WorldWideScience

Sample records for situ upper ocean

  1. OceanSITES RAMA daily in-situ data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — OceanSITES daily in-situ data. OceanSITES Global Tropical Moored Buoy Array Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction (RAMA)...

  2. Comparative Analysis of Upper Ocean Heat Content Variability from Ensemble Operational Ocean Analyses

    Science.gov (United States)

    Xue, Yan; Balmaseda, Magdalena A.; Boyer, Tim; Ferry, Nicolas; Good, Simon; Ishikawa, Ichiro; Rienecker, Michele; Rosati, Tony; Yin, Yonghong; Kumar, Arun

    2012-01-01

    Upper ocean heat content (HC) is one of the key indicators of climate variability on many time-scales extending from seasonal to interannual to long-term climate trends. For example, HC in the tropical Pacific provides information on thermocline anomalies that is critical for the longlead forecast skill of ENSO. Since HC variability is also associated with SST variability, a better understanding and monitoring of HC variability can help us understand and forecast SST variability associated with ENSO and other modes such as Indian Ocean Dipole (IOD), Pacific Decadal Oscillation (PDO), Tropical Atlantic Variability (TAV) and Atlantic Multidecadal Oscillation (AMO). An accurate ocean initialization of HC anomalies in coupled climate models could also contribute to skill in decadal climate prediction. Errors, and/or uncertainties, in the estimation of HC variability can be affected by many factors including uncertainties in surface forcings, ocean model biases, and deficiencies in data assimilation schemes. Changes in observing systems can also leave an imprint on the estimated variability. The availability of multiple operational ocean analyses (ORA) that are routinely produced by operational and research centers around the world provides an opportunity to assess uncertainties in HC analyses, to help identify gaps in observing systems as they impact the quality of ORAs and therefore climate model forecasts. A comparison of ORAs also gives an opportunity to identify deficiencies in data assimilation schemes, and can be used as a basis for development of real-time multi-model ensemble HC monitoring products. The OceanObs09 Conference called for an intercomparison of ORAs and use of ORAs for global ocean monitoring. As a follow up, we intercompared HC variations from ten ORAs -- two objective analyses based on in-situ data only and eight model analyses based on ocean data assimilation systems. The mean, annual cycle, interannual variability and longterm trend of HC have

  3. OceanSITES TAO daily in-situ data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This file contains daily real-time and delayed-mode in-situ data from one of the flux reference mooring sites in the tropical oceans. Included in this file are sea...

  4. OceanSITES PIRATA daily in-situ data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This file contains daily real-time and delayed-mode in-situ data from one of the Tropical Atmosphere/Ocean (TAO)/TRITON, Pilot Research Moored Array in the Tropical...

  5. Upper ocean physical processes in the Tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, L.V.G.; Ram, P.S.

    This monograph is the outcome of an attempt by the authors to present a synthesis of the studies on physical processes in the Tropical Indian Ocean (TIO) in relation to air-sea interaction, monsoon/climate variability and biological productivity...

  6. Upper ocean circulation modulation by phytoplankton concentration in the Equatorial Pacific and the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Nakamoto, S.; PrasannaKumar, S.; Oberhuber, J.M.; Sammarco, P.; Muneyama, K.; Sato, T.; AjoyKumar, A.; Frouin, R.

    gradient in the upper ocean. This strengthens the geostrophically balanced westward currents in both side of the equatorial wave-guide (within 5 degree bands). Once these currents reach the western Pacific coast, they feed the Equatorial undercurrent (EUC...

  7. Diurnal variability of upper ocean temperature and heat budget in ...

    Indian Academy of Sciences (India)

    Time-series data on upper-ocean temperature, Vessel-Mounted Acoustic Doppler Current Profiler (VM-ADCP) measured currents and surface meteorological parameters have been obtained for the first time in the southern Bay of Bengal at 7° N, 10° N, and 13° N locations along 87° E during October - November, 1998 ...

  8. Response of an eddy-permitting ocean model to the assimilation of sparse in situ data

    Science.gov (United States)

    Li, Jian-Guo; Killworth, Peter D.; Smeed, David A.

    2003-04-01

    The response of an eddy-permitting ocean model to changes introduced by data assimilation is studied when the available in situ data are sparse in both space and time (typical for the majority of the ocean). Temperature and salinity (T&S) profiles from the WOCE upper ocean thermal data set were assimilated into a primitive equation ocean model over the North Atlantic, using a simple nudging scheme with a time window of about 2 days and a horizontal spatial radius of about 1°. When data are sparse the model returns to its unassimilated behavior, locally "forgetting" or rejecting the assimilation, on timescales determined by the local advection and diffusion. Increasing the spatial weighting radius effectively reduces both processes and hence lengthens the model restoring time (and with it, the impact of assimilation). Increasing the nudging factor enhances the assimilation effect but has little effect on the model restoring time.

  9. OceanSITES PAPA daily in-situ data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This file contains daily real-time and delayed-mode in-situ data from station Papa at 50N,145W in the North Pacific. This taut-line mooring has been instrumented...

  10. OceanSITES KEO daily in-situ data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This file contains daily real-time and delayed-mode in-situ data from the Kuroshio Extension Observatory (KEO) site nominally at 32.3N,144.6E, in the Kuroshio...

  11. Impact of Langmuir Turbulence on Upper Ocean Response to Hurricane Edouard: Model and Observations

    Science.gov (United States)

    Blair, A.; Ginis, I.; Hara, T.; Ulhorn, E.

    2017-12-01

    Tropical cyclone intensity is strongly affected by the air-sea heat flux beneath the storm. When strong storm winds enhance upper ocean turbulent mixing and entrainment of colder water from below the thermocline, the resulting sea surface temperature cooling may reduce the heat flux to the storm and weaken the storm. Recent studies suggest that this upper ocean turbulence is strongly affected by different sea states (Langmuir turbulence), which are highly complex and variable in tropical cyclone conditions. In this study, the upper ocean response under Hurricane Edouard (2014) is investigated using a coupled ocean-wave model with and without an explicit sea state dependent Langmuir turbulence parameterization. The results are compared with in situ observations of sea surface temperature and mixed layer depth from AXBTs, as well as satellite sea surface temperature observations. Overall, the model results of mixed layer deepening and sea surface temperature cooling under and behind the storm are consistent with observations. The model results show that the effects of sea state dependent Langmuir turbulence can be significant, particularly on the mixed layer depth evolution. Although available observations are not sufficient to confirm such effects, some observed trends suggest that the sea state dependent parameterization might be more accurate than the traditional (sea state independent) parameterization.

  12. Acoustic explorations of the upper ocean boundary layer

    Science.gov (United States)

    Vagle, Svein

    2005-04-01

    The upper ocean boundary layer is an important but difficult to probe part of the ocean. A better understanding of small scale processes at the air-sea interface, including the vertical transfer of gases, heat, mass and momentum, are crucial to improving our understanding of the coupling between atmosphere and ocean. Also, this part of the ocean contains a significant part of the total biomass at all trophic levels and is therefore of great interest to researchers in a range of different fields. Innovative measurement plays a critical role in developing our understanding of the processes involved in the boundary layer, and the availability of low-cost, compact, digital signal processors and sonar technology in self-contained and cabled configurations has led to a number of exciting developments. This talk summarizes some recent explorations of this dynamic boundary layer using both active and passive acoustics. The resonant behavior of upper ocean bubbles combined with single and multi-frequency broad band active and passive devices are now giving us invaluable information on air-sea gas transfer, estimation of biological production, marine mammal behavior, wind speed and precipitation, surface and internal waves, turbulence, and acoustic communication in the surf zone.

  13. Southern Ocean Mixed-Layer Seasonal and Interannual Variations From Combined Satellite and In Situ Data

    Science.gov (United States)

    Buongiorno Nardelli, B.; Guinehut, S.; Verbrugge, N.; Cotroneo, Y.; Zambianchi, E.; Iudicone, D.

    2017-12-01

    The depth of the upper ocean mixed layer provides fundamental information on the amount of seawater that directly interacts with the atmosphere. Its space-time variability modulates water mass formation and carbon sequestration processes related to both the physical and biological pumps. These processes are particularly relevant in the Southern Ocean, where surface mixed-layer depth estimates are generally obtained either as climatological fields derived from in situ observations or through numerical simulations. Here we demonstrate that weekly observation-based reconstructions can be used to describe the variations of the mixed-layer depth in the upper ocean over a range of space and time scales. We compare and validate four different products obtained by combining satellite measurements of the sea surface temperature, salinity, and dynamic topography and in situ Argo profiles. We also compute an ensemble mean and use the corresponding spread to estimate mixed-layer depth uncertainties and to identify the more reliable products. The analysis points out the advantage of synergistic approaches that include in input the sea surface salinity observations obtained through a multivariate optimal interpolation. Corresponding data allow to assess mixed-layer depth seasonal and interannual variability. Specifically, the maximum correlations between mixed-layer anomalies and the Southern Annular Mode are found at different time lags, related to distinct summer/winter responses in the Antarctic Intermediate Water and Sub-Antarctic Mode Waters main formation areas.

  14. Magnetization of lower oceanic crust and upper mantle

    Science.gov (United States)

    Kikawa, E.

    2004-05-01

    The location of the magnetized rocks of the oceanic crust that are responsible for sea-floor spreading magnetic anomalies has been a long-standing problem in geophysics. The recognition of these anomalies was a key stone in the development of the theory of plate tectonics. Our present concept of oceanic crustal magnetization is much more complex than the original, uniformly magnetized model of Vine-Matthews-Morley Hypothesis. Magnetic inversion studies indicated that the upper oceanic extrusive layer (Layer 2A of 0.5km thick) was the only magnetic layer and that it was not necessary to postulate any contribution from deeper parts of oceanic crust. Direct measurements of the magnetic properties of the rocks recovered from the sea floor, however, have shown that the magnetization of Layer 2A, together with the observations that this layer could record geomagnetic field reversals within a vertical section, is insufficient to give the required size of observed magnetic anomalies and that some contribution from lower intrusive rocks is necessary. Magnetization of oceanic intrusive rocks were observed to be reasonably high enough to contribute to sea-floor spreading magnetic anomalies, but were considered somewhat equivocal until late 1980Os, in part because studies had been conducted on unoriented dredged and ophiolite samples and on intermittent DSDP/ODP cores. Since ODP Leg 118 that cored and recovered continuous 500m of oceanic intrusive layer at Site 735B, Southwest Indian Ridge with an extremely high recovery of 87 percent, there have been several ODP Legs (legs 147, 153, 176, 179 and 209) that were devoted to drilling gabbroic rocks and peridotites. In terms of the magnetization intensities, all of the results obtained from these ODP Legs were supportive of the model that a significant contribution must come from gabbros and peridotites and the source of the lineated magnetic anomalies must reside in most of the oceanic crust as well as crust-mantle boundary

  15. Upper Oceanic Energy Response to Tropical Cyclone Passage

    Science.gov (United States)

    2013-04-15

    lagged SST cooling is approximately 0.78C for a ‘‘typical’’ TC at 308 latitude, whereas the same storm results in 10-day (30-day) lagged decreases of...during tropical to extratropical transition). The scenario above led to the development of the TC potential intensity (PI) thesis, an important...is approximately 0.78C for a ??typical?? TC at 308 latitude, whereas the same storm results in 10-day (30-day) lagged decreases of upper oceanic

  16. Observations of the upper ocean response to storm forcing in the South Atlantic Roaring Forties

    Directory of Open Access Journals (Sweden)

    R. Marsh

    1995-10-01

    Full Text Available In the austral summer of 1992–1993 the passage of a storm system drove a strong upper ocean response at 45°S in the mid-South Atlantic. Good in situ observations were obtained. CTD casts revealed that the mixed layer deepened by ~40 m over 4 days. Wind stirring dominated over buoyancy flux-driven mixing during the onset of high winds. Doppler shear currents further reveal this to be intimately related to inertial dynamics. The penetration depth of inertial currents, which are confined to the mixed layer, increases with time after a wind event, matched by a downward propagation of low values of the Richardson number. This suggests that inertial current shear is instrumental in producing turbulence at the base of the mixed layer. Evolution of inertial transport is simulated using a time series of ship-observed wind stress. Simulated transport is only 30–50% of the observed transport, suggesting that much of the observed inertial motion was forced by an earlier (possibly remote storm. Close proximity of the subtropical front further complicates the upper ocean response to the storm. A simple heat balance for the upper 100 m reveals that surface cooling and mixing (during the storm can account for only a small fraction of an apparent ~1 °C mixed layer cooling.

  17. Upper Ocean Evolution Across the Beaufort Sea Marginal Ice Zone

    Science.gov (United States)

    Lee, C.; Rainville, L.; Gobat, J. I.; Perry, M. J.; Freitag, L. E.; Webster, S.

    2016-12-01

    The observed reduction of Arctic summertime sea ice extent and expansion of the marginal ice zone (MIZ) have profound impacts on the balance of processes controlling sea ice evolution, including the introduction of several positive feedback mechanisms that may act to accelerate melting. Examples of such feedbacks include increased upper ocean warming though absorption of solar radiation, elevated internal wave energy and mixing that may entrain heat stored in subsurface watermasses (e.g., the relatively warm Pacific Summer and Atlantic waters), and elevated surface wave energy that acts to deform and fracture sea ice. Spatial and temporal variability in ice properties and open water fraction impact these processes. To investigate how upper ocean structure varies with changing ice cover, how the balance of processes shift as a function of ice fraction and distance from open water, and how these processes impact sea ice evolution, a network of autonomous platforms sampled the atmosphere-ice-ocean system in the Beaufort, beginning in spring, well before the start of melt, and ending with the autumn freeze-up. Four long-endurance autonomous Seagliders occupied sections that extended from open water, through the marginal ice zone, deep into the pack during summer 2014 in the Beaufort Sea. Gliders penetrated up to 200 km into the ice pack, under complete ice cover for up to 10 consecutive days. Sections reveal strong fronts where cold, ice-covered waters meet waters that have been exposed to solar warming, and O(10 km) scale eddies near the ice edge. In the pack, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become increasingly diffuse late in the season as they progress through the MIZ and into open water. Stratification just above the Pacific Summer Water rapidly weakens near the ice edge and temperature variance increases, likely due to mixing or energetic vertical exchange associated with strong

  18. Upper ocean response to the passage of two sequential typhoons

    Science.gov (United States)

    Wu, Renhao; Li, Chunyan

    2018-02-01

    Two sequential typhoons, separated by five days, Chan-hom and Nangka in the summer of 2015, provided a unique opportunity to study the oceanic response and cold wake evolution. The upper ocean response to the passage of these two typhoons was investigated using multi-satellite, Argo float data and HYCOM global model output. The sea surface cooling (SSC) induced by Chan-hom was gradually enhanced along its track when the storm was intensified while moving over the ocean with shallow mixed layer. The location of maximum cooling of sea surface was determined by the storm's translation speed as well as pre-typhoon oceanic conditions. As a fast-moving storm, Chan-hom induced significant SSC on the right side of its track. Localized maximum cooling patches are found over a cyclonic eddy (CE). An analysis of data from Argo floats near the track of Chan-hom demonstrated that the mixed layer temperature (MLT) and mixed layer depth (MLD) had more variabilities on the right side than those on the left side of Chan-hom's track, while mixed layer salinity (MLS) response was different from those of MLT and MLD with an increase in salinity to the right side and a decrease in salinity to the left side of the track. Subsequently, because of the remnant effect of Chan-hom, the strong upwelling induced by Typhoon Nangka, the pre-existing CE as well as a slow translation speed (process. The enhancement of chlorophyll-a concentrations was also noticed at both the CE region and close to Chan-hom's track.

  19. On the role of atmospheric forcing on upper ocean physics in the Southern Ocean and biological impacts

    Science.gov (United States)

    Carranza, Magdalena M.

    The Southern Ocean (SO) plays a key role in regulating climate by absorbing nearly half of anthropogenic carbon dioxide (CO2). Both physical and biogeochemical processes contribute to the net CO2 sink. As a result of global warming and ozone depletion, westerly winds have increased, with consequences for upper ocean physics but little is known on how primary producers are expected to respond to changes in atmospheric forcing. This thesis addresses the impact of atmospheric forcing on upper ocean dynamics and phytoplankton bloom development in the SO on synoptic storm scales, combining a broad range of observations derived from satellites, reanalysis, profiling floats and Southern elephant seals. On atmospheric synoptic timescales (2-10 days), relevant for phytoplankton growth and accumulation, wind speed has a larger impact on satellite Chl-a variability than surface heat fluxes or wind stress curl. In summer, strong winds are linked to deep mixed layers, cold sea surface temperatures and enhanced satellite chlorophyll-a (Chl-a), which suggest wind-driven entrainment plays a role in sustaining phytoplankton blooms at the surface. Subsurface bio-optical data from floats and seals reveal deep Chl-a fluorescence maxima (DFM) are ubiquitous in summer and tend to sit at the base of the mixed layer, but can occur in all seasons. The fact that wind speed and Chl-a correlations are maximal at zero lag time (from daily data) and incubation experiments indicate phytoplankton growth occurs 3-4 days after iron addition, suggests high winds in summer entrain Chl-a from a subsurface maximum. Vertical profiles also reveal Chl-a fluorescence unevenness within hydrographically defined mixed layers, suggesting the biological timescales of adaptation through the light gradient (i.e. growth and/or photoacclimation) are often faster than mixing timescales, and periods of quiescence between storms are long enough for biological gradients to form within the homogeneous layer in density

  20. Surface wave effect on the upper ocean in marine forecast

    Science.gov (United States)

    Wang, Guansuo; Qiao, Fangli; Xia, Changshui; Zhao, Chang

    2015-04-01

    An Operational Coupled Forecast System for the seas off China and adjacent (OCFS-C) is constructed based on the paralleled wave-circulation coupled model, which is tested with comprehensive experiments and operational since November 1st, 2007. The main feature of the system is that the wave-induced mixing is considered in circulation model. Daily analyses and three day forecasts of three-dimensional temperature, salinity, currents and wave height are produced. Coverage is global at 1/2 degreed resolution with nested models up to 1/24 degree resolution in China Sea. Daily remote sensing sea surface temperatures (SST) are taken to relax to an analytical product as hot restarting fields for OCFS-C by the Nudging techniques. Forecasting-data inter-comparisons are performed to measure the effectiveness of OCFS-C in predicting upper-ocean quantities including SST, mixed layer depth (MLD) and subsurface temperature. The variety of performance with lead time and real-time is discussed as well using the daily statistic results for SST between forecast and satellite data. Several buoy observations and many Argo profiles are used for this validation. Except the conventional statistical metrics, non-dimension skill scores (SS) is taken to estimate forecast skill. Model SST comparisons with more one year-long SST time series from 2 buoys given a large SS value (more than 0.90). And skill in predicting the seasonal variability of SST is confirmed. Model subsurface temperature comparisons with that from a lot of Argo profiles indicated that OCFS-C has low skill in predicting subsurface temperatures between 80m and 120m. Inter-comparisons of MLD reveal that MLD from model is shallower than that from Argo profiles by about 12m. QCFS-C is successful and steady in predicting MLD. The daily statistic results for SST between 1-d, 2-d and 3-d forecast and data is adopted to describe variability of Skill in predicting SST with lead time or real time. In a word QCFS-C shows reasonable

  1. Can oceanic reanalyses be used to assess recent anthropogenic changes and low-frequency internal variability of upper ocean temperature?

    Energy Technology Data Exchange (ETDEWEB)

    Corre, L.; Terray, L.; Weaver, A. [Cerfacs-CNRS, Toulouse (France); Balmaseda, M. [E.C.M.W.F, Reading (United Kingdom); Ribes, A. [CNRM-GAME, Meteo France-CNRS, Toulouse (France)

    2012-03-15

    A multivariate analysis of the upper ocean thermal structure is used to examine the recent long-term changes and decadal variability in the upper ocean heat content as represented by model-based ocean reanalyses and a model-independent objective analysis. The three variables used are the mean temperature above the 14 C isotherm, its depth and a fixed depth mean temperature (250 m mean temperature). The mean temperature above the 14 C isotherm is a convenient, albeit simple, way to isolate thermodynamical changes by filtering out dynamical changes related to thermocline vertical displacements. The global upper ocean observations and reanalyses exhibit very similar warming trends (0.045 C per decade) over the period 1965-2005, superimposed with marked decadal variability in the 1970s and 1980s. The spatial patterns of the regression between indices (representative of anthropogenic changes and known modes of internal decadal variability), and the three variables associated with the ocean heat content are used as fingerprint to separate out the different contributions. The choice of variables provides information about the local heat absorption, vertical distribution and horizontal redistribution of heat, this latter being suggestive of changes in ocean circulation. The discrepancy between the objective analysis and the reanalyses, as well as the spread among the different reanalyses, are used as a simple estimate of ocean state uncertainties. Two robust findings result from this analysis: (1) the signature of anthropogenic changes is qualitatively different from those of the internal decadal variability associated to the Pacific Interdecadal Oscillation and the Atlantic Meridional Oscillation, and (2) the anthropogenic changes in ocean heat content do not only consist of local heat absorption, but are likely related with changes in the ocean circulation, with a clear shallowing of the tropical thermocline in the Pacific and Indian oceans. (orig.)

  2. Towards a merged satellite and in situ fluorescence ocean chlorophyll product

    OpenAIRE

    Lavigne, H.; D'Ortenzio, F.; Claustre, H.; Poteau, A.

    2012-01-01

    Understanding the ocean carbon cycle requires a precise assessment of phytoplankton biomass in the oceans. In terms of numbers of observations, satellite data represents the largest available data set. However, as they are limited to surface waters, they have to be merged with in situ observations. Amongst the in situ data, fluorescence profiles constitute the greatest data set available, because fluorometers operate routinely on oceanographic cruise since the seventies. Nevertheless,...

  3. The Impacts of Daily Surface Forcing in the Upper Ocean over Tropical Pacific: A Numerical Study

    Science.gov (United States)

    Sui, C.-H.; Rienecker, Michele M.; Li, Xiaofan; Lau, William K.-M.; Laszlo, Istvan; Pinker, Rachel T.

    2001-01-01

    Tropical Pacific Ocean is an important region that affects global climate. How the ocean responds to the atmospheric surface forcing (surface radiative, heat and momentum fluxes) is a major topic in oceanographic research community. The ocean becomes warm when more heat flux puts into the ocean. The monthly mean forcing has been used in the past years since daily forcing was unavailable due to the lack of observations. The daily forcing is now available from the satellite measurements. This study investigates the response of the upper ocean over tropical Pacific to the daily atmospheric surface forcing. The ocean surface heat budgets are calculated to determine the important processes for the oceanic response. The differences of oceanic responses between the eastern and western Pacific are intensively discussed.

  4. SPURS: Salinity Processes in the Upper-Ocean Regional Study: THE NORTH ATLANTIC EXPERIMENT

    Science.gov (United States)

    Lindstrom, Eric; Bryan, Frank; Schmitt, Ray

    2015-01-01

    In this special issue of Oceanography, we explore the results of SPURS-1, the first part of the ocean process study Salinity Processes in the Upper-ocean Regional Study (SPURS). The experiment was conducted between August 2012 and October 2013 in the subtropical North Atlantic and was the first of two experiments (SPURS come in pairs!). SPURS-2 is planned for 20162017 in the tropical eastern Pacific Ocean.

  5. Multi-model attribution of upper-ocean temperature changes using an isothermal approach

    Science.gov (United States)

    Weller, Evan; Min, Seung-Ki; Palmer, Matthew D.; Lee, Donghyun; Yim, Bo Young; Yeh, Sang-Wook

    2016-06-01

    Both air-sea heat exchanges and changes in ocean advection have contributed to observed upper-ocean warming most evident in the late-twentieth century. However, it is predominantly via changes in air-sea heat fluxes that human-induced climate forcings, such as increasing greenhouse gases, and other natural factors such as volcanic aerosols, have influenced global ocean heat content. The present study builds on previous work using two different indicators of upper-ocean temperature changes for the detection of both anthropogenic and natural external climate forcings. Using simulations from phase 5 of the Coupled Model Intercomparison Project, we compare mean temperatures above a fixed isotherm with the more widely adopted approach of using a fixed depth. We present the first multi-model ensemble detection and attribution analysis using the fixed isotherm approach to robustly detect both anthropogenic and natural external influences on upper-ocean temperatures. Although contributions from multidecadal natural variability cannot be fully removed, both the large multi-model ensemble size and properties of the isotherm analysis reduce internal variability of the ocean, resulting in better observation-model comparison of temperature changes since the 1950s. We further show that the high temporal resolution afforded by the isotherm analysis is required to detect natural external influences such as volcanic cooling events in the upper-ocean because the radiative effect of volcanic forcings is short-lived.

  6. Are Global In-Situ Ocean Observations Fit-for-purpose? Applying the Framework for Ocean Observing in the Atlantic.

    Science.gov (United States)

    Visbeck, M.; Fischer, A. S.; Le Traon, P. Y.; Mowlem, M. C.; Speich, S.; Larkin, K.

    2015-12-01

    There are an increasing number of global, regional and local processes that are in need of integrated ocean information. In the sciences ocean information is needed to support physical ocean and climate studies for example within the World Climate Research Programme and its CLIVAR project, biogeochemical issues as articulated by the GCP, IMBER and SOLAS projects of ICSU-SCOR and Future Earth. This knowledge gets assessed in the area of climate by the IPCC and biodiversity by the IPBES processes. The recently released first World Ocean Assessment focuses more on ecosystem services and there is an expectation that the Sustainable Development Goals and in particular Goal 14 on the Ocean and Seas will generate new demands for integrated ocean observing from Climate to Fish and from Ocean Resources to Safe Navigation and on a healthy, productive and enjoyable ocean in more general terms. In recognition of those increasing needs for integrated ocean information we have recently launched the Horizon 2020 AtlantOS project to promote the transition from a loosely-coordinated set of existing ocean observing activities to a more integrated, more efficient, more sustainable and fit-for-purpose Atlantic Ocean Observing System. AtlantOS takes advantage of the Framework for Ocean observing that provided strategic guidance for the design of the project and its outcome. AtlantOS will advance the requirements and systems design, improving the readiness of observing networks and data systems, and engaging stakeholders around the Atlantic. AtlantOS will bring Atlantic nations together to strengthen their complementary contributions to and benefits from the internationally coordinated Global Ocean Observing System (GOOS) and the Blue Planet Initiative of the Global Earth Observation System of Systems (GEOSS). AtlantOS will fill gaps of the in-situ observing system networks and will ensure that their data are readily accessible and useable. AtlantOS will demonstrate the utility of

  7. Influence of upper ocean stratification interannual variability on tropical cyclones

    Digital Repository Service at National Institute of Oceanography (India)

    Vincent, E.M.; Emanuel, K.A; Lengaigne, M.; Vialard, J.; Madec, G.

    in each TC-prone region. While subsurface oceanic variations do not significantly affect the number of moderate (Category 3 or less) TCs, they do induce a 30% change of Category 5 TC-days globally, and a 70% change for TCs exceeding 85 m s2-1

  8. Seasonal evolution of the upper-ocean adjacent to the South Orkney Islands, Southern Ocean: Results from a “lazy biological mooring”

    Science.gov (United States)

    Meredith, Michael P.; Nicholls, Keith W.; Renfrew, Ian A.; Boehme, Lars; Biuw, Martin; Fedak, Mike

    2011-07-01

    A serendipitous >8-month time series of hydrographic properties was obtained from the vicinity of the South Orkney Islands, Southern Ocean, by tagging a southern elephant seal ( Mirounga leonina) on Signy Island with a Conductivity-Temperature-Depth/Satellite-Relay Data Logger (CTD-SRDL) in March 2007. Such a time series (including data from the austral autumn and winter) would have been extremely difficult to obtain via other means, and it illustrates with unprecedented temporal resolution the seasonal progression of upper-ocean water mass properties and stratification at this location. Sea ice production values of around 0.15-0.4 m month -1 for April to July were inferred from the progression of salinity, with significant levels still in September (around 0.2 m month -1). However, these values presume that advective processes have negligible effect on the salinity changes observed locally; this presumption is seen to be inappropriate in this case, and it is argued that the ice production rates inferred are better considered as "smeared averages" for the region of the northwestern Weddell Sea upstream from the South Orkneys. The impact of such advective effects is illustrated by contrasting the observed hydrographic series with the output of a one-dimensional model of the upper-ocean forced with local fluxes. It is found that the difference in magnitude between local (modelled) and regional (inferred) ice production is significant, with estimates differing by around a factor of two. A halo of markedly low sea ice concentration around the South Orkneys during the austral winter offers at least a partial explanation for this, since it enabled stronger atmosphere/ocean fluxes to persist and hence stronger ice production to prevail locally compared with the upstream region. The year of data collection was an El Niño year, and it is well-established that this phenomenon can impact strongly on the surface ocean and ice field in this sector of the Southern Ocean, thus

  9. Preconditioning of Antarctic maximum sea-ice extent by upper-ocean stratification on a seasonal timescale

    OpenAIRE

    Su, Zhan

    2017-01-01

    This study uses an observationally constrained and dynamically consistent ocean and sea ice state estimate. The author presents a remarkable agreement between the location of the edge of Antarctic maximum sea ice extent, reached in September, and the narrow transition band for the upper ocean (0–100 m depths) stratification, as early as April to June. To the south of this edge, the upper ocean has high stratification, which forbids convective fluxes to cross through; consequently, the ocean h...

  10. Global warming-induced upper-ocean freshening and the intensification of super typhoons.

    Science.gov (United States)

    Balaguru, Karthik; Foltz, Gregory R; Leung, L Ruby; Emanuel, Kerry A

    2016-11-25

    Super typhoons (STYs), intense tropical cyclones of the western North Pacific, rank among the most destructive natural hazards globally. The violent winds of these storms induce deep mixing of the upper ocean, resulting in strong sea surface cooling and making STYs highly sensitive to ocean density stratification. Although a few studies examined the potential impacts of changes in ocean thermal structure on future tropical cyclones, they did not take into account changes in near-surface salinity. Here, using a combination of observations and coupled climate model simulations, we show that freshening of the upper ocean, caused by greater rainfall in places where typhoons form, tends to intensify STYs by reducing their ability to cool the upper ocean. We further demonstrate that the strengthening effect of this freshening over the period 1961-2008 is ∼53% stronger than the suppressive effect of temperature, whereas under twenty-first century projections, the positive effect of salinity is about half of the negative effect of ocean temperature changes.

  11. Climatology and seasonality of upper ocean salinity: a three-dimensional view from argo floats

    Science.gov (United States)

    Chen, Ge; Peng, Lin; Ma, Chunyong

    2018-03-01

    Primarily due to the constraints of observation technologies (both field and satellite measurements), our understanding of ocean salinity is much less mature compared to ocean temperature. As a result, the characterizations of the two most important properties of the ocean are unfortunately out of step: the former is one generation behind the latter in terms of data availability and applicability. This situation has been substantially changed with the advent of the Argo floats which measure the two variables simultaneously on a global scale since early this century. The first decade of Argo-acquired salinity data are analyzed here in the context of climatology and seasonality, yielding the following main findings for the global upper oceans. First, the six well-defined "salty pools" observed around ±20° in each hemisphere of the Pacific, Atlantic and Indian Oceans are found to tilt westward vertically from the sea surface to about 600 m depth, forming six saline cores within the subsurface oceans. Second, while potential temperature climatology decreases monotonically to the bottom in most places of the ocean, the vertical distribution of salinity can be classified into two categories: A double-halocline type forming immediately above and below the local salinity maximum around 100-150 m depths in the tropical and subtropical oceans, and a single halocline type existing at about 100 m depth in the extratropical oceans. Third, in contrast to the midlatitude dominance for temperature, seasonal variability of salinity in the oceanic mixed layer has a clear tropical dominance. Meanwhile, it is found that a two-mode structure with annual and semiannual periodicities can effectively penetrate through the upper ocean into a depth of 2000 m. Fourth, signature of Rossby waves is identified in the annual phase map of ocean salinity within 200-600 m depths in the tropical oceans, revealing a strongly co-varying nature of ocean temperature and salinity at specific depths

  12. Water Distribution in the Continental and Oceanic Upper Mantle

    Science.gov (United States)

    Peslier, Anne H.

    2015-01-01

    Nominally anhydrous minerals such as olivine, pyroxene and garnet can accommodate tens to hundreds of ppm H2O in the form of hydrogen bonded to structural oxygen in lattice defects. Although in seemingly small amounts, this water can significantly alter chemical and physical properties of the minerals and rocks. Water in particular can modify their rheological properties and its distribution in the mantle derives from melting and metasomatic processes and lithology repartition (pyroxenite vs peridotite). These effects will be examined here using Fourier transform infrared spectrometry (FTIR) water analyses on minerals from mantle xenoliths from cratons, plume-influenced cratons and oceanic settings. In particular, our results on xenoliths from three different cratons will be compared. Each craton has a different water distribution and only the mantle root of Kaapvaal has evidence for dry olivine at its base. This challenges the link between olivine water content and survival of Archean cratonic mantle, and questions whether xenoliths are representative of the whole cratonic mantle. We will also present our latest data on Hawaii and Tanzanian craton xenoliths which both suggest the intriguing result that mantle lithosphere is not enriched in water when it interacts with melts from deep mantle upwellings (plumes).

  13. Effects of hypoxia and ocean acidification on the upper thermal niche boundaries of coral reef fishes.

    Science.gov (United States)

    Ern, Rasmus; Johansen, Jacob L; Rummer, Jodie L; Esbaugh, Andrew J

    2017-07-01

    Rising ocean temperatures are predicted to cause a poleward shift in the distribution of marine fishes occupying the extent of latitudes tolerable within their thermal range boundaries. A prevailing theory suggests that the upper thermal limits of fishes are constrained by hypoxia and ocean acidification. However, some eurythermal fish species do not conform to this theory, and maintain their upper thermal limits in hypoxia. Here we determine if the same is true for stenothermal species. In three coral reef fish species we tested the effect of hypoxia on upper thermal limits, measured as critical thermal maximum (CT max ). In one of these species we also quantified the effect of hypoxia on oxygen supply capacity, measured as aerobic scope (AS). In this species we also tested the effect of elevated CO 2 (simulated ocean acidification) on the hypoxia sensitivity of CT max We found that CT max was unaffected by progressive hypoxia down to approximately 35 mmHg, despite a substantial hypoxia-induced reduction in AS. Below approximately 35 mmHg, CT max declined sharply with water oxygen tension ( P w O 2 ). Furthermore, the hypoxia sensitivity of CT max was unaffected by elevated CO 2 Our findings show that moderate hypoxia and ocean acidification do not constrain the upper thermal limits of these tropical, stenothermal fishes. © 2017 The Author(s).

  14. Improved Upper Ocean/Sea Ice Modeling in the GISS GCM for Investigating Climate Change

    Science.gov (United States)

    1998-01-01

    This project built on our previous results in which we highlighted the importance of sea ice in overall climate sensitivity by determining that for both warming and cooling climates, when sea ice was not allowed to change, climate sensitivity was reduced by 35-40%. We also modified the GISS 8 deg x lO deg atmospheric GCM to include an upper-ocean/sea-ice model involving the Semtner three-layer ice/snow thermodynamic model, the Price et al. (1986) ocean mixed layer model and a general upper ocean vertical advection/diffusion scheme for maintaining and fluxing properties across the pycnocline. This effort, in addition to improving the sea ice representation in the AGCM, revealed a number of sensitive components of the sea ice/ocean system. For example, the ability to flux heat through the ice/snow properly is critical in order to resolve the surface temperature properly, since small errors in this lead to unrestrained climate drift. The present project, summarized in this report, had as its objectives: (1) introducing a series of sea ice and ocean improvements aimed at overcoming remaining weaknesses in the GCM sea ice/ocean representation, and (2) performing a series of sensitivity experiments designed to evaluate the climate sensitivity of the revised model to both Antarctic and Arctic sea ice, determine the sensitivity of the climate response to initial ice distribution, and investigate the transient response to doubling CO2.

  15. Improved Upper Ocean/Sea Ice Modeling in the GISS GCM for Investigating Climate Change

    Science.gov (United States)

    1997-01-01

    This project built on our previous results in which we highlighted the importance of sea ice in overall climate sensitivity by determining that for both warming and cooling climates, when sea ice was not allowed to change, climate sensitivity was reduced by 35-40%. We also modified the Goddard Institute for Space Studies (GISS) 8 deg x lO deg atmospheric General Circulation Model (GCM) to include an upper-ocean/sea-ice model involving the Semtner three-layer ice/snow thermodynamic model, the Price et al. (1986) ocean mixed layer model and a general upper ocean vertical advection/diffusion scheme for maintaining and fluxing properties across the pycnocline. This effort, in addition to improving the sea ice representation in the AGCM, revealed a number of sensitive components of the sea ice/ocean system. For example, the ability to flux heat through the ice/snow properly is critical in order to resolve the surface temperature properly, since small errors in this lead to unrestrained climate drift. The present project, summarized in this report, had as its objectives: (1) introducing a series of sea ice and ocean improvements aimed at overcoming remaining weaknesses in the GCM sea ice/ocean representation, and (2) performing a series of sensitivity experiments designed to evaluate the climate sensitivity of the revised model to both Antarctic and Arctic sea ice, determine the sensitivity of the climate response to initial ice distribution, and investigate the transient response to doubling CO2.

  16. A record of the last 460 thousand years of upper ocean stratification from the central Walvis Ridge, South Atlantic

    NARCIS (Netherlands)

    Scussolini, P.; Peeters, F.J.C.

    2013-01-01

    The upper branch of the Atlantic Meridional Overturning Circulation predominantly enters the Atlantic Ocean through the southeast, where the subtropical gyre is exposed to the influence of the Agulhas leakage (AL). To understand how the transfer of Indian Ocean waters via the AL affected the upper

  17. Response of upper ocean cooling off northeastern Taiwan to typhoon passages

    Science.gov (United States)

    Zheng, Zhe-Wen; Zheng, Quanan; Gopalakrishnan, Ganesh; Kuo, Yi-Chun; Yeh, Ting-Kuang

    2017-07-01

    A comprehensive investigation of the typhoon induced upper ocean processes and responses off northeastern Taiwan was conducted. Using the Regional Ocean Modeling System, the upper ocean responses of all typhoons striking Taiwan between 2005 and 2013 were simulated. In addition to Kuroshio intrusion, the present study demonstrates another important mechanism of typhoon induced near-inertial currents over the continental shelf of East China Sea, which can also trigger a distinct cooling (through entrainment mixing) within this region. Results indicate that the processes of typhoon inducing distinct cooling off northeastern Taiwan are conditional phenomena (only ∼12% of typhoons passing Taiwan triggered extreme cooling there). Subsequently, by executing a series of sensitivity experiments and systematic analyses on the behaviors and background conditions of all those typhoon cases, key criteria determining the occurrences of cooling through both mechanisms were elucidated. Occurrences of cooling through the Kuroshio intrusion mechanism are determined mainly by the strength of the local wind over northeastern Taiwan. A distinct cooling triggered by enhanced near-inertial currents is shown to be associated with the process of wind-current resonance. Both processes of Kuroshio intrusion and enhanced near-inertial currents are dominated by wind forcing rather than upper oceanic conditions. Based on the recent findings on the possible dynamic linkage between sea surface temperature near northeast Taiwan and local weather systems, the results elucidated in this study lay the foundation for further improvement in the regional weather prediction surrounding northeast Taiwan.

  18. Helicopter-based lidar system for monitoring the upper ocean and terrain surface

    International Nuclear Information System (INIS)

    Lee, Kwi Joo; Park, Youngsik; Bunkin, Alexey; Pershin, Serguei; Voliak, Konstantin; Nunes, Raul

    2002-01-01

    A compact helicopter-based lidar system is developed and tested under laboratory and field conditions. It is shown that the lidar can measure concentrations of chlorophyll a and dissolved organic matter at the surface of water bodies, detect fluorescence spectra of ground vegetation at a distance of up to 530 m, and determine the vertical profile of light-scattering particle concentration in the upper ocean. The possibilities of the lidar system are demonstrated by detection of polluted areas at the ocean surface, by online monitoring of three-dimensional distribution of light-scattering layers, and by recognition of plant types and physiological states

  19. Evaluation of Oceanic Surface Observation for Reproducing the Upper Ocean Structure in ECHAM5/MPI-OM

    Science.gov (United States)

    Luo, Hao; Zheng, Fei; Zhu, Jiang

    2017-12-01

    Better constraints of initial conditions from data assimilation are necessary for climate simulations and predictions, and they are particularly important for the ocean due to its long climate memory; as such, ocean data assimilation (ODA) is regarded as an effective tool for seasonal to decadal predictions. In this work, an ODA system is established for a coupled climate model (ECHAM5/MPI-OM), which can assimilate all available oceanic observations using an ensemble optimal interpolation approach. To validate and isolate the performance of different surface observations in reproducing air-sea climate variations in the model, a set of observing system simulation experiments (OSSEs) was performed over 150 model years. Generally, assimilating sea surface temperature, sea surface salinity, and sea surface height (SSH) can reasonably reproduce the climate variability and vertical structure of the upper ocean, and assimilating SSH achieves the best results compared to the true states. For the El Niño-Southern Oscillation (ENSO), assimilating different surface observations captures true aspects of ENSO well, but assimilating SSH can further enhance the accuracy of ENSO-related feedback processes in the coupled model, leading to a more reasonable ENSO evolution and air-sea interaction over the tropical Pacific. For ocean heat content, there are still limitations in reproducing the long time-scale variability in the North Atlantic, even if SSH has been taken into consideration. These results demonstrate the effectiveness of assimilating surface observations in capturing the interannual signal and, to some extent, the decadal signal but still highlight the necessity of assimilating profile data to reproduce specific decadal variability.

  20. The mechanism of upper-oceanic vertical motions forced by a moving typhoon

    International Nuclear Information System (INIS)

    Suzuki, Shin-ichi; Niino, Hiroshi; Kimura, Ryuji

    2011-01-01

    The upper-oceanic response to a moving typhoon, and the mechanism of the response, are studied based on linear theory and a numerical experiment. The results of the analysis by linear theory are summarized as follows. Three different processes (Ekman pumping, inertial pumping and 'anti-Ekman' pumping) contribute to the upper-oceanic vertical motions caused by a moving atmospheric disturbance. The dominant process depends on the Coriolis parameter f, the moving speed U of the disturbance and the along-track wavenumber spectrum of the wind stress curl. In the case of a typhoon, when the wavenumber spectrum has a dominant amplitude at k< f/U, Ekman pumping is the dominant mechanism and upwelling occurs at the typhoon center, where k is the along-track wavenumber. When the wavenumber spectrum has a significant amplitude near k∼f/U, inertial pumping is dominant and upwelling occurs to the rear of the typhoon center. The results of the numerical experiments show that linear theory performs well in explaining the horizontal structures of the upper-oceanic vertical motions and their dependence on the moving speed of the typhoon.

  1. Numerical simulation of small-scale mixing processes in the upper ocean and atmospheric boundary layer

    International Nuclear Information System (INIS)

    Druzhinin, O; Troitskaya, Yu; Zilitinkevich, S

    2016-01-01

    The processes of turbulent mixing and momentum and heat exchange occur in the upper ocean at depths up to several dozens of meters and in the atmospheric boundary layer within interval of millimeters to dozens of meters and can not be resolved by known large- scale climate models. Thus small-scale processes need to be parameterized with respect to large scale fields. This parameterization involves the so-called bulk coefficients which relate turbulent fluxes with large-scale fields gradients. The bulk coefficients are dependent on the properties of the small-scale mixing processes which are affected by the upper-ocean stratification and characteristics of surface and internal waves. These dependencies are not well understood at present and need to be clarified. We employ Direct Numerical Simulation (DNS) as a research tool which resolves all relevant flow scales and does not require closure assumptions typical of Large-Eddy and Reynolds Averaged Navier-Stokes simulations (LES and RANS). Thus DNS provides a solid ground for correct parameterization of small-scale mixing processes and also can be used for improving LES and RANS closure models. In particular, we discuss the problems of the interaction between small-scale turbulence and internal gravity waves propagating in the pycnocline in the upper ocean as well as the impact of surface waves on the properties of atmospheric boundary layer over wavy water surface. (paper)

  2. Hydrographic changes in the Lincoln Sea in the Arctic Ocean with focus on an upper ocean freshwater anomaly between 2007 and 2010

    NARCIS (Netherlands)

    de Steur, L.; Steele, M.; Hansen, E.; Morison, J.; Polyakov, I.; Olsen, S.M.; Melling, H.; McLaughlin, F.A.; Kwok, R.; Smethie Jr., W.M.; Schlosser, P.

    2013-01-01

    Hydrographic data from the Arctic Ocean show that freshwater content in the Lincoln Sea, north of Greenland, increased significantly from 2007 to 2010, slightly lagging changes in the eastern and central Arctic. The anomaly was primarily caused by a decrease in the upper ocean salinity. In 2011

  3. Multi-Decadal Oscillations of the Ocean Active Upper-Layer Heat Content

    Science.gov (United States)

    Byshev, Vladimir I.; Neiman, Victor G.; Anisimov, Mikhail V.; Gusev, Anatoly V.; Serykh, Ilya V.; Sidorova, Alexandra N.; Figurkin, Alexander L.; Anisimov, Ivan M.

    2017-07-01

    Spatial patterns in multi-decadal variability in upper ocean heat content for the last 60 years are examined using a numerical model developed at the Institute of Numerical Mathematics of Russia (INM Model) and sea water temperature-salinity data from the World Ocean Database (in: Levitus, NOAA Atlas NESDIS 66, U.S. Wash.: Gov. Printing Office, 2009). Both the model and the observational data show that the heat content of the Active Upper Layer (AUL) in particular regions of the Atlantic, Pacific and Southern oceans have experienced prominent simultaneous variations on multi-decadal (25-35 years) time scales. These variations are compared earlier revealed climatic alternations in the Northern Atlantic region during the last century (Byshev et al. in Doklady Earth Sci 438(2):887-892, 2011). We found that from the middle of 1970s to the end of 1990s the AUL heat content decreased in several oceanic regions, while the mean surface temperature increased on Northern Hemisphere continents according to IPCC (in: Stocker et al. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge, 2013). This means that the climate-forcing effect of the ocean-atmosphere interaction in certain energy-active areas determines not only local climatic processes, but also have an influence on global-scale climate phenomena. Here we show that specific regional features of the AUL thermal structure are in a good agreement with climatic conditions on the adjacent continents. Further, the ocean AUL in the five distinctive regions identified in our study have resumed warming in the first decade of this century. By analogy inference from previous climate scenarios, this may signal the onset of more continental climate over mainlands.

  4. In-situ detection of microbial life in the deep biosphere in igneous ocean crust

    Directory of Open Access Journals (Sweden)

    Everett Cosio Salas

    2015-11-01

    Full Text Available The deep biosphere is a major frontier to science. Recent studies have shown the presence and activity of cells in deep marine sediments and in the continental deep biosphere. Volcanic lavas in the deep ocean subsurface, through which substantial fluid flow occurs, present another potentially massive deep biosphere. We present results from the deployment of a novel in-situ logging tool designed to detect microbial life harbored in a deep, native, borehole environment within igneous oceanic crust, using deep ultraviolet native fluorescence spectroscopy. Results demonstrate the predominance of microbial-like signatures within the borehole environment, with densities in the range of 105 cells/mL. Based on transport and flux models, we estimate that such a concentration of microbial cells could not be supported by transport through the crust, suggesting in situ growth of these communities.

  5. In situ Detection of Microbial Life in the Deep Biosphere in Igneous Ocean Crust.

    Science.gov (United States)

    Salas, Everett C; Bhartia, Rohit; Anderson, Louise; Hug, William F; Reid, Ray D; Iturrino, Gerardo; Edwards, Katrina J

    2015-01-01

    The deep biosphere is a major frontier to science. Recent studies have shown the presence and activity of cells in deep marine sediments and in the continental deep biosphere. Volcanic lavas in the deep ocean subsurface, through which substantial fluid flow occurs, present another potentially massive deep biosphere. We present results from the deployment of a novel in situ logging tool designed to detect microbial life harbored in a deep, native, borehole environment within igneous oceanic crust, using deep ultraviolet native fluorescence spectroscopy. Results demonstrate the predominance of microbial-like signatures within the borehole environment, with densities in the range of 10(5) cells/mL. Based on transport and flux models, we estimate that such a concentration of microbial cells could not be supported by transport through the crust, suggesting in situ growth of these communities.

  6. Operational Review of the First Wireline In Situ Stress Test in Scientific Ocean Drilling

    Directory of Open Access Journals (Sweden)

    Casey Moore

    2012-04-01

    Full Text Available Scientific ocean drilling’s first in situ stress measurement was made at Site C0009A during Integrated Ocean Drilling Program (IODP Expedition 319 as part of Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE Stage 2. The Modular Formation Dynamics Tester (MDT, Schlumbergerwireline logging tool was deployed in riser Hole C0009A to measure in situ formation pore pressure, formation permeability (often reported as mobility=permeability/viscosity, and the least principal stress (S3 at several isolated depths (Saffer et al., 2009; Expedition 319 Scientists, 2010. The importance of in situ stress measurements is not only for scientific interests in active tectonic drilling, but also for geomechanical and well bore stability analyses. Certain in situ tools were not previously available for scientific ocean drilling due to the borehole diameter and open hole limits of riserless drilling. The riser-capable drillship, D/V Chikyu,now in service for IODP expeditions, allows all of the techniques available to estimate the magnitudes and orientations of 3-D stresses to be used. These techniques include downhole density logging for vertical stress, breakout and caliper log analyses for maximum horizontal stress, core-based anelastic strain recovery (ASR, used in the NanTroSEIZE expeditions in 2007–2008, and leak-off test (Lin et al., 2008 and minifrac/hydraulic fracturing (NanTroSEIZE Expedition319 in 2009. In this report, the whole operational planning process related to in situ measurements is reviewed, and lessons learned from Expedition 319 are summarized for efficient planning and testing in the future.

  7. The Experience of Using Autonomous Drifters for Studying the Ice Fields and the Ocean Upper Layer in the Arctic

    Directory of Open Access Journals (Sweden)

    S.V. Motyzhev

    2017-04-01

    Full Text Available The constructional and operational features of the BTC60/GPS/ice temperature-profiling drifters, developed in Marine Hydrophysical institute RAS for investigation of polar areas, are considered in this article. The drifters operated in completely automatic mode measuring air pressure, water temperatures at 17 depths down to 60 m, ocean pressures at 20, 40 and 60 m nominal depths and current locations. Accuracies of measurements were: +/-2 hPa for air pressure, +/-0.1°C for temperatures, +/-30 hPa for ocean pressure, 60 m for locations. Iridium satellite communication system was used for data transfer. Time delay between sample and delivery to a user did not exceed 10 minutes. More than 30 thermodrifters were developed in the Beaufort Sea – Canada Basin and central Arctic for the period from September 2012 to September 2014. Total duration of drifting buoys in operation was more of 4800 days. It was accepted the data of hourly samples about variability of ice-flows and ice field as a whole movements, thermo processes within upper water layer below ice, air pressure in near surface atmosphere of the Arctic region. The article includes some results of statistical analysis of data from drifter ID247950, the 3-year trajectory of which depended on the processes of transfer and evolution of ice fields in the Beaufort Sea – Canada Basin. Over a long period of time the Arctic buoy in-situ experiments allowed resulting about capability and reasonability to create reliable, technological and low-cost buoy network on basis of BTC60/GPS/ice drifters to monitor Arctic area of the World Ocean.

  8. Arctic surface temperatures from Metop AVHRR compared to in situ ocean and land data

    Directory of Open Access Journals (Sweden)

    G. Dybkjær

    2012-11-01

    Full Text Available The ice surface temperature (IST is an important boundary condition for both atmospheric and ocean and sea ice models and for coupled systems. An operational ice surface temperature product using satellite Metop AVHRR infra-red data was developed for MyOcean. The IST can be mapped in clear sky regions using a split window algorithm specially tuned for sea ice. Clear sky conditions prevail during spring in the Arctic, while persistent cloud cover limits data coverage during summer. The cloud covered regions are detected using the EUMETSAT cloud mask. The Metop IST compares to 2 m temperature at the Greenland ice cap Summit within STD error of 3.14 °C and to Arctic drifting buoy temperature data within STD error of 3.69 °C. A case study reveals that the in situ radiometer data versus satellite IST STD error can be much lower (0.73 °C and that the different in situ measurements complicate the validation. Differences and variability between Metop IST and in situ data are analysed and discussed. An inter-comparison of Metop IST, numerical weather prediction temperatures and in situ observation indicates large biases between the different quantities. Because of the scarcity of conventional surface temperature or surface air temperature data in the Arctic, the satellite IST data with its relatively good coverage can potentially add valuable information to model analysis for the Arctic atmosphere.

  9. Customised search and comparison of in situ, satellite and model data for ocean modellers

    Science.gov (United States)

    Hamre, Torill; Vines, Aleksander; Lygre, Kjetil

    2014-05-01

    For the ocean modelling community, the amount of available data from historical and upcoming in situ sensor networks and satellite missions, provides an rich opportunity to validate and improve their simulation models. However, the problem of making the different data interoperable and intercomparable remains, due to, among others, differences in terminology and format used by different data providers and the different granularity provided by e.g. in situ data and ocean models. The GreenSeas project (Development of global plankton data base and model system for eco-climate early warning) aims to advance the knowledge and predictive capacities of how marine ecosystems will respond to global change. In the project, one specific objective has been to improve the technology for accessing historical plankton and associated environmental data sets, along with earth observation data and simulation outputs. To this end, we have developed a web portal enabling ocean modellers to easily search for in situ or satellite data overlapping in space and time, and compare the retrieved data with their model results. The in situ data are retrieved from a geo-spatial repository containing both historical and new physical, biological and chemical parameters for the Southern Ocean, Atlantic, Nordic Seas and the Arctic. The satellite-derived quantities of similar parameters from the same areas are retrieved from another geo-spatial repository established in the project. Both repositories are accessed through standard interfaces, using the Open Geospatial Consortium (OGC) Web Map Service (WMS) and Web Feature Service (WFS), and OPeNDAP protocols, respectively. While the developed data repositories use standard terminology to describe the parameters, especially the measured in situ biological parameters are too fine grained to be immediately useful for modelling purposes. Therefore, the plankton parameters were grouped according to category, size and if available by element. This grouping

  10. Global assessment of benthic nepheloid layers and linkage with upper ocean dynamics

    Science.gov (United States)

    Gardner, Wilford D.; Richardson, Mary Jo; Mishonov, Alexey V.

    2018-01-01

    Global maps of the maximum bottom concentration, thickness, and integrated particle mass in benthic nepheloid layers are published here to support collaborations to understand deep ocean sediment dynamics, linkage with upper ocean dynamics, and assessing the potential for scavenging of adsorption-prone elements near the deep ocean seafloor. Mapping the intensity of benthic particle concentrations from natural oceanic processes also provides a baseline that will aid in quantifying the industrial impact of current and future deep-sea mining. Benthic nepheloid layers have been mapped using 6,392 full-depth profiles made during 64 cruises using our transmissometers mounted on CTDs in multiple national/international programs including WOCE, SAVE, JGOFS, CLIVAR-Repeat Hydrography, and GO-SHIP during the last four decades. Intense benthic nepheloid layers are found in areas where eddy kinetic energy in overlying waters, mean kinetic energy 50 m above bottom (mab), and energy dissipation in the bottom boundary layer are near the highest values in the ocean. Areas of intense benthic nepheloid layers include the Western North Atlantic, Argentine Basin in the South Atlantic, parts of the Southern Ocean and areas around South Africa. Benthic nepheloid layers are weak or absent in most of the Pacific, Indian, and Atlantic basins away from continental margins. High surface eddy kinetic energy is associated with the Kuroshio Current east of Japan. Data south of the Kuroshio show weak nepheloid layers, but no transmissometer data exist beneath the Kuroshio, a deficiency that should be remedied to increase understanding of eddy dynamics in un-sampled and under-sampled oceanic areas.

  11. Mission Moho: Rationale for drilling deep through the ocean crust into the upper mantle

    Science.gov (United States)

    Ildefonse, B.; Abe, N.; Kelemen, P. B.; Kumagai, H.; Teagle, D. A. H.; Wilson, D. S.; Moho Proponents, Mission

    2009-04-01

    Sampling a complete section of the ocean crust to the Moho was the original inspiration for scientific ocean drilling, and remains the main goal of the 21st Century Mohole Initiative in the IODP Science Plan. Fundamental questions about the composition, structure, and geophysical characteristics of the ocean lithosphere, and about the magnitude of chemical exchanges between the mantle, crust and oceans remain unresolved due to the absence of in-situ samples and measurements. The geological nature of the Mohorovičić discontinuity itself remains poorly constrained. "Mission Moho" is a proposal that was submitted to IODP in April 2007, with the ambition to drill completely through intact oceanic crust formed at a fast spreading rate, across the Moho and into the uppermost mantle. Although, eventually, no long-term mission was approved by IODP, the scientific objectives related to deep drilling in the ocean crust remain essential to our understanding of the Earth. These objectives are to : - Determine the geological meaning of the Moho in different oceanic settings, determine the in situ composition, structure and physical properties of the uppermost mantle, and understand mantle melt migration, - Determine the bulk composition of the oceanic crust to establish the chemical links between erupted lavas and primary mantle melts, understand the extent and intensity of seawater hydrothermal exchange with the lithosphere, and estimate the chemical fluxes returned to the mantle by subduction, - Test competing hypotheses of the ocean crust accretion at fast spreading mid-ocean ridges, and quantify the linkages and feedbacks between magma intrusion, hydrothermal circulation and tectonic activity, - Calibrate regional seismic measurements against recovered cores and borehole measurements, and understand the origin of marine magnetic anomalies, - Establish the limits of life in the ocean lithosphere. The "MoHole" was planned as the final stage of Mission Moho, which requires

  12. Seasonal variations in the aragonite saturation state in the upper open-ocean waters of the North Pacific Ocean

    Science.gov (United States)

    Kim, Tae-Wook; Park, Geun-Ha; Kim, Dongseon; Lee, Kitack; Feely, Richard A.; Millero, Frank J.

    2015-06-01

    Seasonal variability of the aragonite saturation state (ΩAR) in the upper (50 m and 100 m depths) North Pacific Ocean (NPO) was investigated using multiple linear regression (MLR). The MLR algorithm derived from a high-quality carbon data set accurately predicted the ΩAR of evaluation data sets (three time series stations and P02 section) with acceptable uncertainty (<0.1 ΩAR). The algorithm was combined with seasonal climatology data, and the estimated ΩAR varied in the range of 0.4-0.6 in the midlatitude western NPO, with the largest variation found for the tropical eastern NPO. These marked variations were largely controlled by seasonal changes in vertical mixing and thermocline depth, both of which determine the degree of entrainment of CO2-rich corrosive waters from deeper depths. Our MLR-based subsurface ΩAR climatology is complementary to surface climatology based on pCO2 measurements.

  13. The electrical conductivity of the upper mantle and lithosphere from the magnetic signal due to ocean tidal flow

    DEFF Research Database (Denmark)

    Schnepf, Neesha Regmi; Kuvshinov, Alexey; Grayver, Alexander

    galvanically with Earth’s lithosphere (i.e. by direct coupling of the source currents in the ocean with the underlying substrate), enabling conductivity estimations at shallower depths. Here we present the results of determining a 1-D conductivity-depth profile of oceanic lithosphere and upper mantle using...

  14. Autonomous Observations of the Upper Ocean Stratification and Velocity Field about the Seasonality Retreating Marginal Ice Zone

    Science.gov (United States)

    2016-12-30

    fluxes of heat, salt, and momentum. Hourly GPS fixes tracked the motion of the supporting ice floes and T/C recorders sampled the ocean waters just... sampled in a range of ice conditions from full ice cover to nearly open water and observed a variety of stratification and ocean velocity signals (e.g...From - To) 12/30/2016 final 01-Nov-2011to 30-Sep-201 6 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Autonomous observations of the upper ocean

  15. In situ imaging reveals the biomass of giant protists in the global ocean.

    Science.gov (United States)

    Biard, Tristan; Stemmann, Lars; Picheral, Marc; Mayot, Nicolas; Vandromme, Pieter; Hauss, Helena; Gorsky, Gabriel; Guidi, Lionel; Kiko, Rainer; Not, Fabrice

    2016-04-28

    Planktonic organisms play crucial roles in oceanic food webs and global biogeochemical cycles. Most of our knowledge about the ecological impact of large zooplankton stems from research on abundant and robust crustaceans, and in particular copepods. A number of the other organisms that comprise planktonic communities are fragile, and therefore hard to sample and quantify, meaning that their abundances and effects on oceanic ecosystems are poorly understood. Here, using data from a worldwide in situ imaging survey of plankton larger than 600 μm, we show that a substantial part of the biomass of this size fraction consists of giant protists belonging to the Rhizaria, a super-group of mostly fragile unicellular marine organisms that includes the taxa Phaeodaria and Radiolaria (for example, orders Collodaria and Acantharia). Globally, we estimate that rhizarians in the top 200 m of world oceans represent a standing stock of 0.089 Pg carbon, equivalent to 5.2% of the total oceanic biota carbon reservoir. In the vast oligotrophic intertropical open oceans, rhizarian biomass is estimated to be equivalent to that of all other mesozooplankton (plankton in the size range 0.2-20 mm). The photosymbiotic association of many rhizarians with microalgae may be an important factor in explaining their distribution. The previously overlooked importance of these giant protists across the widest ecosystem on the planet changes our understanding of marine planktonic ecosystems.

  16. Upper-mantle water stratification inferred from observations of the 2012 Indian Ocean earthquake.

    Science.gov (United States)

    Masuti, Sagar; Barbot, Sylvain D; Karato, Shun-Ichiro; Feng, Lujia; Banerjee, Paramesh

    2016-10-20

    Water, the most abundant volatile in Earth's interior, preserves the young surface of our planet by catalysing mantle convection, lubricating plate tectonics and feeding arc volcanism. Since planetary accretion, water has been exchanged between the hydrosphere and the geosphere, but its depth distribution in the mantle remains elusive. Water drastically reduces the strength of olivine and this effect can be exploited to estimate the water content of olivine from the mechanical response of the asthenosphere to stress perturbations such as the ones following large earthquakes. Here, we exploit the sensitivity to water of the strength of olivine, the weakest and most abundant mineral in the upper mantle, and observations of the exceptionally large (moment magnitude 8.6) 2012 Indian Ocean earthquake to constrain the stratification of water content in the upper mantle. Taking into account a wide range of temperature conditions and the transient creep of olivine, we explain the transient deformation in the aftermath of the earthquake that was recorded by continuous geodetic stations along Sumatra as the result of water- and stress-activated creep of olivine. This implies a minimum water content of about 0.01 per cent by weight-or 1,600 H atoms per million Si atoms-in the asthenosphere (the part of the upper mantle below the lithosphere). The earthquake ruptured conjugate faults down to great depths, compatible with dry olivine in the oceanic lithosphere. We attribute the steep rheological contrast to dehydration across the lithosphere-asthenosphere boundary, presumably by buoyant melt migration to form the oceanic crust.

  17. Relationship between diversity and the vertical structure of the upper ocean

    Science.gov (United States)

    Longhurst, Alan R.

    1985-12-01

    The sources of diversity in the plankton ecosystem of the upper 250 m in the eastern tropical Pacific Ocean are explored in the data from LHPR plankton profiles. Though there is good evidence for resource partitioning among feeding guilds of congeners, and for specialization in predation—both known to create diversity in simple aquatic ecosystems—the existence of a stable vertical structure, including a thermocline, may be one of the more important causes of variation in regional plankton diversity in the euphotic zone.

  18. A Compilation of Global Bio-Optical in Situ Data for Ocean-Colour Satellite Applications

    Science.gov (United States)

    Valente, Andre; Sathyendranath, Shubha; Brotus, Vanda; Groom, Steve; Grant, Michael; Taberner, Malcolm; Antoine, David; Arnone, Robert; Balch, William M.; Barker, Kathryn; hide

    2016-01-01

    A compiled set of in situ data is important to evaluate the quality of ocean-colour satellite-data records. Here we describe the data compiled for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The data were acquired from several sources (MOBY, BOUSSOLE, AERONET-OC, SeaBASS, NOMAD, MERMAID, AMT, ICES, HOT, GePCO), span between 1997 and 2012, and have a global distribution. Observations of the following variables were compiled: spectral remote-sensing reflectances, concentrations of chlorophyll a, spectral inherent optical properties and spectral diffuse attenuation coefficients. The data were from multi-project archives acquired via the open internet services or from individual projects, acquired directly from data providers. Methodologies were implemented for homogenisation, quality control and merging of all data. No changes were made to the original data, other than averaging of observations that were close in time and space, elimination of some points after quality control and conversion to a standard format. The final result is a merged table designed for validation of satellite-derived ocean-colour products and available in text format. Metadata of each in situ measurement (original source, cruise or experiment, principal investigator) were preserved throughout the work and made available in the final table. Using all the data in a validation exercise increases the number of matchups and enhances the representativeness of different marine regimes. By making available the metadata, it is also possible to analyse each set of data separately. The compiled data are available at doi:10.1594PANGAEA.854832 (Valente et al., 2015).

  19. Combining Satellite and in Situ Data with Models to Support Climate Data Records in Ocean Biology

    Science.gov (United States)

    Gregg, Watson

    2011-01-01

    The satellite ocean color data record spans multiple decades and, like most long-term satellite observations of the Earth, comes from many sensors. Unfortunately, global and regional chlorophyll estimates from the overlapping missions show substantial biases, limiting their use in combination to construct consistent data records. SeaWiFS and MODIS-Aqua differed by 13% globally in overlapping time segments, 2003-2007. For perspective, the maximum change in annual means over the entire Sea WiFS mission era was about 3%, and this included an El NinoLa Nina transition. These discrepancies lead to different estimates of trends depending upon whether one uses SeaWiFS alone for the 1998-2007 (no significant change), or whether MODIS is substituted for the 2003-2007 period (18% decline, P less than 0.05). Understanding the effects of climate change on the global oceans is difficult if different satellite data sets cannot be brought into conformity. The differences arise from two causes: 1) different sensors see chlorophyll differently, and 2) different sensors see different chlorophyll. In the first case, differences in sensor band locations, bandwidths, sensitivity, and time of observation lead to different estimates of chlorophyll even from the same location and day. In the second, differences in orbit and sensitivities to aerosols lead to sampling differences. A new approach to ocean color using in situ data from the public archives forces different satellite data to agree to within interannual variability. The global difference between Sea WiFS and MODIS is 0.6% for 2003-2007 using this approach. It also produces a trend using the combination of SeaWiFS and MODIS that agrees with SeaWiFS alone for 1998-2007. This is a major step to reducing errors produced by the first cause, sensor-related discrepancies. For differences that arise from sampling, data assimilation is applied. The underlying geographically complete fields derived from a free-running model is unaffected

  20. Real Time In Situ data management system for EuroGOOS: A ROOSes-MyOcean joint effort

    Science.gov (United States)

    Pouliquen, S.; Carval, T.; Loubrieu, T.; von Schuckmann, K.; Wehde, H.; SjurRingheim, L.; Hammarklint, T.; Harman, A.; Soetje, K.; Gies, T.; de Alfonso, M.; Perivoliotis, L.; Kassis, D.; Marinova, V.

    2012-04-01

    MyOcean is the implementation project of the GMES Marine Core Service, that develop the first concerted and integrated pan-European capacity for Ocean Monitoring and Forecasting. Within this project, the in-situ Thematic Assembly Centre (in-situ TAC) of MyOcean is a distributed service integrating data from different sources for operational oceanography needs. The MyOcean in-situ TAC is collecting and carrying out quality control in a homogeneous manner on data from outside MyOcean data providers, especially EuroGOOSparners, to fit the needs of internal and external users. It provides access to integrated datasets of core parameters for initialization, forcing, assimilation and validation of ocean numerical models. Since the primary objective of MyOcean is to forecast ocean state, the initial focus is on observations from automatic observatories at sea (e.g. floats, buoys, gliders, ferrybox, drifters, SOOP) which are transmitted in real-time to the shore. The second objective is to set up a system for re-analysis purposes that integrate data over the past 20 years. The global and regional portals set up by the INS-TAC are extended by the EuroGOOS ROOSES to integrate additionnal parameters important for downstream and national applications.

