation (≥800 I.U. daily was somewhat favorable in the management of depression in studies that demonstrate a change in vitamin levels, and the effect size was comparable to that of anti-depressant medication.

  19. Nondestructive detection of surface flaws in materials by infrared thermography

    International Nuclear Information System (INIS)

    Ishii, Toshimitsu; Ooka, Norikazu; Eto, Motokuni; Hoshiya, Taiji; Okamoto, Yoshizo

    1999-01-01

    Infrared thermography is one of the useful remote sensing techniques applied to the nondestructive detection of surface flaws in materials. Radiation temperatures of the specimen surface and surrounding walls as well as the difference in them are crucial factors to detect surface flaws from thermal images, and it is essential that these factors be properly evaluated beforehand in order to detect the flaws by infrared thermography. In this study, the radiation temperature of nuclear graphite specimens heated uniformly was measured by infrared thermography to evaluate the radiation characteristics such as emissivity, radiosity coefficient and variation of radiation temperature. The influence of the temperature difference between the test specimen and its surroundings on the limit of detection of pinhole flaws was discussed on the basis of the thermal images of graphite specimen with surface flaws. It was found that the thermal image of a small flaw was clearly visible with increase in the temperature difference. (author)

  20. Focussed probes ultrasonic follow-up of actual flaw growth during fatigue testing

    International Nuclear Information System (INIS)

    Cinotti, C.; Dufresne, J.; Prot, A.C.; Touffait, A.M.; Saglio, R.

    1979-01-01

    A programme was undertaken to follow-up the growth of actual flaws purposely introduced during the welding process of five test specimens. The aim of this programme is to measure the actual size of the cracks which develop from the known defects during the fatigue testing. The sizing method is based on the use of focussed probes, which allow good accuracy and repeatability, as well as good sensitivity. Examples are given of the first results: sizing before testing, then step by step during the fatigue testing and also under compression. This last point is very important in view of the ultrasonic testing during periodic in-service inspection

  1. Flaw evaluation of pressure vessel in pressurized water reactor

    International Nuclear Information System (INIS)

    Park, Ki Sung; Kim, Min Geol; Jeon, Chae Hong; Rhim, Soon Hyung; Kim, Seung Tae

    1999-01-01

    Flaw evaluation should be performed to determine the acceptance of a surface or a subsurface flaw detected during the in-service inspection without any repair or replacement. In this paper, the evaluation methodology and procedure were established according to ASME code Sec. XI and the evaluation program was coded. Using this program, a field engineer who doesn't have enough knowledge on fracture mechanics may be able to perform prompt and accurate flaw evaluation on site and decide whether a detected flaw be allowable or not. Analysis results were compared with those obtained from Westinghouse program called KCAL and FCG. Both results made good agreement and accuracy of the program developed in this paper was verified.=20

  2. Ultrasonic defect sizing using decibel drop methods. III

    International Nuclear Information System (INIS)

    Mills, C.; Goszczynski, J.; Mitchell, A.B.

    1988-03-01

    An earlier study on the use of ultrasonic decibel drop sizing methods for determining the length and vertical extent of flaws in welded steel sections was based on the scanning of machined flaws and fabrication flaws. The present study utilized the techniques developed to perform a similar study of the type of flaws expected to develop during service (e.g. fatigue cracks). The general findings are that: a) the use of decibel drops of less than 14 dB generally undersize the length of fatigue cracks; and b) the use of decibel drop methods to determine vertical extent is questionable

  3. Flaw detection device

    International Nuclear Information System (INIS)

    Sasahara, Toshihiko

    1998-01-01

    The present invention provides a device for detecting welded portions of a reactor pressure vessel. Namely, the device of the present invention comprises (1) a casing to be disposed on the surface to be detected, (2) a probe driving means loaded to the casing, (3) a probe driven along the surface to be detected and (4) a pressure reduction means for keeping the hollow portion in the casing to an evacuated atmosphere. The casing comprises a flexible suction edge to be tightly in contact with the surface to be tested for maintaining the air tight state, (6) a guide wheel for moving the casing along the surface to be tested and (7) a handle for performing transferring operation. The flaw detection device thus constituted has following features. The working efficiency upon conducting detection is improved. The influence of the weight of the device on the detection is small. The device can be applied on the surface of a nonmagnetic material. The efficiency for the flaw detection can be improved. (I.S.)

  4. Determination of K-factors for arbitrarily shaped flaws at pressure vessel nozzle corners

    International Nuclear Information System (INIS)

    Bryson, J.W.

    1979-01-01

    Photoelastic and finite element studies are being conducted to determine Mode I stress intensity factor distributions along arbitrarily shaped flaw fronts at pressure vessel nozzle corners. Comparisons of results from NOZ-FLAW, BIGIF, and the photoelastic studies showed that (1) good agreement was obtained between NOZ-FLAW and the photoelastically determined K 1 's for the deep flaw in an ITV model, (2) good agreement was obtained between NOZ-FLAW BIGIF for shallow and moderately deep flaws in a BWR model, and (3) less satisfactory agreement was obtained between NOZ- FLAW and the photoelastic results for the BWR models, particularly for moderately deep to deep flaws. Attempts are presently being made at understanding and explaining the discrepancies between the two

  5. Estimation of Back-Surface Flaw Depth by Laminated Piezoelectric Highpolymer Film

    Directory of Open Access Journals (Sweden)

    Akinobu YAMAMOTO

    2009-08-01

    Full Text Available Piezoelectric thin films have been used to visualize back surface flaws in plates. If the plate with a surface flaw is deformed, the strain distribution appears on the other surface reflecting the location and the shape of the flaw. Such surface strain distribution can be transformed into the electric potential distribution on the piezoelectric film mounted on the plate surface. This paper deals with a NDE technique to estimate the depth of a back-surface flaw from the electric potential distribution on a laminated piezoelectric thin film. It is experimentally verified that the flaw depth can be exactly estimated by the peak height of the electric potential distribution.

  6. Evaluation of canister weld flaw depth for concrete storage cask

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Tae Chul; Cho, Chun Hyung [Korea Radioactive Waste Agency, Daejeon (Korea, Republic of); Jung, Sung Hun; Lee, Young Oh; Jung, In Su [Korea Nuclear Engineering and Service Corp, Daejeon (Korea, Republic of)

    2017-03-15

    Domestically developed concrete storage casks include an internal canister to maintain the confinement integrity of radioactive materials. In this study, we analyzed the depth of flaws caused by loads that propagate canister weld cracks under normal, off-normal and accident conditions, and evaluated the maximum allowable weld flaw depth needed to secure the structural integrity of the canister weld and to reduce the welding time of the internal canister lid of the concrete storage cask. Structural analyses for normal, off-normal and accident conditions were performed using the general-purpose finite element analysis program ABAQUS; the allowable flaw depth was assessed according to ASME B and PV Code Section XI. Evaluation results revealed an allowable canister weld flaw depth of 18.75 mm for the concrete storage cask, which satisfies the critical flaw depth recommended in NUREG-1536.

  7. Development of portable phased array UT system for real-time flaw imaging

    International Nuclear Information System (INIS)

    Goto, M.

    1995-01-01

    Many functions and features of phased array UT technology must be useful for NDE in the industrial field. Some phased array UT systems have been developed for the inspection of nuclear pressure vessel and turbine components. However, phased array UT is still a special NDE technique and it has not been used widely in the past. The reasons of that are system size, cost, operator performance, equipment design and others. TOSHIBA has newly developed PC controlled portable phased array system to solve those problems. The portable phased array UT system is very compact and light but it is able to drive up to 32-channel linear array probe, to display real-time linear/sector B-scan, to display accumulated B-scan with an encoder and to display profile overlaid B-scan. The first applications were turbine component inspections for precise flaw investigation and flaw image data recording

  8. Flaw location and characterization in anisotropic materials by ultrasonic spectral analysis

    International Nuclear Information System (INIS)

    Adler, L.; Cook, K.V.; Simpson, W.A.; Lewis, D.K.

    1978-01-01

    A method of quantitatively determining size and location of flaws in anisotropic materials such as stainless steel welds is described. In previous work, it was shown that spectral analysis of a broad band ultrasonic pulse scattered from a defect can be used to determine size and orientation in isotropic materials if the velocity of sound in the material is known. In an anisotropic structural material (stainless steel weld, centrifugal cast pipe), the velocity (both shear and longitudinal) is direction-dependent. When anisotropy is not taken into account, defect location and defect size estimation is misjudged. It will be shown that the effect of this structural variation in materials must be considered to obtain the correct size and location of defects by frequency analysis. A theoretical calculation, including anisotropy, of the scattered field from defects will also be presented

  9. Comparison of evaluation method for planar flaw in pressure tube

    International Nuclear Information System (INIS)

    Choi, Sung Nam; Kim, Hyung Nam; Yoo, Hyun Joo; Hwang, Won Gul

    2009-01-01

    CSA N285.4-94 requires the periodic inservice inspection and surveillance of pressure tubes in operating CANDU nuclear power reactors. If the inspection results reveal a flaw exceeding the acceptance criteria of the Code, the flaw must be evaluated to determine if the pressure is acceptable for continued service. Currently, the flaw evaluation methodology and acceptance criteria specified in CSA N285.8-05, 'Technical requirements for in-service evaluation of zirconium alloy pressure tubes in CANDU reactors'. The Code is applicable to zirconium alloy pressure tubes. The evaluation methodology for a crack-like flaw is similar to that of FFSG(Fitness For Service Guideline for Zirconium alloy pressure in operation CANDU) used now. The object of this paper is to address the fracture initiation and plastic collapse evaluation for the planar flaw as it applies to the pressure tube on Wolsong NPP.

  10. Flaw preparations for HSST program vessel fracture mechanics testing: mechanical-cyclic pumping and electron-beam weld-hydrogen-charge cracking schemes

    International Nuclear Information System (INIS)

    Holz, P.P.

    1980-06-01

    The purpose of the document is to present schemes for flaw preparations in heavy section steel. The ability of investigators to grow representative sharp cracks of known size, location, and orientation is basic to representative field testing to determine data for potential flaw propagation, fracture behavior, and margin against fracture for high-pressure-, high-temperature-service steel vessels subjected to increasing pressurization and/or thermal shock. Gaging for analytical stress and strain procedures and ultrasonic and acoustic emission instrumentation can then be applied to monitor the vessel during testing and to study crack growth. This report presents flaw preparations for HSST fracture mechanics testing. Cracks were grown by two techniques: (1) a mechanical method wherein a premachined notch was sharpened by pressurization and (2) a method combining electron-beam welds and hydrogen charging to crack the chill zone of a rapidly placed autogenous weld. The mechanical method produces a naturally occurring growth shape controlled primarily by the shape of the machined notch; the welding-electrochemical method produces flaws of uniform depth from the surface of a wall or machined notch. Theories, details, discussions, and procedures are covered for both of the flaw-growing schemes

  11. An intelligent software approach to ultrasonic flaw classification in weldments

    International Nuclear Information System (INIS)

    Song, Sung Jin; Kim, Hak Joon; Lee, Hyun

    1997-01-01

    Ultrasonic pattern recognition is the most effective approach to the problem of discriminating types of flaws in weldments based on ultrasonic flaw signals. In spite of significant progress on this methodology, it has not been widely used in practical ultrasonic inspection of weldments in industry. Hence, for the convenient application of this approach in many practical situations, we develop an intelligent ultrasonic signature classification software which can discriminate types of flaws in weldments using various tools in artificial intelligence such as neural networks. This software shows excellent performances in an experimental problem where flaws in weldments are classified into two categories of cracks and non-cracks.

  12. Evaluation of Fatigue Crack Initiation for Volumetric Flaw in Pressure Tube

    International Nuclear Information System (INIS)

    Choi, Sung Nam; Yoo, Hyun Joo

    2005-01-01

    CAN/CSA.N285.4-94 requires the periodic inservice inspection and surveillance of pressure tubes in operating CANDU nuclear power reactors. If the inspection results reveal a flaw exceeding the acceptance criteria of the Code, the flaw must be evaluated to determine if the pressure is acceptable for continued service. Currently, the flaw evaluation methodology and acceptance criteria specified in CSA-N285.05-2005, 'Technical requirements for in-service evaluation of zirconium alloy pressure tubes in CANDU reactors'. The Code is applicable to zirconium alloy pressure tubes. The evaluation methodology for a crack-like flaw is similar to that of ASME B and PV Sec. XI, 'Inservice Inspection of Nuclear Power Plant Components'. However, the evaluation methodology for a blunt volumetric flaw is described in CSA-N285.05-2005 code. The object of this paper is to address the fatigue crack initiation evaluation for the blunt volumetric flaw as it applies to the pressure tube at Wolsong NPP

  13. Primary water stress corrosion cracks in nickel alloy dissimilar metal welds: Detection and sizing using established and emerging nondestructive examination techniques

    International Nuclear Information System (INIS)

    Braatz, B.G.; Doctor, S.R.; Cumblidge, S.E.; Prokofiev, I.G.

    2012-01-01

    The U.S. Nuclear Regulatory Commission has established the Program to Assess the Reliability of Emerging Nondestructive Techniques (PARENT) as a follow-on to the international cooperative Program for the Inspection of Nickel Alloy Components (PINC). The goal of PINC was to evaluate the capabilities of various nondestructive evaluation (NDE) techniques to detect and characterize surface-breaking primary water stress corrosion cracks in dissimilar-metal welds (DMW) in bottom-mounted instrumentation (BMI) penetrations and small-bore (∼400-mm diameter) piping components. A series of international blind round-robin tests were conducted by commercial and university inspection teams. Results from these tests showed that a combination of conventional and phased-array ultrasound techniques provided the highest performance for flaw detection and depth sizing in dissimilar metal piping welds. The effective detection of flaws in BMIs by eddy current and ultrasound shows that it may be possible to reliably inspect these components in the field. The goal of PARENT is to continue the work begun in PINC and apply the lessons learned to a series of open and blind international round-robin tests that will be conducted on a new set of piping components including large-bore (∼900-mm diameter) DMWs, small-bore DMWs, and BMIs. Open round-robin testing will engage universities and industry worldwide to investigate the reliability of emerging NDE techniques to detect and accurately size flaws having a wide range of lengths, depths, orientations, and locations. Blind round-robin testing will invite testing organizations worldwide, whose inspectors and procedures are certified by the standards for the nuclear industry in their respective countries, to investigate the ability of established NDE techniques to detect and size flaws whose characteristics range from easy to very difficult to detect and size. This paper presents highlights of PINC and reports on the plans and progress for

  14. Primary Water Stress Corrosion Cracks in Nickel Alloy Dissimilar Metal Welds: Detection and Sizing Using Established and Emerging Nondestructive Examination Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Braatz, Brett G.; Cumblidge, Stephen E.; Doctor, Steven R.; Prokofiev, Iouri

    2012-12-31

    The U.S. Nuclear Regulatory Commission has established the Program to Assess the Reliability of Emerging Nondestructive Techniques (PARENT) as a follow-on to the international cooperative Program for the Inspection of Nickel Alloy Components (PINC). The goal of PINC was to evaluate the capabilities of various nondestructive evaluation (NDE) techniques to detect and characterize surface-breaking primary water stress corrosion cracks in dissimilar-metal welds (DMW) in bottom-mounted instrumentation (BMI) penetrations and small-bore (≈400-mm diameter) piping components. A series of international blind round-robin tests were conducted by commercial and university inspection teams. Results from these tests showed that a combination of conventional and phased-array ultrasound techniques provided the highest performance for flaw detection and depth sizing in dissimilar metal piping welds. The effective detection of flaws in BMIs by eddy current and ultrasound shows that it may be possible to reliably inspect these components in the field. The goal of PARENT is to continue the work begun in PINC and apply the lessons learned to a series of open and blind international round-robin tests that will be conducted on a new set of piping components including large-bore (≈900-mm diameter) DMWs, small-bore DMWs, and BMIs. Open round-robin testing will engage universities and industry worldwide to investigate the reliability of emerging NDE techniques to detect and accurately size flaws having a wide range of lengths, depths, orientations, and locations. Blind round-robin testing will invite testing organizations worldwide, whose inspectors and procedures are certified by the standards for the nuclear industry in their respective countries, to investigate the ability of established NDE techniques to detect and size flaws whose characteristics range from easy to very difficult to detect and size. This paper presents highlights of PINC and reports on the plans and progress for

  15. Real time automatic discriminating of ultrasonic flaws

    International Nuclear Information System (INIS)

    Suhairy Sani; Mohd Hanif Md Saad; Marzuki Mustafa; Mohd Redzwan Rosli

    2009-01-01

    This paper is concerned with the real time automatic discriminating of flaws from two categories; i. cracks (planar defect) and ii. Non-cracks (volumetric defect such as cluster porosity and slag) using pulse-echo ultrasound. The raw ultrasonic flaws signal were collected from a computerized robotic plane scanning system over the whole of each reflector as the primary source of data. The signal is then filtered and the analysis in both time and frequency domain were executed to obtain the selected feature. The real time feature analysis techniques measured the number of peaks, maximum index, pulse duration, rise time and fall time. The obtained features could be used to distinguish between quantitatively classified flaws by using various tools in artificial intelligence such as neural networks. The proposed algorithm and complete system were implemented in a computer software developed using Microsoft Visual BASIC 6.0 (author)

  16. Applicability of Alignment and Combination Rules to Burst Pressure Prediction of Multiple-flawed Steam Generator Tube

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myeong Woo; Kim, Ji Seok; Kim, Yun Jae [Korea University, Seoul (Korea, Republic of); Jeon, Jun Young [Doosan Heavy Industries and Consruction, Seoul (Korea, Republic of); Lee, Dong Min [Korea Plant Service and Engineering, Technical Research and Development Institute, Naju (Korea, Republic of)

    2016-05-15

    Alignment and combination rules are provided by various codes and standards. These rules are used to determine whether multiple flaws should be treated as non-aligned or as coplanar, and independent or combined flaws. Experimental results on steam generator (SG) tube specimens containing multiple axial part-through-wall (PTW) flaws at room temperature (RT) are compared with assessment results based on the alignment and combination rules of the codes and standards. In case of axial collinear flaws, ASME, JSME, and BS7910 treated multiple flaws as independent flaws and API 579, A16, and FKM treated multiple flaws as combined single flaw. Assessment results of combined flaws were conservative. In case of axial non-aligned flaws, almost flaws were aligned and assessment results well correlate with experimental data. In case of axial parallel flaws, both effective flaw lengths of aligned flaws and separated flaws was are same because of each flaw length were same. This study investigates the applicability of alignment and combination rules for multiple flaws on the failure behavior of Alloy 690TT steam generator (SG) tubes that widely used in the nuclear power plan. Experimental data of burst tests on Alloy 690TT tubes with single and multiple flaws that conducted at room temperature (RT) by Kim el al. compared with the alignment rules of these codes and standards. Burst pressure of SG tubes with flaws are predicted using limit load solutions that provide by EPRI Handbook.

  17. Comparison of Size Modulation Standard Automated Perimetry and Conventional Standard Automated Perimetry with a 10-2 Test Program in Glaucoma Patients.

    Science.gov (United States)

    Hirasawa, Kazunori; Takahashi, Natsumi; Satou, Tsukasa; Kasahara, Masayuki; Matsumura, Kazuhiro; Shoji, Nobuyuki

    2017-08-01

    This prospective observational study compared the performance of size modulation standard automated perimetry with the Octopus 600 10-2 test program, with stimulus size modulation during testing, based on stimulus intensity and conventional standard automated perimetry, with that of the Humphrey 10-2 test program in glaucoma patients. Eighty-seven eyes of 87 glaucoma patients underwent size modulation standard automated perimetry with Dynamic strategy and conventional standard automated perimetry using the SITA standard strategy. The main outcome measures were global indices, point-wise threshold, visual defect size and depth, reliability indices, and test duration; these were compared between size modulation standard automated perimetry and conventional standard automated perimetry. Global indices and point-wise threshold values between size modulation standard automated perimetry and conventional standard automated perimetry were moderately to strongly correlated (p 33.40, p modulation standard automated perimetry than with conventional standard automated perimetry, but the visual-field defect size was smaller (p modulation-standard automated perimetry than on conventional standard automated perimetry. The reliability indices, particularly the false-negative response, of size modulation standard automated perimetry were worse than those of conventional standard automated perimetry (p modulation standard automated perimetry than with conventional standard automated perimetry (p = 0.02). Global indices and the point-wise threshold value of the two testing modalities correlated well. However, the potential of a large stimulus presented at an area with a decreased sensitivity with size modulation standard automated perimetry could underestimate the actual threshold in the 10-2 test protocol, as compared with conventional standard automated perimetry.

  18. Detection of flaws below curved surfaces

    International Nuclear Information System (INIS)

    Elsley, R.K.; Addison, R.C.; Graham, L.J.

    1983-01-01

    A measurement model has been developed to describe ultrasonic measurements made with circular piston transducers in parts with flat or cylindrically curved surfaces. The model includes noise terms to describe electrical noise, scatterer noise and echo noise as well as effects of attenuation, diffraction and Fresnel loss. An experimental procedure for calibrating the noise terms of the model was developed. Experimental measurements were made on a set of known flaws located beneath a cylindrically curved surface. The model was verified by using it to correct the experimental measurements to obtain the absolute scattering amplitude of the flaws. For longitudinal wave propagation within the part, the derived scattering amplitudes were consistent with predictions at internal angles of less than 30 0 . At larger angles, focusing and aberrations caused a lack of agreement; the model needs further refinement in this case. For shear waves, it was found that the frequency for optimum flaw detection in the presence of material noise is lower than that for longitudinal waves; lower frequency measurements are currently in progress. The measurement model was then used to make preliminary predictions of the best experimental measurement technique for the detection of cracks located under cylindrically curved surfaces

  19. Common methodological flaws in economic evaluations.

    Science.gov (United States)

    Drummond, Michael; Sculpher, Mark

    2005-07-01

    Economic evaluations are increasingly being used by those bodies such as government agencies and managed care groups that make decisions about the reimbursement of health technologies. However, several reviews of economic evaluations point to numerous deficiencies in the methodology of studies or the failure to follow published methodological guidelines. This article, written for healthcare decision-makers and other users of economic evaluations, outlines the common methodological flaws in studies, focussing on those issues that are likely to be most important when deciding on the reimbursement, or guidance for use, of health technologies. The main flaws discussed are: (i) omission of important costs or benefits; (ii) inappropriate selection of alternatives for comparison; (iii) problems in making indirect comparisons; (iv) inadequate representation of the effectiveness data; (v) inappropriate extrapolation beyond the period observed in clinical studies; (vi) excessive use of assumptions rather than data; (vii) inadequate characterization of uncertainty; (viii) problems in aggregation of results; (ix) reporting of average cost-effectiveness ratios; (x) lack of consideration of generalizability issues; and (xi) selective reporting of findings. In each case examples are given from the literature and guidance is offered on how to detect flaws in economic evaluations.

  20. Analysis of portable gamma flaw detectors concerning radiation hygiene

    International Nuclear Information System (INIS)

    Makarova, T.V.

    1982-01-01

    Design and shields of gamma flaw detectors as one of the main factors responsible for personnel dose were studied. The analysis was conducted using the results of radiation hygienic surveys of gamma flaw detection laboratories functioning constantly in Estonia. It is shown that recently the replacement of GUP apparatuses by flaw detectors of RID and ''Gamma-RID'' (types which have design and shielding advantages is observed. However personnel doses have not reduced considerably for the last 10 years. This fact is attributed to design disadvantages of the RID and ''Gamma-RID'' apparatuses the removing of which will give the decreasing of annual personnel dose by 80 %

  1. Comparison of three flaw-location methods for automated ultrasonic testing

    International Nuclear Information System (INIS)

    Seiger, H.

    1982-01-01

    Two well-known methods for locating flaws by measurement of the transit time of ultrasonic pulses are examined theoretically. It is shown that neither is sufficiently reliable for use in automated ultrasonic testing. A third method, which takes into account the shape of the sound field from the probe and the uncertainty in measurement of probe-flaw distance and probe position, is introduced. An experimental comparison of the three methods indicates that use of the advanced method results in more accurate location of flaws. (author)

  2. Development of an intelligent system for ultrasonic flaw classification in weldments

    International Nuclear Information System (INIS)

    Song, Sung-Jin; Kim, Hak-Joon; Cho, Hyeon

    2002-01-01

    Even though ultrasonic pattern recognition is considered as the most effective and promising approach to flaw classification in weldments, its application to the realistic field inspection is still very limited due to the crucial barriers in cost, time and reliability. To reduce such barriers, previously we have proposed an intelligent system approach that consisted of the following four ingredients: (1) a PC-based ultrasonic testing (PC-UT) system; (2) an effective invariant ultrasonic flaw classification algorithm; (3) an intelligent flaw classification software; and (4) a database with abundant experimental flaw signals. In the present work, for performing the ultrasonic flaw classification in weldments in a real-time fashion in many real word situations, we develop an intelligent system, which is called the 'Intelligent Ultrasonic Evaluation System (IUES)' by the integration of the above four ingredients into a single, unified system. In addition, for the improvement of classification accuracy of flaws, especially slag inclusions, we expand the feature set by adding new informative features, and demonstrate the enhanced performance of the IUES with flaw signals in the database constructed previously. And then, to take care of the increased redundancy in the feature set due to the addition of features, we also propose two efficient schemes for feature selection: the forward selection with trial and error, and the forward selection with criteria of the error probability and the linear correlation coefficients of individual features

  3. The detection of tightly closed flaws by nondestructive testing (NDT) methods. [fatigue crack formation in aluminum alloy test specimens

    Science.gov (United States)

    Rummel, W. D.; Rathke, R. A.; Todd, P. H., Jr.; Mullen, S. J.

    1975-01-01

    Liquid penetrant, ultrasonic, eddy current and X-radiographic techniques were optimized and applied to the evaluation of 2219-T87 aluminum alloy test specimens in integrally stiffened panel, and weld panel configurations. Fatigue cracks in integrally stiffened panels, lack-of-fusion in weld panels, and fatigue cracks in weld panels were the flaw types used for evaluation. A 2319 aluminum alloy weld filler rod was used for all welding to produce the test specimens. Forty seven integrally stiffened panels containing a total of 146 fatigue cracks, ninety three lack-of-penetration (LOP) specimens containing a total of 239 LOP flaws, and one-hundred seventeen welded specimens containing a total of 293 fatigue cracks were evaluated. Nondestructive test detection reliability enhancement was evaluated during separate inspection sequences in the specimens in the 'as-machined or as-welded', post etched and post proof loaded conditions. Results of the nondestructive test evaluations were compared to the actual flaw size obtained by measurement of the fracture specimens after completing all inspection sequences. Inspection data were then analyzed to provide a statistical basis for determining the flaw detection reliability.

  4. Regulation No. 0-31 on handling of radiation flaw-detectors

    International Nuclear Information System (INIS)

    1975-01-01

    The regulation contains mandatory design, commissioning, and operational requirements for laboratories using flaw-detectors emitting ionizing radiation; also, design, manufacturing, and operational requirements for the production of any type of X-ray or gamma-ray flaw-detectors. Laboratories carrying out non-destructive testing are either stationary or mobile. Conceptual and operating designs are elaborated, including the building and the laboratory lay-outs, the mains, water supply, and sewerage system technological lay-out, explanatory comments, and a lay-out of the shielding equipment. Approbated designs are implemented, and the laboratories commissioned to representatives of the State Sanitary Inspectorate. Licences are issued by the Ministry of Public Health (MPH) and the Committee on Peaceful Uses of Atomic Energy (CPUAE). Any flaw-detector has to conform to the Bulgarian State Standards and be coordinated with the MPH, the CPUAE, and the Central Laboratory for Nuclear Flaw-Detection (CLNFD). The laboratories are required to have operational instructions, an emergency plan, and to keep technological and dosimetric records. The latter are provided and processed by the relevant service at the Research Institute of Radiobiology and Radiation Hygiene. For operations involving of flaw-detectors, presence of at least two workers is required. (G.G.)

  5. Ultrasonic imaging of material flaws exploiting multipath information

    Science.gov (United States)

    Shen, Xizhong; Zhang, Yimin D.; Demirli, Ramazan; Amin, Moeness G.

    2011-05-01

    In this paper, we consider ultrasonic imaging for the visualization of flaws in a material. Ultrasonic imaging is a powerful nondestructive testing (NDT) tool which assesses material conditions via the detection, localization, and classification of flaws inside a structure. Multipath exploitations provide extended virtual array apertures and, in turn, enhance imaging capability beyond the limitation of traditional multisensor approaches. We utilize reflections of ultrasonic signals which occur when encountering different media and interior discontinuities. The waveforms observed at the physical as well as virtual sensors yield additional measurements corresponding to different aspect angles. Exploitation of multipath information addresses unique issues observed in ultrasonic imaging. (1) Utilization of physical and virtual sensors significantly extends the array aperture for image enhancement. (2) Multipath signals extend the angle of view of the narrow beamwidth of the ultrasound transducers, allowing improved visibility and array design flexibility. (3) Ultrasonic signals experience difficulty in penetrating a flaw, thus the aspect angle of the observation is limited unless access to other sides is available. The significant extension of the aperture makes it possible to yield flaw observation from multiple aspect angles. We show that data fusion of physical and virtual sensor data significantly improves the detection and localization performance. The effectiveness of the proposed multipath exploitation approach is demonstrated through experimental studies.

  6. Improved flaw detection and characterization with difference thermography

    Science.gov (United States)

    Winfree, William P.; Zalameda, Joseph N.; Howell, Patricia A.

    2011-05-01

    Flaw detection and characterization with thermographic techniques in graphite polymer composites is often limited by localized variations in the thermographic response. Variations in properties such as acceptable porosity, variations in fiber volume content and surface polymer thickness result in variations in the thermal response that in general cause significant variations in the initial thermal response. These variations result in a noise floor that increases the difficulty of detecting and characterizing deeper flaws. The paper investigates comparing thermographic responses taken before and after a change in state in a composite to improve the detection of subsurface flaws. A method is presented for registration of the responses before finding the difference. A significant improvement in the detectability is achieved by comparing the differences in response. Examples of changes in state due to application of a load and impact are presented.

  7. A methodology for determining fabrication flaws in a reactor pressure vessel

    International Nuclear Information System (INIS)

    Schuster, G.J.; Doctor, S.R.; Simonen, F.A.

    1996-01-01

    The Pacific Northwest National Laboratory (PNNL) conducted a program with the major objective of estimating the rate of occurrence of fabrication flaws in US light-water reactor pressure vessels (RPVs). In this study, RPV mate4rial was examined using the Synthetic Aperture Focusing Technique for Ultrasonic Testing (SAFT-UT) to detect and characterize flaws created during fabrication. The inspection data obtained in this program has been analyzed to address the rates of flaw occurrence

  8. Radiation flaw detector for testing non-uniform surface bodies of revolution

    International Nuclear Information System (INIS)

    Valevich, M.I.

    1984-01-01

    Radiation flaw detector for testing bodies of revolution with non-uniform surface, welded joints, etc., based on spatial filtration and differentiation of ionizing radiation flux has been described. The calculation of the most important unit of flaw detector - integrators - is made. Experimental studies of the sensitivity have shown, that the radiation flaw detector can be used for rapid testing of products with the sensitivity comparable with the sensitivity of radiographic testing of steel

  9. Determination of Flaw Type and Location Using an Expert Module in Ultrasonic Nondestructive Testing for Weld Inspection

    Science.gov (United States)

    Shahriari, D.; Zolfaghari, A.; Masoumi, F.

    2011-01-01

    Nondestructive evaluation is explained as nondestructive testing, nondestructive inspection, and nondestructive examination. It is a desire to determine some characteristic of the object or to determine whether the object contains irregularities, discontinuities, or flaws. Ultrasound based inspection techniques are used extensively throughout industry for detection of flaws in engineering materials. The range and variety of imperfections encountered is large, and critical assessment of location, size, orientation and type is often difficult. In addition, increasing quality requirements of new standards and codes of practice relating to fitness for purpose are placing higher demands on operators. Applying of an expert knowledge-based analysis in ultrasonic examination is a powerful tool that can help assure safety, quality, and reliability; increase productivity; decrease liability; and save money. In this research, an expert module system is coupled with ultrasonic examination (A-Scan Procedure) to determine and evaluate type and location of flaws that embedded during welding parts. The processing module of this expert system is implemented based on EN standard to classify welding defects, acceptance condition and measuring of their location via echo static pattern and image processing. The designed module introduces new system that can automate evaluating of the results of A-scan method according to EN standard. It can simultaneously recognize the number and type of defects, and determine flaw position during each scan.

  10. Magnetite Core-Shell Nanoparticles in Nondestructive Flaw Detection of Polymeric Materials.

    Science.gov (United States)

    Hetti, Mimi; Wei, Qiang; Pohl, Rainer; Casperson, Ralf; Bartusch, Matthias; Neu, Volker; Pospiech, Doris; Voit, Brigitte

    2016-10-04

    Nondestructive flaw detection in polymeric materials is important but difficult to achieve. In this research, the application of magnetite nanoparticles (MNPs) in nondestructive flaw detection is studied and realized, to the best of our knowledge, for the first time. Superparamagnetic and highly magnetic (up to 63 emu/g) magnetite core-shell nanoparticles are prepared by grafting bromo-end-group-functionalized poly(glycidyl methacrylate) (Br-PGMA) onto surface-modified Fe 3 O 4 NPs. These Fe 3 O 4 -PGMA NPs are blended into bisphenol A diglycidylether (BADGE)-based epoxy to form homogeneously distributed magnetic epoxy nanocomposites (MENCs) after curing. The core Fe 3 O 4 of the Fe 3 O 4 -PGMA NPs endows the MENCs with magnetic property, which is crucial for nondestructive flaw detection of the materials, while the shell PGMA promotes colloidal stability and prevents NP aggregation during curing. The eddy current testing (ET) technique is first applied to detect flaws in the MENCs. Through the brightness contrast of the ET image, surficial and subsurficial flaws in MENCs can be detected, even for MENCs with low content of Fe 3 O 4 -PGMA NPs (1 wt %). The incorporation of Fe 3 O 4 -PGMA NPs can be easily extended to other polymer and polymer-based composite systems and opens a new and very promising pathway toward MNP-based nondestructive flaw detection in polymeric materials.

  11. Ultrasonic Transducer Design for the Axial Flaw Detection of Dissimilar Metal Weld

    International Nuclear Information System (INIS)

    Yoon, Byung Sik; Kim, Yong Sik; Yang, Seung Han

    2011-01-01

    Dissimilar metal welds in nuclear power plant are known as very susceptible to PWSCC flaws, and periodically inspected by the qualified inspector and qualified procedure during in-service inspection period. According to field survey data, the majority of their DMWs are located on tapered nozzle or adjacent to a tapered component. These types of configurations restrict examination access and also limit examination volume coverage. Additionally, circumferential scan for axially oriented flaw is very difficult to detect located on tapered surface because the transducer can't receive flaw response from reflector for miss-orientation. To overcome this miss-orientation, it is necessary adapt skewed ultrasonic transducer accommodate tapered surface. The skewed refracted longitudinal ultrasonic transducer designed by modeling and manufactured from the modelling result for axial flaw detection. Experimental results showed that the skewed refracted longitudinal ultrasonic transducer get higher flaw response than non-skewed refracted longitudinal ultrasonic transducer

  12. High-temperature flaw assessment procedure

    International Nuclear Information System (INIS)

    Ruggles, M.B.; Takahashi, Y.; Ainsworth, R.A.

    1991-08-01

    Described is the background work performed jointly by the Electric Power Research Institute in the United States, the Central Research Institute of Electric Power Industry in Japan and Nuclear Electric plc in the United Kingdom with the purpose of developing a high-temperature flaw assessment procedure for reactor components. Existing creep-fatigue crack-growth models are reviewed, and the most promising methods are identified. Sources of material data are outlined, and results of the fundamental deformation and crack-growth tests are discussed. Results of subcritical crack-growth exploratory tests, creep-fatigue crack-growth tests under repeated thermal transient conditions, and exploratory failure tests are presented and contrasted with the analytical modeling. Crack-growth assessment methods are presented and applied to a typical liquid-metal reactor component. The research activities presented herein served as a foundation for the Flaw Assessment Guide for High-Temperature Reactor Components Subjected to Creep-Fatigue Loading published separately. 30 refs., 108 figs., 13 tabs

  13. Stress intensities in flawed pressure vessels

    International Nuclear Information System (INIS)

    Smith, C.W.; Jolles, M.; Peters, W.H.

    1977-01-01

    A technique for determining the stess intensity factor (SIF) near pressure vessel flaws or cracks experimentally from photoelastic data for use in two-dimensional problems was developed in the 1950's. This technique was modified and extended to a variety of two-dimensional problems. The technique has been refined further and what has evolved may be regarded as a hybrid technique which affects a marriage between ''frozen stress'' photoelastic results and a simple least-squares digital computer program for estimating SIF values in three-dimensional problems. This technique, in its original modified form, has been shown to be applicable to a study of surface flaws and the applicability of the method to complex crack body geometries of current technological importance are discussed. The analytical foundations of the method are reviewed

  14. Potential change in flaw geometry of an initially shallow finite-length surface flaw during a pressurized-thermal-shock transient

    International Nuclear Information System (INIS)

    Shum, D.K.; Bryson, J.W.; Merkle, J.G.

    1993-09-01

    This study presents preliminary estimates on whether an shallow, axially oriented, inner-surface finite-length flaw in a PWR-RPV would tend to elongate in the axial direction and/or deepen into the wall of the vessel during a postulated PTS transient. Analysis results obtained based on the assumptions of (1) linear-elastic material response, and (2) cladding with same toughness as the base metal, indicate that a nearly semicircular flaw would likely propagate in the axial direction followed by propagation into the wall of the vessel. Note that these results correspond to initiation within the lower-shelf fracture toughness temperature range, and that their general validity within the lower-transition temperature range remains to be determined. The sensitivity of the numerical results aid conclusions to the following analysis assumptions are evaluated: (1) reference flaw geometry along the entire crack front and especially within the cladding region; (2) linear-elastic vs elastic-plastic description of material response; and (3) base-material-only vs bimaterial cladding-base vessel-model assumption. The sensitivity evaluation indicates that the analysis results are very sensitive to the above assumptions

  15. Conventional and Non-Conventional Yeasts in Beer Production

    Directory of Open Access Journals (Sweden)

    Angela Capece

    2018-06-01

    Full Text Available The quality of beer relies on the activity of fermenting yeasts, not only for their good fermentation yield-efficiency, but also for their influence on beer aroma, since most of the aromatic compounds are intermediate metabolites and by-products of yeast metabolism. Beer production is a traditional process, in which Saccharomyces is the sole microbial component, and any deviation is considered a flaw. However, nowadays the brewing sector is faced with an increasing demand for innovative products, and it is diffusing the use of uncharacterized autochthonous starter cultures, spontaneous fermentation, or non-Saccharomyces starters, which leads to the production of distinctive and unusual products. Attempts to obtain products with more complex sensory characteristics have led one to prospect for non-conventional yeasts, i.e., non-Saccharomyces yeasts. These generally are characterized by low fermentation yields and are more sensitive to ethanol stress, but they provide a distinctive aroma and flavor. Furthermore, non-conventional yeasts can be used for the production of low-alcohol/non-alcoholic and light beers. This review aims to present the main findings about the role of traditional and non-conventional yeasts in brewing, demonstrating the wide choice of available yeasts, which represents a new biotechnological approach with which to target the characteristics of beer and to produce different or even totally new beer styles.

  16. Advanced Signal Processing for Thermal Flaw Detection; TOPICAL

    International Nuclear Information System (INIS)

    VALLEY, MICHAEL T.; HANSCHE, BRUCE D.; PAEZ, THOMAS L.; URBINA, ANGEL; ASHBAUGH, DENNIS M.

    2001-01-01

    Dynamic thermography is a promising technology for inspecting metallic and composite structures used in high-consequence industries. However, the reliability and inspection sensitivity of this technology has historically been limited by the need for extensive operator experience and the use of human judgment and visual acuity to detect flaws in the large volume of infrared image data collected. To overcome these limitations new automated data analysis algorithms and software is needed. The primary objectives of this research effort were to develop a data processing methodology that is tied to the underlying physics, which reduces or removes the data interpretation requirements, and which eliminates the need to look at significant numbers of data frames to determine if a flaw is present. Considering the strengths and weakness of previous research efforts, this research elected to couple both the temporal and spatial attributes of the surface temperature. Of the possible algorithms investigated, the best performing was a radiance weighted root mean square Laplacian metric that included a multiplicative surface effect correction factor and a novel spatio-temporal parametric model for data smoothing. This metric demonstrated the potential for detecting flaws smaller than 0.075 inch in inspection areas on the order of one square foot. Included in this report is the development of a thermal imaging model, a weighted least squares thermal data smoothing algorithm, simulation and experimental flaw detection results, and an overview of the ATAC (Automated Thermal Analysis Code) software that was developed to analyze thermal inspection data

  17. Method for the detection of flaws in a tube proximate a contiguous member

    International Nuclear Information System (INIS)

    Holt, A.E.; Wehrmeister, A.E.; Whaley, H.L.

    1979-01-01

    A method for deriving the eddy current signature of a flaw in a tube proximate a contiguous member which is obscured in a composite signature of the flaw and contiguous member comprises subtracting from the composite signature a reference eddy current signature generated by scanning a reference or facsimile tube and contiguous member. The method is particularly applicable to detecting flaws in the tubes of heat exchangers of fossil fuel and nuclear power plants to enable the detection of flaws which would otherwise be obscured by contiguous members such as support plates supporting the tubes. (U.K.)

  18. Cracking and Failure in Rock Specimen Containing Combined Flaw and Hole under Uniaxial Compression

    Directory of Open Access Journals (Sweden)

    Xiang Fan

    2018-01-01

    Full Text Available Flaw is a key factor influencing failure behavior of a fractured specimen. In the present study, rectangular-flawed specimens were prepared using sandstone to investigate the effect of flaw on failure behavior of rock. Open flaw and cylindrical hole were simultaneously precut within rock specimens using high-pressure water jet cutting technology. Five series of specimens including intact, single-hole-alone, two-hole-alone, single-hole and two-flaw, and two-hole and single-flaw blocks were prepared. Uniaxial compressive tests using a rigid servo control instrument were carried out to investigate the fracture processes of these flawed specimens. It is observed that during loading, internal stress always intensively distributed at both sidewalls of open hole, especially at midpoint of sidewalls, so rock crumb flaking was firstly observed among all sandstone specimens containing single hole or two holes. Cracking around open hole is associated with the flaw inclination angle which was observed in Series III and V. Crack easily initiated at the tips of flaw with inclination angles of 0°, 30°, and 60° but hard for 90° in Series III and V. Rock burst was the major failure mode among most tested specimens, which generally induced new cracks and finally created crater shape. Additionally, due to extrusion between blocks, new shear or tensile cracks were generated and the rock specimen surface spalled. Eventually, four typical failure processes including rock crumb flaking, crack initiation and propagation, rock burst, and second rupture, were summarized.

  19. Reliability assessment of hydraulic cylinders considering service loads and flaw distribution

    International Nuclear Information System (INIS)

    Altamura, Alessandra; Beretta, Stefano

    2012-01-01

    Manufacturing process, service conditions and material properties are all necessary requirements to a good design of tubular mechanical components subjected to fatigue. The most common approach to this design is usually deterministic, where a fixed NDT threshold, related to flaw acceptance limit, is set. However many uncertainties are left aside, i.e. the failure probability related to the fatigue strength under applied loads. This paper addresses the reliability evaluation of tubular mechanical components carrying some flaws and subjected to cyclic internal pressure variation. The aim is comparing the probability of failure obtained under several assumptions. A reliability assessment model, based on a random variable approach, has been implemented by using the Monte Carlo method. The analysis of the results, from a case study based on load spectra measurements of hydraulic cylinders of earth moving machines, has consented to evaluate the most important factors influencing the fatigue life prediction of these components. Highlights: ► Reliability evaluation of tubular components subjected to variable internal pressure. ► The dispersion of the threshold controls the stochasticity of crack growth. ► A random variable model has been developed using Monte Carlo. ► Initial crack size and spectrum shape are key factors in reliability evaluation.

  20. Design flaw could delay collider

    CERN Multimedia

    Cho, Adrian

    2007-01-01

    "A magnet for the Large Hadron Collider (LHC) failed during a key test at the European particle physics laboratory CERN last week. Physicists and engineers will have to repair the damaged magnet and retrofit others to correct the underlynig design flaw, which could delay the start-up of the mammouth subterranean machine." (1,5 page)

  1. Ultrasonographic Detection of Tooth Flaws

    Science.gov (United States)

    Bertoncini, C. A.; Hinders, M. K.; Ghorayeb, S. R.

    2010-02-01

    The goal of our work is to adapt pulse-echo ultrasound into a high resolution imaging modality for early detection of oral diseases and for monitoring treatment outcome. In this talk we discuss our preliminary results in the detection of: demineralization of the enamel and dentin, demineralization or caries under and around existing restorations, caries on occlusal and interproximal surfaces, cracks of enamel and dentin, calculus, and periapical lesions. In vitro immersion tank experiments are compared to results from a handpiece which uses a compliant delay line to couple the ultrasound to the tooth surface. Because the waveform echoes are complex, and in order to make clinical interpretation of ultrasonic waveform data in real time, it is necessary to automatically interpret the signals. We apply the dynamic wavelet fingerprint algorithms to identify and delineate echographic features that correspond to the flaws of interest in teeth. The resulting features show a clear distinction between flawed and unflawed waveforms collected with an ultrasonic handpiece on both phantom and human cadaver teeth.

  2. Fundamentally Flawed: Extension Administrative Practice (Part 1).

    Science.gov (United States)

    Patterson, Thomas F., Jr.

    1997-01-01

    Extension's current administrative techniques are based on the assumptions of classical management from the early 20th century. They are fundamentally flawed and inappropriate for the contemporary workplace. (SK)

  3. Biaxial loading and shallow-flaw effects on crack-tip constraint and fracture-toughness

    International Nuclear Information System (INIS)

    Pennell, W.E.; Bass, B.R.; Bryson, J.W.; McAfee, W.J.; Theiss, T.J.; Rao, M.C.

    1993-01-01

    Uniaxial tests of single-edged notched bend (SENB) specimens with both deep- and shallow-flaws have shown elevated fracture-toughness for the shallow flaws. The elevation in fracture-toughness for shallow flaws has been shown to be the result of reduced constraint at the crack-tip. Biaxial loading has the potential to increase constraint at the crack-tip and thereby reduce some of the shallow-flaw, fracture-toughness elevation. Biaxial fracture-toughness tests have shown that the shallow-flaw, fracture-toughness elevation is reduced but not eliminated by biaxial loading. Dual-parameter, fracture-toughness correlations have been proposed to reflect the effect of crack-tip constraint on fracture-toughness. Test results from the uniaxial and biaxial tests were analyzed using the dual-parameter technology. Discrepancies between analysis results and cleavage initiation site data from fractographic examinations indicate that the analysis models are in need of further refinement. Addition of a precleavage, ductile-tearing element to the analysis model has the potential to resolve the noted discrepancies

  4. Computational reduction of specimen noise to enable improved thermography characterization of flaws in graphite polymer composites

    Science.gov (United States)

    Winfree, William P.; Howell, Patricia A.; Zalameda, Joseph N.

    2014-05-01

    Flaw detection and characterization with thermographic techniques in graphite polymer composites are often limited by localized variations in the thermographic response. Variations in properties such as acceptable porosity, fiber volume content and surface polymer thickness result in variations in the thermal response that in general cause significant variations in the initial thermal response. These result in a "noise" floor that increases the difficulty of detecting and characterizing deeper flaws. A method is presented for computationally removing a significant amount of the "noise" from near surface porosity by diffusing the early time response, then subtracting it from subsequent responses. Simulations of the thermal response of a composite are utilized in defining the limitations of the technique. This method for reducing the data is shown to give considerable improvement characterizing both the size and depth of damage. Examples are shown for data acquired on specimens with fabricated delaminations and impact damage.

  5. Computational Reduction of Specimen Noise to Enable Improved Thermography Characterization of Flaws in Graphite Polymer Composites

    Science.gov (United States)

    Winfree, William P.; Howell, Patricia A.; Zalameda, Joseph N.

    2014-01-01

    Flaw detection and characterization with thermographic techniques in graphite polymer composites are often limited by localized variations in the thermographic response. Variations in properties such as acceptable porosity, fiber volume content and surface polymer thickness result in variations in the thermal response that in general cause significant variations in the initial thermal response. These result in a "noise" floor that increases the difficulty of detecting and characterizing deeper flaws. A method is presented for computationally removing a significant amount of the "noise" from near surface porosity by diffusing the early time response, then subtracting it from subsequent responses. Simulations of the thermal response of a composite are utilized in defining the limitations of the technique. This method for reducing the data is shown to give considerable improvement characterizing both the size and depth of damage. Examples are shown for data acquired on specimens with fabricated delaminations and impact damage.

  6. Breakdown pressures and characteristic flaw sizes during fluid injection experiments in shale at elevated confining pressures.

    Science.gov (United States)

    Chandler, M.; Mecklenburgh, J.; Rutter, E. H.; Taylor, R.; Fauchille, A. L.; Ma, L.; Lee, P. D.

    2017-12-01

    Fracture propagation trajectories in gas-bearing shales depend on the interaction between the anisotropic mechanical properties of the shale and the anisotropic in-situ stress field. However, there is a general paucity of available experimental data on their anisotropic mechanical, physical and fluid-flow properties, especially at elevated confining pressures. A suite of mechanical, flow and elastic measurements have been made on two shale materials, the Whitby mudrock and the Mancos shale (an interbedded silt and mudstone), as well as Pennant sandstone, an isotropic baseline and tight-gas sandstone analogue. Mechanical characterization includes standard triaxial experiments, pressure-dependent permeability, brazilian disk tensile strength, and fracture toughness determined using double-torsion experiments. Elastic characterisation was performed through ultrasonic velocities determined using a cross-correlation method. Additionally, we report the results of laboratory-scale fluid injection experiments for the same materials. Injection experiments involved the pressurisation of a blind-ending central hole in a dry cylindrical sample. Pressurisation is conducted under constant volume-rate control, using silicon oils of varying viscosities. Breakdown pressure is not seen to exhibit a strong dependence on rock type or orientation, and increases linearly with confining pressure. In most experiments, a small drop in the injection pressure record is observed at what is taken to be fracture initiation, and in the Pennant sandstone this is accompanied by a small burst of acoustic energy. The shale materials were acoustically quiet. Breakdown is found to be rapid and uncontrollable after initiation if injection is continued. A simplified 2-dimensional model for explaining this is presented in terms of the stress intensities at the tip of a pressurised crack, and is used alongside the triaxial data to derive a characteristic flaw size from which the fractures have initiated

  7. Development of an Intelligent Ultrasonic Signature Classification Software for Discrimination of Flaws in Weldments

    International Nuclear Information System (INIS)

    Kim, H. J.; Song, S. J.; Jeong, H. D.

    1997-01-01

    Ultrasonic pattern recognition is the most effective approach to the problem of discriminating types of flaws in weldments based on ultrasonic flaw signals. In spite of significant progress in the research on this methodology, it has not been widely used in many practical ultrasonic inspections of weldments in industry. Hence, for the convenient application of this approach in many practical situations, we develop an intelligent ultrasonic signature classification software which can discriminate types of flaws in weldments based on their ultrasonic signals using various tools in artificial intelligence such as neural networks. This software shows the excellent performance in an experimental problem where flaws in weldments are classified into two categories of cracks and non-cracks. This performance demonstrates the high possibility of this software as a practical tool for ultrasonic flaw classification in weldments

  8. Calculation and evaluation methodology of the flawed pipe and the compute program development

    International Nuclear Information System (INIS)

    Liu Chang; Qian Hao; Yao Weida; Liang Xingyun

    2013-01-01

    Background: The crack will grow gradually under alternating load for a pressurized pipe, whereas the load is less than the fatigue strength limit. Purpose: Both calculation and evaluation methodology for a flawed pipe that have been detected during in-service inspection is elaborated here base on the Elastic Plastic Fracture Mechanics (EPFM) criteria. Methods: In the compute, the depth and length interaction of a flaw has been considered and a compute program is developed per Visual C++. Results: The fluctuating load of the Reactor Coolant System transients, the initial flaw shape, the initial flaw orientation are all accounted here. Conclusions: The calculation and evaluation methodology here is an important basis for continue working or not. (authors)

  9. Experimental verification on limit load estimation method for pipes with an arbitrary shaped circumferential surface flaw

    International Nuclear Information System (INIS)

    Li, Yinsheng; Hasegawa, Kunio; Miura, Naoki; Hoshino, Katsuaki

    2010-01-01

    When a flaw is detected in stainless steel pipes during in-service inspection, the limit load criterion given in the codes such as JSME Rules on Fitness-for-Service for Nuclear Power Plants or ASME Boiler and Pressure Vessel Code Section XI can be applied to evaluate the integrity of the pipe. However, in these codes, the limit load criterion is only provided for pipes containing a flaw with uniform depth, although many flaws with complicated shape such as stress corrosion cracking have been actually detected in pipes. In order to evaluate the integrity of the flawed pipes for general case, a limit load estimation method has been proposed by authors considering a circumferential surface flaw with arbitrary shape. The plastic collapse bending moment and corresponding stress are obtained by dividing the surface flaw into several segmented sub-flaws. In this paper, the proposed method was verified by comparing with experimental results. Four-point bending experiments were carried out for full scale stainless steel pipes with a symmetrical or non-symmetrical circumferential flaw. Estimated failure bending moments by the proposed method were found to be in good agreement with the experimental results, and the proposed method was confirmed to be effective for evaluating bending failure of pipes with flaw. (author)

  10. Finite-element analysis of flawed and unflawed pipe tests

    International Nuclear Information System (INIS)

    James, R.J.; Nickell, R.E.; Sullaway, M.F.

