WorldWideScience

Sample records for situ surface enhanced

  1. In situ surface enhanced resonance Raman scattering analysis of a reactive dye covalently bound to cotton.

    Science.gov (United States)

    White, P C; Munro, C H; Smith, W E

    1996-06-01

    An in situ surface enhanced resonance Raman scattering (SERRS) procedure is described for the analysis of a reactive dye covalently bound to a single strand of a cotton fibre. This procedure can be completed in 5 h, whereas an alternative enzyme digestion method takes approximately 21 h. These two fibre preparation methods give similar spectra from picogram quantities of dye present on a 2-5 mm length of fibre. The in situ nature of the analysis and the small sample size make this method particularly suitable for forensic applications.

  2. In Situ Laser Coating of Calcium Phosphate on TC4 Surface for Enhancing Bioactivity

    Institute of Scientific and Technical Information of China (English)

    DENG Chi; WANG Yong; ZHANG Ya-ping; GAO Jia-cheng

    2007-01-01

    Titanium alloy has been a successful implant material owing to its excellent ratio of strength to weight,toughness, and bio-inert oxide surface. Significant progress has been made in improving the bioactivity of titanium alloy by coating its oxide surface with calcium phosphates. In the present study, in situ coating was reported on Ti6Al4V(TC4) surface with calcium phosphate (Ca-P) bioceramics synthesized and synchronously cladded by laser beam. This coating was grown by first preplacing directly the raw powders, which contain 80% of CaHPO4 ·2H2O, 20% of CaCO3, and dram of rare earth (RE), on the TC4 surfaces, and then exposing the surfaces to the laser beam with a power density of 12. 73-15.27 MW · m-2 and a scanning velocity of 10. 5 m/s. The resultant coating was characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis and Different-thermal Scanning (TG-DSC), and Energy Dispersive X-ray Detection (EDX). The results show that these laser ceramics include hydroxyapatite (HA), tricalcium phosphate (TCP), Ca2P2O7, and other Ca-P phases, and the interface between the coating and the TC4 substrate has tighter fixation, in which the chemical bonding is approved. These laser hybrid coatings are useful in enhancing the bioactivity of titanium alloy surfaces.

  3. In situ analysis of dynamic laminar flow extraction using surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Wang, Fei; Wang, Hua-Lin; Qiu, Yang; Chang, Yu-Long; Long, Yi-Tao

    2015-12-01

    In this study, we performed micro-scale dynamic laminar flow extraction and site-specific in situ chloride concentration measurements. Surface-enhanced Raman spectroscopy was utilized to investigate the diffusion process of chloride ions from an oil phase to a water phase under laminar flow. In contrast to common logic, we used SERS intensity gradients of Rhodamine 6G to quantitatively calculate the concentration of chloride ions at specific positions on a microfluidic chip. By varying the fluid flow rates, we achieved different extraction times and therefore different chloride concentrations at specific positions along the microchannel. SERS spectra from the water phase were recorded at these different positions, and the spatial distribution of the SERS signals was used to map the degree of nanoparticle aggregation. The concentration of chloride ions in the channel could therefore be obtained. We conclude that this method can be used to explore the extraction behaviour and efficiency of some ions or molecules that enhance the SERS intensity in water or oil by inducing nanoparticle aggregation.

  4. Microwave assisted in situ synthesis of Ag–NaCMC films and their reproducible surface-enhanced Raman scattering signals

    International Nuclear Information System (INIS)

    Jiang, Tao; Li, Junpeng; Zhang, Li; Wang, Binbing; Zhou, Jun

    2014-01-01

    Graphical abstract: Two kinds of Ag–NaCMC films for surface-enhanced Raman scattering (SERS) were prepared by conventional heating and microwave assisted in situ reduction methods without any additional capping or reducing agents. A relatively narrow and symmetric surface plasmon resonance band was observed in the absorption spectra of the films fabricated by the microwave assisted in situ reduction method. More uniform silver nanoparticles (NPs) implied by the symmetric absorption spectrum were further confirmed by the scanning electron microscopy images. After the simulation of the E-field intensity distribution around the silver NPs in NaCMC film, the Raman scattering enhancement factors (EFs) of these films were then investigated with 4-mercaptobenzoic acid molecule as a SERS reporter. Improved reproducibility of SERS signal was obtained in the microwave assisted synthesized Ag–NaCMC film, although it maintained an EF as only 1.11 × 10 8 . The reproducible SERS signal of the Ag–NaCMC film is particularly attractive and this microwave assisted in situ reduction method is suitable for the production of excellent substrate for biosensor application. - Highlights: • The synthesis of Ag–NaCMC films was successfully fulfilled by a low-cost microwave method. • More uniform silver nanoparticles were observed in Ag–NaCMC film synthesized by microwave. • Improved reproducibility of SERS signal was obtained in microwave synthesized Ag–NaCMC film. - Abstract: Two kinds of Ag–NaCMC films for surface-enhanced Raman scattering (SERS) were prepared by conventional heating and microwave assisted in situ reduction methods without any additional capping or reducing agents. A relatively narrow and symmetric surface plasmon resonance band was observed in the absorption spectra of the films fabricated by the microwave assisted in situ reduction method. More uniform silver nanoparticles (NPs) implied by the symmetric absorption spectrum were further confirmed by

  5. In situ surface-enhanced Raman scattering spectroscopy exploring molecular changes of drug-treated cancer cell nucleus.

    Science.gov (United States)

    Liang, Lijia; Huang, Dianshuai; Wang, Hailong; Li, Haibo; Xu, Shuping; Chang, Yixin; Li, Hui; Yang, Ying-Wei; Liang, Chongyang; Xu, Weiqing

    2015-02-17

    Investigating the molecular changes of cancer cell nucleus with drugs treatment is crucial for the design of new anticancer drugs, the development of novel diagnostic strategies, and the advancement of cancer therapy efficiency. In order to better understand the action effects of drugs, accurate location and in situ acquisition of the molecular information of the cell nuclei are necessary. In this work, we report a microspectroscopic technique called dark-field and fluorescence coimaging assisted surface-enhanced Raman scattering (SERS) spectroscopy, combined with nuclear targeting nanoprobes, to in situ study Soma Gastric Cancer (SGC-7901) cell nuclei treated with two model drugs, e.g., DNA binder (Hoechst33342) and anticancer drug (doxorubicin, Dox) via spectral analysis at the molecular level. Nuclear targeting nanoprobes with an assembly structure of thiol-modified polyethylene glycol polymers (PEG) and nuclear localizing signal peptides (NLS) around gold nanorods (AuNRs) were prepared to achieve the amplified SERS signals of biomolecules in the cell nuclei. With the assistance of dark field/fluorescence imaging with simultaneous location, in situ SERS spectra in one cell nucleus were measured and analyzed to disclose the effects of Hoechst33342 and Dox on main biomolecules in the cell nuclei. The experimental results show that this method possesses great potential to investigate the targets of new anticancer drugs and the real-time monitoring of the dynamic changes of cells caused by exogenous molecules.

  6. In situ surface-enhanced Raman spectroscopy effect in zeolite due to Ag_2Se quantum dots

    International Nuclear Information System (INIS)

    Martinez-Nuñez, C. E.; Cortez-Valadez, M.; Delgado-Beleño, Y.; Flores-López, N. S.; Román-Zamorano, J. F.; Flores-Valenzuela, J.; Flores-Acosta, M.

    2017-01-01

    This study shows the presence of surface-enhanced Raman spectroscopy (SERS) effect caused by Ag_2Se quantum dots embedded in the zeolite matrix. The quantum dots that were synthesised and stabilised in the matrix of F9-NaX zeolite show a size of 5 nm and a quasi-spherical morphology. The calculated interplanar distances confirm the presence of quantum dots in cubic phase Im-m. We suppose that the in situ SERS effect in the material is caused by chemical-enhancement mechanism (CEM). The density functional theory (DFT) is undertaken to corroborate our hypothesis. The structure H_8Si_8Al_8O_1_2 represents the zeolite cavity unit, and small clusters of (Ag_2Se)_n represent the quantum dots. Both structures interact in the cavity to obtain the local minimum of the potential energy surface, leading to new molecular orbitals. After the analysis of the predicted Raman spectrum, the Raman bands increase significantly, agreeing with the experimental results at low wavenumbers in F9-NaX zeolite.

  7. In situ surface-enhanced Raman spectroscopy effect in zeolite due to Ag{sub 2}Se quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Nuñez, C. E. [Universidad de Sonora, Departamento de Investigación en Física (Mexico); Cortez-Valadez, M., E-mail: jose.cortez@unison.mx, E-mail: manuelcortez@live.com [Universidad de Sonora, CONACYT-Departamento de Investigación en Física (Mexico); Delgado-Beleño, Y.; Flores-López, N. S. [Universidad de Sonora, Departamento de Investigación en Física (Mexico); Román-Zamorano, J. F. [Centro de Investigación y Desarrollo Tecnológico en Electroquímica (Mexico); Flores-Valenzuela, J. [Universidad Autónoma de Sinaloa (Mexico); Flores-Acosta, M. [Universidad de Sonora, Departamento de Investigación en Física (Mexico)

    2017-02-15

    This study shows the presence of surface-enhanced Raman spectroscopy (SERS) effect caused by Ag{sub 2}Se quantum dots embedded in the zeolite matrix. The quantum dots that were synthesised and stabilised in the matrix of F9-NaX zeolite show a size of 5 nm and a quasi-spherical morphology. The calculated interplanar distances confirm the presence of quantum dots in cubic phase Im-m. We suppose that the in situ SERS effect in the material is caused by chemical-enhancement mechanism (CEM). The density functional theory (DFT) is undertaken to corroborate our hypothesis. The structure H{sub 8}Si{sub 8}Al{sub 8}O{sub 12} represents the zeolite cavity unit, and small clusters of (Ag{sub 2}Se){sub n} represent the quantum dots. Both structures interact in the cavity to obtain the local minimum of the potential energy surface, leading to new molecular orbitals. After the analysis of the predicted Raman spectrum, the Raman bands increase significantly, agreeing with the experimental results at low wavenumbers in F9-NaX zeolite.

  8. In situ identification of paper chromatogram spots by surface enhanced Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Tran, C D

    1984-01-01

    The use of silver hydrosols to enhance the Raman scattering of paper chromatogram spots has been used successfully. This enhancement technique, which is dependent on the interaction between the substrate, silver particles, and paper fibers, has been applied to detection and identification of ng amounts of crystal violet, malachite green, and basic fuchsin with an argon laser of only 4 mW. This technique enhances the resonance of the Raman scattering so that the Raman cross sections of the spots are approximately 9 to 10 orders of magnitude higher than those observed for non-enhanced systems. The limit of detection of the techniques is defined as the amount of dye spot that yields a signal to noise ratio of 2 when excited with the 4MeV.

  9. [In situ thin layer chromatography-fourier transform-surface-enhanced Raman spectrum study on ingredients of berberine].

    Science.gov (United States)

    Wang, Yuan; Guo, Zhan-sheng; Wang, Ying-feng; Wang, Song-ying; Ren, Gui-fen; Zhang, Xiang-lan; Han, Xiu-lan

    2002-10-01

    Surface Enhanced Raman Scattering (SERS) combined with Thin Layer Chromatography (TLC) has been used for studying characteristic spectrum of molecules in situ in micrograms samples. There are very few report for applying the SERS-TCL method in the study of the effective ingredients of Chinese traditional herbs. Coptis Chinensis France is an often-used clinic Chinese traditional medicine. Its main effective components include berberine and so on, which have antibiotic very wide and also have curative effect on improving the functions of heart vascular cycles. Therefore the concentrations of berberine are very important for the quality control of the medicine. In this work, the ethanol extract of Coptis Chinensis France was first separated by TLC, the SERS was then measure directly after dropping silver gel on the separated spots. The method can be used for the finger print analysis of the berberine. 3 microL of alcohol extract of Coptis Chinensis France with total alkaloids concentration of 1.0 mg.mL was placed on silicon GF254 TLC plate. The sample was separated by developing solvent of n bulanol-Acitic acid-H2O (7:2:1 V/V). The positions of berberine in the sample were confirmed by the standard alkaloid solutions. The Rf values for berberine are 0.29. The silver gel was used as surface enhanced substrate and placed on the separated berberine spots. FT-SERS was measured directly by a Nicolet FT-Raman 910 spectrometer. Berberine belong to isoquinoline alkaloids. His structure can be found in reference. The date of spectrum of berberine can be seen that the band at 1,396 cm-1 due to Ar-OCH3 deformation vibrations was greatly enhanced, indicating that the molecule was absorbed on silver gel strongly through lone-pair electron in Ar-OCH3. The ring stretching mode occurring around 1,548 cm-1 represents isoquinoline ring in the molecule. The band at 727 cm-1 due to CH (ring) deformation vibrations was also enhanced.

  10. In Situ Analysis of a Silver Nanoparticle-Precipitating Shewanella Biofilm by Surface Enhanced Confocal Raman Microscopy.

    Directory of Open Access Journals (Sweden)

    Gal Schkolnik

    Full Text Available Shewanella oneidensis MR-1 is an electroactive bacterium, capable of reducing extracellular insoluble electron acceptors, making it important for both nutrient cycling in nature and microbial electrochemical technologies, such as microbial fuel cells and microbial electrosynthesis. When allowed to anaerobically colonize an Ag/AgCl solid interface, S. oneidensis has precipitated silver nanoparticles (AgNp, thus providing the means for a surface enhanced confocal Raman microscopy (SECRaM investigation of its biofilm. The result is the in-situ chemical mapping of the biofilm as it developed over time, where the distribution of cytochromes, reduced and oxidized flavins, polysaccharides and phosphate in the undisturbed biofilm is monitored. Utilizing AgNp bio-produced by the bacteria colonizing the Ag/AgCl interface, we could perform SECRaM while avoiding the use of a patterned or roughened support or the introduction of noble metal salts and reducing agents. This new method will allow a spatially and temporally resolved chemical investigation not only of Shewanella biofilms at an insoluble electron acceptor, but also of other noble metal nanoparticle-precipitating bacteria in laboratory cultures or in complex microbial communities in their natural habitats.

  11. Immobilization of serum albumin and peptide aptamer for EPC on polydopamine coated titanium surface for enhanced in-situ self-endothelialization

    International Nuclear Information System (INIS)

    Chen, Zhuoyue; Li, Quanli; Chen, Jialong; Luo, Rifang; Maitz, Manfred F.; Huang, Nan

    2016-01-01

    Restenosis and thrombosis are two major complications associated with vascular stents and grafts. The homing of circulating endothelial progenitor cells (EPCs) onto implant surfaces brings a new strategy to solve these problems by accelerating self -endothelialization in situ. Peptide aptamers with high affinity and specific recognition of EPCs can be immobilized to capture EPCs from the circulating blood. In this study, a biotinylated peptide aptamer (TPSLEQRTVYAK-GGGC-K-Biotin) for EPC, and bovine serum albumin (BSA) were co-immobilized onto titanium surface through avidin–biotin recognition to endow the surface with specific affinity for EPC and anti-platelet adhesion properties. Quartz crystal microbalance with dissipation (QCM-D), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and water contact angle measuring were adopted for coating characterization. EPC affinity and hemocompatibility of the coating were also investigated in vitro. The results demonstrated that aptamer and BSA co-immobilized surface significantly reduced platelet adhesion and fibrinogen adsorption/activation. Besides, such functional surface could remarkably enhance EPC adhesion, without affecting the behavior of endothelial cells (ECs) and smooth muscle cells (SMCs) obviously. The result shows the possibility of utilizing such a multifunctional surface in cardiovascular implants. - Highlights: • We construct a multifunctional surface based on immobilization of BSA and aptamer. • It can significantly reduce platelet adhesion and fibrinogen adsorption/activation. • Such functional surface could remarkably enhance EPC adhesion in vitro. • It can induce rapid self-endothelialization of the implant surface in situ in vivo. • It is possible to use such a multifunctional surface in cardiovascular implants.

  12. Immobilization of serum albumin and peptide aptamer for EPC on polydopamine coated titanium surface for enhanced in-situ self-endothelialization

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhuoyue, E-mail: 362947953@qq.com [Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu, 610031 (China); RegeMed Lab of Tissue Engineering, Faculty of Life Science, Northwest University, Xi' an, 710069 (China); Li, Quanli [College of Stomology, Anhui Medical University, Hefei, 230032 (China); Chen, Jialong [Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu, 610031 (China); College of Stomology, Anhui Medical University, Hefei, 230032 (China); Luo, Rifang [Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu, 610031 (China); Maitz, Manfred F. [Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu, 610031 (China); Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, Dresden (Germany); Huang, Nan, E-mail: huangnan1956@163.com [Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu, 610031 (China)

    2016-03-01

    Restenosis and thrombosis are two major complications associated with vascular stents and grafts. The homing of circulating endothelial progenitor cells (EPCs) onto implant surfaces brings a new strategy to solve these problems by accelerating self -endothelialization in situ. Peptide aptamers with high affinity and specific recognition of EPCs can be immobilized to capture EPCs from the circulating blood. In this study, a biotinylated peptide aptamer (TPSLEQRTVYAK-GGGC-K-Biotin) for EPC, and bovine serum albumin (BSA) were co-immobilized onto titanium surface through avidin–biotin recognition to endow the surface with specific affinity for EPC and anti-platelet adhesion properties. Quartz crystal microbalance with dissipation (QCM-D), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and water contact angle measuring were adopted for coating characterization. EPC affinity and hemocompatibility of the coating were also investigated in vitro. The results demonstrated that aptamer and BSA co-immobilized surface significantly reduced platelet adhesion and fibrinogen adsorption/activation. Besides, such functional surface could remarkably enhance EPC adhesion, without affecting the behavior of endothelial cells (ECs) and smooth muscle cells (SMCs) obviously. The result shows the possibility of utilizing such a multifunctional surface in cardiovascular implants. - Highlights: • We construct a multifunctional surface based on immobilization of BSA and aptamer. • It can significantly reduce platelet adhesion and fibrinogen adsorption/activation. • Such functional surface could remarkably enhance EPC adhesion in vitro. • It can induce rapid self-endothelialization of the implant surface in situ in vivo. • It is possible to use such a multifunctional surface in cardiovascular implants.

  13. In situ Silver Spot Preparation and on-Plate Surface-Enhanced Raman Scattering Detection in Thin Layer Chromatography Separation

    Science.gov (United States)

    Herman, K.; Mircescu, N. E.; Szabo, L.; Leopold, L. F.; Chiş, V.; Leopold, N.

    2013-05-01

    An improved approach for surface-enhanced Raman scattering (SERS) detection of mixture constituents after thin layer chromatography (TLC) separation is presented. A SERS active silver substrate was prepared under open air conditions, directly on the thin silica film by photo-reduction of silver nitrate, allowing the detection of binary mixtures of cresyl violet, bixine, crystal violet, and Cu(II) complex of 4-(2-pyridylazo)resorcinol. The recorded SERS spectrum provides a unique spectral fingerprint for each molecule; therefore the use of analyte standards is avoided, thus rendering the presented procedure advantageous compared to the conventional detection methodology in TLC.

  14. Transparent, flexible surface enhanced Raman scattering substrates based on Ag-coated structured PET (polyethylene terephthalate) for in-situ detection

    International Nuclear Information System (INIS)

    Zuo, Zewen; Zhu, Kai; Gu, Chuan; Wen, Yibing; Cui, Guanglei; Qu, Jun

    2016-01-01

    Highlights: • Transparent, flexible SERS substrates were prepared using techniques compatible with well-established silicon device technologies. • The SERS substrates exhibit high sensitivity and good reproducibility. • The high performance is related with the quasi-three-dimensional structure of the PET. • In-situ detection of analyte on irregular objects was achieved by this SERS substrate. - Abstract: Transparent, flexible surface-enhanced Raman scattering (SERS) substrates were fabricated by metalization of structured polyethylene terephthalate (PET) sheets. The resultant Ag-coated structured PET SERS substrates were revealed to be highly sensitive with good reproducibility and stability, an enhancement factor of 3 × 10 6 was acquired, which can be attributed mainly to the presence of plentiful multiple-type hot spots within the quasi-three-dimensional surface of the structured PET obtained by oxygen plasma etching. In addition, detections of model molecules on fruit skin were also carried out, demonstrating the great potential of the Ag-coated structured PET in in-situ detection of analyte on irregular objects. Importantly, the technique used for the preparation of such substrate is completely compatible with well-established silicon device technologies, and large-area fabrication with low cost can be readily realized.

  15. Transparent, flexible surface enhanced Raman scattering substrates based on Ag-coated structured PET (polyethylene terephthalate) for in-situ detection

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Zewen, E-mail: zuozewen@mail.ahnu.edu.cn; Zhu, Kai; Gu, Chuan; Wen, Yibing; Cui, Guanglei; Qu, Jun

    2016-08-30

    Highlights: • Transparent, flexible SERS substrates were prepared using techniques compatible with well-established silicon device technologies. • The SERS substrates exhibit high sensitivity and good reproducibility. • The high performance is related with the quasi-three-dimensional structure of the PET. • In-situ detection of analyte on irregular objects was achieved by this SERS substrate. - Abstract: Transparent, flexible surface-enhanced Raman scattering (SERS) substrates were fabricated by metalization of structured polyethylene terephthalate (PET) sheets. The resultant Ag-coated structured PET SERS substrates were revealed to be highly sensitive with good reproducibility and stability, an enhancement factor of 3 × 10{sup 6} was acquired, which can be attributed mainly to the presence of plentiful multiple-type hot spots within the quasi-three-dimensional surface of the structured PET obtained by oxygen plasma etching. In addition, detections of model molecules on fruit skin were also carried out, demonstrating the great potential of the Ag-coated structured PET in in-situ detection of analyte on irregular objects. Importantly, the technique used for the preparation of such substrate is completely compatible with well-established silicon device technologies, and large-area fabrication with low cost can be readily realized.

  16. Ad-hoc surface-enhanced Raman spectroscopy methodologies for the detection of artist dyestuffs: thin layer chromatography-surface enhanced Raman spectroscopy and in situ on the fiber analysis.

    Science.gov (United States)

    Brosseau, Christa L; Gambardella, Alessa; Casadio, Francesca; Grzywacz, Cecily M; Wouters, Jan; Van Duyne, Richard P

    2009-04-15

    Tailored ad-hoc methods must be developed for successful identification of minute amounts of natural dyes on works of art using Surface-Enhanced Raman Spectroscopy (SERS). This article details two of these successful approaches using silver film over nanosphere (AgFON) substrates and silica gel coupled with citrate-reduced Ag colloids. The latter substrate functions as the test system for the coupling of thin-layer chromatography and SERS (TLC-SERS), which has been used in the current research to separate and characterize a mixture of several artists' dyes. The poor limit of detection of TLC is overcome by coupling with SERS, and dyes which co-elute to nearly the same spot can be distinguished from each other. In addition, in situ extractionless non-hydrolysis SERS was used to analyze dyed reference fibers, as well as historical textile fibers. Colorants such as alizarin, purpurin, carminic acid, lac dye, crocin, and Cape jasmine were thus successfully identified.

  17. In situ monitoring of thermal crystallization of ultrathin tris(8-hydroxyquinoline) aluminum films using surface-enhanced Raman scattering.

    Science.gov (United States)

    Muraki, Naoki

    2014-01-01

    Thermal crystallization of 3, 10, and 60 nm-thick tris(8-hydroxyquinoline)aluminum (Alq3) films is studied using surface-enhanced Raman scattering with a constant heating rate. An abrupt higher frequency shift of the quinoline-stretching mode is found to be an indication of a phase transition of Alq3 molecules from amorphous to crystalline. While the 60 nm-thick film shows the same crystallization temperature as a bulk sample, the thinner films were found to have a lower crystallization temperature and slower rate of crystallization. Non-isothermal kinetics analysis is performed to quantify kinetic properties such as the Avrami exponent constants and crystallization rates of ultrathin Alq3 films.

  18. In situ loading of well-dispersed silver nanoparticles on nanocrystalline magnesium oxide for real-time monitoring of catalytic reactions by surface enhanced Raman spectroscopy.

    Science.gov (United States)

    Zhang, Kaige; Li, Gongke; Hu, Yuling

    2015-10-28

    The surface-enhanced Raman spectroscopy (SERS) technique is of great importance for insight into the transient reaction intermediates and mechanistic pathways involved in heterogeneously catalyzed chemical reactions under actual reaction conditions, especially in water. Herein, we demonstrate a facile method for in situ synthesis of nanocrystalline magnesium oxide-Ag(0) (nano MgO-Ag(0)) hybrid nanomaterials with dispersed Ag nanoparticles (Ag NPs) on the surface of nanocrystalline magnesium oxide (nano MgO) via Sn(2+) linkage and reduction. As a benefit from the synergy effect of nano MgO and Ag NPs, the nano MgO-Ag(0) exhibited both excellent SERS and catalytic activities for the reduction of 4-nitrothiophenol in the presence of NaBH4. The nano MgO-Ag(0) was used for real-time monitoring of the catalytic reaction process of 4-nitrothiophenol to 4-aminothiophenol in an aqueous medium by observing the SERS signals of the reactant, intermediate and final products. The intrinsic reaction kinetics and reaction mechanism of this reaction were also investigated. This SERS-based synergy technique provides a novel approach for quantitative in situ monitoring of catalytic chemical reaction processes.

  19. In Situ Detection of Trace Furfural in Aqueous Solution Based on Au Nanoparticle/Au Film Surface-Enhanced Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Wei Qi

    2016-01-01

    Full Text Available Furfural is an important chemical solvent and intermediate. Sensitive detection of this compound has attracted great interest in various fields. Surface-enhanced Raman spectroscopy (SERS is a highly sensitive method for material detection because of its optical enhancement effect of plasmonic nanostructures. This study presents a simple and versatile method to synthesize a SERS substrate, where polyaminothiophenol (PATP was used to realize the stable combination of Au nanoparticles (AuNPs and Au film via self-assembly. The near-field electric field distribution was calculated using the finite difference time domain (FDTD simulation to determine the parameters responsible for electric field enhancement. The simulation results show that SERS enhanced factors are sensitive to interparticle spacing and materials for solid support but insensitive to particle size. Moreover, the experimental results show that the optimized substrates with the highest Raman activity were formed by six layers of 60 nm AuNPs decorated on a 30 nm thick Au film, thereby validating the simulation results. The SERS factor of the optimal substrates is approximately 5.57 × 103, and the in situ detection limit is 4.8 ppm. The 3D Raman spectra, relative standard deviation values for major peaks, and changes in signal intensity with time show the good reproducibility and stability of the substrates.

  20. In situ, accurate, surface-enhanced Raman scattering detection of cancer cell nucleus with synchronous location by an alkyne-labeled biomolecular probe.

    Science.gov (United States)

    Zhang, Jing; Liang, Lijia; Guan, Xin; Deng, Rong; Qu, Huixin; Huang, Dianshuai; Xu, Shuping; Liang, Chongyang; Xu, Weiqing

    2018-01-01

    A surface-enhanced Raman scattering (SERS) method for in situ detection and analysis of the intranuclear biomolecular information of a cell has been developed based on a small, biocompatible, nuclear-targeting alkyne-tagged deoxyribonucleic acid (DNA) probe (5-ethynyl-2'-deoxyuridine, EDU) that can specially accumulate in the cell nucleus during DNA replications to precisely locate the nuclear region without disturbance in cell biological activities and functions. Since the specific alkyne group shows a Raman peak in the Raman-silent region of cells, it is an interior label to visualize the nuclear location synchronously in real time when measuring the SERS spectra of a cell. Because no fluorescent-labeled dyes were used for locating cell nuclei, this method is simple, nondestructive, non- photobleaching, and valuable for the in situ exploration of vital physiological processes with DNA participation in cell organelles. Graphical abstract A universal strategy was developed to accurately locate the nuclear region and obtain precise molecular information of cell nuclei by SERS.

  1. Enhanced Cyclability of Lithium-Oxygen Batteries with Electrodes Protected by Surface Films Induced via In-Situ Electrochemical Process

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bin; Xu, Wu; Tao, Jinhui; Yan, Pengfei; Zheng, Jianming; Engelhard, Mark H.; Lu, Dongping; Wang, Chongmin; Zhang, Jiguang

    2018-04-16

    Although the rechargeable lithium-oxygen (Li-O2) batteries have extremely high theoretical specific energy, the practical application of these batteries is still limited by the instability of their carbon-based air-electrode, Li metal anode, and electrolytes towards reduced oxygen species. Here we demonstrate a simple one-step in-situ electrochemical pre-charging strategy to generate thin protective films on both carbon nanotubes (CNTs) air-electrode and Li metal anode simultaneously under an inert atmosphere. Li-O2 cells after such pre-treatment demonstrate significantly extended cycle life of 110 and 180 cycles under the capacity-limited protocol of 1000 mAh g-1 and 500 mAh g-1, respectively, which is far more than those without pre-treatment. The thin-films formed from decomposition of electrolyte during in-situ electrochemical pre-charging process in an inert environment can protect both CNTs air-electrode and Li metal anode prior to conventional Li-O2 discharge/charge cycling where reactive reduced oxygen species are formed. This work provides a new approach for protections of carbon-based air-electrode and Li metal anode in practical Li-O2 batteries, and may also be applied to other battery systems.

  2. In situ identification of high-performance thin-layer chromatography spots by fourier transform surface-enhanced Raman scattering

    Science.gov (United States)

    Koglin, Eckhardt; Kramer, Hella; Sawatski, Juergen; Lehner, Carolin; Hellman, Janice L.

    1994-01-01

    FT-SERS has been used to identify samples supported on high-performance thin-layer chromatography plates. The TLC plates were sprayed with colloidal silver solutions which resulted in enhancement of the FT-Raman scattering of these biologically and environmentally important compounds.

  3. Electrochemical and in-situ Surface-Enhanced Raman Spectroscopic (SERS) study of passive films formed on low-carbon steel in highly alkaline environments

    Science.gov (United States)

    Mancio, Mauricio

    In reinforced concrete, a passive layer forms because of the alkaline conditions in the pores of the cement paste, where large concentrations of hydroxides create a solution with pH typically between 12 and 14. The corrosion resistance of the material depends on the characteristics and integrity of the passive film; however, currently very limited information is available about the passive films formed on carbon steel under such conditions. This work presents an electrochemical and in-situ Surface-Enhanced Raman Spectroscopic (SERS) study of passive films formed on low-carbon steel in highly alkaline environments. More specifically, the study focuses on the characterization of the films formed on ASTM A36 steel reinforcing bar exposed to aqueous solutions that aim to reproduce the chemistry of the environment typically found within the cement paste. Electrochemical techniques such as cyclic potentiodynamic polarization curves, galvanostatic cathodic polarization and linear polarization resistance were employed, in addition to in-situ Surface Enhanced Raman Spectroscopy (SERS). The experimental setup was built in a way that SERS experiments could be performed simultaneously with potentiodynamic polarization curves, enabling a detailed analysis of the formation and reduction of the surface films as a function of applied potential. Three solutions with different pH levels were used for the polarization and SERS experiments, namely 0.55M KOH + 0.16M NaOH ([OH-]=0.71), 0.08M KOH + 0.02M NaOH ([OH-]=0.10) and 0.008M KOH + 0.002M NaOH ([OH-]=0.01). Additional NaOH solutions in which the pH was varied from 13 to 9 and the ionic strength from 10 -5 to 10-1 were prepared for a pilot study using linear polarization resistance. Results show that the features observed in the cyclic potentiodynamic polarization curves correlated well with the potential arrests observed in the GCP plots as well as with the changes observed in the SERS spectra, providing valuable information about

  4. In Situ Surface-Enhanced Raman Spectroscopy Study of the Electrocatalytic Effect of PtFe/C Nanocatalyst on Ethanol Electro-Oxidation in Alkaline Medium

    Directory of Open Access Journals (Sweden)

    A. C. Gómez-Monsiváis

    2017-03-01

    Full Text Available Currently, the ethanol electro-oxidation reaction has attracted considerable attention in fuel cells because of new green ethanol synthetic methods based on biomass processes that have emerged. In this study, PtFe/C and Pt/C nanoparticles were synthesized by a chemical reduction method and tested in the ethanol electro-oxidation reaction. Furthermore, the electrocatalytic effect of the PtFe bimetallic catalyst was analyzed by in situ surface-enhanced Raman spectroscopy (SERS coupled to an electrochemical cell. X-ray diffractograms showed typical face-centered cubic structures with crystallite sizes of 3.31 and 3.94 for Pt/C and PtFe/C, respectively. TEM micrographs revealed nanoparticle sizes of 2 ± 0.4 nm and 3 ± 0.6 nm for Pt/C and PtFe/C respectively. PtFe/C exhibited a Pt90Fe10 composition by both X-ray fluorescence and energy-dispersive X-ray spectroscopy. A better electrocatalytic activity as function of concentration was obtained through the incorporation of a small amount of Fe into the Pt lattice and the presence of Fe2+/Fe3+ (observed by X-ray photoelectron spectroscopy. According to SERS experiments, the presence of these iron species promotes the chemisorption of ethanol, the formation of formic acid as main product and renewal of the catalytic sites, resulting in current densities that were at least three fold higher than the values obtained for the Pt/C nanocatalyst.

  5. In situ deposition of graphene nanosheets on wood surface by one-pot hydrothermal method for enhanced UV-resistant ability

    International Nuclear Information System (INIS)

    Wan, Caichao; Jiao, Yue; Li, Jian

    2015-01-01

    Graphical abstract: - Highlights: • The graphene/wood nanocomposites were fabricated via a mild fast one-pot hydrothermal method. • Graphene nanosheets were in situ deposited on the surface of the wood matrix. • The incorporation of graphene nanosheets results in the improvement in the thermal stability of the graphene/wood. • The graphene/wood exhibits superior UV resistance performance. - Abstract: Graphene nanosheets were successfully in situ deposited on the surface of the wood matrix via a mild fast one-pot hydrothermal method, and the resulting hybrid graphene/wood (GW) were characterized by scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Raman spectroscopy, and thermogravimetric analysis (TGA). According to the results, the wood matrix was evenly coated by dense uninterrupted multilayer graphene membrane structure, which was formed by layer-by-layer self-assembly of graphene nanosheets. Meanwhile, the graphene coating also induced significant improvement in the thermal stability of GW in comparison with that of the original wood (OW). Accelerated weathering tests were employed to measure and determine the UV-resistant ability of OW and GW. After about six hundred hours of experiments, the surface color change of GW was much less than that of OW; besides, the Fourier transform infrared spectroscopy (FTIR) analysis also proved the less significant changes in surface chemical compositions of GW. The results both indicated that the graphene coating effectively protected wood surface from UV damage. Therefore, this class of GW composite might be expected to be served as high-performance wooden building material for outdoor or some particular harsh environments like strong UV radiation regions use

  6. Surface enhanced Raman scattering

    CERN Document Server

    Furtak, Thomas

    1982-01-01

    In the course of the development of surface science, advances have been identified with the introduction of new diagnostic probes for analytical characterization of the adsorbates and microscopic structure of surfaces and interfaces. Among the most recently de­ veloped techniques, and one around which a storm of controversy has developed, is what has now been earmarked as surface enhanced Raman scattering (SERS). Within this phenomenon, molecules adsorbed onto metal surfaces under certain conditions exhibit an anomalously large interaction cross section for the Raman effect. This makes it possible to observe the detailed vibrational signature of the adsorbate in the ambient phase with an energy resolution much higher than that which is presently available in electron energy loss spectroscopy and when the surface is in contact with a much larger amount of material than that which can be tolerated in infrared absorption experiments. The ability to perform vibrational spectroscopy under these conditions would l...

  7. In situ surface roughness measurement using a laser scattering method

    Science.gov (United States)

    Tay, C. J.; Wang, S. H.; Quan, C.; Shang, H. M.

    2003-03-01

    In this paper, the design and development of an optical probe for in situ measurement of surface roughness are discussed. Based on this light scattering principle, the probe which consists of a laser diode, measuring lens and a linear photodiode array, is designed to capture the scattered light from a test surface with a relatively large scattering angle ϕ (=28°). This capability increases the measuring range and enhances repeatability of the results. The coaxial arrangement that incorporates a dual-laser beam and a constant compressed air stream renders the proposed system insensitive to movement or vibration of the test surface as well as surface conditions. Tests were conducted on workpieces which were mounted on a turning machine that operates with different cutting speeds. Test specimens which underwent different machining processes and of different surface finish were also studied. The results obtained demonstrate the feasibility of surface roughness measurement using the proposed method.

  8. In situ controllable synthesis of novel surface plasmon resonance-enhanced Ag{sub 2}WO{sub 4}/Ag/Bi{sub 2}MoO{sub 6} composite for enhanced and stable visible light photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Jiali [College of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000 (China); Dai, Kai, E-mail: daikai940@chnu.edu.cn [College of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000 (China); Zhang, Jinfeng [College of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000 (China); Lu, Luhua, E-mail: lhlu@cug.edu.cn [Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074 (China); Liang, Changhao, E-mail: chliang@issp.ac.cn [College of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000 (China); Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 23003 (China); Geng, Lei; Wang, Zhongliao; Yuan, Guangyu; Zhu, Guangping [College of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000 (China)

    2017-01-01

    Highlights: • Novel Ag{sub 2}WO{sub 4}/Ag/Bi{sub 2}MoO{sub 6} ternary photocatalyst was prepared. • Ag{sub 2}WO{sub 4}/Ag/Bi{sub 2}MoO{sub 6} showed enhanced catalytic activity. • Ag{sub 2}WO{sub 4}/Ag/Bi{sub 2}MoO{sub 6} showed long reusable life. - Abstract: A novel hierarchical Ag{sub 2}WO{sub 4}/Ag/Bi{sub 2}MoO{sub 6} ternary visible-light-driven photocatalyst was successfully synthesized by in situ doping Ag{sub 2}WO{sub 4} with Bi{sub 2}MoO{sub 6} nanosheets through a facile hydrothermal and photochemical process. The morphology, structure, optical performance and crystallinity of the products were measured by field emission scanning electron microscope (FESEM), energy dispersive spectrometer (EDS), UV–vis diffuse reflectance spectroscopy (DRS) and X-ray diffraction (XRD). The results showed that Ag{sub 2}WO{sub 4}/Ag was uniformly dispersed on the surface of Bi{sub 2}MoO{sub 6} nanosheets. The photocatalytic performance of Ag{sub 2}WO{sub 4}/Ag/Bi{sub 2}MoO{sub 6} heterostructures was evaluated by the degradation of methylene blue (MB) under 410 nm LED arrays. The ternary Ag{sub 2}WO{sub 4}/Ag/Bi{sub 2}MoO{sub 6} nanocomposite exhibits higher photocatalytic activity than Bi{sub 2}MoO{sub 6} and Ag{sub 2}WO{sub 4}. The synergistic effect of Ag{sub 2}WO{sub 4} and Bi{sub 2}MoO{sub 6} could generated more heterojunctions which promoted photoelectrons transfer from Ag{sub 2}WO{sub 4} to Bi{sub 2}MoO{sub 6}, leading to the improvement of photocatalytic performance by photoelectrons-holes recombination suppression. At the same time, the surface plasmon resonance of Ag{sub 2}WO{sub 4}/Ag/Bi{sub 2}MoO{sub 6} is another crucial reason for the high photocatalytic performance of organic pollutants degradation. And the 20 wt% Ag{sub 2}WO{sub 4}-loaded Bi{sub 2}MoO{sub 6} shows the optimal photocatalytic performance in the degradation of MB. In addition, the ternary composites can be easily reclaimed by precipitation and exhibits high stability of photocatalytic

  9. Enhancing in situ bioremediation with pneumatic fracturing

    International Nuclear Information System (INIS)

    Anderson, D.B.; Peyton, B.M.; Liskowitz, J.L.; Fitzgerald, C.; Schuring, J.R.

    1994-04-01

    A major technical obstacle affecting the application of in situ bioremediation is the effective distribution of nutrients to the subsurface media. Pneumatic fracturing can increase the permeability of subsurface formations through the injection of high pressure air to create horizontal fracture planes, thus enhancing macro-scale mass-transfer processes. Pneumatic fracturing technology was demonstrated at two field sites at Tinker Air Force Base, Oklahoma City, Oklahoma. Tests were performed to increase the permeability for more effective bioventing, and evaluated the potential to increase permeability and recovery of free product in low permeability soils consisting of fine grain silts, clays, and sedimentary rock. Pneumatic fracturing significantly improved formation permeability by enhancing secondary permeability and by promoting removal of excess soil moisture from the unsaturated zone. Postfracture airflows were 500% to 1,700% higher than prefracture airflows for specific fractured intervals in the formation. This corresponds to an average prefracturing permeability of 0.017 Darcy, increasing to an average of 0.32 Darcy after fracturing. Pneumatic fracturing also increased free-product recovery rates of number 2 fuel from an average of 587 L (155 gal) per month before fracturing to 1,647 L (435 gal) per month after fracturing

  10. Surface enhanced thermo lithography

    KAUST Repository

    Coluccio, Maria Laura

    2017-01-13

    We used electroless deposition to fabricate clusters of silver nanoparticles (NPs) on a silicon substrate. These clusters are plasmonics devices that induce giant electromagnetic (EM) field increments. When those EM field are absorbed by the metal NPs clusters generate, in turn, severe temperature increases. Here, we used the laser radiation of a conventional Raman set-up to transfer geometrical patterns from a template of metal NPs clusters into a layer of thermo sensitive Polyphthalaldehyde (PPA) polymer. Temperature profile on the devices depends on specific arrangements of silver nanoparticles. In plane temperature variations may be controlled with (i) high nano-meter spatial precision and (ii) single Kelvin temperature resolution on varying the shape, size and spacing of metal nanostructures. This scheme can be used to generate strongly localized heat amplifications for applications in nanotechnology, surface enhanced thermo-lithography (SETL), biology and medicine (for space resolved cell ablation and treatment), nano-chemistry.

  11. Surface enhanced thermo lithography

    KAUST Repository

    Coluccio, Maria Laura; Alabastri, Alessandro; Bonanni, Simon; Majewska, Roksana; Dattoli, Elisabetta; Barberio, Marianna; Candeloro, Patrizio; Perozziello, Gerardo; Mollace, Vincenzo; Di Fabrizio, Enzo M.; Gentile, Francesco

    2017-01-01

    We used electroless deposition to fabricate clusters of silver nanoparticles (NPs) on a silicon substrate. These clusters are plasmonics devices that induce giant electromagnetic (EM) field increments. When those EM field are absorbed by the metal NPs clusters generate, in turn, severe temperature increases. Here, we used the laser radiation of a conventional Raman set-up to transfer geometrical patterns from a template of metal NPs clusters into a layer of thermo sensitive Polyphthalaldehyde (PPA) polymer. Temperature profile on the devices depends on specific arrangements of silver nanoparticles. In plane temperature variations may be controlled with (i) high nano-meter spatial precision and (ii) single Kelvin temperature resolution on varying the shape, size and spacing of metal nanostructures. This scheme can be used to generate strongly localized heat amplifications for applications in nanotechnology, surface enhanced thermo-lithography (SETL), biology and medicine (for space resolved cell ablation and treatment), nano-chemistry.

  12. Natural Deposition Strategy for Interfacial, Self-Assembled, Large-Scale, Densely Packed, Monolayer Film with Ligand-Exchanged Gold Nanorods for In Situ Surface-Enhanced Raman Scattering Drug Detection.

    Science.gov (United States)

    Mao, Mei; Zhou, Binbin; Tang, Xianghu; Chen, Cheng; Ge, Meihong; Li, Pan; Huang, Xingjiu; Yang, Liangbao; Liu, Jinhuai

    2018-03-15

    Liquid interfacial self-assembly of metal nanoparticles holds great promise for its various applications, such as in tunable optical devices, plasmonics, sensors, and catalysis. However, the construction of large-area, ordered, anisotropic, nanoparticle monolayers and the acquisition of self-assembled interface films are still significant challenges. Herein, a rapid, validated method to fabricate large-scale, close-packed nanomaterials at the cyclohexane/water interface, in which hydrophilic cetyltrimethylammonium bromide coated nanoparticles and gold nanorods (AuNRs) self-assemble into densely packed 2D arrays by regulating the surface ligand and suitable inducer, is reported. Decorating AuNRs with polyvinylpyrrolidone not only extensively decreases the charge of AuNRs, but also diminishes repulsive forces. More importantly, a general, facile, novel technique to transfer an interfacial monolayer through a designed in situ reaction cell linked to a microfluidic chip is revealed. The self-assembled nanofilm can then automatically settle on the substrate and be directly detected in the reaction cell in situ by means of a portable Raman spectrometer. Moreover, a close-packed monolayer of self-assembled AuNRs provides massive, efficient hotspots to create great surface-enhanced Raman scattering (SERS) enhancement, which provides high sensitivity and reproducibility as the SERS-active substrate. Furthermore, this strategy was exploited to detect drug molecules in human urine for cyclohexane-extracted targets acting as the oil phase to form an oil/water interface. A portable Raman spectrometer was employed to detect methamphetamine down to 100 ppb levels in human urine, exhibiting excellent practicability. As a universal platform, handy tool, and fast pretreatment method with a good capability for drug detection in biological systems, this technique shows great promise for rapid, credible, and on-spot drug detection. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. In situ biodenitrification of nitrate surface water

    International Nuclear Information System (INIS)

    Schmidt, G.C.; Ballew, M.B.

    1995-01-01

    The US Department of Energy's Weldon Spring Site Remedial Action Project has successfully operated a full-scale in situ biodenitrification system to treat water with elevated nitrate levels in abandoned raffinate pits. Bench- and pilot-scale studies were conducted to evaluate the feasibility of the process and to support its full-scale design and application. Bench testing evaluated variables that would influence development of an active denitrifying biological culture. The variables were carbon source, phosphate source, presence and absence of raffinate sludge, addition of a commercially available denitrifying microbial culture, and the use of a microbial growth medium. Nitrate levels were reduced from 750 mg/L NO 3 -N to below 10 mg/L NO 3 -N within 17 days. Pilot testing simulated the full-scale process to determine if nitrate levels could be reduced to less than 10 mg/L NO 3 -N when high levels are present below the sludge surface. Four separate test systems were examined along with two control systems. Nitrates were reduced from 1,200 mg/L NO 3 -N to below 2 mg/L NO 3 -N within 21 days. Full-scale operation has been initiated to denitrify 900,000-gal batches alternating between two 1-acre ponds. The process used commercially available calcium acetate solution and monosodium/disodium phosphate solution as a nutrient source for indigenous microorganisms to convert nitrates to molecular nitrogen and water

  14. Enhanced ex-situ bioremediation of soil contaminated with ...

    African Journals Online (AJOL)

    contaminated soil. Thus, the objective of this study was to investigate the feasibility and effectiveness of using electrical biostimulation processes to enhance ex-situ bioremediation of soils contaminated with organic pollutants. The effect of ...

  15. In situ hydrogenation of molybdenum oxide nanowires for enhanced supercapacitors

    KAUST Repository

    Shakir, Imran

    2014-01-01

    In situ hydrogenation of orthorhombic molybdenum trioxide (α-MoO 3) nanowires has been achieved on a large scale by introducing alcohol during the hydrothermal synthesis for electrochemical energy storage supercapacitor devices. The hydrogenated molybdenum trioxide (H xMoO3) nanowires yield a specific capacitance of 168 F g-1 at 0.5 A g-1 and maintain 108 F g-1 at 10 A g-1, which is 36-fold higher than the capacitance obtained from pristine MoO3 nanowires at the same conditions. The electrochemical devices made with HxMoO3 nanowires exhibit excellent cycling stability by retaining 97% of their capacitance after 3000 cycles due to an enhanced electronic conductivity and increased density of hydroxyl groups on the surface of the MoO3 nanowires. This journal is © The Royal Society of Chemistry.

  16. Nanodiamond-enhanced MRI via in situ hyperpolarization

    Science.gov (United States)

    Waddington, David E. J.; Sarracanie, Mathieu; Zhang, Huiliang; Salameh, Najat; Glenn, David R.; Rej, Ewa; Gaebel, Torsten; Boele, Thomas; Walsworth, Ronald L.; Reilly, David J.; Rosen, Matthew S.

    2017-04-01

    Nanodiamonds are of interest as nontoxic substrates for targeted drug delivery and as highly biostable fluorescent markers for cellular tracking. Beyond optical techniques, however, options for noninvasive imaging of nanodiamonds in vivo are severely limited. Here, we demonstrate that the Overhauser effect, a proton-electron polarization transfer technique, can enable high-contrast magnetic resonance imaging (MRI) of nanodiamonds in water at room temperature and ultra-low magnetic field. The technique transfers spin polarization from paramagnetic impurities at nanodiamond surfaces to 1H spins in the surrounding water solution, creating MRI contrast on-demand. We examine the conditions required for maximum enhancement as well as the ultimate sensitivity of the technique. The ability to perform continuous in situ hyperpolarization via the Overhauser mechanism, in combination with the excellent in vivo stability of nanodiamond, raises the possibility of performing noninvasive in vivo tracking of nanodiamond over indefinitely long periods of time.

  17. Enhanced photochemistry on metal surfaces

    International Nuclear Information System (INIS)

    Goncher, G.M.; Parsons, C.A.; Harris, C.B.

    1984-01-01

    Due to the fast relaxation of molecular excited states in the vicinity of a metal or semiconductor surface, few observations of surface photochemistry have been reported. The following work concerns the surface-enhanced photo-reactions of a variety of physisorbed molecules on roughened Ag surfaces. In summary, photodecomposition leads to a graphitic surface carbon product which is monitored via surface-enhanced Raman scattering. In most cases an initial two-photon molecular absorption step followed by further absorption and fragmentation is thought to occur. Enhancement of the incident fields occurs through roughness-mediated surface plasmon resonances. This mechanism provides the amplified electromagnetic surface fields responsible for the observed photodecomposition. The photodecomposition experiments are performed under ultra-high vacuum. Surface characterization of the roughened surfaces was done by Scanning Electron Microscopy (SEM), and electron-stimulated emission. The SEM revealed morphology on the order of 300-400 A. This size of roughness feature, when modelled as isolated spheres should exhibit the well-known Mie resonances for light of the correct wavelengths. For protrusions existing on a surface these Mie resonances can be thought of as a coupling of the light with the surface plasmon. Experimental verification of these resonances was provided by the electron-stimulated light emission results. These showed that a polished Ag surface emitted only the expected transition radiation at the frequency of the Ag bulk plasmon. Upon roughening, however, a broad range of lower frequencies extending well into the visible are seen from electron irradiation of the surface. Large enhancements are expected for those frequencies which are able to couple into the surface modes

  18. Surface-Enhanced Raman Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 2. Surface-Enhanced Raman Spectroscopy - Recent Advancement of Raman Spectroscopy. Ujjal Kumar Sur. General Article Volume 15 Issue 2 February 2010 pp 154-164 ...

  19. Anisotropic In Situ-Coated AuNPs on Screen-Printed Carbon Surface for Enhanced Prostate-Specific Antigen Impedimetric Aptasensor

    Science.gov (United States)

    Do, Tram T. N.; Van Phi, Toan; Nguy, Tin Phan; Wagner, Patrick; Eersels, Kasper; Vestergaard, Mun'delanji C.; Truong, Lien T. N.

    2017-06-01

    An impedimetric aptasensor has been used to study the effect of charge transfer on the binding of prostate-specific antigen (PSA) to its aptamer. Full understanding of this mechanism will be beneficial to further improve its sensitivity for PSA detection in human semen at physiologically relevant concentrations. Bare gold electrodes (SPAuEs) and gold nanoparticles (AuNPs)-coated screen-printed carbon ink electrodes (AuNPs/SPCEs) were coated with aptamer solution at various concentrations and the sensor response to increasing PSA concentration in buffer solution examined. AuNPs were deposited onto carbon electrodes in 10 cycles. AuNPs/SPCEs were then coated with a self-assembled monolayer (SAM) of 16-mercaptohexadecanoic acid prior to aptamer immobilization at dose of 5 μg mL-1. The results indicate that anisotropic AuNPs/SPCEs outperform bare gold electrodes in terms of decreased amount of aptamer bunches as well as the number of intermediate PSA-aptamer complexes formed on the electrode surface. The key finding is that the fabricated aptasensor is sensitive enough [limit of detection (LoD) 1.95 ng mL-1] for early diagnosis of prostate cancer and displays linear response in the physiologically relevant concentration range (0 ng mL-1 to 10 ng mL-1), as shown by the calibration curve of the relative change in electron transfer resistance (Δ R CT) versus PSA concentration when aptamer/SAM/AuNPs/SPCEs were exposed to buffer containing PSA at different concentrations.

  20. In-situ surface hardening of cast iron by surface layer metallurgy

    International Nuclear Information System (INIS)

    Fischer, Sebastian F.; Muschna, Stefan; Bührig-Polaczek, Andreas; Bünck, Matthias

    2014-01-01

    Abrasive wear is a serious problem in many cast iron castings used in industry. To minimize failure and repair of these components, different strategies exist to improve their surface microhardness thus enhancing their wear resistance. However, most of these methods lead to very brittle and/or expensive castings. In the current work a new method for surface hardening is presented which utilizes surface layer metallurgy to generate in-situ a boron-enriched white cast iron surface layer with a high microhardness on a gray cast iron casting. To do this, sand molds are coated with a ferroboron suspension and cast with a cast iron melt. After solidification, a 100–900 µm thick layer of boron-enriched ledeburite is formed on the surface of the casting which produces an increase in the average microhardness from 284 HV 0.1 ±52 HV 0.1 to 505 HV 0.1 ±87 HV 0.1 . Analyses of the samples' core reveal a typical cast iron microstructure which leads to the conclusion that the coating mainly affects the castings' surface. By varying the grain size of the ferroboron powder in the coatings, it is shown that a powder size ≤100 µm is most suitable to create a boron-enriched ledeburite surface layer possessing high hardness values

  1. Contrast enhanced MRI findings of ductal carcinoma in situ

    International Nuclear Information System (INIS)

    Kang, Bong Joo; Cha, Eun Suk; Kim, Hyeon Sook; Suh, Young Jin; Choi, Hyun Joo

    2006-01-01

    The purpose of this study is to describe characteristic contrast enhanced MR mammographic findings of ductal carcinoma in situ (DCIS) and also DCIS with microinvasion. From January 2000 to July 2005, 32 women with 33 lesions affected by DCIS or DCIS with microinvasion underwent contrast enhanced MRI, and they were then retrospectively evaluated. All the patients had previously undergone mammography and ultrasonography. All the findings of mammography, ultrasonography (US), and MRI were analyzed by using an ACR BI-RADS lexicon. All 33 cases were enhanced on the enhanced MR images. A smooth margined homogeneous enhanced mass was seen in the two (2/33) cases, and nonmass enhancement was seen in 31 (31/33) cases. Among the non-mass enhancement, focal enhancement (7/31), ductal enhancement (5/31), segmental enhancement (9/31), and regional enhancement (10/31) were observed. On the kinetic study, a wash-out pattern (10/33), a plateau pattern (20/33), and a persistent pattern (3/33) were demonstrated. No significant differences were noted between the pure and microinvasive DCIS. There is no significant difference between pure and microinvasive DCIS. However, contrast enhanced MR images can demonstrate occult foci, multifocal lesion and the tumor extent of DCIS on mammogram or ultrasonogram

  2. Pumice stones as potential in-situ burning enhancer

    DEFF Research Database (Denmark)

    Rojas Alva, U.; Andersen, Bjørn Skjønning; Jomaas, Grunde

    2018-01-01

    Small-scale and mid-scale experiments were conducted in order to evaluate pumice stones as a potential enhancement for in-situ burning (ISB). Four oil types, several emulsification degrees of one crude oil were studied. In general, it was observed that the pumice stones did not improve the burning...... and after the burn, thus bringing the oil into the water column. Finally, the species production of CO and CO2 was not reduced. Based on the presented results, pumice stones have a negative impact on the efficiency of ISB, and they are ruled out as an ISB enhancer and should not be used in relation to ISB....

  3. Complementary surface charge for enhanced capacitive deionization

    NARCIS (Netherlands)

    Gao, X.; Porada, S.; Omosebi, A.; Liu, K.L.; Biesheuvel, P.M.; Landon, J.

    2016-01-01

    Commercially available activated carbon cloth electrodes are treated using nitric acid and ethylenediamine solutions, resulting in chemical surface charge enhanced carbon electrodes for capacitive deionization (CDI) applications. Surface charge enhanced electrodes are then configured in a CDI

  4. Synthesis in situ of gold nanoparticles by a dialkynyl Fischer carbene complex anchored to glass surfaces

    International Nuclear Information System (INIS)

    Bertolino, María Candelaria; Granados, Alejandro Manuel

    2016-01-01

    Highlights: • Fischer carbene 1-W reacts via cycloaddition without Cu(I) with azide terminal surface. • This reaction on the surface is regioselective to internal triple bond of 1-W. • 1-W bound to glass surface produce AuNps in situ fixed to the surface. • This ability is independent of how 1-W is bonded to the surface. • This hybrid surface can be valuable as SERS substrate or in heterogeneous catalysis. - Abstract: In this work we present a detailed study of classic reactions such as “click reaction” and nucleophilic substitution reaction but on glass solid surface (slides). We used different reactive center of a dialkynylalcoxy Fischer carbene complex of tungsten(0) to be anchored to modified glass surface with amine, to obtain aminocarbene, and azide terminal groups. These cycloaddition reaction showed regioselectivity to internal triple bond of dialkynyl Fischer carbene complex without Cu(I) as catalyst. Anyway the carbene anchored was able to act as a reducing agent to produce in situ very stable gold nanoparticles fixed on surface. We showed the characterization of modified glasses by contact angle measurements and XPS. Synthesized nanoparticles were characterized by SEM, XPS, EDS and UV–vis. The modified glasses showed an important enhancement Raman-SERS. This simple, fast and robust method to create a polifunctional and hybrid surfaces can be valuable in a wide range of applications such as Raman-SERS substrates and other optical fields.

  5. Synthesis in situ of gold nanoparticles by a dialkynyl Fischer carbene complex anchored to glass surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bertolino, María Candelaria, E-mail: cbertolino@fcq.unc.edu.ar; Granados, Alejandro Manuel, E-mail: ale@fcq.unc.edu.ar

    2016-10-15

    Highlights: • Fischer carbene 1-W reacts via cycloaddition without Cu(I) with azide terminal surface. • This reaction on the surface is regioselective to internal triple bond of 1-W. • 1-W bound to glass surface produce AuNps in situ fixed to the surface. • This ability is independent of how 1-W is bonded to the surface. • This hybrid surface can be valuable as SERS substrate or in heterogeneous catalysis. - Abstract: In this work we present a detailed study of classic reactions such as “click reaction” and nucleophilic substitution reaction but on glass solid surface (slides). We used different reactive center of a dialkynylalcoxy Fischer carbene complex of tungsten(0) to be anchored to modified glass surface with amine, to obtain aminocarbene, and azide terminal groups. These cycloaddition reaction showed regioselectivity to internal triple bond of dialkynyl Fischer carbene complex without Cu(I) as catalyst. Anyway the carbene anchored was able to act as a reducing agent to produce in situ very stable gold nanoparticles fixed on surface. We showed the characterization of modified glasses by contact angle measurements and XPS. Synthesized nanoparticles were characterized by SEM, XPS, EDS and UV–vis. The modified glasses showed an important enhancement Raman-SERS. This simple, fast and robust method to create a polifunctional and hybrid surfaces can be valuable in a wide range of applications such as Raman-SERS substrates and other optical fields.

  6. In situ ellipsometric study of surface immobilization of flagellar filaments

    Energy Technology Data Exchange (ETDEWEB)

    Kurunczi, S., E-mail: kurunczi@mfa.kfki.hu [Department of Photonics, Research Institute for Technical Physics and Materials Science, H-1121, Konkoly Thege Miklos ut 29-33, Budapest (Hungary); Nemeth, A.; Huelber, T. [Department of Photonics, Research Institute for Technical Physics and Materials Science, H-1121, Konkoly Thege Miklos ut 29-33, Budapest (Hungary); Kozma, P. [Department of Photonics, Research Institute for Technical Physics and Materials Science, H-1121, Konkoly Thege Miklos ut 29-33, Budapest (Hungary); Department of Nanotechnology, Research Institute of Chemical and Process Engineering, Faculty of Information Technology, University of Pannonia, Egyetem u. 10, Veszprem, H-8200 (Hungary); Petrik, P. [Department of Photonics, Research Institute for Technical Physics and Materials Science, H-1121, Konkoly Thege Miklos ut 29-33, Budapest (Hungary); Jankovics, H. [Department of Nanotechnology, Research Institute of Chemical and Process Engineering, Faculty of Information Technology, University of Pannonia, Egyetem u. 10, Veszprem, H-8200 (Hungary); Sebestyen, A. [Department of Photonics, Research Institute for Technical Physics and Materials Science, H-1121, Konkoly Thege Miklos ut 29-33, Budapest (Hungary); Department of Nanotechnology, Research Institute of Chemical and Process Engineering, Faculty of Information Technology, University of Pannonia, Egyetem u. 10, Veszprem, H-8200 (Hungary); Vonderviszt, F. [Department of Photonics, Research Institute for Technical Physics and Materials Science, H-1121, Konkoly Thege Miklos ut 29-33, Budapest (Hungary); Department of Nanotechnology, Research Institute of Chemical and Process Engineering, Faculty of Information Technology, University of Pannonia, Egyetem u. 10, Veszprem, H-8200 (Hungary); Institute of Enzymology, Karolina ut 29-33, Budapest, H-1113 (Hungary); and others

    2010-10-15

    Protein filaments composed of thousands of subunits are promising candidates as sensing elements in biosensors. In this work in situ spectroscopic ellipsometry is applied to monitor the surface immobilization of flagellar filaments. This study is the first step towards the development of layers of filamentous receptors for sensor applications. Surface activation is performed using silanization and a subsequent glutaraldehyde crosslinking. Structure of the flagellar filament layers immobilized on activated and non-activated Si wafer substrates is determined using a two-layer effective medium model that accounted for the vertical density distribution of flagellar filaments with lengths of 300-1500 nm bound to the surface. The formation of the first interface layer can be explained by the multipoint covalent attachment of the filaments, while the second layer is mainly composed of tail pinned filaments floating upwards with the free parts. As confirmed by atomic force microscopy, covalent immobilization resulted in an increased surface density compared to absorption.

  7. Enhancement of in situ Remediation of Hydrocarbon Contaminated Soil

    Energy Technology Data Exchange (ETDEWEB)

    Palmroth, M.

    2006-07-01

    Approximately 750 000 sites of contaminated land exist across Europe. The harmful chemicals found in Finnish soils include heavy metals, oil products, polyaromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), chlorophenols, and pesticides. Petroleum and petroleum products enter soil from ruptured oil pipelines, land disposal of refinery products, leaking storage tanks and through accidents. PAH contamination is caused by the spills of coal tar and creosote from coal gasification and wood treatment sites in addition to oil spills. Cleanup of soil by bioremediation is cheaper than by chemical and physical processes. However, the cleaning capacity of natural attenuation and in situ bioremediation is limited. The purpose of this thesis was to find feasible options to enhance in situ remediation of hydrocarbon contaminants. The aims were to increase the bioavailability of the contaminants and microbial activity at the subsurface in order to achieve higher contaminant removal efficiency than by intrinsic biodegradation alone. Enhancement of microbial activity and decrease of soil toxicity during remediation were estimated by using several biological assays. The performance of these assays was compared in order to find suitable indicators to follow the progress of remediation. Phytoremediation and chemical oxidation are promising in situ techniques to increase the degradation of hydrocarbons in soil. Phytoremediation is plant-enhanced decontamination of soil and water. Degradation of hydrocarbons is enhanced in the root zone by increased microbial activity and through the detoxifying enzymes of plants themselves. Chemical oxidation of contaminants by Fenton's reaction can produce degradation products which are more biodegradable than the parent compounds. Fenton's reaction and its modifications apply solutions of hydrogen peroxide and iron for the oxidation of organic chemicals. The cost of oxidation can be reduced by aiming at partial instead of full

  8. Surface-Enhanced Raman Spectroscopy

    Indian Academy of Sciences (India)

    IAS Admin

    weak Raman signal, which facilitates identification in chemi- cal and biological systems. Recently, single-molecule Raman scattering has enhanced the detection sensitivity limit of ... was working on the molecular diffraction of light, which ulti-.

  9. Chiral surface waves for enhanced circular dichroism

    Science.gov (United States)

    Pellegrini, Giovanni; Finazzi, Marco; Celebrano, Michele; Duò, Lamberto; Biagioni, Paolo

    2017-06-01

    We present a novel chiral sensing platform that combines a one-dimensional photonic crystal design with a birefringent surface defect. The platform sustains simultaneous transverse electric and transverse magnetic surface modes, which are exploited to generate chiral surface waves. The present design provides homogeneous and superchiral fields of both handednesses over arbitrarily large areas in a wide spectral range, resulting in the enhancement of the circular dichroism signal by more than two orders of magnitude, thus paving the road toward the successful combination of surface-enhanced spectroscopies and electromagnetic superchirality.

  10. Surface-enhanced Raman fiberoptic sensors for remote monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Stokes, D.L.; Alarie, J.P.; Vo-Dinh, T. [Oak Ridge National Lab., TN (United States). Health Sciences Research Div.

    1995-09-01

    A new sensor design for remote surface-enhanced Raman scattering (SERS) measurements has been developed for environmental applications. The design features the modification of an optical fiber using layers of alumina microparticles and silver coatings for inducing the SERS effect at the sensing probe. A single fiber carries both the laser excitation and the SERS signal radiation, keeping optical parameters at the remote tip simple and consistent. The small tip size achievable with this configuration also demonstrates potential of this new design as a microsensor for in-situ measurement in microenvironments. Details of sensor tip fabrication and optical system design are described. SERS spectra of aqueous environmental samples acquired in-situ using the SERS sensor are also presented to illustrate the effectiveness of the SERS sensor.

  11. Microscale surface modifications for heat transfer enhancement.

    Science.gov (United States)

    Bostanci, Huseyin; Singh, Virendra; Kizito, John P; Rini, Daniel P; Seal, Sudipta; Chow, Louis C

    2013-10-09

    In this experimental study, two surface modification techniques were investigated for their effect on heat transfer enhancement. One of the methods employed the particle (grit) blasting to create microscale indentations, while the other used plasma spray coating to create microscale protrusions on Al 6061 (aluminum alloy 6061) samples. The test surfaces were characterized using scanning electron microscopy (SEM) and confocal scanning laser microscopy. Because of the surface modifications, the actual surface area was increased up to 2.8× compared to the projected base area, and the arithmetic mean roughness value (Ra) was determined to vary from 0.3 μm for the reference smooth surface to 19.5 μm for the modified surfaces. Selected samples with modified surfaces along with the reference smooth surface were then evaluated for their heat transfer performance in spray cooling tests. The cooling system had vapor-atomizing nozzles and used anhydrous ammonia as the coolant in order to achieve heat fluxes up to 500 W/cm(2) representing a thermal management setting for high power systems. Experimental results showed that the microscale surface modifications enhanced heat transfer coefficients up to 76% at 500 W/cm(2) compared to the smooth surface and demonstrated the benefits of these practical surface modification techniques to enhance two-phase heat transfer process.

  12. Rapid Nanoprobe Signal Enhancement by In Situ Gold Nanoparticle Synthesis.

    Science.gov (United States)

    Dias, Jorge T; Svedberg, Gustav; Nystrand, Mats; Andersson-Svahn, Helene; Gantelius, Jesper

    2018-03-07

    The use of nanoprobes such as gold, silver, silica or iron-oxide nanoparticles as detection reagents in bioanalytical assays can enable high sensitivity and convenient colorimetric readout. However, high densities of nanoparticles are typically needed for detection. The available synthesis-based enhancement protocols are either limited to gold and silver nanoparticles or rely on precise enzymatic control and optimization. Here, we present a protocol to enhance the colorimetric readout of gold, silver, silica, and iron oxide nanoprobes. It was observed that the colorimetric signal can be improved by up to a 10000-fold factor. The basis for such signal enhancement strategies is the chemical reduction of Au 3+ to Au 0 . There are several chemical reactions that enable the reduction of Au 3+ to Au 0 . In the protocol, Good's buffers and H2O2 are used and it is possible to favor the deposition of Au 0 onto the surface of existing nanoprobes, in detriment of the formation of new gold nanoparticles. The protocol consists of the incubation of the microarray with a solution consisting of chloroauric acid and H2O2 in 2-(N-morpholino)ethanesulfonic acid pH 6 buffer following the nanoprobe-based detection assay. The enhancement solution can be applied to paper and glass-based sensors. Moreover, it can be used in commercially available immunoassays as demonstrated by the application of the method to a commercial allergen microarray. The signal development requires less than 5 min of incubation with the enhancement solution and the readout can be assessed by naked eye or low-end image acquisition devices such as a table-top scanner or a digital camera.

  13. Surface-enhanced Raman spectroscopy: nonlocal limitations

    DEFF Research Database (Denmark)

    Toscano, Giuseppe; Raza, Søren; Xiao, Sanshui

    2012-01-01

    for our understanding of surface-enhanced Raman spectroscopy (SERS). The intrinsic length scale of the electron gas serves to smear out assumed field singularities, leaving the SERS enhancement factor finite, even for geometries with infinitely sharp features. For silver nanogroove structures, mimicked...

  14. Efficiency enhancement of InP nanowire solar cells by surface cleaning

    NARCIS (Netherlands)

    Cui, Y.; Wang, J.; Plissard, S.R.; Cavalli, A.; Vu, T.T.T.; Veldhoven, van P.J.; Gao, L.; Trainor, M.J.; Verheijen, M.A.; Haverkort, J.E.M.; Bakkers, E.P.A.M.

    2013-01-01

    We demonstrate an efficiency enhancement of an InP nanowire (NW) axial p–n junction solar cell by cleaning the NW surface. NW arrays were grown with in situ HCl etching on an InP substrate patterned by nanoimprint lithography, and the NWs surfaces were cleaned after growth by piranha etching. We

  15. In situ enhanced soil mixing. Innovative technology summary report

    International Nuclear Information System (INIS)

    1996-02-01

    In Situ Enhanced Soil Mixing (ISESM) is a treatment technology that has been demonstrated and deployed to remediate soils contaminated with volatile organic compounds (VOCs). The technology has been developed by industry and has been demonstrated with the assistance of the U.S. Department of Energy's Office of Science and Technology and the Office of Environmental Restoration. The technology is particularly suited to shallow applications, above the water table, but can be used at greater depths. ISESM technologies demonstrated for this project include: (1) Soil mixing with vapor extraction combined with ambient air injection. [Contaminated soil is mixed with ambient air to vaporize volatile organic compounds (VOCs). The mixing auger is moved up and down to assist in removal of contaminated vapors. The vapors are collected in a shroud covering the treatment area and run through a treatment unit containing a carbon filter or a catalytic oxidation unit with a wet scrubber system and a high efficiency particulate air (HEPA) filter.] (2) soil mixing with vapor extraction combined with hot air injection [This process is the same as the ambient air injection except that hot air or steam is injected.] (3) soil mixing with hydrogen peroxide injection [Contaminated soil is mixed with ambient air that contains a mist of diluted hydrogen peroxide (H 2 O 2 ) solution. The H 2 O 2 solution chemically oxidizes the VOCs to carbon dioxide (CO 2 ) and water.] (4) soil mixing with grout injection for solidification/stabilization [Contaminated soil is mixed as a cement grout is injected under pressure to solidify and immobilize the contaminated soil in a concrete-like form.] The soils are mixed with a single-blade auger or with a combination of augers ranging in diameter from 3 to 12 feet

  16. Surface enhanced raman spectroscopy on chip

    DEFF Research Database (Denmark)

    Hübner, Jörg; Anhøj, Thomas Aarøe; Zauner, Dan

    2007-01-01

    In this paper we report low resolution surface enhanced Raman spectra (SERS) conducted with a chip based spectrometer. The flat field spectrometer presented here is fabricated in SU-8 on silicon, showing a resolution of around 3 nm and a free spectral range of around 100 nm. The output facet...... is projected onto a CCD element and visualized by a computer. To enhance the otherwise rather weak Raman signal, a nanosurface is prepared and a sample solutions is impregnated on this surface. The surface enhanced Raman signal is picked up using a Raman probe and coupled into the spectrometer via an optical...... fiber. The obtained spectra show that chip based spectrometer together with the SERS active surface can be used as Raman sensor....

  17. In situ Raman spectroscopy studies of bulk and surface metal

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Wachs, I.E.; Jehng, J.M.; Deo, G.; Guliants, V.V.; Benziger, J.B.

    1996-01-01

    Bulk V-P-O and model supported vanadia catalysts were investigated with in situ Raman spectroscopy during n-butane oxidation to maleic anhydride in order to determine the fundamental molecular structure-reactivity/selectivity insights that can be obtained from such experiments. The in situ Raman

  18. Evaluation of MODIS Land Surface Temperature with In Situ Snow Surface Temperature from CREST-SAFE

    Science.gov (United States)

    Perez Diaz, C. L.; Lakhankar, T.; Romanov, P.; Munoz, J.; Khanbilvardi, R.; Yu, Y.

    2016-12-01

    This paper presents the procedure and results of a temperature-based validation approach for the Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature (LST) product provided by the National Aeronautics and Space Administration (NASA) Terra and Aqua Earth Observing System satellites using in situ LST observations recorded at the Cooperative Remote Sensing Science and Technology Center - Snow Analysis and Field Experiment (CREST-SAFE) during the years of 2013 (January-April) and 2014 (February-April). A total of 314 day and night clear-sky thermal images, acquired by the Terra and Aqua satellites, were processed and compared to ground-truth data from CREST-SAFE with a frequency of one measurement every 3 min. Additionally, this investigation incorporated supplementary analyses using meteorological CREST-SAFE in situ variables (i.e. wind speed, cloud cover, incoming solar radiation) to study their effects on in situ snow surface temperature (T-skin) and T-air. Furthermore, a single pixel (1km2) and several spatially averaged pixels were used for satellite LST validation by increasing the MODIS window size to 5x5, 9x9, and 25x25 windows for comparison. Several trends in the MODIS LST data were observed, including the underestimation of daytime values and nighttime values. Results indicate that, although all the data sets (Terra and Aqua, diurnal and nocturnal) showed high correlation with ground measurements, day values yielded slightly higher accuracy ( 1°C), both suggesting that MODIS LST retrievals are reliable for similar land cover classes and atmospheric conditions. Results from the CREST-SAFE in situ variables' analyses indicate that T-air is commonly higher than T-skin, and that a lack of cloud cover results in: lower T-skin and higher T-air minus T-skin difference (T-diff). Additionally, the study revealed that T-diff is inversely proportional to cloud cover, wind speed, and incoming solar radiation. Increasing the MODIS window size

  19. Surface enhanced Raman scattering (SERS) fabrics for trace analysis

    International Nuclear Information System (INIS)

    Liu, Jun; Zhou, Ji; Tang, Bin; Zeng, Tian; Li, Yaling; Li, Jingliang; Ye, Yong; Wang, Xungai

    2016-01-01

    Highlights: • Gold nanoparticles are in-situ synthesized on silk fabrics by heating. • Flexible silk fabrics with gold nanoparticles are used for surface-enhanced Raman scattering (SERS). • SERS activities of silk fabrics with different gold contents are investigated. - Abstract: Flexible SERS active substrates were prepared by modification of silk fabrics with gold nanoparticles. Gold nanoparticles were in-situ synthesized after heating the silk fabrics immersed in gold ion solution. Localized surface plasmon resonance (LSPR) properties of the treated silk fabrics varied as the concentration of gold ions changed, in relation to the morphologies of gold nanoparticles on silk. In addition, X-ray diffraction (XRD) was used to observe the structure of the gold nanoparticle treated silk fabrics. The SERS enhancement effect of the silk fabrics treated with gold nanoparticles was evaluated by collecting Raman signals of different concentrations of p-aminothiophenol (PATP), 4-mercaptopyridine (4-MPy) and crystal violet (CV) solutions. The results demonstrate that the silk fabrics corresponding to 0.3 and 0.4 mM of gold ions possess high SERS activity compared to the other treated fabrics. It is suggested that both the gold content and morphologies of gold nanoparticles dominate the SERS effect of the treated silk fabrics.