  1. Upper Arctic Ocean water masses harbor distinct communities of heterotrophic flagellates

    Directory of Open Access Journals (Sweden)

    A. Monier

    2013-06-01

    Full Text Available The ubiquity of heterotrophic flagellates (HFL in marine waters has been recognized for several decades, but the phylogenetic diversity of these small (ca. 0.8–20 μm cell diameter, mostly phagotrophic protists in the upper pelagic zone of the ocean is underappreciated. Community composition of microbes, including HFL, is the result of past and current environmental selection, and different taxa may be indicative of food webs that cycle carbon and energy very differently. While all oceanic water columns can be density stratified due to the temperature and salinity characteristics of different water masses, the Arctic Ocean is particularly well stratified, with nutrients often limiting in surface waters and most photosynthetic biomass confined to a subsurface chlorophyll maximum layer, where light and nutrients are both available. This physically well-characterized system provided an opportunity to explore the community diversity of HFL from different water masses within the water column. We used high-throughput DNA sequencing techniques as a rapid means of surveying the diversity of HFL communities in the southern Beaufort Sea (Canada, targeting the surface, the subsurface chlorophyll maximum layer (SCM and just below the SCM. In addition to identifying major clades and their distribution, we explored the micro-diversity within the globally significant but uncultivated clade of marine stramenopiles (MAST-1 to examine the possibility of niche differentiation within the stratified water column. Our results strongly suggested that HFL community composition was determined by water mass rather than geographical location across the Beaufort Sea. Future work should focus on the biogeochemical and ecological repercussions of different HFL communities in the face of climate-driven changes to the physical structure of the Arctic Ocean.

  2. A century of ocean warming on Florida Keys coral reefs: historic in situ observations

    Science.gov (United States)

    Kuffner, Ilsa B.; Lidz, Barbara H.; Hudson, J. Harold; Anderson, Jeffery S.

    2015-01-01

    There is strong evidence that global climate change over the last several decades has caused shifts in species distributions, species extinctions, and alterations in the functioning of ecosystems. However, because of high variability on short (i.e., diurnal, seasonal, and annual) timescales as well as the recency of a comprehensive instrumental record, it is difficult to detect or provide evidence for long-term, site-specific trends in ocean temperature. Here we analyze five in situ datasets from Florida Keys coral reef habitats, including historic measurements taken by lighthouse keepers, to provide three independent lines of evidence supporting approximately 0.8 °C of warming in sea surface temperature (SST) over the last century. Results indicate that the warming observed in the records between 1878 and 2012 can be fully accounted for by the warming observed in recent decades (from 1975 to 2007), documented using in situ thermographs on a mid-shore patch reef. The magnitude of warming revealed here is similar to that found in other SST datasets from the region and to that observed in global mean surface temperature. The geologic context and significance of recent ocean warming to coral growth and population dynamics are discussed, as is the future prognosis for the Florida reef tract.

  3. Upper-Ocean Heat Balance Processes and the Walker Circulation in CMIP5 Model Projections

    Science.gov (United States)

    Robertson, F. R.; Roberts, J. B.; Funk, C.; Lyon, B.; Ricciardulli, L.

    2012-01-01

    Considerable uncertainty remains as to the importance of mechanisms governing decadal and longer variability of the Walker Circulation, its connection to the tropical climate system, and prospects for tropical climate change in the face of anthropogenic forcing. Most contemporary climate models suggest that in response to elevated CO2 and a warmer but more stratified atmosphere, the required upward mass flux in tropical convection will diminish along with the Walker component of the tropical mean circulation as well. Alternatively, there is also evidence to suggest that the shoaling and increased vertical stratification of the thermocline in the eastern Pacific will enable a muted SST increase there-- preserving or even enhancing some of the dynamical forcing for the Walker cell flow. Over the past decade there have been observational indications of an acceleration in near-surface easterlies, a strengthened Pacific zonal SST gradient, and globally-teleconnected dislocations in precipitation. But is this evidence in support of an ocean dynamical thermostat process posited to accompany anthropogenic forcing, or just residual decadal fluctuations associated with variations in warm and cold ENSO events and other stochastic forcing? From a modeling perspective we try to make headway on this question by examining zonal variations in surface energy fluxes and dynamics governing tropical upper ocean heat content evolution in the WCRP CMIP5 model projections. There is some diversity among model simulations; for example, the CCSM4 indicates net ocean warming over the IndoPacific region while the CSIRO model concentrates separate warming responses over the central Pacific and Indian Ocean regions. The models, as with observations, demonstrate strong local coupling between variations in column water vapor, downward surface longwave radiation and SST; but the spatial patterns of changes in the sign of this relationship differ among models and, for models as a whole, with

  4. Synthesis of integrated primary production in the Arctic Ocean: II. In situ and remotely sensed estimates

    Science.gov (United States)

    Hill, Victoria J.; Matrai, Patricia A.; Olson, Elise; Suttles, S.; Steele, Mike; Codispoti, L. A.; Zimmerman, Richard C.

    2013-03-01

    Recent warming of surface waters, accompanied by reduced ice thickness and extent may have significant consequences for climate-driven changes of primary production (PP) in the Arctic Ocean (AO). However, it has been difficult to obtain a robust benchmark estimate of pan-Arctic PP necessary for evaluating change. This paper provides an estimate of pan-Arctic PP prior to significant warming from a synthetic analysis of the ARCSS-PP database of in situ measurements collected from 1954 to 2007 and estimates derived from satellite-based observations from 1998 to 2007. Vertical profiles of in situ chlorophyll a (Chl a) and PP revealed persistent subsurface peaks in biomass and PP throughout the AO during most of the summer period. This was contradictory with the commonly assumed exponential decrease in PP with depth on which prior satellite-derived estimates were based. As remotely sensed Chl a was not a good predictor of integrated water column Chl a, accurate satellite-based modeling of vertically integrated primary production (IPPsat), requires knowledge of the subsurface distribution of phytoplankton, coincident with the remotely sensed ocean color measurements. We developed an alternative approach to modeling PP from satellite observations by incorporating climatological information on the depths of the euphotic zone and the mixed layer that control the distribution of phytoplankton that significantly improved the fidelity of satellite derived PP to in situ observations. The annual IPP of the Arctic Ocean combining both in situ and satellite based estimates was calculated here to be a minimum of 466 ± 94 Tg C yr-1 and a maximum of 993 ± 94 Tg C yr-1, when corrected for subsurface production. Inflow shelf seas account for 75% of annual IPP, while the central basin and Beaufort northern sea were the regions with the lowest annual integrated productivity, due to persistently stratified, oligotrophic and ice-covered conditions. Although the expansion of summertime

  5. Seasonal variations of the upper ocean salinity stratification in the Tropics

    Science.gov (United States)

    Maes, Christophe; O'Kane, Terence J.

    2014-03-01

    In comparison to the deep ocean, the upper mixed layer is a region typically characterized by substantial vertical gradients in water properties. Within the Tropics, the rich variability in the vertical shapes and forms that these structures can assume through variation in the atmospheric forcing results in a differential effect in terms of the temperature and salinity stratification. Rather than focusing on the strong halocline above the thermocline, commonly referred to as the salinity barrier layer, the present study takes into account the respective thermal and saline dependencies in the Brunt-Väisälä frequency (N2) in order to isolate the specific role of the salinity stratification in the layers above the main pycnocline. We examine daily vertical profiles of temperature and salinity from an ocean reanalysis over the period 2001-2007. We find significant seasonal variations in the Brunt-Väisälä frequency profiles are limited to the upper 300 m depth. Based on this, we determine the ocean salinity stratification (OSS) to be defined as the stabilizing effect (positive values) due to the haline part of N2 averaged over the upper 300 m. In many regions of the tropics, the OSS contributes 40-50% to N2 as compared to the thermal stratification and, in some specific regions, exceeds it for a few months of the seasonal cycle. Away from the tropics, for example, near the centers of action of the subtropical gyres, there are regions characterized by the permanent absence of OSS. In other regions previously characterized with salinity barrier layers, the OSS obviously shares some common variations; however, we show that where temperature and salinity are mixed over the same depth, the salinity stratification can be significant. In addition, relationships between the OSS and the sea surface salinity are shown to be well defined and quasilinear in the tropics, providing some indication that in the future, analyses that consider both satellite surface salinity

  6. Simulation of global oceanic upper layers forced at the surface by an optimal bulk formulation derived from multi-campaign measurements.

    Science.gov (United States)

    Garric, G.; Pirani, A.; Belamari, S.; Caniaux, G.

    2006-12-01

    order to improve the air/sea interface for the future MERCATOR global ocean operational system, we have implemented the new bulk formulation developed by METEO-FRANCE (French Meteo office) in the MERCATOR 2 degree global ocean-ice coupled model (ORCA2/LIM). A single bulk formulation for the drag, temperature and moisture exchange coefficients is derived from an extended consistent database gathering 10 years of measurements issued from five experiments dedicated to air-sea fluxes estimates (SEMAPHORE, CATCH, FETCH, EQUALANT99 and POMME) in various oceanic basins (from Northern to equatorial Atlantic). The available database (ALBATROS) cover the widest range of atmospheric and oceanic conditions, from very light (0.3 m/s) to very strong (up to 29 m/s) wind speeds, and from unstable to extremely stable atmospheric boundary layer stratification. We have defined a work strategy to test this new formulation in a global oceanic context, by using this multi- campaign bulk formulation to derive air-sea fluxes from base meteorological variables produces by the ECMWF (European Centre for Medium Range and Weather Forecast) atmospheric forecast model, in order to get surface boundary conditions for ORCA2/LIM. The simulated oceanic upper layers forced at the surface by the previous air/sea interface are compared to those forced by the optimal bulk formulation. Consecutively with generally weaker transfer coefficient, the latter formulation reduces the cold bias in the equatorial Pacific and increases the too weak summer sea ice extent in Antarctica. Compared to a recent mixed layer depth (MLD) climatology, the optimal bulk formulation reduces also the too deep simulated MLDs. Comparison with in situ temperature and salinity profiles in different areas allowed us to evaluate the impact of changing the air/sea interface in the vertical structure.

  7. Controls on thallium uptake during hydrothermal alteration of the upper ocean crust

    Science.gov (United States)

    Coggon, Rosalind M.; Rehkämper, Mark; Atteck, Charlotte; Teagle, Damon A. H.; Alt, Jeffrey C.; Cooper, Matthew J.

    2014-11-01

    Hydrothermal circulation is a fundamental component of global biogeochemical cycles. However, the magnitude of the high temperature axial hydrothermal fluid flux remains disputed, and the lower temperature ridge flank fluid flux is difficult to quantify. Thallium (Tl) isotopes behave differently in axial compared to ridge flank systems, with Tl near-quantitatively stripped from the intrusive crust by high temperature hydrothermal reactions, but added to the lavas during low temperature reaction with seawater. This contrasting behavior provides a unique approach to determine the fluid fluxes associated with axial and ridge flank environments. Unfortunately, our understanding of the Tl isotopic mass balance is hindered by poor knowledge of the mineralogical, physical and chemical controls on Tl-uptake by the ocean crust. Here we use analyses of basaltic volcanic upper crust from Integrated Ocean Drilling Program Hole U1301B on the Juan de Fuca Ridge flank, combined with published analyses of dredged seafloor basalts and upper crustal basalts from Holes 504B and 896A, to investigate the controls on Tl-uptake by mid-ocean ridge basalts and evaluate when in the evolution of the ridge flank hydrothermal system Tl-uptake occurs. Seafloor basalts indicate an association between basaltic uptake of Tl from cold seawater and uptake of Cs and Rb, which are known to partition into K-rich phases. Although there is no clear relationship between Tl and K contents of seafloor basalts, the data do not rule out the incorporation of at least some Tl into the same minerals as the alkali elements. In contrast, we find no relationship between the Tl content and either the abundance of secondary phyllosilicate minerals, or the K, Cs or Rb contents in upper crustal basalts. We conclude that the uptake of Tl and alkali elements during hydrothermal alteration of the upper crust involves different processes and/or mineral phases compared to those that govern seafloor weathering. Furthermore

  8. Surface signature of Mediterranean water eddies in the Northeastern Atlantic: effect of the upper ocean stratification

    Directory of Open Access Journals (Sweden)

    I. Bashmachnikov

    2012-11-01

    Full Text Available Meddies, intra-thermocline eddies of Mediterranean water, can often be detected at the sea surface as positive sea-level anomalies. Here we study the surface signature of several meddies tracked with RAFOS floats and AVISO altimetry.

    While pushing its way through the water column, a meddy raises isopycnals above. As a consequence of potential vorticity conservation, negative relative vorticity is generated in the upper layer. During the initial period of meddy acceleration after meddy formation or after a stagnation stage, a cyclonic signal is also generated at the sea-surface, but mostly the anticyclonic surface signal follows the meddy.

    Based on geostrophy and potential vorticity balance, we present theoretical estimates of the intensity of the surface signature. It appears to be proportional to the meddy core radius and to the Coriolis parameter, and inversely proportional to the core depth and buoyancy frequency. This indicates that surface signature of a meddy may be strongly reduced by the upper ocean stratification. Using climatic distribution of the stratification intensity, we claim that the southernmost limit for detection in altimetry of small meddies (with radii on the order of 10–15 km should lie in the subtropics (35–45° N, while large meddies (with radii of 25–30 km could be detected as far south as the northern tropics (25–35° N. Those results agree with observations.

  9. Autonomous Observations of the Upper Ocean Stratification and Velocity Field about the Seasonally-Retreating Marginal Ice Zone

    Science.gov (United States)

    2016-12-30

    wavelength shifted towards smaller scales as ice concentration changed from greater than 95% to 70-95%. This work was reported at the 2016 Ocean ...71 ITP- 78 ITP-79 ITP-SO c. 2 - 1 -2 Figure 3. Time series of the wind stress work ( blue and black) and the ocean stress work (red) on one of...From - To) 12/30/2016 final 01-Nov-2011 to 30-Sep-2016 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Autonomous observations of the upper ocean

  10. Towards a merged satellite and in situ fluorescence ocean chlorophyll product

    Directory of Open Access Journals (Sweden)

    H. Lavigne

    2012-06-01

    Full Text Available Understanding the ocean carbon cycle requires a precise assessment of phytoplankton biomass in the oceans. In terms of numbers of observations, satellite data represent the largest available data set. However, as they are limited to surface waters, they have to be merged with in situ observations. Amongst the in situ data, fluorescence profiles constitute the greatest data set available, because fluorometers have operated routinely on oceanographic cruises since the 1970s. Nevertheless, fluorescence is only a proxy of the total chlorophyll a concentration and a data calibration is required. Calibration issues are, however, sources of uncertainty, and they have prevented a systematic and wide range exploitation of the fluorescence data set. In particular, very few attempts to standardize the fluorescence databases have been made. Consequently, merged estimations with other data sources (e.g. satellite are lacking.

    We propose a merging method to fill this gap. It consists firstly in adjusting the fluorescence profile to impose a zero chlorophyll a concentration at depth. Secondly, each point of the fluorescence profile is then multiplied by a correction coefficient, which forces the chlorophyll a integrated content measured on the fluorescence profile to be consistent with the concomitant ocean colour observation. The method is close to the approach proposed by Boss et al. (2008 to correct fluorescence data of a profiling float, although important differences do exist. To develop and test our approach, in situ data from three open ocean stations (BATS, HOT and DYFAMED were used. Comparison of the so-called "satellite-corrected" fluorescence profiles with concomitant bottle-derived estimations of chlorophyll a concentration was performed to evaluate the final error (estimated at 31%. Comparison with the Boss et al. (2008 method, using a subset of the DYFAMED data set, demonstrated that the methods have similar

  11. Wind energy input into the upper ocean over a lengthening open water season

    Science.gov (United States)

    Mahoney, A. R.; Rolph, R.; Walsh, J. E.

    2017-12-01

    Wind energy input into the ocean has important consequences for upper ocean mixing, heat and gas exchange, and air-sea momentum transfer. In the Arctic, the open water season is increasing and extending further into the fall storm season, allowing for more wind energy input into the water column. The rate at which the delayed freeze-up timing extends into fall storm season is an important metric to evaluate because the expanding overlap between the open water period and storm season could contribute a significant amount of wind energy into the water column in a relatively short period of time. We have shown that time-integrated wind speeds over open water in the Chukchi Sea and southern Beaufort region have increased since 1979 through 2014. An integrated wind energy input value is calculated for each year in this domain over the open water season, as well as for periods over partial concentrations of ice cover. Spatial variation of this integrated wind energy is shown along the Alaskan coastline, which can have implications for different rates of coastal erosion. Spatial correlation between average wind speed over open water and open water season length from 1979-2014 show positive values in the southern Beaufort, but negative values in the northern Chukchi. This suggests possible differences in the role of the ocean on open water season length depending on region. We speculate that the warm Pacific water outflow plays a more dominant role in extending the open water season length in the northern Chukchi when compared to the southern Beaufort, and might help explain why we can show there is a relatively longer open water season length there. The negative and positive correlations in wind speeds over open water and open water season length might also be explained by oceanic changes tending to operate on longer timescales than the atmosphere. Seasonal timescales of wind events such as regional differences in overlap of the extended open water season due to regional

  12. In situ rheology of the oceanic lithosphere along the Hawaiian ridge

    Science.gov (United States)

    Pleus, A.; Ito, G.; Wessel, P.; Frazer, L. N.

    2017-12-01

    Much of our quantitative understanding of lithospheric rheology is based on rock deformation experiments carried out in the laboratory. The accuracy of the relationships between stress and lithosphere deformation, however, are subject to large extrapolations, given that laboratory strain rates (10-7 s-1) are much greater than geologic rates (10-15 to 10-12 s-1). In situ deformation experiments provide independent constraints and are therefore needed to improve our understanding of natural rheology. Zhong and Watts [2013] presented such a study around the main Hawaiian Islands and concluded that the lithosphere flexure requires a much weaker rheology than predicted by laboratory experiments. We build upon this study by investigating flexure around the older volcanoes of the Hawaiian ridge. The ridge is composed of a diversity of volcano sizes that loaded seafloor of nearly constant age (85+/-8 Ma); this fortunate situation allows for an analysis of flexural responses to large variations in applied loads at nearly constant age-dependent lithosphere thermal structure. Our dataset includes new marine gravity and multi-beam bathymetry data collected onboard the Schmidt Ocean Institute's R/V Falkor. These data, along with forward models of lithospheric flexure, are used to obtain a joint posterior probability density function for model parameters that control the lithosphere's flexural response to a given load. These parameters include the frictional coefficient constraining brittle failure in the shallow lithosphere, the activation energy for the low-temperature plasticity regime, and the geothermal gradient of the Hawaiian lithosphere. The resulting in situ rheological parameters may be used to verify or update those derived in the lab. Attaining accurate lithospheric rheological properties is important to our knowledge, not only of the evolution of the Hawaiian lithosphere, but also of other solid-earth geophysical problems, such as oceanic earthquakes, subduction

  13. Annual cycle of the upper-ocean circulation and properties in the ...

    African Journals Online (AJOL)

    ocean dynamics and its influence on ocean properties in the tropical western Indian Ocean. Surface winds and heat fluxes from the National Centers for Environmental Prediction (NCEP) reanalysis forced the model (Model_NCEP) with initial and ...

  14. Summer microbial community composition governed by upper-ocean stratification and nutrient availability in northern Marguerite Bay, Antarctica

    NARCIS (Netherlands)

    Rozema, Patrick D.; Biggs, Tristan; Sprong, Pim A.A.; Buma, Anita G.J.; Venables, Hugh J.; Evans, Claire; Meredith, Michael P.; Bolhuis, Henk

    The Western Antarctic Peninsula warmed significantly during the second half of the twentieth century, with a concurrent retreat of the majority of its glaciers, and marked changes in the sea-ice field. These changes may affect summertime upper-ocean stratification, and thereby the seasonal dynamics

  15. Summer microbial community composition governed by upper-ocean stratification and nutrient availability in northern Marguerite Bay, Antarctica

    NARCIS (Netherlands)

    Rozema, P.D.; Biggs, T.; Sprong, P.A.A.; Buma, A.G.J.; Venables, H.J.; Evans, C.; Meredith, M.P.; Bolhuis, H.

    2017-01-01

    The Western Antarctic Peninsula warmed significantly during the second half of the twentieth century, with a concurrent retreat of the majority of its glaciers, and marked changes in the sea-ice field. These changes may affect summertime upper-ocean stratification, and thereby the seasonal dynamics

  16. In situ holographic measurements of the sizes and settling rates of oceanic particulates

    Science.gov (United States)

    Carder, Kendall L.; Steward, Robert G.; Betzer, Peter R.

    1982-07-01

    A free-floating sediment trap equipped with a holographic particle velocimeter (HPV) was deployed for 14.4 hours at a depth of 30 m in the western North Atlantic Ocean. The system recorded the in situ sizes, shapes, orientations, and settling rates of microscopic particles moving through the laser beam. The primary data reduction revealed particles from the system's lower limit of resolution, 15 micrometers in diameter, to 250 micrometers in diameter with settling velocities ranging from 0.0190 to 0.2302 cm/s (16-198 m/day). Individual particle densities, calculated from a modified Stokes equation, ranged from 1.37 to 5.10 g/ml. The presence of high density particles was independently corroborated through individual particle analysis of the trapped material with a computer-controlled, scanning electron microscope equipped with an energy dispersive X-ray analyzer. In the future, in situ holographic systems might be used to further our understanding of primary productivity, sediment erosion/deposition, and particle aggregation/disruption/dissolution.

  17. Spatial distribution of turbulent mixing in the upper ocean of the South China Sea

    Directory of Open Access Journals (Sweden)

    X.-D. Shang

    2017-06-01

    Full Text Available The spatial distribution of the dissipation rate (ε and diapycnal diffusivity (κ in the upper ocean of the South China Sea (SCS is presented from a measurement program conducted from 26 April to 23 May 2010. In the vertical distribution, the dissipation rates below the surface mixed layer were predominantly high in the thermocline where shear and stratification were strong. In the regional distribution, high dissipation rates and diapycnal diffusivities were observed in the region to the west of the Luzon Strait, with an average dissipation rate and diapycnal diffusivity of 8.3  ×  10−9 W kg−1 and 2.7  ×  10−5 m2 s−1, respectively, almost 1 order of magnitude higher than those in the central and southern SCS. In the region to the west of the Luzon Strait, the water column was characterized by strong shear and weak stratification. Elevated dissipation rates (ε > 10−7 W kg−1 and diapycnal diffusivities (κ > 10−4 m2 s−1, induced by shear instability, occurred in the water column. In the central and southern SCS, the water column was characterized by strong stratification and weak shear and the turbulent mixing was weak. Internal waves and internal tides generated near the Luzon Strait are expected to make a dominant contribution to the strong turbulent mixing and shear in the region to the west of the Luzon Strait. The observed dissipation rates were found to scale positively with the shear and stratification, which were consistent with the MacKinnon–Gregg model used for the continental shelf but different from the Gregg–Henyey scaling used for the open ocean.

  18. Spatial distribution of turbulent mixing in the upper ocean of the South China Sea

    Science.gov (United States)

    Shang, Xiao-Dong; Liang, Chang-Rong; Chen, Gui-Ying

    2017-06-01

    The spatial distribution of the dissipation rate (ɛ) and diapycnal diffusivity (κ) in the upper ocean of the South China Sea (SCS) is presented from a measurement program conducted from 26 April to 23 May 2010. In the vertical distribution, the dissipation rates below the surface mixed layer were predominantly high in the thermocline where shear and stratification were strong. In the regional distribution, high dissipation rates and diapycnal diffusivities were observed in the region to the west of the Luzon Strait, with an average dissipation rate and diapycnal diffusivity of 8.3 × 10-9 W kg-1 and 2.7 × 10-5 m2 s-1, respectively, almost 1 order of magnitude higher than those in the central and southern SCS. In the region to the west of the Luzon Strait, the water column was characterized by strong shear and weak stratification. Elevated dissipation rates (ɛ > 10-7 W kg-1) and diapycnal diffusivities (κ > 10-4 m2 s-1), induced by shear instability, occurred in the water column. In the central and southern SCS, the water column was characterized by strong stratification and weak shear and the turbulent mixing was weak. Internal waves and internal tides generated near the Luzon Strait are expected to make a dominant contribution to the strong turbulent mixing and shear in the region to the west of the Luzon Strait. The observed dissipation rates were found to scale positively with the shear and stratification, which were consistent with the MacKinnon-Gregg model used for the continental shelf but different from the Gregg-Henyey scaling used for the open ocean.

  19. Geophysical Investigations of Crustal and Upper Mantle Structure of Oceanic Intraplate Volcanoes (OIVs)

    Science.gov (United States)

    Robinson, A. H.; Peirce, C.; Funnell, M.; Watts, A. B.; Grevemeyer, I.

    2016-12-01

    Oceanic intraplate volcanoes (OIVs) represent a record of the modification of the oceanic crust by volcanism related to a range of processes including hot-spots, small scale mantle convection, and localised lithospheric extension. Geophysical studies of OIVs show a diversity in crustal and upper mantle structures, proposed to exist on a spectrum between two end-members where the main control is the age of the lithosphere at the time of volcanism. This hypothesis states that where the lithosphere is older, colder, and thicker it is more resistant to vertical magmatism than younger, hotter, thinner lithosphere. It is suggested that the Moho acts as a density filter, permitting relatively buoyant magma to vertically intrude the crust, but preventing denser magma from ascending to shallow levels. A key control may therefore be the melting depth, known to affect magma composition, and itself related to lithosphere age. Combined geophysical approaches allow us to develop robust models for OIV crustal structures with quantifiable resolution and uncertainty. As a case study, we present results from a multi-approach geophysical experiment at the Louisville Ridge Seamount Chain, believed to have formed on young (travel-time modelling of picked arrivals, is tested against reflection and gravity data. We compare our observations with studies of other OIVs to test whether lithospheric age controls OIV structure. Comparisons are limited by the temporal and spatial distribution of lithosphere and volcano ages, but suggest the hypothesis does not hold for all OIV features. While age may be the main control on OIV structure, as it determines lithosphere thermal and mechanical properties, other factors such as thermal rejuvenation, mechanical weakening, and volcano load size and distribution, may also come into play.

  20. Multi-centennial upper-ocean heat content reconstruction using online data assimilation

    Science.gov (United States)

    Perkins, W. A.; Hakim, G. J.

    2017-12-01

    The Last Millennium Reanalysis (LMR) provides an advanced paleoclimate ensemble data assimilation framework for multi-variate climate field reconstructions over the Common Era. Although reconstructions in this framework with full Earth system models remain prohibitively expensive, recent work has shown improved ensemble reconstruction validation using computationally inexpensive linear inverse models (LIMs). Here we leverage these techniques in pursuit of a new multi-centennial field reconstruction of upper-ocean heat content (OHC), synthesizing model dynamics with observational constraints from proxy records. OHC is an important indicator of internal climate variability and responds to planetary energy imbalances. Therefore, a consistent extension of the OHC record in time will help inform aspects of low-frequency climate variability. We use the Community Climate System Model version 4 (CCSM4) and Max Planck Institute (MPI) last millennium simulations to derive the LIMs, and the PAGES2K v.2.0 proxy database to perform annually resolved reconstructions of upper-OHC, surface air temperature, and wind stress over the last 500 years. Annual OHC reconstructions and uncertainties for both the global mean and regional basins are compared against observational and reanalysis data. We then investigate differences in dynamical behavior at decadal and longer time scales between the reconstruction and simulations in the last-millennium Coupled Model Intercomparison Project version 5 (CMIP5). Preliminary investigation of 1-year forecast skill for an OHC-only LIM shows largely positive spatial grid point local anomaly correlations (LAC) with a global average LAC of 0.37. Compared to 1-year OHC persistence forecast LAC (global average LAC of 0.30), the LIM outperforms the persistence forecasts in the tropical Indo-Pacific region, the equatorial Atlantic, and in certain regions near the Antarctic Circumpolar Current. In other regions, the forecast correlations are less than the

  1. Observations of turbulent energy dissipation rate in the upper ocean of the central South China Sea

    Science.gov (United States)

    Chen, G.

    2016-02-01

    Measurements of turbulent energy dissipation rate, velocity, temperature, and salinity were obtained in the upper ocean of the central South China Sea (14.5˚N, 117.0˚E) during an experimental campaign from May 11th to 13th 2010. Dissipation rate was elevated ( 10-7 Wkg-1) at night by convection mixing and was weakened ( 10-9 Wkg-1) in daytime due to the warming stratification. Thermocline dissipation rate varied with time ( 10-9 Wkg-1 to 10-8 Wkg-1) under the influence of internal waves. Energy was transferred from the diurnal internal tides to high frequency internal waves through nonlinear wave-wave interactions. This energy cascade process was accompanied by elevated shear and enhanced dissipation, which played an important role in the turbulent mixing in thermocline. Compare with the thermocline dissipation, dissipation below the thermocline was more stable and weak ( 10-10 Wkg-1). The observed dissipation rate during the measurement was well parameterized by the MacKinnon-Gregg parameterization (a model based on a reinterpretation of wave-wave interaction theory), whereas the Gregg-Henyey parameterization was not in good agreement with the observed dissipation rate.

  2. Monte Carlo simulation of spectral reflectance and BRDF of the bubble layer in the upper ocean.

    Science.gov (United States)

    Ma, Lanxin; Wang, Fuqiang; Wang, Chengan; Wang, Chengchao; Tan, Jianyu

    2015-09-21

    The presence of bubbles can significantly change the radiative properties of seawater and these changes will affect remote sensing and underwater target detection. In this work, the spectral reflectance and bidirectional reflectance characteristics of the bubble layer in the upper ocean are investigated using the Monte Carlo method. The Hall-Novarini (HN) bubble population model, which considers the effect of wind speed and depth on the bubble size distribution, is used. The scattering coefficients and the scattering phase functions of bubbles in seawater are calculated using Mie theory, and the inherent optical properties of seawater for wavelengths between 300 nm and 800 nm are related to chlorophyll concentration (Chl). The effects of bubble coating, Chl, and bubble number density on the spectral reflectance of the bubble layer are studied. The bidirectional reflectance distribution function (BRDF) of the bubble layer for both normal and oblique incidence is also investigated. The results show that bubble populations in clear waters under high wind speed conditions significantly influence the reflection characteristics of the bubble layer. Furthermore, the contribution of bubble populations to the reflection characteristics is mainly due to the strong backscattering of bubbles that are coated with an organic film.

  3. Recruitment and Succession in a Tropical Benthic Community in Response to In-Situ Ocean Acidification

    Science.gov (United States)

    Crook, Elizabeth Derse; Kroeker, Kristy J.; Potts, Donald C.; Rebolledo-Vieyra, Mario; Hernandez-Terrones, Laura M.; Paytan, Adina

    2016-01-01

    Ocean acidification is a pervasive threat to coral reef ecosystems, and our understanding of the ecological processes driving patterns in tropical benthic community development in conditions of acidification is limited. We deployed limestone recruitment tiles in low aragonite saturation (Ωarag) waters during an in-situ field experiment at Puerto Morelos, Mexico, and compared them to tiles placed in control zones over a 14-month investigation. The early stages of succession showed relatively little difference in coverage of calcifying organisms between the low Ωarag and control zones. However, after 14 months of development, tiles from the low Ωarag zones had up to 70% less cover of calcifying organisms coincident with 42% more fleshy algae than the controls. The percent cover of biofilm and turf algae was also significantly greater in the low Ωarag zones, while the number of key grazing taxa remained constant. We hypothesize that fleshy algae have a competitive edge over the primary calcified space holders, coralline algae, and that acidification leads to altered competitive dynamics between various taxa. We suggest that as acidification impacts reefs in the future, there will be a shift in community assemblages away from upright and crustose coralline algae toward more fleshy algae and turf, established in the early stages of succession. PMID:26784986

  4. Recruitment and Succession in a Tropical Benthic Community in Response to In-Situ Ocean Acidification.

    Directory of Open Access Journals (Sweden)

    Elizabeth Derse Crook

    Full Text Available Ocean acidification is a pervasive threat to coral reef ecosystems, and our understanding of the ecological processes driving patterns in tropical benthic community development in conditions of acidification is limited. We deployed limestone recruitment tiles in low aragonite saturation (Ωarag waters during an in-situ field experiment at Puerto Morelos, Mexico, and compared them to tiles placed in control zones over a 14-month investigation. The early stages of succession showed relatively little difference in coverage of calcifying organisms between the low Ωarag and control zones. However, after 14 months of development, tiles from the low Ωarag zones had up to 70% less cover of calcifying organisms coincident with 42% more fleshy algae than the controls. The percent cover of biofilm and turf algae was also significantly greater in the low Ωarag zones, while the number of key grazing taxa remained constant. We hypothesize that fleshy algae have a competitive edge over the primary calcified space holders, coralline algae, and that acidification leads to altered competitive dynamics between various taxa. We suggest that as acidification impacts reefs in the future, there will be a shift in community assemblages away from upright and crustose coralline algae toward more fleshy algae and turf, established in the early stages of succession.

  5. A mechanistic model of an upper bound on oceanic carbon export as a function of mixed layer depth and temperature

    Directory of Open Access Journals (Sweden)

    Z. Li

    2017-11-01

    Full Text Available Export production reflects the amount of organic matter transferred from the ocean surface to depth through biological processes. This export is in large part controlled by nutrient and light availability, which are conditioned by mixed layer depth (MLD. In this study, building on Sverdrup's critical depth hypothesis, we derive a mechanistic model of an upper bound on carbon export based on the metabolic balance between photosynthesis and respiration as a function of MLD and temperature. We find that the upper bound is a positively skewed bell-shaped function of MLD. Specifically, the upper bound increases with deepening mixed layers down to a critical depth, beyond which a long tail of decreasing carbon export is associated with increasing heterotrophic activity and decreasing light availability. We also show that in cold regions the upper bound on carbon export decreases with increasing temperature when mixed layers are deep, but increases with temperature when mixed layers are shallow. A meta-analysis shows that our model envelopes field estimates of carbon export from the mixed layer. When compared to satellite export production estimates, our model indicates that export production in some regions of the Southern Ocean, particularly the subantarctic zone, is likely limited by light for a significant portion of the growing season.

  6. VM-ADCP measured upper ocean currents in the southeastern Arabian Sea and Equatorial Indian Ocean during December, 2000

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, V.S.N.; Suryanarayana, A.; Somayajulu, Y.K.; Raikar, V.; Tilvi, V.

    west wind forcing through December and retroflection of NEC. The transport of the NECC in the upper 100 m varies from 4x10@u6@@ m@u3@@ /s at 83 degrees E to 7x10@u6@@ m@u3@@ /s at 93 degrees E. The data details the structure of the South Equatorial...

  7. Seaglider surveys at Ocean Station Papa: Diagnosis of upper-ocean heat and salt balances using least squares with inequality constraints

    Science.gov (United States)

    Pelland, Noel A.; Eriksen, Charles C.; Cronin, Meghan F.

    2017-06-01

    Heat and salt balances in the upper 200 m are examined using data from Seaglider spatial surveys June 2008 to January 2010 surrounding a NOAA surface mooring at Ocean Station Papa (OSP; 50°N, 145°W). A least-squares approach is applied to repeat Seaglider survey and moored measurements to solve for unknown or uncertain monthly three-dimensional circulation and vertical diffusivity. Within the surface boundary layer, the estimated heat and salt balances are dominated throughout the surveys by turbulent flux, vertical advection, and for heat, radiative absorption. When vertically integrated balances are considered, an estimated upwelling of cool water balances the net surface input of heat, while the corresponding large import of salt across the halocline due to upwelling and diffusion is balanced by surface moisture input and horizontal import of fresh water. Measurement of horizontal gradients allows the estimation of unresolved vertical terms over more than one annual cycle; diffusivity in the upper-ocean transition layer decreases rapidly to the depth of the maximum near-surface stratification in all months, with weak seasonal modulation in the rate of decrease and profile amplitude. Vertical velocity is estimated to be on average upward but with important monthly variations. Results support and expand existing evidence concerning the importance of horizontal advection in the balances of heat and salt in the Gulf of Alaska, highlight time and depth variability in difficult-to-measure vertical transports in the upper ocean, and suggest avenues of further study in future observational work at OSP.

  8. Garnet Signatures in Geophysical and Geochemical Observations: Insights into the Thermo-Petrological Structure of Oceanic Upper Mantle

    Science.gov (United States)

    Grose, C. J.; Afonso, J. C.

    2013-12-01

    We have developed new physically comprehensive thermal plate models of the oceanic lithosphere which incorporate temperature- and pressure-dependent heat transport properties and thermal expansivity, melting beneath ridges, hydrothermal circulation near ridge axes, and insulating oceanic crust. These models provide good fits to global databases of seafloor topography and heat flow, and seismic evidence of thermal structure near ridge axes. We couple these thermal plate models with thermodynamic models to predict the petrology of oceanic lithosphere. Geoid height predictions from our models suggest that there is a strong anomaly in geoid slope (over age) above ~25 Ma lithosphere due to the topography of garnet-field mantle. A similar anomaly is also present in geoid data over fracture zones. In addition, we show that a new assessment of a large database of ocean island basalt Sm/Yb systematics indicates that there is an unmistakable step-like increase in Sm/Yb values around 15-20 Ma, indicating the presence of garnet. To explain this feature, we have attempted to couple our thermo-petrological models of oceanic upper mantle with an open system, non-modal, dynamic melting model with diffusion kinetics to investigate trace element partitioning in an ascending mantle column.

  9. Potential feedback mechanism between phytoplankton and upper ocean circulation with oceanic radiative transfer processes influenced by phytoplankton - Numerical ocean, general circulation models and an analytical solution

    Digital Repository Service at National Institute of Oceanography (India)

    Nakamoto, S.; Kano, M.; PrasannaKumar, S.; Oberhuber, J.M.; Muneyama, K.; Ueyoshi, K.; Subrahmanyam, B.; Nakata, K.; Lai, C.A.; Frouin, R.

    29208, USA 'Ocean Engineering Department, Tokai University, Shimizu, Japan "LOS Alamos National Laboratory, Los Alamos, NM, USA *Corresponding author. E-mail address: nakamotoocean@aol.com (S. Nakamoto?. Elsevier Oceanography Series 73 255 Edited...

  10. Slipped upper femoral epiphysis: Outcome after in situ fixation and capital realignment technique

    Directory of Open Access Journals (Sweden)

    Sanjay Arora

    2013-01-01

    Results: Clinical outcome as assessed by Merle d′ Aubigne score was excellent in 6, good in 10, fair in 6 and poor in 1. Half of the in situ fixation patients underwent osteoplasty procedure for femoroacetabular impingement and 5 more were symptomatic. The head neck offset and α angle after in situ pinning were -1.12 ± 3 mm and 66.05 ± 9.7°, respectively and this improved to 8.7 mm and 49°, respectively, after osteoplasty. One child in the pinning group had chondrolysis. Eight patients with severe slip underwent capital realignment. Mean followup was 20.15 months. The anterior head neck offset and α angle were corrected to 6.8 ± 1.72 mm and 44.6 ± 7.0° mm, respectively. Two children with unstable slip in the capital realignment group had avascular necrosis which was diagnosed at presentation by bone scan. Conclusion: High BMI, vitamin D deficiency and endocrine disorders are associated with SUFE in India and should be evaluated as some of these are amenable to prevention and treatment. Most patients treated with in situ pinning developed femoroacetabular impingement. The early results after capital realignment procedure are encouraging and help to avoid a second procedure which is needed in a majority of patients who underwent in situ pinning.

  11. Measurements of upper atmosphere water vapor made in situ with a new moisture sensor

    Science.gov (United States)

    Chleck, D.

    1979-01-01

    A new thin-film aluminum oxide sensor, Aquamax II, has been developed for the measurement of stratospheric and upper tropospheric water vapor levels. The sensor is briefly described with attention given to its calibration and performance. Data obtained from six balloon flights are presented; almost all the results show a constant water vapor mixing ratio, in agreement with other data from midlatitude regions.

  12. Diurnal variability of upper ocean temperature and heat budget in the southern Bay of Bengal during October-November, 1998 (BOBMEX-Pilot)

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, V.S.N.; RameshBabu, V.; Rao, L.V.G.; Prabhu, C.V.; Tilvi, V.

    °N locations along 87°E during October -- November, 1998 under BOBMEX-Pilot programme. These data have been analysed to examine the diurnal variability of upper oceanic heat budget and to estimate the eddy diffusivity coefficient of heat in the upper...

  13. Intraseasonal variability of upper-ocean currents and photosynthetic primary production along the U.S. west coast associated with the Madden-Julian Oscillation

    Science.gov (United States)

    Barrett, B.; Davies, A. R.; Steppe, C. N.; Hackbarth, C.

    2017-12-01

    In the first part of this study, time-lagged composites of upper-ocean currents from February to May of 1993-2016 were binned by active phase of the leading atmospheric mode of intraseasonal variability, the Madden-Julian Oscillation (MJO). Seven days after the convectively active phase of the MJO enters the tropical Indian Ocean, anomalously strong south-southeastward upper-ocean currents are observed along the majority of U.S. west coast. Seven days after the convectively active phase enters the tropical western Pacific Ocean, upper-ocean current anomalies reverse along the U.S. west coast, with weaker southward flow. A physical pathway to the ocean was found for both of these: (a) tropical MJO convection modulates upper-tropospheric heights and circulation over the Pacific Ocean; (b) those anomalous atmospheric heights adjust the strength and position of the Aleutian Low and Hawaiian High; (c) surface winds change in response to the adjusted atmospheric pressure patterns; and (d) those surface winds project onto upper-ocean currents. In the second part of this study, we investigated if the MJO modulated intraseasonal variability of surface wind forcing and upper-ocean currents projected onto phytoplankton abundance along the U.S. west coast. Following a similar methodology, time-lagged, level 3 chlorophyll-a satellite products (a proxy for photosynthetic primary production) were binned by active MJO phase and analyzed for statistical significance using the Student's t test. Results suggest that intraseasonal variability of biological production along the U.S. west coast may be linked to the MJO, particularly since the time scale of the life cycle of phytoplankton is similar to the time scale of the MJO.

  14. Effects of UVB radiation on net community production in the upper global ocean

    KAUST Repository

    Garcia-Corral, Lara S.

    2016-08-31

    Aim Erosion of the stratospheric ozone layer together with oligotrophication of the subtropical ocean is leading to enhanced exposure to ultraviolet B (UVB) radiation in ocean surface waters. The impact of increased exposure to UVB on planktonic primary producers and heterotrophs is uncertain. Here we test the null hypothesis that net community production (NCP) of plankton communities in surface waters of the tropical and subtropical ocean is not affected by ambient UVB radiation and extend this test to the global ocean, including the polar oceans and the Mediterranean Sea using previous results. Location We conducted experiments with 131 surface communities sampled during a circumnavigation cruise along the tropical and subtropical ocean and combined these results with 89 previous reports encompassing the Atlantic, Pacific, Arctic and Southern Oceans and the Mediterranean Sea. Methods The use of quartz (transparent to UVB radiation) and borosilicate glass materials (opaque to most UVB) for incubations allowed us to compare NCP between communities where UVB is excluded and those receiving natural UVB radiation. Results We found that NCP varies when exposed to natural UVB radiation compared to those where UVB was removed. NCP of autotrophic communities tended to decrease under natural UVB radiation, whereas the NCP of heterotrophic communities tended to increase. However, these variations showed the opposite trend under higher levels of UVB radiation. Main conclusions Our results suggest that earlier estimates of NCP for surface communities, which were hitherto derived using materials blocking UVB radiation were biased, with the direction and magnitude of this bias depending on the metabolic status of the communities and the underwater penetration of UVB radiation.

  15. A new XRF probe for in-situ determining concentration of multi-elements in ocean sediments

    CERN Document Server

    Ge Liang Quan; Zhou Si Chun; Lin Ling; Lin Yan Chang; Ren Jia Fu

    2001-01-01

    The author introduces a new X-ray fluorescence probe for in-situ determining the concentration of multi-elements in ocean sediments. The probe consists of Si-Pin X-ray detector with an electro-thermal colder, two isotope sources, essential electrical signal processing units and a notebook computer. More than 10 elements can be simultaneously determined at a detection limit of (10-200) x 10 sup - sup 6 and precision of 5%-30% without liquid Nitrogen supply. tests show that the probe can perform the analytical tasks under the water at the depth of less than 1000 meters

  16. A new XRF probe for in-situ determining concentration of multi-elements in ocean sediments

    International Nuclear Information System (INIS)

    Ge Liangquan; Lai Wanchang; Zhou Sichun; Lin Ling; Lin Yanchang; Ren Jiafu

    2001-01-01

    The author introduces a new X-ray fluorescence probe for in-situ determining the concentration of multi-elements in ocean sediments. The probe consists of Si-Pin X-ray detector with an electro-thermal colder, two isotope sources, essential electrical signal processing units and a notebook computer. More than 10 elements can be simultaneously determined at a detection limit of (10-200) x 10 -6 and precision of 5%-30% without liquid Nitrogen supply. tests show that the probe can perform the analytical tasks under the water at the depth of less than 1000 meters

  17. 15N natural abundance in warm-core rings of the Gulf Stream: studies of the upper-ocean nitrogen cycle

    International Nuclear Information System (INIS)

    Altabet, M.A.

    1984-01-01

    An extensive study of 15 N natural abundance in particulate organic nitrogen (PON) from warm-core rings of the Gulf Stream was carried out to test its use as an in situ tracer of the marine nitrogen cycle. Ring 82-B exhibited large temporal changes in the delta 15 N of PON. It was found that delta 15 N values for euphotic zone PON were low in April before stratification and higher in June after stratification had occurred. Below 400 meters, in the permanent thermocline, the change was opposite going from very high values to ones similar to those at the surface. Examination of vertical profiles for delta 15 N in the upper 200 meters demonstrated that in stratified waters a delta 15 N minimum for PON occurs with both the top of the nitracline and a maximum in PON concentration. Often a minimum in C/N ratio also occurs at the depth of the delta 15 N minimum. A mathematical model of nitrogen flux into and out of the euphotic zone and associated isotopic fractionation qualitatively reproduced the observed patterns for the delta 15 N of PON, PON concentration and NO 3 - concentration. Levels of PON increased as a result of either increasing NO 3 - flux into the euphotic zone or increasing the residence time of PON in the euphotic zone. These results lend general support to current views regarding the nature and significance of the vertical fluxes of nitrogen in the upper-ocean and the hypotheses presented concerning the factors which control the delta 15 N of PON

  18. The electrical conductivity of the upper mantle and lithosphere from satellite magnetic signal due to ocean tidal flow

    Science.gov (United States)

    Schnepf, N. R.; Kuvshinov, A. V.; Grayver, A.; Sabaka, T. J.; Olsen, N.

    2015-12-01

    Global electromagnetic (EM) studies provide information on mantle electrical conductivity with the ultimate aim of understanding the composition, structure, and dynamics of Earth's interior. There is great much interest in mapping the global conductivity of the lithosphere and upper mantle (i.e., depths of 10-400 km) because recent laboratory experiments demonstrate that the electrical conductivity of minerals in these regions are greatly affected by small amounts of water or by partial melt. For decades, studies of lithospheric/mantle conductivity were based on interpretation of magnetic data from a global network of observatories. The recent expansion in magnetic data from low-Earth orbiting satellite missions (Ørsted, CHAMP, SAC-C, and Swarm) has led to a rising interest in probing Earth from space. The largest benefit of using satellite data is much improved spatial coverage. Additionally, and in contrast to ground-based data, satellite data are overall uniform and very high quality. Probing the conductivity of the lithosphere and upper mantle requires EM variations with periods of a few hours. This is a challenging period range for global EM studies since the ionospheric (Sq) source dominates these periods and has a much more complex spatial structure compared to the magnetospheric ring current. Moreover, satellite-based EM induction studies in principle cannot use Sq data since the satellites fly above the Sq source causing the signals to be seen by the satellite as a purely internal source, thus precluding the separation of satellite Sq signals into internal and external parts. Lastly, magnetospheric and ionospheric sources interact inductively with Earth's conducting interior. Fortunately, there exists an alternative EM source in the Sq period range: electric currents generated by oceanic tides. Tides instead interact galvanically with the lithosphere (i.e. by direct coupling of the source currents in the ocean with the underlying substrate), enabling

  19. Observing the seasonal cycle of the upper ocean in the Ross Sea, Antarctica, with autonomous profiling floats

    Science.gov (United States)

    Porter, D. F.; Springer, S. R.; Padman, L.; Fricker, H. A.; Bell, R. E.

    2017-12-01

    The upper layers of the Southern Ocean where it meets the Antarctic ice sheet undergoes a large seasonal cycle controlled by surface radiation and by freshwater fluxes, both of which are strongly influenced by sea ice. In regions where seasonal sea ice and icebergs limit use of ice-tethered profilers and conventional moorings, autonomous profiling floats can sample the upper ocean. The deployment of seven Apex floats (by sea) and six ALAMO floats (by air) provides unique upper ocean hydrographic data in the Ross Sea close to the Ross Ice Shelf front. A novel choice of mission parameters - setting parking depth deeper than the seabed - limits their drift, allowing us to deploy the floats close to the ice shelf front, while sea ice avoidance algorithms allow the floats to to sample through winter under sea ice. Hydrographic profiles show the detailed development of the seasonal mixed layer close to the Ross front, and interannual variability of the seasonal mixed layer and deeper water masses on the central Ross Sea continental shelf. After the sea ice breakup in spring, a warm and fresh surface mixed layer develops, further warming and deepening throughout the summer. The mixed layer deepens, with maximum temperatures exceeding 0ºC in mid-February. By March, the surface energy budget becomes negative and sea ice begins to form, creating a cold, saline and dense surface layer. Once these processes overcome the stable summer stratification, convection erodes the surface mixed layer, mixing some heat downwards to deeper layers. There is considerable interannual variability in the evolution and strength of the surface mixed layer: summers with shorter ice-free periods result in a cooler and shallower surface mixed layer, which accumulates less heat than the summers with longer ice-free periods. Early ice breakup occurred in all floats in 2016/17 summer, enhancing the absorbed solar flux leading to a warmer surface mixed layer. Together, these unique measurements from

  20. Upper ocean variability in the Bay of Bengal during the tropical cyclones Nargis and Laila

    Digital Repository Service at National Institute of Oceanography (India)

    Maneesha, K.; Murty, V.S.N.; Ravichandran, M.; Lee, T.; Yu, W.; McPhaden, M.J.

    -monsoon north Bay of Bengal, Atmos. Sci. Let. Doi:10.1002/asl.162. Shay, L.K., G.J.Goni and P.G. Black (2000) , Effects of warm oceanic features on hurricane opal, Mon.Wea.Rev., 128, 1366-1383 Subrahmanyam, B., V.S.N. Murty, Ryan J. Sharp and James J...

  1. Indian summer monsoon rainfall variability during 2014 and 2015 and associated Indo-Pacific upper ocean temperature patterns

    Science.gov (United States)

    Kakatkar, Rashmi; Gnanaseelan, C.; Chowdary, J. S.; Parekh, Anant; Deepa, J. S.

    2018-02-01

    In this study, factors responsible for the deficit Indian Summer Monsoon (ISM) rainfall in 2014 and 2015 and the ability of Indian Institute of Tropical Meteorology-Global Ocean Data Assimilation System (IITM-GODAS) in representing the oceanic features are examined. IITM-GODAS has been used to provide initial conditions for seasonal forecast in India during 2014 and 2015. The years 2014 and 2015 witnessed deficit ISM rainfall but were evolved from two entirely different preconditions over Pacific. This raises concern over the present understanding of the role of Pacific Ocean on ISM variability. Analysis reveals that the mechanisms associated with the rainfall deficit over the Indian Subcontinent are different in the two years. It is found that remote forcing in summer of 2015 due to El Niño is mostly responsible for the deficit monsoon rainfall through changes in Walker circulation and large-scale subsidence. In the case of the summer of 2014, both local circulation with anomalous anticyclone over central India and intrusion of mid-latitude dry winds from north have contributed for the deficit rainfall. In addition to the above, Tropical Indian Ocean (TIO) sea surface temperature (SST) and remote forcing from Pacific Ocean also modulated the ISM rainfall. It is observed that Pacific SST warming has extended westward in 2014, making it a basin scale warming unlike the strong El Niño year 2015. The eastern equatorial Indian Ocean is anomalously warmer than west in summer of 2014, and vice versa in 2015. These differences in SST in both tropical Pacific and TIO have considerable impact on ISM rainfall in 2014 and 2015. The study reveals that initializing coupled forecast models with proper upper ocean temperature over the Indo-Pacific is therefore essential for improved model forecast. It is important to note that the IITM-GODAS which assimilates only array for real-time geostrophic oceanography (ARGO) temperature and salinity profiles could capture most of the

  2. Assessing GOCE Gravity Models using Altimetry and In-situ Ocean Current Observation

    DEFF Research Database (Denmark)

    Knudsen, Per; Andersen, Ole Baltazar; Honecker, Johanna

    gravity models provided by the GOCE mission have enhanced the resolution and sharpened the boundaries of those features and the associated geostrophic surface currents reveal improvements for all of the ocean's current systems. In this study, a series of 23 newer gravity models including observations from...... as quantified quality measures associated with the 23 GOCE gravity models.......The Gravity and steady state Ocean Circulation Explorer (GOCE) satellite mission measures Earth's gravity field with an unprecedented accuracy at short spatial scales. Previous results have demonstrated a significant advance in our ability to determine the ocean's general circulation. The improved...

  3. Biological Modulation of Upper Ocean Physics: Simulating the Biothermal Feedback Effect in Monterey Bay, California

    Science.gov (United States)

    2014-04-08

    context of geophysical forcing [see Longhurst, 1998]. However, the abundance of marine phytoplankton belies the inefficiency of photosynthesis as a...implicit bacterial respiration back to the ammonium compartment (NA). If the depth (z) is at the maximum depth increment then D(z) is returned to the NA(z... photosynthesis in situ, J. Plankton Res., 6, 275–294. Barron, C. N., A. B. Kara, H. E. Hurlburt, C. Rowley, and L. F. Smedstad (2004), Sea surface height

  4. Glider and remote sensing observations of the upper ocean response to an extended shallow coastal diversion of wastewater effluent

    KAUST Repository

    Seegers, Bridget N.; Teel, Elizabeth N.; Kudela, Raphael M.; Caron, David A.; Jones, Burton

    2016-01-01

    The Orange County Sanitation District (OCSD) diverted wastewater discharge (5.3 × 108 l d−1) from its primary deep (56 m) outfall 8 km offshore, to a secondary shallower (16 m) outfall 1.6 km offshore for a period of three weeks. It was anticipated that the low salinity and density of the effluent would cause it to rise to the surface with limited dilution, elevating nutrient concentrations in near-surface waters and stimulating phytoplankton blooms in the region. Three Teledyne Webb Slocum gliders and a Liquid Robotics surface wave glider were deployed on transects near the outfalls to acquire high spatial and temporal coverage of physical and chemical parameters before, during, and after the wastewater diversion. Combined autonomous underwater vehicle (AUV) and MODIS-Aqua satellite ocean color data indicated that phytoplankton biomass increased in the upper water column in response to the diversion, but that the magnitude of the response was spatially patchy and significantly less than expected. Little evidence of the plume or its effects was detectable 72 h following the diversion. The effluent plume exhibited high rates of dilution and mixed throughout the upper 20 m and occasionally throughout the upper 40 m during the diversion. Rapid plume advection and dilution appeared to contribute to the muted impact of the nutrient-rich effluent on the phytoplankton community in this coastal ecosystem.

  5. Glider and remote sensing observations of the upper ocean response to an extended shallow coastal diversion of wastewater effluent

    KAUST Repository

    Seegers, Bridget N.

    2016-06-21

    The Orange County Sanitation District (OCSD) diverted wastewater discharge (5.3 × 108 l d−1) from its primary deep (56 m) outfall 8 km offshore, to a secondary shallower (16 m) outfall 1.6 km offshore for a period of three weeks. It was anticipated that the low salinity and density of the effluent would cause it to rise to the surface with limited dilution, elevating nutrient concentrations in near-surface waters and stimulating phytoplankton blooms in the region. Three Teledyne Webb Slocum gliders and a Liquid Robotics surface wave glider were deployed on transects near the outfalls to acquire high spatial and temporal coverage of physical and chemical parameters before, during, and after the wastewater diversion. Combined autonomous underwater vehicle (AUV) and MODIS-Aqua satellite ocean color data indicated that phytoplankton biomass increased in the upper water column in response to the diversion, but that the magnitude of the response was spatially patchy and significantly less than expected. Little evidence of the plume or its effects was detectable 72 h following the diversion. The effluent plume exhibited high rates of dilution and mixed throughout the upper 20 m and occasionally throughout the upper 40 m during the diversion. Rapid plume advection and dilution appeared to contribute to the muted impact of the nutrient-rich effluent on the phytoplankton community in this coastal ecosystem.

  6. Glider and remote sensing observations of the upper ocean response to an extended shallow coastal diversion of wastewater effluent

    Science.gov (United States)

    Seegers, Bridget N.; Teel, Elizabeth N.; Kudela, Raphael M.; Caron, David A.; Jones, Burton H.

    2017-02-01

    The Orange County Sanitation District (OCSD) diverted wastewater discharge (5.3 × 108 l d-1) from its primary deep (56 m) outfall 8 km offshore, to a secondary shallower (16 m) outfall 1.6 km offshore for a period of three weeks. It was anticipated that the low salinity and density of the effluent would cause it to rise to the surface with limited dilution, elevating nutrient concentrations in near-surface waters and stimulating phytoplankton blooms in the region. Three Teledyne Webb Slocum gliders and a Liquid Robotics surface wave glider were deployed on transects near the outfalls to acquire high spatial and temporal coverage of physical and chemical parameters before, during, and after the wastewater diversion. Combined autonomous underwater vehicle (AUV) and MODIS-Aqua satellite ocean color data indicated that phytoplankton biomass increased in the upper water column in response to the diversion, but that the magnitude of the response was spatially patchy and significantly less than expected. Little evidence of the plume or its effects was detectable 72 h following the diversion. The effluent plume exhibited high rates of dilution and mixed throughout the upper 20 m and occasionally throughout the upper 40 m during the diversion. Rapid plume advection and dilution appeared to contribute to the muted impact of the nutrient-rich effluent on the phytoplankton community in this coastal ecosystem.

  7. Community respiration/production and bacterial activity in the upper water column of the central Arctic Ocean

    Science.gov (United States)

    Sherr, Barry F.; Sherr, Evelyn B.

    2003-04-01

    Community metabolism (respiration and production) and bacterial activity were assessed in the upper water column of the central Arctic Ocean during the SHEBA/JOIS ice camp experiment, October 1997-September 1998. In the upper 50 m, decrease in integrated dissolved oxygen (DO) stocks over a period of 124 d in mid-winter suggested a respiration rate of ˜3.3 nM O 2 h -1 and a carbon demand of ˜4.5 gC m -2. Increase in 0-50 m integrated stocks of DO during summer implied a net community production of ˜20 gC m -2. Community respiration rates were directly measured via rate of decrease in DO in whole seawater during 72-h dark incubation experiments. Incubation-based respiration rates were on average 3-fold lower during winter (11.0±10.6 nM O 2 h -1) compared to summer (35.3±24.8 nM O 2 h -1). Bacterial heterotrophic activity responded strongly, without noticeable lag, to phytoplankton growth. Rate of leucine incorporation by bacteria (a proxy for protein synthesis and cell growth) increased ˜10-fold, and the cell-specific rate of leucine incorporation ˜5-fold, from winter to summer. Rates of production of bacterial biomass in the upper 50 m were, however, low compared to other oceanic regions, averaging 0.52±0.47 ngC l -1 h -1 during winter and 5.1±3.1 ngC l -1 h -1 during summer. Total carbon demand based on respiration experiments averaged 2.4±2.3 mgC m -3 d -1 in winter and 7.8±5.5 mgC m -3 d -1 in summer. Estimated bacterial carbon demand based on bacterial productivity and an assumed 10% gross growth efficiency was much lower, averaging about 0.12±0.12 mgC m -3 d -1 in winter and 1.3±0.7 mgC m -3 d -1 in summer. Our estimates of bacterial activity during summer were an order of magnitude less than rates reported from a summer 1994 study in the central Arctic Ocean, implying significant inter-annual variability of microbial processes in this region.

  8. Observations and Modeling of Upper Ocean Hydrography in the Western Arctic With Implications for Acoustic Propagation

    Science.gov (United States)

    2016-12-01

    Poland 52 variability under the influence of sea-ice growth and melt, river run-off, solar and longwave radiation ( clouds ), and seasonally...Several global climate models were evaluated against historical and recent hydrographic observations and found to inadequately represent key upper...Canada Basin, climate system model 15. NUMBER OF PAGES 143 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18. SECURITY

  9. Upper ocean currents and sea surface temperatures (SST) from Satellite-tracked drifting buoys (drifters) as part of the Global Drifter Program for Hawaii region 1980/02/01 - 2009/03/31 (NODC Accession 0063296)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Satellite-tracked drifting buoys ("drifters") collect measurements of upper ocean currents and sea surface temperatures (SST) around the world as part of the Global...

  10. The Ocean Colour Climate Change Initiative: I. A Methodology for Assessing Atmospheric Correction Processors Based on In-Situ Measurements

    Science.gov (United States)

    Muller, Dagmar; Krasemann, Hajo; Brewin, Robert J. W.; Deschamps, Pierre-Yves; Doerffer, Roland; Fomferra, Norman; Franz, Bryan A.; Grant, Mike G.; Groom, Steve B.; Melin, Frederic; hide

    2015-01-01

    The Ocean Colour Climate Change Initiative intends to provide a long-term time series of ocean colour data and investigate the detectable climate impact. A reliable and stable atmospheric correction procedure is the basis for ocean colour products of the necessary high quality. In order to guarantee an objective selection from a set of four atmospheric correction processors, the common validation strategy of comparisons between in-situ and satellite derived water leaving reflectance spectra, is extended by a ranking system. In principle, the statistical parameters such as root mean square error, bias, etc. and measures of goodness of fit, are transformed into relative scores, which evaluate the relationship of quality dependent on the algorithms under study. The sensitivity of these scores to the selected database has been assessed by a bootstrapping exercise, which allows identification of the uncertainty in the scoring results. Although the presented methodology is intended to be used in an algorithm selection process, this paper focusses on the scope of the methodology rather than the properties of the individual processors.

  11. Role of upper-most crustal composition in the evolution of the Precambrian ocean-atmosphere system

    Science.gov (United States)

    Large, R. R.; Mukherjee, I.; Zhukova, I.; Corkrey, R.; Stepanov, A.; Danyushevsky, L. V.

    2018-04-01

    Recent research has emphasized the potential relationships between supercontinent cycles, mountain building, nutrient flux, ocean-atmosphere chemistry and the origin of life. The composition of the Upper-Most Continental Crust (UMCC) also figures prominently in these relationships, and yet little detailed data on each component of this complex relationship has been available for assessment. Here we provide a new set of data on the trace element concentrations, including the Rare Earth Elements (REE), in the matrix of 52 marine black shale formations spread globally through the Archean and Proterozoic. The data support previous studies on the temporal geochemistry of shales, but with some important differences. Results indicate a change in provenance of the black shales (upper-most crustal composition), from more mafic in the Archean prior to 2700 Ma, to more felsic from 2700 to 2200 Ma, followed by a return to mafic compositions from 2200 to 1850 Ma. Around 1850 to 1800 Ma there is a rapid change to uniform felsic compositions, which remained for a billion years to 800 Ma. The shale matrix geochemistry supports the assertion that the average upper-most continental source rocks for the shales changed from a mix of felsic, mafic and ultramafic prior to 2700 Ma to more felsic after 1850 Ma, with an extended transition period between. The return to more mafic UMCC from 2200 to 1850 Ma is supported by the frequency of Large Igneous Provinces (LIPs) and banded iron formations, which suggest a peak in major mantle-connected plume events and associated Fe-rich hydrothermal activity over this period. Support for the change to felsic UMCC around 1850 Ma is provided by previous geological data which shows that felsic magmas, including, A-type granites and K-Th-U-rich granites intruded vast areas of the continental crust, peaking around 1850 Ma and declining to 1000 Ma. The implications of this change in UMCC are far reaching and may go some way to explain the distinct

  12. Deep Ocean Contribution to Sea Level Rise

    Science.gov (United States)

    Chang, L.; Sun, W.; Tang, H.; Wang, Q.

    2017-12-01

    The ocean temperature and salinity change in the upper 2000m can be detected by Argo floats, so we can know the steric height change of the ocean. But the ocean layers above 2000m represent only 50% of the total ocean volume. Although the temperature and salinity change are small compared to the upper ocean, the deep ocean contribution to sea level might be significant because of its large volume. There has been some research on the deep ocean rely on the very sparse situ observation and are limited to decadal and longer-term rates of change. The available observational data in the deep ocean are too spares to determine the temporal variability, and the long-term changes may have a bias. We will use the Argo date and combine the situ data and topographic data to estimate the temperature and salinity of the sea water below 2000m, so we can obtain a monthly data. We will analyze the seasonal and annual change of the steric height change due to the deep ocean between 2005 and 2016. And we will evaluate the result combination the present-day satellite and in situ observing systems. The deep ocean contribution can be inferred indirectly as the difference between the altimetry minus GRACE and Argo-based steric sea level.

  13. Role of the upper ocean structure in the response of ENSO-like SST variability to global warming

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Sang-Wook [Hanyang University, Department of Environmental Marine Science, Ansan (Korea); Dewitte, Boris [Laboratoire d' Etude en Geophysique et Oceanographie Spatiale, Toulouse (France); Yim, Bo Young; Noh, Yign [Yonsei University, Department of Atmospheric Sciences, Global Environmental Laboratory, Seoul (Korea)

    2010-08-15

    The response of El Nino and Southern Oscillation (ENSO)-like variability to global warming varies comparatively between the two different climate system models, i.e., the Meteorological Research Institute (MRI) and Geophysical Fluid Dynamics Laboratory (GFDL) Coupled General Circulation Models (CGCMs). Here, we examine the role of the simulated upper ocean temperature structure in the different sensitivities of the simulated ENSO variability in the models based on the different level of CO{sub 2} concentrations. In the MRI model, the sea surface temperature (SST) undergoes a rather drastic modification, namely a tendency toward a permanent El Nino-like state. This is associated with an enhanced stratification which results in greater ENSO amplitude for the MRI model. On the other hand, the ENSO simulated by GFDL model is hardly modified although the mean temperature in the near surface layer increases. In order to understand the associated mechanisms we carry out a vertical mode decomposition of the mean equatorial stratification and a simplified heat balance analysis using an intermediate tropical Pacific model tuned from the CGCM outputs. It is found that in the MRI model the increased stratification is associated with an enhancement of the zonal advective feedback and the non-linear advection. In the GFDL model, on the other hand, the thermocline variability and associated anomalous vertical advection are reduced in the eastern equatorial Pacific under global warming, which erodes the thermocline feedback and explains why the ENSO amplitude is reduced in a warmer climate in this model. It is suggested that change in stratification associated with global warming impacts the equatorial wave dynamics in a way that enhances the second baroclinic mode over the gravest one, which leads to the change in feedback processes in the CGCMs. Our results illustrate that the upper ocean vertical structure simulated in the CGCMs is a key parameter of the sensitivity of ENSO

  14. Mismatch between observed and modeled trends in dissolved upper-ocean oxygen over the last 50 yr

    Directory of Open Access Journals (Sweden)

    L. Stramma

    2012-10-01

    Full Text Available Observations and model runs indicate trends in dissolved oxygen (DO associated with current and ongoing global warming. However, a large-scale observation-to-model comparison has been missing and is presented here. This study presents a first global compilation of DO measurements covering the last 50 yr. It shows declining upper-ocean DO levels in many regions, especially the tropical oceans, whereas areas with increasing trends are found in the subtropics and in some subpolar regions. For the Atlantic Ocean south of 20° N, the DO history could even be extended back to about 70 yr, showing decreasing DO in the subtropical South Atlantic. The global mean DO trend between 50° S and 50° N at 300 dbar for the period 1960 to 2010 is –0.066 μmol kg−1 yr−1. Results of a numerical biogeochemical Earth system model reveal that the magnitude of the observed change is consistent with CO2-induced climate change. However, the pattern correlation between simulated and observed patterns of past DO change is negative, indicating that the model does not correctly reproduce the processes responsible for observed regional oxygen changes in the past 50 yr. A negative pattern correlation is also obtained for model configurations with particularly low and particularly high diapycnal mixing, for a configuration that assumes a CO2-induced enhancement of the C : N ratios of exported organic matter and irrespective of whether climatological or realistic winds from reanalysis products are used to force the model. Depending on the model configuration the 300 dbar DO trend between 50° S and 50° N is −0.027 to –0.047 μmol kg−1 yr−1 for climatological wind forcing, with a much larger range of –0.083 to +0.027 μmol kg−1 yr−1 for different initializations of sensitivity runs with reanalysis wind forcing. Although numerical models reproduce the overall sign and, to

  15. Bacterial Diversity and Nitrogen Utilization Strategies in the Upper Layer of the Northwestern Pacific Ocean.

    Science.gov (United States)

    Li, Yuan-Yuan; Chen, Xiao-Huang; Xie, Zhang-Xian; Li, Dong-Xu; Wu, Peng-Fei; Kong, Ling-Fen; Lin, Lin; Kao, Shuh-Ji; Wang, Da-Zhi

    2018-01-01

    Nitrogen (N) is a primary limiting nutrient for bacterial growth and productivity in the ocean. To better understand bacterial community and their N utilization strategy in different N regimes of the ocean, we examined bacterial diversity, diazotrophic diversity, and N utilization gene expressions in the northwestern Pacific Ocean (NWPO) using a combination of high-throughput sequencing and real-time qPCR methods. 521 and 204 different operational taxonomic units (OTUs) were identified in the 16s rRNA and nifH libraries from nine surface samples. Of the 16s rRNA gene OTUs, 11.9% were observed in all samples while 3.5 and 15.9% were detected only in N-sufficient and N-deficient samples. Proteobacteria, Cyanobacteria and Bacteroidetes dominated the bacterial community. Prochlorococcus and Pseudoalteromonas were the most abundant at the genus level in N-deficient regimes, while SAR86, Synechococcus and SAR92 were predominant in the Kuroshio-Oyashio confluence region. The distribution of the nifH gene presented great divergence among sampling stations: Cyanobacterium_UCYN-A dominated the N-deficient stations, while clusters related to the Alpha-, Beta- , and Gamma-Proteobacteria were abundant in other stations. Temperature was the main factor that determined bacterial community structure and diversity while concentration of NO X -N was significantly correlated with structure and distribution of N 2 -fixing microorganisms. Expression of the ammonium transporter was much higher than that of urea transporter subunit A ( urtA ) and ferredoxin-nitrate reductase , while urtA had an increased expression in N-deficient surface water. The predicted ammonium transporter and ammonium assimilation enzymes were most abundant in surface samples while urease and nitrogenase were more abundant in the N-deficient regions. These findings underscore the fact that marine bacteria have evolved diverse N utilization strategies to adapt to different N habitats, and that urea metabolism is of

  16. Bacterial Diversity and Nitrogen Utilization Strategies in the Upper Layer of the Northwestern Pacific Ocean

    Directory of Open Access Journals (Sweden)

    Yuan-Yuan Li

    2018-04-01

    Full Text Available Nitrogen (N is a primary limiting nutrient for bacterial growth and productivity in the ocean. To better understand bacterial community and their N utilization strategy in different N regimes of the ocean, we examined bacterial diversity, diazotrophic diversity, and N utilization gene expressions in the northwestern Pacific Ocean (NWPO using a combination of high-throughput sequencing and real-time qPCR methods. 521 and 204 different operational taxonomic units (OTUs were identified in the 16s rRNA and nifH libraries from nine surface samples. Of the 16s rRNA gene OTUs, 11.9% were observed in all samples while 3.5 and 15.9% were detected only in N-sufficient and N-deficient samples. Proteobacteria, Cyanobacteria and Bacteroidetes dominated the bacterial community. Prochlorococcus and Pseudoalteromonas were the most abundant at the genus level in N-deficient regimes, while SAR86, Synechococcus and SAR92 were predominant in the Kuroshio-Oyashio confluence region. The distribution of the nifH gene presented great divergence among sampling stations: Cyanobacterium_UCYN-A dominated the N-deficient stations, while clusters related to the Alpha-, Beta-, and Gamma-Proteobacteria were abundant in other stations. Temperature was the main factor that determined bacterial community structure and diversity while concentration of NOX-N was significantly correlated with structure and distribution of N2-fixing microorganisms. Expression of the ammonium transporter was much higher than that of urea transporter subunit A (urtA and ferredoxin-nitrate reductase, while urtA had an increased expression in N-deficient surface water. The predicted ammonium transporter and ammonium assimilation enzymes were most abundant in surface samples while urease and nitrogenase were more abundant in the N-deficient regions. These findings underscore the fact that marine bacteria have evolved diverse N utilization strategies to adapt to different N habitats, and that urea

  17. The biological pump: Profiles of plankton production and consumption in the upper ocean

    Science.gov (United States)

    Longhurst, Alan R.; Glen Harrison, W.