    1989-12-01

    Contemporary versions of the general purpose, nonlinear finite element program ABAQUS have been used in structural response verification exercises on flawed and unflawed austenitic stainless steel and ferritic steel piping. Among the topics examined, through comparison between ABAQUS calculations and test results, were: (1) the effect of using variations in the stress-strain relationship from the test article material on the calculated response; (2) the convergence properties of various finite element representations of the pipe geometry, using shell, beam and continuum models; (3) the effect of test system compliance; and (4) the validity of ABAQUS J-integral routines for flawed pipe evaluations. The study was culminated by the development and demonstration of a ''macroelement'' representation for the flawed pipe section. The macroelement can be inserted into an existing piping system model, in order to accurately treat the crack-opening and crack-closing static and dynamic response. 11 refs., 20 figs., 1 tab

  11. Potential steam generator tube rupture in the presence of severe accident thermal challenge and tube flaws due to foreign object wear

    International Nuclear Information System (INIS)

    Liao, Y.; Guentay, S.

    2009-01-01

    This study develops a methodology to assess the probability for the degraded PWR steam generator to rupture first in the reactor coolant pressure boundary, under severe accident conditions with counter-current natural circulating high temperature gas in the hot leg and SG tubes. The considered SG tube flaws are caused by foreign object wear, which in recent years has emerged as a major inservice degradation mechanism for the new generation tubing materials. The first step develops the statistical distributions for the flaw frequency, size, and the flaw location with respect to the tube length and the tube's tubesheet position, based on data of hundreds of flaws reported in numerous SG inservice inspection reports. The next step performs thermal-hydraulic analysis using the MELCOR code and recent CFD findings to predict the thermal challenge to the degraded tubes and the tube-to-tube difference in thermal response at the SG entrance. The final step applies the creep rupture models in the Monte Carlo random walk to test the potential for the degraded SG to rupture before the surge line. The mean and range of the SG tube rupture probability can be applied to estimate large early release frequency in probabilistic safety assessment.

  12. A model-based approach to crack sizing with ultrasonic arrays.

    Science.gov (United States)

    Tant, Katherine M M; Mulholland, Anthony J; Gachagan, Anthony

    2015-05-01

    Ultrasonic phased array systems have become increasingly popular in the last 10 years as tools for flaw detection and characterization within the nondestructive testing industry. The existence and location of flaws can often be deduced via images generated from the data captured by these arrays. A factor common to these imaging techniques is the subjective thresholding required to estimate the size of the flaw. This paper puts forward an objective approach which employs a mathematical model. By exploiting the relationship between the width of the central lobe of the scattering matrix and the crack size, an analytical expression for the crack length is reached via the Born approximation. Conclusions are then drawn on the minimum resolvable crack length of the method and it is thus shown that the formula holds for subwavelength defects. An analytical expression for the error that arises from the discrete nature of the array is then derived and it is observed that the method becomes less sensitive to the discretization of the array as the distance between the flaw and array increases. The methodology is then extended and tested on experimental data collected from welded austenitic plates containing a lack-of-fusion crack of 6 mm length. An objective sizing matrix (OSM) is produced by assessing the similarity between the scattering matrices arising from experimentally collected data with those arising from the Born approximation over a range of crack lengths and frequencies. Initially, the global minimum of the OSM is taken as the objective estimation of the crack size, giving a measurement of 7 mm. This is improved upon by the adoption of a multifrequency averaging approach, with which an improved crack size estimation of 6.4 mm is obtained.

  13. Non-conventional screening of the Coulomb interaction in low-dimensional and finite-size systems

    NARCIS (Netherlands)

    van den Brink, J.; Sawatzky, G.A.

    2000-01-01

    We study the screening of the Coulomb interaction in non-polar systems by polarizable atoms. We show that in low dimensions and small finite-size systems this screening deviates strongly from that conventionally assumed. In fact in one dimension the short-range interaction is strongly screened and

  14. Stress-induced light scattering method for the detection of latent flaws on fine polished glass substrates.

    Science.gov (United States)

    Sakata, Y; Sakai, K; Nonaka, K

    2014-08-01

    Fine polishing techniques, such as the chemical mechanical polishing treatment, are one of the most important technique to glass substrate manufacturing. Mechanical interaction in the form of friction occurs between the abrasive and the substrate surface during polishing, which may cause formation of latent flaws on the glass substrate surface. Fine polishing-induced latent flaws may become obvious during a subsequent cleaning process if glass surfaces are corroded away by chemical interaction with the cleaning liquid. Latent flaws thus reduce product yield. In general, non-destructive inspection techniques, such as the light-scattering methods, used to detect foreign matters on the glass substrate surface. However, it is difficult to detect latent flaws by these methods because the flaws remain closed. Authors propose a novel inspection technique for fine polishing-induced latent flaws by combining the light scattering method with stress effects, referred to as the stress-induced light scattering method (SILSM). SILSM is able to distinguish between latent flaws and particles on the surface. In this method, samples are deformed by an actuator and stress effects are induced around the tips of latent flaws. Due to the photoelastic effect, the refractive index of the material around the tip of a latent flaw is changed. This changed refractive index is in turn detected by a cooled charge-coupled device camera as variations in light scattering intensity. In this report, surface latent flaws are detected non-destructively by applying SILSM to glass substrates, and the utility of SILSM evaluated as a novel inspection technique.

  15. Does an inter-flaw length control the accuracy of rupture forecasting in geological materials?

    Science.gov (United States)

    Vasseur, Jérémie; Wadsworth, Fabian B.; Heap, Michael J.; Main, Ian G.; Lavallée, Yan; Dingwell, Donald B.

    2017-10-01

    Multi-scale failure of porous materials is an important phenomenon in nature and in material physics - from controlled laboratory tests to rockbursts, landslides, volcanic eruptions and earthquakes. A key unsolved research question is how to accurately forecast the time of system-sized catastrophic failure, based on observations of precursory events such as acoustic emissions (AE) in laboratory samples, or, on a larger scale, small earthquakes. Until now, the length scale associated with precursory events has not been well quantified, resulting in forecasting tools that are often unreliable. Here we test the hypothesis that the accuracy of the forecast failure time depends on the inter-flaw distance in the starting material. We use new experimental datasets for the deformation of porous materials to infer the critical crack length at failure from a static damage mechanics model. The style of acceleration of AE rate prior to failure, and the accuracy of forecast failure time, both depend on whether the cracks can span the inter-flaw length or not. A smooth inverse power-law acceleration of AE rate to failure, and an accurate forecast, occurs when the cracks are sufficiently long to bridge pore spaces. When this is not the case, the predicted failure time is much less accurate and failure is preceded by an exponential AE rate trend. Finally, we provide a quantitative and pragmatic correction for the systematic error in the forecast failure time, valid for structurally isotropic porous materials, which could be tested against larger-scale natural failure events, with suitable scaling for the relevant inter-flaw distances.

  16. Design of Friction Stir Welding Tool for Avoiding Root Flaws.

    Science.gov (United States)

    Ji, Shude; Xing, Jingwei; Yue, Yumei; Ma, Yinan; Zhang, Liguo; Gao, Shuangsheng

    2013-12-12

    In order to improve material flow behavior during friction stir welding and avoid root flaws of weld, a tool with a half-screw pin and a tool with a tapered-flute pin are suggested. The effect of flute geometry in tool pins on material flow velocity is investigated by the software ANSYS FLUENT. Numerical simulation results show that high material flow velocity appears near the rotational tool and material flow velocity rapidly decreases with the increase of distance away from the axis of the tool. Maximum material flow velocity by the tool with the tapered-flute pin appears at the beginning position of flute and the velocity decreases with the increase of flow length in flute. From the view of increasing the flow velocity of material near the bottom of the workpiece or in the middle of workpiece, the tool with the half-screw pin and the tool with the tapered-flute pin are both better than the conventional tool.

  17. The influence of removing sizing on strength and stiffness of conventional and high modulus E-glass fibres

    DEFF Research Database (Denmark)

    Petersen, Helga Nørgaard; Kusano, Yukihiro; Brøndsted, Povl

    2016-01-01

    Two types of E-glass fibres, a conventional and a high modulus where the last one in the following will be denoted as ECR-glass fibre, were investigated regarding density, diameter, stiffness and strength. The fibres were analysed as pristine and after sizing removal treatments. The sizing was re...

  18. Behavior of deep flaws in a thick-wall cylinder under thermal shock loading

    International Nuclear Information System (INIS)

    Cheverton, R.D.

    1979-01-01

    Behavior of inner-surface flaws in thick-walled vessels was studied in a 991-mm OD x 152 mm wall x 1220 mm length cylinder with toughness properties similar to those for HSST Plate. The initial temperature of 93 0 C and a thermal shock medium of liquid nitrogen (-197 0 C) were employed. The initial flaw selected was a sharp, 16 mm deep, long (1220 mm) axial crack. Crack arrest methodology was shown to be valid for deep flaws under severe thermal shock

  19. AE/flaw characterization for nuclear pressure vessels

    International Nuclear Information System (INIS)

    Hutton, P.H.; Kurtz, R.J.; Pappas, R.A.

    1984-01-01

    This chapter discusses the use of acoustic emission (AE) detected during continuous monitoring to identify and evaluate growing flaws in pressure vessels. Off-reactor testing and on-reactor testing are considered. Relationships for identifying acoustic emission (AE) from crack growth and using the AE data to estimate flaw severity have been developed experimentally by laboratory testing. The purpose of the off-reactor vessel test is to evaluate AE monitoring/interpretation methodology on a heavy section steel vessel under simulated reactor operating conditions. The purpose of on-reactor testing is to evaluate the capability of a monitor system to function in the reactor environment, calibrate the ability to detect AE signals, and to demonstrate that a meaningful criteria can be established to prevent false alarms. An expanded data base is needed from application testing and methodology standardization

  20. Development of a shallow-flaw fracture assessment methodology for nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Bass, B.R.; Bryson, J.W.; Dickson, T.L.; McAfee, W.J.; Pennell, W.E.

    1996-01-01

    Shallow-flaw fracture technology is being developed within the Heavy-Section Steel Technology (HSST) Program for application to the safety assessment of radiation-embrittled nuclear reactor pressure vessels (RPVs) containing postulated shallow flaws. Cleavage fracture in shallow-flaw cruciform beam specimens tested under biaxial loading at temperatures in the lower transition temperature range was shown to be strain-controlled. A strain-based dual-parameter fracture toughness correlation was developed and shown to be capable of predicting the effect of crack-tip constraint on fracture toughness for strain-controlled fracture. A probabilistic fracture mechanics (PFM) model that includes both the properties of the inner-surface stainless-steel cladding and a biaxial shallow-flaw fracture toughness correlation gave a reduction in probability of cleavage initiation of more than two orders of magnitude from an ASME-based reference case

  1. Probabilistic Fracture Mechanics of Reactor Pressure Vessels with Populations of Flaws

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Benjamin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Backman, Marie [Univ. of Tennessee, Knoxville, TN (United States); Williams, Paul [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hoffman, William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Alfonsi, Andrea [Idaho National Lab. (INL), Idaho Falls, ID (United States); Dickson, Terry [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bass, B. Richard [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Klasky, Hilda [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-01

    This report documents recent progress in developing a tool that uses the Grizzly and RAVEN codes to perform probabilistic fracture mechanics analyses of reactor pressure vessels in light water reactor nuclear power plants. The Grizzly code is being developed with the goal of creating a general tool that can be applied to study a variety of degradation mechanisms in nuclear power plant components. Because of the central role of the reactor pressure vessel (RPV) in a nuclear power plant, particular emphasis is being placed on developing capabilities to model fracture in embrittled RPVs to aid in the process surrounding decision making relating to life extension of existing plants. A typical RPV contains a large population of pre-existing flaws introduced during the manufacturing process. The use of probabilistic techniques is necessary to assess the likelihood of crack initiation at one or more of these flaws during a transient event. This report documents development and initial testing of a capability to perform probabilistic fracture mechanics of large populations of flaws in RPVs using reduced order models to compute fracture parameters. The work documented here builds on prior efforts to perform probabilistic analyses of a single flaw with uncertain parameters, as well as earlier work to develop deterministic capabilities to model the thermo-mechanical response of the RPV under transient events, and compute fracture mechanics parameters at locations of pre-defined flaws. The capabilities developed as part of this work provide a foundation for future work, which will develop a platform that provides the flexibility needed to consider scenarios that cannot be addressed with the tools used in current practice.

  2. Detecting flaws in welds

    International Nuclear Information System (INIS)

    Woodacre, A.; Lawton, H.

    1979-01-01

    An apparatus and a method for detecting flaws in welds in a workpiece, the portion of the workpiece containing the weld is maintained at a constant temperature and the weld is scanned by an infra red detector. The weld is then scanned again with the workpiece in contact with a cooling probe to produce a steeper temperature gradient across the weld. Comparison of the signals produced by each scan reveals the existence of defects in the welds. The signals may be displayed on an oscilloscope and the display may be observed by a TV camera and recorded on videotape. (UK)

  3. A new digital correlation flaw detection system

    International Nuclear Information System (INIS)

    Lee, B.B.; Furgason, E.S.

    1981-01-01

    A new portable digital random signal flaw detection system is described which uses a digital delay line to replace the acoustic delay line of the original random signal system. Using this new system, a comparison was made between the two types of transmit signals which have been used in previous systems--m-sequences and random signals. This comparison has not been possible with these previous correlation flaw detection systems. Results indicated that for high-speed short code operation, the m-sequences produced slightly lower range sidelobes than typical samples of a clipped random signal. For normal long code operation, results indicated that system performance is essentially equivalent in resolution and signal-to-noise ratio using either m-sequences or clipped and sampled random signals. Further results also showed that for normal long code operation, the system produces outputs equivalent in resolution to pulse-echo systems, but with the added benefit of signal-to-noise ratio enhancement

  4. Analytical solution for stress, strain and plastic instability of pressurized pipes with volumetric flaws

    International Nuclear Information System (INIS)

    Cunha, Sérgio B.; Netto, Theodoro A.

    2012-01-01

    The mechanical behavior of internally pressurized pipes with volumetric flaws is analyzed. The two possible modes of circumferentially straining the pipe wall are identified and associated to hypothesized geometries. The radial deformation that takes place by bending the pipe wall is studied by means of axisymmetric flaws and the membrane strain developed by unequal hoop deformation is analyzed with the help of narrow axial flaws. Linear elastic shell solutions for stress and strain are developed, the plastic behavior is studied and the maximum hoop stress at the flaw is related to the undamaged pipe hoop stress by means of stress concentration factors. The stress concentration factors are employed to obtain equations predicting the pressure at which the pipe fails by plastic instability for both types of flaw. These analytical solutions are validated by comparison with burst tests on 3″ diameter pipes and finite element simulations. Forty-one burst tests were carried out and two materials with very dissimilar plastic behavior, carbon steel and austenitic stainless steel, were used in the experiments. Both the analytical and the numerical predictions showed good correlation with the experimentally observed burst pressures. - Highlights: ► An analytical model for the burst of a pipe with a volumetric flaw is developed. ► Deformation, strain and stress are modeled in the elastic and plastic domains. ► The model is comprehensively validated by experiments and numerical simulations. ► The burst pressure model’s accuracy is equivalent to finite element simulations.

  5. Development of technology on natural flaw fabrication and precise diagnosis for the major components in NPPs

    International Nuclear Information System (INIS)

    Han, Jung Ho; Choi, Myung Sik; Lee, Doek Hyun; Hur, Do Haeng

    2002-01-01

    The objective of this research is to develop a fabrication technology of natural flaw specimen of major components in NPPs and a technology of precise diagnosis for failure and degradation of components using natural flaw specimen. 1) Successful development of the natural flaw fabrication technology of SG tube 2) Evaluation of ECT signal and development of precise diagnosis using natural flaws. - Determination of length, depth, width, and multiplicity of fabricated natural flaws. - Informations about detectability and accuracy of ECT evaluation on various kinds of defects are collected when the combination of probe and frequency is changed. - An advanced technology for precise ECT evaluation is established. 3) Application of precise ECT diagnosis to failure analysis of SG tube in operation. - Fretting wear of KSNP SG. - ODSCC at tube expanded region of KSNP SG. - Determination of through/non-through wall of axial crack

  6. Experimental study on flaw detectability of remote field eddy current testing

    International Nuclear Information System (INIS)

    Kamimura, T.; Fukui, S.; Iwahashi, Y.; Yamada, H.

    1988-01-01

    For the purpose of comprehending the effect in practical use of the remote field eddy current (RFEC) testing that becomes noticeable for the ISI technique of steel tubes, its flaw detectability was clarified through a model test. This study used straight and bending tubes of 3.8 mm in wall thickness and 31.8 mm in outside diameter. These tubes were inspected from their inside. After relations among the pickup coil output, coil distance, testing frequency, etc. were measured, a probe of the practical use type was manufactured to investigate its flaw detectability by means of simulated flaws. The authors discuss how it has been found that light local wall thinning on the outside surfaces can be detected by this technique and its effect in practical use can be expected with small influences due to magnetic permeability variations of tube materials, bending of tubes, etc

  7. Crack propagation from a filled flaw in rocks considering the infill influences

    Science.gov (United States)

    Chang, Xu; Deng, Yan; Li, Zhenhua; Wang, Shuren; Tang, C. A.

    2018-05-01

    This study presents a numerical and experimental study of the cracking behaviour of rock specimen containing a single filled flaw under compression. The primary aim is to investigate the influences of infill on crack patterns, load-displacement response and specimen strength. The numerical code RFPA2D (Rock Failure Process Analysis) featured by the capability of modeling heterogeneous materials is employed to develop the numerical model, which is further calibrated by physical tests. The results indicate that there exists a critical infill strength which controls crack patterns for a given flaw inclination angle. For case of infill strength lower than the critical value, the secondary or anti-cracks are disappeared by increasing the infill strength. If the infill strength is greater than the critical value, the filled flaw has little influence on the cracking path and the specimen fails by an inclined crack, as if there is no flaw. The load-displacement responses show specimen stiffness increases by increasing infill strength until the infill strength reaches its critical value. The specimen strength increases by increasing the infill strength and almost keeps constant as the infill strength exceeds its critical value.

  8. Proposal of limit moment equation applicable to planar/non-planar flaw in wall thinned pipes under bending

    International Nuclear Information System (INIS)

    Tsuji, Masataka; Meshii, Toshiyuki

    2011-01-01

    Highlights: → A limit moment equation applicable to planar/non-planar flaw of 0 ≤ θ ≤ π found in wall thinned straight pipes was proposed. → An idea to rationally classify planar/non-planar flaw in wall thinned pipes was proposed. → The equation based on the experimental observation focused on the fracture mode. - Abstract: In this paper, a limit bending moment equation applicable to all types of planar and non-planar flaws in wall-thinned straight pipes under bending was proposed. A system to rationally classify the planar/non-planar flaws in wall-thinned pipes was suggested based on experimental observations focused on the fracture mode. The results demonstrate the importance of distinguishing between axial and circumferential long flaws in wall-thinned pipes.

  9. A study on the development of a real-time intelligent system for ultrasonic flaw classification

    International Nuclear Information System (INIS)

    Song, Sung Jin; Kim, Hak Joon; Lee, Hyun; Lee, Seung Seok

    1998-01-01

    In spite of significant progress in research on ultrasonic pattern recognition it is not widely used in many practical field inspection in weldments. For the convenience of field application of this methodology, following four key issues have to be suitably addressed; 1) a software where the ultrasonic pattern recognition algorithm is efficiently implemented, 2) a real-time ultrasonic testing system which can capture the digitized ultrasonic flaw signal so the pattern recognition software can be applied in a real-time fashion, 3) database of ultrasonic flaw signals in weldments, which is served as a foundation of the ultrasonic pattern recognition algorithm, and finally, 4) ultrasonic features which should be invariant to operational variables of the ultrasonic test system. Presented here is the recent progress in the development of a real-time ultrasonic flaw classification by the novel combination of followings; an intelligent software for ultrasonic flaw classification in weldments, a computer-base real-time ultrasonic nondestructive evaluation system, database of ultrasonic flaw signals, and invariant ultrasonic features called 'normalized features.'

  10. Analytical solution for stress, strain and plastic instability of pressurized pipes with volumetric flaws

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Sergio B., E-mail: sbcunha@petrobras.com.br [PETROBRAS/TRANSPETRO, Av. Pres. Vargas 328 - 7th floor, Rio de Janeiro, RJ 20091-060 (Brazil); Netto, Theodoro A., E-mail: tanetto@lts.coppe.ufrj.br [COPPE, Federal University ot Rio de Janeiro, Ocean Engineering Department, PO BOX 68508, Rio de Janeiro - RJ (Brazil)

    2012-01-15

    The mechanical behavior of internally pressurized pipes with volumetric flaws is analyzed. The two possible modes of circumferentially straining the pipe wall are identified and associated to hypothesized geometries. The radial deformation that takes place by bending the pipe wall is studied by means of axisymmetric flaws and the membrane strain developed by unequal hoop deformation is analyzed with the help of narrow axial flaws. Linear elastic shell solutions for stress and strain are developed, the plastic behavior is studied and the maximum hoop stress at the flaw is related to the undamaged pipe hoop stress by means of stress concentration factors. The stress concentration factors are employed to obtain equations predicting the pressure at which the pipe fails by plastic instability for both types of flaw. These analytical solutions are validated by comparison with burst tests on 3 Double-Prime diameter pipes and finite element simulations. Forty-one burst tests were carried out and two materials with very dissimilar plastic behavior, carbon steel and austenitic stainless steel, were used in the experiments. Both the analytical and the numerical predictions showed good correlation with the experimentally observed burst pressures. - Highlights: Black-Right-Pointing-Pointer An analytical model for the burst of a pipe with a volumetric flaw is developed. Black-Right-Pointing-Pointer Deformation, strain and stress are modeled in the elastic and plastic domains. Black-Right-Pointing-Pointer The model is comprehensively validated by experiments and numerical simulations. Black-Right-Pointing-Pointer The burst pressure model's accuracy is equivalent to finite element simulations.

  11. Flaw density examinations of a clad boiling water reactor pressure vessel segment

    International Nuclear Information System (INIS)

    Cook, K.V.; McClung, R.W.

    1986-01-01

    Flaw density is the greatest uncertainty involved in probabilistic analyses of reactor pressure vessel failure. As part of the Heavy-Section Steel Technology (HSST) Program, studies have been conducted to determine flaw density in a section of reactor pressure vessel cut from the Hope Creek Unit 2 vessel [nominally 0.7 by 3 m (2 by 10 ft)]. This section (removed from the scrapped vessel that was never in service) was evaluated nondestructively to determine the as-fabricated status. We had four primary objectives: (1) evaluate longitudinal and girth welds for flaws with manual ultrasonics, (2) evaluate the zone under the nominal 6.3-mm (0.25-in.) clad for cracking (again with manual ultrasonics), (3) evaluate the cladding for cracks with a high-sensitivity fluorescent penetrant method, and (4) determine the source of indications detected

  12. Probabilistic assessment of flaw evaluation procedures for pressure vessel integrity

    International Nuclear Information System (INIS)

    Shaffer, D.H.; Bamford, W.H.; Jouris, G.M.

    1980-01-01

    Prudent design procedures, in order to err in the direction of conservative over-strength rather than risky under-strength, have taken bounding values rather than best estimates for material parameters, and wherever possible, used conservative input for the calculations. The growing data base for this work is now beginning to allow an assessment of the conservatism that has been incorporated into the design procedure. Quantitative estimates of the variability associated with crack growth rates and fracture toughness have been generated in connection with other studies, and it would be useful to incorporate such information into an overall assessment of the design margins that are prescribed. In addition to getting an estimate of the conservatism in the current procedure, this study should provide a useful insight into the relative degree of margin that is introduced at each stage of the flaw evaluation process. Identification of the step by step margins should lead to more effective data collection programs from which information for adequately controlling the design conservatism can be obtained. The study will also provide valuable guidance in fixing revised design reference curves and safety factors so that adequate overall margins can be maintained without excess conservatism. This study is limited to vessel rupture in a brittle mode, and examples for illustration are particularly related to the beltline region of a reactor pressure vessel. The methodology, however, is applicable to all regions for which the required stress analyses, operating history, and material parameters are available. The work being carried out here is in consonance with ASME Section XI on Flaw Evaluation Procedures. It is concerned both with flaws under normal operating conditions and flaws under faulted conditions. (author)

  13. Methods and means of the radioisotope flaw detection of the nuclear power reactors components

    International Nuclear Information System (INIS)

    Dekopov, A.S.; Majorov, A.N.; Firsov, V.G.

    1979-01-01

    Methods and means are considered for the radioisotopic flaw detection of the nuclear reactors pressure vessels and structural components of the reactor circuit. Methods of control are described as in the technological process of fabrication of the power reactors assemblies as during the systematic-preventive repair of the nuclear power station equipment during exploitation. Methodological base is given of the technology of radiation control of welded joints of the pressure vessel branch piper of the WWER-440 and WWER-1000 reactors in the process of assembling and exploitation and joining pipes with the pipe-plate of the steamgenerator in the process of fabrication. Methods of the radioisotope flaw detection in the process of exploitation take into consideration the influence of the radioisotope background, and ensure obtaining of the demanded by the rules of control, sensitivity. Methods of control of welded joints of the steamgenerator of nuclear power plants are based on the simultaneous examination of all joints with application of the shaped radiographic plate-holders. Special gamma-flaw-detection equipment is developed for control of the welded joints of the main branch-pipes. Design peculiarities are given of the installation for flaw detection. These installations are equipped with the system for emergency return of the radiation source into the storage position from the position for exposure. They have automatic exposure-meters for determination of the exposure time. Successfull exploitation of such installations in the Finland during assembling equipment for the nuclear reactor of the nuclear power plant ''Loviisa-1'' and in the USSR on the Novovoronezh nuclear power plant has shown possibility for detection of flaws having dimensions about 1% of the equipment used. For control of welded joints of pipes with pipe-plates at the steam generators, portable flaw-detectors are used. Sensitivity of these flaw-detectors towards detection of the wire standards has

  14. Internal Rot Detection with the Use of Low-Frequency Flaw Detector

    Science.gov (United States)

    Proskórnicki, Marek; Ligus, Grzegorz

    2014-12-01

    The issue of rot detection in standing timber or stocked wood is very important in forest management. Rot flaw detection used for that purpose is represented by invasive and non-invasive devices. Non-invasive devices are very accurate, but due to the cost and complicated operation they have not been applied on a large scale in forest management. Taking into account the practical needs of foresters a prototype of low-frequency flaw was developed. The principle of its operation is based on the difference in acoustic wave propagation in sound wood and wood with rot.

  15. Characterization of flaws in a tube bundle mock-up for reliability studies

    International Nuclear Information System (INIS)

    Kupperman, D.S.; Bakhtiari, S.

    1997-01-01

    As part of an assessment of in-service inspection of steam generator tubes, the authors will assemble a steam generator mock-up for round robin studies and use as a test bed in evaluating emerging technologies. Progress is reported on the characterization of flaws that will be part of the mock-up. Eddy current and ultrasonic techniques are being evaluated as a means to characterize the flaws in the mock-up tubes before final assembly. Twenty Inconel 600 tubes with laboratory-grown cracks, typical of those to be used in the mock-up, were provided by Pacific Northwest National Laboratory for laboratory testing. After the tubes were inspected with eddy current and ultrasonic techniques, they were destructively analyzed to establish the actual depths, lengths, and profiles of the cracks. The analysis of the results will allow the best techniques to be used for characterizing the flaws in the mock-up tubes

  16. Characterization of flaws in a tube bundle mock-up for reliability studies

    International Nuclear Information System (INIS)

    Kupperman, D.S.; Bakhtiari, S.

    1996-10-01

    As part of an assessment of in-service inspection of steam generator tubes, the authors will assemble a steam generator mock-up for round robin studies and use as a test bed in evaluating emerging technologies. Progress is reported on the characterization of flaws that will be part of the mock-up. Eddy current and ultrasonic techniques are being evaluated as a means to characterize the flaws in the mock-up tubes before final assembly. Twenty Inconel 600 tubes with laboratory-grown cracks, typical of those to be used in the mock-up, were provided by Pacific Northwest National Laboratory for laboratory testing. After the tubes were inspected with eddy current and ultrasonic techniques, they were destructively analyzed to establish the actual depths, lengths, and profiles of the cracks. The analysis of the results will allow the best techniques to be used for characterizing the flaws in the mock-up tubes

  17. Detector-device-independent quantum secret sharing with source flaws.

    Science.gov (United States)

    Yang, Xiuqing; Wei, Kejin; Ma, Haiqiang; Liu, Hongwei; Yin, Zhenqiang; Cao, Zhu; Wu, Lingan

    2018-04-10

    Measurement-device-independent entanglement witness (MDI-EW) plays an important role for detecting entanglement with untrusted measurement device. We present a double blinding-attack on a quantum secret sharing (QSS) protocol based on GHZ state. Using the MDI-EW method, we propose a QSS protocol against all detector side-channels. We allow source flaws in practical QSS system, so that Charlie can securely distribute a key between the two agents Alice and Bob over long distances. Our protocol provides condition on the extracted key rate for the secret against both external eavesdropper and arbitrary dishonest participants. A tight bound for collective attacks can provide good bounds on the practical QSS with source flaws. Then we show through numerical simulations that using single-photon source a secure QSS over 136 km can be achieved.

  18. Flaw tolerance vs. performance: A tradeoff in metallic glass cellular structures

    International Nuclear Information System (INIS)

    Chen, Wen; Liu, Ze; Robinson, Hannah Mae; Schroers, Jan

    2014-01-01

    Stochastic cellular structures are prevalent in nature and engineering materials alike. They are difficult to manipulate and study systematically and almost always contain imperfections. To design and characterize various degrees of imperfections in perfect periodic, stochastic and natural cellular structures, we fabricate a broad range of metallic glass cellular structures from perfectly periodic to highly stochastic by using a novel artificial microstructure approach based on thermoplastic replication of metallic glasses. For these cellular structures, precisely controlled imperfections are implemented and their effects on the mechanical response are evaluated. It is found that the mechanical performance of the periodic structures is generally superior to that of the stochastic structures. However, the stochastic structures experience a much higher tolerance to flaws than the periodic structure, especially in the plastic regime. The different flaw tolerance is explained by the stress distribution within the various structures, which leads to an overall 'strain-hardening' behavior of the stochastic structure compared to a 'strain-softening' behavior in the periodic structure. Our findings reveal how structure, 'strain-hardening' and flaw tolerance are microscopically related in structural materials

  19. A robust indicator based on singular value decomposition for flaw feature detection from noisy ultrasonic signals

    Science.gov (United States)

    Cui, Ximing; Wang, Zhe; Kang, Yihua; Pu, Haiming; Deng, Zhiyang

    2018-05-01

    Singular value decomposition (SVD) has been proven to be an effective de-noising tool for flaw echo signal feature detection in ultrasonic non-destructive evaluation (NDE). However, the uncertainty in the arbitrary manner of the selection of an effective singular value weakens the robustness of this technique. Improper selection of effective singular values will lead to bad performance of SVD de-noising. What is more, the computational complexity of SVD is too large for it to be applied in real-time applications. In this paper, to eliminate the uncertainty in SVD de-noising, a novel flaw indicator, named the maximum singular value indicator (MSI), based on short-time SVD (STSVD), is proposed for flaw feature detection from a measured signal in ultrasonic NDE. In this technique, the measured signal is first truncated into overlapping short-time data segments to put feature information of a transient flaw echo signal in local field, and then the MSI can be obtained from the SVD of each short-time data segment. Research shows that this indicator can clearly indicate the location of ultrasonic flaw signals, and the computational complexity of this STSVD-based indicator is significantly reduced with the algorithm proposed in this paper. Both simulation and experiments show that this technique is very efficient for real-time application in flaw detection from noisy data.

  20. Derivation of Elastic Stress Concentration Factor Equations for Debris Fretting Flaws in Pressure Tubes of Pressurized Heavy Water Reactors

    International Nuclear Information System (INIS)

    Kim, Jong Sung; Oh, Young Jin

    2014-01-01

    If volumetric flaws such as bearing pad fretting flaws and debris fretting flaws are detected in the pressure tubes of pressurized heavy water reactors during in-service inspection, the initiation of fatigue cracks and delayed hydrogen cracking from the detected volumetric flaws shall be assessed by using elastic stress concentration factors in accordance with CSA N285.8-05. The CSA N285.8-05 presents only an approximate formula based on linear elastic fracture mechanics for the debris fretting flaw. In this study, an engineering formula considering the geometric characteristics of the debris fretting flaw in detail was derived using two-dimensional finite element analysis and Kinectrics, Inc.'s engineering procedure with slight modifications. Comparing the application results obtained using the derived formula with the three-dimensional finite element analysis results, it is found that the results obtained using the derived formula agree well with the results of the finite element analysis

  1. A study on the extraction of feature variables for the pattern recognition for welding flaws

    International Nuclear Information System (INIS)

    Kim, J. Y.; Kim, C. H.; Kim, B. H.

    1996-01-01

    In this study, the researches classifying the artificial and natural flaws in welding parts are performed using the pattern recognition technology. For this purpose the signal pattern recognition package including the user defined function was developed and the total procedure including the digital signal processing, feature extraction, feature selection and classifier selection is treated by bulk. Specially it is composed with and discussed using the statistical classifier such as the linear discriminant function classifier, the empirical Bayesian classifier. Also, the pattern recognition technology is applied to classification problem of natural flaw(i.e multiple classification problem-crack, lack of penetration, lack of fusion, porosity, and slag inclusion, the planar and volumetric flaw classification problem). According to this results, if appropriately teamed the neural network classifier is better than stastical classifier in the classification problem of natural flaw. And it is possible to acquire the recognition rate of 80% above through it is different a little according to domain extracting the feature and the classifier.

  2. Characterization of type, position and dimension of flaws by transit time locus curves of ultrasonic inspections - ALOK. Pt. 2

    International Nuclear Information System (INIS)

    Grohs, B.; Barbian, O.A.; Kappes, W.; Paul, H.

    1981-01-01

    With automatic ultrasonic testing, flaws can be detected and described and thus characterized according to their type, position and dimensions. During scanning of a test object, the flaws are registered by many different pathways and many different acoustic irradiation directions. The transit time locus curve represents the distance between the relfecting points of a flaw and the source in dependence of the probe position; hence, information on flaw position and dimensions can be derived from this curve. If the sound velocity is known, the transit path can then be calculated from the transit time. This requires, above all, a constant sound velocity along the whole transit path. Various methods are presented for reconstructing the flaw border in the plane of incidence. (orig./RW) [de

  3. Evaluation of J-integral estimation scheme for flawed throughwall pipes

    Energy Technology Data Exchange (ETDEWEB)

    Zahoor, A.

    1987-02-01

    The accuracy of the EPRI J-integral estimation scheme for pipes with throughwall cracks and subjected to pure bending was assessed using available experimental data on circumferentially flawed throughwall pipes. The evaluations were performed using elastic plastic J-integral (J) and tearing modulus (T) analysis methods. The results indicated that the EPRI J estimation scheme solutions are unnecessarily conservative compared to results from pipe experiments. As a result of these evaluations an improved J estimation scheme is developed, which is shown to have improved accuracy compared to the original EPRI J estimation scheme. These results imply that the flaw evaluation procedures in the ASME Code on austenitic piping welds are conservative. These results also have applications to the leak before break fracture mechanics analyses.

  4. Evaluation of J-integral estimation scheme for flawed throughwall pipes

    International Nuclear Information System (INIS)

    Zahoor, A.

    1987-01-01

    The accuracy of the EPRI J-integral estimation scheme for pipes with throughwall cracks and subjected to pure bending was assessed using available experimental data on circumferentially flawed throughwall pipes. The evaluations were performed using elastic plastic J-integral (J) and tearing modulus (T) analysis methods. The results indicated that the EPRI J estimation scheme solutions are unnecessarily conservative compared to results from pipe experiments. As a result of these evaluations an improved J estimation scheme is developed, which is shown to have improved accuracy compared to the original EPRI J estimation scheme. These results imply that the flaw evaluation procedures in the ASME Code on austenitic piping welds are conservative. These results also have applications to the leak before break fracture mechanics analyses. (orig.)

  5. Detection of plane, poorly oriented wide flaws using focused transducers

    International Nuclear Information System (INIS)

    Vadder, D. de; Azou, P.; Bastien, P.; Saglio, R.

    1976-01-01

    The detection of plane, poorly oriented, wide flaws by ultrasonic non destructive testing is distinctly improved when using focused transducers. An increased echo can be obtained crossing the defect limit [fr

  6. Probabilistic calibration of safety coefficients for flawed components in nuclear engineering

    International Nuclear Information System (INIS)

    Ardillon, E.; Pitner, P.; Barthelet, B.; Remond, A.

    1996-01-01

    The rules that are currently under application to verify the acceptance of flaws in nuclear components rely on deterministic criteria supposed to ensure the safe operating of plants. The interest of having a precise and reliable method to evaluate the safety margins and the integrity of components led Electricite de France to launch an approach to link directly safety coefficients with safety levels. This paper presents a probabilistic methodology to calibrate safety coefficients in relation to reliability target values. The proposed calibration procedure applies to the case of a ferritic flawed pipe using the R6 procedure for assessing the integrity of the structure. (authors). 5 refs., 5 figs

  7. Probabilistic calibration of safety coefficients for flawed components in nuclear engineering

    International Nuclear Information System (INIS)

    Ardillon, E.; Pitner, P.; Barthelet, B.; Remond, A.

    1995-01-01

    The current rules applied to verify the flaws acceptance in nuclear components rely on deterministic criteria supposed to ensure the plant safe operation. The interest in have a precise and reliable method to evaluate the safety margins and the integrity of components led Electricite de France to launch an approach to link directly safety coefficients with safety levels. This paper presents a probabilistic methodology to calibrate safety coefficients in relation do reliability target values. The proposed calibration procedure applies to the case of a ferritic flawed pipe using the R 6 procedure for assessing the structure integrity. (author). 5 refs., 5 figs., 1 tab

  8. CLEAVAGE FRACTURE ANALYSIS OF CLADDED BEAMS WITH AN EMBEDDED FLAW UNDER FOUR-POINT BENDING

    International Nuclear Information System (INIS)

    Yin, Shengjun; Williams, Paul T; Bass, Bennett Richard

    2008-01-01

    Semi-large scale embedded flaw beams were tested at Nuclear Research Institute (NRI) Rez in the Czech Republic for the 6th Network for Evaluating Structural Components (NESC-VI) project. The experiments included, among others, a series of semi-large scale tests on cladded beam specimens containing simulated sub-clad flaws. Oak Ridge National Laboratory (ORNL) conducted numerical studies to analyze the constraint issues associated with embedded flaws using various fracture mechanics methods, including T-Stress, hydrostatic stress based QH stress, and the Weibull stress model. The recently developed local approach using the modified Weibull stress model combined with the Master Curve methodology was also utilized to predict the failure probability (Pf) of semi-large scale beams. For this study, the Weibull statistical model associated with the Master Curve methodology was employed to stochastically simulate the fracture toughness data using the available Master Curve reference temperature T0 for the tested base material from the 'aged' WWER-440 Reactor Pressure Vessel (RPV). The study was also conducted to investigate the sensitivity of predicated probability of failure of semi-large scale beams with embedded flaw with different Weibull shape parameters, m

  9. NDE errors and their propagation in sizing and growth estimates

    International Nuclear Information System (INIS)

    Horn, D.; Obrutsky, L.; Lakhan, R.

    2009-01-01

    The accuracy attributed to eddy current flaw sizing determines the amount of conservativism required in setting tube-plugging limits. Several sources of error contribute to the uncertainty of the measurements, and the way in which these errors propagate and interact affects the overall accuracy of the flaw size and flaw growth estimates. An example of this calculation is the determination of an upper limit on flaw growth over one operating period, based on the difference between two measurements. Signal-to-signal comparison involves a variety of human, instrumental, and environmental error sources; of these, some propagate additively and some multiplicatively. In a difference calculation, specific errors in the first measurement may be correlated with the corresponding errors in the second; others may be independent. Each of the error sources needs to be identified and quantified individually, as does its distribution in the field data. A mathematical framework for the propagation of the errors can then be used to assess the sensitivity of the overall uncertainty to each individual error component. This paper quantifies error sources affecting eddy current sizing estimates and presents analytical expressions developed for their effect on depth estimates. A simple case study is used to model the analysis process. For each error source, the distribution of the field data was assessed and propagated through the analytical expressions. While the sizing error obtained was consistent with earlier estimates and with deviations from ultrasonic depth measurements, the error on growth was calculated as significantly smaller than that obtained assuming uncorrelated errors. An interesting result of the sensitivity analysis in the present case study is the quantification of the error reduction available from post-measurement compensation of magnetite effects. With the absolute and difference error equations, variance-covariance matrices, and partial derivatives developed in

  10. Detecting and Preventing Type flaws at Static Time

    DEFF Research Database (Denmark)

    Bodei, Chiara; Brodo, Linda; Degano, Pierpaolo

    2010-01-01

    A type flaw attack on a security protocol is an attack where an honest principal is cheated on interpreting a field in a message as the one with a type other than the intended one. In this paper, we shall present an extension of the LYSA calculus to cope with types, by using tags to represent...

  11. An corrective method to correct of the inherent flaw of the asynchronization direct counting circuit

    International Nuclear Information System (INIS)

    Wang Renfei; Liu Congzhan; Jin Yongjie; Zhang Zhi; Li Yanguo

    2003-01-01

    As a inherent flaw of the Asynchronization Direct Counting Circuit, the crosstalk, which is resulted from the randomicity of the time-signal always exists between two adjacent channels. In order to reduce the counting error derived from the crosstalk, the author propose an effective method to correct the flaw after analysing the mechanism of the crosstalk

  12. Flaw evaluation of thermally aged cast stainless steel in light-water reactor applications

    International Nuclear Information System (INIS)

    Lee, S.; Kuo, P.T.; Wichman, K.; Chopra, O.

    1997-01-01

    Cast stainless steel may be used in the fabrication of the primary loop piping, fittings, valve bodies, and pump casings in light-water reactors. However, this material is subject to embrittlement due to thermal aging at the reactor temperature, that is 290 o C (550 o F). The Argonne National Laboratory (ANL) recently completed a research program and the results indicate that the lower-bound fracture toughness of thermally aged cast stainless steel is similar to that of submerged arc welds (SAWs). Thus, the US Nuclear Regulatory Commission (NRC) staff has accepted the use of SAW flaw evaluation procedures in IWB-3640 of Section XI of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code to evaluate flaws in thermally aged cast stainless steel for a license renewal evaluation. Alternatively, utilities may estimate component-specific fracture toughness of thermally aged cast stainless steel using procedures developed at ANL for a case-by-case flaw evaluation. (Author)

  13. The influence of long-range residual stress on plastic collapse of pressurised pipes with and without flaws

    International Nuclear Information System (INIS)

    Wu, Gui-Yi; Smith, David J.; Pavier, Martyn J.

    2013-01-01

    Structural integrity assessments of pressurised pipes include plastic collapse as a potential failure mode. This paper uses analytical and numerical models to explore the effect of the end conditions of the pipe on the collapse pressure. The pipe is open-ended and two bounding conditions are addressed: one where axial loading is applied to the ends of the pipe and the other where a fixed axial displacement is applied. The fixed axial displacement condition represents long-range or fit-up residual stress. It is common practice to treat long-range residual stress in the same way as axial loading, leading to the conclusion that such long-range residual stress reduces the collapse pressure. Pipes in a number of states are considered: pipes with no flaws, pipes with fully circumferential flaws and pipes with part circumferential flaws. The flaws consist of either a crack or a slot on the external surface of the pipe. For the axial load condition, the collapse pressure for a flawed pipe is reduced when higher magnitudes of tensile or compressive axial loads are applied. For the fixed displacement condition however, the magnitude of the displacement may have little or no effect on the collapse pressure. The results of the work indicate that substantially conservative assessments may be made of the collapse pressures of pipes containing flaws, when long-range residual stress is taken to be a form of axial loading. -- Highlights: • The effect of end conditions on the collapse pressure of a pipe has been explored. • Fixed displacement conditions represent long-range residual stress. • Long-range residual stress is commonly thought to contribute to plastic collapse. • We show long-range residual stress has no influence on collapse for flawed pipes. • It is therefore possible to reduce conservatism in structural integrity assessment

  14. Detecting and revising flaws in OWL object property expressions

    CSIR Research Space (South Africa)

    Keet, CM

    2012-10-01

    Full Text Available to the ontologist's intention. However, the more one can do, the higher the chance modelling flaws are introduced; hence, an unexpected or undesired classification or inconsistency may actually be due to a mistake in the object property box, not the class axioms. We...

  15. Acoustic emission/flaw relationships for inservice monitoring of LWRs

    International Nuclear Information System (INIS)

    Hutton, P.H.; Kurtz, R.J.; Friesel, M.A.; Skorpik, J.R.; Dawson, J.F.

    1991-10-01

    The program concerning Acoustic Emission/Flaw Relationships for Inservice Monitoring of LWRs was initiated in FY76 with the objective of validating the application of acoustic emission (AE) to monitor nuclear reactor pressure-containing components during operation to detect cracking. The program has been supported by the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research. Research and development has been performed by Pacific Northwest Laboratory, operated for the Department of Energy by Battelle Memorial Institute. The program has shown the feasibility of continuous, on-line AE monitoring to detect crack growth and produced validated methods for applying the technology. Included are relationships for estimating flaw severity from AE data and field applications at Watts Bar Unit 1 Reactor, Limerick Unit 1 Reactor, and the High Flux Isotope Reactor. This report discusses the program scope and organization, the three program phases and the results obtained, standard and code activities, and instrumentation and software developed under this program

  16. Evaluating empirical/analytical techniques to predict structural integrity of pipe containing surface flaws

    International Nuclear Information System (INIS)

    Reuter, W.G.; Server, W.L.

    1982-01-01

    Data from flat-plate specimens containing either triangular-, ellipsoidal- or rectangular-shaped surface flaws were evaluated by several potential analytical techniques. These techniques were modified as needed to predict conditions for initiation of subcritical crack growth, for the defect to penetrate the 6.4 mm (0.25 in.) wall thickness, and for instability (plastic or unstable). The modified analytical techniques developed from the plate specimens were then used to make predictions which are compared with test results obtained from pipe specimens containing triangular-shaped surface flaws

  17. Stepped frequency imaging for flaw monitoring: Final report

    International Nuclear Information System (INIS)

    Hildebrand, B.P.

    1988-09-01

    This report summarizes the results of research into the usefulness of stepped frequency imaging (SFI) to nuclear power plant inspection. SFI is a method for producing ultrasonic holographic images without the need to sweep a two-dimensional aperture with the transducer. Instead, the transducer may be translated along a line. At each position of the transducer the frequency is stepped over a finite preselected bandwidth. The frequency stepped data is then processed to synthesize the second dimension. In this way it is possible to generate images in regions that are relatively inaccessible to two-dimensional scanners. This report reviews the theory and experimental work verifying the technique, and then explores its possible applications in the nuclear power industry. It also outlines how this new capability can be incorporated into the SDL-1000 Imaging System previously developed for EPRI. The report concludes with five suggestions for uses for the SFI method. These are: monitoring suspect or repaired regions of feedwater nozzles; monitoring pipe cracks repaired by weld overlay; monitoring crack depth during test block production; imaging flaws where access is difficult; and imaging flaws through cladding without distortion

  18. Progress in evaluation and improvement in nondestructive examination reliability for inservice inspection of Light Water Reactors (LWRs) and characterize fabrication flaws in reactor pressure vessels

    International Nuclear Information System (INIS)

    Doctor, S.R.; Bowey, R.E.; Good, M.S.; Friley, J.R.; Kurtz, R.J.; Simonen, F.A.; Taylor, T.T.; Heasler, P.G.; Andersen, E.S.; Diaz, A.A.; Greenwood, M.S.; Hockey, R.L.; Schuster, G.J.; Spanner, J.C.; Vo, T.V.

    1991-10-01

    This paper is a review of the work conducted under two programs. One (NDE Reliability Program) is a multi-year program addressing the reliability of nondestructive evaluation (NDE) for the inservice inspection (ISI) of light water reactor components. This program examines the reliability of current NDE, the effectiveness of evolving technologies, and provides assessments and recommendations to ensure that the NDE is applied at the right time, in the right place with sufficient effectiveness that defects of importance to structural integrity will be reliably detected and accurately characterized. The second program (Characterizing Fabrication Flaws in Reactor Pressure Vessels) is assembling a data base to quantify the distribution of fabrication flaws that exist in US nuclear reactor pressure vessels with respect to density, size, type, and location. These programs will be discussed as two separate sections in this report. 4 refs., 7 figs

  19. Modeling size effects on fatigue life of a zirconium-based bulk metallic glass under bending

    International Nuclear Information System (INIS)

    Yuan Tao; Wang Gongyao; Feng Qingming; Liaw, Peter K.; Yokoyama, Yoshihiko; Inoue, Akihisa

    2013-01-01

    A size effect on the fatigue-life cycles of a Zr 50 Cu 30 Al 10 Ni 10 (at.%) bulk metallic glass has been observed in the four-point-bending fatigue experiment. Under the same bending-stress condition, large-sized samples tend to exhibit longer fatigue lives than small-sized samples. This size effect on the fatigue life cannot be satisfactorily explained by the flaw-based Weibull theories. Based on the experimental results, this study explores possible approaches to modeling the size effects on the bending-fatigue life of bulk metallic glasses, and proposes two fatigue-life models based on the Weibull distribution. The first model assumes, empirically, log-linear effects of the sample thickness on the Weibull parameters. The second model incorporates the mechanistic knowledge of the fatigue behavior of metallic glasses, and assumes that the shear-band density, instead of the flaw density, has significant influence on the bending fatigue-life cycles. Promising predictive results provide evidence of the potential validity of the models and their assumptions.

  20. Detection and characterization of flaws in segments of light water reactor pressure vessels

    International Nuclear Information System (INIS)

    Cook, K.V.; Cunningham, R.A. Jr.; McClung, R.W.