  20. Surface enhanced Raman scattering (SERS) fabrics for trace analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jun [National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Wuhan Textile University, Wuhan 430073 (China); Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education & College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062 (China); Zhou, Ji [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education & College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062 (China); Tang, Bin, E-mail: bin.tang@deakin.edu.au [National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Wuhan Textile University, Wuhan 430073 (China); Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216 (Australia); Zeng, Tian; Li, Yaling [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education & College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062 (China); Li, Jingliang [Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216 (Australia); Ye, Yong, E-mail: yeyong@hubu.edu.cn [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education & College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062 (China); Wang, Xungai [National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Wuhan Textile University, Wuhan 430073 (China); Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216 (Australia)

    2016-11-15

    Highlights: • Gold nanoparticles are in-situ synthesized on silk fabrics by heating. • Flexible silk fabrics with gold nanoparticles are used for surface-enhanced Raman scattering (SERS). • SERS activities of silk fabrics with different gold contents are investigated. - Abstract: Flexible SERS active substrates were prepared by modification of silk fabrics with gold nanoparticles. Gold nanoparticles were in-situ synthesized after heating the silk fabrics immersed in gold ion solution. Localized surface plasmon resonance (LSPR) properties of the treated silk fabrics varied as the concentration of gold ions changed, in relation to the morphologies of gold nanoparticles on silk. In addition, X-ray diffraction (XRD) was used to observe the structure of the gold nanoparticle treated silk fabrics. The SERS enhancement effect of the silk fabrics treated with gold nanoparticles was evaluated by collecting Raman signals of different concentrations of p-aminothiophenol (PATP), 4-mercaptopyridine (4-MPy) and crystal violet (CV) solutions. The results demonstrate that the silk fabrics corresponding to 0.3 and 0.4 mM of gold ions possess high SERS activity compared to the other treated fabrics. It is suggested that both the gold content and morphologies of gold nanoparticles dominate the SERS effect of the treated silk fabrics.

  1. IN SITU STEAM ENHANCED RECOVERY PROCESS - HUGHES ENVIRONMENTAL SYSTEMS, INC. - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    This Innovative Technology Evaluation report summarizes the findings of an evaluation of the in situ Steam Enhanced Recovery Process (SERP) operated by Hughes Environmental Systems, Inc. at the Rainbow Disposal facility in Huntington Beach, California. he technology demonstration...

  2. Technical and Regulatory Requirements for Enhanced In Situ Bioremediation of Chlorinated Solvents in Groundwater

    National Research Council Canada - National Science Library

    1998-01-01

    Enhanced in situ bioremediation (EISB) of chlorinated solvents in groundwater involves the input of an organic carbon source, nutrients, electron acceptors, and/or microbial cultures to stimulate degradation...

  3. Surface-enhanced chiroptical spectroscopy with superchiral surface waves.

    Science.gov (United States)

    Pellegrini, Giovanni; Finazzi, Marco; Celebrano, Michele; Duò, Lamberto; Biagioni, Paolo

    2018-07-01

    We study the chiroptical properties of one-dimensional photonic crystals supporting superchiral surface waves by introducing a simple formalism based on the Fresnel reflection matrix. We show that the proposed framework provides useful insights on the behavior of all the relevant chiroptical quantities, allowing for a deeper understanding of surface-enhanced chiral sensing platforms based on one-dimensional photonic crystals. Finally, we analyze and discuss the limitations of such platforms as the surface concentration of the target chiral analytes is gradually increased. © 2018 Wiley Periodicals, Inc.

  4. In-Situ Imaging and Quantification of Tritium Surface Contamination via Coherent Fiber Bundle

    International Nuclear Information System (INIS)

    Gentile, Charles A.; Parker, John J.; Zweben, Stewart J.

    2001-01-01

    Princeton Plasma Physics Laboratory (PPPL) has developed a method of imaging tritium on in-situ surfaces for the purpose of real-time data collection. This method expands upon a previous tritium imaging concept, also developed at PPPL. Enhancements include an objective lens coupled to the entry aperture of a coherent fiber optic (CFO) bundle, and a relay lens connecting the exit aperture of the fiber bundle to an intensifier tube and a charge-coupled device (CCD) camera. The system has been specifically fabricated for use in determining tritium concentrations on first wall materials. One potential complication associated with the development of D-T [deuterium-tritium] fueled fusion reactors is the deposition of tritium (i.e., co-deposited layer) on the surface of the primary wall of the vacuum vessel. It would be advantageous to implement a process to accurately determine tritium distribution on these inner surfaces. This fiber optic imaging device provides a highly practical method for determining the location, concentration, and activity of surface tritium deposition. In addition, it can be employed for detection of tritium ''hot-spots'' and ''hide-out'' regions present on the surfaces being imaged

  5. In situ microbial systems for the enhancement of oil recovery

    International Nuclear Information System (INIS)

    Moses, V.

    1991-01-01

    Microbial Enhancement of Oil Recovery (MEOR) offers important new opportunities in the quest for increased oil production. It refers not to a single technique but rather to a collection of methodologies, analogous to parallel non-microbiological methods. MEOR has relevance for many type of production and reservoir problems detailed protocols: may be tailored specifically to a range of individual reservoir conditions. Microorganisms downhole can generate a wide variety of chemical products from inexpensive feed stocks: where these are more cost-effective than oil field chemicals injected from the surface, microbial methods may win widespread acceptance. MEOR methods must be defined precisely; in any particular reservoir procedure their proposed mechanism of action must be clearly understood and criteria established for evaluating their success. The most important applications for MEOR are 1) the production f insoluble or highly viscous polymer to control coning or to plug selectively high permeability thief zones and fractures, 2) the continuous generation of the active agents for polymer-and/or surfactant floods, 3) matrix acidisation and acid fracturing in carbonate rocks stimulate flows into production wells. All these approaches are currently actively been explored; several programmes for field-testing microbial EOR methods already exist, or are being readied, and rapid progress is likely within the next few years. (author)

  6. Ultrafast surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Keller, Emily L; Brandt, Nathaniel C; Cassabaum, Alyssa A; Frontiera, Renee R

    2015-08-07

    Ultrafast surface-enhanced Raman spectroscopy (SERS) with pico- and femtosecond time resolution has the ability to elucidate the mechanisms by which plasmons mediate chemical reactions. Here we review three important technological advances in these new methodologies, and discuss their prospects for applications in areas including plasmon-induced chemistry and sensing at very low limits of detection. Surface enhancement, arising from plasmonic materials, has been successfully incorporated with stimulated Raman techniques such as femtosecond stimulated Raman spectroscopy (FSRS) and coherent anti-Stokes Raman spectroscopy (CARS). These techniques are capable of time-resolved measurement on the femtosecond and picosecond time scale and can be used to follow the dynamics of molecules reacting near plasmonic surfaces. We discuss the potential application of ultrafast SERS techniques to probe plasmon-mediated processes, such as H2 dissociation and solar steam production. Additionally, we discuss the possibilities for high sensitivity SERS sensing using these stimulated Raman spectroscopies.

  7. Polystyrene/magnesium hydroxide nanocomposite particles prepared by surface-initiated in-situ polymerization

    International Nuclear Information System (INIS)

    Liu Hui; Yi Jianhong

    2009-01-01

    In order to avoid their agglomeration and incompatibility with hydrophobic polystyrene substrate, magnesium hydroxide nanoparticles were encapsulated by surface-initiated in-situ polymerization of styrene. The process contained two steps: electrostatic adsorption of initiator and polymerization of monomer on the surface of magnesium hydroxide. It was found that high adsorption ratio in the electrostatic adsorption of initiator could be attained only in acidic region, and the adsorption belonged to typical physical process. Compared to traditional in-situ polymerization, higher grafting ratio was obtained in surface-initiated in-situ polymerization, which can be attributed to weaker steric hindrance. Both Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM) indicated that polystyrene/magnesium hydroxide nanocomposite particles had been successfully prepared by surface-initiated in-situ polymerization. The resulting samples were also analyzed and characterized by means of contact angle testing, dispersibility evaluation and thermogravimetric analysis

  8. In situ spectroscopic ellipsometry as a surface sensitive tool to probe thin film growth

    International Nuclear Information System (INIS)

    Liu, C.

    1999-01-01

    Sputtered thin film and multilayer x-ray mirrors are made routinely at the Advanced Photon Source (APS) for the APS users. Precise film growth control and characterization are very critical in fabricating high-quality x-ray mirrors. Film thickness calibrations are carried out using in situ and ex situ spectroscopic ellipsometry, interferometry, and x-ray scattering. To better understand the growth and optical properties of different thin film systems, we have carried out a systematic study of sputtered thin films of Au, Rh, Pg Pd, Cu, and Cr, using in situ ellipsometry. Multiple data sets were obtained in situ for each film material with incremental thicknesses and were analyzed with their correlation in mind. We found that in situ spectroscopic ellipsometry as a surface-sensitive tool can also be used to probe the growth and morphology of the thin film system. This application of in situ spectroscopic ellipsometry for metal thin film systems will be discussed

  9. Applicability of surface-enhanced resonance Raman scattering for the direct discrimination of ballpoint pen inks

    NARCIS (Netherlands)

    Seifar, R.M.; Verheul, J.M.; Ariese, F.; Brinkman, U.A.T.; Gooijer, C.

    2001-01-01

    In situ surface-enhanced resonance Raman spectroscopy (SERRS) with excitation at 685 nm is suitable for the direct discrimination of blue and black ballpoint pen inks on paper. For black inks, shorter excitation wavelengths can also be used. For blue inks, SERRS at 514.5 and 457.9 nm does not

  10. Production of microbial rhamnolipid by Pseudomonas aeruginosa MM1011 for ex situ enhanced oil recovery.

    Science.gov (United States)

    Amani, Hossein; Müller, Markus Michael; Syldatk, Christoph; Hausmann, Rudolf

    2013-07-01

    Recently, several investigations have been carried out on the in situ bacteria flooding, but the ex situ biosurfactant production and addition to the sand pack as agents for microbial enhanced oil recovery (MEOR) has little been studied. In order to develop suitable technology for ex situ MEOR processes, it is essential to carry out tests about it. Therefore, this work tries to fill the gap. The intention of this study was to investigate whether the rhamnolipid mix could be produced in high enough quantities for enhanced oil recovery in the laboratory scale and prove its potential use as an effective material for field application. In this work, the ability of Pseudomonas aeruginosa MM1011 to grow and produce rhamnolipid on sunflower as sole carbon source under nitrogen limitation was shown. The production of Rha-C10-C10 and Rha2-C10-C10 was confirmed by thin-layer chromatography and high-performance liquid chromatography analysis. The rhamnolipid mixture obtained was able to reduce the surface and interfacial tension of water to 26 and 2 mN/m, respectively. The critical micelle concentration was 120 mg/L. Maximum rhamnolipid production reached to about 0.7 g/L in a shake flask. The yield of rhamnolipid per biomass (Y RL/x ), rhamnolipid per sunflower oil (Y RL/s ), and the biomass per sunflower oil (Y x/s ) for shake flask were obtained about 0.01, 0.0035, and 0.035 g g(-1), respectively. The stability of the rhamnolipid at different salinities, pH and temperature, and also, its emulsifying activity has been investigated. It is an effective surfactant at very low concentrations over a wide range of temperatures, pHs, and salt concentrations, and it also has the ability to emulsify oil, which is essential for enhanced oil recovery. With 120 mg/L rhamnolipid, 27 % of original oil in place was recovered after water flooding from a sand pack. This result not only suggests rhamnolipids as appropriate model biosurfactants for MEOR, but it even shows the potential as a

  11. Surface enhanced Raman spectroscopy on a flat graphene surface

    Science.gov (United States)

    Xu, Weigao; Ling, Xi; Xiao, Jiaqi; Dresselhaus, Mildred S.; Kong, Jing; Xu, Hongxing; Liu, Zhongfan; Zhang, Jin

    2012-01-01

    Surface enhanced Raman spectroscopy (SERS) is an attractive analytical technique, which enables single-molecule sensitive detection and provides its special chemical fingerprints. During the past decades, researchers have made great efforts towards an ideal SERS substrate, mainly including pioneering works on the preparation of uniform metal nanostructure arrays by various nanoassembly and nanotailoring methods, which give better uniformity and reproducibility. Recently, nanoparticles coated with an inert shell were used to make the enhanced Raman signals cleaner. By depositing SERS-active metal nanoislands on an atomically flat graphene layer, here we designed a new kind of SERS substrate referred to as a graphene-mediated SERS (G-SERS) substrate. In the graphene/metal combined structure, the electromagnetic “hot” spots (which is the origin of a huge SERS enhancement) created by the gapped metal nanoislands through the localized surface plasmon resonance effect are supposed to pass through the monolayer graphene, resulting in an atomically flat hot surface for Raman enhancement. Signals from a G-SERS substrate were also demonstrated to have interesting advantages over normal SERS, in terms of cleaner vibrational information free from various metal-molecule interactions and being more stable against photo-induced damage, but with a comparable enhancement factor. Furthermore, we demonstrate the use of a freestanding, transparent and flexible “G-SERS tape” (consisting of a polymer-layer-supported monolayer graphene with sandwiched metal nanoislands) to enable direct, real time and reliable detection of trace amounts of analytes in various systems, which imparts high efficiency and universality of analyses with G-SERS substrates. PMID:22623525

  12. ENHANCED DATA DISCOVERABILITY FOR IN SITU HYPERSPECTRAL DATASETS

    Directory of Open Access Journals (Sweden)

    B. Rasaiah

    2016-06-01

    Full Text Available Field spectroscopic metadata is a central component in the quality assurance, reliability, and discoverability of hyperspectral data and the products derived from it. Cataloguing, mining, and interoperability of these datasets rely upon the robustness of metadata protocols for field spectroscopy, and on the software architecture to support the exchange of these datasets. Currently no standard for in situ spectroscopy data or metadata protocols exist. This inhibits the effective sharing of growing volumes of in situ spectroscopy datasets, to exploit the benefits of integrating with the evolving range of data sharing platforms. A core metadataset for field spectroscopy was introduced by Rasaiah et al., (2011-2015 with extended support for specific applications. This paper presents a prototype model for an OGC and ISO compliant platform-independent metadata discovery service aligned to the specific requirements of field spectroscopy. In this study, a proof-of-concept metadata catalogue has been described and deployed in a cloud-based architecture as a demonstration of an operationalized field spectroscopy metadata standard and web-based discovery service.

  13. Nanophotonics with Surface Enhanced Coherent Raman Microscopy

    Science.gov (United States)

    Fast, Alexander

    Nonlinear nanophotonics is a rapidly developing field of research that aims at detecting and disentangling weak congested optical signatures on the nanoscale. Sub-wavelength field confinement of the local electromagnetic fields and the resulting field enhancement is achieved by utilizing plasmonic near-field antennas. This allows for probing nanoscopic volumes, a property unattainable by conventional far-field microscopy techniques. Combination of plasmonics and nonlinear optical microscopy provides a path to visualizing a small chemical and spatial subset of target molecules within an ensemble. This is achieved while maintaining rapid signal acquisition, which is necessary for capturing biological processes in living systems. Herein, a novel technique, wide-field surface enhanced coherent anti-Stokes Raman scattering (wfSE-CARS) is presented. This technique allows for isolating weak vibrational signals in nanoscopic proximity to the surface by using chemical sensitivity of coherent Raman microspectroscopy (CRM) and field confinement from surface plasmons supported on a thin gold film. Uniform field enhancement over a large field of view, achieved with surface plasmon polaritons (SPP) in wfSE-CARSS, allows for biomolecular imaging demonstrated on extended structures like phospholipid droplets and live cells. Surface selectivity and chemical contrast are achieved at 70 fJ/mum2 incident energy densities, which is over five orders of magnitude lower than used in conventional point scanning CRM. Next, a novel surface sensing imaging technique, local field induced metal emission (LFIME), is introduced. Presence of a sample material at the surface influences the local fields of a thin flat gold film, such that nonlinear fluorescence signal of the metal can be detected in the far-field. Nanoscale nonmetallic, nonfluorescent objects can be imaged with high signal-to-background ratio and diffraction limited lateral resolution using LFIME. Additionally, structure of the

  14. Surface enhanced Raman scattering spectroscopic waveguide

    Science.gov (United States)

    Lascola, Robert J; McWhorter, Christopher S; Murph, Simona H

    2015-04-14

    A waveguide for use with surface-enhanced Raman spectroscopy is provided that includes a base structure with an inner surface that defines a cavity and that has an axis. Multiple molecules of an analyte are capable of being located within the cavity at the same time. A base layer is located on the inner surface of the base structure. The base layer extends in an axial direction along an axial length of an excitation section. Nanoparticles are carried by the base layer and may be uniformly distributed along the entire axial length of the excitation section. A flow cell for introducing analyte and excitation light into the waveguide and a method of applying nanoparticles may also be provided.

  15. Silver-graphene oxide based plasmonic spacer for surface plasmon-coupled fluorescence emission enhancements

    Science.gov (United States)

    Badiya, Pradeep Kumar; Srinivasan, Venkatesh; Sathish Ramamurthy, Sai

    2017-06-01

    We report the application of single layered graphene oxide (SLGO) and silver decorated SLGO (Ag-SLGO) as plasmonic spacer material for obtaining enhanced fluorescence from a Rhodamine 6G (Rh6G) radiating dipole in a surface plasmon-coupled emission platform. To this end, we have decorated SLGO with biphasic silver nanoparticles using an in situ deposition technique to achieve 112-fold fluorescence enhancements.

  16. Surface phenomena revealed by in situ imaging: studies from adhesion, wear and cutting

    Science.gov (United States)

    Viswanathan, Koushik; Mahato, Anirban; Yeung, Ho; Chandrasekar, Srinivasan

    2017-03-01

    Surface deformation and flow phenomena are ubiquitous in mechanical processes. In this work we present an in situ imaging framework for studying a range of surface mechanical phenomena at high spatial resolution and across a range of time scales. The in situ framework is capable of resolving deformation and flow fields quantitatively in terms of surface displacements, velocities, strains and strain rates. Three case studies are presented demonstrating the power of this framework for studying surface deformation. In the first, the origin of stick-slip motion in adhesive polymer interfaces is investigated, revealing a intimate link between stick-slip and surface wave propagation. Second, the role of flow in mediating formation of surface defects and wear particles in metals is analyzed using a prototypical sliding process. It is shown that conventional post-mortem observation and inference can lead to erroneous conclusions with regard to formation of surface cracks and wear particles. The in situ framework is shown to unambiguously capture delamination wear in sliding. Third, material flow and surface deformation in a typical cutting process is analyzed. It is shown that a long-standing problem in the cutting of annealed metals is resolved by the imaging, with other benefits such as estimation of energy dissipation and power from the flow fields. In closure, guidelines are provided for profitably exploiting in situ observations to study large-strain deformation, flow and friction phenomena at surfaces that display a variety of time-scales.

  17. Cost studies of thermally enhanced in situ soil remediation technologies

    International Nuclear Information System (INIS)

    Bremser, J.; Booth, S.R.

    1996-05-01

    This report describes five thermally enhanced technologies that may be used to remediate contaminated soil and water resources. The standard methods of treating these contaminated areas are Soil Vapor Extraction (SVE), Excavate ampersand Treat (E ampersand T), and Pump ampersand Treat (P ampersand T). Depending on the conditions at a given site, one or more of these conventional alternatives may be employed; however, several new thermally enhanced technologies for soil decontamination are emerging. These technologies are still in demonstration programs which generally are showing great success at achieving the expected remediation results. The cost savings reported in this work assume that the technologies will ultimately perform as anticipated by their developers in a normal environmental restoration work environment. The five technologies analyzed in this report are Low Frequency Heating (LF or Ohmic, both 3 and 6 phase AC), Dynamic Underground Stripping (DUS), Radio Frequency Heating (RF), Radio Frequency Heating using Dipole Antennae (RFD), and Thermally Enhanced Vapor Extraction System (TEVES). In all of these technologies the introduction of heat to the formation raises vapor pressures accelerating contaminant evaporation rates and increases soil permeability raising diffusion rates of contaminants. The physical process enhancements resulting from temperature elevations permit a greater percentage of volatile organic compound (VOC) or semi- volatile organic compound (SVOC) contaminants to be driven out of the soils for treatment or capture in a much shorter time period. This report presents the results of cost-comparative studies between these new thermally enhanced technologies and the conventional technologies, as applied to five specific scenarios

  18. enhanced ex-situ bioremediation of soil contaminated

    African Journals Online (AJOL)

    user

    refinery waste effluent having total organic compound (TOC) as model organic pollutant. .... the surface layer using white tissue paper. A soil .... the electrical stimulation of microbial PCB degradation in ... decrease of toxicity for bacterial action.

  19. SERS and in situ SERS spectroscopy of riboflavin adsorbed on silver, gold and copper substrates. Elucidation of variability of surface orientation based on both experimental and theoretical approach

    Science.gov (United States)

    Dendisová-Vyškovská, Marcela; Kokaislová, Alžběta; Ončák, Milan; Matějka, Pavel

    2013-04-01

    Surface-enhanced Raman scattering and in situ surface-enhanced Raman scattering spectra have been collected to study influences of (i) used metal and (ii) applied electrode potential on orientation of adsorbed riboflavin molecules. Special in situ SERS spectroelectrochemical cell was used to obtain in situ SERS spectra of riboflavin adsorbed on silver, gold and copper nanostructured surfaces. Varying electrode potential was applied in discrete steps forming a cycle from positive values to negative and backward. Observed spectral features in in situ SERS spectra, measured at alternate potentials, have been changing very significantly and the spectra have been compared with SERS spectra of riboflavin measured ex situ. Raman spectra of single riboflavin molecule in the vicinity to metal (Ag, Au and Cu) clusters have been calculated for different mutual positions. The results demonstrate significant changes of bands intensities which can be correlated with experimental spectra measured at different potentials. Thus, the orientation of riboflavin molecules adsorbed on metal surfaces can be elucidated. It is influenced definitely by the value of applied potential. Furthermore, the riboflavin adsorption orientation on the surface depends on the used metal. Adsorption geometries on the copper substrates are more diverse in comparison with the orientations on silver and gold substrates.

  20. Simulation of enhanced in-situ biorestoration of petroleum hydrocarbons

    International Nuclear Information System (INIS)

    Borden, R.C.

    1991-01-01

    This paper discusses a general mathematical model being developed to aid in the design and analysis of projects for the enhanced aerobic bioremediation of petroleum-contaminated aquifers. Development of the enhanced biotransformation model is proceeding in three steps: development of an abiotic hydrocarbon dissolution model; coupling the dissolution model with existing equations for simulating aerobic biodegradation; and comparison with laboratory data. The model assumes that the residual hydrocarbon is distributed between two fractions, a fast fraction in equilibrium with the aqueous phase and a slow fraction in which mass transfer is limited. Overall, the model provides an excellent fit to the experimental data and requires a minimum of input parameters

  1. Cell surface hydrophobicity of dental plaque microorganisms in situ.

    OpenAIRE

    Rosenberg, M; Judes, H; Weiss, E

    1983-01-01

    The cell surface hydrophobicity of bacteria obtained directly from human tooth surfaces was assayed by measuring their adherence to liquid hydrocarbons. Fresh samples of supragingival dental plaque were washed and dispersed in buffer. Adherence of the plaque microorganisms to hexadecane, octane, and xylene was tested turbidimetrically and by direct microscopic observation. The results clearly show that the vast majority of bacteria comprising dental plaque exhibit pronounced cell surface hydr...

  2. In situ chemical oxidative polymerization preparation of poly(3,4-ethylenedioxythiophene)/graphene nanocomposites with enhanced thermoelectric performance.

    Science.gov (United States)

    Xu, Kongli; Chen, Guangming; Qiu, Dong

    2015-05-01

    Three different in situ chemical oxidative polymerization routes, that is, (A) spin-coating and subsequent liquid layer polymerization, (B) spin-coating followed by vapor phase polymerization, and (C) in situ polymerization and then post-treatment by immersion in ethylene glycol (EG), have been developed to achieve poly(3,4-ethylenedioxythiophene)/reduced graphene oxide (PEDOT/rGO) nanocomposites. As demonstrated by scanning electron microscopic and energy-dispersive X-ray spectroscopic techniques, PEDOT has been successfully coated on the surface of the rGO nanosheets by each of the three preparation routes. Importantly, all of the nanocomposites display a greatly enhanced thermoelectric performance (power factors) relative to those of the corresponding neat PEDOT. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. In-Situ Extended Lateral Range Surface Metrology, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop an extended lateral range capability for a dynamic optical profiling system to enable non-contact, surface roughness measurement of large and...

  4. In-situ oxidation study of Pd(100) by surface x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, Volkan; Franz, Dirk; Stierle, Andreas [AG Grenzflaechen, Universitaet Siegen (Germany); Martin, Natalia; Lundgren, Edvin [Department of Synchrotron Radiation Research, Lund University (Sweden); Mantilla, Miguel [MPI fuer Metallforschung, Stuttgart (Germany)

    2011-07-01

    The oxidation of the Pd(100) surface at oxygen pressures in the 10{sup -6} mbar to 10{sup 3} mbar range and temperatures up to 1000 K has been studied in-situ by surface x-ray diffraction (SXRD). The SXRD experiments were performed at the MPI beamline at the Angstrom Quelle Karlsruhe (ANKA). We present the surface and crystal truncation rod (CTR) data from the ({radical}(5) x {radical}(5)) surface layer. We show that the transformation from the surface oxide to PdO bulk oxide can be observed in-situ under specific pressure and temperature conditions. We compare our results with previously proposed structure models based on low energy electron diffraction (LEED) I(V) curves and density functional theory calculations. Finally, we elucidate the question of commensurability of the surface oxide layer with respect to the Pd(100) substrate.

  5. Novel in situ mechanical testers to enable integrated metal surface micro-machines.

    Energy Technology Data Exchange (ETDEWEB)

    Follstaedt, David Martin; de Boer, Maarten Pieter; Kotula, Paul Gabriel; Hearne, Sean Joseph; Foiles, Stephen Martin; Buchheit, Thomas Edward; Dyck, Christopher William

    2005-10-01

    The ability to integrate metal and semiconductor micro-systems to perform highly complex functions, such as RF-MEMS, will depend on developing freestanding metal structures that offer improved conductivity, reflectivity, and mechanical properties. Three issues have prevented the proliferation of these systems: (1) warpage of active components due to through-thickness stress gradients, (2) limited component lifetimes due to fatigue, and (3) low yield strength. To address these issues, we focus on developing and implementing techniques to enable the direct study of the stress and microstructural evolution during electrodeposition and mechanical loading. The study of stress during electrodeposition of metal thin films is being accomplished by integrating a multi-beam optical stress sensor into an electrodeposition chamber. By coupling the in-situ stress information with ex-situ microstructural analysis, a scientific understanding of the sources of stress during electrodeposition will be obtained. These results are providing a foundation upon which to develop a stress-gradient-free thin film directly applicable to the production of freestanding metal structures. The issues of fatigue and yield strength are being addressed by developing novel surface micromachined tensile and bend testers, by interferometry, and by TEM analysis. The MEMS tensile tester has a ''Bosch'' etched hole to allow for direct viewing of the microstructure in a TEM before, during, and after loading. This approach allows for the quantitative measurements of stress-strain relations while imaging dislocation motion, and determination of fracture nucleation in samples with well-known fatigue/strain histories. This technique facilitates the determination of the limits for classical deformation mechanisms and helps to formulate a new understanding of the mechanical response as the grain sizes are refined to a nanometer scale. Together, these studies will result in a science

  6. In Situ Growth of Mesoporous Silica with Drugs on Titanium Surface and Its Biomedical Applications.

    Science.gov (United States)

    Wan, Mimi; Zhang, Jin; Wang, Qi; Zhan, Shuyue; Chen, Xudong; Mao, Chun; Liu, Yuhong; Shen, Jian

    2017-06-07

    Mesoporous silica has been developed for the modification of titanium surfaces that are used as implant materials. Yet, the traditional modification methods failed to effectively construct mesoporous silica on the titanium surface evenly and firmly, in which the interaction between mesoporous silica and titanium was mainly physical. Here, in situ growth of mesoporous silica on a titanium surface was performed using a simple evaporation-induced self-assembly strategy. Meantime, in situ introduction of drugs (heparin and vancomycin) to mesoporous silica was also adopted to improve the drug-loading amount. Both the above-mentioned processes were completed at the same time. Transmission electron microscopy, N 2 adsorption-desorption isotherms, Fourier transform infrared spectroscopy, scanning electron microscopy, and water contact angle measurements were used to characterize the structure of the mesoporous silica film. Results indicated that the mesoporous silica film that in situ grew on the titanium surface was smooth, thin, transparent, and stable. Cytotoxicity, proliferation performance of osteoblast cells, and in vitro and in vivo studies of the antibacterial activity of the coating were tested. This is the first study to modify the titanium surface by the in situ growth of a mesoporous silica coating with two kinds of drugs. The stability of the mesoporous silica coating can be attributed to the chemical bonding between dopamine and silicon hydroxyl of the mesoporous silica coating, and the smooth surface of mesoporous silica is a result of the method of in situ growth. The large amount of drug-loading also could be ascribed to the in situ introduction of drugs during the synthetic process. The strategy proposed in this work will bring more possibilities for the preparation of advanced functional materials based on the combination of mesoporous structure and metallic materials.

  7. In situ control of As dimer orientation on Ge(100) surfaces

    International Nuclear Information System (INIS)

    Brückner, Sebastian; Döscher, Henning; Supplie, Oliver; Luczak, Johannes; Barrigón, Enrique; Rey-Stolle, Ignacio; Kleinschmidt, Peter; Hannappel, Thomas

    2012-01-01

    We investigated the preparation of single domain Ge(100):As surfaces in a metal-organic vapor phase epitaxy reactor. In situ reflection anisotropy spectra (RAS) of vicinal substrates change when arsenic is supplied either by tertiarybutylarsine or by background As 4 during annealing. Low energy electron diffraction shows mutually perpendicular orientations of dimers, scanning tunneling microscopy reveals distinct differences in the step structure, and x-ray photoelectron spectroscopy confirms differences in the As coverage of the Ge(100):As samples. Their RAS signals consist of contributions related to As dimer orientation and to step structure, enabling precise in situ control over preparation of single domain Ge(100):As surfaces.

  8. In situ control of As dimer orientation on Ge(100) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Brueckner, Sebastian; Doescher, Henning [Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Technische Universitaet Ilmenau, Institut fuer Physik, Postfach 10 05 65, 98684 Ilmenau (Germany); Supplie, Oliver; Luczak, Johannes [Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Barrigon, Enrique; Rey-Stolle, Ignacio [Instituto de Energia Solar, Universidad Politecnica de Madrid, Avda. Complutense s/n, 28040 Madrid (Spain); Kleinschmidt, Peter [Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); CiS Forschungsinstitut fuer Mikrosensorik und Photovoltaik GmbH, Konrad-Zuse-Strasse 14, 99099 Erfurt (Germany); Hannappel, Thomas [Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Technische Universitaet Ilmenau, Institut fuer Physik, Postfach 10 05 65, 98684 Ilmenau (Germany); CiS Forschungsinstitut fuer Mikrosensorik und Photovoltaik GmbH, Konrad-Zuse-Strasse 14, 99099 Erfurt (Germany)

    2012-09-17

    We investigated the preparation of single domain Ge(100):As surfaces in a metal-organic vapor phase epitaxy reactor. In situ reflection anisotropy spectra (RAS) of vicinal substrates change when arsenic is supplied either by tertiarybutylarsine or by background As{sub 4} during annealing. Low energy electron diffraction shows mutually perpendicular orientations of dimers, scanning tunneling microscopy reveals distinct differences in the step structure, and x-ray photoelectron spectroscopy confirms differences in the As coverage of the Ge(100):As samples. Their RAS signals consist of contributions related to As dimer orientation and to step structure, enabling precise in situ control over preparation of single domain Ge(100):As surfaces.

  9. Ex-situ biogas upgrading and enhancement in different reactor systems.

    Science.gov (United States)

    Kougias, Panagiotis G; Treu, Laura; Benavente, Daniela Peñailillo; Boe, Kanokwan; Campanaro, Stefano; Angelidaki, Irini

    2017-02-01

    Biogas upgrading is envisioned as a key process for clean energy production. The current study evaluates the efficiency of different reactor configurations for ex-situ biogas upgrading and enhancement, in which externally provided hydrogen and carbon dioxide were biologically converted to methane by the action of hydrogenotrophic methanogens. The methane content in the output gas of the most efficient configuration was >98%, allowing its exploitation as substitute to natural gas. Additionally, use of digestate from biogas plants as a cost efficient method to provide all the necessary nutrients for microbial growth was successful. High-throughput 16S rRNA sequencing revealed that the microbial community was resided by novel phylotypes belonging to the uncultured order MBA08 and to Bacteroidales. Moreover, only hydrogenotrophic methanogens were identified belonging to Methanothermobacter and Methanoculleus genera. Methanothermobacter thermautotrophicus was the predominant methanogen in the biofilm formed on top of the diffuser surface in the bubble column reactor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. In situ spectroscopy of ligand exchange reactions at the surface of colloidal gold and silver nanoparticles

    International Nuclear Information System (INIS)

    Dinkel, Rebecca; Peukert, Wolfgang; Braunschweig, Björn

    2017-01-01

    Gold and silver nanoparticles with their tunable optical and electronic properties are of great interest for a wide range of applications. Often the ligands at the surface of the nanoparticles have to be exchanged in a second step after particle formation in order to obtain a desired surface functionalization. For many techniques, this process is not accessible in situ . In this review, we present second-harmonic scattering (SHS) as an inherently surface sensitive and label-free optical technique to probe the ligand exchange at the surface of colloidal gold and silver nanoparticles in situ and in real time. First, a brief introduction to SHS and basic features of the SHS of nanoparticles are given. After that, we demonstrate how the SHS intensity decrease can be correlated to the thiol coverage which allows for the determination of the Gibbs free energy of adsorption and the surface coverage. (topical review)

  11. Laser ablation surface-enhanced Raman microspectroscopy.

    Science.gov (United States)

    Londero, Pablo S; Lombardi, John R; Leona, Marco

    2013-06-04

    Improved identification of trace organic compounds in complex matrixes is critical for a variety of fields such as material science, heritage science, and forensics. Surface-enhanced Raman scattering (SERS) is a vibrational spectroscopy technique that can attain single-molecule sensitivity and has been shown to complement mass spectrometry, but lacks widespread application without a robust method that utilizes the effect. We demonstrate a new, highly sensitive, and widely applicable approach to SERS analysis based on laser ablation in the presence of a tailored plasmonic substrate. We analyze several challenging compounds, including non-water-soluble pigments and dyed leather from an ancient Egyptian chariot, achieving sensitivity as high as 120 amol for a 1:1 signal-to-noise ratio and 5 μm spatial resolution. This represents orders of magnitude improvement in spatial resolution and sensitivity compared to those of other SERS approaches intended for widespread application, greatly increasing the applicability of SERS.

  12. An integrated numerical and physical modeling system for an enhanced in situ bioremediation process

    International Nuclear Information System (INIS)

    Huang, Y.F.; Huang, G.H.; Wang, G.Q.; Lin, Q.G.; Chakma, A.

    2006-01-01

    Groundwater contamination due to releases of petroleum products is a major environmental concern in many urban districts and industrial zones. Over the past years, a few studies were undertaken to address in situ bioremediation processes coupled with contaminant transport in two- or three-dimensional domains. However, they were concentrated on natural attenuation processes for petroleum contaminants or enhanced in situ bioremediation processes in laboratory columns. In this study, an integrated numerical and physical modeling system is developed for simulating an enhanced in situ biodegradation (EISB) process coupled with three-dimensional multiphase multicomponent flow and transport simulation in a multi-dimensional pilot-scale physical model. The designed pilot-scale physical model is effective in tackling natural attenuation and EISB processes for site remediation. The simulation results demonstrate that the developed system is effective in modeling the EISB process, and can thus be used for investigating the effects of various uncertainties. - An integrated modeling system was developed to enhance in situ bioremediation processes

  13. Determination of near surface in-situ stresses

    International Nuclear Information System (INIS)

    Garritty, P.; Irvin, R.

    1983-06-01

    One of the major unknowns affecting aspects of underground construction and the geohydrology of rock masses is the magnitude and direction of the geostatic principal stresses in the earth's crust. This is particularly the case in near surface rocks where there are indications that high horizontal stresses may exist. The techniques, experiences and results of a preliminary rock stress measurement programme conducted at shallow depth in the Carnmenellis Granite, Cornwall, using C.S.I.R.O. triaxial hollow inclusion cells are described. (author)

  14. Arctic surface temperatures from Metop AVHRR compared to in situ ocean and land data

    Directory of Open Access Journals (Sweden)

    G. Dybkjær

    2012-11-01

    Full Text Available The ice surface temperature (IST is an important boundary condition for both atmospheric and ocean and sea ice models and for coupled systems. An operational ice surface temperature product using satellite Metop AVHRR infra-red data was developed for MyOcean. The IST can be mapped in clear sky regions using a split window algorithm specially tuned for sea ice. Clear sky conditions prevail during spring in the Arctic, while persistent cloud cover limits data coverage during summer. The cloud covered regions are detected using the EUMETSAT cloud mask. The Metop IST compares to 2 m temperature at the Greenland ice cap Summit within STD error of 3.14 °C and to Arctic drifting buoy temperature data within STD error of 3.69 °C. A case study reveals that the in situ radiometer data versus satellite IST STD error can be much lower (0.73 °C and that the different in situ measurements complicate the validation. Differences and variability between Metop IST and in situ data are analysed and discussed. An inter-comparison of Metop IST, numerical weather prediction temperatures and in situ observation indicates large biases between the different quantities. Because of the scarcity of conventional surface temperature or surface air temperature data in the Arctic, the satellite IST data with its relatively good coverage can potentially add valuable information to model analysis for the Arctic atmosphere.

  15. PDS Lunar Data Node Restoration of Apollo In-Situ Surface Data

    Science.gov (United States)

    Williams, David R.; Hills, H. Kent; Guinness, Edward A.; Lowman, Paul D.; Taylor, Patrick T.

    2010-01-01

    The Apollo missions between 1969 and 1972 deployed scientific instruments on the Moon's surface which made in-situ measurements of the lunar environment. Apollo II had the short-term Early Apollo Surface Experiments Package (EASEP) and Apollos 12, 14, 15, 16, and 17 each set up an Apollo Lunar Surface Experiments Package (ALSEP). Each ALSEP package contained a different suite of instruments which took measurements and radioed the results back to Earth over periods from 5 to 7 years until they were turned off on 30 September 1977. To this day the ALSEP data remain the only long-term in-situ information on the Moon's surface environment. The Lunar Data Node (LDN) has been formed under the auspices of the Planetary Data System (PDS) Geosciences Node to put relevant, scientifically important Apollo data into accessible digital form for use by researchers and mission planners. We will report on progress made since last year and plans for future data restorations.

  16. An in situ study of zirconium-based conversion treatment on zinc surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Taheri, P. [Materials innovation institute (M2i), Elektronicaweg 25, 2628 XG Delft (Netherlands); Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, 2628 CD Delft (Netherlands); Laha, P. [Vrije Universiteit Brussel, Department of Electrochemical and Surface Engineering, Pleinlaan 2, B-1050 Brussels (Belgium); Terryn, H. [Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, 2628 CD Delft (Netherlands); Vrije Universiteit Brussel, Department of Electrochemical and Surface Engineering, Pleinlaan 2, B-1050 Brussels (Belgium); Mol, J.M.C., E-mail: J.M.C.Mol@tudelft.nl [Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, 2628 CD Delft (Netherlands)

    2015-11-30

    Highlights: • We investigated the deposition mechanism of zirconium conversion layer on zinc. • In situ FTIR and electrochemical measurements are conducted. • The initial hydroxyl fraction plays an important role in the deposition process. • Deposition starts with hydroxyl removal by fluoride ions. • An increase of alkalinity adjacent to the surface promotes deposition of Zr. - Abstract: This study is focused on the deposition process of zirconium-based conversion layers on Zn surfaces. The analysis approach is based on a Kretschmann configuration in which in situ ATR-FTIR spectroscopy is combined with open circuit potential (OCP) and near surface pH measurements. Differently pretreated Zn surfaces were subjected to conversion treatments, while the Zr-based deposition mechanism was probed in situ. It was found that the initial hydroxyl fraction promotes the overall Zr conversion process as the near surface pH values are influenced by the initial hydroxyl fraction. Kinetics of the early surface activation and the subsequent Zr-based conversion process are discussed and correlated to the initial hydroxyl fractions.

  17. Enhanced functional connectivity properties of human brains during in-situ nature experience

    Directory of Open Access Journals (Sweden)

    Zheng Chen

    2016-07-01

    Full Text Available In this study, we investigated the impacts of in-situ nature and urban exposure on human brain activities and their dynamics. We randomly assigned 32 healthy right-handed college students (mean age = 20.6 years, SD = 1.6; 16 males to a 20 min in-situ sitting exposure in either a nature (n = 16 or urban environment (n = 16 and measured their Electroencephalography (EEG signals. Analyses revealed that a brief in-situ restorative nature experience may induce more efficient and stronger brain connectivity with enhanced small-world properties compared with a stressful urban experience. The enhanced small-world properties were found to be correlated with “coherent” experience measured by Perceived Restorativeness Scale (PRS. Exposure to nature also induces stronger long-term correlated activity across different brain regions with a right lateralization. These findings may advance our understanding of the functional activities during in-situ environmental exposures and imply that a nature or nature-like environment may potentially benefit cognitive processes and mental well-being.

  18. Enhanced functional connectivity properties of human brains during in-situ nature experience.

    Science.gov (United States)

    Chen, Zheng; He, Yujia; Yu, Yuguo

    2016-01-01

    In this study, we investigated the impacts of in-situ nature and urban exposure on human brain activities and their dynamics. We randomly assigned 32 healthy right-handed college students (mean age = 20.6 years, SD = 1.6; 16 males) to a 20 min in-situ sitting exposure in either a nature (n = 16) or urban environment (n = 16) and measured their Electroencephalography (EEG) signals. Analyses revealed that a brief in-situ restorative nature experience may induce more efficient and stronger brain connectivity with enhanced small-world properties compared with a stressful urban experience. The enhanced small-world properties were found to be correlated with "coherent" experience measured by Perceived Restorativeness Scale (PRS). Exposure to nature also induces stronger long-term correlated activity across different brain regions with a right lateralization. These findings may advance our understanding of the functional activities during in-situ environmental exposures and imply that a nature or nature-like environment may potentially benefit cognitive processes and mental well-being.

  19. Review of in situ derivatization techniques for enhanced bioanalysis using liquid chromatography with mass spectrometry.

    Science.gov (United States)

    Baghdady, Yehia Z; Schug, Kevin A

    2016-01-01

    Accurate and specific analysis of target molecules in complex biological matrices remains a significant challenge, especially when ultra-trace detection limits are required. Liquid chromatography with mass spectrometry is often the method of choice for bioanalysis. Conventional sample preparation and clean-up methods prior to the analysis of biological fluids such as liquid-liquid extraction, solid-phase extraction, or protein precipitation are time-consuming, tedious, and can negatively affect target recovery and detection sensitivity. An alternative or complementary strategy is the use of an off-line or on-line in situ derivatization technique. In situ derivatization can be incorporated to directly derivatize target analytes in their native biological matrices, without any prior sample clean-up methods, to substitute or even enhance the extraction and preconcentration efficiency of these traditional sample preparation methods. Designed appropriately, it can reduce the number of sample preparation steps necessary prior to analysis. Moreover, in situ derivatization can be used to enhance the performance of the developed liquid chromatography with mass spectrometry-based bioanalysis methods regarding stability, chromatographic separation, selectivity, and ionization efficiency. This review presents an overview of the commonly used in situ derivatization techniques coupled to liquid chromatography with mass spectrometry-based bioanalysis to guide and to stimulate future research. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Bioaugmentation of oil reservoir indigenous Pseudomonas aeruginosa to enhance oil recovery through in-situ biosurfactant production without air injection.

    Science.gov (United States)

    Zhao, Feng; Li, Ping; Guo, Chao; Shi, Rong-Jiu; Zhang, Ying

    2018-03-01

    Considering the anoxic conditions within oil reservoirs, a new microbial enhanced oil recovery (MEOR) technology through in-situ biosurfactant production without air injection was proposed. High-throughput sequencing data revealed that Pseudomonas was one of dominant genera in Daqing oil reservoirs. Pseudomonas aeruginosa DQ3 which can anaerobically produce biosurfactant at 42 °C was isolated. Strain DQ3 was bioaugmented in an anaerobic bioreactor to approximately simulate MEOR process. During bioaugmentation process, although a new bacterial community was gradually formed, Pseudomonas was still one of dominant genera. Culture-based data showed that hydrocarbon-degrading bacteria and biosurfactant-producing bacteria were activated, while sulfate reducing bacteria were controlled. Biosurfactant was produced at simulated reservoir conditions, decreasing surface tension to 33.8 mN/m and emulsifying crude oil with EI 24  = 58%. Core flooding tests revealed that extra 5.22% of oil was displaced by in-situ biosurfactant production. Bioaugmenting indigenous biosurfactant producer P. aeruginosa without air injection is promising for in-situ MEOR applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Development of a Surface Acoustic Wave Sensor for In-Situ Monitoring of Volatile Organic Compounds

    Directory of Open Access Journals (Sweden)

    Jerome L. Wright

    2003-07-01

    Full Text Available This paper describes the development of a surface-acoustic-wave (SAW sensor that is designed to be operated continuously and in situ to detect volatile organic compounds. A ruggedized stainless-steel package that encases the SAW device and integrated circuit board allows the sensor to be deployed in a variety of media including air, soil, and even water. Polymers were optimized and chosen based on their response to chlorinated aliphatic hydrocarbons (e.g., trichloroethylene, which are common groundwater contaminants. Initial testing indicates that a running-average data-logging algorithm can reduce the noise and increase the sensitivity of the in-situ sensor.

  2. High Density Periodic Metal Nanopyramids for Surface Enhanced Raman Spectroscopy

    NARCIS (Netherlands)

    Jin, Mingliang

    2012-01-01

    The work presented in this thesis is focused on two areas. First, a new type of nanotextured noble-metal surface has been developed. The new nanotextured surface is demonstrated to enhance inelastic (Raman) scattering, called surface enhanced Raman scattering (SERS), from molecules adsorbed on the

  3. In situ Raman scattering study on a controllable plasmon-driven surface catalysis reaction on Ag nanoparticle arrays

    International Nuclear Information System (INIS)

    Dai, Z G; Xiao, X H; Zhang, Y P; Ren, F; Wu, W; Zhang, S F; Zhou, J; Jiang, C Z; Mei, F

    2012-01-01

    Control of the plasmon-driven chemical reaction for the transformation of 4-nitrobenzenethiol to p,p′-dimercaptoazobenzene by Ag nanoparticle arrays was studied. The Ag nanoparticle arrays were fabricated by means of nanosphere lithography. By changing the PS particle size, the localized surface plasmon resonance (LSPR) peaks of the Ag nanoparticle arrays can be tailored from 460 to 560 nm. The controlled reaction process was monitored by in situ surface-enhanced Raman scattering. The reaction can be dramatically influenced by varying the duration of laser exposure, Ag nanoparticle size, laser power and laser excitation wavelength. The maximum reaction speed was achieved when the LSPR wavelength of the Ag nanoparticle arrays matched the laser excitation wavelength. The experimental results reveal that the strong LSPR can effectively drive the transfer of the ‘hot’ electrons that decay from the plasmon to the reactants. The experimental results were confirmed by theoretical calculations. (paper)

  4. In situ surface treatment of nanocrystalline MFe2O4 (M = Co, Mg, Mn, Ni) spinel ferrites using linseed oil

    International Nuclear Information System (INIS)

    Gherca, Daniel; Cornei, Nicoleta; Mentré, Olivier; Kabbour, Houria; Daviero-Minaud, Sylvie; Pui, Aurel

    2013-01-01

    This paper reports the synthesis by coprecipitation method of MFe 2 O 4 nanoparticles using linseed oil as the in-situ surfactant. The decomposition process of the precursors and the formation process of MFe 2 O 4 were investigated by thermogravimetric analysis and differential thermal analysis (TG-DTA). The crystal structure and surface morphology were examined by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) analysis. The results demonstrate that the surface of MFe 2 O 4 with a diameter in the range 5–13 nm, is activated with hydrophilic groups of the surfactant which coat them and enhance the stability. Magnetic properties are discussed.

  5. Morphological study and thermal analysis of surface modified α-FeOOH via in situ polymerization of methyl methacrylate

    International Nuclear Information System (INIS)

    Han Yaoxing; Ma Xinsheng; Cao Hongming; Zhang Haiying; Wu Qiufang

    2004-01-01

    Considering the interfacial characteristics of goethite (α-FeOOH, iron oxide yellow), the in situ polymerization of methyl methacrylate was employed to modify the surfaces of α-FeOOH pigments in aqueous slurry. The scanning electron micrographs indicated that the poly(methyl methacrylate) anchored on the surfaces of the particle homogeneously. From this study, it was found that one of the key requirements in the synthesis of the α-FeOOH-PMMA composite was to enhance interfacial compatibility between inorganic particles and organic monomer. Moreover, polymer-treated α-FeOOH particles were easily dispersed in organic medium to form a stable colloid and the heat resistance of α-FeOOH particles was improved

  6. In situ surface treatment of nanocrystalline MFe2O4 (M = Co, Mg, Mn, Ni) spinel ferrites using linseed oil

    Science.gov (United States)

    Gherca, Daniel; Cornei, Nicoleta; Mentré, Olivier; Kabbour, Houria; Daviero-Minaud, Sylvie; Pui, Aurel

    2013-12-01

    This paper reports the synthesis by coprecipitation method of MFe2O4 nanoparticles using linseed oil as the in-situ surfactant. The decomposition process of the precursors and the formation process of MFe2O4 were investigated by thermogravimetric analysis and differential thermal analysis (TG-DTA). The crystal structure and surface morphology were examined by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) analysis. The results demonstrate that the surface of MFe2O4 with a diameter in the range 5-13 nm, is activated with hydrophilic groups of the surfactant which coat them and enhance the stability. Magnetic properties are discussed.

  7. Surface-Enhanced Raman Scattering Using Silica Whispering-Gallery Mode Resonators

    Science.gov (United States)

    Anderson, Mark S.

    2013-01-01

    The motivation of this work was to have robust spectroscopic sensors for sensitive detection and chemical analysis of organic and molecular compounds. The solution is to use silica sphere optical resonators to provide surface-enhanced spectroscopic signal. Whispering-gallery mode (WGM) resonators made from silica microspheres were used for surface-enhanced Raman scattering (SERS) without coupling to a plasmonic mechanism. Large Raman signal enhancement is observed by exclusively using 5.08-micron silica spheres with 785-nm laser excitation. The advantage of this non-plasmonic approach is that the active substrate is chemically inert silica, thermally stable, and relatively simple to fabricate. The Raman signal enhancement is broadly applicable to a wide range of molecular functional groups including aliphatic hydrocarbons, siloxanes, and esters. Applications include trace organic analysis, particularly for in situ planetary instruments that require robust sensors with consistent response.

  8. In Situ Ambient Pressure X-ray Photoelectron Spectroscopy of Cobalt Perovskite Surfaces under Cathodic Polarization at High Temperatures

    KAUST Repository

    Crumlin, Ethan J.; Mutoro, Eva; Hong, Wesley T.; Biegalski, Michael D.; Christen, Hans M.; Liu, Zhi; Bluhm, Hendrik; Shao-Horn, Yang

    2013-01-01

    Heterostructured oxide interfaces have demonstrated enhanced oxygen reduction reaction rates at elevated temperatures (∼500-800 C); however, the physical origin underlying this enhancement is not well understood. By using synchrotron-based in situ ambient pressure X-ray photoelectron spectroscopy (APXPS), we focus on understanding the surface electronic structure, elemental composition, and chemical nature of epitaxial La0.8Sr 0.2CoO3-δ (LSC113), (La 0.5Sr0.5)2CoO4±δ (LSC214), and LSC214-decorated LSC113 (LSC 113/214) thin films as a function of applied electrical potentials (0 to -800 mV) at 520 C and p(O2) of 1 × 10-3 atm. Shifts in the top of the valence band binding energy and changes in the Sr 3d and O 1s spectral components under applied bias reveal key differences among the film chemistries, most notably in the degree of Sr segregation to the surface and quantity of active oxygen sites in the perovskite termination layer. These differences help to identify important factors governing the enhanced activity of oxygen electrocatalysis observed for the LSC113/214 heterostructured surface. © 2013 American Chemical Society.

  9. In Situ Ambient Pressure X-ray Photoelectron Spectroscopy of Cobalt Perovskite Surfaces under Cathodic Polarization at High Temperatures

    KAUST Repository

    Crumlin, Ethan J.

    2013-08-08

    Heterostructured oxide interfaces have demonstrated enhanced oxygen reduction reaction rates at elevated temperatures (∼500-800 C); however, the physical origin underlying this enhancement is not well understood. By using synchrotron-based in situ ambient pressure X-ray photoelectron spectroscopy (APXPS), we focus on understanding the surface electronic structure, elemental composition, and chemical nature of epitaxial La0.8Sr 0.2CoO3-δ (LSC113), (La 0.5Sr0.5)2CoO4±δ (LSC214), and LSC214-decorated LSC113 (LSC 113/214) thin films as a function of applied electrical potentials (0 to -800 mV) at 520 C and p(O2) of 1 × 10-3 atm. Shifts in the top of the valence band binding energy and changes in the Sr 3d and O 1s spectral components under applied bias reveal key differences among the film chemistries, most notably in the degree of Sr segregation to the surface and quantity of active oxygen sites in the perovskite termination layer. These differences help to identify important factors governing the enhanced activity of oxygen electrocatalysis observed for the LSC113/214 heterostructured surface. © 2013 American Chemical Society.

  10. Highly Enhanced Fluorescence of CdSeTe Quantum Dots Coated with Polyanilines via In-Situ Polymerization and Cell Imaging Application.

    Science.gov (United States)

    Xue, Jingjing; Chen, Xinyi; Liu, Shanglin; Zheng, Fenfen; He, Li; Li, Lingling; Zhu, Jun-Jie

    2015-09-02

    The polyaniline (PAN)-coated CdSeTe quantum dots (QDs) were prepared by in situ polymerization of aniline on the surface of CdSeTe QDs. The PAN-coated CdSeTe QDs has a tremendously enhanced fluorescence (∼40 times) and improved biocompatibility compared to the uncoated CdSeTe QDs. The fluorescence intensity of the PAN-coated CdSeTe QDs can be adjusted by controlling the construction parameters of the PAN shell. The kinetics of the in situ controllable polymerization process was studied by varying the temperature, and the apparent activation energy of polymerization was estimated. With the same method, a series of the PAN derivatives were also tested to coat the CdSeTe QDs in this study. All the QDs showed a significant enhancement of the fluorescence intensity and better biocompatibility. The significantly enhanced fluorescence can provide highly amplified signal for luminescence-based cell imaging.

  11. One-step synthesis of in situ reduced metal Bi decorated bismuth molybdate hollow microspheres with enhancing photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Meng [College of Chemistry & Chemical Engineering, Chongqing University, Chongqing 400044 (China); Lu, Shiyu [Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing, 400715 (China); Ma, Li, E-mail: mlsys607@126.com [College of Chemistry & Chemical Engineering, Chongqing University, Chongqing 400044 (China); Gan, Mengyu [College of Chemistry & Chemical Engineering, Chongqing University, Chongqing 400044 (China)

    2017-02-28

    Highlights: • Metal Bi decorated Bi{sub 2-x}MoOy was synthesised by a simple and one-step. • Bi{sup 3+} could be in situ reduced to Bi{sup 0} gradually and dispersed uniform in Bi{sub 2-x}MoOy. • It shows excellent photocatalytic activity due to special structure and composition. - Abstract: In this feature work, in situ metal Bi are successfully modified bismuth molybdate hollow spheres using an effective one-pot solvthermal reduction without any temple. In order to deeply understand the influence of reduction conditions on the texture, surface state, and photocatalytic performance of the resulting samples, a series of products were synthesized by tuning the temperatures. The similar morphology, surface area of photocatalysis (BMO-160 and BMO-170) were synthesized, only with the different composition. The detailed characterization and analysis distinctly suggested that increasing solvothermal reduction temperature led to Bi{sup 3+} was in situ reduced to elementary substance Bi{sup 0} by ethylene glycol gradually and dispersed very uniform in bismuth molybdate. Benefiting from the enhanced charge separation, transfer, and donor density resulting from the formation of Bi decorated bismuth molybdate where Bi as cocatalyst, the photocatalytic performance of the reductive Bi/Bi{sub 2-x}MoO{sub y} hollow spheres (BMO-170) is higher than that of the untreated Bi{sub 2-x}MoO{sub y} hollow spheres (BMO-160) for Rh6G degradation under visible light irradiation. Additionally, the reductive BMO-170 has a superior stability after five cycles.

  12. Enhancing the design of in situ chemical barriers with multicomponent reactive transport modeling

    International Nuclear Information System (INIS)

    Sevougian, S.D.; Steefel, C.I.; Yabusaki, S.B.

    1994-11-01

    This paper addresses the need for systematic control of field-scale performance in the emplacement and operation of in situ chemical treatment barriers; in particular, it addresses the issue of how the local coupling of reaction kinetics and material heterogeneities at the laboratory or bench scale can be accurately upscaled to the field. The authors have recently developed modeling analysis tools that can explicitly account for all relevant chemical reactions that accompany the transport of reagents and contaminants through a chemically and physically heterogeneous subsurface rock or soil matrix. These tools are incorporated into an enhanced design methodology for in situ chemical treatment technologies, and the new methodology is demonstrated in the ongoing design of a field experiment for the In Situ Redox Manipulation (ISRM) project at the U.S. Department of Energy (DOE) Hanford Site. The ISRM design approach, which systematically integrates bench-scale and site characterization information, provides an ideal test for the new reactive transport techniques. The need for the enhanced chemistry capability is demonstrated by an example that shows how intra-aqueous redox kinetics can affect the transport of reactive solutes. Simulations are carried out on massively parallel computer architectures to resolve the influence of multiscale heterogeneities on multicomponent, multidimensional reactive transport. The technology will soon be available to design larger-scale remediation schemes

  13. Detection of bacterial metabolites through dynamic acquisition from surface enhanced raman spectroscopy substrates integtrated in a centrifugal microfluidic platform

    DEFF Research Database (Denmark)

    Durucan, Onur; Morelli, Lidia; Schmidt, Michael Stenbæk

    2015-01-01

    In this work we present a novel technology that combines the advantages of centrifugal microfluidics with dynamic in-situ Surface Enhanced Raman Spectroscopy (SERS) sensing. Our technology is based on an automated readout system that allows on-line SERS acquisition on a rotating centrifugal...

  14. Long Term Validation of Land Surface Temperature Retrieved from MSG/SEVIRI with Continuous in-Situ Measurements in Africa

    Directory of Open Access Journals (Sweden)

    Frank-M. Göttsche

    2016-05-01

    Full Text Available Since 2005, the Land Surface Analysis Satellite Application Facility (LSA SAF operationally retrieves Land Surface Temperature (LST for the Spinning Enhanced Visible and Infrared Imager (SEVIRI on board Meteosat Second Generation (MSG. The high temporal resolution of the Meteosat satellites and their long term availability since 1977 make their data highly valuable for climate studies. In order to ensure that the LSA SAF LST product continuously meets its target accuracy of 2 °C, it is validated with in-situ measurements from four dedicated LST validation stations. Three stations are located in highly homogenous areas in Africa (semiarid bush, desert, and Kalahari semi-desert and typically provide thousands of monthly match-ups with LSA SAF LST, which are used to perform seasonally resolved validations. An uncertainty analysis performed for desert station Gobabeb yielded an estimate of total in-situ LST uncertainty of 0.8 ± 0.12 °C. Ignoring rainy seasons, the results for the period 2009–2014 show that LSA SAF LST consistently meets its target accuracy: the highest mean root-mean-square error (RMSE for LSA SAF LST over the African stations was 1.6 °C while mean absolute bias was 0.1 °C. Nighttime and daytime biases were up to 0.7 °C but had opposite signs: when evaluated together, these partially compensated each other.

  15. IPCS: An integrated process control system for enhanced in-situ bioremediation

    International Nuclear Information System (INIS)

    Huang, Y.F.; Wang, G.Q.; Huang, G.H.; Xiao, H.N.; Chakma, A.

    2008-01-01

    To date, there has been little or no research related to process control of subsurface remediation systems. In this study, a framework to develop an integrated process control system for improving remediation efficiencies and reducing operating costs was proposed based on physical and numerical models, stepwise cluster analysis, non-linear optimization and artificial neural networks. Process control for enhanced in-situ bioremediation was accomplished through incorporating the developed forecasters and optimizers with methods of genetic algorithm and neural networks modeling. Application of the proposed approach to a bioremediation process in a pilot-scale system indicated that it was effective in dynamic optimization and real-time process control of the sophisticated bioremediation systems. - A framework of process control system was developed to improve in-situ bioremediation efficiencies and reducing operating costs

  16. Electrografting of in situ generated pyrrole derivative diazonium salt for the surface modification of nickel

    International Nuclear Information System (INIS)

    Jacques, A.; Devillers, S.; Delhalle, J.; Mekhalif, Z.

    2013-01-01

    Highlights: • Electrografting of in situ generated 4-pyrrolylphenyldiazonium (Py-PD) on Ni. • Generation of Py-PD from 4-pyrrolylaniline in 3 acidic conditions followed by UV. • XPS and SEM confirm efficiency, reproducibility and homogeneity of the grafting. • Electrografting process assessed by CV. • Barrier properties of the grafted film evidenced by CV. -- Abstract: This work reports for the first time on the modification of nickel surfaces by cathodic electrografting of in situ generated diazonium. An original diazonium salt (the 4-pyrrolylphenyldiazonium called Py-PD hereafter) was electrografted on nickel after its generation from 4-(1H-pyrrol-1-yl)aniline (Py-A) in presence of three acidic conditions (1, 2 and 10 equiv. of HClO 4 /Py-A) has been investigated by UV–vis spectroscopy. Results show that the potentiostatic electrografting of Py-PD is concomitant with nickel and proton reduction. This electrografting leads to the formation of multilayered films in each of the studied in situ generation conditions. The use of 1 equiv. of HClO 4 /Py-A for the in situ generation results in the formation of inhomogeneous and irreproducible coatings while 2 and 10 equiv. lead to the formation of highly covering, homogeneous and reproducible films. These films present good electrochemical barrier properties toward the ferri/ferrocyanide couple. The use of gentle stoichiometric acidic conditions for in situ diazonium generation widens the application field of this one-step procedure to the surface modification of oxidizable materials presenting an unstable oxide layer

  17. Surface engineering for enhanced performance against wear

    CERN Document Server

    2013-01-01

    Surface Engineering constitutes a variety of processes and sub processes. Each chapter of this work covers specific processes by experts working in the area. Included for each topic are tribological performances for each process as well as results of recent research. The reader also will benefit from in-depth studies of diffusion coatings, nanocomposite films for wear resistance, surfaces for biotribological applications, thin-film wear, tribology of thermal sprayed coatings, hardfacing, plating for tribology and high energy beam surface modifications. Material scientists as well as engineers working with surface engineering for tribology will be particularly interested in this work.

  18. In situ AFM investigation of electrochemically induced surface-initiated atom-transfer radical polymerization.

    Science.gov (United States)

    Li, Bin; Yu, Bo; Zhou, Feng

    2013-02-12

    Electrochemically induced surface-initiated atom-transfer radical polymerization is traced by in situ AFM technology for the first time, which allows visualization of the polymer growth process. It affords a fundamental insight into the surface morphology and growth mechanism simultaneously. Using this technique, the polymerization kinetics of two model monomers were studied, namely the anionic 3-sulfopropyl methacrylate potassium salt (SPMA) and the cationic 2-(metharyloyloxy)ethyltrimethylammonium chloride (METAC). The growth of METAC is significantly improved by screening the ammonium cations by the addition of ionic liquid electrolyte in aqueous solution. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Simulated plasma facing component measurements for an in situ surface diagnostic on Alcator C-Moda)

    Science.gov (United States)

    Hartwig, Z. S.; Whyte, D. G.

    2010-10-01

    The ideal in situ plasma facing component (PFC) diagnostic for magnetic fusion devices would perform surface element and isotope composition measurements on a shot-to-shot (˜10 min) time scale with ˜1 μm depth and ˜1 cm spatial resolution over large areas of PFCs. To this end, the experimental adaptation of the customary laboratory surface diagnostic—nuclear scattering of MeV ions—to the Alcator C-Mod tokamak is being guided by ACRONYM, a Geant4 synthetic diagnostic. The diagnostic technique and ACRONYM are described, and synthetic measurements of film thickness for boron-coated PFCs are presented.

  20. In situ generation of diazonium cations in organic electrolyte for electrochemical modification of electrode surface

    International Nuclear Information System (INIS)

    Baranton, Steve; Belanger, Daniel

    2008-01-01

    The modification of glassy carbon electrode was achieved by electrochemical reduction of in situ generated diazonium cations in acetonitrile. The in situ generation of 4-nitrophenyl diazonium cations in acetonitrile was investigated by spectroscopic methods. UV-visible spectroscopy revealed slow kinetics for the reaction of 4-nitroaniline with tert-butylnitrite in acetonitrile to form the corresponding diazonium cation. As a result, a coupling reaction, which implies a consumption of the amine and loss of the already formed diazonium cations, was evidenced by 1 H NMR spectroscopy. This spectroscopic study allowed the optimization of the in situ diazonium cations generation prior to the modification step. The electrochemical modification of the carbon electrodes with 4-nitrophenyl, 4-bromophenyl and anthraquinone groups was characterized by cyclic voltammetry and the resulting grafted layer were characterized by electrochemical techniques. The cyclic voltammetric behaviour during the electrochemical grafting was very similar to the one observed for an isolated diazonium salt dissolved in acetonitrile. In the case of the anthraquinone-modified electrode, the use of acetonitrile, into which the corresponding amine is soluble but not in aqueous media, allowed for its grafting by the in situ approach. The barrier properties of these grafted layers are similar to those obtained from isolated diazonium salts. Finally, the chemical composition of the grafted layers was determined by X-ray photoelectron spectroscopy and surface coverage in the range 5-7 x 10 -10 mol cm -2 was estimated for films grown in our experimental conditions

  1. In situ generation of diazonium cations in organic electrolyte for electrochemical modification of electrode surface

    Energy Technology Data Exchange (ETDEWEB)

    Baranton, Steve [Departement de Chimie, Universite du Quebec a Montreal, Case Postale 8888, succursale Centre-Ville, Montreal (Quebec), H3C 3P8 (Canada); Belanger, Daniel [Departement de Chimie, Universite du Quebec a Montreal, Case Postale 8888, succursale Centre-Ville, Montreal (Quebec), H3C 3P8 (Canada)], E-mail: belanger.daniel@uqam.ca

    2008-10-01

    The modification of glassy carbon electrode was achieved by electrochemical reduction of in situ generated diazonium cations in acetonitrile. The in situ generation of 4-nitrophenyl diazonium cations in acetonitrile was investigated by spectroscopic methods. UV-visible spectroscopy revealed slow kinetics for the reaction of 4-nitroaniline with tert-butylnitrite in acetonitrile to form the corresponding diazonium cation. As a result, a coupling reaction, which implies a consumption of the amine and loss of the already formed diazonium cations, was evidenced by {sup 1}H NMR spectroscopy. This spectroscopic study allowed the optimization of the in situ diazonium cations generation prior to the modification step. The electrochemical modification of the carbon electrodes with 4-nitrophenyl, 4-bromophenyl and anthraquinone groups was characterized by cyclic voltammetry and the resulting grafted layer were characterized by electrochemical techniques. The cyclic voltammetric behaviour during the electrochemical grafting was very similar to the one observed for an isolated diazonium salt dissolved in acetonitrile. In the case of the anthraquinone-modified electrode, the use of acetonitrile, into which the corresponding amine is soluble but not in aqueous media, allowed for its grafting by the in situ approach. The barrier properties of these grafted layers are similar to those obtained from isolated diazonium salts. Finally, the chemical composition of the grafted layers was determined by X-ray photoelectron spectroscopy and surface coverage in the range 5-7 x 10{sup -10} mol cm{sup -2} was estimated for films grown in our experimental conditions.

  2. Comparison of Surface-enhanced Raman Scattering Spectra of Two Kinds of Silver Nanoplate Films

    Institute of Scientific and Technical Information of China (English)

    TAO Jin-long; TANG Bin; XU Shu-ping; PAN Ling-yun; XU Wei-qing

    2012-01-01

    Surface-enhanced Raman scattering(SERS) spectra of different silver nanoplate self-assembled films at different excitation wavelengths were fairly compared.Shape conversion from silver nanoprisms to nanodisks on slides was in situ carried out.The SERS spectra of 4-mercaptopyridine(4-MPY) on these anisotropic silver nanoparticle self-assembled films present that strong enhancement appeared when the excitation line and the surface plasmon resonance(SPR) band of silver substrate overlapped.In this model,the influence of the crystal planes of silver nanoplates on SERS enhancement could be ignored because the basal planes were nearly unchanged in two kinds of silver nanoplate self-assembled films.

  3. Plasma modification of polypropylene surfaces and its alloying with styrene in situ

    Energy Technology Data Exchange (ETDEWEB)

    Ma Guiqiu, E-mail: magq@tju.edu.cn [School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072 (China); Liu Ben; Li Chen; Huang Dinghai; Sheng Jing [School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072 (China)

    2012-01-15

    The treatment of polypropylene surfaces has been studied by dielectric barrier discharges plasma of Ar. The structure and morphology of polypropylene surfaces of Ar plasma modification are characterized by X-ray photoelectron spectroscopy, Fourier transform infrared spectrometers and scanning electron microscope. The modified by plasma treatment of iPP (isotactic polypropylene) surface properties have been examined in a determination of free radicals. The modified active surfaces of polypropylene can induce grafting copolymerization of styrene onto polypropylene. The structure of grafting copolymer is characterized and the grafting percent of styrene onto polypropylene is calculated. The homopolymer of styrene can be formed under grafting copolymerization of styrene onto polypropylene, which follows that the alloying of polypropylene with styrene is achieved in situ.

  4. In-situ polymerization of polyaniline on the surface of graphene oxide for high electrochemical capacitance

    International Nuclear Information System (INIS)

    Li, Xinlu; Zhong, Qineng; Zhang, Xinlin; Li, Tongtao; Huang, Jiamu

    2015-01-01

    Conducting polymer polyaniline (PANI) was in-situ polymerized on the surface of graphene oxide (GO) to form PANI encapsulating GO nanocomposites. The morphology and microstructure were examined by scanning electron microscopy, X-ray diffraction and N 2 absorption/desorption analysis. Electrochemical properties were tested by cyclic voltammetry, galvanostatic charge/discharge cycles and electrochemical impedance spectroscopy. Experimental results showed that ethanol assisted the dispersion of GO in water and facilitated the diffusion of polymer monomers on GO. GO as a support material can provide sufficient reaction sites for the deposition of aniline to form the film-like GO/PANI composites. Capacitive performance illustrated that the in-situ polymerization of PANI on GO was effective in improving the specific capacitance and cycling stability. - Highlights: • GO/PANI nanocomposites were achieved by in-situ polymerization. • PANI was uniformly coated on the surface of GO with addition of ethanol. • GO/PANI show high specific capacitance and cycling stability

  5. Management of the ocular surface and tear film before, during, and after laser in situ keratomileusis.

    Science.gov (United States)

    Albietz, Julie M; Lenton, Lee M

    2004-01-01

    To identify evidence-based, best practice strategies for managing the ocular surface and tear film before, during, and after laser in situ keratomileusis (LASIK). After a comprehensive review of relevant published literature, evidence-based recommendations for best practice management strategies are presented. Symptoms of ocular irritation and signs of dysfunction of the integrated lacrimal gland/ocular surface functional gland unit are common before and after LASIK. The status of the ocular surface and tear film before LASIK can impact surgical outcomes in terms of potential complications during and after surgery, refractive outcome, optical quality, patient satisfaction, and the severity and duration of dry eye after LASIK. Before LASIK, the health of the ocular surface should be optimized and patients selected appropriately. Dry eye before surgery and female gender are risk factors for developing chronic dry eye after LASIK. Management of the ocular surface during LASIK can minimize ocular surface damage and the risk of adverse outcomes. Long-term management of the tear film and ocular surface after LASIK can reduce the severity and duration of dry eye symptoms and signs. Strategies to manage the integrated ocular surface/lacrimal gland functional unit before, during, and after LASIK can optimize outcomes. As problems with the ocular surface and tear film are relatively common, attention should focus on the use and improvement of evidence-based management strategies.

  6. Solid oxide electrode kinetics in light of in situ surface studies

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg

    2014-01-01

    The combination of in situ and in particular in operando characterization methods such as electrochemical impedance spectroscopy (EIS) on both technical and model electrode are well known ways to gain some practical insight in electrode reaction kinetics. Yet, is has become clear that in spite...... of the strengths it is not sufficient to reveal much details of the electrode mechanisms mainly because it provide average values only. Therefore it has to be combined with surface science methods in order to reveal the interface structure and composition. Ex situ methods have been very useful over the latest....... Furthermore, it seems that detailed mathematical modeling using new tools like COMSOL is necessary for the synthesis of the large amount of data for a well-characterized electrode into one physical meaningful picture. A brief review of literature an own data will be presented with a practical example of SOFC...