    The ‘biological pump’ mediates flux of carbon to the interior of the ocean by interctions between the components of the vertically-structured pelagic ecosystem of the photic zone. Chlorophyll profiles are not a simple indicator of autotrophic biomass or production, because of non-linearities in the physiology of cells and preferential vertical distribution of taxa. Profiles of numbers or biomass of heterotrophs do not correspond with profiles of consumption, because of depth-selection (taxa, seasons) for reasons unconnected with feeding. Depths of highest plant biomass, chlorophyll and growth rate coincide when these depths are shallow, but become progressively separated in profiles where they are deeper - so that highest growth rate lies progressively shallower than the chloropyll maximum. It is still uncertain how plant biomass is distributed in deep profiles. Depths of greatest heterotroph biomass (mesozooplankton) are usually close to depths of fastest plant growth rate, and thus lie shallower than the chlorophyll maximum in profiles where this itself is deep. This correlation is functional, and relates to the role of heterotrophs in excreting metabolic wastes (especially ammonia), which may fuel a significant component of integrated algal production, especially in the oligotrophic ocean. Some, but not all faecal material from mesozooplankton of the photic zone appears in vertical flux below the pycnocine, depending on the size of the source organisms, and the degree of vertical mixing above the pycnocline. Diel, but probably not seasonal, vertical migration is significant in the vertical flux of dissolved nitrogen. Regional generalisations of the vertical relations of the main components of the ‘biological pump’ now appear within reach, and an approach is suggested.

  18. On the upper ocean turbulent dissipation rate due to microscale breakers and small whitecaps

    Science.gov (United States)

    Banner, Michael L.; Morison, Russel P.

    2018-06-01

    In ocean wave modelling, accurately computing the evolution of the wind-wave spectrum depends on the source terms and the spectral bandwidth used. The wave dissipation rate source term which spectrally quantifies wave breaking and other dissipative processes remains poorly understood, including the spectral bandwidth needed to capture the essential model physics. The observational study of Sutherland and Melville (2015a) investigated the relative dissipation rate contributions of breaking waves, from large-scale whitecaps to microbreakers. They concluded that a large fraction of wave energy was dissipated by microbreakers. However, in strong contrast with their findings, our analysis of their data and other recent data sets shows that for young seas, microbreakers and small whitecaps contribute only a small fraction of the total breaking wave dissipation rate. For older seas, we find microbreakers and small whitecaps contribute a large fraction of the breaking wave dissipation rate, but this is only a small fraction of the total dissipation rate, which is now dominated by non-breaking contributions. Hence, for all the wave age conditions observed, microbreakers make an insignificant contribution to the total wave dissipation rate in the wave boundary layer. We tested the sensitivity of the results to the SM15a whitecap analysis methodology by transforming the SM15a breaking data using our breaking crest processing methodology. This resulted in the small-scale breaking waves making an even smaller contribution to the total wave dissipation rate, and so the result is independent of the breaker processing methodology. Comparison with other near-surface total TKE dissipation rate observations also support this conclusion. These contributions to the spectral dissipation rate in ocean wave models are small and need not be explicitly resolved.

  19. Deep and surface circulation in the Northwest Indian Ocean from Argo, surface drifter, and in situ profiling current observations

    Science.gov (United States)

    Stryker, S. A.; Dimarco, S. F.; Stoessel, M. M.; Wang, Z.

    2010-12-01

    The northwest Indian Ocean is a region of complex circulation and atmospheric influence. The Persian (Arabian) Gulf and Red Sea contribute toward the complexity of the region. This study encompasses the surface and deep circulation in the region ranging from 0°N-35°N and 40°E-80°E from January 2002-December 2009. Emphasis is in the Persian Gulf, Oman Sea and Arabian Sea (roughly from 21°N-26°N and 56°E-63°E) using a variety of in situ and observation data sets. While there is a lot known about the Persian Gulf and Arabian Sea, little is known about the Oman Sea. Circulation in the northwest Indian Ocean is largely influenced by seasonal monsoon winds. From the winter monsoon to the summer monsoon, current direction reverses. Marginal sea inflow and outflow are also seasonally variable, which greatly impacts the physical water mass properties in the region. In situ and observation data sets include data from Argo floats (US GODAE), surface drifters (AOML) and an observation system consisting of 4 independent moorings and a cabled ocean observatory in the Oman Sea. The observing system in the Oman Sea was installed by Lighthouse R & D Enterprises, Inc. beginning in 2005, and measures current, temperature, conductivity, pressure, dissolved oxygen and turbidity, using the Aanderaa Recording Doppler Current Profiler (RDCP) 600 and the Aanderaa Recording Current Meter (RCM) 11. The cabled ocean observatory measures dissolved oxygen, temperature and salinity between 65 m and 1000 m and reports in real-time. Argo floats in the region have a parking depth range from 500 m to 2000 m. At 1000 m depth, 98% of the velocity magnitudes range from less than 1 cm/s to 20 cm/s. The Somali Current and Northeast/Southwest Monsoon Currents are present, reversing from summer to winter. At 2000 m depth, the Somali and Monsoon Currents are still present but have smaller velocities with 98% ranging from less than 1 cm/s to 13 cm/s. At both 1000 m and 2000 m, larger velocities occur

  20. Particle optical backscattering along a chlorophyll gradient in the upper layer of the eastern South Pacific Ocean

    Directory of Open Access Journals (Sweden)

    Y. Huot

    2008-04-01

    Full Text Available The particulate scattering, bp, and backscattering, bbp, coefficients are determined by the concentration and physical properties of suspended particles in the ocean. They provide a simple description of the influence of these particles on the scattering of light within the water column. For the remote observation of ocean color, bbp along with the total absorption coefficient govern the amount and spectral qualities of light leaving the sea surface. However, for the construction and validation of ocean color models measurements of bbp are still lacking, especially at low chlorophyll a concentrations ([Chl]. Here, we examine the relationships between spectral bbp and bp vs. [Chl] along an 8000 km transect crossing the Case 1 waters of the eastern South Pacific Gyre. In these waters, over the entire range of [Chl] encountered (~0.02–2 mg m3, both bbp and bp can be related to [Chl] by power functions (i.e. bp or bbp=α[Chl]β. Regression analyses are carried out to provide the parameters α and β for several wavelengths throughout the visible for both bbp and bp. When applied to the data, these functions retrieve the same fraction of variability in bbp and bp (coefficients of determination between 0.82 and 0.88. The bbp coefficient fall within the bounds of previous measurements at intermediate and high [Chl] recently published. Its dependence on [Chl] below ~0.1 mg m−3 is described for the first time with in situ data. The backscattering ratio (i.e. bbp/bp with values near 0.01 for all stations appears to be spectrally neutral and not significantly dependent on [Chl]. These results should foster the

  1. An internally consistent pressure calibration of geobarometers applicable to the Earth’s upper mantle using in situ XRD

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Christopher; Rosenthal, Anja; Myhill, Robert; Crichton, Wilson A.; Yu, Tony; Wang, Yanbin; Frost, Daniel J.

    2018-02-01

    We have performed an experimental cross calibration of a suite of mineral equilibria within mantle rock bulk compositions that are commonly used in geobarometry to determine the equilibration depths of upper mantle assemblages. Multiple barometers were compared simultaneously in experimental runs, where the pressure was determined using in-situ measurements of the unit cell volumes of MgO, NaCl, Re and h-BN between 3.6 and 10.4 GPa, and 1250 and 1500 °C. The experiments were performed in a large volume press (LVPs) in combination with synchrotron X-ray diffraction. Noble metal capsules drilled with multiple sample chambers were loaded with a range of bulk compositions representative of peridotite, eclogite and pyroxenite lithologies. By this approach, we simultaneously calibrated the geobarometers applicable to different mantle lithologies under identical and well determined pressure and temperature conditions. We identified discrepancies between the calculated and experimental pressures for which we propose simple linear or constant correction factors to some of the previously published barometric equations. As a result, we establish internally-consistent cross-calibrations for a number of garnet-orthopyroxene, garnet-clinopyroxene, Ca-Tschermaks-in-clinopyroxene and majorite geobarometers.

  2. In Situ Boundary Layer Coral Metabolism in the Atlantic Ocean Acidification Test Bed

    Science.gov (United States)

    McGillis, Wade

    2013-04-01

    and Chris Langdon, Brice Loose, Dwight Gledhill, Diana Hsueh, Derek Manzello, Ian Enochs, Ryan Moyer We present net ecosystem productivity (nep) and net ecosystem calcification (nec) in coral and seagrass ecosystems using the boundary layer gradient flux technique (CROSS). Coastal anthropogenic inputs and changes in global ocean chemistry in response to rising levels of atmospheric carbon dioxide has emerged in recent years as a topic of considerable concern. Coral reefs are particularly vulnerable from eroded environmental conditions including ocean acidification and water pollution. The Atlantic Ocean Acidification Testbed (AOAT) project monitors metabolism to ascertain the continuing health of coral reef ecosystems. The CROSS boundary layer nep/nec approach is one component of this diagnostic program. Certification of CROSS as an operational monitoring tool is underway in the AOAT. CROSS inspects a benthic community and measures productivity/respiration and calcification/dissolution over an area of 10 square meters. Being a boundary layer tool, advection and complex mesoscale flows are not a factor or concern and CROSS is autonomous and can be used at deep benthic sites. The interrogation area is not enclosed therefore exposed to ambient light, flow, and nutrient levels. CROSS is easy to deploy, unambiguous, and affordable. Repeated measurements have been made from 2011-2012 in reefal systems in La Parguera Puerto Rico and the Florida Keys, USA. Diurnal, seasonal and regional metabolism will be compared and discussed. The ability to accurately probe benthic ecosystems provides a powerful management and research tool to policy makers and researchers.

  3. Evidence for Late Permian-Upper Triassic ocean acidification from calcium isotopes in carbonate of the Kamura section in Japan

    Science.gov (United States)

    Ye, F.; Zhao, L., Sr.; Chen, Z. Q.; Wang, X.

    2017-12-01

    Calcium and carbon cycles are tightly related in the ocean, for example, through continental weathering and deposition of carbonate, thus, very important for exploring evolutions of marine environment during the earth history. The end-Permian mass extinction is the biggest biological disaster in the Phanerozoic and there are several studies talking about variations of calcium isotopes across the Permian-Triassic boundary (PTB). However, these studies are all from the Tethys regions (Payne et al., 2010; Hinojosa et al., 2012), while the Panthalassic Ocean is still unknown to people. Moreover, evolutions of the calcium isotopes during the Early to Late Triassic is also poorly studied (Blattler et al., 2012). Here, we studied an Uppermost Permian to Upper Triassic shallow water successions (Kamura section, Southwest Japan) in the Central Panthalassic Ocean. The Kamura section is far away from the continent without any clastic pollution, therefore, could preserved reliable δ44/40Cacarb signals. Conodont zonation and carbonate carbon isotope also provide precious time framework which is necessary for the explaining of the δ44/40Cacarb profile. In Kamura, δ44/40Cacarb and δ13Ccarb both exhibit negative excursions across the PTB, the δ44/40Cacarb value in the end-Permian is 1.0398‰ then abrupt decrease to the minimum value of 0.1524‰. CO2-driven global ocean acidification best explains the coincidence of the δ44/40Cacarb excursion with negative excursions in the δ13Ccarb of carbonates until the Early Smithian(N1a, N1b, N1c, P1, N2, P2). In the Middle and the Late Triassic, the δ44/40 Cacarb average approximately 1.1‰. During the Middle and Late Triassic, strong relationships between δ44/40Cacarb and δ13Ccarb are collapsed, indicating a normal pH values of the seawater in those time. The Siberian Trap volcanism probably played a significant role on the δ44/40Cacarb until the late Early Triassic. After that, δ44/40Cacarb was mostly controlled by carbonate

  4. Upper Triassic limestones from the northern part of Japan: new insights on the Panthalassa Ocean and Hokkaido Island

    Science.gov (United States)

    Peyrotty, Giovan; Peybernes, Camille; Ueda, Hayato; Martini, Rossana

    2017-04-01

    In comparison with the well-known Tethyan domain, Upper Triassic limestones from the Panthalassa Ocean are still poorly known. However, these carbonates represent a unique opportunity to have a more accurate view of the Panthalassa Ocean during the Triassic. Their study will allow comparison and correlation of biotic assemblages, biostratigraphy, diagenesis, and depositional settings of different Triassic localities from Tethyan and Panthalassic domains. Moreover, investigation of these carbonates will provide data for taxonomic revisions and helps to better constrain palaeobiogeographic models. One of the best targets for the study of these carbonates is Hokkaido Island (north of Japan). Indeed, this island is a part of the South-North continuity of Jurassic to Paleogene accretionary complexes, going from the Philippines to Sakhalin Island (Far East Russia). Jurassic and Cretaceous accretionary complexes of Japan and Philippines contain Triassic mid-oceanic seamount carbonates from the western Panthalassa Ocean (Onoue & Sano, 2007; Kiessling & Flügel, 2000). They have been accreted either as isolated limestone slabs or as clasts and boulders, and are associated with mudstones, cherts, breccias and basaltic rocks. Two major tectonic units forming Hokkaido Island and containing Triassic limestones have been accurately explored and extensively sampled: the Oshima Belt (west Hokkaido) a Jurassic accretionary complex, and the Cretaceous Sorachi-Yezo Belt (central Hokkaido). The Sorachi-Yezo Belt is composed of Cretaceous accretionary complexes in the east and of Cretaceous clastic basin sediments deposited on a Jurassic basement in the west (Ueda, 2016), both containing Triassic limestones. The origin of this belt is still matter of debate especially because of its western part which is not in continuity with any other accretionary complex known in the other islands of Japan and also due to the lack of data in this region. One of the main goals of this study is to

  5. Electrical conductivity of partially-molten olivine aggregate and melt interconnectivity in the oceanic upper mantle

    Science.gov (United States)

    Laumonier, Mickael; Frost, Dan; Farla, Robert; Katsura, Tomoo; Marquardt, Katharina

    2016-04-01

    A consistent explanation for mantle geophysical anomalies such as the Lithosphere-Astenosphere Boundary (LAB) relies on the existence of little amount of melt trapped in the solid peridotite. Mathematical models have been used to assess the melt fraction possibly lying at mantle depths, but they have not been experimentally checked at low melt fraction (Lanzarote, Canary Islands, Spain) containing various amount of basaltic (MORB-like composition) melt (0 to 100%) at upper mantle conditions. We used the MAVO 6-ram press (BGI) combined with a Solartron gain phase analyser to acquire the electrical resistance of the sample at pressure of 1.5 GPa and temperature up to 1400°C. The results show the increase of the electrical conductivity with the temperature following an Arrhenius law, and with the melt fraction, but the effect of pressure between 1.5 and 3.0 GPa was found negligible at a melt fraction of 0.5 vol.%. The conductivity of a partially molten aggregate fits the modified Archie's law from 0.5 to 100 vol.%. At melt fractions of 0.25, 0.15 and 0.0 vol.%, the EC value deviates from the trend previously defined, suggesting that the melt is no longer fully interconnected through the sample, also supported by chemical mapping. Our results extend the previous results obtained on mixed system between 1 and 10% of melt. Since the melt appears fully interconnected down to very low melt fraction (0.5 vol.%), we conclude that (i) only 0.5 to 1 vol.% of melt is enough to explain the LAB EC anomaly, lower than previously determined; and (ii) deformation is not mandatory to enhance electrical conductivity of melt-bearing mantle rocks.

  6. In situ quantitative characterisation of the ocean water column using acoustic multibeam backscatter data

    Science.gov (United States)

    Lamarche, G.; Le Gonidec, Y.; Lucieer, V.; Lurton, X.; Greinert, J.; Dupré, S.; Nau, A.; Heffron, E.; Roche, M.; Ladroit, Y.; Urban, P.

    2017-12-01

    Detecting liquid, solid or gaseous features in the ocean is generating considerable interest in the geoscience community, because of their potentially high economic values (oil & gas, mining), their significance for environmental management (oil/gas leakage, biodiversity mapping, greenhouse gas monitoring) as well as their potential cultural and traditional values (food, freshwater). Enhancing people's capability to quantify and manage the natural capital present in the ocean water goes hand in hand with the development of marine acoustic technology, as marine echosounders provide the most reliable and technologically advanced means to develop quantitative studies of water column backscatter data. This is not developed to its full capability because (i) of the complexity of the physics involved in relation to the constantly changing marine environment, and (ii) the rapid technological evolution of high resolution multibeam echosounder (MBES) water-column imaging systems. The Water Column Imaging Working Group is working on a series of multibeam echosounder (MBES) water column datasets acquired in a variety of environments, using a range of frequencies, and imaging a number of water-column features such as gas seeps, oil leaks, suspended particulate matter, vegetation and freshwater springs. Access to data from different acoustic frequencies and ocean dynamics enables us to discuss and test multifrequency approaches which is the most promising means to develop a quantitative analysis of the physical properties of acoustic scatterers, providing rigorous cross calibration of the acoustic devices. In addition, high redundancy of multibeam data, such as is available for some datasets, will allow us to develop data processing techniques, leading to quantitative estimates of water column gas seeps. Each of the datasets has supporting ground-truthing data (underwater videos and photos, physical oceanography measurements) which provide information on the origin and

  7. Water content within the oceanic upper mantle of the Southwest Indian Ridge: a FTIR analysis of orthopyroxenes of abyssal peridotites

    Science.gov (United States)

    Li, W.; Li, H.; Tao, C.; Jin, Z.

    2013-12-01

    Water can be present in the oceanic upper mantle as structural OH in nominally anhydrous minerals. Such water has marked effects on manlte melting and rheology properties. However, the water content of MORB source is mainly inferred from MORB glass data that the water budget of oceanic upper mantle is poorly constrained. Here we present water analysis of peridotites from different sites on the Southwest Indian Ridge. The mineral assemblages of these peridotites are olivine, orthopyroxene, clinopyroxene and spinel. As the peridotites have been serpentinized to different degrees, only water contents in orthopyroxnene can be better determined by FTIR spectrometry. The IR absorption bands of all measured orthopyroxenes can be devided into four different groups: (1)3562-3596 cm-1, (2)3515-3520 cm-1, (3)3415-3420 cm-1, (4)3200-3210 cm-1. The positions of these absorption bands are in good agreement with perivious reports. Hydrogen profile measurements performed on larger opx grains in each suite of samples show no obvious variations between core and rims regions, indicating that diffusion of H in orthopyroxene is insignificant. Preliminary measured water contents of orthopyroxene differ by up to one order of magnitude. Opx water contents (80-220 ppm) of most samples are within the range of those found in mantle xenoliths of contentinal settings [1]. Opx water contents of one sample (VM-21V-S9-D5-2: 38-64 ppm) are similar to those from Gakkel Ridge abyssal peridotites (25-60 ppm) [2] but higher than those from Mid-Atlantic Ridge ODP-Leg 209(~15 ppm) [3]. Two other samples show high water concentrations (VM-19ΙΙΙ-S3-TVG2-4: 260-275 ppm, Wb-18-b: 190-265 ppm) which compare well with those from Mid-Atlantic Ridge ODP-Leg 153(160-270 ppm) [4]. Most opx water contents decrease with increasing depletion degree (spl Cr#) consistent with an incompatible behavior of water during partial melting. Recalculated bulk water contents (27-117 ppm) of these peridotites overlap

  8. Estimation of the drag coefficient from the upper ocean response to a hurricane: A variational data assimilation approach

    KAUST Repository

    Zedler, Sarah

    2013-08-01

    We seek to determine whether a small number of measurements of upper ocean temperature and currents can be used to make estimates of the drag coefficient that have a smaller range of uncertainty than previously found. We adopt a numerical approach in an inverse problem setup using an ocean model and its adjoint, to assimilate data and to adjust the drag coefficient parameterization (here the free parameter) with wind speed that corresponds to the minimum of a model minus data misfit or cost function. Pseudo data are generated from a reference forward simulation, and are perturbed with different levels of Gaussian distributed noise. It is found that it is necessary to assimilate both surface current speed and temperature data to obtain improvement over previous estimates of the drag coefficient. When data is assimilated without any smoothing or constraints on the solution, the drag coefficient is overestimated at low wind speeds and there are unrealistic, high frequency oscillations in the adjusted drag coefficient curve. When second derivatives of the drag coefficient curve are penalized and the solution is constrained to experimental values at low wind speeds, the adjusted drag coefficient is within 10% of its target value. This result is robust to the addition of realistic random noise meant to represent turbulence due to the presence of mesoscale background features in the assimilated data, or to the wind speed time series to model its unsteady and gusty character. When an eddy is added to the background flow field in both the initial condition and the assimilated data time series, the target and adjusted drag coefficient are within 10% of one another, regardless of whether random noise is added to the assimilated data. However, when the eddy is present in the assimilated data but is not in the initial conditions, the drag coefficient is overestimated by as much as 30%. This carries the implication that when real data is assimilated, care needs to be taken in

  9. Observed Seasonal Variations of the Upper Ocean Structure and Air-Sea Interactions in the Andaman Sea

    Science.gov (United States)

    Liu, Yanliang; Li, Kuiping; Ning, Chunlin; Yang, Yang; Wang, Haiyuan; Liu, Jianjun; Skhokiattiwong, Somkiat; Yu, Weidong

    2018-02-01

    The Andaman Sea (AS) is a poorly observed basin, where even the fundamental physical characteristics have not been fully documented. Here the seasonal variations of the upper ocean structure and the air-sea interactions in the central AS were studied using a moored surface buoy. The seasonal double-peak pattern of the sea surface temperature (SST) was identified with the corresponding mixed layer variations. Compared with the buoys in the Bay of Bengal (BOB), the thermal stratification in the central AS was much stronger in the winter to spring, when a shallower isothermal layer and a thinner barrier layer were sustained. The temperature inversion was strongest from June to July because of substantial surface heat loss and subsurface prewarming. The heat budget analysis of the mixed layer showed that the net surface heat fluxes dominated the seasonal SST cycle. Vertical entrainment was significant from April to July. It had a strong cooling effect from April to May and a striking warming effect from June to July. A sensitivity experiment highlighted the importance of salinity. The AS warmer surface water in the winter was associated with weak heat loss caused by weaker longwave radiation and latent heat losses. However, the AS latent heat loss was larger than the BOB in summer due to its lower relative humidity.

  10. In situ measurements of HCN and CH3CN over the Pacific Ocean: Sources, sinks, and budgets

    Science.gov (United States)

    Singh, H. B.; Salas, L.; Herlth, D.; Kolyer, R.; Czech, E.; Viezee, W.; Li, Q.; Jacob, D. J.; Blake, D.; Sachse, G.; Harward, C. N.; Fuelberg, H.; Kiley, C. M.; Zhao, Y.; Kondo, Y.

    2003-10-01

    We report the first in situ measurements of hydrogen cyanide (HCN) and methyl cyanide (CH3CN, acetonitrile) from the Pacific troposphere (0-12 km) obtained during the NASA Transport and Chemical Evolution over the Pacific (TRACE-P) airborne mission (February-April 2001). Mean HCN and CH3CN mixing ratios of 243 ± 118 (median 218) ppt and 149 ± 56 (median 138) ppt, respectively, were measured. These in situ observations correspond to a mean tropospheric HCN column of 4.2 × 1015 molecules cm-2 and a CH3CN column of 2.5 × 1015 molecules cm-2. This is in good agreement with the 0-12 km HCN column of 4.4 (±0.6) × 1015 molecules cm-2 derived from infrared solar spectroscopic observations over Japan. Mixing ratios of HCN and CH3CN were greatly enhanced in pollution outflow from Asia and were well correlated with each other as well as with known tracers of biomass combustion (e.g., CH3Cl, CO). Volumetric enhancement (or emission) ratios (ERs) relative to CO in free tropospheric plumes, likely originating from fires, were 0.34% for HCN and 0.17% for CH3CN. ERs with respect to CH3Cl and CO in selected biomass burning (BB) plumes in the free troposphere and in boundary layer pollution episodes are used to estimate a global BB source of 0.8 ± 0.4 Tg (N) yr-1 for HCN and 0.4 ± 0.1 Tg (N) yr-1 for CH3CN. In comparison, emissions from industry and fossil fuel combustion are quite small (atmospheric residence time of 5.0 months for HCN and 6.6 months for CH3CN is calculated. A global budget analysis shows that the sources and sinks of HCN and CH3CN are roughly in balance but large uncertainties remain in part due to a lack of observational data from the atmosphere and the oceans. Pathways leading to the oceanic (and soil) degradation of these cyanides are poorly known but are expected to be biological in nature.

  11. Age and microfacies of oceanic Upper Triassic radiolarite components from the Middle Jurassic ophiolitic mélange in the Zlatibor Mountains (Inner Dinarides, Serbia and their provenance

    Directory of Open Access Journals (Sweden)

    Gawlick Hans-Jürgen

    2017-08-01

    Full Text Available Oceanic radiolarite components from the Middle Jurassic ophiolitic mélange between Trnava and Rožanstvo in the Zlatibor Mountains (Dinaridic Ophiolite Belt west of the Drina–Ivanjica unit yield Late Triassic radiolarian ages. The microfacies characteristics of the radiolarites show pure ribbon radiolarites without crinoids or thin-shelled bivalves. Beside their age and the preservation of the radiolarians this points to a deposition of the radiolarites on top of the oceanic crust of the Neo-Tethys, which started to open in the Late Anisian. South of the study area the ophiolitic mélange (Gostilje–Ljubiš–Visoka–Radoševo mélange contains a mixture of blocks of 1 oceanic crust, 2 Middle and Upper Triassic ribbon radiolarites, and 3 open marine limestones from the continental slope. On the basis of this composition we can conclude that the Upper Triassic radiolarite clasts derive either from 1 the younger parts of the sedimentary succession above the oceanic crust near the continental slope or, more convincingly 2 the sedimentary cover of ophiolites in a higher nappe position, because Upper Triassic ribbon radiolarites are only expected in more distal oceanic areas. The ophiolitic mélange in the study area overlies different carbonate blocks of an underlying carbonate-clastic mélange (Sirogojno mélange. We date and describe three localities with different Upper Triassic radiolarite clasts in a mélange, which occurs A on top of Upper Triassic fore-reef to reefal limestones (Dachstein reef, B between an Upper Triassic reefal limestone block and a Lower Carnian reef limestone (Wetterstein reef, and C in fissures of an Upper Triassic lagoonal to back-reef limestone (Dachstein lagoon. The sedimentary features point to a sedimentary and not to a tectonic emplacement of the ophiolitic mélange (= sedimentary mélange filling the rough topography of the topmost carbonate-clastic mélange below. The block spectrum of the underlying and

  12. Age and microfacies of oceanic Upper Triassic radiolarite components from the Middle Jurassic ophiolitic mélange in the Zlatibor Mountains (Inner Dinarides, Serbia) and their provenance

    Science.gov (United States)

    Gawlick, Hans-Jürgen; Djerić, Nevenka; Missoni, Sigrid; Bragin, Nikita Yu.; Lein, Richard; Sudar, Milan; Jovanović, Divna

    2017-08-01

    Oceanic radiolarite components from the Middle Jurassic ophiolitic mélange between Trnava and Rožanstvo in the Zlatibor Mountains (Dinaridic Ophiolite Belt) west of the Drina-Ivanjica unit yield Late Triassic radiolarian ages. The microfacies characteristics of the radiolarites show pure ribbon radiolarites without crinoids or thin-shelled bivalves. Beside their age and the preservation of the radiolarians this points to a deposition of the radiolarites on top of the oceanic crust of the Neo-Tethys, which started to open in the Late Anisian. South of the study area the ophiolitic mélange (Gostilje-Ljubiš-Visoka-Radoševo mélange) contains a mixture of blocks of 1) oceanic crust, 2) Middle and Upper Triassic ribbon radiolarites, and 3) open marine limestones from the continental slope. On the basis of this composition we can conclude that the Upper Triassic radiolarite clasts derive either from 1) the younger parts of the sedimentary succession above the oceanic crust near the continental slope or, more convincingly 2) the sedimentary cover of ophiolites in a higher nappe position, because Upper Triassic ribbon radiolarites are only expected in more distal oceanic areas. The ophiolitic mélange in the study area overlies different carbonate blocks of an underlying carbonate-clastic mélange (Sirogojno mélange). We date and describe three localities with different Upper Triassic radiolarite clasts in a mélange, which occurs A) on top of Upper Triassic fore-reef to reefal limestones (Dachstein reef), B) between an Upper Triassic reefal limestone block and a Lower Carnian reef limestone (Wetterstein reef), and C) in fissures of an Upper Triassic lagoonal to back-reef limestone (Dachstein lagoon). The sedimentary features point to a sedimentary and not to a tectonic emplacement of the ophiolitic mélange (= sedimentary mélange) filling the rough topography of the topmost carbonate-clastic mélange below. The block spectrum of the underlying and slightly older

  13. Trends in Upper-Level Cloud Cover and Surface Divergence Over the Tropical Indo-Pacific Ocean Between 1952 And 1997

    Science.gov (United States)

    Norris, Joel R.

    2005-01-01

    This study investigated the spatial pattern of linear trends in surface-observed upper-level (combined mid-level and High-level) cloud cover, precipitation, and surface divergence over the tropical Indo-Pacific Ocean during 1952-1957. Cloud values were obtained from the Extended Edited Cloud Report Archive (EECRA), precipitation values were obtained from the Hulme/Climate Research Unit Data Set, and surface divergence was alternatively calculated from wind reported Comprehensive Ocean-Atmosphere Data Set and from Smith and Reynolds Extended Reconstructed sea level pressure data.

  14. Harmonising and semantically linking key variables from in-situ observing networks of an Integrated Atlantic Ocean Observing System, AtlantOS

    Science.gov (United States)

    Darroch, Louise; Buck, Justin

    2017-04-01

    Atlantic Ocean observation is currently undertaken through loosely-coordinated, in-situ observing networks, satellite observations and data management arrangements at regional, national and international scales. The EU Horizon 2020 AtlantOS project aims to deliver an advanced framework for the development of an Integrated Atlantic Ocean Observing System that strengthens the Global Ocean Observing System (GOOS) and contributes to the aims of the Galway Statement on Atlantic Ocean Cooperation. One goal is to ensure that data from different and diverse in-situ observing networks are readily accessible and useable to a wider community, including the international ocean science community and other stakeholders in this field. To help achieve this goal, the British Oceanographic Data Centre (BODC) produced a parameter matrix to harmonise data exchange, data flow and data integration for the key variables acquired by multiple in-situ AtlantOS observing networks such as ARGO, Seafloor Mapping and OceanSITES. Our solution used semantic linking of controlled vocabularies and metadata for parameters that were "mappable" to existing EU and international standard vocabularies. An AtlantOS Essential Variables list of terms (aggregated level) based on Global Climate Observing System (GCOS) Essential Climate Variables (ECV), GOOS Essential Ocean Variables (EOV) and other key network variables was defined and published on the Natural Environment Research Council (NERC) Vocabulary Server (version 2.0) as collection A05 (http://vocab.nerc.ac.uk/collection/A05/current/). This new vocabulary was semantically linked to standardised metadata for observed properties and units that had been validated by the AtlantOS community: SeaDataNet parameters (P01), Climate and Forecast (CF) Standard Names (P07) and SeaDataNet units (P06). Observed properties were mapped to biological entities from the internationally assured AphiaID from the WOrld Register of Marine Species (WoRMS), http

  15. In-situ databases and comparison of ESA Ocean Colour Climate Change Initiative (OC-CCI) products with precursor data, towards an integrated approach for ocean colour validation and climate studies

    Science.gov (United States)

    Brotas, Vanda; Valente, André; Couto, André B.; Grant, Mike; Chuprin, Andrei; Jackson, Thomas; Groom, Steve; Sathyendranath, Shubha

    2014-05-01

    Ocean colour (OC) is an Oceanic Essential Climate Variable, which is used by climate modellers and researchers. The European Space Agency (ESA) Climate Change Initiative project, is the ESA response for the need of climate-quality satellite data, with the goal of providing stable, long-term, satellite-based ECV data products. The ESA Ocean Colour CCI focuses on the production of Ocean Colour ECV uses remote sensing reflectances to derive inherent optical properties and chlorophyll a concentration from ESA's MERIS (2002-2012) and NASA's SeaWiFS (1997 - 2010) and MODIS (2002-2012) sensor archives. This work presents an integrated approach by setting up a global database of in situ measurements and by inter-comparing OC-CCI products with pre-cursor datasets. The availability of in situ databases is fundamental for the validation of satellite derived ocean colour products. A global distribution in situ database was assembled, from several pre-existing datasets, with data spanning between 1997 and 2012. It includes in-situ measurements of remote sensing reflectances, concentration of chlorophyll-a, inherent optical properties and diffuse attenuation coefficient. The database is composed from observations of the following datasets: NOMAD, SeaBASS, MERMAID, AERONET-OC, BOUSSOLE and HOTS. The result was a merged dataset tuned for the validation of satellite-derived ocean colour products. This was an attempt to gather, homogenize and merge, a large high-quality bio-optical marine in situ data, as using all datasets in a single validation exercise increases the number of matchups and enhances the representativeness of different marine regimes. An inter-comparison analysis between OC-CCI chlorophyll-a product and satellite pre-cursor datasets was done with single missions and merged single mission products. Single mission datasets considered were SeaWiFS, MODIS-Aqua and MERIS; merged mission datasets were obtained from the GlobColour (GC) as well as the Making Earth Science

  16. The effect of Coriolis-Stokes forcing on upper ocean circulation in a two-way coupled wave-current model

    Institute of Scientific and Technical Information of China (English)

    DENG Zeng'an; XIE Li'an; HAN Guijun; ZHANG Xuefeng; WU Kejian

    2012-01-01

    We investigated the Stokes drift-driven ocean currents and Stokes drift-induced wind energy input into the upper ocean using a two-way coupled wave-current modeling system that consists of the Princeton Ocean Model generalized coordinate system (POMgcs),Simulating WAves Nearshore (SWAN) wave model,and the Model Coupling Toolkit (MCT).The Coriolis-Stokes forcing (CSF) computed using the wave parameters from SWAN was incorporated with the momentum equation of POMgcs as the core coupling process.Experimental results in an idealized setting show that under the steady state,the scale of the speed of CSF-driven current was 0.001 m/s and the maximum reached 0.02 rn/s.The Stokes drift-induced energy rate input into the model ocean was estimated to be 28.5 GW,taking 14% of the direct wind energy rate input.Considering the Stokes drift effects,the total mechanical energy rate input was increased by approximately 14%,which highlights the importance of CSF in modulating the upper ocean circulation.The actual run conducted in Taiwan Adjacent Sea (TAS) shows that:1) CSF-based wave-current coupling has an impact on ocean surface currents,which is related to the activities of monsoon winds; 2) wave-current coupling plays a significant role in a place where strong eddies present and tends to intensify the eddy's vorticity; 3) wave-current coupling affects the volume transport of the Taiwan Strait (TS) throughflow in a nontrivial degree,3.75% on average.

  17. Lateral variation in upper mantle temperature and composition beneath mid-ocean ridges inferred from shear-wave propagation, geoid, and bathymetry. Ph.D. Thesis

    Science.gov (United States)

    Sheehan, Anne Francis

    1991-01-01

    Resolution of both the extent and mechanism of lateral heterogeneity in the upper mantle constraints the nature and scales of mantle convection. Oceanic regions are of particular interest as they are likely to provide the closest glimpse at the patterns of temperature anomalies and convective flow in the upper mantle because of their young age and simple crustal structure relative to continental regions. Lateral variations were determined in the seismic velocity and attenuation structure of the lithosphere and astenosphere beneath the oceans, and these seismological observations were combined with the data and theory of geoid and bathymetry anomalies in order to test and improve current models for seafloor spreading and mantle convection. Variations were determined in mantle properties on a scale of about 1000 km, comparable to the thickness of the upper mantle. Seismic velocity, geoid, and bathymetry anomalies are all sensitive to variations in upper mantle density, and inversions were formulated to combine quantitatively these different data and to search for a common origin. Variations in mantle density can be either of thermal or compositional origin and are related to mantle convection or differentiation.

  18. Comparing a Multivariate Global Ocean State Estimate With High-Resolution in Situ Data: An Anticyclonic Intrathermocline Eddy Near the Canary Islands

    Directory of Open Access Journals (Sweden)

    Bàrbara Barceló-Llull

    2018-03-01

    Full Text Available The provision of high-resolution in situ oceanographic data is key for the ongoing verification, validation and assessment of operational products, such as those provided by the Copernicus Marine Core Service (CMEMS. Here we analyze the ability of ARMOR3D—a multivariate global ocean state estimate that is available from CMEMS—to reconstruct a mesoscale anticyclonic intrathermocline eddy that was previously sampled with high-resolution independent in situ observations. ARMOR3D is constructed by merging remote sensing observations with in situ vertical profiles of temperature and salinity obtained primarily from the Argo network. In situ data from CTDs and an Acoustic Doppler Current Profiler were obtained during an oceanographic cruise near the Canary Islands (Atlantic ocean. The analysis of the ARMOR3D product using the in situ data is done over (i a high-resolution meridional transect crossing the eddy center and (ii a three-dimensional grid centered on the eddy center. An evaluation of the hydrographic eddy signature and derived dynamical variables, namely geostrophic velocity, vertical vorticity and quasi-geostrophic (QG vertical velocity, demonstrates that the ARMOR3D product is able to reproduce the vertical hydrographic structure of the independently sampled eddy below the seasonal pycnocline, with the caveat that the flow is surface intensified and the seasonal pycnocline remains flat. Maps of ARMOR3D density show the signature of the eddy, and agreement with the elliptical eddy shape seen in the in situ data. The major eddy axes are oriented NW-SE in both data sets. The estimated radius for the in situ eddy is ~46 km; the ARMOR3D radius is significantly larger at ~ 92 km and is considered an overestimation that is inherited from an across-track altimetry sampling issue. The ARMOR3D geostrophic flow is underestimated by a factor of 2, with maxima of 0.11 (−0.19 m s−1 at the surface, which implies an underestimation of the local

  19. The Vertical Structure of Relative Humidity and Ozone in the Tropical Upper Troposphere: Intercomparisons Among In Situ Observations, A-Train Measurements and Large-Scale Models

    Science.gov (United States)

    Selkirk, Henry B.; Manyin, Michael; Douglass, Anne R.; Oman, Luke; Pawson, Steven; Ott, Lesley; Benson, Craig; Stolarski, Richard

    2010-01-01

    In situ measurements in the tropics have shown that in regions of active convection, relative humidity with respect to ice in the upper troposphere is typically close to saturation on average, and supersaturations greater than 20% are not uncommon. Balloon soundings with the cryogenic frost point hygrometer (CFH) at Costa Rica during northern summer, for example, show this tendency to be strongest between 11 and 15.5 km (345-360 K potential temperature, or approximately 250-120 hPa). this is the altitude range of deep convective detrainment. Additionally, simultaneous ozonesonde measurements show that stratospheric air (O3 greater than 150 ppbv) can be found as low as approximately 14 km (350 K/150 hPa). In contrast, results from northern winter show a much drier upper troposphere and little penetration of stratospheric air below the tropopause at 17.5 km (approximately 383 K). We show that these results are consistent with in situ measurements from the Measurement of Ozone and water vapor by Airbus In-service airCraft (MOZAIC) program which samples a wider, though still limited, range of tropical locations. To generalize to the tropics as a whole, we compare our insitu results to data from two A-Train satellite instruments, the Atmospheric Infrared Sounder (AIRS) and the Microwave Limb Sounder (MLS) on the Aqua and Aura satellites respectively. Finally, we examine the vertical structure of water vapor, relative humidity and ozone in the NASA Goddard MERRA analysis, an assimilation dataset, and a new version of the GEOS CCM, a free-running chemistry-climate model. We demonstrate that conditional probability distributions of relative humidity and ozone are a sensitive diagnostic for assessing the representation of deep convection and upper troposphere/lower stratosphere mixing processes in large-scale analyses and climate models.

  20. Ocean EcoSystem Modelling Based on Observations from Satellite and In-Situ Data: First Results from the OSMOSIS Project

    Science.gov (United States)

    Rio, M.-H.; Buongiorno-Nardelli, B.; Calmettes, B.; Conchon, A.; Droghei, R.; Guinehut, S.; Larnicol, G.; Lehodey, P.; Matthieu, P. P.; Mulet, S.; Santoleri, R.; Senina, I.; Stum, J.; Verbrugge, N.

    2015-12-01

    Micronekton organisms are both the prey of large ocean predators, and themselves also the predators of eggs and larvae of many species from which most fishes. The micronekton biomass concentration is therefore a key explanatory variable that is usually missing in fish population and ecosystem models to understand individual behaviour and population dynamics of large oceanic predators. In that context, the OSMOSIS (Ocean ecoSystem Modelling based on Observations from Satellite and In-Situ data) ESA project aims at demonstrating the feasibility and prototyping an integrated system going from the synergetic use of many different variables measured from space to the modelling of the distribution of micronektonic organisms. In this paper, we present how data from CRYOSAT, GOCE, SMOS, ENVISAT, together with other non-ESA satellites and in-situ data, can be merged to provide the required key variables needed as input of the micronekton model. Also, first results from the optimization of the micronekton model are presented and discussed.

  1. A new approach for the determination of the drag coefficient from the upper ocean response to a tropical cyclone: A feasibility study

    KAUST Repository

    Zedler, Sarah

    2011-12-30

    We seek to determine if a small number of measurements of upper ocean temperature and currents can be used to make estimates of the drag coefficient that have a smaller range of uncertainty than previously found. We adopt a numerical approach using forward models of the ocean\\'s response to a tropical cyclone, whereby the probability density function of drag coefficient values as a function of wind speed that results from adding realistic levels of noise to the simulated ocean response variables is sought. Allowing the drag coefficient two parameters of freedom, namely the values at 35 and at 45 m/s, we found that the uncertainty in the optimal value is about 20% for levels of instrument noise up to 1 K for a misfit function based on temperature, or 1.0 m/s for a misfit function based on 15 m velocity components. This is within tolerable limits considering the spread of measurement-based drag coefficient estimates. The results are robust for several different instrument arrays; the noise levels do not decrease by much for arrays with more than 40 sensors when the sensor positions are random. Our results suggest that for an ideal case, having a small number of sensors (20-40) in a data assimilation problem would provide sufficient accuracy in the estimated drag coefficient. © 2011 The Oceanographic Society of Japan and Springer.

  2. Current components, physical, ocean circulation, wind circulation, and other data from moored buoys, CTD casts, drifting buoys, and in situ wind recorders from AIRCRAFT and other platforms from the North Atlantic Ocean and other locations as part of the Seasonal Response of the Equatorial Atlantic Experiment/Français Océan et Climat dans l'Atlantique Equatorial (SEQUAL/FOCAL) project from 1980-01-25 to 1985-12-18 (NODC Accession 8700111)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current components, physical, ocean circulation, wind circulation, and other data were collected from moored buoys, CTD casts, drifting buoys, and in situ wind...

  3. Observations of rapid changes in N:P ratio associated with non-Redfield nutrient utilization in mesoscale eddies in the upper ocean

    Science.gov (United States)

    Dai, M.; Xu, Y.; Kao, S. J.; Huang, B.; Sun, J.; Sun, Z.

    2016-02-01

    The concept of Redfield Ratio,or the ocean's nutrient stoichiometry has been fundamental to understanding the ocean biogeochemistry, reflecting the balance of elements between the organisms and the chemical environment and thereby modulating to a large extent the metabolic status of an ecosystem as well as the ecosystem structure. Nutrient stoichiometry of the deep ocean as a consequence of the organic matter regeneration therein is very much homogeneous worldwide while at the upper ocean, changes in nutrient stoichiometryas being frequently observed are to be better understood in terms of their mechanism. Here we report direct observations of fast on a weekly time scale and large fluctuations of nitrate+nitrite (N+N) to soluble reactive phosphorus (SRP) ratios in the ambient seawater in responding to development of meso-scale eddies in an oligotrophic sea, the South China Sea. At the spin up and/or matured stages of eddies, the N:P ratio fluctuated up to 44 in the upper 100 m water column. Along the decay of theeddy, N:P ratio declined back to 3- 20; similar to a "no eddy" condition of 4-22. Along with the fluctuations of N:P ratio was the diatom dominance with the eddy development, while the community structure of the region in typical or non-eddy conditions was predominated by the pico-/nano-plankton as revealed by both the taxa identification and biogenic silicate measurements. This fast growing diatom group apparently had lower nutrient utilization of nitrogenrelative to silicate and/or phosphorus, augmenting the ambient seawater N:P and N:Si. Such preferential P utilization therefore by the fast growing diatomsresulted in significant variations during the different stages of the eddy development.

  4. Evaluation of satellite and reanalysis wind products with in situ wave glider wind observations in the Southern Ocean

    CSIR Research Space (South Africa)

    Schmidt, KM

    2017-12-01

    Full Text Available observations in the Southern Ocean 2 3 Kevin M. Schmidta, Sebastiaan Swartb,c,d, Chris Reasonc, Sarah Nicholsonb,c 4 a Marine Research Institute, University of Cape Town, Rondebosch, South Africa 5 b Southern Ocean Carbon & Climate Observatory, Council...

  5. Investigating the complex relationship between in situ Southern Ocean pCO2 and its ocean physics and biogeochemical drivers using a nonparametric regression approach

    CSIR Research Space (South Africa)

    Pretorius, W

    2014-01-01

    Full Text Available the relationship more accurately in terms of MSE, RMSE and MAE, than a standard parametric approach (multiple linear regression). These results provide a platform for using the developed nonparametric regression model based on in situ measurements to predict p...

  6. Role of upper ocean parameters in the genesis, intensification and tracks of cyclones over the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Maneesha, K.; Sadhuram, Y.; Prasad, K.V.S.R.

    of high heat potential (>90 kj/cm2) in the western Gulf of Mexico (Goni et al. 2003, 2009; Shay et al. 2000). Further, Hurricanes Igor (tropical Atlantic) and Celia (Eastern North Pacific), Typhoon Megi (Western North Pacific) and Cyclone Phet (Arabian Sea... 2009/10 in the Gulf of Mexico and the southwestern Pacific Ocean, while there was an increase in the western Pacific Ocean, Arabian Sea and Bay of Bengal. All the above studies emphasize the importance of the UOHC in the genesis and intensification...

  7. Validation of satellite-derived tropical cyclone heat potential with in situ observations in the North Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Nagamani, P.V.; Ali, M.M.; Goni, G.J.; Dinezio, P.N.; Pezzullo, J.C.; UdayaBhaskar, T.V.S.; Gopalakrishna, V.V.; Nisha, K.

    validation with in situ estimations for quantification of their reliability and consistency. Once the validation has been carried out, the satellite-derived TCHP values with their improved tempo- ral and spatial properties can be conveniently used...

  8. Deformation associated to exhumation by detachment faulting of upper mantle rocks in a fossil Ocean Continent Transition: The example of the Totalp unit in SE Switzerland

    Science.gov (United States)

    Picazo, S.; Manatschal, G.; Cannat, M.

    2013-12-01

    The exhumation of upper mantle rocks along detachment faults is widespread at Mid-Ocean Ridges and at the Ocean-Continent Transition (OCT) of rifted continental margins. Thermo-mechanical models indicate that significant strain softening of the fault rocks in the footwall is required in order to produce such large fault offsets. Our work focuses on deformation textures, and the associated mineralogy in ultramafic rocks sampled in the upper levels of the footwall next to the exhumation fault. We present two OCT examples, the Totalp relict of a paleo-Tethys OCT exposed in SE Switzerland, and the Iberian distal margin (ODP Leg 173 Site 1070). We built a new geological map and a section of the Totalp unit near Davos (SE Switzerland) and interpreted this area as a local exposure of a paleo-seafloor that is formed by an exhumed detachment surface and serpentinized peridotites. The top of the exhumed mantle rocks is made of ophicalcites that resulted from the carbonation of serpentine under static conditions at the seafloor. The ophicalcites preserve depositional contacts with Upper Jurassic to Lower Cretaceous pelagic sediments. These sequences did not exceed prehnite-pumpellyite metamorphic facies conditions, and locally escaped Alpine deformation. Thin mylonitic shear zones as well as foliated amphibole-bearing ultramafic rocks have been mapped. The age of these rocks and the link with the final exhumation history are yet unknown but since amphibole-bearing ultramafic rocks can be found as clasts in cataclasites related to the detachment fault, they pre-date detachment faulting. Our petrostructural study of the exhumed serpentinized rocks also reveals a deformation gradient from cataclasis to gouge formation within 150m in the footwall of the proposed paleo-detachment fault. This deformation postdates serpentinization. It involves a component of plastic deformation of serpentine in the most highly strained intervals that has suffered pronounced grain-size reduction and

  9. Characterization of Convective Plumes Associated With Oceanic Deep Convection in the Northwestern Mediterranean From High-Resolution In Situ Data Collected by Gliders

    Science.gov (United States)

    Margirier, Félix; Bosse, Anthony; Testor, Pierre; L'Hévéder, Blandine; Mortier, Laurent; Smeed, David

    2017-12-01

    Numerous gliders have been deployed in the Gulf of Lions (northwestern Mediterranean Sea) and in particular during episodes of open-ocean deep convection in the winter 2012-2013. The data collected represents an unprecedented density of in situ observations providing a first in situ statistical and 3-D characterization of the important mixing agents of the deep convection phenomenon, the so-called plumes. A methodology based on a glider-static flight model was applied to infer the oceanic vertical velocity signal from the glider navigation data. We demonstrate that during the active phase of mixing, the gliders underwent significant oceanic vertical velocities up to 18 cm s-1. Focusing on the data collected by two gliders during the 2012-2013 winter, 120 small-scale convective downward plumes were detected with a mean radius of 350 m and separated by about 2 km. We estimate that the plumes cover 27% of the convection area. Gliders detected downward velocities with a magnitude larger than that of the upward ones (-6 versus +2 cm s-1 on average). Along-track recordings of temperature and salinity as well as biogeochemical properties (dissolved oxygen, fluorescence, and turbidity) allow a statistical characterization of the water masses' properties in the plumes' core with respect to the "background": the average downward signal is of colder (-1.8 × 10-3 °C), slightly saltier (+4.9 × 10-4 psu) and thus denser waters (+7.5 × 10-4 kg m-3). The plunging waters are also on average more fluorescent (+2.3 × 10-2 μg L-1). The plumes are associated with a vertical diffusion coefficient of 7.0 m2 s-1 and their vertical velocity variance scales with the ratio of the buoyancy loss over the Coriolis parameter to the power 0.86.

  10. Carbonate chemistry of an in-situ free-ocean CO2 enrichment experiment (antFOCE) in comparison to short term variation in Antarctic coastal waters.

    Science.gov (United States)

    Stark, J S; Roden, N P; Johnstone, G J; Milnes, M; Black, J G; Whiteside, S; Kirkwood, W; Newbery, K; Stark, S; van Ooijen, E; Tilbrook, B; Peltzer, E T; Berry, K; Roberts, D

    2018-02-12

    Free-ocean CO 2 enrichment (FOCE) experiments have been deployed in marine ecosystems to manipulate carbonate system conditions to those predicted in future oceans. We investigated whether the pH/carbonate chemistry of extremely cold polar waters can be manipulated in an ecologically relevant way, to represent conditions under future atmospheric CO 2 levels, in an in-situ FOCE experiment in Antarctica. We examined spatial and temporal variation in local ambient carbonate chemistry at hourly intervals at two sites between December and February and compared these with experimental conditions. We successfully maintained a mean pH offset in acidified benthic chambers of -0.38 (±0.07) from ambient for approximately 8 weeks. Local diel and seasonal fluctuations in ambient pH were duplicated in the FOCE system. Large temporal variability in acidified chambers resulted from system stoppages. The mean pH, Ω arag and fCO 2 values in the acidified chambers were 7.688 ± 0.079, 0.62 ± 0.13 and 912 ± 150 µatm, respectively. Variation in ambient pH appeared to be mainly driven by salinity and biological production and ranged from 8.019 to 8.192 with significant spatio-temporal variation. This experiment demonstrates the utility of FOCE systems to create conditions expected in future oceans that represent ecologically relevant variation, even under polar conditions.

  11. Seismic Velocity Variation and Evolution of the Upper Oceanic Crust across the Mid-Atlantic Ridge at 1.3°S

    Science.gov (United States)

    Jian, H.; Singh, S. C.

    2017-12-01

    The oceanic crust that covers >70% of the solid earth is formed at mid-ocean ridges, but get modified as it ages. Understanding the evolution of oceanic crust requires investigations of crustal structures that extend from zero-age on the ridge axis to old crust. In this study, we analyze a part of a 2000-km-long seismic transect that crosses the Mid-Atlantic Ridge segment at 1.3°S, south of the Chain transform fault. The seismic data were acquired using a 12-km-long multi-sensor streamer and dense air-gun shots. Using a combination of downward continuation and seismic tomography methods, we have derived a high-resolution upper crustal velocity structure down to 2-2.5 km depth below the seafloor, from the ridge axis to 3.5 Ma on both sides of the ridge axis. The results demonstrate that velocities increase at all depths in the upper crust as the crust ages, suggesting that hydrothermal precipitations seal the upper crustal pore spaces. This effect is most significant in layer 2A, causing a velocity increase of 0.5-1 km/s after 1-1.5 Ma, beyond which the velocity increase is very small. Furthermore, the results exhibit a significant decrease in both the frequency and amplitude of the low-velocity anomalies associated with faults beyond 1-1.5 Ma, when faults become inactive, suggesting a linkage between the sealing of fault space and the extinction of hydrothermal activity. Besides, the off-axis velocities are systematically higher on the eastern side of the ridge axis compared to on the western side, suggesting that a higher hydrothermal activity should exist on the outside-corner ridge flank than on the inside-corner flank. While the tomography results shown here cover 0-3.5 Ma crust, the ongoing research will further extend the study area to older crust and also incorporating pre-stack migration and full waveform inversion methods to improve the seismic structure.

  12. The Upper- to Middle-Crustal Section of the Alisitos Oceanic Arc, (Baja, Mexico): an Analog of the Izu-Bonin-Marianas (IBM) Arc

    Science.gov (United States)

    Medynski, S.; Busby, C.; DeBari, S. M.; Morris, R.; Andrews, G. D.; Brown, S. R.; Schmitt, A. K.

    2016-12-01

    The Rosario segment of the Cretaceous Alisitos arc in Baja California is an outstanding field analog for the Izu-Bonin-Mariana (IBM) arc, because it is structurally intact, unmetamorphosed, and has superior three-dimensional exposures of an upper- to middle-crustal section through an extensional oceanic arc. Previous work1, done in the pre-digital era, used geologic mapping to define two phases of arc evolution, with normal faulting in both phases: (1) extensional oceanic arc, with silicic calderas, and (2) oceanic arc rifting, with widespread diking and dominantly mafic effusions. Our new geochemical data match the extensional zone immediately behind the Izu arc front, and is different from the arc front and rear arc, consistent with geologic relations. Our study is developing a 3D oceanic arc crustal model, with geologic maps draped on Google Earth images, and GPS-located outcrop information linked to new geochemical, geochronological and petrographic data, with the goal of detailing the relationships between plutonic, hypabyssal, and volcanic rocks. This model will be used by scientists as a reference model for past (IBM-1, 2, 3) and proposed IBM (IBM-4) drilling activities. New single-crystal zircon analysis by TIMS supports the interpretation, based on batch SIMS analysis of chemically-abraded zircon1, that the entire upper-middle crustal section accumulated in about 1.5 Myr. Like the IBM, volcanic zircons are very sparse, but zircon chemistry on the plutonic rocks shows trace element compositions that overlap to those measured in IBM volcanic zircons by A. Schmitt (unpublished data). Zircons have U-Pb ages up to 20 Myr older than the eruptive age, suggesting remelting of older parts of the arc, similar to that proposed for IBM (using different evidence). Like IBM, some very old zircons are also present, indicating the presence of old crustal fragments, or sediments derived from them, in the basement. However, our geochemical data show that the magmas are

  13. Observations of Bathymetry-Induced Ocean Roughness Modulation in In-situ Surface Slope Measurements and Coincident Airborne SAR Images

    NARCIS (Netherlands)

    Gommenginger, C.P.; Robinson, I.S.; Willoughby, J.; Greidanus, H.S.F.; Taylor, V.

    1999-01-01

    Empirical results from a field experiment in the southern North Sea have demonstrated the possibility to detect bathymetry-induced sea surface roughness modulation in the coastal zone using high frequency in-situ slope measurements provided by the Towed Laser Slopemeter. A strong correlation between

  14. Decadal trends of the upper ocean salinity in the tropical Indo-Pacific since mid-1990s.

    Science.gov (United States)

    Du, Yan; Zhang, Yuhong; Feng, Ming; Wang, Tianyu; Zhang, Ningning; Wijffels, Susan

    2015-11-02

    A contrasting trend pattern of sea surface salinity (SSS) between the western tropical Pacific (WTP) and the southeastern tropical Indian Ocean (SETIO) is observed during 2004-2013, with significant salinity increase in the WTP and freshening in the SETIO. In this study, we show that increased precipitation around the Maritime Continent (MC), decreased precipitation in the western-central tropical Pacific, and ocean advection processes contribute to the salinity trends in the region. From a longer historical record, these salinity trends started in the mid-1990s, a few years before the Global Warming Hiatus from 1998 to present. The salinity trends are associated a strengthening trend of the Walker Circulation over the tropical Indo-Pacific, which have reversed the long-term salinity changes in the tropical Indo-Pacific as a consequence of global warming. Understanding decadal variations of SSS in the tropical Indo-Pacific will better inform on how the tropical hydrological cycle will be affected by the natural variability and a warming climate.

  15. Corrigendum to "Upper ocean climate of the Eastern Mediterranean Sea during the Holocene Insolation Maximum – a model study" published in Clim. Past, 7, 1103–1122, 2011

    Directory of Open Access Journals (Sweden)

    G. Schmiedl

    2011-11-01

    Full Text Available Nine thousand years ago (9 ka BP, the Northern Hemisphere experienced enhanced seasonality caused by an orbital configuration close to the minimum of the precession index. To assess the impact of this "Holocene Insolation Maximum" (HIM on the Mediterranean Sea, we use a regional ocean general circulation model forced by atmospheric input derived from global simulations. A stronger seasonal cycle is simulated by the model, which shows a relatively homogeneous winter cooling and a summer warming with well-defined spatial patterns, in particular, a subsurface warming in the Cretan and western Levantine areas. The comparison between the SST simulated for the HIM and a reconstruction from planktonic foraminifera transfer functions shows a poor agreement, especially for summer, when the vertical temperature gradient is strong. As a novel approach, we propose a reinterpretation of the reconstruction, to consider the conditions throughout the upper water column rather than at a single depth. We claim that such a depth-integrated approach is more adequate for surface temperature comparison purposes in a situation where the upper ocean structure in the past was different from the present-day. In this case, the depth-integrated interpretation of the proxy data strongly improves the agreement between modelled and reconstructed temperature signal with the subsurface summer warming being recorded by both model and proxies, with a small shift to the south in the model results. The mechanisms responsible for the peculiar subsurface pattern are found to be a combination of enhanced downwelling and wind mixing due to strengthened Etesian winds, and enhanced thermal forcing due to the stronger summer insolation in the Northern Hemisphere. Together, these processes induce a stronger heat transfer from the surface to the subsurface during late summer in the western Levantine; this leads to an enhanced heat piracy in this region, a process never identified before

  16. The influence of bubble populations generated under windy conditions on the blue-green light transmission in the upper ocean: An exploratory approach

    Science.gov (United States)

    Wang, Chengan; Tan, Jianyu; Lai, Qingzhi

    2016-12-01

    The “blue-green window” in the ocean plays an important role in functions such as communication between vessels, underwater target identification, and remote sensing. In this study, the transmission process of blue-green light in the upper ocean is analyzed numerically using the Monte Carlo method. First, the effect of total number of photons on the numerical results is evaluated, and the most favorable number is chosen to ensure accuracy without excessive costs for calculation. Then, the physical and mathematical models are constructed. The rough sea surface is generated under windy conditions and the transmission signals are measured in the far field. Therefore, it can be conceptualized as a 1D slab with a rough boundary surface. Under windy conditions, these bubbles form layers that are horizontally homogeneous and decay exponentially with depth under the influence of gravity. The effects of bubble populations on the process of blue-green light transmission at different wind speeds, wavelengths, angle of incidence and chlorophyll-a concentrations are studied for both air-incident and water-incident cases. The results of this study indicate that the transmission process of blue-green light is significantly influenced by bubbles under high wind-speed conditions.

  17. First ever in situ observations of Venus' polar upper atmosphere density using the tracking data of the Venus Express Atmospheric Drag Experiment (VExADE)

    Science.gov (United States)

    Rosenblatt, P.; Bruinsma, S. L.; Müller-Wodarg, I. C. F.; Häusler, B.; Svedhem, H.; Marty, J. C.

    2012-02-01

    On its highly elliptical 24 h orbit around Venus, the Venus Express (VEX) spacecraft briefly reaches a periapsis altitude of nominally 250 km. Recently, however, dedicated and intense radio tracking campaigns have taken place in August 2008, October 2009, February and April 2010, for which the periapsis altitude was lowered to the 186-176 km altitude range in order to be able to probe the upper atmosphere of Venus above the North Pole for the first time ever in situ. As the spacecraft experiences atmospheric drag, its trajectory is measurably perturbed during the periapsis pass, allowing us to infer total atmospheric mass density at the periapsis altitude. A Precise Orbit Determination (POD) of the VEX motion is performed through an iterative least-squares fitting process to the Doppler tracking data, acquired by the VEX radioscience experiment (VeRa). The drag acceleration is modelled using an initial atmospheric density model (VTS3 model, Hedin, A.E., Niemann, H.B., Kasprzak, W.T., Seiff, A. [1983]. J. Geophys. Res. 88, 73-83). A scale factor of the drag acceleration is estimated for each periapsis pass, which scales Hedin's density model in order to best fit the radio tracking data. Reliable density scale factors have been obtained for 10 passes mainly from the second (October 2009) and third (April 2010) VExADE campaigns, which indicate a lower density by a factor of about 1.8 than Hedin's model predicts. These first ever in situ polar density measurements at solar minimum have allowed us to construct a diffusive equilibrium density model for Venus' thermosphere, constrained in the lower thermosphere primarily by SPICAV-SOIR measurements and above 175 km by the VExADE drag measurements (Müller-Wodarg et al., in preparation). The preliminary results of the VExADE campaigns show that it is possible to obtain with the POD technique reliable estimates of Venus' upper atmosphere densities at an altitude of around 175 km. Future VExADE campaigns will benefit from

  18. Mechanical Stability of Stratified Sediments along the upper continental Slope off Vesterålen, northern Norway - Insights from in situ CPTU Tests

    Science.gov (United States)

    Voelker, D.; Stegmann, S.; Kreiter, S.; L'Heureux, J. S.; Vanneste, M. W. B.; Baeten, N. J.; Knudsen, S.; Rise, L.; Longva, O.; Brendryen, J.; Haflidason, H.; Chand, S.; Mörz, T.; Kopf, A.

    2015-12-01

    High-resolution single channel-seismic data (3.5 kHz) reveal small-scale submarine landslide structures and superficial deformation features (e.g. tension cracks) along the gently dipping (3°) upper continental slope west of the Vesterålen Archipelago off northern Norway. Previous laboratory-based geotechnical studies attest that the slope is per sestable and that seismic events in an order of magnitude M5.7 may have triggered the slope sediments to fail. Here we present geotechnical in situ data (sedimentary strength, pore pressure), which were obtained with RV Poseidon in summer 2014 using the static CPTU system GOST. The CPTU system provided high-resolution geotechnical profiles of the uppermost sediments to a maximum penetration depth of ~ 20 m at six sites within the landslide features and beside them in undisturbed slope sediments as reference. The CPTU data reveal the occurrence of mechanically weaker zones (MWZ) by the drop of sedimentary strength. These zones are interbedded by coarser, more competent layers. The occurrence of sensitive fine-grained material may be responsible for the loss of strength in the deeper portion (appx. 12 to 18 m below seafloor). An 1D infinite pseudo-static stability analysis attests that the mechanically weaker zones (MWZ) correlate well with portions, where the Factor of Safety (FoS) ≤ 1 (meta-stable to unstable) indicates permanent deformation or failure in case additional dynamic load is induced by an earthquake. Thus, the mechanically weak layers can be considered as one important pre-condition for landslide activity. In conclusion, the integration of in situ CPTU data with geophysical data improves soil characterization and hence foster a better understanding of the pre-conditioning factors for slope instability at the upper continental slope off Vesterålen. Risk assessment for the present-day slope off Vesterålen is particularly crucial, because the opening of the region for offshore oil and gas exploration is

  19. Designing and Implementing a Computational Methods Course for Upper-level Undergraduates and Postgraduates in Atmospheric and Oceanic Sciences

    Science.gov (United States)

    Nelson, E.; L'Ecuyer, T. S.; Douglas, A.; Hansen, Z.

    2017-12-01

    In the modern computing age, scientists must utilize a wide variety of skills to carry out scientific research. Programming, including a focus on collaborative development, has become more prevalent in both academic and professional career paths. Faculty in the Department of Atmospheric and Oceanic Sciences at the University of Wisconsin—Madison recognized this need and recently approved a new course offering for undergraduates and postgraduates in computational methods that was first held in Spring 2017. Three programming languages were covered in the inaugural course semester and development themes such as modularization, data wrangling, and conceptual code models were woven into all of the sections. In this presentation, we will share successes and challenges in developing a research project-focused computational course that leverages hands-on computer laboratory learning and open-sourced course content. Improvements and changes in future iterations of the course based on the first offering will also be discussed.