    1988-01-01

    Studies have been conducted to determine flaw density in segments cut from light water reactor )LWR) pressure vessels as part of the Oak Ridge National Laboratory's Heavy-Section Steel Technology (H SST) Program. Segments from the Hope Creek Unit 2 vessel and the Pilgrim Unit 2 Vessel were purchased from salvage dealers. Hope Creek was a boiling water reactor (BWR) design and Pilgrim was a pressurized water reactor (PWR) design. Neither were ever placed in service. Objectives were to evaluate these LWR segments for flaws with ultrasonic and liquid penetrant techniques. Both objectives were successfully completed. One significant indication was detected in a Hope Creek seam weld by ultrasonic techniques and characterized by further analyses terminating with destructive correlation. This indication [with a through-wall dimension of ∼6 mm (∼0.24 in.)] was detected in only 3 m (10 ft) of weldment and offers extremely limited data when compared to the extent of welding even in a single pressure vessel. However, the detection and confirmation of the flaw in the arbitrarily selected sections implies the Marshall report estimates (and others) are nonconservative for such small flaws. No significant indications were detected in the Pilgrim material by ultrasonic techniques. Unfortunately, the Pilgrim segments contained relatively little weldment; thus, we limited our ultrasonic examinations to the cladding and subcladding regions. Fluorescent liquid penetrant inspection of the cladding surfaces for both LWR segments detected no significant indications [i.e., for a total of approximately 6.8 m 2 (72 ft 2 ) of cladding surface]. (author)

  1. Mode Selection for Axial Flaw Detection in Steam Generator Tube Using Ultrasonic Guided Wave

    International Nuclear Information System (INIS)

    Yoon, Byung Sik; Yang, Seung Han; Guon, Ki Il; Kim, Yong Sik

    2009-01-01

    The eddy current testing method is mainly used to inspect steam generator tube during in-service inspection period. But the general problem of assessing the structural integrity of the steam generator tube using eddy current inspection is rather complex due to the presence of noise and interference signal under various conditions. However, ultrasonic testing as a nondestructive testing tool has become quite popular and effective for the flaw detection and material characterization. Currently, ultrasonic guided wave is emerging technique in power industry because of its various merits. But most of previous studies are focused on detection of circumferential oriented flaws. In this study, the steam generator tube of nuclear power plant was selected to detect axially oriented flaws and investigate guided wave mode identification. The longitudinal wave mode is generated using piezoelectric transducer frequency from 0.5 MHz, 1.0 MHz, 2.25MHz and 5MHz. Dispersion based STFT algorithm is used as mode identification tool

  2. Study of Defect Sizing in Carbon Steel Butt Welds using Conventional Ultrasonic Technique and Phased Array Ultrasonic

    International Nuclear Information System (INIS)

    Amry Amin Abas; Noorhazleena Azaman; Mohd Yusnisyam Mohd Yusoff

    2016-01-01

    Ultrasonic testing is a proven reliable method which is able to detect and measure the size of defects in butt welds with acceptable tolerance. Recent advancement of technology has introduced a computerized technique which is phased array. Phased array employs focal law that enable focusing and steering of beam at the active aperture axis. This enables one line scanning but covering the whole weld volume as compared to conventional technique which employs aster scan and multiple probes to completely cover the whole weld volume. Phased array also gives multiple data view which assist the interpreter. This paper is about the study of these two techniques and technical analysis of comparison between the two. The conventional technique is performed using GE USM GO with 4 MHz 45 degrees shear wave probe. The phased array technique uses OLYMPUS OMNISCAN MX2 with 5L64 linear array probe with 16 elements aperture and 55 degrees wedge emitting shear wave into the specimen. Sensitivity of both techniques are based on 1.5 mm Side Drilled Hole. The results are compared and analysis such as defect sizing and defect type determination are performed. (author)

  3. According to Jim: The Flawed Normal Curve of Intelligence

    Science.gov (United States)

    Gallagher, James J.

    2008-01-01

    In this article, the author talks about the normal curve of intelligence which he thinks is flawed and contends that wrong conclusions have been drawn based on this spurious normal curve. An example is that of racial and ethnic differences wherein some authors maintain that some ethnic and racial groups are clearly superior to others based on…

  4. Evaluation of Manual Ultrasonic Examinations Applied to Detect Flaws in Primary System Dissimilar Metal Welds at North Anna Power Station

    International Nuclear Information System (INIS)

    Anderson, Michael T.; Diaz, Aaron A.; Doctor, Steven R.

    2012-01-01

    During a recent inservice inspection (ISI) of a dissimilar metal weld (DMW) in an inlet (hot leg) steam generator nozzle at North Anna Power Station Unit 1, several axially oriented flaws went undetected by the licensee's manual ultrasonic testing (UT) technique. The flaws were subsequently detected as a result of outside diameter (OD) surface machining in preparation for a full structural weld overlay. The machining operation uncovered the existence of two through-wall flaws, based on the observance of primary water leaking from the DMW. Further ultrasonic tests were then performed, and a total of five axially oriented flaws, classified as primary water stress corrosion cracking (PWSCC), were detected in varied locations around the weld circumference.

  5. An engineering approach for examining crack growth and stability in flawed structures

    International Nuclear Information System (INIS)

    Shih, C.F.; German, M.D.; Kumar, V.

    1981-01-01

    Progress made in two research programmes, sponsored by the Electric Power Research Institute (EPRI), to identify viable parameters for characterising crack initiation and continued extension are summarised. An engineering/design methodology, based on these parameters, for the assessment of crack growth and instability in engineering structures which are stressed beyond the regime of applicability of linear elastic fracture mechanics is developed. The ultimate goal in the development of such a methodology is to establish an improved basis for analysing the effect of flaws (postulated or detected) on the safety margins of pressure boundary components of light water-cooled type nuclear steam supply systems. The methodology can also be employed for structural integrity analyses of other engineering components. Extensive experimental and analytical investigations undertaken to evaluate potential criteria for crack initiation and growth and the selection of the final criteria for analysing crack growth and stability in flawed structures are summarised. The experimental and analytical results obtained to date suggest that parameters based on the J-integral and the crack tip opening displacement, delta, are the most promising. This is not surprising since, from a theoretical basis, the two approaches are similar if certain conditions are met. An engineering/design approach for the assessment of crack growth and instability in flawed structures is outlined. (author)

  6. Ultrasonic Phased Array Techniques for Detection of Flaws of Stud Bolts in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lee, Joon Hyun; Choi, Sang Woo

    2006-01-01

    The reactor vessel body and closure head are fastened with the stud bolt that is one of crucial parts for safety of the reactor vessels in nuclear power plants. It is reported that the stud bolt is often experienced by fatigue cracks initiated at threads. Stud bolts are inspected by the ultrasonic technique during the overhaul periodically for the prevention of failure which leads to radioactive leakage from the nuclear reactor. The conventional ultrasonic inspection for stud bolts was mainly conducted by reflected echo method based on shadow effect. However, in this technique, there were numerous spurious signals reflected from every oblique surfaces of the thread. In this study, ultrasonic phased array technique was applied to investigate detectability of flaws in stud bolts and characteristics of ultrasonic images corresponding to different scanning methods, that is, sector and linear scan. For this purpose, simplified stud bolt specimens with artificial defects of various depths were prepared

  7. A general approach to flaw simulation in castings by superimposing projections of 3D models onto real X-ray images

    International Nuclear Information System (INIS)

    Hahn, D.; Mery, D.

    2003-01-01

    In order to evaluate the sensitivity of defect inspection systems, it is convenient to examine simulated data. This gives the possibility to tune the parameters of the inspection method and to test the performance of the system in critical cases. In this paper, a practical method for the simulation of defects in radioscopic images of aluminium castings is presented. The approach simulates only the flaws and not the whole radioscopic image of the object under test. A 3D mesh is used to model a flaw with complex geometry, which is projected and superimposed onto real radioscopic images of a homogeneous object according to the exponential attenuation law for X- rays. The new grey value of a pixel, where the 3D flaw is projected, depends only on four parameters: (a) the grey value of the original X-ray image without flaw; (b) the linear absorption coefficient of the examined material; (c) the maximal thickness observable in the radioscopic image; and (d) the length of the intersection of the 3D flaw with the modelled X-ray beam, that is projected into the pixel. A simulation of a complex flaw modelled as a 3D mesh can be performed in any position of the castings by using the algorithm described in this paper. This allows the evaluation of the performance of defect inspection systems in cases where the detection is known to be difficult. In this paper, we show experimental results on real X-ray images of aluminium wheels, in which 3D flaws like blowholes, cracks and inclusions are simulated

  8. Preclinical animal anxiety research - flaws and prejudices.

    Science.gov (United States)

    Ennaceur, Abdelkader; Chazot, Paul L

    2016-04-01

    The current tests of anxiety in mice and rats used in preclinical research include the elevated plus-maze (EPM) or zero-maze (EZM), the light/dark box (LDB), and the open-field (OF). They are currently very popular, and despite their poor achievements, they continue to exert considerable constraints on the development of novel approaches. Hence, a novel anxiety test needs to be compared with these traditional tests, and assessed against various factors that were identified as a source of their inconsistent and contradictory results. These constraints are very costly, and they are in most cases useless as they originate from flawed methodologies. In the present report, we argue that the EPM or EZM, LDB, and OF do not provide unequivocal measures of anxiety; that there is no evidence of motivation conflict involved in these tests. They can be considered at best, tests of natural preference for unlit and/or enclosed spaces. We also argued that pharmacological validation of a behavioral test is an inappropriate approach; it stems from the confusion of animal models of human behavior with animal models of pathophysiology. A behavioral test is developed to detect not to produce symptoms, and a drug is used to validate an identified physiological target. In order to overcome the major methodological flaws in animal anxiety studies, we proposed an open space anxiety test, a 3D maze, which is described here with highlights of its various advantages over to the traditional tests.

  9. Twenty years of fracture mechanics and flaw evaluation applications in the ASME Nuclear Code

    International Nuclear Information System (INIS)

    Riccardella, P.C.

    1991-01-01

    The paper presents a retrospective on the development and applications of fracture mechanics-based toughness requirements and flaw evaluation methodology in Sections III and XI of the ASME Code. Section III developments range from the rules and requirements for thick section Class 1 pressure vessels to thinner section components in other Classes. Section XI applications include flaw acceptance standards and evaluation methodology for various components ranging from pressure vessels to thins section piping of carbon and austenitic steels. The experience gained in operating plant applications of these rules and procedures are also discussed

  10. Statistical flaws in design and analysis of fertility treatment studies on cryopreservation raise doubts on the conclusions

    Science.gov (United States)

    van Gelder, P.H.A.J.M.; Nijs, M.

    2011-01-01

    Decisions about pharmacotherapy are being taken by medical doctors and authorities based on comparative studies on the use of medications. In studies on fertility treatments in particular, the methodological quality is of utmost importance in the application of evidence-based medicine and systematic reviews. Nevertheless, flaws and omissions appear quite regularly in these types of studies. Current study aims to present an overview of some of the typical statistical flaws, illustrated by a number of example studies which have been published in peer reviewed journals. Based on an investigation of eleven studies at random selected on fertility treatments with cryopreservation, it appeared that the methodological quality of these studies often did not fulfil the required statistical criteria. The following statistical flaws were identified: flaws in study design, patient selection, and units of analysis or in the definition of the primary endpoints. Other errors could be found in p-value and power calculations or in critical p-value definitions. Proper interpretation of the results and/or use of these study results in a meta analysis should therefore be conducted with care. PMID:24753877

  11. Statistical flaws in design and analysis of fertility treatment -studies on cryopreservation raise doubts on the conclusions.

    Science.gov (United States)

    van Gelder, P H A J M; Nijs, M

    2011-01-01

    Decisions about pharmacotherapy are being taken by medical doctors and authorities based on comparative studies on the use of medications. In studies on fertility treatments in particular, the methodological quality is of utmost -importance in the application of evidence-based medicine and systematic reviews. Nevertheless, flaws and omissions appear quite regularly in these types of studies. Current study aims to present an overview of some of the typical statistical flaws, illustrated by a number of example studies which have been published in peer reviewed journals. Based on an investigation of eleven studies at random selected on fertility treatments with cryopreservation, it appeared that the methodological quality of these studies often did not fulfil the -required statistical criteria. The following statistical flaws were identified: flaws in study design, patient selection, and units of analysis or in the definition of the primary endpoints. Other errors could be found in p-value and power calculations or in critical p-value definitions. Proper -interpretation of the results and/or use of these study results in a meta analysis should therefore be conducted with care.

  12. Application of Fourier elastodynamics to direct and inverse problems for the scattering of elastic waves from flaws near surfaces

    International Nuclear Information System (INIS)

    Richardson, J.M.; Fertig, K.W. Jr.

    1983-01-01

    In order to inspect flaws which lie too close to the surface a Fourier elastodynamic formalism is proposed which enables one to decompose the elastodynamic system into separately charterizable parts by means of planes perpendicular to the z-axis. The process can be represented by a generalized transfer function relating the near-field scattered waves to the waves incident on a slab of material containing the flaw. The Fourier elastodynamics are applied to the characterization of the total scattering process involving a flaw at various distances from a plastic-water interface. An abbreviated discussion of Fourier elastodynamics is presented, and the results specialized to the case of spherical voids and inclusions bear an interface. Finally, the computational results for several ranges of temporal frequency and for a sequence of values of the distance from the flaw center to the interface are discussed

  13. Examination of parameters affecting overload fracture behavior of flaw-tip hydrides in Zr-2.5Nb pressure tubes in Candu reactors

    International Nuclear Information System (INIS)

    Cui, J.; Shek, G.K.; Wang, Z.R.

    2007-01-01

    Service-induced flaws in Zr-2.5Nb alloy pressure tubes in Candu (Canada Deuterium Uranium Reactors) nuclear reactors are susceptible to a crack initiation and growth mechanism known as Delayed Hydride Cracking (DHC), which is a repetitive process that involves hydrogen diffusion, hydride precipitation, growth and fracture of a hydride region at the flaw-tip under a constant load. Crack initiation may also occur under another loading condition when the hydride region is subjected to an overload. An overload occurs when the hydride region at the flaw tip is loaded to a stress higher than that at which this region is formed such as when the reactor experiences a transient pressure higher than the normal operating pressure where the hydride region is formed. Flaw disposition requires justification that the hydride region overload will not fracture the hydride region, and initiate DHC. In this work, monotonically increasing load experiments were performed on unirradiated Zr-2.5Nb pressure tube specimens containing simulated debris frets (V-notch) and bearing pad frets (BPF, U-shape notch) to examine overload fracture behavior of flaw-tip hydrides formed under hydride ratcheting conditions. Hydride cracking in the overload tests was detected by the acoustic emission technique and confirmed by post-test metallurgical examination. Test results indicate that the resistance to overload fracture is affected by a number of parameters including hydride formation stress, flaw shape (V-notch vs. BPF) and flaw radius (0.015 mm vs. 0.1 mm). The notch-tip hydride morphologies were examined by optical microscopy and scanning electron microscopy (SEM) which show that they are affected by the hydride formation conditions, resulting in different overload fracture resistance. Finite element stress analyses were also performed to obtain flaw-tip stress distributions for interpretation of the test results. (authors)

  14. Rotating flux-focusing eddy current probe for flaw detection

    Science.gov (United States)

    Wincheski, Russell A. (Inventor); Fulton, James P. (Inventor); Nath, Shridhar C. (Inventor); Simpson, John W. (Inventor); Namkung, Min (Inventor)

    1997-01-01

    A flux-focusing electromagnetic sensor which uses a ferromagnetic flux-focusing lens simplifies inspections and increases detectability of fatigue cracks about circular fasteners and other circular inhomogeneities in high conductivity material. The unique feature of the device is the ferrous shield isolating a high-turn pick-up coil from an excitation coil, The use of the magnetic shield is shown to produce a null voltage output across the receiving coil in the presence of an unflawed sample. A redistribution of the current flow in the sample caused by the presence of flaws, however, eliminates the shielding condition and a large output voltage is produced, yielding a clear unambiguous flaw signal. By rotating the probe in a path around a circular fastener such as a rivet while maintaining a constant distance between the probe and the center of a rivet, the signal due to current flow about the rivet can be held constant. Any further changes in the current distribution, such as due to a fatigue crack at the rivet joint, can be detected as an increase in the output voltage above that due to the flow about the rivet head.

  15. Amplitude-independent flaw length determination using differential eddy current

    Science.gov (United States)

    Shell, E.

    2013-01-01

    Military engine component manufacturers typically specify the eddy current (EC) inspection requirements as a crack length or depth with the assumption that the cracks in both the test specimens and inspected component are of a similar fixed aspect ratio. However, differential EC response amplitude is dependent on the area of the crack face, not the length or depth. Additionally, due to complex stresses, in-service cracks do not always grow in the assumed manner. It would be advantageous to use more of the information contained in the EC data to better determine the full profile of cracks independent of the fixed aspect ratio amplitude response curve. A specimen with narrow width notches is used to mimic cracks of varying aspect ratios in a controllable manner. The specimen notches have aspect ratios that vary from 1:1 to 10:1. Analysis routines have been developed using the shape of the EC response signals that can determine the length of a surface flaw of common orientations without use of the amplitude of the signal or any supporting traditional probability of detection basis. Combined with the relationship between signal amplitude and area, the depth of the flaw can also be calculated.

  16. Investigation of the radiation leakage from X ray flaw detectors and the improvement measures for the unqualified products

    International Nuclear Information System (INIS)

    Li Yiachun; Wu Yi; Pang Hu; Bai Bin

    1997-01-01

    The authors introduce investigation methods and results for radiation leakage from X ray flaw detectors, which are used in Beijing area. Total 21 sets of flaw detectors made in 8 factories in Beijing, Shanghai etc. have been tested, of which 16 sets made in Beijing, Dandong and Japan are gas cooling flaw detectors, and rest 5 sets made in Shanghai and Germany are water or oil cooling detectors. The air Kerma rate of leakage radiation at 1 m from the X ray tube target were measured by Type FJ-347A X, γ dosimeter. It can be seen from the results that, compared with the trade standard ZBY315-83, 5 sets of water or oil cooling flaw detectors are all qualified. However, only two sets of gas cooling detectors are qualified, and the radiation leakage of another 14 sets are over the values specified in the standard. The reason is analyzed, and some advices about the measures of improving radiation protection structure design and production technology for the unqualified products have been proposed

  17. Gun bore flaw image matching based on improved SIFT descriptor

    Science.gov (United States)

    Zeng, Luan; Xiong, Wei; Zhai, You

    2013-01-01

    In order to increase the operation speed and matching ability of SIFT algorithm, the SIFT descriptor and matching strategy are improved. First, a method of constructing feature descriptor based on sector area is proposed. By computing the gradients histogram of location bins which are parted into 6 sector areas, a descriptor with 48 dimensions is constituted. It can reduce the dimension of feature vector and decrease the complexity of structuring descriptor. Second, it introduce a strategy that partitions the circular region into 6 identical sector areas starting from the dominate orientation. Consequently, the computational complexity is reduced due to cancellation of rotation operation for the area. The experimental results indicate that comparing with the OpenCV SIFT arithmetic, the average matching speed of the new method increase by about 55.86%. The matching veracity can be increased even under some variation of view point, illumination, rotation, scale and out of focus. The new method got satisfied results in gun bore flaw image matching. Keywords: Metrology, Flaw image matching, Gun bore, Feature descriptor

  18. Development of a Weibull model of cleavage fracture toughness for shallow flaws in reactor pressure vessel material

    Energy Technology Data Exchange (ETDEWEB)

    Bass, B.R.; Williams, P.T.; McAfee, W.J.; Pugh, C.E. [Oak Ridge National Lab., Heavy-Section Steel Technology Program, Oak Ridge, TN (United States)

    2001-07-01

    A primary objective of the United States Nuclear Regulatory Commission (USNRC) -sponsored Heavy-Section Steel Technology (HSST) Program is to develop and validate technology applicable to quantitative assessments of fracture prevention margins in nuclear reactor pressure vessels (RPVs) containing flaws and subjected to service-induced material toughness degradation. This paper describes an experimental/analytical program for the development of a Weibull statistical model of cleavage fracture toughness for applications to shallow surface-breaking and embedded flaws in RPV materials subjected to multi-axial loading conditions. The experimental part includes both material characterization testing and larger fracture toughness experiments conducted using a special-purpose cruciform beam specimen developed by Oak Ridge National Laboratory for applying biaxial loads to shallow cracks. Test materials (pressure vessel steels) included plate product forms (conforming to ASTM A533 Grade B Class 1 specifications) and shell segments procured from a pressurized-water reactor vessel intended for a nuclear power plant. Results from tests performed on cruciform specimens demonstrated that biaxial loading can have a pronounced effect on shallow-flaw fracture toughness in the lower-transition temperature region. A local approach methodology based on a three-parameter Weibull model was developed to correlate these experimentally-observed biaxial effects on fracture toughness. The Weibull model, combined with a new hydrostatic stress criterion in place of the more commonly used maximum principal stress in the kernel of the Weibull stress integral definition, is shown to provide a scaling mechanism between uniaxial and biaxial loading states for 2-dimensional flaws located in the A533-B plate material. The Weibull stress density was introduced as a matrice for identifying regions along a semi-elliptical flaw front that have a higher probability of cleavage initiation. Cumulative

  19. Development of a Weibull model of cleavage fracture toughness for shallow flaws in reactor pressure vessel material

    International Nuclear Information System (INIS)

    Bass, B.R.; Williams, P.T.; McAfee, W.J.; Pugh, C.E.

    2001-01-01

    A primary objective of the United States Nuclear Regulatory Commission (USNRC) -sponsored Heavy-Section Steel Technology (HSST) Program is to develop and validate technology applicable to quantitative assessments of fracture prevention margins in nuclear reactor pressure vessels (RPVs) containing flaws and subjected to service-induced material toughness degradation. This paper describes an experimental/analytical program for the development of a Weibull statistical model of cleavage fracture toughness for applications to shallow surface-breaking and embedded flaws in RPV materials subjected to multi-axial loading conditions. The experimental part includes both material characterization testing and larger fracture toughness experiments conducted using a special-purpose cruciform beam specimen developed by Oak Ridge National Laboratory for applying biaxial loads to shallow cracks. Test materials (pressure vessel steels) included plate product forms (conforming to ASTM A533 Grade B Class 1 specifications) and shell segments procured from a pressurized-water reactor vessel intended for a nuclear power plant. Results from tests performed on cruciform specimens demonstrated that biaxial loading can have a pronounced effect on shallow-flaw fracture toughness in the lower-transition temperature region. A local approach methodology based on a three-parameter Weibull model was developed to correlate these experimentally-observed biaxial effects on fracture toughness. The Weibull model, combined with a new hydrostatic stress criterion in place of the more commonly used maximum principal stress in the kernel of the Weibull stress integral definition, is shown to provide a scaling mechanism between uniaxial and biaxial loading states for 2-dimensional flaws located in the A533-B plate material. The Weibull stress density was introduced as a matrice for identifying regions along a semi-elliptical flaw front that have a higher probability of cleavage initiation. Cumulative

  20. Flaw evaluation of Nd:YAG laser welding based plume shape by infrared thermal camera

    International Nuclear Information System (INIS)

    Kim, Jae Yeol; Yoo, Young Tae; Yang, Dong Jo; Song, Kyung Seol; Ro, Kyoung Bo

    2003-01-01

    In Nd:YAG laser welding evaluation methods of welding flaw are various. But, the method due to plume shape is difficult to classification od welding flaw. The Nd:YAG laser process is known to have high speed and deep penetration capability to become one of the most advanced welding technologies. At the present time, some methods are studied for measurement of plume shape by using high-speed camera and photo diode. This paper describes the machining characteristics of SM45C carbon steel welding by use of an Nd:YAG laser. In spite of its good mechanical characteristics, SM45C carbon steel has a high carbon contents and suffers a limitation in the industrial application due to the poor welding properties. In this study, plume shape was measured by infrared thermal camera that is non-contact/non-destructive thermal measurement equipment through change of laser generating power, speed, focus. Weld was performed on bead-on method. Measurement results are compared as two equipment. Here, two results are composed of measurement results of plume quantities due to plume shape by infrared thermal camera and inspection results of weld bead include weld flaws by ultrasonic inspector.

  1. Accuracy of templating the acetabular cup size in Total Hip Replacement using conventional acetate templates on digital radiographs.

    Science.gov (United States)

    Krishnamoorthy, Vignesh P; Perumal, Rajamani; Daniel, Alfred J; Poonnoose, Pradeep M

    2015-12-01

    Templating of the acetabular cup size in Total Hip Replacement (THR) is normally done using conventional radiographs. As these are being replaced by digital radiographs, it has become essential to create a technique of templating using digital films. We describe a technique that involves templating the digital films using the universally available acetate templates for THR without the use of special software. Preoperative digital radiographs of the pelvis were taken with a 30 mm diameter spherical metal ball strapped over the greater trochanter. Using standard acetate templates provided by the implant company on magnified digital radiographs, the size of the metal ball (X mm) and acetabular cup (Y mm) were determined. The size of the acetabular cup to be implanted was estimated using the formula 30*Y/X. The estimated size was compared with the actual size of the cup used at surgery. Using this technique, it was possible to accurately predict the acetabular cup size in 28/40 (70%) of the hips. When the accuracy to within one size was considered, templating was correct in 90% (36/40). When assessed by two independent observers, there was good intra-observer and inter-observer reliability with intra-class correlation coefficient values greater than 0.8. It was possible to accurately and reliably predict the size of the acetabular cup, using acetate templates on digital films, without any digital templates.

  2. Vitamin D and Depression: A Systematic Review and Meta-Analysis Comparing Studies with and without Biological Flaws

    OpenAIRE

    Simon Spedding

    2014-01-01

    Efficacy of Vitamin D supplements in depression is controversial, awaiting further literature analysis. Biological flaws in primary studies is a possible reason meta-analyses of Vitamin D have failed to demonstrate efficacy. This systematic review and meta-analysis of Vitamin D and depression compared studies with and without biological flaws. The systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The literature search was un...

  3. The Secret of Future Defeat: The Evolution of US Joint and Army Doctrine 1993-2006 and the Flawed Conception of Stability Operations

    Science.gov (United States)

    2007-05-24

    The Secret of Future Defeat: the Evolution of US Joint and Army Doctrine 1993-2006 and the Flawed Conception of Stability Operations A...4. TITLE AND SUBTITLE The Secret of Future Defeat: the Evolution of US Joint and 5a. CONTRACT NUMBER Army Doctrine 1993-2006 and the Flawed... The Secret of Future Defeat: the Evolution of US Joint and Army Doctrine 1993-2006 and the Flawed Conception of Stability Operations Approved by

  4. Fracture behaviour assessment of a flawed pressure vessel in the hydro-test

    Energy Technology Data Exchange (ETDEWEB)

    Sarkimo, M; Rintamac, R

    1988-12-31

    This document deals with the fracture properties of a flawed pressure vessel. The experiment was carried out within the Nordic Countries on a vessel in a Finnish refinery. The instrumentation used included acoustic emission. Some results are provided. (TEC).

  5. Size effect in tension perpendicular to the grain

    DEFF Research Database (Denmark)

    Pedersen, Martin Bo Uhre; Clorius, Christian Odin; Damkilde, Lars

    1999-01-01

    The strength in tension perpendicular to the grain is known to decrease with an increase in the stressed volume. Usually this size effect is explained on a stochastic basis, that is an explanation relying on an increased probability of encountering a strength reducing flaw when the volume...... of the material under stress is increased. This paper presents a small experimental investigation on specimens with well defined structural orientation of the material. The experiments exhibit a larger size effect than expected and furthermore the data and the nature of the failures encountered suggest...... that the size effect can be explained on a deterministic basis. Arguments for such a simple deterministic explanation of size effect is found in finite element modelling using the orthotropic stiffness characteristics in the transverse plane of wood....

  6. Stabilized transistor transformer for self-moving Sirena-1 X-ray flaw detector

    International Nuclear Information System (INIS)

    Krasil'nikov, S.B.; Kristalinskij, A.L.; Lozovoj, L.N.; Markov, S.N.; Sindalovskij, E.I.

    1986-01-01

    Electric circuit of stabilized transistor transformer for self-moving ''Sirena'' type X-ray flaw detector is described. Specifications of the transformer and results of the experimental studies, which can be used when tuning and adjusting the transformer under industrial conditions

  7. On self-propagating methodological flaws in performance normalization for strength and power sports.

    Science.gov (United States)

    Arandjelović, Ognjen

    2013-06-01

    Performance in strength and power sports is greatly affected by a variety of anthropometric factors. The goal of performance normalization is to factor out the effects of confounding factors and compute a canonical (normalized) performance measure from the observed absolute performance. Performance normalization is applied in the ranking of elite athletes, as well as in the early stages of youth talent selection. Consequently, it is crucial that the process is principled and fair. The corpus of previous work on this topic, which is significant, is uniform in the methodology adopted. Performance normalization is universally reduced to a regression task: the collected performance data are used to fit a regression function that is then used to scale future performances. The present article demonstrates that this approach is fundamentally flawed. It inherently creates a bias that unfairly penalizes athletes with certain allometric characteristics, and, by virtue of its adoption in the ranking and selection of elite athletes, propagates and strengthens this bias over time. The main flaws are shown to originate in the criteria for selecting the data used for regression, as well as in the manner in which the regression model is applied in normalization. This analysis brings into light the aforesaid methodological flaws and motivates further work on the development of principled methods, the foundations of which are also laid out in this work.

  8. Eddy current probe and method for flaw detection in metals

    Science.gov (United States)

    Watjen, John P.

    1987-06-23

    A flaw detecting system is shown which includes a probe having a pair of ferrite cores with in-line gaps in close proximity to each other. An insulating, non-magnetic, non-conducting holder fills the gaps and supports the ferrite cores in a manner such that the cores form a generally V-shape. Each core is provided with an excitation winding and a detection winding. The excitation windings are connected in series or parallel with an rf port for connection thereof to a radio frequency source. The detection windings, which are differentially wound, are connected in series circuit to a detector port for connection to a voltage measuring instrument. The ferrite cores at the in-line gaps directly engage the metal surface of a test piece, and the probe is scanned along the test piece. In the presence of a flaw in the metal surface the detection winding voltages are unbalanced, and the unbalance is detected by the voltage measuring instrument. The insulating holder is provided with a profile which conforms to that of a prominent feature of the test piece to facilitate movement of the probe along the feature, typically an edge or a corner.

  9. Arc-discharge system for nondestructive detection of flaws in thin ceramic coatings

    International Nuclear Information System (INIS)

    Scott, G.W.; Davis, E.V.

    1978-04-01

    The feasibility of nondestructively detecting small cracks or holes in plasma-sprayed ceramic coatings with an electric arc-discharge system was studied. We inspected ZrO 2 coatings 0.46 mm (0.018 in.) thick on Incoloy alloy 800 substrates. Cracks were artificially induced in controlled areas of the specimens by straining the substrates in tension. We designed and built a system to scan the specimen's surface at approximately 50 μm (0.002 in.) clearance with a sharp-pointed metal-tipped probe at high dc potential. The system measures the arc currents occurring at flaws, or plots a map of the scanned area showing points where the arc current exceeds a preset threshold. A theoretical model of the probe-specimen circuit shows constant dc potential to be the best choice for arc-discharge inspection of insulating coatings. Experimental observations and analysis of the data disclosed some potential for flaw description

  10. Fatigue crack initiation at complex flaws in hydrided Zr-2.5%Nb samples from CANDU pressure tubes

    International Nuclear Information System (INIS)

    Stoica, L.; Radu, V.

    2016-01-01

    The paper addresses the phenomena which occur at locations where the oxide layer of the inner surface of CANDU tube pressure is damaged by the contact with the fuel element or due to the action of hard particles at the interface between the tube pressure and bearing pad of fuel element. In such situations generate defects, which most often are defects known as ''bearing pad fretting flaws'' or ''debris fretting flaws''. In this paper the experiments are completed in a series of previous works on the mechanical fatigue phenomenon on samples prepared from the pressure tube Zr-2.5% Nb alloy. The phenomenon of variable mechanical stress (or fatigue) may lead to initiation of cracks at the tip of volumetric flaws, according to the accumulation of hydrides, which then fractures and can propagate through the tube wall pressure due to the mechanism of type DHC (Delayed Hydride Cracking). (authors)

  11. High-temperature flaw assessment procedure

    International Nuclear Information System (INIS)

    Ruggles, M.B.; Takahashi, Y.; Ainsworth, R.A.

    1989-08-01

    The current program represents a joint effort between the Electric Power Research Institute (EPRI) in the USA, the Central Research Institute of Electric Power Industry (CRIEPI) in Japan, and the Central Electricity Generating Board (CEGB) in the UK. The goal is to develop an interim high-temperature flaw assessment procedure for high-temperature reactor components. This is to be accomplished through exploratory experimental and analytical studies of high-temperature crack growth. The state-of-the-art assessment and the fracture mechanics database for both types 304 and 316 stainless steels, completed in 1988, serve as a foundation for the present work. Work in the three participating organizations is progressing roughly on schedule. Results to-date are presented in this document. Fundamental tests results are discussed in Section 2. Section 3 focuses on results of exploratory subcritical crack growth tests. Progress in subcritical crack growth modeling is reported in Section 4. Exploratory failure tests are outlined in Section 5. 21 refs., 70 figs., 7 tabs

  12. The use of fracture mechanics for the evaluation of NDE flaw acceptance standards

    Energy Technology Data Exchange (ETDEWEB)

    Alicino, A; Capurro, E; Ansaldo, Sp; Corvi, A [Ansaldo SpA, Genoa (Italy)

    1988-12-31

    This document deals with the use of fracture mechanics criteria to evaluate the Non Destructive Examination (NDE) flaw acceptance standards. The communication discusses the general schemes and the guidelines of the activity carried out. (TEC).

  13. Determination of crack size around rivet hole through neural network using ultrasonic Lamb wave

    International Nuclear Information System (INIS)

    Choi, Sang Woo; Lee, Joon Hyun

    1998-01-01

    Rivets are typical structural features that are potential initiation sites for fatigue crack due to combination of local stress concentration around rivet hole and moisture trapping. For the viewpoint of structural assurance, it is crucial to evaluate the size of crack around rivets by appropriate nondestructive techniques. Guided waves, which direct wave energy along the plate, carry information about the material in their path and offer a potentially more efficient tool for nondestructive inspection of structural material. Neural network that is considered to be the most suitable for pattern recognition and has been used by researchers in NDE field to classify different types of flaws and flaw size. In this study, crack size determination around rivet through a neural network based on the back-propagation algorithm has been done by extracting some feature from time-domain waveforms of ultrasonic Lamb wave for Al 2024-T3 skin panel of aircraft. Special attention was paid to reduce the coupling effect between transducer and specimen by extracting some features related to only time component data in ultrasonic waveform. It was demonstrated clearly that features extraction based on time component data of the time-domain waveform of Lamb wave was very useful to determine crack size initiated from rivet hole through neural network.

  14. Development of a probe for inner profile measurement and flaw detection

    Science.gov (United States)

    Yoshizawa, Toru; Wakayama, Toshitaka; Kamakura, Yoshihisa

    2011-08-01

    It is one of the important necessities to precisely measure the inner diameter and/or the inner profile of pipes, tubes and other objects similar in shape. Especially in mechanical engineering field, there are many requests from automobile industry because the inner surface of engine blocks and other die casts are strongly required to be inspected and measured by non-contact methods (not by the naked eyes inspection using a borescope). If the inner diameter is large enough like water pipes or drain pipes, complicated and large equipment may be applicable. However, small pipes with a diameter ranging from 10mm to 100mm are difficult to be inspected by such a large instrument as is used for sewers inspection. And we have proposed an instrument which has no moving elements such as a rotating mirror or a prism for scanning a beam. Our measurement method is based on optical sectioning using triangulation. This optically sectioned profile of an inner wall of pipe-like objects is analyzed to produce numerical data of inner diameter or profile. Here, we report recent development of the principle and applications of the optical instrument with a simple and compact configuration. In addition to profile measurement, we found flaws and defects on the inner wall were also detected by using the similar principle. Up to now, we have developed probes with the diameter of 8mm to 25mm for small size objects and another probe (80 mm in diameter) for such a larger container with the dimensional size of 600mm.

  15. Detection and Sizing of Fatigue Cracks in Steel Welds with Advanced Eddy Current Techniques

    Science.gov (United States)

    Todorov, E. I.; Mohr, W. C.; Lozev, M. G.

    2008-02-01

    Butt-welded specimens were fatigued to produce cracks in the weld heat-affected zone. Advanced eddy current (AEC) techniques were used to detect and size the cracks through a coating. AEC results were compared with magnetic particle and phased-array ultrasonic techniques. Validation through destructive crack measurements was also conducted. Factors such as geometry, surface treatment, and crack tightness interfered with depth sizing. AEC inspection techniques have the potential of providing more accurate and complete sizing flaw data for manufacturing and in-service inspections.

  16. Simplified probabilistic approach to determine safety factors in deterministic flaw acceptance criteria

    International Nuclear Information System (INIS)

    Barthelet, B.; Ardillon, E.

    1997-01-01

    The flaw acceptance rules in nuclear components rely on deterministic criteria supposed to ensure the safe operating of plants. The interest of having a reliable method of evaluating the safety margins and the integrity of components led Electricite de France to launch a study to link safety factors with requested reliability. A simplified analytical probabilistic approach is developed to analyse the failure risk in Fracture Mechanics. Assuming lognormal distributions of the main random variables, it is possible considering a simple Linear Elastic Fracture Mechanics model, to determine the failure probability as a function of mean values and logarithmic standard deviations. The 'design' failure point can be analytically calculated. Partial safety factors on the main variables (stress, crack size, material toughness) are obtained in relation with reliability target values. The approach is generalized to elastic plastic Fracture Mechanics (piping) by fitting J as a power law function of stress, crack size and yield strength. The simplified approach is validated by detailed probabilistic computations with PROBAN computer program. Assuming reasonable coefficients of variations (logarithmic standard deviations), the method helps to calibrate safety factors for different components taking into account reliability target values in normal, emergency and faulted conditions. Statistical data for the mechanical properties of the main basic materials complement the study. The work involves laboratory results and manufacture data. The results of this study are discussed within a working group of the French in service inspection code RSE-M. (authors)

  17. Modeling validation to structural flaws in the foundations of oil tanks

    International Nuclear Information System (INIS)

    Couto, Larissa Goncalves; Leite, Sandro Passos

    2014-01-01

    This paper presents the modeling of an experiment used to study the application of backscattered neutrons in the identification of structural flaws in the foundations of oil tanks. This modeling was a preliminary validation procedure of the method of calculation, performed with the radiation transport code MCNP, to study the application of backscattered neutrons as inspection tool. (author)

  18. Acoustic emission and estimation of flaw significance in reactor pressure boundaries

    International Nuclear Information System (INIS)

    Hutton, P.H.; Kurtz, R.J.

    1982-01-01

    The work discussed is intended to establish the feasibility of using acoustic emission (AE) to detect and evaluate growing flaws in nuclear reactor pressure boundaries. Basic AE identification and interpretation methods have grown out of Phase 1. Phases 2 and 3 to test and demonstrate developed methodology on a vessel test and on a reactor are in progress

  19. Ultrasonic TOFD method application for steel components and welds of 10 mm wall thickness using ultrasonic flaw detector and ULTRA7 TOFD software

    International Nuclear Information System (INIS)

    Kasarov, R.; Tabakova, B.

    2008-01-01

    Pressure Vessels inspection is carried out using complex of NDT techniques. A relatively recent technique ultrasonic NDJ is the Time-of-Flight Diffraction (TOFD,) method as an effective method for detection and sizing of flaws. One of the way inspection heavy duty steel elements and welds is to use manual TOFD technique with longitudinal waves at refracted angles of 45 to 70 degrees. Typically inspections using this method have been on steel elements and welds varying from 12 mm to 300 mm wall thickness. In this paper is presented examples of using the TOFD techniques for 10 mm wall thickness using USM 35X5 and ULTRA-7 TOFD software. This software provides TOFD inspection design (PCS, sound path, beam coverage, dead zones) and validation services. The calculations of the two dead zones are derived from relatively trigonometric equation, graphically displayed on a PC-screen and weld frame form. Using ULTRA-7 TOFD the user must move the gate at which the flaw is located on PC-screen to determine the depth of defect. The diffraction points graphically displayed in a weld frame form and analyzed using geometry calculations. (authors)

  20. Windows Vista Kernel-Mode: Functions, Security Enhancements and Flaws

    Directory of Open Access Journals (Sweden)

    Mohammed D. ABDULMALIK

    2008-06-01

    Full Text Available Microsoft has made substantial enhancements to the kernel of the Microsoft Windows Vista operating system. Kernel improvements are significant because the kernel provides low-level operating system functions, including thread scheduling, interrupt and exception dispatching, multiprocessor synchronization, and a set of routines and basic objects.This paper describes some of the kernel security enhancements for 64-bit edition of Windows Vista. We also point out some weakness areas (flaws that can be attacked by malicious leading to compromising the kernel.

  1. A study on the effect of flaw detection probability assumptions on risk reduction achieved by non-destructive inspection

    International Nuclear Information System (INIS)

    Cronvall, O.; Simola, K.; Männistö, I.; Gunnars, J.; Alverlind, L.; Dillström, P.; Gandossi, L.

    2012-01-01

    Leakages and ruptures of piping components lead to reduction or loss of the pressure retaining capability of the system, and thus contribute to the overall risk associated with nuclear power plants. In-service inspection (ISI) aims at verifying that defects are not present in components of the pressure boundary or, if defects are present, ensuring that these are detected before they affect the safe operation of the plant. Reliability estimates of piping are needed e.g., in probabilistic safety assessment (PSA) studies, risk-informed ISI (RI-ISI) applications, and other structural reliability assessments. Probabilistic fracture mechanics models can account for ISI reliability, but a quantitative estimate for the latter is needed. This is normally expressed in terms of probability of detection (POD) curves, which correlate the probability of detecting a flaw with flaw size. A detailed POD curve is often difficult (or practically impossible) to obtain. If sufficient risk reduction can be shown by using simplified (but reasonably conservative) POD estimates, more complex PODs are not needed. This paper summarises the results of a study on the effect of piping inspection reliability assumptions on failure probability using structural reliability models. The main interest was to investigate whether it is justifiable to use a simplified POD curve. Further, the study compared various structural reliability calculation approaches for a set of analysis cases. The results indicate that the use of a simplified POD could be justifiable in RI-ISI applications.

  2. Ultrasonic Phased Array Technique for Accurate Flaw Sizing in Dissimilar Metal Welds

    International Nuclear Information System (INIS)

    Jonathan D Buttram

    2005-01-01

    Described is a manual, portable non-destructive technique to determine the through wall height of cracks present in dissimilar metal welds used in the primary cooling systems of pressure water and boiler light water reactors. Current manual methods found in industry have proven not to exhibit the sizing accuracy required by ASME inspection requirement. The technique described demonstrated an accuracy approximately three times that required to ASME Section XI, Appendix 8 qualification

  3. Flawed Implementation or Inconsistent Logics? Lessons from Higher Education Reform in Ukraine

    Science.gov (United States)

    Shaw, Marta A.

    2013-01-01

    This article investigates two competing explanations of why reforms associated with the Bologna process brought disappointing results in Ukraine. The lack of anticipated benefits from the reforms may stem either from a flawed implementation of the Bologna process, or from more fundamental differences between the models of higher education…

  4. Ligament rupture and unstable burst behaviors of axial flaws in steam generator U-bends

    Energy Technology Data Exchange (ETDEWEB)

    Bahn, Chi Bum, E-mail: bahn@pusan.ac.kr [Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 609-735 (Korea, Republic of); Oh, Young-Jin [KEPCO Engineering & Construction Co. Inc., Seongnam 463-870 (Korea, Republic of); Majumdar, Saurin [Argonne National Laboratory, Lemont, IL 60439 (United States)

    2015-11-15

    Highlights: • Ligament rupture and unstable burst pressure tests were conducted with U-bends. • In general, U-bends showed higher ligament rupture and burst pressures than straight tubes. • U-bend test data was bounded by 90% lower limit of the probabilistic models for straight tubes. • Prediction models for straight tubes could be conservatively applied to U-bends. - Abstract: Incidents of U-bend cracking in steam generator (SG) tubes have been reported, some of which have led to tube rupture. Experimental and analytical modeling efforts to determine the failure criteria of flawed SG U-bends are limited. To evaluate structural integrity of flawed U-bends, ligament rupture and unstable burst pressure tests were conducted on 57 and 152 mm bend radius U-bends with axial electrical discharge machining notches. In general, the ligament rupture and burst pressures of the U-bends were higher than those of straight tubes with similar notches. To quantitatively address the test data scatter issue, probabilistic models were introduced. All ligament rupture and burst pressures of U-bends were bounded by 90% lower limits of the probabilistic models for straight tubes. It was concluded that the prediction models for straight tubes could be applied to U-bends to conservatively evaluate the ligament rupture and burst pressures of U-bends with axial flaws.

  5. Ligament rupture and unstable burst behaviors of axial flaws in steam generator U-bends

    International Nuclear Information System (INIS)

    Bahn, Chi Bum; Oh, Young-Jin; Majumdar, Saurin

    2015-01-01

    Highlights: • Ligament rupture and unstable burst pressure tests were conducted with U-bends. • In general, U-bends showed higher ligament rupture and burst pressures than straight tubes. • U-bend test data was bounded by 90% lower limit of the probabilistic models for straight tubes. • Prediction models for straight tubes could be conservatively applied to U-bends. - Abstract: Incidents of U-bend cracking in steam generator (SG) tubes have been reported, some of which have led to tube rupture. Experimental and analytical modeling efforts to determine the failure criteria of flawed SG U-bends are limited. To evaluate structural integrity of flawed U-bends, ligament rupture and unstable burst pressure tests were conducted on 57 and 152 mm bend radius U-bends with axial electrical discharge machining notches. In general, the ligament rupture and burst pressures of the U-bends were higher than those of straight tubes with similar notches. To quantitatively address the test data scatter issue, probabilistic models were introduced. All ligament rupture and burst pressures of U-bends were bounded by 90% lower limits of the probabilistic models for straight tubes. It was concluded that the prediction models for straight tubes could be applied to U-bends to conservatively evaluate the ligament rupture and burst pressures of U-bends with axial flaws.

  6. Advantages of using 192Ir γ-ray flaw detector for some products

    International Nuclear Information System (INIS)

    Qin Xiqi

    1989-01-01

    This paper describes the advantages of 192 Ir γ-ray flaw detector made in China in welding seam testings. The authors made a comparison between 192 Ir γ-ray and X-ray machine. 192 Ir γ-ray machine showed many advantages, such as shorter working hours and less labour intensity

  7. Development of automatic flaw detection systems for magnetic particle examination

    International Nuclear Information System (INIS)

    Shirai, T.; Kimura, J.; Amako, T.

    1988-01-01

    Utilizing a video camera and an image processor, development was carried out on automatic flaw detection and discrimination techniques for the purpose of achieving automated magnetic particle examination. Following this, fluorescent wet magnetic particle examination systems for blade roots and rotor grooves of turbine rotors and the non-fluorescent dry magnetic particle examination system for butt welds, were developed. This paper describes these automatic magnetic particle examination (MT) systems and the functional test results

  8. Design of Tunnel Magnetoresistive-Based Circular MFL Sensor Array for the Detection of Flaws in Steel Wire Rope

    Directory of Open Access Journals (Sweden)

    Liu Xiucheng

    2016-01-01

    Full Text Available Tunnel magnetoresistive (TMR devices have superior performances in weak magnetic field detection. In this study, TMR devices were first employed to form a circular magnetic flux leakage (MFL sensor for slight wire rope flaw detection. Two versions of this tailor-made circular TMR-based sensor array were presented for the inspection of wire ropes with the diameters of 14 mm and 40 mm, respectively. Helmholtz-like coils or a ferrite magnet-based magnetizer was selected to provide the proper magnetic field, in order to meet the technical requirements of the TMR devices. The coefficient of variance in the flaw detection performance of the sensor array elements was experimentally estimated at 4.05%. Both versions of the MFL sensor array were able to detect multiple single-broken wire flaws in the wire ropes. The accurate axial and circumferential positions of these broken wire flaws were estimated from the MFL scanning image results. In addition, the proposed TMR-based sensor array was applied to detect the MFL signal induced by slight surface wear defects. A mutual correlation analysis method was used to distinguish the signals caused by the lift-off fluctuation from the MFL scanning image results. The MFL sensor arrays presented in this study provide inspiration for the designing of tailor-made TMR-based circular sensor arrays for cylindrical ferromagnetic structural inspections.

  9. Delayed Hydride Cracking Mechanism in Zirconium Alloys and Technical Requirements for In-Service Evaluation of Zr-2.5Nb Tubes with Flaws

    International Nuclear Information System (INIS)

    Kim, Young Suk

    2007-01-01

    In association with periodic inspection of CANDU nuclear power plant components, Canadian Standards Association issued CSA N285.8 in 2005 as technical requirements for in-service evaluation of zirconium alloy pressure tubes in CANDU reactors. This first version, CSA N285.8 involves procedures for, firstly, the evaluation of pressure tube flaws, secondly, the evaluation of pressure tube to calandria tube contact and, thirdly, the assessment of a reactor core, and material properties and derived quantities. The evaluation of pressure tube flaws includes delayed hydride cracking evaluation the procedures of which are stipulated based on the existing delayed hydride cracking models. For example, the evaluation of flaw-tip hydride precipitation during reactor cooldown involves a procedure to calculate the equilibrium hydrogen equivalent concentration in solution at the flaw tip, Htipas follows: Htip=Hfexp[- (VH delta no.)/RT], where Hf is the total bulk hydrogen equivalent concentration, VH partial molar volume of hydrogen in zirconium, δ a difference in hydrostatic stress between the bulk and the crack tip. When Htip ≥TSSP at temperature, then flaw-tip hydride is predicted to precipitate. Eq. (1) suggests that hydrogen concentration at the crack tip would increase due to an work energy given by the difference in the hydrostatic stress

  10. The Flaws of Fragmented Financial Standard Setting

    DEFF Research Database (Denmark)

    Mügge, Daniel; Perry, James

    2014-01-01

    rating, accounting, and derivatives trading, this article demonstrates why the appropriateness of the organizational architecture of global financial governance is necessarily contingent upon one’s understanding of how financial markets work. In particular, if financial markets are not anchored......In the half decade following the 2007 financial crisis, the reform of global financial governance was driven by two separate policy debates: one on the substantive content of regulations, the other on the organizational architecture of their governance. The separation of the two debates among...... policymakers has been mirrored in academia, where postcrisis analyses of financial governance have remained detached from reinvigorated discussions about the nature of financial markets. We argue that this separation is deeply flawed. Presenting an analysis of interactions between standards for banking, credit...

  11. Textual and language flaws: problems for Spanish doctors in producing abstracts in English

    Directory of Open Access Journals (Sweden)

    Lourdes Divasson Cilveti

    2006-04-01

    Full Text Available Scientific journals are the primary source of information for researchers. The number of articles currently indexed in databases is so large that it has become almost impossible to read every relevant article in a particular field. Thus, research paper abstracts (RPAs have acquired increasing importance. Several studies have shown that they are the skipping point, particularly among non-native English speakers. To our knowledge, little research has been carried out on RPA writing by Spanish doctors. It is thus the objective of this article to analyse the way abstracts are structured and linguistically realized by these professionals. We selected 30 RPAs written in English by Spanish speaking doctors from three leading Spanish journals on internal medicine. We recorded their textual level flaws by measuring the degree of informativeness with regard to three main variables: move patterning, ordering and structuring, and their language use flaws under two broad categories: ortho-typographic and grammatical. Length, use of hedges and keywords were also identified. 86.6% of the abstracts were informative, 13.3% uninformative while none of them could be classified as highly informative. With regard to the authors' use of language, over 70% presented some kind of flaws: 21.55% of these mistakes were ortho-typographic while 78.44% were grammatical. Our results support the need of designing specific units geared on the one hand towards explicit teaching of structured abstracts and on the other, towards the difficulties found by doctors because they lack language competence. They would also benefit from clearer guidelines from journal editors.

  12. A Simple Size Effect Model for Tension Perpendicular to the Grain

    DEFF Research Database (Denmark)

    Pedersen, M. U.; Clorius, Christian Odin; Damkilde, Lars

    2003-01-01

    The strength in tension perpendicular to the grain is known to decrease with an increase in the stressed volume. Usually this size effect is explained on a stochastic basis, that is, an explanation relying on the increased probability of encountering a strength reducing flaw when the volume...... of the material under stress is increased. This paper presents an experimental investigation on specimens with a well-defined structural orientation of the material. The experiments exhibit a large size effect and the nature of the failures encountered suggests that the size effect can be explained...... on a deterministic basis. Arguments for such a simple deterministic explanation of size effect is found in finite element modelling, using the orthotropic stiffness characteristics in the transverse plane of wood....