  7. In situ metalation of free base phthalocyanine covalently bonded to silicon surfaces

    Directory of Open Access Journals (Sweden)

    Fabio Lupo

    2014-11-01

    Full Text Available Free 4-undecenoxyphthalocyanine molecules were covalently bonded to Si(100 and porous silicon through thermic hydrosilylation of the terminal double bonds of the undecenyl chains. The success of the anchoring strategy on both surfaces was demonstrated by the combination of X-ray photoelectron spectroscopy with control experiments performed adopting the commercially available 2,3,9,10,16,17,23,24-octakis(octyloxy-29H,31H-phthalocyanine, which is not suited for silicon anchoring. Moreover, the study of the shape of the XPS N 1s band gave relevant information on the interactions occurring between the anchored molecules and the substrates. The spectra suggest that the phthalocyanine ring interacts significantly with the flat Si surface, whilst ring–surface interactions are less relevant on porous Si. The surface-bonded molecules were then metalated in situ with Co by using wet chemistry. The efficiency of the metalation process was evaluated by XPS measurements and, in particular, on porous silicon, the complexation of cobalt was confirmed by the disappearance in the FTIR spectra of the band at 3290 cm−1 due to –NH stretches. Finally, XPS results revealed that the different surface–phthalocyanine interactions observed for flat and porous substrates affect the efficiency of the in situ metalation process.

  8. Enhancement of in situ biodegradation of organic compounds in groundwater by targeted pump and treat intervention

    International Nuclear Information System (INIS)

    Thornton, S.F.; Baker, K.M.; Bottrell, S.H.; Rolfe, S.A.; McNamee, P.; Forrest, F.; Duffield, P.; Wilson, R.D.; Fairburn, A.W.; Cieslak, L.A.

    2014-01-01

    Highlights: • Pumping reduces contaminant toxicity below levels which stimulate in situ biodegradation. • Pumping increases the mixing of background oxidants into the plume for anaerobic respiration. • Bacterial sulphate reduction is very sensitive to contaminant concentrations. • Stable isotope analysis confirms the contribution of different biodegradation processes. • Targeted pump and treatment can enhance the natural attenuation of complex plumes. - Abstract: This study demonstrates the value of targeted pump and treatment (PAT) to enhance the in situ biodegradation of organic contaminants in groundwater for improved restoration. The approach is illustrated for a plume of phenolic compounds in a sandstone aquifer, where PAT is used for hydraulic containment and removal of dissolved phase contaminants from specific depth intervals. Time-series analysis of the plume hydrochemistry and stable isotope composition of dissolved species (δ 34 S-SO 4 , δ 13 C-CH 4 , δ 13 C-TDIC (TDIC = Total Dissolved Inorganic Carbon)) in groundwater samples from high-resolution multilevel samplers were used to deduce changes in the relative significance of biodegradation processes and microbial activity in the plume, induced by the PAT system over 3 years. The PAT system has reduced the maximum contaminant concentrations (up to 6800 mg L −1 total phenols) in the plume by 50% to ∼70% at different locations. This intervention has (i) stimulated in situ biodegradation in general, with an approximate doubling of contaminant turnover based on TDIC concentration, which has increased from <200 mg L −1 to >350 mg L −1 , (ii) enhanced the activity of SO 4 -reducing microorganisms (marked by a declining SO 4 concentration with corresponding increase in SO 4 -δ 34 S to values >7–14‰ V-CDT relative to background values of 1.9–6.5‰ V-CDT ), and (iii) where the TDIC increase is greatest, has changed TDIC-δ 13 C from values of −10 to −15‰ V-PDB to ∼−20‰ V

  9. Evaluation of surface layer flux parameterizations using in-situ observations

    Science.gov (United States)

    Katz, Jeremy; Zhu, Ping

    2017-09-01

    Appropriate calculation of surface turbulent fluxes between the atmosphere and the underlying ocean/land surface is one of the major challenges in geosciences. In practice, the surface turbulent fluxes are estimated from the mean surface meteorological variables based on the bulk transfer model combined with the Monnin-Obukhov Similarity (MOS) theory. Few studies have been done to examine the extent to which such a flux parameterization can be applied to different weather and surface conditions. A novel validation method is developed in this study to evaluate the surface flux parameterization using in-situ observations collected at a station off the coast of Gulf of Mexico. The main findings are: (a) the theoretical prediction that uses MOS theory does not match well with those directly computed from the observations. (b) The largest spread in exchange coefficients is shown in strong stable conditions with calm winds. (c) Large turbulent eddies, which depend strongly on the mean flow pattern and surface conditions, tend to break the constant flux assumption in the surface layer.

  10. In situ diffraction studies of electrode surface structure during gold electrodeposition

    International Nuclear Information System (INIS)

    Magnussen, O.M.; Krug, K.; Ayyad, A.H.; Stettner, J.

    2008-01-01

    Surface X-ray scattering (SXS) in transmission geometry provides a valuable tool for in situ structural studies of electrochemical interfaces under reaction conditions, as illustrated here for homoepitaxial electrodeposition on Au(1 0 0) and Au(1 1 1) electrodes. Employing diffusion-limited deposition conditions to separate the effects of potential and deposition rate, a mutual interaction between the interface structure and the growth behavior is found. Time-dependent SXS measurements during Au(1 0 0) homoepitaxy show with decreasing potential transitions from step flow to layer-by-layer growth, then to multilayer growth, and finally back to layer-by-layer growth. This complex growth behavior can be explained within the framework of kinetic growth theory by the effect of potential, Cl adsorbates and the Au surface structure, specifically the presence of the surface reconstruction, on the Au surface mobility. Conversely, the electrodeposition process influences the structure of the reconstructed Au surface, as illustrated for Au(1 1 1), where a significant deposition-induced compression of the Au surface layer as compared to Au(1 1 1) surfaces under ultrahigh vacuum conditions or in Au-free electrolyte is found. This compression increases towards more negative potentials, which may be explained by a release of potential-induced surface stress

  11. Compact surface plasmon-enhanced fluorescence biochip

    Czech Academy of Sciences Publication Activity Database

    Toma, K.; Vala, Milan; Adam, Pavel; Homola, Jiří; Knoll, W.; Dostálek, J.

    2013-01-01

    Roč. 21, č. 8 (2013), s. 10121-10132 ISSN 1094-4087 R&D Projects: GA ČR GBP205/12/G118 Institutional support: RVO:67985882 Keywords : Surface plasmons * Diffraction gratings * Biological sensing and sensors Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.525, year: 2013

  12. Silica in situ enhanced PVA/chitosan biodegradable films for food packages.

    Science.gov (United States)

    Yu, Zhen; Li, Baoqiang; Chu, Jiayu; Zhang, Peifeng

    2018-03-15

    Non-degradable plastic food packages threaten the security of environment. The cost-effective and biodegradable polymer films with good mechanical properties and low permeability are very important for food packages. Among of biodegradable polymers, PVA/chitosan (CS) biodegradable films have attracted considerable attention because of feasible film forming ability. However, PVA/CS biodegradable films suffered from poor mechanical properties. To improve mechanical properties of PVA/CS biodegradable films, we developed SiO 2 in situ to enhance PVA/CS biodegradable films via hydrolysis of sodium metasilicate in presence of PVA and chitosan solution. The tensile strength of PVA/CS biodegradable films was improved 45% when 0.6 wt.% SiO 2 was incorporated into the films. Weight loss of PVA/CS biodegradable films was 60% after 30 days in the soil. The permeability of oxygen and moisture of PVA/CS biodegradable films was reduced by 25.6% and 10.2%, respectively. SiO 2 in situ enhanced PVA/CS biodegradable films possessed not only excellent mechanical properties, but also barrier of oxygen and water for food packages to extend the perseveration time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Dynamics of Plasma-Surface Interactions using In-situ Ion Beam Analysis

    International Nuclear Information System (INIS)

    Whyte, D.G.

    2009-01-01

    The overall goal of this proposal was to develop an innovative experimental facility that would allow for the measurement of real-time response of a material surface to plasma bombardment by employing in-situ high-energy ion beam analysis. This facility was successfully developed and deployed at U. Wisconsin-Madison and was named DIONISOS (Dynamics of IONic Implantation and Sputtering on Surfaces). There were several major highlights to the DIONISOS research which we will briefly highlight below. The full technical details of the DIONISOS development, deployment and research results are contained in the Appendices which contain several peer-reviewed publications and a PhD thesis devoted to DIONISOS. The DIONISOS results on deuterium retention in molybdenum were chosen as an invited talk at the 2008 International Conference on Plasma-Surface Interactions in Toledo, Spain.

  14. In Situ Investigation of Electrochemically Mediated Surface-Initiated Atom Transfer Radical Polymerization by Electrochemical Surface Plasmon Resonance.

    Science.gov (United States)

    Chen, Daqun; Hu, Weihua

    2017-04-18

    Electrochemically mediated atom transfer radical polymerization (eATRP) initiates/controls the controlled/living ATRP chain propagation process by electrochemically generating (regenerating) the activator (lower-oxidation-state metal complex) from deactivator (higher-oxidation-state metal complex). Despite successful demonstrations in both of the homogeneous polymerization and heterogeneous systems (namely, surface-initiated ATRP, SI-ATRP), the eATRP process itself has never been in situ investigated, and important information regarding this process remains unrevealed. In this work, we report the first investigation of the electrochemically mediated SI-ATRP (eSI-ATRP) by rationally combining the electrochemical technique with real-time surface plasmon resonance (SPR). In the experiment, the potential of a SPR gold chip modified by the self-assembled monolayer of the ATRP initiator was controlled to electrochemically reduce the deactivator to activator to initiate the SI-ATRP, and the whole process was simultaneously monitored by SPR with a high time resolution of 0.1 s. It is found that it is feasible to electrochemically trigger/control the SI-ATRP and the polymerization rate is correlated to the potential applied to the gold chip. This work reveals important kinetic information for eSI-ATRP and offers a powerful platform for in situ investigation of such complicated processes.

  15. An in situ vapour phase hydrothermal surface doping approach for fabrication of high performance Co3O4 electrocatalysts with an exceptionally high S-doped active surface.

    Science.gov (United States)

    Tan, Zhijin; Liu, Porun; Zhang, Haimin; Wang, Yun; Al-Mamun, Mohammad; Yang, Hua Gui; Wang, Dan; Tang, Zhiyong; Zhao, Huijun

    2015-04-04

    A facile in situ vapour phase hydrothermal (VPH) surface doping approach has been developed for fabrication of high performance S-doped Co3O4 electrocatalysts with an unprecedentedly high surface S content (>47%). The demonstrated VPH doping approach could be useful for enrichment of surface active sites for other metal oxide electrocatalysts.

  16. Condensation Enhancement by Surface Porosity: Three-Stage Mechanism.

    Science.gov (United States)

    Yarom, Michal; Marmur, Abraham

    2015-08-18

    Surface defects, such as pores, cracks, and scratches, are naturally occurring and commonly found on solid surfaces. However, the mechanism by which such imperfections promote condensation has not been fully explored. In the current paper we thermodynamically analyze the ability of surface porosity to enhance condensation on a hydrophilic solid. We show that the presence of a surface-embedded pore brings about three distinct stages of condensation. The first is capillary condensation inside the pore until it is full. This provides an ideal hydrophilic surface for continuing the condensation. As a result, spontaneous condensation and wetting can be achieved at lower vapor pressure than on a smooth surface.

  17. Hierarchical Mn₂O₃ Microspheres In-Situ Coated with Carbon for Supercapacitors with Highly Enhanced Performances.

    Science.gov (United States)

    Gong, Feilong; Lu, Shuang; Peng, Lifang; Zhou, Jing; Kong, Jinming; Jia, Dianzeng; Li, Feng

    2017-11-23

    Porous Mn₂O₃ microspheres have been synthesized and in-situ coated with amorphous carbon to form hierarchical C@Mn₂O₃ microspheres by first producing MnCO₃ microspheres in solvothermal reactions, and then annealing at 500 °C. The self-assembly growth of MnCO₃ microspheres can generate hollow structures inside each of the particles, which can act as micro-reservoirs to store biomass-glycerol for generating amorphous carbon onto the surfaces of Mn₂O₃ nanorods consisting of microspheres. The C@Mn₂O₃ microspheres, prepared at 500 °C, exhibit highly enhanced pseudocapacitive performances when compared to the particles after annealed at 400 °C and 600 °C. Specifically, the C@Mn₂O₃ microspheres prepared at 500 °C show high specific capacitances of 383.87 F g -1 at current density of 0.5 A g -1 , and excellent cycling stability of 90.47% of its initial value after cycling for 5000 times. The asymmetric supercapacitors assembled with C@Mn₂O₃ microspheres after annealed at 500 °C and activated carbon (AC) show an energy density of up to 77.8 Wh kg -1 at power density of 500.00 W kg -1 , and a maximum power density of 20.14 kW kg -1 at energy density of 46.8 Wh kg -1 . We can attribute the enhanced electrochemical performances of the materials to their three-dimensional (3D) hierarchical structure in-situ coated with carbon.

  18. Hierarchical Mn2O3 Microspheres In-Situ Coated with Carbon for Supercapacitors with Highly Enhanced Performances

    Science.gov (United States)

    Gong, Feilong; Lu, Shuang; Peng, Lifang; Zhou, Jing; Kong, Jinming; Jia, Dianzeng; Li, Feng

    2017-01-01

    Porous Mn2O3 microspheres have been synthesized and in-situ coated with amorphous carbon to form hierarchical C@Mn2O3 microspheres by first producing MnCO3 microspheres in solvothermal reactions, and then annealing at 500 °C. The self-assembly growth of MnCO3 microspheres can generate hollow structures inside each of the particles, which can act as micro-reservoirs to store biomass-glycerol for generating amorphous carbon onto the surfaces of Mn2O3 nanorods consisting of microspheres. The C@Mn2O3 microspheres, prepared at 500 °C, exhibit highly enhanced pseudocapacitive performances when compared to the particles after annealed at 400 °C and 600 °C. Specifically, the C@Mn2O3 microspheres prepared at 500 °C show high specific capacitances of 383.87 F g−1 at current density of 0.5 A g−1, and excellent cycling stability of 90.47% of its initial value after cycling for 5000 times. The asymmetric supercapacitors assembled with C@Mn2O3 microspheres after annealed at 500 °C and activated carbon (AC) show an energy density of up to 77.8 Wh kg−1 at power density of 500.00 W kg−1, and a maximum power density of 20.14 kW kg−1 at energy density of 46.8 Wh kg−1. We can attribute the enhanced electrochemical performances of the materials to their three-dimensional (3D) hierarchical structure in-situ coated with carbon. PMID:29168756

  19. Hierarchical Mn2O3 Microspheres In-Situ Coated with Carbon for Supercapacitors with Highly Enhanced Performances

    Directory of Open Access Journals (Sweden)

    Feilong Gong

    2017-11-01

    Full Text Available Porous Mn2O3 microspheres have been synthesized and in-situ coated with amorphous carbon to form hierarchical C@Mn2O3 microspheres by first producing MnCO3 microspheres in solvothermal reactions, and then annealing at 500 °C. The self-assembly growth of MnCO3 microspheres can generate hollow structures inside each of the particles, which can act as micro-reservoirs to store biomass-glycerol for generating amorphous carbon onto the surfaces of Mn2O3 nanorods consisting of microspheres. The C@Mn2O3 microspheres, prepared at 500 °C, exhibit highly enhanced pseudocapacitive performances when compared to the particles after annealed at 400 °C and 600 °C. Specifically, the C@Mn2O3 microspheres prepared at 500 °C show high specific capacitances of 383.87 F g−1 at current density of 0.5 A g−1, and excellent cycling stability of 90.47% of its initial value after cycling for 5000 times. The asymmetric supercapacitors assembled with C@Mn2O3 microspheres after annealed at 500 °C and activated carbon (AC show an energy density of up to 77.8 Wh kg−1 at power density of 500.00 W kg−1, and a maximum power density of 20.14 kW kg−1 at energy density of 46.8 Wh kg−1. We can attribute the enhanced electrochemical performances of the materials to their three-dimensional (3D hierarchical structure in-situ coated with carbon.

  20. Integrated modelling of enhanced in situ biodenitrification in a fractured aquifer: biogeochemistry and isotope geochemistry

    Science.gov (United States)

    Rodríguez-Escales, Paula; Folch, Albert; van Breukelen, Boris M.; Vidal-Gavilan, Georgina; Soler, Albert

    2014-05-01

    Enhanced in-situ biodenitrification is a feasible technology to recovery groundwater polluted by nitrates and achieves drinking water standards. Under optimum conditions, nitrate is reduced by autochthonous bacteria trough different reactions until arrive to harmless dinitrogen gas. Isotopic fractionation monitoring in field applications allows knowing the exact degree and the real scope of this technology. Using the Rayleigh equation the change in the isotope ratio of the nitrate molecule (δ15N-NO3-, δ18O-NO3-) is related to the fraction of molecules remaining as a result of biodenitrification. However, Rayleigh application at field scale is sometimes limited due to other processes involved during groundwater flow such as dispersion or adsorption and geological media heterogeneities that interferes in concentration values. Then, include isotope fractionation processes in reactive transport models is a useful tool to interpret and predict data from in-situ biodenitrification. We developed a reactive transport model of enhanced in situ application at field scale in a fractured aquifer that considers biogeochemical processes as well as isotope fractionation to enable better monitoring and management of this technology. Processes considered were: microbiological- exogenous and endogenous nitrate and sulfate respiration coupled with microbial growth and decay, geochemical reactions (precipitation of calcite) and isotopic fractionation (δ15N-NO3-; δ18O- NO3- and carbon isotope network). The 2-D simulations at field scale were developed using PHAST code. Modeling of nitrate isotope geochemistry has allowed determining the extent of biodenitrification in model domain. We have quantified which is the importance in decreasing of nitrate concentrations due to biodegradation (percentage of biodegradation, 'B%') and due to dilution process (percentage of dilution, 'D%'). On the other hand, the stable carbon isotope geochemistry has been modeled. We have considered the

  1. Electrooxidation of ethanol on Pt and PtRu surfaces investigated by ATR surface-enhanced infrared absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marcio F.; Camara, Giuseppe A., E-mail: giuseppe.silva@ufms.br [Departamento de Quimica, Universidade Federal do Mato Grosso do Sul, Campo Grande-MS (Brazil); Batista, Bruno C.; Boscheto, Emerson [Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, Sao Carlos-SP, (Brazil); Varela, Hamilton, E-mail: varela@iqsc.usp.br [Ertl Center for Electrochemistry and Catalysis, Gwangju Institute of Science and Technology (GIST), Gwangju (Korea, Republic of)

    2012-05-15

    Herein, it was investigated for the first time the electro-oxidation of ethanol on Pt and PtRu electrodeposits in acidic media by using in situ surface enhanced infrared absorption spectroscopy with attenuated total reflection (ATR-SEIRAS). The experimental setup circumvents the weak absorbance signals related to adsorbed species, usually observed for rough, electrodeposited surfaces, and allows a full description of the CO coverage with the potential for both catalysts. The dynamics of adsorption-oxidation of CO was accessed by ATR-SEIRAS experiments (involving four ethanol concentrations) and correlated with expressions derived from a simple kinetic model. Kinetic analysis suggests that the growing of the CO adsorbed layer is nor influenced by the presence of Ru neither by the concentration of ethanol. The results suggest that the C-C scission is not related to the presence of Ru and probably happens at Pt sites. (author)

  2. Surface-enhanced Raman scattering on gold nanotrenches and nanoholes

    KAUST Repository

    Yue, Weisheng; Yang, Yang; Wang, Zhihong; Chen, Longqing; Wong, Ka Chun; Syed, Ahad A.; Chen, Zong; Wang, Xianbin

    2012-01-01

    Dependent effects on edge-to-edge distance and incidence polarization in surface-enhanced Raman Scattering (SERS) were studied in detection of 4-mercaptopyridine (4-MPy) molecules absorbed on gold nanotrenches and nanoholes. The gold nanostructures

  3. Analysis and Calibration of in situ scanning tunnelling microscopy Images with atomic Resolution Influenced by Surface Drift Phenomena

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Møller, Per

    1994-01-01

    The influence of surface drift velocities on in situ scanning tunnelling microscopy (STM) experiments with atomic resolution is analysed experimentally and mathematically. Constant drift velocities much smaller than the speed of scanning can in many in situ STM experiments with atomic resolution ...... as well as the vectors of the non-distorted surface lattice can be determined. The calibration of distances can thus be carried out also when the image is influenced by drift. Results with gold surfaces and graphite surfaces are analysed and discussed....

  4. Preparation of surface enhanced Raman substrate and its characterization

    Science.gov (United States)

    Liu, Y.; Wang, J. Y.; Wang, J. Q.

    2017-10-01

    Surface enhanced Raman spectroscopy (SERS) is a fast, convenient and highly sensitive detection technique, and preparing the good effect and repeatable substrate is the key to realize the trace amount and quantitative detection in the field of food safety detection. In this paper, a surface enhanced Raman substrate based on submicrometer silver particles structure was prepared by chemical deposition method, and characterized its structure and optical properties.

  5. Multiwalled carbon nanotubes enhance electrochemical properties of titanium to determine in situ bone formation

    Energy Technology Data Exchange (ETDEWEB)

    Sirivisoot, Sirinrath; Webster, Thomas J [Division of Engineering, Brown University, Providence, RI 02912 (United States)], E-mail: Thomas_Webster@Brown.edu

    2008-07-23

    Multiwalled carbon nanotubes (MWCNTs) enhance osteoblast (bone-forming cell) calcium deposition compared to currently implanted materials (such as titanium). In this study, MWCNTs were grown out of nanopores anodized on titanium (MWCNT-Ti). The electrochemical responses of MWCNT-Ti were investigated in an attempt to ascertain if MWCNT-Ti can serve as novel in situ sensors of bone formation. For this purpose, MWCNT-Ti was subjected to a ferri/ferrocyanide redox couple and its electrochemical behavior measured. Cyclic voltammograms (CVs) showed an enhanced redox potential for the MWCNT-Ti. These redox signals were superior to that obtained with bare unmodified Ti, which did not sense either oxidation or reduction peaks in the CVs. A further objective of this study was to investigate the redox reactions of MWCNT-Ti in a solution of extracellular components secreted by osteoblasts in vitro. It was found that MWCNT-Ti exhibited well-defined and persistent CVs, similar to the ferri/ferrocyanide redox reaction. The higher electrodic performance and electrocatalytic activity of the MWCNT-Ti compared to the bare titanium observed in this study were likely due to the fact that MWCNTs enhanced direct electron transfer and facilitated double-layer effects, leading to a strong redox signal. Thus these results encourage the further study and modification of MWCNT-Ti to sense new bone growth in situ next to orthopedic implants and perhaps monitor other events (such as infection and/or harmful scar tissue formation) to improve the current clinical diagnosis of orthopedic implants.

  6. Multiwalled carbon nanotubes enhance electrochemical properties of titanium to determine in situ bone formation

    International Nuclear Information System (INIS)

    Sirivisoot, Sirinrath; Webster, Thomas J

    2008-01-01

    Multiwalled carbon nanotubes (MWCNTs) enhance osteoblast (bone-forming cell) calcium deposition compared to currently implanted materials (such as titanium). In this study, MWCNTs were grown out of nanopores anodized on titanium (MWCNT-Ti). The electrochemical responses of MWCNT-Ti were investigated in an attempt to ascertain if MWCNT-Ti can serve as novel in situ sensors of bone formation. For this purpose, MWCNT-Ti was subjected to a ferri/ferrocyanide redox couple and its electrochemical behavior measured. Cyclic voltammograms (CVs) showed an enhanced redox potential for the MWCNT-Ti. These redox signals were superior to that obtained with bare unmodified Ti, which did not sense either oxidation or reduction peaks in the CVs. A further objective of this study was to investigate the redox reactions of MWCNT-Ti in a solution of extracellular components secreted by osteoblasts in vitro. It was found that MWCNT-Ti exhibited well-defined and persistent CVs, similar to the ferri/ferrocyanide redox reaction. The higher electrodic performance and electrocatalytic activity of the MWCNT-Ti compared to the bare titanium observed in this study were likely due to the fact that MWCNTs enhanced direct electron transfer and facilitated double-layer effects, leading to a strong redox signal. Thus these results encourage the further study and modification of MWCNT-Ti to sense new bone growth in situ next to orthopedic implants and perhaps monitor other events (such as infection and/or harmful scar tissue formation) to improve the current clinical diagnosis of orthopedic implants

  7. Numerical study of surface plasmon enhanced nonlinear absorption and refraction.

    Science.gov (United States)

    Kohlgraf-Owens, Dana C; Kik, Pieter G

    2008-07-07

    Maxwell Garnett effective medium theory is used to study the influence of silver nanoparticle induced field enhancement on the nonlinear response of a Kerr-type nonlinear host. We show that the composite nonlinear absorption coefficient, beta(c), can be enhanced relative to the host nonlinear absorption coefficient near the surface plasmon resonance of silver nanoparticles. This enhancement is not due to a resonant enhancement of the host nonlinear absorption, but rather due to a phase shifted enhancement of the host nonlinear refractive response. The enhancement occurs at the expense of introducing linear absorption, alpha(c), which leads to an overall reduced figure of merit beta(c)/alpha(c) for nonlinear absorption. For thin (< 1 microm) composites, the use of surface plasmons is found to result in an increased nonlinear absorption response compared to that of the host material.

  8. Facile fabrication of microfluidic surface-enhanced Raman scattering devices via lift-up lithography

    Science.gov (United States)

    Wu, Yuanzi; Jiang, Ye; Zheng, Xiaoshan; Jia, Shasha; Zhu, Zhi; Ren, Bin; Ma, Hongwei

    2018-04-01

    We describe a facile and low-cost approach for a flexibly integrated surface-enhanced Raman scattering (SERS) substrate in microfluidic chips. Briefly, a SERS substrate was fabricated by the electrostatic assembling of gold nanoparticles, and shaped into designed patterns by subsequent lift-up soft lithography. The SERS micro-pattern could be further integrated within microfluidic channels conveniently. The resulting microfluidic SERS chip allowed ultrasensitive in situ SERS monitoring from the transparent glass window. With its advantages in simplicity, functionality and cost-effectiveness, this method could be readily expanded into optical microfluidic fabrication for biochemical applications.

  9. Heat transfer enhancement with condensation by surface rotation

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, L L; Khrolenok, V V [A.V. Luikov Heat and Mass Transfer Inst., Minsk (Belarus)

    1993-11-01

    Process intensification relies on many unit operations on enhanced heat transfer. One technique for the enhancement of condensation heat transfer is the use of surface rotation. This is particularly effective in reducing the condensate film thickness. The formulae and relationships given in this paper are concerned with rotating discs and tubes, and can be used for developing advanced heat exchanger concepts. (Author)

  10. Nanostructured surface enhanced Raman scattering substrates for explosives detection

    DEFF Research Database (Denmark)

    Schmidt, Michael Stenbaek; Olsen, Jesper Kenneth; Boisen, Anja

    2010-01-01

    Here we present a method for trace detection of explosives in the gas phase using novel surface enhanced Raman scattering (SERS) spectroscopy substrates. Novel substrates that produce an exceptionally large enhancement of the Raman effect were used to amplify the Raman signal of explosives...

  11. In situ measurement of fixed charge evolution at silicon surfaces during atomic layer deposition

    International Nuclear Information System (INIS)

    Ju, Ling; Watt, Morgan R.; Strandwitz, Nicholas C.

    2015-01-01

    Interfacial fixed charge or interfacial dipoles are present at many semiconductor-dielectric interfaces and have important effects upon device behavior, yet the chemical origins of these electrostatic phenomena are not fully understood. We report the measurement of changes in Si channel conduction in situ during atomic layer deposition (ALD) of aluminum oxide using trimethylaluminum and water to probe changes in surface electrostatics. Current-voltage data were acquired continually before, during, and after the self-limiting chemical reactions that result in film growth. Our measurements indicated an increase in conductance on p-type samples with p + ohmic contacts and a decrease in conductance on analogous n-type samples. Further, p + contacted samples with n-type channels exhibited an increase in measured current and n + contacted p-type samples exhibited a decrease in current under applied voltage. Device physics simulations, where a fixed surface charge was parameterized on the channel surface, connect the surface charge to changes in current-voltage behavior. The simulations and analogous analytical relationships for near-surface conductance were used to explain the experimental results. Specifically, the changes in current-voltage behavior can be attributed to the formation of a fixed negative charge or the modification of a surface dipole upon chemisorption of trimethylaluminum. These measurements allow for the observation of fixed charge or dipole formation during ALD and provide further insight into the electrostatic behavior at semiconductor-dielectric interfaces during film nucleation

  12. In situ synthesis of Bi2S3 sensitized WO3 nanoplate arrays with less interfacial defects and enhanced photoelectrochemical performance

    Science.gov (United States)

    Liu, Canjun; Yang, Yahui; Li, Wenzhang; Li, Jie; Li, Yaomin; Chen, Qiyuan

    2016-03-01

    In this study, Bi2S3 sensitive layer has been grown on the surface of WO3 nanoplate arrays via an in situ approach. The characterization of samples were carried out using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and ultraviolet-visible absorption spectroscopy (UV-vis). The results show that the Bi2S3 layer is uniformly formed on the surface of WO3 nanoplates and less interfacial defects were observed in the interface between the Bi2S3 and WO3. More importantly, the Bi2S3/WO3 films as photoanodes for photoelectrochemical (PEC) cells display the enhanced PEC performance compared with the Bi2S3/WO3 films prepared by a sequential ionic layer adsorption reaction (SILAR) method. In order to understand the reason for the enhanced PEC properties, the electron transport properties of the photoelectrodes were studied by using the transient photocurrent spectroscopy and intensity modulated photocurrent spectroscopy (IMPS). The Bi2S3/WO3 films prepared via an in situ approach have a greater transient time constant and higher electron transit rate. This is most likely due to less interfacial defects for the Bi2S3/WO3 films prepared via an in situ approach, resulting in a lower resistance and faster carrier transport in the interface between WO3 and Bi2S3.

  13. Engineering Plasmonic Nanopillar Arrays for Surface-enhanced Raman Spectroscopy

    DEFF Research Database (Denmark)

    Wu, Kaiyu

    This Ph.D. thesis presents (i) an in-depth understanding of the localized surface plasmon resonances (LSPRs) in the nanopillar arrays (NPs) for surface-enhanced Raman spectroscopy (SERS), and (ii) systematic ways of optimizing the fabrication process of NPs to improve their SERS efficiencies. Thi...

  14. Surface-enhanced light olefin yields during steam cracking

    NARCIS (Netherlands)

    Golombok, M.; Kornegoor, M.; Brink, van den P.; Dierickx, J.; Grotenbreg, R.

    2000-01-01

    Various papers have shown enhanced olefin yields during steam cracking when a catalytic surface is introduced. Our studies reveal that increased light olefin yields during catalytic steam cracking are mainly due to a surface volume effect and not to a traditional catalytic effect. Augmentation of

  15. In situ mapping of radionuclides in subsurface and surface soils: 1994 Summary report

    International Nuclear Information System (INIS)

    Schilk, A.J.; Hubbard, C.W.; Knopf, M.A.; Abel, K.H.

    1995-04-01

    Uranium production and support facilities at several DOE sites occasionally caused local contamination of some surface and subsurface soils. The thorough cleanup of these sites is a major public concern and a high priority for the US Department of Energy, but before any effective remedial protocols can be established, the three-dimensional distributions of target contaminants must be characterized. Traditional means of measuring radionuclide activities in soil are cumbersome, expensive, time-consuming, and often do not accurately reflect conditions over very large areas. New technologies must be developed, or existing ones improved, to allow cheaper, faster, and safer characterization of radionuclides in soils at these sites. The Pacific Northwest Laboratory (PNL) was tasked with adapting, developing, and demonstrating technologies to measure uranium in surface and subsurface soils. In partial completion of this effort, PNL developed an improved in situ gamma-ray spectrometry system to satisfy the technical requirements. This document summarizes fiscal-year 1994 efforts at PNL to fulfill requirements for TTP number-sign 321103 (project number-sign 19307). These requirements included (a) developing a user-friendly software package for reducing field-acquired gamma-ray spectra, (b) constructing an improved data-acquisition hardware system for use with high-purity germanium detectors, (c) ensuring readiness to conduct field mapping exercises as specified by the sponsor, (d) evaluating the in situ gamma-ray spectrometer for the determination of uranium depth distribution, and (e) documenting these efforts

  16. Ex situ investigation of the step bunching on crystal surfaces by atomic force microscopy

    Science.gov (United States)

    Krasinski, Mariusz J.

    1997-07-01

    We are describing ex situ observation of step bunching on the surfaces of solution grown potassium dihydrogen phosphate (KDP) and sodium chlorate monocrystals. The measurements have been done with the use of atomic force microscope. The use of this equipment allowed us to see directly the structure of macrosteps. Observation confirmed the existence of step pinning which is one of the proposed mechanisms of step bunching. Despite the very high resolution of AFM it was not possible to determine the nature of pinning point. The monatomic steps on KDP and sodium chlorate crystal surfaces are mainly one unit cell high what seems to be the result of the steps pairing. The origin of observed step pattern is discussed in frames of existing theories.

  17. Airflow resistivity instrument for in situ measurement on the earth's ground surface

    Science.gov (United States)

    Zuckerwar, A. J.

    1983-01-01

    An airflow resistivity instrument features a novel specimen holder, especially designed for in situ measurement on the earth's ground surface. This capability eliminates the disadvantages of prior intrusive instruments, which necessitate the removal of a test specimen from the ground. A prototype instrument can measure airflow resistivities in the range 10-5000 cgs rayl/cm, at specimen depths up to 15.24 cm (6 in.), and at differential pressures up to 2490.8 dyn sq cm (1 in. H2O) across the specimen. Because of the close relationship between flow resistivity and acoustic impedance, this instrument should prove useful in acoustical studies of the earth's ground surface. Results of airflow resistivity measurements on an uncultivated grass field for varying values of moisture content are presented.

  18. Surface-Enhanced Raman Scattering Physics and Applications

    CERN Document Server

    Kneipp, Katrin; Kneipp, Harald

    2006-01-01

    Almost 30 years after the first reports on surface-enhanced Raman signals, the phenomenon of surface-enhanced Raman scattering (SERS) is now well established. Yet, explaining the enhancement of a spectroscopic signal by fouteen orders of magnitude continues to attract the attention of physicists and chemists alike. And, at the same time and rapidly growing, SERS is becoming a very useful spectroscopic tool with exciting applications in many fields. SERS gained particular interest after single-molecule Raman spectroscopy had been demonstrated. This bookl summarizes and discusses present theoretical approaches that explain the phenomenon of SERS and reports on new and exciting experiments and applications of the fascinating spectroscopic effect.

  19. Aligned gold nanoneedle arrays for surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Yang Yong; Huang Zhengren; Jiang Dongliang; Tanemura, Masaki; Yamaguchi, Kohei; Li Zhiyuan; Huang Yingping; Kawamura, Go; Nogami, Masayuki

    2010-01-01

    A simple Ar + -ion irradiation route has been developed to prepare gold nanoneedle arrays on glass substrates for surface-enhanced Raman scattering (SERS)-active substrates. The nanoneedles exhibited very sharp tips with an apex diameter of 20 nm. These arrays were evaluated as potential SERS substrates using malachite green molecules and exhibited a SERS enhancement factor of greater than 10 8 , which is attributed to the localized electron field enhancement around the apex of the needle and the surface plasmon coupling originating from the periodic structure. This work demonstrates a new technique for producing controllable and reproducible SERS substrates potentially applicable for chemical and biological assays.

  20. Stable water isotope and surface heat flux simulation using ISOLSM: Evaluation against in-situ measurements

    KAUST Repository

    Cai, Mick Y.; Wang, Lixin; Parkes, Stephen; Strauss, Josiah; McCabe, Matthew; Evans, Jason P.; Griffiths, Alan D.

    2015-01-01

    The stable isotopes of water are useful tracers of water sources and hydrological processes. Stable water isotope-enabled land surface modeling is a relatively new approach for characterizing the hydrological cycle, providing spatial and temporal variability for a number of hydrological processes. At the land surface, the integration of stable water isotopes with other meteorological measurements can assist in constraining surface heat flux estimates and discriminate between evaporation (E) and transpiration (T). However, research in this area has traditionally been limited by a lack of continuous in-situ isotopic observations. Here, the National Centre for Atmospheric Research stable isotope-enabled Land Surface Model (ISOLSM) is used to simulate the water and energy fluxes and stable water isotope variations. The model was run for a period of one month with meteorological data collected from a coastal sub-tropical site near Sydney, Australia. The modeled energy fluxes (latent heat and sensible heat) agreed reasonably well with eddy covariance observations, indicating that ISOLSM has the capacity to reproduce observed flux behavior. Comparison of modeled isotopic compositions of evapotranspiration (ET) against in-situ Fourier Transform Infrared spectroscopy (FTIR) measured bulk water vapor isotopic data (10. m above the ground), however, showed differences in magnitude and temporal patterns. The disparity is due to a small contribution from local ET fluxes to atmospheric boundary layer water vapor (~1% based on calculations using ideal gas law) relative to that advected from the ocean for this particular site. Using ISOLSM simulation, the ET was partitioned into E and T with 70% being T. We also identified that soil water from different soil layers affected T and E differently based on the simulated soil isotopic patterns, which reflects the internal working of ISOLSM. These results highlighted the capacity of using the isotope-enabled models to discriminate

  1. Stable water isotope and surface heat flux simulation using ISOLSM: Evaluation against in-situ measurements

    KAUST Repository

    Cai, Mick Y.

    2015-04-01

    The stable isotopes of water are useful tracers of water sources and hydrological processes. Stable water isotope-enabled land surface modeling is a relatively new approach for characterizing the hydrological cycle, providing spatial and temporal variability for a number of hydrological processes. At the land surface, the integration of stable water isotopes with other meteorological measurements can assist in constraining surface heat flux estimates and discriminate between evaporation (E) and transpiration (T). However, research in this area has traditionally been limited by a lack of continuous in-situ isotopic observations. Here, the National Centre for Atmospheric Research stable isotope-enabled Land Surface Model (ISOLSM) is used to simulate the water and energy fluxes and stable water isotope variations. The model was run for a period of one month with meteorological data collected from a coastal sub-tropical site near Sydney, Australia. The modeled energy fluxes (latent heat and sensible heat) agreed reasonably well with eddy covariance observations, indicating that ISOLSM has the capacity to reproduce observed flux behavior. Comparison of modeled isotopic compositions of evapotranspiration (ET) against in-situ Fourier Transform Infrared spectroscopy (FTIR) measured bulk water vapor isotopic data (10. m above the ground), however, showed differences in magnitude and temporal patterns. The disparity is due to a small contribution from local ET fluxes to atmospheric boundary layer water vapor (~1% based on calculations using ideal gas law) relative to that advected from the ocean for this particular site. Using ISOLSM simulation, the ET was partitioned into E and T with 70% being T. We also identified that soil water from different soil layers affected T and E differently based on the simulated soil isotopic patterns, which reflects the internal working of ISOLSM. These results highlighted the capacity of using the isotope-enabled models to discriminate

  2. Enhanced oral bioavailability of docetaxel in rats combined with myricetin: In situ and in vivo evidences.

    Science.gov (United States)

    Hao, Tianyun; Ling, Yunni; Wu, Meijuan; Shen, Yajing; Gao, Yu; Liang, Shujun; Gao, Yuan; Qian, Shuai

    2017-04-01

    The purpose of this study was to investigate the effect of myricetin on the pharmacokinetics of docetaxel in rats. In comparison to oral docetaxel alone (40mg/kg), the bioavailability of docetaxel could be significantly enhanced by 1.6-2.4-fold via oral co-administration with various flavonoids (apigenin, naringenin, baicalein, quercetin and myricetin) at a dosage of 10mg/kg, and myricetin showed the highest bioavailability improvement. Further pharmacokinetic studies demonstrated that the presence of myricetin (5-20mg/kg) enhanced both C max and AUC of docetaxel with the highest C max (162ng/mL, 2.3-fold) and relative bioavailability (244%) achieved at 10mg/kg of myricetin, while t 1/2 was not influenced. In order to explore the reasons for such bioavailability enhancement of docetaxel, rat in situ single-pass intestinal perfusion model and intravenous docetaxel co-administrated with oral myricetin were carried out. After combining with myricetin, the permeability coefficient (P blood ) of docetaxel based on its appearance in mesenteric blood was significantly increased up to 3.5-fold in comparison to that of docetaxel alone. Different from oral docetaxel, the intravenous pharmacokinetics of docetaxel was not affected by co-administration of myricetin, indicating the limited effect of myricetin on the elimination of docetaxel. The above findings suggested that the oral bioavailability enhancement of docetaxel via co-administration with myricetin might be mainly attributed to the enhanced absorption in gastrointestinal tract rather than modulating the elimination of docetaxel. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. In Situ Evaluation of Density, Viscosity and Thickness of Adsorbed Soft Layers by Combined Surface Acoustic Wave and Surface Plasmon Resonance

    OpenAIRE

    Francis, L.; Friedt, J. -M.; Zhou, C.; Bertrand, P.

    2003-01-01

    We show the theoretical and experimental combination of acoustic and optical methods for the in situ quantitative evaluation of the density, the viscosity and the thickness of soft layers adsorbed on chemically tailored metal surfaces. For the highest sensitivity and an operation in liquids, a Love mode surface acoustic wave (SAW) sensor with a hydrophobized gold coated sensing area is the acoustic method, while surface plasmon resonance (SPR) on the same gold surface as the optical method is...

  4. Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas

    International Nuclear Information System (INIS)

    Fromm, David P.; Sundaramurthy, Arvind; Kinkhabwala, Anika; Schuck, P. James; Kino, Gordon S.; Moerner, W.E.

    2006-01-01

    Single metallic bowtie nanoantennas provide a controllable environment for surface-enhanced Raman scattering (SERS) of adsorbed molecules. Bowties have experimentally measured electromagnetic enhancements, enabling estimation of chemical enhancement for both the bulk and the few-molecule regime. Strong fluctuations of selected Raman lines imply that a small number of p-mercaptoaniline molecules on a single bowtie show chemical enhancement >10 7 , much larger than previously believed, likely due to charge transfer between the Au surface and the molecule. This chemical sensitivity of SERS has significant implications for ultra-sensitive detection of single molecules

  5. Application of silver nanoparticles in the detection of SYBR Green I by surface enhanced Raman and surface-enhanced fluorescence

    Science.gov (United States)

    Guo, Wei; Wu, Jian; Wang, Chunyan; Zhang, Tian; Chen, Tao

    2018-05-01

    Silver nanomaterials have remarkable application in biomedical detection due to their unique surface plasmon resonance (SPR) characteristics. It can be used for surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF). Current research elaborates a technique for improvement of SYBR Green I detection obtained from surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF) by silver nanoparticles with the average size about 70 nm. Primarily, SYBR Green I is an important fluorescent dye used in polymerase chain reaction (PCR). It is found that both Raman and fluorescence can be used for detection of this dye. Furthermore, the enhanced efficiency of the Raman and fluorescence by SERS and SEF is observed in this study, the enhancement factor for Raman signals is 3.2 × 103, and the fluorescence intensity bincreased two times by SEF. The quantitative detection of SYBR Green I by SERS and SEF can be achieved. The present work can be used to improve the detection of SYBR Green I by SERS and SEF. It would also be employed for high-sensitive detection of other materials in the future.

  6. Long Alkyl Chain Organophosphorus Coupling Agents for in Situ Surface Functionalization by Reactive Milling

    Directory of Open Access Journals (Sweden)

    Annika Betke

    2014-08-01

    Full Text Available Innovative synthetic approaches should be simple and environmentally friendly. Here, we present the surface modification of inorganic submicrometer particles with long alkyl chain organophosphorus coupling agents without the need of a solvent, which makes the technique environmentally friendly. In addition, it is of great benefit to realize two goals in one step: size reduction and, simultaneously, surface functionalization. A top-down approach for the synthesis of metal oxide particles with in situ surface functionalization is used to modify titania with long alkyl chain organophosphorus coupling agents. A high energy planetary ball mill was used to perform reactive milling using titania as inorganic pigment and long alkyl chain organophosphorus coupling agents like dodecyl and octadecyl phosphonic acid. The final products were characterized by IR, NMR and X-ray fluorescence spectroscopy, thermal and elemental analysis as well as by X-ray powder diffraction and scanning electron microscopy. The process entailed a tribochemical phase transformation from the starting material anatase to a high-pressure modification of titania and the thermodynamically more stable rutile depending on the process parameters. Furthermore, the particles show sizes between 100 nm and 300 nm and a degree of surface coverage up to 0.8 mmol phosphonate per gram.

  7. Low-temperature, ultrahigh-vacuum tip-enhanced Raman spectroscopy combined with molecular beam epitaxy for in situ two-dimensional materials' studies

    Science.gov (United States)

    Sheng, Shaoxiang; Li, Wenbin; Gou, Jian; Cheng, Peng; Chen, Lan; Wu, Kehui

    2018-05-01

    Tip-enhanced Raman spectroscopy (TERS), which combines scanning probe microscopy with the Raman spectroscopy, is capable to access the local structure and chemical information simultaneously. However, the application of ambient TERS is limited by the unstable and poorly controllable experimental conditions. Here, we designed a high performance TERS system based on a low-temperature ultrahigh-vacuum scanning tunneling microscope (LT-UHV-STM) and combined with a molecular beam epitaxy (MBE) system. It can be used for growing two-dimensional (2D) materials and for in situ STM and TERS characterization. Using a 2D silicene sheet on the Ag(111) surface as a model system, we achieved an unprecedented 109 Raman single enhancement factor in combination with a TERS spatial resolution down to 0.5 nm. The results show that TERS combined with a MBE system can be a powerful tool to study low dimensional materials and surface science.

  8. Deep and surface circulation in the Northwest Indian Ocean from Argo, surface drifter, and in situ profiling current observations

    Science.gov (United States)

    Stryker, S. A.; Dimarco, S. F.; Stoessel, M. M.; Wang, Z.

    2010-12-01

    The northwest Indian Ocean is a region of complex circulation and atmospheric influence. The Persian (Arabian) Gulf and Red Sea contribute toward the complexity of the region. This study encompasses the surface and deep circulation in the region ranging from 0°N-35°N and 40°E-80°E from January 2002-December 2009. Emphasis is in the Persian Gulf, Oman Sea and Arabian Sea (roughly from 21°N-26°N and 56°E-63°E) using a variety of in situ and observation data sets. While there is a lot known about the Persian Gulf and Arabian Sea, little is known about the Oman Sea. Circulation in the northwest Indian Ocean is largely influenced by seasonal monsoon winds. From the winter monsoon to the summer monsoon, current direction reverses. Marginal sea inflow and outflow are also seasonally variable, which greatly impacts the physical water mass properties in the region. In situ and observation data sets include data from Argo floats (US GODAE), surface drifters (AOML) and an observation system consisting of 4 independent moorings and a cabled ocean observatory in the Oman Sea. The observing system in the Oman Sea was installed by Lighthouse R & D Enterprises, Inc. beginning in 2005, and measures current, temperature, conductivity, pressure, dissolved oxygen and turbidity, using the Aanderaa Recording Doppler Current Profiler (RDCP) 600 and the Aanderaa Recording Current Meter (RCM) 11. The cabled ocean observatory measures dissolved oxygen, temperature and salinity between 65 m and 1000 m and reports in real-time. Argo floats in the region have a parking depth range from 500 m to 2000 m. At 1000 m depth, 98% of the velocity magnitudes range from less than 1 cm/s to 20 cm/s. The Somali Current and Northeast/Southwest Monsoon Currents are present, reversing from summer to winter. At 2000 m depth, the Somali and Monsoon Currents are still present but have smaller velocities with 98% ranging from less than 1 cm/s to 13 cm/s. At both 1000 m and 2000 m, larger velocities occur

  9. Surface-enhanced Raman scattering active gold nanostructure fabricated by photochemical reaction of synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Akinobu, E-mail: yamaguti@lasti.u-hyogo.ac.jp [Laboratory of Advance Science and Technology for Industry, University of Hyogo, 3-1-2 Koto, Kamigori, Ako, Hyogo 678-1205 (Japan); Matsumoto, Takeshi [Laboratory of Advance Science and Technology for Industry, University of Hyogo, 3-1-2 Koto, Kamigori, Ako, Hyogo 678-1205 (Japan); Okada, Ikuo; Sakurai, Ikuya [Synchrotoron Radiation Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Utsumi, Yuichi [Laboratory of Advance Science and Technology for Industry, University of Hyogo, 3-1-2 Koto, Kamigori, Ako, Hyogo 678-1205 (Japan)

    2015-06-15

    The deposition of gold nanoparticles in an electroplating solution containing gold (I) trisodium disulphite under synchrotron X-ray radiation was investigated. The nanoparticles grew and aggregated into clusters with increasing radiation time. This behavior is explained by evaluating the effect of Derjaguin-Landau-Verweyand-Overbeek (DLVO) interactions combining repulsive electrostatic and attractive van der Waals forces on the particle deposition process. The surface-enhanced Raman scattering (SERS) of 4,4′ -bipyridine (4bpy) in aqueous solution was measured using gold nanoparticles immobilized on silicon substrates under systematically-varied X-ray exposure. The substrates provided an in situ SERS spectrum for 1 nM 4bpy. This demonstration creates new opportunities for chemical and environmental analyses through simple SERS measurements. - Highlights: • Gold nanoparticles were produced by photochemical reaction of synchrotron radiation. • The gold nanoparticles grew and aggregated into the higher-order nanostructure. • The behavior is qualitatively explained by analytical estimation. • The surface-enhanced Raman spectroscopy of 4,4′-bipyridine (4bpy) was demonstrated. • The substrate fabricated in a suitable condition provides in situ SERS for 1 nM 4bpy.

  10. A Facile in Situ and UV Printing Process for Bioinspired Self-Cleaning Surfaces

    Directory of Open Access Journals (Sweden)

    Marina A. González Lazo

    2016-08-01

    Full Text Available A facile in situ and UV printing process was demonstrated to create self-cleaning synthetic replica of natural petals and leaves. The process relied on the spontaneous migration of a fluorinated acrylate surfactant (PFUA within a low-shrinkage acrylated hyperbranched polymer (HBP and its chemical immobilization at the polymer-air interface. Dilute concentrations of 1 wt. % PFUA saturated the polymer-air interface within 30 min, leading to a ten-fold increase of fluorine concentration at the surface compared with the initial bulk concentration and a water contact angle (WCA of 108°. A 200 ms flash of UV light was used to chemically crosslink the PFUA at the HBP surface prior to UV printing with a polydimethylsiloxane (PDMS negative template of red and yellow rose petals and lotus leaves. This flash immobilization hindered the reverse migration of PFUA within the bulk HBP upon contacting the PDMS template, and enabled to produce texturized surfaces with WCA well above 108°. The synthetic red rose petal was hydrophobic (WCA of 125° and exhibited the adhesive petal effect. It was not superhydrophobic due to insufficient concentration of fluorine at its surface, a result of the very large increase of the surface of the printed texture. The synthetic yellow rose petal was quasi-superhydrophobic (WCA of 143°, roll-off angle of 10° and its self-cleaning ability was not good also due to lack of fluorine. The synthetic lotus leaf did not accurately replicate the intricate nanotubular crystal structures of the plant. In spite of this, the fluorine concentration at the surface was high enough and the leaf was superhydrophobic (WCA of 151°, roll-off angle below 5° and also featured self-cleaning properties.

  11. Enhanced protective properties of epoxy/polyaniline-camphorsulfonate nanocomposite coating on an ultrafine-grained metallic surface

    Science.gov (United States)

    Pour-Ali, Sadegh; Kiani-Rashid, Alireza; Babakhani, Abolfazl; Davoodi, Ali

    2016-07-01

    An ultrafine-grained surface layer on mild steel substrate with average grain size of 77 nm was produced through wire brushing process. Surface grain size was determined through transmission electron microscopy and X-ray diffraction methods. This substrate was coated with epoxy and an in situ synthesized epoxy/polyaniline-camphorsulfonate (epoxy/PANI-CSA) nanocomposite. The corrosion behavior was studied by open circuit potential, potentiodynamic polarization and impedance measurements. Results of electrochemical tests evidenced the enhanced protective properties of epoxy/PANI-CSA coating on the substrate with ultrafine-grained surface.

  12. In Situ Denitrification and Biological Nitrogen Fixation Under Enhanced Atmospheric Reactive Nitrogen Deposition in UK Peatlands

    Science.gov (United States)

    Ullah, Sami; Saiz Val, Ernesto; Sgouridis, Fotis; Peichl, Matthias; Nilsson, Mats

    2017-04-01

    Dinitrogen (N2) and nitrous oxide (N2O) losses due to denitrification and biological N2 fixation (BNF) are the most uncertain components of the nitrogen (N) cycle in peatlands under enhanced atmospheric reactive nitrogen (Nr) deposition. This uncertainty hampers our ability to assess the contribution of denitrification to the removal of biologically fixed and/or atmospherically deposited Nr in peatlands. This uncertainty emanates from the difficulty in measuring in situ soil N2 and N2O production and consumption in peatlands. In situ denitrification and its contribution to total N2O flux was measured monthly between April 2013 and October 2014 in peatlands in two UK catchments. An adapted 15N-Gas Flux method1 with low level addition of 15N tracer (0.03 ± 0.005 kg 15N ha-1) was used to measure denitrification and its contribution to net N2O production (DN2O/TN2O). BNF was measured in situ through incubation of selected sphagnum species under 15N2 gas tracer. Denitrification2 varied temporally and averaged 8 kg N-N2 ha-1 y-1. The contribution of denitrification was about 48% to total N2O flux3 of 0.05 kg N ha-1 y-1. Soil moisture, temperature, ecosystem respiration, pH and mineral N content mainly regulated the flux of N2 and N2O. Preliminary results showed suppression of BNF, which was 1.8 to 7 times lower in peatland mosses exposed to ˜15 to 20 kg N ha-1 y-1 Nr deposition in the UK than in peatland mosses in northern Sweden with background Nr deposition. Overall, the contribution of denitrification to Nr removal in the selected peatlands was ˜50% of the annual Nr deposition rates, making these ecosystems vulnerable to chronic N saturation. These results point to a need for a more comprehensive annual BNF measurement to more accurately account for total Nr input into peatlands and its atmospheric loss due to denitrification. References Sgouridis F, Stott A & Ullah S, 2016. Application of the 15N-Gas Flux method for measuring in situ N2 and N2O fluxes due to

  13. In situ treatment of concrete surfaces by organic impregnation and polymerization

    International Nuclear Information System (INIS)

    Ursella, P.; Moretti, G.; Pellecchia, V.

    1990-01-01

    The impregnation by resins of concrete structures is a process well known at PIC (Polymer Impregnated Concrete). This process improves the physical-chemical features of concrete matrixes in order to extend their durability when severe environmental conditions may occur. The main objective of this research contract has been the verification of a proper impregnation 'in situ' of existing concrete surfaces, of any laying in the space, by means of a prototype machine, expressly designed and implemented, and verification of the increase of mechanical resistance, leach resistance, durability of treated material. In a nuclear facility this goal is very important in relation to the long term integrity of concrete structures during operating lifetime and, in particular, after final shutdown. (author)

  14. Quality assurance of in-situ measurements of land surface albedo: A model-based approach

    Science.gov (United States)

    Adams, Jennifer; Gobron, Nadine; Widlowski, Jean-Luc; Mio, Corrado

    2016-04-01

    This paper presents the development of a model-based framework for assessing the quality of in-situ measurements of albedo used to validate land surface albedo products. Using a 3D Monte Carlo Ray Tracing (MCRT) radiative transfer model, a quality assurance framework is built based on simulated field measurements of albedo within complex 3D canopies and under various illumination scenarios. This method provides an unbiased approach in assessing the quality of field measurements, and is also able to trace the contributions of two main sources of uncertainty in field-measurements of albedo; those resulting from 1) the field measurement protocol, such as height or placement of field measurement within the canopy, and 2) intrinsic factors of the 3D canopy under specific illumination characteristics considered, such as the canopy structure and landscape heterogeneity, tree heights, ecosystem type and season.

  15. In situ X-ray probing reveals fingerprints of surface platinum oxide.

    Science.gov (United States)

    Friebel, Daniel; Miller, Daniel J; O'Grady, Christopher P; Anniyev, Toyli; Bargar, John; Bergmann, Uwe; Ogasawara, Hirohito; Wikfeldt, Kjartan Thor; Pettersson, Lars G M; Nilsson, Anders

    2011-01-07

    In situ X-ray absorption spectroscopy (XAS) at the Pt L(3) edge is a useful probe for Pt-O interactions at polymer electrolyte membrane fuel cell (PEMFC) cathodes. We show that XAS using the high energy resolution fluorescence detection (HERFD) mode, applied to a well-defined monolayer Pt/Rh(111) sample where the bulk penetrating hard X-rays probe only surface Pt atoms, provides a unique sensitivity to structure and chemical bonding at the Pt-electrolyte interface. Ab initio multiple-scattering calculations using the FEFF code and complementary extended X-ray absorption fine structure (EXAFS) results indicate that the commonly observed large increase of the white-line at high electrochemical potentials on PEMFC cathodes originates from platinum oxide formation, whereas previously proposed chemisorbed oxygen-containing species merely give rise to subtle spectral changes.

  16. Magnetization of individual yeast cells by in situ formation of iron oxide on cell surfaces

    Science.gov (United States)

    Choi, Jinsu; Lee, Hojae; Choi, Insung S.; Yang, Sung Ho

    2017-09-01

    Magnetic functionalization of living cells has intensively been investigated with the aim of various bioapplications such as selective separation, targeting, and localization of the cells by using an external magnetic field. However, the magnetism has not been introduced to individual living cells through the in situ chemical reactions because of harsh conditions required for synthesis of magnetic materials. In this work, magnetic iron oxide was formed on the surface of living cells by optimizing reactions conditions to be mild sufficiently enough to sustain cell viability. Specifically, the reactive LbL strategy led to formation of magnetically responsive yeast cells with iron oxide shells. This facile and direct post-magnetization method would be a useful tool for remote manipulation of living cells with magnetic interactions, which is an important technique for the integration of cell-based circuits and the isolation of cell in microfluidic devices.

  17. Enhanced photothermal lens using a photonic crystal surface

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yunfei; Liu, Longju [Department of Electrical and Computer Engineering, 2128 Coover Hall, Iowa State University, Ames,Iowa 50011 (United States); Zhao, Xiangwei [State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering,Southeast University, Nanjing, Jiangsu 211189 (China); Lu, Meng, E-mail: menglu@iastate.edu [Department of Electrical and Computer Engineering, 2128 Coover Hall, Iowa State University, Ames,Iowa 50011 (United States); Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011 (United States)

    2016-08-15

    A photonic crystal (PC)-enhanced photothermal lens (PTL) is demonstrated for the detection of optically thin light absorption materials. The PC-enhanced PTL system is based on a pump-probe scheme consisting of a PC surface, pump laser beam, and probe laser beam. Heated by the pump beam, light absorption materials on the PC surface generate the PTL and cause a substantial change to the guided-mode resonance supported by the PC structure. The change of the PC resonance is detected using the probe laser beam by measuring its reflectivity from the PC surface. When applied to analyze dye molecules deposited on the PC substrate, the developed system is capable of enhancing the PTL signal by 10-fold and reducing the lowest distinguishable concentration by 8-fold, in comparison to measuring without utilizing the PC resonance. The PC-enhanced PTL was also used to detect gold nanoparticles on the PC surface and exhibited a 20-fold improvement of the lowest distinguishable concentration. The PC-enhanced PTL technology offers a potential tool to obtain the absorption signatures of thin films in a broad spectral range with high sensitivity and inexpensive instrumentation. As a result, this technology will enable a broad range of applications of photothermal spectroscopy in chemical analysis and biomolecule sensing.

  18. Enhanced In Situ Chemical Oxidation Using Surfactants and Shear Thinning Fluids

    Science.gov (United States)

    Hauswirth, S.; Sadeghi, S.; Cerda, C. C.; Espinoza, I.; Schultz, P. B.; Miller, C. T.

    2017-12-01

    In situ chemical oxidation (ISCO) is an attractive approach for the remediation of recalcitrant contaminants, due to the fact that target compounds are degraded in place, precluding the need for ex situ treatment or disposal. However, field applications of ISCO approaches have been plagued by "rebound" of contaminant concentrations in groundwater weeks to months after treatment. The cause of rebound at a given site may vary, but is typically associated with back-diffusion from finer grained, low permeability units or the presence of non-aqueous phase liquids (NAPLs) that are incompletely degraded during treatment. Modifications to traditional ISCO methods have been proposed to overcome these challenges, including the use of shear-thinning polymers to improve delivery of oxidants to low permeability units and the addition of surfactants to improve dissolution of contaminants from NAPLs. In this work, we investigate the application of these approaches to the oxidation of manufactured gas plant (MGP) tars—NAPLs composed primarily of polycyclic aromatic hydrocarbons (PAHs). We conducted experiments to determine the mutual impact of each chemical component on the physical and chemical properties of the overall system. Specifically, experiments were designed to: determine the kinetics and overall effectiveness of contaminant-oxidant reactions for multiple oxidant-activator combinations; screen several common surfactants in terms of their ability to increase MGP tar solubility and their compatibility with oxidant systems; measure the impact of oxidants and surfactants on the rheology of several common polymer additives; and assess the effect of surfactants and polymers on the consumption of oxidants/activators and on the kinetics of contaminant-oxidant reactions. The results of this work provide insight into the chemical and physical mechanisms associated with enhanced ISCO approaches and an improved basis with which to model and design ISCO applications at both the lab

  19. Microbial and Chemical Enhancement of In-Situ Carbon Mineralization in Geological Formation

    Energy Technology Data Exchange (ETDEWEB)

    Matter, J.; Chandran, K.

    2013-05-31

    Predictions of global energy usage suggest a continued increase in carbon emissions and rising concentrations of CO{sub 2} in the atmosphere unless major changes are made to the way energy is produced and used. Various carbon capture and storage (CCS) technologies are currently being developed, but unfortunately little is known regarding the fundamental characteristics of CO{sub 2}-mineral reactions to allow a viable in-situ carbon mineralization that would provide the most permanent and safe storage of geologically-injected CO{sub 2}. The ultimate goal of this research project was to develop a microbial and chemical enhancement scheme for in-situ carbon mineralization in geologic formations in order to achieve long-term stability of injected CO{sub 2}. Thermodynamic and kinetic studies of CO{sub 2}-mineral-brine systems were systematically performed to develop the in-situ mineral carbonation process that utilizes organic acids produced by a microbial reactor. The major participants in the project are three faculty members and their graduate and undergraduate students at the School of Engineering and Applied Science and at the Lamont-Doherty Earth Observatory at Columbia University: Alissa Park in Earth and Environmental Engineering & Chemical Engineering (PI), Juerg Matter in Earth and Environmental Science (Co-PI), and Kartik Chandran in Earth and Environmental Engineering (Co-PI). Two graduate students, Huangjing Zhao and Edris Taher, were trained as a part of this project as well as a number of graduate students and undergraduate students who participated part-time. Edris Taher received his MS degree in 2012 and Huangjing Zhao will defend his PhD on Jan. 15th, 2014. The interdisciplinary training provided by this project was valuable to those students who are entering into the workforce in the United States. Furthermore, the findings from this study were and will be published in referred journals to disseminate the results. The list of the papers is given at

  20. In Situ SIMS and IR Spectroscopy of Well-Defined Surfaces Prepared by Soft Landing of Mass-Selected Ions

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Grant E.; Gunaratne, Kalupathirannehelage Don D.; Laskin, Julia

    2014-06-16

    Soft landing of mass-selected ions onto surfaces is a powerful approach for the highly-controlled preparation of materials that are inaccessible using conventional synthesis techniques. Coupling soft landing with in situ characterization using secondary ion mass spectrometry (SIMS) and infrared reflection absorption spectroscopy (IRRAS) enables analysis of well-defined surfaces under clean vacuum conditions. The capabilities of three soft-landing instruments constructed in our laboratory are illustrated for the representative system of surface-bound organometallics prepared by soft landing of mass-selected ruthenium tris(bipyridine) dications, [Ru(bpy)3]2+, onto carboxylic acid terminated self-assembled monolayer surfaces on gold (COOH-SAMs). In situ time-of-flight (TOF)-SIMS provides insight into the reactivity of the soft-landed ions. In addition, the kinetics of charge reduction, neutralization and desorption occurring on the COOH-SAM both during and after ion soft landing are studied using in situ Fourier transform ion cyclotron resonance (FT-ICR)-SIMS measurements. In situ IRRAS experiments provide insight into how the structure of organic ligands surrounding metal centers is perturbed through immobilization of organometallic ions on COOH-SAM surfaces by soft landing. Collectively, the three instruments provide complementary information about the chemical composition, reactivity and structure of well-defined species supported on surfaces.

  1. Development of Additive Construction Technologies for Application to Development of Lunar/Martian Surface Structures Using In-Situ Materials

    Science.gov (United States)

    Werkheiser, Niki J.; Fiske, Michael R.; Edmunson, Jennifer E.; Khoshnevis, Berokh

    2015-01-01

    For long-duration missions on other planetary bodies, the use of in situ materials will become increasingly critical. As human presence on these bodies expands, so must the breadth of the structures required to accommodate them including habitats, laboratories, berms, radiation shielding for natural radiation and surface reactors, garages, solar storm shelters, greenhouses, etc. Planetary surface structure manufacturing and assembly technologies that incorporate in situ resources provide options for autonomous, affordable, pre-positioned environments with radiation shielding features and protection from micrometeorites, exhaust plume debris, and other hazards. The ability to use in-situ materials to construct these structures will provide a benefit in the reduction of up-mass that would otherwise make long-term Moon or Mars structures cost prohibitive. The ability to fabricate structures in situ brings with it the ability to repair these structures, which allows for the self-sufficiency and sustainability necessary for long-duration habitation. Previously, under the auspices of the MSFC In-Situ Fabrication and Repair (ISFR) project and more recently, under the jointly-managed MSFC/KSC Additive Construction with Mobile Emplacement (ACME) project, the MSFC Surface Structures Group has been developing materials and construction technologies to support future planetary habitats with in-situ resources. One such additive construction technology is known as Contour Crafting. This paper presents the results to date of these efforts, including development of novel nozzle concepts for advanced layer deposition using this process. Conceived initially for rapid development of cementitious structures on Earth, it also lends itself exceptionally well to the automated fabrication of planetary surface structures using minimally processed regolith as aggregate, and binders developed from in situ materials as well. This process has been used successfully in the fabrication of

  2. Assessment and Enhancement of MERRA Land Surface Hydrology Estimates

    Science.gov (United States)

    Reichle, Rolf H.; Koster, Randal D.; deLannoy, Gabrielle J. M.; Forman, Barton A.; Liu, Qing; Mahanama, Sarith P. P.; Toure, Ally

    2012-01-01

    The Modern-Era Retrospective analysis for Research and Applications (MERRA) is a state-ofthe-art reanalysis that provides, in addition to atmospheric fields, global estimates of soil moisture, latent heat flux, snow, and runoff for 1979-present. This study introduces a supplemental and improved set of land surface hydrological fields ("MERRA-Land") generated by re-running a revised version of the land component of the MERRA system. Specifically, the MERRA-Land estimates benefit from corrections to the precipitation forcing with the Global Precipitation Climatology Project pentad product (version 2.1) and from revised parameter values in the rainfall interception model, changes that effectively correct for known limitations in the MERRA surface meteorological forcings. The skill (defined as the correlation coefficient of the anomaly time series) in land surface hydrological fields from MERRA and MERRA-Land is assessed here against observations and compared to the skill of the state-of-the-art ERA-Interim (ERA-I) reanalysis. MERRA-Land and ERA-I root zone soil moisture skills (against in situ observations at 85 US stations) are comparable and significantly greater than that of MERRA. Throughout the northern hemisphere, MERRA and MERRA-Land agree reasonably well with in situ snow depth measurements (from 583 stations) and with snow water equivalent from an independent analysis. Runoff skill (against naturalized stream flow observations from 18 US basins) of MERRA and MERRA-Land is typically higher than that of ERA-I. With a few exceptions, the MERRA-Land data appear more accurate than the original MERRA estimates and are thus recommended for those interested in using MERRA output for land surface hydrological studies.

  3. GaAs nanopillar-array solar cells employing in situ surface passivation

    Science.gov (United States)

    Mariani, Giacomo; Scofield, Adam C.; Hung, Chung-Hong; Huffaker, Diana L.

    2013-01-01

    Arrays of III–V direct-bandgap semiconductor nanopillars represent promising photovoltaic candidates due to their inherent high optical absorption coefficients and minimized reflection arising from light trapping, efficient charge collection in the radial direction and the ability to synthesize them on low-cost platforms. However, the increased surface area results in surface states that hamper the power conversion efficiency. Here, we report the first demonstration of GaAs nanopillar-array photovoltaics employing epitaxial passivation with air mass 1.5 global power conversion efficiencies of 6.63%. High-bandgap epitaxial InGaP shells are grown in situ and cap the radial p–n junctions to alleviate surface-state effects. Under light, the photovoltaic devices exhibit open-circuit voltages of 0.44 V, short-circuit current densities of 24.3 mA cm−2 and fill factors of 62% with high external quantum efficiencies >70% across the spectral regime of interest. A novel titanium/indium tin oxide annealed alloy is exploited as transparent ohmic anode. PMID:23422665

  4. In-situ imaging of tungsten surface modification under ITER-like transient heat loads

    Directory of Open Access Journals (Sweden)

    A.A. Vasilyev

    2017-08-01

    Full Text Available Experimental research on behavior of rolled tungsten plates under intense transient heat loads generated by a powerful (a total power of up to 7 MW long-pulse (0.1–0.3ms electron beam with full irradiation area of 2 cm2 was carried out. Imaging of the sample by the fast CCD cameras in the NIR range and with illumination by the 532nm continuous-wave laser was applied for in-situ surface diagnostics during exposure. In these experiments tungsten plates were exposed to heat loads 0.5–1MJ/m2 with a heat flux factor (Fhf close to and above the melting threshold of tungsten at initial room temperature. Crack formation and crack propagation under the surface layer were observed during multiple exposures. Overheated areas with excessive temperature over surrounding surface of about 500K were found on severely damaged samples more than 5ms after beam ending. The application of laser illumination enables to detect areas of intense tungsten melting near crack edges and crack intersections.

  5. Mechanical Properties and Tribological Behavior of In Situ NbC/Fe Surface Composites

    Science.gov (United States)

    Cai, Xiaolong; Zhong, Lisheng; Xu, Yunhua

    2017-01-01

    The mechanical properties and tribological behavior of the niobium carbide (NbC)-reinforced gray cast iron surface composites prepared by in situ synthesis have been investigated. Composites are comprised of a thin compound layer and followed by a deep diffusion zone on the surface of gray cast iron. The graded distributions of the hardness and elastic modulus along the depth direction of the cross section of composites form in the ranges of 6.5-20.1 and 159.3-411.2 GPa, respectively. Meanwhile, dry wear tests for composites were implemented on pin-on-disk equipment at sliding speed of 14.7 × 10-2 m/s and under 5 or 20 N, respectively. The result indicates that tribological performances of composites are considerably dependent on the volume fraction and the grain size of the NbC as well as the mechanical properties of the matrices in different areas. The surface compound layer presents the lowest coefficient of friction and wear rate, and exhibits the highest wear resistance, in comparison with diffusion zone and substrate. Furthermore, the worn morphologies observed reveal the dominant wear mechanism is abrasive wear feature in compound layer and diffusion zone.

  6. Surface enhanced Raman scattering in organic thin films covered with silver, indium and magnesium

    International Nuclear Information System (INIS)

    Salvan, Georgeta; Zahn, Dietrich R.T.; Paez, Beynor

    2004-01-01

    In situ resonant Raman spectroscopy was applied for the investigation of the interface formation between silver, indium and magnesium with polycrystalline organic semiconductor layers of 3,4,9,10-perylene tetra-carboxylic dianhydride (PTCDA). The spectral region of internal as well as external vibrational modes was recorded in order to achieve information related to the chemistry and the structure of the interface as well as to morphology of the metal layer. The experiments benefit from a strong enhancement of the internal mode scattering intensities which is induced by the rough morphology of deposited metals leading to surface enhanced Raman scattering (SERS). The external modes, on the other hand, are attenuated at different rates indicating that the diffusion of the metal atoms into the crystalline layers is highest for indium and lowest for magnesium

  7. Enhanced protective properties of epoxy/polyaniline-camphorsulfonate nanocomposite coating on an ultrafine-grained metallic surface

    International Nuclear Information System (INIS)

    Pour-Ali, Sadegh; Kiani-Rashid, Alireza; Babakhani, Abolfazl; Davoodi, Ali

    2016-01-01

    Highlights: • Preparing mild steel surface with ultrafine grains by wire brushing process. • Performance of a smart coating on micro- and nano-crystalline surfaces. • Corrosion evaluation, surface analysis and ac/dc electrochemical measurements. • Ultrafine surface grains improve protective behavior of epoxy/PANI-CSA coating. - Abstract: An ultrafine-grained surface layer on mild steel substrate with average grain size of 77 nm was produced through wire brushing process. Surface grain size was determined through transmission electron microscopy and X-ray diffraction methods. This substrate was coated with epoxy and an in situ synthesized epoxy/polyaniline-camphorsulfonate (epoxy/PANI-CSA) nanocomposite. The corrosion behavior was studied by open circuit potential, potentiodynamic polarization and impedance measurements. Results of electrochemical tests evidenced the enhanced protective properties of epoxy/PANI-CSA coating on the substrate with ultrafine-grained surface.

  8. Enhanced protective properties of epoxy/polyaniline-camphorsulfonate nanocomposite coating on an ultrafine-grained metallic surface

    Energy Technology Data Exchange (ETDEWEB)

    Pour-Ali, Sadegh, E-mail: pourali2020@ut.ac.ir; Kiani-Rashid, Alireza; Babakhani, Abolfazl; Davoodi, Ali

    2016-07-15

    Highlights: • Preparing mild steel surface with ultrafine grains by wire brushing process. • Performance of a smart coating on micro- and nano-crystalline surfaces. • Corrosion evaluation, surface analysis and ac/dc electrochemical measurements. • Ultrafine surface grains improve protective behavior of epoxy/PANI-CSA coating. - Abstract: An ultrafine-grained surface layer on mild steel substrate with average grain size of 77 nm was produced through wire brushing process. Surface grain size was determined through transmission electron microscopy and X-ray diffraction methods. This substrate was coated with epoxy and an in situ synthesized epoxy/polyaniline-camphorsulfonate (epoxy/PANI-CSA) nanocomposite. The corrosion behavior was studied by open circuit potential, potentiodynamic polarization and impedance measurements. Results of electrochemical tests evidenced the enhanced protective properties of epoxy/PANI-CSA coating on the substrate with ultrafine-grained surface.