  20. Upper ocean carbon flux determined by the 234Th approach and sediment traps using size-fractionated POC and 234Th data from the Golf of Mexico

    International Nuclear Information System (INIS)

    Hung, Chin-Chang; Roberts, Kimberly A.; Santschi, Peter H.; Guo, Laodong

    2004-01-01

    Size-fractionated particulate 234 Th and particulate organic carbon (POC) fluxes were measured in the Gulf of Mexico during 2000 and 2001 in order to obtain a better estimation of upper ocean organic carbon export out of the euphotic zone within cold core and warm core rings, and to assess the relative merit of sediment trap and POC/ 234 Th methods. In 2000, the flux of POC measured by sediment traps at 120 m ranged from 60 to 148 mg C m -2 d -1 , while 234 Th-derived POC fluxes in large particles (>53 μm) varied from 18 to 61 mg C m -2 d -1 using the ratio of POC/ 234 Th at 120 m, and from 51 to 163 mg C m -2 d -1 using an average ratio of POC/ 234 Th for the upper 120 m water column. In 2001, the fluxes of POC measured by traps deployed at 120 m water depth ranged from 39 to 48 mg C m -2 d -1 , while the 234 Th-derived POC fluxes in large particles (>53 μm) varied from 7 to 37 mg C m -2 d -1 using a ratio of POC/ 234 Th at 120 m, and from 37 to 45 mg C m -2 d -1 using an average ratio of POC/ 234 Th within the 0-120 m interval. The results show that POC fluxes estimated by the 234 Th method using the average ratio of POC/ 234 Th within the euphotic zone are similar to those measured by sediment traps. Furthermore, the results demonstrate that the variability in POC export fluxes estimated by the 234 Th/ 238 U disequilibrium approach is strongly related to the ratio of POC/ 234 Th that is taken, and for which we have independent evidence that it may be controlled by the chemical composition of the suspended particles. The results also reveal that using POC/ 234 Th ratios in small particles may result in an estimate of the POC export flux that is considerably higher than when using POC/ 234 Th ratios in large particles (>53 μm). The POC flux calculated from ratios in large particles is, however, more comparable to the POC flux determined directly by sediment traps, but both of these estimates are much lower than that determined by using the POC/ 234 Th ratios in

  1. Two-component mantle melting-mixing model for the generation of mid-ocean ridge basalts: Implications for the volatile content of the Pacific upper mantle

    Science.gov (United States)

    Shimizu, Kei; Saal, Alberto E.; Myers, Corinne E.; Nagle, Ashley N.; Hauri, Erik H.; Forsyth, Donald W.; Kamenetsky, Vadim S.; Niu, Yaoling

    2016-03-01

    We report major, trace, and volatile element (CO2, H2O, F, Cl, S) contents and Sr, Nd, and Pb isotopes of mid-ocean ridge basalt (MORB) glasses from the Northern East Pacific Rise (NEPR) off-axis seamounts, the Quebrada-Discovery-GoFar (QDG) transform fault system, and the Macquarie Island. The incompatible trace element (ITE) contents of the samples range from highly depleted (DMORB, Th/La ⩽ 0.035) to enriched (EMORB, Th/La ⩾ 0.07), and the isotopic composition spans the entire range observed in EPR MORB. Our data suggest that at the time of melt generation, the source that generated the EMORB was essentially peridotitic, and that the composition of NMORB might not represent melting of a single upper mantle source (DMM), but rather mixing of melts from a two-component mantle (depleted and enriched DMM or D-DMM and E-DMM, respectively). After filtering the volatile element data for secondary processes (degassing, sulfide saturation, assimilation of seawater-derived component, and fractional crystallization), we use the volatiles to ITE ratios of our samples and a two-component mantle melting-mixing model to estimate the volatile content of the D-DMM (CO2 = 22 ppm, H2O = 59 ppm, F = 8 ppm, Cl = 0.4 ppm, and S = 100 ppm) and the E-DMM (CO2 = 990 ppm, H2O = 660 ppm, F = 31 ppm, Cl = 22 ppm, and S = 165 ppm). Our two-component mantle melting-mixing model reproduces the kernel density estimates (KDE) of Th/La and 143Nd/144Nd ratios for our samples and for EPR axial MORB compiled from the literature. This model suggests that: (1) 78% of the Pacific upper mantle is highly depleted (D-DMM) while 22% is enriched (E-DMM) in volatile and refractory ITE, (2) the melts produced during variable degrees of melting of the E-DMM controls most of the MORB geochemical variation, and (3) a fraction (∼65% to 80%) of the low degree EMORB melts (produced by ∼1.3% melting) may escape melt aggregation by freezing at the base of the oceanic lithosphere, significantly enriching it in

  2. Aerosol Optical Depths over Oceans: a View from MISR Retrievals and Collocated MAN and AERONET in Situ Observations

    Science.gov (United States)

    Witek, Marcin L.; Garay, Michael J.; Diner, David J.; Smirnov, Alexander

    2013-01-01

    In this study, aerosol optical depths over oceans are analyzed from satellite and surface perspectives. Multiangle Imaging SpectroRadiometer (MISR) aerosol retrievals are investigated and validated primarily against Maritime Aerosol Network (MAN) observations. Furthermore, AErosol RObotic NETwork (AERONET) data from 19 island and coastal sites is incorporated in this study. The 270 MISRMAN comparison points scattered across all oceans were identified. MISR on average overestimates aerosol optical depths (AODs) by 0.04 as compared to MAN; the correlation coefficient and root-mean-square error are 0.95 and 0.06, respectively. A new screening procedure based on retrieval region characterization is proposed, which is capable of substantially reducing MISR retrieval biases. Over 1000 additional MISRAERONET comparison points are added to the analysis to confirm the validity of the method. The bias reduction is effective within all AOD ranges. Setting a clear flag fraction threshold to 0.6 reduces the bias to below 0.02, which is close to a typical ground-based measurement uncertainty. Twelve years of MISR data are analyzed with the new screening procedure. The average over ocean AOD is reduced by 0.03, from 0.15 to 0.12. The largest AOD decrease is observed in high latitudes of both hemispheres, regions with climatologically high cloud cover. It is postulated that the screening procedure eliminates spurious retrieval errors associated with cloud contamination and cloud adjacency effects. The proposed filtering method can be used for validating aerosol and chemical transport models.

  3. Large-scale temperature and salinity changes in the upper Canadian Basin of the Arctic Ocean at a time of a drastic Arctic Oscillation inversion

    Directory of Open Access Journals (Sweden)

    P. Bourgain

    2013-04-01

    Full Text Available Between 2008 and 2010, the Arctic Oscillation index over Arctic regions shifted from positive values corresponding to more cyclonic conditions prevailing during the 4th International Polar Year (IPY period (2007–2008 to extremely negative values corresponding to strong anticyclonic conditions in 2010. In this context, we investigated the recent large-scale evolution of the upper western Arctic Ocean, based on temperature and salinity summertime observations collected during icebreaker campaigns and from ice-tethered profilers (ITPs drifting across the region in 2008 and 2010. Particularly, we focused on (1 the freshwater content which was extensively studied during previous years, (2 the near-surface temperature maximum due to incoming solar radiation, and (3 the water masses advected from the Pacific Ocean into the Arctic Ocean. The observations revealed a freshwater content change in the Canadian Basin during this time period. South of 80° N, the freshwater content increased, while north of 80° N, less freshening occurred in 2010 compared to 2008. This was more likely due to the strong anticyclonicity characteristic of a low AO index mode that enhanced both a wind-generated Ekman pumping in the Beaufort Gyre and a possible diversion of the Siberian River runoff toward the Eurasian Basin at the same time. The near-surface temperature maximum due to incoming solar radiation was almost 1 °C colder in the southern Canada Basin (south of 75° N in 2010 compared to 2008, which contrasted with the positive trend observed during previous years. This was more likely due to higher summer sea ice concentration in 2010 compared to 2008 in that region, and surface albedo feedback reflecting more sun radiation back in space. The Pacific water (PaW was also subjected to strong spatial and temporal variability between 2008 and 2010. In the Canada Basin, both summer and winter PaW signatures were stronger between 75° N and 80° N. This was more likely

  4. Dissolved Fe in the Deep and Upper Arctic Ocean With a Focus on Fe Limitation in the Nansen Basin

    Directory of Open Access Journals (Sweden)

    Micha J. A. Rijkenberg

    2018-03-01

    Full Text Available Global warming resulting from the release of anthropogenic carbon dioxide is rapidly changing the Arctic Ocean. Over the last decade sea ice declined in extent and thickness. As a result, improved light availability has increased Arctic net primary production, including in under-ice phytoplankton blooms. During the GEOTRACES cruise PS94 in the summer of 2015 we measured dissolved iron (DFe, nitrate and phosphate throughout the central part of the Eurasian Arctic. In the deeper waters concentrations of DFe were higher, which we relate to resuspension on the continental slope in the Nansen Basin and hydrothermal activity at the Gakkel Ridge. The main source of DFe in the surface was the Trans Polar Drift (TPD, resulting in concentrations up to 4.42 nM. Nevertheless, using nutrient ratios we show that a large under-ice bloom in the Nansen basin was limited by Fe. Fe limitation potentially prevented up to 54% of the available nitrate and nitrite from being used for primary production. In the Barents Sea, Fe is expected to be the first nutrient to be depleted as well. Changes in the Arctic biogeochemical cycle of Fe due to retreating ice may therefore have large consequences for primary production, the Arctic ecosystem and the subsequent drawdown of carbon dioxide.

  5. Extension of SCIATRAN by coupling atmospheric and oceanic radiative transfer: First results of comparisons for in-situ and satellite data

    Science.gov (United States)

    Blum, Mirjam; Rozanov, Vladimir; Bracher, Astrid; Burrows, John P.

    The radiative transfer model SCIATRAN [V. V. Rozanov et al., 2002; A. Rozanov et al., 2005, 2008] has been developed to model atmospheric radiative transfer. This model is mainly applied to improve the analysis of high spectrally resolved satellite data as, for instance, data of the instrument SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric CHar-tographY) onboard the ENVISAT satellite. Within the present study, SCIATRAN has been extended by taking radiative processes as well as at the atmosphere-water interface as within the water into account, which were caused by water itself and its constituents. Comparisons of this extended version of SCIATRAN for in-situ data and for MERIS satellite information yield first results, which will be shown. It is expected that the new version of SCIATRAN, including the coupling of atmospheric and oceanic radiative transfer, will widen the use of high spectrally resolved data in the form of achieving new findings, such as information about ocean biooptics and biogeochemistry like, for example, biomass of different phytoplankton groups or CDOM fluorescence. In addition, it is awaited that the new version improves the retrieval of atmospheric trace gases above oceanic waters. References: 1. V. V. Rozanov, M. Buchwitz, K.-U. Eichmann, R. de Beek, and J. P. Burrows. Sciatran -a new radiative transfer model for geophysical applications in the 240-2400nm spectral region: the pseudo-spherical version. Adv. in Space Res. 29, 1831-1835 (2002) 2. A. Rozanov, V. V. Rozanov, M. Buchwitz, A. Kokhanovsky, and J. P. Burrows. SCIA-TRAN 2.0 -A new radiative tranfer model for geophysical applications in the 175-2400nm spectral region. Adv. in Space Res. 36, 1015-1019 (2005) 3. A. Rozanov. SCIATRAN 2.X: Radiative transfer model and retrieval software package. URL = http://www.iup.physik.uni-bremen.de/sciatran (2008)

  6. Behaviour of nickel, copper, zinc and cadmium in the upper 300 m of a transect in the Southern Ocean (57°-62°S, 49°W)

    NARCIS (Netherlands)

    Nolting, R.F.; Baar, H.J.W. de

    1994-01-01

    The distributions of Ni, Cu, Zn and Cd in relation to phosphate, nitrate and silicate in the upper 300 m of a transect in the Southern Ocean were studied. This transect covers the Scotia Sea, the Confluence and the Weddell Sea. These three watermasses are clearly separated by their temperature and

  7. Sources and fate of chromophoric dissolved organic matter and water mass ventilation in the upper Arctic Ocean

    Science.gov (United States)

    Walker, S. A.; Amon, R. M.; Stedmon, C. A.

    2011-12-01

    The majority of high latitude soil organic carbon is stored within vast permafrost regions surrounding the Arctic, which are highly susceptible to climate change. As global warming persists increased river discharge combined with permafrost erosion and extended ice free periods will increase the supply of soil organic carbon to the Arctic Ocean. Increased river discharge to the Arctic will also have a significant impact its hydrological cycle and could potentially be critical to sea ice formation. This impact is due to freshwater discharge to the Arctic which has been shown to help sustain halocline formation, a critical water mass that acts as an insulator trapping heat from inflowing Atlantic waters from ice at the surface. As the climate warms it is therefore important to identify halocline source waters and to determine fluctuations in their contribution to this critical water mass. To better understand dissolved organic matter (DOM) quality and its fate within the Arctic as well as runoff distributions across the basin the optical properties of chromophoric dissolved organic carbon (CDOM) were evaluated during a trans-Arctic expedition, AOS 2005. This cruise is unique because it is the first time fluorescence data have been obtained from all basins in the Arctic. Excitation/Emission Matrix Spectroscopy (EEM's) coupled to Parallel Factor Analysis (PARAFAC) was used to decompose the combined CDOM fluorescence signal into six independent components that can be traced to a source. Three humic-like CDOM components were isolated and linked to runoff waters using Principal Component Analysis (PCA). Inherent differences were observed between Eurasian (EB) and Canadian (CB) basin surface waters in terms of DOM quality and freshwater distributions. In EB surface waters (0-50m) the humic-like CDOM components explained roughly half of the variance in the DOC pool and were strongly related to lignin phenol concentrations. These results indicate CDOM in Trans-Polar Drift

  8. Effect of temperature rise and ocean acidification on growth of calcifying tubeworm shells (Spirorbis spirorbis): an in situ benthocosm approach

    Science.gov (United States)

    Ni, Sha; Taubner, Isabelle; Böhm, Florian; Winde, Vera; Böttcher, Michael E.

    2018-03-01

    The calcareous tubeworm Spirorbis spirorbis is a widespread serpulid species in the Baltic Sea, where it commonly grows as an epibiont on brown macroalgae (genus Fucus). It lives within a Mg-calcite shell and could be affected by ocean acidification and temperature rise induced by the predicted future atmospheric CO2 increase. However, Spirorbis tubes grow in a chemically modified boundary layer around the algae, which may mitigate acidification. In order to investigate how increasing temperature and rising pCO2 may influence S. spirorbis shell growth we carried out four seasonal experiments in the Kiel Outdoor Benthocosms at elevated pCO2 and temperature conditions. Compared to laboratory batch culture experiments the benthocosm approach provides a better representation of natural conditions for physical and biological ecosystem parameters, including seasonal variations. We find that growth rates of S. spirorbis are significantly controlled by ontogenetic and seasonal effects. The length of the newly grown tube is inversely related to the initial diameter of the shell. Our study showed no significant difference of the growth rates between ambient atmospheric and elevated (1100 ppm) pCO2 conditions. No influence of daily average CaCO3 saturation state on the growth rates of S. spirorbis was observed. We found, however, net growth of the shells even in temporarily undersaturated bulk solutions, under conditions that concurrently favoured selective shell surface dissolution. The results suggest an overall resistance of S. spirorbis growth to acidification levels predicted for the year 2100 in the Baltic Sea. In contrast, S. spirorbis did not survive at mean seasonal temperatures exceeding 24 °C during the summer experiments. In the autumn experiments at ambient pCO2, the growth rates of juvenile S. spirorbis were higher under elevated temperature conditions. The results reveal that S. spirorbis may prefer moderately warmer conditions during their early life stages

  9. Changes in In Situ Stress Across the Nankai and Cascadia Convergent Margins From Borehole Breakout Measurements During Ocean Drilling

    Science.gov (United States)

    McNeill, L.; Moore, J. C.; Yamada, Y.; Chang, C.; Tobin, H.; Kinoshita, M.; Gulick, S.; Moore, G.; Iodp Exp. 314/315/316 Science Party, &

    2008-12-01

    Borehole breakouts are commonly observed in borehole images shortly after drilling of continental margin sites. This study aims to compile and compare these results to determine what in situ shallow stress measurements can tell us about the larger scale tectonic regime. Recent Logging While Drilling resistivity images across the Kumano transect of the Nankai subduction zone, during Expedition 314, Stage 1 of the IODP NanTroSEIZE project, add to this dataset. Expedition 314 site data within the prism (C0001, C0004, C0006, including the megasplay fault system which may overlie the seismogenic updip limit) suggest maximum compressive stress (SHmax) is perpendicular to the margin (not parallel to the convergence vector) but is rotated through 90° at the forearc basin site (C0002). These results may point to changes in stress state of the shallow forearc from east to west: compression in the aseismic active prism (with evidence of strain partitioning of oblique convergence); and extension above the updip seismogenic zone suggesting focus of plate coupling at the plate boundary and not in the shallow forearc. Further south, ODP Leg 196 drilled the prism toe (808) with breakouts indicating SHmax parallel to the convergence vector, in contrast to Exp. 314 results. The stress state in the shallow prism at Site 808 may be affected by nearby seamount subduction or may represent differences in strain partitioning. On the Cascadia margin, two drilling legs have collected LWD borehole images (Leg 204 and Exp. 311). Leg 204 drilled 3 sites at hydrate ridge in the C Cascadia outer prism with breakout orientations variable between closely spaced sites. Prism fold axes are parallel to the margin so we might expect SHmax perpendicular to the margin as in Exp. 314. Deviations from this orientation may reflect local and surface effects (Goldberg and Janik, 2006). Exp. 311, N Cascadia, drilled 5 sites across the prism with breakouts in LWD images. Subduction is not oblique here, in

  10. In situ developmental responses of tropical sea urchin larvae to ocean acidification conditions at naturally elevated pCO2 vent sites.

    Science.gov (United States)

    Lamare, Miles D; Liddy, Michelle; Uthicke, Sven

    2016-11-30

    Laboratory experiments suggest that calcifying developmental stages of marine invertebrates may be the most ocean acidification (OA)-sensitive life-history stage and represent a life-history bottleneck. To better extrapolate laboratory findings to future OA conditions, developmental responses in sea urchin embryos/larvae were compared under ecologically relevant in situ exposures on vent-elevated pCO 2 and ambient pCO 2 coral reefs in Papua New Guinea. Echinometra embryos/larvae were reared in meshed chambers moored in arrays on either venting reefs or adjacent non-vent reefs. After 24 and 48 h, larval development and morphology were quantified. Compared with controls (mean pH (T) = 7.89-7.92), larvae developing in elevated pCO 2 vent conditions (pH (T) = 7.50-7.72) displayed a significant reduction in size and increased abnormality, with a significant correlation of seawater pH with both larval size and larval asymmetry across all experiments. Reciprocal transplants (embryos from vent adults transplanted to control conditions, and vice versa) were also undertaken to identify if adult acclimatization can translate resilience to offspring (i.e. transgenerational processes). Embryos originating from vent adults were, however, no more tolerant to reduced pH. Sea temperature and chlorophyll-a concentrations (i.e. larval nutrition) did not contribute to difference in larval size, but abnormality was correlated with chlorophyll levels. This study is the first to examine the response of marine larvae to OA scenarios in the natural environment where, importantly, we found that stunted and abnormal development observed in situ are consistent with laboratory observations reported in sea urchins, in both the direction and magnitude of the response. © 2016 The Author(s).

  11. Spatial variability of phytoplankton pigment distributions in the Subtropical South Pacific Ocean: comparison between in situ and predicted data

    Directory of Open Access Journals (Sweden)

    J. Ras

    2008-03-01

    Full Text Available In the frame of the BIOSOPE cruise in 2004, the spatial distribution and structure of phytoplankton pigments was investigated along a transect crossing the ultra-oligotrophic South Pacific Subtropical Gyre (SPSG between the Marquesas Archipelago (141° W–8° S and the Chilean upwelling (73° W–34° S. A High Performance Liquid Chromatography (HPLC method was improved in order to be able to accurately quantify pigments over such a large range of trophic levels, and especially from strongly oligotrophic conditions. Seven diagnostic pigments were associated to three phytoplankton size classes (pico-, nano and microphytoplankton. The total chlorophyll-α concentrations [TChlα] in surface waters were the lowest measured in the centre of the gyre, reaching 0.017 mg m−3. Pigment concentrations at the Deep Chlorophyll Maximum (DCM were generally 10 fold the surface values. Results were compared to predictions from a global parameterisation based on remotely sensed surface [TChlα]. The agreement between the in situ and predicted data for such contrasting phytoplankton assemblages was generally good: throughout the oligotrophic gyre system, picophytoplankton (prochlorophytes and cyanophytes and nanophytoplankton were the dominant classes. Relative bacteriochlorophyll-α concentrations varied around 2%. The transition zone between the Marquesas and the SPSG was also well predicted by the model. However, some regional characteristics have been observed where measured and modelled data differ. Amongst these features is the extreme depth of the DCM (180 m towards the centre of the gyre, the presence of a deep nanoflagellate population beneath the DCM or the presence of a prochlorophyte-enriched population in the formation area of the high salinity South Pacific Tropical Water. A coastal site sampled in the eutrophic upwelling zone, characterised by recently upwelled water, was significantly and unusually enriched in picoeucaryotes, in

  12. Aerosol direct radiative effects over the northwest Atlantic, northwest Pacific, and North Indian Oceans: estimates based on in-situ chemical and optical measurements and chemical transport modeling

    Directory of Open Access Journals (Sweden)

    T. S. Bates

    2006-01-01

    Full Text Available The largest uncertainty in the radiative forcing of climate change over the industrial era is that due to aerosols, a substantial fraction of which is the uncertainty associated with scattering and absorption of shortwave (solar radiation by anthropogenic aerosols in cloud-free conditions (IPCC, 2001. Quantifying and reducing the uncertainty in aerosol influences on climate is critical to understanding climate change over the industrial period and to improving predictions of future climate change for assumed emission scenarios. Measurements of aerosol properties during major field campaigns in several regions of the globe during the past decade are contributing to an enhanced understanding of atmospheric aerosols and their effects on light scattering and climate. The present study, which focuses on three regions downwind of major urban/population centers (North Indian Ocean (NIO during INDOEX, the Northwest Pacific Ocean (NWP during ACE-Asia, and the Northwest Atlantic Ocean (NWA during ICARTT, incorporates understanding gained from field observations of aerosol distributions and properties into calculations of perturbations in radiative fluxes due to these aerosols. This study evaluates the current state of observations and of two chemical transport models (STEM and MOZART. Measurements of burdens, extinction optical depth (AOD, and direct radiative effect of aerosols (DRE – change in radiative flux due to total aerosols are used as measurement-model check points to assess uncertainties. In-situ measured and remotely sensed aerosol properties for each region (mixing state, mass scattering efficiency, single scattering albedo, and angular scattering properties and their dependences on relative humidity are used as input parameters to two radiative transfer models (GFDL and University of Michigan to constrain estimates of aerosol radiative effects, with uncertainties in each step propagated through the analysis. Constraining the radiative

  13. In situ measurement of mesopelagic particle sinking rates and the control of carbon transfer to the ocean interior during the Vertical Flux in the Global Ocean (VERTIGO) voyages in the North Pacific

    Science.gov (United States)

    Trull, T. W.; Bray, S. G.; Buesseler, K. O.; Lamborg, C. H.; Manganini, S.; Moy, C.; Valdes, J.

    2008-07-01

    Among the parameters affecting carbon transfer to the ocean interior, particle sinking rates vary three orders of magnitude and thus more than primary production, f-ratios, or particle carbon contents [e.g., Boyd, P.W., Trull, T.W., 2006. Understanding the export of marine biogenic particles: is there consensus? Progress in Oceanography 4, 276-312, doi:10.1016/j.pocean.2006.10.007]. Very few data have been obtained from the mesopelagic zone where the majority of carbon remineralization occurs and the attenuation of the sinking flux is determined. Here, we report sinking rates from ˜300 m depth for the subtropical (station ALOHA, June 2004) and subarctic (station K2, July 2005) North Pacific Ocean, obtained from short (6.5 day) deployments of an indented rotating sphere (IRS) sediment trap operating as an in situ settling column [Peterson, M.L., Wakeham, S.G., Lee, C., Askea, M.A., Miquel, J.C., 2005. Novel techniques for collection of sinking particles in the ocean and determining their settling rates. Limnology and Oceanography Methods 3, 520-532] to separate the flux into 11 sinking-rate fractions ranging from >820 to >2 m d -1 that are collected by a carousel for further analysis. Functioning of the IRS trap was tested using a novel programming sequence to check that all particles have cleared the settling column prior to the next delivery of particles by the 6-hourly rotation cycle of the IRS. There was some evidence (from the flux distribution among the cups and photomicroscopy of the collected particles) that very slow-sinking particles may have been under-collected because they were unable to penetrate the brine-filled collection cups, but good evidence for appropriate collection of fast-settling fractions. Approximately 50% of the particulate organic carbon (POC) flux was sinking at greater than 100 m d -1 at both stations. At ALOHA, more than 15% of the POC flux sank at >820 m d -1, but low fluxes make this uncertain, and precluded resolution of particles

  14. Adaptation and acclimatization to ocean acidification in marine ectotherms: an in situ transplant experiment with polychaetes at a shallow CO2 vent system.

    Science.gov (United States)

    Calosi, Piero; Rastrick, Samuel P S; Lombardi, Chiara; de Guzman, Heidi J; Davidson, Laura; Jahnke, Marlene; Giangrande, Adriana; Hardege, Jörg D; Schulze, Anja; Spicer, John I; Gambi, Maria-Cristina

    2013-01-01

    Metabolic rate determines the physiological and life-history performances of ectotherms. Thus, the extent to which such rates are sensitive and plastic to environmental perturbation is central to an organism's ability to function in a changing environment. Little is known of long-term metabolic plasticity and potential for metabolic adaptation in marine ectotherms exposed to elevated pCO2. Consequently, we carried out a series of in situ transplant experiments using a number of tolerant and sensitive polychaete species living around a natural CO2 vent system. Here, we show that a marine metazoan (i.e. Platynereis dumerilii) was able to adapt to chronic and elevated levels of pCO2. The vent population of P. dumerilii was physiologically and genetically different from nearby populations that experience low pCO2, as well as smaller in body size. By contrast, different populations of Amphiglena mediterranea showed marked physiological plasticity indicating that adaptation or acclimatization are both viable strategies for the successful colonization of elevated pCO2 environments. In addition, sensitive species showed either a reduced or increased metabolism when exposed acutely to elevated pCO2. Our findings may help explain, from a metabolic perspective, the occurrence of past mass extinction, as well as shed light on alternative pathways of resilience in species facing ongoing ocean acidification.

  15. A new approach for the determination of the drag coefficient from the upper ocean response to a tropical cyclone: A feasibility study

    KAUST Repository

    Zedler, Sarah; Kanschat, Guido; Korty, Robert L.; Hoteit, Ibrahim

    2011-01-01

    forward models of the ocean's response to a tropical cyclone, whereby the probability density function of drag coefficient values as a function of wind speed that results from adding realistic levels of noise to the simulated ocean response variables

  16. In-situ Measured Carbon and Nitrogen Uptake Rates of Melt Pond Algae in the Western Arctic Ocean, 2014

    Science.gov (United States)

    Song, Ho Jung; Kim, Kwanwoo; Lee, Jae Hyung; Ahn, So Hyun; Joo, Houng-Min; Jeong, Jin Young; Yang, Eun Jin; Kang, Sung-Ho; Yun, Mi Sun; Lee, Sang Heon

    2018-03-01

    Although the areal coverage of melt pond in the Arctic Ocean has recently increased, very few biological researches have been conducted. The objectives in this study were to ascertain the uptake rates of carbon and nitrogen in various melt ponds and to understand the major controlling factors for the rates. We obtained 22 melt pond samples at ice camp 1 (146.17°W, 77.38°N) and 11 melt pond samples at ice camp 2 (169.79°W, 76.52°N). The major nutrient concentrations varied largely among melt ponds at the ice camps 1 and 2. The chl-a concentrations averaged from the melt ponds at camps 1 and 2 were 0.02-0.56 mg chl-a m-3 (0.12 ± 0.12 mg chl-a m-3) and 0.08-0.30 mg chl-a m-3 (0.16 ± 0.08 mg chl-a m-3), respectively. The hourly carbon uptake rates at camps 1 and 2 were 0.001-0.080 mg C m-3 h-1 (0.025 ± 0.024 mg C m-3 h-1) and 0.022-0.210 mg C m-3 h-1 (0.077 ± 0.006 mg C m-3 h-1), respectively. In comparison, the nitrogen uptake rates at camps 1 and 2 were 0.001-0.030 mg N m-3 h-1 (0.011 ± 0.010 mg N m-3 h-1) and 0.002-0.022 mg N m-3 h-1 (0.010 ± 0.006 mg N m-3 h-1), respectively. The values obtained in this study are significantly lower than those reported previously. A large portion of algal biomass trapped in the new forming surface ice in melt ponds appears to be one of the main potential reasons for the lower chl-a concentration and subsequently lower carbon and nitrogen uptake rates revealed in this study. A long-term monitoring program on melt ponds is needed to understand the response of the Arctic marine ecosystem to ongoing environmental changes.

  17. In situ measurements of tropical cloud properties in the West African Monsoon: upper tropospheric ice clouds, Mesoscale Convective System outflow, and subvisual cirrus

    Directory of Open Access Journals (Sweden)

    W. Frey

    2011-06-01

    Full Text Available In situ measurements of ice crystal size distributions in tropical upper troposphere/lower stratosphere (UT/LS clouds were performed during the SCOUT-AMMA campaign over West Africa in August 2006. The cloud properties were measured with a Forward Scattering Spectrometer Probe (FSSP-100 and a Cloud Imaging Probe (CIP operated aboard the Russian high altitude research aircraft M-55 Geophysica with the mission base in Ouagadougou, Burkina Faso. A total of 117 ice particle size distributions were obtained from the measurements in the vicinity of Mesoscale Convective Systems (MCS. Two to four modal lognormal size distributions were fitted to the average size distributions for different potential temperature bins. The measurements showed proportionately more large ice particles compared to former measurements above maritime regions. With the help of trace gas measurements of NO, NOy, CO2, CO, and O3 and satellite images, clouds in young and aged MCS outflow were identified. These events were observed at altitudes of 11.0 km to 14.2 km corresponding to potential temperature levels of 346 K to 356 K. In a young outflow from a developing MCS ice crystal number concentrations of up to (8.3 ± 1.6 cm−3 and rimed ice particles with maximum dimensions exceeding 1.5 mm were found. A maximum ice water content of 0.05 g m−3 was observed and an effective radius of about 90 μm. In contrast the aged outflow events were more diluted and showed a maximum number concentration of 0.03 cm−3, an ice water content of 2.3 × 10−4 g m−3, an effective radius of about 18 μm, while the largest particles had a maximum dimension of 61 μm.

    Close to the tropopause subvisual cirrus were encountered four times at altitudes of 15 km to 16.4 km. The mean ice particle number concentration of these encounters was 0.01 cm−3 with maximum particle sizes of 130

  18. Investigating the turbulence response of a 1-D idealized water column located in the sub-Antarctic zone with focus on the upper ocean dynamics

    CSIR Research Space (South Africa)

    Boodhraj, Kirodh

    2017-09-01

    Full Text Available A one-dimensional ocean physical model was implemented in the sub-Antarctic Southern Ocean using the Nucleus for the European Modelling of the Ocean (NEMO) model. It was used to examine the effects of the turbulence response of the simulation...

  19. An assessment of the role of the k-e vertical mixing scheme in the simulation of Southern Ocean upper dynamics

    CSIR Research Space (South Africa)

    Boodhraj, K

    2016-11-01

    Full Text Available Following the work done by Reffrey, Calone and Bourdalle-Badie (2015) we implemented a one dimensional (1D) ocean physical model in the sub-Antarctic Southern Ocean using the Nucleus for the European Modelling of the Ocean(NEMO) model. The 1D model...

  20. The role of vertical shear on the horizontal oceanic dispersion

    OpenAIRE

    A. S. Lanotte; R. Corrado; G. Lacorata; L. Palatella; C. Pizzigalli; I. Schipa; R. Santoleri

    2015-01-01

    The effect of vertical shear on the horizontal dispersion properties of passive tracer particles on the continental shelf of South Mediterranean is investigated by means of observative and model data. In-situ current measurements reveal that vertical velocity gradients in the upper mixed layer decorrelate quite fast (∼ 1 day), whereas basin-scale ocean circulation models tend to overestimate such decorrelation time because of finite resolution effects. Horizontal dispers...

  1. World Ocean Atlas 2005, Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — World Ocean Atlas 2005 (WOA05) is a set of objectively analyzed (1° grid) climatological fields of in situ temperature, salinity, dissolved oxygen, Apparent Oxygen...

  2. World Ocean Atlas 2005, Salinity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — World Ocean Atlas 2005 (WOA05) is a set of objectively analyzed (1° grid) climatological fields of in situ temperature, salinity, dissolved oxygen, Apparent Oxygen...

  3. Coupled in situ Ammonium and Nitrate analyses of a tidally dominated estuary: New developments from the Elkhorn Slough Land/Ocean Biogeochemical Observatory network

    Science.gov (United States)

    Gibson, P. J.; Plant, J.; Johnson, K. S.

    2012-12-01

    For nearly nine years the Elkhorn Slough Land/Ocean Biogeochemical Observatory (LOBO) network of moorings has been delivering freely available hourly data to the web in near real time. Each mooring hosts a suite of instruments including an ISUS nitrate sensor. In addition to providing valuable information on ecosystem scale processes, the moorings serve as ideal test platforms for novel in situ chemical sensors & analyzers developed by the Monterey Bay Aquarium Research Institute. The recent addition of a newly developed in situ NH4+ analyzer, the DigiScan-II, has provided additional insights into N cycling mechanisms within the slough. The analysis method estimates NH4+ concentration via base conversion to NH3 gas and diffusion across a membrane into an acid carrier stream with subsequent conductivity detection. Although this new NH4+ analyzer is reagent based, it was developed to be relatively cheap, robust, and configurable for a range of deployment options and requires minimal, infrequent maintenance that is ultimately governed by battery life. The fundamental DigiScan-II platform can also be used for other analyses of interest, such as PO4 or CT (total inorganic carbon), by swapping the necessary reagents and components and by making minor code modifications. For deployment in Elkhorn Slough, the NH4+ DigiScan-II was configured for mid-scale concentration detection with a linear calibration range of 30.0 μM NH4+. The flux of different forms of bioavailable DIN through the system is driven by runoff inputs, tidal exchange, and biological processing. Large inputs of NO3- are sourced from the agriculturally influenced Old Salinas River (OSR), which enters the Slough near the estuary mouth and confluence with Monterey Bay. Rising ocean tides force this eutrophied water mass up into the slough where it is accessed by various biological communities during the course of the tidal period. Mass balance estimates suggest there is an imbalance between the amount of NO3

  4. Integrating biogeochemistry and ecology into ocean data assimilation systems

    DEFF Research Database (Denmark)

    Brasseur, Pierre; Gruber, Nicolas; Barciela, Rosa

    2009-01-01

    that are not yet considered essential, such as upper-ocean vertical fluxes that are critically important to biological activity. Further, the observing systems will need to be expanded in terms of in situ platforms (with intensified deployments of sensors for O-2 and chlorophyll, and inclusion of new sensors...... for nutrients, zooplankton, micronekton biomass, and others), satellite missions (e.g., hyperspectral instruments for ocean color, lidar systems for mixed-layer depths, and wide-swath altimeters for coastal sea level), and improved methods to assimilate these new measurements....

  5. Mercury biogeochemical cycling in the ocean and policy implications.

    Science.gov (United States)

    Mason, Robert P; Choi, Anna L; Fitzgerald, William F; Hammerschmidt, Chad R; Lamborg, Carl H; Soerensen, Anne L; Sunderland, Elsie M

    2012-11-01

    Anthropogenic activities have enriched mercury in the biosphere by at least a factor of three, leading to increases in total mercury (Hg) in the surface ocean. However, the impacts on ocean fish and associated trends in human exposure as a result of such changes are less clear. Here we review our understanding of global mass budgets for both inorganic and methylated Hg species in ocean seawater. We consider external inputs from atmospheric deposition and rivers as well as internal production of monomethylmercury (CH₃Hg) and dimethylmercury ((CH₃)₂Hg). Impacts of large-scale ocean circulation and vertical transport processes on Hg distribution throughout the water column and how this influences bioaccumulation into ocean food chains are also discussed. Our analysis suggests that while atmospheric deposition is the main source of inorganic Hg to open ocean systems, most of the CH₃Hg accumulating in ocean fish is derived from in situ production within the upper waters (ocean basins are changing at different rates due to differences in atmospheric loading and that the deeper waters of the oceans are responding slowly to changes in atmospheric Hg inputs. Most biological exposures occur in the upper ocean and therefore should respond over years to decades to changes in atmospheric mercury inputs achieved by regulatory control strategies. Migratory pelagic fish such as tuna and swordfish are an important component of CH₃Hg exposure for many human populations and therefore any reduction in anthropogenic releases of Hg and associated deposition to the ocean will result in a decline in human exposure and risk. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Observed intra-seasonal to interannual variability of the upper ocean thermal structure in the southeastern Arabian Sea during 2002-2008

    Digital Repository Service at National Institute of Oceanography (India)

    Gopalakrishna, V.V.; Durand, F.; Nisha, K.; Lengaigne, M.; Boyer, T.P; Costa, J.; Rao, R.R.; Ravichandran, M.; Amrithash, S.; John, L.; Girish, K.; Ravichandran, C.; Suneel, V.

    in the Arabian Sea. Deep Sea Res. II, 49, 12, 2231–2264. Gill, A. E., 1982. Atmosphere-Ocean Dynamics, Volume 30, Academic Press, 662 pp. Graham, N. E., Barnet, T.P., 1987. Sea surface temperature, surface wind divergence and convection over tropical oceans...003631 Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia, H. E., 2006. World Ocean Atlas 2005, Volume 1: Temperature, S. Levitus, Ed. NOAA Atlas NESDIS 61, U.S. Government Printing Office, Washington, D.C., 182. Masson, S., Luo...

  7. Seasonal variability of upper-layer geostrophic transport in the tropical Indian Ocean during 1992-1996 along TOGA-I XBT tracklines

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, V.S.N.; Sarma, M.S.S.; Lambata, B.P.; Gopalakrishna, V.V.; Pednekar, S.M.; Rao, A.S.; Luis, A.J.; Kaka, A.R.; Rao, L.V.G.

    (2000) 1569}1582 1581 Subrahmanyam, B., 1998. A study of the Indian Ocean Circulation using satellite observations and model simulations. Ph.D. Thesis. University of Southampton, Department of Oceanography, UK., p. 251, unpublished. Suryanarayana, A...

  8. The impact of low pH, low aragonite saturation state on calcifying corals: an in-situ study of ocean acidification from the "ojos" of Puerto Morelos, Mexico

    Science.gov (United States)

    Crook, E. D.; Paytan, A.; Potts, D. C.; Hernandez Terrones, L.; Rebolledo-Vieyra, M.

    2010-12-01

    Recent increases in atmospheric carbon dioxide have resulted in rising aqueous CO2 concentrations that lower the pH of the oceans (Caldeira and Wickett 2003, 2005, Doney et al., 2009). It is estimated that over the next 100 years, the pH of the surface oceans will decrease by ~0.4 pH units (Orr et al., 2005), which is expected to hinder the calcifying capabilities of numerous marine organisms. Previous field work (Hall-Spencer et al., 2008) indicates that ocean acidification will negatively impact calcifying species; however, to date, very little is known about the long-term impacts of ocean acidification from the in-situ study of coral reef ecosystems. The Yucatán Peninsula of Quintana Roo, Mexico, represents an ecosystem where naturally low pH groundwater (7.14-8.07) has been discharging offshore at highly localized points (called ojos) for millennia. We present preliminary chemical and biological data on a selection of ojos from lagoon sites in Puerto Morelos, Mexico. Our findings indicate a decrease in species richness and size with proximity to the low pH waters. We address the potential long-term implications of low pH, low aragonite saturation state on coral reef ecosystems.

  9. Vertical distribution of temperature, salinity and density in the upper 500 metres of the north equatorial Indian Ocean during the north-east monsoon period

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, L.V.G.; Jayaraman, R.

    In the 4th and 5th scientific cruises of INS KISTNA under the Indian Programme of IIOE, five sections were worked out in the North Equatorial Indian Ocean during Jan-Feb 1963. Using the physical oceanographic data collected in these cruises...

  10. Geosat altimeter derived sea surface wind speeds and significant wave heights for the north Indian Ocean and their comparison with in situ data

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.; Vaithiyanathan, R.; Almeida, A.M.; Santanam, K.; Rao, L.V.G.; Sarkar, A.; Kumar, R.; Gairola, R.M.; Gohil, B.S.

    Geosat altimeter data for the period November 1986-October 1987 over the north Indian Ocean have been processed to retrieve wind speeds and significant wave heights. Smoothed Brown algorithm is used to retrieve wind speeds from back...

  11. Petrology and geochemistry of the high-Cr podiform chromitites of the Köycegiz ophiolite, southwest Turkey: implications for the multi-stage evolution of the oceanic upper mantle

    Science.gov (United States)

    Xiong, Fahui; Yang, Jingsui; Dilek, Yildirim; Wang, ChunLian; Hao, Xiaolin; Xu, Xiangzhen; Lian, Dongyang

    2018-03-01

    Ophiolites exposed across the western Tauride belt in Turkey represent tectonically emplaced fragments of oceanic lithosphere obducted onto the continental margin following the closure of the Neotethys Ocean during the Late Cretaceous. The ultramafic massif of Köycegiz, which is located in the ophiolitic belt of southwestern Turkey, is a major source of metallurgical chromitite ore. The massif comprises a base of tectonized harzburgite with minor dunite overlain by a magmatic sequence of wehrlite, pyroxenite, troctolite and gabbro. Only sparse refractory chromitites occur within the harzburgites; in contrast, the upper and middle sections of the peridotite sequence contain abundant metallurgical chromitites. The peridotites record abundant evidence of mantle metasomatism on various scales, as the Fo values of olivine in harzburgite are 90.1-95.4, whereas those in dunite are 90.1-91.8. The compositions of the melts passing through the peridotites changed gradually from arc tholeiite to boninite due to melt-rock reactions, thus producing more Cr-rich chromitites in the upper part of the body. Most of the chromitites have high Cr numbers (77-78), although systematic changes in the compositions of the olivine and chromian spinel occur from the harzburgites to the dunite envelopes to the chromitites, reflecting melt-rock reactions. The calculated ΔlogfO2 (FMQ) values range from - 2.77 to + 1.03 in the chromitites, - 2.73 to -0.01 in the harzburgites, and - 1.65 to + 0.45 in the dunites. All of the available evidence suggests that the Köycegiz ophiolite formed in a supra-subduction zone (SSZ) mantle wedge. These models indicate that the harzburgites represent the products of first-stage melting and low degrees of melt-rock interaction that occurred in a mid-ocean ridge (MOR) environment. In contrast, the chromitites and dunites represent the products of second-stage melting and related refertilization, which occurred in an SSZ environment.

  12. Application of in situ observations, high frequency radars, and ocean color, to study suspended matter, particulate carbon, and dissolved organic carbon fluxes in coastal waters of the Barents Sea - the NORDFLUX project

    Science.gov (United States)

    Stramska, Malgorzata; Yngve Børsheim, Knut; Białogrodzka, Jagoda; Cieszyńska, Agata; Ficek, Dariusz; Wereszka, Marzena

    2016-04-01

    There is still a limited knowledge about suspended and dissolved matter fluxes transported from coastal regions into the open sea regions in the Arctic. The land/sea interface is environmentally important and sensitive to climate change. Important biogeochemical material entering the oceans (including carbon) passes through this interface, but too little is known about the efficiency of this transport. Our goal in the NORDFLUX program is to improve quantitative understanding of the environmental feedbacks involved in these processes through an interdisciplinary study with innovative in situ observations. Completed work includes two in situ experiments in the Norwegian fiord (Porsangerfjorden) in the summers of 2014 and 2015. Experiments used research boat for collection of water samples and in situ bio-optical data, an autonomous glider, mooring with T S sensors, and a high frequency radar system. We have used these data to derive spatial maps of water temperature, salinity, surface currents, chlorophyll fluorescence, dissolved organic matter (DOM) fluorescence, and inherent optical properties (IOPs) of the water. The interpretation of these data in terms of suspended matter concentration and composition is possible by in situ 'calibrations' using water samples from discrete hydrographic stations. Total suspended matter (TSM), particulate carbon (POC and PIC), and dissolved organic carbon (DOC) concentrations together with measured water currents will allow us to estimate reservoirs and fluxes. Concentrations and fluxes will be related to physical conditions and meteorological data. An important aspect of this project is the work on regional ocean color algorithms. Global ocean color (OC) algorithms currently used by NASA do not perform sufficiently well in coastal Case 2 waters. Our data sets will allow us to derive such local algorithms. We will then use these algorithms for interpretation of OC data in terms of TSM concentrations and composition and DOC. After

  13. Astronomical calibration of upper Campanian–Maastrichtian carbon isotope events and calcareous plankton biostratigraphy in the Indian Ocean (ODP Hole 762C)

    DEFF Research Database (Denmark)

    Thibault, Nicolas Rudolph; Husson, Dorothée; Harlou, Rikke

    2012-01-01

    An integrated framework of magnetostratigraphy, calcareous microfossil bio-events, cyclostratigraphy and d13C stratigraphy is established for the upper Campanian–Maastrichtian of ODP Hole 762C (Exmouth Plateau, Northwestern Australian margin). Bulk-carbonate d13C events and nannofossil bio-events...

  14. Structure of the oceanic lithosphere and upper mantle north of the Gloria Fault in the eastern mid-Atlantic by receiver function analysis

    Science.gov (United States)

    Hannemann, Katrin; Krüger, Frank; Dahm, Torsten; Lange, Dietrich

    2017-10-01

    Receiver functions (RF) have been used for several decades to study structures beneath seismic stations. Although most available stations are deployed on shore, the number of ocean bottom station (OBS) experiments has increased in recent years. Almost all OBSs have to deal with higher noise levels and a limited deployment time (˜1 year), resulting in a small number of usable records of teleseismic earthquakes. Here we use OBSs deployed as midaperture array in the deep ocean (4.5-5.5 km water depth) of the eastern mid-Atlantic. We use evaluation criteria for OBS data and beamforming to enhance the quality of the RFs. Although some stations show reverberations caused by sedimentary cover, we are able to identify the Moho signal, indicating a normal thickness (5-8 km) of oceanic crust. Observations at single stations with thin sediments (300-400 m) indicate that a probable sharp lithosphere-asthenosphere boundary (LAB) might exist at a depth of ˜70-80 km which is in line with LAB depth estimates for similar lithospheric ages in the Pacific. The mantle discontinuities at ˜410 km and ˜660 km are clearly identifiable. Their delay times are in agreement with PREM. Overall the usage of beam-formed earthquake recordings for OBS RF analysis is an excellent way to increase the signal quality and the number of usable events.

  15. World Ocean Atlas 2013 (NCEI Accession 0114815)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — World Ocean Atlas 2013 (WOA13) is a set of objectively analyzed (1 degree grid and 1/4 degree grid) climatological fields of in situ temperature, salinity, dissolved...

  16. A critical evaluation of the upper ocean heat budget in the Climate Forecast System Reanalysis data for the south central equatorial Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Liu Hailong; Liu Xiangcui [State Key Laboratory of Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing (China); Zhang Minghua [Institute for Terrestrial and Planetary Atmospheres, Stony Brook University, State University of New York, Stony Brook, NY (United States); Lin Wuyin, E-mail: lhl@lasg.iap.ac.cn [Atmospheric Sciences Division, Brookhaven National Laboratory, Upton, NY (United States)

    2011-07-15

    Coupled ocean-atmospheric models suffer from the common bias of a spurious rain belt south of the central equatorial Pacific throughout the year. Observational constraints on key processes responsible for this bias are scarce. The recently available reanalysis from a coupled model system for the National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) data is a potential benchmark for climate models in this region. Its suitability for model evaluation and validation, however, needs to be established. This paper examines the mixed layer heat budget and the ocean surface currents-key factors for the sea surface temperature control in the double Inter-Tropical Convergence Zone in the central Pacific-from 5 deg. S to 10 deg. S and 170 deg. E to 150 deg. W. Two independent approaches are used. The first approach is through comparison of CFSR data with collocated station observations from field experiments; the second is through the residual analysis of the heat budget of the mixed layer. We show that the CFSR overestimates the net surface flux in this region by 23 W m{sup -2}. The overestimated net surface flux is mainly due to an even larger overestimation of shortwave radiation by 44 W m{sup -2}, which is compensated by a surface latent heat flux overestimated by 14 W m{sup -2}. However, the quality of surface currents and the associated oceanic heat transport in CFSR are not compromised by the surface flux biases, and they agree with the best available estimates. The uncertainties of the observational data from field experiments are also briefly discussed in the present study.

  17. In-situ BrO measurements in the upper troposphere / lower stratosphere. Validation of the ENVISAT satellite measurements and photochemical model studies

    Energy Technology Data Exchange (ETDEWEB)

    Hrechanyy, S.

    2007-04-15

    Inorganic bromine species form the second most important halogen family affecting stratospheric ozone (WMO, 2003). Although the stratospheric bromine mixing ratio is about two orders of magnitude lower than the chlorine one, bromine has much higher ozone depleting potential (factor of about 45) compared to chlorine. This study reports and discusses atmospheric bromine monoxide, BrO, measurements in the altitude range 15-30 km performed by the balloon-borne instrument TRIPLE and aircraft instrument HALOX employing the chemical conversion resonance fluorescence technique, which is the only proven in-situ technique for the measurements of BrO. 57 HALOX flights have been performed in the frame of five field campaigns ranging from the Arctic to tropics. Three TRIPLE flights were carried out at high and mid latitudes in the frame of the SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) validation. Calibration, consistency checks, data analysis, and error assessment for the in-situ measurements are described. The balloon measurements have yielded vertical profiles of BrO between 15 and 30 km altitude at northern mid- and at arctic latitudes. From the aircraft measurements a meridional BrO distribution from tropical to the arctic latitudes between 15 and 20 km altitude was obtained. In order to check the reliability of the bromine chemistry in the CLaMS model the BrO profile measured by TRIPLE on June 9, 2003 in Arctic spring/summer conditions was compared to a simulated BrO profile. For the simulation the model was initialized with appropriate satellite and balloon measurements and with a total stratospheric bromine of 18.4 pptv. Very good agreement between the TRIPLE measurements and model results was found. Measurements of BrO in the tropical tropopause layer (TTL) are well suited to investigate the contribution of very short-lived bromine species (VSLS) to the inorganic bromine, Bry. Since tropical HALOX BrO measurements from TROCCINOX

  18. Conductivity, temperature, depth, fluorescence, optical backscatter, laser in-situ scattering and transmissivity, acoustic zooplankton biomass, net zooplankton counts, and suspended particle data from the RV HUGH R. SHARP in the upper Chesapeake Bay from February 23 through 26, 2007 as part of the Bio-Physical Interaction in the Turbidity Maximum (BITMAX-II) program (NODC Accession 0062884)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data set contains Cruise Reports and CTD data from 8 main cruises in the upper Chesapeake Bay on board the R/V Hugh R. Sharp from February 2007 to October 2008 ....

  19. Mechanisms controlling primary and new production in a global ecosystem model – Part II: The role of the upper ocean short-term periodic and episodic mixing events

    Directory of Open Access Journals (Sweden)

    E. E. Popova

    2006-01-01

    Full Text Available The use of 6 h, daily, weekly and monthly atmospheric forcing resulted in dramatically different predictions of plankton productivity in a global 3-D coupled physical-biogeochemical model. Resolving the diurnal cycle of atmospheric variability by use of 6 h forcing, and hence also diurnal variability in UML depth, produced the largest difference, reducing predicted global primary and new production by 25% and 10% respectively relative to that predicted with daily and weekly forcing. This decrease varied regionally, being a 30% reduction in equatorial areas primarily because of increased light limitation resulting from deepening of the mixed layer overnight as well as enhanced storm activity, and 25% at moderate and high latitudes primarily due to increased grazing pressure resulting from late winter stratification events. Mini-blooms of phytoplankton and zooplankton occur in the model during these events, leading to zooplankton populations being sufficiently well developed to suppress the progress of phytoplankton blooms. A 10% increase in primary production was predicted in the peripheries of the oligotrophic gyres due to increased storm-induced nutrient supply end enhanced winter production during the short term stratification events that are resolved in the run forced by 6 h meteorological fields. By resolving the diurnal cycle, model performance was significantly improved with respect to several common problems: underestimated primary production in the oligotrophic gyres; overestimated primary production in the Southern Ocean; overestimated magnitude of the spring bloom in the subarctic Pacific Ocean, and overestimated primary production in equatorial areas. The result of using 6 h forcing on predicted ecosystem dynamics was profound, the effects persisting far beyond the hourly timescale, and having major consequences for predicted global and new production on an annual basis.

  20. Global oceanic production of nitrous oxide

    Science.gov (United States)

    Freing, Alina; Wallace, Douglas W. R.; Bange, Hermann W.

    2012-01-01

    We use transient time distributions calculated from tracer data together with in situ measurements of nitrous oxide (N2O) to estimate the concentration of biologically produced N2O and N2O production rates in the ocean on a global scale. Our approach to estimate the N2O production rates integrates the effects of potentially varying production and decomposition mechanisms along the transport path of a water mass. We estimate that the oceanic N2O production is dominated by nitrification with a contribution of only approximately 7 per cent by denitrification. This indicates that previously used approaches have overestimated the contribution by denitrification. Shelf areas may account for only a negligible fraction of the global production; however, estuarine sources and coastal upwelling of N2O are not taken into account in our study. The largest amount of subsurface N2O is produced in the upper 500 m of the water column. The estimated global annual subsurface N2O production ranges from 3.1 ± 0.9 to 3.4 ± 0.9 Tg N yr−1. This is in agreement with estimates of the global N2O emissions to the atmosphere and indicates that a N2O source in the mixed layer is unlikely. The potential future development of the oceanic N2O source in view of the ongoing changes of the ocean environment (deoxygenation, warming, eutrophication and acidification) is discussed. PMID:22451110

  1. Global oceanic production of nitrous oxide.

    Science.gov (United States)

    Freing, Alina; Wallace, Douglas W R; Bange, Hermann W

    2012-05-05

    We use transient time distributions calculated from tracer data together with in situ measurements of nitrous oxide (N(2)O) to estimate the concentration of biologically produced N(2)O and N(2)O production rates in the ocean on a global scale. Our approach to estimate the N(2)O production rates integrates the effects of potentially varying production and decomposition mechanisms along the transport path of a water mass. We estimate that the oceanic N(2)O production is dominated by nitrification with a contribution of only approximately 7 per cent by denitrification. This indicates that previously used approaches have overestimated the contribution by denitrification. Shelf areas may account for only a negligible fraction of the global production; however, estuarine sources and coastal upwelling of N(2)O are not taken into account in our study. The largest amount of subsurface N(2)O is produced in the upper 500 m of the water column. The estimated global annual subsurface N(2)O production ranges from 3.1 ± 0.9 to 3.4 ± 0.9 Tg N yr(-1). This is in agreement with estimates of the global N(2)O emissions to the atmosphere and indicates that a N(2)O source in the mixed layer is unlikely. The potential future development of the oceanic N(2)O source in view of the ongoing changes of the ocean environment (deoxygenation, warming, eutrophication and acidification) is discussed.

  2. Using High Resolution Simulations with WRF/SSiB Regional Climate Model Constrained by In Situ Observations to Assess the Impacts of Dust in Snow in the Upper Colorado River Basin

    Science.gov (United States)

    Oaida, C. M.; Skiles, M.; Painter, T. H.; Xue, Y.

    2015-12-01

    The mountain snowpack is an essential resource for both the environment as well as society. Observational and energy balance modeling work have shown that dust on snow (DOS) in western U.S. (WUS) is a major contributor to snow processes, including snowmelt timing and runoff amount in regions like the Upper Colorado River Basin (UCRB). In order to accurately estimate the impact of DOS to the hydrologic cycle and water resources, now and under a changing climate, we need to be able to (1) adequately simulate the snowpack (accumulation), and (2) realistically represent DOS processes in models. Energy balance models do not capture the impact on a broader local or regional scale, nor the land-atmosphere feedbacks, while GCM studies cannot resolve orographic-related precipitation processes, and therefore snowpack accumulation, owing to coarse spatial resolution and smoother terrain. All this implies the impacts of dust on snow on the mountain snowpack and other hydrologic processes are likely not well captured in current modeling studies. Recent increase in computing power allows for RCMs to be used at higher spatial resolutions, while recent in situ observations of dust in snow properties can help constrain modeling simulations. Therefore, in the work presented here, we take advantage of these latest resources to address the some of the challenges outlined above. We employ the newly enhanced WRF/SSiB regional climate model at 4 km horizontal resolution. This scale has been shown by others to be adequate in capturing orographic processes over WUS. We also constrain the magnitude of dust deposition provided by a global chemistry and transport model, with in situ measurements taken at sites in the UCRB. Furthermore, we adjust the dust absorptive properties based on observed values at these sites, as opposed to generic global ones. This study aims to improve simulation of the impact of dust in snow on the hydrologic cycle and related water resources.

  3. Regular in situ measurements of HDO/H216O in the northern and southern hemispherical upper troposphere reveal tropospheric transport processes.

    Science.gov (United States)

    Christner, Emanuel; Dyroff, Christoph; Sanati, Shahrokh; Brenninkmeijer, Carl; Zahn, Andreas

    2013-04-01

    influence of convection on the isotopic composition of water in the upper troposphere. This finding is consistent with the well-known regions of deep convection over Africa, Malaysia and South America.

  4. Fortuitous encounters between seagliders and adult female northern fur seals (Callorhinus ursinus) off the Washington (USA) coast: upper ocean variability and links to top predator behavior.

    Science.gov (United States)

    Pelland, Noel A; Sterling, Jeremy T; Lea, Mary-Anne; Bond, Nicholas A; Ream, Rolf R; Lee, Craig M; Eriksen, Charles C

    2014-01-01

    and temporally dynamic ocean environment, thus reflecting its influence on associated NFS prey species.

  5. Fortuitous encounters between seagliders and adult female northern fur seals (Callorhinus ursinus off the Washington (USA coast: upper ocean variability and links to top predator behavior.

    Directory of Open Access Journals (Sweden)

    Noel A Pelland

    to a spatially and temporally dynamic ocean environment, thus reflecting its influence on associated NFS prey species.

  6. Vertical distribution of chlorophyll a concentration and phytoplankton community composition from in situ fluorescence profiles: a first database for the global ocean

    Science.gov (United States)

    Sauzède, R.; Lavigne, H.; Claustre, H.; Uitz, J.; Schmechtig, C.; D'Ortenzio, F.; Guinet, C.; Pesant, S.

    2015-10-01

    In vivo chlorophyll a fluorescence is a proxy of chlorophyll a concentration, and is one of the most frequently measured biogeochemical properties in the ocean. Thousands of profiles are available from historical databases and the integration of fluorescence sensors to autonomous platforms has led to a significant increase of chlorophyll fluorescence profile acquisition. To our knowledge, this important source of environmental data has not yet been included in global analyses. A total of 268 127 chlorophyll fluorescence profiles from several databases as well as published and unpublished individual sources were compiled. Following a robust quality control procedure detailed in the present paper, about 49 000 chlorophyll fluorescence profiles were converted into phytoplankton biomass (i.e., chlorophyll a concentration) and size-based community composition (i.e., microphytoplankton, nanophytoplankton and picophytoplankton), using a method specifically developed to harmonize fluorescence profiles from diverse sources. The data span over 5 decades from 1958 to 2015, including observations from all major oceanic basins and all seasons, and depths ranging from the surface to a median maximum sampling depth of around 700 m. Global maps of chlorophyll a concentration and phytoplankton community composition are presented here for the first time. Monthly climatologies were computed for three of Longhurst's ecological provinces in order to exemplify the potential use of the data product. Original data sets (raw fluorescence profiles) as well as calibrated profiles of phytoplankton biomass and community composition are available on open access at PANGAEA, Data Publisher for Earth and Environmental Science. Raw fluorescence profiles: http://doi.pangaea.de/10.1594/PANGAEA.844212 and Phytoplankton biomass and community composition: http://doi.pangaea.de/10.1594/PANGAEA.844485

  7. Significance of detrital zircons in upper Devonian ocean-basin strata of the Sonora allochthon and Lower Permian synorogenic strata of the Mina Mexico foredeep, central Sonora, Mexico

    Science.gov (United States)

    Poole, F.G.; Gehrels, G.E.; Stewart, John H.

    2008-01-01

    U-Pb isotopic dating of detrital zircons from a conglomeratic barite sandstone in the Sonora allochthon and a calciclastic sandstone in the Mina Mexico foredeep of the Minas de Barita area reveals two main age groups in the Upper Devonian part of the Los Pozos Formation, 1.73-1.65 Ga and 1.44-1.42 Ga; and three main age groups in the Lower Permian part of the Mina Mexico Formation, 1.93-1.91 Ga, 1.45-1.42 Ga, and 1.1-1.0 Ga. Small numbers of zircons with ages of 2.72-2.65 Ga, 1.30-1.24 Ga, ca. 2.46 Ga, ca. 1.83 Ga, and ca. 0.53 Ga are also present in the Los Pozos sandstone. Detrital zircons ranging in age from 1.73 to 1.65 Ga are considered to have been derived from the Yavapai, Mojave, and Mazatzal Provinces and their transition zones of the southwestern United States and northwestern Mexico. The 1.45-1.30 Ga detrital zircons were probably derived from scattered granite bodies within the Mojave and Mazatzal basement rocks in the southwestern United States and northwestern Mexico, and possibly from the Southern and Eastern Granite-Rhyolite Provinces of the southern United States. The 1.24-1.0 Ga detrital zircons are believed to have been derived from the Grenville (Llano) Province to the east and northeast or from Grenvilleage intrusions or anatectites to the north. Several detrital zircon ages ranging from 2.72 to 1.91 Ga were probably derived originally from the Archean Wyoming Province and Early Paleoproterozoic rocks of the Lake Superior region. These older detrital zircons most likely have been recycled one or more times into the Paleozoic sandstones of central Sonora. The 0.53 Ga zircon is believed to have been derived from a Lower Cambrian granitoid or meta-morphic rock northeast of central Sonora, possibly in New Mexico and Colorado, or Oklahoma. Detrital zircon geochronology suggests that most of the detritus in both samples was derived from Laurentia to the north, whereas some detritus in the Permian synorogenic foredeep sequence was derived from the

  8. Physical and biogeochemical forcing of oxygen and nitrate changes during El Niño/El Viejo and La Niña/La Vieja upper-ocean phases in the tropical eastern South Pacific along 86° W

    Directory of Open Access Journals (Sweden)

    P. J. Llanillo

    2013-10-01

    Full Text Available Temporal changes in the water mass distribution and biogeochemical signals in the tropical eastern South Pacific are investigated with the help of an extended optimum multi-parameter (OMP analysis, a technique for inverse modeling of mixing and biogeochemical processes through a multidimensional least-square fit. Two ship occupations of a meridional section along 85°50' W from 14° S to 1° N are analysed during relatively warm (El Niño/El Viejo, March 1993 and cold (La Niña/La Vieja, February 2009 upper-ocean phases. The largest El Niño–Southern Oscillation (ENSO impact was found in the water properties and water mass distribution in the upper 200 m north of 10° S. ENSO promotes the vertical motion of the oxygen minimum zone (OMZ associated with the hypoxic equatorial subsurface water (ESSW. During a cold phase the core of the ESSW is found at shallower layers, replacing shallow (top 200 m subtropical surface water (STW. The heave of isopycnals due to ENSO partially explains the intrusion of oxygen-rich and nutrient-poor antarctic intermediate water (AAIW into the depth range of 150–500 m. The other cause of the AAIW increase at shallower depths is that this water mass flowed along shallower isopycnals in 2009. The shift in the vertical location of AAIW reaching the OMZ induces changes in the amount of oxygen advected and respired inside the OMZ: the larger the oxygen supply, the greater the respiration and the lower the nitrate loss through denitrification. Variations in the intensity of the zonal currents in the equatorial current system, which ventilates the OMZ from the west, are used to explain the patchy latitudinal changes of seawater properties observed along the repeated section. Significant changes reach down to 800 m, suggesting that decadal variability (Pacific decadal oscillation is also a potential driver in the observed variability.

  9. Impact of improved momentum transfer coefficients on the dynamics and thermodynamics of the north Indian Ocean

    Science.gov (United States)

    Parekh, Anant; Gnanaseelan, C.; Jayakumar, A.

    2011-01-01

    Long time series of in situ observations from the north Indian Ocean are used to compute the momentum transfer coefficients over the north Indian Ocean. The transfer coefficients behave nonlinearly for low winds (<4 m/s), when most of the known empirical relations assume linear relations. Impact of momentum transfer coefficients on the upper ocean parameters is studied using an ocean general circulation model. The model experiments revealed that the Arabian Sea and Equatorial Indian Ocean are more sensitive to the momentum transfer coefficients than the Bay of Bengal and south Indian Ocean. The impact of momentum transfer coefficients on sea surface temperature is up to 0.3°C-0.4°C, on mixed layer depth is up to 10 m, and on thermocline depth is up to 15 m. Furthermore, the impact on the zonal current is maximum over the equatorial Indian Ocean (i.e., about 0.12 m/s in May and 0.15 m/s in October; both May and October are the period of Wyrtki jets and the difference in current has potential impact on the seasonal mass transport). The Sverdrup transport has maximum impact in the Bay of Bengal (3 to 4 Sv in August), whereas the Ekman transport has maximum impact in the Arabian Sea (4 Sv during May to July). These highlight the potential impact of accurate momentum forcing on the results from current ocean models.

  10. Southern Ocean frontal structure and sea-ice formation rates revealed by elephant seals

    Science.gov (United States)

    Charrassin, J.-B.; Hindell, M.; Rintoul, S. R.; Roquet, F.; Sokolov, S.; Biuw, M.; Costa, D.; Boehme, L.; Lovell, P.; Coleman, R.; Timmermann, R.; Meijers, A.; Meredith, M.; Park, Y.-H.; Bailleul, F.; Goebel, M.; Tremblay, Y.; Bost, C.-A.; McMahon, C. R.; Field, I. C.; Fedak, M. A.; Guinet, C.

    2008-01-01

    Polar regions are particularly sensitive to climate change, with the potential for significant feedbacks between ocean circulation, sea ice, and the ocean carbon cycle. However, the difficulty in obtaining in situ data means that our ability to detect and interpret change is very limited, especially in the Southern Ocean, where the ocean beneath the sea ice remains almost entirely unobserved and the rate of sea-ice formation is poorly known. Here, we show that southern elephant seals (Mirounga leonina) equipped with oceanographic sensors can measure ocean structure and water mass changes in regions and seasons rarely observed with traditional oceanographic platforms. In particular, seals provided a 30-fold increase in hydrographic profiles from the sea-ice zone, allowing the major fronts to be mapped south of 60°S and sea-ice formation rates to be inferred from changes in upper ocean salinity. Sea-ice production rates peaked in early winter (April–May) during the rapid northward expansion of the pack ice and declined by a factor of 2 to 3 between May and August, in agreement with a three-dimensional coupled ocean–sea-ice model. By measuring the high-latitude ocean during winter, elephant seals fill a “blind spot” in our sampling coverage, enabling the establishment of a truly global ocean-observing system. PMID:18695241

  11. NCEI ocean heat content, temperature anomalies, salinity anomalies, thermosteric sea level anomalies, halosteric sea level anomalies, and total steric sea level anomalies from 1955 to present calculated from in situ oceanographic subsurface profile data (NCEI Accession 0164586)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains ocean heat content change, oceanic temperature and salinity changes, and steric sea level change (change in volume without change in mass),...

  12. 57Fe Mössbauer analysis of the Upper Triassic-Lower Jurassic deep-sea chert: Paleo-redox history across the Triassic-Jurassic boundary and the Toarcian oceanic anoxic event

    International Nuclear Information System (INIS)

    Sato, Tomohiko; Isozaki, Yukio; Shozugawa, Katsumi; Seimiya, Kimiko; Matsuo, Motoyuki

    2012-01-01

    We investigated the paleo-redox change across the Triassic-Jurassic (T-J) boundary (∼200 Ma) and the Early Toarcian oceanic anoxic event (T-OAE; ∼183 Ma) recorded in the Upper Triassic to Lower Jurassic pelagic deep-sea cherts in the Inuyama area, Central Japan. The present 57 Fe Mössbauer spectroscopic analysis for these cherts identified five iron species, i.e., hematite (α-Fe 2 O 3 ), pyrite (FeS 2 ), paramagnetic Fe 3 +  , and two paramagnetic Fe 2 +  with different quadrupole splittings. The occurrence of hematite and pyrite in deep-sea cherts essentially indicates primary oxidizing and reducing depositional conditions, respectively. The results confirmed that oxidizing conditions persisted in deep-sea across the T-J boundary. In contrast, across the T-OAE, deep-sea environment shifted to reducing conditions. The first appearance of the gray pyrite-bearing chert marked the onset of the deep-sea oxygen-depletion in the middle Pliensbachian, i.e., clearly before the shallow-sea T-OAE.