  13. The ability of winter grazing to reduce wildfire size, intensity ...

    Science.gov (United States)

    A recent study by Davies et al. sought to test whether winter grazing could reduce wildfire size, fire behavior metrics, and fire-induced plant mortality in shrub-grasslands. The authors concluded that ungrazed rangelands may experience more fire-induced mortality of native perennial bunchgrasses. The authors also presented several statements regarding the benefits of winter grazing on post-fire plant community responses. However, this commentary will show that the study by Davies et al. has underlying methodological flaws, lacks data necessary to support their conclusions, and does not provide an accurate discussion on the effect of grazing on rangeland ecosystems. Importantly, Davies et al. presented no data on the post-fire mortality of the perennial bunchgrasses or on the changes in plant community composition following their experimental fires. Rather, Davies et al. inferred these conclusions based off their observed fire behavior metrics of maximum temperature and a term described as the “heat load”. However, neither metric is appropriate for elucidating the heat flux impacts on plants. This lack of post-fire data, several methodological flaws, and the use of inadequate metrics describing heat cast doubts on the authors’ ability to support their stated conclusions. This article is a commentary highlights the scientific shortcomings in a forthcoming paper by Davies et al. in the International Journal of Wildland Fire. The study has methodological flaw

  14. Self-esteem and communal responsiveness toward a flawed partner: the fair-weather care of low-self-esteem individuals.

    Science.gov (United States)

    Lemay, Edward P; Clark, Margaret S

    2009-06-01

    Three studies provide evidence that people with low self-esteem, but not those with high self-esteem, distance themselves from a flawed partner in situations in which the flaws seem likely to reflect negatively on them. Participants with low (but not high) self-esteem reduced their motivation to care for the partner's needs when they felt they might share a partner's salient flaws (Study 1), when they were primed to focus on similarities between themselves and a socially devalued partner (Study 2), and when they learned that their partner was socially incompetent (Study 3). In Study 3, individuals with low (but not high) self-esteem provided less emotional support and experienced more public image threat when they learned that partners were socially incompetent. In addition, all three studies provided evidence that participants' distancing reduced their confidence in the partner's motivation to care for them, suggesting that distancing involves a cost to the self.

  15. Program to develop acoustic emission: flaw relationship for inservice monitoring of nuclear pressure vessels. Progress report No. 1, July 1, 1976--February 1, 1977

    International Nuclear Information System (INIS)

    Hutton, P.H.; Schwenk, E.B.

    1977-03-01

    This is a laboratory research program to characterize acoustic emission (AE) from flaw growth and noise from innocuous sources in A533B Class 1 pressure vessel steel. The objectives are: characterize AE from a limited range of defects and material property conditions of concern to reactor pressure vessel integrity; characterize AE from innocuous sources (including defects); develop criteria for distinguishing significant flaws from innocuous sources; and develop an AE flaw damage model to serve as a basis for relating in-service AE to pressure vessel integrity. The purpose of the program is to build an experimental evaluation of the feasibility of detecting and analyzing flaw growth in reactor pressure boundaries by continuously monitoring for AE. A detailed program plan in the form of an analysis-before-test document has been prepared and approved

  16. Visualization of flaws within heavy section ultrasonic test blocks using high energy computed tomography

    International Nuclear Information System (INIS)

    House, M.B.; Ross, D.M.; Janucik, F.X.; Friedman, W.D.; Yancey, R.N.

    1996-05-01

    The feasibility of high energy computed tomography (9 MeV) to detect volumetric and planar discontinuities in large pressure vessel mock-up blocks was studied. The data supplied by the manufacturer of the test blocks on the intended flaw geometry were compared to manual, contact ultrasonic test and computed tomography test data. Subsequently, a visualization program was used to construct fully three-dimensional morphological information enabling interactive data analysis on the detected flaws. Density isosurfaces show the relative shape and location of the volumetric defects within the mock-up blocks. Such a technique may be used to qualify personnel or newly developed ultrasonic test methods without the associated high cost of destructive evaluation. Data is presented showing the capability of the volumetric data analysis program to overlay the computed tomography and destructive evaluation (serial metallography) data for a direct, three-dimensional comparison

  17. OCA-II, a code for calculating the behavior of 2-D and 3-D surface flaws in a pressure vessel subjected to temperature and pressure transients

    International Nuclear Information System (INIS)

    Ball, D.G.; Drake, J.B.; Cheverton, R.D.; Iskander, S.K.

    1984-02-01

    The OCA-II computer code, like its predecessor OCA-I, performs the thermal, stress, and linear elastic fracture-mechanics analysis for long flaws on the surface of a cylinder that is subjected to thermal and pressure transients. OCA-II represents a revised and expanded version of OCA-I and includes as new features (1) cladding as a discrete region, (2) a finite-element subroutine for calculating the stresses, and (3) the ability to calculate stress intensity factors for certain three-dimensional flaws, for two-dimensional circumferential flaws on the inner surface, and for both axial and circumferential flaws on the outer surface. OCA-I considered only inner-surface flaws. An option is included in OCA-II that permits a search for critical values of fluence or nil-ductility reference temperature corresponding to a specified failure criterion. These and other features of OCA-II are described in the report, which also includes user instructions for the code

  18. Melt-Pool Temperature and Size Measurement During Direct Laser Sintering

    Energy Technology Data Exchange (ETDEWEB)

    List, III, Frederick Alyious [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dinwiddie, Ralph Barton [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carver, Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gockel, Joy E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    Additive manufacturing has demonstrated the ability to fabricate complex geometries and components not possible with conventional casting and machining. In many cases, industry has demonstrated the ability to fabricate complex geometries with improved efficiency and performance. However, qualification and certification of processes is challenging, leaving companies to focus on certification of material though design allowable based approaches. This significantly reduces the business case for additive manufacturing. Therefore, real time monitoring of the melt pool can be used to detect the development of flaws, such as porosity or un-sintered powder and aid in the certification process. Characteristics of the melt pool in the Direct Laser Sintering (DLS) process is also of great interest to modelers who are developing simulation models needed to improve and perfect the DLS process. Such models could provide a means to rapidly develop the optimum processing parameters for new alloy powders and optimize processing parameters for specific part geometries. Stratonics’ ThermaViz system will be integrated with the Renishaw DLS system in order to demonstrate its ability to measure melt pool size, shape and temperature. These results will be compared with data from an existing IR camera to determine the best approach for the determination of these critical parameters.

  19. Self-propelled x-ray flaw detector

    International Nuclear Information System (INIS)

    Ershov, L.S.; Krasilnikov, S.B.; Lozovoi, L.N.; Losev, J.F.; Morgovsky, L.Y.; Pelix, E.A.; Khakimyanov, R.R.

    1988-01-01

    A self-propelled X-ray flaw detector for radiographic inspection of welded joints in pipelines comprises a carriage mounting a motor, a detector having two Geiger counters, a pulsed X-ray generator, and an exposure and carriage electronic control system. A memory unit in the control system has four storage elements containing information about the motion of the carriage. As the carriage moves in direction A, first one and then the other of the Geiger counters receives radiation from an isotope source positioned near a joint, and by means of logic circuitry in the control system, the information in the storage elements is modified to stop the carriage and to operate a timer to expose the weld. During exposure the X-rays may interfere with the information in the storage elements, but by means of a square-wave generator and the logic circuitry, the stored information is correctly reset in order to eliminate false operation of the memory unit. (author)

  20. Feature extraction and classification in automatic weld seam radioscopy

    International Nuclear Information System (INIS)

    Heindoerfer, F.; Pohle, R.

    1994-01-01

    The investigations conducted have shown that automatic feature extraction and classification procedures permit the identification of weld seam flaws. Within this context the favored learning fuzzy classificator represents a very good alternative to conventional classificators. The results have also made clear that improvements mainly in the field of image registration are still possible by increasing the resolution of the radioscopy system. Since, only if the flaw is segmented correctly, i.e. in its full size, and due to improved detail recognizability and sufficient contrast difference will an almost error-free classification be conceivable. (orig./MM) [de

  1. Sizing of intergranular stress corrosion cracking using low frequency ultrasound

    International Nuclear Information System (INIS)

    Fuller, M.D.; Avioli, M.J.; Rose, J.L.

    1985-01-01

    Based upon the work thus far accomplished on low frequency sizing, the following conclusions can be drawn: the potential of low frequency ultrasound for the sizing of IGSCC seams encouraging as demonstrated in this work. If minimal walking is expected, larger values of crack height/wavelength ratios should not affect the reliability of estimates; notch data points out the validity of signal amplitude for sizing. With care in frequency consideration, the technique can be extended to cracks; when wavelength is greater than flaw size, importance of orientation and reflector shape diminishes although less so for deeper cracks; when beam profile is larger than the defect size, echo amplitude is proportional to defect area when using shear wave probes and corner reflectors; other factors, in addition to crack size, affect signal amplitude. Reference data to compensate for depth and material (HAZ) is a must; additional crack samples should be studied in order to further develop and characterize the use of low frequency ultrasonics

  2. FDAAA legislation is working, but methodological flaws undermine the reliability of clinical trials: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Douglas H. Marin dos Santos

    2015-06-01

    Full Text Available The relationship between clinical research and the pharmaceutical industry has placed clinical trials in jeopardy. According to the medical literature, more than 70% of clinical trials are industry-funded. Many of these trials remain unpublished or have methodological flaws that distort their results. In 2007, it was signed into law the Food and Drug Administration Amendments Act (FDAAA, aiming to provide publicly access to a broad range of biomedical information to be made available on the platform ClinicalTrials (available at https://www.clinicaltrials.gov. We accessed ClinicalTrials.gov and evaluated the compliance of researchers and sponsors with the FDAAA. Our sample comprised 243 protocols of clinical trials of biological monoclonal antibodies (mAb adalimumab, bevacizumab, infliximab, rituximab, and trastuzumab. We demonstrate that the new legislation has positively affected transparency patterns in clinical research, through a significant increase in publication and online reporting rates after the enactment of the law. Poorly designed trials, however, remain a challenge to be overcome, due to a high prevalence of methodological flaws. These flaws affect the quality of clinical information available, breaching ethical duties of sponsors and researchers, as well as the human right to health.

  3. FDAAA legislation is working, but methodological flaws undermine the reliability of clinical trials: a cross-sectional study.

    Science.gov (United States)

    Marin Dos Santos, Douglas H; Atallah, Álvaro N

    2015-01-01

    The relationship between clinical research and the pharmaceutical industry has placed clinical trials in jeopardy. According to the medical literature, more than 70% of clinical trials are industry-funded. Many of these trials remain unpublished or have methodological flaws that distort their results. In 2007, it was signed into law the Food and Drug Administration Amendments Act (FDAAA), aiming to provide publicly access to a broad range of biomedical information to be made available on the platform ClinicalTrials (available at https://www.clinicaltrials.gov). We accessed ClinicalTrials.gov and evaluated the compliance of researchers and sponsors with the FDAAA. Our sample comprised 243 protocols of clinical trials of biological monoclonal antibodies (mAb) adalimumab, bevacizumab, infliximab, rituximab, and trastuzumab. We demonstrate that the new legislation has positively affected transparency patterns in clinical research, through a significant increase in publication and online reporting rates after the enactment of the law. Poorly designed trials, however, remain a challenge to be overcome, due to a high prevalence of methodological flaws. These flaws affect the quality of clinical information available, breaching ethical duties of sponsors and researchers, as well as the human right to health.

  4. Evaluation of crack-like flaw in Japanese fitness-for-service code for nuclear power plant components

    International Nuclear Information System (INIS)

    Kashima, Koichi

    2003-01-01

    For evaluation of faults detected at nuclear appliances, establishment of fitness-for-service code in Japan is focused by most of peoples. The code is a management rule to keep features of the appliances under supplying operation to their constant safe level and is a rule composing a pair with design rule. The codes for nuclear power generation facilities-rules of fitness-for-service for nuclear power plants were issued on May, 2002, by the Japan Society of Mechanical Engineering (JSME), which was added on October, 2002, by its inspection code, for its amendment. Under such states, Japan Government is proceeding on establishment of the fitness-for-service code in Japan on a base of the private rule. Here were introduced present state and tasks on content of crack-like flaw evaluation on the code under an example of the private rule of JSME, which is composed of three items of inspection, evaluation, and recovery and exchange. The evaluation of defects consists of 1) the first step of evaluation of defects and 2) the second step of evaluation of defects. The first step determines the size of defect by modeling form. When the size of defect is smaller than the evaluation criterion, the appliances can be used unconditionally. However, its size is larger than the evaluation criterion, the appliances have to be evaluated by the second step. When the estimated defects size at end of evaluation period is smaller than the permissible value, the appliances can be used within the evaluation period. But, if its size is larger than the permissible value, the appliances have to be recovered and exchanged. Modeling, evaluation criterion, evaluation of destruction, safety standards and future problems are described. (S.Y.)

  5. Flux-focusing eddy current probe and rotating probe method for flaw detection

    Science.gov (United States)

    Wincheski, Buzz A.; Fulton, James P.; Nath, Shridhar C.; Simpson, John W.; Namkung, Min

    1994-11-01

    A flux-focusing electromagnetic sensor which uses a ferromagnetic flux-focusing lens simplifies inspections and increases detectability of fatigue cracks about circular fasteners and other circular inhomogeneities in high conductivity material. The unique feature of the device is the ferrous shield isolating a high-turn pick-up coil from an excitation coil. The use of the magnetic shield is shown to produce a null voltage output across the receiving coil in the presence of an unflawed sample. A redistribution of the current flow in the sample caused by the presence of flaws, however, eliminates the shielding condition and a large output voltage is produced, yielding a clear unambiguous flaw signal. By rotating the probe in a path around a circular fastener such as a rivet while maintaining a constant distance between the probe and the center of a rivet, the signal due to current flow about the rivet can be held constant. Any further changes in the current distribution, such as due to a fatigue crack at the rivet joint, can be detected as an increase in the output voltage above that due to the flow about the rivet head.

  6. Acoustic Emission Behavior of Rock-Like Material Containing Two Flaws in the Process of Deformation Failure

    Directory of Open Access Journals (Sweden)

    Quan-Sheng Liu

    2015-01-01

    Full Text Available Many sudden disasters (such as rock burst by mining extraction originate in crack initiation and propagation. Meanwhile a large number of shock waves are produced by rock deformation and failure. With the purpose of investigating crack coalescence and failure mechanism in rock, experimental research of rock-like materials with two preexisting flaws was performed. Moreover, the AE technique and photographic monitoring were adopted to clarify further the procedure of the crack coalescence and failure. It reveals that AE location technique can record the moments of crack occurrences and follow the crack growth until final failure. Finally, the influence of different flaw geometries on crack initiation strength is analyzed in detail. This research provides increased understanding of the fracture mechanism of mining-induced disasters.

  7. Accomplishments: AE characterization program for remote flaw evaluation

    International Nuclear Information System (INIS)

    Hutton, P.H.; Schwenk, E.B.; Kurtz, R.J.

    1978-01-01

    The purpose of the program is to develop an experimental/analytical evaluation of the feasibility of detecting and analyzing flaw growth in reactor pressure boundaries by means of continuously monitoring acoustic emission (AE). The investigation is devoted exclusively to ASTM Type A533, Grade B, Class 1 material. The basic approach to interpretive model development is through laboratory testing of 1 to 1 1 / 2 inch (25.4 to 38 mm) thick fracture mechanics specimens in both fatigue and fracture at both room temperature and 550 0 F (288 0 C). Seven parameters are measured for each AE signal and related to fracture mechanics functions. AE data from fracture testing of 6 inch (152 mm) wall pressure vessels are also incorporated in analysis

  8. Are lead-free hunting rifle bullets as effective at killing wildlife as conventional lead bullets? A comparison based on wound size and morphology

    Energy Technology Data Exchange (ETDEWEB)

    Trinogga, Anna, E-mail: anna_trinogga@gmx.de; Fritsch, Guido; Hofer, Heribert; Krone, Oliver

    2013-01-15

    Fragmentation of the lead core of conventional wildlife hunting rifle bullets causes contamination of the target with lead. The community of scavenger species which feed on carcasses or viscera discarded by hunters are regularly exposed to these lead fragments and may die by acute or chronic lead intoxication, as demonstrated for numerous species such as white-tailed eagles (Haliaeetus albicilla) where it is among the most important sources of mortality. Not only does hunting with conventional ammunition deposit lead in considerable quantities in the environment, it also significantly delays or threatens the recovery of endangered raptor populations. Although lead-free bullets might be considered a suitable alternative that addresses the source of these problems, serious reservations have been expressed as to their ability to quickly and effectively kill a hunted animal. To assess the suitability of lead-free projectiles for hunting practice, the wounding potential of conventional bullets was compared with lead-free bullets under real life hunting conditions. Wound dimensions were regarded as good markers of the projectiles' killing potential. Wound channels in 34 killed wild ungulates were evaluated using computed tomography and post-mortem macroscopical examination. Wound diameters caused by conventional bullets did not differ significantly to those created by lead-free bullets. Similarly, the size of the maximum cross-sectional area of the wound was similar for both bullet types. Injury patterns suggested that all animals died by exsanguination. This study demonstrates that lead-free bullets are equal to conventional hunting bullets in terms of killing effectiveness and thus equally meet the welfare requirements of killing wildlife as painlessly as possible. The widespread introduction and use of lead-free bullets should be encouraged as it prevents environmental contamination with a seriously toxic pollutant and contributes to the conservation of a wide

  9. Are lead-free hunting rifle bullets as effective at killing wildlife as conventional lead bullets? A comparison based on wound size and morphology

    International Nuclear Information System (INIS)

    Trinogga, Anna; Fritsch, Guido; Hofer, Heribert; Krone, Oliver

    2013-01-01

    Fragmentation of the lead core of conventional wildlife hunting rifle bullets causes contamination of the target with lead. The community of scavenger species which feed on carcasses or viscera discarded by hunters are regularly exposed to these lead fragments and may die by acute or chronic lead intoxication, as demonstrated for numerous species such as white-tailed eagles (Haliaeetus albicilla) where it is among the most important sources of mortality. Not only does hunting with conventional ammunition deposit lead in considerable quantities in the environment, it also significantly delays or threatens the recovery of endangered raptor populations. Although lead-free bullets might be considered a suitable alternative that addresses the source of these problems, serious reservations have been expressed as to their ability to quickly and effectively kill a hunted animal. To assess the suitability of lead-free projectiles for hunting practice, the wounding potential of conventional bullets was compared with lead-free bullets under real life hunting conditions. Wound dimensions were regarded as good markers of the projectiles' killing potential. Wound channels in 34 killed wild ungulates were evaluated using computed tomography and post-mortem macroscopical examination. Wound diameters caused by conventional bullets did not differ significantly to those created by lead-free bullets. Similarly, the size of the maximum cross-sectional area of the wound was similar for both bullet types. Injury patterns suggested that all animals died by exsanguination. This study demonstrates that lead-free bullets are equal to conventional hunting bullets in terms of killing effectiveness and thus equally meet the welfare requirements of killing wildlife as painlessly as possible. The widespread introduction and use of lead-free bullets should be encouraged as it prevents environmental contamination with a seriously toxic pollutant and contributes to the conservation of a wide variety

  10. Intentionally Flawed Manuscripts as Means for Teaching Students to Critically Evaluate Scientific Papers

    Science.gov (United States)

    Ferenc, Jaroslav; Cervenák, Filip; Bircák, Erik; Juríková, Katarína; Goffová, Ivana; Gorilák, Peter; Huraiová, Barbora; Plavá, Jana; Demecsová, Loriana; Duríková, Nikola; Galisová, Veronika; Gazdarica, Matej; Puškár, Marek; Nagy, Tibor; Nagyová, Sona; Mentelová, Lucia; Slaninová, Miroslava; Ševcovicová, Andrea; Tomáška, Lubomír

    2018-01-01

    As future scientists, university students need to learn how to avoid making errors in their own manuscripts, as well as how to identify flaws in papers published by their peers. Here we describe a novel approach on how to promote students' ability to critically evaluate scientific articles. The exercise is based on instructing teams of students to…

  11. Possibility of obtaining reliable information on component safety by means of large-scale tensile samples with Orowan-Soete flaws

    International Nuclear Information System (INIS)

    Aurich, D.; Wobst, K.; Kafka, H.

    1984-01-01

    The aim of the paper is to review the present knowledge regarding the ability of wide plate tensile specimen with saw cut trough center flaws of providing accurate information on component reliability; it points out the advantages and disadvantages of this specimen geometries. The effect of temperature, specimen geometry, ligament size and notch radii are discussed in comparison with other specimen geometries. This is followed by a comparison of the results of such tests with tests on inside stressed tanks. Conclusions: wide-plate tensile specimen are generally appropriate for assessing welded joints. However, they result in a more favourable evaluation of low-toughness steels from the point of view of crack growth than of high-toughness and soft steels in case of stresses with incipient cracks, as compared with the results obtained with three-point bending samples. (orig.) [de

  12. Formation and ridging of flaw leads in the eastern Canadian Beaufort Sea. Special Session C06 on: “Physical, biological and biogeochemical processes associated with young thin ice types”

    Science.gov (United States)

    Prinsenberg, S. J.

    2009-12-01

    Formation and ridging of flaw leads in the eastern Canadian Beaufort Sea. Simon Prinsenberg1 and Yves Graton2 1Bedford Inst. of Oceanography, Fisheries and Oceans Canada P.O. Box1006, Dartmouth, Nova Scotia, B2Y 4A2, Canada prinsenbergs@mar.dfo-mpo.gc.ca 2Inst. National de la Recherche Scientifique-Eau, INRS-ETE University of Quebec at Quebec City, Quebec yvesgratton@eteinrs.ca During the winter of 2008, the flaw lead south of Banks Island repeatedly opened and closed representing an elongated region where periodically the large ice growth stimulates the densification of the surface layer due to salt rejection and instigates a local circulation pattern that will affect the biological processes of the region. Helicopter-borne sensors were available to monitor the aftermath of one of the rapid closing of the flaw lead into extensive elongated rubble field using a Canadian Ice breaker, CCGS Amundsen, as a logistic base. After the wind reversed a new open flaw lead 20km wide restarting a new flaw lead formation cycle. Ice thickness and surface roughness data were collected from the rubble field and adjacent open flaw lead with an Electromagnetic-Laser system. The strong wind event of April 4-5 2009 generated a large linear 1.5km wide ice rubble field up to 8-10m thick when the 60cm thick, 18km wide flaw lead was crunched into land-fast by the 1.5m thick offshore pack ice. It is expected that during rapid ice growth in a flaw lead, salt rejection increase the density of the surface water layer producing a surface depression (Low) and cyclonic circulation. In contrast at depth, the extra surface dense water produces a high in the horizontal pressure field and anti-cyclonic circulation which remains after the rapid ice growth within the flaw lead stops. One of such remnants may have been observed during the CFL-IPY winter survey.

  13. Evaluation of flaws or service induced cracks in pressure vessels

    International Nuclear Information System (INIS)

    Riccardella, P.C.; Copeland, J.F.; Gilman, J.

    1987-01-01

    An overview of the ASME flaw evaluation procedures for nuclear pressure vessels is presented, with emphasis on fatigue crack growth evaluations. Environmental and load-rate effects are further considered with respect to new crack growth data and a time-dependent crack growth model. This new crack growth model is applied to evaluate feedwater nozzle cracking in boiling water reactors and is compared to current and past ASME crack growth curves. The time-dependent model bounds the observed cracking and indicates that more detailed consideration of material susceptibility, in terms of sulfur content and product form, is needed

  14. MILITARY RESEARCH: Researchers Target Flaws in Ballistic Missile Defense Plan.

    Science.gov (United States)

    Malakoff, D; Cho, A

    2000-06-16

    More than three dozen scientists journeyed to Washington, D.C., this week to warn lawmakers that a proposed $60 billion U.S. missile defense system, designed to knock incoming warheads out of the sky, is technically flawed because it can't pick out real warheads from decoys. Pentagon officials heatedly deny a new report by one scientist that contractors have rigged trials to hide the problem, although they admit that some tests were simplified to save time. In the wake of these events, a leading Democrat is urging President Bill Clinton to delay a pending decision on building the system.

  15. The shallow flaw effect and the local approach to cleavage fracture

    International Nuclear Information System (INIS)

    Moinereau, D.

    1996-10-01

    The capability of Beremin model to explain the shallow flaw effect in cleavage fracture is evaluated. Numerous two-dimensional finite element calculations are performed on several cracked specimens (cladded and un-cladded specimens with different values of a/W ratio) submitted to mechanical or thermal loading. The behavior of different specimens is examined using the Weibull stress σ w versus stress intensity factor K J curves. The stress fields and plastic zones at the crack tip are also compared on respective cracked specimens. (K.A.)

  16. Histology Verification Demonstrates That Biospectroscopy Analysis of Cervical Cytology Identifies Underlying Disease More Accurately than Conventional Screening: Removing the Confounder of Discordance

    Science.gov (United States)

    Gajjar, Ketan; Ahmadzai, Abdullah A.; Valasoulis, George; Trevisan, Júlio; Founta, Christina; Nasioutziki, Maria; Loufopoulos, Aristotelis; Kyrgiou, Maria; Stasinou, Sofia Melina; Karakitsos, Petros; Paraskevaidis, Evangelos; Da Gama-Rose, Bianca; Martin-Hirsch, Pierre L.; Martin, Francis L.

    2014-01-01

    Background Subjective visual assessment of cervical cytology is flawed, and this can manifest itself by inter- and intra-observer variability resulting ultimately in the degree of discordance in the grading categorisation of samples in screening vs. representative histology. Biospectroscopy methods have been suggested as sensor-based tools that can deliver objective assessments of cytology. However, studies to date have been apparently flawed by a corresponding lack of diagnostic efficiency when samples have previously been classed using cytology screening. This raises the question as to whether categorisation of cervical cytology based on imperfect conventional screening reduces the diagnostic accuracy of biospectroscopy approaches; are these latter methods more accurate and diagnose underlying disease? The purpose of this study was to compare the objective accuracy of infrared (IR) spectroscopy of cervical cytology samples using conventional cytology vs. histology-based categorisation. Methods Within a typical clinical setting, a total of n = 322 liquid-based cytology samples were collected immediately before biopsy. Of these, it was possible to acquire subsequent histology for n = 154. Cytology samples were categorised according to conventional screening methods and subsequently interrogated employing attenuated total reflection Fourier-transform IR (ATR-FTIR) spectroscopy. IR spectra were pre-processed and analysed using linear discriminant analysis. Dunn’s test was applied to identify the differences in spectra. Within the diagnostic categories, histology allowed us to determine the comparative efficiency of conventional screening vs. biospectroscopy to correctly identify either true atypia or underlying disease. Results Conventional cytology-based screening results in poor sensitivity and specificity. IR spectra derived from cervical cytology do not appear to discriminate in a diagnostic fashion when categories were based on conventional screening

  17. Flaw behavior in mechanically loaded clad plates

    International Nuclear Information System (INIS)

    Iskander, S.K.; Robinson, G.C.; Oland, C.B.

    1989-01-01

    A small crack near the inner surface of clad nuclear reactor pressure vessels is an important consideration in the safety assessment of the structural integrity of the vessel. Four-point bend tests on large plate specimens, conforming to ASTM specification for pressure vessel plates, alloy steels, quenched and tempered, Mn-Mo and Mn-Mo-Ni (A533) grade B six clad and two unclad with stainless steels 308, 309 and 312 weld wires, were performed to determine the effect of cladding upon the propagation of small surface cracks subjected to stress states. Results indicated that the tough surface layer composed of cladding and/or heat-affected zone has enhanced the load-bearing capacity of plates under conditions where unclad plates have ruptured. The results are interpreted in terms of fracture mechanics. The behavior of flaws in clad reactor pressure vessels is examined in the light of the test results. 11 refs., 8 figs., 2 tabs

  18. Comparison of size modulation and conventional standard automated perimetry with the 24-2 test protocol in glaucoma patients

    Science.gov (United States)

    Hirasawa, Kazunori; Shoji, Nobuyuki; Kasahara, Masayuki; Matsumura, Kazuhiro; Shimizu, Kimiya

    2016-05-01

    This prospective randomized study compared test results of size modulation standard automated perimetry (SM-SAP) performed with the Octopus 600 and conventional SAP (C-SAP) performed with the Humphrey Field Analyzer (HFA) in glaucoma patients. Eighty-eight eyes of 88 glaucoma patients underwent SM-SAP and C-SAP tests with the Octopus 600 24-2 Dynamic and HFA 24-2 SITA-Standard, respectively. Fovea threshold, mean defect, and square loss variance of SM-SAP were significantly correlated with the corresponding C-SAP indices (P < 0.001). The false-positive rate was slightly lower, and false-negative rate slightly higher, with SM-SAP than C-SAP (P = 0.002). Point-wise threshold values obtained with SM-SAP were moderately to strongly correlated with those obtained with C-SAP (P < 0.001). The correlation coefficients of the central zone were significantly lower than those of the middle to peripheral zone (P = 0.031). The size and depth of the visual field (VF) defect were smaller (P = 0.039) and greater (P = 0.043), respectively, on SM-SAP than on C-SAP. Although small differences were observed in VF sensitivity in the central zone, the defect size and depth and the reliability indices between SM-SAP and C-SAP, global indices of the two testing modalities were well correlated.

  19. Continuous AE monitoring of nuclear plants to detect flaws - status and future

    International Nuclear Information System (INIS)

    Hutton, P.H.

    1986-01-01

    This paper gives a brief commentary on the evolution of acoustic emission (AE) technology for continuous monitoring of nuclear reactors and the current status. The technical work described to support the status description has the objective of developing and validating the use of AE to detect, locate, and evaluate growing flaws in reactor pressure boundaries. The future of AE for continuous monitoring is discussed in terms of envisioned applications and further accomplishments required to achieve them. 12 refs.

  20. Use of flawed multiple-choice items by the New England Journal of Medicine for continuing medical education.

    Science.gov (United States)

    Stagnaro-Green, Alex S; Downing, Steven M

    2006-09-01

    Physicians in the United States are required to complete a minimum number of continuing medical education (CME) credits annually. The goal of CME is to ensure that physicians maintain their knowledge and skills throughout their medical career. The New England Journal of Medicine (NEJM) provides its readers with the opportunity to obtain weekly CME credits. Deviation from established item-writing principles may result in a decrease in validity evidence for tests. This study evaluated the quality of 40 NEJM MCQs using the standard evidence-based principles of effective item writing. Each multiple-choice item reviewed had at least three item flaws, with a mean of 5.1 and a range of 3 to 7. The results of this study demonstrate that the NEJM uses flawed MCQs in its weekly CME program.

  1. Models for reliability and management of NDT data

    International Nuclear Information System (INIS)

    Simola, K.

    1997-01-01

    In this paper the reliability of NDT measurements was approached from three directions. We have modelled the flaw sizing performance, the probability of flaw detection, and developed models to update the knowledge of true flaw size based on sequential measurement results and flaw sizing reliability model. In discussed models the measured flaw characteristics (depth, length) are assumed to be simple functions of the true characteristics and random noise corresponding to measurement errors, and the models are based on logarithmic transforms. Models for Bayesian updating of the flaw size distributions were developed. Using these models, it is possible to take into account the prior information of the flaw size and combine it with the measured results. A Bayesian approach could contribute e. g. to the definition of an appropriate combination of practical assessments and technical justifications in NDT system qualifications, as expressed by the European regulatory bodies

  2. Case study of the propagation of a small flaw under PWR loading conditions and comparison with the ASME code design life. Comparison of ASME Code Sections III and XI

    International Nuclear Information System (INIS)

    Yahr, G.T.; Gwaltney, R.C.; Richardson, A.K.; Server, W.L.

    1986-01-01

    A cooperative study was performed by EG and G Idaho, Inc., and Oak Ridge National Laboratory to investigate the degree of conservatism and consistency in the ASME Boiler and Pressure Vessel Code Section III fatigue evaluation procedure and Section XI flaw acceptance standards. A single, realistic, sample problem was analyzed to determine the significance of certain points of criticism made of an earlier parametric study by staff members of the Division of Engineering Standards of the Nuclear Regulatory Commission. The problem was based on a semielliptical flaw located on the inside surface of the hot-leg piping at the reactor vessel safe-end weld for the Zion 1 pressurized-water reactor (PWR). Two main criteria were used in selecting the problem; first, it should be a straight pipe to minimize the computational expense; second, it should exhibit as high a cumulative usage factor as possible. Although the problem selected has one of the highest cumulative usage factors of any straight pipe in the primary system of PWRs, it is still very low. The Code Section III fatigue usage factor was only 0.00046, assuming it was in the as-welded condition, and fatigue crack-growth analyses predicted negligible crack growth during the 40-year design life. When the analyses were extended past the design life, the usage factor was less than 1.0 when the flaw had propagated to failure. The current study shows that the criticism of the earlier report should not detract from the conclusion that if a component experiences a high level of cyclic stress corresponding to a fatigue usage factor near 1.0, very small cracks can propagate to unacceptable sizes

  3. Automated eddy-current installation AVD-01 for detecting flaws in fuel element cans

    International Nuclear Information System (INIS)

    Varvaritsa, V.P.; Martishchenko, L.G.; Popov, V.K.; Romanov, M.L.; Shlepnev, I.O.; Shmatok, V.P.

    1986-01-01

    This paper describes an automated installation for eddy-current flaw detection in thin-walled pipes with small diameter; its unified transport system makes it possible to use the installation in inspection lines and production lines of fuel elements. The article describes the structural diagrams of the installation and presents the results of investigations connected with the selection for establishing the optimum regimes and sensitivity of feedthrough transducers with focusing screens

  4. Meniscal tear evaluation. Comparison of a conventional spin-echo proton density sequence with a fast spin-echo sequence utilizing a 512x358 matrix size

    International Nuclear Information System (INIS)

    Hopper, M.A.; Robinson, P.; Grainger, A.J.

    2011-01-01

    Aim: To determine the sensitivities, specificities, and receiver-operating characteristics (ROCs) for sagittal conventional spin-echo proton density (SE-PD) and fast spin-echo proton density (FSE-PD) sequences in the diagnosis of meniscal tears when compared to arthroscopic findings utilizing increased FSE matrix acquisition size. Method and materials: Magnetic resonance imaging (MRI) studies of 97 knees (194 menisci) were independently and prospectively interpreted by two experienced musculoskeletal radiologists over four separate readings at least 3 weeks apart. Readings 1 and 2 included images in all three planes in accordance with the standard protocol with either a SE or FSE sagittal PD, at readings 3 and 4 just the SE or FSE sagittal PD sequences were reported. The FSE sequence was acquired with an increased matrix size, compared to the SE sequence, to provide increased resolution. Menisci were graded for the presence of a tear and statistical analysis to calculate sensitivity and specificity was performed comparing to arthroscopy as the reference standard. ROC analysis for the diagnosis of meniscal tears on the SE and FSE sagittal sequences was also evaluated. Reader concordance for the SE and FSE sequences was calculated. Results: Sixty-seven tears were noted at arthroscopy; 60 were detected on SE and 56 on FSE. The sensitivity and specificity for SE was 90 and 90%, and for FSE was 84 and 94%, respectively, with no significant difference. ROC analysis showed no significant difference between the two sequences and kappa values demonstrated a higher level of reader agreement for the FSE than for the SE reading. Conclusion: Use of a FSE sagittal PD sequence with an increased matrix size provides comparable performance to conventional SE sagittal PD when evaluating meniscal disease with a modern system. The present study indicates an increased level of concordance between readers for the FSE sagittal sequence compared to the conventional SE.

  5. Meniscal tear evaluation. Comparison of a conventional spin-echo proton density sequence with a fast spin-echo sequence utilizing a 512x358 matrix size

    Energy Technology Data Exchange (ETDEWEB)

    Hopper, M.A.; Robinson, P. [Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Grainger, A.J., E-mail: andrew.grainger@leedsth.nhs.u [Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom)

    2011-04-15

    Aim: To determine the sensitivities, specificities, and receiver-operating characteristics (ROCs) for sagittal conventional spin-echo proton density (SE-PD) and fast spin-echo proton density (FSE-PD) sequences in the diagnosis of meniscal tears when compared to arthroscopic findings utilizing increased FSE matrix acquisition size. Method and materials: Magnetic resonance imaging (MRI) studies of 97 knees (194 menisci) were independently and prospectively interpreted by two experienced musculoskeletal radiologists over four separate readings at least 3 weeks apart. Readings 1 and 2 included images in all three planes in accordance with the standard protocol with either a SE or FSE sagittal PD, at readings 3 and 4 just the SE or FSE sagittal PD sequences were reported. The FSE sequence was acquired with an increased matrix size, compared to the SE sequence, to provide increased resolution. Menisci were graded for the presence of a tear and statistical analysis to calculate sensitivity and specificity was performed comparing to arthroscopy as the reference standard. ROC analysis for the diagnosis of meniscal tears on the SE and FSE sagittal sequences was also evaluated. Reader concordance for the SE and FSE sequences was calculated. Results: Sixty-seven tears were noted at arthroscopy; 60 were detected on SE and 56 on FSE. The sensitivity and specificity for SE was 90 and 90%, and for FSE was 84 and 94%, respectively, with no significant difference. ROC analysis showed no significant difference between the two sequences and kappa values demonstrated a higher level of reader agreement for the FSE than for the SE reading. Conclusion: Use of a FSE sagittal PD sequence with an increased matrix size provides comparable performance to conventional SE sagittal PD when evaluating meniscal disease with a modern system. The present study indicates an increased level of concordance between readers for the FSE sagittal sequence compared to the conventional SE.

  6. Validation of favor code linear elastic fracture solutions for finite-length flaw geometries

    International Nuclear Information System (INIS)

    Dickson, T.L.; Keeney, J.A.; Bryson, J.W.

    1995-01-01

    One of the current tasks within the US Nuclear Regulatory Commission (NRC)-funded Heavy Section Steel Technology Program (HSST) at Oak Ridge National Laboratory (ORNL) is the continuing development of the FAVOR (Fracture, analysis of Vessels: Oak Ridge) computer code. FAVOR performs structural integrity analyses of embrittled nuclear reactor pressure vessels (RPVs) with stainless steel cladding, to evaluate compliance with the applicable regulatory criteria. Since the initial release of FAVOR, the HSST program has continued to enhance the capabilities of the FAVOR code. ABAQUS, a nuclear quality assurance certified (NQA-1) general multidimensional finite element code with fracture mechanics capabilities, was used to generate a database of stress-intensity-factor influence coefficients (SIFICs) for a range of axially and circumferentially oriented semielliptical inner-surface flaw geometries applicable to RPVs with an internal radius (Ri) to wall thickness (w) ratio of 10. This database of SIRCs has been incorporated into a development version of FAVOR, providing it with the capability to perform deterministic and probabilistic fracture analyses of RPVs subjected to transients, such as pressurized thermal shock (PTS), for various flaw geometries. This paper discusses the SIFIC database, comparisons with other investigators, and some of the benchmark verification problem specifications and solutions

  7. Research on Automatic Positioning System of Ultrasonic Testing of Wind Turbine Blade Flaws

    Science.gov (United States)

    Liu, Q. X.; Wang, Z. H.; Long, S. G.; Cai, M.; Cai, M.; Wang, X.; Chen, X. Y.; Bu, J. L.

    2017-11-01

    Ultrasonic testing technology has been used essentially in non-destructive testing of wind turbine blades. However, it is fact that the ultrasonic flaw detection method has inefficiently employed in recent years. This is because the testing result will illustrate a small deviation due to the artificial, environmental and technical factors. Therefore, it is an urgent technical demand for engineers to test the various flaws efficiently and quickly. An automatic positioning system has been designed in this paper to record the moving coordinates and the target distance in real time. Simultaneously, it could launch and acquire the sonic wave automatically. The ADNS-3080 optoelectronic chip is manufactured by Agilent Technologies Inc, which is also utilized in the system. With the combination of the chip, the power conversion module and the USB transmission module, the collected data can be transmitted from the upper monitor to the hardware that could process and control the data through software programming. An experiment has been designed to prove the reliability of automotive positioning system. The result has been validated by comparing the result collected form LABVIEW and actual plots on Perspex plane, it concludes that the system possesses high accuracy and magnificent meanings in practical engineering.

  8. Time-dependent leak behavior of flawed Alloy 600 tube specimens at constant pressure

    Energy Technology Data Exchange (ETDEWEB)

    Bahn, Chi Bum, E-mail: bahn@anl.gov [Argonne National Laboratory, Argonne, IL 60439 (United States); Majumdar, Saurin [Argonne National Laboratory, Argonne, IL 60439 (United States); Harris, Charles [United States Nuclear Regulatory Commission, Rockville, MD 20852 (United States)

    2011-10-15

    Leak rate testing has been performed using Alloy 600 tube specimens with throughwall flaws. Some specimens have shown time-dependent leak behavior at constant pressure conditions. Fractographic characterization was performed to identify the time-dependent crack growth mechanism. The fracture surface of the specimens showed the typical features of ductile fracture, as well as the distinct crystallographic facets, typical of fatigue crack growth at low {Delta}K level. Structural vibration appears to have been caused by the oscillation of pressure, induced by a high-pressure pump used in a test facility, and by the water jet/tube structure interaction. Analyses of the leak behaviors and crack growth indicated that both the high-pressure pump and the water jet could significantly contribute to fatigue crack growth. To determine whether the fatigue crack growth during the leak testing can occur solely by the water jet effect, leak rate tests at constant pressure without the high-pressure pump need to be performed. - Highlights: > Leak rate of flawed Alloy 600 tubing increased at constant pressure condition. > Fractography revealed two cases: ductile tearing and crystallographic facets. > Crystallographic facets are typical features of fatigue crack growth at low {Delta}K. > Fatigue source could be water jet-induced vibration and/or high-pressure pump pulsation.

  9. Investigation with automatic ultrasonic equipment to trace flaws in a large test piece, and experience gained in carrying out inspections

    International Nuclear Information System (INIS)

    Lindner, J.P.

    1975-01-01

    Based on the FRG codes providing guide lines for the Reactor Safety Commission regarding the size and location of flaws to be detected during in-service inspections, investigations were carried out into the possibility of detecting defects in thick-walled reactor pressure vessel components with the aid of ultrasonic inspection systems. A large test rig was used and, in a similar manner to the in-service inspections on a reactor, the tests were carried out with remote-controlled, automatically guided inspection equipment. For this purpose, a test specimen weighing about 10 tons was produced and provided with two weld seams having a large number of artificial defects. Essential parameters for the various reflectors in the test specimen were the size, location, angle and roughness or structure of the reflecting surfaces. As it is known that austenitic cladding has a considerable influence on flaw detection, the tests were undertaken first without cladding and then with cladding. A manipulator was designed for automatic remote-controlled inspection with which the inspection system travels on a meandering route over the area to be inspected. The inspection system employed was of the same type as the one used for baseline tests during external inspections of reactor vessel walls with parallel surfaces. Digital data collection was by a magnetic tape recorder designed to store both the data of the ultrasonic inspection system as well as the allied position data. The data stored on the tape are evaluated with electronic data processing programmes especially developed for this purpose. These programmes allow locally coherent indication patterns to be prepared, thus simplifying the interpretation of the data obtained. The author initially describes the equipment with the aid of which the studies were undertaken. A detailed discussion is then presented on the design of the test specimen and the inspection systems employed. Following this, the results obtained are explained and

  10. Combining usability evaluations to highlight the chain that leads from usability flaws to usage problems and then negative outcomes.

    Science.gov (United States)

    Watbled, Ludivine; Marcilly, Romaric; Guerlinger, Sandra; Bastien, J-M Christian; Beuscart-Zéphir, Marie-Catherine; Beuscart, Régis

    2018-02-01

    Poor usability of health technology is thought to diminish work system performance, increase error rates and, potentially, harm patients. The present study (i) used a combination of usability evaluation methods to highlight the chain that leads from usability flaws to usage problems experienced by users and, ultimately, to negative patient outcomes, and (ii) validated this approach by studying two different discharge summary production systems. To comply with quality guidelines, the process of drafting and sending discharge summaries is increasingly being automated. However, the usability of these systems may modify their impact (or the absence thereof) in terms of production times and quality, and must therefore be evaluated. Here, we applied three successive techniques for usability evaluation (heuristic evaluation, user testing and field observation) to two discharge summary production systems (underpinned by different technologies). The systems' main usability flaws led respectively to an increase in the time need to produce a discharge summary and the risk of patient misidentification. Our results are discussed with regard to the possibility of linking the usability flaws, usage problems and the negative outcomes by successively applying three methods for evaluating usability (heuristic evaluation, user testing and in situ observations) throughout the system development life cycle. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Final Assessment of Manual Ultrasonic Examinations Applied to Detect Flaws in Primary System Dissimilar Metal Welds at North Anna Power Station

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Michael T.; Diaz, Aaron A.; Cinson, Anthony D.; Crawford, Susan L.; Prowant, Matthew S.; Doctor, Steven R.

    2014-03-24

    PNNL conducted a technical assessment of the NDE issues and protocols that led to missed detections of several axially oriented flaws in a steam generator primary inlet dissimilar metal weld at North Anna Power Station, Unit 1 (NAPS-1). This particular component design exhibits a significant outside-diameter (OD) taper that is not included as a blind performance demonstration mock-up within the industry’s Performance Demonstration Initiative, administered by EPRI. For this reason, the licensee engaged EPRI to assist in the development of a technical justification to support the basis for a site-specific qualification. The service-induced flaws at NAPS-1 were eventually detected as a result of OD surface machining in preparation for a full structural weld overlay. The machining operation uncovered the existence of two through-wall flaws, based on the observance of primary water leaking from the dissimilar metal weld. A total of five axially oriented flaws were detected in varied locations around the weld circumference. The field volumetric examination that was conducted at NAPS-1 was a non-encoded, real-time manual ultrasonic examination. PNNL conducted both an initial assessment, and subsequently, a more rigorous technical evaluation (reported here), which has identified an array of NDE issues that may have led to the subject missed detections. These evaluations were performed through technical reviews and discussions with NRC staff, EPRI NDE Center personnel, industry and ISI vendor personnel, and ultrasonic transducer manufacturers, and laboratory tests, to better understand the underlying issues at North Anna.

  12. Ultrasonic testing of large blocks for prestressed cast iron pressure vessels

    International Nuclear Information System (INIS)

    Stelling, H.A.

    1979-01-01

    Ultrasonic tests were made on plate specimen and large blocks of perlit cast iron with lamellar graphite. Aims of the investigations were the control of material porperties, the flaw detection and flaw classification. The material properties were classified by sound velocity and attenuation measurements. Flaw detection and flaw size estimation methods were modified with regard to the acoustic properties, the microstructure and the reflectivity of typical flaws in castings. Special localisation and flaw size estimation techniques are discussed. (orig.)

  13. Flaws in the Concept of Nuclear Deterrance

    Directory of Open Access Journals (Sweden)

    John Scales Avery

    2012-04-01

    Full Text Available The concept of nuclear deterrence is seriously flawed, and it violates the fundamental ethical principles of all major religions. Besides being morally unacceptable, nuclear weapons are also illegal according to a historic 1996 decision of the International Court of Justice, a ruling that reflects the opinion of the vast majority of the worldʼs peoples. Even a small nuclear war would be an ecological catastrophe, not only killing civilian populations indiscriminately in both belligerent and neutral countries, but also severely damaging global agriculture and making large areas of the earth permanently uninhabitable through radioactive contamination. The danger of accidental nuclear war continues to be very great today, and the danger of nuclear terrorism is increasing. In this perilous situation, it is necessary for the nuclear nations to acknowledge that the concept of deterrence has been a mistake, which is threatening the lives of all human beings as well as threatening devastation of the biosphere. Acknowledging that the policy of nuclear deterrence has been a grave error can reduce risk of nuclear weapons proliferation.

  14. Digital vs conventional radiography: cost and revenue analysis

    International Nuclear Information System (INIS)

    Dalla Palma, L.; Cuttin, R.; Rimondini, A.; Grisi, G.

    1999-01-01

    The objective of this study was to analyse and compare the operating and investment costs of two radiographic systems, a conventional and a digital one, and to evaluate the cost/revenue ratio of the two systems. The radiological activity over 1 year for chest and skeletal exams was evaluated: 13,401 chest and 7,124 skeletal exams were considered. The following parameters of variable costs were evaluated: the difference between variable proportional costs of the two technologies, the effective variable cost of any size film, including the chemicals, and for different sizes of digital film, variable costs of chest plus skeletal exams performed with the two techniques. Afterwards the economical effect was considered taking into account depreciation during a time of utilization ranging between 8 and 4 years. In the second part of the analysis the total cost and the revenues of the two technologies were determined. The comparison between the digital and conventional systems has shown the following aspects: 1. Digital radiography system has a much higher investment cost in comparison with the conventional one. 2. Operating costs of digital equipment are higher or lower depending on the film size used. Evaluating chest X-ray we reach a breakeven point after 1 year and 10,000 exams only if displayed over 8 x 10-in. film and after 30,000 if displayed over a 11 x 14-in. film. 3. The total cost (variable cost, technology cost, labour cost) of digital technology is lower than that of the conventional system by 20 % on average using 8 x 10-in. film size. 4. Digital technology also allows lesser film waste and lesser film per exam (orig.)

  15. Aplikace pro penetrační testování webových zranitelností typu Data Validation flaws

    OpenAIRE

    Němec, Václav

    2011-01-01

    Tato bakalářské práce se zabývá detekcí webových zranitelností typu Data validation flaws. V práci jsou popsány běžné útoky, obrana před těmito útoky a postupy při automatické detekci. Hlavním cílem je návrh a implementace nástroje pro automatickou detekci zranitelností typu Data validation flaws, jeho otestování a srovnání výsledků s podobnými nástroji jako například Paros Proxy nebo Burp Suite. This bachelor's thesis deals with detection of web vulnerabilities such as data validation fla...

  16. Parametric calculations of fatigue-crack growth in piping

    International Nuclear Information System (INIS)

    Simonen, F.A.; Goodrich, C.W.

    1983-06-01

    This study presents calculations of the growth of piping flaws produced by fatigue. Flaw growth was predicted as a function of the initial flaw size, the level and number of stress cycles, the piping material, and environmental factors. The results indicate that the present flaw acceptance standards of ASME Section XI provide a relatively consistent set of allowable flaw sizes because the predicted life of flawed piping is relatively insensitive to pipe wall thickness, flaw aspect ratio, and piping material (ferritic versus austenitic). On the other hand, the results show that flaws that are acceptable under ASME Section XI can grow at unacceptable rates if the cyclic stresses are at the maximum level permitted by the design rules of ASME Section III. However, a review of the conservatisms inherent to the ASME code rules is presented to explain the low occurrence of piping fatigue failures in service. It is concluded that decreases in the allowable flaw sizes are not justified

  17. Feed particle size evaluation: conventional approach versus digital holography based image analysis

    Directory of Open Access Journals (Sweden)

    Vittorio Dell’Orto

    2010-01-01

    Full Text Available The aim of this study was to evaluate the application of image analysis approach based on digital holography in defining particle size in comparison with the sieve shaker method (sieving method as reference method. For this purpose ground corn meal was analyzed by a sieve shaker Retsch VS 1000 and by image analysis approach based on digital holography. Particle size from digital holography were compared with results obtained by screen (sieving analysis for each of size classes by a cumulative distribution plot. Comparison between particle size values obtained by sieving method and image analysis indicated that values were comparable in term of particle size information, introducing a potential application for digital holography and image analysis in feed industry.

  18. Competitive electricity markets: One size should fit all

    International Nuclear Information System (INIS)

    Ruff, L.E.

    1999-01-01

    Various market models have been used to try to create competition in the electricity industry in various parts of the world, with varying degrees of success. But every electricity market that has produced reasonably effective and efficient competition has been based on some version of the same generic model. And most of the problems encountered by these markets--apart from problems due to structural flaws such as too few competitors--can be attributed to inconsistent or incomplete application of this basic model concept. In this sense, one size of market model really does fit all--or at least one size should fit all if the objective is to create effective and efficient competition for the benefit of consumers. Effort to slow or reverse the movement to an open spot market integrated with physical dispatch will create complexities and inefficiencies that benefit oligopolists and middlemen at the expense of smaller producers and final consumers

  19. Competitive electricity markets: One size should fit all

    Energy Technology Data Exchange (ETDEWEB)

    Ruff, L.E.

    1999-11-01

    Various market models have been used to try to create competition in the electricity industry in various parts of the world, with varying degrees of success. But every electricity market that has produced reasonably effective and efficient competition has been based on some version of the same generic model. And most of the problems encountered by these markets--apart from problems due to structural flaws such as too few competitors--can be attributed to inconsistent or incomplete application of this basic model concept. In this sense, one size of market model really does fit all--or at least one size should fit all if the objective is to create effective and efficient competition for the benefit of consumers. Effort to slow or reverse the movement to an open spot market integrated with physical dispatch will create complexities and inefficiencies that benefit oligopolists and middlemen at the expense of smaller producers and final consumers.