  9. In situ droplet surface tension and viscosity measurements in gas metal arc welding

    International Nuclear Information System (INIS)

    Bachmann, B; Siewert, E; Schein, J

    2012-01-01

    In this paper, we present an adaptation of a drop oscillation technique that enables in situ measurements of thermophysical properties of an industrial pulsed gas metal arc welding (GMAW) process. Surface tension, viscosity, density and temperature were derived expanding the portfolio of existing methods and previously published measurements of surface tension in pulsed GMAW. Natural oscillations of pure liquid iron droplets are recorded during the material transfer with a high-speed camera. Frame rates up to 30000 fps were utilized to visualize iron droplet oscillations which were in the low kHz range. Image processing algorithms were employed for edge contour extraction of the droplets and to derive parameters such as oscillation frequencies and damping rates along different dimensions of the droplet. Accurate surface tension measurements were achieved incorporating the effect of temperature on density. These are compared with a second method that has been developed to accurately determine the mass of droplets produced during the GMAW process which enables precise surface tension measurements with accuracies up to 1% and permits the study of thermophysical properties also for metals whose density highly depends on temperature. Thermophysical properties of pure liquid iron droplets formed by a wire with 1.2 mm diameter were investigated in a pulsed GMAW process with a base current of 100 A and a pulse current of 600 A. Surface tension and viscosity of a sample droplet were 1.83 ± 0.02 N m -1 and 2.9 ± 0.3 mPa s, respectively. The corresponding droplet temperature and density are 2040 ± 50 K and 6830 ± 50 kg m -3 , respectively. (paper)

  10. Tuning the structure of platinum particles on ceria in situ for enhancing the catalytic performance of exhaust gas catalysts

    International Nuclear Information System (INIS)

    Gaenzler, Andreas M.; Casapu, Maria; Grunwaldt, Jan-Dierk; Vernoux, Philippe; Loridant, Stephane; Cadete Santos Aires, Francisco J.; Epicier, Thierry; Betz, Benjamin; Hoyer, Ruediger

    2017-01-01

    A dynamic structural behavior of Pt nanoparticles on the ceria surface under reducing/oxidizing conditions was found at moderate temperatures (<500 C) and exploited to enhance the catalytic activity of Pt/CeO 2 -based exhaust gas catalysts. Redispersion of platinum in an oxidizing atmosphere already occurred at 400 C. A protocol with reducing pulses at 250-400 C was applied in a subsequent step for controlled Pt-particle formation. Operando X-ray absorption spectroscopy unraveled the different extent of reduction and sintering of Pt particles: The choice of the reductant allowed the tuning of the reduction degree/particle size and thus the catalytic activity (CO>H 2 >C 3 H 6 ). This dynamic nature of Pt on ceria at such low temperatures (250-500 C) was additionally confirmed by in situ environmental transmission electron microscopy. A general concept is proposed to adjust the noble metal dispersion (size, structure), for example, during operation of an exhaust gas catalyst. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. In situ glow discharge plasma electrolytic synthesis of reduced TiO2 for enhanced visible light photocatalysis

    Science.gov (United States)

    Feng, Guang; Wu, Botao; Qayyum Khan, Abdul; Zeng, Heping

    2018-05-01

    Reduced titanium dioxide (TiO2‑x) due to its extraordinary visible light absorption has been widely investigated in photodegradation and water splitting nowadays. However, conventional routes to synthesize reduced TiO2 usually demand multiple preparation steps, harsh controlled conditions or expensive facilities. Here we developed a single-step in situ approach to prepare the gray TiO2‑x nanoparticles (sub-10 nm) effectively by the glow discharge plasma electrolysis (GDPE) under atmospheric pressure. The co-existence of self-doped oxygen vacancies and Ti3+ in the generated TiO2‑x nanoparticles is demonstrated by electron paramagnetic resonance (EPR). The tunable ratio of bulk/surface defect can be realized by controlling the glow discharge power directly. It should be noticed that Ti3+ in the synthesized TiO2‑x are quite stable in ambient air. The UV–vis spectra of gray TiO2‑x show an enhanced visible light absorption, which leads to high visible-light photocatalytic activity. Moreover, the as-prepared TiO2‑x after 6 months storage still shows excellent stability during photocatalytic reactions. Owing to its simplicity and effectivity, this preparation method with GDPE should provide a large-scale production for TiO2‑x with high photoactivity.

  12. Tuning the structure of platinum particles on ceria in situ for enhancing the catalytic performance of exhaust gas catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Gaenzler, Andreas M.; Casapu, Maria; Grunwaldt, Jan-Dierk [Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Vernoux, Philippe; Loridant, Stephane; Cadete Santos Aires, Francisco J. [Institut de Recherches sur la Catalyse et l' Environnement de Lyon, UMR 5256, CNRS, Universite Claude Bernard Lyon 1, Universite de Lyon, Villeurbanne (France); Epicier, Thierry [Materiaux, Ingenierie et Science, UMR 5510, CNRS, INSA de Lyon, Universite de Lyon, Villeurbanne (France); Betz, Benjamin [Umicore AG and Co. KG, Hanau (Germany); Ernst-Berl Institut, Technische Universitaet Darmstadt (Germany); Hoyer, Ruediger [Umicore AG and Co. KG, Hanau (Germany)

    2017-10-09

    A dynamic structural behavior of Pt nanoparticles on the ceria surface under reducing/oxidizing conditions was found at moderate temperatures (<500 C) and exploited to enhance the catalytic activity of Pt/CeO{sub 2}-based exhaust gas catalysts. Redispersion of platinum in an oxidizing atmosphere already occurred at 400 C. A protocol with reducing pulses at 250-400 C was applied in a subsequent step for controlled Pt-particle formation. Operando X-ray absorption spectroscopy unraveled the different extent of reduction and sintering of Pt particles: The choice of the reductant allowed the tuning of the reduction degree/particle size and thus the catalytic activity (CO>H{sub 2}>C{sub 3}H{sub 6}). This dynamic nature of Pt on ceria at such low temperatures (250-500 C) was additionally confirmed by in situ environmental transmission electron microscopy. A general concept is proposed to adjust the noble metal dispersion (size, structure), for example, during operation of an exhaust gas catalyst. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Surface-enhanced Raman scattering from silver electrodes

    International Nuclear Information System (INIS)

    Trott, G.R.

    1982-01-01

    The chemical and physical origins of the anomalously large enhancement of the Raman scattering cross section for molecules adsorbed on silver electrodes in an electrochemical cell were investigated. The effect of the chemical reactions which occur during the anodization/activation procedure were studied using the Ag-CN system. It was shown that the function of the anodization process is to roughen the electrode surface and create an activated site for bonding to the cyanide. A new nonelectrochemical technique for activating the silver surface, along with a study of the enhanced cyanide Raman scattering in different background electrolytes, showed that the Raman active entity on the surface must be a silver-cyanide complex. In order to study the physical mechanism of the enhancement, the angular dependence of the scattered radiation was measured from pyridine adsorbed on an evaporated silver electrode. Both polycrystalline and single crystalline silver films were used. The angular dependence of the scattered radiation from these films showed that the metal surface was controlling the directional properties of the scattered radiation, and not the polarizability tensor of the adsorbate. Based on these experimental results, it was concluded that for weakly roughened silver electrodes the source of the anomalous enhancement is due to a resonant Raman scattering process

  14. Surface Reconstruction and Image Enhancement via $L^1$-Minimization

    KAUST Repository

    Dobrev, Veselin

    2010-01-01

    A surface reconstruction technique based on minimization of the total variation of the gradient is introduced. Convergence of the method is established, and an interior-point algorithm solving the associated linear programming problem is introduced. The reconstruction algorithm is illustrated on various test cases including natural and urban terrain data, and enhancement oflow-resolution or aliased images. Copyright © by SIAM.

  15. Ultrasound enhanced plasma surface modification at atmospheric pressure

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Norrman, Kion

    and the material surface, and thus many reactive species generated in the plasma can reach the surface before inactivated, and be efficiently utilized for surface modification. In the present work polyester plates are treated using a dielectric barrier discharge (DBD) and a gliding arc at atmospheric pressure......Atmospheric pressure plasma treatment can be highly enhanced by simultaneous high-power ultrasonic irradiation onto the treating surface. It is because ultrasonic waves with a sound pressure level (SPL) above approximately 140 dB can reduce the thickness of a boundary gas layer between the plasma...... irradiation, the water contact angle dropped markedly, and tended to decrease furthermore at higher power. The ultrasonic irradiation during the plasma treatment consistently improved the wettability. Oxygen containing polar functional groups were introduced at the surface by the plasma treatment...

  16. Surface modification of protein enhances encapsulation in chitosan nanoparticles

    Science.gov (United States)

    Koyani, Rina D.; Andrade, Mariana; Quester, Katrin; Gaytán, Paul; Huerta-Saquero, Alejandro; Vazquez-Duhalt, Rafael

    2018-04-01

    Chitosan nanoparticles have a huge potential as nanocarriers for environmental and biomedical purposes. Protein encapsulation in nano-sized chitosan provides protection against inactivation, proteolysis, and other alterations due to environmental conditions, as well as the possibility to be targeted to specific tissues by ligand functionalization. In this work, we demonstrate that the chemical modification of the protein surface enhances the protein loading in chitosan nanocarriers. Encapsulation of green fluorescent protein and the cytochrome P450 was studied. The increase of electrostatic interactions between the free amino groups of chitosan and the increased number of free carboxylic groups in the protein surface enhance the protein loading, protein retention, and, thus, the enzymatic activity of chitosan nanoparticles. The chemical modification of protein surface with malonic acid moieties reduced drastically the protein isoelectric point increasing the protein interaction with the polycationic biomaterial and chitosan. The chemical modification of protein does not alter the morphology of chitosan nanoparticles that showed an average diameter of 18 nm, spheroidal in shape, and smooth surfaced. The strategy of chemical modification of protein surface, shown here, is a simple and efficient technique to enhance the protein loading in chitosan nanoparticles. This technique could be used for other nanoparticles based on polycationic or polyanionic materials. The increase of protein loading improves, doubtless, the performance of protein-loaded chitosan nanoparticles for biotechnological and biomedical applications.

  17. Nitrogen fate model for gas-phase ammonia-enhanced in situ bioventing

    International Nuclear Information System (INIS)

    Marshall, T.R.

    1995-01-01

    Subsurface bioremediation of contaminants is sometimes limited by the availability of nitrogen. Introduction of gaseous ammonia to the subsurface is a feasible and economical approach to enhance biodegradation in some environments. A gaseous nutrient source may be a practical option for sites where surface application of liquid nutrients is not possible, such as sites with shallow groundwater or sites with surface operations. A conceptual nitrogen fate model was developed to provide remediation scientists and engineers with some practical guidelines in the use of ammonia-enhanced bioventing. Ammonia supplied to the subsurface dissolves readily in soil moisture and sorbs strongly to soil particles. The ammonium ion is the preferred nutrient form of many microorganisms. Some of the ammonia will be converted to nitrate by ammonia-oxidizing organisms. Field monitoring data from an operating ammonia-enhanced bioventing remediation site for diesel fuel contamination are presented. Conservative additions of ammonia promoted appreciable increases in evolved carbon dioxide and rate of oxygen utilization. An overabundance of added ammonia promoted formation of methane from likely anaerobic hydrocarbon degradation in the presence of nitrate as the electron acceptor

  18. Nanogap embedded silver gratings for surface plasmon enhanced fluorescence

    Science.gov (United States)

    Bhatnagar, Kunal

    Plasmonic nanostructures have been extensively used in the past few decades for applications in sub-wavelength optics, data storage, optoelectronic circuits, microscopy and bio-photonics. The enhanced electromagnetic field produced at the metal and dielectric interface by the excitation of surface plasmons via incident radiation can be used for signal enhancement in fluorescence and surface enhanced Raman scattering studies. Novel plasmonic structures have shown to provide very efficient and extreme light concentration at the nano-scale in recent years. The enhanced electric field produced within a few hundred nanometers of these surfaces can be used to excite fluorophores in the surrounding environment. Fluorescence based bio-detection and bio-imaging are two of the most important tools in the life sciences and improving the qualities and capabilities of fluorescence based detectors and imaging equipment remains a big challenge for industry manufacturers. We report a novel fabrication technique for producing nano-gap embedded periodic grating substrates on the nanoscale using a store bought HD-DVD and conventional soft lithography procedures. Polymethylsilsesquioxane (PMSSQ) polymer is used as the ink for the micro-contact printing process with PDMS stamps obtained from the inexpensive HD-DVDs as master molds. Fluorescence enhancement factors of up to 118 times were observed with these silver nanostructures in conjugation with Rhodamine-590 fluorescent dye. These substrates are ideal candidates for a robust and inexpensive optical system with applications such as low-level fluorescence based analyte detection, single molecule imaging, and surface enhanced Raman studies. Preliminary results in single molecule experiments have also been obtained by imaging individual 3 nm and 20 nm dye-doped nanoparticles attached to the silver plasmonic gratings using epi-fluorescence microscopy.

  19. Enhanced Bioactivity and Bacteriostasis of Surface Fluorinated Polyetheretherketone.

    Science.gov (United States)

    Chen, Meiling; Ouyang, Liping; Lu, Tao; Wang, Heying; Meng, Fanhao; Yang, Yan; Ning, Congqin; Ma, Jingzhi; Liu, Xuanyong

    2017-05-24

    Although polyetheretherketone (PEEK) has been considered as a potential orthopedic and dental application material due to its similar elastic modulus as bones, inferior osseointegration and bacteriostasis of PEEK hampers its clinical application. In this work, fluorinated PEEK was constructed via plasma immersion ion implantation (PIII) followed by hydrofluoric acid treatment to ameliorate the osseointegration and antibacterial properties of PEEK. The surface microstructure, composition, and hydrophilicity of all samples were investigated. Rat bone mesenchymal stem cells (rBMSCs) were cultured on their surfaces to estimate bioactivity. The fluorinated PEEK can enhance the cell adhesion, cell spreading, proliferation, and alkaline phosphatase (ALP) activity compared to pristine PEEK. Furthermore, the fluorinated PEEK surface exhibits good bacteriostatic effect against Porphyromonas gingivalis, which is one of the major periodontal pathogens. In summary, we provide an effective route to introduce fluorine and the results reveal that the fluorinated PEEK can enhance the osseointegration and bacteriostasis, which provides a potential candidate for dental implants.

  20. In situ formation of graphene layers on graphite surfaces for efficient anodes of microbial fuel cells.

    Science.gov (United States)

    Tang, Jiahuan; Chen, Shanshan; Yuan, Yong; Cai, Xixi; Zhou, Shungui

    2015-09-15

    Graphene can be used to improve the performance of the anode in a microbial fuel cell (MFC) due to its good biocompatibility, high electrical conductivity and large surface area. However, the chemical production and modification of the graphene on the anode are environmentally hazardous because of the use of various harmful chemicals. This study reports a novel method based on the electrochemical exfoliation of a graphite plate (GP) for the in situ formation of graphene layers on the surface of a graphite electrode. When the resultant graphene-layer-based graphite plate electrode (GL/GP) was used as an anode in an MFC, a maximum power density of 0.67 ± 0.034 W/m(2) was achieved. This value corresponds to 1.72-, 1.56- and 1.26-times the maximum power densities of the original GP, exfoliated-graphene-modified GP (EG/GP) and chemically-reduced-graphene-modified GP (rGO/GP) anodes, respectively. Electrochemical measurements revealed that the high performance of the GL/GP anode was attributable to its macroporous structure, improved electron transfer and high electrochemical capacitance. The results demonstrated that the proposed method is a facile and environmentally friendly synthesis technique for the fabrication of high-performance graphene-based electrodes for use in microbial energy harvesting. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. DeepPIV: Measuring in situ Biological-Fluid Interactions from the Surface to Benthos

    Science.gov (United States)

    Katija, K.; Sherman, A.; Graves, D.; Kecy, C. D.; Klimov, D.; Robison, B. H.

    2015-12-01

    The midwater region of the ocean (below the euphotic zone and above the benthos) is one of the largest ecosystems on our planet, yet it remains one of the least explored. Little known marine organisms that inhabit midwater have developed strategies for swimming and feeding that ultimately contributes to their evolutionary success, and may inspire engineering solutions for societally relevant challenges. Fluid mechanics governs the interactions that midwater organisms have with their physical environment, but limited access to midwater depths and lack of non-invasive methods to measure in situ small-scale fluid motions prevent these interactions from being better understood. Significant advances in underwater vehicle technologies have only recently improved access to midwater. Unfortunately, in situ small-scale fluid mechanics measurement methods are still lacking in the oceanographic community. Here we present DeepPIV, an instrumentation package that can be affixed to remotely operated underwater vehicles that quantifies small-scale fluid motions from the surface of the ocean down to 4000 m depths. Utilizing ambient, suspended particulate in the coastal regions of Monterey Bay, fluid-structure interactions are evaluated on a range of marine organisms in midwater. Initial science targets include larvaceans, biological equivalents of flapping flexible foils, that create mucus houses to filter food. Little is known about the structure of these mucus houses and the function they play in selectively filtering particles, and these dynamics can serve as particle-mucus models for human health. Using DeepPIV, we reveal the complex structures and flows generated within larvacean mucus houses, and elucidate how these structures function.

  2. In situ emulsion cationic polymerization of isoprene onto the surface of graphite oxide sheets

    Energy Technology Data Exchange (ETDEWEB)

    Pazat, Alice [Ingénierie des Matériaux Polymères, IMP, CNRS UMR 5223, Université Claude Bernard Lyon 1 and INSA de Lyon, 15 boulevard Latarjet, 69122 Villeurbanne cedex (France); Laboratoire de Recherches et de Contrôle du Caoutchouc et des Plastiques, LRCCP, 60 rue Auber, 94408 Vitry-sur-Seine cedex (France); Beyou, Emmanuel, E-mail: beyou@univ-lyon1.fr [Ingénierie des Matériaux Polymères, IMP, CNRS UMR 5223, Université Claude Bernard Lyon 1 and INSA de Lyon, 15 boulevard Latarjet, 69122 Villeurbanne cedex (France); Barrès, Claire [Ingénierie des Matériaux Polymères, IMP, CNRS UMR 5223, Université Claude Bernard Lyon 1 and INSA de Lyon, 15 boulevard Latarjet, 69122 Villeurbanne cedex (France); Bruno, Florence; Janin, Claude [Laboratoire de Recherches et de Contrôle du Caoutchouc et des Plastiques, LRCCP, 60 rue Auber, 94408 Vitry-sur-Seine cedex (France)

    2017-02-28

    Highlights: • Graphite oxide sheets were functionalized by polyisoprene in a two steps procedure. • The polyisoprene chains were grafted onto functionalized GO sheets by the grafting through technique. • A polyisoprene weight content of 50% was calculated from TGA measurements. • A decrease of the air permeability coefficient of 27% for the vulcanized PI composites has been reached. - Abstract: Grafting of polymers onto graphite oxide sheets (GO) has been widely studied in recent years due to the numerous applications of GO-based composites. Herein, polyisoprene (PI) chains were anchored on the surface of GO by in situ cationic polymerization using a “grafting through” approach with allyltrimethoxysilane-modified GO (GO-ATMS). First, the functionalization of GO sheets through the hydrolysis-condensation of allyltrimethoxysilane (ATMS) molecules was qualitatively evidenced by infra-red spectroscopy and X-ray photoelectron spectrometry and a weight content of 4% grafted ATMS was calculated from thermogravimetric analysis. Then, isoprene was in situ polymerized through a one-pot cationic mechanism by using a highly water-dispersible Lewis acid surfactant combined catalyst. For comparison, it was shown that the cationic polymerization of isoprene in presence of un-functionalized GO sheets led to a polyisoprene weight content on the solid filler divided by 3 compared to GO-ATMS. Finally, the compounding of the modified GO/PI composites was performed at a processing temperature of 80 °C with 2 phr and 15 phr loadings and it was shown a decrease of the air permeability coefficient of 27% for the vulcanizates with 15 phr loading.

  3. In situ emulsion cationic polymerization of isoprene onto the surface of graphite oxide sheets

    International Nuclear Information System (INIS)

    Pazat, Alice; Beyou, Emmanuel; Barrès, Claire; Bruno, Florence; Janin, Claude

    2017-01-01

    Highlights: • Graphite oxide sheets were functionalized by polyisoprene in a two steps procedure. • The polyisoprene chains were grafted onto functionalized GO sheets by the grafting through technique. • A polyisoprene weight content of 50% was calculated from TGA measurements. • A decrease of the air permeability coefficient of 27% for the vulcanized PI composites has been reached. - Abstract: Grafting of polymers onto graphite oxide sheets (GO) has been widely studied in recent years due to the numerous applications of GO-based composites. Herein, polyisoprene (PI) chains were anchored on the surface of GO by in situ cationic polymerization using a “grafting through” approach with allyltrimethoxysilane-modified GO (GO-ATMS). First, the functionalization of GO sheets through the hydrolysis-condensation of allyltrimethoxysilane (ATMS) molecules was qualitatively evidenced by infra-red spectroscopy and X-ray photoelectron spectrometry and a weight content of 4% grafted ATMS was calculated from thermogravimetric analysis. Then, isoprene was in situ polymerized through a one-pot cationic mechanism by using a highly water-dispersible Lewis acid surfactant combined catalyst. For comparison, it was shown that the cationic polymerization of isoprene in presence of un-functionalized GO sheets led to a polyisoprene weight content on the solid filler divided by 3 compared to GO-ATMS. Finally, the compounding of the modified GO/PI composites was performed at a processing temperature of 80 °C with 2 phr and 15 phr loadings and it was shown a decrease of the air permeability coefficient of 27% for the vulcanizates with 15 phr loading.

  4. In-situ position and vibration measurement of rough surfaces using laser Doppler distance sensors

    Science.gov (United States)

    Czarske, J.; Pfister, T.; Günther, P.; Büttner, L.

    2009-06-01

    In-situ measurement of distances and shapes as well as dynamic deformations and vibrations of fast moving and especially rotating objects, such as gear shafts and turbine blades, is an important task at process control. We recently developed a laser Doppler distance frequency sensor, employing two superposed fan-shaped interference fringe systems with contrary fringe spacing gradients. Via two Doppler frequency evaluations the non-incremental position (i.e. distance) and the tangential velocity of rotating bodies are determined simultaneously. The distance uncertainty is in contrast to e.g. triangulation in principle independent of the object velocity. This unique feature allows micrometer resolutions of fast moved rough surfaces. The novel sensor was applied at turbo machines in order to control the tip clearance. The measurements at a transonic centrifugal compressor were performed during operation at up to 50,000 rpm, i.e. 586 m/s velocity of the blade tips. Due to the operational conditions such as temperatures of up to 300 °C, a flexible and robust measurement system with a passive fiber-coupled sensor, using diffractive optics, has been realized. Since the tip clearance of individual blades could be temporally resolved an analysis of blade vibrations was possible. A Fourier transformation of the blade distances results in an average period of 3 revolutions corresponding to a frequency of 1/3 of the rotary frequency. Additionally, a laser Doppler distance sensor using two tilted fringe systems and phase evaluation will be presented. This phase sensor exhibits a minimum position resolution of σz = 140 nm. It allows precise in-situ shape measurements at grinding and turning processes.

  5. In-situ investigations of surface modifications by swift heavy ions

    International Nuclear Information System (INIS)

    Bolse, W.; Sankarakumar, A.; Ferhati, R.; Garmatter, D.; Haag, M.; Dautel, K.; Asdi, M.; Srivastava, N.; Widmann, B.; Bauer, M.

    2014-01-01

    We are running a High Resolution Scanning Electron Microscope in the beam line of the UNILAC ion accelerator at the GSI Helmholtz Centre for Heavy Ion Research in Danustadt, Germany, which has recently been extended also with an EDX-system and two micro-manipulators. This instrument allows us to in-situ investigate the structural and compositional development of individual objects and structures in the μm- and nm-range under swift heavy ion bombardment, from the very first ion impact up to high fluences of the order of several 10 15 /cm 2 . The sample under investigation is irradiated in small fluence steps and in between SEM-images (and EDX-scans) of one and the same surface area are taken. The irradiation can be carried out at any incidence angle between 0° and 90° and also under stepwise or continuous azimuthal rotation of the sample. The micro-manipulator system allows us to perform additional analysis like electrical and mechanical characterization as well as substrate-free EDX at sub-μm objects. We are now also able to irradiate almost free standing sub-μm structures (pasted on a nanoscale tip or held in micro-tweezers). In this report an overview over this unique instrument and its capabilities and advantages will be given, illustrated by the results of our recent in-situ studies on ion induced modification of thin films (dewetting and self-organisation) and on shaping of sub-μm objects with swift heavy ions (by taking advantage of ion sputtering, ion hammering and ion induced visco-elastic flow). (author)

  6. Effect of pulsed laser parameters on in-situ TiC synthesis in laser surface treatment

    Science.gov (United States)

    Hamedi, M. J.; Torkamany, M. J.; Sabbaghzadeh, J.

    2011-04-01

    Commercial titanium sheets pre-coated with 300-μm thick graphite layer were treated by employing a pulsed Nd:YAG laser in order to enhance surface properties such as wear and erosion resistance. Laser in-situ alloying method produced a composite layer by melting the titanium substrate and dissolution of graphite in the melt pool. Correlations between pulsed laser parameters, microstructure and microhardness of the synthesized composite coatings were investigated. Effects of pulse duration and overlapping factor on the microstructure and hardness of the alloyed layer were deduced from Vickers micro-indentation tests, XRD, SEM and metallographic analyses of cross sections of the generated layer. Results show that the composite cladding layer was constituted with TiC intermetallic phase between the titanium matrix in particle and dendrite forms. The dendritic morphology of composite layer was changed to cellular grain structure by increasing laser pulse duration and irradiated energy. High values of the measured hardness indicate that deposited titanium carbide increases in the conditions with more pulse duration and low process speed. This occurs due to more dissolution of carbon into liquid Ti by heat input increasing and positive influence of the Marangoni flow in the melted zone.

  7. The potential of Bacillus licheniformis strains for in situ enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Yakimov, Michail M.; Timmis, Kenneth N. [Microbial Ecology Group, Division of Microbiology, GBF-National Research Centre for Biotechnology, Braunschweig (Germany); Amro, Mohammed M.; Kessel, Dagobert G. [German Petroleum Institute, Clausthal-Zellerfeld (Germany); Bock, Michael; Boseker, Klaus [BGR, Federal Institute for Geoscience and Natural Resources, Hannover (Germany); Fredrickson, Herbert L. [Environmental Laboratory, Waterways Experimental Station, USAGE, Vicksburg, MS (United States)

    1997-07-15

    The ability of microorganisms isolated from oil reservoirs to increase oil recovery by in situ growth and metabolism following the injection of laboratory grown microbial cells and nutrients were studied. Four strains isolated from Northern German oil reservoirs at depths of 866 to 1520 m, and identified as Bacillus licheniformis, were characterized taxonomically and physiologically. All strains grew on a variety of substrates at temperatures of up to 55C and at salinities of up to 12% NaCl. Extracellular polymer production occurred both aerobically and anaerobically over a wide range of temperatures, pressures and salinities, though it was optimal at temperatures around 50C and at salinities between 5 and 10% NaCl. Strain BNP29 was able to produce significant amounts of biomass, polymer, fermentation alcohols and acids in batch culture experiments under simulated reservoir conditions. Oil recovery (core flooding) experiments with strain BNP29 and a sucrose-based nutrient were performed with lime-free and lime-containing, oil-bearing sandstone cores. Oil recovery efficiencies varied from 9.3 to 22.1% of the water flood residual oil saturation. Biogenic acid production that accompanied oil production, along with selective plugging, are important mechanisms leading to increased oil recovery, presumably through resulting changes in rock porosity and alteration of wettability. These data show that strain BNP29 exhibits potential for the development of enhanced oil recovery processes

  8. Identification of bacteria used for microbial enhanced oil recovery process by fluorescence in situ hybridization technique

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, K.; Tanaka, S.; Otsuka, M. [Kansai Research Institute, Kyoto (Japan). Lifescience Lab.; Yonebayashi, H. [Japan National Oil Corp., Chiba (Japan). Tech. Research Center; Enomoto, H. [Tohoku University, Sendai (Japan). Dept. of Geoscience and Tech.

    2000-01-01

    A fluorescence in situ hybridization (FISH) technique using 16S rRNA-targeted oligonucleotide probes was developed for rapid detection of microorganisms for use in the microbial enhancement of oil recovery (MEOR) process. Two microorganisms, Enterobacter cloacae TRC-322 and Bacillus licheniformis TRC-18-2-a, were selected from a collection of Enterobacter sp. and Bacillus sp. which were screened in previous studies as candidate microorganisms for injection, and were used for this experiment. Oligonucleotide probes, design based on specific sequences in the 16S rRNA gene were labeled with either fluorescein isothiocyanate (FITC), or 6-car-boxy-X-rhodamine (ROX), and were allowed to hybridize with fixed cells of the two microorganisms noted above. The fluorescence signal emitted from each microorganism cells could clearly be detected by an epifluorescence microscope. Moreover, E. cloacae TRC-322 and B, licheniformis TRC-18-2-a, suspended in actual reservoir brine, including inorganic salts, oil and aboriginal cells of the reservoir brine, could be detected directly by this hybridization method, without the need for cultivation and isolation. (author)

  9. Field test for treatment verification of an in-situ enhanced bioremediation study

    International Nuclear Information System (INIS)

    Taur, C.K.; Chang, S.C.

    1995-01-01

    Due to a leakage from a 12-inch pressurized diesel steel pipe four years ago, an area of approximately 30,000 square meters was contaminated. A pilot study applying the technology of in-situ enhanced bioremediation was conducted. In the study, a field test kit and on-site monitoring equipment were applied for site characterization and treatment verification. Physically, the enhanced bioremediation study consisted of an air extraction and air supply system, and a nutrition supply network. Certain consistent sampling methodology was employed. Progress was verified by daily monitoring and monthly verification. The objective of this study was to evaluate the capabilities of indigenous microorganisms to biodegrade the petroleum hydrocarbons with provision of oxygen and nutrients. Nine extraction wells and eight air sparging wells were installed. The air sparging wells injected the air into geoformation and the extraction wells provided the underground air circulation. The soil samples were obtained monthly for treatment verification by a Minuteman drilling machine with 2.5-foot-long hollow-stem augers. The samples were analyzed on site for TPH-diesel concentration by a field test kit manufactured by HNU-Hanby, Houston, Texas. The analytical results from the field test kit were compared with the results from an environmental laboratory. The TVPH concentrations of the air extracted from the vadose zone by a vacuum blower and the extraction wells were routinely monitored by a Foxboro FID and Cosmos XP-311A combustible air detector. The daily monitoring of TVPH concentrations provided the reliable data for assessing the remedial progress

  10. Extruded Al-Al{sub 2}O{sub 3} composites formed in situ during consolidation of ultrafine Al powders: Effect of the powder surface area

    Energy Technology Data Exchange (ETDEWEB)

    Balog, Martin, E-mail: martin.balog@savba.sk [Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Bratislava (Slovakia); Simancik, Frantisek [Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Bratislava (Slovakia); Walcher, Martin; Rajner, Walter [NMD - New Materials Development GmbH, St. Pantaleon (Austria); Poletti, Cecilia [Institute of Materials Science and Welding, Graz University of Technology, Kopernikusgasse 24/I, A8010 Graz (Austria)

    2011-11-25

    Highlights: {yields} 25 gas atomised Al 99.5% powders with particle size <10 {mu}m were hot extruded. {yields} The strength of compacts was closely related to powder surface area. {yields} Grain boundary strengthening was enhanced by the presence of in situ Al{sub 2}O{sub 3} dispersoids. {yields} Compacts showed good thermal stability due to grain pinning of Al{sub 2}O{sub 3} dispersoids. - Abstract: Twenty-five samples of commercially available, gas-atomised Al (99.5%) powders with particle sizes <10 {mu}m were hot extruded into Al-Al{sub 2}O{sub 3} composites formed in situ during extrusion. The effect of particle size, surface area, oxygen content and atomisation atmosphere of the powder on the microstructure and mechanical properties of the extruded compacts were studied by Brunauer, Emmett, Teller (BET) analysis, hot gas extraction, scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), transmission electron microscopy (TEM) and tensile tests. Thermal stability of the compacts and the individual strengthening mechanisms operating in the compacts were discussed. It was found that the properties of the compacts stemmed from the extraordinary grain boundary strengthening effect of the ultrafine-grained compacts due to their microstructures. The efficiency of the grain boundary strengthening was significantly enhanced by the presence of nano-metric Al{sub 2}O{sub 3} dispersoids introduced in situ. The strength of the compacts was closely related to the surface area of the powder particles. In addition, the entrapped gasses and chemically bonded humidity had a negative effect on the mechanical properties of the compacts.

  11. Surface-enhanced Raman scattering on gold nanotrenches and nanoholes

    KAUST Repository

    Yue, Weisheng

    2012-04-01

    Dependent effects on edge-to-edge distance and incidence polarization in surface-enhanced Raman Scattering (SERS) were studied in detection of 4-mercaptopyridine (4-MPy) molecules absorbed on gold nanotrenches and nanoholes. The gold nanostructures with controllable size and period were fabricated using electron-beam lithography. Large SERS enhancement in detection of 4-MPy molecules on both nanostructred substrates was observed. The SERS enhancement increased exponentially with decrease of edge to-edge distance for both the nanotrenches and nanoholes while keeping the sizes of the nanotrenches and nanoholes unchanged. Investigation of polarization dependence showed that the SERS enhancement of nanotrenches was much more sensitive to the incidence polarizations than that of nanoholes. © 2012 American Scientific Publishers.

  12. Observations of Bathymetry-Induced Ocean Roughness Modulation in In-situ Surface Slope Measurements and Coincident Airborne SAR Images

    NARCIS (Netherlands)

    Gommenginger, C.P.; Robinson, I.S.; Willoughby, J.; Greidanus, H.S.F.; Taylor, V.

    1999-01-01

    Empirical results from a field experiment in the southern North Sea have demonstrated the possibility to detect bathymetry-induced sea surface roughness modulation in the coastal zone using high frequency in-situ slope measurements provided by the Towed Laser Slopemeter. A strong correlation between

  13. Micro-four-point probes in a UHV scanning electron microscope for in-situ surface-conductivity measurements

    DEFF Research Database (Denmark)

    Shiraki, I.; Nagao, T.; Hasegawa, S.

    2000-01-01

    For in-situ measurements of surface conductivity in ultrahigh vacuum (UHV), we have installed micro-four-point probes (probe spacings down to 4 mum) in a UHV scanning electron microscope (SEM) combined with scanning reflection-high-energy electron diffraction (RHEED). With the aid of piezoactuators...

  14. Enhanced

    Directory of Open Access Journals (Sweden)

    Martin I. Bayala

    2014-06-01

    Full Text Available Land Surface Temperature (LST is a key parameter in the energy balance model. However, the spatial resolution of the retrieved LST from sensors with high temporal resolution is not accurate enough to be used in local-scale studies. To explore the LST–Normalised Difference Vegetation Index relationship potential and obtain thermal images with high spatial resolution, six enhanced image sharpening techniques were assessed: the disaggregation procedure for radiometric surface temperatures (TsHARP, the Dry Edge Quadratic Function, the Difference of Edges (Ts∗DL and three models supported by the relationship of surface temperature and water stress of vegetation (Normalised Difference Water Index, Normalised Difference Infrared Index and Soil wetness index. Energy Balance Station data and in situ measurements were used to validate the enhanced LST images over a mixed agricultural landscape in the sub-humid Pampean Region of Argentina (PRA, during 2006–2010. Landsat Thematic Mapper (TM and Moderate Resolution Imaging Spectroradiometer (EOS-MODIS thermal datasets were assessed for different spatial resolutions (e.g., 960, 720 and 240 m and the performances were compared with global and local TsHARP procedures. Results suggest that the Ts∗DL technique is the most adequate for simulating LST to high spatial resolution over the heterogeneous landscape of a sub-humid region, showing an average root mean square error of less than 1 K.

  15. Effect of surface density silver nanoplate films toward surface-enhanced Raman scattering enhancement for bisphenol A detection

    Science.gov (United States)

    Bakar, N. A.; Salleh, M. M.; Umar, A. A.; Shapter, J. G.

    2018-03-01

    This paper reports a study on surface-enhanced Raman scattering (SERS) phenomenon of triangular silver nanoplate (NP) films towards bisphenol A (BPA) detection. The NP films were prepared using self-assembly technique with four different immersion times; 1 hour, 2 hours, 5 hours, and 8 hours. The SERS measurement was studied by observing the changes in Raman spectra of BPA after BPA absorbed on the NP films. It was found that the Raman intensity of BPA peaks was enhanced by using the prepared SERS substrates. This is clearly indicated that these SERS silver substrates are suitable to sense industrial chemical and potentially used as SERS detector. However, the rate of SERS enhancement is depended on the distribution of NP on the substrate surface.

  16. Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution

    Science.gov (United States)

    Neagu, Dragos; Oh, Tae-Sik; Miller, David N.; Ménard, Hervé; Bukhari, Syed M.; Gamble, Stephen R.; Gorte, Raymond J.; Vohs, John M.; Irvine, John T. S.

    2015-09-01

    Metal particles supported on oxide surfaces are used as catalysts for a wide variety of processes in the chemical and energy conversion industries. For catalytic applications, metal particles are generally formed on an oxide support by physical or chemical deposition, or less commonly by exsolution from it. Although fundamentally different, both methods might be assumed to produce morphologically and functionally similar particles. Here we show that unlike nickel particles deposited on perovskite oxides, exsolved analogues are socketed into the parent perovskite, leading to enhanced stability and a significant decrease in the propensity for hydrocarbon coking, indicative of a stronger metal-oxide interface. In addition, we reveal key surface effects and defect interactions critical for future design of exsolution-based perovskite materials for catalytic and other functionalities. This study provides a new dimension for tailoring particle-substrate interactions in the context of increasing interest for emergent interfacial phenomena.

  17. in Situ Formation of a Biocatalytic Alginate Membrane by Enhanced Concentration Polarization

    DEFF Research Database (Denmark)

    Marpani, Fauziah; Luo, Jianquan; Mateiu, Ramona Valentina

    2015-01-01

    A thin alginate layer induced on the surface of a commercial polysulfone membrane was used as a matrix for noncovalent immobilization of enzymes. Despite the expected decrease of flux across the membrane resulting from the coating, the initial hypothesis was that such a system should allow high...... immobilized enzyme loadings, which would benefit from the decreased flux in terms of increased enzyme/substrate contact time. The study was performed in a sequential fashion: first, the most suitable types of alginate able to induce a very thin, sustainable gel layer by pressure-driven membrane filtration...... were selected and evaluated. Then, an efficient method to make the gel layer adhere to the surface of the membrane was developed. Finally, and after confirming that the enzyme loading could remarkably be enhanced by using this method, several strategies to increase the permeate flux were evaluated...

  18. In situ crosslinking of surface-initiated ring opening metathesis polymerization of polynorbornene for improved stability.

    Science.gov (United States)

    Fursule, Ishan A; Abtahi, Ashkan; Watkins, Charles B; Graham, Kenneth R; Berron, Brad J

    2018-01-15

    In situ crosslinking is expected to increase the solvent stability of coatings formed by surface-initiated ring opening metathesis polymerization (SI ROMP). Solvent-associated degradation limits the utility of SI ROMP coatings. SI ROMP coatings have a unique capacity for post-functionalization through reaction of the unsaturated site on the polymer backbone. Any post-reaction scheme which requires a liquid solvent has the potential to degrade the coating and lower the thickness of the resulting film. We designed a macromolecular crosslinking group based on PEG dinorbornene. The PEG length is tailored to the expected mean chain to chain distance during surface-initiated polymerization. This crosslinking macromer is randomly copolymerized with norbornene through SI ROMP on a gold coated substrate. The solvent stability of polynorbornene coatings with and without PEG dinorbornene is quantitatively determined, and the mechanism of degradation is further supported through XPS and AFM analyses. The addition of the 0.25mol% PEG dinorbornene significantly increases the solvent stability of the SI ROMP coatings. The crosslinker presence in the more stable films is supported with observable PEG absorbances by FTIR and an increase in contact angle hysteresis when compared to non-crosslinked coatings. The oxidation of the SI ROMP coatings is supported by the observation of carbonyl oxygen in the polynorbornene coatings. The rapid loss of the non-crosslinked SI ROMP coating corresponds to nanoscale pitting across the surface and micron-scale regions of widespread film loss. The crosslinked coatings have uniform nanoscale pitting, but the crosslinked films show no evidence of micron-scale film damage. In all, the incorporation of minimal crosslinking content is a simple strategy for improving the solvent stability of SI ROMP coatings. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Double-grooved nanofibre surfaces with enhanced anisotropic hydrophobicity.

    Science.gov (United States)

    Liang, Meimei; Chen, Xin; Xu, Yang; Zhu, Lei; Jin, Xiangyu; Huang, Chen

    2017-11-02

    This study reports a facile method for fabricating double-grooved fibrous surfaces. The primary grooves of the surface are formed by aligned fibres, while the secondary grooves are achieved by oriented nanogrooves on the fibre surface. Investigation into the formation mechanism reveals that the nanogrooves can be readily tailored through adjusting the solvent ratio and relative humidity. With this understanding, a variety of polymers have been successfully electrospun into fibres having the same nanogrooved feature. These fibres show high resemblance to natural hierarchical structures, and thereby endowing the corresponding double-grooved surface with enhanced anisotropic hydrophobicity. A water droplet at a parallel direction to the grooves exhibits a much higher contact angle and a lower roll-off angle than the droplet at a perpendicular direction. The application potential of such anisotropic hydrophobicity has been demonstrated via a fog collection experiment, in which the double-grooved surface can harvest the largest amount of water. Moreover, the fabrication method requires neither post-treatment nor sophisticated equipment, making us anticipate that the double-grooved surface would be competitive in areas where a highly ordered surface, a large surface area and an anisotropic hydrophobicity are preferred.

  20. Ionic enhancement of silica surface nanowear in electrolyte solutions

    KAUST Repository

    Vakarelski, Ivan Uriev

    2012-11-20

    The nanoscale wear and friction of silica and silicon nitride surfaces in aqueous electrolyte solutions were investigated by using sharp atomic force microscope (AFM) cantilever tips coated with silicon nitride. Measurements were carried out in aqueous solutions of varying pH and in monovalent and divalent cation chloride and nitrate solutions. The silica surface was shown to wear strongly in solutions of high pH (≈11.0), as expected, but the presence of simple cations, such as Cs+ and Ca2+, was shown to dramatically effect the wear depth and friction force for the silica surface. In the case of monovalent cations, their hydration enthalpies correlated well with the wear and friction. The weakest hydrated cation of Cs+ showed the most significant enhancement of wear and friction. In the case of divalent cations, a complex dependence on the type of cation was found, where the type of anion was also seen to play an important role. The CaCl2 solution showed the anomalous enhancement of wear depth and friction force, although the solution of Ca(NO3)2 did not. The present results obtained with an AFM tip were also compared with previous nanotribology studies of silica surfaces in electrolyte solutions, and possible molecular mechanisms as to why cations enhance the wear and friction were also discussed. © 2012 American Chemical Society.

  1. Ionic enhancement of silica surface nanowear in electrolyte solutions

    KAUST Repository

    Vakarelski, Ivan Uriev; Teramoto, Naofumi; McNamee, Cathy E.; Marston, Jeremy; Higashitani, Ko

    2012-01-01

    The nanoscale wear and friction of silica and silicon nitride surfaces in aqueous electrolyte solutions were investigated by using sharp atomic force microscope (AFM) cantilever tips coated with silicon nitride. Measurements were carried out in aqueous solutions of varying pH and in monovalent and divalent cation chloride and nitrate solutions. The silica surface was shown to wear strongly in solutions of high pH (≈11.0), as expected, but the presence of simple cations, such as Cs+ and Ca2+, was shown to dramatically effect the wear depth and friction force for the silica surface. In the case of monovalent cations, their hydration enthalpies correlated well with the wear and friction. The weakest hydrated cation of Cs+ showed the most significant enhancement of wear and friction. In the case of divalent cations, a complex dependence on the type of cation was found, where the type of anion was also seen to play an important role. The CaCl2 solution showed the anomalous enhancement of wear depth and friction force, although the solution of Ca(NO3)2 did not. The present results obtained with an AFM tip were also compared with previous nanotribology studies of silica surfaces in electrolyte solutions, and possible molecular mechanisms as to why cations enhance the wear and friction were also discussed. © 2012 American Chemical Society.

  2. Dielectric platforms for surface-enhanced spectroscopies (Conference Presentation)

    Science.gov (United States)

    Maier, Stefan A.

    2016-03-01

    Plasmonic nanostructures serve as the main backbone of surface enhanced sensing methodologies, yet the associated optical losses lead to localized heating as well as quenching of molecules, complicating their use for enhancement of fluorescent emission. Additionally, conventional plasmonic materials are limited to operation in the visible part of the spectrum. We will elucidate how nanostructures consisting of conventional and polar dielectrics can be employed as a highly promising alternative platform. Dielectric nanostructures can sustain scattering resonances due to both electric and magnetic Mie modes. We have recently predicted high enhanced local electromagnetic field hot spots in dielectric nanoantenna dimers, with the hallmark of spot sizes comparable to those achievable with plasmonic antennas, but with lower optical losses. Here, we will present first experimental evidence for both fluorescence and Raman enhancement in dielectric nanoantennas, including a direct determination of localized heating, and compare to conventional Au dimer antennas. The second part of the talk will focus on the mid-infrared regime of the electromagnetic spectrum, outlining possibilities for surface enhanced infrared absorption spectroscopy based on polar and hyperbolic dielectrics.

  3. Enhancement of Friction against a Rough Surface by a Ridge-Channel Surface Microstructure.

    Science.gov (United States)

    Bai, Ying; Hui, Chung-Yuen; Levrard, Benjamin; Jagota, Anand

    2015-07-14

    We report on a study of the sliding friction of elastomeric surfaces patterned with ridges and channels (and unstructured flat controls), against both smooth and roughened spherical indenters. Against the smooth spherical indenter, all of the structured surfaces have highly reduced sliding friction due to the reduction in actual area of contact. Against roughened spherical indenters, however, the sliding force for structured samples can be up to 50% greater than that of an unstructured flat control. The mechanism of enhanced friction against a rough surface is due to a combination of increased actual area of contact, interlocking between roughness and the surface structure, and attendant dynamic instabilities that dissipate energy.

  4. Characterization of boron carbide particulate reinforced in situ copper surface composites synthesized using friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Sathiskumar, R., E-mail: sathiscit2011@gmail.com [Department of Mechanical Engineering, Coimbatore Institute of Technology, Coimbatore, 641 014 Tamil Nadu (India); Murugan, N., E-mail: murugan@cit.edu.in [Department of Mechanical Engineering, Coimbatore Institute of Technology, Coimbatore, 641 014 Tamil Nadu (India); Dinaharan, I., E-mail: dinaweld2009@gmail.com [Department of Mechanical Engineering, V V College of Engineering, Tisaiyanvilai, 627 657 Tamil Nadu (India); Vijay, S.J., E-mail: vijayjoseph@karunya.edu [Centre for Research in Metallurgy (CRM), School of Mechanical Sciences, Karunya University, Coimbatore, 641 114 Tamil Nadu (India)

    2013-10-15

    Friction stir processing has evolved as a novel solid state technique to fabricate surface composites. The objective of this work is to apply the friction stir processing technique to fabricate boron carbide particulate reinforced copper surface composites and investigate the effect of B{sub 4}C particles and its volume fraction on microstructure and sliding wear behavior of the same. A groove was prepared on 6 mm thick copper plates and packed with B{sub 4}C particles. The dimensions of the groove was varied to result in five different volume fractions of B{sub 4}C particles (0, 6, 12, 18 and 24 vol.%). A single pass friction stir processing was done using a tool rotational speed of 1000 rpm, travel speed of 40 mm/min and an axial force of 10 kN. Metallurgical characterization of the Cu/B{sub 4}C surface composites was carried out using optical microscope and scanning electron microscope. The sliding wear behavior was evaluated using a pin-on-disk apparatus. Results indicated that the B{sub 4}C particles significantly influenced the area, dispersion, grain size, microhardness and sliding wear behavior of the Cu/B{sub 4}C surface composites. When the volume fraction of B{sub 4}C was increased, the wear mode changed from microcutting to abrasive wear and wear debris was found to be finer. Highlights: • Fabrication of Cu/B{sub 4}C surface composite by friction stir processing • Analyzing the effect of B{sub 4}C particles on the properties of Cu/B4C surface composite • Increased volume fraction of B{sub 4}C particles reduced the area of surface composite. • Increased volume fraction of B{sub 4}C particles enhanced the microhardness and wear rate. • B{sub 4}C particles altered the wear mode from microcutting to abrasive.

  5. Surface enhanced raman spectroscopy analytical, biophysical and life science applications

    CERN Document Server

    Schlücker, Sebastian

    2013-01-01

    Covering everything from the basic theoretical and practical knowledge to new exciting developments in the field with a focus on analytical and life science applications, this monograph shows how to apply surface-enhanced Raman scattering (SERS) for solving real world problems. From the contents: * Theory and practice of SERS * Analytical applications * SERS combined with other analytical techniques * Biophysical applications * Life science applications including various microscopies Aimed at analytical, surface and medicinal chemists, spectroscopists, biophysicists and materials scientists. Includes a Foreword by the renowned Raman spectroscopist Professor Wolfgang Kiefer, the former Editor-in-Chief of the Journal of Raman Spectroscopy.

  6. Heat Transfer Enhancement in Turbulent Flows by Blocked Surfaces

    Directory of Open Access Journals (Sweden)

    Onur YEMENİCİ

    2013-04-01

    Full Text Available In this study, the heat transfer analyses over flat and blocked surfaces were carried out in turbulent flow under the influence of the block height. A constant-temperature hot wire anemometer was used to the velocity and turbulent intensity measurements, while temperature values were measured by copper-constantan thermocouples. The average Stanton numbers for block heights of 15 and 25 mm were higher than those of flat surface by %38 and %84, respectively. The results showed that the presence of the blocks increased the heat transfer and the enhancement rose with block heights

  7. Ultrasensitive detection of phenolic antioxidants by surface enhanced Raman spectroscopy

    Science.gov (United States)

    Ornelas-Soto, N.; Aguilar-Hernández, I. A.; Afseth, N.; López-Luke, T.; Contreras-Torres, F. F.; Wold, J. P.

    2017-08-01

    Surface-Enhanced Raman Spectroscopy (SERS) is a powerful surface-sensitive technique to study the vibrational properties of analytes at very low concentrations. In this study, ferulic acid, p-coumaric acid, caffeic acid and sinapic acid were analyzed by SERS using Ag colloids. Analytes were detected up to 2.5x10-9M. For caffeic acid and coumaric acid, this detection limit has been reached for the first time, as well as the SERS analysis of sinapic acid using silver colloids.

  8. [Current views on surface enhanced Raman spectroscopy in microbiology].

    Science.gov (United States)

    Jia, Xiaoxiao; Li, Jing; Qin, Tian; Deng, Aihua; Liu, Wenjun

    2015-05-01

    Raman spectroscopy has generated many branches during the development for more than 90 years. Surface enhanced Raman spectroscopy (SERS) improves SNR by using the interaction between tested materials and the surface of rough metal, as to quickly get higher sensitivity and precision spectroscopy without sample pretreatment. This article describes the characteristic and classification of SERS, and updates the theory and clinical application of SERS. It also summarizes the present status and progress of SERS in various disciplines and illustrates the necessity and urgency of its research, which provides rationale for the application for SERS in microbiology.

  9. Rapid and sensitive detection of malachite green in aquaculture water by electrochemical preconcentration and surface-enhanced Raman scattering.

    Science.gov (United States)

    Xu, Kai-Xuan; Guo, Mei-Hong; Huang, Yu-Ping; Li, Xiao-Dong; Sun, Jian-Jun

    2018-04-01

    A highly sensitive and rapid method of in-situ surface-enhanced Raman spectroscopy (SERS) combining with electrochemical preconcentration (EP) in detecting malachite green (MG) in aquaculture water was established. Ag nanoparticles (AgNPs) were synthesized and spread onto the surface of gold electrodes after centrifuging to produce SERS-active substrates. After optimizing the pH values, preconcentration potentials and times, in-situ EP-SERS detection was carried out. A sensitive and rapid analysis of the low-concentration MG was accomplished within 200s and the limit of detection was 2.4 × 10 -16 M. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Facile synthesis of surface N-doped Bi_2O_2CO_3: Origin of visible light photocatalytic activity and in situ DRIFTS studies

    International Nuclear Information System (INIS)

    Zhou, Ying; Zhao, Ziyan; Wang, Fang; Cao, Kun; Doronkin, Dmitry E.; Dong, Fan; Grunwaldt, Jan-Dierk

    2016-01-01

    Graphical abstract: Surfactant (CTAB) can induce nitrogen interstitially doping in the Bi_2O_2CO_3 surface, leading to the formation of localized states from N−O bond, which probably account for the origin of the visible light activity. Moreover, the photocatalytic NO oxidation processes over Bi_2O_2CO_3 were successfully monitored for the first time by in situ DRIFTS. - Highlights: • Interstitially doping N in the Bi_2O_2CO_3 surface was achieved at room temperature. • N-doped Bi_2O_2CO_3 exhibited significantly enhanced visible light photocatalytic activity compared to the pristine Bi_2O_2CO_3. • The formation of localized states from N−O bond could account for the visible light activity of Bi_2O_2CO_3. • The photocatalytic NO oxidation process was monitored by in situ DRIFTS. - Abstract: Bi_2O_2CO_3 nanosheets with exposed {001} facets were prepared by a facile room temperature chemical method. Due to the high oxygen atom density in {001} facets of Bi_2O_2CO_3, the addition of cetyltrimethylammonium bromide (CTAB) does not only influence the growth of crystalline Bi_2O_2CO_3, but also modifies the surface properties of Bi_2O_2CO_3 through the interaction between CTAB and Bi_2O_2CO_3. Nitrogen from CTAB as dopant interstitially incorporates in the Bi_2O_2CO_3 surface evidenced by both experimental and theoretical investigations. Hence, the formation of localized states from N−O bond improves the visible light absorption and charge separation efficiency, which leads to an enhancement of visible light photocatalytic activity toward to the degradation of Rhodamine B (RhB) and oxidation of NO. In addition, the photocatalytic NO oxidation over Bi_2O_2CO_3 nanosheets was successfully monitored for the first time using in situ diffuse reflectance infrared Fourier-transform spectroscopy (DRIFTS). Both bidentate and monodentate nitrates were identified on the surface of catalysts during the photocatalytic reaction process. The application of this strategy to

  11. An ion-sputtering gun to clean crystal surfaces in-situ in an ultra-high-vacuum electron microscope

    International Nuclear Information System (INIS)

    Morita, Etsuo; Takayanagi, Kunio; Kobayashi, Kunio; Yagi, Katsumichi; Honjo, Goro

    1980-01-01

    The design and performance of an ion-sputtering gun for cleaning crystal surfaces in-situ in an ultra-high-vacuum electron microscope are reported. The electron microscopic aspects of ion-bombardment damage to ionic magnesium oxide, covalent germanium and silicon, and metallic gold and copper crystals, and the effects of annealing after and during sputtering are described. The growth of various kinds of films deposited in-situ on crystals cleaned by ion-sputtering are described and discussed. (author)

  12. Surface-Enhanced Raman Spectroscopy Integrated Centrifugal Microfluidics Platform

    DEFF Research Database (Denmark)

    Durucan, Onur

    This PhD thesis demonstrates (i) centrifugal microfluidics disc platform integrated with Au capped nanopillar (NP) substrates for surface-enhanced Raman spectroscopy (SERS) based sensing, and (ii) novel sample analysis concepts achieved by synergistical combination of sensing techniques and minia......This PhD thesis demonstrates (i) centrifugal microfluidics disc platform integrated with Au capped nanopillar (NP) substrates for surface-enhanced Raman spectroscopy (SERS) based sensing, and (ii) novel sample analysis concepts achieved by synergistical combination of sensing techniques...... dense array of NP structures. Furthermore, the wicking assisted nanofiltration procedure was accomplished in centrifugal microfluidics platform and as a result additional sample purification was achieved through the centrifugation process. In this way, the Au coated NP substrate was utilized...

  13. Applications of the surface enhanced Raman scattering (SERS)

    International Nuclear Information System (INIS)

    Picquart, M.; Haro P, E.; Bernard, S.

    2007-01-01

    Full text: Vibration spectroscopy techniques are used for many times to identify substances, determine molecular structure and quantify them, independently of their physical state. Raman spectroscopy as infrared absorption permit to access the vibration energy levels of molecules. In the second case, the permanent dipolar moment is involved while in the first one it is the polarizability (and the induced dipolar moment). Unfortunately, the classical Raman spectroscopy is low sensitive in particular in the case of biological molecules. On the opposite, the surface enhanced Raman spectroscopy (SERS) offers great potentialities. In this case, the molecules are adsorbed on a rough surface or on nanoparticles of gold or silver and the: signal can be increased by a factor of 10 7 to 10 8 . Moreover, the spectral enhancement is greater for the vibrations of the functional group of the molecule adsorbed on the substrate. In this work, we present the main theoretical bases of SERS, and some results obtain on different systems. (Author)

  14. Surface-enhanced Raman spectroscopy bioanalytical, biomolecular and medical applications

    CERN Document Server

    Procházka, Marek

    2016-01-01

    This book gives an overview of recent developments in RS and SERS for sensing and biosensing considering also limitations, possibilities and prospects of this technique. Raman scattering (RS) is a widely used vibrational technique providing highly specific molecular spectral patterns. A severe limitation for the application of this spectroscopic technique lies in the low cross section of RS. Surface-enhanced Raman scattering (SERS) spectroscopy overcomes this problem by 6-11 orders of magnitude enhancement compared with the standard RS for molecules in the close vicinity of certain rough metal surfaces. Thus, SERS combines molecular fingerprint specificity with potential single-molecule sensitivity. Due to the recent development of new SERS-active substrates, labeling and derivatization chemistry as well as new instrumentations, SERS became a very promising tool for many varied applications, including bioanalytical studies and sensing. Both intrinsic and extrinsic SERS biosensing schemes have been employed to...

  15. Nanocapsule of cationic liposomes obtained using "in situ" acrylic acid polymerization: stability, surface charge and biocompatibility.

    Science.gov (United States)

    Scarioti, Giovana Danieli; Lubambo, Adriana; Feitosa, Judith P A; Sierakowski, Maria Rita; Bresolin, Tania M B; de Freitas, Rilton Alves

    2011-10-15

    In this work, didecyldimethylammonium bromide (DDAB) and 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) (2.5:1) were used to prepare liposomes coated with polyacrylic acid (PAA) using "in situ" polymerization with 2.5, 5 and 25 mM of acrylic acid (AA). The PAA concentrations were chosen to achieve partially to fully covered capsules, and the polymerization reaction was observed with real-time monitoring using dynamic light scattering (NanoDLS). The DDAB:DOPE liposomes showed stability in the tested temperature range (25-70°C), whereas the results confirmed the success of the polymerization according to superficial charge (zeta potential of +66.7±1.2 mV) results and AFM images. For the liposomes that were fully coated with PAA (zeta potential of +0.3±3.9 mV), cytotoxicity was independent of the concentration of albumin. Cationic liposomes and nanocapsules of the stable liposomes coated with PAA were obtained by controlling the surface charge, which was the most important factor related to cytotoxicity. Thus, a potential, safe drug nanocarrier was successfully developed in this work. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Localized in situ polymerization on graphene surfaces for stabilized graphene dispersions.

    Science.gov (United States)

    Das, Sriya; Wajid, Ahmed S; Shelburne, John L; Liao, Yen-Chih; Green, Micah J

    2011-06-01

    We demonstrate a novel in situ polymerization technique to develop localized polymer coatings on the surface of dispersed pristine graphene sheets. Graphene sheets show great promise as strong, conductive fillers in polymer nanocomposites; however, difficulties in dispersion quality and interfacial strength between filler and matrix have been a persistent problem for graphene-based nanocomposites, particularly for pristine graphene. With this in mind, a physisorbed polymer layer is used to stabilize graphene sheets in solution. To create this protective layer, we formed an organic microenvironment around dispersed graphene sheets in surfactant solutions, and created a nylon 6, 10 or nylon 6, 6 coating via interfacial polymerization. Technique lies at the intersection of emulsion and admicellar polymerization; a similar technique was originally developed to protect luminescent properties of carbon nanotubes in solution. These coated graphene dispersions are aggregation-resistant and may be reversibly redispersed in water even after freeze-drying. The coated graphene holds promise for a number of applications, including multifunctional graphene-polymer nanocomposites. © 2011 American Chemical Society

  17. Combining periodic hydraulic tests and surface tilt measurements to explore in situ fracture hydromechanics

    Science.gov (United States)

    Schuite, Jonathan; Longuevergne, Laurent; Bour, Olivier; Guihéneuf, Nicolas; Becker, Matthew W.; Cole, Matthew; Burbey, Thomas J.; Lavenant, Nicolas; Boudin, Frédéric

    2017-08-01

    Fractured bedrock reservoirs are of socio-economical importance, as they may be used for storage or retrieval of fluids and energy. In particular, the hydromechanical behavior of fractures needs to be understood as it has implications on flow and governs stability issues (e.g., microseismicity). Laboratory, numerical, or field experiments have brought considerable insights to this topic. Nevertheless, in situ hydromechanical experiments are relatively uncommon, mainly because of technical and instrumental limitations. Here we present the early stage development and validation of a novel approach aiming at capturing the integrated hydromechanical behavior of natural fractures. It combines the use of surface tiltmeters to monitor the deformation associated with the periodic pressurization of fractures at depth in crystalline rocks. Periodic injection and withdrawal advantageously avoids mobilizing or extracting significant amounts of fluid, and it hinders any risk of reservoir failure. The oscillatory perturbation is intended to (1) facilitate the recognition of its signature in tilt measurements and (2) vary the hydraulic penetration depth in order to sample different volumes of the fractured bedrock around the inlet and thereby assess scale effects typical of fractured systems. By stacking tilt signals, we managed to recover small tilt amplitudes associated with pressure-derived fracture deformation. Therewith, we distinguish differences in mechanical properties between the three tested fractures, but we show that tilt amplitudes are weakly dependent on pressure penetration depth. Using an elastic model, we obtain fracture stiffness estimates that are consistent with published data. Our results should encourage further improvement of the method.

  18. [Study on the surface-enhanced Raman spectrum of trimethoprim].

    Science.gov (United States)

    Zhang, Jin-zhi; Wang, Yuan

    2003-02-01

    A new method is given in this paper to study the spectra of trimethoprim by using the surface-enhanced Raman spectrum (SERS) technology and the highly efficient thin layer chromatography (TLC) dissociation technology. The results of SERS indicate that the main vibrant spectral band can be obtained by TLC in the samples of about 6 micrograms. The expansion and contraction of pyrimidine ring can be obviously increased and the molecule information can be exactly presented under the action of silver particles.

  19. CHF Enhancement by Surface Patterning based on Hydrodynamic Instability Model

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Han; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)

    2015-05-15

    If the power density of a device exceeds the CHF point, bubbles and vapor films will be covered on the whole heater surface. Because vapor films have much lower heat transfer capabilities compared to the liquid layer, the temperature of the heater surface will increase rapidly, and the device could be damaged due to the heater burnout. Therefore, the prediction and the enhancement of the CHF are essential to maximizing the efficient heat removal region. Numerous studies have been conducted to describe the CHF phenomenon, such as hydrodynamic instability theory, macrolayer dryout theory, hot/dry spot theory, and bubble interaction theory. The hydrodynamic instability model, proposed by Zuber, is the predominant CHF model that Helmholtz instability attributed to the CHF. Zuber assumed that the Rayleigh-Taylor (RT) instability wavelength is related to the Helmholtz wavelength. Lienhard and Dhir proposed a CHF model that Helmholtz instability wavelength is equal to the most dangerous RT wavelength. In addition, they showed the heater size effect using various heater surfaces. Lu et al. proposed a modified hydrodynamic theory that the Helmholtz instability was assumed to be the heater size and the area of the vapor column was used as a fitting factor. The modified hydrodynamic theories were based on the change of Helmholtz wavelength related to the RT instability wavelength. In the present study, the change of the RT instability wavelength, based on the heater surface modification, was conducted to show the CHF enhancement based on the heater surface patterning in a plate pool boiling. Sapphire glass was used as a base heater substrate, and the Pt film was used as a heating source. The patterning surface was based on the change of RT instability wavelength. In the present work the study of the CHF was conducted using bare Pt and patterned heating surfaces.

  20. Multiple layered metallic nanostructures for strong surface-enhanced Raman spectroscopy enhancement

    International Nuclear Information System (INIS)

    Xia, Ming; Xie, Ya-Hong; Qiao Kuan; Cheng Zhiyuan

    2016-01-01

    We report a systematic study on a practical way of patterning metallic nanostructures to achieve high surface-enhanced Raman spectroscopy (SERS) enhancement factors (EFs) and high hot-spot density. By simply superimposing a 1-layer Au nanotriangle array on another to form a multilayer nanotriangle array, the SERS signal can be enhanced by 2 orders of magnitude compared with a 1-layer nanotriangle array. The drastic increases in the SERS EF and the hot spot density of the multilayer Au nanotriangle array are due to the increase in the number of gaps formed between Au nanotriangles and the decrease of the gap width. (author)

  1. Enhanced spectroscopic gas sensors using in-situ grown carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    De Luca, A.; Cole, M. T.; Milne, W. I. [Department of Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom); Hopper, R. H.; Boual, S.; Ali, S. Z. [Cambridge CMOS Sensors Ltd., Deanland House, 160 Cowley Road, Cambridge CB4 0DL (United Kingdom); Warner, J. H.; Robertson, A. R. [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom); Udrea, F. [Department of Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom); Cambridge CMOS Sensors Ltd., Deanland House, 160 Cowley Road, Cambridge CB4 0DL (United Kingdom); Gardner, J. W. [School of Engineering, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2015-05-11

    In this letter, we present a fully complementary-metal-oxide-semiconductor (CMOS) compatible microelectromechanical system thermopile infrared (IR) detector employing vertically aligned multi-walled carbon nanotubes (CNT) as an advanced nano-engineered radiation absorbing material. The detector was fabricated using a commercial silicon-on-insulator (SOI) process with tungsten metallization, comprising a silicon thermopile and a tungsten resistive micro-heater, both embedded within a dielectric membrane formed by a deep-reactive ion etch following CMOS processing. In-situ CNT growth on the device was achieved by direct thermal chemical vapour deposition using the integrated micro-heater as a micro-reactor. The growth of the CNT absorption layer was verified through scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. The functional effects of the nanostructured ad-layer were assessed by comparing CNT-coated thermopiles to uncoated thermopiles. Fourier transform IR spectroscopy showed that the radiation absorbing properties of the CNT adlayer significantly enhanced the absorptivity, compared with the uncoated thermopile, across the IR spectrum (3 μm–15.5 μm). This led to a four-fold amplification of the detected infrared signal (4.26 μm) in a CO{sub 2} non-dispersive-IR gas sensor system. The presence of the CNT layer was shown not to degrade the robustness of the uncoated devices, whilst the 50% modulation depth of the detector was only marginally reduced by 1.5 Hz. Moreover, we find that the 50% normalized absorption angular profile is subsequently more collimated by 8°. Our results demonstrate the viability of a CNT-based SOI CMOS IR sensor for low cost air quality monitoring.

  2. Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering.

    Science.gov (United States)

    Zhu, Wenqi; Crozier, Kenneth B

    2014-10-14

    Plasmonic nanostructures enable light to be concentrated into nanoscale 'hotspots', wherein the intensity of light can be enhanced by orders of magnitude. This plasmonic enhancement significantly boosts the efficiency of nanoscale light-matter interactions, enabling unique linear and nonlinear optical applications. Large enhancements are often observed within narrow gaps or at sharp tips, as predicted by the classical electromagnetic theory. Only recently has it become appreciated that quantum mechanical effects could emerge as the feature size approaches atomic length-scale. Here we experimentally demonstrate, through observations of surface-enhanced Raman scattering, that the emergence of electron tunnelling at optical frequencies limits the maximum achievable plasmonic enhancement. Such quantum mechanical effects are revealed for metallic nanostructures with gap-widths in the single-digit angstrom range by correlating each structure with its optical properties. This work furthers our understanding of quantum mechanical effects in plasmonic systems and could enable future applications of quantum plasmonics.

  3. Surface enhanced infrared spectroscopy using interacting gold nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Neubrech, Frank; Weber, Daniel; Pucci, Annemarie [Kirchhoff-Institut fuer Physik, Heidelberg (Germany); Shen, Hong [Universite Troyes, Troyes (France); Lamy de la Chapelle, Marc [Universite Paris 13, Bobigny (France)

    2009-07-01

    We performed surface enhanced infrared spectroscopy (SEIRS) of molecules adsorbed on gold nanowires using synchrotron light of the ANKA IR-beamline at the Forschungszentrum Karlsruhe (Germany). Arrays of gold nanowires with interparticle spacings down to 30nm were prepared by electron beam lithography. The interparticle distance was reduced further by wet-chemically increasing the size of the gold nanowires. The growth of the wires was proofed using IR spectroscopy as well as scanning electron microscopy. After this preparation step, appropriate arrays of nanowires with an interparticle distance down to a few nanometers were selected to demonstrate the surface enhanced infrared spectroscopy of one monolayer octadecanthiol (ODT). As know from SEIRS studies using single gold nanowires, the spectral position of the antenna-like resonance in relation to the absorption bands of ODT (2850cm-1 and 2919cm-1) is crucial for both, the lineshape of the molecular vibration and the signal enhancement. In contrast to single nanowires studies, a further increase of the enhanced signals is expected due to the interaction of the electromagnetic fields of the close-by nanowires.

  4. Reactive surface organometallic complexes observed using dynamic nuclear polarization surface enhanced NMR spectroscopy

    KAUST Repository

    Pump, Eva; Viger-Gravel, Jasmine; Abou-Hamad, Edy; Samantaray, Manoja; Hamzaoui, Bilel; Gurinov, Andrei; Anjum, Dalaver H.; Gajan, David; Lesage, Anne; Bendjeriou-Sedjerari, Anissa; Emsley, Lyndon; Basset, Jean-Marie

    2016-01-01

    Dynamic Nuclear Polarization Surface Enhanced NMR Spectroscopy (DNP SENS) is an emerging technique that allows access to high-sensitivity NMR spectra from surfaces. However, DNP SENS usually requires the use of radicals as an exogenous source of polarization, which has so far limited applications for organometallic surface species to those that do not react with the radicals. Here we show that reactive surface species can be studied if they are immobilized inside porous materials with suitably small windows, and if bulky nitroxide bi-radicals (here TEKPol) are used as the polarization source and which cannot enter the pores. The method is demonstrated by obtaining significant DNP enhancements from highly reactive complelxes [(equivalent to Si-O-)W(Me)(5)] supported on MCM-41, and effects of pore size (6.0, 3.0 and 2.5 nm) on the performance are discussed.

  5. Reactive surface organometallic complexes observed using dynamic nuclear polarization surface enhanced NMR spectroscopy

    KAUST Repository

    Pump, Eva

    2016-08-15

    Dynamic Nuclear Polarization Surface Enhanced NMR Spectroscopy (DNP SENS) is an emerging technique that allows access to high-sensitivity NMR spectra from surfaces. However, DNP SENS usually requires the use of radicals as an exogenous source of polarization, which has so far limited applications for organometallic surface species to those that do not react with the radicals. Here we show that reactive surface species can be studied if they are immobilized inside porous materials with suitably small windows, and if bulky nitroxide bi-radicals (here TEKPol) are used as the polarization source and which cannot enter the pores. The method is demonstrated by obtaining significant DNP enhancements from highly reactive complelxes [(equivalent to Si-O-)W(Me)(5)] supported on MCM-41, and effects of pore size (6.0, 3.0 and 2.5 nm) on the performance are discussed.

  6. Surface enhanced Raman scattering as an in-reactor monitor of phenomena of interest to the Nuclear Power Industry

    International Nuclear Information System (INIS)

    Devine, T.M.

    1994-01-01

    Surface enhanced Raman spectroscopy (SERS) is proposed as a technique for monitoring in situ the passive films and corrosion products that form on the surfaces of alloys of interest in nuclear power plants. The technique is a highly sensitive procedure for detecting even very small quantities of species present on surfaces, in particular the surface of metallic alloys. The data could, for example, identify the constituents in passive films that are less than a monolayer in average thickness. Processes such as 60 Co pick-up could be monitored in real time. In fact, if it is known that incorporation of 60 Co occurs when a particular oxide film forms on the surface of the alloy, then measurement of the SER spectra could indicate when such films are beginning to form and thereby provide an early indication that conditions inside the reactor are now suitable for 60 Co pick-up in the passive films

  7. Physical deoxygenation of graphene oxide paper surface and facile in situ synthesis of graphene based ZnO films

    International Nuclear Information System (INIS)

    Ding, Jijun; Wang, Minqiang; Zhang, Xiangyu; Ran, Chenxin; Shao, Jinyou; Ding, Yucheng

    2014-01-01

    In-situ sputtering ZnO films on graphene oxide (GO) paper are used to fabricate graphene based ZnO films. Crystal structure and surface chemical states are investigated. Results indicated that GO paper can be effectively deoxygenated by in-situ sputtering ZnO on them without adding any reducing agent. Based on the principle of radio frequency magnetron sputtering, we propose that during magnetron sputtering process, plasma streams contain large numbers of electrons. These electrons not only collide with argon atoms to produce secondary electrons but also they are accelerated to bombard the substrates (GO paper) resulting in effective deoxygenation of oxygen-containing functional groups. In-situ sputtering ZnO films on GO paper provide an approach to design graphene-semiconductor nanocomposites

  8. Evaluating Coral Health in La Parguera, Puerto Rico, and Southeastern Florida: Comparison of Satellite-Based Sea Surface Temperature to In Situ Observations

    Science.gov (United States)

    Gomez, A. M.; McDonald, K. C.; Shein, K. A.; Devries, S. L.; Armstrong, R.; Carlo, M.

    2017-12-01

    The third global coral bleaching event, which began in mid-2014, is a major environmental stressor that has been causing significant documented damage to coral reefs in all tropical ocean basins. This worldwide phenomenon is the longest and largest coral bleaching event on record and now finally appears to be ending. During this event, some coral colonies proved to be more resilient to increased ocean temperatures while others bleached severely. This research investigates the spatial and temporal variability of bleaching stress on coral reefs in La Parguera, Puerto Rico, and Southeastern Florida to help further understand the role of temperature and light in coral bleaching. We examine the microclimate within two coral reef systems, using in situ collections of temperature and light data from data loggers deployed throughout Cayo Enrique and Cayo Mario in La Parguera, and Lauderdale-By-The-Sea in FLorida. The in situ measurements are compared to NOAA Coral Reef Watch's 5-km sea surface temperature data as well as to the associated Light Stress Damage Product. Research outcomes include statistical analyses of in situ measurements with satellite datasets supporting enhanced interpretation of satellite-based SST and light products, and ecological niche modeling to assess where corals could potentially survive under future climate conditions. Additional understanding of the microclimate encompassing coral reefs and improved satellite SST and light data will ultimately help coral reef ecosystem managers and policy makers in prioritizing resources toward the monitoring and protection of coral reef ecosystems.

  9. Geometry of GLP on silver surface by surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Bao, PeiDi; Bao, Lang; Huang, TianQuan; Liu, XinMing; Wu, GuoFeng

    2000-05-01

    Leptospirosis is one of the most harmful zoonosis, it is a serious public health issue in some area of Sichuan province. Surface-Enhance Raman Scattering (SERS) Spectroscopy is an effective approach for the study of biomolecular adsorption on metal surface and provides information about the adsorbed species. Two samples of Leptospiral Glycolipoprotein (GLP-1) and GLP-2 which have different toxic effects have been obtained and investigated.