  13. Oceanic crustal velocities from laboratory and logging measurements of Integrated Ocean Drilling Program Hole 1256D

    Science.gov (United States)

    Gilbert, Lisa A.; Salisbury, Matthew H.

    2011-09-01

    Drilling and logging of Integrated Ocean Drilling Program (IODP) Hole 1256D have provided a unique opportunity for systematically studying a fundamental problem in marine geophysics: What influences the seismic structure of oceanic crust, porosity or composition? Compressional wave velocities (Vp) logged in open hole or from regional refraction measurements integrate both the host rock and cracks in the crust. To determine the influence of cracks on Vp at several scales, we first need an accurate ground truth in the form of laboratory Vp on crack-free, or nearly crack-free samples. We measured Vp on 46 water-saturated samples at in situ pressures to determine the baseline velocities of the host rock. These new results match or exceed Vp logs throughout most of the hole, especially in the lower dikes and gabbros, where porosities are low. In contrast, samples measured at sea under ambient laboratory conditions, had consistently lower Vp than the Vp logs, even after correction to in situ pressures. Crack-free Vp calculated from simple models of logging and laboratory porosity data for different lithologies and facies suggest that crustal velocities in the lavas and upper dikes are controlled by porosity. In particular, the models demonstrate significant large-scale porosity in the lavas, especially in the sections identified as fractured flows and breccias. However, crustal velocities in the lower dikes and gabbros are increasingly controlled by petrology as the layer 2-3 boundary is approached.

  14. Upper ocean stratification and sea ice growth rates during the summer-fall transition, as revealed by Elephant seal foraging in the Adélie Depression, East Antarctica

    Directory of Open Access Journals (Sweden)

    G. D. Williams

    2011-03-01

    Full Text Available Southern elephant seals (Mirounga leonina, fitted with Conductivity-Temperature-Depth sensors at Macquarie Island in January 2005 and 2010, collected unique oceanographic observations of the Adélie and George V Land continental shelf (140–148° E during the summer-fall transition (late February through April. This is a key region of dense shelf water formation from enhanced sea ice growth/brine rejection in the local coastal polynyas. In 2005, two seals occupied the continental shelf break near the grounded icebergs at the northern end of the Mertz Glacier Tongue for several weeks from the end of February. One of the seals migrated west to the Dibble Ice Tongue, apparently utilising the Antarctic Slope Front current near the continental shelf break. In 2010, immediately after that year's calving of the Mertz Glacier Tongue, two seals migrated to the same region but penetrated much further southwest across the Adélie Depression and sampled the Commonwealth Bay polynya from March through April. Here we present observations of the regional oceanography during the summer-fall transition, in particular (i the zonal distribution of modified Circumpolar Deep Water exchange across the shelf break, (ii the upper ocean stratification across the Adélie Depression, including alongside iceberg C-28 that calved from the Mertz Glacier and (iii the convective overturning of the deep remnant seasonal mixed layer in Commonwealth Bay from sea ice growth. Heat and freshwater budgets to 200–300 m are used to estimate the ocean heat content (400→50 MJ m−2, flux (50–200 W m−2 loss and sea ice growth rates (maximum of 7.5–12.5 cm day−1. Mean seal-derived sea ice growth rates were within the range of satellite-derived estimates from 1992–2007 using ERA-Interim data. We speculate that the continuous foraging by the seals within Commonwealth Bay during the summer/fall transition was due to favorable feeding

  15. Upper ocean stratification and sea ice growth rates during the summer-fall transition, as revealed by Elephant seal foraging in the Adélie Depression, East Antarctica

    Science.gov (United States)

    Williams, G. D.; Hindell, M.; Houssais, M.-N.; Tamura, T.; Field, I. C.

    2011-03-01

    Southern elephant seals (Mirounga leonina), fitted with Conductivity-Temperature-Depth sensors at Macquarie Island in January 2005 and 2010, collected unique oceanographic observations of the Adélie and George V Land continental shelf (140-148° E) during the summer-fall transition (late February through April). This is a key region of dense shelf water formation from enhanced sea ice growth/brine rejection in the local coastal polynyas. In 2005, two seals occupied the continental shelf break near the grounded icebergs at the northern end of the Mertz Glacier Tongue for several weeks from the end of February. One of the seals migrated west to the Dibble Ice Tongue, apparently utilising the Antarctic Slope Front current near the continental shelf break. In 2010, immediately after that year's calving of the Mertz Glacier Tongue, two seals migrated to the same region but penetrated much further southwest across the Adélie Depression and sampled the Commonwealth Bay polynya from March through April. Here we present observations of the regional oceanography during the summer-fall transition, in particular (i) the zonal distribution of modified Circumpolar Deep Water exchange across the shelf break, (ii) the upper ocean stratification across the Adélie Depression, including alongside iceberg C-28 that calved from the Mertz Glacier and (iii) the convective overturning of the deep remnant seasonal mixed layer in Commonwealth Bay from sea ice growth. Heat and freshwater budgets to 200-300 m are used to estimate the ocean heat content (400→50 MJ m-2), flux (50-200 W m-2 loss) and sea ice growth rates (maximum of 7.5-12.5 cm day-1). Mean seal-derived sea ice growth rates were within the range of satellite-derived estimates from 1992-2007 using ERA-Interim data. We speculate that the continuous foraging by the seals within Commonwealth Bay during the summer/fall transition was due to favorable feeding conditions resulting from the convective overturning of the deep

  16. Global Ocean Phytoplankton

    Science.gov (United States)

    Franz, B. A.; Behrenfeld, M. J.; Siegel, D. A.; Werdell, P. J.

    2014-01-01

    Marine phytoplankton are responsible for roughly half the net primary production (NPP) on Earth, fixing atmospheric CO2 into food that fuels global ocean ecosystems and drives the ocean's biogeochemical cycles. Phytoplankton growth is highly sensitive to variations in ocean physical properties, such as upper ocean stratification and light availability within this mixed layer. Satellite ocean color sensors, such as the Sea-viewing Wide Field-of-view Sensor (SeaWiFS; McClain 2009) and Moderate Resolution Imaging Spectroradiometer (MODIS; Esaias 1998), provide observations of sufficient frequency and geographic coverage to globally monitor physically-driven changes in phytoplankton distributions. In practice, ocean color sensors retrieve the spectral distribution of visible solar radiation reflected upward from beneath the ocean surface, which can then be related to changes in the photosynthetic phytoplankton pigment, chlorophyll- a (Chla; measured in mg m-3). Here, global Chla data for 2013 are evaluated within the context of the 16-year continuous record provided through the combined observations of SeaWiFS (1997-2010) and MODIS on Aqua (MODISA; 2002-present). Ocean color measurements from the recently launched Visible and Infrared Imaging Radiometer Suite (VIIRS; 2011-present) are also considered, but results suggest that the temporal calibration of the VIIRS sensor is not yet sufficiently stable for quantitative global change studies. All MODISA (version 2013.1), SeaWiFS (version 2010.0), and VIIRS (version 2013.1) data presented here were produced by NASA using consistent Chla algorithms.

  17. Delaware River and Upper Bay Sediment Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The area of coverage consists of 192 square miles of benthic habitat mapped from 2005 to 2007 in the Delaware River and Upper Delaware Bay. The bottom sediment map...

  18. Impact of resolving the diurnal cycle in an ocean-atmosphere GCM. Pt. 1: a diurnally forced OGCM

    Energy Technology Data Exchange (ETDEWEB)

    Bernie, D.J. [University of Reading, National Centre for Atmospheric Science - Climate, Department of Meteorology, Reading (United Kingdom); Laboratoire d' Oceanographie et du Climat, Experimentation et Approches Numeriques, IPSL, Paris (France); Met Office Hadley Centre, Exeter, EX1 3PB (United Kingdom); Guilyardi, E. [University of Reading, National Centre for Atmospheric Science - Climate, Department of Meteorology, Reading (United Kingdom); Laboratoire d' Oceanographie et du Climat, Experimentation et Approches Numeriques, IPSL, Paris (France); Madec, G. [Laboratoire d' Oceanographie et du Climat, Experimentation et Approches Numeriques, IPSL, Paris (France); Slingo, J.M.; Woolnough, S.J. [University of Reading, National Centre for Atmospheric Science - Climate, Department of Meteorology, Reading (United Kingdom)

    2007-11-15

    The diurnal cycle is a fundamental time scale in the climate system, at which the upper ocean and atmosphere are routinely observed to vary. Current climate models, however, are not configured to resolve the diurnal cycle in the upper ocean or the interaction of the ocean and atmosphere on these time scales. This study examines the diurnal cycle of the tropical upper ocean and its climate impacts. In the present paper, the first of two, a high vertical resolution ocean general circulation model (OGCM), with modified physics, is developed which is able to resolve the diurnal cycle of sea surface temperature (SST) and current variability in the upper ocean. It is then validated against a satellite derived parameterization of diurnal SST variability and in-situ current observations. The model is then used to assess rectification of the intraseasonal SST response to the Madden-Julian oscillation (MJO) by the diurnal cycle of SST. Across the equatorial Indo-Pacific it is found that the diurnal cycle increases the intraseasonal SST response to the MJO by around 20%. In the Pacific, the diurnal cycle also modifies the exchange of momentum between equatorially divergent Ekman currents and the meridionally convergent geostrophic currents beneath, resulting in a 10% increase in the strength of the Ekman cells and equatorial upwelling. How the thermodynamic and dynamical impacts of the diurnal cycle effect the mean state, and variability, of the climate system cannot be fully investigated in the constrained design of ocean-only experiments presented here. The second part of this study, published separately, addresses the climate impacts of the diurnal cycle in the coupled system by coupling the OGCM developed here to an atmosphere general circulation model. (orig.)

  19. Global patterns of organic carbon export and sequestration in the ocean (Arne Richter Award for Outstanding Young Scientists)

    Science.gov (United States)

    Henson, S.; Sanders, R.; Madsen, E.; Le Moigne, F.; Quartly, G.

    2012-04-01

    A major term in the global carbon cycle is the ocean's biological carbon pump which is dominated by sinking of small organic particles from the surface ocean to its interior. Here we examine global patterns in particle export efficiency (PEeff), the proportion of primary production that is exported from the surface ocean, and transfer efficiency (Teff), the fraction of exported organic matter that reaches the deep ocean. This is achieved through extrapolating from in situ estimates of particulate organic carbon export to the global scale using satellite-derived data. Global scale estimates derived from satellite data show, in keeping with earlier studies, that PEeff is high at high latitudes and low at low latitudes, but that Teff is low at high latitudes and high at low latitudes. However, in contrast to the relationship observed for deep biomineral fluxes in previous studies, we find that Teff is strongly negatively correlated with opal export flux from the upper ocean, but uncorrelated with calcium carbonate export flux. We hypothesise that the underlying factor governing the spatial patterns observed in Teff is ecosystem function, specifically the degree of recycling occurring in the upper ocean, rather than the availability of calcium carbonate for ballasting. Finally, our estimate of global integrated carbon export is only 50% of previous estimates. The lack of consensus amongst different methodologies on the strength of the biological carbon pump emphasises that our knowledge of a major planetary carbon flux remains incomplete.

  20. Ocean Acidification | Smithsonian Ocean Portal

    Science.gov (United States)

    Natural History Blog For Educators At The Museum Media Archive Ocean Life & Ecosystems Mammals Sharks Mangroves Poles Census of Marine Life Planet Ocean Tides & Currents Waves & Storms The Seafloor ocean is affected. Such a relatively quick change in ocean chemistry doesn't give marine life, which

  1. The upper to uppermost Cenomanian oceanic anoxic event: a review and an interpretation involving a seawater stratification by the CO{sub 2} of mantle origin; L`evenement oceanique anoxique du Cenomanien superieur-terminal: une revue et une interpretation mettant en jeu une stratification des eaux marines par le CO{sub 2} mantellique

    Energy Technology Data Exchange (ETDEWEB)

    Busson, G; Cornee, A [Laboratoire de Geologie du Museum, 75 - Paris (France)

    1997-12-31

    Oil exploration data have revealed the exceptional richness of the middle Cretaceous in source rocks worldwide. Oceanic drillings have shown the existence of oceanic anoxic events (OAE) well defined in time. This study analyzes the OAE 2 event dated from the upper Cenomanian-lower Turonian. This event has been recognized in numerous sites from the northern, central and southern Atlantic and punctually in the Pacific and Indian oceans. It occurs in both numerous deep oceanic sites and orogenic zones, and stable platforms covered by epeiric seas. It coincides with a sea level rise which is one of the most sudden and highest in Phanerozoic times and it stands out as a remarkable episode of massive faunal extinction which led to the deposition of organic matter of marine planktonic dominant nature. The first part of the study recalls the previous interpretations of this event (oceanic stratification, euxinic conditions, spreading of an oxygen minimum zone, greenhouse climate effect, sluggish atmospheric and oceanic circulations, high planktonic production, great oceanic overturns, marginal or general upwellings, marine transgressions on epeiric areas etc..). The second part gives the basis of the new hypothesis: connection between separated seas due to the transgression, retreat of evaporite facies, high sea-floor spreading rates, intense volcanic activity and high mantle outgassing with huge CO{sub 2} influxes. The last part describes the proposed interpretation: CO{sub 2} accumulation in deep and intermediate waters and sea overflows on marginal and continental areas which led to a rise of the CO{sub 2}-rich hypolimnion. (J.S.) 236 refs.

  2. The upper to uppermost Cenomanian oceanic anoxic event: a review and an interpretation involving a seawater stratification by the CO{sub 2} of mantle origin; L`evenement oceanique anoxique du Cenomanien superieur-terminal: une revue et une interpretation mettant en jeu une stratification des eaux marines par le CO{sub 2} mantellique

    Energy Technology Data Exchange (ETDEWEB)

    Busson, G.; Cornee, A. [Laboratoire de Geologie du Museum, 75 - Paris (France)

    1996-12-31

    Oil exploration data have revealed the exceptional richness of the middle Cretaceous in source rocks worldwide. Oceanic drillings have shown the existence of oceanic anoxic events (OAE) well defined in time. This study analyzes the OAE 2 event dated from the upper Cenomanian-lower Turonian. This event has been recognized in numerous sites from the northern, central and southern Atlantic and punctually in the Pacific and Indian oceans. It occurs in both numerous deep oceanic sites and orogenic zones, and stable platforms covered by epeiric seas. It coincides with a sea level rise which is one of the most sudden and highest in Phanerozoic times and it stands out as a remarkable episode of massive faunal extinction which led to the deposition of organic matter of marine planktonic dominant nature. The first part of the study recalls the previous interpretations of this event (oceanic stratification, euxinic conditions, spreading of an oxygen minimum zone, greenhouse climate effect, sluggish atmospheric and oceanic circulations, high planktonic production, great oceanic overturns, marginal or general upwellings, marine transgressions on epeiric areas etc..). The second part gives the basis of the new hypothesis: connection between separated seas due to the transgression, retreat of evaporite facies, high sea-floor spreading rates, intense volcanic activity and high mantle outgassing with huge CO{sub 2} influxes. The last part describes the proposed interpretation: CO{sub 2} accumulation in deep and intermediate waters and sea overflows on marginal and continental areas which led to a rise of the CO{sub 2}-rich hypolimnion. (J.S.) 236 refs.

  3. Ocean tides

    Science.gov (United States)

    Hendershott, M. C.

    1975-01-01

    A review of recent developments in the study of ocean tides and related phenomena is presented. Topics briefly discussed include: the mechanism by which tidal dissipation occurs; continental shelf, marginal sea, and baroclinic tides; estimation of the amount of energy stored in the tide; the distribution of energy over the ocean; the resonant frequencies and Q factors of oceanic normal modes; the relationship of earth tides and ocean tides; and numerical global tidal models.

  4. A distributed atmosphere-sea ice-ocean observatory in the central Arctic Ocean: concept and first results

    Science.gov (United States)

    Hoppmann, Mario; Nicolaus, Marcel; Rabe, Benjamin; Wenzhöfer, Frank; Katlein, Christian; Scholz, Daniel; Valcic, Lovro

    2017-04-01

    To understand the current evolution of the Arctic Ocean towards a less extensive, thinner and younger sea ice cover is one of the biggest challenges in climate research. Especially the lack of simultaneous in-situ observations of sea ice, ocean and atmospheric properties leads to significant knowledge gaps in their complex interactions, and how the associated processes impact the polar marine ecosystem. Here we present a concept for the implementation of a long-term strategy to monitor the most essential climate- and ecosystem parameters in the central Arctic Ocean, year round and synchronously. The basis of this strategy is the development and enhancement of a number of innovative autonomous observational platforms, such as rugged weather stations, ice mass balance buoys, ice-tethered bio-optical buoys and upper ocean profilers. The deployment of those complementing platforms in a distributed network enables the simultaneous collection of physical and biogeochemical in-situ data on basin scales and year round, including the largely undersampled winter periods. A key advantage over other observatory systems is that the data is sent via satellite in near-real time, contributing to numerical weather predictions through the Global Telecommunication System (GTS) and to the International Arctic Buoy Programme (IABP). The first instruments were installed on ice floes in the Eurasian Basin in spring 2015 and 2016, yielding exceptional records of essential climate- and ecosystem-relevant parameters in one of the most inaccessible regions of this planet. Over the next 4 years, and including the observational periods of the Year of Polar Prediction (YOPP, 2017-2019) and the Multidisciplinary drifting Observatory for the Study of the Arctic Climate (MOSAiC, 2020), the distributed observatory will be maintained by deployment of additional instruments in the central Arctic each year, benefitting from international logistical efforts.

  5. Ocean deoxygenation in a warming world.

    Science.gov (United States)

    Keeling, Ralph E; Körtzinger, Arne; Gruber, Nicolas

    2010-01-01

    Ocean warming and increased stratification of the upper ocean caused by global climate change will likely lead to declines in dissolved O2 in the ocean interior (ocean deoxygenation) with implications for ocean productivity, nutrient cycling, carbon cycling, and marine habitat. Ocean models predict declines of 1 to 7% in the global ocean O2 inventory over the next century, with declines continuing for a thousand years or more into the future. An important consequence may be an expansion in the area and volume of so-called oxygen minimum zones, where O2 levels are too low to support many macrofauna and profound changes in biogeochemical cycling occur. Significant deoxygenation has occurred over the past 50 years in the North Pacific and tropical oceans, suggesting larger changes are looming. The potential for larger O2 declines in the future suggests the need for an improved observing system for tracking ocean 02 changes.

  6. In Situ Analysis of Orthopyroxene in Diogenites Using Laser Ablation ICP-MS

    Science.gov (United States)

    Elk, Mattias; Quinn, J. E.; Mittlefehldt, D. W.

    2012-01-01

    Howardites, eucrites and diogenites (HED) form a suit of igneous achondrite meteorites that are thought to have formed on a single asteroidal body. While there have been many different models proposed for the formation of the HED parent asteroid they can be generalized into two end member models. One is the magma ocean model (e.g. [1]) in which the entire HED parent body was continuously fractionated from a planet wide magma ocean with diogenites representing the lower crust and eucrites being upper crustal rocks. The second model hypothesizes that diogenites and eucrites were formed as a series of intrusions and/or extrusions of partial melts of a primitive proto-Vesta [2]. We use in situ trace element analysis together with major and minor element analysis to try and distinguish between these different hypotheses for the evolution of the HED parent body.

  7. Towards Improved Satellite-In Situ Oceanographic Data Interoperability and Associated Value Added Services at the Podaac

    Science.gov (United States)

    Tsontos, V. M.; Huang, T.; Holt, B.

    2015-12-01

    The earth science enterprise increasingly relies on the integration and synthesis of multivariate datasets from diverse observational platforms. NASA's ocean salinity missions, that include Aquarius/SAC-D and the SPURS (Salinity Processes in the Upper Ocean Regional Study) field campaign, illustrate the value of integrated observations in support of studies on ocean circulation, the water cycle, and climate. However, the inherent heterogeneity of resulting data and the disparate, distributed systems that serve them complicates their effective utilization for both earth science research and applications. Key technical interoperability challenges include adherence to metadata and data format standards that are particularly acute for in-situ data and the lack of a unified metadata model facilitating archival and integration of both satellite and oceanographic field datasets. Here we report on efforts at the PO.DAAC, NASA's physical oceanographic data center, to extend our data management and distribution support capabilities for field campaign datasets such as those from SPURS. We also discuss value-added services, based on the integration of satellite and in-situ datasets, which are under development with a particular focus on DOMS. The distributed oceanographic matchup service (DOMS) implements a portable technical infrastructure and associated web services that will be broadly accessible via the PO.DAAC for the dynamic collocation of satellite and in-situ data, hosted by distributed data providers, in support of mission cal/val, science and operational applications.

  8. Oceanic archipelagos

    DEFF Research Database (Denmark)

    Triantis, Kostas A.; Whittaker, Robert James; Fernández-Palacios, José María

    2016-01-01

    Since the contributions of Charles Darwin and Alfred Russel Wallace, oceanic archipelagos have played a central role in the development of biogeography. However, despite the critical influence of oceanic islands on ecological and evolutionary theory, our focus has remained limited to either the i...... of the archipelagic geological dynamics that can affect diversity at both the island and the archipelagic level. We also reaffirm that oceanic archipelagos are appropriate spatiotemporal units to frame analyses in order to understand large scale patterns of biodiversity....

  9. Biofacies evidence for Late Cambrian low-paleolatitude oceans, western United State and central Asia

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, M.E. (Geological Survey, Denver, CO (United States)); Cook, H.E. (Geological Survey, Menlo Park, CA (United States)); Melnikova, L. (Palaeontological Inst., Moscow (Russian Federation))

    1991-02-01

    Biofacies that formed on carbonate platform-margin slopes adjacent to an early Paleozoic, low-paleolatitude paleoocean are contained in the Upper Cambrian Swarbrick Formation, Tyby Shale, and Upper Cambrian-lowest Ordovician Hales Limestone of the Hot Creek Range, Nevada, and the Upper Cambrian-lowest Ordovician part of the Shabakty Suite of the Malyi Karatau, southern Kazakhstan. These in-situ limestones formed in platform-margin slope and basin-plain environments. Shoal-water faunal assemblages occur in carbonate-turbidite and debris-flow deposits interbedded with in-situ deeper water assemblages of the submarine-fan facies. Abundant sponge spicules, geographically widespread benthic trilobites, and rare ostracodes occur in some of the in-situ beds. In contrast, the shoal-water platform environments were well oxygenated and contain mainly endemic trilobite assemblages. These biofacies characteristics support an interpretation that Late Cambrian oceans were poorly oxygenated, but not anoxic, below the surface mixing layer and that benthic trilobite faunas were widely distributed in response to the more-or-less continuous deep water, low-oxygen habitats. Elements of the Late Cambrian low-oxygen biofacies are widespread in the Tien Shan structural belt of China and the Soviet Union, in central and eastern China, and along the western margin of early Paleozoic North America. This facies distribution pattern defines the transition from low-paleolatitude, shoal-water carbonate platforms to open oceans which have since been destroyed by pre-Late Ordovician and pre-middle Paleozoic Paleotectonic activity.

  10. Ocean transportation

    National Research Council Canada - National Science Library

    Frankel, Ernst G; Marcus, Henry S

    1973-01-01

    .... This analysis starts with a review of ocean transportation demand and supply including projections of ship capacity demand and world shipbuilding capacity under various economic and political assumptions...

  11. Ocean technology

    Digital Repository Service at National Institute of Oceanography (India)

    Peshwe, V.B.

    stream_size 2 stream_content_type text/plain stream_name Voices_Oceans_1996_113.pdf.txt stream_source_info Voices_Oceans_1996_113.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  12. Ocean acidification

    National Research Council Canada - National Science Library

    Gattuso, J.P; Hansson, L

    2011-01-01

    The fate of much of the CO 2 we produce will be to enter the ocean. In a sense, we are fortunate that ocean water is endowed with the capacity to absorb far more CO 2 per litre than were it salt free...

  13. How well does wind speed predict air-sea gas transfer in the sea ice zone? A synthesis of radon deficit profiles in the upper water column of the Arctic Ocean

    Science.gov (United States)

    Loose, B.; Kelly, R. P.; Bigdeli, A.; Williams, W.; Krishfield, R.; Rutgers van der Loeff, M.; Moran, S. B.

    2017-05-01

    We present 34 profiles of radon-deficit from the ice-ocean boundary layer of the Beaufort Sea. Including these 34, there are presently 58 published radon-deficit estimates of air-sea gas transfer velocity (k) in the Arctic Ocean; 52 of these estimates were derived from water covered by 10% sea ice or more. The average value of k collected since 2011 is 4.0 ± 1.2 m d-1. This exceeds the quadratic wind speed prediction of weighted kws = 2.85 m d-1 with mean-weighted wind speed of 6.4 m s-1. We show how ice cover changes the mixed-layer radon budget, and yields an "effective gas transfer velocity." We use these 58 estimates to statistically evaluate the suitability of a wind speed parameterization for k, when the ocean surface is ice covered. Whereas the six profiles taken from the open ocean indicate a statistically good fit to wind speed parameterizations, the same parameterizations could not reproduce k from the sea ice zone. We conclude that techniques for estimating k in the open ocean cannot be similarly applied to determine k in the presence of sea ice. The magnitude of k through gaps in the ice may reach high values as ice cover increases, possibly as a result of focused turbulence dissipation at openings in the free surface. These 58 profiles are presently the most complete set of estimates of k across seasons and variable ice cover; as dissolved tracer budgets they reflect air-sea gas exchange with no impact from air-ice gas exchange.

  14. In situ phytoplankton distributions in the Amundsen Sea Polynya measured by autonomous gliders

    Directory of Open Access Journals (Sweden)

    Oscar Schofield

    2015-10-01

    Full Text Available Abstract The Amundsen Sea Polynya is characterized by large phytoplankton blooms, which makes this region disproportionately important relative to its size for the biogeochemistry of the Southern Ocean. In situ data on phytoplankton are limited, which is problematic given recent reports of sustained change in the Amundsen Sea. During two field expeditions to the Amundsen Sea during austral summer 2010–2011 and 2014, we collected physical and bio-optical data from ships and autonomous underwater gliders. Gliders documented large phytoplankton blooms associated with Antarctic Surface Waters with low salinity surface water and shallow upper mixed layers (< 50 m. High biomass was not always associated with a specific water mass, suggesting the importance of upper mixed depth and light in influencing phytoplankton biomass. Spectral optical backscatter and ship pigment data suggested that the composition of phytoplankton was spatially heterogeneous, with the large blooms dominated by Phaeocystis and non-bloom waters dominated by diatoms. Phytoplankton growth rates estimated from field data (≤ 0.10 day−1 were at the lower end of the range measured during ship-based incubations, reflecting both in situ nutrient and light limitations. In the bloom waters, phytoplankton biomass was high throughout the 50-m thick upper mixed layer. Those biomass levels, along with the presence of colored dissolved organic matter and detritus, resulted in a euphotic zone that was often < 10 m deep. The net result was that the majority of phytoplankton were light-limited, suggesting that mixing rates within the upper mixed layer were critical to determining the overall productivity; however, regional productivity will ultimately be controlled by water column stability and the depth of the upper mixed layer, which may be enhanced with continued ice melt in the Amundsen Sea Polynya.

  15. Ocean energy

    International Nuclear Information System (INIS)

    2006-01-01

    This annual evaluation is a synthesis of works published in 2006. Comparisons are presented between the wind power performances and European Commission White Paper and Biomass action plan objectives. The sector covers the energy exploitation of all energy flows specifically supplied by the seas and oceans. At present, most efforts in both research and development and in experimental implementation are concentrated on tidal currents and wave power. 90% of today worldwide ocean energy production is represented by a single site: the Rance Tidal Power Plant. Ocean energies must face up two challenges: progress has to be made in finalizing and perfecting technologies and costs must be brought under control. (A.L.B.)

  16. Ocean Acidification

    Science.gov (United States)

    Ocean and coastal acidification is an emerging issue caused by increasing amounts of carbon dioxide being absorbed by seawater. Changing seawater chemistry impacts marine life, ecosystem services, and humans. Learn what EPA is doing and what you can do.

  17. Ocean transportation

    National Research Council Canada - National Science Library

    Frankel, Ernst G; Marcus, Henry S

    1973-01-01

    .... The discussion of technology considers the ocean transportation system as a whole, and the composite subsystems such as hull, outfit, propulsion, cargo handling, automation, and control and interface technology...

  18. Ocean transportation

    National Research Council Canada - National Science Library

    Frankel, Ernst G; Marcus, Henry S

    1973-01-01

    .... In ocean transportation economics we present investment and operating costs as well as the results of a study of financing of shipping. Similarly, a discussion of government aid to shipping is presented.

  19. Ocean Color

    Data.gov (United States)

    National Aeronautics and Space Administration — Satellite-derived Ocean Color Data sets from historical and currently operational NASA and International Satellite missions including the NASA Coastal Zone Color...

  20. ONR Ocean Wave Dynamics Workshop

    Science.gov (United States)

    In anticipation of the start (in Fiscal Year 1988) of a new Office of Naval Research (ONR) Accelerated Research Initiative (ARI) on Ocean Surface Wave Dynamics, a workshop was held August 5-7, 1986, at Woods Hole, Mass., to discuss new ideas and directions of research. This new ARI on Ocean Surface Wave Dynamics is a 5-year effort that is organized by the ONR Physical Oceanography Program in cooperation with the ONR Fluid Mechanics Program and the Physical Oceanography Branch at the Naval Ocean Research and Development Activity (NORDA). The central theme is improvement of our understanding of the basic physics and dynamics of surface wave phenomena, with emphasis on the following areas: precise air-sea coupling mechanisms,dynamics of nonlinear wave-wave interaction under realistic environmental conditions,wave breaking and dissipation of energy,interaction between surface waves and upper ocean boundary layer dynamics, andsurface statistical and boundary layer coherent structures.

  1. Ocean Quality

    OpenAIRE

    Brevik, Roy Schjølberg; Jordheim, Nikolai; Martinsen, John Christian; Labori, Aleksander; Torjul, Aleksander Lelis

    2017-01-01

    Bacheloroppgave i Internasjonal Markedsføring fra ESADE i Spania, 2017 In this thesis we were going to answer the problem definition “which segments in the Spanish market should Ocean Quality target”. By doing so we started to collect data from secondary sources in order to find information about the industry Ocean Quality are operating in. After conducting the secondary research, we still lacked essential information about the existing competition in the aquaculture industry o...

  2. Climatic-oceanic forcing on the organic accumulation across the shelf during the Early Cambrian (Age 2 through 3) in the mid-upper Yangtze Block, NE Guizhou, South China

    Science.gov (United States)

    Yeasmin, Rumana; Chen, Daizhao; Fu, Yong; Wang, Jianguo; Guo, Zenghui; Guo, Chuan

    2017-02-01

    The organic-rich sediments were widely deposited over the entire Yangtze Block during the Early Cambrian (late Nemakit-Daldynian to Botomian). In the mid-upper Yangtze region, northeastern Guizhou, South China, they comprise, in ascending order, the Niutitang, Jiumenchong and lower Bianmachong formations which are dominated by black shales except the middle one characterized by interbedded shales-limestones. Three third-order depositional sequences are identified in the two studied sections located on the upper slope to basin of the open shelf. The organic-rich sediments were mostly deposited notably during transgressions on the shallower upper slope-margin (TOC up to 25 wt.%) where they are characterized by co-increases in C, P, Fe, and Ba concentrations, indicating the highest organic productivity and coupled C, P and Fe cycling there. In contrast, in the shelf basin, the concomitant organic-rich sediments yield lower organic (TOC Block within the north mid-low-latitude trade-wind zone during deposition (the Early Cambrian). As such, enhanced offshore currents driven by the trade winds could have further induced the upwelling of nutrient-rich deep waters along the shelf during the transgressions, although tended to wane onwards, leading to the tempo-spatial heterogeneities in organic production and redox state across the shelf sea.

  3. Ocean acidification in a geoengineering context

    Science.gov (United States)

    Williamson, Phillip; Turley, Carol

    2012-01-01

    Fundamental changes to marine chemistry are occurring because of increasing carbon dioxide (CO2) in the atmosphere. Ocean acidity (H+ concentration) and bicarbonate ion concentrations are increasing, whereas carbonate ion concentrations are decreasing. There has already been an average pH decrease of 0.1 in the upper ocean, and continued unconstrained carbon emissions would further reduce average upper ocean pH by approximately 0.3 by 2100. Laboratory experiments, observations and projections indicate that such ocean acidification may have ecological and biogeochemical impacts that last for many thousands of years. The future magnitude of such effects will be very closely linked to atmospheric CO2; they will, therefore, depend on the success of emission reduction, and could also be constrained by geoengineering based on most carbon dioxide removal (CDR) techniques. However, some ocean-based CDR approaches would (if deployed on a climatically significant scale) re-locate acidification from the upper ocean to the seafloor or elsewhere in the ocean interior. If solar radiation management were to be the main policy response to counteract global warming, ocean acidification would continue to be driven by increases in atmospheric CO2, although with additional temperature-related effects on CO2 and CaCO3 solubility and terrestrial carbon sequestration. PMID:22869801

  4. Oceans Past

    DEFF Research Database (Denmark)

    Based on research for the History of Marine Animal Populations project, Oceans Past examines the complex relationship our forebears had with the sea and the animals that inhabit it. It presents eleven studies ranging from fisheries and invasive species to offshore technology and the study of marine...... environmental history, bringing together the perspectives of historians and marine scientists to enhance understanding of ocean management of the past, present and future. In doing so, it also highlights the influence that changes in marine ecosystems have upon the politics, welfare and culture of human...

  5. Ocean energy

    International Nuclear Information System (INIS)

    2009-01-01

    There are 5 different ways of harnessing ocean energy: tides, swells, currents, osmotic pressure and deep water thermal gradients. The tidal power sector is the most mature. A single French site - The Rance tidal power station (240 MW) which was commissioned in 1966 produces 90% of the world's ocean energy. Smaller scale power stations operate around the world, 10 are operating in the European Union and 5 are being tested. Underwater generators and wave energy converters are expanding. In France a 1 km 2 sea test platform is planned for 2010. (A.C.)

  6. Physical and meteorological delayed-mode full-resolution data from the Tropical Atmosphere Ocean (TAO) array in the Equatorial Pacific

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Tropical Atmosphere Ocean (TAO) array of moored buoys spans the tropical Pacific. Moorings within the array measure surface meteorological and upper-ocean...

  7. Ocean Acidification

    Science.gov (United States)

    Ludwig, Claudia; Orellana, Mónica V.; DeVault, Megan; Simon, Zac; Baliga, Nitin

    2015-01-01

    The curriculum module described in this article addresses the global issue of ocean acidification (OA) (Feely 2009; Figure 1). OA is a harmful consequence of excess carbon dioxide (CO[subscript 2]) in the atmosphere and poses a threat to marine life, both algae and animal. This module seeks to teach and help students master the cross-disciplinary…

  8. Estimating the upper limit of prehistoric peak ground acceleration using an in situ, intact and vulnerable stalagmite from Plavecká priepast cave (Detrekői-zsomboly), Little Carpathians, Slovakia—first results

    Science.gov (United States)

    Gribovszki, K.; Kovács, K.; Mónus, P.; Bokelmann, G.; Konecny, P.; Lednická, M.; Moseley, G.; Spötl, C.; Edwards, R. L.; Bednárik, M.; Brimich, L.; Tóth, L.

    2017-09-01

    Earthquakes hit urban centres in Europe infrequently, but occasionally with disastrous effects. Obtaining an unbiased view of seismic hazard (and risk) is therefore very important. In principle, the best way to test probabilistic seismic hazard assessments (PSHAs) is to compare them with observations that are entirely independent of the procedure used to produce PSHA models. Arguably, the most valuable information in this context should be information on long-term hazard, namely maximum intensities (or magnitudes) occurring over time intervals that are at least as long as a seismic cycle. The new observations can provide information of maximum intensity (or magnitude) for long timescale as an input data for PSHA studies as well. Long-term information can be gained from intact stalagmites in natural caves. These formations survived all earthquakes that have occurred over thousands of years, depending on the age of the stalagmite. Their `survival' requires that the horizontal ground acceleration (HGA) has never exceeded a certain critical value within that time period. Here, we present such a stalagmite-based case study from the Little Carpathians of Slovakia. A specially shaped, intact and vulnerable stalagmite in the Plavecká priepast cave was examined in 2013. This stalagmite is suitable for estimating the upper limit of horizontal peak ground acceleration generated by prehistoric earthquakes. The critical HGA values as a function of time going back into the past determined from the stalagmite that we investigated are presented. For example, at the time of Jókő event (1906), the critical HGA value cannot have been higher than 1 and 1.3 m/s2 at the time of the assumed Carnuntum event (˜340 AD), and 3000 years ago, it must have been lower than 1.7 m/s2. We claimed that the effect of Jókő earthquake (1906) on the location of the Plavecká priepast cave is consistent with the critical HGA value provided by the stalagmite we investigated. The approach used in

  9. Ocean energies

    International Nuclear Information System (INIS)

    Charlier, R.H.; Justus, J.R.

    1993-01-01

    This timely volume provides a comprehensive review of current technology for all ocean energies. It opens with an analysis of ocean thermal energy conversion (OTEC), with and without the use of an intermediate fluid. The historical and economic background is reviewed, and the geographical areas in which this energy could be utilized are pinpointed. The production of hydrogen as a side product, and environmental consequences of OTEC plants are considered. The competitiveness of OTEC with conventional sources of energy is analysed. Optimisation, current research and development potential are also examined. Separate chapters provide a detailed examination of other ocean energy sources. The possible harnessing of solar ponds, ocean currents, and power derived from salinity differences is considered. There is a fascinating study of marine winds, and the question of using the ocean tides as a source of energy is examined, focussing on a number of tidal power plant projects, including data gathered from China, Australia, Great Britain, Korea and the USSR. Wave energy extraction has excited recent interest and activity, with a number of experimental pilot plants being built in northern Europe. This topic is discussed at length in view of its greater chance of implementation. Finally, geothermal and biomass energy are considered, and an assessment of their future is given. The authors also distinguished between energy schemes which might be valuable in less-industrialized regions of the world, but uneconomical in the developed countries. A large number of illustrations support the text. This book will be of particular interest to energy economists, engineers, geologists and oceanographers, and to environmentalists and environmental engineers

  10. SWOT: The Surface Water and Ocean Topography Mission. Wide- Swath Altimetric Elevation on Earth

    Science.gov (United States)

    Fu, Lee-Lueng (Editor); Alsdorf, Douglas (Editor); Morrow, Rosemary; Rodriguez, Ernesto; Mognard, Nelly

    2012-01-01

    The elevation of the surface of the ocean and freshwater bodies on land holds key information on many important processes of the Earth System. The elevation of the ocean surface, called ocean surface topography, has been measured by conventional nadirlooking radar altimeter for the past two decades. The data collected have been used for the study of large-scale circulation and sea level change. However, the spatial resolution of the observations has limited the study to scales larger than about 200 km, leaving the smaller scales containing substantial kinetic energy of ocean circulation that is responsible for the flux of heat, dissolved gas and nutrients between the upper and the deep ocean. This flux is important to the understanding of the ocean's role in regulatingfuture climate change.The elevation of the water bodies on land is a key parameter required for the computation of storage and discharge of freshwater in rivers, lakes, and wetlands. Globally, the spatial and temporal variability of water storage and discharge is poorly known due to the lack of well-sampled observations. In situ networks measuring river flows are declining worldwide due to economic and political reasons. Conventional altimeter observations suffers from the complexity of multiple peaks caused by the reflections from water, vegetation canopy and rough topography, resulting in much less valid data over land than over the ocean. Another major limitation is the large inter track distance preventing good coverage of rivers and other water bodies.This document provides descriptions of a new measurement technique using radar interferometry to obtain wide-swath measurement of water elevation at high resolution over both the ocean and land. Making this type of measurement, which addresses the shortcomings of conventional altimetry in both oceanographic and hydrologic applications, is the objective of a mission concept called Surface Water and Ocean Topography (SWOT), which was recommended by

  11. C-GLORSv5: an improved multipurpose global ocean eddy-permitting physical reanalysis

    OpenAIRE

    A. Storto; S. Masina

    2016-01-01

    Global ocean reanalyses combine in situ and satellite ocean observations with a general circulation ocean model to estimate the time-evolving state of the ocean, and they represent a valuable tool for a variety of applications, ranging from climate monitoring and process studies to downstream applications, initialization of long-range forecasts and regional studies. The purpose of this paper is to document the recent upgrade of C-GLORS (version 5), the latest ocean reanalysi...

  12. On some aspects of Indian Ocean warm pool

    Digital Repository Service at National Institute of Oceanography (India)

    Saji, P.K.; Balchand, A.N.; RameshKumar, M.R.

    Annual and interannual variation of Indian Ocean Warm Pool (IOWP) was studied using satellite and in situ ocean temperature data IOWP surface area undergoes a strong annual cycle attaining a maximum of 24x106km2 during April...

  13. Proceedings of oceans '91

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This volume contains the proceedings of the Oceans '91 Conference. Topics addressed include: ocean energy conversion, marine communications and navigation, ocean wave energy conversion, environmental modeling, global climate change, ocean minerals technology, oil spill technology, and submersible vehicles

  14. Copepod faecal pellet transfer through the meso- and bathypelagic layers in the Southern Ocean in spring

    Science.gov (United States)

    Belcher, Anna; Manno, Clara; Ward, Peter; Henson, Stephanie A.; Sanders, Richard; Tarling, Geraint A.

    2017-03-01

    The faecal pellets (FPs) of zooplankton can be important vehicles for the transfer of particulate organic carbon (POC) to the deep ocean, often making large contributions to carbon sequestration. However, the routes by which these FPs reach the deep ocean have yet to be fully resolved. We address this by comparing estimates of copepod FP production to measurements of copepod FP size, shape, and number in the upper mesopelagic (175-205 m) using Marine Snow Catchers, and in the bathypelagic using sediment traps (1500-2000 m). The study is focussed on the Scotia Sea, which contains some of the most productive regions in the Southern Ocean, where epipelagic FP production is likely to be high. We found that, although the size distribution of the copepod community suggests that high numbers of small FPs are produced in the epipelagic, small FPs are rare in the deeper layers, implying that they are not transferred efficiently to depth. Consequently, small FPs make only a minor contribution to FP fluxes in the meso- and bathypelagic, particularly in terms of carbon. The dominant FPs in the upper mesopelagic were cylindrical and elliptical, while ovoid FPs were dominant in the bathypelagic. The change in FP morphology, as well as size distribution, points to the repacking of surface FPs in the mesopelagic and in situ production in the lower meso- and bathypelagic, which may be augmented by inputs of FPs via zooplankton vertical migrations. The flux of carbon to the deeper layers within the Southern Ocean is therefore strongly modulated by meso- and bathypelagic zooplankton, meaning that the community structure in these zones has a major impact on the efficiency of FP transfer to depth.

  15. Ocean acidification

    International Nuclear Information System (INIS)

    Soubelet, Helene; Veyre, Philippe; Monnoyer-Smith, Laurence

    2017-09-01

    This brief publication first recalls and outlines that ocean acidification is expected to increase, and will result in severe ecological impacts (more fragile coral reefs, migration of species, and so on), and therefore social and economic impacts. This issue is particularly important for France who possesses the second exclusive maritime area in the world. The various impacts of ocean acidification on living species is described, notably for phytoplankton, coral reefs, algae, molluscs, and fishes. Social and economic impacts are also briefly presented: tourism, protection against risks (notably by coral reefs), shellfish aquaculture and fishing. Issues to be addressed by scientific research are evoked: interaction between elements of an ecosystem and between different ecosystems, multi-stress effects all along organism lifetime, vulnerability and adaptability of human societies

  16. First evaluation of MyOcean altimetric data in the Arctic Ocean

    DEFF Research Database (Denmark)

    Cheng, Yongcun; Andersen, Ole Baltazar; Knudsen, Per

    2012-01-01

    The MyOcean V2 preliminary (V2p) data set of weekly gridded sea level anomaly (SLA) maps from 1993 to 2009 over the Arctic region is evaluated against existing altimetric data sets and tide gauge data. Compared with DUACS V3.0.0 (Data Unification and Altimeter Combination System) data set, MyOcean...... V2p data set improves spatial coverage and quality as well as maximum temporal correlation coefficient between altimetry and tide gauge data. The estimated amplitude of sea level annual signal and linear sea level trend from MyOcean data set are evaluated against altimetry from DUACS and RADS (Radar...... Altimeter Database System), the SODA (Simple Ocean Data Assimilation) ocean reanalysis and tide gauge data sets from PSMSL (Permanent Service for Mean Sea Level). The results show that the MyOcean data set fits in-situ measurements better than DUACS data set with respect to amplitude of annual signal...

  17. New Paleomagnetic Data From Upper Gabbros Supports Limited Rotation of Central Semail Massif in Oman Ophiolite

    Science.gov (United States)

    Horst, A. J.; Sarah, T.; Hartley, E.; Martin, J.

    2017-12-01

    Paleomagnetic data from northern massifs of the Oman ophiolite demonstrate substantial clockwise rotations prior to or during obduction, yet data from southern massifs are recently suggested to be remagnetized during obduction and show subsequent smaller counterclockwise rotations. To better understand paleomagnetic data from the southern massifs, we conducted a detailed paleomagnetic and rock magnetic study of 21 sites in upper gabbros and 5 sites in lower crustal gabbros within the central Semail massif. Samples treated with progressive thermal demagnetization yield interpretable magnetizations with dominant unblocking between 500-580°C that implies characteristic remanent magnetization (ChRM) components carried by low-titanium magnetite and nearly pure magnetite. Rock magnetic and scanning electron microscopy data provide additional support of the carriers of magnetization. ChRMs from sites with samples containing partially-serpentinized olivine are similar to sites with samples lacking olivine, where the carriers appear to be fine magnetite intergrowths in pyroxene. The overall in situ and tilt-corrected mean directions from upper gabbros are distinct from the lower gabbros, from previous data within the massif, and also directions from similar crustal units in adjacent Rustaq and Wadi Tayin massifs. After tilt correction for 10-15° SE dip of the crust-mantle boundary, the mean direction from upper gabbros is nearly coincident with in situ lower gabbros. The tilt-corrected direction from upper gabbros is also consistent with an expected direction from the Late Cretaceous apparent polar wander path for Arabia at the age of crustal accretion ( 95Ma). These results suggest the upper crustal section in Semail has likely only experienced minor tilting since formation and acquisition of magnetization. Due to slow cooling of middle to lower gabbros in fast-spread crust, the lower gabbro sites likely cooled later or after obduction, and thus yield a distinct

  18. MASERATI: a new rocket-borne diode laser absorption spectrometer for in-situ measurement of trace gases in the middle and upper atmosphere; MASERATI: Ein neues raketengetragenes Diodenlaser-Absorptionsspektrometer zur in situ-Messung von Spurengasen in der mittleren und oberen Atmosphaere

    Energy Technology Data Exchange (ETDEWEB)

    Lucke, H. von

    1999-09-01

    MASERATI (middle atmosphere spectrometric experiment on Rockets for the analysis of trace gas influences) is the first rocket-borne tunable diode laser absorption spectrometer (TDLAS). It was developed to measure water vapor and carbon dioxide in the altitude range from 50 to 90 km and 120 km, respectively. Infrared absorption spectroscopy using two laser diodes is applied to measure both trace gases simultaneously. The laser beams are sent into an open multiple-pass absorption setup mounted on top of the sounding rocket. High sensitivity is achieved by means of frequency modulation and lock-in techniques. The results of several tests performed in the laboratory demonstrate that the instrument is capable of detecting relative absorbances down to 10{sup -4} - 10{sup -5} when integrating spectra for 1 s. Two almost identical MASERATI instruments have been built and launched on sounding rockets from the Andoeya rocket range (69 N, 16 E) in northern Norway during winter 1997/98. The results of these flights demonstrate that MASERATI is a new suitable tool for in situ studies of the mesosphere and lower thermosphere. (orig.)

  19. Depth of origin of ocean-circulation-induced magnetic signals

    Science.gov (United States)

    Irrgang, Christopher; Saynisch-Wagner, Jan; Thomas, Maik

    2018-01-01

    As the world ocean moves through the ambient geomagnetic core field, electric currents are generated in the entire ocean basin. These oceanic electric currents induce weak magnetic signals that are principally observable outside of the ocean and allow inferences about large-scale oceanic transports of water, heat, and salinity. The ocean-induced magnetic field is an integral quantity and, to first order, it is proportional to depth-integrated and conductivity-weighted ocean currents. However, the specific contribution of oceanic transports at different depths to the motional induction process remains unclear and is examined in this study. We show that large-scale motional induction due to the general ocean circulation is dominantly generated by ocean currents in the upper 2000 m of the ocean basin. In particular, our findings allow relating regional patterns of the oceanic magnetic field to corresponding oceanic transports at different depths. Ocean currents below 3000 m, in contrast, only contribute a small fraction to the ocean-induced magnetic signal strength with values up to 0.2 nT at sea surface and less than 0.1 nT at the Swarm satellite altitude. Thereby, potential satellite observations of ocean-circulation-induced magnetic signals are found to be likely insensitive to deep ocean currents. Furthermore, it is shown that annual temporal variations of the ocean-induced magnetic field in the region of the Antarctic Circumpolar Current contain information about sub-surface ocean currents below 1000 m with intra-annual periods. Specifically, ocean currents with sub-monthly periods dominate the annual temporal variability of the ocean-induced magnetic field.

  20. State of Climate 2011 - Global Ocean Phytoplankton

    Science.gov (United States)

    Siegel, D. A.; Antoine, D.; Behrenfeld, M. J.; d'Andon, O. H. Fanton; Fields, E.; Franz, B. A.; Goryl, P.; Maritorena, S.; McClain, C. R.; Wang, M.; hide

    2012-01-01

    Phytoplankton photosynthesis in the sun lit upper layer of the global ocean is the overwhelmingly dominant source of organic matter that fuels marine ecosystems. Phytoplankton contribute roughly half of the global (land and ocean) net primary production (NPP; gross photosynthesis minus plant respiration) and phytoplankton carbon fixation is the primary conduit through which atmospheric CO2 concentrations interact with the ocean s carbon cycle. Phytoplankton productivity depends on the availability of sunlight, macronutrients (e.g., nitrogen, phosphorous), and micronutrients (e.g., iron), and thus is sensitive to climate-driven changes in the delivery of these resources to the euphotic zone

  1. Characterizing the chaotic nature of ocean ventilation

    Science.gov (United States)

    MacGilchrist, Graeme A.; Marshall, David P.; Johnson, Helen L.; Lique, Camille; Thomas, Matthew

    2017-09-01

    Ventilation of the upper ocean plays an important role in climate variability on interannual to decadal timescales by influencing the exchange of heat and carbon dioxide between the atmosphere and ocean. The turbulent nature of ocean circulation, manifest in a vigorous mesoscale eddy field, means that pathways of ventilation, once thought to be quasi-laminar, are in fact highly chaotic. We characterize the chaotic nature of ventilation pathways according to a nondimensional "filamentation number," which estimates the reduction in filament width of a ventilated fluid parcel due to mesoscale strain. In the subtropical North Atlantic of an eddy-permitting ocean model, the filamentation number is large everywhere across three upper ocean density surfaces—implying highly chaotic ventilation pathways—and increases with depth. By mapping surface ocean properties onto these density surfaces, we directly resolve the highly filamented structure and confirm that the filamentation number captures its spatial variability. These results have implications for the spreading of atmospherically-derived tracers into the ocean interior.

  2. Rock Magnetic Characterization Through an Intact Sequence of Oceanic Crust, IODP Hole 1256D

    NARCIS (Netherlands)

    Herrero-Bervera, E.; Acton, G.; Krasá, D.; Rodriguez, S.; Dekkers, M.J.

    2011-01-01

    Coring at Site 1256 (6.736◦N, 91.934◦W, 3635 m water depth) during Ocean Drilling Program (ODP) Leg 206 and Integrated Ocean Drilling Program (IODP) Expeditions 309 and 312 successfully sampled a complete section of in situ oceanic crust, including sediments of Seismic Layer 1, lavas and dikes of

  3. Ocean eddies and climate predictability.

    Science.gov (United States)

    Kirtman, Ben P; Perlin, Natalie; Siqueira, Leo

    2017-12-01

    A suite of coupled climate model simulations and experiments are used to examine how resolved mesoscale ocean features affect aspects of climate variability, air-sea interactions, and predictability. In combination with control simulations, experiments with the interactive ensemble coupling strategy are used to further amplify the role of the oceanic mesoscale field and the associated air-sea feedbacks and predictability. The basic intent of the interactive ensemble coupling strategy is to reduce the atmospheric noise at the air-sea interface, allowing an assessment of how noise affects the variability, and in this case, it is also used to diagnose predictability from the perspective of signal-to-noise ratios. The climate variability is assessed from the perspective of sea surface temperature (SST) variance ratios, and it is shown that, unsurprisingly, mesoscale variability significantly increases SST variance. Perhaps surprising is the fact that the presence of mesoscale ocean features even further enhances the SST variance in the interactive ensemble simulation beyond what would be expected from simple linear arguments. Changes in the air-sea coupling between simulations are assessed using pointwise convective rainfall-SST and convective rainfall-SST tendency correlations and again emphasize how the oceanic mesoscale alters the local association between convective rainfall and SST. Understanding the possible relationships between the SST-forced signal and the weather noise is critically important in climate predictability. We use the interactive ensemble simulations to diagnose this relationship, and we find that the presence of mesoscale ocean features significantly enhances this link particularly in ocean eddy rich regions. Finally, we use signal-to-noise ratios to show that the ocean mesoscale activity increases model estimated predictability in terms of convective precipitation and atmospheric upper tropospheric circulation.

  4. The sensitivity of dimethyl sulfide production to simulated climate change in the Eastern Antarctic Southern Ocean

    International Nuclear Information System (INIS)

    Gabric, Albert J.; Cropp, Roger; Marchant, Harvey

    2003-01-01

    Dimethyl sulfide (DMS) is a radiatively active trace gas produced by enzymatic cleavage of its precursor compound, dimethyl sulfoniopropionate (DMSP), which is released by marine phytoplankton in the upper ocean. Once ventilated to the atmosphere, DMS is oxidised to form non-sea-salt sulfate and methane sulfonate (MSA) aerosols, which are a major source of cloud condensation nuclei (CCN) in remote marine air and may thus play a role in climate regulation. Here we simulate the change in DMS flux in the Eastern Antarctic ocean from 1960-2086, corresponding to equivalent CO 2 tripling relative to pre-industrial levels. Calibration to contemporary climate conditions was carried out using a genetic algorithm to fit the model to surface chlorophyll from the 4-yr SeaWiFs satellite archive and surface DMS from an existing global database. Following the methodology used previously in the Subantarctic Southern Ocean, we then simulated DMS emissions under enhanced greenhouse conditions by forcing the DMS model with output from a coupled atmospheric-ocean general circulation model (GCM). The GCM was run in transient mode under the IPCC/IS92a radiative forcing scenario. By 2086, the change simulated in annual integrated DMS flux is around 20% in ice-free waters, with a greater increase of 45% in the seasonal ice zone (SIZ). Interestingly, the large increase in flux in the SIZ is not due to higher in situ production but mainly because of a loss of ice cover during summer-autumn and an increase in sea-to-air ventilation of DMS. These proportional changes in areal mean flux (25%) are much higher than previously estimated for the Subantarctic Southern Ocean (5%), and point to the possibility of a significant DMS-climate feedback at high Southern latitudes. Due to the nexus between ice cover and food-web structure, the potential for ecological community shifts under enhanced greenhouse conditions is high, and the implications for DMS production are discussed

  5. The oceanic tides in the South Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    M. L. Genco

    Full Text Available The finite element ocean tide model of Le Provost and Vincent (1986 has been applied to the simulation of the M2 and K1 components over the South Atlantic Ocean. The discretisation of the domain, of the order of 200 km over the deep ocean, is refined down to 15 km along the coasts, such refinement enables wave propagation and damping over the continental shelves to be correctly solved. The marine boundary conditions, from Dakar to Natal, through the Drake passage and from South Africa to Antarctica, are deduced from in situ data and from Schwiderski's solution and then optimised following a procedure previously developed by the authors. The solutions presented are in very good agreement with in situ data: the root mean square deviations from a standard subset of 13 pelagic stations are 1.4 cm for M2 and 0.45 cm for K1, which is significantly better overall than solutions published to date in the literature. Zooms of the M2 solution are presented for the Falkland Archipelago, the Weddell Sea and the Patagonian Shelf. The first zoom allows detailing of the tidal structure around the Falklands and its interpretation in terms of a stationary trapped Kelvin wave system. The second zoom, over the Weddell Sea, reveals for the first time what must be the tidal signal under the permanent ice shelf and gives a solution over that sea which is generally in agreement with observations. The third zoom is over the complex Patagonian Shelf. This zoom illustrates the ability of the model to simulate the tides, even over this area, with a surprising level of realism, following purely hydrodynamic modelling procedures, within a global ocean tide model. Maps of maximum associated tidal currents are also given, as a first illustration of a by-product of these simulations.

  6. Upper Gastrointestinal (GI) Series

    Science.gov (United States)

    ... standard barium upper GI series, which uses only barium a double-contrast upper GI series, which uses both air and ... evenly coat your upper GI tract with the barium. If you are having a double-contrast study, you will swallow gas-forming crystals that ...

  7. Exploring the southern ocean response to climate change

    Science.gov (United States)

    Martinson, Douglas G.; Rind, David; Parkinson, Claire

    1993-01-01

    The purpose of this project was to couple a regional (Southern Ocean) ocean/sea ice model to the existing Goddard Institute for Space Science (GISS) atmospheric general circulation model (GCM). This modification recognizes: the relative isolation of the Southern Ocean; the need to account, prognostically, for the significant air/sea/ice interaction through all involved components; and the advantage of translating the atmospheric lower boundary (typically the rapidly changing ocean surface) to a level that is consistent with the physical response times governing the system evolution (that is, to the base of the fast responding ocean surface layer). The deeper ocean beneath this layer varies on time scales several orders of magnitude slower than the atmosphere and surface ocean, and therefore the boundary between the upper and deep ocean represents a more reasonable fixed boundary condition.

  8. Changing Arctic Ocean freshwater pathways.

    Science.gov (United States)

    Morison, James; Kwok, Ron; Peralta-Ferriz, Cecilia; Alkire, Matt; Rigor, Ignatius; Andersen, Roger; Steele, Mike

    2012-01-04

    Freshening in the Canada basin of the Arctic Ocean began in the 1990s and continued to at least the end of 2008. By then, the Arctic Ocean might have gained four times as much fresh water as comprised the Great Salinity Anomaly of the 1970s, raising the spectre of slowing global ocean circulation. Freshening has been attributed to increased sea ice melting and contributions from runoff, but a leading explanation has been a strengthening of the Beaufort High--a characteristic peak in sea level atmospheric pressure--which tends to accelerate an anticyclonic (clockwise) wind pattern causing convergence of fresh surface water. Limited observations have made this explanation difficult to verify, and observations of increasing freshwater content under a weakened Beaufort High suggest that other factors must be affecting freshwater content. Here we use observations to show that during a time of record reductions in ice extent from 2005 to 2008, the dominant freshwater content changes were an increase in the Canada basin balanced by a decrease in the Eurasian basin. Observations are drawn from satellite data (sea surface height and ocean-bottom pressure) and in situ data. The freshwater changes were due to a cyclonic (anticlockwise) shift in the ocean pathway of Eurasian runoff forced by strengthening of the west-to-east Northern Hemisphere atmospheric circulation characterized by an increased Arctic Oscillation index. Our results confirm that runoff is an important influence on the Arctic Ocean and establish that the spatial and temporal manifestations of the runoff pathways are modulated by the Arctic Oscillation, rather than the strength of the wind-driven Beaufort Gyre circulation.

  9. Design and Operation of Automated Ice-Tethered Profilers for Real-Time Seawater Observations in the Polar Oceans

    National Research Council Canada - National Science Library

    Toole, J; Proshutinsky, A; Krishfield, R; Doherty, K; Frye, Daniel E; Hammar, T; Kemp, J; Peters, D; Heydt, K. von der

    2006-01-01

    An automated, easily-deployed Ice-Tethered Profiler (ITP) has been developed for deployment on perennial sea ice in polar oceans to measure changes in upper ocean temperature and salinity in all seasons...

  10. Response of the equatorial Pacific to chlorophyll pigment in a mixed layer isopycnal ocean general circulation model

    Digital Repository Service at National Institute of Oceanography (India)

    Nakamoto, S.; PrasannaKumar, S.; Oberhuber, J.M.; Ishizaka, J.; Muneyama, K.; Frouin, R.

    The influence of phytoplankton on the upper ocean dynamics and thermodynamics in the equatorial Pacific is investigated using an isopycnal ocean general circulation model (OPYC) coupled with a mixed layer model and remotely sensed chlorophyll...

  11. Planet Ocean

    Science.gov (United States)

    Afonso, Isabel

    2014-05-01

    A more adequate name for Planet Earth could be Planet Ocean, seeing that ocean water covers more than seventy percent of the planet's surface and plays a fundamental role in the survival of almost all living species. Actually, oceans are aqueous solutions of extraordinary importance due to its direct implications in the current living conditions of our planet and its potential role on the continuity of life as well, as long as we know how to respect the limits of its immense but finite capacities. We may therefore state that natural aqueous solutions are excellent contexts for the approach and further understanding of many important chemical concepts, whether they be of chemical equilibrium, acid-base reactions, solubility and oxidation-reduction reactions. The topic of the 2014 edition of GIFT ('Our Changing Planet') will explore some of the recent complex changes of our environment, subjects that have been lately included in Chemistry teaching programs. This is particularly relevant on high school programs, with themes such as 'Earth Atmosphere: radiation, matter and structure', 'From Atmosphere to the Ocean: solutions on Earth and to Earth', 'Spring Waters and Public Water Supply: Water acidity and alkalinity'. These are the subjects that I want to develop on my school project with my pupils. Geographically, our school is located near the sea in a region where a stream flows into the sea. Besides that, our school water comes from a borehole which shows that the quality of the water we use is of significant importance. This project will establish and implement several procedures that, supported by physical and chemical analysis, will monitor the quality of water - not only the water used in our school, but also the surrounding waters (stream and beach water). The samples will be collected in the borehole of the school, in the stream near the school and in the beach of Carcavelos. Several physical-chemical characteristics related to the quality of the water will

  12. The Southern Ocean's role in ocean circulation and climate transients

    Science.gov (United States)

    Thompson, A. F.; Stewart, A.; Hines, S.; Adkins, J. F.

    2017-12-01

    The ventilation of deep and intermediate density classes at the surface of the Southern Ocean impacts water mass modification and the air-sea exchange of heat and trace gases, which in turn influences the global overturning circulation and Earth's climate. Zonal variability occurs along the Antarctic Circumpolar Current and the Antarctic margins related to flow-topography interactions, variations in surface boundary conditions, and exchange with northern basins. Information about these zonal variations, and their impact on mass and tracer transport, are suppressed when the overturning is depicted as a two-dimensional (depth-latitude) streamfunction. Here we present an idealized, multi-basin, time-dependent circulation model that applies residual circulation theory in the Southern Ocean and allows for zonal water mass transfer between different ocean basins. This model efficiently determines the temporal evolution of the ocean's stratification, ventilation and overturning strength in response to perturbations in the external forcing. With this model we explore the dynamics that lead to transitions in the circulation structure between multiple, isolated cells and a three-dimensional, "figure-of-eight," circulation in which traditional upper and lower cells are interleaved. The transient model is also used to support a mechanistic explanation of the hemispheric asymmetry and phase lag associated with Dansgaard-Oeschger (DO) events during the last glacial period. In particular, the 200 year lag in southern hemisphere temperatures, following a perturbation in North Atlantic deep water formation, depends critically on the migration of Southern Ocean isopycnal outcropping in response to low-latitude stratification changes. Our results provide a self-consistent dynamical framework to explain various ocean overturning transitions that have occurred over the Earth's last 100,000 years, and motivate an exploration of these mechanisms in more sophisticated climate models.

  13. Improved Global Ocean Color Using Polymer Algorithm

    Science.gov (United States)

    Steinmetz, Francois; Ramon, Didier; Deschamps, ierre-Yves; Stum, Jacques

    2010-12-01

    A global ocean color product has been developed based on the use of the POLYMER algorithm to correct atmospheric scattering and sun glint and to process the data to a Level 2 ocean color product. Thanks to the use of this algorithm, the coverage and accuracy of the MERIS ocean color product have been significantly improved when compared to the standard product, therefore increasing its usefulness for global ocean monitor- ing applications like GLOBCOLOUR. We will present the latest developments of the algorithm, its first application to MODIS data and its validation against in-situ data from the MERMAID database. Examples will be shown of global NRT chlorophyll maps produced by CLS with POLYMER for operational applications like fishing or oil and gas industry, as well as its use by Scripps for a NASA study of the Beaufort and Chukchi seas.

  14. Evaluation of hydrodynamic ocean models as a first step in larval dispersal modelling

    Science.gov (United States)

    Vasile, Roxana; Hartmann, Klaas; Hobday, Alistair J.; Oliver, Eric; Tracey, Sean

    2018-01-01

    Larval dispersal modelling, a powerful tool in studying population connectivity and species distribution, requires accurate estimates of the ocean state, on a high-resolution grid in both space (e.g. 0.5-1 km horizontal grid) and time (e.g. hourly outputs), particularly of current velocities and water temperature. These estimates are usually provided by hydrodynamic models based on which larval trajectories and survival are computed. In this study we assessed the accuracy of two hydrodynamic models around Australia - Bluelink ReANalysis (BRAN) and Hybrid Coordinate Ocean Model (HYCOM) - through comparison with empirical data from the Australian National Moorings Network (ANMN). We evaluated the models' predictions of seawater parameters most relevant to larval dispersal - temperature, u and v velocities and current speed and direction - on the continental shelf where spawning and nursery areas for major fishery species are located. The performance of each model in estimating ocean parameters was found to depend on the parameter investigated and to vary from one geographical region to another. Both BRAN and HYCOM models systematically overestimated the mean water temperature, particularly in the top 140 m of water column, with over 2 °C bias at some of the mooring stations. HYCOM model was more accurate than BRAN for water temperature predictions in the Great Australian Bight and along the east coast of Australia. Skill scores between each model and the in situ observations showed lower accuracy in the models' predictions of u and v ocean current velocities compared to water temperature predictions. For both models, the lowest accuracy in predicting ocean current velocities, speed and direction was observed at 200 m depth. Low accuracy of both model predictions was also observed in the top 10 m of the water column. BRAN had more accurate predictions of both u and v velocities in the upper 50 m of water column at all mooring station locations. While HYCOM

  15. The Potential and Challenges of Using Soil Moisture Active Passive (SMAP Sea Surface Salinity to Monitor Arctic Ocean Freshwater Changes

    Directory of Open Access Journals (Sweden)

    Wenqing Tang

    2018-06-01

    response to discharge anomalies from the Ob’ and Yenisei rivers between 2015 and 2016, providing an assessment of runoff impact in a region where no in situ salinity data are available for validation. The Kara Sea SSS anomaly observed by SMAP is missing in the HYCOM SSS, which assimilates climatological runoffs without interannual changes. We explored the feasibility of using SMAP SSS to monitor the sea surface salinity variability at the major Arctic Ocean gateways. Results show that although the SMAP SSS is limited to about 1 psu accuracy, many large salinity changes are observable. This may lead to the potential application of satellite SSS in the Arctic monitoring system as a proxy of the upper ocean layer freshwater exchanges with subarctic oceans.

  16. Ocean Uses: Hawaii (PROUA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Pacific Regional Ocean Uses Atlas (PROUA) Project is an innovative partnership between NOAA and the Bureau of Ocean Energy Management (BOEM) designed to...

  17. The Indian Ocean as a Connector

    Science.gov (United States)

    Durgadoo, J. V.; Biastoch, A.; Boning, C. W.

    2016-02-01

    The Indian Ocean is a conduit for the upper ocean flow of the global thermohaline circulation. It receives water from the Pacific Ocean through the Indonesian throughflow and the Tasman leakage, and exports water into the Atlantic by means of Agulhas leakage. A small contribution from the northern Indian Ocean is also detectable within Agulhas leakage. Changes on different timescales in the various components of the Pacific inflows and the Atlantic outflow have been reported. Little is known on the role of the Indian Ocean circulation in communicating changes from the Pacific into the Atlantic, let alone any eventual alterations in response to climate change. The precise routes and timescales of Indonesian throughflow, Tasman leakage, Red Sea and Persian Gulf Waters towards the Atlantic are examined in a Lagrangian framework within a high-resolution global ocean model. In this presentation, the following questions are addressed: How are Pacific waters modified in the Indian Ocean before reaching the Agulhas system? On what timescale is water that enters the Indian Ocean from the Pacific flushed out? How important are detours in the Bay of Bengal and Arabian Sea?