  20. 'Moral distress'--time to abandon a flawed nursing construct?

    Science.gov (United States)

    Johnstone, Megan-Jane; Hutchinson, Alison

    2015-02-01

    Moral distress has been characterised in the nursing literature as a major problem affecting nurses in all healthcare systems. It has been portrayed as threatening the integrity of nurses and ultimately the quality of patient care. However, nursing discourse on moral distress is not without controversy. The notion itself is conceptually flawed and suffers from both theoretical and practical difficulties. Nursing research investigating moral distress is also problematic on account of being methodologically weak and disparate. Moreover, the ultimate purpose and significance of the research is unclear. In light of these considerations, it is contended that the notion of moral distress ought to be abandoned and that concerted attention be given to advancing inquiries that are more conducive to improving the quality and safety of moral decision-making, moral conduct and moral outcomes in nursing and healthcare domains. © The Author(s) 2013.

  1. Size-scaling of tensile failure stress in boron carbide

    Energy Technology Data Exchange (ETDEWEB)

    Wereszczak, Andrew A [ORNL; Kirkland, Timothy Philip [ORNL; Strong, Kevin T [ORNL; Jadaan, Osama M. [University of Wisconsin, Platteville; Thompson, G. A. [U.S. Army Dental and Trauma Research Detachment, Greak Lakes

    2010-01-01

    Weibull strength-size-scaling in a rotary-ground, hot-pressed boron carbide is described when strength test coupons sampled effective areas from the very small (~ 0.001 square millimeters) to the very large (~ 40,000 square millimeters). Equibiaxial flexure and Hertzian testing were used for the strength testing. Characteristic strengths for several different specimen geometries are analyzed as a function of effective area. Characteristic strength was found to substantially increase with decreased effective area, and exhibited a bilinear relationship. Machining damage limited strength as measured with equibiaxial flexure testing for effective areas greater than ~ 1 mm2 and microstructural-scale flaws limited strength for effective areas less than 0.1 mm2 for the Hertzian testing. The selections of a ceramic strength to account for ballistically-induced tile deflection and to account for expanding cavity modeling are considered in context with the measured strength-size-scaling.

  2. Does Sibship Size Affect Educational Attainment?

    DEFF Research Database (Denmark)

    Jæger, Mads Meier

    This paper implements a test of the Resource Dilution Hypothesis (RDH) stating that sibship size has a negative causal effect on educational attainment. Most existing studies using conventional methods support the RDH. This paper implements an Instrumental Variable (IV) approach to testing...... the claim of a negative causal relationship between sibship size and educational attainment. Analyzing data from the Wisconsin Longitudinal Study, the empirical analysis demonstrates, first, that conventional OLS regression estimates sibship size to have a negative effect on educational attainment equal...... to about one-tenth of a year of schooling per sibling. Second, when applying the IV method to account for potential endogeneity, the negative effect of sibship size increases substantially to about one-third of a year of schooling per sibling....

  3. Comparison of conventional and 3-dimensional computed tomography against histopathologic examination in determining pancreatic adenocarcinoma tumor size: Implications for radiation therapy planning

    International Nuclear Information System (INIS)

    Qiu Haoming; Wild, Aaron T.; Wang Hao; Fishman, Elliot K.; Hruban, Ralph H.; Laheru, Daniel A.; Kumar, Rachit; Hacker-Prietz, Amy; Tuli, Richard; Tryggestad, Erik; Schulick, Richard D.; Cameron, John L.; Edil, Barish H.; Pawlik, Timothy M.; Wolfgang, Christopher L.; Herman, Joseph M.

    2012-01-01

    Background and purpose: This study seeks to: (a) quantify radiologic-pathologic discrepancy for pancreatic adenocarcinoma by comparing tumor size on conventional computed tomography (C-CT) and 3-dimensional CT (3D-CT) to corresponding pathologic specimens; and (b) to identify clinico-pathologic characteristics predictive of radiologic-pathologic discrepancy to assist radiotherapy planning. Materials and methods: Sixty-three patients with pancreatic adenocarcinoma and preoperative C-CT and volume-rendered 3D-CT imaging within 6 weeks of resection were identified. Maximum tumor diameter (MTD) was measured on pathology, C-CT, and 3D-CT and compared for each patient as well as among different clinico-pathologic subgroups. Results: There was a trend toward C-CT underestimation of MTD compared to final pathology (p = 0.08), but no significant difference between 3D-CT MTD and pathology (p = 0.54). Pathologic tumor size was significantly underestimated by C-CT in patients with larger pathologic tumor size (>3.0 cm, p = 0.0001), smaller tumor size on C-CT ( 90 U/mL, p = 0.008), and location in the pancreatic head (p = 0.015). A model for predicting pathologic MTD using C-CT MTD and CA19-9 level was generated. Conclusions: 3D-CT may allow for more accurate contouring of pancreatic tumors than C-CT. Patients with the above clinico-pathologic characteristics may require expanded margins relative to tumor size estimates on C-CT during radiotherapy planning.

  4. Investigation of thermochemical biorefinery sizing and environmental sustainability impacts for conventional supply system and distributed preprocessing supply system designs

    Energy Technology Data Exchange (ETDEWEB)

    Muth, jr., David J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Langholtz, Matthew H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tan, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jacobson, Jacob [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schwab, Amy [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wu, May [Argonne National Lab. (ANL), Argonne, IL (United States); Argo, Andrew [Sundrop Fuels, Golden, CO (United States); Brandt, Craig C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cafferty, Kara [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chiu, Yi-Wen [Argonne National Lab. (ANL), Argonne, IL (United States); Dutta, Abhijit [National Renewable Energy Lab. (NREL), Golden, CO (United States); Eaton, Laurence M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Searcy, Erin [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-03-31

    The 2011 US Billion-Ton Update estimates that by 2030 there will be enough agricultural and forest resources to sustainably provide at least one billion dry tons of biomass annually, enough to displace approximately 30% of the country's current petroleum consumption. A portion of these resources are inaccessible at current cost targets with conventional feedstock supply systems because of their remoteness or low yields. Reliable analyses and projections of US biofuels production depend on assumptions about the supply system and biorefinery capacity, which, in turn, depend upon economic value, feedstock logistics, and sustainability. A cross-functional team has examined combinations of advances in feedstock supply systems and biorefinery capacities with rigorous design information, improved crop yield and agronomic practices, and improved estimates of sustainable biomass availability. A previous report on biochemical refinery capacity noted that under advanced feedstock logistic supply systems that include depots and pre-processing operations there are cost advantages that support larger biorefineries up to 10 000 DMT/day facilities compared to the smaller 2000 DMT/day facilities. This report focuses on analyzing conventional versus advanced depot biomass supply systems for a thermochemical conversion and refinery sizing based on woody biomass. The results of this analysis demonstrate that the economies of scale enabled by advanced logistics offsets much of the added logistics costs from additional depot processing and transportation, resulting in a small overall increase to the minimum ethanol selling price compared to the conventional logistic supply system. While the overall costs do increase slightly for the advanced logistic supply systems, the ability to mitigate moisture and ash in the system will improve the storage and conversion processes. In addition, being able to draw on feedstocks from further distances will decrease the risk of biomass supply to

  5. Development of flaw assesment methodology for elevated temperature components of FBR plants

    International Nuclear Information System (INIS)

    Shimakawa, Takashi; Takahashi, Yukio; Miura, Naoki; Nakayama, Yasunari; Sawai, Tatsuaki; Tooya, Yuuji

    1999-01-01

    Fracture mechanics is applicable for the safety assessment of FBR component if a crack is assumed to exist. Inelastic response should be taken into account due to high temperature operation of FBR components. However, methodology for the application of inelastic fracture mechanics has not been established sufficiently. CRIEPI has been conducted research projects to develop a flaw assessment guideline for FBR components. This guideline consists of evaluation methods for creep-fatigue crack propagation, ductile fracture and sodium leak rate. The summary of evaluation methods on creep-fatigue crack and ductile fracture is presented in this paper. (author)

  6. Effects of floating electrodes on the reliability of electrostrictive ceramic multilayer actuators

    International Nuclear Information System (INIS)

    Kim, Y H; Beom, H G

    2010-01-01

    To investigate the toughness enhancing effect of a floating electrode on an actuator, a conventional actuator and an actuator with a floating electrode are numerically analyzed using the finite element method. Electrostatic analysis is performed for both types of actuators based on an assumption of the mathematical equivalence between out-of-plane deformation and electrostatics. The electric behavior of a ceramic is idealized by the electric displacement saturation model. The numerical results of electric fields and electric displacement fields are obtained from the electrostatic analysis. For both types of actuators, the self-equilibrating stress fields induced by a non-uniform distribution of the electric displacement fields are computed using the finite element method. The stress intensity factors for a flaw-like crack nucleated from the edge of an internal electrode are evaluated for each case. We found that the stress intensity factor for the actuator with a floating electrode is smaller than the factor for the conventional actuator when the length of the flaw-like crack is approximately equal to the grain size. Thus, we conclude that actuators with floating electrodes have higher reliability than conventional actuators

  7. Engineering approach for examining crack growth and stability in flawed structures

    International Nuclear Information System (INIS)

    Shih, C.F.

    1980-01-01

    Progress made in two research programs sponsored by the Electric Power Research Institute (EPRI), to identify viable parameters for characterizing crack initiation and continued extension, and to develop an engineering/design methodology, based on these parameters, for the assessment of crack growth and instability in engineering structures which are stressed beyond the regime of applicability of linear elastic fracture mechanics is reported. The goal in the development of such methodology is to establish an improved basis for analyzing the effect of flaws (postulated or detected) on the safety margins of pressure boundary components of light water-cooled type nuclear steam supply systems. The methodology can also be employed for structural integrity analyses of other engineering structures

  8. Developmental techniques for ultrasonic flaw detection and characterization in stainless steel

    International Nuclear Information System (INIS)

    Kupperman, D.S.

    1983-04-01

    Flaw detection and characterization by ultrasonic methods is particularly difficult for stainless steel. This paper focuses on two specific problem areas: (a) the inspection of centrifugally cast stainless steel (CCSS) and (b) the differentiation of intergranular stress-corrosion cracking (IGSCC) from geometrical reflectors such as the weld root. To help identify optimal conditions for the ultrasonic inspection of CCSS, the effect of frequency on propagation of longitudinal and shear waves was examined in both isotropic and anisotropic samples. Good results were obtained with isotropic CCSS and 0.5-MHz angle beam shear waves. The use of beam-scattering patterns (i.e. signal amplitude vs skew angle) as a tool for discriminating IGSCC from geometrical reflectors is also discussed

  9. High-temperature flaw assessment procedure: A state-of-the-art survey

    International Nuclear Information System (INIS)

    Ruggles, M.B.; Takahashi, Y.

    1989-05-01

    High-temperature crack growth under cyclic, static, and combined loading is received with an emphasis on fracture mechanics aspects. Experimental studies of the effects of loading history, microstructure, temperature, and environment on crack growth behavior are described and interpreted. The experimental evidence is used to examine crack growth parameters and theoretical models for fatigue, creep, and creep-fatigue crack propagation at elevated temperatures. The limitations of both elastic and elastic-plastic fracture mechanics for high-temperature subcritical crack growth are assessed. Existing techniques for modeling critical crack growth/ligament instability failure are also presented. Related topics of defect modeling and engineering flaw assessment procedures, nondestructive evaluation methods, and probabilistic failure analysis are briefly discussed. 142 refs., 33 figs

  10. A contribution to phased array ultrasonic inspection of welds: defect patterns and sizing capability

    Energy Technology Data Exchange (ETDEWEB)

    Ciorau, P., E-mail: peter.ciorau@opg.com [Ontario Power Generation Inc., Inspection, Maintenance and Commercial Services, Tiverton, Ontario (Canada)

    2008-07-01

    The paper presents defect patterns for weld inspection detected with phased array ultrasonic technology (PAUT). The sizing capability for length, height, outer and inner ligament for specific implanted weld defects in training samples and mock-ups with thickness between 6.4-52 mm. It is discussed the influence of beam angle on sizing the lack of fusion defect. More than 50 implanted weld defects with 70% crack population were sized using high-frequency (5-10 MHz) linear array probes. The correlation between the design/manufacturer flaw size and PAUT data for length, height and ligament is graphically presented. It was concluded the length is oversized by 2-6 mm, height and inner ligament are undersized by 0.2 to 0.5 mm, and outer ligament is oversized by 0.5 mm. The sizing results were based on non-amplitude techniques and pattern display of S- and B-scan. The sizing capability is far better than ASME XI tolerances for performance demonstration and comparable to time of flight diffraction (TOFD) ideal tolerances. (author)

  11. A contribution to phased array ultrasonic inspection of welds: defect patterns and sizing capability

    International Nuclear Information System (INIS)

    Ciorau, P.

    2008-01-01

    The paper presents defect patterns for weld inspection detected with phased array ultrasonic technology (PAUT). The sizing capability for length, height, outer and inner ligament for specific implanted weld defects in training samples and mock-ups with thickness between 6.4-52 mm. It is discussed the influence of beam angle on sizing the lack of fusion defect. More than 50 implanted weld defects with 70% crack population were sized using high-frequency (5-10 MHz) linear array probes. The correlation between the design/manufacturer flaw size and PAUT data for length, height and ligament is graphically presented. It was concluded the length is oversized by 2-6 mm, height and inner ligament are undersized by 0.2 to 0.5 mm, and outer ligament is oversized by 0.5 mm. The sizing results were based on non-amplitude techniques and pattern display of S- and B-scan. The sizing capability is far better than ASME XI tolerances for performance demonstration and comparable to time of flight diffraction (TOFD) ideal tolerances. (author)

  12. SEM analysis of particle size during conventional treatment of CMP process wastewater

    International Nuclear Information System (INIS)

    Roth, Gary A.; Neu-Baker, Nicole M.; Brenner, Sara A.

    2015-01-01

    Engineered nanomaterials (ENMs) are currently employed by many industries and have different physical and chemical properties from their bulk counterparts that may confer different toxicity. Nanoparticles used or generated in semiconductor manufacturing have the potential to enter the municipal waste stream via wastewater and their ultimate fate in the ecosystem is currently unknown. This study investigates the fate of ENMs used in chemical mechanical planarization (CMP), a polishing process repeatedly utilized in semiconductor manufacturing. Wastewater sampling was conducted throughout the wastewater treatment (WWT) process at the fabrication plant's on-site wastewater treatment facility. The goal of this study was to assess whether the WWT processes resulted in size-dependent filtration of particles in the nanoscale regime by analyzing samples using scanning electron microscopy (SEM). Statistical analysis demonstrated no significant differences in particle size between sampling points, indicating low or no selectivity of WWT methods for nanoparticles based on size. All nanoparticles appeared to be of similar morphology (near-spherical), with a high variability in particle size. EDX verified nanoparticles composition of silicon- and/or aluminum-oxide. Nanoparticle sizing data compared between sampling points, including the final sampling point before discharge from the facility, suggested that nanoparticles could be released to the municipal waste stream from industrial sources. - Highlights: • The discrete treatments of a semiconductor wastewater treatment system were examined. • A sampling scheme and method for analyzing nanoparticles in wastewater was devised. • The wastewater treatment process studied is not size-selective for nanoparticles

  13. Flaw assessment procedure for high temperature reactor components

    International Nuclear Information System (INIS)

    Ainsworth, R.A.; Takahashi, Y.

    1990-01-01

    An interim high-temperature flaw assessment procedure is described. This is a result of a collaborative effort between Electric Power Research Institute in the USA, Central Research Institute of Electric Power Industry in Japan, and Nuclear Electric plc in the UK. The procedure addresses preexisting defects subject to creep-fatigue loading conditions. Laws employed to calculate the crack growth per cycle are defined in terms of fracture mechanics parameters and constants related to the component material. The crack growth laws may be integrated to calculate the remaining life of a component or to predict the amount of crack extension in a given period. Fatigue and creep crack growth per cycle are calculated separately, and the total crack extension is taken as the simple sum of the two contributions. An interaction between the two propagation modes is accounted for in the material properties in the separate calculations. In producing the procedure, limitations of the approach have been identified. Some of these limitations are to be addressed in an extension of the current collaborative program. 20 refs

  14. Hit size effectiveness in relation to the microdosimetric site size

    International Nuclear Information System (INIS)

    Varma, M.N.; Wuu, C.S.; Zaider, M.

    1994-01-01

    This paper examines the effect of site size (that is, the diameter of the microdosimetric volume) on the hit size effectiveness function (HSEF), q(y), for several endpoints relevant in radiation protection. A Bayesian and maximum entropy approach is used to solve the integral equations that determine, given microdosimetric spectra and measured initial slopes, the function q(y). All microdosimetric spectra have been calculated de novo. The somewhat surprising conclusion of this analysis is that site size plays only a minor role in selecting the hit size effectiveness function q(y). It thus appears that practical means (e.g. conventional proportional counters) are already at hand to actually implement the HSEF as a radiation protection tool. (Author)

  15. Residual stress improvement for pipe weld by means of induction heating pre-flawed pipe

    International Nuclear Information System (INIS)

    Umemoto, T.; Yoshida, K.; Okamoto, A.

    1980-01-01

    The intergranular stress corrosion cracking (IGSCC) has been found in type 304 stainless steel piping of several BWR plants. It is already well known that IGSCC is most likely to occur when three essential factors, material sensitization, high tensile stress and corrosive environment, are present. If the welding residual stress is sufficiently high (200 to approximately 400 MPa) in the inside piping surface near the welded joint, then it may be one of the biggest contributors to IGSCC. If the residual stress is reduced or reversed by some way, the IGSCC will be effectively mitigated. In this paper a method to improve the residual stress named IHSI (Induction Heating Stress Improvement) is explained. IHSI aims to improve the condition of residual stress in the inside pipe surface using the thermal stress induced by the temperature difference in pipe wall, that is produced when the pipe is heated from the outside surface by an induction heating coil and cooled on the inside surface by water simultaneously. This method becomes more attractive when it can be successfully applied to in-service piping which might have some pre-flaw. In order to verify the validity of IHSI for such piping, some experiments and calculations using finite element method were conducted. These results are mainly discussed in this paper from the view-points of residual stress, flaw behaviour during IHSI and material deterioration. (author)

  16. The influence of tungsten powder grain size on the properties of small bars and thick wires

    International Nuclear Information System (INIS)

    Jesionek, B.; Ludynski, Z.

    1980-01-01

    The object of the investigations was, if possible, to determine the exact significance of the influence of the pressing parameters on the properties of tungsten bars and larger diameter wires, with special reference to the size of the tungsten grains. Tungsten powders, reduced under different conditions and with different grain sizes, were used for the investigations. These powders were pressed in steel dies at three different pressures, 72.5, 108, and 176 MPa, and the pressings were sintered. After sintering, the following properties of the bars were examined: ability to sinter, strength, and grain size. The bars were then worked down to 1.02 mm diameter wire and the following properties measured: tensile strength, plastic properties and the occurence of internal flaws (cracks). Finally, the optimum pressing parameters of the tungsten powder were determined. (Auth.)

  17. Fracture evaluation of a crack in the service water piping system to an emergency diesel generator

    International Nuclear Information System (INIS)

    Rudland, D.; Scott, P.; Rahman, S.; Wilkowski, G.

    1995-01-01

    A pipe fracture experiment was conducted on a section of 6-inch nominal diameter pipe which was degraded by microbiologically induced corrosion (MIC) at a circumferential girth weld. The pipe was a section of one of the service water piping system to one of the emergency diesel generators at the Haddam Neck (Connecticut Yankee) plant. The experimental results will help validate future ASME Section XI pipe flaw evaluation criteria for other than Class 1 piping. A critical aspect of this experiment was an assessment of the degree of conservatism embodied in the ASME definition of flaw size. The ASME flaw size definition assumes a rectangular shaped, constant depth flaw with a depth equal to its maximum depth for its entire length. Since most service flaws are very irregular in shape, this definition can be very conservative. Alternative equivalent flaw size definitions for irregular shaped flaws are explored in this paper. (author). 7 refs., 2 figs., 4 tabs

  18. The effects of surface finish and grain size on the strength of sintered silicon carbide

    Science.gov (United States)

    You, Y. H.; Kim, Y. W.; Lee, J. G.; Kim, C. H.

    1985-01-01

    The effects of surface treatment and microstructure, especially abnormal grain growth, on the strength of sintered SiC were studied. The surfaces of sintered SiC were treated with 400, 800 and 1200 grit diamond wheels. Grain growth was induced by increasing the sintering times at 2050 C. The beta to alpha transformation occurred during the sintering of beta-phase starting materials and was often accompanied by abnormal grain growth. The overall strength distributions were established using Weibull statistics. The strength of the sintered SiC is limited by extrinsic surface flaws in normal-sintered specimens. The finer the surface finish and grain size, the higher the strength. But the strength of abnormal sintering specimens is limited by the abnormally grown large tabular grains. The Weibull modulus increases with decreasing grain size and decreasing grit size for grinding.

  19. Investigation of thermochemical biorefinery sizing and environmental sustainability impacts for conventional supply system and distributed pre-processing supply system designs

    Energy Technology Data Exchange (ETDEWEB)

    David J. Muth, Jr.; Matthew H. Langholtz; Eric C. D. Tan; Jacob J. Jacobson; Amy Schwab; May M. Wu; Andrew Argo; Craig C. Brandt; Kara G. Cafferty; Yi-Wen Chiu; Abhijit Dutta; Laurence M. Eaton; Erin M. Searcy

    2014-08-01

    The 2011 US Billion-Ton Update estimates that by 2030 there will be enough agricultural and forest resources to sustainably provide at least one billion dry tons of biomass annually, enough to displace approximately 30% of the country's current petroleum consumption. A portion of these resources are inaccessible at current cost targets with conventional feedstock supply systems because of their remoteness or low yields. Reliable analyses and projections of US biofuels production depend on assumptions about the supply system and biorefinery capacity, which, in turn, depend upon economic value, feedstock logistics, and sustainability. A cross-functional team has examined combinations of advances in feedstock supply systems and biorefinery capacities with rigorous design information, improved crop yield and agronomic practices, and improved estimates of sustainable biomass availability. A previous report on biochemical refinery capacity noted that under advanced feedstock logistic supply systems that include depots and pre-processing operations there are cost advantages that support larger biorefineries up to 10 000 DMT/day facilities compared to the smaller 2000 DMT/day facilities. This report focuses on analyzing conventional versus advanced depot biomass supply systems for a thermochemical conversion and refinery sizing based on woody biomass. The results of this analysis demonstrate that the economies of scale enabled by advanced logistics offsets much of the added logistics costs from additional depot processing and transportation, resulting in a small overall increase to the minimum ethanol selling price compared to the conventional logistic supply system. While the overall costs do increase slightly for the advanced logistic supply systems, the ability to mitigate moisture and ash in the system will improve the storage and conversion processes. In addition, being able to draw on feedstocks from further distances will decrease the risk of biomass supply to

  20. Binomial Test Method for Determining Probability of Detection Capability for Fracture Critical Applications

    Science.gov (United States)

    Generazio, Edward R.

    2011-01-01

    The capability of an inspection system is established by applications of various methodologies to determine the probability of detection (POD). One accepted metric of an adequate inspection system is that for a minimum flaw size and all greater flaw sizes, there is 0.90 probability of detection with 95% confidence (90/95 POD). Directed design of experiments for probability of detection (DOEPOD) has been developed to provide an efficient and accurate methodology that yields estimates of POD and confidence bounds for both Hit-Miss or signal amplitude testing, where signal amplitudes are reduced to Hit-Miss by using a signal threshold Directed DOEPOD uses a nonparametric approach for the analysis or inspection data that does require any assumptions about the particular functional form of a POD function. The DOEPOD procedure identifies, for a given sample set whether or not the minimum requirement of 0.90 probability of detection with 95% confidence is demonstrated for a minimum flaw size and for all greater flaw sizes (90/95 POD). The DOEPOD procedures are sequentially executed in order to minimize the number of samples needed to demonstrate that there is a 90/95 POD lower confidence bound at a given flaw size and that the POD is monotonic for flaw sizes exceeding that 90/95 POD flaw size. The conservativeness of the DOEPOD methodology results is discussed. Validated guidelines for binomial estimation of POD for fracture critical inspection are established.

  1. Design Flaws and Service System Breakdowns: Learning from Systems Thinking

    Directory of Open Access Journals (Sweden)

    David Ing

    2014-12-01

    Full Text Available In what ways might systems thinking be helpful to designers?  In the 21st century, the types of project with which designers have become engaged has expanded to include service systems.  Service systems are typically composites of mechanisms, organisms, human beings and ecologies.  Systems thinking is a perspective with theories, methods and practices that enables transcending disciplinary boundaries.  Application of systems thinking in designing a service system can aid in surfacing potential flaws and/or anticipating future breakdowns in functions, structures and/or processes. Designers and systems thinkers should work together to improve the nature of service systems.  As a starter set into these conversations, seven conditions are proposed as a starting context.  These conditions are presented neither as rigourously defined nor as exhaustive, but as an entry point into future joint engagement.

  2. Study on in-service visual inspection using TV camera for core support graphite components in the HTTR

    International Nuclear Information System (INIS)

    Ishihara, Masahiro; Shibata, Taiju; Kikuchi, Takayuki; Mogi, Haruyoshi

    1999-01-01

    To maintain the structural integrity of graphite components during plant operation a visual inspection using a TV camera as an in-service inspection is planned in the High Temperature Engineering Test Reactor. In order to verify the in-service inspection method a preliminary analytical and experimental studies were performed. In the analytical study the harmful flaw size was determined from a viewpoint of structural integrity based on the fracture mechanics approach. Furthermore, the visible flaw size was determined by the TV camera performance test with graphite test specimens having several kinds of artificial flaws. This paper presents the analytical result on the harmful flaw size and the experimental result on the visible flaw size. From both results the applicability on the visual inspection by the TV camera as the in-service inspection is discussed in this paper. (author)

  3. Evaluation of ASME code flaw analysis procedure using the influence function method for application to PWR primary piping

    International Nuclear Information System (INIS)

    Hong, S.Y.; Yeater, M.L.

    1985-01-01

    This paper discusses stress intensity factor calculations and fatigue analysis for a PWR primary coolant piping system. The influence function method is applied to evaluate ASME Code Section XI Appendix A ''analysis of flaw indication'' for the application to a PWR primary piping. Results of the analysis are discussed in detail. (orig.)

  4. Enron Flaws In Organizational Architecture And Its Failure

    Directory of Open Access Journals (Sweden)

    Nguyen

    2015-08-01

    Full Text Available A series of corporate scandals at the beginning of last decade has given rise to the doubt on the efficiency of corporate governance practice in the United States. Of these scandals the collapse of Enron has exceptionally captured the public concern. It was the once seventh-largest company in the United States 1. It was rated the most innovative large company in America in Fortunes Most Admired Companies survey 2. In August 2000 its stock reached a peak of nearly 70 billion 3. However within a year its stock had become almost useless papers 2. It just was unbelievable for many people. What went wrong Was it due to the failure of corporate governance in general Actually the central factor leading to the collapse of Enron was the failure in its organizational architecture. This paper starts by providing an overview of corporate governance system with an emphasis on the corporate organizational architecture as its important facet. Then it discusses flaws in the organizational architecture of Enron and argues that these eventually led to the breakdown of the whole corporate governance system at Enron. Finally some implications and lessons for the practice of corporate governance are presented.

  5. Influence of partially known parameter on flaw characterization in Eddy Current Testing by using a random walk MCMC method based on metamodeling

    International Nuclear Information System (INIS)

    Cai, Caifang; Lambert, Marc; Rodet, Thomas

    2014-01-01

    First, we present the implementation of a random walk Metropolis-within-Gibbs (MWG) sampling method in flaw characterization based on a metamodeling method. The role of metamodeling is to reduce the computational time cost in Eddy Current Testing (ECT) forward model calculation. In such a way, the use of Markov Chain Monte Carlo (MCMC) methods becomes possible. Secondly, we analyze the influence of partially known parameters in Bayesian estimation. The objective is to evaluate the importance of providing more specific prior information. Simulation results show that even partially known information has great interest in providing more accurate flaw parameter estimations. The improvement ratio depends on the parameter dependence and the interest shows only when the provided information is specific enough

  6. Does application of the Rosiwal principle to lunar soils require that concentrations of solar-wind-implanted species be grain-size independent

    International Nuclear Information System (INIS)

    Becker, R.H.

    1977-01-01

    A reconsideration of the application of the Rosiwal Principle to lunar soils indicates a flaw in arguments put forth previously by Criswell. Specifically, by introducing a boundary condition which must exist at the lunar surface, it is shown that concentrations of solar-wind-implanted species showing a dependence on grain size may be able to develop in soils at concentration levels below those required for saturation of grain surfaces. As a result, observed grain-size-dependent concentrations of solar-wind species in lunar soils do not necessarily require the exposure time scales or solar-wind fluxes deduced from the arguments of Criswell. (Auth.)

  7. RSE-M code progress in the field of examination evaluation and flaw acceptance criteria

    International Nuclear Information System (INIS)

    Barthelet, B.; Le Delliou, P.; Heliot, J.; Faidy, C.; Drubay, B.

    1995-01-01

    The RSE-M Code provides rules and requirements for in service inspection of light water cooled nuclear power plants. The code first edition was established by EDF and published in 1990 by AFCEN. In 1992, a second RSE-M project was launched by EDF and FRAMATOME with the objective to address a 1995 edition more completed considering the needs of owners, users, manufacturers and inspectors. This paper focuses on evaluation of examination results and presents the work done in the field of flaw acceptance criteria over the last three years. (author). 5 refs., 3 figs

  8. The flaw-detected coating and its applications in R&M of aircrafts

    Science.gov (United States)

    Hu, Feng; Liu, Mabao; Lü, Zhigang

    2009-07-01

    A monitoring method called ICM (Intelligent Coating Monitoring), which is based mainly on the intelligent coating sensors, has the capability to monitor crack initiation and growth in fatigue test coupons has been suggested in this study. The intelligent coating sensor is normally consisted of three layers: driving layer, sensing layer and protective layer where necessary. Fatigue tests with ICM for various materials demonstrate the capability to detect cracks with lfuel tank of an aircraft), or (ii) to take advantage of early detection and apply less invasive life-extension repairs, as well as reduce interruption of service when flaws are detected. Implementation of ICM is expected to improve fleet management practices and modify damage tolerance assumptions.

  9. Probability of detection as a function of multiple influencing parameters

    Energy Technology Data Exchange (ETDEWEB)

    Pavlovic, Mato

    2014-10-15

    Non-destructive testing is subject to measurement uncertainties. In safety critical applications the reliability assessment of its capability to detect flaws is therefore necessary. In most applications, the flaw size is the single most important parameter that influences the probability of detection (POD) of the flaw. That is why the POD is typically calculated and expressed as a function of the flaw size. The capability of the inspection system to detect flaws is established by comparing the size of reliably detected flaw with the size of the flaw that is critical for the structural integrity. Applications where several factors have an important influence on the POD are investigated in this dissertation. To devise a reliable estimation of the NDT system capability it is necessary to express the POD as a function of all these factors. A multi-parameter POD model is developed. It enables POD to be calculated and expressed as a function of several influencing parameters. The model was tested on the data from the ultrasonic inspection of copper and cast iron components with artificial flaws. Also, a technique to spatially present POD data called the volume POD is developed. The fusion of the POD data coming from multiple inspections of the same component with different sensors is performed to reach the overall POD of the inspection system.

  10. Probability of detection as a function of multiple influencing parameters

    International Nuclear Information System (INIS)

    Pavlovic, Mato

    2014-01-01

    Non-destructive testing is subject to measurement uncertainties. In safety critical applications the reliability assessment of its capability to detect flaws is therefore necessary. In most applications, the flaw size is the single most important parameter that influences the probability of detection (POD) of the flaw. That is why the POD is typically calculated and expressed as a function of the flaw size. The capability of the inspection system to detect flaws is established by comparing the size of reliably detected flaw with the size of the flaw that is critical for the structural integrity. Applications where several factors have an important influence on the POD are investigated in this dissertation. To devise a reliable estimation of the NDT system capability it is necessary to express the POD as a function of all these factors. A multi-parameter POD model is developed. It enables POD to be calculated and expressed as a function of several influencing parameters. The model was tested on the data from the ultrasonic inspection of copper and cast iron components with artificial flaws. Also, a technique to spatially present POD data called the volume POD is developed. The fusion of the POD data coming from multiple inspections of the same component with different sensors is performed to reach the overall POD of the inspection system.

  11. Field size and centring for conventional X-ray equipment

    International Nuclear Information System (INIS)

    Klimpel, H.; Kreienfeld, H.; Overbeck, R.

    1989-01-01

    Since 1973, all X-ray equipment for medical applications in the Federal Republic of Germany has had to be examined according to the requirements of the German ''Rontgenverordnung'' before it is used on patients and after each essential modification of design or construction. These examinations are carried out by inspectors appointed by the authorities, e.g. TUV. The field size adjustment and the centring of the radiation beam in relation to the image reception area is checked, along with other tests. To increase quality assurance in X-ray diagnosis, since the mid-1980s X-ray equipment has also been subject to in-service inspections to an increasing extent. (author)

  12. Inspection of Defect Detection Trials Plate 3 by the Materials Physics Department, RNL

    International Nuclear Information System (INIS)

    Rogerson, A.; Poulter, L.N.J.; Dyke, A.V.; Tickle, H.

    1983-11-01

    In January 1982, Risley Nuclear Laboratories (RNL) performed an inspection of Plate 3 of the UKAEA sponsored Defect Detection Trials. A detailed description is given of the ultrasonic techniques and procedures adopted by RNL for this inspection. 0 0 and 70 0 longitudinal twin crystal probes and 70 0 shear probes were used for flaw detection and lateral dimensioning of defects. The time of flight technique was used for through thickness flaw sizing. Comparison is made of the reported inspection results and flaw sizes and locations obtained from destructive examination. All flaws were detected and the reported through thickness sizes were within +- 2 mm of the intended values. (author)

  13. Optimizing Probability of Detection Point Estimate Demonstration

    Science.gov (United States)

    Koshti, Ajay M.

    2017-01-01

    Probability of detection (POD) analysis is used in assessing reliably detectable flaw size in nondestructive evaluation (NDE). MIL-HDBK-18231and associated mh18232POD software gives most common methods of POD analysis. Real flaws such as cracks and crack-like flaws are desired to be detected using these NDE methods. A reliably detectable crack size is required for safe life analysis of fracture critical parts. The paper provides discussion on optimizing probability of detection (POD) demonstration experiments using Point Estimate Method. POD Point estimate method is used by NASA for qualifying special NDE procedures. The point estimate method uses binomial distribution for probability density. Normally, a set of 29 flaws of same size within some tolerance are used in the demonstration. The optimization is performed to provide acceptable value for probability of passing demonstration (PPD) and achieving acceptable value for probability of false (POF) calls while keeping the flaw sizes in the set as small as possible.

  14. Use of Master Curve technology for assessing shallow flaws in a reactor pressure vessel material

    International Nuclear Information System (INIS)

    Bass, Bennett Richard; Taylor, Nigel

    2006-01-01

    In the NESC-IV project an experimental/analytical program was performed to develop validated analysis methods for transferring fracture toughness data to shallow flaws in reactor pressure vessels subject to biaxial loading in the lower-transition temperature region. Within this scope an extensive range of fracture tests was performed on material removed from a production-quality reactor pressure vessel. The Master Curve analysis of this data is reported and its application to the assessment of the project feature tests on large beam test pieces.

  15. Automated flaw detection scheme for cast austenitic stainless steel weld specimens using Hilbert-Huang transform of ultrasonic phased array data

    International Nuclear Information System (INIS)

    Khan, Tariq; Majumdar, Shantanu; Udpa, Lalita; Ramuhalli, Pradeep; Crawford, Susan; Diaz, Aaron; Anderson, Michael T.

    2012-01-01

    The objective of this work is to develop processing algorithms to detect and localize flaws using ultrasonic phased-array data. Data was collected on cast austenitic stainless stell (CASS) weld specimens onloan from the U.S. nuclear power industry' Pressurized Walter Reactor Owners Group (PWROG) traveling specimen set. Each specimen consists of a centrifugally cast stainless stell (CCSS) pipe section welded to a statically cst(SCSS) or wrought (WRSS) section. The paper presents a novel automated flaw detection and localization scheme using low frequency ultrasonic phased array inspection singals from the weld and heat affected zone of the based materials. The major steps of the overall scheme are preprocessing and region of interest (ROI) detection followed by the Hilbert-Huang transform (HHT) of A-scans in the detected ROIs. HHT offers time-frequency-energy distribution for each ROI. The Accumulation of energy in a particular frequency band is used as a classification feature for the particular ROI

  16. Profitable failure: antidepressant drugs and the triumph of flawed experiments.

    Science.gov (United States)

    McGoey, Linsey

    2010-01-01

    Drawing on an analysis of Irving Kirsch and colleagues' controversial 2008 article in "PLoS [Public Library of Science] Magazine" on the efficacy of SSRI antidepressant drugs such as Prozac, I examine flaws within the methodologies of randomized controlled trials (RCTs) that have made it difficult for regulators, clinicians and patients to determine the therapeutic value of this class of drug. I then argue, drawing analogies to work by Pierre Bourdieu and Michael Power, that it is the very limitations of RCTs -- their inadequacies in producing reliable evidence of clinical effects -- that help to strengthen assumptions of their superiority as methodological tools. Finally, I suggest that the case of RCTs helps to explore the question of why failure is often useful in consolidating the authority of those who have presided over that failure, and why systems widely recognized to be ineffective tend to assume greater authority at the very moment when people speak of their malfunction.

  17. PowerPoint® Presentation Flaws and Failures: A Psychological Analysis

    Directory of Open Access Journals (Sweden)

    Stephen Michael Kosslyn

    2012-07-01

    Full Text Available Electronic slideshow presentations are often faulted anecdotally, but little empirical work has documented their faults. Three studies reported here document psychological causes of their flaws. In Study 1 we found that eight psychological principles are often violated in PowerPoint® presentations, across different fields—for example, academic research presentations generally were no better or worse than business presentations. In Study 2 we found that respondents reported having noticed, and having been annoyed by, specific problems in presentations arising from violations of particular psychological principles. Finally, in Study 3 we showed that observers are not highly accurate in recognizing when slides violated a specific psychological rule. Furthermore, even when they correctly identified the violation, they often could not explain the nature of the problem. In sum, the psychological foundations for effective slideshow presentation design are neither obvious nor necessarily intuitive, and presentation designers in all fields, from education to business to government, could benefit from explicit instruction in relevant aspects of psychology.

  18. Analysis of the failure performance of internally pressurized piping with surface flaws

    International Nuclear Information System (INIS)

    Iorio, A.F; Crespi, J.C.

    1987-01-01

    Due to frequent failures an Atucha I PHWR moderator circuit branch piping, made of stainless steel type AISI 347 (DIN 1.4550), studies have been made, involving the application of several fracture mechanics criteria, in order to determine the conditions of leak-before-break (L.BB) and the critical crack length of the piping. These studies lead to the conclusions that, for a straight pipe of outer diameter of 219 mm and 16 mm wall thickness, with a circumferential flaw and the principal stress being in the bending, the L.BB criteria are satisfied, being the critical crack length of the order of 400 mm. A better mechanical finishing and heat treatment was suggested in order to improve the resistance to crack initiation. (Author)

  19. Preliminary experimental results for a non-intrusive scheme for the detection of flaws in metal pipelines

    Science.gov (United States)

    Aydin, K.; Shinde, S.; Suhail, M.; Vyas, A.; Zieher, K. W.

    2002-05-01

    An acoustic pulse echo scheme for non-intrusive detection of flaws in metal pipelines has been investigated in the laboratory. The primary pulse is generated by a pulsed magnetic field enclosing a short section of a free pipe. The detection is by an electrostatic detector surrounding a short section of the pipe. Reflected pulses from thin areas, with a longitudinal extension of about one pipe radius and a reduction of the wall thickness of 40%, can be detected clearly.

  20. Sample size in usability studies

    NARCIS (Netherlands)

    Schmettow, Martin

    2012-01-01

    Usability studies are important for developing usable, enjoyable products, identifying design flaws (usability problems) likely to compromise the user experience. Usability testing is recommended for improving interactive design, but discovery of usability problems depends on the number of users

  1. A final report on the performance achieved by non-destructive testing of defective butt welds in 50mm thick Type 316 stainless steel

    International Nuclear Information System (INIS)

    Ford, J.; Hudgell, R.J.

    1987-03-01

    This report concludes a programme of work started approximately eight years ago to fabricate deliberately defective austenitic downhand welds in 50 mm thick Type 316 plate and then to examine them non-destructively under ideal laboratory conditions. After completing and reporting the Non-Destructive Testing (NDT), the specimens were subjected to detailed metallography to locate, identify and size all the planned and unplanned flaws in the welds. The report gives the final analysis of this exercise on the relative merits of X-radiography, pulse echo ultrasonics and the time-of-flight technique for the detection, location and sizing of weld flaws. It was found that X-radiography and pulse echo ultrasonics were the best techniques for flaw detection but neither technique was reliable for flaw sizing. The time-of-flight technique provided accurate sizing data but the location of the flaws had to be known to identify the diffracted signals from the extremities of the flaws due to the poor signal to noise ratio. Observations are also reported on the fabrication of deliberately defective austenitic welds for use as reference specimens in the FR programme. (author)

  2. Proposal of reference stress for a surface flaw on a cylindrical component from a review-with-comparison of the local metal loss assessment rule between API 579-1 and the p-M diagram method

    International Nuclear Information System (INIS)

    Oyamada, Kenji; Konosu, Shinji; Ohno, Takashi

    2011-01-01

    The Remaining Strength Factor (RSF) approach in Part 5 of API 579-1/ASME FFS-1 is an assessment method for a cylindrical component with a local metal loss based on surface correction factors. Also, reference stress solutions that are applied in the Failure Assessment Diagram (FAD) method for a cylindrical component with a crack-like flaw are provided in Annex D using surface correction factors. In the recently-developed p-M diagram method, the reference stress solution for local metal loss evaluation in a cylindrical component is derived using bulging factors, which are similar but not identical to the surface correction factors used in API 579-1/ASME FFS-1. This paper describes the results of a comparative study among the RSF approach, reference stress solutions for the FAD method, and the p-M diagram method, in terms of plastic collapse evaluation of a cylindrical component. These results were compared with the FEA and experimental results to confirm how these estimated stresses could be validated. This study also involves recommended reference stress solutions for a cylindrical component with a crack-like flaw or a local metal loss, which should be adopted as fitness-for-service rules, and a discussion on the influence of the design margin of the construction code on allowable flaw depth. - Highlights: → We compared local metal loss assessment rule between API 579-1 and the p-M method. → Experiments and FEA verified the p-M estimate stress state around a flaw accurate. → API 579-1 for local metal loss may underestimate stress state for certain conditions. → Existing reference stresses for crack-like flaws may underestimate stress state too. → We propose the reference stress for a surface flaw subjected to pressure and moment.

  3. Fatigue flaw growth assessment and inclusion of stratification to the LBB assessment

    Energy Technology Data Exchange (ETDEWEB)

    Samohyl, P.

    1997-04-01

    The application of the LBB requires also fatigue flaw growth assessment. This analysis was performed for PWR nuclear power plants types VVER 440/230, VVER 440/213c, VVER 1000/320. Respecting that these NPP`s were designed according to Russian codes that differ from US codes it was needed to compare these approaches. Comparison with our experimental data was accomplished, too. Margins of applicability of the US methods and their modifications for the materials used for construction of Czech and Slovak NPP`s are shown. Computer code accomplishing the analysis according to described method is presented. Some measurement and calculations show that thermal stratifications in horizontal pipelines can lead to additive loads that are not negligible and can be dangerous. An attempt to include these loads induced by steady-state stratification was made.

  4. The Trafigura Case and the System of Prior Informed Consent Under the Basel Convention – A Broken System?

    Directory of Open Access Journals (Sweden)

    Gary Cox

    2010-12-01

    Full Text Available The much publicised Trafigura case of the illegal dumping of hazardous petrochemical waste in and around Abidjan in Côte d’Ivoire has reignited the debate about the international trade in hazardous wastes as well as issues of international corporate social responsibility. The incident, which took place in August 2006, highlights major flaws in the existing international regulatory system, particularly around the prior informed consent (PIC procedure. PIC forms the keystone of the 1989 Basel Convention on the Transboundary Movement of Hazardous Wastes. This article focuses on the effectiveness of the PIC procedures under the Basel Convention in the light of the response to the Trafigura incident. The incident exemplifies the failures of the PIC system under the Basel Convention. It reveals confusion on the part of regulatory authorities, failure to take prompt and appropriate action by the authorities involved, a lack of proactive supervisory intervention on the part of the Basel Secretariat, and a more far-reaching lack of developing country support for capacity building and technical assistance. There is a need for a more thorough-going approach to the assessment of environmentally sound management in developing countries. More fundamentally, meaningful consent encompasses the human rights dimension of hazardous wastes on local communities. Efforts aimed at increasing co-operation between the Basel, Rotterdam, Stockholm and MARPOL Conventions should be fully supported but they should be rapidly complemented by addressing deficiencies at ‘the sharp end’ around compliance and the effectiveness of the current system of PIC. A more integrated multilateral environmental regime dealing with all aspects of hazardous chemicals and wastes is warranted based on a wider focus on common concern for the global environment.

  5. Modelling molecular adsorption on charged or polarized surfaces: a critical flaw in common approaches.

    Science.gov (United States)

    Bal, Kristof M; Neyts, Erik C

    2018-03-28

    A number of recent computational material design studies based on density functional theory (DFT) calculations have put forward a new class of materials with electrically switchable chemical characteristics that can be exploited in the development of tunable gas storage and electrocatalytic applications. We find systematic flaws in almost every computational study of gas adsorption on polarized or charged surfaces, stemming from an improper and unreproducible treatment of periodicity, leading to very large errors of up to 3 eV in some cases. Two simple corrective procedures that lead to consistent results are proposed, constituting a crucial course correction to the research in the field.

  6. Application of a finite element method to leak before break (LBB) of a heat exchanger

    International Nuclear Information System (INIS)

    Lee, Choon-Yeol; Kwon, Jae-Do; Lee, Yong-Sun

    2003-01-01

    The leak before break (LBB) concept is difficult to apply to a structure with a thin tube that is immersed in a water environment. A heat exchanger in a nuclear power plant is such a structure. The present paper addresses an application of the LBB concept to a heat exchanger in a nuclear power plant. The minimum leaked coolant amount containing the radioactive material which can activate the radiation detector device installed near the heat exchanger is assumed. The postulated initial flaw size that cannot grow to the critical flaw size within the time period to activate the radiation detector is justified. In this case, the radiation detector can activate the warning signal caused by coolant leakage from initially postulated flaws of the heat exchanger. The nuclear plant can safely shutdown when this occurs. Since the postulated initial flaw size can not grow to the critical flaw size, the structural integrity of the heat exchanger is not impeded. Particularly the informational scenario presented in this paper discusses an actual nuclear plant. (author)

  7. Methodological Flaws, Conflicts of Interest, and Scientific Fallacies: Implications for the Evaluation of Antidepressants' Efficacy and Harm.

    Science.gov (United States)

    Hengartner, Michael P

    2017-01-01

    In current psychiatric practice, antidepressants are widely and with ever-increasing frequency prescribed to patients. However, several scientific biases obfuscate estimates of antidepressants' efficacy and harm, and these are barely recognized in treatment guidelines. The aim of this mini-review is to critically evaluate the efficacy and harm of antidepressants for acute and maintenance treatment with respect to systematic biases related to industry funding and trial methodology. Narrative review based on a comprehensive search of the literature. It is shown that the pooled efficacy of antidepressants is weak and below the threshold of a minimally clinically important change once publication and reporting biases are considered. Moreover, the small mean difference in symptom reductions relative to placebo is possibly attributable to observer effects in unblinded assessors and patient expectancies. With respect to trial dropout rates, a hard outcome not subjected to observer bias, no difference was observed between antidepressants and placebo. The discontinuation trials on the efficacy of antidepressants in maintenance therapy are systematically flawed, because in these studies, spontaneous remitters are excluded, whereas half of all patients who remitted on antidepressants are abruptly switched to placebo. This can cause a severe withdrawal syndrome that is easily misdiagnosed as a relapse when assessed on subjective symptom rating scales. In accordance, the findings of naturalistic long-term studies suggest that maintenance therapy has no clear benefit, and non-drug users do not show increased recurrence rates. Moreover, a growing body of evidence from hundreds of randomized controlled trials suggests that antidepressants cause suicidality, but this risk is underestimated because data from industry-funded trials are systematically flawed. Unselected, population-wide observational studies indicate that depressive patients who use antidepressants are at an increased

  8. Methodological Flaws, Conflicts of Interest, and Scientific Fallacies: Implications for the Evaluation of Antidepressants’ Efficacy and Harm

    Directory of Open Access Journals (Sweden)

    Michael P. Hengartner

    2017-12-01

    Full Text Available BackgroundIn current psychiatric practice, antidepressants are widely and with ever-increasing frequency prescribed to patients. However, several scientific biases obfuscate estimates of antidepressants’ efficacy and harm, and these are barely recognized in treatment guidelines. The aim of this mini-review is to critically evaluate the efficacy and harm of antidepressants for acute and maintenance treatment with respect to systematic biases related to industry funding and trial methodology.MethodsNarrative review based on a comprehensive search of the literature.ResultsIt is shown that the pooled efficacy of antidepressants is weak and below the threshold of a minimally clinically important change once publication and reporting biases are considered. Moreover, the small mean difference in symptom reductions relative to placebo is possibly attributable to observer effects in unblinded assessors and patient expectancies. With respect to trial dropout rates, a hard outcome not subjected to observer bias, no difference was observed between antidepressants and placebo. The discontinuation trials on the efficacy of antidepressants in maintenance therapy are systematically flawed, because in these studies, spontaneous remitters are excluded, whereas half of all patients who remitted on antidepressants are abruptly switched to placebo. This can cause a severe withdrawal syndrome that is easily misdiagnosed as a relapse when assessed on subjective symptom rating scales. In accordance, the findings of naturalistic long-term studies suggest that maintenance therapy has no clear benefit, and non-drug users do not show increased recurrence rates. Moreover, a growing body of evidence from hundreds of randomized controlled trials suggests that antidepressants cause suicidality, but this risk is underestimated because data from industry-funded trials are systematically flawed. Unselected, population-wide observational studies indicate that depressive patients

  9. Beneficial effects of microwave-assisted heating versus conventional heating in noble metal nanoparticle synthesis.

    Science.gov (United States)

    Dahal, Naween; García, Stephany; Zhou, Jiping; Humphrey, Simon M

    2012-11-27

    An extensive comparative study of the effects of microwave versus conventional heating on the nucleation and growth of near-monodisperse Rh, Pd, and Pt nanoparticles has revealed distinct and preferential effects of the microwave heating method. A one-pot synthetic method has been investigated, which combines nucleation and growth in a single reaction via precise control over the precursor addition rate. Using this method, microwave-assisted heating enables the convenient preparation of polymer-capped nanoparticles with improved monodispersity, morphological control, and higher crystallinity, compared with samples heated conventionally under otherwise identical conditions. Extensive studies of Rh nanoparticle formation reveal fundamental differences during the nucleation phase that is directly dependent on the heating method; microwave irradiation was found to provide more uniform seeds for the subsequent growth of larger nanostructures of desired size and surface structure. Nanoparticle growth kinetics are also markedly different under microwave heating. While conventional heating generally yields particles with mixed morphologies, microwave synthesis consistently provides a majority of tetrahedral particles at intermediate sizes (5-7 nm) or larger cubes (8+ nm) upon further growth. High-resolution transmission electron microscopy indicates that Rh seeds and larger nanoparticles obtained from microwave-assisted synthesis are more highly crystalline and faceted versus their conventionally prepared counterparts. Microwave-prepared Rh nanoparticles also show approximately twice the catalytic activity of similar-sized conventionally prepared particles, as demonstrated in the vapor-phase hydrogenation of cyclohexene. Ligand exchange reactions to replace polymer capping agents with molecular stabilizing agents are also easily facilitated under microwave heating, due to the excitation of polar organic moieties; the ligand exchange proceeds with excellent retention of

  10. FDAAA legislation is working, but methodological flaws undermine the reliability of clinical trials: a cross-sectional study

    OpenAIRE

    Douglas H. Marin dos Santos; Álvaro N. Atallah

    2015-01-01

    The relationship between clinical research and the pharmaceutical industry has placed clinical trials in jeopardy. According to the medical literature, more than 70% of clinical trials are industry-funded. Many of these trials remain unpublished or have methodological flaws that distort their results. In 2007, it was signed into law the Food and Drug Administration Amendments Act (FDAAA), aiming to provide publicly access to a broad range of biomedical information to be made available on the ...