  10. Surface plasmon enhanced interfacial electron transfer and resonance Raman, surface-enhanced resonance Raman studies of cytochrome C mutants

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Junwei [Iowa State Univ., Ames, IA (United States)

    1999-11-08

    Surface plasmon resonance was utilized to enhance the electron transfer at silver/solution interfaces. Photoelectrochemical reductions of nitrite, nitrate, and CO2 were studied on electrochemically roughened silver electrode surfaces. The dependence of the photocurrent on photon energy, applied potential and concentration of nitrite demonstrates that the photoelectrochemical reduction proceeds via photoemission process followed by the capture of hydrated electrons. The excitation of plasmon resonances in nanosized metal structures resulted in the enhancement of the photoemission process. In the case of photoelectrocatalytic reduction of CO2, large photoelectrocatalytic effect for the reduction of CO2 was observed in the presence of surface adsorbed methylviologen, which functions as a mediator for the photoexcited electron transfer from silver metal to CO2 in solution. Photoinduced reduction of microperoxidase-11 adsorbed on roughened silver electrode was also observed and attributed to the direct photoejection of free electrons of silver metal. Surface plasmon assisted electron transfer at nanostructured silver particle surfaces was further determined by EPR method.

  11. Surface plasmon-enhanced molecular fluorescence induced by gold nanostructures

    International Nuclear Information System (INIS)

    Teng, Y.; Ueno, K.; Shi, X.; Aoyo, D.; Misawa, H.; Qiu, J.

    2012-01-01

    The authors report on surface plasmon-enhanced fluorescence of Eosin Y molecules induced by gold nanostructures. Al 2 O 3 films deposited by atomic layer deposition with sub-nanometer resolution were used as the spacer layer to control the distance between molecules and the gold surface. As the thickness of the Al 2 O 3 film increased, the fluorescence intensity first increased and then decreased. The highest enhancement factor is achieved with a 1 nm Al 2 O 3 film. However, the trend for the fluorescence lifetime is the opposite. It first decreased and then increased. The changes in the fluorescence quantum yield were also calculated. The yield shows a similar trend to the fluorescence intensity. The competition between the surface plasmon-induced increase in the radiative decay rate and the gold-induced fluorescence quenching is responsible for the observed phenomenon. In addition, this competition strongly depends on the thickness of the spacer layer between Eosin Y molecules and the gold surface. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Active screen plasma nitriding enhances cell attachment to polymer surfaces

    International Nuclear Information System (INIS)

    Kaklamani, Georgia; Bowen, James; Mehrban, Nazia; Dong, Hanshan; Grover, Liam M.; Stamboulis, Artemis

    2013-01-01

    Active screen plasma nitriding (ASPN) is a well-established technique used for the surface modification of materials, the result of which is often a product with enhanced functional performance. Here we report the modification of the chemical and mechanical properties of ultra-high molecular weight poly(ethylene) (UHMWPE) using 80:20 (v/v) N 2 /H 2 ASPN, followed by growth of 3T3 fibroblasts on the treated and untreated polymer surfaces. ASPN-treated UHMWPE showed extensive fibroblast attachment within 3 h of seeding, whereas fibroblasts did not successfully attach to untreated UHMWPE. Fibroblast-coated surfaces were maintained for up to 28 days, monitoring their metabolic activity and morphology throughout. The chemical properties of the ASPN-treated UHMWPE surface were studied using X-ray photoelectron spectroscopy, revealing the presence of C-N, C=N, and C≡N chemical bonds. The elastic modulus, surface topography, and adhesion properties of the ASPN-treated UHMWPE surface were studied over 28 days during sample storage under ambient conditions and during immersion in two commonly used cell culture media.

  13. Surface-Enhanced Raman Scattering in Molecular Junctions.

    Science.gov (United States)

    Iwane, Madoka; Fujii, Shintaro; Kiguchi, Manabu

    2017-08-18

    Surface-enhanced Raman scattering (SERS) is a surface-sensitive vibrational spectroscopy that allows Raman spectroscopy on a single molecular scale. Here, we present a review of SERS from molecular junctions, in which a single molecule or molecules are made to have contact from the top to the bottom of metal surfaces. The molecular junctions are nice platforms for SERS as well as transport measurement. Electronic characterization based on the transport measurements of molecular junctions has been extensively studied for the development of miniaturized electronic devices. Simultaneous SERS and transport measurement of the molecular junctions allow both structural (geometrical) and electronic information on the single molecule scale. The improvement of SERS measurement on molecular junctions open the door toward new nanoscience and nanotechnology in molecular electronics.

  14. Volume and Surface-Enhanced Volume Negative Ion Sources

    International Nuclear Information System (INIS)

    Stockli, M P

    2013-01-01

    H - volume sources and, especially, caesiated H - volume sources are important ion sources for generating high-intensity proton beams, which then in turn generate large quantities of other particles. This chapter discusses the physics and technology of the volume production and the caesium-enhanced (surface) production of H - ions. Starting with Bacal's discovery of the H - volume production, the chapter briefly recounts the development of some H - sources, which capitalized on this process to significantly increase the production of H - beams. Another significant increase was achieved in the 1990s by adding caesiated surfaces to supplement the volume-produced ions with surface-produced ions, as illustrated with other H - sources. Finally, the focus turns to some of the experience gained when such a source was successfully ramped up in H - output and in duty factor to support the generation of 1 MW proton beams for the Spallation Neutron Source. (author)

  15. Analysis of temporal evolution of quantum dot surface chemistry by surface-enhanced Raman scattering.

    Science.gov (United States)

    Doğan, İlker; Gresback, Ryan; Nozaki, Tomohiro; van de Sanden, Mauritius C M

    2016-07-08

    Temporal evolution of surface chemistry during oxidation of silicon quantum dot (Si-QD) surfaces were probed using surface-enhanced Raman scattering (SERS). A monolayer of hydrogen and chlorine terminated plasma-synthesized Si-QDs were spin-coated on silver oxide thin films. A clearly enhanced signal of surface modes, including Si-Clx and Si-Hx modes were observed from as-synthesized Si-QDs as a result of the plasmonic enhancement of the Raman signal at Si-QD/silver oxide interface. Upon oxidation, a gradual decrease of Si-Clx and Si-Hx modes, and an emergence of Si-Ox and Si-O-Hx modes have been observed. In addition, first, second and third transverse optical modes of Si-QDs were also observed in the SERS spectra, revealing information on the crystalline morphology of Si-QDs. An absence of any of the abovementioned spectral features, but only the first transverse optical mode of Si-QDs from thick Si-QD films validated that the spectral features observed from Si-QDs on silver oxide thin films are originated from the SERS effect. These results indicate that real-time SERS is a powerful diagnostic tool and a novel approach to probe the dynamic surface/interface chemistry of quantum dots, especially when they involve in oxidative, catalytic, and electrochemical surface/interface reactions.

  16. Plasmonic nanostructures for surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Jiang, Ruiqian

    In the last three decades, a large number of different plasmonic nanostructures have attracted much attention due to their unique optical properties. Those plasmonic nanostructures include nanoparticles, nanoholes and metal nanovoids. They have been widely utilized in optical devices and sensors. When the plasmonic nanostructures interact with the electromagnetic wave and their surface plasmon frequency match with the light frequency, the electrons in plasmonic nanostructures will resonate with the same oscillation as incident light. In this case, the plasmonic nanostructures can absorb light and enhance the light scattering. Therefore, the plasmonic nanostructures can be used as substrate for surface-enhanced Raman spectroscopy to enhance the Raman signal. Using plasmonic nanostructures can significantly enhance Raman scattering of molecules with very low concentrations. In this thesis, two different plasmonic nanostructures Ag dendrites and Au/Ag core-shell nanoparticles are investigated. Simple methods were used to produce these two plasmonic nanostructures. Then, their applications in surface enhanced Raman scattering have been explored. Ag dendrites were produced by galvanic replacement reaction, which was conducted using Ag nitrate aqueous solution and copper metal. Metal copper layer was deposited at the bottom side of anodic aluminum oxide (AAO) membrane. Silver wires formed inside AAO channels connected Ag nitrate on the top of AAO membrane and copper layer at the bottom side of AAO. Silver dendrites were formed on the top side of AAO. The second plasmonic nanostructure is Au/Ag core-shell nanoparticles. They were fabricated by electroless plating (galvanic replacement) reaction in a silver plating solution. First, electrochemically evolved hydrogen bubbles were used as template through electroless deposition to produce hollow Au nanoparticles. Then, the Au nanoparticles were coated with Cu shells in a Cu plating solution. In the following step, a Ag

  17. Optimal Hotspots of Dynamic Surfaced-Enhanced Raman Spectroscopy for Drugs Quantitative Detection.

    Science.gov (United States)

    Yan, Xiunan; Li, Pan; Zhou, Binbin; Tang, Xianghu; Li, Xiaoyun; Weng, Shizhuang; Yang, Liangbao; Liu, Jinhuai

    2017-05-02

    Surface-enhanced Raman spectroscopy (SERS) as a powerful qualitative analysis method has been widely applied in many fields. However, SERS for quantitative analysis still suffers from several challenges partially because of the absence of stable and credible analytical strategy. Here, we demonstrate that the optimal hotspots created from dynamic surfaced-enhanced Raman spectroscopy (D-SERS) can be used for quantitative SERS measurements. In situ small-angle X-ray scattering was carried out to in situ real-time monitor the formation of the optimal hotspots, where the optimal hotspots with the most efficient hotspots were generated during the monodisperse Au-sol evaporating process. Importantly, the natural evaporation of Au-sol avoids the nanoparticles instability of salt-induced, and formation of ordered three-dimensional hotspots allows SERS detection with excellent reproducibility. Considering SERS signal variability in the D-SERS process, 4-mercaptopyridine (4-mpy) acted as internal standard to validly correct and improve stability as well as reduce fluctuation of signals. The strongest SERS spectra at the optimal hotspots of D-SERS have been extracted to statistics analysis. By using the SERS signal of 4-mpy as a stable internal calibration standard, the relative SERS intensity of target molecules demonstrated a linear response versus the negative logarithm of concentrations at the point of strongest SERS signals, which illustrates the great potential for quantitative analysis. The public drugs 3,4-methylenedioxymethamphetamine and α-methyltryptamine hydrochloride obtained precise analysis with internal standard D-SERS strategy. As a consequence, one has reason to believe our approach is promising to challenge quantitative problems in conventional SERS analysis.

  18. In Situ Studies of the Temperature-Dependent Surface Structure and Chemistry of Single-Crystalline (001)-Oriented La 0.8 Sr 0.2 CoO 3−δ Perovskite Thin Films

    KAUST Repository

    Feng, Zhenxing; Crumlin, Ethan J.; Hong, Wesley T.; Lee, Dongkyu; Mutoro, Eva; Biegalski, Michael D.; Zhou, Hua; Bluhm, Hendrik; Christen, Hans M.; Shao-Horn, Yang

    2013-01-01

    Perovskites are used to promote the kinetics of oxygen electrocatalysis in solid oxide fuel cells and oxygen permeation membranes. Little is known about the surface structure and chemistry of perovskites at high temperatures and partial oxygen pressures. Combining in situ X-ray reflectivity (XRR) and in situ ambient pressure X-ray photoelectron spectroscopy (APXPS), we report, for the first time, the evolution of the surface structure and chemistry of (001)-oriented perovskite La0.8Sr0.2CoO 3-δ (LSC113) and (La0.5Sr 0.5)2CoO4+δ (LSC214)-decorated LSC113 (LSC113/214) thin films as a function of temperature. Heating the (001)-oriented LSC113 surface leads to the formation of surface LSC214-like particles, which is further confirmed by ex situ Auger electron spectroscopy (AES). In contrast, the LSC113/214 surface, with activities much higher than that of LSC 113, is stable upon heating. Combined in situ XRR and APXPS measurements support that Sr enrichment may occur at the LSC113 and LSC214 interface, which can be responsible for its markedly enhanced activities. © 2013 American Chemical Society.

  19. In Situ Studies of the Temperature-Dependent Surface Structure and Chemistry of Single-Crystalline (001)-Oriented La 0.8 Sr 0.2 CoO 3−δ Perovskite Thin Films

    KAUST Repository

    Feng, Zhenxing

    2013-05-02

    Perovskites are used to promote the kinetics of oxygen electrocatalysis in solid oxide fuel cells and oxygen permeation membranes. Little is known about the surface structure and chemistry of perovskites at high temperatures and partial oxygen pressures. Combining in situ X-ray reflectivity (XRR) and in situ ambient pressure X-ray photoelectron spectroscopy (APXPS), we report, for the first time, the evolution of the surface structure and chemistry of (001)-oriented perovskite La0.8Sr0.2CoO 3-δ (LSC113) and (La0.5Sr 0.5)2CoO4+δ (LSC214)-decorated LSC113 (LSC113/214) thin films as a function of temperature. Heating the (001)-oriented LSC113 surface leads to the formation of surface LSC214-like particles, which is further confirmed by ex situ Auger electron spectroscopy (AES). In contrast, the LSC113/214 surface, with activities much higher than that of LSC 113, is stable upon heating. Combined in situ XRR and APXPS measurements support that Sr enrichment may occur at the LSC113 and LSC214 interface, which can be responsible for its markedly enhanced activities. © 2013 American Chemical Society.

  20. Surface enhanced raman scattering at Ag-Pyridine interface by use of long range surface plasmon

    International Nuclear Information System (INIS)

    Baik, Moon Gu; Ko, Eu; Kwan, Do Kyeong; Lee, Ja Hyung; Chang, Joon Sung

    1990-01-01

    Surface-enhanced Raman scattering (SERS) experiment of pyridine (C 5 H 5 N) has been performed at silverpyridine interface by use of long range surface plasmon (LRSP) which is generated in the Sarid-type attenuated total reflection (ATR) structure consisting of prism, dielectic, metal and dielectic media. Generation of LRSP has been confirmed by observing the propagation of the LRSP. Raman signal of pyridine adsorbed on the silver surface in the above layered structure has been observed and compared with the bulk Raman signal and SERS signal from the chemically adsorbed pyridine. SERS experiment by use of LRSP has not yet reported to the best of our knowledge. (Author)

  1. Indium nanoparticles for ultraviolet surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Das, Rupali; Soni, R. K.

    2018-05-01

    Ultraviolet Surface-enhanced Raman spectroscopy (UVSERS) has emerged as an efficient molecular spectroscopy technique for ultra-sensitive and ultra-low detection of analyte concentration. The generic SERS substrates based on gold and silver nanostructures have been extensively explored for high local electric field enhancement only in visible-NIR region of the electromagnetic spectrum. The template synthesis of controlled nanoscale size metallic nanostructures supporting localized surface plasmon resonance (LSPR) in the UV region have been recently explored due to their ease of synthesis and potential applications in optoelectronic, catalysis and magnetism. Indium (In0) nanoparticles exhibit active surface plasmon resonance (SPR) in ultraviolet (UV) and deep-ultaviolet (DUV) region with optimal absorption losses. This extended accessibility makes indium a promising material for UV plasmonic, chemical sensing and more recently in UV-SERS. In this work, spherical indium nanoparticles (In NPs) were synthesized by modified polyol reduction method using NaBH4 having local surface plasmon resonance near 280 nm. The as-synthesized spherical In0 nanoparticles were then coated with thin silica shells of thickness ˜ 5nm by a modified Stober method protecting the nanoparticles from agglomeration, direct contact with the probed molecules as well as prevent oxidation of the nanoparticles. Morphological evolution of In0 nanoparticles and SiO2 coating were characterized by transmission electron microscope (TEM). An enhanced near resonant shell-isolated SERS activity from thin film of tryptophan (Tryp) molecules deposited on indium coated substrates under 325nm UV excitation was observed. Finite difference time domain (FDTD) method is employed to comprehend the experimental results and simulate the electric field contours which showed amplified electromagnetic field localized around the nanostructures. The comprehensive analysis indicates that indium is a promising alternate

  2. Fabrication of Cheap Optical Transducers (CHOTs) on film carriers for in-situ application and generation of surface acoustic waves

    International Nuclear Information System (INIS)

    Ageeva, V; Stratoudaki, T; Clark, M; Somekh, M G

    2015-01-01

    Cheap optical transducers (CHOTs) are patterns on the surface of a component activated by lasers to generate and detect ultrasound. Excited optically, with minimal surface impact, and fully customizable, CHOTs provide a simple alternative to conventional piezoelectric transducers, offering wireless, remote operation. Of particular interest is application of CHOTs for in-situ ultrasonic inspection of hard-to reach and complex-geometry components such as those of aero-engines. A suitable fabrication method has been developed to allow in-situ application of CHOTs onto large size and curved components, as well as those already in service, challenging for current laboratory-based micro-patterning methods. This work describes the fabrication of a transferable g-CHOT for generation of ultrasound. The g- CHOT has been made on an SU8 carrier film using a sacrificial polystyrene layer, allowing the transducer to be transferred from the substrate and subsequently delivered and applied to the surface of the sample in-situ. The functionality of the fabricated transducer is demonstrated by detection of the Surface Acoustic Waves (SAW) generated by the g-CHOT transferred onto glass and aluminium samples

  3. Thermally Stable TiO2 - and SiO2 -Shell-Isolated Au Nanoparticles for In Situ Plasmon-Enhanced Raman Spectroscopy of Hydrogenation Catalysts.

    Science.gov (United States)

    Hartman, Thomas; Weckhuysen, Bert M

    2018-03-12

    Raman spectroscopy is known as a powerful technique for solid catalyst characterization as it provides vibrational fingerprints of (metal) oxides, reactants, and products. It can even become a strong surface-sensitive technique by implementing shell-isolated surface-enhanced Raman spectroscopy (SHINERS). Au@TiO 2 and Au@SiO 2 shell-isolated nanoparticles (SHINs) of various sizes were therefore prepared for the purpose of studying heterogeneous catalysis and the effect of metal oxide coating. Both SiO 2 - and TiO 2 -SHINs are effective SHINERS substrates and thermally stable up to 400 °C. Nano-sized Ru and Rh hydrogenation catalysts were assembled over the SHINs by wet impregnation of aqueous RuCl 3 and RhCl 3 . The substrates were implemented to study CO adsorption and hydrogenation under in situ conditions at various temperatures to illustrate the differences between catalysts and shell materials with SHINERS. This work demonstrates the potential of SHINS for in situ characterization studies in a wide range of catalytic reactions. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  4. IN-SITU CHEMICAL STABILIZATION OF METALS AND RADIONUCLIDES THROUGH ENHANCED ANAEROBIC REDUCTIVE PRECIPITATION

    Energy Technology Data Exchange (ETDEWEB)

    Christopher C. Lutes; Angela Frizzell, PG; Todd A. Thornton; James M. Harrington

    2003-08-01

    The objective of this NETL sponsored bench-scale study was to demonstrate the efficacy of enhanced anaerobic reductive precipitation (EARP) technology for precipitating uranium using samples from contaminated groundwater at the Fernald Closure Project (FCP) in Cincinnati, Ohio. EARP enhances the natural biological reactions in the groundwater through addition of food grade substrates (typically molasses) to drive the oxidative-reductive potential of the groundwater to a lower, more reduced state, thereby precipitating uranium from solution. In order for this in-situ technology to be successful in the long term, the precipitated uranium must not be re-dissolved at an unacceptable rate once groundwater geochemical conditions return to their pretreatment, aerobic state. The approach for this study is based on the premise that redissolution of precipitated uranium will be slowed by several mechanisms including the presence of iron sulfide precipitates and coatings, and sorption onto fresh iron oxides. A bench-scale study of the technology was performed using columns packed with site soil and subjected to a continuous flow of uranium-contaminated site groundwater (476 {micro}g/L). The ''treated'' column received a steady stream of dilute food grade molasses injected into the contaminated influent. Upon attainment of a consistently reducing environment and demonstrated removal of uranium, an iron sulfate amendment was added along with the molasses in the influent solution. After a month long period of iron addition, the treatments were halted, and uncontaminated, aerobic, unamended water was introduced to the treated column to assess rebound of uranium concentrations. In the first two months of treatment, the uranium concentration in the treated column decreased to the clean-up level (30 {micro}g/L) or below, and remained there for the remainder of the treatment period. A brief period of resolubilization of uranium was observed as the treated column

  5. In situ anodization of aluminum surfaces studied by x-ray reflectivity and electrochemical impedance spectroscopy

    International Nuclear Information System (INIS)

    Bertram, F.; Evertsson, J.; Messing, M. E.; Mikkelsen, A.; Lundgren, E.; Zhang, F.; Pan, J.; Carlà, F.; Nilsson, J.-O.

    2014-01-01

    We present results from the anodization of an aluminum single crystal [Al(111)] and an aluminum alloy [Al 6060] studied by in situ x-ray reflectivity, in situ electrochemical impedance spectroscopy and ex situ scanning electron microscopy. For both samples, a linear increase of oxide film thickness with increasing anodization voltage was found. However, the slope is much higher in the single crystal case, and the break-up of the oxide film grown on the alloy occurs at a lower anodization potential than on the single crystal. The reasons for these observations are discussed as are the measured differences observed for x-ray reflectivity and electrochemical impedance spectroscopy.

  6. Surface Plasmons and Surface Enhanced Raman Spectra of Aggregated and Alloyed Gold-Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Y. Fleger

    2009-01-01

    Full Text Available Effects of size, morphology, and composition of gold and silver nanoparticles on surface plasmon resonance (SPR and surface enhanced Raman spectroscopy (SERS are studied with the purpose of optimizing SERS substrates. Various gold and silver films made by evaporation and subsequent annealing give different morphologies and compositions of nanoparticles and thus different position of the SPR peak. SERS measurements of 4-mercaptobenzoic acid obtained from these films reveal that the proximity of the SPR peak to the exciting laser wavelength is not the only factor leading to the highest Raman enhancement. Silver nanoparticles evaporated on top of larger gold nanoparticles show higher SERS than gold-silver alloyed nanoparticles, in spite of the fact that the SPR peak of alloyed nanoparticles is narrower and closer to the excitation wavelength. The highest Raman enhancement was obtained for substrates with a two-peak particle size distribution for excitation wavelengths close to the SPR.

  7. Few-cycle surface plasmon enhanced electron acceleration

    International Nuclear Information System (INIS)

    Racz, P.; Lenner, M.; Kroo, N.; Farkas, Gy.; Dombi, P.; Takao Fuji; Krausz, F.; Irvine, S.E.; Elezzabi, A.Y.

    2010-01-01

    Complete text of publication follows. It is possible to generate high-quality ultrafast electron beams with keV energy based on surface plasmon-enhanced electron acceleration. The beam generated this way can be also used to investigate ultrafast phenomena in the plasmon field. For the better understanding of the temporal behavior of these ultrafast surface processes we carried out time-resolved experiments with 5.5 fs laser pulses for the first time. In this experiment, we executed an autocorrelation measurement with an ultra-broadband interferometer. By generating surface plasmons at the output of the interferometer, we measured the plasmonic photocurrent as a function of the delay between the interferometer arms. Figure (a) shows a typical measured result, and figure (b) shows the fourth order calculated autocorrelation function of the 5.5 fs long laser pulse, corresponding to the fourth order nonlinearity of the electron emission process. According to the correspondence of these two curves, we can also state that the length of the generated surface plasmon pulse is only 2-3 optical cycles. As a further experiment, we executed spectrally resolved measurements of the electron beam at higher intensities. According to these results, it is possible to reach electron beams with keV energy in the few-cycle regime too. It was found that the field strength of the surface plasmons is x 7 to x 30 higher than that of the focused laser pulse.

  8. Enhanced microcontact printing of proteins on nanoporous silica surface

    Energy Technology Data Exchange (ETDEWEB)

    Blinka, Ellen; Hu Ye; Gopal, Ashwini; Hoshino, Kazunori; Lin, Kevin; Zhang, John X J [Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78758 (United States); Loeffler, Kathryn; Liu Xuewu; Ferrari, Mauro, E-mail: John.Zhang@engr.utexas.edu [Department of Nanomedicine and Biomedical Engineering, University of Texas Health Science Service, Houston, TX 77031 (United States)

    2010-10-15

    We demonstrate porous silica surface modification, combined with microcontact printing, as an effective method for enhanced protein patterning and adsorption on arbitrary surfaces. Compared to conventional chemical treatments, this approach offers scalability and long-term device stability without requiring complex chemical activation. Two chemical surface treatments using functionalization with the commonly used 3-aminopropyltriethoxysilane (APTES) and glutaraldehyde (GA) were compared with the nanoporous silica surface on the basis of protein adsorption. The deposited thickness and uniformity of porous silica films were evaluated for fluorescein isothiocyanate (FITC)-labeled rabbit immunoglobulin G (R-IgG) protein printed onto the substrates via patterned polydimethlysiloxane (PDMS) stamps. A more complete transfer of proteins was observed on porous silica substrates compared to chemically functionalized substrates. A comparison of different pore sizes (4-6 nm) and porous silica thicknesses (96-200 nm) indicates that porous silica with 4 nm diameter, 57% porosity and a thickness of 96 nm provided a suitable environment for complete transfer of R-IgG proteins. Both fluorescence microscopy and atomic force microscopy (AFM) were used for protein layer characterizations. A porous silica layer is biocompatible, providing a favorable transfer medium with minimal damage to the proteins. A patterned immunoassay microchip was developed to demonstrate the retained protein function after printing on nanoporous surfaces, which enables printable and robust immunoassay detection for point-of-care applications.

  9. Chlorine and Sulfur Volatiles from in Situ Measurements of Martian Surface Materials

    Science.gov (United States)

    Clark, B. C.

    2014-12-01

    A sentinel discovery by the first in situ measurements on Mars was the high sulfur and chlorine content of global-wide soils. A variety of circumstantial evidence led to the conclusion that soil S is in the form of sulfate, and the Cl is probably chloride. An early hypothesis states that these volatiles are emitted as gases from magmas, and quickly react with dust, soil, and exposed rocks. Subsequent determination that SNC meteorites are also samples of the martian crust revealed a significantly higher S content, as sulfide, than terrestrial igneous rocks but substantially less than in soils. The ensuing wet chemical analyses by the high-latitude Phoenix mission discovered not only chloride but also perchlorate and possibly chlorate. MSL data now also implicate perchlorate at low latitudes. Gaseous interactions may have produced amorphous material on grain surfaces without forming stoichiometric salts. Yet, when exposed to liquid water, Phoenix samples released electrolytes, indicating that the soils have not been leached by rain or fresh groundwater. Sulfate occurrences at many locations on Mars, as well as some chloride enrichments, have now been discovered by remote sensing, Landed missions have discovered Cl-enrichments and ferric, Mg, Ca and more complex sulfates as duricrust, subsurface soil horizons, sandstone evaporites, and rock coatings - most of which cannot be detected from orbit. Salt-forming volatiles affect habitability wherever they are in physical contact: physicochemical parameters (ionic strength, freezing point, water activity); S is an essential element for terrestrial organisms; perchlorate is an oxidant which can degrade some organics but also can be utilized as an energy source; the entire valence range of S-compounds has been exploited by diverse microbiota on Earth. Whether such salt-induced conditions are "extremes" of habitability depends on the relative abundance of liquid H2O.

  10. Surface-enhanced raman optical data storage system

    Science.gov (United States)

    Vo-Dinh, Tuan

    1994-01-01

    An improved Surface-Enhanced Raman Optical Data Storage System (SERODS) is disclosed. In the improved system, entities capable of existing in multiple reversible states are present on the storage device. Such entities result in changed Surface-Enhanced Raman Scattering (SERS) when localized state changes are effected in less than all of the entities. Therefore, by changing the state of entities in localized regions of a storage device, the SERS emissions in such regions will be changed. When a write-on device is controlled by a data signal, such a localized regions of changed SERS emissions will correspond to the data written on the device. The data may be read by illuminating the surface of the storage device with electromagnetic radiation of an appropriate frequency and detecting the corresponding SERS emissions. Data may be deleted by reversing the state changes of entities in regions where the data was initially written. In application, entities may be individual molecules which allows for the writing of data at the molecular level. A read/write/delete head utilizing near-field quantum techniques can provide for a write/read/delete device capable of effecting state changes in individual molecules, thus providing for the effective storage of data at the molecular level.

  11. Trace drug analysis by surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Farquharson, Stuart; Lee, Vincent Y.

    2000-12-01

    Drug overdose involves more than 10 percent of emergency room (ER) cases, and a method to rapidly identify and quantify the abused drug is critical to the ability of the ER physician to administer the appropriate care. To this end, we have been developing a surface-enhanced Raman (SER) active material capable of detecting target drugs at physiological concentrations in urine. The SER-active material consists of a metal-doped sol-gel that provides not only a million fold increase in sensitivity but also reproducible measurements. The porous silica network offers a unique environment for stabilizing SER active metal particles and the high surface area increase the interaction between the analyte and metal particles. The sol-gel has been coated on the inside walls of glass samples vials, such that urine specimens may simply be introduced for analysis. Here we present the surface-enhanced Raman spectra of a series of barbiturates, actual urine specimens, and a drug 'spiked' urine specimen. The utility of pH adjustment to suppress dominant biochemicals associated with urine is also presented.

  12. Surface-enhanced Raman scattering sensing on black silicon

    International Nuclear Information System (INIS)

    Gervinskas, Gediminas; Seniutinas, Gediminas; Hartley, Jennifer S.; Stoddart, Paul R.; Juodkazis, Saulius; Kandasamy, Sasikaran; Fahim, Narges F.

    2013-01-01

    Reactive ion etching was used to fabricate black-Si over the entire surface area of 4-inch Si wafers. After 20 min of the plasma treatment, surface reflection well below 2% was achieved over the 300-1000 nm spectral range. The spikes of the black-Si substrates were coated by gold, resulting in an island film for surface-enhanced Raman scattering (SERS) sensing. A detection limit of 1 x 10 -6 M (at count rate > 10 2 s -1 . mW -1 ) was achieved for rhodamine 6G in aqueous solution when drop cast onto a ∝ 100-nm-thick Au coating. The sensitivity increases for thicker coatings. A mixed mobile-on-immobile platform for SERS sensing is introduced by using dog-bone Au nanoparticles on the Au/black-Si substrate. The SERS intensity shows a non-linear dependence on the solid angle (numerical aperture of excitation/collection optics) for a thick gold coating that exhibits a 10 times higher enhancement. This shows promise for augmented sensitivity in SERS applications. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Surface-enhanced Raman scattering sensing on black silicon

    Energy Technology Data Exchange (ETDEWEB)

    Gervinskas, Gediminas; Seniutinas, Gediminas; Hartley, Jennifer S.; Stoddart, Paul R.; Juodkazis, Saulius [Centre for Micro-Photonics and Industrial Research Institute Swinburne, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn, VIC (Australia); The Australian National Fabrication Facility-ANFF, Victoria node, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn, VIC (Australia); Kandasamy, Sasikaran [Melbourne Centre for Nanofabrication, Clayton, VIC (Australia); Fahim, Narges F. [Centre for Micro-Photonics and Industrial Research Institute Swinburne, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn, VIC (Australia)

    2013-12-15

    Reactive ion etching was used to fabricate black-Si over the entire surface area of 4-inch Si wafers. After 20 min of the plasma treatment, surface reflection well below 2% was achieved over the 300-1000 nm spectral range. The spikes of the black-Si substrates were coated by gold, resulting in an island film for surface-enhanced Raman scattering (SERS) sensing. A detection limit of 1 x 10{sup -6} M (at count rate > 10{sup 2} s{sup -1}. mW{sup -1}) was achieved for rhodamine 6G in aqueous solution when drop cast onto a {proportional_to} 100-nm-thick Au coating. The sensitivity increases for thicker coatings. A mixed mobile-on-immobile platform for SERS sensing is introduced by using dog-bone Au nanoparticles on the Au/black-Si substrate. The SERS intensity shows a non-linear dependence on the solid angle (numerical aperture of excitation/collection optics) for a thick gold coating that exhibits a 10 times higher enhancement. This shows promise for augmented sensitivity in SERS applications. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Thermal surface characteristics of coal fires 1 results of in-situ measurements

    Science.gov (United States)

    Zhang, Jianzhong; Kuenzer, Claudia

    2007-12-01

    Natural underground coal fires are fires in coal seams occurring subsurface. The fires are ignited through a process named spontaneous combustion, which occurs based on a natural reaction but is usually triggered through human interaction. Coal mining activities expose coal to the air. This leads to the exothermal oxidation of the carbon in the coal with the air's oxygen to CO 2 and - under certain circumstances - to spontaneous combustion. Coal fires occur in many countries world wide - however, currently the Chinese coal mining industry faces the biggest problems with coal fires. Coal fires destroy the valuable resource coal and furthermore lead to many environmental degradation phenomena such as the deterioration of surrounding vegetation, land subsidence and the emission of toxic gasses (CO, N 2O). They additionally contribute to the emission of green house relevant gasses such as CO 2 and CH 4 to the atmosphere. In this paper we present thermal characteristics of coal fires as measured in-situ during a field campaign to the Wuda coal fire area in south-central Inner Mongolia, China. Thermal characteristics include temperature anomaly measurements at the surface, spatial surface temperature profiles of fire areas and unaffected background areas, diurnal temperature profiles, and temperature measurements inside of coal fire induced cracks in the overlying bedrock. For all the measurements the effects of uneven solar heating through influences of slope and aspect are considered. Our findings show that coal fires result in strong or subtle thermal surface anomalies. Especially the latter can easily be influenced by heating of the surrounding background material through solar influences. Temperature variation of background rocks with different albedo, slope, aspect or vegetation cover can substantially influence the detectability of thermal anomalies. In the worst case coal fire related thermal anomalies can be completely masked by solar patterns during the daytime

  15. Surface monitoring for pitting evolution into uniform corrosion on Cu-Ni-Zn ternary alloy in alkaline chloride solution: ex-situ LCM and in-situ SECM

    Science.gov (United States)

    Kong, Decheng; Dong, Chaofang; Zheng, Zhaoran; Mao, Feixiong; Xu, Aoni; Ni, Xiaoqing; Man, Cheng; Yao, Jizheng; Xiao, Kui; Li, Xiaogang

    2018-05-01

    The evolution of the corrosion process on Cu-Ni-Zn alloy in alkaline chloride solution was investigated by in-situ scanning electrochemical microscopy, X-ray photoelectron spectroscopy, and ex-situ laser confocal microscopy, and the effects of ambient temperature and polarization time were also discussed. The results demonstrated a higher pitting nucleation rate and lower pit growth rate at low temperature. The ratio of pit depth to mouth diameter decreased with increasing pit volume and temperature, indicating that pits preferentially propagate in the horizontal direction rather than the vertical direction owing to the presence of corrosion products and deposited copper. The surface current was uniform and stabilized at approximately 2.2 nA during the passive stage, whereas the current increased after the pits were formed with the maximum approaching 3 nA. Increasing the temperature led to an increase in porous corrosion products (CuO, Zn(OH)2, and Ni(OH)2) and significantly increased the rate of transition from pitting to uniform corrosion. Dezincification corrosion was detected by energy dispersive spectrometry, and a mechanism for pitting transition into uniform corrosion induced by dezincification at the grain boundaries is proposed.

  16. In situ transmission electron microscope studies of ion irradiation-induced and irradiation-enhanced phase changes

    International Nuclear Information System (INIS)

    Allen, C.W.

    1992-01-01

    Motivated at least initially by materials needs for nuclear reactor development, extensive irradiation effects studies employing transmission electron microscopes (TEM) have been performed for several decades, involving irradiation-induced and irradiation-enhanced microstructural changes, including phase transformations such as precipitation, dissolution, crystallization, amorphization, and order-disorder phenomena. From the introduction of commercial high voltage electron microscopes (HVEM) in the mid-1960s, studies of electron irradiation effects have constituted a major aspect of HVEM application in materials science. For irradiation effects studies two additional developments have had particularly significant impact; the development of TEM specimen holder sin which specimen temperature can be controlled in the range 10-2200 K and the interfacing of ion accelerators which allows in situ TEM studies of irradiation effects and the ion beam modification of materials within this broad temperature range. This paper treats several aspects of in situ studies of electron and ion beam-induced and enhanced phase changes and presents two case studies involving in situ experiments performed in an HVEM to illustrate the strategies of such an approach of the materials research of irradiation effects

  17. Horizontal silicon nanowires for surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Gebavi, Hrvoje; Ristić, Davor; Baran, Nikola; Mikac, Lara; Mohaček-Grošev, Vlasta; Gotić, Marijan; Šikić, Mile; Ivanda, Mile

    2018-01-01

    The main purpose of this paper is to focus on details of the fabrication process of horizontally and vertically oriented silicon nanowires (SiNWs) substrates for the application of surface-enhanced Raman spectroscopy (SERS). The fabrication process is based on the vapor-liquid-solid method and electroless-assisted chemical etching, which, as the major benefit, resulting in the development of economical, easy-to-prepare SERS substrates. Furthermore, we examined the fabrication of Au coated Ag nanoparticles (NPs) on the SiNWs substrates in such a way as to diminish the influence of silver NPs corrosion, which, in turn, enhanced the SERS time stability, thus allowing for wider commercial applications. The substances on which high SERS sensitivity was proved are rhodamine (R6G) and 4-mercaptobenzoic acid (MBA), with the detection limits of 10-8 M and 10-6 M, respectively.

  18. Extruded Al-Al2O3 composites formed in situ during consolidation of ultrafine Al powders: Effect of the powder surface area

    International Nuclear Information System (INIS)

    Balog, Martin; Simancik, Frantisek; Walcher, Martin; Rajner, Walter; Poletti, Cecilia

    2011-01-01

    Highlights: → 25 gas atomised Al 99.5% powders with particle size 2 O 3 dispersoids. → Compacts showed good thermal stability due to grain pinning of Al 2 O 3 dispersoids. - Abstract: Twenty-five samples of commercially available, gas-atomised Al (99.5%) powders with particle sizes 2 O 3 composites formed in situ during extrusion. The effect of particle size, surface area, oxygen content and atomisation atmosphere of the powder on the microstructure and mechanical properties of the extruded compacts were studied by Brunauer, Emmett, Teller (BET) analysis, hot gas extraction, scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), transmission electron microscopy (TEM) and tensile tests. Thermal stability of the compacts and the individual strengthening mechanisms operating in the compacts were discussed. It was found that the properties of the compacts stemmed from the extraordinary grain boundary strengthening effect of the ultrafine-grained compacts due to their microstructures. The efficiency of the grain boundary strengthening was significantly enhanced by the presence of nano-metric Al 2 O 3 dispersoids introduced in situ. The strength of the compacts was closely related to the surface area of the powder particles. In addition, the entrapped gasses and chemically bonded humidity had a negative effect on the mechanical properties of the compacts.

  19. Theoretical studies of surface enhanced hyper-Raman spectroscopy: The chemical enhancement mechanism

    Science.gov (United States)

    Valley, Nicholas; Jensen, Lasse; Autschbach, Jochen; Schatz, George C.

    2010-08-01

    Hyper-Raman spectra for pyridine and pyridine on the surface of a tetrahedral 20 silver atom cluster are calculated using static hyperpolarizability derivatives obtained from time dependent density functional theory. The stability of the results with respect to choice of exchange-correlation functional and basis set is verified by comparison with experiment and with Raman spectra calculated for the same systems using the same methods. Calculated Raman spectra were found to match well with experiment and previous theoretical calculations. The calculated normal and surface enhanced hyper-Raman spectra closely match experimental results. The chemical enhancement factors for hyper-Raman are generally larger than for Raman (102-104 versus 101-102). Integrated hyper-Raman chemical enhancement factors are presented for a set of substituted pyridines. A two-state model is developed to predict these chemical enhancement factors and this was found to work well for the majority of the molecules considered, providing a rationalization for the difference between hyper-Raman and Raman enhancement factors.

  20. Novel routes to electromagnetic enhancement and its characterisation in surface- and tip-enhanced Raman scattering.

    Science.gov (United States)

    Dawson, P; Frey, D; Kalathingal, V; Mehfuz, R; Mitra, J

    2017-12-04

    Quantitative understanding of the electromagnetic component in enhanced Raman spectroscopy is often difficult to achieve on account of the complex substrate structures utilised. We therefore turn to two structurally simple systems amenable to detailed modelling. The first is tip-enhanced Raman scattering under electron scanning tunnelling microscopy control (STM-TERS) where, appealing to understanding developed in the context of photon emission from STM, it is argued that the localised surface plasmon modes driving the Raman enhancement exist in the visible and near-infrared regime only by virtue of significant modification to the optical properties of the tip and sample metals (gold here). This is due to the strong dc field-induced (∼10 9 V m -1 ) non-linear corrections to the dielectric function of gold via the third order susceptibility term in the polarisation. Also, sub-5 nm spatial resolution is shown in the modelling. Secondly, we suggest a novel deployment of hybrid plasmonic waveguide modes in surface enhanced Raman scattering (HPWG-SERS). This delivers strong confinement of electromagnetic energy in a ∼10 nm oxide 'gap' between a high-index dielectric material of nanoscale width (a GaAs nanorod and a 100 nm Si slab are considered here) and a metal, yielding a monotonic variation in the Raman enhancement factor as a function of wavelength with no long-wavelength cut-off, both features that contrast with STM-TERS.

  1. Use of bioreactor landfill for nitrogen removal to enhance methane production through ex situ simultaneous nitrification-denitrification and in situ denitrification.

    Science.gov (United States)

    Sun, Xiaojie; Zhang, Hongxia; Cheng, Zhaowen

    2017-08-01

    High concentrations of nitrate-nitrogen (NO 3 - -N) derived from ex situ nitrification phase can inhibit methane production during ex situ nitrification and in situ denitrification bioreactor landfill. A combined process comprised of ex situ simultaneous nitrification-denitrification (SND) in an aged refuse bioreactor (ARB) and in situ denitrification in a fresh refuse bioreactor (FRB) was conducted to reduce the negative effect of high concentrationsof NO 3 - -N. Ex situ SND can be achieved because NO 3 - -N concentration can be reduced and the removal rate of ammonium-nitrogen (NH 4 + -N) remains largely unchanged when the ventilation rate of ARB-A2 is controlled. The average NO 3 - -N concentrations of effluent were 470mg/L in ex situ nitrification ARB-A1 and 186mg/L in ex situ SND ARB-A2. The average NH 4 + -N removal rates of ARB-A1 and ARB-A2 were 98% and 94%, respectively. Based on the experimental data from week 4 to week 30, it is predicted that NH 4 + -N concentration in FRB-F1 of the ex situ nitrification and in situ denitrification process would reach 25mg/L after 63weeks, and about 40weeks for the FRB-F2 of ex situ SND and in situ denitrification process . Ex situ SND and in situ denitrification process can improve themethane production of FRB-F2. The lag phase time of methane production for the FRB-F2 was 11weeks. This phase was significantly shorter than the 15-week phases of FRB-F1 in ex situ nitrification and in situ denitrification process. A seven-week stabilizationphase was required to increase methane content from 5% to 50% for FRB-F2. Methane content in FRB-F1 did not reach 50% but reached the 45% peak after 20weeks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Ultrasound enhanced plasma surface modification at atmospheric pressure

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Norrman, Kion

    2012-01-01

    Efficiency of atmospheric pressure plasma treatment can be highly enhanced by simultaneous high power ultrasonic irradiation onto the treating surface. It is because ultrasonic waves with a sound pressure level (SPL) above ∼140 dB can reduce the thickness of a boundary gas layer between the plasma...... arc at atmospheric pressure to study adhesion improvement. The effect of ultrasonic irradiation with the frequency diapason between 20 and 40 kHz at the SPL of ∼150 dB was investigated. After the plasma treatment without ultrasonic irradiation, the wettability was significantly improved...

  3. Enhanced atom mobility on the surface of a metastable film.

    Science.gov (United States)

    Picone, A; Riva, M; Fratesi, G; Brambilla, A; Bussetti, G; Finazzi, M; Duò, L; Ciccacci, F

    2014-07-25

    A remarkable enhancement of atomic diffusion is highlighted by scanning tunneling microscopy performed on ultrathin metastable body-centered tetragonal Co films grown on Fe(001). The films follow a nearly perfect layer-by-layer growth mode with a saturation island density strongly dependent on the layer on which the nucleation occurs, indicating a lowering of the diffusion barrier. Density functional theory calculations reveal that this phenomenon is driven by the increasing capability of the film to accommodate large deformations as the thickness approaches the limit at which a structural transition occurs. These results disclose the possibility of tuning surface diffusion dynamics and controlling cluster nucleation and self-organization.

  4. The Modern Near-Surface Martian Climate: A Review of In-Situ Meteorological Data from Viking to Curiosity

    Science.gov (United States)

    Martinez, G. M.; Newman, C. N.; De Vicente-Retortillo, A.; Fischer, E.; Renno, N. O.; Richardson, M. I.; Fairén, A. G.; Genzer, M.; Guzewich, S. D.; Haberle, R. M.; hide

    2017-01-01

    We analyze the complete set of in-situ meteorological data obtained from the Viking landers in the 1970s to todays Curiosity rover to review our understanding of the modern near-surface climate of Mars, with focus on the dust, CO2 and H2O cycles and their impact on the radiative and thermodynamic conditions near the surface. In particular, we provide values of the highest confidence possible for atmospheric opacity, atmospheric pressure, near-surface air temperature, ground temperature, near-surface wind speed and direction, and near-surface air relative humidity and water vapor content. Then, we study the diurnal, seasonal and interannual variability of these quantities over a span of more than twenty Martian years. Finally, we propose measurements to improve our understanding of the Martian dust and H2O cycles, and discuss the potential for liquid water formation under Mars present day conditions and its implications for future Mars missions.

  5. Enhanced dissolved lipid production as a response to the sea surface warming

    Science.gov (United States)

    Novak, Tihana; Godrijan, Jelena; Pfannkuchen, Daniela Marić; Djakovac, Tamara; Mlakar, Marina; Baricevic, Ana; Tanković, Mirta Smodlaka; Gašparović, Blaženka

    2018-04-01

    The temperature increase in oceans reflects on marine ecosystem functioning and surely has consequences on the marine carbon cycle and carbon sequestration. In this study, we examined dissolved lipid, lipid classes and dissolved organic carbon (DOC) production in the northern Adriatic Sea, isolated diatom Chaetoceros pseudocurvisetus batch cultures grown in a wide temperature range (10-30 °C) and in contrasting nutrient regimes, phosphorus (P)-depleted and P-replete conditions. Additionally, lipids and DOC were analyzed in the northern Adriatic (NA) in two stations characterized with different P availability, occupied from February to August 2010 that covered a temperature range from 9.3 to 31.1 °C. To gain insight into factors governing lipid and lipid classes' production in the NA, apart from temperature (T), Chlorophyll a, phytoplankton community abundance and structure, nutrient concentrations were measured together with hydrographic parameters. We found enhanced accumulation of dissolved lipids, particulary glycolipids, with increasing T, especially during the highest in situ temperature. The effect of T on enhanced dissolved lipid release is much more pronounced under P-deplete conditions indicating that oligotrophic regions might be more vulnerable to T rise. Temperature between 25 and 30 °C is a threshold T range for C. pseudocurvisetus, at which a significant part of lipid production is directed toward the dissolved phase. Unlike monocultures, there are multiple factors influencing produced lipid composition, distribution and cycling in the NA that may counteract the T influence. The possible role of enhanced dissolved lipid concentration for carbon sequestration at elevated T is discussed. On the one hand, lipids are buoyant and do not sink, which enhances their retention at the surface layer. In addition, they are surface active, and therefore prone to adsorb on sinking particles, contributing to the C sequestration.

  6. In situ QCM and TM-AFM investigations of the early stages of degradation of silver and copper surfaces

    International Nuclear Information System (INIS)

    Kleber, Ch.; Hilfrich, U.; Schreiner, M.

    2007-01-01

    The early stages of atmospheric corrosion of pure copper and pure silver specimens were investigated performing in situ tapping mode atomic force microscopy (TM-AFM), in situ quartz crystal microbalance (QCM) and X-ray photoelectron spectroscopy (XPS). The information obtained by TM-AFM is the change of the topography of the sample surfaces with emphasis on the shape and lateral distribution of the corrosion products grown within the first hours of weathering. The simultaneously performed in situ QCM measurements are indicating the mass changes due to possibly occurring corrosive processes on the surface during weathering and are therefore a valuable tool for the determination of corrosion rates. Investigations were carried out in synthetic air at different levels of relative humidity (RH) with and without addition of 250 ppb SO 2 as acidifying agent. On a polished copper surface the growth of corrosion products could be observed by TM-AFM analysis at 60% RH without any addition of acidifying gases [M. Wadsak, M. Schreiner, T. Aastrup, C. Leygraf, Surf. Sci. 454-456 (2000) 246-250]. On a weathered copper surface the addition of SO 2 to the moist air stream leads to the formation of additional features as already described in the literature [M. Wadsak, M. Schreiner, T. Aastrup, C. Leygraf, Surf. Sci. 454-456 (2000) 246-250; Ch. Kleber, J. Weissenrieder, M. Schreiner, C. Leygraf, Appl. Surf. Sci. 193 (2002) 245-253]. Exposing a silver specimen to humidity leads to the degradation of the surface structure as well as to a formation of corrosion products, which could be detected by in situ QCM measurements. After addition of 250 ppb SO 2 to the moist gas stream an increase of the formed feature's volume on the silver surface could be observed by TM-AFM measurements. The results obtained additionally from the in situ QCM measurements confirm the influence of SO 2 due to a further increase of the mass of the formed corrosion layer (and therefore an increase of the

  7. In situ growth rate measurements during plasma-enhanced chemical vapour deposition of vertically aligned multiwall carbon nanotube films

    International Nuclear Information System (INIS)

    Joensson, M; Nerushev, O A; Campbell, E E B

    2007-01-01

    In situ laser reflectivity measurements are used to monitor the growth of multiwalled carbon nanotube (MWCNT) films grown by DC plasma-enhanced chemical vapour deposition (PECVD) from an iron catalyst film deposited on a silicon wafer. In contrast to thermal CVD growth, there is no initial increase in the growth rate; instead, the initial growth rate is high (as much as 10 μm min -1 ) and then drops off rapidly to reach a steady level (2 μm min -1 ) for times beyond 1 min. We show that a limiting factor for growing thick films of multiwalled nanotubes (MWNTs) using PECVD can be the formation of an amorphous carbon layer at the top of the growing nanotubes. In situ reflectivity measurements provide a convenient technique for detecting the onset of the growth of this layer

  8. Spectrally enhanced image resolution of tooth enamel surfaces

    Science.gov (United States)

    Zhang, Liang; Nelson, Leonard Y.; Berg, Joel H.; Seibel, Eric J.

    2012-01-01

    Short-wavelength 405 nm laser illumination of surface dental enamel using an ultrathin scanning fiber endoscope (SFE) produced enhanced detail of dental topography. The surfaces of human extracted teeth and artificial erosions were imaged with 405 nm, 444 nm, 532 nm, or 635 nm illumination lasers. The obtained images were then processed offline to compensate for any differences in the illumination beam diameters between the different lasers. Scattering and absorption coefficients for a Monte Carlo model of light propagation in dental enamel for 405 nm were scaled from published data at 532 nm and 633 nm. The value of the scattering coefficient used in the model was scaled from the coefficients at 532 nm and 633 nm by the inverse third power of wavelength. Simulations showed that the penetration depth of short-wavelength illumination is localized close to the enamel surface, while long-wavelength illumination travels much further and is backscattered from greater depths. Therefore, images obtained using short wavelength laser are not contaminated by the superposition of light reflected from enamel tissue at greater depths. Hence, the SFE with short-wavelength illumination may make it possible to visualize surface manifestations of phenomena such as demineralization, thus better aiding the clinician in the detection of early caries.

  9. Surface-Enhanced Raman Spectroscopy as a Probe of the Surface Chemistry of Nanostructured Materials.

    Science.gov (United States)

    Dick, Susan; Konrad, Magdalena P; Lee, Wendy W Y; McCabe, Hannah; McCracken, John N; Rahman, Taifur M D; Stewart, Alan; Xu, Yikai; Bell, Steven E J

    2016-07-01

    Surface-enhanced Raman spectroscopy (SERS) is now widely used as a rapid and inexpensive tool for chemical/biochemical analysis. The method can give enormous increases in the intensities of the Raman signals of low-concentration molecular targets if they are adsorbed on suitable enhancing substrates, which are typically composed of nanostructured Ag or Au. However, the features of SERS that allow it to be used as a chemical sensor also mean that it can be used as a powerful probe of the surface chemistry of any nanostructured material that can provide SERS enhancement. This is important because it is the surface chemistry that controls how these materials interact with their local environment and, in real applications, this interaction can be more important than more commonly measured properties such as morphology or plasmonic absorption. Here, the opportunity that this approach to SERS provides is illustrated with examples where the surface chemistry is both characterized and controlled in order to create functional nanomaterials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Surface-Enhanced Raman Spectroscopy for Heterogeneous Catalysis Research

    NARCIS (Netherlands)

    Harvey, C.E.

    2013-01-01

    Raman spectroscopy is valuable characterization technique for the chemical analysis of heterogeneous catalysts, both under ex-situ and in-situ conditions. The potential for Raman to shine light on the chemical bonds present in a sample makes the method highly desirable for detailed catalyst

  11. Propagation of PAMAM dendrimers on the carbon fiber surface by in situ polymerization: a novel methodology for fiber/matrix composites

    International Nuclear Information System (INIS)

    Zhang, R.L.; Gao, B.; Zhang, J.; Cui, H.Z.; Li, D.W.

    2015-01-01

    Graphical abstract: - Highlights: • The manuscript has the following obvious new contributions. • A facile strategy to generating dendrimers onto carbon fibers to functionalize conventional carbon fibers was reported. The density and type of the functional groups on the fiber surface can be easily adjusted by changing the reaction conditions. • The hierarchical reinforcement formed using this novel method improved the composite interface bonding through supplying sufficient chemical bonding and strong mechanical interlocking. • We can generate dendrimers with different side groups (unsaturated groups or hydroxyl groups, and others) and chain length to meet the requirements according to different matrices and applications. - Abstract: A facile strategy for generating dendrimers onto carbon fibers, in order to functionalize them, was reported. Dendrimers were propagated on the surface of carbon fibers by in situ polymerization with Michael addition. The changes in morphology, surface composition and surface energy, which were studied by atomic force microscope (AFM), dynamic contact angle analysis test (DCAT) and x-ray photoelectron microscopy (XPS), were related to the interfacial performance of model composites. In addition, the level of fiber-matrix adhesion was determined by the interlaminar shear strength (ILSS) test. Experimental results indicated that some dendritic polymer was successfully grown on the fiber surface through the chemical reaction, and this significantly enhanced the interfacial bonding of the carbon fiber composites.

  12. In situ investigation of helium fuzz growth on tungsten in relation to ion flux, fluence, surface temperature and ion energy using infrared imaging in PSI-2

    International Nuclear Information System (INIS)

    Möller, S; Kachko, O; Rasinski, M; Kreter, A; Linsmeier, Ch

    2017-01-01

    Tungsten is a candidate material for plasma-facing components in nuclear fusion reactors. In operation it will face temperatures >800 K together with an influx of helium ions. Previously, the evolution of special surface nanostructures called fuzz was found under these conditions in a limited window of surface temperature, ion flux and ion energy. Fuzz potentially leads to lower heat load tolerances, enhanced erosion and dust formation, hence should be avoided in a fusion reactor. Here the fuzz growth is reinvestigated in situ during its growth by considering its impact on the surfaces infrared emissivity at 4 μ m wavelength with an infrared camera in the linear plasma device PSI-2. A hole in the surface serves as an emissivity reference to calibrate fuzz thickness versus infrared emissivity. Among new data on the above mentioned relations, a lower fuzz growth threshold of 815 ± 24 K is found. Fuzz is seen to grow on rough and polished surfaces and even on the hole’s side walls alike. Literature scalings for thickness, flux and time relations of the fuzz growth rate could not be reproduced, but for the temperature scaling a good agreement to the Arrhenius equation was found. (paper)

  13. Surface-enhanced Raman Spectroscopy of Ethephone Adsorbed on Silver Surface

    International Nuclear Information System (INIS)

    Lee, Chul Jae; Kim, Hee Jin; Karim, Mohammad Rezaul; Lee, Mu Sang

    2006-01-01

    We investigated the Surface-enhanced Raman Spectroscopy (SERS) spectrum of ethephone (2- chloroethylphosphonic acid). We observed significant signals in the ordinary Raman spectrum for solid-state ethephone as well as when it was adsorbed on a colloidal silver surface, strong vibrational signals were obtained at a very low concentration. The SERS spectra were obtained by silver colloids that were prepared by the γ - irradiation method. The influence of pH and the influence of anion (Cl - , Br - , I - ) on the adsorption orientation were investigated. Two different adsorption mechanisms were deduced, depending on the experimental conditions. The chlorine atom or the chlorine and two oxygen atoms were adsorbed on the colloidal silver surface. Among halide ions, Br - and I - were more strongly adsorbed on the colloidal silver surfaces. As a result, the adsorption of ethephone was less effective due to their steric hinderance

  14. In-situ degradation of sulphur mustard and its simulants on the surface of impregnated carbon systems

    International Nuclear Information System (INIS)

    Sharma, Abha; Saxena, Amit; Singh, Beer; Sharma, Mamta; Suryanarayana, Malladi Venkata Satya; Semwal, Rajendra Prasad; Ganeshan, Kumaran; Sekhar, Krishnamurthy

    2006-01-01

    Bis-2-chloroethyl sulphide (sulphur mustard or HD) is an extremely toxic and persistent chemical warfare agent. For in situ degradation of HD and its analogues (simulants), i.e., dibutyl sulphide (DBS) and ethyl 2-hydroxyethyl sulphide (HEES), different carbon systems such as 11-molybdo-1-vanadophosphoric acid impregnated carbon (V 1 /C), ruthenium chloride impregnated carbon (Ru/C) and combination of these two (V 1 /Ru/C) were prepared. These carbons were characterized for cumulative micropore volume and surface area by N 2 BET. The kinetics of the in situ degradation of HD and its simulants were studied and found to be following the first order kinetics. Kinetic rate constants and t 1/2 values were determined. Products were characterized using NMR, IR and GC-MS. Reaction products were found to be sulphoxide and sulphone. The combined system, i.e., 11-molybdo-1-vanadophosphoric acid plus ruthenium chloride (V 1 /Ru/C) was found to be best for in-situ degradation of HD and its simulants. In-situ degradation by polyoxometalate based system was found to be stoichiometry based while Ru/C oxidized HD in presence of chemisorbed oxygen. In combined system of V 1 /Ru/C ruthenium worked as a catalyst and polyoxometalate acted as a source of oxygen. Effect of moisture was also studied in combined system. Rate of degradation of HD was found to be increasing with increased percentage of moisture content

  15. Husbandry Emissions Estimation: Fusion of Mobile Surface and Airborne Remote Sensing and Mobile Surface In Situ Measurements

    Science.gov (United States)

    Leifer, I.; Hall, J. L.; Melton, C.; Tratt, D. M.; Chang, C. S.; Buckland, K. N.; Frash, J.; Leen, J. B.; Van Damme, M.; Clarisse, L.

    2017-12-01

    Emissions of methane and ammonia from intensive animal husbandry are important drivers of climate and photochemical and aerosol pollution. Husbandry emission estimates are somewhat uncertain because of their dependence on practices, temperature, micro-climate, and other factors, leading to variations in emission factors up to an order-of-magnitude. Mobile in situ measurements are increasingly being applied to derive trace gas emissions by Gaussian plume inversion; however, inversion with incomplete information can lead to erroneous emissions and incorrect source location. Mobile in situ concentration and wind data and mobile remote sensing column data from the Chino Dairy Complex in the Los Angeles Basin were collected near simultaneously (within 1-10 s, depending on speed) while transecting plumes, approximately orthogonal to winds. This analysis included airborne remote sensing trace gas information. MISTIR collected vertical column FTIR data simultaneously with in situ concentration data acquired by the AMOG-Surveyor while both vehicles traveled in convoy. The column measurements are insensitive to the turbulence characterization needed in Gaussian plume inversion of concentration data and thus provide a flux reference for evaluating in situ data inversions. Four different approaches were used on inversions for a single dairy, and also for the aggregate dairy complex plume. Approaches were based on differing levels of "knowledge" used in the inversion from solely the in situ platform and a single gas to a combination of information from all platforms and multiple gases. Derived dairy complex fluxes differed significantly from those estimated by other studies of the Chino complex. Analysis of long term satellite data showed that this most likely results from seasonality effects, highlighting the pitfalls of applying annualized extensions of flux measurements to a single campaign instantiation.

  16. Plasma surface interactions in Q-enhanced mirror systems

    International Nuclear Information System (INIS)

    Post, R.F.

    1978-01-01

    Two approaches to enhancement of the Q (energy gain) factor of mirror systems are under study at Livermore. These include the Tandem Mirror and the Field Reversed Mirror. Both of these new ideas preserve features of conventional mirror systems as far as plasma-wall interactions are concerned. Specifically in both approaches field lines exit from the ends of the system and impinge on walls located at a distance from the confinement chamber. It is possible to predict some aspects of the plasma/surface interactions of TM and FRM systems from experience obtained in the Livermore 2XIIB experiment. In particular, as observed in 2XIIB, effective isolation of the plasma from thermal contact with the ends owing to the development of sheath-like regions is to be expected. Studies presently underway directed toward still further enhancing the decoupling of the plasma from the effects of plasma surface interactions at the walls will be discussed, with particular reference to the problem of minimizing the effects of refluxing secondary electrons produced by plasma impact on the end walls

  17. [Surface-enhanced Raman spectroscopy analysis of thiabendazole pesticide].

    Science.gov (United States)

    Lin, Lei; Wu, Rui-mei; Liu, Mu-hua; Wang, Xiao-bin; Yan, Lin-yuan

    2015-02-01

    Surface-enhanced Raman spectroscopy (SERS) technique was used to analyze the Raman peaks of thiabendazole pesticides in the present paper. Surface enhanced substrates of silver nanoparticle were made based on microwave technology. Raman signals of thiabendazole were collected by laser Micro-Raman spectrometer with 514. 5 and 785 nm excitation wavelengths, respectively. The Raman peaks at different excitation wavelengths were analyzed and compared. The Raman peaks 782 and 1 012 at 785 nm excitation wavelength were stronger, which were C--H out-of-plane vibrations. While 1284, 1450 and 1592 cm(-1) at 514.5 nm excitation wavelength were stronger, which were vng and C==N stretching. The study results showed that the intensity of Raman peak and Raman shift at different excitation wavelengths were different And strong Raman signals were observed at 782, 1012, 1284, 1450 and 1592 cm(-1) at 514.5 and 785 nm excitation wavelengths. These characteristic vibrational modes are characteristic Raman peaks of carbendazim pesticide. The results can provide basis for the rapid screening of pesticide residue in agricultural products and food based on Raman spectrum.

  18. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    Science.gov (United States)

    Bond, Tiziana C.; Miles, Robin; Davidson, James C.; Liu, Gang Logan

    2014-07-22

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  19. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    Science.gov (United States)

    Bond, Tiziana C; Miles, Robin; Davidson, James; Liu, Gang Logan

    2015-11-03

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  20. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    Science.gov (United States)

    Bond, Tiziana C.; Miles, Robin; Davidson, James C.; Liu, Gang Logan

    2015-07-14

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  1. Cyclodextrin-Enhanced In Situ Removal of Organic Contaminants from Groundwater at Department of Defense Sites

    Science.gov (United States)

    2004-05-01

    Advantage Nontoxic to humans and resident microbial populations Cyclodextrins are widely used in pharmaceuticals, food processing, and cosmetics ...dechlorination of tetrachloroethene by the Fenton reaction. Environ. Sci. Technol., 17 (9): 1689-1694. 25. Yin, Y., Allen, H.E., 1999: In situ chemical

  2. Enhanced visible-light photocatalytic activities of Ag{sub 3}PO{sub 4}/MWCNT nanocomposites fabricated by facile in situ precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bo [Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China); Li, Zhongyu, E-mail: zhongyuli@mail.tsinghua.edu.cn [Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China); Changzhou Expansion New Stuff Technology Limited Company, Changzhou 213122 (China); Jilin Institute of Chemical Technology, Jilin 132022 (China); Xu, Song, E-mail: cyanine123@163.com [Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China); Han, Dandan; Lu, Dayong [Jilin Institute of Chemical Technology, Jilin 132022 (China)

    2014-05-01

    Highlights: • Ag{sub 3}PO{sub 4}/MWCNT composites were facilely fabricated via in situ precipitation method. • Ag{sub 3}PO{sub 4}/MWCNT composites exhibited enhanced visible-light photocatalytic activity. • Ag{sub 3}PO{sub 4}/MWCNT composites showed good photostability compared with Ag{sub 3}PO{sub 4} particles. • Possible photocatalytic mechanism under visible-light irradiation was proposed. - Abstract: The Ag{sub 3}PO{sub 4}/MWCNT nanocomposites were facilely fabricated via in situ precipitation method by adding (NH{sub 4}){sub 2}HPO{sub 4} into the mixture of multi-walled carbon nanotube (MWCNT) and AgNO{sub 3} solution under stirring. The as-prepared Ag{sub 3}PO{sub 4}/MWCNT nanocomposites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), the Brunauer–Emmett–Teller surface area (BET) and UV–vis diffuse reflectance spectroscopy. The TEM results showed that the Ag{sub 3}PO{sub 4} nanoparticles were distributed on the surface of MWCNT uniformly with an average diameter of 70 nm, indicating excellent loading result. The photocatalytic activities of Ag{sub 3}PO{sub 4}/MWCNT nanocomposites were investigated by degrading methylene blue (MB) and malachite green (MG) under visible-light irradiation. It was found that the Ag{sub 3}PO{sub 4}/MWCNT nanocomposite exhibited excellent photocatalytic performance with enhanced photocatalytic efficiency and good photostability compared with bare Ag{sub 3}PO{sub 4}. Furthermore, a possible mechanism for the photocatalytic oxidative degradation was also discussed.

  3. Electromagnetic theories of surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Ding, Song-Yuan; You, En-Ming; Tian, Zhong-Qun; Moskovits, Martin

    2017-07-07

    Surface-enhanced Raman spectroscopy (SERS) and related spectroscopies are powered primarily by the concentration of the electromagnetic (EM) fields associated with light in or near appropriately nanostructured electrically-conducting materials, most prominently, but not exclusively high-conductivity metals such as silver and gold. This field concentration takes place on account of the excitation of surface-plasmon (SP) resonances in the nanostructured conductor. Optimizing nanostructures for SERS, therefore, implies optimizing the ability of plasmonic nanostructures to concentrate EM optical fields at locations where molecules of interest reside, and to enhance the radiation efficiency of the oscillating dipoles associated with these molecules and nanostructures. This review summarizes the development of theories over the past four decades pertinent to SERS, especially those contributing to our current understanding of SP-related SERS. Special emphasis is given to the salient strategies and theoretical approaches for optimizing nanostructures with hotspots as efficient EM near-field concentrating and far-field radiating substrates for SERS. A simple model is described in terms of which the upper limit of the SERS enhancement can be estimated. Several experimental strategies that may allow one to approach, or possibly exceed this limit, such as cascading the enhancement of the local and radiated EM field by the multiscale EM coupling of hierarchical structures, and generating hotspots by hybridizing an antenna mode with a plasmonic waveguide cavity mode, which would result in an increased local field enhancement, are discussed. Aiming to significantly broaden the application of SERS to other fields, and especially to material science, we consider hybrid structures of plasmonic nanostructures and other material phases and strategies for producing strong local EM fields at desired locations in such hybrid structures. In this vein, we consider some of the numerical

  4. In-situ investigations of corrosion processes on glass and metal surfaces by scanning probe microscopy (SPM)

    International Nuclear Information System (INIS)

    Nicolussi-Leck, G.

    1996-09-01

    The corrosion of potash-lime-silica glass was observed in-situ by AFM (atomic force microscopy) for the first time. The topographic changes with time due to the interaction of a replica glass with the ambient atmosphere were studied. A comparison of dynamic mode AFM and static mode AFM has demonstrated their potential for the investigation of soft, sensitive specimens. A combination of both methods yielded a correlation between structural changes during the corrosion process and different corrosion products on glass. The activation of surface reactions by the tip touching the surface could be observed with dynamic mode AFM. In-situ sample preparation and introduction of a defined atmosphere consisting of nitrogen with adjustable amounts of relative humidity and varying contents of SO 2 and NO 2 allowed model studies of the atmospheric corrosion. A replica glass with medieval composition was used in order to investigate the impact of the above described conditions. Besides the influence of the relative humidity the effects of SO 2 and NO 2 as well as their, synergistic effects could be studied. The evaluation of the phase signal in dynamic mode AFM in addition to the topographic information allowed the identification of humid domains in and on corrosion products, respectively. The observed contrast and thus the adhesion forces, are mainly related to the different water coverage of the surface regions or the hydroscopic properties, respectively. Furthermore, the topographic changes of copper-nickel, and palladium surfaces exposed to humidified nitrogen with SO 2 have been observed in-situ. Contrary to the assumption of the metal surfaces being covered by a homogeneous layer of corrosion products, distinct clusters of products could be observed. In case of different kinds of products these clusters were arranged adjacent to each other rather than in different stacked layers. (author)

  5. Surface exposure history using in-situ cosmogenic 10Be, 26Al and 36Cl - applications to the Australian environment

    International Nuclear Information System (INIS)

    Fink, D.

    1999-01-01

    Production of the long-lived cosmogenic radionuclides, 10 Be (T 1/2 =1.5Ma), 26 Al (0.7Ma) and 36 Cl (0.3Ma), is dominated by the interaction of cosmic-rays with the upper atmosphere. They are also produced in exposed surface rocks and within the first meter or so of the Earth's crust. This is called in-situ production and although only a million atoms or so of 10 Be are produced within a ten thousand year exposure period per gram of surface rock, the technique of Accelerator Mass Spectrometry (AMS) can be applied to measure this tell-tale signal. The build-up over time of these radionuclides can be utilised as radiometric clocks to elucidate the exposure history of geomorphic formations and surfaces that have experienced some event or process that delivers previously unexposed material to cosmic-ray irradiation. Hence the reconstruction of glacial chronologies (ie time a bedrock surface was uncovered by ice retreat, or deposition age of glacial moraines), development of raised river terraces and paleo-beach ridges, age of meteorite impact craters and volcanic eruptions have been addressed with the in-situ method. Moreover, geomorphological processes of landscape evolution such as surface erosion rates, continental weathering, sediment transport and deposition, uplift rates can also be studied. The in-situ method is described along with examples of cosmogenic dating projects at ANSTO. It is estimated that it works best over the time period from 5 ka to 5 Ma and can identify erosion rates ranging from 0.1 to 10 mm/ka

  6. In situ stimulation vs. bioaugmentation: Can microbial inoculation of plant roots enhance biodegradation of organic compounds?

    Energy Technology Data Exchange (ETDEWEB)

    Kingsley, M.T.; Metting, F.B. Jr.; Fredrickson, J.K. [Pacific Northwest Lab., Richland, WA (United States); Seidler, R.J. [Environmental Protection Agency, Corvallis, OR (United States). Environmental Research Lab.

    1993-06-01

    The use of plant roots and their associated rhizosphere bacteria for biocontainment and biorestoration offers several advantages for treating soil-dispersed contaminants and for application to large land areas. Plant roots function as effective delivery systems, since root growth transports bacteria vertically and laterally along the root in the soil column (see [ 1,2]). Movement of microbes along roots and downward in the soil column can be enhanced via irrigation [1-4]. For example, Ciafardini et al. [3] increased the nodulation and the final yield of soybeans during pod filling by including Bradyrhizobium japonicum in the irrigation water. Using rhizosphere microorganisms is advantageous for biodegradation of compounds that are degraded mainly by cometabolic processes, e.g., trichloroethylene (TCE). The energy source for bacterial growth and metabolism is supplied by the plant in the form of root exudates and other sloughed organic material. Plants are inexpensive, and by careful choice of species that possess either tap or fibrous root growth patterns, they can be used to influence mass transport of soil contaminants to the root surface via the transpiration stream [5]. Cropping of plants to remove heavy metals from contaminated soils has been proposed as a viable, low-cost, low-input treatment option [6]. The interest in use of plants as a remediation strategy has even reached the popular press [7], where the use of ragweed for the reclamation of sites contaminated with tetraethyl lead and other heavy metals was discussed.

  7. Controlling charges distribution at the surface of a single GaN nanowire by in-situ strain

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2017-08-01

    Full Text Available Effect of the strain on the charge distribution at the surface of a GaN semiconductor nanowire (NW has been investigated inside transmission electron microscope (TEM by in-situ off-axis electron holography. The outer and inner surfaces of the NW bent axially under compression of two Au electrodes were differently strained, resulting in difference of their Fermi levels. Consequently, the free electrons flow from the high Fermi level to the low level until the two Fermi levels aligned in a line. The potential distributions induced by charge redistribution in the two vacuum sides of the bent NW were examined respectively, and the opposite nature of the bounded charges on the outer and inner surfaces of the bent NW was identified. The results provide experimental evidence that the charge distribution at the surfaces of a single GaN NW can be controlled by different strains created along the NW.