  18. Review of Topical Treatment of Upper Tract Urothelial Carcinoma

    Directory of Open Access Journals (Sweden)

    Kenneth G. Nepple

    2009-01-01

    Full Text Available A select group of patients with upper tract urothelial carcinoma may be appropriate candidates for minimally invasive management. Organ-preserving endoscopic procedures may be appropriate for patients with an inability to tolerate major surgery, solitary kidney, bilateral disease, poor renal function, small tumor burden, low-grade disease, or carcinoma in situ. We review the published literature on the use of topical treatment for upper tract urothelial carcinoma and provide our approach to treatment in the office setting.

  19. On Verifying Currents and Other Features in the Hawaiian Islands Region Using Fully Coupled Ocean/Atmosphere Mesoscale Prediction System Compared to Global Ocean Model and Ocean Observations

    Science.gov (United States)

    Jessen, P. G.; Chen, S.

    2014-12-01

    This poster introduces and evaluates features concerning the Hawaii, USA region using the U.S. Navy's fully Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS-OS™) coupled to the Navy Coastal Ocean Model (NCOM). It also outlines some challenges in verifying ocean currents in the open ocean. The system is evaluated using in situ ocean data and initial forcing fields from the operational global Hybrid Coordinate Ocean Model (HYCOM). Verification shows difficulties in modelling downstream currents off the Hawaiian islands (Hawaii's wake). Comparing HYCOM to NCOM current fields show some displacement of small features such as eddies. Generally, there is fair agreement from HYCOM to NCOM in salinity and temperature fields. There is good agreement in SSH fields.

  20. Diurnal variability of surface fluxes at an oceanic station in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, Y.V.B.; Rao, D.P.

    Diurnal variability of the surface fluxes and ocean heat content was studied using the time-series data on marine surface meteorological parameters and upper ocean temperature collected at an oceanic station in the Bay of Bengal during 1st to 8th...

  1. Consensuses and discrepancies of basin-scale ocean heat content changes in different ocean analyses

    Science.gov (United States)

    Wang, Gongjie; Cheng, Lijing; Abraham, John; Li, Chongyin

    2018-04-01

    Inconsistent global/basin ocean heat content (OHC) changes were found in different ocean subsurface temperature analyses, especially in recent studies related to the slowdown in global surface temperature rise. This finding challenges the reliability of the ocean subsurface temperature analyses and motivates a more comprehensive inter-comparison between the analyses. Here we compare the OHC changes in three ocean analyses (Ishii, EN4 and IAP) to investigate the uncertainty in OHC in four major ocean basins from decadal to multi-decadal scales. First, all products show an increase of OHC since 1970 in each ocean basin revealing a robust warming, although the warming rates are not identical. The geographical patterns, the key modes and the vertical structure of OHC changes are consistent among the three datasets, implying that the main OHC variabilities can be robustly represented. However, large discrepancies are found in the percentage of basinal ocean heating related to the global ocean, with the largest differences in the Pacific and Southern Ocean. Meanwhile, we find a large discrepancy of ocean heat storage in different layers, especially within 300-700 m in the Pacific and Southern Oceans. Furthermore, the near surface analysis of Ishii and IAP are consistent with sea surface temperature (SST) products, but EN4 is found to underestimate the long-term trend. Compared with ocean heat storage derived from the atmospheric budget equation, all products show consistent seasonal cycles of OHC in the upper 1500 m especially during 2008 to 2012. Overall, our analyses further the understanding of the observed OHC variations, and we recommend a careful quantification of errors in the ocean analyses.

  2. Constraining Aggregate-Scale Solar Energy Partitioning in Arctic Sea Ice Through Synthesis of Remote Sensing and Autonomous In-Situ Observations.

    Science.gov (United States)

    Wright, N.; Polashenski, C. M.; Deeb, E. J.; Morriss, B. F.; Song, A.; Chen, J.

    2015-12-01

    One of the key processes controlling sea ice mass balance in the Arctic is the partitioning of solar energy between reflection back to the atmosphere and absorption into the ice and upper ocean. We investigate the solar energy balance in the ice-ocean system using in-situ data collected from Arctic Observing Network (AON) sea ice sites and imagery from high resolution optical satellites. AON assets, including ice mass balance buoys and ice tethered profilers, monitor the storage and fluxes of heat in the ice-ocean system. High resolution satellite imagery, processed using object-based image classification techniques, allows us to quantify the evolution of surrounding ice conditions, including melt pond coverage and floe size distribution, at aggregate scale. We present results from regionally representative sites that constrain the partitioning of absorbed solar energy between ice melt and ocean storage, and quantify the strength of the ice-albedo feedback. We further demonstrate how the results can be used to validate model representations of the physical processes controlling ice-albedo feedbacks. The techniques can be extended to understand solar partitioning across the Arctic basin using additional sites and model based data integration.

  3. Species detection and abundance using a biosensor - Development and Testing of in-situ Biological Sensors

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Environmental Sample Processor (ESP), http://www.mbari.org/ESP/, is an autonomous biological sensing system that conducts in situ collection and molecular...

  4. Decrease in oceanic crustal thickness since the breakup of Pangaea

    Science.gov (United States)

    van Avendonk, Harm J. A.; Davis, Joshua K.; Harding, Jennifer L.; Lawver, Lawrence A.

    2017-01-01

    Earth's mantle has cooled by 6-11 °C every 100 million years since the Archaean, 2.5 billion years ago. In more recent times, the surface heat loss that led to this temperature drop may have been enhanced by plate-tectonic processes, such as continental breakup, the continuous creation of oceanic lithosphere at mid-ocean ridges and subduction at deep-sea trenches. Here we use a compilation of marine seismic refraction data from ocean basins globally to analyse changes in the thickness of oceanic crust over time. We find that oceanic crust formed in the mid-Jurassic, about 170 million years ago, is 1.7 km thicker on average than crust produced along the present-day mid-ocean ridge system. If a higher mantle temperature is the cause of thicker Jurassic ocean crust, the upper mantle may have cooled by 15-20 °C per 100 million years over this time period. The difference between this and the long-term mantle cooling rate indeed suggests that modern plate tectonics coincide with greater mantle heat loss. We also find that the increase of ocean crustal thickness with plate age is stronger in the Indian and Atlantic oceans compared with the Pacific Ocean. This observation supports the idea that upper mantle temperature in the Jurassic was higher in the wake of the fragmented supercontinent Pangaea due to the effect of continental insulation.

  5. Increase in acidifying water in the western Arctic Ocean

    Science.gov (United States)

    Qi, Di; Chen, Liqi; Chen, Baoshan; Gao, Zhongyong; Zhong, Wenli; Feely, Richard A.; Anderson, Leif G.; Sun, Heng; Chen, Jianfang; Chen, Min; Zhan, Liyang; Zhang, Yuanhui; Cai, Wei-Jun

    2017-02-01

    The uptake of anthropogenic CO2 by the ocean decreases seawater pH and carbonate mineral aragonite saturation state (Ωarag), a process known as Ocean Acidification (OA). This can be detrimental to marine organisms and ecosystems. The Arctic Ocean is particularly sensitive to climate change and aragonite is expected to become undersaturated (Ωarag Pacific Winter Water transport, driven by an anomalous circulation pattern and sea-ice retreat, is primarily responsible for the expansion, although local carbon recycling and anthropogenic CO2 uptake have also contributed. These results indicate more rapid acidification is occurring in the Arctic Ocean than the Pacific and Atlantic oceans, with the western Arctic Ocean the first open-ocean region with large-scale expansion of `acidified’ water directly observed in the upper water column.

  6. Enhanced deep ocean ventilation and oxygenation with global warming

    Science.gov (United States)

    Froelicher, T. L.; Jaccard, S.; Dunne, J. P.; Paynter, D.; Gruber, N.

    2014-12-01

    Twenty-first century coupled climate model simulations, observations from the recent past, and theoretical arguments suggest a consistent trend towards warmer ocean temperatures and fresher polar surface oceans in response to increased radiative forcing resulting in increased upper ocean stratification and reduced ventilation and oxygenation of the deep ocean. Paleo-proxy records of the warming at the end of the last ice age, however, suggests a different outcome, namely a better ventilated and oxygenated deep ocean with global warming. Here we use a four thousand year global warming simulation from a comprehensive Earth System Model (GFDL ESM2M) to show that this conundrum is a consequence of different rates of warming and that the deep ocean is actually better ventilated and oxygenated in a future warmer equilibrated climate consistent with paleo-proxy records. The enhanced deep ocean ventilation in the Southern Ocean occurs in spite of increased positive surface buoyancy fluxes and a constancy of the Southern Hemisphere westerly winds - circumstances that would otherwise be expected to lead to a reduction in deep ocean ventilation. This ventilation recovery occurs through a global scale interaction of the Atlantic Meridional Overturning Circulation undergoing a multi-centennial recovery after an initial century of transient decrease and transports salinity-rich waters inform the subtropical surface ocean to the Southern Ocean interior on multi-century timescales. The subsequent upwelling of salinity-rich waters in the Southern Ocean strips away the freshwater cap that maintains vertical stability and increases open ocean convection and the formation of Antarctic Bottom Waters. As a result, the global ocean oxygen content and the nutrient supply from the deep ocean to the surface are higher in a warmer ocean. The implications for past and future changes in ocean heat and carbon storage will be discussed.

  7. Ocean Prediction Center

    Science.gov (United States)

    Social Media Facebook Twitter YouTube Search Search For Go NWS All NOAA Weather Analysis & Forecasts of Commerce Ocean Prediction Center National Oceanic and Atmospheric Administration Analysis & Unified Surface Analysis Ocean Ocean Products Ice & Icebergs NIC Ice Products NAIS Iceberg Analysis

  8. Nonvariceal upper gastrointestinal bleeding

    International Nuclear Information System (INIS)

    Burke, Stephen J.; Weldon, Derik; Sun, Shiliang; Golzarian, Jafar

    2007-01-01

    Nonvariceal upper gastrointestinal bleeding (NUGB) remains a major medical problem even after advances in medical therapy with gastric acid suppression and cyclooxygenase (COX-2) inhibitors. Although the incidence of upper gastrointestinal bleeding presenting to the emergency room has slightly decreased, similar decreases in overall mortality and rebleeding rate have not been experienced over the last few decades. Many causes of upper gastrointestinal bleeding have been identified and will be reviewed. Endoscopic, radiographic and angiographic modalities continue to form the basis of the diagnosis of upper gastrointestinal bleeding with new research in the field of CT angiography to diagnose gastrointestinal bleeding. Endoscopic and angiographic treatment modalities will be highlighted, emphasizing a multi-modality treatment plan for upper gastrointestinal bleeding. (orig.)

  9. Nonvariceal upper gastrointestinal bleeding

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Stephen J.; Weldon, Derik; Sun, Shiliang [University of Iowa, Department of Radiology, Iowa, IA (United States); Golzarian, Jafar [University of Iowa, Department of Radiology, Iowa, IA (United States); University of Iowa, Department of Radiology, Carver College of Medicine, Iowa, IA (United States)

    2007-07-15

    Nonvariceal upper gastrointestinal bleeding (NUGB) remains a major medical problem even after advances in medical therapy with gastric acid suppression and cyclooxygenase (COX-2) inhibitors. Although the incidence of upper gastrointestinal bleeding presenting to the emergency room has slightly decreased, similar decreases in overall mortality and rebleeding rate have not been experienced over the last few decades. Many causes of upper gastrointestinal bleeding have been identified and will be reviewed. Endoscopic, radiographic and angiographic modalities continue to form the basis of the diagnosis of upper gastrointestinal bleeding with new research in the field of CT angiography to diagnose gastrointestinal bleeding. Endoscopic and angiographic treatment modalities will be highlighted, emphasizing a multi-modality treatment plan for upper gastrointestinal bleeding. (orig.)

  10. Biological oceanography of the red oceanic system

    Science.gov (United States)

    Theil, Hjalmar; Weikert, Horst

    plankton was Oceans employing exactly the same methods. In the Red Sea, respiration and ETS activity were found to be high but standing stocks and biomasses were low; the reverse was observed in the Arctic and the Atlantic. We believe that this difference in the ratio of respiration to biomass is determined by the great contrasts in the temperatures of the environments studied: Arctic -1.5°C, Atlantic 2°C, Red Sea 21.5°C. Independent of the species' adaptations to their environment this temperature influence will apply to all the living components of the ecosystem. Hence for Red Sea organisms maintenance costs are comparatively high, which greatly reduces their production potential. 7. Thus the oceanic ecosystem of the Red Sea can be summarised as follows: Primary production is low throughout most of the year and throughout most of the entire basin, and consequently so is secondary production (zooplankton). In subsurface waters, high maintenance costs reduces energy for investments in growth and reproduction. In addition degradation of organic matter is so fast in the upper layers that the standing stock in the intermediate layers is reduced and particle transport to greater depth in the central graben greatly restricted. The low abundance and biomass of the deep-sea plankton and benthos in the Red Sea is readily explained by the low availability of food and the high metabolic demands created by the unique high in situ temperature.

  11. Electromagnetic exploration of the oceanic mantle.

    Science.gov (United States)

    Utada, Hisashi

    2015-01-01

    Electromagnetic exploration is a geophysical method for examining the Earth's interior through observations of natural or artificial electromagnetic field fluctuations. The method has been in practice for more than 70 years, and 40 years ago it was first applied to ocean areas. During the past few decades, there has been noticeable progress in the methods of instrumentation, data acquisition (observation), data processing and inversion. Due to this progress, applications of this method to oceanic regions have revealed electrical features of the oceanic upper mantle down to depths of several hundred kilometers for different geologic and tectonic environments such as areas around mid-oceanic ridges, areas around hot-spot volcanoes, subduction zones, and normal ocean areas between mid-oceanic ridges and subduction zones. All these results estimate the distribution of the electrical conductivity in the oceanic mantle, which is key for understanding the dynamics and evolution of the Earth together with different physical properties obtained through other geophysical methods such as seismological techniques.

  12. 2015 Oregon Department of Geology and Mineral Industries (DOGAMI) Oregon Lidar: Upper Rogue 3DEP

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Quantum Spatial collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Upper Rogue 2015 study area. The collection of high...

  13. 2015 Oregon Department of Geology and Mineral Industries (DOGAMI) Oregon Lidar DEM: Upper Rogue 3DEP

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Quantum Spatial collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Upper Rogue 2015 study area. The collection of high...

  14. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Upper Coast of Texas: HABITATS (Habitat Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for endangered plants for the Upper Coast of Texas. Vector polygons in this data set represent occurrence...

  15. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Upper Coast of Texas: NESTS (Nest Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for shorebirds, diving birds, raptors, waterfowl, wading birds, terns, and gulls for the Upper Coast of...

  16. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Upper Coast of Texas: REPTILES (Reptile Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for sea turtles, estuarine reptiles, and terrestrial endangered species occurrences for the Upper Coast of...

  17. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Upper Coast of Texas: INVERT (Invertebrate Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine and estuarine invertebrate species for the Upper Coast of Texas. Vector polygons in this data...

  18. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Upper Coast of Texas: FISH (Fish Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine, estuarine, and freshwater fish species for the Upper Coast of Texas. Vector polygons in this...

  19. 2012 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Upper Naches River, Washington

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WSI) collected Light Detection and Ranging (LiDAR) data of the Upper Naches River Valley and Nile Slide area of interest on September 30th,...

  20. Radioactivity in the oceans

    International Nuclear Information System (INIS)

    Templeton, W.L.

    1979-01-01

    While the revised ''Definition and Recommendations'' of the International Atomic Energy Agency (IAEA) restricts the dumping of the radioactive wastes that exceed specified concentration/mass limits, the acceptance of the concept of applying the release rate limits as developed by the IAEA provides a rational basis for further considering the emplacement of radioactive wastes in seabed as an attractive and acceptable alternative to terrestrial geological repositories. The technical basis for the present radiological assessment is on release rate limits and not on dumping rates. However, to meet the present requirements of the London Convention, it is necessary to express to Definition in terms of the concentration in a single site and the assumed upper limit on mass dumping rate at a single site of 100,000 tons/year with the added proviso of release rate limits for the finite ocean volume of 10 17 m 3 . This results in the concentration limits of a) 1 Ci/ton for α-emitters but limited to 10 -1 Ci/ton 226 Ra and supported 210 Po; b) 10 2 Ci/ton for β/γ-emitters with half-lives of at least 0.5 yr (excluding 3 H) and the mixtures of β/γ-emitters of unknown half-lives; and c) 10 6 Ci/ton for 3 H and the β/γ-emitters with half-lives less than 0.5 yr. (Yamashita, S.)

  1. Tests of Parameterized Langmuir Circulation Mixing in the Oceans Surface Mixed Layer II

    Science.gov (United States)

    2017-08-11

    inertial oscillations in the ocean are governed by three-dimensional processes that are not accounted for in a one-dimensional simulation , and it was...Unlimited 52 Paul Martin (228) 688-5447 Recent large-eddy simulations (LES) of Langmuir circulation (LC) within the surface mixed layer (SML) of...used in the Navy Coastal Ocean Model (NCOM) and tested for (a) a simple wind-mixing case, (b) simulations of the upper ocean thermal structure at Ocean

  2. The grand challenge of developing in situ observational oceanography in South Africa

    CSIR Research Space (South Africa)

    Roberts, M

    2010-12-01

    Full Text Available , underwater temperature recorders (UTRs), wave buoys, as well as locally developed in situ measurement sensor and platform prototypes (dial-out UTRs, coastal and deep ocean buoys) have been incorporated into a regional in-situ observational network. A modular...

  3. Studying ocean acidification in the Arctic Ocean

    Science.gov (United States)

    Robbins, Lisa

    2012-01-01

    The U.S. Geological Survey (USGS) partnership with the U.S. Coast Guard Ice Breaker Healey and its United Nations Convention Law of the Sea (UNCLOS) cruises has produced new synoptic data from samples collected in the Arctic Ocean and insights into the patterns and extent of ocean acidification. This framework of foundational geochemical information will help inform our understanding of potential risks to Arctic resources due to ocean acidification.

  4. Biophysical processes in the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Mc; Murtugudde, R.; Vialard, J.; Vinayachandran, P.N.; Wiggert, J.D.; Hood, R.R.; Shankar, D.; Shetye, S.R.

    Ocean Biogeochemical Processes and Ecological Variability Geophysical Monograph Series 185 Copyright 200� by the American Geophysical Union. 10.102�/2008GM000768 Biophysical Processes in the Indian Ocean J. P. McCreary, 1 R. Murtugudde, 2 J. Vialard, 3...) also plots the upper-layer thickness, h 1 , from the model of McCreary et al. [1��3] (hereinafter referred to as MKM); h 1 simulates the structure of the top of the actual thermocline reasonably well, except that it is somewhat too thin from 5...

  5. Seasonal mixed layer heat balance of the southwestern tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Foltz, G.R.; Vialard, J.; PraveenKumar, B.; McPhaden, M.J.

    from a long-term moored buoy are used in conjunction with satellite, in situ, and atmospheric reanalysis datasets to analyze the seasonal mixed layer heat balance in the thermocline ridge region of the southwestern tropical Indian Ocean. This region...

  6. Diurnal changes in ocean color in coastal waters

    Science.gov (United States)

    Arnone, Robert; Vandermeulen, Ryan; Ladner, Sherwin; Ondrusek, Michael; Kovach, Charles; Yang, Haoping; Salisbury, Joseph

    2016-05-01

    Coastal processes can change on hourly time scales in response to tides, winds and biological activity, which can influence the color of surface waters. These temporal and spatial ocean color changes require satellite validation for applications using bio-optical products to delineate diurnal processes. The diurnal color change and capability for satellite ocean color response were determined with in situ and satellite observations. Hourly variations in satellite ocean color are dependent on several properties which include: a) sensor characterization b) advection of water masses and c) diurnal response of biological and optical water properties. The in situ diurnal changes in ocean color in a dynamic turbid coastal region in the northern Gulf of Mexico were characterized using above water spectral radiometry from an AErosol RObotic NETwork (AERONET -WavCIS CSI-06) site that provides up to 8-10 observations per day (in 15-30 minute increments). These in situ diurnal changes were used to validate and quantify natural bio-optical fluctuations in satellite ocean color measurements. Satellite capability to detect changes in ocean color was characterized by using overlapping afternoon orbits of the VIIRS-NPP ocean color sensor within 100 minutes. Results show the capability of multiple satellite observations to monitor hourly color changes in dynamic coastal regions that are impacted by tides, re-suspension, and river plume dispersion. Hourly changes in satellite ocean color were validated with in situ observation on multiple occurrences during different times of the afternoon. Also, the spatial variability of VIIRS diurnal changes shows the occurrence and displacement of phytoplankton blooms and decay during the afternoon period. Results suggest that determining the temporal and spatial changes in a color / phytoplankton bloom from the morning to afternoon time period will require additional satellite coverage periods in the coastal zone.

  7. Mean Dynamic Topography of the Arctic Ocean

    Science.gov (United States)

    Farrell, Sinead Louise; Mcadoo, David C.; Laxon, Seymour W.; Zwally, H. Jay; Yi, Donghui; Ridout, Andy; Giles, Katherine

    2012-01-01

    ICESat and Envisat altimetry data provide measurements of the instantaneous sea surface height (SSH) across the Arctic Ocean, using lead and open water elevation within the sea ice pack. First, these data were used to derive two independent mean sea surface (MSS) models by stacking and averaging along-track SSH profiles gathered between 2003 and 2009. The ICESat and Envisat MSS data were combined to construct the high-resolution ICEn MSS. Second, we estimate the 5.5-year mean dynamic topography (MDT) of the Arctic Ocean by differencing the ICEn MSS with the new GOCO02S geoid model, derived from GRACE and GOCE gravity. Using these satellite-only data we map the major features of Arctic Ocean dynamical height that are consistent with in situ observations, including the topographical highs and lows of the Beaufort and Greenland Gyres, respectively. Smaller-scale MDT structures remain largely unresolved due to uncertainties in the geoid at short wavelengths.

  8. Upper respiratory tract (image)

    Science.gov (United States)

    The major passages and structures of the upper respiratory tract include the nose or nostrils, nasal cavity, mouth, throat (pharynx), and voice box (larynx). The respiratory system is lined with a mucous membrane that ...

  9. ACA Federal Upper Limits

    Data.gov (United States)

    U.S. Department of Health & Human Services — Affordable Care Act Federal Upper Limits (FUL) based on the weighted average of the most recently reported monthly average manufacturer price (AMP) for...

  10. Arctic Freshwater Switchyard Project: Spring temperature and Salinity data collected by aircraft in the Arctic Ocean, May 2006 - May 2007 (NODC Accession 0057319)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A program to study freshwater circulation (sea ice + upper ocean) in the "freshwater switchyard" between Alert (Ellesmere Island) and the North Pole. The project...

  11. Upper gastrointestinal bleeding.

    Science.gov (United States)

    Feinman, Marcie; Haut, Elliott R

    2014-02-01

    Upper gastrointestinal (GI) bleeding remains a commonly encountered diagnosis for acute care surgeons. Initial stabilization and resuscitation of patients is imperative. Stable patients can have initiation of medical therapy and localization of the bleeding, whereas persistently unstable patients require emergent endoscopic or operative intervention. Minimally invasive techniques have surpassed surgery as the treatment of choice for most upper GI bleeding. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. The Ocean Literacy Campaign

    Science.gov (United States)

    Schoedinger, S. E.; Strang, C.

    2008-12-01

    "Ocean Literacy is an understanding of the ocean's influence on you and your influence on the ocean." This simple statement captures the spirit of a conceptual framework supporting ocean literacy (COSEE et al., 2005). The framework comprises 7 essential principles and 44 fundamental concepts an ocean literate person would know (COSEE et al., 2005). The framework is the result of an extensive grassroots effort to reach consensus on (1) a definition for ocean literacy and (2) an articulation of the most important concepts to be understood by ocean-literate citizen (Cava et al., 2005). In the process of reaching consensus on these "big ideas" about the ocean, what began as a series of workshops has emerged as a campaign "owned" by an ever-expanding community of individuals, organizations and networks involved in developing and promoting the framework. The Ocean Literacy Framework has provided a common language for scientists and educators working together and serves as key guidance for the ocean science education efforts. This presentation will focus on the impact this Ocean Literacy Campaign has had to date as well as efforts underway to provide additional tools to enable educators and educational policy makers to further integrate teaching and learning about the ocean and our coasts into formal K-12 education and informal education. COSEE, National Geographic Society, NOAA, College of Exploration (2005). Ocean Literacy: The Essential Principles of Ocean Sciences Grades K-12, a jointly published brochure, URL: http://www.coexploration.org/oceanliteracy/documents/OceanLitChart.pdf Cava, F., S. Schoedinger , C. Strang, and P. Tuddenham (2005). Science Content and Standards for Ocean Literacy: A Report on Ocean Literacy, URL: http://www.coexploration.org/oceanliteracy/documents/OLit2004-05_Final_Report.pdf.

  13. Upper GI Bleeding in Children

    Science.gov (United States)

    Upper GI Bleeding in Children What is upper GI Bleeding? Irritation and ulcers of the lining of the esophagus, stomach or duodenum can result in upper GI bleeding. When this occurs the child may vomit blood ...

  14. 75 FR 18778 - Safety Zone; Ocean City Air Show 2010, Atlantic Ocean, Ocean City, MD

    Science.gov (United States)

    2010-04-13

    ...-AA00 Safety Zone; Ocean City Air Show 2010, Atlantic Ocean, Ocean City, MD AGENCY: Coast Guard, DHS... zone on the Atlantic Ocean in the vicinity of Ocean City, Maryland to support the Ocean City Air Show. This action is intended to restrict vessel traffic movement on the Atlantic Ocean to protect mariners...

  15. Methyl bromide: ocean sources, ocean sinks, and climate sensitivity.

    Science.gov (United States)

    Anbar, A D; Yung, Y L; Chavez, F P

    1996-03-01

    The oceans play an important role in the geochemical cycle of methyl bromide (CH3Br), the major carrier of O3-destroying bromine to the stratosphere. The quantity of CH3Br produced annually in seawater is comparable to the amount entering the atmosphere each year from natural and anthropogenic sources. The production mechanism is unknown but may be biological. Most of this CH3Br is consumed in situ by hydrolysis or reaction with chloride. The size of the fraction which escapes to the atmosphere is poorly constrained; measurements in seawater and the atmosphere have been used to justify both a large oceanic CH3Br flux to the atmosphere and a small net ocean sink. Since the consumption reactions are extremely temperature-sensitive, small temperature variations have large effects on the CH3Br concentration in seawater, and therefore on the exchange between the atmosphere and the ocean. The net CH3Br flux is also sensitive to variations in the rate of CH3Br production. We have quantified these effects using a simple steady state mass balance model. When CH3Br production rates are linearly scaled with seawater chlorophyll content, this model reproduces the latitudinal variations in marine CH3Br concentrations observed in the east Pacific Ocean by Singh et al. [1983] and by Lobert et al. [1995]. The apparent correlation of CH3Br production with primary production explains the discrepancies between the two observational studies, strengthening recent suggestions that the open ocean is a small net sink for atmospheric CH3Br, rather than a large net source. The Southern Ocean is implicated as a possible large net source of CH3Br to the atmosphere. Since our model indicates that both the direction and magnitude of CH3Br exchange between the atmosphere and ocean are extremely sensitive to temperature and marine productivity, and since the rate of CH3Br production in the oceans is comparable to the rate at which this compound is introduced to the atmosphere, even small

  16. Arctic Ocean Model Intercomparison Using Sound Speed

    Science.gov (United States)

    Dukhovskoy, D. S.; Johnson, M. A.

    2002-05-01

    The monthly and annual means from three Arctic ocean - sea ice climate model simulations are compared for the period 1979-1997. Sound speed is used to integrate model outputs of temperature and salinity along a section between Barrow and Franz Josef Land. A statistical approach is used to test for differences among the three models for two basic data subsets. We integrated and then analyzed an upper layer between 2 m - 50 m, and also a deep layer from 500 m to the bottom. The deep layer is characterized by low time-variability. No high-frequency signals appear in the deep layer having been filtered out in the upper layer. There is no seasonal signal in the deep layer and the monthly means insignificantly oscillate about the long-period mean. For the deep ocean the long-period mean can be considered quasi-constant, at least within the 19 year period of our analysis. Thus we assumed that the deep ocean would be the best choice for comparing the means of the model outputs. The upper (mixed) layer was chosen to contrast the deep layer dynamics. There are distinct seasonal and interannual signals in the sound speed time series in this layer. The mixed layer is a major link in the ocean - air interaction mechanism. Thus, different mean states of the upper layer in the models might cause different responses in other components of the Arctic climate system. The upper layer also strongly reflects any differences in atmosphere forcing. To compare data from the three models we have used a one-way t-test for the population mean, the Wilcoxon one-sample signed-rank test (when the requirement of normality of tested data is violated), and one-way ANOVA method and F-test to verify our hypothesis that the model outputs have the same mean sound speed. The different statistical approaches have shown that all models have different mean characteristics of the deep and upper layers of the Arctic Ocean.

  17. An isopycnic ocean carbon cycle model

    Directory of Open Access Journals (Sweden)

    K. M. Assmann

    2010-02-01

    Full Text Available The carbon cycle is a major forcing component in the global climate system. Modelling studies, aiming to explain recent and past climatic changes and to project future ones, increasingly include the interaction between the physical and biogeochemical systems. Their ocean components are generally z-coordinate models that are conceptually easy to use but that employ a vertical coordinate that is alien to the real ocean structure. Here, we present first results from a newly-developed isopycnic carbon cycle model and demonstrate the viability of using an isopycnic physical component for this purpose. As expected, the model represents well the interior ocean transport of biogeochemical tracers and produces realistic tracer distributions. Difficulties in employing a purely isopycnic coordinate lie mainly in the treatment of the surface boundary layer which is often represented by a bulk mixed layer. The most significant adjustments of the ocean biogeochemistry model HAMOCC, for use with an isopycnic coordinate, were in the representation of upper ocean biological production. We present a series of sensitivity studies exploring the effect of changes in biogeochemical and physical processes on export production and nutrient distribution. Apart from giving us pointers for further model development, they highlight the importance of preformed nutrient distributions in the Southern Ocean for global nutrient distributions. The sensitivity studies show that iron limitation for biological particle production, the treatment of light penetration for biological production, and the role of diapycnal mixing result in significant changes of nutrient distributions and liniting factors of biological production.

  18. Modeling Europa's Ice-Ocean Interface

    Science.gov (United States)

    Elsenousy, A.; Vance, S.; Bills, B. G.

    2014-12-01

    This work focuses on modeling the ice-ocean interface on Jupiter's Moon (Europa); mainly from the standpoint of heat and salt transfer relationship with emphasis on the basal ice growth rate and its implications to Europa's tidal response. Modeling the heat and salt flux at Europa's ice/ocean interface is necessary to understand the dynamics of Europa's ocean and its interaction with the upper ice shell as well as the history of active turbulence at this area. To achieve this goal, we used McPhee et al., 2008 parameterizations on Earth's ice/ocean interface that was developed to meet Europa's ocean dynamics. We varied one parameter at a time to test its influence on both; "h" the basal ice growth rate and on "R" the double diffusion tendency strength. The double diffusion tendency "R" was calculated as the ratio between the interface heat exchange coefficient αh to the interface salt exchange coefficient αs. Our preliminary results showed a strong double diffusion tendency R ~200 at Europa's ice-ocean interface for plausible changes in the heat flux due to onset or elimination of a hydrothermal activity, suggesting supercooling and a strong tendency for forming frazil ice.

  19. Ocean Disposal Site Monitoring

    Science.gov (United States)

    EPA is responsible for managing all designated ocean disposal sites. Surveys are conducted to identify appropriate locations for ocean disposal sites and to monitor the impacts of regulated dumping at the disposal sites.

  20. People and Oceans.

    Science.gov (United States)

    NatureScope, 1988

    1988-01-01

    Discusses people's relationship with oceans, focusing on ocean pollution, use, and protective measures of the sea and its wildlife. Activities included are "Mythical Monsters"; "Globetrotters"; "Plastic in the Sea"; and "Sea of Many Uses." (RT)

  1. Ocean Sediment Thickness Contours

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ocean sediment thickness contours in 200 meter intervals for water depths ranging from 0 - 18,000 meters. These contours were derived from a global sediment...

  2. Ocean Robotic Networks

    Energy Technology Data Exchange (ETDEWEB)

    Schofield, Oscar [Rutgers University

    2012-05-23

    We live on an ocean planet which is central to regulating the Earth’s climate and human society. Despite the importance of understanding the processes operating in the ocean, it remains chronically undersampled due to the harsh operating conditions. This is problematic given the limited long term information available about how the ocean is changing. The changes include rising sea level, declining sea ice, ocean acidification, and the decline of mega fauna. While the changes are daunting, oceanography is in the midst of a technical revolution with the expansion of numerical modeling techniques, combined with ocean robotics. Operating together, these systems represent a new generation of ocean observatories. I will review the evolution of these ocean observatories and provide a few case examples of the science that they enable, spanning from the waters offshore New Jersey to the remote waters of the Southern Ocean.

  3. Ocean Uses: California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Ocean Uses Atlas Project is an innovative partnership between NOAA's National Marine Protected Areas Center and Marine Conservation Biology Institute. The...

  4. Ethane ocean on Titan

    Science.gov (United States)

    Lunine, J. I.; Stevenson, D. J.; Yung, Y.L.

    1983-01-01

    Voyager I radio occultation data is employed to develop a qualitative model of an ethane ocean on Titan. It is suggested that the ocean contains 25 percent CH4 and that the ocean is in dynamic equilibrium with an N2 atmosphere. Previous models of a CH4 ocean are discounted due to photolysis rates of CH4 gas. Tidal damping of Titan's orbital eccentricity is taken as evidence for an ocean layer approximately 1 km deep, with the ocean floor being covered with a solid C2H2 layer 100 to 200 m thick. The photolytic process disrupting the CH4, if the estimates of the oceanic content of CH4 are correct, could continue for at least one billion years. Verification of the model is dependent on detecting CH4 clouds in the lower atmosphere, finding C2H6 saturation in the lower troposphere, or obtaining evidence of a global ocean.

  5. Regional Ocean Data Assimilation

    KAUST Repository

    Edwards, Christopher A.; Moore, Andrew M.; Hoteit, Ibrahim; Cornuelle, Bruce D.

    2015-01-01

    This article reviews the past 15 years of developments in regional ocean data assimilation. A variety of scientific, management, and safety-related objectives motivate marine scientists to characterize many ocean environments, including coastal

  6. Ocean Disposal Sites

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 1972, Congress enacted the Marine Protection, Research, and Sanctuaries Act (MPRSA, also known as the Ocean Dumping Act) to prohibit the dumping of material into...

  7. Ocean Station Vessel

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ocean Station Vessels (OSV) or Weather Ships captured atmospheric conditions while being stationed continuously in a single location. While While most of the...

  8. California Ocean Uses Atlas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is a result of the California Ocean Uses Atlas Project: a collaboration between NOAA's National Marine Protected Areas Center and Marine Conservation...

  9. Ocean Acidification Product Suite

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Scientists within the ACCRETE (Acidification, Climate, and Coral Reef Ecosystems Team) Lab of AOML_s Ocean Chemistry and Ecosystems Division (OCED) have constructed...

  10. Bacteria in the greenhouse: Modeling the role of oceanic plankton in the global carbon cycle

    International Nuclear Information System (INIS)

    Ducklow, H.W.; Fasham, M.J.R.

    1992-01-01

    To plan effectively to deal with the greenhouse effect, a fundamental understanding is needed of the biogeochemical and physical machinery that cycles carbon in the global system; in addition, models are needed of the carbon cycle to project the effects of increasing carbon dioxide. In this chapter, a description is given of efforts to simulate the cycling of carbon and nitrogen in the upper ocean, concentrating on the model's treatment of marine phytoplankton, and what it reveals of their role in the biogeochemical cycling of carbon between the ocean and atmosphere. The focus is on the upper ocean because oceanic uptake appears to regulate the level of carbon dioxide in the atmosphere

  11. The EuroSITES network: Integrating and enhancing fixed-point open ocean observatories around Europe

    Science.gov (United States)

    Lampitt, Richard S.; Larkin, Kate E.; EuroSITES Consortium

    2010-05-01

    EuroSITES is a 3 year (2008-2011) EU collaborative project (3.5MEuro) with the objective to integrate and enhance the nine existing open ocean fixed point observatories around Europe (www.eurosites.info). These observatories are primarily composed of full depth moorings and make multidisciplinary in situ observations within the water column as the European contribution to the global array OceanSITES (www.oceansites.org). In the first 18 months, all 9 observatories have been active and integration has been significant through the maintenance and enhancement of observatory hardware. Highlights include the enhancement of observatories with sensors to measure O2, pCO2, chlorophyll, and nitrate in near real-time from the upper 1000 m. In addition, some seafloor missions are also actively supported. These include seafloor platforms currently deployed in the Mediterranean, one for tsunami detection and one to monitor fluid flow related to seismic activity and slope stability. Upcoming seafloor science missions in 2010 include monitoring benthic biological communities and associated biogeochemistry as indicators of climate change in both the Northeast Atlantic and Mediterranean. EuroSITES also promotes the development of innovative sensors and samplers in order to progress capability to measure climate-relevant properties of the ocean. These include further developing current technologies for autonomous long-term monitoring of oxygen consumption in the mesopelagic, pH and mesozooplankton abundance. Many of these science missions are directly related to complementary activities in other European projects such as EPOCA, HYPOX and ESONET. In 2010 a direct collaboration including in situ field work will take place between ESONET and EuroSITES. The demonstration mission MODOO (funded by ESONET) will be implemented in 2010 at the EuroSITES PAP observatory. Field work will include deployment of a seafloor lander system with various sensors which will send data to shore in real

  12. Historical and future trends in ocean climate and biogeochemistry

    International Nuclear Information System (INIS)

    Doney, Scott C.; Bopp, Laurent; Long, Matthew C.

    2014-01-01

    Changing atmospheric composition due to human activities, primarily carbon dioxide (CO 2 ) emissions from fossil fuel burning, is already impacting ocean circulation, biogeochemistry, and ecology, and model projections indicate that observed trends will continue or even accelerate over this century. Elevated atmospheric CO 2 alters Earth's radiative balance, leading to global-scale warming and climate change. The ocean stores the majority of resulting anomalous heat, which in turn drives other physical, chemical, and biological impacts. Sea surface warming and increased ocean vertical stratification are projected to reduce global-integrated primary production and export flux as well as to lower subsurface dissolved oxygen concentrations. Upper trophic levels will be affected both directly by warming and indirectly from changes in productivity and expanding low oxygen zones. The ocean also absorbs roughly one-quarter of present-day anthropogenic CO 2 emissions. The resulting changes in seawater chemistry, termed ocean acidification, include declining pH and saturation state for calcium carbon minerals that may have widespread impacts on many marine organisms. Climate warming will likely slow ocean CO 2 uptake but is not expected to significantly reduce upper ocean acidification. Improving the accuracy of future model projections requires better observational constraints on current rates of ocean change and a better understanding of the mechanisms controlling key physical and biogeochemical processes. (authors)

  13. Measuring the vertical electrical field above an oceanic convection system using a meteorological sounding balloon

    Science.gov (United States)

    Chen, A. B.; Chiu, C.; Lai, S.; Chen, C.; Kuo, C.; Su, H.; Hsu, R.

    2012-12-01

    The vertical electric field above thundercloud plays an important role in the generation and modeling of transient luminous events. For example, Pasko [1995] proposed that the high quasi-static E-field following the positive cloud-to-ground lightning could accelerate and input energy to ambient electrons; as they collide and excite nitrogen and oxygen molecules in upper atmosphere, sprites may be induced. A series of balloon experiments led by Holzworth have investigated the temporal and spatial fluctuations of the electric field and conductivity in the upper atmosphere at different sites [Holzworth 2005, and references in]. But the strength and variation of the vertical electric field above thundercloud, especially oceanic ones, are not well documented so far. A lightweight, low-cost measurement system including an electric field meter and the associated aviation electronics are developed to carry out the in-situ measurement of the vertical electric field and the inter-cloud charge distribution. Our measuring system was first deployed using a meteorological sounding balloon from Taitung, Taiwan in May 2012. The measured electric field below 3km height shows an exponential decay and it is consistent with the expected potential gradient variation between ionosphere and the Earth surface. But the background strength of the measured E-field grows up exponentially and a violent fluctuations is also observed when the balloon flew over a developing oceanic convection cell. The preliminary results from this flight will be reported and discussed. This low-cost electric field meter is developed within one year. In the coming months, more flights will be performed with the aim to measure the rapid variation of the electric field above thundercloud as well as the E-field that may induce transient luminous events. Our ground campaigns show that the occurrence rates of blue and gigantic jet are relatively high in the vicinity of Taiwan. Our experiment can be used to diagnose

  14. Modulation of the Ganges-Brahmaputra River Plume by the Indian Ocean Dipole and Eddies Inferred From Satellite Observations

    Science.gov (United States)

    Fournier, S.; Vialard, J.; Lengaigne, M.; Lee, T.; Gierach, M. M.; Chaitanya, A. V. S.

    2017-12-01

    The Bay of Bengal receives large amounts of freshwater from the Ganga-Brahmaputra (GB) river during the summer monsoon. The resulting upper-ocean freshening influences seasonal rainfall, cyclones, and biological productivity. Sparse in situ observations and previous modeling studies suggest that the East India Coastal Current (EICC) transports these freshwaters southward after the monsoon as an approximately 200 km wide, 2,000 km long "river in the sea" along the East Indian coast. Sea surface salinity (SSS) from the Soil Moisture Active Passive (SMAP) satellite provides unprecedented views of this peculiar feature from intraseasonal to interannual timescales. SMAP SSS has a 0.83 correlation and 0.49 rms-difference to 0-5 m in situ measurements. SMAP and in stu data both indicate a SSS standard deviation of ˜0.7 to 1 away from the coast, that rises to 2 pss within 100 km of the coast, providing a very favorable signal-to-noise ratio in coastal areas. SMAP also captures the strong northern BoB, postmonsoon cross-shore SSS contrasts (˜10 pss) measured along ship transects. SMAP data are also consistent with previous modeling results that suggested a modulation of the EICC/GB plume southward extent by the Indian Ocean Dipole (IOD). Remote forcing associated with the negative Indian Ocean Dipole in the fall of 2016 indeed caused a stronger EICC and "river in the sea" that extended by approximately 800 km further south than that in 2015 (positive IOD year). The combination of SMAP and altimeter data shows eddies stirring the freshwater plume away from the coast.Plain Language SummaryThe Bay of Bengal receives large quantity of freshwater from the Ganges-Brahmaputra river during the monsoon. The resulting low-salinity sea surface has strong implications for the regional climate and living marine resources. In situ observations are too sparse to provide salinity maps in this basin, even every 3 months. In contrast, the SMAP satellite provides maps at 40 km resolution

  15. Validation of MERIS Ocean Color Algorithms in the Mediterranean Sea

    Science.gov (United States)

    Marullo, S.; D'Ortenzio, F.; Ribera D'Alcalà, M.; Ragni, M.; Santoleri, R.; Vellucci, V.; Luttazzi, C.

    2004-05-01

    Satellite ocean color measurements can contribute, better than any other source of data, to quantify the spatial and time variability of ocean productivity and, tanks to the success of several satellite missions starting with CZCS up to SeaWiFS, MODIS and MERIS, it is now possible to start doing the investigation of interannual variations and compare level of production during different decades ([1],[2]). The interannual variability of the ocean productivity at global and regional scale can be correctly measured providing that chlorophyll estimate are based on well calibrated algorithms in order to avoid regional biases and instrumental time shifts. The calibration and validation of Ocean Color data is then one of the most important tasks of several research projects worldwide ([3], [4]). Algorithms developed to retrieve chlorophyll concentration need a specific effort to define the error ranges associated to the estimates. In particular, the empirical algorithms, calculated on regression with in situ data, require independent records to verify the degree of uncertainties associated. In addition several evidences demonstrated that regional algorithms can improve the accuracy of the satellite chlorophyll estimates [5]. In 2002, Santoleri et al. (SIMBIOS) first showed a significant overestimation of the SeaWiFS derived chlorophyll concentration in Mediterranean Sea when the standard global NASA algorithms (OC4v2 and OC4v4) are used. The same authors [6] proposed two preliminary new algorithms for the Mediterranean Sea (L-DORMA and NL-DORMA) on a basis of a bio-optical data set collected in the basin from 1998 to 2000. In 2002 Bricaud et al., [7] analyzing other bio-optical data collected in the Mediterranean, confirmed the overestimation of the chlorophyll concentration in oligotrophic conditions and proposed a new regional algorithm to be used in case of low concentrations. Recently, the number of in situ observations in the basin was increased, permitting a first

  16. Right upper quadrant pain

    International Nuclear Information System (INIS)

    Ralls, P.W.; Colletti, P.M.; Boswell, W.D. Jr.; Halls, J.M.

    1984-01-01

    Historically, assessment of acute right upper quadrant abdominal pain has been a considerable clinical challenge. While clinical findings and laboratory data frequently narrow the differential diagnosis, symptom overlap generally precludes definitive diagnosis among the various diseases causing acute right upper quadrant pain. Fortunately, the advent of newer diagnostic imaging modalities has greatly improved the rapidity and reliability of diagnosis in these patients. An additional challenge to the physician, with increased awareness of the importance of cost effectiveness in medicine, is to select appropriate diagnostic schema that rapidly establish accurate diagnoses in the most economical fashion possible. The dual goals of this discussion are to assess not only the accuracy of techniques used to evaluate patients with acute right upper quadrant pain, but also to seek out cost-effective, coordinated imaging techniques to achieve this goal

  17. The role of clouds and oceans in global greenhouse warming

    International Nuclear Information System (INIS)

    Hoffert, M.I.

    1992-12-01

    During the past three years we have conducted several studies using models and a combination of satellite data, in situ meteorological and oceanic data, and paleoclimate reconstructions, under the DoE program, ''Quantifying the Link Between Change in Radiative Balance and Atmospheric Temperature''. Our goals were to investigate effects of global cloudiness variations on global climate and their implications for cloud feedback and continue development and application of NYU transient climate/ocean models, with emphasis on coupled effects of greenhouse warming and feedbacks by both the clouds and oceans. Our original research plan emphasized the use of cloud, surface temperature and ocean data sets interpreted by focused climate/ocean models to develop a cloud radiative forcing scenario for the past 100 years and to assess the transient climate response; to narrow key uncertainties in the system; and to identify those aspects of the climate system most likely to be affected by greenhouse warming over short, medium and long time scales

  18. OceanSITES format and Ocean Observatory Output harmonisation: past, present and future

    Science.gov (United States)

    Pagnani, Maureen; Galbraith, Nan; Diggs, Stephen; Lankhorst, Matthias; Hidas, Marton; Lampitt, Richard

    2015-04-01

    The Global Ocean Observing System (GOOS) initiative was launched in 1991, and was the first step in creating a global view of ocean observations. In 1999 oceanographers at the OceanObs conference envisioned a 'global system of eulerian observatories' which evolved into the OceanSITES project. OceanSITES has been generously supported by individual oceanographic institutes and agencies across the globe, as well as by the WMO-IOC Joint Technical Commission for Oceanography and Marine Meteorology (under JCOMMOPS). The project is directed by the needs of research scientists, but has a strong data management component, with an international team developing content standards, metadata specifications, and NetCDF templates for many types of in situ oceanographic data. The OceanSITES NetCDF format specification is intended as a robust data exchange and archive format specifically for time-series observatory data from the deep ocean. First released in February 2006, it has evolved to build on and extend internationally recognised standards such as the Climate and Forecast (CF) standard, BODC vocabularies, ISO formats and vocabularies, and in version 1.3, released in 2014, ACDD (Attribute Convention for Dataset Discovery). The success of the OceanSITES format has inspired other observational groups, such as autonomous vehicles and ships of opportunity, to also use the format and today it is fulfilling the original concept of providing a coherent set of data from eurerian observatories. Data in the OceanSITES format is served by 2 Global Data Assembly Centres (GDACs), one at Coriolis, in France, at ftp://ftp.ifremer.fr/ifremer/oceansites/ and one at the US NDBC, at ftp://data.ndbc.noaa.gov/data/oceansites/. These two centres serve over 26,800 OceanSITES format data files from 93 moorings. The use of standardised and controlled features enables the files held at the OceanSITES GDACs to be electronically discoverable and ensures the widest access to the data. The Ocean

  19. Regional Ocean Data Assimilation

    KAUST Repository

    Edwards, Christopher A.

    2015-01-03

    This article reviews the past 15 years of developments in regional ocean data assimilation. A variety of scientific, management, and safety-related objectives motivate marine scientists to characterize many ocean environments, including coastal regions. As in weather prediction, the accurate representation of physical, chemical, and/or biological properties in the ocean is challenging. Models and observations alone provide imperfect representations of the ocean state, but together they can offer improved estimates. Variational and sequential methods are among the most widely used in regional ocean systems, and there have been exciting recent advances in ensemble and four-dimensional variational approaches. These techniques are increasingly being tested and adapted for biogeochemical applications.

  20. Indian Ocean surface winds from NCMRWF analysis as compared

    Indian Academy of Sciences (India)

    The quality of the surface wind analysis at the National Centre for Medium Range Weather Forecasts (NCMRWF), New Delhi over the tropical Indian Ocean and its improvement in 2001 are examined by comparing it with in situ buoy measurements and satellite derived surface winds from NASA QuikSCAT satellite (QSCT) ...

  1. Auto-correlation analysis of ocean surface wind vectors

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    time series data of surface winds measured in situ by a deep water buoy in the Indian Ocean has been carried out. ... A case study using the TRMM Microwave Imager (TMI) and ... parameter is essential when the values of the parameter ...

  2. Biases in ocean color over a Secchi disk

    NARCIS (Netherlands)

    Pitarch, J.

    2017-01-01

    The oldest record of ocean color measurements consists of visual comparisonsto a standardized color scale, the Forel-Ule scale (FU). Analysis of FU archived dataallows the construction of a century-long time series. In situ protocols of FUmeasurements require the perceived color to be estimated over

  3. Upper ocean variability of the equatorial Indian Ocean and its relation to chlorophyll pigment concentration.

    Digital Repository Service at National Institute of Oceanography (India)

    Narvekar, J.; PrasannaKumar, S.

    a strong semi-annual signal with peak warming in April and cooling in July-August. Both mixed layer depth (MLD) and barrier layer thickness (BLT) showed a weak annual signal. The deep MLD during summer was due to the combined effect of strong winds...

  4. Ocean Bottom Pressure Seasonal Cycles and Decadal Trends from GRACE Release-05: Ocean Circulation Implications

    Science.gov (United States)

    Johnson, G. C.; Chambers, D. P.

    2013-12-01

    Ocean mass variations are important for diagnosing sea level budgets, the hydrological cycle and global energy budget, as well as ocean circulation variability. Here seasonal cycles and decadal trends of ocean mass from January 2003 to December 2012, both global and regional, are analyzed using GRACE Release 05 data. The trend of global flux of mass into the ocean approaches 2 cm decade-1 in equivalent sea level rise. Regional trends are of similar magnitude, with the North Pacific, South Atlantic, and South Indian oceans generally gaining mass and other regions losing mass. These trends suggest a spin-down of the North Pacific western boundary current extension and the Antarctic Circumpolar Current in the South Atlantic and South Indian oceans. The global average seasonal cycle of ocean mass is about 1 cm in amplitude, with a maximum in early October and volume fluxes in and out of the ocean reaching 0.5 Sv (1 Sv = 1 × 106 m3 s-1) when integrated over the area analyzed here. Regional patterns of seasonal ocean mass change have typical amplitudes of 1-4 cm, and include maxima in the subtropics and minima in the subpolar regions in hemispheric winters. The subtropical mass gains and subpolar mass losses in the winter spin up both subtropical and subpolar gyres, hence the western boundary current extensions. Seasonal variations in these currents are order 10 Sv, but since the associated depth-averaged current variations are only order 0.1 cm s-1, they would be difficult to detect using in situ oceanographic instruments. a) Amplitude (colors, in cm) and b) phase (colors, in months of the year) of an annual harmonic fit to monthly GRACE Release 05 CSR 500 km smoothed maps (concurrently with a trend and the semiannual harmonic). The 97.5% confidence interval for difference from zero is also indicated (solid black line). Data within 300 km of coastlines are not considered.

  5. Kapradiny hornoslezské pánve a jejich spory in situ

    Czech Academy of Sciences Publication Activity Database

    Pšenička, J.; Bek, Jiří

    2009-01-01

    Roč. 2008, - (2009), s. 105-108 ISSN 0514-8057 R&D Projects: GA AV ČR(CZ) IAA300130503 Institutional research plan: CEZ:AV0Z30130516 Keywords : Upper Silesian Basin * Upper Carboniferous * ferns * in situ spores * spores Subject RIV: DB - Geology ; Mineralogy http://www.geology.cz/zpravy/obsah/2008/2008-30.pdf

  6. Computational Ocean Acoustics

    CERN Document Server

    Jensen, Finn B; Porter, Michael B; Schmidt, Henrik

    2011-01-01

    Since the mid-1970s, the computer has played an increasingly pivotal role in the field of ocean acoustics. Faster and less expensive than actual ocean experiments, and capable of accommodating the full complexity of the acoustic problem, numerical models are now standard research tools in ocean laboratories. The progress made in computational ocean acoustics over the last thirty years is summed up in this authoritative and innovatively illustrated new text. Written by some of the field's pioneers, all Fellows of the Acoustical Society of America, Computational Ocean Acoustics presents the latest numerical techniques for solving the wave equation in heterogeneous fluid–solid media. The authors discuss various computational schemes in detail, emphasizing the importance of theoretical foundations that lead directly to numerical implementations for real ocean environments. To further clarify the presentation, the fundamental propagation features of the techniques are illustrated in color. Computational Ocean A...

  7. Deep-sea bioluminescence blooms after dense water formation at the ocean surface.

    Directory of Open Access Journals (Sweden)

    Christian Tamburini

    Full Text Available The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as "open-sea convection". It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms. Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of deep-sea ecosystem shifts.

  8. Understanding the formation and evolution of rain-formed fresh lenses at the ocean surface

    Science.gov (United States)

    Drushka, Kyla; Asher, William E.; Ward, Brian; Walesby, Kieran

    2016-04-01

    Rain falling on the ocean produces a layer of buoyant fresher surface water, or "fresh lens." Fresh lenses can have significant impacts on satellite-in situ salinity comparisons and on exchanges between the surface and the bulk mixed layer. However, because these are small, transient features, relatively few observations of fresh lenses have been made. Here the Generalized Ocean Turbulence Model (GOTM) is used to explore the response of the upper few meters of the ocean to rain events. Comparisons with observations from several platforms demonstrate that GOTM can reproduce the main characteristics of rain-formed fresh lenses. Idealized sensitivity tests show that the near-surface vertical salinity gradient within fresh lenses has a linear dependence on rain rate and an inverse dependence on wind speed. Yearlong simulations forced with satellite rainfall and reanalysis atmospheric parameters demonstrate that the mean salinity difference between 0.01 and 5 m, equivalent to the measurement depths of satellite radiometers and Argo floats, is -0.04 psu when averaged over the 20°S-20°N tropical band. However, when averaged regionally, the mean vertical salinity difference exceeds -0.15 psu in the Indo-Pacific warm pool, in the Pacific and Atlantic intertropical convergence zone, and in the South Pacific convergence zone. In most of these regions, salinities measured by the Aquarius satellite instrument have a fresh bias relative to Argo measurements at 5 m depth. These results demonstrate that the fresh bias in Aquarius salinities in rainy, low-wind regions may be caused by the presence of rain-produced fresh lenses.

  9. Deep-sea bioluminescence blooms after dense water formation at the ocean surface.

    Science.gov (United States)

    Tamburini, Christian; Canals, Miquel; Durrieu de Madron, Xavier; Houpert, Loïc; Lefèvre, Dominique; Martini, Séverine; D'Ortenzio, Fabrizio; Robert, Anne; Testor, Pierre; Aguilar, Juan Antonio; Samarai, Imen Al; Albert, Arnaud; André, Michel; Anghinolfi, Marco; Anton, Gisela; Anvar, Shebli; Ardid, Miguel; Jesus, Ana Carolina Assis; Astraatmadja, Tri L; Aubert, Jean-Jacques; Baret, Bruny; Basa, Stéphane; Bertin, Vincent; Biagi, Simone; Bigi, Armando; Bigongiari, Ciro; Bogazzi, Claudio; Bou-Cabo, Manuel; Bouhou, Boutayeb; Bouwhuis, Mieke C; Brunner, Jurgen; Busto, José; Camarena, Francisco; Capone, Antonio; Cârloganu, Christina; Carminati, Giada; Carr, John; Cecchini, Stefano; Charif, Ziad; Charvis, Philippe; Chiarusi, Tommaso; Circella, Marco; Coniglione, Rosa; Costantini, Heide; Coyle, Paschal; Curtil, Christian; Decowski, Patrick; Dekeyser, Ivan; Deschamps, Anne; Donzaud, Corinne; Dornic, Damien; Dorosti, Hasankiadeh Q; Drouhin, Doriane; Eberl, Thomas; Emanuele, Umberto; Ernenwein, Jean-Pierre; Escoffier, Stéphanie; Fermani, Paolo; Ferri, Marcelino; Flaminio, Vincenzo; Folger, Florian; Fritsch, Ulf; Fuda, Jean-Luc; Galatà, Salvatore; Gay, Pascal; Giacomelli, Giorgio; Giordano, Valentina; Gómez-González, Juan-Pablo; Graf, Kay; Guillard, Goulven; Halladjian, Garadeb; Hallewell, Gregory; van Haren, Hans; Hartman, Joris; Heijboer, Aart J; Hello, Yann; Hernández-Rey, Juan Jose; Herold, Bjoern; Hößl, Jurgen; Hsu, Ching-Cheng; de Jong, Marteen; Kadler, Matthias; Kalekin, Oleg; Kappes, Alexander; Katz, Uli; Kavatsyuk, Oksana; Kooijman, Paul; Kopper, Claudio; Kouchner, Antoine; Kreykenbohm, Ingo; Kulikovskiy, Vladimir; Lahmann, Robert; Lamare, Patrick; Larosa, Giuseppina; Lattuada, Dario; Lim, Gordon; Presti, Domenico Lo; Loehner, Herbert; Loucatos, Sotiris; Mangano, Salvatore; Marcelin, Michel; Margiotta, Annarita; Martinez-Mora, Juan Antonio; Meli, Athina; Montaruli, Teresa; Moscoso, Luciano; Motz, Holger; Neff, Max; Nezri, Emma Nuel; Palioselitis, Dimitris; Păvălaş, Gabriela E; Payet, Kevin; Payre, Patrice; Petrovic, Jelena; Piattelli, Paolo; Picot-Clemente, Nicolas; Popa, Vlad; Pradier, Thierry; Presani, Eleonora; Racca, Chantal; Reed, Corey; Riccobene, Giorgio; Richardt, Carsten; Richter, Roland; Rivière, Colas; Roensch, Kathrin; Rostovtsev, Andrei; Ruiz-Rivas, Joaquin; Rujoiu, Marius; Russo, Valerio G; Salesa, Francisco; Sánchez-Losa, Augustin; Sapienza, Piera; Schöck, Friederike; Schuller, Jean-Pierre; Schussler, Fabian; Shanidze, Rezo; Simeone, Francesco; Spies, Andreas; Spurio, Maurizio; Steijger, Jos J M; Stolarczyk, Thierry; Taiuti, Mauro G F; Toscano, Simona; Vallage, Bertrand; Van Elewyck, Véronique; Vannoni, Giulia; Vecchi, Manuela; Vernin, Pascal; Wijnker, Guus; Wilms, Jorn; de Wolf, Els; Yepes, Harold; Zaborov, Dmitry; De Dios Zornoza, Juan; Zúñiga, Juan

    2013-01-01

    The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as "open-sea convection". It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms. Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of deep-sea ecosystem shifts.

  10. Ocean OSSEs: recent developments and future challenges

    Science.gov (United States)

    Kourafalou, V. H.

    2012-12-01

    Atmospheric OSSEs have had a much longer history of applications than OSSEs (and OSEs) in oceanography. Long standing challenges include the presence of coastlines and steep bathymetric changes, which require the superposition of a wide variety of space and time scales, leading to difficulties on ocean observation and prediction. For instance, remote sensing is critical for providing a quasi-synoptic oceanographic view, but the coverage is limited at the ocean surface. Conversely, in situ measurements are capable to monitor the entire water column, but at a single location and usually for a specific, short time. Despite these challenges, substantial progress has been made in recent years and international initiatives have provided successful OSSE/OSE examples and formed appropriate forums that helped define the future roadmap. These will be discussed, together with various challenges that require a community effort. Examples include: integrated (remote and in situ) observing system requirements for monitoring large scale and climatic changes, vs. short term variability that is particularly important on the regional and coastal spatial scales; satisfying the needs of both global and regional/coastal nature runs, from development to rigorous evaluation and under a clear definition of metrics; data assimilation in the presence of tides; estimation of real-time river discharges for Earth system modeling. An overview of oceanographic efforts that complement the standard OSSE methodology will also be given. These include ocean array design methods, such as representer-based analysis and adaptive sampling. Exciting new opportunities for both global and regional ocean OSSE/OSE studies have recently become possible with targeted periods of comprehensive data sets, such as the existing Gulf of Mexico observations from multiple sources in the aftermath of the DeepWater Horizon incident and the upcoming airborne AirSWOT, in preparation for the SWOT (Surface Water and Ocean

  11. Automated sensor networks to advance ocean science

    Science.gov (United States)

    Schofield, O.; Orcutt, J. A.; Arrott, M.; Vernon, F. L.; Peach, C. L.; Meisinger, M.; Krueger, I.; Kleinert, J.; Chao, Y.; Chien, S.; Thompson, D. R.; Chave, A. D.; Balasuriya, A.

    2010-12-01

    The National Science Foundation has funded the Ocean Observatories Initiative (OOI), which over the next five years will deploy infrastructure to expand scientist’s ability to remotely study the ocean. The deployed infrastructure will be linked by a robust cyberinfrastructure (CI) that will integrate marine observatories into a coherent system-of-systems. OOI is committed to engaging the ocean sciences community during the construction pahse. For the CI, this is being enabled by using a “spiral design strategy” allowing for input throughout the construction phase. In Fall 2009, the OOI CI development team used an existing ocean observing network in the Mid-Atlantic Bight (MAB) to test OOI CI software. The objective of this CI test was to aggregate data from ships, autonomous underwater vehicles (AUVs), shore-based radars, and satellites and make it available to five different data-assimilating ocean forecast models. Scientists used these multi-model forecasts to automate future glider missions in order to demonstrate the feasibility of two-way interactivity between the sensor web and predictive models. The CI software coordinated and prioritized the shared resources that allowed for the semi-automated reconfiguration of assett-tasking, and thus enabled an autonomous execution of observation plans for the fixed and mobile observation platforms. Efforts were coordinated through a web portal that provided an access point for the observational data and model forecasts. Researchers could use the CI software in tandem with the web data portal to assess the performance of individual numerical model results, or multi-model ensembles, through real-time comparisons with satellite, shore-based radar, and in situ robotic measurements. The resulting sensor net will enable a new means to explore and study the world’s oceans by providing scientists a responsive network in the world’s oceans that can be accessed via any wireless network.

  12. Upper airway evaluation

    International Nuclear Information System (INIS)

    Hoffman, E.A.; Gefter, W.B.; Schnall, M.; Nordberg, J.; Listerud, J.; Lenkinski, R.E.

    1988-01-01

    The authors are evaluating upper-airway sleep disorders with magnetic resonance (MR) imaging and x-ray cine computed tomography (CT). Fixed structural anatomy is visualized with multisection spin-echo MR imaging, the dynamic component with cine CT. Unique aspects of the study are described in this paper

  13. Validation and Intercomparison of Ocean Color Algorithms for Estimating Particulate Organic Carbon in the Oceans

    Directory of Open Access Journals (Sweden)

    Hayley Evers-King

    2017-08-01

    Full Text Available Particulate Organic Carbon (POC plays a vital role in the ocean carbon cycle. Though relatively small compared with other carbon pools, the POC pool is responsible for large fluxes and is linked to many important ocean biogeochemical processes. The satellite ocean-color signal is influenced by particle composition, size, and concentration and provides a way to observe variability in the POC pool at a range of temporal and spatial scales. To provide accurate estimates of POC concentration from satellite ocean color data requires algorithms that are well validated, with uncertainties characterized. Here, a number of algorithms to derive POC using different optical variables are applied to merged satellite ocean color data provided by the Ocean Color Climate Change Initiative (OC-CCI and validated against the largest database of in situ POC measurements currently available. The results of this validation exercise indicate satisfactory levels of performance from several algorithms (highest performance was observed from the algorithms of Loisel et al., 2002; Stramski et al., 2008 and uncertainties that are within the requirements of the user community. Estimates of the standing stock of the POC can be made by applying these algorithms, and yield an estimated mixed-layer integrated global stock of POC between 0.77 and 1.3 Pg C of carbon. Performance of the algorithms vary regionally, suggesting that blending of region-specific algorithms may provide the best way forward for generating global POC products.

  14. Using aerogravity and seismic data to model the bathymetry and upper crustal structure beneath the Pine Island Glacier ice shelf, West Antarctica

    Science.gov (United States)

    Muto, A.; Peters, L. E.; Anandakrishnan, S.; Alley, R. B.; Riverman, K. L.

    2013-12-01

    Recent estimates indicate that ice shelves along the Amundsen Sea coast in West Antarctica are losing substantial mass through sub-ice-shelf melting and contributing to the accelerating mass loss of the grounded ice buttressed by them. For Pine Island Glacier (PIG), relatively warm Circumpolar Deep Water has been identified as the key driver of the sub-ice-shelf melting although poor constraints on PIG sub-ice shelf have restricted thorough understanding of these ice-ocean interactions. Aerogravity data from NASA's Operation IceBridge (OIB) have been useful in identifying large-scale (on the order of ten kilometers) features but the results have relatively large uncertainties due to the inherent non-uniqueness of the gravity inversion. Seismic methods offer the most direct means of providing water thickness and upper crustal geological constraints, but availability of such data sets over the PIG ice shelf has been limited due to logistical constraints. Here we present a comparative analysis of the bathymetry and upper crustal structure beneath the ice shelf of PIG through joint inversion of OIB aerogravity data and in situ active-source seismic measurements collected in the 2012-13 austral summer. Preliminary results indicate improved resolution of the ocean cavity, particularly in the interior and sides of the PIG ice shelf, and sedimentary drape across the region. Seismically derived variations in ice and ocean water densities are also applied to the gravity inversion to produce a more robust model of PIG sub-ice shelf structure, as opposed to commonly used single ice and water densities across the entire study region. Misfits between the seismically-constrained gravity inversion and that estimated previously from aerogravity alone provide insights on the sensitivity of gravity measurements to model perturbations and highlight the limitations of employing gravity data to model ice shelf environments when no other sub-ice constraints are available.

  15. On the imprint of surfactant-driven stabilization of laboratory breaking wave foam with comparison to oceanic whitecaps

    Science.gov (United States)

    Callaghan, A. H.; Deane, G. B.; Stokes, M. D.

    2017-08-01

    Surfactants are ubiquitous in the global oceans: they help form the materially-distinct sea surface microlayer (SML) across which global ocean-atmosphere exchanges take place, and they reside on the surfaces of bubbles and whitecap foam cells prolonging their lifetime thus altering ocean albedo. Despite their importance, the occurrence, spatial distribution, and composition of surfactants within the upper ocean and the SML remains under-characterized during conditions of vigorous wave breaking when in-situ sampling methods are difficult to implement. Additionally, no quantitative framework exists to evaluate the importance of surfactant activity on ocean whitecap foam coverage estimates. Here we use individual laboratory breaking waves generated in filtered seawater and seawater with added soluble surfactant to identify the imprint of surfactant activity in whitecap foam evolution. The data show a distinct surfactant imprint in the decay phase of foam evolution. The area-time-integral of foam evolution is used to develop a time-varying stabilization function, ϕ>(t>) and a stabilization factor, Θ, which can be used to identify and quantify the extent of this surfactant imprint for individual breaking waves. The approach is then applied to wind-driven oceanic whitecaps, and the laboratory and ocean Θ distributions overlap. It is proposed that whitecap foam evolution may be used to determine the occurrence and extent of oceanic surfactant activity to complement traditional in-situ techniques and extend measurement capabilities to more severe sea states occurring at wind speeds in excess of about 10 m/s. The analysis procedure also provides a framework to assess surfactant-driven variability within and between whitecap coverage data sets.Plain Language SummaryThe foam patches made by breaking waves, also known as "whitecaps", are an important source of marine sea spray, which impacts weather and climate through the formation of cloud drops and ice. Sea spray

  16. Thermal structure and flow patterns around Seychelles group of Islands (Indian Ocean) during austral autumn

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.; RameshBabu, V.; RameshKumar, M.R.