  11. Statistically based reevaluation of PISC-II round robin test data

    International Nuclear Information System (INIS)

    Heasler, P.G.; Taylor, T.T.; Doctor, S.R.

    1993-05-01

    This report presents a re-analysis of an international PISC-II (Programme for Inspection of Steel Components, Phase 2) round-robin inspection results using formal statistical techniques to account for experimental error. The analysis examines US team performance vs. other participants performance,flaw sizing performance and errors associated with flaw sizing, factors influencing flaw detection probability, performance of all participants with respect to recently adopted ASME Section 11 flaw detection performance demonstration requirements, and develops conclusions concerning ultrasonic inspection capability. Inspection data were gathered on four heavy section steel components which included two plates and two nozzle configurations

  12. Microwave sintering of nano size powder β-TCP bioceramics

    Directory of Open Access Journals (Sweden)

    Mirhadi B.

    2014-01-01

    Full Text Available A nano sized beta tricalcium phosphate (β-TCP powder was conventional sintered (CS and microwave sintered (MW, in order to obtain dense β-TCP ceramics. In this work the effect of microwave sintering conditions on the microstructure, phase composition and mechanical properties of materials based on tricalcium phosphate (TCP was investigated by SEM (scanning electron microscopyand XRD(X-ray diffraction and then compared with conventional sintered samples. Nano-size β-TCP powders with average grain size of 80 nm were prepared by the wet chemical precipitation method with calcium nitrate and diammonium hydrogen phosphate as calcium and phosphorus precursors, respectively. The precipitation process employed was also found to be suitable for the production of submicrometre β-TCP powder in situ. The β-TCP samples microwave (MW sintered for 15 min at 1100°C, with average grain size of 3μm, showed better densification, higher density and certainly higher hardness than samples conventionally sintered for 2 h at the same temperature. By comparing sintered and MW sintered β-TCP samples, it was concluded that MW sintered β-TCP samples have superior mechanical properties.

  13. Flaws in design, analysis and interpretation of Pfizer's antifungal trials of voriconazole and uncritical subsequent quotations.

    Science.gov (United States)

    Jørgensen, Karsten J; Johansen, Helle Krogh; Gøtzsche, Peter C

    2006-01-19

    We have previously described how a series of trials sponsored by Pfizer of its antifungal drug, fluconazole, in cancer patients with neutropenia handicapped the control drug, amphotericin B, by flaws in design and analysis. We describe similar problems in two pivotal trials of Pfizer's new antifungal agent, voriconazole, published in a prestigious journal. In a non-inferiority trial, voriconazole was significantly inferior to liposomal amphothericin B, but the authors concluded that voriconazole was a suitable alternative. The second trial used amphothericin B deoxycholate as comparator, but handicapped the drug by not requiring pre-medication to reduce infusion-related toxicity or substitution with electrolytes and fluid to reduce nephrotoxicity, although the planned duration of treatment was 84 days. Voriconazole was given for 77 days on average, but the comparator for only 10 days, which precludes a meaningful comparison. In a random sample of 50 references to these trials, we found that the unwarranted conclusions were mostly uncritically propagated. It was particularly surprising that relevant criticism raised by the FDA related to the first trial was only quoted once, and that none of the articles noted the obvious flaws in the design of the second trial. We suggest that editors ensure that the abstract reflects fairly on the remainder of the paper, and that journals do not impose any time limit for accepting letters that point out serious weaknesses in a study that have not been noted before.

  14. Sampling flies or sampling flaws? Experimental design and inference strength in forensic entomology.

    Science.gov (United States)

    Michaud, J-P; Schoenly, Kenneth G; Moreau, G

    2012-01-01

    Forensic entomology is an inferential science because postmortem interval estimates are based on the extrapolation of results obtained in field or laboratory settings. Although enormous gains in scientific understanding and methodological practice have been made in forensic entomology over the last few decades, a majority of the field studies we reviewed do not meet the standards for inference, which are 1) adequate replication, 2) independence of experimental units, and 3) experimental conditions that capture a representative range of natural variability. Using a mock case-study approach, we identify design flaws in field and lab experiments and suggest methodological solutions for increasing inference strength that can inform future casework. Suggestions for improving data reporting in future field studies are also proposed.

  15. Temperature dependence of luminescence for different surface flaws in high purity silica glass

    International Nuclear Information System (INIS)

    Fournier, J.; Grua, P.; Neauport, J.; Fargin, E.; Jubera, V.; Talaga, D.; Del Guerzo, A.; Raffy, G.; Jouannigot, S.

    2013-01-01

    In situ temperature dependence of the Photoluminescence under 325 nm irradiation is used to investigate defect populations existing in different surface flaws in high purity fused silica. Five photoluminescence bands peaking at 1.9, 2.1, 2.3, 2.63 and 3.11 eV have been detected in the spectral area ranging from 1.6 up to 3.6 eV. The Gaussian deconvolution of spectra allows dividing the five luminescence bands in two categories. The former corresponds to bands showing a significant intensity enhancement while temperature decreases; the latter corresponds to bands remaining insensitive to the temperature evolution. Such a behavior brings new information on defects involved in laser damage mechanism at 351 nm in nanosecond regime. (authors)

  16. Fatigue test results of straight pipe with flaws in inner surface

    International Nuclear Information System (INIS)

    Shibata, Katsuyuki; Oba, Toshihiro; Kawamura, Takaichi; Yokoyama, Norio; Miyazono, Shohachiro

    1981-01-01

    Fatigue and fracture tests of piping models with flaws in the inner surface were carried out to investigate the fatigue crack growth, coalescence of multiple cracks and fracture behavior. Two straight test pipes with and without weldment in the test section of SUS304L stainless steel were tested under almost the same test conditions. Three artificial defects were machined in the inner surface of the test section of the test pipes. The fatigue test were performed untill the cracks coalesced and grew through the thickness. Subsequently, a static load was imposed on test pipe which contained a large crack in the test section. The test results show that the fatigue crack growth is slower than that predicted by the method specified in the Section XI of ASME Boiler and Pressure Vessel Code, and that the test pipes can endure more than the static load of 3Sm without an unstable fracture. (author)

  17. Gun Shows and Gun Violence: Fatally Flawed Study Yields Misleading Results

    Science.gov (United States)

    Hemenway, David; Webster, Daniel; Pierce, Glenn; Braga, Anthony A.

    2010-01-01

    A widely publicized but unpublished study of the relationship between gun shows and gun violence is being cited in debates about the regulation of gun shows and gun commerce. We believe the study is fatally flawed. A working paper entitled “The Effect of Gun Shows on Gun-Related Deaths: Evidence from California and Texas” outlined this study, which found no association between gun shows and gun-related deaths. We believe the study reflects a limited understanding of gun shows and gun markets and is not statistically powered to detect even an implausibly large effect of gun shows on gun violence. In addition, the research contains serious ascertainment and classification errors, produces results that are sensitive to minor specification changes in key variables and in some cases have no face validity, and is contradicted by 1 of its own authors’ prior research. The study should not be used as evidence in formulating gun policy. PMID:20724672

  18. Probabilistic assessment of leak-before-break

    International Nuclear Information System (INIS)

    Bush, S.H.

    1984-01-01

    A summary of results illustrating what might be derived from a probabilistic risk assessment (PRA) study follows. The failure probabilities for larger sizes of nuclear piping are considered to be in the range of 10 -4 to 10 -6 per reactor-year (exclusive of intergranular stress corrosion cracking (IGSCC). Smaller pipe sizes, of lesser safety significance, have much higher failure rates. In BWRs, IGSCC can cause failure rates much higher than 10 -4 in piping 4 to 10 in. in size. Suggested failure mechanisms apply in most instances, exclusive of IGSCC. Catastrophic failures would appear more likely from operator error or design and construction errors (water hammer, improper handling of dynamic loads, and undetected fabrication defects) rather than conventional flaw initiation and growth by fatigue

  19. Large-image intensifier photofluorography and conventional radiography in pulmonary emphysema

    International Nuclear Information System (INIS)

    Manninen, H.; Partanen, K.; Soimakallio, S.; Rytkoenen, H.

    1988-01-01

    Large-screen image intensifier (II) photofluorography was compared with full-size screen-film chest radiography in the diagnosis of pulmonary emphysema in 84 patients. Photospot films and conventional radiographs were interpreted independently by three radiologists. Computed tomography (CT) was used as an independent reference technique, and diagnostic performance of chest radiography in various CT patterns of emphysema was evaluated. The difference in diagnostic sensitivity for emphysema in favor of conventional chest radiography over photofluorography (0.65 versus 0.56) was statistically significant (p < 0.05). Specificity of the imaging modalities was equal: 0.78 in full-size films and 0.77 in photospot films. All CT patterns of emphysema had great false negative response rates in chest radiography, which is an inaccurate technique for the diagnosis of emphysema. CT is required for reliable radiologic evaluation of emphysema. (orig.)

  20. Stent sizing strategies in renal artery stenting: the comparison of conventional invasive renal angiography with renal computed tomographic angiography.

    Science.gov (United States)

    Kadziela, Jacek; Michalowska, Ilona; Pregowski, Jerzy; Janaszek-Sitkowska, Hanna; Lech, Katarzyna; Kabat, Marek; Staruch, Adam; Januszewicz, Andrzej; Witkowski, Adam

    2016-01-01

    Randomized trials comparing invasive treatment of renal artery stenosis with standard pharmacotherapy did not show substantial benefit from revascularization. One of the potential reasons for that may be suboptimal procedure technique. To compare renal stent sizing using two modalities: three-dimensional renal computed tomography angiography (CTA) versus conventional angiography. Forty patients (41 renal arteries), aged 65.1 ±8.5 years, who underwent renal artery stenting with preprocedural CTA performed within 6 months, were retrospectively analyzed. In CTA analysis, reference diameter (CTA-D) and lesion length (CTA_LL) were measured and proposed stent diameter and length were recorded. Similarly, angiographic reference diameter (ANGIO_D) and lesion length (ANGIO_LL) as well as proposed stent dimensions were obtained by visual estimation. The median CTA_D was 0.5 mm larger than the median ANGIO_D (p < 0.001). Also, the proposed stent diameter in CTA evaluation was 0.5 mm larger than that in angiography (p < 0.0001). The median CTA_LL was 1 mm longer than the ANGIO_LL (p = NS), with significant correlation of these variables (r = 0.66, p < 0.0001). The median proposed stent length with CTA was equal to that proposed with angiography. The median diameter of the implanted stent was 0.5 mm smaller than that proposed in CTA (p < 0.0005) and identical to that proposed in angiography. The median length of the actual stent was longer than that proposed in angiography (p = 0.0001). Renal CTA has potential advantages as a tool adjunctive to angiography in appropriate stent sizing. Careful evaluation of the available CTA scans may be beneficial and should be considered prior to the planned procedure.

  1. Beyond the conventional: meeting the challenges of landscape governance within the European Landscape Convention?

    Science.gov (United States)

    Scott, Alister

    2011-10-01

    Academics and policy makers seeking to deconstruct landscape face major challenges conceptually, methodologically and institutionally. The meaning(s), identity(ies) and management of landscape are controversial and contested. The European Landscape Convention provides an opportunity for action and change set within new governance agendas addressing interdisciplinarity and spatial planning. This paper critically reviews the complex web of conceptual and methodological frameworks that characterise landscape planning and management and then focuses on emerging landscape governance in Scotland within a mixed method approach involving policy analyses, semi-structured interviews and best practice case studies. Using Dower's (2008) criteria from the Articles of the European Landscape Convention, the results show that whilst some progress has been made in landscape policy and practice, largely through the actions of key individuals and champions, there are significant institutional hurdles and resource limitations to overcome. The need to mainstream positive landscape outcomes requires a significant culture change where a one-size-fits-all approach does not work. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. The Seductive-Plausibility of Patent Hold-Up Myths — A Flawed Historiography of Patents

    DEFF Research Database (Denmark)

    Howells, John; Katznelson, Ron D

    In previous work we have shown that a flawed historiography of patents continues to be the basis for patent policy advocacy. We set out objective standards of evidence that allegations of development block due to assertion of patents must meet. We show the extent of the errors in the historical...... record in the aircraft, automobile, radio and incandescent lamp technologies. We then evaluate how they measure against the objective standards. We find many simple errors and that an absence of indicia of development block characterise scholarship alleging that assertion of patents blocked development...... of multiple case studies subjected to such standards justifies the rebuttable presumption that “pioneer patents have never blocked development”....

  3. Fracture healing: direct magnification versus conventional radiography

    International Nuclear Information System (INIS)

    Link, T.M.; Kessler, T.; Lange, T.; Overbeck, J.; Fiebich, M.; Peters, P.E.

    1994-01-01

    The aim of the study was to evaluate the potential of magnification radiography in diagnosing fracture healing and assessing its complications. Seventy-three patients with fractures or who had undergone osteotomy were radiographed with both conventional (non-magnified) and magnification (5-fold) techniques. Since 10 patients were radiographed twice and 1 three times, 83 radiographs using each technique were obtained. All radiographs were analysed and the findings correlated with the patients' follow-up studies. The microfocal X-ray unit used for magnification radiography had a focal spot size of 20-130 μm. As an imaging system, digital luminescence radiography was employed with magnification, while normal film-screen systems were used with conventional radiography. Magnification radiography proved superior to conventional radiography in 47% of cases: endosteal and periosteal callus formations were seen earlier and better in 26 cases, and osseous union could be evaluated with greater certainty in 33 cases. In 49% of cases magnification radiography was equal and in 4% inferior to conventional radiography. Additionally an ''inter-observer analysis'' was carried out. Anatomical and pathological structures were classified into one of four grades. Results were significantly (P < 0.01) better using magnification radiography. We conclude that the magnification technique is a good method for monitoring fracture healing in its early stages. (orig.)

  4. Assessment of crack-like flaws - Comparison of procedures in BS 7910, API 579-1/ASME FFS-1, RSE-M AND FITNET

    International Nuclear Information System (INIS)

    Chaudouet, A.

    2007-01-01

    Among all Fitness For Service Codes enabling to assess flaws in metallic structures and to evaluate their remaining life, new editions of the most important ones at the international level have been issued recently. The latest edition of BS 7910 in United Kingdom has been released in October 2005. In the USA, API and ASME have edited a new standard in 2007, API579-1/ASME FFS-1, dedicated to pressure equipment. In France, the rules concerning the of Light Water Reactors, RSE-M, have been updated in 2005. Finally, in Europe, the FITNET network is writing a document based on BS 7910 but extended with the most recent results in this domain. Rules given in these documents to assess crack-like flaws with respect to fracture and fatigue propagation are presented. They are compared in order to point out the most interesting aspects of each ones and to identify those which could be generalized. An example assessed with the above mentioned 'Codes' enlightens the differences in the results with respect to the 'Code' used. (author) [fr

  5. A review of recent advances in the role of leak-before-break concept in assessments of flaws detected in CANDU pressure tubes

    International Nuclear Information System (INIS)

    Crespi, J.C.

    1994-01-01

    If a crack develops in a pressure tube, the leak is detected by monitoring the moisture in the gas annulus and the reactor shutdown before it becomes unstable. Because the delayed hydride cracking has been associated to date with all pressure tube failures at a rolled joints, the delayed hydride cracking is considered to be the dominant mecanism by which the flaws can grow to a size which exceeds the critical crack length. For the delayed hydride cracking failure mode leak-before-break is used as defense in depth against unstable rupture. The methodology depends on showing than the time available to detect a delayed hydride crack is much greater that the time required to detect it in the gas annulus. The time available is estimated from measurements of: (a) axial delayed hydride crack growth rates, (b) crack lengths at penetrations of the tube wall when leakage first occurs and (c) critical crack lengths at instability when a crack is growing by the delayed hydride cracking mechanism. A review of recent advances in the experimental data used in leak-before-break assessment are presented and discussed. (author). 17 refs, 6 figs, 2 tabs

  6. Conventional laparoscopic adrenalectomy versus laparoscopic adrenalectomy through mono port.

    Science.gov (United States)

    Kwak, Ha Na; Kim, Jun Ho; Yun, Ji-Sup; Son, Byung Ho; Chung, Woong Youn; Park, Yong Lai; Park, Chan Heun

    2011-12-01

    A standard procedure for single-port laparoscopic adrenal surgery has not been established. We retrospectively investigated intraoperative and postoperative outcomes after laparoscopic adrenalectomy through mono port (LAMP) and conventional laparoscopic adrenalectomy to assess the feasibility of LAMP. Between March 2008 and December 2009, 22 patients underwent adrenalectomy at the Department of Surgery, Kangbuk Samsung Hospital. Twelve patients underwent conventional laparoscopic adrenalectomy and 10 patients underwent LAMP. The same surgeon performed all the surgeries. The 2 procedures were compared in terms of tumor size, operating time, time to resumption of a soft diet, length of hospital day, and postoperative complications. The 2 groups were similar in terms of tumor size (30.08 vs. 32.50 mm, P=0.796), mean operating time (112.9 vs. 127 min, P=0.316), time to resumption of a soft diet (1.25 vs. 1.30 d, P=0.805), and length of hospital day (4.08 vs. 4.50 d, P=0.447). Despite 1 patient in the LAMP group experiencing ipsilateral pleural effusion as a postoperative complication, this parameter was similar for the 2 groups (P=0.195). Perioperative mortality, blood transfusion, and conversion to open surgery did not occur. Perioperative outcomes for LAMP were similar to those for conventional laparoscopic adrenalectomy. LAMP appears to be a feasible option for adrenalectomy.

  7. Phase size distribution in WC/Co hardmetal

    International Nuclear Information System (INIS)

    Roebuck, B.; Bennett, E.G.

    1986-01-01

    A high-resolution field emission scanning electron microscope was used to perform accurate quantitative metallography on a variety of WC/Co hardmetals. Particular attention was paid to obtaining the mean size and size distribution of the cobalt phase by linear analysis. Cobalt regions are frequently submicron and difficult to resolve adequately by conventional methods. The WC linear intercept distributions, and contiguity were also measured at the same time. The results were used to examine the validity of theoretic derivations of cobalt intercept size

  8. Effects of anion size and concentration on electrolyte invasion into molecular-sized nanopores

    International Nuclear Information System (INIS)

    Liu Ling; Chen Xi; Kim, Taewan; Han Aijie; Qiao Yu

    2010-01-01

    When an electrolyte solution is pressurized into a molecular-sized nanopore, oppositely charged ions are strongly inclined to aggregate, which effectively reduces the ion solubility to zero. Inside the restrictive confinement, a unique quasi-periodic structure is formed where the paired ion couples are periodically separated by a number of water molecules. As the anion size or ion concentration varies, the geometrical characteristics of the confined ion structure would change considerably, leading to a significant variation in the transport pressure. Both experimental and simulation results indicate that, contradictory to the prediction of conventional theory, infiltration pressure decreases as the anions become larger.

  9. The Transmission of Monetary Policy through Conventional and Islamic Banks

    NARCIS (Netherlands)

    Zaheer, S.; Ongena, S.; van Wijnbergen, S.J.G.

    2011-01-01

    We investigate the differences in banks’ responses to monetary policy shocks across bank size, liquidity, and type, i.e., conventional versus Islamic, in Pakistan between 2002:II to 2010:I. We find that following a monetary contraction, small banks with liquid balance sheets cut their lending less

  10. The transmission of monetary policy through conventional and islamic banks

    NARCIS (Netherlands)

    Zaheer, S.; Ongena, S.; van Wijnbergen, S.

    2012-01-01

    We investigate the differences in banks' responses to monetary policy shocks across bank size, liquidity, and type, i.e., conventional versus Islamic, in Pakistan between 2002:II to 2010:I. We find that following a monetary contraction, small banks with liquid balance sheets cut their lending less

  11. Optimal sample size for probability of detection curves

    International Nuclear Information System (INIS)

    Annis, Charles; Gandossi, Luca; Martin, Oliver

    2013-01-01

    Highlights: • We investigate sample size requirement to develop probability of detection curves. • We develop simulations to determine effective inspection target sizes, number and distribution. • We summarize these findings and provide guidelines for the NDE practitioner. -- Abstract: The use of probability of detection curves to quantify the reliability of non-destructive examination (NDE) systems is common in the aeronautical industry, but relatively less so in the nuclear industry, at least in European countries. Due to the nature of the components being inspected, sample sizes tend to be much lower. This makes the manufacturing of test pieces with representative flaws, in sufficient numbers, so to draw statistical conclusions on the reliability of the NDT system under investigation, quite costly. The European Network for Inspection and Qualification (ENIQ) has developed an inspection qualification methodology, referred to as the ENIQ Methodology. It has become widely used in many European countries and provides assurance on the reliability of NDE systems, but only qualitatively. The need to quantify the output of inspection qualification has become more important as structural reliability modelling and quantitative risk-informed in-service inspection methodologies become more widely used. A measure of the NDE reliability is necessary to quantify risk reduction after inspection and probability of detection (POD) curves provide such a metric. The Joint Research Centre, Petten, The Netherlands supported ENIQ by investigating the question of the sample size required to determine a reliable POD curve. As mentioned earlier manufacturing of test pieces with defects that are typically found in nuclear power plants (NPPs) is usually quite expensive. Thus there is a tendency to reduce sample sizes, which in turn increases the uncertainty associated with the resulting POD curve. The main question in conjunction with POS curves is the appropriate sample size. Not

  12. Testing of VVER reactor pressure vessels by TOFD method

    International Nuclear Information System (INIS)

    Skala, Z.; Vit, J.

    2002-01-01

    The Time of Flight Diffraction Method (TOFD) - one of the new testing methods capable to obtain the real dimensions of flaws - is presented in the paper.The laboratory experiments on samples with artificial flaws and samples with artificially prepared cracks confirmed the high accuracy of flaw through wall extent sizing by TOFD. This accuracy was confirmed by qualification of methods and systems used by Skoda JS for the in-service inspections of WWER 440 vessel circumferential weld. The qualification also confirmed the ability of TOFD to detect reliably flaws, which can are not reliably detected by standard pulse echo testing. Based on the result of experiments and qualification, the TOFD method shall be used routinely by Skoda JS for the inspection of vessel circumferential welds root area and for sizing of flaws exceeding the acceptance level

  13. Electrophoretically active sol-gel processes to backfill, seal, and/or densify porous, flawed, and/or cracked coatings on electrically conductive material

    Science.gov (United States)

    Panitz, Janda K.; Reed, Scott T.; Ashley, Carol S.; Neiser, Richard A.; Moffatt, William C.

    1999-01-01

    Electrophoretically active sol-gel processes to fill, seal, and/or density porous, flawed, and/or cracked coatings on electrically conductive substrates. Such coatings may be dielectrics, ceramics, or semiconductors and, by the present invention, may have deposited onto and into them sol-gel ceramic precursor compounds which are subsequently converted to sol-gel ceramics to yield composite materials with various tailored properties.

  14. Prospective study of irradiation and magnification on a pelvic imaging: EOS system versus conventional radiography

    International Nuclear Information System (INIS)

    Demoulin, Loic

    2015-01-01

    The pelvic x-ray is essential for the orthopedic practise. Recently, EOS system has been developed with technology to limit irradiation and theoretically not create magnification. The objective of this study was to evaluate the EOS system realizing a pelvic x-ray. All patients who underwent hip replacement between September 2014 and April 2015 have benefited pelvis radiograph with the 2 techniques, after surgery. The size of the head was measured with both techniques and compared to the established size. Irradiation of each technique was listed. A correlation study was carried out with the body mass index (BMI) of the patient. Irradiation was significantly greater with conventional radiography than with the EOS system: PDS of conventional radiography = 15.0 (10.5; 25.2) against the EOS system PDS = 8.2 (7.1; 9.7), p ≤0.0001. It was found a significant correlation between BMI and irradiation, particularly with conventional radiography. About expansion, the EOS system not create any except in 4 cases, unlike the conventional radiograph. The EOS system significantly decreases irradiation in all patients, compared to the conventional radiography, and it do not create magnification when realizing a pelvic x-ray, even in overweight patients [fr

  15. Modifications in Glass Ionomer Cements: Nano-Sized Fillers and Bioactive Nanoceramics

    Directory of Open Access Journals (Sweden)

    Shariq Najeeb

    2016-07-01

    Full Text Available Glass ionomer cements (GICs are being used for a wide range of applications in dentistry. In order to overcome the poor mechanical properties of glass ionomers, several modifications have been introduced to the conventional GICs. Nanotechnology involves the use of systems, modifications or materials the size of which is in the range of 1–100 nm. Nano-modification of conventional GICs and resin modified GICs (RMGICs can be achieved by incorporation of nano-sized fillers to RMGICs, reducing the size of the glass particles, and introducing nano-sized bioceramics to the glass powder. Studies suggest that the commercially available nano-filled RMGIC does not hold any significant advantage over conventional RMGICs as far as the mechanical and bonding properties are concerned. Conversely, incorporation of nano-sized apatite crystals not only increases the mechanical properties of conventional GICs, but also can enhance fluoride release and bioactivity. By increasing the crystallinity of the set matrix, apatites can make the set cement chemically more stable, insoluble, and improve the bond strength with tooth structure. Increased fluoride release can also reduce and arrest secondary caries. However, due to a lack of long-term clinical studies, the use of nano-modified glass ionomers is still limited in daily clinical dentistry. In addition to the in vitro and in vivo studies, more randomized clinical trials are required to justify the use of these promising materials. The aim of this paper is to review the modification performed in GIC-based materials to improve their physicochemical properties.

  16. Strategic Munitions Planning in Non-Conventional Asymmetric Operations

    Science.gov (United States)

    2010-04-01

    Conventional Asymmetric Operations RTO-MP-SAS-081 16 - 3 with a clearly structured, sized and located military force. The principles of Lanchester ...stockpiles and calculated munitions requirements. REFERENCES [1] Prague Summit Declaration, November 2002. [2] J. Fletcher, The Lanchester Legacy... Lanchester battles, Journal of the Operational Research Society, Vol. 50 No. 3, March 1999. [13] W. Freeman, A Study of Ammunition Consumption, Master of

  17. Security Flaws in an Efficient Pseudo-Random Number Generator for Low-Power Environments

    Science.gov (United States)

    Peris-Lopez, Pedro; Hernandez-Castro, Julio C.; Tapiador, Juan M. E.; Millán, Enrique San; van der Lubbe, Jan C. A.

    In 2004, Settharam and Rhee tackled the design of a lightweight Pseudo-Random Number Generator (PRNG) suitable for low-power environments (e.g. sensor networks, low-cost RFID tags). First, they explicitly fixed a set of requirements for this primitive. Then, they proposed a PRNG conforming to these requirements and using a free-running timer [9]. We analyze this primitive discovering important security faults. The proposed algorithm fails to pass even relatively non-stringent batteries of randomness such as ENT (i.e. a pseudorandom number sequence test program). We prove that their recommended PRNG has a very short period due to the flawed design of its core. The internal state can be easily revealed, compromising its backward and forward security. Additionally, the rekeying algorithm is defectively designed mainly related to the unpractical value proposed for this purpose.

  18. The transmission of monetary policy through conventional and Islamic banks

    NARCIS (Netherlands)

    Zaheer, S.; Ongena, S.; van Wijnbergen, S.J.G.

    2013-01-01

    We investigate the differences in banks’ responses to monetary policy shocks across bank size, liquidity, and type—i.e., conventional versus Islamic—in Pakistan between 2002:Q2 and 2010:Q1. We find that following a monetary contraction, small banks with liquid balance sheets cut their lending less

  19. 15 CFR 742.18 - Chemical Weapons Convention (CWC or Convention).

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Chemical Weapons Convention (CWC or... REGULATIONS CONTROL POLICY-CCL BASED CONTROLS § 742.18 Chemical Weapons Convention (CWC or Convention). States... Use of Chemical Weapons and on Their Destruction, also known as the Chemical Weapons Convention (CWC...

  20. Comparison of Conventional and Semi-Conventional Management ...

    African Journals Online (AJOL)

    Comparison of Conventional and Semi-Conventional Management Systems on the Performance and Carcass Yield of Broiler Chickens. ... TO AFRICAN RESEARCH. AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING AJOL · RESOURCES ... Journal Home > Vol 20, No 1 (2018) >. Log in or ...

  1. Unit size limitations in smaller power systems

    International Nuclear Information System (INIS)

    McConnach, J.S.

    1975-01-01

    The developing nations have generally found it an economic necessity to accept the minimum commercial size limit of 600 MWe. Smaller reactor sizes tendered as 'one off' specials carry high specific cost penalties which considerably weaken the competitiveness of nuclear versus conventional thermal plants. The revised IAEA market survey for nuclear power in developing countries (1974 edition) which takes account of the recent heavy escalation in oil prices, indicates a reasonable market for smaller size reactors in the range 150 MWe to 400 MWe, but until this market is approached seriously by manufacturers, the commercial availability and economic viability of smaller size reactors remains uncertain. (orig.) [de

  2. Ductile growth of crack like flawing during hydrotest; Propagacao dutil de defeitos planares durante teste hidrostatico

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Jose C; Donato, Guilherme V [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES); Silva, Marcinei S. da; Bastian, Fernando L [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE); Lima, Romulo S. de [PETROBRAS/AB-RE, Rio de Janeiro, RJ (Brazil)

    2003-07-01

    In this paper effects of hydrostatic testing on ductile propagation of crack like flaw defects were evaluated in API X-60 steel. The model used was based on the J-tearing theory, supported by elastic - plastic fracture mechanics. The J-initiation resistance values (JIc) were determined by fracture mechanic tests using potential drop technique and compact test specimen. The JIc values were also determined from flow stress and Charpy V-notch at plateau, which are both usually available in mill-test data. Despite of being based on small database it seems it could be extended and it will be useful for future analysis. (author)

  3. Investigation into the use of smartphone as a machine vision device for engineering metrology and flaw detection, with focus on drilling

    Science.gov (United States)

    Razdan, Vikram; Bateman, Richard

    2015-05-01

    This study investigates the use of a Smartphone and its camera vision capabilities in Engineering metrology and flaw detection, with a view to develop a low cost alternative to Machine vision systems which are out of range for small scale manufacturers. A Smartphone has to provide a similar level of accuracy as Machine Vision devices like Smart cameras. The objective set out was to develop an App on an Android Smartphone, incorporating advanced Computer vision algorithms written in java code. The App could then be used for recording measurements of Twist Drill bits and hole geometry, and analysing the results for accuracy. A detailed literature review was carried out for in-depth study of Machine vision systems and their capabilities, including a comparison between the HTC One X Android Smartphone and the Teledyne Dalsa BOA Smart camera. A review of the existing metrology Apps in the market was also undertaken. In addition, the drilling operation was evaluated to establish key measurement parameters of a twist Drill bit, especially flank wear and diameter. The methodology covers software development of the Android App, including the use of image processing algorithms like Gaussian Blur, Sobel and Canny available from OpenCV software library, as well as designing and developing the experimental set-up for carrying out the measurements. The results obtained from the experimental set-up were analysed for geometry of Twist Drill bits and holes, including diametrical measurements and flaw detection. The results show that Smartphones like the HTC One X have the processing power and the camera capability to carry out metrological tasks, although dimensional accuracy achievable from the Smartphone App is below the level provided by Machine vision devices like Smart cameras. A Smartphone with mechanical attachments, capable of image processing and having a reasonable level of accuracy in dimensional measurement, has the potential to become a handy low-cost Machine vision

  4. Two-ion theory of energy coupling in ATP synthesis rectifies a fundamental flaw in the governing equations of the chemiosmotic theory.

    Science.gov (United States)

    Nath, Sunil

    2017-11-01

    The vital coupled processes of oxidative phosphorylation and photosynthetic phosphorylation synthesize molecules of adenosine-5'-triphosphate (ATP), the universal biological energy currency, and sustain all life on our planet. The chemiosmotic theory of energy coupling in oxidative and photophosphorylation was proposed by Mitchell >50years ago. It has had a contentious history, with part of the accumulated body of experimental evidence supporting it, and part of it in conflict with the theory. Although the theory was strongly criticized by many prominent scientists, the controversy has never been resolved. Here, the mathematical steps of Mitchell's original derivation leading to the principal equation of the chemiosmotic theory are scrutinized, and a fundamental flaw in them has been identified. Surprisingly, this flaw had not been detected earlier. Discovery of such a defect negates, or at least considerably weakens, the theoretical foundations on which the chemiosmotic theory is based. Ad hoc or simplistic ways to remedy this defect are shown to be scientifically unproductive and sterile. A novel two-ion theory of biological energy coupling salvages the situation by rectifying the fundamental flaw in the chemiosmotic theory, and the governing equations of the new theory have been shown to accurately quantify and predict extensive recent experimental data on ATP synthesis by F 1 F O -ATP synthase without using adjustable parameters. Some major biological implications arising from the new thinking are discussed. The principles of energy transduction and coupling proposed in the new paradigm are shown to be of a very general and universal nature. It is concluded that the timely availability after a 25-year research struggle of Nath's torsional mechanism of energy transduction and ATP synthesis is a rational alternative that has the power to solve the problems arising from the past, and also meet present and future challenges in this important interdisciplinary field

  5. Analysis of the trade-offs between conventional and superconducting interconnections

    International Nuclear Information System (INIS)

    Frye, R.

    1989-01-01

    Superconductivity can now be achieved at temperatures compatible with semiconductor device operation. This raises the interesting possibility of using the new, high-temperature superconducting ceramics for interconnections in electronic systems. This paper examines some of the consequences of a resistance-free interconnection medium. A problem with conventional conductors in electronic systems is that the resistance of wires increases quadratically as the wire dimensions are scaled down. Below some minimum cross-sectional area, determined by the metal resistivity and wire length, the resistance in these lines begins to severely limit their bandwidth. Superconductors, on the other hand, are not constrained by the same scaling rules. They provide a high bandwidth interconnection at all sizes and lengths. The limitations for superconductors are set by their critical current densities. If line dimensions become too small, a superconductor will no longer support an adequate flow of current. An analysis is presented examining the performance trade-offs for conventional and superconducting interconnections in applications ranging from printed wiring boards to chips. For most semiconductor device-based applications, the potential gains in wiring density offered by superconductors are probably more important than the bandwidth improvements. An important result of the analysis is that it determines the values of critical current density above which superconductors outperform conventional wires in systems of various physical sizes. This identifies particular interconnection technologies for which high-temperature superconductors show the most promise

  6. Identification of Flaws Responsible for Crack Initiation and Micromechanisms of Slow Crack Growth in the Delayed Fracture of Alumina.

    Science.gov (United States)

    1982-02-01

    A-"AIS012 CALIFORNIA UNdIV LOS ANSELES DEPT OF MATERIALS SCIEN--ETC F/S 11/6 IDENTIFICATION OF FLAWS RESPONSIBLE FOR CRACK INITIATION AM %I--ETC(U...Sines and Adams . 71 It might be thought that other compressive loading devices could serve the same purpoee. For example, a spherical joint instead of the...compressive strength can be 18 times the tensile strength as reported by Adams . 92 This is because the established criteria are damage criter- ia, not

  7. Ultrasonic inspection of nodular cast iron

    International Nuclear Information System (INIS)

    Hersh, S.; Zhang, Yingda

    1990-01-01

    On the basis of experimental results collected from several nodular cast iron (NCI) specimens, Amdata, Inc., has developed a tentative procedure for performing ultrasonic testing (UT) preservice inspection of NCI casks and qualifying personnel and equipment. The authors anticipate that this procedure will be a component in a comprehensive program to certify that casks are free from critical flaws prior to their introduction into service, with testing being performed on a production line basis by UT inspection personnel. The tentative procedure was applied to inspection of NCI block SGR-483-001 manufactured by Siempelkamp Giesserei GmbH and Co. of West Germany. This block is 59 by 39.5 by 13.8 inches and weighs 5.2 tons. Several indications were detected with the I/98, in accordance with the tentative procedure, and they were analyzed using two-dimensional synthetic aperture technique (Line-SAFT). When compared with conventional sizing methods that may confound the effects of beam spread with flaw size, Line-SAFT significantly improved sizing accuracy. SAFT is an electronic simulation of a lens and has the property of reducing the effect of beam spread on the resultant indication sizes. Although a higher-precision 3-D SAFT option was also available, it would necessitate data transfer to a separate VAX computer and lengthy calculations. As an alternative, Line-SAFT, a faster but less precise 2-D simplification, was implemented on the I/98 data acquisition system

  8. Effect of heating mechanism on concrete during inspection by laser shearography

    International Nuclear Information System (INIS)

    Mohd Yusnisyam Yusof; Wan Safiey Wan Abdullah; Noorhazleena Azaman; Mohd Zaki Umar; Khairiah Yazid

    2010-01-01

    This paper highlights heating technique as one of suitable loading mechanism in concrete Non Destructive Testing (NDT) inspection by laser shearography. The reason of heating the concrete as loading mechanism is to give a small deformation to the concrete because the result produced from laser shearography technique reveals flaws by looking into flaw-induced deformation anomalies. In this study Laser shearography that surface displacement gradients is used to detect flaw in concrete sample with the dimension of 31 cm x 10 cm x 4 cm. Laser shearography technique reveal flaws by looking into flaw-induced deformation anomalies that can be observed by heating the sample with 500 Watt- infrared spotlight as loading mechanism at different times intervals. Result obtained by laser shearography shows that the convenient time of heating the concrete sample for flaw detection during 2 minute. For validation, a result from conventional radiography technique is also observed. The application of loading mechanism by heating from a 500 Watt- infrared spotlight makes the laser shearography as a prime alternative technique for detecting flaw in concrete. (author)

  9. Is smaller necessarily better? A systematic review comparing the effects of minilaparoscopic and conventional laparoscopic cholecystectomy on patient outcomes

    DEFF Research Database (Denmark)

    McCloy, R.; Randall, D.; Schug, S.A.

    2008-01-01

    BACKGROUND: In recent years, minilaparoscopic cholecystectomy (MLC; total size of trocar incision ... using MEDLINE and EmBASE. Only randomized controlled trials in English, investigating minilaparoscopic versus conventional LC (total size of trocar incision > or = 25 mm) and reporting pain scores were included. Quantitative analyses (meta-analyses) were performed on postoperative pain scores and other.......00001]. CONCLUSIONS: The data included in this review suggest that reducing the size of trocar incision results in some limited improvements in surgical outcomes after LC. However, it carries a higher risk of conversion to conventional LC or open cholecystectomy Udgivelsesdato: 2008/12...

  10. Distributed system for parallel data processing of ECT signals for electromagnetic flaw detection in materials

    International Nuclear Information System (INIS)

    Guliashki, Vassil; Marinova, Galia

    2002-01-01

    The paper proposes a distributed system for parallel data processing of ECT signals for flaw detection in materials. The measured data are stored in files on a host computer, where a JAVA server is located. The host computer is connected through Internet to a set of client computers, distributed geographically. The data are distributed from the host computer by means of the JAVA server to the client computers according their requests. The software necessary for the data processing is installed on each client computer in advance. The organization of the data processing on many computers, working simultaneously in parallel, leads to great time reducing, especially in cases when huge amount of data should be processed in very short time. (Author)

  11. Flaws in current human training protocols for spontaneous Brain-Computer Interfaces: lessons learned from instructional design

    Directory of Open Access Journals (Sweden)

    Fabien eLotte

    2013-09-01

    Full Text Available While recent research on Brain-Computer Interfaces (BCI has highlighted their potential for many applications, they remain barely used outside laboratories. The main reason is their lack of robustness. Indeed, with current BCI, mental state recognition is usually slow and often incorrect. Spontaneous BCI (i.e., mental imagery-based BCI often rely on mutual learning efforts by the user and the machine, with BCI users learning to produce stable EEG patterns (spontaneous BCI control being widely acknowledged as a skill while the computer learns to automatically recognize these EEG patterns, using signal processing. Most research so far was focused on signal processing, mostly neglecting the human in the loop. However, how well the user masters the BCI skill is also a key element explaining BCI robustness. Indeed, if the user is not able to produce stable and distinct EEG patterns, then no signal processing algorithm would be able to recognize them. Unfortunately, despite the importance of BCI training protocols, they have been scarcely studied so far, and used mostly unchanged for years.In this paper, we advocate that current human training approaches for spontaneous BCI are most likely inappropriate. We notably study instructional design literature in order to identify the key requirements and guidelines for a successful training procedure that promotes a good and efficient skill learning. This literature study highlights that current spontaneous BCI user training procedures satisfy very few of these requirements and hence are likely to be suboptimal. We therefore identify the flaws in BCI training protocols according to instructional design principles, at several levels: in the instructions provided to the user, in the tasks he/she has to perform, and in the feedback provided. For each level, we propose new research directions that are theoretically expected to address some of these flaws and to help users learn the BCI skill more efficiently.

  12. Assessment of herd management on organic and conventional dairy farms in the United States.

    Science.gov (United States)

    Stiglbauer, K E; Cicconi-Hogan, K M; Richert, R; Schukken, Y H; Ruegg, P L; Gamroth, M

    2013-02-01

    The objective of this study was to evaluate management characteristics on organic and similarly sized conventional dairy farms located in New York, Wisconsin, and Oregon. Data from 192 organic farms (ORG), 64 conventional nongrazing farms (CON-NG), and 36 conventional grazing farms (CON-GR) were collected during farm visits and were size-matched and analyzed. The average lactation number of animals on ORG and CON-GR farms was 2.6 lactations, which was greater than that on CON-NG farms (2.3 lactations). A greater percentage of first-lactation heifers were found on conventional farms than on ORG farms. Facilities used by adult animals, including housing and milking facilities, did not differ among the grazing systems. Cattle on conventional farms were fed approximately twice as much grain as cattle on ORG farms and had greater milk production. Little difference was found for the average reported somatic cell count and standard plate count, suggesting that milk quality is not dependent on grazing system. Milking procedures were similar across all 3 grazing systems, indicating that an industry standard now exists for milking and that milk quality problems will need to be addressed with other management problems in mind. Although some disease prevention measures were commonly utilized on ORG farms, such as keeping a closed herd and having a written record of treatments administered to the animals, the use of outside support and vaccinations were found to be less prevalent on organic farms than on conventional farms. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. SQUIDs and inverse problem techniques in nondestructive evaluation of metals

    CERN Document Server

    Bruno, A C

    2001-01-01

    Superconducting Quantum Interference Devices coupled to gradiometers were used to defect flaws in metals. We detected flaws in aluminium samples carrying current, measuring fields at lift-off distances up to one order of magnitude larger than the size of the flaw. Configured as a susceptometer we detected surface-braking flaws in steel samples, measuring the distortion on the applied magnetic field. We also used spatial filtering techniques to enhance the visualization of the magnetic field due to the flaws. In order to assess its severity, we used the generalized inverse method and singular value decomposition to reconstruct small spherical inclusions in steel. In addition, finite elements and optimization techniques were used to image complex shaped flaws.

  14. Size-exclusion chromatography using core-shell particles.

    Science.gov (United States)

    Pirok, Bob W J; Breuer, Pascal; Hoppe, Serafine J M; Chitty, Mike; Welch, Emmet; Farkas, Tivadar; van der Wal, Sjoerd; Peters, Ron; Schoenmakers, Peter J

    2017-02-24

    Size-exclusion chromatography (SEC) is an indispensable technique for the separation of high-molecular-weight analytes and for determining molar-mass distributions. The potential application of SEC as second-dimension separation in comprehensive two-dimensional liquid chromatography demands very short analysis times. Liquid chromatography benefits from the advent of highly efficient core-shell packing materials, but because of the reduced total pore volume these materials have so far not been explored in SEC. The feasibility of using core-shell particles in SEC has been investigated and contemporary core-shell materials were compared with conventional packing materials for SEC. Columns packed with very small core-shell particles showed excellent resolution in specific molar-mass ranges, depending on the pore size. The analysis times were about an order of magnitude shorter than what could be achieved using conventional SEC columns. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Viability of conventional compact electric power substations in medium size cities - case study Sorocaba`s DTS; Viabilidade de subestacoes compactas convencionais em cidades de medio porte: caso pratico ETD Sorocaba

    Energy Technology Data Exchange (ETDEWEB)

    Guaraldo, N J; Goncalves, S M [Eletricidade de Sao Paulo SA, SP (Brazil); Sant` Anna, P B.E.; Fleury, V F; Moura Filho, W [CHROMA Engenharia (Brazil)

    1994-12-31

    This work presents the viability of compact transformers distributing power substations of in medium size cities, giving emphasis to three main aspects. The first aspect is generic and concerns the compactation economic viability, when compared to the conventional solution. The second, specific to the case of Sorocaba, in addition to present two compact disposal for the power substation, registers the opportunity for obtaining resources from the private enterprise. The third aspect takes into consideration the compatibility of technical proposals with the architecture of the cities. 2 refs., 10 figs., 1 tab.

  16. Pressure vessel inspection criteria based on fitness-for-purpose assessment

    International Nuclear Information System (INIS)

    Grover, J.L.; Cipolla, R.C.

    1985-01-01

    The paper on pressure vessel inspection investigates the methodology required to establish an inspection strategy consistent with fracture mechanics analysis, i.e. to define allowable flaw sizes based on location within the vessel. The methodology is demonstrated using a sample problem for a typical pressurised water reactor pressure vessel, and shows the impact of certain assumptions on the inspection strategy. The results indicate that the flaw size varies with the shape of the assumed residual stress field and the through-thickness location. Also in general, the fracture mechanics evaluation allows flaws much larger than are allowed by the inspection acceptance criteria. (UK)

  17. Flaw assessment guide for high-temperature reactor components subject to creep-fatigue loading

    International Nuclear Information System (INIS)

    Ainsworth, R.A.; Takahashi, Y.

    1990-10-01

    A high-temperature flaw assessment procedure is described. This procedure is a result of a collaborative effort between Electric Power Research Institute in the United States, Central Research Institute of Electric Power Industry in Japan, and Nuclear Electric plc in the United Kingdom. The procedure addresses preexisting defects subject to creep-fatigue loading conditions. Laws employed to calculate the crack growth per cycle are defined in terms of fracture mechanics parameters and constants related to the component material. The crack-growth laws can be integrated to calculate the remaining life of a component or to predict the amount of crack extension in a given period. Fatigue and creep crack growth per cycle are calculated separately, and the total crack extension is taken as the simple sum of the two contributions. An interaction between the two propagation modes is accounted for in the material properties in the separate calculations. In producing the procedure, limitations of the approach have been identified. 25 refs., 1 fig

  18. Optimal Sample Size for Probability of Detection Curves

    International Nuclear Information System (INIS)

    Annis, Charles; Gandossi, Luca; Martin, Oliver

    2012-01-01

    The use of Probability of Detection (POD) curves to quantify NDT reliability is common in the aeronautical industry, but relatively less so in the nuclear industry. The European Network for Inspection Qualification's (ENIQ) Inspection Qualification Methodology is based on the concept of Technical Justification, a document assembling all the evidence to assure that the NDT system in focus is indeed capable of finding the flaws for which it was designed. This methodology has become widely used in many countries, but the assurance it provides is usually of qualitative nature. The need to quantify the output of inspection qualification has become more important, especially as structural reliability modelling and quantitative risk-informed in-service inspection methodologies become more widely used. To credit the inspections in structural reliability evaluations, a measure of the NDT reliability is necessary. A POD curve provides such metric. In 2010 ENIQ developed a technical report on POD curves, reviewing the statistical models used to quantify inspection reliability. Further work was subsequently carried out to investigate the issue of optimal sample size for deriving a POD curve, so that adequate guidance could be given to the practitioners of inspection reliability. Manufacturing of test pieces with cracks that are representative of real defects found in nuclear power plants (NPP) can be very expensive. Thus there is a tendency to reduce sample sizes and in turn reduce the conservatism associated with the POD curve derived. Not much guidance on the correct sample size can be found in the published literature, where often qualitative statements are given with no further justification. The aim of this paper is to summarise the findings of such work. (author)

  19. Simplified Method of Optimal Sizing of a Renewable Energy Hybrid System for Schools

    Directory of Open Access Journals (Sweden)

    Jiyeon Kim

    2016-11-01

    Full Text Available Schools are a suitable public building for renewable energy systems. Renewable energy hybrid systems (REHSs have recently been introduced in schools following a new national regulation that mandates renewable energy utilization. An REHS combines the common renewable-energy sources such as geothermal heat pumps, solar collectors for water heating, and photovoltaic systems with conventional energy systems (i.e., boilers and air-source heat pumps. Optimal design of an REHS by adequate sizing is not a trivial task because it usually requires intensive work including detailed simulation and demand/supply analysis. This type of simulation-based approach for optimization is difficult to implement in practice. To address this, this paper proposes simplified sizing equations for renewable-energy systems of REHSs. A conventional optimization process is used to calculate the optimal combinations of an REHS for cases of different numbers of classrooms and budgets. On the basis of the results, simplified sizing equations that use only the number of classrooms as the input are proposed by regression analysis. A verification test was carried out using an initial conventional optimization process. The results show that the simplified sizing equations predict similar sizing results to the initial process, consequently showing similar capital costs within a 2% error.

  20. Enhanced Transdermal Delivery of Diclofenac Sodium via Conventional Liposomes, Ethosomes, and Transfersomes

    Directory of Open Access Journals (Sweden)

    Saeed Ghanbarzadeh

    2013-01-01

    Full Text Available The aim of this study was to improve the transdermal permeation of Diclofenac sodium, a poorly water-soluble drug, employing conventional liposomes, ethosomes, and transfersomes. The prepared formulations had been characterized for the loaded drug amount and vesicle size. The prepared vesicular systems were incorporated into 1% Carbopol 914 gel, and a survey of in vitro drug release and drug retention into rat skin has been done on them using a modified Franz diffusion cell. The cumulative amount of drug permeated after 24 h, flux, and permeability coefficient were assessed. Stability studies were performed for three months. The size of vesicles ranged from 145 to 202 nm, and the encapsulation efficiency of the Diclofenac sodium was obtained between 42.61% and 51.72%. The transfersomes and ethosomes provided a significantly higher amount of cumulative permeation, steady state flux, permeability coefficient, and residual drug into skin compared to the conventional liposomes, conventional gel, or hydroethanolic solution. The in vitro release data of all vesicular systems were well fit into Higuchi model (RSD > 0.99. Stability tests indicated that the vesicular formulations were stable over three months. Results revealed that both ethosome and transfersome formulations can act as drug reservoir in skin and extend the pharmacologic effects of Diclofenac sodium.

  1. Design Manual for Impact Damage Tolerant Aircraft Structure. Addendum

    Science.gov (United States)

    1988-03-01

    Effective Flaw Size 20 22 Effective Flaws for Cubical Fragments Impacting Graphite/Epoxy Laminates 21 23 Effective Flaws for Aligned and Tumbled Armour ... armour -piercing projectiles impact, penetrate, and traverse a fuel tank and generate intensive pressure waves that act on the fuel tank. Since...eg. aerodynamic smoothnessflutter, etc.) and the repai concept (eag boiled repar external bonded pateh. flush scar bonded patch, etc., and (3) dhe

  2. Ultrasonic Detection of Small Crack in Studs[Bolts] by Time Difference of Thread Signals(TDTS)

    International Nuclear Information System (INIS)

    Suh, D. M.; Park, D. Y.; Kim, C. K.