  8. Gas detection by means of surface plasmon resonance enhanced ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Nooke, Alida

    2012-11-01

    This thesis investigated gas sensing by means of surface plasmon resonance enhanced ellipsometry. Surface plasmons were excited in a 40 - 50 nm gold layer by a He-Ne-laser using the Kretschmann configuration, which was arranged on a self-made copper measuring cell. A fixed angle of incidence and the ellipsometric parameter {Delta} as the measured value were used to monitor changes in the gas phase. Different types of gases were investigated: flammable (hydrocarbons and hydrogen), oxidising (oxygen and ozone), toxic (carbon monoxide) and inert (helium and nitrogen). The gas types can be distinguished by their refractive indices, whereas the sensor responds instantly relative to the reference gas with an increase or a decrease in {Delta}. Diluting the analyte gas with a reference gas (nitrogen or air) allowed the detection limits to be determined, these lay in the low % range. The sensor stability was also enhanced as well as the sensitivity by modifying the gold layers with a 3-10 nm additional layer. These additional layers consisted of the inorganic materials TiO{sub 2}, ZrO{sub 2}, MgF{sub 2} and Fe: SnO{sub 2} which were deposited by different coating processes. Surface investigations were made of every utilised layer: scanning electron microscope and atomic force microscope measurements for surface topology and spectroscopic ellipsometry mapping to determine the optical constants and the layer thicknesses. All applied materials protected the gold layer from contaminations and thus prolonged the life span of the sensor. Furthermore, the detection limits were reduced significantly, to the low ppm range. The material Fe: SnO{sub 2} demonstrates a special behaviour in reaction with the toxic gas carbon monoxide: Due to the iron doping, the response to carbon monoxide is extraordinary and concentrations below 1 ppm were detected. In order to approach a future application in industry, the sensor system was adapted to a stainless steel tube. With this measuring

  9. In situ generated CdS nanostructure induced enhanced photoluminescence from Dy{sup 3+} ions doped dielectric nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Chirantan; Karmakar, Basudeb [Glass Science and Technology Section, Glass Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata (India)

    2017-08-15

    We report CdS nanostructure induced enhanced photoluminescence (PL) from Dy{sup +3}:CdS co-doped dielectric-nanocomposites synthesized by the conventional melt-quench technique. CdS nanocrystals (NCs) were synthesized as in situ within the dielectric medium and their growth was controlled by heat treatment duration. Nanoparticles were investigated with absorption spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), and Raman spectroscopy. The experimentally obtained sizes of the NCs are found to increase from 5-11 nm to 50-80 nm. Bandgap enhancement for the carrier confinement was found to alter within the range of 0.20-0.38 eV. Phonon confinement effect has been confirmed by blue shifting of Raman peak for CdS NCs at 303 cm{sup -1}. Enhanced highly intense sharp PL peak at 576 nm was detected, and different parameters associated with the PL enhancement including energy transfer from CdS NCs to Dy{sup 3+} ions have been studied. This PL enhancement was steered by varying CdS NC sizes. Enhanced PL of these nanocomposites finds their potential applications as gain medium in the field of solid state lasers. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. 2D BiOCl/Bi12O17Cl2 nanojunction: Enhanced visible light photocatalytic NO removal and in situ DRIFTS investigation

    Science.gov (United States)

    Zhang, Wendong; Dong, Xin'an; Jia, Bin; Zhong, Junbo; Sun, Yanjuan; Dong, Fan

    2018-02-01

    Novel two-dimensional (2D) BiOCl/Bi12O17Cl2 nanojunctions were fabricated by a facile one-pot in situ method at room temperature. The as-prepared samples were analyzed by XRD, SEM, TEM, HRTEM, UV-vis DRS, PL, ESR and BET-BJH measurement in detail. The photocatalytic performance of the samples was evaluated by removal of NO at ppb level under visible-light illumination. The result reveals that the BiOCl/Bi12O17Cl2 nanojunctions manifests conspicuously enhanced photocatalytic efficiency for NO removal. The facilitated performance can be ascribed to the well-matched band structure and relatively high specific surface area. In addition, the in situ diffuse reflectance infrared Fourier transform spectroscopy was applied to investigate the adsorption and photocatalytic NO oxidation processes. The reaction mechanism of photocatalytic NO oxidation was proposed based on the observed intermediates. The present work could pave a way to synthesize novel visible light photocatalysts at room temperature for environmental application.

  11. In situ spectroscopic evidence for neptunium(V)-carbonate inner-sphere and outer-sphere ternary surface complexes on hematite surfaces.

    Science.gov (United States)

    Arai, Yuji; Moran, P B; Honeyman, B D; Davis, J A

    2007-06-01

    Np(V) surface speciation on hematite surfaces at pH 7-9 under pC2 = 10(-3.45) atm was investigated using X-ray absorption spectroscopy (XAS). In situ XAS analyses suggest that bis-carbonato inner-sphere and tris-carbonato outer-sphere ternary surface species coexist at the hematite-water interface at pH 7-8.8, and the fraction of outer-sphere species gradually increases from 27 to 54% with increasing pH from 7 to 8.8. The results suggest that the heretofore unknown Np(V)-carbonato ternary surface species may be important in predicting the fate and transport of Np(V) in the subsurface environment down gradient of high-level nuclear waste respositories.

  12. In situ characterization of Ti-peroxy gel during formation on titanium surfaces in hydrogen peroxide containing solutions

    International Nuclear Information System (INIS)

    Muyco, Julie J.; Gray, Jeremy J.; Ratto, Timothy V.; Orme, Christine A.; McKittrick, Joanna; Frangos, John

    2006-01-01

    Three possible functions of Ti-peroxy gel are: reduction of the inflammatory response through the reduction of hydrogen peroxide and other reactive oxygen species; creation of a favorable surface for calcium phosphate nucleation; and as a transitional layer between the compliant surrounding tissue and the stiff titanium. Traditional surface characterization techniques operate in high vacuum environments that alter the actual sample-solution interface. Our studies used techniques that allowed samples to remain in solution and be observed over time. Atomic force microscopy (AFM) force-distance curves, electrochemical impedance spectroscopy (EIS), and Raman spectroscopy were each used in situ to define kinetic and mechanical properties of Ti-peroxy gel as it formed over time on titanium during exposure to hydrogen peroxide. Our studies enabled us to monitor real-time changes in the native oxide layer on titanium in hydrogen peroxide containing solution, including the formation of a Ti-peroxy gel layer above the native oxide. Peaks attributed to Ti-peroxy gel were seen to emerge over the course of several hours using in situ Raman spectroscopy. Force-distance curves suggest a layer that thickens with time on the titanium sample surface. EIS data showed that changes in the surface layers could be monitored in solution over time

  13. Chloride ion-dependent surface-enhanced Raman scattering study of biotin on the silver surface

    International Nuclear Information System (INIS)

    Liu Fangfang; Gu Huaimin; Yuan Xiaojuan; Dong Xiao; Lin Yue

    2011-01-01

    In the present paper, the surface enhanced Raman scattering (SERS) technique was employed to study the SERS spectra of biotin molecules formed on the silver surface. The adsorption geometries of biotin molecules on the silver surface were analyzed based on the SERS data. It can be found that most vibration modes show a Raman shift in silver sol after the addition of sodium chloride solution. In addition, The Raman signals of biotin become weaker and weaker with the increase of the concentration of sodium chloride. This may be due to that the interaction between chloride ions and silver particles is stronger than the interaction between biotin molecules and silver particles. When the concentration of sodium chloride in silver colloid is higher than 0.05mol/L, superfluous chloride ions may form an absorption layer so that biotin can not be adsorbed on silver surface directly. The changes in intensity and profile shape in the SERS spectra suggest different adsorption behavior and surface-coverage of biotin on silver surface. The SERS spectra of biotin suggest that the contribution of the charge transfer mechanism to SERS may be dominant.

  14. Surface Plasmon Enhanced Phosphorescent Organic Light Emitting Diodes

    International Nuclear Information System (INIS)

    Bazan, Guillermo; Mikhailovsky, Alexander

    2008-01-01

    The objective of the proposed work was to develop the fundamental understanding and practical techniques for enhancement of Phosphorescent Organic Light Emitting Diodes (PhOLEDs) performance by utilizing radiative decay control technology. Briefly, the main technical goal is the acceleration of radiative recombination rate in organometallic triplet emitters by using the interaction with surface plasmon resonances in noble metal nanostructures. Increased photonic output will enable one to eliminate constraints imposed on PhOLED efficiency by triplet-triplet annihilation, triplet-polaron annihilation, and saturation of chromophores with long radiative decay times. Surface plasmon enhanced (SPE) PhOLEDs will operate more efficiently at high injection current densities and will be less prone to degradation mechanisms. Additionally, introduction of metal nanostructures into PhOLEDs may improve their performance due to the improvement of the charge transport through organic layers via multiple possible mechanisms ('electrical bridging' effects, doping-like phenomena, etc.). SPE PhOLED technology is particularly beneficial for solution-fabricated electrophosphorescent devices. Small transition moment of triplet emitters allows achieving a significant enhancement of the emission rate while keeping undesirable quenching processes introduced by the metal nanostructures at a reasonably low level. Plasmonic structures can be introduced easily into solution-fabricated PhOLEDs by blending and spin coating techniques and can be used for enhancement of performance in existing device architectures. This constitutes a significant benefit for a large scale fabrication of PhOLEDs, e.g. by roll-to-roll fabrication techniques. Besides multieexciton annihilation, the power efficacy of PhOLEDs is often limited by high operational bias voltages required for overcoming built-in potential barriers to injection and transport of electrical charges through a device. This problem is especially

  15. Enhanced Enzymatic Production of Cephalexin at High Substrate Concentration with in situ Product Removal by Complexation

    Directory of Open Access Journals (Sweden)

    Dengchao Li

    2008-01-01

    Full Text Available Cephalexin (CEX was synthesized with 7-amino-3-deacetoxycephalosporanic acid (7-ADCA and D(–-phenylglycine methyl ester (PGME using immobilized penicillin G acylase from Escherichia coli. It was found that substrate concentration and in situ product could remarkably influence the ratio of synthesis to hydrolysis (S/H and the efficiency of CEX synthesis. The optimal ratio of enzyme to substrate was 65 IU/mM 7-ADCA. High substrate concentration improved the 7-ADCA conversion from 61 to 81 % in the process without in situ product removal (ISPR, while in the synthetic process with ISPR, high substrate concentration increased the 7-ADCA conversion from 88 to 98 %. CEX was easily separated from CEX/β-naphthol complex and its purity and overall yield were 99 and 70 %, respectively.

  16. Cytochrome C Dynamics at Gold and Glassy Carbon Surfaces Monitored by in Situ Scanning Tunnel Microscopy

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Møller, Per; Pedersen, Marianne Vind

    1995-01-01

    We have investigated the absorption of cytochrome c on gold and glassy carbon substrates by in situ scanning tunnel microscopy under potentiostatic control of both substrate and tip. Low ionic strength and potential ranges where no Faradaic current flows were used. Cyt c aggregates into flat...

  17. In-situ biogas sparging enhances the performance of an anaerobic membrane bioreactor (AnMBR) with mesh filter in low-strength wastewater treatment.

    Science.gov (United States)

    Li, Na; Hu, Yi; Lu, Yong-Ze; Zeng, Raymond J; Sheng, Guo-Ping

    2016-07-01

    In the recent years, anaerobic membrane bioreactor (AnMBR) technology is being considered as a very attractive alternative for wastewater treatment due to the striking advantages such as upgraded effluent quality. However, fouling control is still a problem for the application of AnMBR. This study investigated the performance of an AnMBR using mesh filter as support material to treat low-strength wastewater via in-situ biogas sparging. It was found that mesh AnMBR exhibited high and stable chemical oxygen demand (COD) removal efficiencies with values of 95 ± 5 % and an average methane yield of 0.24 L CH4/g CODremoved. Variation of transmembrane pressure (TMP) during operation indicated that mesh fouling was mitigated by in-situ biogas sparging and the fouling rate was comparable to that of aerobic membrane bioreactor with mesh filter reported in previous researches. The fouling layer formed on the mesh exhibited non-uniform structure; the porosity became larger from bottom layer to top layer. Biogas sparging could not change the composition but make thinner thickness of cake layer, which might be benefit for reducing membrane fouling rate. It was also found that ultrasonic cleaning of fouled mesh was able to remove most foulants on the surface or pores. This study demonstrated that in-situ biogas sparging enhanced the performance of AnMBRs with mesh filter in low-strength wastewater treatment. Apparently, AnMBRs with mesh filter can be used as a promising and sustainable technology for wastewater treatment.

  18. Evaluation of OMI operational standard NO2 column retrievals using in situ and surface-based NO2 observations

    Directory of Open Access Journals (Sweden)

    L. N. Lamsal

    2014-11-01

    Full Text Available We assess the standard operational nitrogen dioxide (NO2 data product (OMNO2, version 2.1 retrieved from the Ozone Monitoring Instrument (OMI onboard NASA's Aura satellite using a combination of aircraft and surface in~situ measurements as well as ground-based column measurements at several locations and a bottom-up NOx emission inventory over the continental US. Despite considerable sampling differences, NO2 vertical column densities from OMI are modestly correlated (r = 0.3–0.8 with in situ measurements of tropospheric NO2 from aircraft, ground-based observations of NO2 columns from MAX-DOAS and Pandora instruments, in situ surface NO2 measurements from photolytic converter instruments, and a bottom-up NOx emission inventory. Overall, OMI retrievals tend to be lower in urban regions and higher in remote areas, but generally agree with other measurements to within ± 20%. No consistent seasonal bias is evident. Contrasting results between different data sets reveal complexities behind NO2 validation. Since validation data sets are scarce and are limited in space and time, validation of the global product is still limited in scope by spatial and temporal coverage and retrieval conditions. Monthly mean vertical NO2 profile shapes from the Global Modeling Initiative (GMI chemistry-transport model (CTM used in the OMI retrievals are highly consistent with in situ aircraft measurements, but these measured profiles exhibit considerable day-to-day variation, affecting the retrieved daily NO2 columns by up to 40%. This assessment of OMI tropospheric NO2 columns, together with the comparison of OMI-retrieved and model-simulated NO2 columns, could offer diagnostic evaluation of the model.

  19. Surface-enhanced Raman spectroscopy based on conical holed enhancing substrates

    International Nuclear Information System (INIS)

    Chen, Yao; Chen, Zeng-Ping; Zuo, Qi; Shi, Cai-Xia; Yu, Ru-Qin

    2015-01-01

    In this contribution, surface-enhanced Raman spectroscopy (SERS) based on conical holed glass substrates deposited with silver colloids was reported for the first time. It combines the advantages of both dry SERS assays based on plane films deposited with silver colloids and wet SERS assays utilizing cuvettes or capillary tubes. Compared with plane glass substrates deposited with silver colloids, the conical holed glass substrates deposited with silver colloids exhibited five-to ten-folds of increase in the rate of signal enhancement, due to the internal multiple reflections of both the excitation laser beam and the Raman scattering photons within conical holes. The application of conical holed glass substrates could also yield significantly stronger and more reproducible SERS signals than SERS assays utilizing capillary tubes to sample the mixture of silver colloids and the solution of the analyte of interest. The conical holed glass substrates in combination with the multiplicative effects model for surface-enhanced Raman spectroscopy (MEM SERS ) achieved quite sensitive and precise quantification of 6-mercaptopurine in complex plasma samples with an average relative prediction error of about 4% and a limit of detection of about 0.02 μM using a portable i-Raman 785H spectrometer. It is reasonable to expect that SERS technique based on conical holed enhancing substrates in combination with MEM SERS model can be developed and extended to other application areas such as drug detection, environmental monitoring, and clinic analysis, etc. - Highlights: • A novel conical holed SERS enhancing substrate was designed and manufactured. • The optimal conical holed glass substrates can produce stronger SERS signal. • The novel substrates can overcome the shortcomings of both dry and wet methods. • The novel substrates coupled with MEM SERS can realize quantitative SERS assays

  20. Semi-continuous in situ magnetic separation for enhanced extracellular protease productionmodeling and experimental validation

    DEFF Research Database (Denmark)

    Cerff, M.; Scholz, A.; Käppler, T.

    2013-01-01

    In modern biotechnology proteases play a major role as detergent ingredients. Especially the production of extracellular protease by Bacillus species facilitates downstream processing because the protease can be directly harvested from the biosuspension. In situ magnetic separation (ISMS...... production, and was used to optimize ISMS steps to obtain the maximum overall protease yield. Biotechnol. Bioeng. 2013; 110: 2161–2172. © 2013 Wiley Periodicals, Inc....

  1. Enhanced Dynamics of Hydrated tRNA on Nanodiamond Surfaces: A Combined Neutron Scattering and MD Simulation Study.

    Science.gov (United States)

    Dhindsa, Gurpreet K; Bhowmik, Debsindhu; Goswami, Monojoy; O'Neill, Hugh; Mamontov, Eugene; Sumpter, Bobby G; Hong, Liang; Ganesh, Panchapakesan; Chu, Xiang-Qiang

    2016-09-14

    Nontoxic, biocompatible nanodiamonds (ND) have recently been implemented in rational, systematic design of optimal therapeutic use in nanomedicines. However, hydrophilicity of the ND surface strongly influences structure and dynamics of biomolecules that restrict in situ applications of ND. Therefore, fundamental understanding of the impact of hydrophilic ND surface on biomolecules at the molecular level is essential. For tRNA, we observe an enhancement of dynamical behavior in the presence of ND contrary to generally observed slow motion at strongly interacting interfaces. We took advantage of neutron scattering experiments and computer simulations to demonstrate this atypical faster dynamics of tRNA on ND surface. The strong attractive interactions between ND, tRNA, and water give rise to unlike dynamical behavior and structural changes of tRNA in front of ND compared to without ND. Our new findings may provide new design principles for safer, improved drug delivery platforms.

  2. Mechanical properties enhancement and microstructure study of Al-Si-TiB2 in situ composites

    Science.gov (United States)

    Sahoo, S. K.; Majhi, J.; Pattnaik, A. B.; Sahoo, J. K.; Das, Swagat

    2018-03-01

    Al–Si alloy-based composite is one of the most promising MMC materials owing to its outstanding mechanical properties, wear and corrosion resistance, low cost and ability to be synthesized via conventional casting routes. Challenges in achieving clean interface between reinforced particles and matrix alloy have been overcome by means of in-situ techniques of fabrication. Present investigation is concerned with synthesizing Al-Si-TiB2 in-situ composites through stir casting route using K2TiF6 and KBF4 halide salts for exothermic salt metal reaction. X-Ray diffraction analysis revealed the existence of TiB2 in the prepared samples. Effect of TiB2in-situ particles in the Al-Si base alloy has been investigated from the results obtained from optical microscopy as well as SEM study and wear analysis with a pin on disc wear testing apparatus. Improved hardness and wear properties were observed with addition of TiB2.

  3. Ultrasound-enhanced rapid in situ transesterification of marine macroalgae Enteromorpha compressa for biodiesel production.

    Science.gov (United States)

    Suganya, Tamilarasan; Kasirajan, Ramachandran; Renganathan, Sahadevan

    2014-03-01

    In situ transesterification of Enteromorpha compressa algal biomass was carried out for the production of biodiesel. The maximum methyl esters (ME) yield of 98.89% was obtained using ultrasonic irradiation. Tetra hydro furan (THF) and acid catalyst (H2SO4) was found to be an appropriate co-solvent and catalyst for high free fatty acids (FFA) content E. compressa biomass to increase the efficiency of the reactive in situ process. The optimization study was conducted to obtain the maximum yield and it was determined as 30vol% of THF as a co-solvent, 10wt% of H2SO4, 5.5:1 ratio of methanol to algal biomass and 600rpm of mixing intensity at 65°C for 90min of ultrasonic irradiation time. The produced biodiesel was characterized by (1)H nuclear magnetic resonance spectroscopy ((1)H NMR) analysis. Kinetic studies revealed that the reaction followed the first-order reaction mechanism. Rapid in situ transesterification was found to be suitable technique to produce biodiesel from marine macroalgae feedstock. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. In-situ solvothermal processing of polycaprolactone/hydroxyapatite nanocomposites with enhanced mechanical and biological performance for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Saeed Moeini

    2017-09-01

    Full Text Available The interest in biodegradable polymer-matrix nanocomposites with bone regeneration potential has been increasing in recent years. In the present work, a solvothermal process is introduced to prepare hydroxyapatite (HA nanorod-reinforced polycaprolactone in-situ. A non-aqueous polymer solution containing calcium and phosphorous precursors is prepared and processed in a closed autoclave at different temperatures in the range of 60–150 °C. Hydroxyapatite nanorods with varying aspect ratios are formed depending on the processing temperature. X-ray diffraction analysis and field-emission scanning electron microscopy indicate that the HA nanorods are semi-crystalline. Energy-dispersive X-ray spectroscopy and Fourier transform infrared spectrometry determine that the ratio of calcium to phosphorous increases as the processing temperature increases. To evaluate the effect of in-situ processing on the mechanical properties of the nanocomposites, highly porous scaffolds (>90% containing HA nanorods are prepared by employing freeze drying and salt leaching techniques. It is shown that the elastic modulus and strength of the nanocomposites prepared by the in-situ method is superior (∼15% to those of the ex-situ samples (blended HA nanorods with the polymer solution. The enhanced bone regeneration potential of the nanocomposites is shown via an in vitro bioactivity assay in a saturated simulated body fluid. An improved cell viability and proliferation is also shown by employing (3-(4,5- dimethylthiazol-2-yl-2, 5-diphenyl tetrazolium bromide (MTT assay in human osteosarcoma cell lines. The prepared scaffolds with in vitro regeneration capacity could be potentially useful for orthopaedic applications and maxillofacial surgery.

  5. Gold nanoparticle incorporated inverse opal photonic crystal capillaries for optofluidic surface enhanced Raman spectroscopy.

    Science.gov (United States)

    Zhao, Xiangwei; Xue, Jiangyang; Mu, Zhongde; Huang, Yin; Lu, Meng; Gu, Zhongze

    2015-10-15

    Novel transducers are needed for point of care testing (POCT) devices which aim at facile, sensitive and quick acquisition of health related information. Recent advances in optofluidics offer tremendous opportunities for biological/chemical analysis using extremely small sample volumes. This paper demonstrates nanostructured capillary tubes for surface enhanced Raman spectroscopy (SERS) analysis in a flow-through fashion. The capillary tube integrates the SERS sensor and the nanofluidic structure to synergistically offer sample delivery and analysis functions. Inside the capillary tube, inverse opal photonic crystal (IO PhC) was fabricated using the co-assembly approach to form nanoscale liquid pathways. In the nano-voids of the IO PhC, gold nanoparticles were in situ synthesized and functioned as the SERS hotspots. The advantages of the flow-through SERS sensor are multifold. The capillary effect facilities the sample delivery process, the nanofluidic channels boosts the interaction of analyte and gold nanoparticles, and the PhC structure strengthens the optical field near the SERS hotspots and results in enhanced SERS signals from analytes. As an exemplary demonstration, the sensor was used to measure creatinein spiked in artificial urine samples with detection limit of 0.9 mg/dL. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Surface-enhanced Raman scattering in art and archaeology

    Science.gov (United States)

    Leona, Marco

    2005-11-01

    The identification of natural dyes found in archaeological objects and in works of art as textile dyes and lake pigments is a demanding analytical task. To address the problems raised by the very low dye content of dyed fibers and lake pigments, and by the requirement to remove only microscopic samples, surface enhanced Raman scattering techniques were investigated for application to museum objects. SERS gives excellent results with the majority of natural dyes, including: alizarin, purpurin, laccaic acid, carminic acid, kermesic acid, shikonin, juglone, lawsone, brazilin and brazilein, haematoxylin and haematein, fisetin, quercitrin, quercetin, rutin, and morin. In this study, limits of detection were determined for representative dyes and different SERS supports such as citrate reduced Ag colloid and silver nanoisland films. SERS was successfully used to identify natural madder in a microscopic fragment from a severely degraded 11th Century Byzantine textile recently excavated in Amorium, Turkey.

  7. Surface-enhanced Raman spectroscopic monitor of triglyceride hydrolysis in a skin pore phantom

    Science.gov (United States)

    Weldon, Millicent K.; Morris, Michael D.

    1999-04-01

    Bacterial hydrolysis of triglycerides is followed in a sebum probe phantom by microprobe surface-enhanced Raman scattering (SERS) spectroscopy. The phantom consists of a purpose-built syringe pump operating at physiological flow rates connected to a 300 micron i.d. capillary. We employ silicon substrate SERS microprobes to monitor the hydrolysis products. The silicon support allows some tip flexibility that makes these probes ideal for insertion into small structures. Propionibacterium acnes are immobilized on the inner surface of the capillary. These bacteria hydrolyze the triglycerides in a model sebum emulsion flowing through the capillary. The transformation is followed in vitro as changes in the SERS caused by hydrolysis of triglyceride to fatty acid. The breakdown products consists of a mixture of mono- and diglycerides and their parent long chain fatty acids. The fatty acids adsorb as their carboxylates and can be readily identified by their characteristic spectra. The technique can also confirm the presence of bacteria by detection of short chain carboxylic acids released as products of glucose fermentation during the growth cycle of these cells. Co-adsorption of propionate is observed. Spatial localization of the bacteria is obtained by ex-situ line imaging of the probe.

  8. Glycerol supplementation of the growth medium enhances in situ detoxification of furfural by Clostridium beijerinckii during butanol fermentation.

    Science.gov (United States)

    Ujor, Victor; Agu, Chidozie Victor; Gopalan, Venkat; Ezeji, Thaddeus Chukwuemeka

    2014-01-01

    Lignocellulose-derived microbial inhibitors such as furfural and 5-hydroxymethyl furfural adversely affect fermentation of lignocellulosic biomass hydrolysates to fuels and chemicals due to their toxicity on fermenting microbes. To harness the potential of lignocellulose as a cheap source of fermentable sugars, in situ detoxification of furfural and other lignocellulose-derived microbial inhibitors is essential. To enhance in situ detoxification and tolerance of furfural by Clostridium beijerinckii NCIMB 8052 during acetone-butanol-ethanol (ABE) fermentation, the effect of glycerol on NADH/NADPH generation and ABE production by furfural (4, 5, and 6 g/L)-challenged cultures was investigated in this study. In all instances, beneficial outcomes were observed. For example, the fermentation medium supplemented with glycerol and subjected to 5 g/L furfural elicited up to 1.8- and 3-fold increases, respectively, in NADH and NADPH levels in C. beijerinckii 8052 relative to the control culture. These critical changes are the likely underpinnings for the glycerol-mediated 2.3-fold increase in the rate of detoxification of 5 g/L furfural, substrate consumption, and ABE production compared to the unsupplemented medium. Collectively, these results demonstrate that increased intracellular NADH/NADPH in C. beijerinckii 8052 due to glycerol utilization engenders favorable effects on many aspects of cellular metabolism, including enhanced furfural reduction and increased ABE production.

  9. Lobular carcinoma in situ and invasive lobular breast cancer are characterized by enhanced expression of transcription factor AP-2β.

    Science.gov (United States)

    Raap, Mieke; Gronewold, Malte; Christgen, Henriette; Glage, Silke; Bentires-Alj, Mohammad; Koren, Shany; Derksen, Patrick W; Boelens, Mirjam; Jonkers, Jos; Lehmann, Ulrich; Feuerhake, Friedrich; Kuehnle, Elna; Gluz, Oleg; Kates, Ronald; Nitz, Ulrike; Harbeck, Nadia; Kreipe, Hans H; Christgen, Matthias

    2018-01-01

    Transcription factor AP-2β (TFAP2B) regulates embryonic organ development and is overexpressed in alveolar rhabdomyosarcoma, a rare childhood malignancy. Gene expression profiling has implicated AP-2β in breast cancer (BC). This study characterizes AP-2β expression in the mammary gland and in BC. AP-2β protein expression was assessed in the normal mammary gland epithelium, in various reactive, metaplastic and pre-invasive neoplastic lesions and in two clinical BC cohorts comprising >2000 patients. BCs from various genetically engineered mouse (GEM) models were also evaluated. Human BC cell lines served as functional models to study siRNA-mediated inhibition of AP-2β. The normal mammary gland epithelium showed scattered AP-2β-positive cells in the luminal cell layer. Various reactive and pre-invasive neoplastic lesions, including apocrine metaplasia, usual ductal hyperplasia and lobular carcinoma in situ (LCIS) showed enhanced AP-2β expression. Cases of ductal carcinoma in situ (DCIS) were more often AP-2β-negative (Pinvasive BC cohorts, AP-2β-positivity was associated with the lobular BC subtype (Plobular BC cell lines in vitro. In summary, AP-2β is a new mammary epithelial differentiation marker. Its expression is preferentially retained and enhanced in LCIS and invasive lobular BC and has prognostic implications. Our findings indicate that AP-2β controls tumor cell proliferation in this slow-growing BC subtype.

  10. In Situ Studies of Surface Mobility on Noble Metal Model Catalysts Using STM and XPS at Ambient Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, Derek Robert [Univ. of California, Berkeley, CA (United States)

    2010-06-01

    are present on the Pt(100) hex reconstructed phase, but not the (100)-(1x1) surface. The increase in ethylene pressure caused the adsorbate interactions to dominate the crystal morphology and imposed a surface layer structure that matched the ethylidyne binding geometry. The STM results also showed that the surface was reversibly deformed during imaging due to increases in Pt mobility at high pressure. The size dependence on the activity and surface chemistry of Rh nanoparticles was studied using AP-XPS. The activity was found to increase with particle size. The XPS spectra show that in reaction conditions the particle surface has an oxide layer which is chemically distinct from the surface structure formed by heating in oxygen alone. This surface oxide which is stabilized in the catalytically active CO oxidation conditions was found to be more prevalent on the smaller nanoparticles. The reaction-induced surface segregation behavior of bimetallic noble metal nanoparticles was observed with APXPS. Monodisperse 15 nm RhPd and PdPt nanoparticles were synthesized with well controlled Rh/Pd and Pd/Pt compositions. In-situ XPS studies showed that at 300 C in the presence of an oxidizing environment (100 mTorr NO or O2) the surface concentration of the more easily oxidized element (Rh in RhPd and Pd in PdPt) was increased. Switching the gas environment to more reducing conditions (100 mTorr NO and 100 mTorr CO) caused the surface enrichment of the element with the lowest surface energy in its metallic state. Using in-situ characterization, the redox chemistry and the surface composition of bimetallic nanoparticle samples were monitored in reactive conditions. The particle surfaces were shown to reversibly restructure in response to the gas environment at high temperature. The oxidation behavior of the Pt(110) surface was studied using surface sensitive in-situ characterization by APXPS and STM. In the presence of 500 mTorr O2 and temperatures between 25

  11. Adherence of platelets to in situ albumin-binding surfaces under flow conditions: role of surface-adsorbed albumin

    International Nuclear Information System (INIS)

    Guha Thakurta, Sanjukta; Miller, Robert; Subramanian, Anuradha

    2012-01-01

    Surfaces that preferentially bind human serum albumin (HSA) were generated by grafting albumin-binding linear peptide (LP1) onto silicon surfaces. The research aim was to evaluate the adsorption pattern of proteins and the adhesion of platelets from platelet-poor plasma and platelet-rich plasma, respectively, by albumin-binding surfaces under physiological shear rate (96 and 319 s −1 ) conditions. Bound proteins were quantified using enzyme-linked immunosorbent assays (ELISAs) and two-dimensional gel electrophoresis. A ratio of ∼1000:100:1 of adsorbed HSA, human immunoglobulin (HIgG) and human fibrinogen (HFib) was noted, respectively, on LP1-functionalized surfaces, and a ratio of ∼5:2:1 of the same was noted on control surfaces, as confirmed by ELISAs. The surface-adsorbed von Willebrand factor was undetectable by sensitive ELISAs. The amount of adhered platelets correlated with the ratio of adsorbed HSA/HFib. Platelet morphology was more rounded on LP1-functionalized surfaces when compared to control surfaces. The platelet adhesion response on albumin-binding surfaces can be explained by the reduction in the co-adsorption of other plasma proteins in a surface environment where there is an excess of albumin molecules, coupled with restrictions in the conformational transitions of other surface-adsorbed proteins into hemostatically active forms. (paper)

  12. Chemically functionalized two-dimensional titanium carbide MXene by in situ grafting-intercalating with diazonium ions to enhance supercapacitive performance

    Science.gov (United States)

    Wang, Hongbing; Zhang, Jianfeng; Wu, Yuping; Huang, Huajie; Jiang, Quanguo

    2018-04-01

    Two-dimensional Ti3C2 MXene nanosheets were functionalized with phenylsulfonic groups derived from in situ generated diazonium ions by the corresponding amine. During the functionalization process, the aryl groups were attached onto the MXene surfaces in the form of strong MXene-aryl (Tisbnd Osbnd C) linkages. Simultaneously, the intercalation of diazonium ions enabled Ti3C2 multi-layers to be delaminated into separate few-layer nanosheets via weak sonication with low energy. As a result of chemical functionalization for MXene Ti3C2, the dispersibility was greatly improved and the specific surface area increased significantly. The grafted functional groups are still stable up to at least 200 °C upon thermogravimetric analysis measurements. With diazonium ions intercalating and electroactive groups grafting between-in MXene layers, the chemically functionalized Ti3C2 electrodes exhibited an enhanced supercapacitive performance, which acquired a specific capacitance more than double that of pristine Ti3C2 samples and excellent cycling stability (91% capacity retention after 10,000 cycles at 3 A g-1). This feasible modification scheme can be also extended to functionalize other types of MXenes materials with this or other aryl diazonium ions as surface modifiers and intercalants, thus offering scope for full potential applications of the new 2D materials.

  13. Analysis of polymer surfaces and thin-film coatings with Raman and surface enhanced Raman scattering

    International Nuclear Information System (INIS)

    McAnally, Gerard David

    2001-01-01

    This thesis investigates the potential of surface-enhanced Raman scattering (SERS) for the analysis and characterisation of polymer surfaces. The Raman and SERS spectra from a PET film are presented. The SERS spectra from the related polyester PBT and from the monomer DMT are identical to PET, showing that only the aromatic signals are enhanced. Evidence from other compounds is presented to show that loss of the carbonyl stretch (1725 cm -1 ) from the spectra is due to a chemical interaction between the silver and surface carbonyl groups. The interaction of other polymer functional groups with silver is discussed. A comparison of Raman and SERS spectra collected from three faces of a single crystal shows the SERS spectra are depolarised. AFM images of the silver films used to obtain SERS are presented. They consist of regular islands of silver, fused together to form a complete film. The stability and reproducibility and of these surfaces is assessed. Band assignments for the SERS spectrum of PET are presented. A new band in the spectrum (1131 cm -1 ) is assigned to a complex vibration using a density functional calculation. Depth profiling through a polymer film on to the silver layer showed the SERS signals arise from the silver surface only. The profiles show the effects of refraction on the beam, and the adverse affect on the depth resolution. Silver films were used to obtain SERS spectra from a 40 nm thin-film coating on PET, without interference from the PET layer. The use of an azo dye probe as a marker to detect the coating is described. Finally, a novel method for the synthesis of a SERS-active vinyl-benzotriazole monomer is reported. The monomer was incorporated into a thin-film coating and the SERS spectrum obtained from the polymer. (author)

  14. Accessing the application of in situ cosmogenic 14C to surface exposure dating of amorphous SiO2

    Science.gov (United States)

    Cesta, J. M.; Goehring, B. M.; Ward, D. J.

    2017-12-01

    We assess the feasibility and utility of in situ cosmogenic 14C as a geochronometer for landforms composed of amorphous SiO2 through the comparison of 14C surface exposure ages to independently determined eruption ages on Obsidian Dome, California. Landforms composed of amorphous SiO2 phases are difficult to date by conventional cosmogenic nuclide methods due to several complications that may arise (e.g., inability to remove meteoric contamination). The onset of an increased understanding of production rates and analytical measurement of in situ 14C in SiO2 provides an opportunity to address this limitation. Obsidian Dome is a 600-year-old phreatomagmatic dome of the Mono-Inyo Craters located in Inyo County, California, and consists of vesicular pumice, obsidian, and rhyolite. Exposure ages from eight obsidian and banded pumice and obsidian surface samples range from 3947 ± 678 to 914 ± 134 years, all significantly older than the accepted radiocarbon age of 650-550 years. δ13C values for the samples range between +2.65‰ and +1.34‰ and show a negative correlation with CO2 yield. The `too old' exposure ages coupled with this negative correlation between δ13C and CO2 yield suggests the incorporation of an atmospheric component of 14C. Measurement of 14C concentrations in shielded, subsurface samples will assist in isolating the atmospheric 14C component and aid in correcting the surface exposure ages.

  15. CHARACTERIZATION OF SURFACE OF THE (010 FACE OF BORAX CRYSTALS USING EX SITU ATOMIC FORCE MICROSCOPY (AFM:

    Directory of Open Access Journals (Sweden)

    Suharso Suharso

    2010-06-01

    Full Text Available The surface topology of borax crystals grown at a relative supersaturation of 0.21 has been investigated using ex situ atomic force microscopy (AFM. It was found that the cleavage of borax crystals along the (010 face planes has features of the cleavage of layered compounds, exhibiting cleavage steps of low heights. The step heights of the cleavage of the (010 face of borax crystal are from one unit cell to three unit cells of this face.   Keywords: AFM, cleavage, borax.

  16. Preparation of surface conductive and highly reflective silvered polyimide films by surface modification and in situ self-metallization technique

    International Nuclear Information System (INIS)

    Wu Zhanpeng; Wu Dezhen; Qi Shengli; Zhang Teng; Jin Riguang

    2005-01-01

    Double surface conductive and reflective flexible silvered polyimide films have been prepared by alkali hydroxylation of polyimide film surface and incorporation of silver ions through subsequent ion exchange. Thermal curing of silver(I) polyamate precursor leads to re-cycloimidization of modified surface with concomitant silver reduction, yielding a reflective and conductive silver surface approaching that of native metal. The reflective and conductive surface evolves only when the cure temperature rises to 300 deg. C. The metallized films usually retain the essential mechanical properties of the parent films. Films were characterized by transmission electron microscopy (TEM), scanning electron microscopy and tapping mode atomic force microscopy (AFM). AFM demonstrates that the diameter of close-packed silver particles of the silver layers was about 50-150 nm. TEM shows that thickness of silver layer on the polyimide film surface is about 400-600 nm

  17. In-situ anion exchange fabrication of porous ZnO/ZnSe heterostructural microspheres with enhanced visible light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hairui, E-mail: liuhairui1@126.com [College of Physics & Electrics Engineering, Henan Normal University, Henan Key Laboratory of Photovoltaic Materials, Xinxiang 453007 (China); Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, Shanxi, 030024 (China); College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024 (China); Hu, Yanchun [College of Physics & Electrics Engineering, Henan Normal University, Henan Key Laboratory of Photovoltaic Materials, Xinxiang 453007 (China); He, Xia [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, Shanxi, 030024 (China); Jia, Husheng, E-mail: jia_husheng@126.com [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, Shanxi, 030024 (China); College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024 (China); Liu, Xuguang; Xu, Bingshe [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, Shanxi, 030024 (China)

    2015-11-25

    Porous ZnO microspheres were fabricated by an ultrasonic irradiation technique. Subsequently, through a facile in-situ anion exchange reaction between the ZnO microsphere and sodium selenite, spherical ZnO/ZnSe heterostructures with different ratios of the two components were fabricated. The as-obtained products were characterized by field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray (EDX) spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), and UV–vis spectrometry. The results reveal that the secondary ZnSe nanoparticles are grown on the surface of pre-grown ZnO microspheres. Compared with pure ZnO microspheres, the ZnO/ZnSe hetero-microspheres show enhance visible-light photocatalytic activity for degradation of methylene blue (MB) and 4-nitrophenol (4-NP). The enhanced photocatalytic performance is attributed to fast separation and transport of photogenerated electrons and holes derived from the coupling effect of ZnSe and ZnO heterostructure. Photoluminescent spectra further indicate that the ZnO/ZnSe heterostructures greatly suppress the charge recombination of photogenerated electron–hole pairs, which would be beneficial to improve their photocatalytic activity. Finally, the photocatalytic mechanism of the ZnO/ZnSe heterostructures is proposed. - Graphical abstract: Porous ZnO/ZnSe heterostructures with different ratios of the two components were fabricated and present enhance visible-light photocatalytic activity for degradation of methylene blue (MB) and 4-nitrophenol (4-NP). The enhanced photocatalytic performance is attributed to fast separation and transport of photogenerated electrons and holes derived from the coupling effect of ZnSe and ZnO heterostructure. - Highlights: • Spherical ZnO/ZnSe porous composites were fabricated by in-situ anion exchange. • ZnO/ZnSe composites exhibited enhanced visible-light photocatalytic activity. • The matching band gap improves the separation of

  18. X-ray in-situ study of copper electrodeposition on UHV prepared GaAs(001) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Gruender, Yvonne

    2008-06-02

    For this work a unique setup for in-situ electrochemical studies was employed and improved. This setup permits UHV preparation of the GaAs(001) surface with a defined surface termination (arsenic-rich or gallium-rich) and its characterization by SXRD in UHV, under ambient pressure in inert gas and in electrolyte under potential control without passing through air. The GaAs(001) surfaces were capped by amorphous arsenic. This permitted to ship them through ambient air. Afterwards smooth well defined GaAs(001) surfaces could be recovered by thermal annealing in UHV. A first investigation of the arsenic capped sample was done by atomic force microscopy (AFM) and Surface X-Ray Diffraction (SXRD). The non bulk like termination of the arsenic buried GaAs(001) surface was revealed. For the electrochemical metal deposition, arsenic terminated (2 x 4) reconstructed and gallium terminated (4 x 2) reconstructed GaAs(001) surfaces were employed. These surfaces were characterized by STM, LEED and a first time by SXRD. The surfaces are smooth, however, a higher degree of disorder than for MBE prepared reconstructed GaAs(001) is found. After exposure of the sample to nitrogen, the surfaces were then again studied by SXRD. These two steps characterizing the bare GaAs(001) surfaces permitted us to get a better knowledge of the starting surface and its influence on the later electrodeposited copper. At ambient pressure both reconstructions are lifted, but the surface is not bulk-like terminated as can be deduced from the crystal truncation rods. Epitaxial copper clusters grow upon electrodeposition on the UHV prepared GaAs(001) surface. The copper lattice is rotated and inclined with respect to the GaAs substrate lattice, leading to eight symmetry equivalent domains. The influence of the surface termination as well as the nucleation potential on the structure of the electrodeposited copper were investigated. The tilt and rotation angles do not depend on the deposition potential but

  19. Detection of Surface-Linked Polychlorinated Biphenyls using Surface-Enhanced Raman Scattering Spectroscopy

    DEFF Research Database (Denmark)

    Rindzevicius, Tomas; Barten, Jan; Vorobiev, Mikhail

    2017-01-01

    We present an improved procedure for analytical detection of toxic polychlorinated biphenyls (PCB) using surface-enhanced Raman scattering (SERS) spectroscopy. A gold-capped silicon nanopillar substrate was utilized to concentrate PCB molecules within an area of high electromagnetic fields through...... formation of microsized nanopillar clusters, and consequently, so-called “hot spots” can be formed. In order to improve PCB detection limit, 3,3',4,4'-tetrachlorobiphenyl (PCB77) compounds were chemically modified with a – SCH3 (PCB77-SCH3) group. Experimental and numerical analysis of vibrational modes...

  20. In-situ degradation of sulphur mustard and its simulants on the surface of impregnated carbon systems

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Abha [Defence Research and Development Establishment, Jhansi Road, Gwalior, MP (India); Saxena, Amit [Defence Research and Development Establishment, Jhansi Road, Gwalior, MP (India); Singh, Beer [Defence Research and Development Establishment, Jhansi Road, Gwalior, MP (India)]. E-mail: beerbs5@rediffmail.com; Sharma, Mamta [Defence Research and Development Establishment, Jhansi Road, Gwalior, MP (India); Suryanarayana, Malladi Venkata Satya [Defence Research and Development Establishment, Jhansi Road, Gwalior, MP (India); Semwal, Rajendra Prasad [Defence Research and Development Establishment, Jhansi Road, Gwalior, MP (India); Ganeshan, Kumaran [Defence Research and Development Establishment, Jhansi Road, Gwalior, MP (India); Sekhar, Krishnamurthy [Defence Research and Development Establishment, Jhansi Road, Gwalior, MP (India)

    2006-05-20

    Bis-2-chloroethyl sulphide (sulphur mustard or HD) is an extremely toxic and persistent chemical warfare agent. For in situ degradation of HD and its analogues (simulants), i.e., dibutyl sulphide (DBS) and ethyl 2-hydroxyethyl sulphide (HEES), different carbon systems such as 11-molybdo-1-vanadophosphoric acid impregnated carbon (V{sub 1}/C), ruthenium chloride impregnated carbon (Ru/C) and combination of these two (V{sub 1}/Ru/C) were prepared. These carbons were characterized for cumulative micropore volume and surface area by N{sub 2} BET. The kinetics of the in situ degradation of HD and its simulants were studied and found to be following the first order kinetics. Kinetic rate constants and t {sub 1/2} values were determined. Products were characterized using NMR, IR and GC-MS. Reaction products were found to be sulphoxide and sulphone. The combined system, i.e., 11-molybdo-1-vanadophosphoric acid plus ruthenium chloride (V{sub 1}/Ru/C) was found to be best for in-situ degradation of HD and its simulants. In-situ degradation by polyoxometalate based system was found to be stoichiometry based while Ru/C oxidized HD in presence of chemisorbed oxygen. In combined system of V{sub 1}/Ru/C ruthenium worked as a catalyst and polyoxometalate acted as a source of oxygen. Effect of moisture was also studied in combined system. Rate of degradation of HD was found to be increasing with increased percentage of moisture content.

  1. Deposition of functionalized polymer layers in surface plasmon resonance immunosensors by in-situ polymerization in the evanescent wave field.

    Science.gov (United States)

    Chegel, Vladimir; Whitcombe, Michael J; Turner, Nicholas W; Piletsky, Sergey A

    2009-01-01

    Traditionally, the integration of sensing gel layers in surface plasmon resonance (SPR) is achieved via "bulk" methods, such as precipitation, spin-coating or in-situ polymerization onto the total surface of the sensor chip, combined with covalent attachment of the antibody or receptor to the gel surface. This is wasteful in terms of materials as the sensing only occurs at the point of resonance interrogated by the laser. By isolating the sensing materials (antibodies, enzymes, aptamers, polymers, MIPs, etc.) to this exact spot a more efficient use of these recognition elements will be achieved. Here we present a method for the in-situ formation of polymers, using the energy of the evanescent wave field on the surface of an SPR device, specifically localized at the point of interrogation. Using the photo-initiator couple of methylene blue (sensitizing dye) and sodium p-toluenesulfinate (reducing agent) we polymerized a mixture of N,N-methylene-bis-acrylamide and methacrylic acid in water at the focal point of SPR. No polymerization was seen in solution or at any other sites on the sensor surface. Varying parameters such as monomer concentration and exposure time allowed precise control over the polymer thickness (from 20-200 nm). Standard coupling with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and N-hydroxysuccinimide was used for the immobilization of protein G which was used to bind IgG in a typical biosensor format. This model system demonstrated the characteristic performance for this type of immunosensor, validating our deposition method.

  2. Surface roughness estimation of MBE grown CdTe/GaAs(211)B by ex-situ spectroscopic ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Karakaya, Merve, E-mail: mervegunnar@iyte.edu.tr [Department of Material Science and Engineering, Izmir Institute of Technology, Izmir 35430 (Turkey); Bilgilisoy, Elif; Arı, Ozan; Selamet, Yusuf [Department of Physics, Izmir Institute of Technology, Izmir 35430 (Turkey)

    2016-07-15

    Spectroscopic ellipsometry (SE) ranging from 1.24 eV to 5.05 eV is used to obtain the film thickness and optical properties of high index (211) CdTe films. A three-layer optical model (oxide/CdTe/GaAs) was chosen for the ex-situ ellipsometric data analysis. Surface roughness cannot be determined by the optical model if oxide is included. We show that roughness can be accurately estimated, without any optical model, by utilizing the correlation between SE data (namely the imaginary part of the dielectric function, <ε{sub 2} > or phase angle, ψ) and atomic force microscopy (AFM) roughness. <ε{sub 2} > and ψ values at 3.31 eV, which corresponds to E{sub 1} critical transition energy of CdTe band structure, are chosen for the correlation since E{sub 1} gives higher resolution than the other critical transition energies. On the other hand, due to the anisotropic characteristic of (211) oriented CdTe surfaces, SE data (<ε{sub 2} > and ψ) shows varieties for different azimuthal angle measurements. For this reason, in order to estimate the surface roughness by considering these correlations, it is shown that SE measurements need to be taken at the same surface azimuthal angle. Estimating surface roughness in this manner is an accurate way to eliminate cumbersome surface roughness measurement by AFM.

  3. Superhydrophobic Surfaces with Very Low Hysteresis Prepared by Aggregation of Silica Nanoparticles During In Situ Urea-Formaldehyde Polymerization.

    Science.gov (United States)

    Diwan, Anubhav; Jensen, David S; Gupta, Vipul; Johnson, Brian I; Evans, Delwyn; Telford, Clive; Linford, Matthew R

    2015-12-01

    We present a new method for the preparation of superhydrophobic materials by in situ aggregation of silica nanoparticles on a surface during a urea-formaldehyde (UF) polymerization. This is a one-step process in which a two-tier topography is obtained. The polymerization is carried out for 30, 60, 120, 180, and 240 min on silicon shards. Silicon surfaces are sintered to remove the polymer. SEM and AFM show both an increase in the area covered by the nanoparticles and their aggregation with increasing polymerization time. Chemical vapor deposition of a fluorinated silane in the presence of a basic catalyst gives these surfaces hydrophobicity. Deposition of this low surface energy silane is confirmed by the F 1s signal in XPS. The surfaces show advancing water contact angles in excess of 160 degrees with very low hysteresis (polymerization times for 7 nm and 14 nm silica, respectively. Depositions are successfully demonstrated on glass substrates after they are primed with a UF polymer layer. Superhydrophobic surfaces can also be prepared on unsintered substrates.

  4. In situ X-ray scattering studies of protein solution droplets drying on micro- and nanopatterned superhydrophobic PMMA surfaces.

    Science.gov (United States)

    Accardo, Angelo; Gentile, Francesco; Mecarini, Federico; De Angelis, Francesco; Burghammer, Manfred; Di Fabrizio, Enzo; Riekel, Christian

    2010-09-21

    Superhydrophobic poly(methyl methacrylate) surfaces with contact angles of ∼170° and high optical and X-ray transparencies have been fabricated through the use of optical lithography and plasma etching. The surfaces contain either a microscale pattern of micropillars or a random nanofibrillar pattern. Nanoscale asperities on top of the micropillars closely resemble Nelumbo nucifera lotus leaves. The evolution of the contact angle of water and lysozyme solution droplets during evaporation was studied on the micro- and nanopatterned surfaces, showing in particular contact-line pinning for the protein solution droplet on the nanopatterned surface. The microstructural evolution of lysozyme solution droplets was studied on both types of surfaces in situ under nearly contact-free conditions by synchrotron radiation microbeam wide-angle and small-angle X-ray scattering revealing the increasing protein concentration and the onset of precipitation. The solid residuals show hollow sphere morphologies. Rastermicrodiffraction of the detached residuals suggests about a 1/3 volume fraction of ≥17 nm lysozyme nanocrystalline domains and about a 2/3 short-range-order volume fraction. About 5-fold larger nanocrystalline domains were observed at the attachment points of the sphere to the substrates, which is attributed to particle growth in a shear flow. Such surfaces represent nearly contact-free sample supports for studies of inorganic and organic solution droplets, which find applications in biochips.

  5. DOTS: A High Resolution Orbitrap Mass Spectrometer for In Situ Analysis of the surface samples of Airless Planetary Bodies

    Science.gov (United States)

    Briois, Christelle; Thissen, Roland; Engrand, Cécile; Altwegg, Kathrin; Bouabdellah, Abdel; Boukrara, Amirouche; Carrasco, Nathalie; Chapuis, Claude; Cottin, Hervé; Grün, Eberhard; Grand, Noel; Henkel, Hartmut; Kempf, Sascha; Lebreton, Jean-Pierre; Makarov, Alexander A.; Postber, Frank; Srama, Ralf; Schmidt, Jürgen; Szopa, Cyril; Thirkell, Laurent; Tobie, Gabriel; Wurz, Peter; Zolotov, Mikhail Yu

    2013-04-01

    The dust detectors on board the Ulysses and Galileo spacecraft have shown that the Galilean satellites are surrounded by clouds of sub-micrometer size grains generated by impacts of interplanetary (micro-) meteoroids [1, 2]. In situ chemical analysis from orbit of these ballistic grains ejected from the surface of airless bodies provides a unique opportunity to remotely access the chemical composition of the Jovian moons' surface and subsurface. For Saturn, in situ identification by the Cassini Dust Analyzer (CDA) of sodium in icy grains in the E-Ring and in Enceladus plumes have proven a subsurface liquid water reservoir inside Enceladus [3, 4]. Noticeably, this was not accessible to other in situ or traditional remote sensing techniques. In situ measurements, either during a flyby or from orbit, of grains ejected from the surface, or emerging from the subsurface, of an airless body is a powerful tool to remotely study its surface composition and the nature of its geological activity. Crucial constraints on habitability can thus be determined. Our consortium of laboratories, in collaboration with Thermo Fischer Scientific [5, 6], is currently developing a high mass resolution Fourier Transform (FT) Orbitrap-based mass spectrometer optimized for in situ analysis of dust and icy grains in the environment of Solar System airless bodies. This new generation of dust mass spectrometer was studied in the framework of the Europa Jupiter System Mission (EJSM) instrument study in 2010-2012 and proposed in response to ESA's AO for the JUpiter ICy moons Explorer (JUICE) mission [7]. This mass analyser can provide very high mass resolution analysis (M/ΔM reaching 50 000 at m/z 50 Da). DOTS would allow identification of elemental and molecular species with excellent accuracy, in the 20-1000 Da mass range. In the context of the JUICE mission, DOTS would provide decisive information on the surface composition and on the putative liquid oceans in the subsurface of Ganymede

  6. Europa's surface radiation environment and considerations for in-situ sampling and biosignature detection

    Science.gov (United States)

    Nordheim, T.; Paranicas, C.; Hand, K. P.

    2017-12-01

    Jupiter's moon Europa is embedded deep within the Jovian magnetosphere and is thus exposed to bombardment by charged particles, from thermal plasma to more energetic particles at radiation belt energies. In particular, energetic charged particles are capable of affecting the uppermost layer of surface material on Europa, in some cases down to depths of several meters (Johnson et al., 2004; Paranicas et al., 2009, 2002). Examples of radiation-induced surface alteration include sputtering, radiolysis and grain sintering; processes that are capable of significantly altering the physical properties of surface material. Radiolysis of surface ices containing sulfur-bearing contaminants from Io has been invoked as a possible explanation for hydrated sulfuric acid detected on Europa's surface (Carlson et al., 2002, 1999) and radiolytic production of oxidants represents a potential source of energy for life that could reside within Europa's sub-surface ocean (Chyba, 2000; Hand et al., 2007; Johnson et al., 2003; Vance et al., 2016). Accurate knowledge of Europa's surface radiation environment is essential to the interpretation of space and Earth-based observations of Europa's surface and exosphere. Furthermore, future landed missions may seek to sample endogenic material emplaced on Europa's surface to investigate its chemical composition and to search for biosignatures contained within. Such material would likely be sampled from the shallow sub-surface, and thus, it becomes crucial to know to which degree this material is expected to have been radiation processed.Here we will present modeling results of energetic electron and proton bombardment of Europa's surface, including interactions between these particles and surface material. In addition, we will present predictions for biosignature destruction at different geographical locations and burial depths and discuss the implications of these results for surface sampling by future missions to Europa's surface.

  7. Enhanced performance of biodegradable poly(butylene succinate)/graphene oxide nanocomposites via in situ polymerization.

    Science.gov (United States)

    Wang, X W; Zhang, C-A; Wang, P L; Zhao, J; Zhang, W; Ji, J H; Hua, K; Zhou, J; Yang, X B; Li, X P

    2012-05-08

    Poly(butylene succinate) (PBS)/graphene oxide (GO) nanocomposites were facilely prepared via in situ polymerization. The properties of the nanocomposites were studied using FTIR, XRD, and (1)H NMR, and the state of dispersion of GO in the PBS matrix was examined by SEM. The crystallization and melting behavior of the PBS matrix in the presence of dispersed GO nanosheets have been studied by DSC and polarized optical microscopy. Through the mechnical testing machine and DMA, PBS/GO nanocomposites with 3% GO have shown a 43% increase in tensile strength and a 45% improvement in storage modulus. This high performance of the nanocomposites is mainly attributed to the high strength of graphene oxide combined with the strong interfacial interactions in the uniformly dispersed PBS/GO nanocomposites.

  8. In-situ decorated gold nanoparticles on polyaniline with enhanced electrocatalysis toward dopamine

    International Nuclear Information System (INIS)

    Wang, A.-J.; Feng, J.-J.; Xi, J.-L.; Dong, W.-J.; Li, Y.-F.

    2010-01-01

    Gold nanoparticles were in-situ decorated on top of a polyaniline film (GNPs-PANI) via the direct electroreduction of the adsorbed AuCl 4 - ions on a glassy carbon electrode that previously was coated with PANI by electropolymerization. The GNPs-PANI composite and the performance of the resultant sensors were investigated in some detail. The sensor was applied to the oxidation of dopamine (DA) with improved catalytic activity. Its catalytic current showed wide linear response toward dopamine ranging from 3 to 115 μM, with a low detection limit of 0. 8 μM (S/N=3). In addition, the sensor exhibits easy-operation, fast response to dopamine, as well as excellent reproducibility and stability. (author)

  9. Integrated in situ characterization of molten salt catalyst surface: Evidence of sodium peroxide and OH radical formation

    KAUST Repository

    Takanabe, Kazuhiro; Khan, Abdulaziz M.; Tang, Yu; Nguyen, Luan; Ziani, Ahmed; Jacobs, Benjamin W; Elbaz, Ayman M.; Sarathy, S Mani; Tao, Franklin Feng

    2017-01-01

    Na-based catalysts (i.e., Na2WO4) were proposed to selectively catalyze OH radical formation from H2O and O2 at high temperatures. This reaction may proceed on molten salt state surfaces due to the lower melting point of the used Na salts compared to the reaction temperature. This study provides direct evidence of the molten salt state of Na2WO4, which can form OH radicals, using in situ techniques including X-ray diffraction (XRD), scanning transmission electron microscopy (STEM), laser induced fluorescence (LIF) spectrometer, and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS). As a result, Na2O2 species, which were hypothesized to be responsible for the formation of OH radicals, has been identified on the outer surfaces at temperatures ≥800°C, and these species are useful for various gas-phase hydrocarbon reactions including the selective transformation of methane to ethane.

  10. Adsorption of human insulin on single-crystal gold surfaces investigated by in situ scanning tunnelling microscopy and electrochemistry

    DEFF Research Database (Denmark)

    Welinder, Anna Christina; Zhang, Jingdong; Steensgaard, D.B.

    2010-01-01

    sweep, LSV, cyclic, CV, and square wave (SQWV) voltammetry. Multifarious electrochemical patterns were observed. Most attention was given to reductive desorption caused by insulin binding to the Au-surfaces via up to three disulfide groups per insulin monomer, presumably converted to single Au-S links....... SQWV suggested the Au-S bond strength order Au(111) > Au(110) > Au(100) based on the reductive desorption potentials. The voltammetric diversity was paralleled by different in situ STM insulin adsorption modes on the three surfaces. Single-molecule resolution was achieved in all cases. The coverage...... followed the order Au(110) > Au(100) > Au(111) and differs from the reductive desorption order that records the Au-S bonding element. Evenly distributed single molecules were scattered over large Au(111)-terraces, with intriguing molecular arrays disclosed near the terrace edges. In comparison, high...

  11. Integrated in situ characterization of molten salt catalyst surface: Evidence of sodium peroxide and OH radical formation

    KAUST Repository

    Takanabe, Kazuhiro

    2017-06-26

    Na-based catalysts (i.e., Na2WO4) were proposed to selectively catalyze OH radical formation from H2O and O2 at high temperatures. This reaction may proceed on molten salt state surfaces due to the lower melting point of the used Na salts compared to the reaction temperature. This study provides direct evidence of the molten salt state of Na2WO4, which can form OH radicals, using in situ techniques including X-ray diffraction (XRD), scanning transmission electron microscopy (STEM), laser induced fluorescence (LIF) spectrometer, and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS). As a result, Na2O2 species, which were hypothesized to be responsible for the formation of OH radicals, has been identified on the outer surfaces at temperatures ≥800°C, and these species are useful for various gas-phase hydrocarbon reactions including the selective transformation of methane to ethane.

  12. In situ nanoscale refinement by highly controllable etching of the (111) silicon crystal plane and its influence on the enhanced electrical property of a silicon nanowire

    International Nuclear Information System (INIS)

    Gong Yibin; Dai Pengfei; Gao Anran; Li Tie; Zhou Ping; Wang Yuelin

    2011-01-01

    Nanoscale refinement on a (100) oriented silicon-on-insulator (SOI) wafer was introduced by using tetra-methyl-ammonium hydroxide (TMAH, 25 wt%) anisotropic silicon etchant, with temperature kept at 50 °C to achieve precise etching of the (111) crystal plane. Specifically for a silicon nanowire (SiNW) with oxide sidewall protection, the in situ TMAH process enabled effective size reduction in both lateral (2.3 nm/min) and vertical (1.7 nm/min) dimensions. A sub-50 nm SiNW with a length of microns with uniform triangular cross-section was achieved accordingly, yielding enhanced field effect transistor (FET) characteristics in comparison with its 100 nm-wide pre-refining counterpart, which demonstrated the feasibility of this highly controllable refinement process. Detailed examination revealed that the high surface quality of the (111) plane, as well as the bulk depletion property should be the causes of this electrical enhancement, which implies the great potential of the as-made cost-effective SiNW FET device in many fields. (semiconductor materials)

  13. Synthesis and Characterization of WO3/Graphene Nanocomposites for Enhanced Photocatalytic Activities by One-Step In-Situ Hydrothermal Reaction

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Hu

    2018-01-01

    Full Text Available Tungsten trioxide (WO3 nanorods are synthesized on the surface of graphene (GR sheets by using a one-step in-situ hydrothermal method employing sodium tungstate (Na2WO4·2H2O and graphene oxide (GO as precursors. The resulting WO3/GR nanocomposites are characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy, scanning electron microscopy and X-ray photoelectron spectroscopy. The results confirm that the interface between WO3 nanorod and graphene contains chemical bonds. The enhanced optical absorption properties are measured by UV-vis diffuse reflectance spectra. The photocatalytic activity of the WO3/GR nanocomposites under visible light is evaluated by the photodegradation of methylene blue, where the degradation rate of WO3/GR nanocomposites is shown to be double that of pure WO3. This is attributed to the synergistic effect of graphene and the WO3 nanorod, which greatly enhances the photocatalytic performance of the prepared sample, reduces the recombination of the photogenerated electron-hole pairs and increases the visible light absorption efficiency. Finally, the photocatalytic mechanism of the WO3/GR nanocomposites is presented. The synthesis of the prepared sample is convenient, direct and environmentally friendly. The study reports a highly efficient composite photocatalyst for the degradation of contaminants that can be applied to cleaning up the environment.

  14. Assessing Telomere Length Using Surface Enhanced Raman Scattering

    Science.gov (United States)

    Zong, Shenfei; Wang, Zhuyuan; Chen, Hui; Cui, Yiping

    2014-11-01

    Telomere length can provide valuable insight into telomeres and telomerase related diseases, including cancer. Here, we present a brand-new optical telomere length measurement protocol using surface enhanced Raman scattering (SERS). In this protocol, two single strand DNA are used as SERS probes. They are labeled with two different Raman molecules and can specifically hybridize with telomeres and centromere, respectively. First, genome DNA is extracted from cells. Then the telomere and centromere SERS probes are added into the genome DNA. After hybridization with genome DNA, excess SERS probes are removed by magnetic capturing nanoparticles. Finally, the genome DNA with SERS probes attached is dropped onto a SERS substrate and subjected to SERS measurement. Longer telomeres result in more attached telomere probes, thus a stronger SERS signal. Consequently, SERS signal can be used as an indicator of telomere length. Centromere is used as the inner control. By calibrating the SERS intensity of telomere probe with that of the centromere probe, SERS based telomere measurement is realized. This protocol does not require polymerase chain reaction (PCR) or electrophoresis procedures, which greatly simplifies the detection process. We anticipate that this easy-operation and cost-effective protocol is a fine alternative for the assessment of telomere length.

  15. Rapid surface enhanced Raman scattering detection method for chloramphenicol residues

    Science.gov (United States)

    Ji, Wei; Yao, Weirong

    2015-06-01

    Chloramphenicol (CAP) is a widely used amide alcohol antibiotics, which has been banned from using in food producing animals in many countries. In this study, surface enhanced Raman scattering (SERS) coupled with gold colloidal nanoparticles was used for the rapid analysis of CAP. Density functional theory (DFT) calculations were conducted with Gaussian 03 at the B3LYP level using the 3-21G(d) and 6-31G(d) basis sets to analyze the assignment of vibrations. Affirmatively, the theoretical Raman spectrum of CAP was in complete agreement with the experimental spectrum. They both exhibited three strong peaks characteristic of CAP at 1104 cm-1, 1344 cm-1, 1596 cm-1, which were used for rapid qualitative analysis of CAP residues in food samples. The use of SERS as a method for the measurements of CAP was explored by comparing use of different solvents, gold colloidal nanoparticles concentration and absorption time. The method of the detection limit was determined as 0.1 μg/mL using optimum conditions. The Raman peak at 1344 cm-1 was used as the index for quantitative analysis of CAP in food samples, with a linear correlation of R2 = 0.9802. Quantitative analysis of CAP residues in foods revealed that the SERS technique with gold colloidal nanoparticles was sensitive and of a good stability and linear correlation, and suited for rapid analysis of CAP residue in a variety of food samples.

  16. Surface-Enhanced Raman Scattering Nanoparticles as Optical Labels for Imaging Cell Surface Proteins

    Science.gov (United States)

    MacLaughlin, Christina M.

    Assaying the expression of cell surface proteins has widespread application for characterizing cell type, developmental stage, and monitoring disease transformation. Immunophenotyping is conducted by treating cells with labelled targeting moieties that have high affinity for relevant surface protein(s). The sensitivity and specificity of immunophenotyping is defined by the choice of contrast agent and therefore, the number of resolvable signals that can be used to simultaneously label cells. Narrow band width surface-enhanced Raman scattering (SERS) nanoparticles are proposed as optical labels for multiplexed immunophenotying. Two types of surface coatings were investigated to passivate the gold nanoparticles, incorporate SERS functionality, and to facilitate attachment of targeting antibodies. Thiolated poly(ethylene glycol) forms dative bonds with the gold surface and is compatible with multiple physisorbed Raman-active reporter molecules. Ternary lipid bilayers are used to encapsulate the gold nanoparticles particles, and incorporate three different classes of Raman reporters. TEM, UV-Visible absorbance spectroscopy, DLS, and electrophoretic light scattering were used characterize the particle coating. Colourimetric protein assay, and secondary antibody labelling were used to quantify the antibody conjugation. Three different in vitromodels were used to investigate the binding efficacy and specificity of SERS labels for their biomarker targets. Primary human CLL cells, LY10 B lymphoma, and A549 adenocarcinoma lines were targeted. Dark field imaging was used to visualize the colocalization of SERS labels with cells, and evidence of receptor clustering was obtained based on colour shifts of the particles' Rayleigh scattering. Widefield, and spatially-resolved Raman spectra were used to detect labels singly, and in combination from labelled cells. Fluorescence flow cytometry was used to test the particles' binding specificity, and SERS from labelled cells was also

  17. Statistically Enhanced Model of In Situ Oil Sands Extraction Operations: An Evaluation of Variability in Greenhouse Gas Emissions.

    Science.gov (United States)

    Orellana, Andrea; Laurenzi, Ian J; MacLean, Heather L; Bergerson, Joule A

    2018-02-06

    Greenhouse gas (GHG) emissions associated with extraction of bitumen from oil sands can vary from project to project and over time. However, the nature and magnitude of this variability have yet to be incorporated into life cycle studies. We present a statistically enhanced life cycle based model (GHOST-SE) for assessing variability of GHG emissions associated with the extraction of bitumen using in situ techniques in Alberta, Canada. It employs publicly available, company-reported operating data, facilitating assessment of inter- and intraproject variability as well as the time evolution of GHG emissions from commercial in situ oil sands projects. We estimate the median GHG emissions associated with bitumen production via cyclic steam stimulation (CSS) to be 77 kg CO 2 eq/bbl bitumen (80% CI: 61-109 kg CO 2 eq/bbl), and via steam assisted gravity drainage (SAGD) to be 68 kg CO 2 eq/bbl bitumen (80% CI: 49-102 kg CO 2 eq/bbl). We also show that the median emissions intensity of Alberta's CSS and SAGD projects have been relatively stable from 2000 to 2013, despite greater than 6-fold growth in production. Variability between projects is the single largest source of variability (driven in part by reservoir characteristics) but intraproject variability (e.g., startups, interruptions), is also important and must be considered in order to inform research or policy priorities.

  18. Soil surface stabilization using an in situ plutonium coating techniuqe at the Nevada Test Site

    International Nuclear Information System (INIS)

    Lew, J.; Snipes, R.; Tamura, T.

    1996-01-01

    The Hazardous Waste Remedial Actions Program (HAZWRAP), in collaboration with the University of Nevada at Reno (UNR), has developed and is investigating an in situ plutonium treatment for soils at the Nevada Test Site (NTS). The concept, conceived by Dr. T. Tamura and refined at HAZWRAP, was developed during the Nevada Applied Ecology Program investigation. In analyzing for plutonium in soils, it was noted that the alpha emanation of plutonium was greatly attenuated if traces of iron or manganese oxides were present in the final electroplating stage. The technique would reduce resuspension of alpha particles into the air by coating the contaminants in soils in situ with an environmentally compatible, durable, and nontoxic material. The coating materials (calcium hydroxide, ferrous sulfate) reduce resuspension by providing a cementitious barrier against radiation penetration while retaining soil porosity. This technique not only stabilizes plutonium-contaminated soils, but also provides an additional protection from worker exposure to radiation during remediation activities. Additionally, the coating would decrease the water solubility of the contaminant and, thus, reduce its migration through soil and uptake by plants

  19. In situ surface/interface x-ray diffractometer for oxide molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. H.; Freeland, J. W.; Hong, Hawoong, E-mail: hhong@aps.anl.gov [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Tung, I. C. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Chang, S.-H.; Bhattacharya, A.; Fong, D. D. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2016-01-15

    In situ studies of oxide molecular beam epitaxy by synchrotron x-ray scattering has been made possible by upgrading an existing UHV/molecular beam epitaxy (MBE) six-circle diffractometer system. For oxide MBE growth, pure ozone delivery to the chamber has been made available, and several new deposition sources have been made available on a new 12 in. CF (ConFlat, a registered trademark of Varian, Inc.) flange. X-ray diffraction has been used as a major probe for film growth and structures for the system. In the original design, electron diffraction was intended for the secondary diagnostics available without the necessity of the x-ray and located at separate positions. Deposition of films was made possible at the two diagnostic positions. And, the aiming of the evaporation sources is fixed to the point between two locations. Ozone can be supplied through two separate nozzles for each location. Also two separate thickness monitors are installed. Additional features of the equipment are also presented together with the data taken during typical oxide film growth to illustrate the depth of information available via in situ x-ray techniques.

  20. In situ surface/interface x-ray diffractometer for oxide molecular beam epitaxy

    International Nuclear Information System (INIS)

    Lee, J. H.; Freeland, J. W.; Hong, Hawoong; Tung, I. C.; Chang, S.-H.; Bhattacharya, A.; Fong, D. D.

    2016-01-01

    In situ studies of oxide molecular beam epitaxy by synchrotron x-ray scattering has been made possible by upgrading an existing UHV/molecular beam epitaxy (MBE) six-circle diffractometer system. For oxide MBE growth, pure ozone delivery to the chamber has been made available, and several new deposition sources have been made available on a new 12 in. CF (ConFlat, a registered trademark of Varian, Inc.) flange. X-ray diffraction has been used as a major probe for film growth and structures for the system. In the original design, electron diffraction was intended for the secondary diagnostics available without the necessity of the x-ray and located at separate positions. Deposition of films was made possible at the two diagnostic positions. And, the aiming of the evaporation sources is fixed to the point between two locations. Ozone can be supplied through two separate nozzles for each location. Also two separate thickness monitors are installed. Additional features of the equipment are also presented together with the data taken during typical oxide film growth to illustrate the depth of information available via in situ x-ray techniques

  1. The Modern Near-Surface Martian Climate: A Review of In-situ Meteorological Data from Viking to Curiosity

    Science.gov (United States)

    Martínez, G. M.; Newman, C. N.; De Vicente-Retortillo, A.; Fischer, E.; Renno, N. O.; Richardson, M. I.; Fairén, A. G.; Genzer, M.; Guzewich, S. D.; Haberle, R. M.; Harri, A.-M.; Kemppinen, O.; Lemmon, M. T.; Smith, M. D.; de la Torre-Juárez, M.; Vasavada, A. R.

    2017-10-01

    We analyze the complete set of in-situ meteorological data obtained from the Viking landers in the 1970s to today's Curiosity rover to review our understanding of the modern near-surface climate of Mars, with focus on the dust, CO2 and H2O cycles and their impact on the radiative and thermodynamic conditions near the surface. In particular, we provide values of the highest confidence possible for atmospheric opacity, atmospheric pressure, near-surface air temperature, ground temperature, near-surface wind speed and direction, and near-surface air relative humidity and water vapor content. Then, we study the diurnal, seasonal and interannual variability of these quantities over a span of more than twenty Martian years. Finally, we propose measurements to improve our understanding of the Martian dust and H2O cycles, and discuss the potential for liquid water formation under Mars' present day conditions and its implications for future Mars missions. Understanding the modern Martian climate is important to determine if Mars could have the conditions to support life and to prepare for future human exploration.

  2. Surface modification of magnesium aluminum hydroxide nanoparticles with poly(methyl methacrylate) via one-pot in situ polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Guo Xiaojun, E-mail: guoxj6906@163.com [College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070 (China); Zhao Leihua; Zhang Li; Li Jing [College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070 (China)

    2012-01-15

    Hydrophobic magnesium aluminum hydroxide composite particles (PMMA-MAH) were obtained by means of grafting poly(methyl methacrylate) (PMMA) onto the surface of magnesium aluminum hydroxide(MAH) nanoparticles after a novel type of phosphate coupling agent (DN-27) modification. The introduction of functional double bonds was firstly conducted on the surface of nanoparticles by DN-27 modification, followed by one-pot in situ polymerization on the particles surface using methyl methacrylate (MMA) as monomer, azoisobutyronitrile (AIBN) as initiator and sodium dodecyl sulfate (SDS) as stabilizer to graft PMMA on the surface of DN-27-modified MAH particles. The obtained composite particles were characterized by field-emission scanning electron microscope (FESEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), X-ray powder diffraction (XRD). The results show that the organic macromolecule PMMA could be successfully grafted on the surface of DN-27-modified MAH nanoparticles and the thermal stability of the PMMA-MAH composite particles had been improved. Compared with unmodified blank MAH sample, the product obtained with this method possesses better hydrophobic properties such as a higher water contact angle of 108 Degree-Sign and a well dispersion.

  3. Determination of surface concentrations of individual molecule-layers used in nanoscale biosensors by in situ ATR-FTIR spectroscopy

    KAUST Repository

    Punzet, Manuel

    2012-01-01

    For the development of nanowire sensors for chemical and medical detection purposes, the optimal functionalization of the surface is a mandatory component. Quantitative ATR-FTIR spectroscopy was used in situ to investigate the step-by-step layer formation of typical functionalization protocols and to determine the respective molecule surface concentrations. BSA, anti-TNF-α and anti-PSA antibodies were bound via 3-(trimethoxy)butylsilyl aldehyde linkers to silicon-oxide surfaces in order to investigate surface functionalization of nanowires. Maximum determined surface concentrations were 7.17 × 10 -13 mol cm -2 for BSA, 1.7 × 10 -13 mol cm -2 for anti-TNF-α antibody, 6.1 × 10 -13 mol cm -2 for anti-PSA antibody, 3.88 × 10 -13 mol cm -2 for TNF-α and 7.0 × 10 -13 mol cm -2 for PSA. Furthermore we performed antibody-antigen binding experiments and determined the specific binding ratios. The maximum possible ratio of 2 was obtained at bulk concentrations of the antigen in the μg ml -1 range for TNF-α and PSA. © 2012 The Royal Society of Chemistry.