    Properties of thermal structure in the upper 750 m around the Seychelles group of islands in the Indian Ocean, based on Expendable Bathythermograph (XBT) data collected in March 1984, are presented along with the inferred flow patterns...

  17. Thermal structure of the Western Indian Ocean during the southwest monsoon, 1983

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, Y.V.B.; Sarma, M.S.S.; Rao, L.V.G.

    The thermal structure and the variability of heat content of the upper 400 m of the Western Indian Ocean were examined using the expendable bathythermograph (XBT) data collected onboard RV Sagar Kanya during July-August, 1983. Vertical displacement...

  18. Metabolic Activity and Biosignatures of Microbes in the Lower Ocean Crust of Atlantis Bank, IODP Expedition 360

    Science.gov (United States)

    Wee, S. Y.; Edgcomb, V. P.; Burgaud, G.; Klein, F.; Schubotz, F.; Yvon-Lewis, S. A.; Sylvan, J. B.

    2017-12-01

    International Ocean Discovery Program (IODP) Expedition 360 represents the first leg of a multi-phase drilling program, SloMo, aimed at investigating the nature of the lower crust and Moho at slow spreading ridges. The goal of Expedition 360 was to recover a representative transect of the lower oceanic crust formed at Atlantis Bank, an oceanic core complex on the SW Indian Ridge. Recovered cores were primarily gabbro and olivine gabbro, which may potentially host serpentinization reactions and associated microbial life. Our goal was to sample this subseafloor environment and determine quantity, diversity and metabolic capabilities of any resident microbial life. Hole U1473A was drilled during Expedition 360 down to 790 m below seafloor and samples for detection of microbial communities and microbial biosignatures were collected throughout. We present here quantification of microbial biomass via fluorescence microscopy, preliminary analysis of nutrient addition experiments, data from sequencing of microbial 16S rRNA genes, analysis of microbial lipids, and data from Raman spectra of subsurface isolates. We initiated and sampled 12 nutrient addition experiments from 71-745 mbsf by adding sampled rocks to artificial seawater with no additions, added ammonium, added ammonium plus phosphate, and added organic acids. In nearly all of the experiment bottles, methane was detected when samples were collected at six months and again after one year of incubation. Phosphate in the incubations was drawn down, indicating active microbial metabolism, and archaeal lipids from in situ samples indicate the presence of methanogens, corroborating the likelihood of methanogens as the source of detected methane in the nutrient addition incubations. Altogether, the interdisciplinary approach used here provides a peek into life in the subseafloor upper ocean crust.

  19. Measuring ocean acidification: new technology for a new era of ocean chemistry.

    Science.gov (United States)

    Byrne, Robert H

    2014-05-20

    Human additions of carbon dioxide to the atmosphere are creating a cascade of chemical consequences that will eventually extend to the bottom of all the world's oceans. Among the best-documented seawater effects are a worldwide increase in open-ocean acidity and large-scale declines in calcium carbonate saturation states. The susceptibility of some young, fast-growing calcareous organisms to adverse impacts highlights the potential for biological and economic consequences. Many important aspects of seawater CO2 chemistry can be only indirectly observed at present, and important but difficult-to-observe changes can include shifts in the speciation and possibly bioavailability of some life-essential elements. Innovation and invention are urgently needed to develop the in situ instrumentation required to document this era of rapid ocean evolution.

  20. Interpretation of TOMS Observations of Tropical Tropospheric Ozone with a Global Model and In Situ Observations

    Science.gov (United States)

    Martin, Randall V.; Jacob, Daniel J.; Logan, Jennifer A.; Bey, Isabelle; Yantosca, Robert M.; Staudt, Amanda C.; Fiore, Arlene M.; Duncan, Bryan N.; Liu, Hongyu; Ginoux, Paul

    2004-01-01

    We interpret the distribution of tropical tropospheric ozone columns (TTOCs) from the Total Ozone Mapping Spectrometer (TOMS) by using a global three-dimensional model of tropospheric chemistry (GEOS-CHEM) and additional information from in situ observations. The GEOS-CHEM TTOCs capture 44% of the variance of monthly mean TOMS TTOCs from the convective cloud differential method (CCD) with no global bias. Major discrepancies are found over northern Africa and south Asia where the TOMS TTOCs do not capture the seasonal enhancements from biomass burning found in the model and in aircraft observations. A characteristic feature of these northern topical enhancements, in contrast to southern tropical enhancements, is that they are driven by the lower troposphere where the sensitivity of TOMS is poor due to Rayleigh scattering. We develop an efficiency correction to the TOMS retrieval algorithm that accounts for the variability of ozone in the lower troposphere. This efficiency correction increases TTOC's over biomass burning regions by 3-5 Dobson units (DU) and decreases them by 2-5 DU over oceanic regions, improving the agreement between CCD TTOCs and in situ observations. Applying the correction to CCD TTOCs reduces by approximately DU the magnitude of the "tropical Atlantic paradox" [Thompson et al, 2000], i.e. the presence of a TTOC enhancement over the southern tropical Atlantic during the northern African biomass burning season in December-February. We reproduce the remainder of the paradox in the model and explain it by the combination of upper tropospheric ozone production from lightning NOx, peristent subsidence over the southern tropical Atlantic as part of the Walker circulation, and cross-equatorial transport of upper tropospheric ozone from northern midlatitudes in the African "westerly duct." These processes in the model can also account for the observed 13-17 DU persistent wave-1 pattern in TTOCs with a maximum above the tropical Atlantic and a minimum

  1. Interactions of the tropical oceans. Rev.ed.

    International Nuclear Information System (INIS)

    Latif, M.; Barnett, T.P.

    1994-01-01

    We have investigated the interactions of the tropical oceans on interannual time scales by conducting a series of uncoupled atmospheric and oceanic general circulation experiments and hybrid coupled model simulations. Our results illustrate the key role of the El Nino/Southern Oscillation (ENSO) phenomenon in generating interannual variability in all three tropical ocean basins. Sea surface temperature (SST) anomalies in the tropical Pacific force via a changed atmospheric circulation SST anomalies of the same sign in the Indian Ocean and SST anomalies of the opposite sign in the Atlantic. However, although air-sea interactions in the Indian and Atlantic Oceans are much weaker than those in the Pacific, they contribute significantly to the variability in these two regions. The role of these air-sea interactions is mainly that of an amplifyer by which the ENSO induced signals are enhanced in ocean and atmosphere. This process is particularly important in the tropical Atlantic region. We investigated also whether ENSO is part of a zonally propagating ''wave'' which travels around the globe with a time scale of several years. Consistent with observations, the upper ocean heat content in the various numerical simulations seems to propagate slowly around the globe. SST anomalies in the Pacific Ocean introduce a global atmospheric response which in turn forces variations in the other tropical oceans. Since the different oceans exhibit different response characteristics to low-frequency wind changes, the individual tropical ocean responses can add up coincidentally to look like a global wave, and that appears to be the situation. In particular, no evidence is found that the Indian Ocean can significantly affect the ENSO cycle in the Pacific. Finally, the potential for climate forecasts in the Indian and Atlantic Oceans appears to be enhanced if one includes, in a coupled way, remote influences from the Pacific. (orig.)

  2. Investigating the Indian Ocean Geoid Low

    Science.gov (United States)

    Ghosh, A.; Gollapalli, T.; Steinberger, B. M.

    2016-12-01

    The lowest geoid anomaly on Earth lies in the Indian Ocean just south of the Indian peninsula.Several theories have been proposed to explain this geoid low, most of which invoke past subduction. Some recent studies have alsoargued that high velocity anomalies in the lower mantle coupled with low velocity anomalies in the upper mantle are responsible for these negative geoidanomalies. However, there is no general consensus regarding the source of the Indian Ocean negative geoid. We investigate the source of this geoid low by using forward models of density driven mantle convection using CitcomS. We test various tomography models in our flow calculations with different radial and lateral viscosity variations. Many tomography modelsproduce a fairly high correlation to the global geoid, however none could match the precise location of the geoid low in the Indian Ocean. Amerged P-wave model of LLNL-G3DV3 in the Indian Ocean region and S40rts elsewhere yields a good fit to the geoid anomaly, both in pattern and magnitude.The source of this geoid low seems to stem from a low velocity anomaly stretching from a depth of 300 km up to 700 km in the northern Indian Ocean region.This velocity anomaly could potentially arise from material rising along the edge of the African LLSVP and moving towards the northeast, facilitated by the movementof the Indian plate in the same direction.

  3. Biogeochemical Reactions Under Simulated Europa Ocean Conditions

    Science.gov (United States)

    Amashukeli, X.; Connon, S. A.; Gleeson, D. F.; Kowalczyk, R. S.; Pappalardo, R. T.

    2007-12-01

    reduction capability will be later selected and used to facilitate biogeochemical reduction of iron under simulated temperature and pressure of Europa's ocean. The results of this work will enable us to ascertain whether Europa's cold, high-pressure ocean is capable of supporting life. In addition, the data from this study will help in generating a list of organic and inorganic target molecules for future remote sensing and in situ exploration missions.

  4. Autonomous observing strategies for the ocean carbon cycle

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, James K.; Davis, Russ E.

    2000-07-26

    Understanding the exchanges of carbon between the atmosphere and ocean and the fate of carbon delivered to the deep sea is fundamental to the evaluation of ocean carbon sequestration options. An additional key requirement is that sequestration must be verifiable and that environmental effects be monitored and minimized. These needs can be addressed by carbon system observations made from low-cost autonomous ocean-profiling floats and gliders. We have developed a prototype ocean carbon system profiler based on the Sounding Oceanographic Lagrangian Observer (SOLO; Davis et al., 1999). The SOLO/ carbon profiler will measure the two biomass components of the carbon system and their relationship to physical variables, such as upper ocean stratification and mixing. The autonomous observations within the upper 1500 m will be made on daily time scales for periods of months to seasons and will be carried out in biologically dynamic locations in the world's oceans that are difficult to access with ships (due to weather) or observe using remote sensing satellites (due to cloud cover). Such an observational capability not only will serve an important role in carbon sequestration research but will provide key observations of the global ocean's natural carbon cycle.

  5. Surface wind mixing in the Regional Ocean Modeling System (ROMS)

    Science.gov (United States)

    Robertson, Robin; Hartlipp, Paul

    2017-12-01

    Mixing at the ocean surface is key for atmosphere-ocean interactions and the distribution of heat, energy, and gases in the upper ocean. Winds are the primary force for surface mixing. To properly simulate upper ocean dynamics and the flux of these quantities within the upper ocean, models must reproduce mixing in the upper ocean. To evaluate the performance of the Regional Ocean Modeling System (ROMS) in replicating the surface mixing, the results of four different vertical mixing parameterizations were compared against observations, using the surface mixed layer depth, the temperature fields, and observed diffusivities for comparisons. The vertical mixing parameterizations investigated were Mellor- Yamada 2.5 level turbulent closure (MY), Large- McWilliams- Doney Kpp (LMD), Nakanishi- Niino (NN), and the generic length scale (GLS) schemes. This was done for one temperate site in deep water in the Eastern Pacific and three shallow water sites in the Baltic Sea. The model reproduced the surface mixed layer depth reasonably well for all sites; however, the temperature fields were reproduced well for the deep site, but not for the shallow Baltic Sea sites. In the Baltic Sea, the models overmixed the water column after a few days. Vertical temperature diffusivities were higher than those observed and did not show the temporal fluctuations present in the observations. The best performance was by NN and MY; however, MY became unstable in two of the shallow simulations with high winds. The performance of GLS nearly as good as NN and MY. LMD had the poorest performance as it generated temperature diffusivities that were too high and induced too much mixing. Further observational comparisons are needed to evaluate the effects of different stratification and wind conditions and the limitations on the vertical mixing parameterizations.

  6. Oceanic migration and spawning of anguillid eels.

    Science.gov (United States)

    Tsukamoto, K

    2009-06-01

    Many aspects of the life histories of anguillid eels have been revealed in recent decades, but the spawning migrations of their silver eels in the open ocean still remains poorly understood. This paper overviews what is known about the migration and spawning of anguillid species in the ocean. The factors that determine exactly when anguillid eels will begin their migrations are not known, although environmental influences such as lunar cycle, rainfall and river discharge seem to affect their patterns of movement as they migrate towards the ocean. Once in the ocean on their way to the spawning area, silver eels probably migrate in the upper few hundred metres, while reproductive maturation continues. Although involvement of a magnetic sense or olfactory cues seems probable, how they navigate or what routes they take are still a matter of speculation. There are few landmarks in the open ocean to define their spawning areas, other than oceanographic or geological features such as oceanic fronts or seamounts in some cases. Spawning of silver eels in the ocean has never been observed, but artificially matured eels of several species have exhibited similar spawning behaviours in the laboratory. Recent collections of mature adults and newly spawned preleptocephali in the spawning area of the Japanese eel Anguilla japonica have shown that spawning occurs during new moon periods in the North Equatorial Current region near the West Mariana Ridge. These data, however, show that the latitude of the spawning events can change among months and years depending on oceanographic conditions. Changes in spawning location of this and other anguillid species may affect their larval transport and survival, and appear to have the potential to influence recruitment success. A greater understanding of the spawning migration and the choice of spawning locations by silver eels is needed to help conserve declining anguillid species.

  7. The Arctic Summer Cloud-Ocean Study (ASCOS): overview and experimental design

    Science.gov (United States)

    Tjernström, M.; Leck, C.; Birch, C. E.; Brooks, B. J.; Brooks, I. M.; Bäcklin, L.; Chang, R. Y.-W.; Granath, E.; Graus, M.; Hansel, A.; Heintzenberg, J.; Held, A.; Hind, A.; de la Rosa, S.; Johnston, P.; Knulst, J.; de Leeuw, G.; Di Liberto, L.; Martin, M.; Matrai, P. A.; Mauritsen, T.; Müller, M.; Norris, S. J.; Orellana, M. V.; Orsini, D. A.; Paatero, J.; Persson, P. O. G.; Gao, Q.; Rauschenberg, C.; Ristovski, Z.; Sedlar, J.; Shupe, M. D.; Sierau, B.; Sirevaag, A.; Sjogren, S.; Stetzer, O.; Swietlicki, E.; Szczodrak, M.; Vaattovaara, P.; Wahlberg, N.; Westberg, M.; Wheeler, C. R.

    2013-05-01

    The climate in the Arctic is changing faster than anywhere else on Earth. Poorly understood feedback processes relating to Arctic clouds and aerosol-cloud interactions contribute to a poor understanding of the present changes in the Arctic climate system, and also to a large spread in projections of future climate in the Arctic. The problem is exacerbated by the paucity of research-quality observations in the central Arctic. Improved formulations in climate models require such observations, which can only come from measurements in-situ in this difficult to reach region with logistically demanding environmental conditions. The Arctic Summer Cloud-Ocean Study (ASCOS) was the most extensive central Arctic Ocean expedition with an atmospheric focus during the International Polar Year (IPY) 2007-2008. ASCOS focused on the study of the formation and life cycle of low-level Arctic clouds. ASCOS departed from Longyearbyen on Svalbard on 2 August and returned on 9 September 2008. In transit into and out of the pack ice, four short research stations were undertaken in the Fram Strait; two in open water and two in the marginal ice zone. After traversing the pack-ice northward an ice camp was set up on 12 August at 87°21' N 01°29' W and remained in operation through 1 September, drifting with the ice. During this time extensive measurements were taken of atmospheric gas and particle chemistry and physics, mesoscale and boundary-layer meteorology, marine biology and chemistry, and upper ocean physics. ASCOS provides a unique interdisciplinary data set for development and testing of new hypotheses on cloud processes, their interactions with the sea ice and ocean and associated physical, chemical, and biological processes and interactions. For example, the first ever quantitative observation of bubbles in Arctic leads, combined with the unique discovery of marine organic material, polymer gels with an origin in the ocean, inside cloud droplets suggest the possibility of primary

  8. Food web changes under ocean acidification promote herring larvae survival.

    Science.gov (United States)

    Sswat, Michael; Stiasny, Martina H; Taucher, Jan; Algueró-Muñiz, Maria; Bach, Lennart T; Jutfelt, Fredrik; Riebesell, Ulf; Clemmesen, Catriona

    2018-05-01

    Ocean acidification-the decrease in seawater pH due to rising CO 2 concentrations-has been shown to lower survival in early life stages of fish and, as a consequence, the recruitment of populations including commercially important species. To date, ocean-acidification studies with fish larvae have focused on the direct physiological impacts of elevated CO 2 , but largely ignored the potential effects of ocean acidification on food web interactions. In an in situ mesocosm study on Atlantic herring (Clupea harengus) larvae as top predators in a pelagic food web, we account for indirect CO 2 effects on larval survival mediated by changes in food availability. The community was exposed to projected end-of-the-century CO 2 conditions (~760 µatm pCO 2 ) over a period of 113 days. In contrast with laboratory studies that reported a decrease in fish survival, the survival of the herring larvae in situ was significantly enhanced by 19 ± 2%. Analysis of the plankton community dynamics suggested that the herring larvae benefitted from a CO 2 -stimulated increase in primary production. Such indirect effects may counteract the possible direct negative effects of ocean acidification on the survival of fish early life stages. These findings emphasize the need to assess the food web effects of ocean acidification on fish larvae before we can predict even the sign of change in fish recruitment in a high-CO 2 ocean.

  9. The Southern Ocean Observing System

    OpenAIRE

    Rintoul, Stephen R.; Meredith, Michael P.; Schofield, Oscar; Newman, Louise

    2012-01-01

    The Southern Ocean includes the only latitude band where the ocean circles the earth unobstructed by continental boundaries. This accident of geography has profound consequences for global ocean circulation, biogeochemical cycles, and climate. The Southern Ocean connects the ocean basins and links the shallow and deep limbs of the overturning circulation (Rintoul et al., 2001). The ocean's capacity to moderate the pace of climate change is therefore influenced strongly by the Southern Ocean's...

  10. Upper urinary tract tumors

    DEFF Research Database (Denmark)

    Gandrup, Karen L; Nordling, Jørgen; Balslev, Ingegerd

    2014-01-01

    BACKGROUND: Computed tomography urography (CTU) is used widely in the work-up of patients with symptoms of urinary tract lesions. Preoperative knowledge of whether a tumor is invasive or non-invasive is important for the choice of surgery. So far there are no studies about the distinction...... of invasive and non-invasive tumors in ureter and renal pelvis based on the enhancement measured with Hounsfield Units. PURPOSE: To examine the value of CTU using split-bolus technique to distinguish non-invasive from invasive urothelial carcinomas in the upper urinary tract. MATERIAL AND METHODS: Patients...... obtained at CTU could distinguish between invasive and non-invasive lesions. No patients had a CTU within the last year before the examination that resulted in surgery. CONCLUSION: A split-bolus CTU cannot distinguish between invasive and non-invasive urothelial tumors in the upper urinary tract...

  11. AFSC/RACE/SAP/Long: Data from: Upper thermal tolerance in red and blue king crab: Sublethal and lethal effects

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains data from a series of experiments that determined the upper thermal tolerance of early benthic stage red and blue king crabs. Experiments...

  12. Acropora Spatial Survey Data of the Upper Florida Keys National Marine Sanctuary 2005 -2007 (NODC Accession 0046934)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Presence or absence of acroporid corals marked by handheld GPS during snorkel or tow surveys of shallow water (5m) reef habitats in the Upper Florida Keys National...

  13. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Upper Coast of Texas: ESIL (ESI Shoreline Types - Lines)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The ESIL data set contains lines representing the shoreline and coastal habitats of the Upper Coast of Texas, classified according to the Environmental Sensitivity...

  14. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Upper Coast of Texas: BENTHIC (Benthic habitat polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains known locations of patchy and continuous seagrass and oyster reef habitat for the Upper Coast of Texas benthic habitat data. This data set...

  15. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Upper Coast of Texas: T_MAMMAL (Terrestrial Mammal Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for terrestrial mammals for the Upper Coast of Texas. Vector polygons in this data set represent...

  16. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Upper Coast of Texas: ESIP (ESI Shoreline Types - Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The ESIP data set contains polygons representing the shoreline and coastal habitats of the Upper Coast of Texas, classified according to the Environmental...

  17. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Upper Coast of Texas: HYDRO (Hydrography Lines and Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector lines and polygons representing coastal hydrography used in the creation of the Environmental Sensitivity Index (ESI) for the Upper...

  18. Acropora Spatial Survey Data of the Upper Florida Keys National Marine Sanctuary, 2005 - 2007 (NODC Accession 0046934)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were collected by the NOAA Southeast Fisheries Science Center to document the presence or absence of Acropora spp at shallow reef sites in the Upper...

  19. CRCP-Water temperature data from loggers deployed at various reef sites off the upper Florida Keys

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature loggers were deployed at various monitoring sites off the upper Florida Keys where other ecological studies were underway, most focused on aspects of...

  20. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Upper Coast of Texas: M_MAMMAL (Marine Mammal Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for dolphins and manatees for the Upper Coast of Texas. Vector polygons in this data set represent marine...

  1. Ejecta from Ocean Impacts

    Science.gov (United States)

    Kyte, Frank T.

    2003-01-01

    Numerical simulations of deep-ocean impact provide some limits on the size of a projectile that will not mix with the ocean floor during a deep-ocean impact. For a vertical impact at asteroidal velocities (approx. 20 km/s), mixing is only likely when the projectile diameter is greater than 112 of the water depth. For oblique impacts, even larger projectiles will not mix with ocean floor silicates. Given the typical water depths of 4 to 5 km in deep-ocean basins, asteroidal projectiles with diameters as large as 2 or 3 km may commonly produce silicate ejecta that is composed only of meteoritic materials and seawater salts. However, the compressed water column beneath the projectile can still disrupt and shock metamorphose the ocean floor. Therefore, production of a separate, terrestrial ejecta component is not ruled out in the most extreme case. With increasing projectile size (or energy) relative to water depths, there must be a gradation between oceanic impacts and more conventional continental impacts. Given that 60% of the Earth's surface is covered by oceanic lithosphere and 500 m projectiles impact the Earth on 10(exp 5) y timescales, there must be hundreds of oceanic impact deposits in the sediment record awaiting discovery.

  2. Our Changing Oceans: All about Ocean Acidification

    International Nuclear Information System (INIS)

    Rickwood, Peter

    2013-01-01

    The consequences of ocean acidification are global in scale. More research into ocean acidification and its consequences is needed. It is already known, for example, that there are regional differences in the vulnerability of fisheries to acidification. The combination of other factors, such as global warming, the destruction of habitats, overfishing and pollution, need to be taken into account when developing strategies to increase the marine environment’s resilience. Among steps that can be taken to reduce the impact is better protection of marine coastal ecosystems, such as mangrove swamps and seagrass meadows, which will help protect fisheries. This recommendation was one of the conclusions of a three-day workshop attended by economists and scientists and organized by the IAEA and the Centre Scientifique de Monaco in November 2012. In their recommendations the workshop also stressed that the impact of increasing ocean acidity must be taken into account in the management of fisheries, particularly where seafood is a main dietary source

  3. In-Situ Simulation

    DEFF Research Database (Denmark)

    Bjerregaard, Anders Thais; Slot, Susanne; Paltved, Charlotte

    2015-01-01

    , and organisational characteristic. Therefore, it might fail to fully mimic real clinical team processes. Though research on in situ simulation in healthcare is in its infancy, literature is abundant on patient safety and team training1. Patient safety reporting systems that identify risks to patients can improve......Introduction: In situ simulation offers on-site training to healthcare professionals. It refers to a training strategy where simulation technology is integrated into the clinical encounter. Training in the simulation laboratory does not easily tap into situational resources, e.g. individual, team...... patient safety if coupled with training and organisational support. This study explored the use of critical incidents and adverse events reports for in situ simulation and short-term observations were used to create learning objectives and training scenarios. Method: This study used an interventional case...

  4. Blue ocean strategy.

    Science.gov (United States)

    Kim, W Chan; Mauborgne, Renée

    2004-10-01

    Despite a long-term decline in the circus industry, Cirque du Soleil profitably increased revenue 22-fold over the last ten years by reinventing the circus. Rather than competing within the confines of the existing industry or trying to steal customers from rivals, Cirque developed uncontested market space that made the competition irrelevant. Cirque created what the authors call a blue ocean, a previously unknown market space. In blue oceans, demand is created rather than fought over. There is ample opportunity for growth that is both profitable and rapid. In red oceans--that is, in all the industries already existing--companies compete by grabbing for a greater share of limited demand. As the market space gets more crowded, prospects for profits and growth decline. Products turn into commodities, and increasing competition turns the water bloody. There are two ways to create blue oceans. One is to launch completely new industries, as eBay did with online auctions. But it's much more common for a blue ocean to be created from within a red ocean when a company expands the boundaries of an existing industry. In studying more than 150 blue ocean creations in over 30 industries, the authors observed that the traditional units of strategic analysis--company and industry--are of limited use in explaining how and why blue oceans are created. The most appropriate unit of analysis is the strategic move, the set of managerial actions and decisions involved in making a major market-creating business offering. Creating blue oceans builds brands. So powerful is blue ocean strategy, in fact, that a blue ocean strategic move can create brand equity that lasts for decades.

  5. The monsoon currents in the north Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Shankar, D.; Vinayachandran, P.N.; Unnikrishnan, A.S.

    . Journal of Geo- physical Research 97, 20169?20178. Pond, S., Pickard, G. L., 1983. Introductory dynamical oceanography, 2nd Edition. Pergamon Press, Oxford. Potemra, J. T., Luther, M. E., O'Brien, J. J., 1991. The seasonal circulation of the upper ocean...

  6. Decadal variation of ocean heat content and tropical cyclone activity ...

    Indian Academy of Sciences (India)

    The upper ocean heat content up to 700 m depth (OHC700) is an important ... made to examine the inter-decadal variations of tropical cyclone (TC) activity and OHC700 over the ..... In: Climate change 2007: The physical science basis (eds).

  7. In situ groundwater bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.

    2009-02-01

    In situ groundwater bioremediation of hydrocarbons has been used for more than 40 years. Most strategies involve biostimulation; however, recently bioaugmentation have been used for dehalorespiration. Aquifer and contaminant profiles are critical to determining the feasibility and strategy for in situ groundwater bioremediation. Hydraulic conductivity and redox conditions, including concentrations of terminal electron acceptors are critical to determine the feasibility and strategy for potential bioremediation applications. Conceptual models followed by characterization and subsequent numerical models are critical for efficient and cost effective bioremediation. Critical research needs in this area include better modeling and integration of remediation strategies with natural attenuation.

  8. Seismic Wave Propagation in Icy Ocean Worlds

    Science.gov (United States)

    Stähler, Simon C.; Panning, Mark P.; Vance, Steven D.; Lorenz, Ralph D.; van Driel, Martin; Nissen-Meyer, Tarje; Kedar, Sharon

    2018-01-01

    Seismology was developed on Earth and shaped our model of the Earth's interior over the twentieth century. With the exception of the Philae lander, all in situ extraterrestrial seismological effort to date was limited to other terrestrial planets. All have in common a rigid crust above a solid mantle. The coming years may see the installation of seismometers on Europa, Titan, and Enceladus, so it is necessary to adapt seismological concepts to the setting of worlds with global oceans covered in ice. Here we use waveform analyses to identify and classify wave types, developing a lexicon for icy ocean world seismology intended to be useful to both seismologists and planetary scientists. We use results from spectral-element simulations of broadband seismic wavefields to adapt seismological concepts to icy ocean worlds. We present a concise naming scheme for seismic waves and an overview of the features of the seismic wavefield on Europa, Titan, Ganymede, and Enceladus. In close connection with geophysical interior models, we analyze simulated seismic measurements of Europa and Titan that might be used to constrain geochemical parameters governing the habitability of a sub-ice ocean.

  9. Investigating transport pathways in the ocean

    Science.gov (United States)

    Griffa, Annalisa; Haza, Angelique; Özgökmen, Tamay M.; Molcard, Anne; Taillandier, Vincent; Schroeder, Katrin; Chang, Yeon; Poulain, P.-M.

    2013-01-01

    The ocean is a very complex medium with scales of motion that range from thousands of kilometers to the dissipation scales. Transport by ocean currents plays an important role in many practical applications ranging from climatic problems to coastal management and accident mitigation at sea. Understanding transport is challenging because of the chaotic nature of particle motion. In the last decade, new methods have been put forth to improve our understanding of transport. Powerful tools are provided by dynamical system theory, that allow the identification of the barriers to transport and their time variability for a given flow. A shortcoming of this approach, though, is that it is based on the assumption that the velocity field is known with good accuracy, which is not always the case in practical applications. Improving model performance in terms of transport can be addressed using another important methodology that has been recently developed, namely the assimilation of Lagrangian data provided by floating buoys. The two methodologies are technically different but in many ways complementary. In this paper, we review examples of applications of both methodologies performed by the authors in the last few years, considering flows at different scales and in various ocean basins. The results are among the very first examples of applications of the methodologies to the real ocean including testing with Lagrangian in-situ data. The results are discussed in the general framework of the extended fields related to these methodologies, pointing out to open questions and potential for improvements, with an outlook toward future strategies.

  10. In situ stress and pore pressure in the Kumano Forearc Basin, offshore SW Honshu from downhole measurements during riser drilling

    Science.gov (United States)

    Saffer, D. M.; Flemings, P. B.; Boutt, D.; Doan, M.-L.; Ito, T.; McNeill, L.; Byrne, T.; Conin, M.; Lin, W.; Kano, Y.; Araki, E.; Eguchi, N.; Toczko, S.

    2013-05-01

    situ stress and pore pressure are key parameters governing rock deformation, yet direct measurements of these quantities are rare. During Integrated Ocean Drilling Program (IODP) Expedition #319, we drilled through a forearc basin at the Nankai subduction zone and into the underlying accretionary prism. We used the Modular Formation Dynamics Tester tool (MDT) for the first time in IODP to measure in situ minimum stress, pore pressure, and permeability at 11 depths between 729.9 and 1533.9 mbsf. Leak-off testing at 708.6 mbsf conducted as part of drilling operations provided a second measurement of minimum stress. The MDT campaign included nine single-probe (SP) tests to measure permeability and in situ pore pressure and two dual-packer (DP) tests to measure minimum principal stress. Permeabilities defined from the SP tests range from 6.53 × 10-17 to 4.23 × 10-14 m2. Pore fluid pressures are near hydrostatic throughout the section despite rapid sedimentation. This is consistent with the measured hydraulic diffusivity of the sediments and suggests that the forearc basin should not trap overpressures within the upper plate of the subduction zone. Minimum principal stresses are consistently lower than the vertical stress. We estimate the maximum horizontal stress from wellbore failures at the leak-off test and shallow MDT DP test depths. The results indicate a normal or strike-slip stress regime, consistent with the observation of abundant active normal faults in the seaward-most part of the basin, and a general decrease in fault activity in the vicinity of Site C0009.

  11. High Biomass Low Export Regimes in the Southern Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Lam, Phoebe J.; Bishop, James K.B.

    2006-01-27

    This paper investigates ballasting and remineralization controls of carbon sedimentation in the twilight zone (100-1000 m) of the Southern Ocean. Size-fractionated (<1 {micro}m, 1-51 {micro}m, >51 {micro}m) suspended particulate matter was collected by large volume in-situ filtration from the upper 1000 m in the Subantarctic (55 S, 172 W) and Antarctic (66 S, 172 W) zones of the Southern Ocean during the Southern Ocean Iron Experiment (SOFeX) in January-February 2002. Particles were analyzed for major chemical constituents (POC, P, biogenic Si, CaCO3), and digital and SEM image analyses of particles were used to aid in the interpretation of the chemical profiles. Twilight zone waters at 66 S in the Antarctic had a steeper decrease in POC with depth than at 55 S in the Subantarctic, with lower POC concentrations in all size fractions at 66 S than at 55 S, despite up to an order of magnitude higher POC in surface waters at 66 S. The decay length scale of >51 {micro}m POC was significantly shorter in the upper twilight zone at 66 S ({delta}{sub e}=26 m) compared to 55 S ({delta}{sub e}=81 m). Particles in the carbonate-producing 55 S did not have higher excess densities than particles from the diatom-dominated 66 S, indicating that there was no direct ballast effect that accounted for deeper POC penetration at 55 S. An indirect ballast effect due to differences in particle packaging and porosities cannot be ruled out, however, as aggregate porosities were high ({approx}97%) and variable. Image analyses point to the importance of particle loss rates from zooplankton grazing and remineralization as determining factors for the difference in twilight zone POC concentrations at 55 S and 66 S, with stronger and more focused shallow remineralization at 66 S. At 66 S, an abundance of large (several mm long) fecal pellets from the surface to 150 m, and almost total removal of large aggregates by 200 m, reflected the actions of a single or few zooplankton species capable of

  12. Blue Ocean Thinking

    Science.gov (United States)

    Orem, Donna

    2016-01-01

    This article describes a concept called the "blue ocean thinking strategy," developed by W. Chan Kim and Renée Mauborgne, professors at INSEAD, an international graduate school of business in France. The "blue ocean" thinking strategy considers opportunities to create new markets for services, rather than focusing solely on…

  13. Indian Ocean Rim Cooperation

    DEFF Research Database (Denmark)

    Wippel, Steffen

    Since the mid-1990s, the Indian Ocean has been experiencing increasing economic cooperation among its rim states. Middle Eastern countries, too, participate in the work of the Indian Ocean Rim Association, which received new impetus in the course of the current decade. Notably Oman is a very active...

  14. Communicating Ocean Acidification

    Science.gov (United States)

    Pope, Aaron; Selna, Elizabeth

    2013-01-01

    Participation in a study circle through the National Network of Ocean and Climate Change Interpretation (NNOCCI) project enabled staff at the California Academy of Sciences to effectively engage visitors on climate change and ocean acidification topics. Strategic framing tactics were used as staff revised the scripted Coral Reef Dive program,…

  15. Anomalous circulation in the eastern equatorial Indian Ocean during southwest monsoon of 1994

    Digital Repository Service at National Institute of Oceanography (India)

    Unnikrishnan, A.S.; Murty, V.S.N.; Babu, M.T.; Gopinathan, C.K.; Charyulu, R.J.K.

    and an eastward flow, constituting the southwest monsoon current (SWMC), in the vicinity of the equator characterise the upper ocean circulation. While low salinity waters (33.5 -34.75) in the upper layer are advected westward from 88 E via the westward flow...

  16. Validation of ocean color sensors using a profiling hyperspectral radiometer

    Science.gov (United States)

    Ondrusek, M. E.; Stengel, E.; Rella, M. A.; Goode, W.; Ladner, S.; Feinholz, M.

    2014-05-01

    Validation measurements of satellite ocean color sensors require in situ measurements that are accurate, repeatable and traceable enough to distinguish variability between in situ measurements and variability in the signal being observed on orbit. The utility of using a Satlantic Profiler II equipped with HyperOCR radiometers (Hyperpro) for validating ocean color sensors is tested by assessing the stability of the calibration coefficients and by comparing Hyperpro in situ measurements to other instruments and between different Hyperpros in a variety of water types. Calibration and characterization of the NOAA Satlantic Hyperpro instrument is described and concurrent measurements of water-leaving radiances conducted during cruises are presented between this profiling instrument and other profiling, above-water and moored instruments. The moored optical instruments are the US operated Marine Optical BuoY (MOBY) and the French operated Boussole Buoy. In addition, Satlantic processing versions are described in terms of accuracy and consistency. A new multi-cast approach is compared to the most commonly used single cast method. Analysis comparisons are conducted in turbid and blue water conditions. Examples of validation matchups with VIIRS ocean color data are presented. With careful data collection and analysis, the Satlantic Hyperpro profiling radiometer has proven to be a reliable and consistent tool for satellite ocean color validation.

  17. Ocean acidification postcards

    Science.gov (United States)

    Schreppel, Heather A.; Cimitile, Matthew J.

    2011-01-01

    The U.S. Geological Survey (USGS) is conducting research on ocean acidification in polar, temperate, subtropical, and tropical regions including the Arctic, West Florida Shelf, and the Caribbean. Project activities include field assessment, experimental laboratory studies, and evaluation of existing data. The USGS is participating in international and interagency working groups to develop research strategies to increase understanding of the global implications of ocean acidification. Research strategies include new approaches for seawater chemistry observation and modeling, assessment of physiological effects on organisms, changes in marine ecosystem structure, new technologies, and information resources. These postcards highlight ongoing USGS research efforts in ocean acidification and carbon cycling in marine and coastal ecosystems in three different regions: polar, temperate, and tropical. To learn more about ocean acidification visit: http://coastal.er.usgs.gov/ocean-acidification/.

  18. in upper gastrointestinal endoscopy

    Directory of Open Access Journals (Sweden)

    Sinan Uzman

    2016-07-01

    Full Text Available Introduction : There is increasing interest in sedation for upper gastrointestinal endoscopy (UGE. Prospective randomized studies comparing sedation properties and complications of propofol and midazolam/meperidine in upper gastrointestinal endoscopy (UGE are few. Aim: To compare propofol and midazolam/meperidine sedation for UGE in terms of cardiopulmonary side effects, patient and endoscopist satisfaction and procedure-related times. Material and methods: This was a prospective, randomized, double-blind study of propofol versus midazolam and meperidine in 100 patients scheduled for diagnostic upper gastrointestinal endoscopy. The patients were divided into propofol and midazolam/meperidine groups. Randomization was generated by a computer. Cardiopulmonary side effects (hypotension, bradycardia, hypoxemia, procedure-related times (endoscopy time, awake time, time to hospital discharge, and patient and endoscopist satisfaction were compared between groups. Results: There was no significant difference between the groups with respect to the cost, endoscopy time, or demographic and clinical characteristics of the patients. Awake time and time to hospital discharge were significantly shorter in the propofol group (6.58 ±4.72 vs. 9.32 ±4.26 min, p = 0.030 and 27.60 ±7.88 vs. 32.00 ±10.54 min, p = 0.019. Hypotension incidence was significantly higher in the propofol group (12% vs. 0%, p = 0.027. The patient and endoscopist satisfaction was better with propofol. Conclusions : Propofol may be preferred to midazolam/meperidine sedation, with a shorter awake and hospital discharge time and better patient and endoscopist satisfaction. However, hypotension risk should be considered with propofol, and careful evaluation is needed, particularly in cardiopulmonary disorders.

  19. Upper extremity golf injuries.

    Science.gov (United States)

    Cohn, Michael A; Lee, Steven K; Strauss, Eric J

    2013-01-01

    Golf is a global sport enjoyed by an estimated 60 million people around the world. Despite the common misconception that the risk of injury during the play of golf is minimal, golfers are subject to a myriad of potential pathologies. While the majority of injuries in golf are attributable to overuse, acute traumatic injuries can also occur. As the body's direct link to the golf club, the upper extremities are especially prone to injury. A thorough appreciation of the risk factors and patterns of injury will afford accurate diagnosis, treatment, and prevention of further injury.

  20. Towards an Autonomous Space In-Situ Marine Sensorweb

    Science.gov (United States)

    Chien, S.; Doubleday, J.; Tran, D.; Thompson, D.; Mahoney, G.; Chao, Y.; Castano, R.; Ryan, J.; Kudela, R.; Palacios, S.; hide

    2009-01-01

    We describe ongoing efforts to integrate and coordinate space and marine assets to enable autonomous response to dynamic ocean phenomena such as algal blooms, eddies, and currents. Thus far we have focused on the use of remote sensing assets (e.g. satellites) but future plans include expansions to use a range of in-situ sensors such as gliders, autonomous underwater vehicles, and buoys/moorings.

  1. Sex in situ

    DEFF Research Database (Denmark)

    Krøgholt, Ida

    2017-01-01

    Sex er en del af vores sociale praksis og centralt for det, vi hver især er. Men bortset fra pornoindustrien, har vi ikke mange muligheder for at få adgang til billeder af sex. Teater Nordkrafts forestilling Sex in situ vil gøre seksuelle billeder til noget, der kan deles, udveksles og tales om, og...

  2. A Novel in situ Trigger Combination Method

    International Nuclear Information System (INIS)

    Buzatu, Adrian; Warburton, Andreas; Krumnack, Nils; Yao, Wei-Ming

    2012-01-01

    Searches for rare physics processes using particle detectors in high-luminosity colliding hadronic beam environments require the use of multi-level trigger systems to reject colossal background rates in real time. In analyses like the search for the Higgs boson, there is a need to maximize the signal acceptance by combining multiple different trigger chains when forming the offline data sample. In such statistically limited searches, datasets are often amassed over periods of several years, during which the trigger characteristics evolve and their performance can vary significantly. Reliable production cross-section measurements and upper limits must take into account a detailed understanding of the effective trigger inefficiency for every selected candidate event. We present as an example the complex situation of three trigger chains, based on missing energy and jet energy, to be combined in the context of the search for the Higgs (H) boson produced in association with a W boson at the Collider Detector at Fermilab (CDF). We briefly review the existing techniques for combining triggers, namely the inclusion, division, and exclusion methods. We introduce and describe a novel fourth in situ method whereby, for each candidate event, only the trigger chain with the highest a priori probability of selecting the event is considered. The in situ combination method has advantages of scalability to large numbers of differing trigger chains and of insensitivity to correlations between triggers. We compare the inclusion and in situ methods for signal event yields in the CDF WH search.

  3. Deep structure of crust and the upper mantle of the Mendeleev Rise on the Arktic­-2012 DSS profile

    DEFF Research Database (Denmark)

    Kashubin, Sergey; Petrov, Oleg; Artemieva, Irina

    2016-01-01

    During high­latitude combined geological and geophysical expedition “Arctic­-2012”, deep seismic sounding (DSS) with ocean bottom seismometers were carried out in the Arctic Ocean along the line 740 km long, crossing the Mendeleev Rise at about 77° N. Crustal and upper mantle Vp­velocity and Vp...

  4. Parameterized and resolved Southern Ocean eddy compensation

    Science.gov (United States)

    Poulsen, Mads B.; Jochum, Markus; Nuterman, Roman

    2018-04-01

    The ability to parameterize Southern Ocean eddy effects in a forced coarse resolution ocean general circulation model is assessed. The transient model response to a suite of different Southern Ocean wind stress forcing perturbations is presented and compared to identical experiments performed with the same model in 0.1° eddy-resolving resolution. With forcing of present-day wind stress magnitude and a thickness diffusivity formulated in terms of the local stratification, it is shown that the Southern Ocean residual meridional overturning circulation in the two models is different in structure and magnitude. It is found that the difference in the upper overturning cell is primarily explained by an overly strong subsurface flow in the parameterized eddy-induced circulation while the difference in the lower cell is mainly ascribed to the mean-flow overturning. With a zonally constant decrease of the zonal wind stress by 50% we show that the absolute decrease in the overturning circulation is insensitive to model resolution, and that the meridional isopycnal slope is relaxed in both models. The agreement between the models is not reproduced by a 50% wind stress increase, where the high resolution overturning decreases by 20%, but increases by 100% in the coarse resolution model. It is demonstrated that this difference is explained by changes in surface buoyancy forcing due to a reduced Antarctic sea ice cover, which strongly modulate the overturning response and ocean stratification. We conclude that the parameterized eddies are able to mimic the transient response to altered wind stress in the high resolution model, but partly misrepresent the unperturbed Southern Ocean meridional overturning circulation and associated heat transports.

  5. Intercomparison of Ocean Color Algorithms for Picophytoplankton Carbon in the Ocean

    Directory of Open Access Journals (Sweden)

    Víctor Martínez-Vicente

    2017-12-01

    Full Text Available The differences among phytoplankton carbon (Cphy predictions from six ocean color algorithms are investigated by comparison with in situ estimates of phytoplankton carbon. The common satellite data used as input for the algorithms is the Ocean Color Climate Change Initiative merged product. The matching in situ data are derived from flow cytometric cell counts and per-cell carbon estimates for different types of pico-phytoplankton. This combination of satellite and in situ data provides a relatively large matching dataset (N > 500, which is independent from most of the algorithms tested and spans almost two orders of magnitude in Cphy. Results show that not a single algorithm outperforms any of the other when using all matching data. Concentrating on the oligotrophic regions (Chlorophyll-a concentration, B, less than 0.15 mg Chl m−3, where flow cytometric analysis captures most of the phytoplankton biomass, reveals significant differences in algorithm performance. The bias ranges from −35 to +150% and unbiased root mean squared difference from 5 to 10 mg C m−3 among algorithms, with chlorophyll-based algorithms performing better than the rest. The backscattering-based algorithms produce different results at the clearest waters and these differences are discussed in terms of the different algorithms used for optical particle backscattering coefficient (bbp retrieval.

  6. Revealing the timing of ocean stratification using remotely sensed ocean fronts

    Science.gov (United States)

    Miller, Peter I.; Loveday, Benjamin R.

    2017-10-01

    Stratification is of critical importance to the circulation, mixing and productivity of the ocean, and is expected to be modified by climate change. Stratification is also understood to affect the surface aggregation of pelagic fish and hence the foraging behaviour and distribution of their predators such as seabirds and cetaceans. Hence it would be prudent to monitor the stratification of the global ocean, though this is currently only possible using in situ sampling, profiling buoys or underwater autonomous vehicles. Earth observation (EO) sensors cannot directly detect stratification, but can observe surface features related to the presence of stratification, for example shelf-sea fronts that separate tidally-mixed water from seasonally stratified water. This paper describes a novel algorithm that accumulates evidence for stratification from a sequence of oceanic front maps, and discusses preliminary results in comparison with in situ data and simulations from 3D hydrodynamic models. In certain regions, this method can reveal the timing of the seasonal onset and breakdown of stratification.

  7. Europa's Compositional Evolution and Ocean Salinity

    Science.gov (United States)

    Vance, S.; Glein, C.; Bouquet, A.; Cammarano, F.; McKinnon, W. B.

    2017-12-01

    Europa's ocean depth and composition have likely evolved through time, in step with the temperature of its mantle, and in concert with the loss of water and hydrogen to space and accretion of water and other chemical species from comets, dust, and Io's volcanism. A key aspect to understanding the consequences of these processes is combining internal structure models with detailed calculations of ocean composition, which to date has not been done. This owes in part to the unavailability of suitable thermodynamic databases for aqueous chemistry above 0.5 GPa. Recent advances in high pressure aqueous chemistry and water-rock interactions allow us to compute the equilibrium ionic conditions and pH everywhere in Europa's interior. In this work, we develop radial structure and composition models for Europa that include self-consistent thermodynamics of all materials, developed using the PlanetProfile software. We will describe the potential hydration states and porosity of the rocky interior, and the partitioning of primordial sulfur between this layer, an underlying metallic core, and the ocean above. We will use these results to compute the ocean's salinity by extraction from the upper part of the rocky layer. In this context, we will also consider the fluxes of reductants from Europa's interior due to high-temperature hydrothermalism, serpentinization, and endogenic radiolysis.

  8. Modeling the Middle Jurassic ocean circulation

    Directory of Open Access Journals (Sweden)

    Maura Brunetti

    2015-10-01

    Full Text Available We present coupled ocean–sea-ice simulations of the Middle Jurassic (∼165 Ma when Laurasia and Gondwana began drifting apart and gave rise to the formation of the Atlantic Ocean. Since the opening of the Proto-Caribbean is not well constrained by geological records, configurations with and without an open connection between the Proto-Caribbean and Panthalassa are examined. We use a sea-floor bathymetry obtained by a recently developed three-dimensional (3D elevation model which compiles geological, palaeogeographical and geophysical data. Our original approach consists in coupling this elevation model, which is based on detailed reconstructions of oceanic realms, with a dynamical ocean circulation model. We find that the Middle Jurassic bathymetry of the Central Atlantic and Proto-Caribbean seaway only allows for a weak current of the order of 2 Sv in the upper 1000 m even if the system is open to the west. The effect of closing the western boundary of the Proto-Caribbean is to increase the transport related to barotropic gyres in the southern hemisphere and to change water properties, such as salinity, in the Neo-Tethys. Weak upwelling rates are found in the nascent Atlantic Ocean in the presence of this superficial current and we discuss their compatibility with deep-sea sedimentological records in this region.

  9. In situ spectrophotometric measurement of dissolved inorganic carbon in seawater

    Science.gov (United States)

    Liua, Xuewu; Byrne, Robert H.; Adornato, Lori; Yates, Kimberly K.; Kaltenbacher, Eric; Ding, Xiaoling; Yang, Bo

    2013-01-01

    Autonomous in situ sensors are needed to document the effects of today’s rapid ocean uptake of atmospheric carbon dioxide (e.g., ocean acidification). General environmental conditions (e.g., biofouling, turbidity) and carbon-specific conditions (e.g., wide diel variations) present significant challenges to acquiring long-term measurements of dissolved inorganic carbon (DIC) with satisfactory accuracy and resolution. SEAS-DIC is a new in situ instrument designed to provide calibrated, high-frequency, long-term measurements of DIC in marine and fresh waters. Sample water is first acidified to convert all DIC to carbon dioxide (CO2). The sample and a known reagent solution are then equilibrated across a gas-permeable membrane. Spectrophotometric measurement of reagent pH can thereby determine the sample DIC over a wide dynamic range, with inherent calibration provided by the pH indicator’s molecular characteristics. Field trials indicate that SEAS-DIC performs well in biofouling and turbid waters, with a DIC accuracy and precision of ∼2 μmol kg–1 and a measurement rate of approximately once per minute. The acidic reagent protects the sensor cell from biofouling, and the gas-permeable membrane excludes particulates from the optical path. This instrument, the first spectrophotometric system capable of automated in situ DIC measurements, positions DIC to become a key parameter for in situ CO2-system characterizations.

  10. Sulfur isotope homogeneity of oceanic DMSP and DMS.

    Science.gov (United States)

    Amrani, Alon; Said-Ahmad, Ward; Shaked, Yeala; Kiene, Ronald P

    2013-11-12

    Oceanic emissions of volatile dimethyl sulfide (DMS) represent the largest natural source of biogenic sulfur to the global atmosphere, where it mediates aerosol dynamics. To constrain the contribution of oceanic DMS to aerosols we established the sulfur isotope ratios ((34)S/(32)S ratio, δ(34)S) of DMS and its precursor, dimethylsulfoniopropionate (DMSP), in a range of marine environments. In view of the low oceanic concentrations of DMS/P, we applied a unique method for the analysis of δ(34)S at the picomole level in individual compounds. Surface water DMSP collected from six different ocean provinces revealed a remarkable consistency in δ(34)S values ranging between +18.9 and +20.3‰. Sulfur isotope composition of DMS analyzed in freshly collected seawater was similar to δ(34)S of DMSP, showing that the in situ fractionation between these species is small (DMS to the atmosphere results in a relatively small fractionation (-0.5 ± 0.2‰) compared with the seawater DMS pool. Because δ(34)S values of oceanic DMS closely reflect that of DMSP, we conclude that the homogenous δ(34)S of DMSP at the ocean surface represents the δ(34)S of DMS emitted to the atmosphere, within +1‰. The δ(34)S of oceanic DMS flux to the atmosphere is thus relatively constant and distinct from anthropogenic sources of atmospheric sulfate, thereby enabling estimation of the DMS contribution to aerosols.

  11. Observations of fine-scale transport structure in the upper troposphere from the High-performance Instrumented Airborne Platform for Environmental Research

    Science.gov (United States)

    Bowman, Kenneth P.; Pan, Laura L.; Campos, Teresa; Gao, Rushan

    2007-09-01

    The Progressive Science Mission in December 2005 was the first research use of the new NCAR High-performance Instrumented Airborne Platform for Environmental Research (HIAPER) aircraft. The Stratosphere-Troposphere Analyses of Regional Transport (START) component of the mission was designed to investigate the dynamical and chemical structure of the upper troposphere and lower stratosphere. Flight 5 of the Progressive Science mission was a START flight that sampled near the tropopause in an area between the main jet stream and a large, quasi-stationary, cutoff low. The large-scale flow in this region was characterized by a hyperbolic (saddle) point. In this study the in situ measurements by HIAPER are combined with flow analyses and satellite data to investigate the quasi-isentropic stirring of trace species in the upper troposphere. As expected from theoretical considerations, strong stretching and folding deformation of the flow near the hyperbolic point resulted in rapid filamentation of air masses and sharp gradients of constituents. Calculations of the stirring using operational meteorological analyses from the NCEP Global Forecast System model produced excellent agreement with HIAPER and satellite observations of trace species. Back trajectories indicate that elevated ozone levels in some filaments likely came from a large stratospheric intrusion that occurred upstream in the jet over the north Pacific Ocean. The methods presented here can be used with operational forecasts for future flight planning.

  12. Oriental upper blepharoplasty.

    Science.gov (United States)

    Weng, Chau-Jin

    2009-02-01

    Aesthetic surgery of the upper eyelids is a very common procedure performed in cosmetic practices around the world. The word blepharoplasty, however, has a different meaning in Asia than it does elsewhere. Orientals have different periorbital anatomic characteristics, their motivations for seeking eyelid treatment are different, and operative techniques have been adapted consequently. There are also many eyelid shapes among Orientals, mostly with regard to the presence and location of the supratarsal fold and/or presence of an epicanthal fold. The surgeon must therefore master a range of surgical procedures to treat these variations adequately. It is critical to know the indications for each blepharoplasty technique as well as their complications to select the right surgery and avoid unfavorable results. Epicanthoplasty performed on the right patient can greatly improve aesthetic results while retaining ethnic characteristics. This article will discuss Oriental eyelid characteristics, preoperative patient assessment, commonly used corrective techniques for the "double-eyelid" creation, and complications and how to avoid them.

  13. Dynamic Reusable Workflows for Ocean Science

    Directory of Open Access Journals (Sweden)

    Richard P. Signell

    2016-10-01

    Full Text Available Digital catalogs of ocean data have been available for decades, but advances in standardized services and software for catalog searches and data access now make it possible to create catalog-driven workflows that automate—end-to-end—data search, analysis, and visualization of data from multiple distributed sources. Further, these workflows may be shared, reused, and adapted with ease. Here we describe a workflow developed within the US Integrated Ocean Observing System (IOOS which automates the skill assessment of water temperature forecasts from multiple ocean forecast models, allowing improved forecast products to be delivered for an open water swim event. A series of Jupyter Notebooks are used to capture and document the end-to-end workflow using a collection of Python tools that facilitate working with standardized catalog and data services. The workflow first searches a catalog of metadata using the Open Geospatial Consortium (OGC Catalog Service for the Web (CSW, then accesses data service endpoints found in the metadata records using the OGC Sensor Observation Service (SOS for in situ sensor data and OPeNDAP services for remotely-sensed and model data. Skill metrics are computed and time series comparisons of forecast model and observed data are displayed interactively, leveraging the capabilities of modern web browsers. The resulting workflow not only solves a challenging specific problem, but highlights the benefits of dynamic, reusable workflows in general. These workflows adapt as new data enter the data system, facilitate reproducible science, provide templates from which new scientific workflows can be developed, and encourage data providers to use standardized services. As applied to the ocean swim event, the workflow exposed problems with two of the ocean forecast products which led to improved regional forecasts once errors were corrected. While the example is specific, the approach is general, and we hope to see increased

  14. Dynamic reusable workflows for ocean science

    Science.gov (United States)

    Signell, Richard; Fernandez, Filipe; Wilcox, Kyle

    2016-01-01

    Digital catalogs of ocean data have been available for decades, but advances in standardized services and software for catalog search and data access make it now possible to create catalog-driven workflows that automate — end-to-end — data search, analysis and visualization of data from multiple distributed sources. Further, these workflows may be shared, reused and adapted with ease. Here we describe a workflow developed within the US Integrated Ocean Observing System (IOOS) which automates the skill-assessment of water temperature forecasts from multiple ocean forecast models, allowing improved forecast products to be delivered for an open water swim event. A series of Jupyter Notebooks are used to capture and document the end-to-end workflow using a collection of Python tools that facilitate working with standardized catalog and data services. The workflow first searches a catalog of metadata using the Open Geospatial Consortium (OGC) Catalog Service for the Web (CSW), then accesses data service endpoints found in the metadata records using the OGC Sensor Observation Service (SOS) for in situ sensor data and OPeNDAP services for remotely-sensed and model data. Skill metrics are computed and time series comparisons of forecast model and observed data are displayed interactively, leveraging the capabilities of modern web browsers. The resulting workflow not only solves a challenging specific problem, but highlights the benefits of dynamic, reusable workflows in general. These workflows adapt as new data enters the data system, facilitate reproducible science, provide templates from which new scientific workflows can be developed, and encourage data providers to use standardized services. As applied to the ocean swim event, the workflow exposed problems with two of the ocean forecast products which led to improved regional forecasts once errors were corrected. While the example is specific, the approach is general, and we hope to see increased use of dynamic

  15. Oceans and Coasts

    Science.gov (United States)

    An overview of EPA’s oceans, coasts, estuaries and beaches programs and the regulatory (permits/rules) and non-regulatory approaches for managing their associated environmental issues, such as water pollution and climate change.

  16. Ocean Dumping: International Treaties

    Science.gov (United States)

    The London Convention and London Protocol are global treaties to protect the marine environment from pollution caused by the ocean dumping of wastes. The Marine, Protection, Research and Sanctuaries Act implements the requirements of the LC.

  17. Ocean Technology Development Tank

    Data.gov (United States)

    Federal Laboratory Consortium — The new SWFSC laboratory in La Jolla incorporates a large sea- and fresh-water Ocean Technology Development Tank. This world-class facility expands NOAA's ability to...

  18. Loggerhead oceanic stage duration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This study involves analysis of skeletal growth marks in humerus bones of 222 juvenile loggerhead sea turtles (Caretta caretta) stranded dead along the Atlantic US...

  19. Ocean iron fertilization

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.; Smetacek, V.

    In 2009 and 2010, an Indo-German scientific expedition dusted the ocean with iron to stimulate the biological pump that captures atmosphereic carbon dioxide. Two onboard scientists tell the story of this controversial project. Besides raising...

  20. Ocean Dumping Control Regulations

    International Nuclear Information System (INIS)

    1978-01-01

    These Regulations were made further to the Ocean Dumping Control Act which provides for restrictions in dumping operations. The Regulations contain model applications for permits to dump or load a series of materials. (NEA)

  1. Volcanic signals in oceans

    KAUST Repository

    Stenchikov, Georgiy L.; Delworth, Thomas L.; Ramaswamy, V.; Stouffer, Ronald J.; Wittenberg, Andrew; Zeng, Fanrong

    2009-01-01

    Sulfate aerosols resulting from strong volcanic explosions last for 2–3 years in the lower stratosphere. Therefore it was traditionally believed that volcanic impacts produce mainly short-term, transient climate perturbations. However, the ocean

  2. In situ reactor

    Science.gov (United States)

    Radtke, Corey William; Blackwelder, David Bradley

    2004-01-27

    An in situ reactor for use in a geological strata, is described and which includes a liner defining a centrally disposed passageway and which is placed in a borehole formed in the geological strata; and a sampling conduit is received within the passageway defined by the liner and which receives a geological specimen which is derived from the geological strata, and wherein the sampling conduit is in fluid communication with the passageway defined by the liner.

  3. IODE OceanTeacher

    OpenAIRE

    Brown, M.; Pikula, L.; Reed, G.

    2002-01-01

    The OceanTeacher website and CD-ROM publication have proven to be powerful and flexible tools for marine data and information management training. There are two segments of OceanTeacher: marine data management and marine information management. The IODE trainers have created an encyclopedic Resource Kit covering all aspects of the subjects. Through continual updates, the Kit provides the latest versions of popular public-domain software, documentation for global and regional datasets, docu...

  4. Modeling of oceanic vortices

    Science.gov (United States)

    Cushman-Roisin, B.

    Following on a tradition of biannual meetings, the 5th Colloquium on the Modeling of Oceanic Vortices was held May 21-23, 1990, at the Thayer School of Engineering at Dartmouth College, Hanover, N.H. The colloquium series, sponsored by the Office of Naval Research, is intended to gather oceanographers who contribute to our understanding of oceanic mesoscale vortices via analytical, numerical and experimental modeling techniques.

  5. Wind Generated Ocean Waves

    DEFF Research Database (Denmark)

    Frigaard, Peter

    2001-01-01

    Book review: I. R. Young, Elsevier Ocean Engineering Series, Vol 2. Elsevier Science, Oxford, UK, 1999, 306 pages, hardbound, ISBN 0-08-043317-0, Dfl. 275,00 (US$ 139.50)......Book review: I. R. Young, Elsevier Ocean Engineering Series, Vol 2. Elsevier Science, Oxford, UK, 1999, 306 pages, hardbound, ISBN 0-08-043317-0, Dfl. 275,00 (US$ 139.50)...

  6. Meteorological Research Institute multivariate ocean variational estimation (MOVE) system: Some early results

    Science.gov (United States)

    Usui, Norihisa; Ishizaki, Shiro; Fujii, Yosuke; Tsujino, Hiroyuki; Yasuda, Tamaki; Kamachi, Masafumi

    The Meteorological Research Institute multivariate ocean variational estimation (MOVE) System has been developed as the next-generation ocean data assimilation system in Japan Meteorological Agency. A multivariate three-dimensional variational (3DVAR) analysis scheme with vertical coupled temperature salinity empirical orthogonal function modes is adopted. The MOVE system has two varieties, the global (MOVE-G) and North Pacific (MOVE-NP) systems. The equatorial Pacific and western North Pacific are analyzed with assimilation experiments using MOVE-G and -NP, respectively. In each system, the salinity and velocity fields are well reproduced, even in cases without salinity data. Changes in surface and subsurface zonal currents during the 1997/98 El Niño event are captured well, and their transports are reasonably consistent with in situ observations. For example, the eastward transport in the upper layer around the equator has 70 Sv in spring 1997 and weakens in spring 1998. With MOVE-NP, the Kuroshio transport has 25 Sv in the East China Sea, and 40 Sv crossing the ASUKA (Affiliated Surveys of the Kuroshio off Cape Ashizuri) line south of Japan. The variations in the Kuroshio transports crossing the ASUKA line agree well with observations. The Ryukyu Current System has a transport ranging from 6 Sv east of Taiwan to 17 Sv east of Amami. The Oyashio transport crossing the OICE (Oyashio Intensive observation line off Cape Erimo) line south of Hokkaido has 14 Sv southwestward (near shore) and 11 Sv northeastward (offshore). In the Kuroshio Oyashio transition area east of Japan, the eastward transport has 41 Sv (32 36°N) and 12 Sv (36 39°N) crossing the 145°E line.

  7. Ocean acidification alters early successional coral reef communities and their rates of community metabolism.

    Directory of Open Access Journals (Sweden)

    Sam H C Noonan

    Full Text Available Ocean acidification is expected to alter community composition on coral reefs, but its effects on reef community metabolism are poorly understood. Here we document how early successional benthic coral reef communities change in situ along gradients of carbon dioxide (CO2, and the consequences of these changes on rates of community photosynthesis, respiration, and light and dark calcification. Ninety standardised benthic communities were grown on PVC tiles deployed at two shallow-water volcanic CO2 seeps and two adjacent control sites in Papua New Guinea. Along the CO2 gradient, both the upward facing phototrophic and the downward facing cryptic communities changed in their composition. Under ambient CO2, both communities were dominated by calcifying algae, but with increasing CO2 they were gradually replaced by non-calcifying algae (predominantly green filamentous algae, cyanobacteria and macroalgae, which increased from ~30% to ~80% cover. Responses were weaker in the invertebrate communities, however ascidians and tube-forming polychaetes declined with increasing CO2. Differences in the carbonate chemistry explained a far greater amount of change in communities than differences between the two reefs and successional changes from five to 13 months, suggesting community successions are established early and are under strong chemical control. As pH declined from 8.0 to 7.8, rates of gross photosynthesis and dark respiration of the 13-month old reef communities (upper and cryptic surfaces combined significantly increased by 10% and 20%, respectively, in response to altered community composition. As a consequence, net production remained constant. Light and dark calcification rates both gradually declined by 20%, and low or negative daily net calcification rates were observed at an aragonite saturation state of <2.3. The study demonstrates that ocean acidification as predicted for the end of this century will strongly alter reef communities, and

  8. The Ocean: Our Future

    Science.gov (United States)

    Independent World Commission On The Oceans; Soares, Mario

    1998-09-01

    The Ocean, Our Future is the official report of the Independent World Commission on the Oceans, chaired by Mário Soares, former President of Portugal. Its aim is to summarize the very real problems affecting the ocean and its future management, and to provide imaginative solutions to these various and interlocking problems. The oceans have traditionally been taken for granted as a source of wealth, opportunity and abundance. Our growing understanding of the oceans has fundamentally changed this perception. We now know that in some areas, abundance is giving way to real scarcity, resulting in severe conflicts. Territorial disputes that threaten peace and security, disruptions to global climate, overfishing, habitat destruction, species extinction, indiscriminate trawling, pollution, the dumping of hazardous and toxic wastes, piracy, terrorism, illegal trafficking and the destruction of coastal communities are among the problems that today form an integral part of the unfolding drama of the oceans. Based on the deliberations, experience and input of more than 100 specialists from around the world, this timely volume provides a powerful overview of the state of our water world.

  9. Volcanic signals in oceans

    KAUST Repository

    Stenchikov, Georgiy L.

    2009-08-22

    Sulfate aerosols resulting from strong volcanic explosions last for 2–3 years in the lower stratosphere. Therefore it was traditionally believed that volcanic impacts produce mainly short-term, transient climate perturbations. However, the ocean integrates volcanic radiative cooling and responds over a wide range of time scales. The associated processes, especially ocean heat uptake, play a key role in ongoing climate change. However, they are not well constrained by observations, and attempts to simulate them in current climate models used for climate predictions yield a range of uncertainty. Volcanic impacts on the ocean provide an independent means of assessing these processes. This study focuses on quantification of the seasonal to multidecadal time scale response of the ocean to explosive volcanism. It employs the coupled climate model CM2.1, developed recently at the National Oceanic and Atmospheric Administration\\'s Geophysical Fluid Dynamics Laboratory, to simulate the response to the 1991 Pinatubo and the 1815 Tambora eruptions, which were the largest in the 20th and 19th centuries, respectively. The simulated climate perturbations compare well with available observations for the Pinatubo period. The stronger Tambora forcing produces responses with higher signal-to-noise ratio. Volcanic cooling tends to strengthen the Atlantic meridional overturning circulation. Sea ice extent appears to be sensitive to volcanic forcing, especially during the warm season. Because of the extremely long relaxation time of ocean subsurface temperature and sea level, the perturbations caused by the Tambora eruption could have lasted well into the 20th century.

  10. In situ observation data from the grouper roi (Cephalopholis argus) removal project in West Hawaii from 2010-2011 (NODC Accession 0082197)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In situ observations of the introduced predatory grouper roi (Cephalopholis argus) were taken within the coral reef ecosystem of Puako, northwest side of the Island...

  11. Climate, carbon cycling, and deep-ocean ecosystems.

    Science.gov (United States)

    Smith, K L; Ruhl, H A; Bett, B J; Billett, D S M; Lampitt, R S; Kaufmann, R S

    2009-11-17

    Climate variation affects surface ocean processes and the production of organic carbon, which ultimately comprises the primary food supply to the deep-sea ecosystems that occupy approximately 60% of the Earth's surface. Warming trends in atmospheric and upper ocean temperatures, attributed to anthropogenic influence, have occurred over the past four decades. Changes in upper ocean temperature influence stratification and can affect the availability of nutrients for phytoplankton production. Global warming has been predicted to intensify stratification and reduce vertical mixing. Research also suggests that such reduced mixing will enhance variability in primary production and carbon export flux to the deep sea. The dependence of deep-sea communities on surface water production has raised important questions about how climate change will affect carbon cycling and deep-ocean ecosystem function. Recently, unprecedented time-series studies conducted over the past two decades in the North Pacific and the North Atlantic at >4,000-m depth have revealed unexpectedly large changes in deep-ocean ecosystems significantly correlated to climate-driven changes in the surface ocean that can impact the global carbon cycle. Climate-driven variation affects oceanic communities from surface waters to the much-overlooked deep sea and will have impacts on the global carbon cycle. Data from these two widely separated areas of the deep ocean provide compelling evidence that changes in climate can readily influence deep-sea processes. However, the limited geographic coverage of these existing time-series studies stresses the importance of developing a more global effort to monitor deep-sea ecosystems under modern conditions of rapidly changing climate.

  12. MERSEA, the European Gate to Ocean Data

    Science.gov (United States)

    Blanc, F. P.; Manzella, G.; Maudire, G.; Bahurel, P.; Bell, M.; Haines, K.