    1990-01-01

    It is difficult to detect such flaws as stress - corrosion cracking or corrosion wastage(loss of bolt diameter) in the threads. In many cases the critical size of a flaw is very small(1-2 mm order). This paper describes how it is possible to discriminate small flaw indications in threads using the time difference or thread signals(TDTS) by a signal-conditioning technique

  3. Status of innovative small and medium sized reactor designs 2005. Reactors with conventional refuelling schemes

    International Nuclear Information System (INIS)

    2006-03-01

    There is a renewed interest in Member States in the development and application of small and medium sized reactors (SMRs). In the near term, most new NPPs are likely to be evolutionary designs building on proven systems while incorporating technological advances and often the economics of scale, resulting from the reactor outputs of up to 1600 MW(e). For the longer term, the focus is on innovative designs aiming to provide increased benefits in the areas of safety and security, non-proliferation, waste management, resource utilization and economy, as well as to offer a variety of energy products and flexibility in design, siting and fuel cycle options. Many innovative designs are reactors within the small-to-medium size range, having an equivalent electric power less than 700 MW(e) or even less than 300 MW(e). The projected timelines of readiness for deployment are generally between 2010 and 2030. The objective of this report is to provide Member States, including those just considering the initiation of nuclear power programmes, and those already having practical experience in nuclear power, with a balanced and objective information on important development trends and objectives of innovative SMRs for a variety of uses, on the achieved state-of-the-art in design and technology development for such reactors and on their design and regulatory status. The report is intended for many categories of stakeholders, including regulators, electricity producers, designers, non-electrical producers and policy makers. The main chapters of this report, addressed to all abovementioned groups of stakeholders, provide a summary of major specifications, applications and user-related special features of innovative SMRs, outline the achieved design and regulatory status and its progress since previous IAEA publications, review targeted deployment dates, fuel cycle options, design approaches used to meet design objectives in specific subject areas, enabling technologies and current

  4. RNL automated ultrasonic inspection of the PISC II PWR inlet nozzle (Plate 3)

    International Nuclear Information System (INIS)

    Rogerson, A.; Poulter, L.N.J.; Clough, P.; Cooper, A.G.

    1987-01-01

    In June 1984, Risley Nuclear Laboratories (RNL) performed an automated ultrasonic inspection of the Pressurized Water Reactor (PWR) inlet nozzle (plate 3) from the international Programme of Inspection of Steel Components (PISC II) round-robin inspection programme. High-sensitivity pulse-echo detection and predominantly time-of-flight diffraction sizing techniques were employed from the clad inner surface of the nozzle using digital data collection, analysis, and display facilities developed at RNL. RNL detected 30 out of 31 intended weld flaws, achieved one hundred per cent correct acceptance of all acceptable flaws and had a correct rejection frequency on all rejectable flaws of 0.86. The results confirm that well-conceived automated inspection procedures, similar to those used by RNL in this nozzle inspection, could form the basis of a PSI/ISI procedure for reactor pressure vessel nozzle regions. Analysis of the RNL results with regard to the influence of flaw characteristics on inspection performance lends strong support to the general conclusions drawn by the PISC Data Analysis Group. In particular, the most difficult flaws to accurately size were circular smooth and rough flaws. Examination of the RNL results on individual flaws reveals valuable information on the strengths and weaknesses of the adopted procedures and points towards procedural changes that would improve inspection performance. This report describes the procedures adopted by RNL, in the inspection, and reviews the results in the light of definitive flaw information. (author)

  5. Modeling validation to structural flaws in the foundations of oil tanks; Validacao de modelagem para estudo de alteracoes estruturais em fundacoes de tanques de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Couto, Larissa Goncalves; Leite, Sandro Passos, E-mail: leite_sp@ig.com.br [Fundacao Tecnico-Educacional Souza Marques, Rio de Janeiro, RJ (Brazil). Faculdade de Engenharia; Pereira, Walsan Wagner [Instituto de Radioprotecao e Dosimetria, (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2014-07-01

    This paper presents the modeling of an experiment used to study the application of backscattered neutrons in the identification of structural flaws in the foundations of oil tanks. This modeling was a preliminary validation procedure of the method of calculation, performed with the radiation transport code MCNP, to study the application of backscattered neutrons as inspection tool. (author)

  6. The Conventional and Unconventional about Disability Conventions: A Reflective Analysis of United Nations Convention on the Rights of Persons with Disabilities

    Science.gov (United States)

    Umeasiegbu, Veronica I.; Bishop, Malachy; Mpofu, Elias

    2013-01-01

    This article presents an analysis of the United Nations Convention on the Rights of Persons with Disabilities (CRPD) in relation to prior United Nations conventions on disability and U.S. disability policy law with a view to identifying the conventional and also the incremental advances of the CRPD. Previous United Nations conventions related to…

  7. Revision of the Paris Convention and the Brussels Supplementary Convention

    International Nuclear Information System (INIS)

    Busekist, Otto von.

    1977-01-01

    The Paris Convention and the Brussels Supplementary Convention have in substance remained unchanged since their adoption in 1960 and 1963, respectively. During that period, nuclear industry and technology have developed considerably while the financial and monetary bases of the Conventions have been shattered. The amounts of liability and compensation have been eroded by inflation, and the gold-based unit of account in which these amounts are expressed has lost its original meaning after the abolition of the official gold price. The question of revising the Conventions, in particular of raising those amounts and of replacing the unit of account, is therefore being studied by the Group of Governmental Experts on Third party Liability in the Field of Nuclear Energy of the OECD Nuclear Energy Agency. (auth.) [fr

  8. Nickel-base alloy overlay weld with improved ultrasonic flaw detection by magnetic stirring welding

    International Nuclear Information System (INIS)

    Takashi, Hirano; Kenji, Hirano; Masayuki, Watando; Takahiro, Arakawa; Minoru, Maeda

    2001-01-01

    Ultrasonic flaw detection is more difficult in Nickel-base alloy welds containing dendrites owing to the decrease ultrasonic transmissibility they cause. The present paper discusses application of magnetic stirring welding as a means for reducing dendrite growth with consequent improvement in ultrasonic transmissibility. Single pass and multi-pass welding tests were conducted to determine optimal welding conditions. By PT and macro observation subsequent to welding was carried out, optimal operation conditions were clarified. Overlay welding tests and UT clearly indicated ultrasonic beam transmissibility in overlay welds to be improved and detection capacity to be greater through application of magnetic stirring welding. Optimal operation conditions were determined based on examination of temper bead effects in the heat affected zone of low alloy steel by application of magnetic stirring welding to the butt welded joints between low alloy and stainless steel. Hardness in this zone of low alloy steel after the fourth layer was less than 350 HV. (author)

  9. Plant Size and Competitive Dynamics along Nutrient Gradients.

    Science.gov (United States)

    Goldberg, Deborah E; Martina, Jason P; Elgersma, Kenneth J; Currie, William S

    2017-08-01

    Resource competition theory in plants has focused largely on resource acquisition traits that are independent of size, such as traits of individual leaves or roots or proportional allocation to different functions. However, plants also differ in maximum potential size, which could outweigh differences in module-level traits. We used a community ecosystem model called mondrian to investigate whether larger size inevitably increases competitive ability and how size interacts with nitrogen supply. Contrary to the conventional wisdom that bigger is better, we found that invader success and competitive ability are unimodal functions of maximum potential size, such that plants that are too large (or too small) are disproportionately suppressed by competition. Optimal size increases with nitrogen supply, even when plants compete for nitrogen only in a size-symmetric manner, although adding size-asymmetric competition for light does substantially increase the advantage of larger size at high nitrogen. These complex interactions of plant size and nitrogen supply lead to strong nonlinearities such that small differences in nitrogen can result in large differences in plant invasion success and the influence of competition along productivity gradients.

  10. A Bayesian approach to modeling and predicting pitting flaws in steam generator tubes

    International Nuclear Information System (INIS)

    Yuan, X.-X.; Mao, D.; Pandey, M.D.

    2009-01-01

    Steam generators in nuclear power plants have experienced varying degrees of under-deposit pitting corrosion. A probabilistic model to accurately predict pitting damage is necessary for effective life-cycle management of steam generators. This paper presents an advanced probabilistic model of pitting corrosion characterizing the inherent randomness of the pitting process and measurement uncertainties of the in-service inspection (ISI) data obtained from eddy current (EC) inspections. A Markov chain Monte Carlo simulation-based Bayesian method, enhanced by a data augmentation technique, is developed for estimating the model parameters. The proposed model is able to predict the actual pit number, the actual pit depth as well as the maximum pit depth, which is the main interest of the pitting corrosion model. The study also reveals the significance of inspection uncertainties in the modeling of pitting flaws using the ISI data: Without considering the probability-of-detection issues and measurement errors, the leakage risk resulted from the pitting corrosion would be under-estimated, despite the fact that the actual pit depth would usually be over-estimated.

  11. Systematization of simplified J-integral evaluation method for flaw evaluation at high temperature

    International Nuclear Information System (INIS)

    Miura, Naoki; Takahashi, Yukio; Nakayama, Yasunari; Shimakawa, Takashi

    2000-01-01

    J-integral is an effective inelastic fracture parameter for the flaw evaluation of cracked components at high temperature. The evaluation of J-integral for an arbitrary crack configuration and an arbitrary loading condition can be generally accomplished by detailed numerical analysis such as finite element analysis, however, it is time-consuming and requires a high degree of expertise for its implementation. Therefore, it is important to develop simplified J-integral estimation techniques from the viewpoint of industrial requirements. In this study, a simplified J-integral evaluation method is proposed to estimate two types of J-integral parameters. One is the fatigue J-integral range to describe fatigue crack propagation behavior, and the other is the creep J-integral to describe creep crack propagation behavior. This paper presents the systematization of the simplified J-integral evaluation method incorporated with the reference stress method and the concept of elastic follow-up, and proposes a comprehensive evaluation procedure. The verification of the proposed method is presented in Part II of this paper. (author)

  12. Effects of mesh size and escape gaps on discarding in an Australian giant mud crab (Scylla serrata trap fishery.

    Directory of Open Access Journals (Sweden)

    Matt K Broadhurst

    Full Text Available In response to concerns over excessive discarding from Australian recreational round traps (with four funnel entrances used to target giant mud crabs, Scylla serrata, an experiment was done to assess the independent and cumulative utility of paired, bottom-located horizontal escape gaps (46×120 mm and increasing mesh size (from 51 to 101 mm. Compared to conventional traps comprising 51-mm mesh throughout, those with the same mesh size and escape gaps caught significantly fewer (by 95% undersize (<85 mm carapace length--CL crabs while maintaining legal catches. Traps made from 101-mm mesh (but with the same funnel entrances as conventional designs and with and without escape gaps similarly retained fewer undersize crabs and also yellowfin bream Acanthopagrus australis (the key bycatch species by up to 94%, but there were concomitant reductions in fishing power for legal sizes of S. serrata. Although there were no immediate mortalities among any discarded crabs, there was a greater bias towards wounding among post molts than late inter-molts and less damage to individuals in the 101-mm conventional than 51-mm conventional traps (without escape gaps. The results support retrospectively fitting escape gaps in conventional S. serrata traps as a means for reducing discarding, but additional work is required to determine appropriate mesh sizes/configurations that maximize species and size selectivity.

  13. Radiation protection principles applied to conventional industries producing deleterious environmental effects

    International Nuclear Information System (INIS)

    Tadmor, J.

    1980-01-01

    Comparison of the radiation protection standards, for the population at large, with the conventional pollutants ambient standards, reveals differences in basic principles which result in more relaxed ambient standards for conventional pollutants and consequently, the penalization of the nuclear industry, due to the increased cost of its safety measures. It is proposed that radiation protection principles should be used as a prototype for pollutants having harmful environmental effects and that radiation health physicists should be active in the application of these principles of population protection. A case study of atmospheric release of SO 2 , under different conditions, is analyzed, to emphasize the importance of consideration of the size of the exposed population. (H.K.)

  14. Detection and sizing of inside-surface cracks in reactor pressure vessels

    International Nuclear Information System (INIS)

    Kamata, Hiroshi; Kanazawa, Katsuo; Satoh, Kunio; Honma, Takashi

    1984-01-01

    According to the past operational experience of LWRs, most of the defects arising in reactor pressure vessels accompanying operation are cracks occurring in the build up welding of austenitic stainless steel on the internal surfaces. The detection of these cracks has been carried out by ultrasonic flaw detection from outside in BWRs and from inside in PWRs as in-service inspection. However, there are difficulties such as ultrasonic echoes often occur though defects do not exist, and the quantitative evaluation of detected cracks is difficult by this method because of its accuracy. One of the means to reduce the first difficulty is to use eddy current method together to help the judgement, and for overcoming the second, the ultrasonic method catching end peak echo, that catching diffracted waves, eddy current method and electric resistance method were tried and compared. It is desirable to detect cracks in early stage before they reach parent material. The techniques to detect cracks on the internal surfaces of pressure vessels from the inside and to measure the depth are reported in this paper. The methods of flaw detection examined and the instruments used, the experimental method and the results are reported. It was concluded that eddy current method can be used as the backup for ultrasonic remote flaw detection, and the accuracy of depth measurement was the highest in ultrasonic diffraction wave method. (Kako, I.)

  15. Performance of Adaptive Antennas in FH-GSM Using Conventional Beamforming

    DEFF Research Database (Denmark)

    Mogensen, Preben Elgaard; Leth-Espensen, P; Zetterberg, P.

    2000-01-01

    This paper presents the performance of adaptive antennas in a 1/3 reuse frequency hopping GSM network using conventional beamforming. It mainly focuses on C/I improvement for the purpose of capacity enhancement. The performance evaluation has been conducted by means of network computer simulations...... implementation facilitates a potential capacity gain of x3 in a 1/3 reuse FH-GSM network for an array size of M = 4-6....

  16. Microbial corrosion and cracking in steel. A concept for evaluation of hydrogen-assisted stress corrosion cracking in cathodically protected high-pressure gas transmission pipelines

    DEFF Research Database (Denmark)

    Nielsen, Lars Vendelbo

    An effort has been undertaken in order to develop a concept for evaluation of the risk of hydrogen-assisted cracking in cathodically protected gas transmission pipelines. The effort was divided into the following subtasks: A. Establish a correlation between the fracture mechanical properties...... crack propagation. This resulted in threshold curves that can be used for assessment of the risk of hydrogen-assisted cracking as a function of operating pressure and hydrogen content - having the flaw size as discrete parameter. The results are to be used mainly on a conceptual basis......, but it was indicated that the requirements for crack propagation include an overprotective CP-condition, a severe sulphate-reducing environment, as well as a large flaw (8 mm or a leak in the present case). A 1 mm flaw (which may be the maximum realistic flaw size) is believed to be unable to provoke crack propagation...

  17. Eliminating high-order scattering effects in optical microbubble sizing.

    Science.gov (United States)

    Qiu, Huihe

    2003-04-01

    Measurements of bubble size and velocity in multiphase flows are important in much research and many industrial applications. It has been found that high-order refractions have great impact on microbubble sizing by use of phase-Doppler anemometry (PDA). The problem has been investigated, and a model of phase-size correlation, which also takes high-order refractions into consideration, is introduced to improve the accuracy of bubble sizing. Hence the model relaxes the assumption of a single-scattering mechanism in a conventional PDA system. The results of simulation based on this new model are compared with those based on a single-scattering-mechanism approach or a first-order approach. An optimization method for accurately sizing air bubbles in water has been suggested.

  18. Behaviour of pharmaceuticals and psychotic drugs in conventional and advanced wastewater treatments

    International Nuclear Information System (INIS)

    Cortacans Torre, J. A.; Castillo Gonzalez, I. del; Hernandez Lehmann, A.; Hernandez Munoz, A.; Rodriguez Barrera, X.

    2009-01-01

    The occurrence of various pharmaceuticals and psychotic drugs in wastewater and their removal rates in a conventional wastewater treatment plant has been investigated. The psychoactive drugs are poorly removed in the biological step. However, most pharmaceuticals except of carbamazepine, are significantly biodegraded depending the removal degree on the type of compound and on the sludge retention time of the biological treatment. Also, the removal efficiency of conventional tertiary treatments and ultrafiltration and nano filtration membranes using two pilot plants was examined. the effects of retaining pharmaceuticals with ultrafiltration and nano filtration membranes do not greatly differ despite the difference in their pore size. (Author) 25 refs.

  19. Effect of the bur grit size on the flexural strength of a glass-ceramic

    Directory of Open Access Journals (Sweden)

    P. P. Kist

    Full Text Available Abstract The purpose of the present study was to determine the biaxial flexural strength (BFS of a CAD/CAM leucite reinforced glass-ceramic ground by diamond burs of different grit sizes and the influence of surface roughness on the BFS. For this, 104 plates were obtained from CAD/CAM ceramic blocks and divided into 4 groups (n = 26, according to bur grit size: extra-fine, fine, medium and coarse. Roughness parameters (Ra, RyMax were measured, and plates were kept dry for 7 days. The flexural test was carried out and BFS was calculated. Ra, RyMax and BFS data were subjected to analysis of variance and post-hoc test. Weibull analysis was used to compare characteristic strength and Weibull modulus. Regression analysis was performed for BFS vs. Ra and RyMax. When burs with coarse grit were used, higher surface roughness values were found, causing a negative effect on the ceramic BFS (117 MPa for extra-fine, and 83 MPa for coarse. Correlation (r between surface roughness and BFS was 0.78 for RyMax and 0.73 for Ra. Increases in diamond grit size have a significant negative effect on the BFS of leucite-reinforced glass-ceramics, suggesting that grinding of sintered glass-ceramic should be performed using burs with the finest grit possible in order to minimize internal surface flaws and maximize flexural strength.

  20. Environmental consequences of hydroelectric development: the role of facility size and type

    International Nuclear Information System (INIS)

    Gleick, P.H.

    1992-01-01

    The development of hydroelectric power throughout the world is receiving renewed attention as the economic, political, and environmental costs of conventional energy production rise. There is currently a perception that hydroelectricity has environmental and economic advantages over electricity produced by conventional energy technologies, but there is a paucity of information about the environmental impacts of hydroelectric facilities as a function of size and type. We characterize the environmental impacts of hydroelectric developments and quantify these impacts as a function of the size and type of project. Several unexpected conclusions arise from our analysis. For most hydroelectric facilities, size, as measured by installed capacity, is not necessarily a good indicator or the severity of environmental costs. For impacts such as land flooded and evaporative water lost, smaller facilities cause greater environmental disruptions per unit of energy produced than do larger facilities. (Author)

  1. Modeling and analysis of conventional and heat-integrated distillation columns

    DEFF Research Database (Denmark)

    Bisgaard, Thomas; Huusom, Jakob Kjøbsted; Abildskov, Jens

    2015-01-01

    A generic model that can cover diabatic and adiabatic distillation column configurations is presented, with the aim ofproviding a consistent basis for comparison of alternative distillation column technologies. Both a static and a dynamic formulation of the model, together with a model catalogue...... consisting of the conventional, the heat-integrated and the mechanical vapor recompression distillation columns are presented. The solution procedure of the model is outlined and illustrated in three case studies. One case study being a benchmark study demonstrating the size of the model and the static...... properties of two different heat-integrated distillation column (HIDiC) schemes and the mechanical vapor recompression column. The second case study exemplifies the difference between a HIDiC and a conventional distillation column in the composition profiles within a multicomponent separation, whereas...

  2. Local approach of cleavage fracture applied to a vessel with subclad flaw. A benchmark on computational simulation

    International Nuclear Information System (INIS)

    Moinereau, D.; Brochard, J.; Guichard, D.; Bhandari, S.; Sherry, A.; France, C.

    1996-10-01

    A benchmark on the computational simulation of a cladded vessel with a 6.2 mm sub-clad flaw submitted to a thermal transient has been conducted. Two-dimensional elastic and elastic-plastic finite element computations of the vessel have been performed by the different partners with respective finite element codes ASTER (EDF), CASTEM 2000 (CEA), SYSTUS (Framatome) and ABAQUS (AEA Technology). Main results have been compared: temperature field in the vessel, crack opening, opening stress at crack tips, stress intensity factor in cladding and base metal, Weibull stress σ w and probability of failure in base metal, void growth rate R/R 0 in cladding. This comparison shows an excellent agreement on main results, in particular on results obtained with local approach. (K.A.)

  3. Development of an integrated database management system to evaluate integrity of flawed components of nuclear power plant

    International Nuclear Information System (INIS)

    Mun, H. L.; Choi, S. N.; Jang, K. S.; Hong, S. Y.; Choi, J. B.; Kim, Y. J.

    2001-01-01

    The object of this paper is to develop an NPP-IDBMS(Integrated DataBase Management System for Nuclear Power Plants) for evaluating the integrity of components of nuclear power plant using relational data model. This paper describes the relational data model, structure and development strategy for the proposed NPP-IDBMS. The NPP-IDBMS consists of database, database management system and interface part. The database part consists of plant, shape, operating condition, material properties and stress database, which are required for the integrity evaluation of each component in nuclear power plants. For the development of stress database, an extensive finite element analysis was performed for various components considering operational transients. The developed NPP-IDBMS will provide efficient and accurate way to evaluate the integrity of flawed components

  4. Is signal detection theory fundamentally flawed? A response to Balakrishnan (1998a, 1998b, 1999).

    Science.gov (United States)

    Treisman, Michel

    2002-12-01

    For nearly 50 years, signal detection theory (SDT; Green & Swvets, 1966; Macmillan & Creelman, 1991) has been of central importance in the development of psychophysics and other areas of psychology. The theory has recently been challenged by Balakrishnan (1998b), who argues that, within SDT, an alternative index is "better justified" than d' and who claims to show (1998a, 1999) that SDT is fundamentally flawed and should be rejected. His evidence is based on new nonparametric measures that he has introduced and applied to experimental data. He believes his results show that basic assumptions of SDT are not supported-in particular, that payoff and probability manipulations do not affect the position of the decision criterion. In view of the importance of SDT in psychology, these claims deserve careful examination. They are critically reviewed here. It appears that it is Balakrishnans arguments that fail, and not SDT

  5. Rectocele--does the size matter?

    Science.gov (United States)

    Carter, Dan; Gabel, Marc Beer

    2012-07-01

    Large rectoceles (>2 cm) are believed to be associated with difficulty in evacuation, constipation, rectal pain, and rectal bleeding. The aim of our study was to determine whether rectocele size is related to patient's symptoms or defecatory parameters. We conducted a retrospective study on data collected on patients referred to our clinic for the evaluation of evacuation disorders. All patients were questioned for constipation, fecal incontinence, and irritable bowel syndrome and were assessed with dynamic perineal ultrasonography and conventional anorectal manometry. Four hundred eighty-seven women were included in our study. Rectocele was diagnosed in 106 (22%) women, and rectocele diameter >2 cm in 93 (87%) women. Rectocele size was not significantly related to demographic data, parity, or patient's symptoms. The severity of the symptoms was not correlated to the size or to the position of the rectocele. The diagnosis of irritable bowel syndrome was neither related to the size of the rectocele. Rectocele location, occurrence of enterocele, and intussusception were not related to the size of the rectocele. Full evacuation of rectoceles was more common in small rectoceles (79% vs. 24%, p = 0.0001), and no evacuation was more common in large rectoceles (37% vs. 0, p = 0.01). Rectal hyposensitivity and anismus were not related to the size of the rectocele. In conclusion, only the evacuation of rectoceles was correlated to the size of the rectoceles, but had no clinical significance. Other clinical, anatomical factors were also not associated to the size of the rectoceles. Rectoceles' size alone may not be an indication for surgery.

  6. Genetic Parameters for Reproduction Traits of Prolificacy and Conventional Purebred Sows

    Directory of Open Access Journals (Sweden)

    Vitomir Vidović

    2012-05-01

    Full Text Available Research was performed on four farms were included in 1567 a highly fertile females Landrace and Yorkshire, and 24 boars of Danish origin, or 5294 consecutive parities, and in period 2009 - 2011 year. Studies of evaluations genetic parameters conventional breeds Landrace and Yorkshire were included in 2987 female mating with 46 male or 11 674 litters in the same period. Evaluated genetic parameters for litter size traits show the same tendency as the legality of the pure breed sows that produce 11-14 piglets weaned less per sow per year. Environmental factors, HYS, food technology and management showed no significant effect on the traits. Heritability and repeatability of live and still born piglets, litter size and the fifth days after birth and the number of piglets weaned in category of low hereditary traits whose values vary within the limits of 0.08 to 0.11 for the heritability and from 0.14 to 0.18 for the repeatability. There was tendency to lower values of genetic parameters in the conventional compared to highly fertile cows, which is considered the effect of selection on gene frequency for the observed properties.

  7. Rock sampling. [method for controlling particle size distribution

    Science.gov (United States)

    Blum, P. (Inventor)

    1971-01-01

    A method for sampling rock and other brittle materials and for controlling resultant particle sizes is described. The method involves cutting grooves in the rock surface to provide a grouping of parallel ridges and subsequently machining the ridges to provide a powder specimen. The machining step may comprise milling, drilling, lathe cutting or the like; but a planing step is advantageous. Control of the particle size distribution is effected primarily by changing the height and width of these ridges. This control exceeds that obtainable by conventional grinding.

  8. Magnetic agglomeration method for size control in the synthesis of magnetic nanoparticles

    Science.gov (United States)

    Huber, Dale L [Albuquerque, NM

    2011-07-05

    A method for controlling the size of chemically synthesized magnetic nanoparticles that employs magnetic interaction between particles to control particle size and does not rely on conventional kinetic control of the reaction to control particle size. The particles are caused to reversibly agglomerate and precipitate from solution; the size at which this occurs can be well controlled to provide a very narrow particle size distribution. The size of particles is controllable by the size of the surfactant employed in the process; controlling the size of the surfactant allows magnetic control of the agglomeration and precipitation processes. Agglomeration is used to effectively stop particle growth to provide a very narrow range of particle sizes.

  9. Mesophase Formation Stabilizes High-purity Magic-sized Clusters

    KAUST Repository

    Nevers, Douglas R.; Williamson, Curtis B.; Savitzky, Benjamin H; Hadar, Ido; Banin, Uri; Kourkoutis, Lena F.; Hanrath, Tobias; Robinson, Richard D.

    2018-01-01

    Magic-sized clusters (MSCs) are renowned for their identical size and closed-shell stability that inhibit conventional nanoparticle (NP) growth processes. Though MSCs have been of increasing interest, understanding the reaction pathways toward their nucleation and stabilization is an outstanding issue. In this work, we demonstrate that high concentration synthesis (1000 mM) promotes a well-defined reaction pathway to form high-purity MSCs (>99.9%). The MSCs are resistant to typical growth and dissolution processes. Based on insights from in-situ X-ray scattering analysis, we attribute this stability to the accompanying production of a large, hexagonal organic-inorganic mesophase (>100 nm grain size) that arrests growth of the MSCs and prevents NP growth. At intermediate concentrations (500 mM), the MSC mesophase forms, but is unstable, resulting in NP growth at the expense of the assemblies. These results provide an alternate explanation for the high stability of MSCs. Whereas the conventional mantra has been that the stability of MSCs derives from the precise arrangement of the inorganic structures (i.e., closed-shell atomic packing), we demonstrate that anisotropic clusters can also be stabilized by self-forming fibrous mesophase assemblies. At lower concentration (<200 mM or >16 acid-to-metal), MSCs are further destabilized and NPs formation dominates that of MSCs. Overall, the high concentration approach intensifies and showcases inherent concentration-dependent surfactant phase behavior that is not accessible in conventional (i.e., dilute) conditions. This work provides not only a robust method to synthesize, stabilize, and study identical MSC products, but also uncovers an underappreciated stabilizing interaction between surfactants and clusters.

  10. Mesophase Formation Stabilizes High-purity Magic-sized Clusters

    KAUST Repository

    Nevers, Douglas R.

    2018-01-27

    Magic-sized clusters (MSCs) are renowned for their identical size and closed-shell stability that inhibit conventional nanoparticle (NP) growth processes. Though MSCs have been of increasing interest, understanding the reaction pathways toward their nucleation and stabilization is an outstanding issue. In this work, we demonstrate that high concentration synthesis (1000 mM) promotes a well-defined reaction pathway to form high-purity MSCs (>99.9%). The MSCs are resistant to typical growth and dissolution processes. Based on insights from in-situ X-ray scattering analysis, we attribute this stability to the accompanying production of a large, hexagonal organic-inorganic mesophase (>100 nm grain size) that arrests growth of the MSCs and prevents NP growth. At intermediate concentrations (500 mM), the MSC mesophase forms, but is unstable, resulting in NP growth at the expense of the assemblies. These results provide an alternate explanation for the high stability of MSCs. Whereas the conventional mantra has been that the stability of MSCs derives from the precise arrangement of the inorganic structures (i.e., closed-shell atomic packing), we demonstrate that anisotropic clusters can also be stabilized by self-forming fibrous mesophase assemblies. At lower concentration (<200 mM or >16 acid-to-metal), MSCs are further destabilized and NPs formation dominates that of MSCs. Overall, the high concentration approach intensifies and showcases inherent concentration-dependent surfactant phase behavior that is not accessible in conventional (i.e., dilute) conditions. This work provides not only a robust method to synthesize, stabilize, and study identical MSC products, but also uncovers an underappreciated stabilizing interaction between surfactants and clusters.

  11. Chemical Weapons Convention

    National Research Council Canada - National Science Library

    1997-01-01

    On April 29, 1997, the Convention on the Prohibition of the Development, Production, Stockpiling, and Use of Chemical Weapons and on Their Destruction, known as the Chemical Weapons Convention (CWC...

  12. Paris Convention on third party liability in the field of nuclear energy and Brussels Convention Supplementary to the Paris Convention

    International Nuclear Information System (INIS)

    1989-01-01

    This new bilingual (English and French) edition of the 1960 Paris Convention and 1963 Brussels Supplementary Convention incorporates the provisions of the Protocols which amended each of them on two occasions, in 1964 and 1982. The Expose des motifs to the Paris Convention, as revised in 1982 is also included in this pubication. (NEA) [fr

  13. Control of pore size in epoxy systems.

    Energy Technology Data Exchange (ETDEWEB)

    Sawyer, Patricia Sue; Lenhart, Joseph Ludlow (North Dakota State University, Fargo, ND); Lee, Elizabeth (North Dakota State University, Fargo, ND); Kallam, Alekhya (North Dakota State University, Fargo, ND); Majumdar, Partha (North Dakota State University, Fargo, ND); Dirk, Shawn M.; Gubbins, Nathan; Chisholm, Bret J. (North Dakota State University, Fargo, ND); Celina, Mathias C.; Bahr, James (North Dakota State University, Fargo, ND); Klein, Robert J.

    2009-01-01

    Both conventional and combinatorial approaches were used to study the pore formation process in epoxy based polymer systems. Sandia National Laboratories conducted the initial work and collaborated with North Dakota State University (NDSU) using a combinatorial research approach to produce a library of novel monomers and crosslinkers capable of forming porous polymers. The library was screened to determine the physical factors that control porosity, such as porogen loading, polymer-porogen interactions, and polymer crosslink density. We have identified the physical and chemical factors that control the average porosity, pore size, and pore size distribution within epoxy based systems.

  14. Climate change convention

    International Nuclear Information System (INIS)

    Russell, D.

    1992-01-01

    Principles that guide Canada's Green Plan with respect to global warming are outlined. These include respect for nature, meeting environmental goals in an economically beneficial manner, efficient use of resources, shared responsibilities, federal leadership, and informed decision making. The policy side of the international Framework Convention on Climate Change is then discussed and related to the Green Plan. The Convention has been signed by 154 nations and has the long-term objective of stabilizing anthropogenic greenhouse gas concentrations in the atmosphere at levels that prevent dangerous interference with the climate system. Some of the Convention's commitments toward achieving that objective are only applicable to the developed countries. Five general areas of commitment are emissions reductions, assistance to developing countries, reporting requirements, scientific and socioeconomic research, and education. The most controversial area is that of limiting emissions. The Convention has strong measures for public accountability and is open to future revisions. Canada's Green Plan represents one country's response to the Convention commitments, including a national goal to stabilize greenhouse gas emissions at the 1990 level by the year 2000

  15. Microfluidic size separation of cells and particles using a swinging bucket centrifuge.

    Science.gov (United States)

    Yeo, Joo Chuan; Wang, Zhiping; Lim, Chwee Teck

    2015-09-01

    Biomolecular separation is crucial for downstream analysis. Separation technique mainly relies on centrifugal sedimentation. However, minuscule sample volume separation and extraction is difficult with conventional centrifuge. Furthermore, conventional centrifuge requires density gradient centrifugation which is laborious and time-consuming. To overcome this challenge, we present a novel size-selective bioparticles separation microfluidic chip on a swinging bucket minifuge. Size separation is achieved using passive pressure driven centrifugal fluid flows coupled with centrifugal force acting on the particles within the microfluidic chip. By adopting centrifugal microfluidics on a swinging bucket rotor, we achieved over 95% efficiency in separating mixed 20 μm and 2 μm colloidal dispersions from its liquid medium. Furthermore, by manipulating the hydrodynamic resistance, we performed size separation of mixed microbeads, achieving size efficiency of up to 90%. To further validate our device utility, we loaded spiked whole blood with MCF-7 cells into our microfluidic device and subjected it to centrifugal force for a mere duration of 10 s, thereby achieving a separation efficiency of over 75%. Overall, our centrifugal microfluidic device enables extremely rapid and label-free enrichment of different sized cells and particles with high efficiency.

  16. Real time flaw detection and characterization in tube through partial least squares and SVR: Application to eddy current testing

    Science.gov (United States)

    Ahmed, Shamim; Miorelli, Roberto; Calmon, Pierre; Anselmi, Nicola; Salucci, Marco

    2018-04-01

    This paper describes Learning-By-Examples (LBE) technique for performing quasi real time flaw localization and characterization within a conductive tube based on Eddy Current Testing (ECT) signals. Within the framework of LBE, the combination of full-factorial (i.e., GRID) sampling and Partial Least Squares (PLS) feature extraction (i.e., GRID-PLS) techniques are applied for generating a suitable training set in offine phase. Support Vector Regression (SVR) is utilized for model development and inversion during offine and online phases, respectively. The performance and robustness of the proposed GIRD-PLS/SVR strategy on noisy test set is evaluated and compared with standard GRID/SVR approach.

  17. An algorithm for analytical solution of basic problems featuring elastostatic bodies with cavities and surface flaws

    Science.gov (United States)

    Penkov, V. B.; Levina, L. V.; Novikova, O. S.; Shulmin, A. S.

    2018-03-01

    Herein we propose a methodology for structuring a full parametric analytical solution to problems featuring elastostatic media based on state-of-the-art computing facilities that support computerized algebra. The methodology includes: direct and reverse application of P-Theorem; methods of accounting for physical properties of media; accounting for variable geometrical parameters of bodies, parameters of boundary states, independent parameters of volume forces, and remote stress factors. An efficient tool to address the task is the sustainable method of boundary states originally designed for the purposes of computerized algebra and based on the isomorphism of Hilbertian spaces of internal states and boundary states of bodies. We performed full parametric solutions of basic problems featuring a ball with a nonconcentric spherical cavity, a ball with a near-surface flaw, and an unlimited medium with two spherical cavities.

  18. Models on reliability of non-destructive testing

    International Nuclear Information System (INIS)

    Simola, K.; Pulkkinen, U.

    1998-01-01

    The reliability of ultrasonic inspections has been studied in e.g. international PISC (Programme for the Inspection of Steel Components) exercises. These exercises have produced a large amount of information on the effect of various factors on the reliability of inspections. The information obtained from reliability experiments are used to model the dependency of flaw detection probability on various factors and to evaluate the performance of inspection equipment, including the sizing accuracy. The information from experiments is utilised in a most effective way when mathematical models are applied. Here, some statistical models for reliability of non-destructive tests are introduced. In order to demonstrate the use of inspection reliability models, they have been applied to the inspection results of intergranular stress corrosion cracking (IGSCC) type flaws in PISC III exercise (PISC 1995). The models are applied to both flaw detection frequency data of all inspection teams and to flaw sizing data of one participating team. (author)

  19. The Hague Judgments Convention

    DEFF Research Database (Denmark)

    Nielsen, Peter Arnt

    2011-01-01

    The Hague Judgments Convention of 2005 is the first global convention on international jurisdiction and recognition and enforcement of judgments in civil and commercial matters. The author explains the political and legal background of the Convention, its content and certain crucial issues during...

  20. The Cost-Optimal Size of Future Reusable Launch Vehicles

    Science.gov (United States)

    Koelle, D. E.

    2000-07-01

    The paper answers the question, what is the optimum vehicle size — in terms of LEO payload capability — for a future reusable launch vehicle ? It is shown that there exists an optimum vehicle size that results in minimum specific transportation cost. The optimum vehicle size depends on the total annual cargo mass (LEO equivalent) enviseaged, which defines at the same time the optimum number of launches per year (LpA). Based on the TRANSCOST-Model algorithms a wide range of vehicle sizes — from 20 to 100 Mg payload in LEO, as well as launch rates — from 2 to 100 per year — have been investigated. It is shown in a design chart how much the vehicle size as well as the launch rate are influencing the specific transportation cost (in MYr/Mg and USS/kg). The comparison with actual ELVs (Expendable Launch Vehicles) and Semi-Reusable Vehicles (a combination of a reusable first stage with an expendable second stage) shows that there exists only one economic solution for an essential reduction of space transportation cost: the Fully Reusable Vehicle Concept, with rocket propulsion and vertical take-off. The Single-stage Configuration (SSTO) has the best economic potential; its feasibility is not only a matter of technology level but also of the vehicle size as such. Increasing the vehicle size (launch mass) reduces the technology requirements because the law of scale provides a better mass fraction and payload fraction — practically at no cost. The optimum vehicle design (after specification of the payload capability) requires a trade-off between lightweight (and more expensive) technology vs. more conventional (and cheaper) technology. It is shown that the the use of more conventional technology and accepting a somewhat larger vehicle is the more cost-effective and less risky approach.

  1. The Aarhus Convention: A new regional convention on citizens' environmental rights

    International Nuclear Information System (INIS)

    Wates, J.

    2000-01-01

    The UN ECE Convention on Access to Information, Public Participation in Decision-making and Access to Justice in Environmental Matters had been adopted at Arhus, Denmark, at the Fourth Ministerial Conference in the 'Environment for Europe' process, and signed by thirty-five countries and the European Community. This paper summarises the main features of the Convention and briefly discusses its relevance to radioactive waste management issues. It then describes some of the activities currently being undertaken under the auspices of the Convention. (author)

  2. Robotic system for glovebox size reduction

    International Nuclear Information System (INIS)

    KWOK, KWAN S.; MCDONALD, MICHAEL J.

    2000-01-01

    The Intelligent Systems and Robotics Center (ISRC) at Sandia National Laboratories (SNL) is developing technologies for glovebox size reduction in the DOE nuclear complex. A study was performed for Kaiser-Hill (KH) at the Rocky Flats Environmental Technology Site (RFETS) on the available technologies for size reducing the glovebox lines that require size reduction in place. Currently, the baseline approach to these glovebox lines is manual operations using conventional mechanical cutting methods. The study has been completed and resulted in a concept of the robotic system for in-situ size reduction. The concept makes use of commercially available robots that are used in the automotive industry. The commercially available industrial robots provide high reliability and availability that are required for environmental remediation in the DOE complex. Additionally, the costs of commercial robots are about one-fourth that of the custom made robots for environmental remediation. The reason for the lower costs and the higher reliability is that there are thousands of commercial robots made annually, whereas there are only a few custom robots made for environmental remediation every year. This paper will describe the engineering analysis approach used in the design of the robotic system for glovebox size reduction

  3. Application of flaw detection methods for detection of fatigue processes in low-alloyed steel

    Directory of Open Access Journals (Sweden)

    Zbigniew H. śUREK

    2007-01-01

    Full Text Available The paper presents the investigations conducted in the Fraunhofer Institute (IZFP Saarbrücken by use of a BEMI microscope (BEMI= Barkhausenrausch- und Wirbelstrom-Mikroskopie or Barkhausen Noise and Eddy Current Microscopy. The ability to detect cyclic and contact fatigue load influences has been investigated. The measurement amplitudes obtained with Barkhausen Noise and Eddy Current probes havebeen analysed. Correlation of measurement results and material’s condition has been observed in case of the eddy current mode method for frequencies above 2 MHz (for contact-loaded material samples. Detection of material’s fatigue process (at 80 % fatiguelife in the sample subjected to series of high-cyclic loads has been proven to be practically impossible. Application of flaw detection methods in material fatigue tests requires modification of test methods and use of investigation methods relevant to physical parameters of the investigated material. The magnetic leakage field method, which has been abandoned by many researchers, may be of significant use in the material fatigue assessment and may provide new research prospects.

  4. Application of Silicon Nitride (Si3N4 Ceramics in Ball Bearing

    Directory of Open Access Journals (Sweden)

    Wijianto Wijianto

    2016-08-01

    operation up to 1000°C, greater thermal shock resistance, lower density and low thermal expansion. This properties gives some benefit for ball bearing material such as higher running speed, reduce vibration of the shaft, will improve the life time and maintenance cost, lower heat generated, less energy consumption, lower wear rate, reducing noise level and reduce of using lubricant. The sintering methods are used to produce ball bearing from silicon nitride. Some techniques can be applied to increase ceramics strength which are reduce porosity, reduce grain size, reduce surface flaw and proof stressing. The surface finishing of the ceramic bearing is very important because silicon nitride as a brittle material, its strength is limited to the flaw sizes especially the flaw at the surface.

  5. Image quality of conventional images of dual-layer SPECTRAL CT: a phantom study.

    Science.gov (United States)

    van Ommen, F; Bennink, E; Vlassenbroek, A; Dankbaar, J W; Schilham, A M R; Viergever, M A; de Jong, H W A M

    2018-05-10

    differences up to 0.51. Spatial resolution did not change with phantom size, but noise levels increased significantly. For head scans, IQon had a noise level that was significantly lower than the iCT, on the other hand IQon showed noise levels significantly higher than the iCT for body scans. Still, these differences were well within the specified range of performance of iCT scanners. At equivalent dose levels, this study showed similar quality of conventional images acquired on iCT and IQon for medium-sized phantoms and slightly degraded image quality for (very) large phantoms at lower tube voltages on the IQon. Accordingly, it may be concluded that the introduction of a dual-layer detector neither compromises image quality of conventional images nor increases radiation dose for normal-sized patients, and slightly degrades dose efficiency for large patients at 120 kVp and lower tube voltages. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Sizing Performance of the Newly Developed Eddy Current System

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chan Hee; Lee, Hee Jong; Yoo, Hyun Ju; Moon, Gyoon Young; Lee, Tae Hoon [Korea Hydro and Nuclear Power Co., Ltd., Daejeon (Korea, Republic of)

    2013-10-15

    This paper describes the comparison results of sizing performance for two systems. The KHNP developed a new eddy current testing system for the inspection of steam generator tubing in domestic nuclear power plants. The equivalency assessment of the newly developed system with the EPRI-qualified system was already carried out. In this paper, the comparisons of depth-sizing performance for the artificial flaws between two systems were performed. The results show that the newly developed system is in good agreement with the qualified system. Therefore, it is expected that the newly developed eddy current system can be used for the inspection of steam generator tubing in nuclear power plants. There are some non-destructive examination (NDE) methods for the inspection of components in nuclear power plants, such as ultrasonic, radiographic, eddy current testing, etc. The eddy current testing is widely used for the inspection of steam generator (SG) tubing because it offers a relatively low cost approach for high speed, large scale testing of metallic materials in high pressure and temperature engineering systems. The Korea Hydro and Nuclear Power Co., Ltd. (KHNP) developed an eddy current testing system for the inspection of steam generator tubing in nuclear power plants. This system includes not only hardware but software such as the frequency generator and data acquisition-analysis program. The foreign eddy current system developed by ZETEC is currently used for the inspection of steam generator tubing in domestic nuclear power plants. The equivalency assessment between two systems was already carried out in accordance with the EPRI steam generator examination guidelines.

  7. Differential responses of nitrate reducer community size, structure, and activity to tillage systems.

    Science.gov (United States)

    Chèneby, D; Brauman, A; Rabary, B; Philippot, L

    2009-05-01

    The main objective of this study was to determine how the size, structure, and activity of the nitrate reducer community were affected by adoption of a conservative tillage system as an alternative to conventional tillage. The experimental field, established in Madagascar in 1991, consists of plots subjected to conventional tillage or direct-seeding mulch-based cropping systems (DM), both amended with three different fertilization regimes. Comparisons of size, structure, and activity of the nitrate reducer community in samples collected from the top layer in 2005 and 2006 revealed that all characteristics of this functional community were affected by the tillage system, with increased nitrate reduction activity and numbers of nitrate reducers under DM. Nitrate reduction activity was also stimulated by combined organic and mineral fertilization but not by organic fertilization alone. In contrast, both negative and positive effects of combined organic and mineral fertilization on the size of the nitrate reducer community were observed. The size of the nitrate reducer community was a significant predictor of the nitrate reduction rates except in one treatment, which highlighted the inherent complexities in understanding the relationships the between size, diversity, and structure of functional microbial communities along environmental gradients.

  8. Thumb-size ultrasonic-assisted spectroscopic imager for in-situ glucose monitoring as optional sensor of conventional dialyzers

    Science.gov (United States)

    Nogo, Kosuke; Mori, Keita; Qi, Wei; Hosono, Satsuki; Kawashima, Natsumi; Nishiyama, Akira; Wada, Kenji; Ishimaru, Ichiro

    2016-03-01

    We proposed the ultrasonic-assisted spectroscopic imaging for the realization of blood-glucose-level monitoring during dialytic therapy. Optical scattering and absorption caused by blood cells deteriorate the detection accuracy of glucose dissolved in plasma. Ultrasonic standing waves can agglomerate blood cells at nodes. In contrast, around anti-node regions, the amount of transmitted light increases because relatively clear plasma appears due to decline the number of blood cells. Proposed method can disperse the transmitted light of plasma without time-consuming pretreatment such as centrifugation. To realize the thumb-size glucose sensor which can be easily attached to dialysis tubes, an ultrasonic standing wave generator and a spectroscopic imager are required to be small. Ultrasonic oscillators are ∅30[mm]. A drive circuit of oscillators, which now size is 41×55×45[mm], is expected to become small. The trial apparatus of proposed one-shot Fourier spectroscopic imager, whose size is 30×30×48[mm], also can be little-finger size in principal. In the experiment, we separated the suspension mixed water and micro spheres (Θ10[mm) into particles and liquid regions with the ultrasonic standing wave (frequency: 2[MHz]). Furthermore, the spectrum of transmitted light through the suspension could be obtained in visible light regions with a white LED.

  9. Mechanical Properties and Brittle Behavior of Silica Aerogels

    Directory of Open Access Journals (Sweden)

    Thierry Woignier

    2015-12-01

    Full Text Available Sets of silica gels: aerogels, xerogels and sintered aerogels, have been studied in the objective to understand the mechanical behavior of these highly porous solids. The mechanical behaviour of gels is described in terms of elastic and brittle materials, like glasses or ceramics. The magnitude of the elastic and rupture modulus is several orders of magnitude lower compared to dense glass. The mechanical behaviours (elastic and brittle are related to the same kinds of gel characteristics: pore volume, silanol content and pore size. Elastic modulus depends strongly on the volume fraction of pores and on the condensation reaction between silanols. Concerning the brittleness features: rupture modulus and toughness, it is shown that pores size plays an important role. Pores can be considered as flaws in the terms of fracture mechanics and the flaw size is related to the pore size. Weibull’s theory is used to show the statistical nature of flaw. Moreover, stress corrosion behaviour is studied as a function of environmental conditions (water and alcoholic atmosphere and temperature.

  10. Comparison of steam generator methods in PISC

    International Nuclear Information System (INIS)

    Lahdenperae, K.; Kankare, M.

    1996-01-01

    The main objective of the study (PISC III, action 5) was the experimental evaluation of the performance of methods used in in-service inspection of steam generator tubes used in nuclear power plants. The study was organized by the Joint Research Center of the European Community (JRC). The round robin test with blind boxes started in 1991. During the study training boxes and blind boxes were circulated in 29 laboratories in Europe, Japan and the USA. The boxes contained steam generator tubes with artificial and natural (chemically induced) flaws. The material was inconell. The blind boxes contained 66 tubes and 95 flaws. All flaws were introduced into different discontinuities, under support plates, above the tube sheet and into U-bends. The flaws included volumetric flaws (wastage, pitting, wear), axial and circumferential notches and chemically induced SCC cracks and IGA. After the round robin test the reference laboratory performed the destructive examination of reported flaws. The flaw detection probability (FDP) for all flaws and for teams inspecting all tubes was 60-85%. The detection of flaws deeper than 40% of the wall thickness was good. Flaws with a depth of less than 20% were not detected. When all flaws were considered, depth sizing was found to have a wide dispersion. Similarly, measured lengths did not as a rule correlate with true lengths. The classification of flaws in cracks and of volumetric flaws was not very successful, the correct classification probability being only about 70%. Evaluation of the flaws showed some shortcomings. The correct rejection probability was at best 83% for teams inspecting all boxes. (3 refs.)

  11. Enhanced MicroChannel Heat Transfer in Macro-Geometry using Conventional Fabrication Approach

    Science.gov (United States)

    Ooi, KT; Goh, AL

    2016-09-01

    This paper presents studies on passive, single-phase, enhanced microchannel heat transfer in conventionally sized geometry. The intention is to allow economical, simple and readily available conventional fabrication techniques to be used for fabricating macro-scale heat exchangers with microchannel heat transfer capability. A concentric annular gap between a 20 mm diameter channel and an 19.4 mm diameter insert forms a microchannel where heat transfer occurs. Results show that the heat transfer coefficient of more than 50 kW/m·K can be obtained for Re≈4,000, at hydraulic diameter of 0.6 mm. The pressure drop values of the system are kept below 3.3 bars. The present study re-confirms the feasibility of fabricating macro-heat exchangers with microchannel heat transfer capability.

  12. USE OF PERFLUOROCARBON TRACER (PFT) TECHNOLOGY FOR SUBSURFACE BARRIER INTEGRITY VERIFICATION AT THE WALDO TEST SITE

    Energy Technology Data Exchange (ETDEWEB)

    SULLIVAN,T.; HEISER,J.; SENUM,G.; MILLIAN,L.

    2000-02-27

    Researchers from Brookhaven National Laboratory (BNL) tested perfluorocarbon (PFT) gas tracers on a subsurface barrier with known flaws at the Waldo test facility [operated by Science and Engineering Associates, Inc (SEA)]. The tests involved the use of five unique PFT tracers with a different tracer injected along the interior of each wall of the barrier. A fifth tracer was injected exterior to the barrier to examine the validity of diffusion controlled transport of the PFTs. The PFTs were injected for three days at a nominal flow rate of 15 cm{sup 3}/min and a concentrations in the range of a few hundred ppm. Approximately 65 liters of air laced with tracer was injected for each tracer. The tracers were able to accurately detect the presence of the engineered flaws. Two flaws were detected on the north and east walls and lane flaw was detected on the south and west walls. In addition, one non-engineered flaw at the seam between the north and east walls was also detected. The use of multiple tracers provided independent confirmation of the flaws and permitted a distinction between tracers arriving at a monitoring port after being released from a nearby flaw and non-engineered flaws. The PFTs detected the smallest flaw, 0.5 inches in diameter. Visual inspection of the data showed excellent agreement with the known flaw locations and the relative size of the flaws was accurately estimated.

  13. Methods for assessing phosphorus overfeeding on organic and conventional dairy farms.

    Science.gov (United States)

    Nordqvist, M; Holtenius, K; Spörndly, R

    2014-02-01

    Phosphorus (P) losses from dairy farms can severely damage aquatic ecosystems, so it is important to have tools to assess overfeeding of P. This study screened P intake and faecal excretion of different P fractions in dairy cows on conventional and organic farms, compared the P feeding level of the herds against the recommendations and analysed different sampling and analysis methods for assessing the general status of P feeding on the farms. The organic (n=14) and conventional farms (n=15) were of comparable size and were located in southern Sweden. On each farm, feed intake was registered for 10 cows representing four different lactation stages and their P intake was calculated and related to current recommendations. Faecal samples taken from the same cows were analysed for total P (TP) and soluble P. Milk production data for the cows were obtained from the Swedish official milk recording scheme. TP was determined in one slurry sample per farm. More than 70% of the cows studied, representing both conventional and organic herds, consumed P in excess of the recommendations. Conventional herds had higher P content in the ration than organic herds, and lactating cows in conventional herds had higher faecal concentrations of total and soluble P than those in organic herds. However in dry cows, the P content of the ration and soluble P and TP in faeces did not differ between the two management systems. Soluble P was well correlated to TP in faeces, and both were good indicators of P overfeeding.