  4. Atmospheric characterization through fused mobile airborne and surface in situ surveys: methane emissions quantification from a producing oil field

    Science.gov (United States)

    Leifer, Ira; Melton, Christopher; Fischer, Marc L.; Fladeland, Matthew; Frash, Jason; Gore, Warren; Iraci, Laura T.; Marrero, Josette E.; Ryoo, Ju-Mee; Tanaka, Tomoaki; Yates, Emma L.

    2018-03-01

    Methane (CH4) inventory uncertainties are large, requiring robust emission derivation approaches. We report on a fused airborne-surface data collection approach to derive emissions from an active oil field near Bakersfield, central California. The approach characterizes the atmosphere from the surface to above the planetary boundary layer (PBL) and combines downwind trace gas concentration anomaly (plume) above background with normal winds to derive flux. This approach does not require a well-mixed PBL; allows explicit, data-based, uncertainty evaluation; and was applied to complex topography and wind flows. In situ airborne (collected by AJAX - the Alpha Jet Atmospheric eXperiment) and mobile surface (collected by AMOG - the AutoMObile trace Gas - Surveyor) data were collected on 19 August 2015 to assess source strength. Data included an AMOG and AJAX intercomparison transect profiling from the San Joaquin Valley (SJV) floor into the Sierra Nevada (0.1-2.2 km altitude), validating a novel surface approach for atmospheric profiling by leveraging topography. The profile intercomparison found good agreement in multiple parameters for the overlapping altitude range from 500 to 1500 m for the upper 5 % of surface winds, which accounts for wind-impeding structures, i.e., terrain, trees, buildings, etc. Annualized emissions from the active oil fields were 31.3 ± 16 Gg methane and 2.4 ± 1.2 Tg carbon dioxide. Data showed the PBL was not well mixed at distances of 10-20 km downwind, highlighting the importance of the experimental design.

  5. In Situ Nondestructive Analysis of Kalanchoe pinnata Leaf Surface Structure by Polarization-Modulation Infrared Reflection-Absorption Spectroscopy.

    Science.gov (United States)

    Hama, Tetsuya; Kouchi, Akira; Watanabe, Naoki; Enami, Shinichi; Shimoaka, Takafumi; Hasegawa, Takeshi

    2017-12-14

    The outermost surface of the leaves of land plants is covered with a lipid membrane called the cuticle that protects against various stress factors. Probing the molecular-level structure of the intact cuticle is highly desirable for understanding its multifunctional properties. We report the in situ characterization of the surface structure of Kalanchoe pinnata leaves using polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS). Without sample pretreatment, PM-IRRAS measures the IR spectra of the leaf cuticle of a potted K. pinnata plant. The peak position of the CH 2 -related modes shows that the cuticular waxes on the leaf surface are mainly crystalline, and the alkyl chains are highly packed in an all-trans zigzag conformation. The surface selection rule of PM-IRRAS revealed the average orientation of the cuticular molecules, as indicated by the positive and negative signals of the IR peaks. This unique property of PM-IRRAS revealed that the alkyl chains of the waxes and the main chains of polysaccharides are oriented almost perpendicular to the leaf surface. The nondestructive, background-free, and environmental gas-free nature of PM-IRRAS allows the structure and chemistry of the leaf cuticle to be studied directly in its native environment.

  6. In-situ γ spectrometry of the Chernobyl fallout using soil-sample independent corrections for surface roughness and migration

    International Nuclear Information System (INIS)

    Karlberg, O.

    1993-12-01

    The 661 keV gamma and 32 keV X-ray fluences from Cs-137 were measured in-situ with a Gamma-X Ge detector on different types of urban and rural surfaces. In comparison with a model calculation, the 661 keV fluence was used to estimate the surface activity assuming an ideal, infinite surface and the quotient between the 32 and 661 fluences was used to estimate the correction factors for the surfaces due to migration and surface roughness. As an alternative to the X-ray method, the use of a collimator for ordinary measurements of the 661 keV peak was analysed, and compared with the X-ray method and with measurements without a collimator. The X-ray method with the optimal soil distribution and composition gives the best results, but ordinary measurements with use of a collimator with a constant correction factor seems to be an appropriate method, when soil profiles for determination of a more exact calibration factor are not available

  7. Increased preference of surface ablation over laser in situ keratomileusis between 2008–2011 is correlated to risk of ecatasia

    Directory of Open Access Journals (Sweden)

    Moisseiev E

    2013-01-01

    Full Text Available Elad Moisseiev,1,3 Tzahi Sela,2 Liza Minkev,2 David Varssano1,31Department of Ophthalmology, Tel-Aviv Medical Center, Tel-Aviv, Israel; 2Care Vision, Tel Aviv, Israel; 3Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, IsraelPurpose: To evaluate the trends in corneal refractive procedure selection for the correction of myopia, focusing on the relative proportions of laser in situ keratomileusis (LASIK and surface ablation procedures.Methods: Only eyes that underwent LASIK or surface ablation for the correction of myopia between 2008–2011 were included in this retrospective study. Additional recorded parameters included patient age, preoperative manifest refraction, corneal thickness, and calculated residual corneal bed thickness. A risk score was given to each eye, based on these parameters, according to the Ectasia Risk Factor Score System (ERFSS, without the preoperative corneal topography.Results: This study included 16,163 eyes, of which 38.4% underwent LASIK and 61.6% underwent surface ablation. The risk score correlated with procedure selection, with LASIK being preferred in eyes with a score of 0 and surface ablation in eyes with a score of 2 or higher. When controlling for age, preoperative manifest refraction, corneal thickness, and all parameters, the relative proportion of surface ablation compared with LASIK was found to have grown significantly during the study period.Conclusions: Our results indicate that with time, surface ablation tended to be performed more often than LASIK for the correction of myopia in our cohort. Increased awareness of risk factors and preoperative risk assessment tools, such as the ERFSS, have shifted the current practice of refractive surgery from LASIK towards surface ablation despite the former's advantages, especially in cases in which the risk for ectasia is more than minimal (risk score 2 and higher.Keywords: surface ablation, LASIK, PRK, myopia correction, ectasia

  8. In-situ investigation of laser surface modifications of WC-Co hard metals inside a scanning electron microscope

    Science.gov (United States)

    Mueller, H.; Wetzig, K.; Schultrich, B.; Pompe, Wolfgang; Chapliev, N. I.; Konov, Vitaly I.; Pimenov, S. M.; Prokhorov, Alexander M.

    1989-05-01

    The investigation of laser interaction with solid surfaces and of the resulting mechanism of surface modification are of technical interest to optimize technological processes, and they are also of fundamental scientific importance. Most instructive indormation is available with the ail of the in-situ techniques. For instance, measuring of the photon emission of the irradiated surface ane the plasma torch (if it is produced) simultaneously to laser action, makes it possible to gain a global characterization of the laser-solid interaction. In order to obtain additional information about surface and structure modifications in microscopic detail , a laser and scanning electron microscope were combined in to a tandem equipment (LASEM). Inside this eqiipment the microscopic observation is carried out directly at the laser irradiated area without any displacement of the sample. In this way, the stepwise development of surface modification during multipulse irradiation is visible in microscopic details and much more reliable information about the surface modification process is obtainable in comparison to an external laser irradiation. Such kind of equipments were realized simultaneously and independently in the Institut of General Physics (Moscow) and the Central Institute of Solid State Physics and Material Research (Dresden) using a CO2 and a LTd-glass-laser, respectively. In the following the advantages and possibilities of a LASEM shall be demonstrated by some selected investigations of WC-CO hardmeta. The results were obtained in collaboration by both groups with the aid of the pulsed CO2-laser. The TEA CO2 laser was transmitted through a ZnSe-window into the sample chamber of the SEM and focused ofAo tfte sample surface. It was operated in TEM - oo mode with a repetition rate of about 1 pulse per second. A peak power density of about 160 MW/cm2 was achieved in front of the sample surface.

  9. In-Situ Measurement of Chirality of Molecules and Molecular Assemblies with Surface Nonlinear Spectroscopy

    International Nuclear Information System (INIS)

    Wang, Hongfei

    2012-01-01

    Developments in quantitative measurement and analysis in nonlinear surface spectroscopy, namely, second harmonic generation linear dichroism (SHG-LD) and sum frequency generation vibrational spectroscopy linear dichroism (SFG-VS-LD), provide new opportunities for probing the surface chirality of monolayers and thin films. In this book chapter, the up-to-date theoretical background and experimental methodology, as well as examples and future perspectives on the developments with surface nonlinear spectroscopy in surface chirality studies are to be summarized and outlined for general readers.

  10. In Situ Integration of Anisotropic SnO₂ Heterostructures inside Three-Dimensional Graphene Aerogel for Enhanced Lithium Storage.

    Science.gov (United States)

    Yao, Xin; Guo, Guilue; Ma, Xing; Zhao, Yang; Ang, Chung Yen; Luo, Zhong; Nguyen, Kim Truc; Li, Pei-Zhou; Yan, Qingyu; Zhao, Yanli

    2015-12-02

    Three-dimensional (3D) graphene aerogel (GA) has emerged as an outstanding support for metal oxides to enhance the overall energy-storage performance of the resulting hybrid materials. In the current stage of the studies, metals/metal oxides inside GA are in uncrafted geometries. Introducing structure-controlled metal oxides into GA may further push electrochemical properties of metal oxide-GA hybrids. Using rutile SnO2 as an example, we demonstrated here a facile hydrothermal strategy combined with a preconditioning technique named vacuum-assisted impregnation for in situ construction of controlled anisotropic SnO2 heterostructures inside GA. The obtained hybrid material was fully characterized in detail, and its formation mechanism was investigated by monitoring the phase-transformation process. Rational integration of the two advanced structures, anisotropic SnO2 and 3D GA, synergistically led to enhanced lithium-storage properties (1176 mAh/g for the first cycle and 872 mAh/g for the 50th cycle at 100 mA/g) as compared with its two counterparts, namely, rough nanoparticles@3D GA and anisotropic SnO2@2D graphene sheets (618 and 751 mAh/g for the 50th cycle at 100 mA/g, respectively). It was also well-demonstrated that this hybrid material was capable of delivering high specific capacity at rapid charge/discharge cycles (1044 mAh/g at 100 mA/g, 847 mAh/g at 200 mA/g, 698 mAh/g at 500 mA/g, and 584 mAh/g at 1000 mA/g). The in situ integration strategy along with vacuum-assisted impregnation technique presented here shows great potential as a versatile tool for accessing a variety of sophisticated smart structures in the form of anisotropic metals/metal oxides within 3D GA toward useful applications.

  11. In situ surface and interface study of crystalline (3×1)-O on InAs

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Xiaoye, E-mail: xxq102020@utdallas.edu; Wallace, Robert M., E-mail: rmwallace@utdallas.edu [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080 (United States); Wang, Wei-E.; Rodder, Mark S. [Advanced Logic Lab, Samsung Semiconductor, Inc., Austin, Texas 78754 (United States)

    2016-07-25

    The oxidation behavior of de-capped InAs (100) exposed to O{sub 2} gas at different temperatures is investigated in situ with high resolution of monochromatic x-ray photoelectron spectroscopy and low energy electron diffraction. The oxide chemical states and structure change dramatically with the substrate temperature. A (3 × 1) crystalline oxide layer on InAs is generated in a temperature range of 290–330 °C with a coexistence of In{sub 2}O and As{sub 2}O{sub 3}. The stability of the crystalline oxide upon the atomic layer deposition (ALD) of HfO{sub 2} is studied as well. It is found that the generated (3 × 1) crystalline oxide is stable upon ALD HfO{sub 2} growth at 100 °C.

  12. Positive enhancement integral values in dynamic contrast enhanced magnetic resonance imaging of breast carcinoma: Ductal carcinoma in situ vs. invasive ductal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Nadrljanski, Mirjan, E-mail: dr.m.nadrljanski@gmail.com [Clinic for Radiology and Radiation Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade (Serbia); Maksimović, Ružica [Center for Radiology and Magnetic Resonance Imaging, Clinical Center of Serbia, Pasterova 2, 11000 Belgrade (Serbia); Faculty of Medicine, University of Belgrade, Dr Subotića 8, 11000 Belgrade (Serbia); Plešinac-Karapandžić, Vesna; Nikitović, Marina [Clinic for Radiology and Radiation Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade (Serbia); Faculty of Medicine, University of Belgrade, Dr Subotića 8, 11000 Belgrade (Serbia); Marković-Vasiljković, Biljana [Center for Radiology and Magnetic Resonance Imaging, Clinical Center of Serbia, Pasterova 2, 11000 Belgrade (Serbia); Faculty of Medicine, University of Belgrade, Dr Subotića 8, 11000 Belgrade (Serbia); Milošević, Zorica [Clinic for Radiology and Radiation Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade (Serbia); Faculty of Medicine, University of Belgrade, Dr Subotića 8, 11000 Belgrade (Serbia)

    2014-08-15

    Objectives: The aim of this study was to contribute to the standardization of the numeric positive enhancement integral (PEI) values in breast parenchyma, ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC) and to evaluate the significance of the difference in PEI values between IDC and parenchyma, DCIS and parenchyma and IDC and DCIS. Materials and Methods: In the prospective trial, we analyzed the dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) of 60 consecutive patients with histologically confirmed unilateral DCIS (n = 30) and IDC (n = 30) and defined the PEI values (range; mean ± SD) for the lesions and the breast parenchyma. Tumor-to-non-tumor (T/NT) ratios were calculated for DCIS and IDC and compared. PEI color maps (PEICM) were created. The differences in PEI values between IDC and parenchyma and between DCIS and parenchyma were tested according to t-test. Analysis of variance (ANOVA) was used to test the differences between the mean PEI values of parenchyma, DCIS and IDC. Results: IDC showed highly statistically different PEI numeric values compared to breast parenchyma (748.7 ± 32.2 vs. 74.6 ± 17.0; p < 0.0001). The same applied to the differences in the group of patients with DCIS (428.0 ± 25.0 vs. 66.0 ± 10.6; p < 0.0001). The difference between IDC, DCIS and parenchyma were also considered highly statistically significant (p < 0.0001) and so were the T/NT ratios for IDC and DCIS (10.1 ± 2.4 vs. 6.6 ± 1.4; p < 0.0001). Conclusions: PEI numeric values may contribute to differentiation between invasive and in situ breast carcinoma.

  13. Steam hydration-reactivation of FBC ashes for enhanced in situ desulphurization

    Energy Technology Data Exchange (ETDEWEB)

    Fabio Montagnaro; Marianna Nobili; Antonio Telesca; Gian Lorenz Valenti; Edward J. Anthony; Piero Salatino [Universita degli Studi di Napoli Federico II, Napoli (Italy). Dipartimento di Chimica

    2009-06-15

    Bed and fly ashes originating from industrial-scale fluidized bed combustors (FBCs) were steam hydrated to produce sorbents suitable for further in situ desulphurization. Samples of the hydrated ash were characterized by X-ray diffraction analysis, scanning electron microscopy and porosimetry. Bed ashes were hydrated in a pressure bomb for 30 and 60 min at 200{sup o}C and 250{sup o}C. Fly ash was hydrated in an electrically heated tubular reactor for 10 and 60 min at 200{sup o}C and 300{sup o}C. The results were interpreted by considering the hydration process and the related development of accessible porosity suitable for resulphation. The performance of the reactivated bed ash as sulphur sorbent improved with a decrease of both the hydration temperature and time. For reactivated fly ash, more favourable porosimetric features were observed at longer treatment times and lower hydration temperatures. Finally, it was shown that an ashing treatment (at 850{sup o}C for 20 min) promoted a speeding up of the hydration process and an increase in the accessible porosity. 36 refs., 6 figs., 2 tabs.

  14. Pool boiling CHF enhancement by micro/nanoscale modification of zircaloy-4 surface

    International Nuclear Information System (INIS)

    Ahn, Ho Seon; Lee, Chan; Kim, Hyungdae; Jo, HangJin; Kang, SoonHo; Kim, Joonwon; Shin, Jeongseob; Kim, Moo Hwan

    2010-01-01

    Consideration of the critical heat flux (CHF) requires difficult compromises between economy and safety in many types of thermal systems, including nuclear power plants. Much research has been directed towards enhancing the CHF, and many recent studies have revealed that the significant CHF enhancement in nanofluids is due to surface deposition of nanoparticles. The surface deposition of nanoparticles influenced various surface characteristics. This fact indicated that the surface wettability is a key parameter for CHF enhancement and so is the surface morphology. In this study, surface wettability of zircaloy-4 used as cladding material of fuel rods in nuclear power plants was modified using surface treatment technique (i.e. anodization). Pool boiling experiments of distilled water on the prepared surfaces was conducted at atmospheric and saturated conditions to examine effects of the surface modification on CHF. The experimental results showed that CHF of zircaloy-4 can be significantly enhanced by the improvement in surface wettability using the surface modification, but only the wettability effect cannot explain the CHF increase on the treated zircaloy-4 surfaces completely. It was found that below a critical value of contact angle (10 o ), micro/nanostructures created by the surface treatment increased spreadability of liquid on the surface, which could lead to further increase in CHF even beyond the prediction caused only by the wettability improvement. These micro/nanostructures with multiscale on heated surface induced more significant CHF enhancement than it based on the wettability effect, due to liquid spreadability.

  15. Cross-evaluation of modelled and remotely sensed surface soil moisture with in situ data in southwestern France

    Directory of Open Access Journals (Sweden)

    C. Albergel

    2010-11-01

    Full Text Available The SMOSMANIA soil moisture network in Southwestern France is used to evaluate modelled and remotely sensed soil moisture products. The surface soil moisture (SSM measured in situ at 5 cm permits to evaluate SSM from the SIM operational hydrometeorological model of Météo-France and to perform a cross-evaluation of the normalised SSM estimates derived from coarse-resolution (25 km active microwave observations from the ASCAT scatterometer instrument (C-band, onboard METOP, issued by EUMETSAT and resampled to the Discrete Global Grid (DGG, 12.5 km gridspacing by TU-Wien (Vienna University of Technology over a two year period (2007–2008. A downscaled ASCAT product at one kilometre scale is evaluated as well, together with operational soil moisture products of two meteorological services, namely the ALADIN numerical weather prediction model (NWP and the Integrated Forecasting System (IFS analysis of Météo-France and ECMWF, respectively. In addition to the operational SSM analysis of ECMWF, a second analysis using a simplified extended Kalman filter and assimilating the ASCAT SSM estimates is tested. The ECMWF SSM estimates correlate better with the in situ observations than the Météo-France products. This may be due to the higher ability of the multi-layer land surface model used at ECMWF to represent the soil moisture profile. However, the SSM derived from SIM corresponds to a thin soil surface layer and presents good correlations with ASCAT SSM estimates for the very first centimetres of soil. At ECMWF, the use of a new data assimilation technique, which is able to use the ASCAT SSM, improves the SSM and the root-zone soil moisture analyses.

  16. Utilizing Raman Spectroscopy and Surface-Enhanced Raman Spectroscopy to investigate healthy and cancerous colon samples

    International Nuclear Information System (INIS)

    Barzegar, A.; Rezaei, H.; Malekfar, R.

    2012-01-01

    In this study, spontaneous Raman scattering and surface-enhanced Raman scattering, Surface-Enhanced Raman Spectroscopy spectra have been investigated. The samples which were kept in the formalin solution selected from the human's healthy and cancerous colon tissues. The Surface-Enhanced Raman Spectroscopy spectra were collected by adding colloidal solution contained silver nanoparticles to the top of the samples. The recorded spectra were compared for the spontaneous Raman spectra of healthy and cancerous colon samples. The spontaneous and surface enhanced Raman scattering data were also collected and compared for both healthy and damaged samples.

  17. ENHANCED MODELING OF REMOTELY SENSED ANNUAL LAND SURFACE TEMPERATURE CYCLE

    Directory of Open Access Journals (Sweden)

    Z. Zou

    2017-09-01

    Full Text Available Satellite thermal remote sensing provides access to acquire large-scale Land surface temperature (LST data, but also generates missing and abnormal values resulting from non-clear-sky conditions. Given this limitation, Annual Temperature Cycle (ATC model was employed to reconstruct the continuous daily LST data over a year. The original model ATCO used harmonic functions, but the dramatic changes of the real LST caused by the weather changes remained unclear due to the smooth sine curve. Using Aqua/MODIS LST products, NDVI and meteorological data, we proposed enhanced model ATCE based on ATCO to describe the fluctuation and compared their performances for the Yangtze River Delta region of China. The results demonstrated that, the overall root mean square errors (RMSEs of the ATCE was lower than ATCO, and the improved accuracy of daytime was better than that of night, with the errors decreased by 0.64 K and 0.36 K, respectively. The improvements of accuracies varied with different land cover types: the forest, grassland and built-up areas improved larger than water. And the spatial heterogeneity was observed for performance of ATC model: the RMSEs of built-up area, forest and grassland were around 3.0 K in the daytime, while the water attained 2.27 K; at night, the accuracies of all types significantly increased to similar RMSEs level about 2 K. By comparing the differences between LSTs simulated by two models in different seasons, it was found that the differences were smaller in the spring and autumn, while larger in the summer and winter.

  18. Localized surface plasmon enhanced cellular imaging using random metallic structures

    Science.gov (United States)

    Son, Taehwang; Lee, Wonju; Kim, Donghyun

    2017-02-01

    We have studied fluorescence cellular imaging with randomly distributed localized near-field induced by silver nano-islands. For the fabrication of nano-islands, a 10-nm silver thin film evaporated on a BK7 glass substrate with an adhesion layer of 2-nm thick chromium. Micrometer sized silver square pattern was defined using e-beam lithography and then the film was annealed at 200°C. Raw images were restored using electric field distribution produced on the surface of random nano-islands. Nano-islands were modeled from SEM images. 488-nm p-polarized light source was set to be incident at 60°. Simulation results show that localized electric fields were created among nano-islands and that their average size was found to be 135 nm. The feasibility was tested using conventional total internal reflection fluorescence microscopy while the angle of incidence was adjusted to maximize field enhancement. Mouse microphage cells were cultured on nano-islands, and actin filaments were selectively stained with FITC-conjugated phalloidin. Acquired images were deconvolved based on linear imaging theory, in which molecular distribution was sampled by randomly distributed localized near-field and blurred by point spread function of far-field optics. The optimum fluorophore distribution was probabilistically estimated by repetitively matching a raw image. The deconvolved images are estimated to have a resolution in the range of 100-150 nm largely determined by the size of localized near-fields. We also discuss and compare the results with images acquired with periodic nano-aperture arrays in various optical configurations to excite localized plasmonic fields and to produce super-resolved molecular images.

  19. Biofilm three-dimensional architecture influences in situ pH distribution pattern on the human enamel surface.

    Science.gov (United States)

    Xiao, Jin; Hara, Anderson T; Kim, Dongyeop; Zero, Domenick T; Koo, Hyun; Hwang, Geelsu

    2017-06-01

    To investigate how the biofilm three-dimensional (3D) architecture influences in situ pH distribution patterns on the enamel surface. Biofilms were formed on human tooth enamel in the presence of 1% sucrose or 0.5% glucose plus 0.5% fructose. At specific time points, biofilms were exposed to a neutral pH buffer to mimic the buffering of saliva and subsequently pulsed with 1% glucose to induce re-acidification. Simultaneous 3D pH mapping and architecture of intact biofilms was performed using two-photon confocal microscopy. The enamel surface and mineral content characteristics were examined successively via optical profilometry and microradiography analyses. Sucrose-mediated biofilm formation created spatial heterogeneities manifested by complex networks of bacterial clusters (microcolonies). Acidic regions (pHinterior of microcolonies, which impedes rapid neutralization (taking more than 120 min for neutralization). Glucose exposure rapidly re-created the acidic niches, indicating formation of diffusion barriers associated with microcolonies structure. Enamel demineralization (white spots), rougher surface, deeper lesion and more mineral loss appeared to be associated with the localization of these bacterial clusters at the biofilm-enamel interface. Similar 3D architecture was observed in plaque-biofilms formed in vivo in the presence of sucrose. The formation of complex 3D architectures creates spatially heterogeneous acidic microenvironments in close proximity of enamel surface, which might correlate with the localized pattern of the onset of carious lesions (white spot like) on teeth.

  20. A microfluidic surface enhanced Raman spectroscopic biosensor using aptamer functionalized nanopillars

    DEFF Research Database (Denmark)

    Yang, J.; Palla, M.; Bosco, F. G.

    2013-01-01

    This paper presents a microchip incorporating an aptamer-functionalized nanopillar substrate, enabling the specific detection of low-abundance biomolecules using surface enhanced Raman spectroscopy (SERS). In a temperature controlled microchamber, aptamers immobilized on the nanostructure surface...

  1. Medium factors on anaerobic production of rhamnolipids by Pseudomonas aeruginosa SG and a simplifying medium for in situ microbial enhanced oil recovery applications.

    Science.gov (United States)

    Zhao, Feng; Zhou, Jidong; Han, Siqin; Ma, Fang; Zhang, Ying; Zhang, Jie

    2016-04-01

    Aerobic production of rhamnolipid by Pseudomonas aeruginosa was extensively studied. But effect of medium composition on anaerobic production of rhamnolipid by P. aeruginosa was unknown. A simplifying medium facilitating anaerobic production of rhamnolipid is urgently needed for in situ microbial enhanced oil recovery (MEOR). Medium factors affecting anaerobic production of rhamnolipid were investigated using P. aeruginosa SG (Genbank accession number KJ995745). Medium composition for anaerobic production of rhamnolipid by P. aeruginosa is different from that for aerobic production of rhamnolipid. Both hydrophobic substrate and organic nitrogen inhibited rhamnolipid production under anaerobic conditions. Glycerol and nitrate were the best carbon and nitrogen source. The commonly used N limitation under aerobic conditions was not conducive to rhamnolipid production under anaerobic conditions because the initial cell growth demanded enough nitrate for anaerobic respiration. But rhamnolipid was also fast accumulated under nitrogen starvation conditions. Sufficient phosphate was needed for anaerobic production of rhamnolipid. SO4(2-) and Mg(2+) are required for anaerobic production of rhamnolipid. Results will contribute to isolation bacteria strains which can anaerobically produce rhamnolipid and medium optimization for anaerobic production of rhamnolipid. Based on medium optimization by response surface methodology and ions composition of reservoir formation water, a simplifying medium containing 70.3 g/l glycerol, 5.25 g/l NaNO3, 5.49 g/l KH2PO4, 6.9 g/l K2HPO4·3H2O and 0.40 g/l MgSO4 was designed. Using the simplifying medium, 630 mg/l of rhamnolipid was produced by SG, and the anaerobic culture emulsified crude oil to EI24 = 82.5 %. The simplifying medium was promising for in situ MEOR applications.

  2. Surface plasmon enhanced quantum transport in a hybrid metal nanoparticle array

    International Nuclear Information System (INIS)

    Sun, Lin; Nan, Yali; Xu, Shang; Zhang, Sishi; Han, Min

    2014-01-01

    Hybrid Pd–Ag nanoparticle arrays composed of randomly distributed Pd nanoparticles in dense packing and a small number of dispersed Ag nanoparticles were fabricated with controlled coverage. Photo-enhanced conductance was observed in the nanoparticle arrays. Largest enhancement, which can be higher than 20 folds, was obtained with 450 nm light illumination. This wavelength was found to correlate with the surface plasmon resonance of the Ag nanoparticles. Electron transport measurements showed there were significant Coulomb blockade in the nanoparticle arrays and the blockade could be overcome with the surface plasmon enhanced local field of Ag nanoparticles induced by light illumination. - Highlights: • We study photo-enhanced electron conductance of a hybrid Pd–Ag nanoparticle array. • The light-induced conductance enhancement is as high as 20 folds at 10 K. • The enhancement is correlate with the surface plasmon resonance of Ag nanoparticles. • Coulomb blockades is overcome with the surface plasmon enhanced local field

  3. Two-Step Resonance-Enhanced Desorption Laser Mass Spectrometry for In Situ Analysis of Organic-Rich Environments

    Science.gov (United States)

    Getty, S. A.; Grubisic, A.; Uckert, K.; Li, X.; Cornish, T.; Cook, J. E.; Brinckerhoff, W. B.

    2016-01-01

    A wide diversity of planetary surfaces in the solar system represent high priority targets for in situ compositional and contextual analysis as part of future missions. The planned mission portfolio will inform our knowledge of the chemistry at play on Mars, icy moons, comets, and primitive asteroids, which can lead to advances in our understanding of the interplay between inorganic and organic building blocks that led to the evolution of habitable environments on Earth and beyond. In many of these environments, the presence of water or aqueously altered mineralogy is an important indicator of habitable environments that are present or may have been present in the past. As a result, the search for complex organic chemistry that may imply the presence of a feedstock, if not an inventory of biosignatures, is naturally aligned with targeted analyses of water-rich surface materials. Here we describe the two-step laser mass spectrometry (L2MS) analytical technique that has seen broad application in the study of organics in meteoritic samples, now demonstrated to be compatible with an in situ investigation with technique improvements to target high priority planetary environments as part of a future scientific payload. An ultraviolet (UV) pulsed laser is used in previous and current embodiments of laser desorption/ionization mass spectrometry (LDMS) to produce ionized species traceable to the mineral and organic composition of a planetary surface sample. L2MS, an advanced technique in laser mass spectrometry, is selective to the aromatic organic fraction of a complex sample, which can provide additional sensitivity and confidence in the detection of specific compound structures. Use of a compact two-step laser mass spectrometer prototype has been previously reported to provide specificity to key aromatic species, such as PAHs, nucleobases, and certain amino acids. Recent improvements in this technique have focused on the interaction between the mineral matrix and the

  4. In situ photoactivated plasmonic Ag{sub 3}PO{sub 4}@silver as a stable catalyst with enhanced photocatalytic activity under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dongfang; Wang, Jiaxun, E-mail: zdfbb66@aliyun.com [College of Science, Huazhong Agricultural University, Wuhan (China)

    2017-05-15

    Silver orthophosphate (Ag{sub 3}PO{sub 4}) had been reported as an excellent candidate to split water or decompose pollutants with high efficiency in visible light region, yet is not stable due to the reduction of silver ion. In this work, an easy-fabricated method (in situ photoinduced reduction) was provided to enhance the stability of Ag{sub 3}PO{sub 4} for its possible application as a visible-light sensitive photocatalyst. The as-prepared samples were characterized by X-ray diffraction (XRD), UV-vis diffuse reflectance spectra, photoluminescence spectra (PL) and Photoelectrochemical measurements. The Ag{sub 3}PO{sub 4}/Ag photocatalysts showed strong photocatalytic activity for decomposition of RhB dye or phenol-X-3B mixture under visible light irradiation (λ> 420 nm) and can be used repeatedly. The possible mechanism for the enhanced photocatalytic properties of the Ag{sub 3}PO{sub 4} /Ag hybrid was also discussed. It was found that •OH and holes take priority over •O{sub 2}{sup -} radicals in serving as the main oxidant in the Ag{sub 3}PO{sub 4}/Ag photocatalytic system. Especially, the experimental results indicate that the surface plasmon resonance of Ag nanoparticles and a large negative charge of PO{sub 4}{sup 3-} ions as well as high separation efficiency of {sup e-} --h{sup +} pairs, facilitated the enhancement of the photocatalytic activity of the Ag{sub 3} PO{sub 4} /Ag composite. The results indicated that Ag{sub 3} PO{sub 4} /Ag is an efficient and stable visible-light-driven photocatalyst. (author)

  5. Surface Snow Density of East Antarctica Derived from In-Situ Observations

    Science.gov (United States)

    Tian, Y.; Zhang, S.; Du, W.; Chen, J.; Xie, H.; Tong, X.; Li, R.

    2018-04-01

    Models based on physical principles or semi-empirical parameterizations have used to compute the firn density, which is essential for the study of surface processes in the Antarctic ice sheet. However, parameterization of surface snow density is often challenged by the description of detailed local characterization. In this study we propose to generate a surface density map for East Antarctica from all the filed observations that are available. Considering that the observations are non-uniformly distributed around East Antarctica, obtained by different methods, and temporally inhomogeneous, the field observations are used to establish an initial density map with a grid size of 30 × 30 km2 in which the observations are averaged at a temporal scale of five years. We then construct an observation matrix with its columns as the map grids and rows as the temporal scale. If a site has an unknown density value for a period, we will set it to 0 in the matrix. In order to construct the main spatial and temple information of surface snow density matrix we adopt Empirical Orthogonal Function (EOF) method to decompose the observation matrix and only take first several lower-order modes, because these modes already contain most information of the observation matrix. However, there are a lot of zeros in the matrix and we solve it by using matrix completion algorithm, and then we derive the time series of surface snow density at each observation site. Finally, we can obtain the surface snow density by multiplying the modes interpolated by kriging with the corresponding amplitude of the modes. Comparative analysis have done between our surface snow density map and model results. The above details will be introduced in the paper.

  6. Biologically Active Zone Enhancement (BAZE) for In Situ RDX Degradation in Ground Water

    Science.gov (United States)

    2010-01-01

    x 3 m) stainless steel tubing equipped with an in-line flow-through cell (Figures 21 and 22). Sampling equipment was decontaminated prior to...demonstration. Jeff Breckenridge from the U.S. Army Corps of Engineer-Center of Expertise (Hazardous Toxic and Radioactive Waste) assisted in the collection...injection/recirculation system. The pump was suspended 60-LF (18.3 m) below ground surface (bgs) by a stainless steel cable attached to the well

  7. In Situ X-Ray Diffraction Study on Surface Melting of Bi Nanoparticles Embedded in a SiO2 Matrix

    International Nuclear Information System (INIS)

    Chen Xiao-Ming; Huo Kai-Tuo; Liu Peng

    2014-01-01

    Bi nanoparticles embedded in a SiO 2 matrix were prepared via the high energy ball milling method. The melting behavior of Bi nanoparticles was studied by means of differential scanning calorimetry (DSC) and high-temperature in situ X-ray diffraction (XRD). DSC cannot distinguish the surface melting from ‘bulk’ melting of the Bi nanoparticles. The XRD intensity of the Bi nanoparticles decreases progressively during the in situ heating process. The variation in the normalized integrated XRD intensity versus temperature is related to the average grain size of Bi nanoparticles. Considering the effects of temperature on Debye—Waller factor and Lorentz-polarization factor, we discuss the XRD results in accordance with surface melting. Our results show that the in situ XRD technique is effective to explore the surface melting of nanoparticles

  8. Amplification of Surface-Enhanced Raman Scattering Due to Substrate-Mediated Localized Surface Plasmons in Gold Nanodimers

    KAUST Repository

    Yue, Weisheng

    2017-03-28

    Surface-enhanced Raman scattering (SERS) is ubiquitous in chemical and biochemical sensing, imaging and identification. Maximizing SERS enhancement is a continuous effort focused on the design of appropriate SERS substrates. Here we show that significant improvement in a SERS signal can be achieved with substrates combining localized surface plasmon resonances and a nonresonant plasmonic substrate. By introducing a continuous gold (Au) film underneath Au nanodimers antenna arrays, an over 10-fold increase in SERS enhancement is demonstrated. Triangular, rectangle and disc dimers were studied, with bowtie antenna providing highest SERS enhancement. Simulations of electromagnetic field distributions of the Au nanodimers on the Au film support the observed enhancement dependences. The hybridization of localized plasmonic modes with the image modes in a metal film provides a straightforward way to improve SERS enhancement in designer SERS substrate.

  9. Repeated surgeries in invasive lobular breast cancer with preoperative MRI: Role of additional carcinoma in situ and background parenchymal enhancement.

    Science.gov (United States)

    Preibsch, H; Richter, V; Bahrs, S D; Hattermann, V; Wietek, B M; Bier, G; Kloth, C; Blumenstock, G; Hahn, M; Staebler, A; Nikolaou, K; Wiesinger, B

    2017-05-01

    Analysing the influence of additional carcinoma in situ (CIS) and background parenchymal enhancement (BPE) in preoperative MRI on repeated surgeries in patients with invasive lobular carcinoma (ILC) of the breast. Retrospective analysis of 106 patients (mean age 58.6±9.9years) with 108 ILC. Preoperative tumour size as assessed by MRI, mammography and sonography was recorded and compared to histopathology. In contrast-enhanced MRI, the degree of BPE was categorised by two readers. The influence of additionally detected CIS and BPE on the rate of repeated surgeries was analysed. Additional CIS was present in 45.4% of the cases (49/108). The degree of BPE was minimal or mild in 80% of the cases and moderate or marked in 20% of the cases. In 17 cases (15.7%) at least one repeated surgery was performed. In n=15 of these cases, repeated surgery was performed after BCT (n=9 re-excisions, n=6 conversions to mastectomy), in n=2 cases after initial mastectomy. The initial surgical procedure (p=0.008) and additional CIS (p=0.046) significantly influenced the rate of repeated surgeries, while tumour size, patient age and BPE did not (p=ns). Additional CIS was associated with a higher rate of repeated surgeries, whereas BPE had no influence. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Shifts in microbial community structure during in situ surfactant-enhanced bioremediation of polycyclic aromatic hydrocarbon-contaminated soil.

    Science.gov (United States)

    Wang, Lingwen; Li, Feng; Zhan, Yu; Zhu, Lizhong

    2016-07-01

    This study aims to reveal the microbial mechanism of in situ surfactant-enhanced bioremediation (SEBR). Various concentrations of rhamnolipids, Tween 80, and sodium dodecyl benzenesulfonate (SDBS) were separately sprayed onto soils contaminated with polycyclic aromatic hydrocarbons (PAHs) for years. Within 90 days, the highest level of degradation (95 %) was observed in the soil treated with rhamnolipids (10 mg/kg), followed by 92 % degradation with Tween 80 (50 mg/kg) and 90 % degradation with SDBS (50 mg/kg). The results of the microbial phospholipid fatty acids (PLFAs) suggest that bacteria dominated the enhanced PAH biodegradation (94 % of the maximum contribution). The shift of bacterial community structure during the surfactant treatment was analyzed by using the 16S rRNA gene high-throughput sequencing. In the presence of surfactants, the number of the operational taxonomic units (OTUs) associated with Bacillus, Pseudomonas, and Sphingomonas increased from 2-3 to 15-30 % at the end of the experiment (two to three times of control). Gene prediction with phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) shows that the PAH-degrading genes, such as 1-hydroxy-2-naphthoate dioxygenase and PAH dioxygenase large subunit, significantly increased after the surfactant applications (p bioremediation.

  11. Adhesion enhancement of biomimetic dry adhesives by nanoparticle in situ synthesis

    International Nuclear Information System (INIS)

    Díaz Téllez, J P; Harirchian-Saei, S; Li, Y; Menon, C

    2013-01-01

    A novel method to increase the adhesion strength of a gecko-inspired dry adhesive is presented. Gold nanoparticles are synthesized on the tips of the microfibrils of a polymeric dry adhesive to increase its Hamaker constant. Formation of the gold nanoparticles is qualitatively studied through a colour change in the originally transparent substance and quantitatively analysed using ultraviolet–visible spectrophotometry. A pull-off force test is employed to quantify the adhesion enhancement. Specifically, adhesion forces of samples with and without embedded gold nanoparticles are measured and compared. The experimental results indicate that an adhesion improvement of 135% can be achieved. (paper)

  12. Evolution of Western Mediterranean Sea Surface Temperature between 1985 and 2005: a complementary study in situ, satellite and modelling approaches

    Science.gov (United States)

    Troupin, C.; Lenartz, F.; Sirjacobs, D.; Alvera-Azcárate, A.; Barth, A.; Ouberdous, M.; Beckers, J.-M.

    2009-04-01

    In order to evaluate the variability of the sea surface temperature (SST) in the Western Mediterranean Sea between 1985 and 2005, an integrated approach combining geostatistical tools and modelling techniques has been set up. The objectives are: underline the capability of each tool to capture characteristic phenomena, compare and assess the quality of their outputs, infer an interannual trend from the results. Diva (Data Interpolating Variationnal Analysis, Brasseur et al. (1996) Deep-Sea Res.) was applied on a collection of in situ data gathered from various sources (World Ocean Database 2005, Hydrobase2, Coriolis and MedAtlas2), from which duplicates and suspect values were removed. This provided monthly gridded fields in the region of interest. Heterogeneous time data coverage was taken into account by computing and removing the annual trend, provided by Diva detrending tool. Heterogeneous correlation length was applied through an advection constraint. Statistical technique DINEOF (Data Interpolation with Empirical Orthogonal Functions, Alvera-Azc

  13. Preparation of poly(methyl methacrylate) microcapsules by in situ polymerization on the surface of calcium carbonate particles.

    Science.gov (United States)

    Sato, Katsuhiko; Nakajima, Tatsuya; Anzai, Jun-ichi

    2012-12-01

    Poly(methyl methacrylate) (PMMA) microcapsules were prepared by the in situ polymerization of methyl methacrylate (MMA) and N,N'-methylenebisacrylamide on the surface of calcium carbonate (CaCO(3)) particles, followed by the dissolution of the CaCO(3) core in ethylenediaminetetraacetic acid solution. The microcapsules were characterized using fluorescence microscopy, atomic force microscopy, scanning electron microscopy, and Fourier transform infrared spectroscopy. The average sizes of the CaCO(3) particles and PMMA capsules were 3.8±0.6 and 4.0±0.6 μm, respectively. A copolymer consisting of MMA and rhodamine B-bearing MMA was also used to prepare microcapsules for fluorescent microscopy observations. Fluorescein isothiocyanate-labeled bovine serum albumin was enclosed in the PMMA microcapsules and its release properties were studied. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Voltammetry and In Situ Scanning Tunnelling Microscopy of De Novo Designed Heme Protein Monolayers on Au(111)-Electrode Surfaces

    DEFF Research Database (Denmark)

    Albrecht, Tim; Li, Wu; Haehnel, Wolfgang

    2006-01-01

    to the tunnelling current, apparently due to slow electron transfer kinetics. As a consequence, STM images of heme-containing and heme-free MOP-C did not reveal any notable differences in apparent height or physical extension. The apparent height of heme-containing MOP-C did not show any dependence on the substrate...... potential being varied around the redox potential of the protein. The mere presence of an accessible molecular energy level is not sufficient to result in detectable tunnelling current modulation. (c) 2006 Elsevier B.V. All rights reserved.......In the present work, we report the electrochemical characterization and in situ scanning tunnelling microscopy (STM) studies of monolayers of an artificial de novo designed heme protein MOP-C, covalently immobilized on modified Au(111) surfaces. The protein forms closely packed monolayers, which...

  15. Induction heating to trigger the nickel surface modification by in situ generated 4-carboxybenzene diazonium

    Science.gov (United States)

    Arrotin, Bastien; Jacques, Amory; Devillers, Sébastien; Delhalle, Joseph; Mekhalif, Zineb

    2016-05-01

    Nickel is commonly used in numerous applications and is one of the few materials that present strong ferromagnetic properties. These make it a suitable material for induction heating which can be used to activate the grafting of organic species such as diazonium salts onto the material. Diazonium compounds are often used for the modification of metals and alloys thanks to their easy chemical reduction onto the substrates and the possibility to apply a one-step in situ generation process of the diazonium species. This work focuses on the grafting of 4-aminocarboxybenzene on nickel substrates in the context of a spontaneous grafting conducted either at room temperature or by thermal assistance through conventional heating and induction heating. These modifications are also carried out with the goal of maintaining the oxides layer as much as possible unaffected. The benefits of using induction heating with respect to conventional heating are an increase of the grafting rate, a better control of the reaction and a slighter impact on the oxides layer.

  16. Estimation of surface heat and moisture fluxes over a prairie grassland. I - In situ energy budget measurements incorporating a cooled mirror dew point hygrometer

    Science.gov (United States)

    Smith, Eric A.; Crosson, William L.; Tanner, Bertrand D.

    1992-01-01

    Attention is focused on in situ measurements taken during FIFE required to support the development and validation of a biosphere model. Seasonal time series of surface flux measurements obtained from two surface radiation and energy budget stations utilized to support the FIFE surface flux measurement subprogram are examined. Data collection and processing procedures are discussed along with the measurement analysis for the complete 1987 test period.

  17. In situ study of nitrobenzene grafting on Si(111)-H surfaces by infrared spectroscopic ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Rappich, J. [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Institut fuer Silizium-Photovoltaik, Kekulestr. 5, 12489 Berlin (Germany); Hinrichs, K. [ISAS - Institute for Analytical Sciences, Department Berlin, Albert-Einstein-Str. 9, 12489 Berlin (Germany)

    2009-12-15

    The binding of nitrobenzene (NB) molecules from a solution of 4-nitrobenzene-diazonium-tetrafluoroborate on a Si(111)-H surface was investigated during the electrochemical processing in diluted sulphuric acid by means of infrared spectroscopic ellipsometry (IR-SE). The grafting was monitored by an increase in specific IR absorption bands due to symmetric and anti-symmetric NO{sub 2} stretching vibrations in the 1400-1700 cm{sup -1} regime. The p- and s-polarized reflectances were recorded within 20 s for each spectrum only. NB molecules were detected when bonded to the Si(111) surface but not in the 2 mM solution itself. Oxide formation on the NB grafted Si surface was observed after drying in inert atmosphere and not during the grafting process in the aqueous solution. (author)

  18. In situ studies of the kinetics of surface topography development during ion irradiation

    International Nuclear Information System (INIS)

    Levinskas, R.; Pranevicius, L.

    1996-01-01

    Studies of the mechanical properties of the materials affected by 25-200 keV H + , He + , Ne + and Ar + ion irradiation in the range of fluences up to 2 · 10 17 cm -2 based on the analysis of acoustic emission signals, kinetics of the surface deformations measured by laser interferometric technique and the variations of the surface acoustic waves propagation velocity are conducted. The acoustic emissions source mechanisms under various ion irradiation conditions are discussed and relative contribution various possible mechanism are indicated. The correlation of experimental results obtained by different methods of analysis is done. (author). 11 refs, 5 figs

  19. Improved CO sub 2 enhanced oil recovery -- Mobility control by in-situ chemical precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Ameri, S.; Aminian, K.; Wasson, J.A.; Durham, D.L.

    1991-06-01

    The overall objective of this study has been to evaluate the feasibility of chemical precipitation to improve CO{sub 2} sweep efficiency and mobility control. The laboratory experiments have indicated that carbonate precipitation can alter the permeability of the core samples under reservoir conditions. Furthermore, the relative permeability measurements have revealed that precipitation reduces the gas permeability in favor of liquid permeability. This indicates that precipitation is occurring preferentially in the larger pores. Additional experimental work with a series of connected cores have indicated that the permeability profile can be successfully modified. However, Ph control plays a critical role in propagation of the chemical precipitation reaction. A numerical reservoir model has been utilized to evaluate the effects of permeability heterogeneity and permeability modification on the CO{sub 2} sweep efficiency. The computer simulation results indicate that the permeability profile modification can significantly enhance CO{sub 2} vertical and horizontal sweep efficiencies. The scoping studies with the model have further revealed that only a fraction of high permeability zones need to be altered to achieve sweep efficiency enhancement. 64 refs., 30 figs., 16 tabs.

  20. In situ electrochemical-mass spectroscopic investigation of solid electrolyte interphase formation on the surface of a carbon electrode

    International Nuclear Information System (INIS)

    Gourdin, Gerald; Zheng, Dong; Smith, Patricia H.; Qu, Deyang

    2013-01-01

    The energy density of an electrochemical capacitor can be significantly improved by utilizing a lithiated negative electrode and a high surface area positive electrode. During lithiation of the negative carbon electrode, the electrolyte reacts with the electrode surface and undergoes decomposition to form a solid electrolyte interphase (SEI) layer that passivates the surface of the carbon electrode from further reactions between Li and the electrolyte. The reduction reactions that the solvent undergoes also form insoluble and gaseous by-products. In this work, those gaseous by-products generated by reductive decomposition of a carbonate-based electrolyte, 1.2 M LiPF 6 in EC/PC/DEC (3:1:4), were analyzed at different stages during the lithiation process of an amorphous carbon electrode. The stages in the generation of gaseous by-products were determined to come as a result of two, 1-electron reduction steps of the cyclic carbonate components of the electrolyte. Electrochemical impedance spectroscopy was also used to investigate the two distinct electrochemical processes and the development of the two phases of the SEI structure. This is the first time that the state of an electrochemical cell during the formation of the SEI layer has been systematically correlated with theoretical reaction mechanisms through the use of in situ electrochemical-MS and impedance spectroscopy analyses

  1. In situ immobilization on the silica gel surface and adsorption capacity of polymer-based azobenzene on toxic metal ions

    Science.gov (United States)

    Savchenko, Irina; Yanovska, Elina; Sternik, Dariusz; Kychkyruk, Olga; Ol'khovik, Lidiya; Polonska, Yana

    2018-03-01

    In situ immobilization of poly[(4-methacryloyloxy-(4'-carboxy)azobenzene] on silica gel surface has been performed by radical polymerization of monomer. The fact of polymer immobilization is confirmed by IR spectroscopy. TG and DSC-MS analysis showed that the mass of the immobilized polymer was 10.61%. The SEM-microphotograph-synthesized composite analysis showed that the immobilized polymer on the silica gel surface is placed in the form of fibers. It has been found that the synthesized composite exhibits the sorption ability in terms of microquantities of Cu(II), Cd(II), Pb(II), Mn(II) and Fe(III) ions in a neutral aqueous medium. The quantitative sorption of microquantities of Pb(II) and Fe(III) ions has been recorded. It has been found that immobilization of the silica gel surface leads to an increase in its sorption capacitance for Fe(III), Cu(II) and Pb(II) ions by half.

  2. Ceramic Proppant Design for In-situ Microbially Enhanced Methane Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Sparks, Taylor D. [Univ. of Utah, Salt Lake City, UT (United States); Mclennan, John [Univ. of Utah, Salt Lake City, UT (United States); Fuertez, John [Univ. of Utah, Salt Lake City, UT (United States); Han, Kyu-Bum [Univ. of Utah, Salt Lake City, UT (United States)

    2017-12-29

    This project designed a new type of multi-functional lightweight proppant. The proppant is utilized as the conventional lightweight proppant but also transports microorganisms to coalbed reservoirs. The proppant is coated with a polymer which protects the methanogenic microorganisms and serves as a time-release delivery for methane generation. To produce the multifunctional proppant, we assigned five tasks: 1) culturing methanogenic microbes from natural carbon sources; 2) identifying optimized growth and methanogenesis conditions for the microbial consortia; 3) synthesizing the lightweight ceramic proppant; 4) encapsulating the consortia and proppant; and 5) demonstrating lab scale simulated performance by monitoring in-situ methane generation and hydraulic conductivity. Task 1) To evaluate the feasibility of ex-situ cultivation, natural microbial populations were collected from various hydrocarbon-rich environments and locations characterized by natural methanogenesis. Different rank coals, complex hydrocarbon sources, hydrocarbon seeps, and natural biogenic environments were incorporated in the sampling. Three levels of screening allowed selection of microbial populations, favorable nutrient amendments, sources of the microbial community, and quantification of methane produced from various coal types. Incubation periods of up to 24 weeks were evaluated at 23°C. Headspace concentrations of CH4 and CO2 were analyzed by gas chromatography. After a two-week incubation period of the most promising microbes, generated headspace gas concentrations reached 873,400 ppm for methane and 176,370 ppm for carbon dioxide. Task 2) A central composite design (CCD) was used to explore a broad range of operational conditions, examine the effects of the important environmental factors, such as temperature, pH and salt concentration, and query a feasible region of operation to maximize methane production from coal. Coal biogasification was optimal for this

  3. Comparison between remotely-sensed sea-surface temperature (AVHRR and in situ records in San Matías Gulf (Patagonia, Argentina

    Directory of Open Access Journals (Sweden)

    Gabriela N Williams

    2014-03-01

    Full Text Available In situ records of sea surface temperature collected between 2005 and 2009 were used to compare, for the first time, the temperature estimated by the Multichannel algorithms (MCSST of the Advanced Very High Resolution Radiometer (AVHRR sensors in San Matías Gulf, in the north of the Argentinean Patagonian Continental Shelf (between 40°47'-42°13'S. Match-ups between in situ records and satellite sea surface temperature (SST were analyzed. In situ records came from fixed stations and oceanographic cruises, while satellite data came from different NOAA satellites. The fitting of temperature data to a Standard Major Axis (SMA type II regression model indicated that a high proportion of the total variance (0.53< r² <0.99 was explained by this model showing a high correlation between in situ data and satellite estimations. The mean differences between satellite and in situ data for the full data set were 1.64 ± 1.49°C. Looking separately into in situ data from different sources and day and night estimates from different NOAA satellites, the differences were between 0.30 ± 0.60°C and 2.60 ± 1.50°C. In this paper we discuss possible reasons for the above-mentioned performance of the MCSST algorithms in the study area.

  4. High temperature in operando and in situ spectroscopy on electrified surfaces and interfaces

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Hansen, Karin Vels; Holtappels, Peter

    electrodes without contaminants have demanded a better insight into the electrode surface reactions and chemistries. Spectroscopic techniques can be applied to these cells but are still experimentally challenging due to the high temperature operation conditions. DTU Energy has in the recent years invested...

  5. In situ characterization of local elastic properties of thin shape memory films by surface acoustic waves

    Czech Academy of Sciences Publication Activity Database

    Grabec, T.; Sedlák, Petr; Stoklasová, Pavla; Thomasová, M.; Shilo, D.; Kabla, M.; Seiner, Hanuš; Landa, Michal

    2016-01-01

    Roč. 25, č. 12 (2016), č. článku 127002. ISSN 0964-1726 R&D Projects: GA ČR GA14-15264S Institutional support: RVO:61388998 Keywords : thin films * shape memory alloys * surface acoustic waves Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.909, year: 2016

  6. Highly reproducible surface-enhanced Raman scattering-active Au nanostructures prepared by simple electrodeposition: origin of surface-enhanced Raman scattering activity and applications as electrochemical substrates.

    Science.gov (United States)

    Choi, Suhee; Ahn, Miri; Kim, Jongwon

    2013-05-24

    The fabrication of effective surface-enhanced Raman scattering (SERS) substrates has been the subject of intensive research because of their useful applications. In this paper, dendritic gold (Au) rod (DAR) structures prepared by simple one-step electrodeposition in a short time were examined as an effective SERS-active substrate. The SERS activity of the DAR surfaces was compared to that of other nanostructured Au surfaces with different morphologies, and its dependence on the structural variation of DAR structures was examined. These comparisonal investigations revealed that highly faceted sharp edge sites present on the DAR surfaces play a critical role in inducing a high SERS activity. The SERS enhancement factor was estimated to be greater than 10(5), and the detection limit of rhodamine 6G at DAR surfaces was 10(-8)M. The DAR surfaces exhibit excellent spot-to-spot and substrate-to-substrate SERS enhancement reproducibility, and their long-term stability is very good. It was also demonstrated that the DAR surfaces can be effectively utilized in electrochemical SERS systems, wherein a reversible SERS behavior was obtained during the cycling to cathodic potential regions. Considering the straightforward preparation of DAR substrates and the clean nature of SERS-active Au surfaces prepared in the absence of additives, we expect that DAR surfaces can be used as cost-effective SERS substrates in analytical and electrochemical applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Atmospheric characterization through fused mobile airborne and surface in situ surveys: methane emissions quantification from a producing oil field

    Directory of Open Access Journals (Sweden)

    I. Leifer

    2018-03-01

    Full Text Available Methane (CH4 inventory uncertainties are large, requiring robust emission derivation approaches. We report on a fused airborne–surface data collection approach to derive emissions from an active oil field near Bakersfield, central California. The approach characterizes the atmosphere from the surface to above the planetary boundary layer (PBL and combines downwind trace gas concentration anomaly (plume above background with normal winds to derive flux. This approach does not require a well-mixed PBL; allows explicit, data-based, uncertainty evaluation; and was applied to complex topography and wind flows. In situ airborne (collected by AJAX – the Alpha Jet Atmospheric eXperiment and mobile surface (collected by AMOG – the AutoMObile trace Gas – Surveyor data were collected on 19 August 2015 to assess source strength. Data included an AMOG and AJAX intercomparison transect profiling from the San Joaquin Valley (SJV floor into the Sierra Nevada (0.1–2.2 km altitude, validating a novel surface approach for atmospheric profiling by leveraging topography. The profile intercomparison found good agreement in multiple parameters for the overlapping altitude range from 500 to 1500 m for the upper 5 % of surface winds, which accounts for wind-impeding structures, i.e., terrain, trees, buildings, etc. Annualized emissions from the active oil fields were 31.3 ± 16 Gg methane and 2.4 ± 1.2 Tg carbon dioxide. Data showed the PBL was not well mixed at distances of 10–20 km downwind, highlighting the importance of the experimental design.

  8. In Situ Monitoring of Pb2+ Leaching from the Galvanic Joint Surface in a Prepared Chlorinated Drinking Water.

    Science.gov (United States)

    Ma, Xiangmeng; Armas, Stephanie M; Soliman, Mikhael; Lytle, Darren A; Chumbimuni-Torres, Karin; Tetard, Laurene; Lee, Woo Hyoung

    2018-02-20

    A novel method using a micro-ion-selective electrode (micro-ISE) technique was developed for in situ lead monitoring at the water-metal interface of a brass-leaded solder galvanic joint in a prepared chlorinated drinking water environment. The developed lead micro-ISE (100 μm tip diameter) showed excellent performance toward soluble lead (Pb 2+ ) with sensitivity of 22.2 ± 0.5 mV decade -1 and limit of detection (LOD) of 1.22 × 10 -6 M (0.25 mg L -1 ). The response time was less than 10 s with a working pH range of 2.0-7.0. Using the lead micro-ISE, lead concentration microprofiles were measured from the bulk to the metal surface (within 50 μm) over time. Combined with two-dimensional (2D) pH mapping, this work clearly demonstrated that Pb 2+ ions build-up across the lead anode surface was substantial, nonuniform, and dependent on local surface pH. A large pH gradient (ΔpH = 6.0) developed across the brass and leaded-tin solder joint coupon. Local pH decreases were observed above the leaded solder to a pH as low as 4.0, indicating it was anodic relative to the brass. The low pH above the leaded solder supported elevated lead levels where even small local pH differences of 0.6 units (ΔpH = 0.6) resulted in about four times higher surface lead concentrations (42.9 vs 11.6 mg L -1 ) and 5 times higher fluxes (18.5 × 10 -6 vs 3.5 × 10 -6 mg cm -2 s -1 ). Continuous surface lead leaching monitoring was also conducted for 16 h.

  9. Laser microtexturing of implant surfaces for enhanced tissue integration

    Energy Technology Data Exchange (ETDEWEB)

    Ricci, J.L. [Univ. of Medicine and Dentistry of New Jersey, Newark, NJ (United States). Dept. of Orthodontics; Alexander, H. [Orthogen Corp., Springfield, NJ (United States)

    2001-07-01

    The success or failure of bone and soft tissue-fixed medical devices, such as dental and orthopaedic implants, depends on a complex combination of biological and mechanical factors. These factors are intimately associated with the interface between the implant surface and the surrounding tissue, and are largely determined by the composition, surface chemistry, and surface microgeometry of the implant. The relative contributions of these factors are difficult to assess. This study addresses the contribution of surface microtexture, on a controlled level, to tissue integration. (orig.)

  10. Novel Chiroptical Analysis of Hemoglobin by Surface Enhanced Resonance Raman Optical Activity Spectroscopy

    DEFF Research Database (Denmark)

    Brazhe, Nadezda; Brazhe, Alexey; Sosnovtseva, Olga

    2010-01-01

    The metalloprotein hemoglobin (Hb) was studied using surface enhanced resonance Raman spectroscopy (SERRS) and surface enhanced resonance Raman optical activity (SERROA). The SERROA results are analyzed and compared with the SERRS, and the later to the resonance Raman (RRS) performed on Hb...

  11. Kaolinite as an in situ dosimeter for past radionuclide migration at the Earth's surface

    International Nuclear Information System (INIS)

    Allard, T.; Muller, J.-P.

    1998-01-01

    The origin of 3 types of point defects (A-, Aminutes or feet- and B-centers) in kaolinite, due to natural irradiation and detected by electron paramagnetic resonance spectroscopy (EPR), has been demonstrated by artificial irradiation. The potential use of tracing the dynamics of the transfer of radionuclides through A-centers (i.e. the most stable centers) was qualitatively tested on different low-temperature alteration systems, some associated with U-concentrations. This paper proposes a quantitative approach to the reconstruction of the past migration of radionuclides by dosimetry of A-centers. With this aim in mind, the efficiency of α- and γ-radiations to produce A-centers was determined by experimental irradiation. Parameters extracted from A-center growth curves, together with their relationship with a parameter describing the degree of order of kaolinite, permitted (i) a definition to be made of the dose range in which a given kaolinite could be used as a dosimeter and (ii) the quantitative derivation of U-concentration from the cumulative dose (paleodose) of kaolinites. This was achieved by a formalism that accounted for the contribution of natural radiosources to the production of A-centers. The formalism was applied to the Nopal I U-deposit (Chihuhua, Mexico), considered as a natural analogue of a high level nuclear waste repository. Irrespective of the scenario considered, in terms of kaolinite age and of degree of isotopic disequilibrium in the system, A-center dosimetry permitted the determination of past occurrences of U which were several orders of magnitude higher than the present-day measured U-concentrations. Furthermore, this approach also provided evidence for several previous episodes of U-migration. EPR spectroscopy is thus a unique tool for the quantitative, indirect assessment of past radionuclide migration in the geosphere and kaolinite is a reliable in-situ dosimeter. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights

  12. Laser in situ keratomileusis enhancements with the Ziemer FEMTO LDV femtosecond laser following previous LASIK treatments.

    Science.gov (United States)

    Pietilä, Juhani; Huhtala, Anne; Mäkinen, Petri; Uusitalo, Hannu

    2013-02-01

    The aim of this paper is to present the accuracy, predictability, and safety outcomes of LASIK enhancements performed with the FEMTO LDV femtosecond laser (Ziemer Ophthalmic Systems, Port, Switzerland) and the Allegretto Wave Concerto 500 Hz excimer laser (Wavelight AG, Erlangen, Germany), following previous LASIK treatments. FEMTO LDV was used for flap creation in 85 previously LASIK-treated eyes of 62 patients. The intended flap thickness was 90 μm in 81 eyes and 140 μm in 4 eyes. The size of the suction ring was 9.0 mm in 72 eyes and 9.5 mm in 13 eyes. Flap dimensions were measured and correlated to preoperative characteristics. With the intended flap thickness of 90 μm in previously LASIK-treated eyes, the actual flap thickness was 90.2 ± 6.6 μm (range 80-122), and the flap diameter was 9.2 ± 0.2 mm (range 8.7-9.9). The mean hinge length was 4.0 ± 0.2 mm (range 3.0-4.8). Flap thickness correlated positively with patient age and hinge length. Complications were reported in 12 eyes (14.1 %). Most of the complications were very mild, and none of them prevented further refractive laser treatment. One eye lost two Snellen lines of best spectacle-corrected visual acuity. Femtosecond LASIK enhancement is warranted only in rare cases. Surgical experience is needed and special caution must be practiced. For cases of a primary free cap, femtosecond LASIK is not recommended.

  13. Bare and protected sputtered-noble-metal films for surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Talaga, David; Bonhommeau, Sébastien

    2014-11-01

    Sputtered silver and gold films with different surface morphologies have been prepared and coated with a benzenethiol self-assembled monolayer. Rough noble metal films showed strong Raman features assigned to adsorbed benzenethiol molecules upon irradiation over a wide energy range in the visible spectrum, which disclosed the occurrence of a significant surface-enhanced Raman scattering with maximal enhancement factors as high as 6 × 106. In addition, the adsorption of ethanethiol onto silver surfaces hinders their corrosion over days while preserving mostly intact enhancement properties of naked silver. This study may be applied to develop stable and efficient metalized probes for tip-enhanced Raman spectroscopy.

  14. In Situ Bioremediation of Chlorinated Solvent Source Areas with Enhanced Mass Transfer

    Science.gov (United States)

    2008-09-01

    three-dimensional view with iso -surface of LIF counts • GMS support files needed to operate GMS (for example, bor, .map, .mat, .img, .mat, and .sol...DCE (ug/L) trans-DCE (ug/L) VC (ug/L) Ethane (ug/L) Ethene (ug/L) Chloride (ug/L) 5C2C43 11/9/2005 440 J,B,D 27000 D 0 540 D 4.0 J 8.6 J...0.43 J 0.64 J 2C2D21 7/18/2005 29000 D 2C2D22 7/19/2005 530 J, D 30000 B, D, E 0 0 0 0 2C2D22 7/19/2005 27000 D 2C2D23 7/20/2005 180 J

  15. The measurement of in-situ stress in near surface environments

    International Nuclear Information System (INIS)

    Garritty, P.; Irvin, R.A.

    1984-04-01

    One of the major unknowns affecting aspects of underground construction and the geohydrology of rock masses is the magnitude and direction of the geostatic principal stresses in the earth's crust. This is particularly the case in near surface rocks where there are indications that high horizontal stresses may exist. The measurement of stress in near surface environments is particularly difficult. The techniques, experience and results of a geostatic stress measurement programme using four commercially available devices at shallow depth in the Carnmenellis Granite are critically discussed and compared. This report also brings together some of the conclusions of two previous reports in the series, Garritty (1983) and Garritty and Irvin (1983), and emphasises the fundamental relationship between the state of stress in the earth's crust and the geohydrology of rock masses. (author)

  16. In Situ Radiometric and Exposure Age Dating of the Martian Surface

    Science.gov (United States)

    Farley, K. A.; Malespin, C.; Mahaffy, P.; Grotzinger, J. P.; Vasconcelos, P. M.; Milliken, R. E.; Malin, M.; Edgett, K. S.; Pavlov, A. A.; Hurowitz, J. A.; hide

    2014-01-01

    We determined radiogenic and cosmogenic noble gases in a mudstone on the floor of Gale Crater. A K-Ar age of 4.21 +/- 0.35 billion years represents a mixture of detrital and authigenic components and confirms the expected antiquity of rocks comprising the crater rim. Cosmic-ray-produced 3He, 21Ne, and 36Ar yield concordant surface exposure ages of 78 T 30 million years. Surface exposure occurred mainly in the present geomorphic setting rather than during primary erosion and transport. Our observations are consistent with mudstone deposition shortly after the Gale impact or possibly in a later event of rapid erosion and deposition. The mudstone remained buried until recent exposure by wind-driven scarp retreat. Sedimentary rocks exposed by this mechanism may thus offer the best potential for organic biomarker preservation against destruction by cosmic radiation.

  17. Enhanced Cyanate Ester Nanocomposites through Improved Nanoparticle Surface Interactions

    Science.gov (United States)

    2013-05-01

    then removed and any residual unreacted 3- aminopropytrimethoxy silane and side products were removed by three days of Soxhlet extraction in a...each type of nanoparticle surface. The nanocomposites were prepared in such a way as to yield samples with identical total nanoparticle surface area

  18. Surface wettability of silicon substrates enhanced by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Shih-Feng [National Applied Research Laboratories, Instrument Technology Research Center, Hsinchu (China); National Chiao Tung University, Department of Mechanical Engineering, Hsinchu (China); Hsiao, Wen-Tse; Huang, Kuo-Cheng; Hsiao, Sheng-Yi [National Applied Research Laboratories, Instrument Technology Research Center, Hsinchu (China); Chen, Ming-Fei [National Changhua University of Education, Department of Mechatronics Engineering, Changhua (China); Lin, Yung-Sheng [Hungkuang University, Department of Applied Cosmetology and Graduate Institute of Cosmetic Science, Taichung (China); Chou, Chang-Pin [National Chiao Tung University, Department of Mechanical Engineering, Hsinchu (China)

    2010-11-15

    Laser-ablation techniques have been widely applied for removing material from a solid surface using a laser-beam irradiating apparatus. This paper presents a surface-texturing technique to create rough patterns on a silicon substrate using a pulsed Nd:YAG laser system. The different degrees of microstructure and surface roughness were adjusted by the laser fluence and laser pulse duration. A scanning electron microscope (SEM) and a 3D confocal laser-scanning microscope are used to measure the surface micrograph and roughness of the patterns, respectively. The contact angle variations between droplets on the textured surface were measured using an FTA 188 video contact angle analyzer. The results indicate that increasing the values of laser fluence and laser pulse duration pushes more molten slag piled around these patterns to create micro-sized craters and leads to an increase in the crater height and surface roughness. A typical example of a droplet on a laser-textured surface shows that the droplet spreads very quickly and almost disappears within 0.5167 s, compared to a contact angle of 47.9 on an untextured surface. This processing technique can also be applied to fabricating Si solar panels to increase the absorption efficiency of light. (orig.)

  19. Enhancement of surface magnetism due to bulk bond dilution

    International Nuclear Information System (INIS)

    Tsallis, C.; Sarmento, E.F.; Albuquerque, E.L. de

    1985-01-01

    Within a renormalization group scheme, the phase diagram of a semi-infinite simple cubic Ising ferromagnet is discussed, with arbitrary surface and bulk coupling constants, and including possible dilution of the bulk bonds. It is obtained that dilution makes easier the appearance of surface magnetism in the absence of bulk magnetism. (Author) [pt

  20. Development of an In Situ Biosurfactant Production Technology for Enhanced Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McInerney; R.M. Knapp; Kathleen Duncan; D.R. Simpson; N. Youssef; N. Ravi; M.J. Folmsbee; T.Fincher; S. Maudgalya; Jim Davis; Sandra Weiland

    2007-09-30

    The long-term economic potential for enhanced oil recovery (EOR) is large with more than 300 billion barrels of oil remaining in domestic reservoirs after conventional technologies reach their economic limit. Actual EOR production in the United States has never been very large, less than 10% of the total U. S. production even though a number of economic incentives have been used to stimulate the development and application of EOR processes. The U.S. DOE Reservoir Data Base contains more than 600 reservoirs with over 12 billion barrels of unrecoverable oil that are potential targets for microbially enhanced oil recovery (MEOR). If MEOR could be successfully applied to reduce the residual oil saturation by 10% in a quarter of these reservoirs, more than 300 million barrels of oil could be added to the U.S. oil reserve. This would stimulate oil production from domestic reservoirs and reduce our nation's dependence on foreign imports. Laboratory studies have shown that detergent-like molecules called biosurfactants, which are produced by microorganisms, are very effective in mobilizing entrapped oil from model test systems. The biosurfactants are effective at very low concentrations. Given the promising laboratory results, it is important to determine the efficacy of using biosurfactants in actual field applications. The goal of this project is to move biosurfactant-mediated oil recovery from laboratory investigations to actual field applications. In order to meet this goal, several important questions must be answered. First, it is critical to know whether biosurfactant-producing microbes are present in oil formations. If they are present, then it will be important to know whether a nutrient regime can be devised to stimulate their growth and activity in the reservoir. If biosurfactant producers are not present, then a suitable strain must be obtained that can be injected into oil reservoirs. We were successful in answering all three questions. The specific

  1. Preparation of Atomically Flat Si(111)-H Surfaces in Aqueous Ammonium Fluoride Solutions Investigated by Using Electrochemical, In Situ EC-STM and ATR-FTIR Spectroscopic Methods

    International Nuclear Information System (INIS)

    Bae, Sang Eun; Oh, Mi Kyung; Min, Nam Ki; Paek, Se Hwan; Hong, Suk In; Lee, Chi-Woo J.

    2004-01-01

    Electrochemical, in situ electrochemical scanning tunneling microscope (EC-STM), and attenuated total reflectance-FTIR (ATR-FTIR) spectroscopic methods were employed to investigate the preparation of atomically flat Si(111)-H surface in ammonium fluoride solutions. Electrochemical properties of atomically flat Si(111)-H surface were characterized by anodic oxidation and cathodic hydrogen evolution with the open circuit potential (OCP) of ca. .0.4 V in concentrated ammonium fluoride solutions. As soon as the natural oxide-covered Si(111) electrode was immersed in fluoride solutions, OCP quickly shifted to near .1 V, which was more negative than the flat band potential of silicon surface, indicating that the surface silicon oxide had to be dissolved into the solution. OCP changed to become less negative as the oxide layer was being removed from the silicon surface. In situ EC-STM data showed that the surface was changed from the initial oxide covered silicon to atomically rough hydrogen-terminated surface and then to atomically flat hydrogen terminated surface as the OCP moved toward less negative potentials. The atomically flat Si(111)-H structure was confirmed by in situ EC-STM and ATR-FTIR data. The dependence of atomically flat Si(111)-H terrace on mis-cut angle was investigated by STM, and the results agreed with those anticipated by calculation. Further, the stability of Si(111)-H was checked by STM in ambient laboratory conditions

  2. The Nanofabrication and Application of Substrates for Surface-Enhanced Raman Scattering

    Directory of Open Access Journals (Sweden)

    Xian Zhang

    2012-01-01

    Full Text Available Surface-enhanced Raman scattering (SERS was discovered in 1974 and impacted Raman spectroscopy and surface science. Although SERS has not been developed to be an applicable detection tool so far, nanotechnology has promoted its development in recent decades. The traditional SERS substrates, such as silver electrode, metal island film, and silver colloid, cannot be applied because of their enhancement factor or stability, but newly developed substrates, such as electrochemical deposition surface, Ag porous film, and surface-confined colloids, have better sensitivity and stability. Surface enhanced Raman scattering is applied in other fields such as detection of chemical pollutant, biomolecules, DNA, bacteria, and so forth. In this paper, the development of nanofabrication and application of surface-enhanced Ramans scattering substrate are discussed.

  3. Multi-layer enhancement to polysilicon surface-micromachining technology

    Energy Technology Data Exchange (ETDEWEB)

    Sniegowski, J.J.; Rodgers, M.S. [Sandia National Labs., Albuquerque, NM (United States). Intelligent Micromachine Dept.

    1997-10-01

    A multi-level polysilicon surface-micromachining technology consisting of 5 layers of polysilicon is presented. Surface topography and film mechanical stress are the major impediments encountered in the development of a multilayer surface-micromachining process. However, excellent mechanical film characteristics have been obtained through the use of chemical-mechanical polishing for planarization of topography and by proper sequencing of film deposition with thermal anneals. Examples of operating microactuators, geared power-transfer mechanisms, and optical elements demonstrate the mechanical advantages of construction with 5 polysilicon layers.

  4. Enhanced ex situ bioremediation of crude oil contaminated beach sand by supplementation with nutrients and rhamnolipids.