    2004-12-01

    Mersea ('Marine Environment and Security for the European Area'), a European project to manage the oceans, aims to develop by 2008 the GMES ocean component ('Global Monitoring for Environment and Security'), a system for operational monitoring and forecasting on global and regional scales of the ocean physics, bio-geochemistry and ecosystems. Mersea project started on April 1st, 2004. This ocean monitoring system is envisioned as an operational network that systematically acquires data and disseminates information to serve the needs of intermediate users and policy makers, in support of safe and efficient off-shore activities, environmental management, security, and sustainable use of marine resources. Three real-time data streams have been identified: remote sensed from satellites, in situ from ocean observing networks, and surface forcing fields from numerical weather prediction agencies. Mersea will ensure the availability of near real time and delayed mode products over the period 2004-2008, global and regional products optimised for supporting operational oceanography. Historical data sets for the last 15 years will also be prepared. Mersea is also the European center serving Godae goals ('Global Ocean Data Assimilation Experiment', 2003-2005). The timely delivery of high quality and reliable information to many user categories is essential for the success of such integrated project. There is consequently a large effort to coordinate all delivery actions giving special attention on the users' needs. This effort will cover many issues like product presentation, products and web services catalogue and how to deal for an interdisciplinary and integrated use. A first major difficulty is to reach at many levels product coherency and standardisation, which is needed to facilitate the visibility, understanding and exchange of the ocean observing data. A first task will therefore be to write a common unified framework guide, a kind of member chart, which will require

  13. Warming up, turning sour, losing breath: ocean biogeochemistry under global change.

    Science.gov (United States)

    Gruber, Nicolas

    2011-05-28

    In the coming decades and centuries, the ocean's biogeochemical cycles and ecosystems will become increasingly stressed by at least three independent factors. Rising temperatures, ocean acidification and ocean deoxygenation will cause substantial changes in the physical, chemical and biological environment, which will then affect the ocean's biogeochemical cycles and ecosystems in ways that we are only beginning to fathom. Ocean warming will not only affect organisms and biogeochemical cycles directly, but will also increase upper ocean stratification. The changes in the ocean's carbonate chemistry induced by the uptake of anthropogenic carbon dioxide (CO(2)) (i.e. ocean acidification) will probably affect many organisms and processes, although in ways that are currently not well understood. Ocean deoxygenation, i.e. the loss of dissolved oxygen (O(2)) from the ocean, is bound to occur in a warming and more stratified ocean, causing stress to macro-organisms that critically depend on sufficient levels of oxygen. These three stressors-warming, acidification and deoxygenation-will tend to operate globally, although with distinct regional differences. The impacts of ocean acidification tend to be strongest in the high latitudes, whereas the low-oxygen regions of the low latitudes are most vulnerable to ocean deoxygenation. Specific regions, such as the eastern boundary upwelling systems, will be strongly affected by all three stressors, making them potential hotspots for change. Of additional concern are synergistic effects, such as ocean acidification-induced changes in the type and magnitude of the organic matter exported to the ocean's interior, which then might cause substantial changes in the oxygen concentration there. Ocean warming, acidification and deoxygenation are essentially irreversible on centennial time scales, i.e. once these changes have occurred, it will take centuries for the ocean to recover. With the emission of CO(2) being the primary driver

  14. Impacts of Ocean Acidification

    Energy Technology Data Exchange (ETDEWEB)

    Bijma, Jelle (Alfred Wegener Inst., D-27570 Bremerhaven (Germany)) (and others)

    2009-08-15

    There is growing scientific evidence that, as a result of increasing anthropogenic carbon dioxide (CO{sub 2}) emissions, absorption of CO{sub 2} by the oceans has already noticeably increased the average oceanic acidity from pre-industrial levels. This global threat requires a global response. According to the Intergovernmental Panel on Climate Change (IPCC), continuing CO{sub 2} emissions in line with current trends could make the oceans up to 150% more acidic by 2100 than they were at the beginning of the Anthropocene. Acidification decreases the ability of the ocean to absorb additional atmospheric CO{sub 2}, which implies that future CO{sub 2} emissions are likely to lead to more rapid global warming. Ocean acidification is also problematic because of its negative effects on marine ecosystems, especially marine calcifying organisms, and marine resources and services upon which human societies largely depend such as energy, water, and fisheries. For example, it is predicted that by 2100 around 70% of all cold-water corals, especially those in the higher latitudes, will live in waters undersaturated in carbonate due to ocean acidification. Recent research indicates that ocean acidification might also result in increasing levels of jellyfish in some marine ecosystems. Aside from direct effects, ocean acidification together with other global change-induced impacts such as marine and coastal pollution and the introduction of invasive alien species are likely to result in more fragile marine ecosystems, making them more vulnerable to other environmental impacts resulting from, for example, coastal deforestation and widescale fisheries. The Marine Board-ESF Position Paper on the Impacts of Climate Change on the European Marine and Coastal Environment - Ecosystems indicated that presenting ocean acidification issues to policy makers is a key issue and challenge. Indeed, as the consequences of ocean acidification are expected to emerge rapidly and drastically, but are

  15. Heat content variability in the tropical Indian Ocean during second pre-INDOEX campaign (boreal winter 1996-1997)

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, E.P.R.; RameshBabu, V.; Rao, L.V.G.

    Surface meteorological data and upper ocean temperature profiles are obtained on-board ORV Sagar Kanya (cruise 120) during the second pre-INDOEX Campaign (December 1996-January 1997) for evaluating the north-south variability of surface heat fluxes...

  16. Regional ocean-colour chlorophyll algorithms for the Red Sea

    KAUST Repository

    Brewin, Robert J.W.

    2015-05-18

    The Red Sea is a semi-enclosed tropical marine ecosystem that stretches from the Gulf of Suez and Gulf of Aqaba in the north, to the Gulf of Aden in the south. Despite its ecological and economic importance, its biological environment is relatively unexplored. Satellite ocean-colour estimates of chlorophyll concentration (an index of phytoplankton biomass) offer an observational platform to monitor the health of the Red Sea. However, little is known about the optical properties of the region. In this paper, we investigate the optical properties of the Red Sea in the context of satellite ocean-colour estimates of chlorophyll concentration. Making use of a new merged ocean-colour product, from the European Space Agency (ESA) Climate Change Initiative, and in situ data in the region, we test the performance of a series of ocean-colour chlorophyll algorithms. We find that standard algorithms systematically overestimate chlorophyll when compared with the in situ data. To investigate this bias we develop an ocean-colour model for the Red Sea, parameterised to data collected during the Tara Oceans expedition, that estimates remote-sensing reflectance as a function of chlorophyll concentration. We used the Red Sea model to tune the standard chlorophyll algorithms and the overestimation in chlorophyll originally observed was corrected. Results suggest that the overestimation was likely due to an excess of CDOM absorption per unit chlorophyll in the Red Sea when compared with average global conditions. However, we recognise that additional information is required to test the influence of other potential sources of the overestimation, such as aeolian dust, and we discuss uncertainties in the datasets used. We present a series of regional chlorophyll algorithms for the Red Sea, designed for a suite of ocean-colour sensors, that may be used for further testing.

  17. Ocean Acidification from space: recent advances

    Science.gov (United States)

    Sabia, Roberto; Shutler, Jamie; Land, Peter; Fernandez-Prieto, Diego; Donlon, Craig; Reul, Nicolas

    2017-04-01

    The phenomenon referred to as Ocean Acidification (OA) is gathering increasing attention as one of the major foci of climate-related research, for its profound impact at scientific and socio-economic level. To date, the majority of the scientific studies into the potential impacts of OA have focused on in-situ measurements, laboratory-controlled experiments and models simulations. Satellite remote sensing technology have yet to be fully exploited, despite it has been stressed it could play a significant role by providing synoptic and frequent measurements for investigating globally OA processes, also extending in-situ carbonate chemistry measurements on different spatial/temporal scales [1,2]. Within this context, the purpose of the recently completed ESA "Pathfinders - Ocean Acidification" project was to quantitatively and routinely estimate OA-related parameters by means of a blending of satellite observations and model outputs in five case-study regions (global ocean, Amazon plume, Barents sea, Greater Caribbean and Bay of Bengal). Satellite Ocean Colour, Sea Surface Temperature (SST) and Sea Surface Salinity (SSS) have been exploited, with an emphasis on the latter being the latest addition to the portfolio of satellite measured parameters. A proper merging of these different satellites products allows computing at least two independent proxies among the seawater carbonate system parameters: the partial pressure of CO2 in surface seawater (pCO2); the total Dissolved Inorganic Carbon (DIC), the total alkalinity (TA) and the surface ocean pH. In the project, efforts have been devoted to a systematic characterization of TA and DIC from space in the mentioned case-study regions; in this paper, also through the knowledge of these parameters, the objective is to come up with the currently best educated guess of the surface ocean pH [3] and Aragonite saturation state. This will also include an estimation of the achievable accuracy by propagating the errors in the

  18. Near-inertial waves and deep ocean mixing

    Science.gov (United States)

    Shrira, V. I.; Townsend, W. A.

    2013-07-01

    For the existing pattern of global oceanic circulation to exist, there should be sufficiently strong turbulent mixing in the abyssal ocean, the mechanisms of which are not well understood as yet. The review discusses a plausible mechanism of deep ocean mixing caused by near-inertial waves in the abyssal ocean. It is well known how winds in the atmosphere generate near-inertial waves in the upper ocean, which then propagate downwards losing their energy in the process; only a fraction of the energy at the surface reaches the abyssal ocean. An open question is whether and, if yes, how these weakened inertial motions could cause mixing in the deep. We review the progress in the mathematical description of a mechanism that results in an intense breaking of near-inertial waves near the bottom of the ocean and thus enhances the mixing. We give an overview of the present state of understanding of the problem covering both the published and the unpublished results; we also outline the key open questions. For typical ocean stratification, the account of the horizontal component of the Earth's rotation leads to the existence of near-bottom wide waveguides for near-inertial waves. Due to the β-effect these waveguides are narrowing in the poleward direction. Near-inertial waves propagating poleward get trapped in the waveguides; we describe how in the process these waves are focusing more and more in the vertical direction, while simultaneously their group velocity tends to zero and wave-induced vertical shear significantly increases. This causes the development of shear instability, which is interpreted as wave breaking. Remarkably, this mechanism of local intensification of turbulent mixing in the abyssal ocean can be adequately described within the framework of linear theory. The qualitative picture is similar to wind wave breaking on a beach: the abyssal ocean always acts as a surf zone for near-inertial waves.

  19. Near-inertial waves and deep ocean mixing

    International Nuclear Information System (INIS)

    Shrira, V I; Townsend, W A

    2013-01-01

    For the existing pattern of global oceanic circulation to exist, there should be sufficiently strong turbulent mixing in the abyssal ocean, the mechanisms of which are not well understood as yet. The review discusses a plausible mechanism of deep ocean mixing caused by near-inertial waves in the abyssal ocean. It is well known how winds in the atmosphere generate near-inertial waves in the upper ocean, which then propagate downwards losing their energy in the process; only a fraction of the energy at the surface reaches the abyssal ocean. An open question is whether and, if yes, how these weakened inertial motions could cause mixing in the deep. We review the progress in the mathematical description of a mechanism that results in an intense breaking of near-inertial waves near the bottom of the ocean and thus enhances the mixing. We give an overview of the present state of understanding of the problem covering both the published and the unpublished results; we also outline the key open questions. For typical ocean stratification, the account of the horizontal component of the Earth's rotation leads to the existence of near-bottom wide waveguides for near-inertial waves. Due to the β-effect these waveguides are narrowing in the poleward direction. Near-inertial waves propagating poleward get trapped in the waveguides; we describe how in the process these waves are focusing more and more in the vertical direction, while simultaneously their group velocity tends to zero and wave-induced vertical shear significantly increases. This causes the development of shear instability, which is interpreted as wave breaking. Remarkably, this mechanism of local intensification of turbulent mixing in the abyssal ocean can be adequately described within the framework of linear theory. The qualitative picture is similar to wind wave breaking on a beach: the abyssal ocean always acts as a surf zone for near-inertial waves. (paper)

  20. Global ocean monitoring for the World Climate Research Programme.

    Science.gov (United States)

    Revelle, R; Bretherton, F

    1986-07-01

    Oceanic research and modelling for the World Climate Research Program will utilize several recently-developed instruments and measuring techniques as well as well-tested, long-used instruments. Ocean-scanning satellites will map the component of the ocean-surface topography related to ocean currents and mesoscale eddies and to fluctuating water volumes caused by ocean warming and cooling. Other satellite instruments will measure the direction and magnitude of wind stress on the sea surface, surface water temperatures, the distribution of chlorophyll and other photosynthetic pigments, the characteristics of internal waves, and possible precipitation over the ocean. Networks of acoustic transponders will obtain a three-dimensional picture of the distribution of temperature from the surface down to mid-depth and of long-term changes in temperature at depth. Ocean research vessels will determine the distribution and fate of geochemical tracers and will also make high-precision, deep hydrographic casts. Ships of opportunity, using expendable instruments, will measure temperature, salinity and currents in the upper water layers. Drifting and anchored buoys will also measure these properties as well as those of the air above the sea surface. Tide gauges installed on islands and exposed coastal locations will measure variations in monthly and shorter-period mean sea level. These tide gauges will provide 'ground truth' for the satellite maps of sea-surface topography, and will also determine variations in ocean currents and temperature.All these instruments will be used in several major programs, the most ambitious of which is the World Ocean Circulation Experiment (WOCE) designed to obtain global measurements of major currents throughout the world ocean, greater understanding of the transformation of water masses, and the role of advective, convective, and turbulent processes in exchange of properties between surface and deep-ocean layers.A five- to ten-year experiment

  1. Bioenergetics of photoheterotrophic bacteria in the oceans.

    Science.gov (United States)

    Kirchman, David L; Hanson, Thomas E

    2013-04-01

    Photoheterotrophic microbes, such as proteorhodopsin (PR)-based phototrophic (PRP) and aerobic anoxygenic phototrophic (AAP) bacteria, are well known to be abundant in the oceans, potentially playing unique roles in biogeochemical cycles. However, the contribution of phototrophy to the energy requirements of these bacteria has not been quantitatively examined to date. To better understand the implications of photoheterophy in the oceans, we calculated energy benefits and costs of phototrophy and compared net benefits with maintenance costs. Benefits depend on the number of photosynthetic units (PSUs), absorption cross-section area of each PSU as function of wavelength, the in situ light quality, and the energy yield per absorbed photon. For costs we considered the energy required for the synthesis of pigments, amino acids and proteins in each PSU. Our calculations indicate that AAP bacteria harvest more light energy than do PRP bacteria, but the costs of phototrophy are much higher for AAP bacteria. Still, the net energy gained by AAP bacteria is often sufficient to meet maintenance costs, while that is not the case for PRP bacteria except with high light intensities and large numbers of proteorhodopsin molecules per cell. The low costs and simplicity of PR-based phototrophy explain the high abundance of proteorhodopsin genes in the oceans. However, even for AAP bacteria, the net energy yield of phototrophy is apparently too low to influence the distribution of photoheterotrophic bacteria among various marine systems. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  2. Carbonate compensation depth: relation to carbonate solubility in ocean waters.

    Science.gov (United States)

    Ben-Yaakov, S; Ruth, E; Kaplan, I R

    1974-05-31

    In situ calcium carbonate saturometry measurements suggest that the intermediate water masses of the central Pacific Ocean are close to saturation with resppect to both calcite and local carbonate sediment. The carbonate compensation depth, located at about 3700 meters in this area, appears to represent a depth above which waters are essentially saturated with respect to calcite and below which waters deviate toward undersaturation with respect to calcite.

  3. Retrospective satellite ocean color analysis of purposeful and natural ocean iron fertilization

    Science.gov (United States)

    Westberry, Toby K.; Behrenfeld, Michael J.; Milligan, Allen J.; Doney, Scott C.

    2013-03-01

    Significant effort has been invested in understanding the role of iron in marine ecosystems over the past few decades. What began as shipboard amendment experiments quickly grew into a succession of in situ, mesoscale ocean iron fertilization (OIF) experiments carried out in all three high nutrient low chlorophyll (HNLC) regions of the world ocean. Dedicated process studies have also looked at regions of the ocean that are seasonally exposed to iron-replete conditions as natural OIF experiments. However, one problem common to many OIF experiments is determination of biological response beyond the duration of the experiment (typicallyfloristic shifts in the phytoplankton community. Further, a consistent pattern of decreased satellite fluorescence efficiency (FLH:Chl or ϕf) following OIF is observed that is in agreement with current understanding of phytoplankton physiological responses to relief from iron stress. The current study extends our ability to retrieve phytoplankton physiology from space-based sensors, strengthens the link between satellite fluorescence and iron availability, and shows that satellite ocean color analyses provide a unique tool for monitoring OIF experiments.

  4. Revealing the timing of ocean stratification using remotely-sensed ocean fronts: links with marine predators

    Science.gov (United States)

    Miller, P. I.; Loveday, B. R.

    2016-02-01

    Stratification is of critical importance to the mixing and productivity of the ocean, though currently it can only be measured using in situ sampling, profiling buoys or underwater autonomous vehicles. Stratification is understood to affect the surface aggregation of pelagic fish and hence the foraging behaviour and distribution of their predators such as seabirds and cetaceans. Satellite Earth observation sensors cannot directly detect stratification, but can observe surface features related to the presence of stratification, for example shelf-sea fronts that separate tidally-mixed water from seasonally stratified water. This presentation describes a novel algorithm that accumulates evidence for stratification from a sequence of oceanic front maps, and in certain regions can reveal the timing of the seasonal onset and breakdown of stratification. Initial comparisons will be made with seabird locations acquired through GPS tagging. If successful, a remotely-sensed stratification timing index would augment the ocean front metrics already developed at PML, that have been applied in over 20 journal articles relating marine predators to ocean fronts. The figure below shows a preliminary remotely-sensed 'stratification' index, for 25-31 Jul. 2010, where red indicates water with stronger evidence for stratification.

  5. International Search for Life in Ocean Worlds

    Science.gov (United States)

    Sherwood, B.

    2015-12-01

    We now know that our solar system contains diverse "ocean worlds." One has abundant surface water and life; another had significant surface water in the distant past and has drawn significant exploration attention; several contain large amounts of water beneath ice shells; and several others evince unexpected, diverse transient or dynamic water-related processes. In this century, humanity will explore these worlds, searching for life beyond Earth and seeking thereby to understand the limits of habitability. Of our ocean worlds, Enceladus presents a unique combination of attributes: large reservoir of subsurface water already known to contain salts, organics, and silica nanoparticles originating from hydrothermal activity; and able to be sampled via a plume predictably expressed into space. These special circumstances immediately tag Enceladus as a key destination for potential missions to search for evidence of non-Earth life, and lead to a range of potential mission concepts: for orbital reconnaissance; in situ and returned-sample analysis of plume and surface-fallback material; and direct sulcus, vent, cavern, and ocean exploration. Each mission type can address a unique set of science questions, and would require a unique set of capabilities, most of which are not yet developed. Both the questions and the capability developments can be sequenced into a programmatic precedence network, the realization of which requires international cooperation. Three factors make this true: exploring remote oceans autonomously will cost a lot; the Outer Space Treaty governs planetary protection; and discovery of non-Earth life is an epochal human imperative. Results of current planning will be presented in AGU session 8599: how ocean-world science questions and capability requirements can be parsed into programmatically acceptable mission increments; how one mission proposed into the Discovery program in 2015 would take the next step on this path; the Decadal calendar of

  6. Ocean heat content and ocean energy budget: make better use of historical global subsurface temperature dataset

    Science.gov (United States)

    Cheng, L.; Zhu, J.

    2016-02-01

    Ocean heat content (OHC) change contributes substantially to global sea level rise, also is a key metric of the ocean/global energy budget, so it is a vital task for the climate research community to estimate historical OHC. While there are large uncertainties regarding its value, here we review the OHC calculation by using the historical global subsurface temperature dataset, and discuss the sources of its uncertainty. The presentation briefly introduces how to correct to the systematic biases in expendable bathythermograph (XBT) data, a alternative way of filling data gaps (which is main focus of this talk), and how to choose a proper climatology. A new reconstruction of historical upper (0-700 m) OHC change will be presented, which is the Institute of Atmospheric Physics (IAP) version of historical upper OHC assessment. The authors also want to highlight the impact of observation system change on OHC calculation, which could lead to bias in OHC estimates. Furthermore, we will compare the updated observational-based estimates on ocean heat content change since 1970s with CMIP5 results. This comparison shows good agreement, increasing the confidence of the climate models in representing the climate history.

  7. Ocean Physicochemistry versus Climate Change

    OpenAIRE

    Góralski, Bogdan

    2014-01-01

    It is the dwindling ocean productivity which leaves dissolved carbon dioxide in the seawater. Its solubility is diminished by the rise in ocean water temperature (by one degree Celsius since 1910, according to IPCC). Excess carbon dioxide is emitted into the atmosphere, while its growing concentration in seawater leads to ocean acidification. Ocean acidification leading to lowering pH of surface ocean water remains an unsolved problem of science. My today’s lecture will mark an attempt at ...

  8. Upper airway resistance syndrome.

    Science.gov (United States)

    Montserrat, J M; Badia, J R

    1999-03-01

    This article reviews the clinical picture, diagnosis and management of the upper airway resistance syndrome (UARS). Presently, there is not enough data on key points like the frequency of UARS and the morbidity associated with this condition. Furthermore, the existence of LIARS as an independent sleep disorder and its relation with snoring and obstructive events is in debate. The diagnosis of UARS is still a controversial issue. The technical limitations of the classic approach to monitor airflow with thermistors and inductance plethysmography, as well as the lack of a precise definition of hypopnea, may have led to a misinterpretation of UARS as an independent diagnosis from the sleep apnea/hypopnea syndrome. The diagnosis of this syndrome can be missed using a conventional polysomnographic setting unless appropriate techniques are applied. The use of an esophageal balloon to monitor inspiratory effort is currently the gold standard. However, other sensitive methods such as the use of a pneumotachograph and, more recently, nasal cannula/pressure transducer systems or on-line monitoring of respiratory impedance with the forced oscillation technique may provide other interesting possibilities. Recognition and characterization of this subgroup of patients within sleep breathing disorders is important because they are symptomatic and may benefit from treatment. Management options to treat UARS comprise all those currently available for sleep apnea/hypopnea syndrome (SAHS). However, the subset of patients classically identified as LIARS that exhibit skeletal craneo-facial abnormalities might possibly obtain further benefit from maxillofacial surgery.

  9. Upper Illinois River basin

    Science.gov (United States)

    Friedel, Michael J.

    1998-01-01

    During the past 25 years, industry and government made large financial investments that resulted in better water quality across the Nation; however, many water-quality concerns remain. Following a 1986 pilot project, the U.S. Geological Survey began implementation of the National Water-Quality Assessment (NAWQA) Program in 1991. This program differs from other national water-quality assessment studies in that the NAWQA integrates monitoring of surface- and ground-water quality with the study of aquatic ecosystems. The goals of the NAWQA Program are to (1) describe current water-quality conditions for a large part of the Nation's freshwater streams and aquifers (water-bearing sediments and rocks), (2) describe how water quality is changing over time, and (3) improve our understanding of the primary natural and human factors affecting water quality.The Upper Illinois River Basin National Water- Quality Assessment (NAWQA) study will increase the scientific understanding of surface- and ground-water quality and the factors that affect water quality in the basin. The study also will provide information needed by water-resource managers to implement effective water-quality management actions and evaluate long-term changes in water quality.

  10. Red ocean vs blue ocean strategies

    OpenAIRE

    Λαΐνος, Ιάσονας

    2011-01-01

    This paper is about the strategies that a company can adopt in order to get a competitive advantage over its rivals, and thus be successful (Red Ocean Strategies). We also tried to explain what actually entrepreneurship is, to be able to understand why the corporate strategies are formed as they do, and why companies are choosing to follow them. The following project is a part of our master thesis that we will present for the University of Piraeus for the MBA-TQM master department. The thesis...

  11. In situ Measurements of Phytoplankton Fluorescence Using Low Cost Electronics

    Directory of Open Access Journals (Sweden)

    Dana L. Wright

    2013-06-01

    Full Text Available Chlorophyll a fluorometry has long been used as a method to study phytoplankton in the ocean. In situ fluorometry is used frequently in oceanography to provide depth-resolved estimates of phytoplankton biomass. However, the high price of commercially manufactured in situ fluorometers has made them unavailable to some individuals and institutions. Presented here is an investigation into building an in situ fluorometer using low cost electronics. The goal was to construct an easily reproducible in situ fluorometer from simple and widely available electronic components. The simplicity and modest cost of the sensor makes it valuable to students and professionals alike. Open source sharing of architecture and software will allow students to reconstruct and customize the sensor on a small budget. Research applications that require numerous in situ fluorometers or expendable fluorometers can also benefit from this study. The sensor costs US$150.00 and can be constructed with little to no previous experience. The sensor uses a blue LED to excite chlorophyll a and measures fluorescence using a silicon photodiode. The sensor is controlled by an Arduino microcontroller that also serves as a data logger.

  12. ATom observations of new particle formation in the tropical upper troposphere. The role of convection and nucleation mechanisms

    Science.gov (United States)

    Kupc, A.; Williamson, C.; Hodshire, A. L.; Pierce, J. R.; Ray, E. A.; Froyd, K. D.; Richardson, M.; Weinzierl, B.; Dollner, M.; Erdesz, F.; Bui, T. V.; Diskin, G. S.; Brock, C. A.

    2017-12-01

    Measurements of size distributions during the Atmospheric Tomography Mission (ATom) reveal high number concentrations (>>1000 cm-3) of nucleation mode particles at high altitudes in the tropics and subtropics under low condensation sink conditions and are associated with upwelling in convective clouds. The broad spatial extent of these newly formed particles shows that the upper free troposphere (FT) of the tropics and subtropics is a globally significant source. In this study, we investigate the link between convection and new particle formation (NPF) by exploring the processes that govern NPF and growth in the tropical and subtropical FT of the Pacific and Atlantic Oceans. We use measurements of the size distributions made with a suite of fast-response instruments on board of a NASA DC-8 aircraft during ATom mission. ATom maps the remote atmosphere over the Pacific and Atlantic basins ( 80 °N and 65 °S) in continuous ascents and descents (0.2 and 13 km), providing the latitudinal and vertical information on the greenhouse gases, reactive and tracer species and aerosol properties and their seasonal variability. We couple measurements of size distributions between 0.003 and 4.8 µm and potential aerosol precursor vapors measured on ATom (August 2016 and February 2017) with calculated air mass back trajectories and the TwO-Moment Aerosol Sectional (TOMAS) box model. The back trajectories identify air masses potentially influenced by recent convection. We then use TOMAS to model particle nucleation, condensation and coagulation along that trajectory to investigate the link between convection and NPF. Through TOMAS, we explore the influence of different nucleation mechanisms (such as binary, ternary or the one with organics) and gas-phase aerosol precursors (such as sulfur dioxide) on observed particle size distributions. We discuss similarities and differences in NPF over the Pacific and Atlantic Oceans and their relationship to convection, examine particle

  13. Cooperative aquatic sensing using the telesupervised adaptive ocean sensor fleet

    Science.gov (United States)

    Dolan, John M.; Podnar, Gregg W.; Stancliff, Stephen; Low, Kian Hsiang; Elfes, Alberto; Higinbotham, John; Hosler, Jeffrey; Moisan, Tiffany; Moisan, John

    2009-09-01

    Earth science research must bridge the gap between the atmosphere and the ocean to foster understanding of Earth's climate and ecology. Typical ocean sensing is done with satellites or in situ buoys and research ships which are slow to reposition. Cloud cover inhibits study of localized transient phenomena such as Harmful Algal Blooms (HAB). A fleet of extended-deployment surface autonomous vehicles will enable in situ study of characteristics of HAB, coastal pollutants, and related phenomena. We have developed a multiplatform telesupervision architecture that supports adaptive reconfiguration based on environmental sensor inputs. Our system allows the autonomous repositioning of smart sensors for HAB study by networking a fleet of NOAA OASIS (Ocean Atmosphere Sensor Integration System) surface autonomous vehicles. In situ measurements intelligently modify the search for areas of high concentration. Inference Grid and complementary information-theoretic techniques support sensor fusion and analysis. Telesupervision supports sliding autonomy from high-level mission tasking, through vehicle and data monitoring, to teleoperation when direct human interaction is appropriate. This paper reports on experimental results from multi-platform tests conducted in the Chesapeake Bay and in Pittsburgh, Pennsylvania waters using OASIS platforms, autonomous kayaks, and multiple simulated platforms to conduct cooperative sensing of chlorophyll-a and water quality.

  14. Malignant mesothelioma in situ.

    Science.gov (United States)

    Churg, Andrew; Hwang, Harry; Tan, Larry; Qing, Gefei; Taher, Altaf; Tong, Amy; Bilawich, Ana M; Dacic, Sanja

    2018-05-01

    The existence of malignant mesothelioma in situ (MIS) is often postulated, but there are no accepted morphological criteria for making such a diagnosis. Here we report two cases that appear to be true MIS on the basis of in-situ genomic analysis. In one case the patient had repeated unexplained pleural unilateral effusions. Two thoracoscopies 9 months apart revealed only visually normal pleura. Biopsies from both thoracoscopies showed only a single layer of mildly reactive mesothelial cells. However, these cells had lost BRCA1-associated protein 1 (BAP1) and showed loss of cyclin-dependent kinase inhibitor 2 (CDKN2A) (p16) by fluorescence in-situ hybridisation (FISH). NF2 was not deleted by FISH but 28% of the mesothelial cells showed hyperploidy. Six months after the second biopsy the patient has persisting effusions but no evidence of pleural malignancy on imaging. The second patient presented with ascites and minimal omental thickening on imaging, but no visual evidence of tumour at laparoscopy. Omental biopsy showed a single layer of minimally atypical mesothelial cells with rare tiny foci of superficial invasion of fat. BAP1 immunostain showed loss of nuclear BAP1 in all the surface mesothelial cells and the invasive cells. There was CDKN2A deletion, but no deletion of NF2 by FISH. These cases show that morphologically bland single-layered surface mesothelial proliferations with molecular alterations seen previously only in invasive malignant mesotheliomas exist, and presumably represent malignant MIS. More cases are need to understand the frequency of such changes and the time-course over which invasive tumour develops. © 2018 John Wiley & Sons Ltd.

  15. On the non-closure of particle backscattering coefficient in oligotrophic oceans.

    Science.gov (United States)

    Lee, ZhongPing; Huot, Yannick

    2014-11-17

    Many studies have consistently found that the particle backscattering coefficient (bbp) in oligotrophic oceans estimated from remote-sensing reflectance (Rrs) using semi-analytical algorithms is higher than that from in situ measurements. This overestimation can be as high as ~300% for some oligotrophic ocean regions. Various sources potentially responsible for this discrepancy are examined. Further, after applying an empirical algorithm to correct the impact from Raman scattering, it is found that bbp from analytical inversion of Rrs is in good agreement with that from in situ measurements, and that a closure is achieved.

  16. The oceanic sediment barrier

    International Nuclear Information System (INIS)

    Francis, T.J.G.; Searle, R.C.; Wilson, T.R.S.

    1986-01-01

    Burial within the sediments of the deep ocean floor is one of the options that have been proposed for the disposal of high-level radioactive waste. An international research programme is in progress to determine whether oceanic sediments have the requisite properties for this purpose. After summarizing the salient features of this programme, the paper focuses on the Great Meteor East study area in the Northeast Atlantic, where most oceanographic effort has been concentrated. The geological geochemical and geotechnical properties of the sediments in the area are discussed. Measurements designed to determine the rate of pore water movement through the sediment column are described. Our understanding of the chemistry of both the solid and pore-water phases of the sediment are outlined, emphasizing the control that redox conditions have on the mobility of, for example, naturally occurring manganese and uranium. The burial of instrumented free-fall penetrators to depths of 30 m beneath the ocean floor is described, modelling one of the methods by which waste might be emplaced. Finally, the nature of this oceanic environment is compared with geological environments on land and attention is drawn to the gaps in our knowledge that must be filled before oceanic burial can be regarded as an acceptable disposal option. (author)

  17. The ocean planet.

    Science.gov (United States)

    Hinrichsen, D

    1998-01-01

    The Blue Planet is 70% water, and all but 3% of it is salt water. Life on earth first evolved in the primordial soup of ancient seas, and though today's seas provide 99% of all living space on the planet, little is known about the world's oceans. However, the fact that the greatest threats to the integrity of our oceans come from land-based activities is becoming clear. Humankind is in the process of annihilating the coastal and ocean ecosystems and the wealth of biodiversity they harbor. Mounting population and development pressures have taken a grim toll on coastal and ocean resources. The trend arising from such growth is the chronic overexploitation of marine resources, whereby rapidly expanding coastal populations and the growth of cities have contributed to a rising tide of pollution in nearly all of the world's seas. This crisis is made worse by government inaction and a frustrating inability to enforce existing coastal and ocean management regulations. Such inability is mainly because concerned areas contain so many different types of regulations and involve so many levels of government, that rational planning and coordination of efforts are rendered impossible. Concerted efforts are needed by national governments and the international community to start preserving the ultimate source of all life on earth.

  18. In situ breast cancer

    International Nuclear Information System (INIS)

    Pacheco, Luis

    2004-01-01

    In situ breast cancer, particularly the ductal type, is increasing in frequency in the developed countries as well as in Ecuador, most probably. These lesions carry a higher risk of developing a subsequent invasive cancer. Treatment has changed recently due to results of randomized studies, from classical mastectomy to conservative surgery associated to radiotherapy. The Van Nuys Prognostic Index is currently the most usual instrument to guide diagnosis and treatment. Tamoxifen seems to decrease significantly the risk of tumor recurrence after initial treatment. (The author)

  19. In situ optical and meteorological data including spectral radiance, remote sensing reflectance, absorption and backscattering, chlorophyll and other phytoplankton pigments, variable fluorescence, phytoplankton identification, chromophoric dissolved organic matter, particulate and dissolved carbon and other oceanographic data collected aboard NOAA Ship Nancy Foster in the US Coastal mid-Atlantic and Western Atlantic Ocean for the JPSS dedicated VIIRS Calibration/Validation cruise from 2014-11-11 to 2014-11-20 (NCEI Accession 0156310)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains oceanographic and meteorological data collected during the Dedicated JPSS VIIRS Ocean Color Calibration/Validation Cruise (NF-14-09). The...

  20. Net primary productivity collected from New Horizon in Gulf of California and North Pacific Ocean from 2004-07-14 to 2008-08-06 (NCEI Accession 0130076)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Net primary productivity determined from 13C-labeled in situ incubations. Water collected via Niskin bottle was incubated with labeled bicarbonate for 24 hours at...

  1. ISHTE deep-ocean corers and heater-implant system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Olson, L. O.; Harrison, J. G.

    1982-09-01

    Seafloor instrumentation systems are being developed for the In-Situ Heat Transfer Experiment (ISHTE) to determine the thermal conductivity of deep ocean sediments. As part of the experiment, a heat canister will be implanted into the sediment. Also, after about one year on the seafloor, core samplers are to be actuated to gather sediment samples. This report describes the deep ocean piston corers and the heater-implant drive system.

  2. Diversity and population structure of Marine Group A bacteria in the Northeast subarctic Pacific Ocean

    OpenAIRE

    Allers, Elke; Wright, Jody J; Konwar, Kishori M; Howes, Charles G; Beneze, Erica; Hallam, Steven J; Sullivan, Matthew B

    2012-01-01

    Marine Group A (MGA) is a candidate phylum of Bacteria that is ubiquitous and abundant in the ocean. Despite being prevalent, the structural and functional properties of MGA populations remain poorly constrained. Here, we quantified MGA diversity and population structure in relation to nutrients and O2 concentrations in the oxygen minimum zone (OMZ) of the Northeast subarctic Pacific Ocean using a combination of catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) and ...

  3. Novel platform for ocean survey and autonomous sampling using multi-agent system

    OpenAIRE

    Taher, Tawfiq; Weymouth, G.D.; Varghese, Tony

    2013-01-01

    In-situ surveying and sampling of ocean environments provides critical data for laboratory work and oceanographic research. However, sampling a time-varying ocean field is often time and resource limited-meaning that samples often miss the features of interest. This paper presents a modular autonomous multi-agent robotic system which has been developed to accommodate a variety of research activities. This paper demonstrates the complementary capabilities of the agents by simultaneously survey...

  4. Upper Devonian (Frasnian) non-calcified, algae, Alberta: Geological relevance to Leduc platforms and petroleum source rocks

    Energy Technology Data Exchange (ETDEWEB)

    Dix, G.R. (Univ. of British Columbia, Vancouver, BC (Canada))

    1990-12-01

    Several types of non-calcified fossil algae comparable to extant brown and green benithic macrophytes occur abundantly on two bedding planes in drill core from argillaceous slope carbonates of the Ireton Formation in northern Alberta. Fossiliferous strata abruptly overlie part of a stepped-back margin of the Sturgeon Lake carbonate platform (Leduc Formation), southeast of the Peace River Arch. Fossils are flattened organic fragments, some representing nearly complete specimens. Tentative comparisons are made with some Paleozoic algae; some of the Sturgeon Lake flora may be new species or genera. Preliminary examination of selected cores from the Ireton Formation and organic-rich Duvernay Formation in central Alberta indicates a widespread distribution of algal-derived organic matter within Upper Devonian basinal strata. The geological relevance of non-calcified algae to Devonian carbonate platforms and basins is postulated in three cases. Their presence in slope sediments may indicate that algal lawns flourished in muddy, upper slope environments. Fossils accumulated either in situ, or were ripped up and quickly buried within downshope resedimented deposits. All or some algal fragments may have been swept from the adjacent carbonate platform during storms. Prolific shallow water algal growth may have occurred simultaneously with oceanic crises when shallow water carbonate production either decreased or was shut down. The present position of fossil algae, therefore, would mark a bedding surface that is stratigraphically equivalent to an intraplatform disconformity. Regardless of the original environment, a sufficient accumulation of non-calcified algae in slope strata represents a viable petroleum source proximal to carbonate platforms. 46 refs., 9 figs.

  5. Electromagnetic Coupling of Ocean Flow with the Earth System

    Directory of Open Access Journals (Sweden)

    Robert Tyler

    2015-01-01

    Full Text Available The ocean is electromagnetically coupled with the Earth System. This results in momentum transfer, as well as a participation by the ocean in the _ observable electric and magnetic fields. The coupling is typically quite weak and quantitative analyses indicate that many of these connections may be discounted when considering the transfer of momentum. But because of systematic effects there are also cases where an immediate discount is not justified and electromagnetic transfer of ocean momentum should remain within the realm of consideration. For practical considerations, even if the coupling is weak these effects are phenomenologically important because the electric and magnetic fields associated with this coupling offer an observational means for inferring the ocean flow. While in situ measurements of the electric field have long been used to measure ocean transport, new opportunities for remote sensing ocean flow through ground and space magnetic observatories are now being considered. In this article a brief update of the status of these observational methods is given. Extending beyond these established elements of the _ electromagnetic involvement, an attempt is made to provide a quantitative discussion of lesser considered elements of the _ electromagnetic coupling with the mantle and fluid core.

  6. Diurnal changes in ocean color sensed in satellite imagery

    Science.gov (United States)

    Arnone, Robert; Vandermuelen, Ryan; Soto, Inia; Ladner, Sherwin; Ondrusek, Michael; Yang, Haoping

    2017-07-01

    Measurements of diurnal changes in ocean color in turbid coastal regions in the Gulf of Mexico were characterized using above water spectral radiometry from a National Aeronautics and Space Administration (aerosol robotic network-WaveCIS CSI-06) site that can provide 8 to 10 observations per day. Satellite capability to detect diurnal changes in ocean color was characterized using hourly overlapping afternoon orbits of the visual infrared imaging radiometer suite (VIIRS) Suomi National Polar-orbiting Partnership ocean color sensor and validated with in situ observations. The monthly cycle of diurnal changes was investigated for different water masses using VIIRS overlaps. Results showed the capability of satellite observations to monitor hourly color changes in coastal regions that can be impacted by vertical movement of optical layers, in response to tides, resuspension, and river plume dispersion. The spatial variability of VIIRS diurnal changes showed the occurrence and displacement of phytoplankton blooming and decaying processes. The diurnal change in ocean color was above 20%, which represents a 30% change in chlorophyll-a. Seasonal changes in diurnal ocean color for different water masses suggest differences in summer and winter responses to surface processes. The diurnal changes observed using satellite ocean color can be used to define the following: surface processes associated with biological activity, vertical changes in optical depth, and advection of water masses.

  7. Ocean acoustic tomography

    International Nuclear Information System (INIS)

    Cornuelle, Bruce D; Worcester, Peter F; Dzieciuch, Matthew A

    2008-01-01

    Ocean acoustic tomography (OAT) was proposed in 1979 by Walter Munk and Carl Wunsch as an analogue to x-ray computed axial tomography for the oceans. The oceans are opaque to most electromagnetic radiation, but there is a strong acoustic waveguide, and sound can propagate for 10 Mm and more with distinct multiply-refracted ray paths. Transmitting broadband pulses in the ocean leads to a set of impulsive arrivals at the receiver which characterize the impulse response of the sound channel. The peaks observed at the receiver are assumed to represent the arrival of energy traveling along geometric ray paths. These paths can be distinguished by arrival time, and by arrival angle when a vertical array of receivers is available. Changes in ray arrival time can be used to infer changes in ocean structure. Ray travel time measurements have been a mainstay of long-range acoustic measurements, but the strong sensitivity of ray paths to range-dependent sound speed perturbations makes the ray sampling functions uncertain in real cases. In the ray approximation travel times are sensitive to medium changes only along the corresponding eigenrays. Ray theory is an infinite-frequency approximation, and its eikonal equation has nonlinearities not found in the acoustic wave equation. We build on recent seismology results (kernels for body wave arrivals in the earth) to characterize the kernel for converting sound speed change in the ocean to travel time changes using more complete propagation physics. Wave-theoretic finite frequency kernels may show less sensitivity to small-scale sound speed structure.

  8. Linking small-scale circulation dynamics with large-scale seasonal production (phytoplankton) in the Southern Ocean

    CSIR Research Space (South Africa)

    Nicholson, S

    2012-10-01

    Full Text Available Understanding the seasonal and intra-seasonal (daily to weekly) changes of the upper ocean and the impact on the primary production in the Southern Ocean is key to better understanding the sensitivities of the global carbon cycle....

  9. A new high resolution tidal model in the arctic ocean

    DEFF Research Database (Denmark)

    Cancet, M.; Andersen, Ole Baltazar; Lyard, F.

    The Arctic Ocean is a challenging region for tidal modeling, because of its complex and not well-documented bathymetry, together combined with the intermittent presence of sea ice and the fact that the in situ tidal observations are rather scarce at such high latitudes. As a consequence, the accu......The Arctic Ocean is a challenging region for tidal modeling, because of its complex and not well-documented bathymetry, together combined with the intermittent presence of sea ice and the fact that the in situ tidal observations are rather scarce at such high latitudes. As a consequence......, the accuracy of the global tidal models decreases by several centimeters in the Polar Regions. In particular, it has a large impact on the quality of the satellite altimeter sea surface heights in these regions (ERS1/2, Envisat, CryoSat-2, SARAL/AltiKa and the future Sentinel-3 mission). Better knowledge......-growing maritime and industrial activities in this region. NOVELTIS and DTU Space have developed a regional, high-resolution tidal atlas in the Arctic Ocean, in the framework of the CryoSat Plus for Ocean (CP4O) ESA project. In particular, this atlas benefits from the assimilation of the most complete satellite...

  10. In-situ Planetary Subsurface Imaging System

    Science.gov (United States)

    Song, W.; Weber, R. C.; Dimech, J. L.; Kedar, S.; Neal, C. R.; Siegler, M.

    2017-12-01

    Geophysical and seismic instruments are considered the most effective tools for studying the detailed global structures of planetary interiors. A planet's interior bears the geochemical markers of its evolutionary history, as well as its present state of activity, which has direct implications to habitability. On Earth, subsurface imaging often involves massive data collection from hundreds to thousands of geophysical sensors (seismic, acoustic, etc) followed by transfer by hard links or wirelessly to a central location for post processing and computing, which will not be possible in planetary environments due to imposed mission constraints on mass, power, and bandwidth. Emerging opportunities for geophysical exploration of the solar system from Venus to the icy Ocean Worlds of Jupiter and Saturn dictate that subsurface imaging of the deep interior will require substantial data reduction and processing in-situ. The Real-time In-situ Subsurface Imaging (RISI) technology is a mesh network that senses and processes geophysical signals. Instead of data collection then post processing, the mesh network performs the distributed data processing and computing in-situ, and generates an evolving 3D subsurface image in real-time that can be transmitted under bandwidth and resource constraints. Seismic imaging algorithms (including traveltime tomography, ambient noise imaging, and microseismic imaging) have been successfully developed and validated using both synthetic and real-world terrestrial seismic data sets. The prototype hardware system has been implemented and can be extended as a general field instrumentation platform tailored specifically for a wide variety of planetary uses, including crustal mapping, ice and ocean structure, and geothermal systems. The team is applying the RISI technology to real off-world seismic datasets. For example, the Lunar Seismic Profiling Experiment (LSPE) deployed during the Apollo 17 Moon mission consisted of four geophone instruments

  11. Water temperature data from reef sites off the upper Florida Keys from 2003-09-18 to 2016-12-31 (NCEI Accession 0126994)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature loggers were deployed at various monitoring sites off the upper Florida Keys where other ecological studies were underway, most focused on aspects of...

  12. Radio telemetry data - Characterizing migration and survival for juvenile Snake River sockeye salmon between the upper Salmon River basin and Lower Granite Dam

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This project estimates survival and characterizes the migration of juvenile sockeye salmon between the upper Salmon River basin in central Idaho and Lower Granite...

  13. Oceanic Loading Eect near the European Coast

    Science.gov (United States)

    Spiridonov, E.; Vinogradova, O.; Boyarskiy, E.; Afanasieva, L.

    2012-04-01

    The dissipation, anisotropy, and rotation constraints of the total oceanic gravimetric effect are analysed. The dependence of the results on the selected P- and S-velocity model (i.e., on the structure of the crust and upper mantle of the Earth) is considered. For calculating the effect of oceanic loading, we apply the method of Legendre polynomial expansion of tidal heights. The CSR3 model data are expanded up to the 720th order. The results yielded by this method closely agree with those calculated from the Green's functions by the LOAD07 program of the ETERNA software. Remarkable advantage of our program over other approaches is that it provides high-speed processing and does not require introducing the near-field formalism. Application of the pre-computed expansions reduces the time of calculations by two orders of magnitude, compared to LOAD07. This is particularly important when analyzing the geographical distributions of the loading effect predicted by different models. Taking dissipation into account improves the total gravimetric effect calculated for the M2 wave near the coast of Europe by 0.1-0.2 mcGal in amplitude and by a few hundredths of degree in phase. Transition from the PREM model to the IASP91 model which is better suitable for Europe changes the model predictions by 0.1-0.4 mcGal in amplitude and by 0.1 to 5-7 degrees in phase. Thus, allowance for dissipation together with the use of the refined data on the crustal and upper-mantle structure of the Earth may contribute, at places, over 0.5 mcGal to the amplitude and a few degrees to the phase of the total oceanic gravimetric effect. In this relation, particular attention should be paid to the regions about the Land's End cape (Cape Cornwall) and Cape Saint Mathieu.

  14. Sustaining observations in the polar oceans.

    Science.gov (United States)

    Abrahamsen, E P

    2014-09-28

    Polar oceans present a unique set of challenges to sustained observations. Sea ice cover restricts navigation for ships and autonomous measurement platforms alike, and icebergs present a hazard to instruments deployed in the upper ocean and in shelf seas. However, the important role of the poles in the global ocean circulation provides ample justification for sustained observations in these regions, both to monitor the rapid changes taking place, and to better understand climate processes in these traditionally poorly sampled areas. In the past, the vast majority of polar measurements took place in the summer. In recent years, novel techniques such as miniature CTD (conductivity-temperature-depth) tags carried by seals have provided an explosion in year-round measurements in areas largely inaccessible to ships, and, as ice avoidance is added to autonomous profiling floats and gliders, these promise to provide further enhancements to observing systems. In addition, remote sensing provides vital information about changes taking place in sea ice cover at both poles. To make these observations sustainable into the future, improved international coordination and collaboration is necessary to gain optimum utilization of observing networks. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  15. Arctic Ocean Paleoceanography and Future IODP Drilling

    Science.gov (United States)

    Stein, Ruediger

    2015-04-01

    Although the Arctic Ocean is a major player in the global climate/earth system, this region is one of the last major physiographic provinces on Earth where the short- and long-term geological history is still poorly known. This lack in knowledge is mainly due to the major technological/logistical problems in operating within the permanently ice-covered Arctic region which makes it difficult to retrieve long and undisturbed sediment cores. Prior to 2004, in the central Arctic Ocean piston and gravity coring was mainly restricted to obtaining near-surface sediments, i.e., only the upper 15 m could be sampled. Thus, all studies were restricted to the late Pliocene/Quaternary time interval, with a few exceptions. These include the four short cores obtained by gravity coring from drifting ice floes over the Alpha Ridge, where older pre-Neogene organic-carbon-rich muds and laminated biosiliceous oozes were sampled. Continuous central Arctic Ocean sedimentary records, allowing a development of chronologic sequences of climate and environmental change through Cenozoic times and a comparison with global climate records, however, were missing prior to the IODP Expedition 302 (Arctic Ocean Coring Expedition - ACEX), the first scientific drilling in the central Arctic Ocean. By studying the unique ACEX sequence, a large number of scientific discoveries that describe previously unknown Arctic paleoenvironments, were obtained during the last decade (for most recent review and references see Stein et al., 2014). While these results from ACEX were unprecedented, key questions related to the climate history of the Arctic Ocean remain unanswered, in part because of poor core recovery, and in part because of the possible presence of a major mid-Cenozoic hiatus or interval of starved sedimentation within the ACEX record. In order to fill this gap in knowledge, international, multidisciplinary expeditions and projects for scientific drilling/coring in the Arctic Ocean are needed. Key

  16. Detecting the progression of ocean acidification from the saturation state of CaCO3 in the subtropical South Pacific

    Science.gov (United States)

    Murata, Akihiko; Hayashi, Kazuhiko; Kumamoto, Yuichiro; Sasaki, Ken-ichi

    2015-04-01

    Progression of ocean acidification in the subtropical South Pacific was investigated by using high-quality data from trans-Pacific zonal section at 17°S (World Ocean Circulation Experiment section P21) collected in 1994 and 2009. During this 15 year period, the CaCO3 saturation state of seawater with respect to calcite (Ωcal) and aragonite (Ωarg) in the upper water column (Pacific Ocean.

  17. The Response of the Ocean Thermal Skin Layer to Variations in Incident Infrared Radiation

    Science.gov (United States)

    Wong, Elizabeth W.; Minnett, Peter J.

    2018-04-01

    Ocean warming trends are observed and coincide with the increase in concentrations of greenhouse gases in the atmosphere resulting from human activities. At the ocean surface, most of the incoming infrared (IR) radiation is absorbed within the top micrometers of the ocean's surface where the thermal skin layer (TSL) exists. Thus, the incident IR radiation does not directly heat the upper few meters of the ocean. This paper investigates the physical mechanism between the absorption of IR radiation and its effect on heat transfer at the air-sea boundary. The hypothesis is that given the heat lost through the air-sea interface is controlled by the TSL, the TSL adjusts in response to variations in incident IR radiation to maintain the surface heat loss. This modulates the flow of heat from below and hence controls upper ocean heat content. This hypothesis is tested using the increase in incoming longwave radiation from clouds and analyzing vertical temperature profiles in the TSL retrieved from sea-surface emission spectra. The additional energy from the absorption of increasing IR radiation adjusts the curvature of the TSL such that the upward conduction of heat from the bulk of the ocean into the TSL is reduced. The additional energy absorbed within the TSL supports more of the surface heat loss. Thus, more heat beneath the TSL is retained leading to the observed increase in upper ocean heat content.

  18. In situ measurements of H2O, CH4 and CO2 in the upper troposphere and the lower stratosphere (UT-LS) with the baloonborne picoSDLA and AMULSE tunable diode laser spectrometers during the 2014 and 2015 "Stratoscience" campaigns

    Science.gov (United States)

    Miftah-El-Khair, Zineb; Joly, Lilian; Decarpenterie, Thomas; Cousin, Julien; Dumelié, Nicolas; Grouiez, Bruno; Albo, Grégory; Chauvin, Nicolas; Maamary, Rabih; Amarouche, Nadir; Durry, Georges

    2016-04-01

    H2O, CH4 and CO2 are major greenhouse gases with a strong impact on climate. The concentrations of CO2 and CH4 have dramatically increased since the beginning of the industrialization era due to anthropogenic activities, contributing thereby to the global warming. Anthropogenic activities as fossil fuels, ruminant, and biomass burning constitute the major sources of carbon dioxide and methane. The increase of H2O concentration in the stratosphere could cause a cooling of this atmospheric region, impacting the recovery of the ozone layer. Therefore, having information and data about the vertical distribution of H2O, CO2 and CH4 is very useful to improve our knowledge of the future of our climate. We have developed, with the help of French space agency (CNES) and CNRS, two laser diode sensors PicoSDLA and AMULSE devoted to the in situ measurements of H2O, CH4 and CO2 from balloon platforms. These instruments were operated from open stratospheric balloons in Timmins, CA, in August 2014 and 2015. We report and discuss the instrumental achievements of both sensors during these flights in the UT-LS. Aknowledgments: The authors acknowledge financial supports from CNES, CNRS and the region Champagne-Ardenne.

  19. Removal of 230Th and 231Pa at ocean margins

    International Nuclear Information System (INIS)

    Anderson, R.F.; Bacon, M.P.; Brewer, P.G.

    1983-01-01

    Uranium, thorium and protactinium isotopes were measured in particulate matter collected by sediment traps deployed in the Panama Basin and by in-situ filtration of large volumes of seawater in the Panama and Guatemala Basins. Concentrations of dissolved Th and Pa isotopes were determined by extraction onto MnO 2 adsorbers placed in line behind the filters in the in-situ pumping systems. Concentrations of dissolved 230 Th and 231 Pa in the Panama and Guatemala Basins are lower than in the open ocean, whereas dissolved 230 Th/ 231 Pa ratios are equal to, or slightly greater than, ratios in the open ocean. Particulate 230 Th/ 231 Pa ratios in the sediment trap samples ranged from 4 to 8, in contrast to ratios of 30 or more at the open ocean sites previously studied. Particles collected by filtration in the Panama Basin and nearest to the continental margin in the Guatemala Basin contained 230 Th/ 231 Pa ratios similar to the ratios in the sediment trap samples. The ratios increased with distance away from the continent. Suspended particles near the margin show no preference for adsorption of Th or Pa and therefore must be chemically different from particles in the open ocean, which show a strong preference for adsorption of Th. Ocean margins, as typified by the Panama and Guatemala Basins, are preferential sinks for 231 Pa relative to 230 Th. Furthermore, the margins are sinks for 230 Th and, to a greater extent, 231 Pa transported by horizontal mixing from the open ocean. (orig.)

  20. An Ocean of Possibilities

    Science.gov (United States)

    Williams, Doug

    2010-01-01

    For more than one hundred years teachers have paddled beside the great ocean of mathematical adventure. Between them they have taught millions of young people. A few have dived in and kept swimming, some have lingered on the shore playing in pools, but most have dipped their toes in and run like heck in the other direction never to return. There…

  1. Deep Water Ocean Acoustics

    Science.gov (United States)

    2016-12-22

    roughly 28°S. The second is the Hawaiian Island Chain, extending to Midway Island at 28°N, 177°W and finally the Emperor Seamount chain running due...dimension array centered near Ascension. The climatology ocean (WOA09) showed very little seasonal dependence or change from the geodesic and this is

  2. Enhanced Ocean Scatterometry

    NARCIS (Netherlands)

    Fois, F.

    2015-01-01

    An ocean scatterometer is an active microwave instrument which is designed to determine the normalized radar cross section (NRCS) of the sea surface. Scatterometers transmit pulses towards the sea surface and measure the reflected energy. The primary objective of spaceborne scatterometers is to

  3. Power from Ocean Waves.

    Science.gov (United States)

    Newman, J. N.

    1979-01-01

    Discussed is the utilization of surface ocean waves as a potential source of power. Simple and large-scale wave power devices and conversion systems are described. Alternative utilizations, environmental impacts, and future prospects of this alternative energy source are detailed. (BT)

  4. Investigating Ocean Pollution.

    Science.gov (United States)

    LeBeau, Sue

    1998-01-01

    Describes a fifth-grade class project to investigate two major forms of ocean pollution: plastics and oil. Students work in groups and read, discuss, speculate, offer opinions, and participate in activities such as keeping a plastics journal, testing the biodegradability of plastics, and simulating oil spills. Activities culminate in…

  5. Ocean Dumping Control Act

    International Nuclear Information System (INIS)

    1975-01-01

    This Act provides for the control of dumping of wastes and other substances in the ocean in accordance with the London Convention of 1972 on Prevention of Marine Pollution by the Dumping of Wastes and other Matter to which Canada is a Party. Radioactive wastes are included in the prohibited and restricted substances. (NEA)

  6. The Ocean State Report of the Copernicus Marine Environment Monitoring Service

    Science.gov (United States)

    von Schuckmann, Karina

    2017-04-01

    COPERNICUS is the European Earth observation and monitoring programme, which aims to give the European Union autonomous and operational capability in space-based observation facilities (see the Sentinel missions) and in situ (measurements in the atmosphere, in the ocean and on the ground), and to operate six interlinked environmental monitoring services for the oceans, the atmosphere, territorial development, emergency situations, security and climate change. In this context, the Copernicus Marine Environment Monitoring Service provides an open and free access to regular and systematic information about the physical state and dynamics of the ocean and marine ecosystems for the global ocean and six European regional seas. Mercator Ocean, the French center of global ocean analysis and forecast has been entrusted by the EU to implement and operate the Copernicus Marine Service. The first Ocean State Report Copernicus Marine Environment Monitoring Service has been prepared, and is planned to appear at an annual basis (fall each year) as a unique reference for ocean state reporting. This report contains a state-of-the-art value-added synthesis of the ocean state for the global ocean and the European regional seas from the Copernicus Marine Environment Monitoring Service data products and expert analysis. This activity is aiming to reach a wide audience -from the scientific community, over climate and environmental service and agencies, environmental reporting and bodies to the general public. We will give here an overview on the report, highlight main outcomes, and introduce future plans and developments.

  7. Ocean Ridges and Oxygen

    Science.gov (United States)

    Langmuir, C. H.

    2014-12-01

    The history of oxygen and the fluxes and feedbacks that lead to its evolution through time remain poorly constrained. It is not clear whether oxygen has had discrete steady state levels at different times in Earth's history, or whether oxygen evolution is more progressive, with trigger points that lead to discrete changes in markers such as mass independent sulfur isotopes. Whatever this history may have been, ocean ridges play an important and poorly recognized part in the overall mass balance of oxidants and reductants that contribute to electron mass balance and the oxygen budget. One example is the current steady state O2 in the atmosphere. The carbon isotope data suggest that the fraction of carbon has increased in the Phanerozoic, and CO2 outgassing followed by organic matter burial should continually supply more O2 to the surface reservoirs. Why is O2 not then increasing? A traditional answer to this question would relate to variations in the fraction of burial of organic matter, but this fraction appears to have been relatively high throughout the Phanerozoic. Furthermore, subduction of carbon in the 1/5 organic/carbonate proportions would contribute further to an increasingly oxidized surface. What is needed is a flux of oxidized material out of the system. One solution would be a modern oxidized flux to the mantle. The current outgassing flux of CO2 is ~3.4*1012 moles per year. If 20% of that becomes stored organic carbon, that is a flux of .68*1012 moles per year of reduced carbon. The current flux of oxidized iron in subducting ocean crust is ~2*1012 moles per year of O2 equivalents, based on the Fe3+/Fe2+ ratios in old ocean crust compared to fresh basalts at the ridge axis. This flux more than accounts for the incremental oxidizing power produced by modern life. It also suggests a possible feedback through oxygenation of the ocean. A reduced deep ocean would inhibit oxidation of ocean crust, in which case there would be no subduction flux of oxidized

  8. 2006 Southwest Florida Water Management District (SWFWMD) Lidar: Upper Myakka District

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — EarthData International collected ALS-50-derived LiDAR over Upper Myakka Florida with a one-meter post spacing. The period of collection was between 3 October and 12...

  9. In situ zymography.

    Science.gov (United States)

    George, Sarah J; Johnson, Jason L

    2010-01-01

    In situ zymography is a unique laboratory technique that enables the localisation of matrix-degrading metalloproteinase (MMP) activity in histological sections. Frozen sections are placed on glass slides coated with fluorescently labelled matrix proteins. After incubation MMP activity can be observed as black holes in the fluorescent background due to proteolysis of the matrix protein. Alternatively frozen sections can be incubated with matrix proteins conjugated to quenched fluorescein. Proteolysis of the substrate by MMPs leads to the release of fluorescence. This technique can be combined with immunohistochemistry to enable co-location of proteins such as cell type markers or other proteins of interest. Additionally, this technique can be adapted for use with cell cultures, permitting precise location of MMP activity within cells, time-lapse analysis of MMP activity and analysis of MMP activity in migrating cells.

  10. Ocean Tide Influences on the Antarctic and Greenland Ice Sheets

    Science.gov (United States)

    Padman, Laurie; Siegfried, Matthew R.; Fricker, Helen A.

    2018-03-01

    Ocean tides are the main source of high-frequency variability in the vertical and horizontal motion of ice sheets near their marine margins. Floating ice shelves, which occupy about three quarters of the perimeter of Antarctica and the termini of four outlet glaciers in northern Greenland, rise and fall in synchrony with the ocean tide. Lateral motion of floating and grounded portions of ice sheets near their marine margins can also include a tidal component. These tide-induced signals provide insight into the processes by which the oceans can affect ice sheet mass balance and dynamics. In this review, we summarize in situ and satellite-based measurements of the tidal response of ice shelves and grounded ice, and spatial variability of ocean tide heights and currents around the ice sheets. We review sensitivity of tide heights and currents as ocean geometry responds to variations in sea level, ice shelf thickness, and ice sheet mass and extent. We then describe coupled ice-ocean models and analytical glacier models that quantify the effect of ocean tides on lower-frequency ice sheet mass loss and motion. We suggest new observations and model developments to improve the representation of tides in coupled models that are used to predict future ice sheet mass loss and the associated contribution to sea level change. The most critical need is for new data to improve maps of bathymetry, ice shelf draft, spatial variability of the drag coefficient at the ice-ocean interface, and higher-resolution models with improved representation of tidal energy sinks.

  11. MyOcean Information System : achievements and perspectives

    Science.gov (United States)

    Loubrieu, T.; Dorandeu, J.; Claverie, V.; Cordier, K.; Barzic, Y.; Lauret, O.; Jolibois, T.; Blower, J.

    2012-04-01

    MyOcean system (http://www.myocean.eu) objective is to provide a Core Service for the Ocean. This means MyOcean is setting up an operational service for forecasts, analysis and expertise on ocean currents, temperature, salinity, sea level, primary ecosystems and ice coverage. The production of observation and forecasting data is distributed through 12 production centres. The interface with the external users (including web portal) and the coordination of the overall service is managed by a component called service desk. Besides, a transverse component called MIS (myOcean Information System) aims at connecting the production centres and service desk together, manage the shared information for the overall system and implement a standard Inspire interface for the external world. 2012 is a key year for the system. The MyOcean, 3-year project, which has set up the first versions of the system is ending. The MyOcean II, 2-year project, which will upgrade and consolidate the system is starting. Both projects are granted by the European commission within the GMES Program (7th Framework Program). At the end of the MyOcean project, the system has been designed and the 2 first versions have been implemented. The system now offers an integrated service composed with 237 ocean products. The ocean products are homogeneously described in a catalogue. They can be visualized and downloaded by the user (identified with a unique login) through a seamless web interface. The discovery and viewing interfaces are INSPIRE compliant. The data production, subsystems availability and audience are continuously monitored. The presentation will detail the implemented information system architecture and the chosen software solutions. Regarding the information system, MyOcean II is mainly aiming at consolidating the existing functions and promoting the operations cost-effectiveness. In addition, a specific effort will be done so that the less common data features of the system (ocean in-situ

  12. Examples and applications in long-range ocean acoustics

    International Nuclear Information System (INIS)

    Vera, M D

    2007-01-01

    Acoustic energy propagates effectively to long ranges in the ocean interior because of the physical properties of the marine environment. Sound propagation in the ocean is relevant to a variety of studies in communication, climatology and marine biology. Examples drawn from ocean acoustics, therefore, are compelling to students with a variety of interests. The dependence of sound speed on depth results in a waveguide that permits the detection of acoustic energy at ranges, in some experiments, of thousands of kilometres. This effect serves as an illustration of Snell's law with a continuously variable index of refraction. Acoustic tomography also offers a means for imaging the ocean's thermal structure, because of the dependence of sound speed on temperature. The ability to perform acoustic thermometry for large transects of the ocean provides an effective means of studying climate change. This application in an area of substantial popular attention allows for an effective introduction to concepts in ray propagation. Aspects of computational ocean acoustics can be productive classroom examples in courses ranging from introductory physics to upper-division mathematical methods courses

  13. Ocean Fertilization for Sequestration of Carbon Dioxide from the Atmosphere

    Science.gov (United States)

    Boyd, Philip W.

    The ocean is a major sink for both preindustrial and anthropogenic carbon dioxide. Both physically and biogeochemically driven pumps, termed the solubility and biological pump, respectively Fig.5.1) are responsible for the majority of carbon sequestration in the ocean's interior [1]. The solubility pump relies on ocean circulation - specifically the impact of cooling of the upper ocean at high latitudes both enhances the solubility of carbon dioxide and the density of the waters which sink to great depth (the so-called deepwater formation) and thereby sequester carbon in the form of dissolved inorganic carbon (Fig.5.1). The biological pump is driven by the availability of preformed plant macronutrients such as nitrate or phosphate which are taken up by phytoplankton during photosynthetic carbon fixation. A small but significant proportion of this fixed carbon sinks into the ocean's interior in the form of settling particles, and in order to maintain equilibrium carbon dioxide from the atmosphere is transferred across the air-sea interface into the ocean (the so-called carbon drawdown) thereby decreasing atmospheric carbon dioxide (Fig.5.1).Fig.5.1

  14. Zoogeography of the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, T.S.S.

    The distribution pattern of zooplankton in the Indian Ocean is briefly reviewed on a within and between ocean patterns and is limited to species within a quite restricted sort of groups namely, Copepoda, Chaetognatha, Pteropoda and Euphausiacea...

  15. OW CCMP Ocean Surface Wind

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Cross-Calibrated Multi-Platform (CCMP) Ocean Surface Wind Vector Analyses (Atlas et al., 2011) provide a consistent, gap-free long-term time-series of monthly...

  16. OW ASCAT Ocean Surface Winds

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Advanced Scatterometer (ASCAT) sensor onboard the EUMETSAT MetOp polar-orbiting satellite provides ocean surface wind observations by means of radar...

  17. Satellite Ocean Heat Content Suite

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This collection contains an operational Satellite Ocean Heat Content Suite (SOHCS) product generated by NOAA National Environmental Satellite, Data, and Information...

  18. ocean_city_md.grd

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to...

  19. A Community Terrain-Following Ocean Modeling System (ROMS)

    Science.gov (United States)

    2015-09-30

    funded NOPP project titled: Toward the Development of a Coupled COAMPS-ROMS Ensemble Kalman filter and adjoint with a focus on the Indian Ocean and the...surface temperature and surface salinity daily averages for 31-Jan-2014. Similarly, Figure 3 shows the sea surface height averaged solution for 31-Jan... temperature (upper panel; Celsius) and surface salinity (lower panel) for 31-Jan-2014. The refined solution for the Hudson Canyon grid is overlaid on

  20. Observations of Near-Surface Current Shear Help Describe Oceanic Oil and Plastic Transport

    Science.gov (United States)

    Laxague, Nathan J. M.; Ö-zgökmen, Tamay M.; Haus, Brian K.; Novelli, Guillaume; Shcherbina, Andrey; Sutherland, Peter; Guigand, Cédric M.; Lund, Björn; Mehta, Sanchit; Alday, Matias; Molemaker, Jeroen

    2018-01-01

    Plastics and spilled oil pose a critical threat to marine life and human health. As a result of wind forcing and wave motions, theoretical and laboratory studies predict very strong velocity variation with depth over the upper few centimeters of the water column, an observational blind spot in the real ocean. Here we present the first-ever ocean measurements of the current vector profile defined to within 1 cm of the free surface. In our illustrative example, the current magnitude averaged over the upper 1 cm of the ocean is shown to be nearly four times the average over the upper 10 m, even for mild forcing. Our findings indicate that this shear will rapidly separate pieces of marine debris which vary in size or buoyancy, making consideration of these dynamics essential to an improved understanding of the pathways along which marine plastics and oil are transported.