  14. Conventional and digital radiographic methods in the detection of simulated external root resorptions: A comparative study

    Directory of Open Access Journals (Sweden)

    C J Sanjay

    2009-01-01

    Full Text Available Objective : To evaluate and compare the efficacy of conventional and digital radiographic methods in the detection of simulated external root resorption cavities and also to evaluate whether the detectability was influenced by resorption cavity sizes. Methods : Thirty-two selected teeth from human dentate mandibles were radiographed in orthoradial, mesioradial and distoradial aspect using conventional film (Insight Kodak F-speed; Eastman Kodak, Rochester, NY and a digital sensor (Trophy RVG advanced imaging system with 0.7mm and 1.0mm deep cavities prepared on their vestibular, mesial and distal surfaces at the cervical, middle and apical thirds. Three dental professionals, an endodontist, a radiologist and a general practitioner, evaluated the images twice with a one-week time interval. Results : No statistical significance was seen in the first observation for both conventional and digital radiographic methods in the detection of simulated external root resorptions and for small and medium cavities but statistical difference was noted in the second observation (P< 0.001 for both the methods. Conclusion : Considering the methodology and the overall results, conventional radiographic method (F-speed performed slightly better than the digital radiographic method in the detection of simulated radiographic method but better consistency was seen with the digital system. Overall size of the resorption cavity had no influence on the performance of both methods and suggests that initial external root resorption lesion is not well-appreciated with both the methods as compared to the advanced lesion.

  15. Study of failure criterion applicable to elastic-plastic finite element analyses of wall-thinned pipes subjected to multi-axial loading. Case for groove type flaw under combined internal pressure and bending loading

    International Nuclear Information System (INIS)

    Mori, Kosuke; Meshii, Toshiyuki

    2015-01-01

    In this paper, a failure criterion applicable to large-strain finite element analysis (FEA) results was studied to predict the limit bending load M_c of the groove shaped wall-thinned pipes, under combined internal pressure and bending load, that experienced cracking. In our previous studies, Meshii and Ito (2012) considered cracking of pipes with groove shaped flaw (small axial length δ_z in Fig. 1) was due to the plastic instability at the wall-thinned section and proposed the Domain Collapse Criterion (DCC). The DCC could predict M_c of cracking for small δ_z by comparing the von Mises stress σ_M_i_s_e_s with the true tensile strength σ_B. Because the discrepancy in prediction of the M_c in the case of cracking was within 15%, it was considered that the predictability was could be improved further. Thus, in this work, attempt was made to improve the accuracy of M_c prediction with a perspective that multi-axial stress state might affect this plastic instability at the wall-thinned section. As a result of examination of the various failure criteria based on multi-axial stress, it was confirmed that the limit bending load of the groove flawed pipe that experienced cracking in experiment (Hereafter, it was expressed 'flawed pipe that experienced cracking') could be predicted within 5% accuracy by applying Hill's plastic instability onset criterion (Hill, 1952) to the outer surface of the crack penetration section. The accuracy of the predicted limit bending load was improved from DCC's within 15% to within 5%. (author)

  16. The economics of urban size.

    Science.gov (United States)

    Alonso, W

    1971-01-01

    An aggregative economic approach to the theory of city size is presented along with some empirical findings which suggest that even the largest cities have not yet reached excessive sizes from the point of view of growth and productivity. Urban magnitude is no simple 1 dimensional phenomenon. Modern urban centers are surrounded by very large, diffuse zonal boundaries, within which there are marked variations in the proportion of firms and people associated with that center, and in the intensity of the association. In sum, population does not constitute a conventional, countable set. In general, population will be considered as the basic magnitude and as a conventionally definable number. Most approaches to city size have emphasized the presumed diseconomy of urban scale and have sought to establish that population at which costs per capita are least, regarding this as optimal. It is argued here that both the logic and the factual basis of this approach are faulty. The argument of minimum costs is insufficient in its own terms. Such an objective is reasonable only if output per capita is constant, but it appears that output per capita is an increasing function of urban size. In that case, a more sensible objective of public policy would deal with the relation of outputs and inputs, rather than only with inputs. In every country for which evidence was found, local product per capita (or some index for it, such as income or wages) rises with urban size, and where comparable figures on cost are available, these rise far more slowly if at all. Although all of the data desirable are not available for any single country, the overall pattern is clear. Possibly the most surprising element in the data is the marked decline with increasing density in Social Overhead Captial Stocks (SOCS) per capita. This runs counter to common belief that the bigger the city the more infrastructure per capita is needed and may be the result of such effects as the greater linear quantities of

  17. Comparison of Dust Release from Epoxy and Paint Nanocomposites and Conventional Products during Sanding and Sawing

    DEFF Research Database (Denmark)

    Gomez, V.; Levin, Marcus; Saber, A. T.

    2014-01-01

    The release of dust generated during sanding or sawing of nanocomposites was compared with conventional products without nanomaterials. Epoxy-based polymers with and without carbon nanotubes, and paints with different amounts of nano-sized titanium dioxide, were machined in a closed aerosol chamber...

  18. Multidisciplinary Teamwork in Autism: Can One Size Fit All?

    Science.gov (United States)

    Dillenburger, Karola; Röttgers, Hanns-Rüdiger; Dounavi, Katerina; Sparkman, Coleen; Keenan, Mickey; Thyer, Bruce; Nikopoulos, Christos

    2014-01-01

    Multidisciplinary practice has become an accepted approach in many education and social and health care fields. In fact, the right to a multidisciplinary assessment is enshrined in the United Nations Convention of the Rights for Persons with Disabilities (United Nations, 2007). In order to avert a "one size fits all" response to…

  19. Strain elastography of abnormal axillary nodes in breast cancer patients does not improve diagnostic accuracy compared with conventional ultrasound alone.

    Science.gov (United States)

    Park, Young Mi; Fornage, Bruno D; Benveniste, Ana Paula; Fox, Patricia S; Bassett, Roland L; Yang, Wei Tse

    2014-12-01

    The purpose of this study was to determine the diagnostic value of strain elastography (SE) alone and in combination with gray-scale ultrasound in the diagnosis of benign versus metastatic disease for abnormal axillary lymph nodes in breast cancer patients. Patients with breast cancer and axillary lymph nodes suspicious for metastatic disease on conventional ultrasound who underwent SE of the suspicious node before ultrasound-guided fine-needle aspiration biopsy (FNAB) were included in this study. On conventional ultrasound, the long- and short-axis diameters, long-axis-to-short-axis ratio, cortical echogenicity, thickness, and evenness were documented. The nodal vascularity was assessed on power Doppler imaging. Elastograms were evaluated for the percentage of black (hard) areas in the lymph node, and the SE-ultrasound size ratio was calculated. Two readers assessed the images independently and then in consensus in cases of disagreement. ROC AUCs were calculated for conventional ultrasound, SE, and both methods combined. Interreader reliability was assessed using kappa statistics. A total of 101 patients with 104 nodes were examined; 35 nodes were benign, and 69 had metastases. SE alone showed a significantly lower AUC (62%) than did conventional ultrasound (92%) (pultrasound and the AUC of the combination of conventional ultrasound and SE (93%) (p=0.16). Interreader reliability was moderate for all variables (κ≥0.60) except the SE-ultrasound size ratio (κ=0.35). Added SE does not improve the diagnostic ability of conventional ultrasound when evaluating abnormal axillary lymph nodes.

  20. The essential role of vibronic interactions in electron pairing in the micro- and macroscopic sized materials

    International Nuclear Information System (INIS)

    Kato, Takashi

    2010-01-01

    Graphical abstract: The electron-phonon interactions destroy the electron pairs formed by Coulomb interactions, and at the same time, form the energy gap by which the electron pairs become stable. - Abstract: In order to discuss how the nondissipative delocalized diamagnetic currents in the microscopic sized materials are closely related to the conventional superconductivity in the macroscopic sized materials, the unified theory, by which various sized superconductivity can be explained, is suggested. It has been believed for a long time that the electron-phonon interactions play an essential role in the attractive electron-electron interactions, as described in the Bardeen-Cooper-Schrieffer (BCS) theory in the conventional superconductivity. However, it is suggested in this paper that the electron-phonon interactions do not play an essential role in the attractive electron-electron interactions but play an essential role in the forming of energy gap by which the electron pairs formed by the attractive Coulomb interactions in the conventional superconducting states become more stable than those in the normal metallic states at low temperatures.

  1. Imaging of Phase Objects using Partially Coherent Illumination

    Energy Technology Data Exchange (ETDEWEB)

    Ravizza, F. L. [Univ. of Arizona, Tucson, AZ (United States)

    2013-01-01

    Screening high-power laser optics for light intensifying phase objects that cause laserinduced damage on downstream optics is critical to sustaining laser operation. Identifying such flaws on large-apertures is quite challenging since they are relatively small and invisible to conventional inspection methods. A Linescan Phase Differential Imaging (LPDI) system was developed to rapidly identify these flaws on large-aperture optics within a single full-aperture dark-field image. We describe a two-step production phase object screening process consisting of LPDI mapping and image analysis, followed by high-resolution interferometry and propagation based evaluation of the downstream damage potential of identified flaws. An image simulation code capable of modeling the LPDI partially coherent illumination was used to optimize its phase object sensitivity.

  2. Experimental investigation of flawed pipes with respect to fracture behavior and development of crack opening area

    Energy Technology Data Exchange (ETDEWEB)

    Stoppler, W [Stuttgart Univ. (Germany). Staatliche Materialpruefungsanstalt

    1993-12-31

    The critical length of a longitudinal through-wall flaw, defined as that causing rupture, was first determined hydro-statically on large experimental vessels under internal pressure; the leak before rupture diagram for the base material of the vessel is established by experiment and calculation; it gives a limit between the two modes of failure, leakage or rupture (catastrophic failure), depending on slit length and loading conditions. Tests under pneumatic pressure were then carried out to investigate crack arrest, with notched discs made of a brittle material welded in the cylindrical part of the vessel, and cracks triggered by means of a small charged ignited over the notch. In the case of discs of a diameter smaller than the critical slit length, crack arrest occurred when the crack entered the tough material, while a disc corresponding to the critical crack length of the vessel led to rupture. 5 refs., 16 figs., 2 tabs.

  3. High-resolution storage phosphor imaging of the chest: Comparison with conventional screen-film systems

    International Nuclear Information System (INIS)

    Fuhrman, C.R.; Good, B.; Feist, J.; Gur, D.; Darby, J.

    1987-01-01

    An experimental high-resolution storage phosphor imaging system (Eastman Kodak) has been used to evaluate the image quality and impact on diagnostic interpretation of storage phosphor images relative to conventional screen-film images of the same patients. The elements of the system include a high-resolution laser scanner (4K X 5K X 12 bit); an image processing system; and a high-resolution (4K X 5K X 12 bit) laser printer. Each case was digitally printed onto film in two different formats: a full-size (14 X 14-inch) and a half-size format of four processed, minified images (7 X 7-inches each). The multiformat image includes an original, an unsharp-masked, a reversed (black bone) unsharp-masked, and a high-contrast unsharp-masked image. The results of this preliminary study (11 cases, eight readers) clearly indicate that after minimal adjustment, radiologists do not object to making diagnoses from minified images. Unsharp masked images were considered preferable to unprocessed images, and processed storage phosphor images were rated significantly better than conventional film images

  4. Digital luminescent radiography: A substitute for conventional chest radiography?

    International Nuclear Information System (INIS)

    Neufang, K.F.R.; Krug, B.; Lorenz, R.; Steinbrich, W.

    1990-01-01

    The image quality of digital luminescent radiography (DLR) is sufficient for routine biplane chest radiography and for follow-up studies of heart size, pulmonary congestion, coin lesions, infiltrations, atelectasis, pleural effusions, and mediastinal and hilar lymph node enlargement. Chest radiography in the intensive care unit may in most cases be performed using the DLR technique. there is no need for repeat shots because of incorrect exposure, and the position of catheters, tubes, pacemakers, drains and artificial heart valves, the mediastinum, and the retrocardiac areas of the left lung are more confidently assessed on the edge-enhanced DLR films than on conventional films. Nevertheless, DLR is somewhat inferior to conventional film-screen radiography of the chest as it can demonstrate or rule out subtle pulmonary interstitial disease less confidently. There is no reduction of radiation exposure of the chest in DLR compared with modern film-screen systems. As a consequence, DLR is presently not in a position to replace traditional film-screen radiography of the chest completely. (orig.) [de

  5. Evaluation of ECT reliability for axial ODSCC in steam generator tubes

    International Nuclear Information System (INIS)

    Lee, Jae Bong; Park, Jai Hak; Kim, Hong Deok; Chung, Han Sub

    2010-01-01

    The integrity of steam generator tubes is usually evaluated based on eddy current test (ECT) results. Because detection capacity of the ECT is not perfect, all of the physical flaws, which actually exist in steam generator tubes, cannot be detected by ECT inspection. Therefore it is very important to analyze ECT reliability in the integrity assessment of steam generators. The reliability of an ECT inspection system is divided into reliability of inspection technique and reliability of quality of analyst. And the reliability of ECT results is also divided into reliability of size and reliability of detection. The reliability of ECT sizing is often characterized as a linear regression model relating true flaw size data to measured flaw size data. The reliability of detection is characterized in terms of probability of detection (POD), which is expressed as a function of flaw size. In this paper the reliability of an ECT inspection system is analyzed quantitatively. POD of the ECT inspection system for axial outside diameter stress corrosion cracks (ODSCC) in steam generator tubes is evaluated. Using a log-logistic regression model, POD is evaluated from hit (detection) and miss (no detection) binary data obtained from destructive and non-destructive inspections of cracked tubes. Crack length and crack depth are considered as variables in multivariate log-logistic regression and their effects on detection capacity are assessed using two-dimensional POD (2-D POD) surface. The reliability of detection is also analyzed using POD for inspection technique (POD T ) and POD for analyst (POD A ).

  6. The efficacy of conventional radiation therapy in the management of pituitary adenoma

    International Nuclear Information System (INIS)

    Sasaki, Ryohei; Murakami, Masao; Okamoto, Yoshiaki; Kono, Koichi; Yoden, Eisaku; Nakajima, Toshifumi; Nabeshima, Sachio; Kuroda, Yasumasa

    2000-01-01

    Purpose: To evaluate the efficacy of conventional radiotherapy for reducing tumor size and endocrine hypersecretion of pituitary adenomas. Methods and Materials: We reviewed the records of 91 patients with pituitary adenoma, who were first treated between 1969 and 1994 and had been followed for more than 2 years (median, 8.2 years.) Of these patients, 86 had received postoperative radiotherapy, and 5 had received radiotherapy alone. The median total dose was 51 Gy. Clinical symptoms related to mass effects or endocrine hypersecretion were assessed. The efficacy of radiotherapy was evaluated before treatment and during the follow-up period (1-14 years; median, 3 years) by estimating tumor size on computed tomography or magnetic resonance imaging in 56 patients, as well as by endocrine testing in the 22 patients who had secreting adenomas. Local control rate, prognostic factors, and side effects were analyzed. Results: Mass-effect symptoms improved in 72% and 79% of patients who had such symptoms due to nonsecreting adenomas and secreting adenomas, respectively. Symptoms of endocrine hypersecretion abated in 67% of patients who had such symptoms. Excessive hormone levels normalized in 74% of patients who showed endocrine hypersecretions. The greatest size reduction was seen 3 years after the completion of radiotherapy (24% CR, 62% PR, 12% NC, and 3% PD in nonsecreting adenomas, and 32% CR, 36% PR, 27% NC, and 5% PD in secreting adenomas). Three patients with secreting adenomas (2 with prolactinoma and 1 with Cushing's disease) showed a mismatch between reduction in tumor size and normalization of endocrine hypersecretion. The 10-year local control rates were 98%, 85%, 83%, and 67% for nonsecreting adenoma, growth-hormone-secreting adenoma, prolactinoma, and Cushing's disease, respectively. Univariate analyses showed that disease type and radiation field size were significant prognostic factors. Brain necrosis occurred in 1 patient who received a 60-Gy dose of

  7. The approach to analysis of significance of flaws in ASME section III and section XI

    International Nuclear Information System (INIS)

    Cowan, A.

    1979-01-01

    ASME III Appendix G and ASME XI Appendix A describe linear elastic fracture mechanics methods to assess the significance of defects in thick-walled pressure vessels for nuclear reactor systems. The assessment of fracture toughness, Ksub(Ic), is based upon recommendations made by a Task Group of the USA Pressure Vessel Research Committee and is dependent upon correlations with drop weight and Charpy V-notch data to give a lower bound of fracture toughness Ksub(IR). The methods used in the ASME Appendices are outlined noting that, whereas ASME III Appendix G defines a procedure for obtaining allowable pressure vessel loadings for normal service in the presence of a defect, ASME XI Appendix A defines methods for assessing the significance of defects (found by volumetric inspection) under normal and emergency and faulted conditions. The methods of analysis are discussed with respect to material properties, flaw characterisation, stress analysis and recommended safety factors; a short discussion is given on the applicability of the data and methods to other materials and non-nuclear structures. (author)

  8. Application of the Aarhus Convention

    Directory of Open Access Journals (Sweden)

    Tubić Bojan

    2011-01-01

    Full Text Available Convention on access to information, public participation in decision-making and access to justice in environmental matters (Aarhus Convention has been adopted in 1998 and entered into force three years later. It envisages three elements for strengthening democratic procedures in decision-making: access to information, public participation and access to justice. At the first meeting of the Member States the Aarhus Convention Compliance Committee was founded. The European Union is a party of the Convention and it has implemented the provisions in its legal order. After entering into force of the Convention, several Directives that regulate these issues in the EU have been enacted. Republic of Serbia has ratified the Convention in 2009 and it is currently in the process of its implementation by involving private subjects in decision-making on environmental issues.

  9. Rainfall simulation experiments in ecological and conventional vineyards.

    Science.gov (United States)

    Adrian, Alexander; Brings, Christine; Rodrigo Comino, Jesús; Iserloh, Thomas; Ries, Johannes B.

    2015-04-01

    In October 2014, the Trier University started a measurement series, which defines, compares and evaluates the behavior of runoff and soil erosion with different farming productions in vineyards. The research area is located in Kanzem, a traditional wine village in the Saar Valley (Rheinland-Palatinate, Germany). The test fields show different cultivation methods: ecological (with natural vegetation cover under and around the vines) and conventional cultivated rows of wine. By using the small portable rainfall simulator of Trier University it shall be proved if the assumption that there is more runoff and soil erosion in the conventional part than in the ecological part of the tillage system. Rainfall simulations assess the generation of overland flow, soil erosion and infiltration. So, a trend of soil erosion and runoff of the different cultivation techniques are noted. The objective of this work is to compare the geomorphological dynamics of two different tillage systems. Therefore, 30 rainfall simulations plots were evenly distributed on a west exposition hillside with different slope angels (8-25°), vegetation- and stone-covers. In concrete, the plot surface reaches from strongly covered soil across lithoidal surfaces to bare soil often with compacted lanes of typical using machines. In addition, by using the collected substrate, an estimation and distribution of the grain size of the eroded material shall be given. The eroded substrate is compared to soil samples of the test plots. The first results have shown that there is slightly more runoff and soil erosion in the ecological area than on the conventional part of the vineyard.

  10. Nuclear liability: Joint protocol relating to the application of the Vienna Convention and the Paris Convention, 1988

    International Nuclear Information System (INIS)

    1989-10-01

    The Joint Protocol Relating to the Application of the Vienna Convention and the Paris Convention was adopted by the Conference on the Relationship between the Paris Convention and the Vienna Convention, which met in Vienna, at the Headquarters of the International Atomic Energy Agency on 21 September 1988. The Joint Protocol establishes a link between the Paris Convention on Third Party Liability in the Field of Nuclear Energy of 1960 and the Vienna Convention on Civil Liability for Nuclear Damage of 1963. The Joint Protocol will extend to the States adhering to it the coverage of the two Conventions. It will also resolve potential conflicts of law, which could result from the simultaneous application of the two Conventions to the same nuclear accident. The Conference on the Relationship between the Paris Convention and the Vienna Convention was jointly organized by the International Atomic Energy Agency and the OECD Nuclear Energy Agency. This publication contains the text of the Final Act of the Conference in the six authentic languages, the Joint Protocol Relating to the Application of the Vienna Convention and the Paris Convention, also in the six authentic languages and an explanatory note, prepared by the IAEA and NEA Secretariats, providing background information on the content of the Joint Protocol

  11. Impact of radiation embrittlement on integrity of pressure vessel supports for two PWR plants

    Energy Technology Data Exchange (ETDEWEB)

    Cheverton, R.D.; Pennell, W.E.; Robinson, G.C.; Nanstad, R.K.

    1989-01-01

    Recent data from the HFIR vessel surveillance program indicate a substantial radiation embrittlement rate effect at low irradiation temperatures (/approximately/120/degree/F) for A212-B, A350-LF3, A105-II, and corresponding welds. PWR vessel supports are fabricated of similar materials and are subjected to the same low temperatures and fast neutron fluxes (10/sup 8/ to 10/sup 9/ neutrons/cm/sup 2//center dot/s, E > 1.0 MeV) as those in the HFIR vessel. Thus, the embrittlement rate of these structures may be greater than previously anticipated. A study sponsored by the NRC is under way at ORNL to determine the impact of the rate effect on PWR vessel-support life expectancy. The scope includes the interpretation and application of the HFIR data, a survey of all light-water-reactor vessel support designs, and a structural and fracture-mechanics analysis of the supports for two specific PWR plants of particular interest with regard to a potential for support failure as a result of propagation of flaws. Calculations performed thus far indicate best-estimate critical flaw sizes, corresponding to 32 EFPY, of /approximately/0.2 in. for one plant and /approximately/0.4 in. for the other. These flaw sizes are small enough to be of concern. However, it appears that low-cycle fatigue is not a viable mechanism for creation of flaws of this size, and thus, presumably, such flaws would have to exist at the time of fabrication. 59 refs., 128 figs., 49 tabs.

  12. Global climate convention

    International Nuclear Information System (INIS)

    Simonis, U.E.

    1991-01-01

    The effort of negotiate a global convention on climate change is one of mankind's great endeavours - and a challenge to economists and development planners. The inherent linkages between climate and the habitability of the earth are increasingly well recognized, and a convention could help to ensure that conserving the environment and developing the economy in the future must go hand in hand. Due to growing environmental concern the United Nations General Assembly has set into motion an international negotiating process for a framework convention on climate change. One the major tasks in these negotiations is how to share the duties in reducing climate relevant gases, particularly carbon dioxide (CO 2 ), between the industrial and the developing countries. The results and proposals could be among the most far-reaching ever for socio-economic development, indeed for global security and survival itself. While the negotiations will be about climate and protection of the atmosphere, they will be on fundamental global changes in energy policies, forestry, transport, technology, and on development pathways with low greenhouse gas emissions. Some of these aspects of a climate convention, particularly the distributional options and consequences for the North-South relations, are addressed in this chapter. (orig.)

  13. Swallowing thresholds of mandibular implant-retained overdentures with variable portion sizes

    NARCIS (Netherlands)

    Fontijn-Tekamp, F.A.; Slagter, A.P.; Van der Bilt, A.; Van't Hof, M.A.; Kalk, W.; Jansen, J.A.

    2004-01-01

    We analysed the effect of three portion sizes Optocal Plus (small, medium and large) on swallowing thresholds in subjects with either conventional complete dentures or mandibular implant-retained overdentures (transmandibular and permucosal cylindric implants). Tests were carried out in 52 women and

  14. SAFT-assisted sound beam focusing using phased arrays (PA-SAFT) for non-destructive evaluation

    Science.gov (United States)

    Nanekar, Paritosh; Kumar, Anish; Jayakumar, T.

    2015-04-01

    Focusing of sound has always been a subject of interest in ultrasonic non-destructive evaluation. An integrated approach to sound beam focusing using phased array and synthetic aperture focusing technique (PA-SAFT) has been developed in the authors' laboratory. The approach involves SAFT processing on ultrasonic B-scan image collected by a linear array transducer using a divergent sound beam. The objective is to achieve sound beam focusing using fewer elements than the ones required using conventional phased array. The effectiveness of the approach is demonstrated on aluminium blocks with artificial flaws and steel plate samples with embedded volumetric weld flaws, such as slag and clustered porosities. The results obtained by the PA-SAFT approach are found to be comparable to those obtained by conventional phased array and full matrix capture - total focusing method approaches.

  15. THE FAILURE OD THE INTELLIGENCE COMMUNITY OF THE UNITED STATES ON SEPTEMBER 11. SYSTEMIC OR HUMAN FLAWS?

    Directory of Open Access Journals (Sweden)

    FRANKLIN BARRIENTOS RAMÍREZ

    2018-01-01

    Full Text Available The terrorist attacks of September 11th, put the blame on to the US’ intelligence community, and mainly the CIA, FBI and the NSA, because they failed to set an early warning alert of the incoming terrorist threat. The Senate’s Intelligence Committee and the Intelligence Permanent Committee of the House of Representatives were the first to create an investigation commission to analyze the causes that drove to the 911 attacks. Later on, and due to the citizen’s pressure, President Bush installed the National Investigation Commission for the Terrorist Attacks to the US. Beyond of the criticisms both commission received, it can be said that they perform an honest and accurate work over the real causes of the terrorist attacks. Among the aws and mistakes of the security and intelligence agencies, organizational, cultural, systemic and human flaws were detected.

  16. Laparoscopic splenectomy using conventional instruments

    Directory of Open Access Journals (Sweden)

    Dalvi A

    2005-01-01

    Full Text Available INTRODUCTION : Laparoscopic splenectomy (LS is an accepted procedure for elective splenectomy. Advancement in technology has extended the possibility of LS in massive splenomegaly [Choy et al., J Laparoendosc Adv Surg Tech A 14(4, 197-200 (2004], trauma [Ren et al., Surg Endosc 15(3, 324 (2001; Mostafa et al., Surg Laparosc Endosc Percutan Tech 12(4, 283-286 (2002], and cirrhosis with portal hypertension [Hashizume et al., Hepatogastroenterology 49(45, 847-852 (2002]. In a developing country, these advanced gadgets may not be always available. We performed LS using conventional and reusable instruments in a public teaching the hospital without the use of the advanced technology. The technique of LS and the outcome in these patients is reported. MATERIALS AND METHODS : Patients undergoing LS for various hematological disorders from 1998 to 2004 were included. Electrocoagulation, clips, and intracorporeal knotting were the techniques used for tackling short-gastric vessels and splenic pedicle. Specimen was delivered through a Pfannensteil incision. RESULTS : A total of 26 patients underwent LS. Twenty-two (85% of patients had spleen size more than 500 g (average weight being 942.55 g. Mean operative time was 214 min (45-390 min. The conversion rate was 11.5% ( n = 3. Average duration of stay was 5.65 days (3-30 days. Accessory spleen was detected and successfully removed in two patients. One patient developed subphrenic abscess. There was no mortality. There was no recurrence of hematological disease. CONCLUSION : Laparoscopic splenectomy using conventional equipment and instruments is safe and effective. Advanced technology has a definite advantage but is not a deterrent to the practice of LS.

  17. Validation of statistical assessment method for the optimization of the inspection need for nuclear steam generators

    International Nuclear Information System (INIS)

    Wallin, K.; Voskamp, R.; Schmibauer, J.; Ostermeyer, H.; Nagel, G.

    2011-01-01

    The cost of steam generator inspections in nuclear power plants is high. A new quantitative assessment methodology for the accumulation of flaws due to stochastic causes like fretting has been developed for cases where limited inspection data is available. Additionally, a new quantitative assessment methodology for the accumulation of environment related flaws, caused e.g. by corrosion in steam generator tubes, has been developed. The method that combines deterministic information regarding flaw initiation and growth with stochastic elements connected to environmental aspects requires only knowledge of the experimental flaw accumulation history. The method, combining both types of flaw types, provides a complete description of the flaw accumulation and there are several possible uses of the method. The method can be used to evaluate the total life expectancy of the steam generator and simple statistically defined plugging criteria can be established based on flaw behaviour. This way the inspection interval and inspection coverage can be optimized with respect to allowable flaws and the method can recognize flaw type subsets requiring more frequent inspection intervals. The method can also be used to develop statistically realistic safety factors accounting for uncertainties in inspection flaw sizing and detection. The statistical assessment method has been showed to be robust and insensitive to different assessments of plugged tubes. Because the procedure is re-calibrated after each inspection, it reacts effectively to possible changes in the steam generator environment. Validation of the assessment method is provided for real steam generators, both in the case of stochastic damage as well as environment related flaws. (authors)

  18. Measurement of an electronic cigarette aerosol size distribution during a puff

    Science.gov (United States)

    Belka, Miloslav; Lizal, Frantisek; Jedelsky, Jan; Jicha, Miroslav; Pospisil, Jiri

    Electronic cigarettes (e-cigarettes) have become very popular recently because they are marketed as a healthier alternative to tobacco smoking and as a useful tool to smoking cessation. E-cigarettes use a heating element to create an aerosol from a solution usually consisting of propylene glycol, glycerol, and nicotine. Despite the wide spread of e-cigarettes, information about aerosol size distributions is rather sparse. This can be caused by the relative newness of e-cigarettes and by the difficulty of the measurements, in which one has to deal with high concentration aerosol containing volatile compounds. Therefore, we assembled an experimental setup for size measurements of e-cigarette aerosol in conjunction with a piston based machine in order to simulate a typical puff. A TSI scanning mobility particle sizer 3936 was employed to provide information about particle concentrations and sizes. An e-cigarette commercially available on the Czech Republic market was tested and the results were compared with a conventional tobacco cigarette. The particles emitted from the e-cigarette were smaller than those of the conventional cigarette having a CMD of 150 and 200 nm. However, the total concentration of particles from e-cigarette was higher.

  19. Measurement of an electronic cigarette aerosol size distribution during a puff

    Directory of Open Access Journals (Sweden)

    Belka Miloslav

    2017-01-01

    Full Text Available Electronic cigarettes (e-cigarettes have become very popular recently because they are marketed as a healthier alternative to tobacco smoking and as a useful tool to smoking cessation. E-cigarettes use a heating element to create an aerosol from a solution usually consisting of propylene glycol, glycerol, and nicotine. Despite the wide spread of e-cigarettes, information about aerosol size distributions is rather sparse. This can be caused by the relative newness of e-cigarettes and by the difficulty of the measurements, in which one has to deal with high concentration aerosol containing volatile compounds. Therefore, we assembled an experimental setup for size measurements of e-cigarette aerosol in conjunction with a piston based machine in order to simulate a typical puff. A TSI scanning mobility particle sizer 3936 was employed to provide information about particle concentrations and sizes. An e-cigarette commercially available on the Czech Republic market was tested and the results were compared with a conventional tobacco cigarette. The particles emitted from the e-cigarette were smaller than those of the conventional cigarette having a CMD of 150 and 200 nm. However, the total concentration of particles from e-cigarette was higher.

  20. Sizing criteria for a low footprint passive mine water treatment system.

    Science.gov (United States)

    Sapsford, D J; Williams, K P

    2009-02-01

    The objective of this paper is to present data from a novel vertical flow mine water treatment system, demonstrate how these data can be used to generate sizing formulae for this technology, and present a comparison between the size of system based on these formulae and those of conventionally designed passive systems. The paper focuses on passive treatment of circum-neutral ferruginous mine waters bearing up to 50 mgl(-1) of iron in either ferrous or ferric form. The Vertical Flow Reactor (VFR) operates by passing mine water down through an accreting bed of ochre, the ochre bed being responsible for the intensification of iron removal by self-filtration and/or autocatalytic iron oxidation and precipitation. Key to the design and operation of the VFR system is the decrease in permeability in this ochre bed over time. The paper demonstrates that the VFR system can remove iron at many times the 10 g/m2/day removal rate - an often employed figure for the sizing of aerobic settling ponds and wetlands. The paper demonstrates that VFRs are viable and novel passive treatment system for mine waters with a smaller footprint than conventional systems.

  1. ESD and the Rio Conventions

    Science.gov (United States)

    Sarabhai, Kartikeya V.; Ravindranath, Shailaja; Schwarz, Rixa; Vyas, Purvi

    2012-01-01

    Chapter 36 of Agenda 21, a key document of the 1992 Earth Summit, emphasised reorienting education towards sustainable development. While two of the Rio conventions, the Convention on Biological Diversity (CBD) and the United Nations Framework Convention on Climate Change (UNFCCC), developed communication, education and public awareness (CEPA)…

  2. Development of small-size baking oven

    Energy Technology Data Exchange (ETDEWEB)

    Tabata, Akihisa; Kuwabara, Shigeru; Yamazawa, Yoshitaka; Shigeta, Eiji

    1987-03-01

    In the bakery business, oven fresh bakeries selling fresh bread by installing their own baking ovens at their shops have become popular recently. This article reports the development of a small-size gas baking oven for oven fresh bakaries. The gas convection oven developed recently is based on the structure of the conventional electric convection oven, and uses low pressure gas. The gas oven has an advantage that the combustion gas contains moisture. The convection oven bakes bread normally at the baking density approximately 2.5 times as much as that of the radiation oven, thereby the size of the oven may become smaller. This oven can bake many kinds of bread ranging from croissants to bean-jam buns by gas combnstion heat as well as radiation heat from the radiation plates installed at the top of each compartment in the oven. An ultra small air heat type burner was developed to provide stable short flames in order to make the size of the combustion chamber smaller. (20 figs, 2 tabs)

  3. Risk and value of conventional myelography with regard to radiation exposure of the patient

    International Nuclear Information System (INIS)

    Hentschel, F.

    1989-01-01

    To estimate the effective equivalent dose with reference to the area under examination and the foils employed, fifty patients underwent conventional diagnostic myelography, after which, by means of thermoluminescence surface dosimetry, the mean organ dose was ascertained from the radiation field size, using the computer program ORDOS. Effective equivalent dose can be used to determine the inherent risk of radiation injury involved. The risk-benefit ratios obtained would suggest that conventional myelography, prospectively in the form of digital myelography, and spinal computer tomography are not opposing but complementary approaches to spinal diagnosis. Spinal NMR imaging must not be discussed under the aspect of radiation exposure but under the aspect of availability. (author)

  4. Concepts in sample size determination

    Directory of Open Access Journals (Sweden)

    Umadevi K Rao

    2012-01-01

    Full Text Available Investigators involved in clinical, epidemiological or translational research, have the drive to publish their results so that they can extrapolate their findings to the population. This begins with the preliminary step of deciding the topic to be studied, the subjects and the type of study design. In this context, the researcher must determine how many subjects would be required for the proposed study. Thus, the number of individuals to be included in the study, i.e., the sample size is an important consideration in the design of many clinical studies. The sample size determination should be based on the difference in the outcome between the two groups studied as in an analytical study, as well as on the accepted p value for statistical significance and the required statistical power to test a hypothesis. The accepted risk of type I error or alpha value, which by convention is set at the 0.05 level in biomedical research defines the cutoff point at which the p value obtained in the study is judged as significant or not. The power in clinical research is the likelihood of finding a statistically significant result when it exists and is typically set to >80%. This is necessary since the most rigorously executed studies may fail to answer the research question if the sample size is too small. Alternatively, a study with too large a sample size will be difficult and will result in waste of time and resources. Thus, the goal of sample size planning is to estimate an appropriate number of subjects for a given study design. This article describes the concepts in estimating the sample size.

  5. Ultrasonic testing of materials at level 2

    International Nuclear Information System (INIS)

    1988-06-01

    Ultrasonic inspection is a nondestructive method in which high frequency sound waves are introduced into the material being inspected. Ultrasonic testing has a superior penetrating power to radiography and can detect flaws deep in the test specimen (say up to about 6 to 7 meters of steel). It is quite sensitive to small flaws and allows the precise determination of the location and size of the flaws. Basic ultrasonic test methods such as the through transmission method and the resonance method, sensors and testing techniques are described. Pulse echo type flaw detectors and their applications for inspection of welds are surveyed. Ultrasonic standards, calibration of the equipment and evaluation methods are presented. Examples of practical applications in welding, casting and forging processes are given. Figs and tabs

  6. Motion Interplay as a Function of Patient Parameters and Spot Size in Spot Scanning Proton Therapy for Lung Cancer

    Science.gov (United States)

    Grassberger, Clemens; Dowdell, Stephen; Lomax, Antony; Sharp, Greg; Shackleford, James; Choi, Noah; Willers, Henning; Paganetti, Harald

    2013-01-01

    Purpose Quantify the impact of respiratory motion on the treatment of lung tumors with spot scanning proton therapy. Methods and Materials 4D Monte Carlo simulations were used to assess the interplay effect, which results from relative motion of the tumor and the proton beam, on the dose distribution in the patient. Ten patients with varying tumor sizes (2.6-82.3cc) and motion amplitudes (3-30mm) were included in the study. We investigated the impact of the spot size, which varies between proton facilities, and studied single fractions and conventionally fractionated treatments. The following metrics were used in the analysis: minimum/maximum/mean dose, target dose homogeneity and 2-year local control rate (2y-LC). Results Respiratory motion reduces the target dose homogeneity, with the largest effects observed for the highest motion amplitudes. Smaller spot sizes (σ≈3mm) are inherently more sensitive to motion, decreasing target dose homogeneity on average by a factor ~2.8 compared to a larger spot size (σ≈13mm). Using a smaller spot size to treat a tumor with 30mm motion amplitude reduces the minimum dose to 44.7% of the prescribed dose, decreasing modeled 2y-LC from 87.0% to 2.7%, assuming a single fraction. Conventional fractionation partly mitigates this reduction, yielding a 2y-LC of 71.6%. For the large spot size, conventional fractionation increases target dose homogeneity and prevents a deterioration of 2y-LC for all patients. No correlation with tumor volume is observed. The effect on the normal lung dose distribution is minimal: observed changes in mean lung dose and lung V20 are interplay using a large spot size and conventional fractionation. For treatments employing smaller spot sizes and/or in the delivery of single fractions, interplay effects can lead to significant deterioration of the dose distribution and lower 2y-LC. PMID:23462423

  7. Motion Interplay as a Function of Patient Parameters and Spot Size in Spot Scanning Proton Therapy for Lung Cancer

    International Nuclear Information System (INIS)

    Grassberger, Clemens; Dowdell, Stephen; Lomax, Antony; Sharp, Greg; Shackleford, James; Choi, Noah; Willers, Henning; Paganetti, Harald

    2013-01-01

    Purpose: To quantify the impact of respiratory motion on the treatment of lung tumors with spot scanning proton therapy. Methods and Materials: Four-dimensional Monte Carlo simulations were used to assess the interplay effect, which results from relative motion of the tumor and the proton beam, on the dose distribution in the patient. Ten patients with varying tumor sizes (2.6-82.3 cc) and motion amplitudes (3-30 mm) were included in the study. We investigated the impact of the spot size, which varies between proton facilities, and studied single fractions and conventionally fractionated treatments. The following metrics were used in the analysis: minimum/maximum/mean dose, target dose homogeneity, and 2-year local control rate (2y-LC). Results: Respiratory motion reduces the target dose homogeneity, with the largest effects observed for the highest motion amplitudes. Smaller spot sizes (σ ≈ 3 mm) are inherently more sensitive to motion, decreasing target dose homogeneity on average by a factor 2.8 compared with a larger spot size (σ ≈ 13 mm). Using a smaller spot size to treat a tumor with 30-mm motion amplitude reduces the minimum dose to 44.7% of the prescribed dose, decreasing modeled 2y-LC from 87.0% to 2.7%, assuming a single fraction. Conventional fractionation partly mitigates this reduction, yielding a 2y-LC of 71.6%. For the large spot size, conventional fractionation increases target dose homogeneity and prevents a deterioration of 2y-LC for all patients. No correlation with tumor volume is observed. The effect on the normal lung dose distribution is minimal: observed changes in mean lung dose and lung V 20 are <0.6 Gy(RBE) and <1.7%, respectively. Conclusions: For the patients in this study, 2y-LC could be preserved in the presence of interplay using a large spot size and conventional fractionation. For treatments using smaller spot sizes and/or in the delivery of single fractions, interplay effects can lead to significant deterioration of the

  8. Size-controlled synthesis of nickel nanoparticles

    International Nuclear Information System (INIS)

    Hou, Y.; Kondoh, H.; Ohta, T.; Gao, S.

    2005-01-01

    A facile reduction approach with nickel acetylacetonate, Ni(acac) 2 , and sodium borohydride or superhydride leads to monodisperse nickel nanoparticles in the presence of hexadecylamine (HDA) and trioctylphosphine oxide (TOPO). The combination of HDA and TOPO used in the conventional synthesis of semiconductor nanocrystals also provides better control over particle growth in the metal nanoparticle synthesis. The size of Ni nanoparticles can be readily tuned from 3 to 11 nm, depending on the ratio of HDA to TOPO in the reaction system. As-synthesized Ni nanoparticles have a cubic structure as characterized by power X-ray diffraction (XRD), selected-area electron diffraction (SAED). Transmission electron microscopy (TEM) images show that Ni nanoparticles have narrow size distribution. SQUID magnetometry was also used in the characterization of Ni nanoparticles. The synthetic procedure can be extended to the preparation of high quality metal or alloy nanoparticles

  9. Hierarchical modeling of cluster size in wildlife surveys

    Science.gov (United States)

    Royle, J. Andrew

    2008-01-01

    Clusters or groups of individuals are the fundamental unit of observation in many wildlife sampling problems, including aerial surveys of waterfowl, marine mammals, and ungulates. Explicit accounting of cluster size in models for estimating abundance is necessary because detection of individuals within clusters is not independent and detectability of clusters is likely to increase with cluster size. This induces a cluster size bias in which the average cluster size in the sample is larger than in the population at large. Thus, failure to account for the relationship between delectability and cluster size will tend to yield a positive bias in estimates of abundance or density. I describe a hierarchical modeling framework for accounting for cluster-size bias in animal sampling. The hierarchical model consists of models for the observation process conditional on the cluster size distribution and the cluster size distribution conditional on the total number of clusters. Optionally, a spatial model can be specified that describes variation in the total number of clusters per sample unit. Parameter estimation, model selection, and criticism may be carried out using conventional likelihood-based methods. An extension of the model is described for the situation where measurable covariates at the level of the sample unit are available. Several candidate models within the proposed class are evaluated for aerial survey data on mallard ducks (Anas platyrhynchos).

  10. A Comparative Study on Diagnostic Accuracy of Colour Coded Digital Images, Direct Digital Images and Conventional Radiographs for Periapical Lesions – An In Vitro Study

    Science.gov (United States)

    Mubeen; K.R., Vijayalakshmi; Bhuyan, Sanat Kumar; Panigrahi, Rajat G; Priyadarshini, Smita R; Misra, Satyaranjan; Singh, Chandravir

    2014-01-01

    Objectives: The identification and radiographic interpretation of periapical bone lesions is important for accurate diagnosis and treatment. The present study was undertaken to study the feasibility and diagnostic accuracy of colour coded digital radiographs in terms of presence and size of lesion and to compare the diagnostic accuracy of colour coded digital images with direct digital images and conventional radiographs for assessing periapical lesions. Materials and Methods: Sixty human dry cadaver hemimandibles were obtained and periapical lesions were created in first and second premolar teeth at the junction of cancellous and cortical bone using a micromotor handpiece and carbide burs of sizes 2, 4 and 6. After each successive use of round burs, a conventional, RVG and colour coded image was taken for each specimen. All the images were evaluated by three observers. The diagnostic accuracy for each bur and image mode was calculated statistically. Results: Our results showed good interobserver (kappa > 0.61) agreement for the different radiographic techniques and for the different bur sizes. Conventional Radiography outperformed Digital Radiography in diagnosing periapical lesions made with Size two bur. Both were equally diagnostic for lesions made with larger bur sizes. Colour coding method was least accurate among all the techniques. Conclusion: Conventional radiography traditionally forms the backbone in the diagnosis, treatment planning and follow-up of periapical lesions. Direct digital imaging is an efficient technique, in diagnostic sense. Colour coding of digital radiography was feasible but less accurate however, this imaging technique, like any other, needs to be studied continuously with the emphasis on safety of patients and diagnostic quality of images. PMID:25584318

  11. An analytical hierarchical model explaining the robustness and flaw-tolerance of the interlocking barb-barbule structure of bird feathers

    Science.gov (United States)

    Chen, Qiang; Gorb, Stanislav; Kovalev, Alexander; Li, Zhiyong; Pugno, Nicola

    2016-10-01

    Feathers can fulfill their aerodynamic function only if the pennaceous vane forms an airfoil stabilized by robust interlocking between barbules. Thus, revealing the robustness of the interlocking mechanical behavior of the barbules is very important to understand the function and long-term resilience of bird feathers. This paper, basing on the small- and large-beam deflection solutions, presents a hierarchical mechanical model for deriving the critical delamination conditions of the interlocking barbules between two adjacent barbs in bird feathers. The results indicate a high robustness and flaw-tolerant design of the structure. This work contributes to the understanding of the mechanical behavior of the robust interlocking barb-barbule structure of the bird feather, and provides a basis for design of feather-inspired materials with robust interlocking mechanism, such as advanced bio-inspired micro-zipping devices.

  12. The EU Arbitration Convention : An evaluating assessment of the governance and functioning of the EU Arbitration Convention

    NARCIS (Netherlands)

    Pit, Harm Mark

    2017-01-01

    The EU Arbitration Convention An evaluating assessment of the governance and functioning of the EU Arbitration Convention Summary for non-experts The EU Arbitration Convention is a convention between EU Member States to eliminate double taxation arising from – for tax purposes – transfer pricing

  13. Novel Repair Technique for Life-Extension of Hydraulic Turbine Components in Hydroelectric Power Stations

    Science.gov (United States)

    Hiramatsu, Yoichi; Ishii, Jun; Funato, Kazuhiro

    A significant number of hydraulic turbines operated in Japan were installed in the first half of the 20th century. Today, aging degradation and flaws are observed in these turbine equipments. So far, Japanese engineers have applied NDI technology of Ultrasonic Testing (UT) to detect the flaws, and after empirical evaluation of the remaining life they decided an adequate moment to replace the equipments. Since the replacement requires a large-scale field site works and high-cost, one of the solutions for life-extension of the equipments is introduction of repair services. We have been working in order to enhance the accuracy of results during the detection of flaws and flaws dimensioning, in particular focusing on the techniques of Tip-echo, TOFD and Phased-Array UT, accompanied by the conventional UT. These NDI methods made possible to recognize the entire image of surface and embedded flaws with complicated geometry. Then, we have developed an evaluation system of these flaws based on the theory of crack propagation, of the logic of crack growth driven by the stress-intensity factor of the crack tip front. The sophisticated evaluation system is constituted by a hand-made software and database of stress-intensity factor. Based on these elemental technologies, we propose a technique of repair welding to provide a life-extension of hydraulic turbine components.

  14. Note of the methodological flaws in the paper entitled "GSTT1 and GSTM1 polymorphisms predict treatment outcome for breast cancer: a systematic review and meta-analysis".

    Science.gov (United States)

    Qiu, Mali; Wu, Xu; Qu, Xiaobing

    2016-09-01

    With great interest, we read the paper "GSTT1 and GSTM1 polymorphisms predict treatment outcome for breast cancer: a systematic review and meta-analysis" (by Hu XY et al.), which has reached important conclusions that GSTM1 null and GSTT1/GSTM1 double null polymorphisms might be significantly associated with an increased tumor response in breast cancer. The result is encouraging. Nevertheless, several methodological flaws in this meta-analysis are worth noticing.

  15. TiO2-coated mesoporous carbon: conventional vs. microwave-annealing process.

    Science.gov (United States)

    Coromelci-Pastravanu, Cristina; Ignat, Maria; Popovici, Evelini; Harabagiu, Valeria

    2014-08-15

    The study of coating mesoporous carbon materials with titanium oxide nanoparticles is now becoming a promising and challenging area of research. To optimize the use of carbon materials in various applications, it is necessary to attach functional groups or other nanostructures to their surface. The combination of the distinctive properties of mesoporous carbon materials and titanium oxide is expected to be applied in field emission displays, nanoelectronic devices, novel catalysts, and polymer or ceramic reinforcement. But, their synthesis is still largely based on conventional techniques, such as wet impregnation followed by chemical reduction of the metal nanoparticle precursors, which takes time and money. The thermal heating based techniques are time consuming and often lack control of particle size and morphology. Hence, since there is a growing interest in microwave technology, an alternative way of power input into chemical reactions through dielectric heating is the use of microwaves. This work is focused on the advantages of microwave-assisted synthesis of TiO2-coated mesoporous carbon over conventional thermal heating method. The reviewed studies showed that the microwave-assisted synthesis of such composites allows processes to be completed within a shorter reaction time allowing the nanoparticles formation with superior properties than that obtained by conventional method. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Comparison of dust release from epoxy and paint nanocomposites and conventional products during sanding and sawing.

    Science.gov (United States)

    Gomez, Virginia; Levin, Marcus; Saber, Anne T; Irusta, Silvia; Dal Maso, Miikka; Hanoi, Roberto; Santamaria, Jesus; Jensen, Keld A; Wallin, Håkan; Koponen, Ismo K

    2014-10-01

    The release of dust generated during sanding or sawing of nanocomposites was compared with conventional products without nanomaterials. Epoxy-based polymers with and without carbon nanotubes, and paints with different amounts of nano-sized titanium dioxide, were machined in a closed aerosol chamber. The temporal evolution of the aerosol concentration and size distribution were measured simultaneously. The morphology of collected dust by scanning electron microscopy was different depending on the type of nanocomposites: particles from carbon nanotubes (CNTs) nanocomposites had protrusions on their surfaces and aggregates and agglomerates are attached to the paint matrix in particles emitted from alkyd paints. We observed no significant differences in the particle size distributions when comparing sanding dust from nanofiller containing products with dust from conventional products. Neither did we observe release of free nanomaterials. Instead, the nanomaterials were enclosed or partly enclosed in the matrix. A source strength term Si (cm(-3) s(-1)) that describes particle emission rates from continuous sources was introduced. Comparison between the Si parameters derived from sanding different materials allows identification of potential effects of addition of engineered nanoparticles to a composite. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  17. Convention on nuclear safety

    International Nuclear Information System (INIS)

    1994-01-01

    The Convention on Nuclear Safety was adopted on 17 June 1994 by Diplomatic Conference convened by the International Atomic Energy Agency at its Headquarters from 14 to 17 June 1994. The Convention will enter into force on the ninetieth day after the date of deposit with the Depository (the Agency's Director General) of the twenty-second instrument of ratification, acceptance or approval, including the instruments of seventeen States, having each at leas one nuclear installation which has achieved criticality in a reactor core. The text of the Convention as adopted is reproduced in the Annex hereto for the information of all Member States

  18. Analysis of Weld Fabrication Flaws in High-Level Radioactive Waste Disposal Containers: Experiences from the US Programme

    International Nuclear Information System (INIS)

    Bullen, Daniel; Apted, Mick

    2002-11-01

    The purpose of this report is to examine key issues regarding the fabrication, closure and defect detection in canisters for radioactive waste disposal in a deep geological repository. As a preliminary step, a review is made of the closure-weld design and non-destructive evaluation (NDE) of the closure seal for the US high-level waste repository programme. This includes statistical analysis of the data obtained by NDE and identification of key areas of investigation where additional data are required. Information from other industrial experiences on closure and flaw detection of metal containers is also reviewed. The canister material and closure methods for the US programme and industrial activities reviewed here differ from those of SKB's KBS-3 reference design. The issues and approaches to issue resolution identified from the US programme and industrial analogues, however, can provide an initial basis for preparing for independent review of SKB's canister closure plans and encapsulation facility

  19. Permanent magnet finger-size scanning electron microscope columns

    Energy Technology Data Exchange (ETDEWEB)

    Nelliyan, K., E-mail: elenk@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore); Khursheed, A. [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore)

    2011-07-21

    This paper presents permanent magnet scanning electron microscope (SEM) designs for both tungsten and field emission guns. Each column makes use of permanent magnet technology and operates at a fixed primary beam voltage. A prototype column operating at a beam voltage of 15 kV was made and tested inside the specimen chamber of a conventional SEM. A small electrostatic stigmator unit and dedicated scanning coils were integrated into the column. The scan coils were wound directly around the objective lens iron core in order to reduce its size. Preliminary experimental images of a test grid specimen were obtained through the prototype finger-size column, demonstrating that it is in principle feasible.

  20. Permanent magnet finger-size scanning electron microscope columns

    International Nuclear Information System (INIS)

    Nelliyan, K.; Khursheed, A.

    2011-01-01

    This paper presents permanent magnet scanning electron microscope (SEM) designs for both tungsten and field emission guns. Each column makes use of permanent magnet technology and operates at a fixed primary beam voltage. A prototype column operating at a beam voltage of 15 kV was made and tested inside the specimen chamber of a conventional SEM. A small electrostatic stigmator unit and dedicated scanning coils were integrated into the column. The scan coils were wound directly around the objective lens iron core in order to reduce its size. Preliminary experimental images of a test grid specimen were obtained through the prototype finger-size column, demonstrating that it is in principle feasible.