    Science.gov (United States)

    Nikolopoulou, M; Pasadakis, N; Norf, H; Kalogerakis, N

    2013-12-15

    Mediterranean coastal regions are particularly exposed to oil pollution due to extensive industrialization, urbanization and transport of crude and refined oil to and from refineries. Bioremediation of contaminated beach sand through landfarming is both simple and cost-effective to implement compared to other treatment technologies. The purpose of the present study was to investigate the effect of alternative nutrients on biodegradation of crude oil contaminated beach sand in an effort to reduce the time required for bioremediation employing only indigenous hydrocarbon degraders. A natural sandy soil was collected from Agios Onoufrios beach (Chania, Greece) and was contaminated with weathered crude oil. The indigenous microbial population in the contaminated sand was tested alone (control treatment) or in combination with inorganic nutrients (KNO3 and K2HPO4) to investigate their effects on oil biodegradation rates. In addition, the ability of biosurfactants (rhamnolipids), in the presence of organic nutrients (uric acid and lecithin), to further stimulate biodegradation was investigated in laboratory microcosms over a 45-day period. Biodegradation was tracked by GC/MS analysis of aliphatic and polycyclic aromatic hydrocarbons components and the measured concentrations were corrected for abiotic removal by hopane normalizations. It was found that the saturated fraction of the residual oil is degraded more extensively than the aromatic fraction and the bacterial growth after an incubation period of approximately 3 weeks was much greater from the bacterial growth in the control. The results show that the treatments with inorganic or organic nutrients are equally effective over almost 30 days where C12-C35n-alkanes were degraded more than 97% and polyaromatic hydrocarbons with two or three rings were degraded more than 95% within 45 days. The results clearly show that the addition of nutrients to contaminated beach sand significantly enhanced the activity of

  5. A variable temperature cryostat that produces in situ clean-up germanium detector surfaces

    International Nuclear Information System (INIS)

    Pehl, R.H.; Madden, N.W.; Malone, D.F.; Cork, C.P.; Landis, D.A.; Xing, J.S.; Friesel, D.L.

    1988-11-01

    Variable temperature cryostats that can maintain germanium detectors at temperatures from 82 K to about 400 K while the thermal shield surrounding the detectors remains much colder when the detectors are warmed have been developed. Cryostats such as these offer the possibility of cryopumping material from the surface of detectors to the colder thermal shield. The diode characteristics of several detectors have shown very significant improvement following thermal cycles up to about 150 K in these cryostats. Important applications for cryostats having this attribute are many. 4 figs

  6. In situ SEM and ToF-SIMS analysis of IgG conjugated gold nanoparticles at aqueous surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Li; Zhu, Zihua; Yu, Xiao-Ying; Rodek, Gene; Saraf, Laxmikant V.; Thevuthasan, Suntharampillai; Cowin, James P.

    2014-04-01

    In this study, we report new results of in situ study of 5 nm goat anti-mouse IgG gold nanoparticles in a novel portable vacuum compatible microfluidic device using scanning electron microscope (SEM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The unique feature of the liquid flow cell is that the detection window is open to the vacuum allowing direct probing of the liquid surface. The flow cell is composed of a silicon nitride (SiN) membrane and polydimethylsiloxane (PDMS), and it is fully compatible with vacuum operations for surface analysis. The aperture can be drilled through the 100 nm SiN membrane using a focused ion beam. Characteristic signals of the conjugated gold nanoparticles were successfully observed through the aperture by both energy-dispersive X-ray spectroscopy (EDX) in SEM and ToF-SIMS. Comparison was also made among wet samples, dry samples, and liquid sample in the flow cell using SEM/EDX. Stronger gold signal can be observed in our novel portable device by SEM/EDX compared with the wet or dry samples, respectively. Our results indicate that analyses of the nanoparticle components are better made in their native liquid environment. This is made possible using our unique microfluidic flow cell.

  7. Estimation of production rates for in-situ cosmogenic isotopes and application to surface exposure dating: certitudes and uncertainties

    International Nuclear Information System (INIS)

    Graham, I.J.

    1996-01-01

    Cosmogenic nuclides, produced in-situ in rocks by the action of cosmic rays on target nuclei, are increasingly being employed by earth scientists in a wide variety of applications. For example, surface exposure dating is used to determine erosion rates, the age of debris flows, alluvial fans, volcanic eruptions, meteoritic impact craters, and glacial deposits, and the timing of recent movement along faults and tectonic uplift. The technique can thus play a vital role in the study of potential hazards from geological processes, by establishing recurrence intervals between them, and establish chronologies and periodicities for major paleoclimatic events. Before surface exposure dating methods using cosmogenic isotopes can be applied even more widely, production rates of the main nuclides of interest must be better known, and their temporal and spatial variabilities determined. This paper summarises the present state of knowledge on production rates of the currently most useful nuclides ( 10 Be, 26 Al, 36 Cl, 14 C, 3 He and 21 Ne), discusses the main areas of concern, and makes suggestions for future improvement. (author). 83 refs., 7 tabs., 11 figs

  8. Intermatrix Synthesis as a rapid, inexpensive and reproducible methodology for the in situ functionalization of nanostructured surfaces with quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Bastos-Arrieta, Julio, E-mail: julio.bastos@upc.edu [Department of Chemical Engineering, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain); Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Barcelona (Spain); Muñoz, Jose, E-mail: josemaria.munoz@uab.cat [Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Barcelona (Spain); Stenbock-Fermor, Anja, E-mail: stenbock@dwi.rwth-aachen.de [DWI – Leibniz-Institut für Interaktive Materialien, Aachen 52056 (Germany); Muñoz, Maria, E-mail: Maria.Munoz@uab.cat [Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Barcelona (Spain); Muraviev, Dmitri N., E-mail: Dimitri.Muraviev@uab.es [Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Barcelona (Spain); Céspedes, Francisco, E-mail: francisco.cespedes@uab.cat [Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Barcelona (Spain); Tsarkova, Larisa A., E-mail: tsarkova@dwi.rwth-aachen.de [DWI – Leibniz-Institut für Interaktive Materialien, Aachen 52056 (Germany); Baeza, Mireia, E-mail: MariaDelMar.Baeza@uab.cat [Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Barcelona (Spain)

    2016-04-15

    Graphical abstract: - Highlights: • Nanodiamond functionalization with CdS quantum dots. • Approach for carbon nanotube detection in water samples. • Simple functionalization of thin polymeric nanolayers with quantum dots. - Abstract: Intermatrix Synthesis (IMS) technique has proven to be a valid methodology for the in situ incorporation of quantum dots (QDs) in a wide range of nanostructured surfaces for the preparation of advanced hybrid-nanomaterials. In this sense, this communication reports the recent advances in the application of IMS for the synthesis of CdS-QDs with favourable distribution on sulfonated polyetherether ketone (SPEEK) membrane thin films (TFs), multiwall carbon nanotubes (MWCNTs) and nanodiamonds (NDs). The synthetic route takes advantage of the ion exchange functionality of the reactive surfaces for the loading of the QDs precursor and consequent QDs appearance by precipitation. The benefits of such modified nanomaterials were studied using CdS-QDs@MWCNTs hybrid-nanomaterials. CdS-QDs@MWCNTs has been used as conducting filler for the preparation of electrochemical nanocomposite sensors, which present electrocatalytic properties. Finally, the optical properties of the QDs contained on MWCNTs could allow a new procedure for the analytical detection of nanostructured carbon allotropes in water.

  9. Intermatrix Synthesis as a rapid, inexpensive and reproducible methodology for the in situ functionalization of nanostructured surfaces with quantum dots

    Science.gov (United States)

    Bastos-Arrieta, Julio; Muñoz, Jose; Stenbock-Fermor, Anja; Muñoz, Maria; Muraviev, Dmitri N.; Céspedes, Francisco; Tsarkova, Larisa A.; Baeza, Mireia

    2016-04-01

    Intermatrix Synthesis (IMS) technique has proven to be a valid methodology for the in situ incorporation of quantum dots (QDs) in a wide range of nanostructured surfaces for the preparation of advanced hybrid-nanomaterials. In this sense, this communication reports the recent advances in the application of IMS for the synthesis of CdS-QDs with favourable distribution on sulfonated polyetherether ketone (SPEEK) membrane thin films (TFs), multiwall carbon nanotubes (MWCNTs) and nanodiamonds (NDs). The synthetic route takes advantage of the ion exchange functionality of the reactive surfaces for the loading of the QDs precursor and consequent QDs appearance by precipitation. The benefits of such modified nanomaterials were studied using CdS-QDs@MWCNTs hybrid-nanomaterials. CdS-QDs@MWCNTs has been used as conducting filler for the preparation of electrochemical nanocomposite sensors, which present electrocatalytic properties. Finally, the optical properties of the QDs contained on MWCNTs could allow a new procedure for the analytical detection of nanostructured carbon allotropes in water.

  10. Intermatrix Synthesis as a rapid, inexpensive and reproducible methodology for the in situ functionalization of nanostructured surfaces with quantum dots

    International Nuclear Information System (INIS)

    Bastos-Arrieta, Julio; Muñoz, Jose; Stenbock-Fermor, Anja; Muñoz, Maria; Muraviev, Dmitri N.; Céspedes, Francisco; Tsarkova, Larisa A.; Baeza, Mireia

    2016-01-01

    Graphical abstract: - Highlights: • Nanodiamond functionalization with CdS quantum dots. • Approach for carbon nanotube detection in water samples. • Simple functionalization of thin polymeric nanolayers with quantum dots. - Abstract: Intermatrix Synthesis (IMS) technique has proven to be a valid methodology for the in situ incorporation of quantum dots (QDs) in a wide range of nanostructured surfaces for the preparation of advanced hybrid-nanomaterials. In this sense, this communication reports the recent advances in the application of IMS for the synthesis of CdS-QDs with favourable distribution on sulfonated polyetherether ketone (SPEEK) membrane thin films (TFs), multiwall carbon nanotubes (MWCNTs) and nanodiamonds (NDs). The synthetic route takes advantage of the ion exchange functionality of the reactive surfaces for the loading of the QDs precursor and consequent QDs appearance by precipitation. The benefits of such modified nanomaterials were studied using CdS-QDs@MWCNTs hybrid-nanomaterials. CdS-QDs@MWCNTs has been used as conducting filler for the preparation of electrochemical nanocomposite sensors, which present electrocatalytic properties. Finally, the optical properties of the QDs contained on MWCNTs could allow a new procedure for the analytical detection of nanostructured carbon allotropes in water.

  11. In situ STM imaging and direct electrochemistry of Pyrococcus furiosus ferredoxin assembled on thiolate-modified Au(111) surfaces

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Christensen, Hans Erik Mølager; Ooi, Bee Lean

    2004-01-01

    We have addressed here electron transfer (ET) of Pyrococcus furiosus ferredoxin (PfFd, 7.5 kDa) in both homogeneous solution using edge plane graphite (EPG) electrodes and in the adsorbed state by electrochemistry on surface-modified single-crystal Au(111) electrodes, This has been supported...... by surface microscopic structures of PfFd monolayers, as revealed by scanning tunneling microscopy under potential control (in situ STM). Direct ET between PfFd in phosphate buffer solution, pH 7.9, and EPG electrodes is observed in the presence of promoters. Neomycin gives rise to a pair of redox peaks...... with a formal potential of ca -430 mV (vs SCE), corresponding to [3Fe-4S](1+/0). The presence of an additional promoter, which can be propionic acid, alanine, or cysteine, induces a second pair of redox peaks at similar to-900 mV (vs SCE) arising from [3Fe-4S](0/1-). A robust neomycin-PfFd complex was detected...

  12. In situ targeting TEM8 via immune response and polypeptide recognition by wavelength-modulated surface plasmon resonance biosensor

    Science.gov (United States)

    Wang, Yimin; Luo, Zewei; Liu, Kunping; Wang, Jie; Duan, Yixiang

    2016-01-01

    There is an increasing interest in real-time and in situ monitoring of living cell activities in life science and medicine. This paper reports a whole cell sensing protocol over the interface of Au film coupled in a wavelength-modulated surface plasmon resonance (WMSPR) biosensor. With dual parabolic mirrors integrated in the sensor, the compact and miniaturized instrument shows satisfactory refractive index sensitivity (2220 nm/RIU) and a high resolution of resonance wavelength shift of 0.3 nm to liquid samples. The affinity interactions between the biomarker of human tumor endothelial marker 8 (TEM8) and antibody (Ab) or specific polypeptide (PEP) were firstly introduced to WMSPR biosensor analysis. Both the interaction events of Ab-cell and PEP-cell over the Au film interface can be recognized by the sensor and the balance time of interactions is about 20 min. The concentration range of Ab for quantitative monitoring of the TEM8 expression on human colon carcinoma SW620 cells was investigated. The present low-cost and time-saving method provides a time resolution of binding specificity between Ab/PEP and TEM8 for real-time analysis of antigen on living tumor cell surface. PMID:26822761

  13. Modification of Material Surface Using Plasma-Enhanced Ion Beams

    National Research Council Canada - National Science Library

    Bystritskii, V

    1998-01-01

    ...) Technology for Materials Surface Modification. Following second year programmatic plan, formulated in the conclusion of the 1-st year report we focused our effort on study of aluminum alloys modification (Al2024, 6061, 7075...

  14. Surface Reconstruction and Image Enhancement via $L^1$-Minimization

    KAUST Repository

    Dobrev, Veselin; Guermond, Jean-Luc; Popov, Bojan

    2010-01-01

    A surface reconstruction technique based on minimization of the total variation of the gradient is introduced. Convergence of the method is established, and an interior-point algorithm solving the associated linear programming problem is introduced

  15. Hierarchical surfaces for enhanced self-cleaning applications

    Science.gov (United States)

    Fernández, Ariadna; Francone, Achille; Thamdrup, Lasse H.; Johansson, Alicia; Bilenberg, Brian; Nielsen, Theodor; Guttmann, Markus; Sotomayor Torres, Clivia M.; Kehagias, Nikolaos

    2017-04-01

    In this study we present a flexible and adaptable fabrication method to create complex hierarchical structures over inherently hydrophobic resist materials. We have tested these surfaces for their superhydrophobic behaviour and successfully verified their self-cleaning properties. The followed approach allow us to design and produce superhydrophobic surfaces in a reproducible manner. We have analysed different combination of hierarchical micro-nanostructures for their application to self-cleaning surfaces. A static contact angle value of 170° with a hysteresis of 4° was achieved without the need of any additional chemical treatment on the fabricated hierarchical structures. Dynamic effects were analysed on these surfaces, obtaining a remarkable self-cleaning effect as well as a good robustness over impacting droplets.

  16. Hierarchical surfaces for enhanced self-cleaning applications

    International Nuclear Information System (INIS)

    Fernández, Ariadna; Francone, Achille; Sotomayor Torres, Clivia M; Kehagias, Nikolaos; Thamdrup, Lasse H; Johansson, Alicia; Bilenberg, Brian; Nielsen, Theodor; Guttmann, Markus

    2017-01-01

    In this study we present a flexible and adaptable fabrication method to create complex hierarchical structures over inherently hydrophobic resist materials. We have tested these surfaces for their superhydrophobic behaviour and successfully verified their self-cleaning properties. The followed approach allow us to design and produce superhydrophobic surfaces in a reproducible manner. We have analysed different combination of hierarchical micro-nanostructures for their application to self-cleaning surfaces. A static contact angle value of 170° with a hysteresis of 4° was achieved without the need of any additional chemical treatment on the fabricated hierarchical structures. Dynamic effects were analysed on these surfaces, obtaining a remarkable self-cleaning effect as well as a good robustness over impacting droplets. (paper)

  17. Ultrahigh surface area carbon from carbonated beverages: Combining self-templating process and in situ activation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pengfei; Zhang, Zhiyong; Chen, Jihua; Dai, Sheng

    2015-11-01

    Ultrahigh surface area carbons (USACs, e.g., >2000 m2/g) are attracting tremendous attention due to their outstanding performance in energy-related applications. The state-of-art approaches to USACs involve templating or activation methods and all these techniques show certain drawbacks. In this work, a series of USACs with specific surface areas up to 3633 m2/g were prepared in two steps: hydrothermal carbonization (200 °C) of carbonated beverages (CBs) and further thermal treatment in nitrogen (600–1000 °C). The rich inner porosity is formed by a self-templated process during which acids and polyelectrolyte sodium salts in the beverage formulas make some contribution. This strategy covers various CBs such as Coca Cola®, Pepsi Cola®, Dr. Pepper®, and Fanta® and it enables an acceptable product yield (based on sugars), for example: 21 wt% for carbon (2940 m2/g) from Coca Cola®. Being potential electrode materials for supercapacitors, those carbon materials possessed a good specific capacitance (57.2–185.7 F g-1) even at a scan rate of 1000 mV s-1. Thus, a simple and efficient strategy to USACs has been presented.

  18. Room-temperature in situ fabrication of Bi2O3/g-C3N4 direct Z-scheme photocatalyst with enhanced photocatalytic activity

    Science.gov (United States)

    He, Rongan; Zhou, Jiaqian; Fu, Huiqing; Zhang, Shiying; Jiang, Chuanjia

    2018-02-01

    Constructing direct Z-scheme heterojunction is an effective approach to separating photogenerated charge carriers and improving the activity of semiconductor photocatalysts. Herein, a composite of bismuth(III) oxide (Bi2O3) and graphitic carbon nitride (g-C3N4) was in situ fabricated at room temperature by photoreductive deposition of Bi3+ and subsequent air-oxidation of the resultant metallic Bi. Quantum-sized ω-Bi2O3 nanoparticles approximately 6 nm in diameter were uniformly distributed on the surface of mesoporous g-C3N4. The as-prepared Bi2O3/g-C3N4 composite exhibited higher photocatalytic activity than pure Bi2O3 and g-C3N4 for photocatalytic degradation of phenol under visible light. Reactive species trapping experiments revealed that superoxide radicals and photogenerated holes played important roles in the photocatalytic degradation of phenol. The enhanced photocatalytic activity, identification of reactive species and higher rate of charge carrier recombination (as indicated by stronger photoluminescence intensity) collectively suggest that the charge migration within the Bi2O3/g-C3N4 composite followed a Z-scheme mechanism. Photogenerated electrons on the conduction band of Bi2O3 migrate to the valence band of g-C3N4 and combine with photogenerated holes therein. At the cost of these less reactive charge carriers, the Z-scheme heterojunction enables efficient charge separation, while preserving the photogenerated electrons and holes with stronger redox abilities, which is beneficial for enhanced photocatalytic activity.

  19. Enhancement of thermal and mechanical properties of poly(MMA-co-BA)/Cloisite 30B nanocomposites by ultrasound-assisted in-situ emulsion polymerization.

    Science.gov (United States)

    Sharma, Sachin; Kumar Poddar, Maneesh; Moholkar, Vijayanand S

    2017-05-01

    This study reports synthesis and characterization of poly(MMA-co-BA)/Cloisite 30B (organo-modified montmorillonite clay) nanocomposites by ultrasound-assisted in-situ emulsion polymerization. Copolymers have been synthesized with MMA:BA monomer ratio of 4:1, and varying clay loading (1-5wt% monomer). The poly(MMA-co-BA)/Cloisite 30B nanocomposites have been characterized for their thermal and mechanical properties. Ultrasonically synthesized nanocomposites have been revealed to possess higher thermal degradation resistance and mechanical strength than the nanocomposites synthesized using conventional techniques. These properties, however, show an optimum (or maxima) with clay loading. The maximum values of thermal and mechanical properties of the nanocomposites with optimum clay loading are as follows. Thermal degradation temperatures: T 10% =320°C (4wt%), T 50 =373°C (4wt%), maximum degradation temperature=384°C (4wt%); glass transition temperature=64.8°C (4wt%); tensile strength=20MPa (2wt%), Young's modulus=1.31GPa (2wt%), Percentage elongation=17.5% (1wt%). Enhanced properties of poly(MMA-co-BA)/Cloisite 30B nanocomposites are attributed to effective exfoliation and dispersion of clay nanoparticles in copolymer matrix due to intense micro-convection induced by ultrasound and cavitation. Clay platelets help in effective heat absorption with maximum surface interaction/adhesion that results in increased thermal resistivity of nanocomposites. Hindered motion of the copolymer chains due to clay platelets results in enhancement of tensile strength and Young's modulus of nanocomposite. Rheological (liquid) study of the nanocomposites reveals that nanocomposites have higher yield stress and infinite shear viscosity than neat copolymer. Nonetheless, nanocomposites still display shear thinning behavior - which is typical of the neat copolymer. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Calcium citrate: a new biomaterial that can enhance bone formation in situ

    Directory of Open Access Journals (Sweden)

    WANG Li-ming

    2012-11-01

    Full Text Available 【Abstract】 Objective: To investigate the effect of a new biomaterial combining calcium citrate and recombinant human bone morphogenetic protein-2 (rhBMP-2 on bone regeneration in a bone defect rabbit model. Methods: Totally 30 male New Zealand white rabbits were randomly and equally divided into calcium citrate-rhBMP-2 (CC-rhBMP-2 group and rhBMP-2 only group. Two 10 mm-long and 5 mm-deep bone defects were respec-tively created in the left and right femoral condyles of the rabbits. Subsequently 5 pellets of calcium citrate (10 mg combined with rhBMP-2 (2 mg or rhBMP-2 alone were im-planted into the bone defects and compressed with cotton swab. Bone granules were obtained at 2, 4 and 6 weeks after procedure and received histological analysis. LSD t-test and a subsequent t-test were adopted for statistical analysis. Results: Histomorphometric analysis revealed newly formed bones, and calcium citrate has been absorbed in the treatment group. The percent of newly formed bone area in femoral condyle in control group and CC-rhBMP-2 group was respectively 31.73%±1.26% vs 48.21%±2.37% at 2 weeks; 43.40%±1.65% vs 57.32%±1.47% at 4 weeks, and 51.32%±7.80% vs 66.74%±4.05% at 6 weeks (P<0.05 for all. At 2 weeks, mature cancellous bone was observed to be already formed in the treatment group. Conclusion: From this study, it can be concluded that calcium citrate combined with rhBMP-2 signifcantly en-hances bone regeneration in bone defects. This synthetic gelatin matrix stimulates formation of new bone and bone marrow in the defect areas by releasing calcium ions. Key words: Bone morphogenetic protein-2; Biocompatible materials; Calcium citrate; Gelatin

  1. In situ evaluation of density, viscosity, and thickness of adsorbed soft layers by combined surface acoustic wave and surface plasmon resonance.

    Science.gov (United States)

    Francis, Laurent A; Friedt, Jean-Michel; Zhou, Cheng; Bertrand, Patrick

    2006-06-15

    We show the theoretical and experimental combination of acoustic and optical methods for the in situ quantitative evaluation of the density, the viscosity, and the thickness of soft layers adsorbed on chemically tailored metal surfaces. For the highest sensitivity and an operation in liquids, a Love mode surface acoustic wave (SAW) sensor with a hydrophobized gold-coated sensing area is the acoustic method, while surface plasmon resonance (SPR) on the same gold surface as the optical method is monitored simultaneously in a single setup for the real-time and label-free measurement of the parameters of adsorbed soft layers, which means for layers with a predominant viscous behavior. A general mathematical modeling in equivalent viscoelastic transmission lines is presented to determine the correlation between experimental SAW signal shifts and the waveguide structure including the presence of the adsorbed layer and the supporting liquid from which it segregates. A methodology is presented to identify from SAW and SPR simulations the parameters representatives of the soft layer. During the absorption of a soft layer, thickness or viscosity changes are observed in the experimental ratio of the SAW signal attenuation to the SAW signal phase and are correlated with the theoretical model. As application example, the simulation method is applied to study the thermal behavior of physisorbed PNIPAAm, a polymer whose conformation is sensitive to temperature, under a cycling variation of temperature between 20 and 40 degrees C. Under the assumption of the bulk density and the bulk refractive index of PNIPAAm, thickness and viscosity of the film are obtained from simulations; the viscosity is correlated to the solvent content of the physisorbed layer.

  2. In situ synthesized SnO2 nanorod/reduced graphene oxide low-dimensional structure for enhanced lithium storage.

    Science.gov (United States)

    Zhang, Wei; Xiao, Xuezhang; Zhang, Yiwen; Li, Junpeng; Zhong, Jiayi; Li, Meng; Fan, Xiulin; Wang, Chuntao; Chen, Lixin

    2018-03-09

    A unique SnO 2 nanorod (NR)/reduced graphene oxide (RGO) composite morphology has been synthesized using the in situ hydrothermal method, for use as an anode material in lithium-ion batteries. The SnO 2 NR adhering to the RGO exhibits a length of 250-400 nm and a diameter of 60-80 nm without any obvious aggregation. The initial discharge/charge capacities of the SnO 2 NR/RGO composite are 1761.3 mAh g -1 and 1233.1 mAh g -1 , with a coulombic efficiency (CE) of 70% under a current density of 200 mA g -1 , and a final capacity of 1101 mAh g -1 after 50 cycles. The rate capability of the SnO 2 NR/RGO is also improved compared to that of bare SnO 2 NR. The superior electrochemical performance is ascribed to the special morphology of the SnO 2 NRs-which plays a role in shorting the transmission path-and the sheet-like 2D graphene, which prevents the agglomeration of SnO 2 and enhances conductivity during the electrochemical reaction of SnO 2 NR/RGO.

  3. In situ synthesized SnO2 nanorod/reduced graphene oxide low-dimensional structure for enhanced lithium storage

    Science.gov (United States)

    Zhang, Wei; Xiao, Xuezhang; Zhang, Yiwen; Li, Junpeng; Zhong, Jiayi; Li, Meng; Fan, Xiulin; Wang, Chuntao; Chen, Lixin

    2018-03-01

    A unique SnO2 nanorod (NR)/reduced graphene oxide (RGO) composite morphology has been synthesized using the in situ hydrothermal method, for use as an anode material in lithium-ion batteries. The SnO2 NR adhering to the RGO exhibits a length of 250-400 nm and a diameter of 60-80 nm without any obvious aggregation. The initial discharge/charge capacities of the SnO2 NR/RGO composite are 1761.3 mAh g-1 and 1233.1 mAh g-1, with a coulombic efficiency (CE) of 70% under a current density of 200 mA g-1, and a final capacity of 1101 mAh g-1 after 50 cycles. The rate capability of the SnO2 NR/RGO is also improved compared to that of bare SnO2 NR. The superior electrochemical performance is ascribed to the special morphology of the SnO2 NRs—which plays a role in shorting the transmission path—and the sheet-like 2D graphene, which prevents the agglomeration of SnO2 and enhances conductivity during the electrochemical reaction of SnO2 NR/RGO.

  4. Development of cellulase-nanoconjugates with enhanced ionic liquid and thermal stability for in situ lignocellulose saccharification.

    Science.gov (United States)

    Grewal, Jasneet; Ahmad, Razi; Khare, S K

    2017-10-01

    The present work aimed to improve catalytic efficiency of Trichoderma reesei cellulase for enhanced saccharification. The cellulase was immobilized on two nanomatrices i.e. magnetic and silica nanoparticles with immobilization efficiency of 85% and 76% respectively. The nanobioconjugates exhibited increase in V max , temperature optimum, pH and thermal stability as compared with free enzyme. These could be efficiently reused for five repeated cycles and were stable in 1-ethyl-3-methylimidazoliumacetate [EMIM][Ac], an ionic liquid. Ionic liquids (IL) are used as green solvents to dissolve lignocellulosic biomass and facilitate better saccharification. The cellulase immobilized on magnetic nanoparticles was used for in situ saccharification of [EMIM][Ac] pretreated sugarcane bagasse and wheat straw for two cycles. The structural deconstruction and decrease in biomass crystallinity was confirmed by SEM, XRD and FTIR. The high hydrolysis yields (∼89%) obtained in this one-pot process coupled with IL stability and recycled use of immobilized cellulase, potentiates its usefulness in biorefineries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Chemical Looping Gasification for Hydrogen Enhanced Syngas Production with In-Situ CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Kathe, Mandar [Ohio State University, Columbus, OH (United States); Xu, Dikai [Ohio State University, Columbus, OH (United States); Hsieh, Tien-Lin [Ohio State University, Columbus, OH (United States); Simpson, James [Ohio State University, Columbus, OH (United States); Statnick, Robert [Ohio State University, Columbus, OH (United States); Tong, Andrew [Ohio State University, Columbus, OH (United States); Fan, Liang-Shih [Ohio State University, Columbus, OH (United States)

    2014-12-31

    This document is the final report for the project titled “Chemical Looping Gasification for Hydrogen Enhanced Syngas Production with In-Situ CO2 Capture” under award number FE0012136 for the performance period 10/01/2013 to 12/31/2014.This project investigates the novel Ohio State chemical looping gasification technology for high efficiency, cost efficiency coal gasification for IGCC and methanol production application. The project developed an optimized oxygen carrier composition, demonstrated the feasibility of the concept and completed cold-flow model studies. WorleyParsons completed a techno-economic analysis which showed that for a coal only feed with carbon capture, the OSU CLG technology reduced the methanol required selling price by 21%, lowered the capital costs by 28%, increased coal consumption efficiency by 14%. Further, using the Ohio State Chemical Looping Gasification technology resulted in a methanol required selling price which was lower than the reference non-capture case.

  6. Nitrogen-doped graphene network supported copper nanoparticles encapsulated with graphene shells for surface-enhanced Raman scattering

    Science.gov (United States)

    Zhang, Xiang; Shi, Chunsheng; Liu, Enzuo; Li, Jiajun; Zhao, Naiqin; He, Chunnian

    2015-10-01

    In this study, we demonstrated nitrogen-doped graphene network supported few-layered graphene shell encapsulated Cu nanoparticles (NPs) (Cu@G-NGNs) as a sensing platform, which were constructed by a simple and scalable in situ chemical vapor deposition (CVD) technique with the assistance of a self-assembled three-dimensional (3D) NaCl template. Compared with pure Cu NPs and graphene decorated Cu NPs, the graphene shells can strengthen the plasmonic coupling between graphene and Cu, thereby contributing to an obvious improvement in the local electromagnetic field that was validated by finite element numerical simulations, while the 3D nitrogen-doped graphene walls with a large surface area facilitated molecule adsorption and the doped nitrogen atoms embedded in the graphene lattice can reduce the surface energy of the system. With these merits, a good surface enhanced Raman spectroscopy (SERS) activity of the 3D Cu@G-NGN painting film on glass was demonstrated using rhodamine 6G and crystal violet as model analytes, exhibiting a satisfactory sensitivity, reproducibility and stability. As far as we know, this is the first report on the in situ synthesis of nitrogen-doped graphene/copper nanocomposites and this facile and low-cost Cu-based strategy tends to be a good supplement to Ag and Au based substrates for SERS applications.In this study, we demonstrated nitrogen-doped graphene network supported few-layered graphene shell encapsulated Cu nanoparticles (NPs) (Cu@G-NGNs) as a sensing platform, which were constructed by a simple and scalable in situ chemical vapor deposition (CVD) technique with the assistance of a self-assembled three-dimensional (3D) NaCl template. Compared with pure Cu NPs and graphene decorated Cu NPs, the graphene shells can strengthen the plasmonic coupling between graphene and Cu, thereby contributing to an obvious improvement in the local electromagnetic field that was validated by finite element numerical simulations, while the 3D nitrogen

  7. Enhanced Detection of Human Plasma Proteins on Nanostructured Silver Surfaces

    Directory of Open Access Journals (Sweden)

    Zuzana Orságová Králová

    2013-08-01

    enhancement factor of 3.6×102 was achieved for a band with a Raman shift of 2104cm‐1 for globulin deposited onto silver nanostructured film on unpolished stainless steel substrate. The detection limit was 400g/mL. Plasma or serum could present a preferable material for non‐ invasive cancer disease diagnosis using the SERS method.

  8. In situ surface X-ray diffraction studies of the copper-electrolyte interface. Atomic structure and homoepitaxial grwoth

    Energy Technology Data Exchange (ETDEWEB)

    Golks, Frederik

    2011-05-19

    Copper electrodeposition is the predominantly used technique for on-chip wiring in the fabrication of ultra-large scale integrated (ULSI) microchips. In this 'damascene copper electroplating' process, multicomponent electrolytes containing organic additives realize void-free filling of trenches with high aspect ratio ('superconformal deposition'). Despite manifold studies, motivated by the continuous trend to shrink wiring dimensions and thus the demand of optimized plating baths, detailed knowledge on the growth mechanism - in presence and absence of additives - is still lacking. Using a recently developed hanging meniscus X-ray transmission cell, brilliant synchrotron x-rays and a fast, one-dimensional detector system, unique real-time in situ surface X-ray diffraction studies of copper electrodeposition were performed under realistic reaction conditions, approaching rates of technological relevance. Preparatory measurements of the electrochemical dissolution of Au(001) in chloride-containing electrolyte demonstrated the capability of this powerful technique, specifically the possibility to follow atomic-scale deposition or dissolution processes with a time resolution down to five milliseconds. The electrochemical as well as structural characterization of the Cu(001)- and Cu(111)-electrolyte interfaces provided detailed insight into the complex atomic-scale structures in presence of specifically adsorbed chloride on these surfaces. The interface of Cu(001) in chloride-containing electrolyte exhibits a continuous surface phase transition of a disordered Cl adlayer to a c(2 x 2) Cl adlayer with increasing potential. The latter was found to induce a small vertical corrugation of substrate atoms, which can be ascribed to lattice relaxations induced by the presence of coadsorbed water molecules and cations in the outer part of the electrochemical double layer. The study of the specific adsorption of chloride on Cu(111) from acidic aqueous

  9. In situ surface X-ray diffraction studies of the copper-electrolyte interface. Atomic structure and homoepitaxial grwoth

    Energy Technology Data Exchange (ETDEWEB)

    Golks, Frederik

    2011-05-19

    Copper electrodeposition is the predominantly used technique for on-chip wiring in the fabrication of ultra-large scale integrated (ULSI) microchips. In this 'damascene copper electroplating' process, multicomponent electrolytes containing organic additives realize void-free filling of trenches with high aspect ratio ('superconformal deposition'). Despite manifold studies, motivated by the continuous trend to shrink wiring dimensions and thus the demand of optimized plating baths, detailed knowledge on the growth mechanism - in presence and absence of additives - is still lacking. Using a recently developed hanging meniscus X-ray transmission cell, brilliant synchrotron x-rays and a fast, one-dimensional detector system, unique real-time in situ surface X-ray diffraction studies of copper electrodeposition were performed under realistic reaction conditions, approaching rates of technological relevance. Preparatory measurements of the electrochemical dissolution of Au(001) in chloride-containing electrolyte demonstrated the capability of this powerful technique, specifically the possibility to follow atomic-scale deposition or dissolution processes with a time resolution down to five milliseconds. The electrochemical as well as structural characterization of the Cu(001)- and Cu(111)-electrolyte interfaces provided detailed insight into the complex atomic-scale structures in presence of specifically adsorbed chloride on these surfaces. The interface of Cu(001) in chloride-containing electrolyte exhibits a continuous surface phase transition of a disordered Cl adlayer to a c(2 x 2) Cl adlayer with increasing potential. The latter was found to induce a small vertical corrugation of substrate atoms, which can be ascribed to lattice relaxations induced by the presence of coadsorbed water molecules and cations in the outer part of the electrochemical double layer. The study of the specific adsorption of chloride on Cu(111) from acidic aqueous electrolyte revealed a

  10. A miniaturized laser-ablation mass spectrometer for in-situ measurements of isotope composition on solar body surfaces

    Science.gov (United States)

    Riedo, A.; Meyer, S.; Tulej, M.; Neuland, M.; Bieler, A.; Iakovleva, M.; Wurz, P.

    2012-04-01

    The in-situ analysis of extraterrestrial material onboard planetary rovers and landers is of considerable interest for future planetary space missions. Due to the low detection sensitivity of spectroscopic instruments, e.g. α-particle X-ray, γ-ray or neutron spectrometers, it is frequently possible to measure only major/minor elements in extraterrestrial materials. Nevertheless, the knowledge of minor/trace elements is of considerable interest to cosmochemistry. Chemistry puts constraints on the origin of solar system and its evolution enabling also a deeper inside to planetary transformation processes (e.g. volcanic surface alteration, space weathering). The isotopes play special role in analysis of the origin and transformation of planetary matter. They are robust tracers of the early events because their abundances are less disturbed as the elemental once. Nevertheless, if the isotope abundance ratios are fractionated, the underlying chemical and physical processes can be then encoded from the variations of abundance ratios. A detailed analysis of isotopic patterns of radiogenic elements can allow age dating of minerals and temporal evolution of planetary matter. High accuracy and sensitive measurements of isotopic pattern of bio-relevant elements, i.e., sulfur, found on planetary surfaces can be helpful for the identification of possible past and present extraterrestrial life in terms of biomarker identification. Our group has designed a self-optimizing miniaturized laser ablation time-of-flight mass spectrometer (LMS) for in situ planetary measurements (Wurz et al., 2012; Rohner et al., 2003). Initial studies utilizing IR laser radiation for ablation, atomization and ionization of solid materials indicated a high instrumental performance in terms of sensitivity and mass resolution (Tulej et al., 2011). Current studies are conducted with a UV radiation and a high spatial resolution is achieved by focussing the laser beam to 20µm spots onto the sample. The

  11. Using in-situ polymerization of conductive polymers to enhance the electrical properties of solution-processed carbon nanotube films and fibers.

    Science.gov (United States)

    Allen, Ranulfo; Pan, Lijia; Fuller, Gerald G; Bao, Zhenan

    2014-07-09

    Single-walled carbon nanotubes/polymer composites typically have limited conductivity due to a low concentration of nanotubes and the insulating nature of the polymers used. Here we combined a method to align carbon nanotubes with in-situ polymerization of conductive polymer to form composite films and fibers. Use of the conducting polymer raised the conductivity of the films by 2 orders of magnitude. On the other hand, CNT fiber formation was made possible with in-situ polymerization to provide more mechanical support to the CNTs from the formed conducting polymer. The carbon nanotube/conductive polymer composite films and fibers had conductivities of 3300 and 170 S/cm, respectively. The relatively high conductivities were attributed to the polymerization process, which doped both the SWNTs and the polymer. In-situ polymerization can be a promising solution-processable method to enhance the conductivity of carbon nanotube films and fibers.

  12. The Use of Terrestrial Analogs in Preparing for Planetary Surface Exploration: Sampling and Radioisotopic Dating of Impactites and Deployment of In Situ Analytical Technologies

    Science.gov (United States)

    Young, Kelsey

    Impact cratering has played a crucial role in the surface development of the inner planets. Constraining the timing of this bombardment history is important in understanding the origins of life and our planet's evolution. Plate tectonics, active volcanism, and vegetation hinder the preservation and identification of existing impact craters on Earth. Providing age constraints on these elusive structures will provide a deeper understanding of our planet's development. To do this, (U-Th)/He thermochronology and in situ 40 Ar/39Ar laser microprobe geochronology are used to provide ages for the Haughton and Mistastin Lake impact structures, both located in northern Canada. While terrestrial impact structures provide accessible laboratories for deciphering Earth's impact history, the ultimate goal for understanding the history of the reachable inner Solar System is to acquire robust, quantitative age constraints for the large lunar impact basins. The oldest of these is the South Pole-Aitken basin (SPA), located on the lunar farside. While it is known that this basin is stratigraphically the oldest on the Moon, its absolute age has yet to be determined. Several reports released in the last decade have highlighted sampling and dating SPA as a top priority for inner Solar System exploration. This is no easy task as the SPA structure has been modified by four billion subsequent years of impact events. Informed by studies at Mistastin---which has target lithologies analogous to those at SPA---sampling strategies are discussed that are designed to optimize the probability of a high science return with regard to robust geochronology of the SPA basin. Planetary surface missions, like one designed to explore and sample SPA, require the integration of engineering constraints with scientific goals and traverse planning. The inclusion of in situ geochemical technology, such as the handheld X-ray fluorescence spectrometer (hXRF), into these missions will provide human crews with the

  13. In-situ buildup of cosmogenic isotopes at the earth`s surface: measurement of erosion rates and exposure times

    Energy Technology Data Exchange (ETDEWEB)

    Fifield, L K; Allan, G L; Stone, J O.H.; Evans, J M; Cresswell, R G; Ophel, T R [Australian National Univ., Canberra, ACT (Australia)

    1994-12-31

    Cosmic rays produce a number of nuclides in rocks that can be used to determine the geomorphic history of surfaces. The most useful are the radioactive isotopes {sup 10}Be (t{sub 1/2} = 1.5Ma), {sup 26}Al (0.7Ma) and {sup 36}Cl (0.3Ma). Within the top 2m of the surface, these are produced principally by fast neutrons. At greater depths, production is dominated by the capture of negative muons. Measurements of a single nuclide produced in situ can be used to determine total exposure times or erosion rates. The use of multiple nuclides with different half-lives makes it possible to determine more complex histories, such as exposures interrupted by periods of burial. At the ANU, all three of the isotopes above are being used to study a variety of problems in geomorphology and paleoclimatology, although to date, most of the work has concentrated on {sup 36}Cl. The accumulation of cosmogenic {sup 36}Cl in calcite (CaCO{sub 3}) provides a means of measuring erosion rates on limestone surfaces. Sensitivity is achieved over a wide range of erosion rates due to the high production rate of {sup 36}Cl in calcite (typically greater than 30 atoms/g/yr) and a detection limit of ca. 5000 atoms/g attainable with the ANU AMS system. The method is simplified by the predominance of Ca reactions (principally spallation) over other sources of {sup 36}Cl in calcite, and the ease of sample preparation. This presentation discuss the results of measurements of {sup 36}Cl in calcite from limestone samples from Australia and Papua New Guinea. Erosion rates derived from these measurements range from 3 microns per year (Australia) to over 200 microns per year in the New Guinea highlands. 3 refs.

  14. In-situ buildup of cosmogenic isotopes at the earth's surface: measurement of erosion rates and exposure times

    International Nuclear Information System (INIS)

    Fifield, L.K.; Allan, G.L.; Stone, J.O.H.; Evans, J.M.; Cresswell, R.G.; Ophel, T.R.

    1993-01-01

    Cosmic rays produce a number of nuclides in rocks that can be used to determine the geomorphic history of surfaces. The most useful are the radioactive isotopes 10 Be (t 1/2 = 1.5Ma), 26 Al (0.7Ma) and 36 Cl (0.3Ma). Within the top 2m of the surface, these are produced principally by fast neutrons. At greater depths, production is dominated by the capture of negative muons. Measurements of a single nuclide produced in situ can be used to determine total exposure times or erosion rates. The use of multiple nuclides with different half-lives makes it possible to determine more complex histories, such as exposures interrupted by periods of burial. At the ANU, all three of the isotopes above are being used to study a variety of problems in geomorphology and paleoclimatology, although to date, most of the work has concentrated on 36 Cl. The accumulation of cosmogenic 36 Cl in calcite (CaCO 3 ) provides a means of measuring erosion rates on limestone surfaces. Sensitivity is achieved over a wide range of erosion rates due to the high production rate of 36 Cl in calcite (typically greater than 30 atoms/g/yr) and a detection limit of ca. 5000 atoms/g attainable with the ANU AMS system. The method is simplified by the predominance of Ca reactions (principally spallation) over other sources of 36 Cl in calcite, and the ease of sample preparation. This presentation discuss the results of measurements of 36 Cl in calcite from limestone samples from Australia and Papua New Guinea. Erosion rates derived from these measurements range from 3 microns per year (Australia) to over 200 microns per year in the New Guinea highlands. 3 refs

  15. In-situ buildup of cosmogenic isotopes at the earth`s surface: measurement of erosion rates and exposure times

    Energy Technology Data Exchange (ETDEWEB)

    Fifield, L.K.; Allan, G.L.; Stone, J.O.H.; Evans, J.M.; Cresswell, R.G.; Ophel, T.R. [Australian National Univ., Canberra, ACT (Australia)

    1993-12-31

    Cosmic rays produce a number of nuclides in rocks that can be used to determine the geomorphic history of surfaces. The most useful are the radioactive isotopes {sup 10}Be (t{sub 1/2} = 1.5Ma), {sup 26}Al (0.7Ma) and {sup 36}Cl (0.3Ma). Within the top 2m of the surface, these are produced principally by fast neutrons. At greater depths, production is dominated by the capture of negative muons. Measurements of a single nuclide produced in situ can be used to determine total exposure times or erosion rates. The use of multiple nuclides with different half-lives makes it possible to determine more complex histories, such as exposures interrupted by periods of burial. At the ANU, all three of the isotopes above are being used to study a variety of problems in geomorphology and paleoclimatology, although to date, most of the work has concentrated on {sup 36}Cl. The accumulation of cosmogenic {sup 36}Cl in calcite (CaCO{sub 3}) provides a means of measuring erosion rates on limestone surfaces. Sensitivity is achieved over a wide range of erosion rates due to the high production rate of {sup 36}Cl in calcite (typically greater than 30 atoms/g/yr) and a detection limit of ca. 5000 atoms/g attainable with the ANU AMS system. The method is simplified by the predominance of Ca reactions (principally spallation) over other sources of {sup 36}Cl in calcite, and the ease of sample preparation. This presentation discuss the results of measurements of {sup 36}Cl in calcite from limestone samples from Australia and Papua New Guinea. Erosion rates derived from these measurements range from 3 microns per year (Australia) to over 200 microns per year in the New Guinea highlands. 3 refs.

  16. Biomolecular modification of zirconia surfaces for enhanced biocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Shih-Kuang; Hsu, Hsueh-Chuan [Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan, ROC (China); Ho, Wen-Fu [Department of Chemical and Materials Engineering, National University of Kaohsiung, Taiwan, ROC (China); Yao, Chun-Hsu [Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung 40402, Taiwan, ROC (China); Chang, Pai-Ling [Taoyuan General Hospital, Taoyuan 33004, Taiwan, ROC (China); Wu, Shih-Ching, E-mail: scwu@ctust.edu.tw [Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan, ROC (China)

    2014-12-01

    Yttria-tetragonal zirconia polycrystal (Y-TZP) is a preferred biomaterial due to its good mechanical properties. In order to improve the biocompatibility of zirconia, RGD-peptide derived from extracellular matrix proteins was employed to modify the surface of Y-TZP to promote cell adhesion in this study. The surface of Y-TZP specimens was first modified using a hydrothermal method for different lengths of time. The topographies of modified Y-TZP specimens were analyzed by contact angle, XRD, FTIR, AFM, and FE-SEM. The mechanical properties were evaluated using Vickers hardness and three point bending strength. Then, the RGD-peptide was immobilized on the surface of the Y-TZP by chemical treatment. These RGD-peptide immobilized Y-TZP specimens were characterized by FTIR and AFM, and then were cocultured with MG-63 osteoblast cells for biocompatibility assay. The cell morphology and proliferation were evaluated by SEM, WST-1, and ALP activity assay. The XRD results indicated that the phase transition, from tetragonal phase to monoclinic phase, was increased with a longer incubation time of hydrothermal treatment. However, there were no significant differences in mechanical strengths after RGD-peptide was successfully grafted onto the Y-TZP surface. The SEM images showed that the MG-63 cells appeared polygonal, spindle-shaped, and attached on the RGD-peptide immobilized Y-TZP. The proliferation and cellular activities of MG-63 cells on the RGD-peptide immobilized Y-TZP were better than that on the unmodified Y-TZP. From the above results, the RGD-peptide can be successfully grafted onto the hydrothermal modified Y-TZP surface. The RGD-peptide immobilized Y-TZP can increase cell adhesion, and thus, improve the biocompatibility of Y-TZP. - Highlights: • Covalent bonding between peptide and Y-TZP was proposed. • Stable biomimetic structures produced on the surface of zirconia. • The biocompatibility was improved.

  17. Usage of waste products from thermal recycling of plastics waste in enhanced oil recovery or in-situ coal conversion

    Energy Technology Data Exchange (ETDEWEB)

    Fink, M; Fink, J K [Montanuniversitaet Leoben (Austria)

    1998-09-01

    In this contribution a thermal method for crude oil mobilization and in-situ liquefaction of coal is discussed, which will finally yield more organic material, as which has been put in from plastics waste originally into the process. The conversion product from thermal treatment is pumped down into exhausted crude oil reservoirs, where the hydrogen can degrade the residual high viscous oil to cause it to become more prone to flow so that it can be recovered. Such a process will envision two goals: 1. more organic raw material (as crude oil) will be recovered than is initially put in as waste product. 2. atmospheric pollutants from the conversion plant will be trapped in the reservoir, which simplifies the construction of the plant. An analogous process may be performed with coal seams. Coal seams with their high porosity and large specific surface are believed to be in particular useful to filter atmospheric pollutants. Depending on the type of coal the mobilization of organic material by this process may be in the background. (orig./SR)

  18. ''In-situ'' spectro-electrochemical studies of radionuclide-contaminated surface films on metals

    International Nuclear Information System (INIS)

    Melendres, C.A.; Mini, S.; Mansour, A.N.

    2000-01-01

    The incorporation of heavy metal ions and radioactive contaminants into hydrous oxide films has been investigated in order to provide fundamental knowledge that could lead to the technological development of cost-effective processes and techniques for the decontamination of storage tanks, piping systems, surfaces, etc., in DOE nuclear facilities. The formation of oxide/hydroxide films was simulated by electrodeposition onto a graphite substrate from solutions of the appropriate metal salt. Synchrotron X-ray Absorption Spectroscopy (XAS), supplemented by Laser Raman Spectroscopy (LRS), was used to determine the structure and composition of the host oxide film, as well as the impurity ion. Results have been obtained for the incorporation of Ce, Sr, Cr, Fe, and U into hydrous nickel oxide films. Ce and Sr oxides/hydroxides are co-precipitated with the nickel oxides in separate phase domains. Cr and Fe, on the other hand, are able to substitute into Ni lattice sites or intercalate in the interlamellar positions of the brucite structure of Ni(OH) 2 . U was found to co-deposit as a U(VI) hydroxide. The mode of incorporation of metal ions depends both on the size and charge of the metal ion. The structure of iron oxide (hydroxide) films prepared by both anodic and cathodic deposition has also been extensively studied. The structure of Fe(OH) 2 was determined to be similar to that of α-Ni(OH) 2 . Anodic deposition from solutions containing Fe 2+ results in a film with a structure similar to γ-FeOOH. From the knowledge gained from the present studies, principles and methods for decontamination have become apparent. Contaminants sorbed on oxide surfaces or co-precipitated may be removed by acid wash and selective dissolution or complexation. Ions incorporated into lattice sites and interlamellar layers will require more drastic cleaning procedures. Electropolishing and the use of an electrochemical brush are among concepts that should be considered seriously for the latter

  19. A monolayer of hierarchical silver hemi-mesoparticles with tunable surface topographies for highly sensitive surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Zhu, Shuangmei; Fan, Chunzhen; Mao, Yanchao; Wang, Junqiao; He, Jinna; Liang, Erjun; Chao, Mingju

    2016-02-01

    We proposed a facile green synthesis system to synthesize large-scale Ag hemi-mesoparticles monolayer on Cu foil. Ag hemi-mesoparticles have different surface morphologies on their surfaces, including ridge-like, meatball-like, and fluffy-like shapes. In the reaction, silver nitrate was reduced by copper at room temperature in dimethyl sulfoxide via the galvanic displacement reaction. The different surface morphologies of the Ag hemi-mesoparticles were adjusted by changing the reaction time, and the hemi-mesoparticle surface formed fluffy-spherical nanoprotrusions at longer reaction time. At the same time, we explored the growth mechanism of silver hemi-mesoparticles with different surface morphologies. With 4-mercaptobenzoic acid as Raman probe molecules, the fluffy-like silver hemi-mesoparticles monolayer with the best activity of surface enhanced Raman scattering (SERS), the enhancement factor is up to 7.33 × 107 and the detection limit can reach 10-10M. SERS measurements demonstrate that these Ag hemi-mesoparticles can serve as sensitive SERS substrates. At the same time, using finite element method, the distribution of the localized electromagnetic field near the particle surface was simulated to verify the enhanced mechanism. This study helps us to understand the relationship between morphology Ag hemi-mesoparicles and the properties of SERS.

  20. In situ processing of concrete surface by impregnation and polymerization of an organic resin

    International Nuclear Information System (INIS)

    Pellecchia, V.; Ursella, P.; Moretto, G.

    1990-01-01

    The impregnation by resins of concrete structures is widely known as PIC (Polymer Impregnated Concrete). This process is normally used to improve the physical-chemical features of prefabricated items in particular to raise their lifetime under severe environmental conditions. The main target of this research contract was the verification of the possibility of a proper impregnation of existing concrete surfaces, of any dimensions and position, by comparing the obtained characteristics with those of untreated original material to check the improvement of chemical-physical properties and durability. In a nuclear facility, this goal is very important with reference to the long-term integrity of concrete walls during plant operative lifetime and after the final shutdown and decommissioning of the plant, if its dismantling is deferred. The operative steps of the research were the design, manufacturing and implementation of a tailored prototype equipment, the setting-up of the machine, the project and erection of a walling unit made of different density sectors in nuclear grade concrete and optimisation of the PIC process phases (dehydration, degassing, monomer injection, thermal cycles) during the experimental campaign. The data collected from samples gathered from field application gave results very similar to laboratory impregnated samples, thus confirming the satisfactory running of the prototype unit. Particularly the resin penetration, in spite of low porosity of nuclear grade concrete matrix, reached depths well beyond 50 mm with a significant increase of mechanical features, leaching resistance to aggressive agents and an appreciable sealing of concrete porosity

  1. Spectroscopic study of a DNA brush synthesized in situ by surface initiated enzymatic polymerization.

    Science.gov (United States)

    Khan, M Nuruzzaman; Tjong, Vinalia; Chilkoti, Ashutosh; Zharnikov, Michael

    2013-08-29

    We used a combination of synchrotron-based X-ray photoelectron spectroscopy (XPS) and angle-resolved near-edge X-ray absorption fine structure (NEXAFS) spectroscopy to study the chemical integrity, purity, and possible internal alignment of single-strand (ss) adenine deoxynucleotide (poly(A)) DNA brushes. The brushes were synthesized by surface-initiated enzymatic polymerization (SIEP) on a 25-mer of adenine self-assembled monolayer (SAM) on gold (A25-SH), wherein the terminal 3'-OH of the A25-SH serve as the initiation sites for SIEP of poly(A). XPS and NEXAFS spectra of poly(A) brushes were found to be almost identical to those of A25-SH initiator, with no unambiguous traces of contamination. Apart from the well-defined chemical integrity and contamination-free character, the brushes were found to have a high degree of orientational order, with an upright orientation of individual strands, despite their large thickness up to ~55 nm, that corresponds to a chain length of at least several hundred nucleotides for individual ssDNA molecules. The orientational order exhibited by these poly(A) DNA brushes, mediated presumably by base stacking, was found to be independent of the brush thickness as long as the packing density was high enough. The well-defined character and orientational ordering of the ssDNA brushes make them a potentially promising system for different applications.

  2. In situ preparation, electrical and surface analytical characterization of pentacene thin film transistors

    Science.gov (United States)

    Lassnig, R.; Striedinger, B.; Hollerer, M.; Fian, A.; Stadlober, B.; Winkler, A.

    2015-01-01

    The fabrication of organic thin film transistors with highly reproducible characteristics presents a very challenging task. We have prepared and analyzed model pentacene thin film transistors under ultra-high vacuum conditions, employing surface analytical tools and methods. Intentionally contaminating the gold contacts and SiO2 channel area with carbon through repeated adsorption, dissociation, and desorption of pentacene proved to be very advantageous in the creation of devices with stable and reproducible parameters. We mainly focused on the device properties, such as mobility and threshold voltage, as a function of film morphology and preparation temperature. At 300 K, pentacene displays Stranski-Krastanov growth, whereas at 200 K fine-grained, layer-like film growth takes place, which predominantly influences the threshold voltage. Temperature dependent mobility measurements demonstrate good agreement with the established multiple trapping and release model, which in turn indicates a predominant concentration of shallow traps in the crystal grains and at the oxide-semiconductor interface. Mobility and threshold voltage measurements as a function of coverage reveal that up to four full monolayers contribute to the overall charge transport. A significant influence on the effective mobility also stems from the access resistance at the gold contact-semiconductor interface, which is again strongly influenced by the temperature dependent, characteristic film growth mode. PMID:25814770

  3. Surface plasmon resonance optical cavity enhanced refractive index sensing

    Czech Academy of Sciences Publication Activity Database

    Giorgini, A.; Avino, S.; Malara, P.; Gagliardi, G.; Casalino, M.; Coppola, G.; Iodice, M.; Adam, Pavel; Chadt, Karel; Homola, Jiří; De Natale, P.

    2013-01-01

    Roč. 38, č. 11 (2013), s. 1951-1953 ISSN 0146-9592 R&D Projects: GA ČR GBP205/12/G118 Institutional support: RVO:67985882 Keywords : Resonators * Surface plasmons * Optical sensing and sensors Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.179, year: 2013

  4. Biphilic Surfaces for Enhanced Water Collection from Humid Air

    Science.gov (United States)

    Benkoski, Jason; Gerasopoulos, Konstantinos; Luedeman, William

    Surface wettability plays an important role in water recovery, distillation, dehumidification, and heat transfer. The efficiency of each process depends on the rate of droplet nucleation, droplet growth, and mass transfer. Unfortunately, hydrophilic surfaces are good at nucleation but poor at shedding. Hydrophobic surfaces are the reverse. Many plants and animals overcome this tradeoff through biphilic surfaces with patterned wettability. For example, the Stenocara beetle uses hydrophilic patches on a superhydrophobic background to collect fog from air. Cribellate spiders similarly collect fog on their webs through periodic spindle-knot structures. In this study, we investigate the effects of wettability patterns on the rate of water collection from humid air. The steady state rate of water collection per unit area is measured as a function of undercooling, angle of inclination, water contact angle, hydrophilic patch size, patch spacing, area fraction, and patch height relative to the hydrophobic background. We then model each pattern by comparing the potential and kinetic energy of a droplet as it rolls downwards at a fixed angle. The results indicate that the design rules for collecting fog differ from those for condensation from humid air. The authors gratefully acknowledge the Office of Naval Research for financial support through Grant Number N00014-15-1-2107.

  5. Treatability of South African surface waters by enhanced coagulation

    African Journals Online (AJOL)

    The majority of South African inland surface water sources are compromised due to a long-standing national policy of mandatory return flows. With renewed emphasis on the removal of organic carbon in the latest SANS 241 water quality standard, many South African water treatment managers may need to consider ...

  6. Enhancement of Polymer Cytocompatibility by Nanostructuring of Polymer Surface

    Czech Academy of Sciences Publication Activity Database

    Slepička, P.; Kasálková-Slepičková, N.; Bačáková, Lucie; Kolská, Z.; Švorčík, V.

    2012-01-01

    Roč. 2012, č. 2012 (2012), ID527403 ISSN 1687-4110 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:67985823 Keywords : polymer cytocompatibility * polymer surface * nanotechnology Subject RIV: EI - Biotechnology ; Bionics Impact factor: 1.547, year: 2012

  7. Design methodology to enhance high impedance surfaces performances

    Directory of Open Access Journals (Sweden)

    M. Grelier

    2014-04-01

    Full Text Available A methodology is introduced for designing wideband, compact and ultra-thin high impedance surfaces (HIS. A parametric study is carried out to examine the effect of the periodicity on the electromagnetic properties of an HIS. This approach allows designers to reach the best trade-off for HIS performances.

  8. Cholesterol enhances surface water diffusion of phospholipid bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chi-Yuan; Kausik, Ravinath; Han, Songi, E-mail: songi@chem.ucsb.edu [Department of Chemistry and Biochemistry and Materials Research Laboratory, University of California, Santa Barbara, California 93106 (United States); Olijve, Luuk L. C. [Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven (Netherlands)

    2014-12-14

    Elucidating the physical effect of cholesterol (Chol) on biological membranes is necessary towards rationalizing their structural and functional role in cell membranes. One of the debated questions is the role of hydration water in Chol-embedding lipid membranes, for which only little direct experimental data are available. Here, we study the hydration dynamics in a series of Chol-rich and depleted bilayer systems using an approach termed {sup 1}H Overhauser dynamic nuclear polarization (ODNP) NMR relaxometry that enables the sensitive and selective determination of water diffusion within 5–10 Å of a nitroxide-based spin label, positioned off the surface of the polar headgroups or within the nonpolar core of lipid membranes. The Chol-rich membrane systems were prepared from mixtures of Chol, dipalmitoyl phosphatidylcholine and/or dioctadecyl phosphatidylcholine lipid that are known to form liquid-ordered, raft-like, domains. Our data reveal that the translational diffusion of local water on the surface and within the hydrocarbon volume of the bilayer is significantly altered, but in opposite directions: accelerated on the membrane surface and dramatically slowed in the bilayer interior with increasing Chol content. Electron paramagnetic resonance (EPR) lineshape analysis shows looser packing of lipid headgroups and concurrently tighter packing in the bilayer core with increasing Chol content, with the effects peaking at lipid compositions reported to form lipid rafts. The complementary capability of ODNP and EPR to site-specifically probe the hydration dynamics and lipid ordering in lipid membrane systems extends the current understanding of how Chol may regulate biological processes. One possible role of Chol is the facilitation of interactions between biological constituents and the lipid membrane through the weakening or disruption of strong hydrogen-bond networks of the surface hydration layers that otherwise exert stronger repulsive forces, as reflected in

  9. CNTs in situ attached to α-Fe2O3 submicron spheres for enhancing lithium storage capacity.

    Science.gov (United States)

    Gao, Guo; Zhang, Qiang; Cheng, Xin-Bing; Qiu, Peiyu; Sun, Rongjin; Yin, Ting; Cui, Daxiang

    2015-01-14

    In this work, we developed a facile hydrothermal method for synthesis of hybrid α-Fe2O3-carbon nanotubes (CNTs) architectures (α-Fe2O3-CNTs-1 and α-Fe2O3-CNTs-2). The CNTs are in situ attached to the α-Fe2O3 submicron spheres and form three-dimensional network robust architectures. The increase in the amount of CNTs in the network α-Fe2O3-CNTs architectures will significantly enhance the cycling and rate performance, as the flexible and robust CNTs could ensure the fast electron transport pathways, enhance the electronic conductivity, and improve the structural stability of the electrode. As for pure α-Fe2O3 submicron spheres, the capacity decreased significantly and retained at 377.4 mAh g(-1) after 11 cycles, and the capacity has a slightly increasing trend at the following cycling. In contrast, the network α-Fe2O3-CNTs-2 electrode shows the most remarkable performance. At the 60th cycle, the capacity of network α-Fe2O3-CNTs-2 (764.5 mAh g(-1)) is 1.78 times than that of α-Fe2O3 submicron spheres (428.3 mAh g(-1)). The long-term cycling performance (1000 cycles) of samples at a high current density of 5 C showed that the capacity of α-Fe2O3 submicron spheres fade to ∼37.3 mAh g(-1) at the 400th cycle and gradually increased to ∼116.7 mAh g(-1) at the 1000th cycle. The capacity of network α-Fe2O3-CNTs-2 maintained at ∼220.2 mAh g(-1) before the 400th cycle, arrived at ∼326.5 mAh g(-1) in the 615th, cycle and retained this value until 1000th cycle. The network α-Fe2O3-CNTs-2 composite could significantly enhance the cycling and rate performance than pure α-Fe2O3 submicron spheres composite.

  10. Spatiotemporal Evaluation of Reanalysis and In-situ Surface Air Temperature over Ethiopia

    Science.gov (United States)

    Tesfaye, T.

    2017-12-01

    Tewodros Woldemariam Tesfaye*1, C.T. Dhanya 2,and A.K. Gosain3 1Research Scholar, Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India 2Assistant Professor, Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India 3 Professor, Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India, *e-mail: tewodros2002@gmail.com Abstract: Water resources management and modelling studies are often constrained by the scarcity of observed data, especially of the two major variables i.e., precipitation and temperature. Modellers, hence, rely on reanalysis datasets as a substitute; though its performance heavily vary depending on the data availability and regional characteristics. The present study aims at examining the ability of frequently used reanalysis datasets in capturing the spatiotemporal characteristics of maximum and minimum surface temperatures over Ethiopia and to highlight the biases, if any, in these over Ethiopian region. We considered ERA-Interim, NCEP 2, MERRA and CFSR reanalysis datasets and compared these with temperature observations from 15 synoptic stations spread over Ethiopia. In addition to the long term averages and annual cycle, a critical comparison of various extreme indices such as diurnal temperature range, warm days, warm nights, cool days, cool nights, summer days and tropical nights are also undertaken. Our results indicate that, the performance of CFSR followed by NCEP 2 is better in capturing majority of the aspects. ERA-Interim suffers a huge additive bias in the simulation of various aspects of minimum temperature in all the stations considered; while its performance is better for maximum temperature. The inferior performance of ERA-Interim is noted to be only because of the difficulty in simulating minimum temperature. Key words: ERA Interim; NCEP Reanalysis; MERRA; CFSR; Diurnal temperature range; reanalysis performance.

  11. Interfacial, Electrical, and Band Alignment Characteristics of HfO2/Ge Stacks with In Situ-Formed SiO2 Interlayer by Plasma-Enhanced Atomic Layer Deposition

    Science.gov (United States)

    Cao, Yan-Qiang; Wu, Bing; Wu, Di; Li, Ai-Dong

    2017-05-01

    In situ-formed SiO2 was introduced into HfO2 gate dielectrics on Ge substrate as interlayer by plasma-enhanced atomic layer deposition (PEALD). The interfacial, electrical, and band alignment characteristics of the HfO2/SiO2 high-k gate dielectric stacks on Ge have been well investigated. It has been demonstrated that Si-O-Ge interlayer is formed on Ge surface during the in situ PEALD SiO2 deposition process. This interlayer shows fantastic thermal stability during annealing without obvious Hf-silicates formation. In addition, it can also suppress the GeO2 degradation. The electrical measurements show that capacitance equivalent thickness of 1.53 nm and a leakage current density of 2.1 × 10-3 A/cm2 at gate bias of Vfb + 1 V was obtained for the annealed sample. The conduction (valence) band offsets at the HfO2/SiO2/Ge interface with and without PDA are found to be 2.24 (2.69) and 2.48 (2.45) eV, respectively. These results indicate that in situ PEALD SiO2 may be a promising interfacial control layer for the realization of high-quality Ge-based transistor devices. Moreover, it can be demonstrated that PEALD is a much more powerful technology for ultrathin interfacial control layer deposition than MOCVD.

  12. In situ determination of the depuration of three- and four-ringed polycyclic aromatic hydrocarbons co-adsorbed onto mangrove leaf surfaces

    International Nuclear Information System (INIS)

    Sun, Haifeng; Shi, Jing; Guo, Shuai; Zhang, Yong; Duan, Lusha

    2016-01-01

    A dual-wavelength fiber-optic fluorimetry for the in situ simultaneous determinations of fluorene (Flu), phenanthrene (Phe) and pyrene (Pyr) adsorbed onto the leaf surfaces of living Avicennia marina (Am) seedling were developed and used to study the depuration kinetics of the three PAHs, adsorbed individually or mixed together, onto living Am leaf surfaces. Limits of detection for the in situ measurements of adsorbed Flu, Phe and Pyr were 4.62, 2.75 and 1.38 ng spot"−"1, respectively. The depuration kinetics of the three selected polycyclic aromatic hydrocarbons (PAHs) are divided into rapid and slow phases; both phases followed the same first-order kinetics with relative clearance rates of Flu > Phe > Pyr during the rapid phase, and a clearance rate order of Pyr > Flu > Phe during the slow phase. For the three PAHs co-adsorbed on living Am leaf surfaces, a significant synergistic effect was detected during the rapid phase clearance; conversely, an antagonistic effect was observed during the slow phase. However, the synergistic effect dominated during both phases of the depuration process, and the co-adsorption of PAHs promoted the clearance of all three compounds from the mangrove leaf surfaces. These findings demonstrate a novel analytical method for in situ characterization of multiple PAHs adsorbed onto the plant surfaces. - Highlights: • A novel method for the in situ determination of multi-component PAHs was developed. • Synergistic and antagonistic effects separately occurred over rapid and slow phases. • The clearance of all three PAHs from leaf surfaces was promoted by co-adsorption. - The co-adsorption of PAHs promoted the depuration of all three compounds from the mangrove leaf surfaces.

  13. Early Career. Harnessing nanotechnology for fusion plasma-material interface research in an in-situ particle-surface interaction facility

    Energy Technology Data Exchange (ETDEWEB)

    Allain, Jean Paul [Univ. of Illinois, Champaign, IL (United States)

    2014-08-08

    This project consisted of fundamental and applied research of advanced in-situ particle-beam interactions with surfaces/interfaces to discover novel materials able to tolerate intense conditions at the plasma-material interface (PMI) in future fusion burning plasma devices. The project established a novel facility that is capable of not only characterizing new fusion nanomaterials but, more importantly probing and manipulating materials at the nanoscale while performing subsequent single-effect in-situ testing of their performance under simulated environments in fusion PMI.

  14. Uses of AES and RGA to study neutron-irradiation-enhanced segregation to internal surfaces

    International Nuclear Information System (INIS)

    Gessel, G.R.; White, C.L.

    1980-01-01

    The high flux of point defects to sinks during neutron irradiation can result in segregation of impurity or alloy additions to metals. Such segregants can be preexisting or produced by neutron-induced transmutations. This segregation is known to strongly influence swelling and mechanical properties. Over a period of years, facilities have been developed at ORNL incorporating AES and RGA to examine irradiated materials. Capabilities of this system include in situ tensile fracture at elevated temperatures under ultrahigh vacuum 10 -10 torr and helium release monitoring. AES and normal incidence inert ion sputtering are exploited to examine segregation at the fracture surface and chemical gradients near the surface

  15. Membranes with Surface-Enhanced Antifouling Properties for Water Purification

    Science.gov (United States)

    Shahkaramipour, Nima; Tran, Thien N.; Ramanan, Sankara; Lin, Haiqing

    2017-01-01

    Membrane technology has emerged as an attractive approach for water purification, while mitigation of fouling is key to lower membrane operating costs. This article reviews various materials with antifouling properties that can be coated or grafted onto the membrane surface to improve the antifouling properties of the membranes and thus, retain high water permeance. These materials can be separated into three categories, hydrophilic materials, such as poly(ethylene glycol), polydopamine and zwitterions, hydrophobic materials, such as fluoropolymers, and amphiphilic materials. The states of water in these materials and the mechanisms for the antifouling properties are discussed. The corresponding approaches to coat or graft these materials on the membrane surface are reviewed, and the materials with promising performance are highlighted. PMID:28273869

  16. Application of Anodization Process for Cast Aluminium Surface Properties Enhancement

    Directory of Open Access Journals (Sweden)

    Włodarczyk-Fligier A.

    2016-09-01

    Full Text Available An huge interest is observed in last years in metal matrix composite, mostly light metal based, which have found their applications in many industry branches, among others in the aircraft industry, automotive-, and armaments ones, as well as in electrical engineering and electronics, where one of the most important issue is related to the corrosion resistance, especially on the surface layer of the used aluminium alloys. This elaboration presents the influence of ceramic phase on the corrosion resistance, quality of the surface layer its thickness and structure of an anodic layer formed on aluminium alloys. As test materials it was applied the aluminium alloys Al-Si-Cu and Al-Cu-Mg, for which heat treatment processes and corrosion tests were carried out. It was presented herein grindability test results and metallographic examination, as well. Hardness of the treated alloys with those ones subjected to corrosion process were compared.

  17. Marine surface condenser design using vertical tubes which are enhanced.

    OpenAIRE

    Barnes, Clifford Gerald, Jr.

    1981-01-01

    Approved for public release; distribution is unlimited This thesis document was issues under the authority of another institution, not NPS. At the time it was written, a copy was added to the NPS Library Collection for reasons not now known. It has been included in the digital archive for its historical value to NPS. Not believed to be a CIVINS (Civilian Institutions) title. A methodology is developed for calculating the heat transfer coefficient on the surface of a vertical fluted c...

  18. Surface-enhanced Raman scattering biosensor for DNA detection on nanoparticle island substrates

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Ho, Ho Pui; Lee, Rebecca K.Y.

    2009-01-01

    We present a study on the surface-enhanced Raman scattering (SERS) properties of Ag nanoparticle island substrates (NIS) and their applications for target oligonucleotide (OND) detection. It has been found that the surface nanostructure of NIS samples can be controlled with a good degree of repro......We present a study on the surface-enhanced Raman scattering (SERS) properties of Ag nanoparticle island substrates (NIS) and their applications for target oligonucleotide (OND) detection. It has been found that the surface nanostructure of NIS samples can be controlled with a good degree...

  19. Characterization of surface complexes in enhanced Raman scattering

    International Nuclear Information System (INIS)

    Roy, D.; Furtak, T.E.

    1984-01-01

    An indicator molecule, para-nitrosodimethylanaline (p-NDMA), has been used to study the chemical nature of surface complexes involving the active site for SERS in the electrochemical environment. We present evidence for positively charged Ag atoms stabilized by coadsorbed Cl - ions as the primary sites which are produced during the oxidation reduction cycle treatment of an Ag electrode. Depending on the relative number of Cl - ions which influence the Ag site the active site demonstrates a greater or lesser electron accepting character toward p-NDMA. This character is influenced by the applied voltage and by the presence of Tl + ions in the bulk of the solution near the surface. As in previously studied systems p-NDMA/Cl - /Ag complexes demonstrate charge transfer excitation which in this case is from the p-NDMA to the Ag site. These results further solidify the importance of complex formation in electrochemical SERS and suggest that caution should be applied when using SERS as a quantitative measure of surface coverage

  20. Enhanced Electron-Phonon Coupling at Metal Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Plummer, Ward E.

    2010-08-04

    The Born-Oppenheimer approximation (BOA) decouples electronic from nuclear motion, providing a focal point for most quantum mechanics textbooks. However, a multitude of important chemical, physical and biological phenomena are driven by violations of this approximation. Vibronic interactions are a necessary ingredient in any process that makes or breaks a covalent bond, for example, conventional catalysis or enzymatically delivered biological reactions. Metastable phenomena associated with defects and dopants in semiconductors, oxides, and glasses entail violation of the BOA. Charge exchange in inorganic polymers, organic slats and biological systems involves charge- induced distortions of the local structure. A classic example is conventional superconductivity, which is driven by the electron-lattice interaction. High-resolution angle-resolved photoemission experiments are yielding new insight into the microscopic origin of electron-phonon coupling (EPC) in anisotropic two-dimensional systems. Our recent surface phonon measurement on the surface of a high-Tc material clearly indicates an important momentum dependent EPC in these materials. In the last few years we have shifted our research focus from solely looking at electron phonon coupling to examining the structure/functionality relationship at the surface of complex transition metal compounds. The investigation on electron phonon coupling has allowed us to move to systems where there is coupling between the lattice, the electrons and the spin.

  1. Super-virtual Interferometric Separation and Enhancement of Back-scattered Surface Waves

    KAUST Repository

    Guo, Bowen

    2015-08-19

    Back-scattered surface waves can be migrated to detect near-surface reflectors with steep dips. A robust surface-wave migration requires the prior separation of the back-scattered surface-wave events from the data. This separation is often difficult to implement because the back-scattered surface waves are masked by the incident surface waves. We mitigate this problem by using a super-virtual interferometric method to enhance and separate the back-scattered surface waves. The key idea is to calculate the virtual back-scattered surface waves by stacking the resulting virtual correlated and convolved traces associated with the incident and back-scattered waves. Stacking the virtual back-scattered surface waves improves their signal-to-noise ratio and separates the back-scattered surface-waves from the incident field. Both synthetic and field data results validate the robustness of this method.

  2. Seismic data enhancement with Common Reflection Surface (CRS) stack method

    Energy Technology Data Exchange (ETDEWEB)

    Baykulov, M.; Brink, H.J.; Gajewski, D.; Yoon, Mi-Kyung [Hamburg Univ. (Germany). Inst. fuer Geophysik

    2008-10-23

    We present the results of partial stacking of prestack seismic reflection data based on the kinematic wavefield attributes computed during the automatic CRS stack. The resulting CRS supergathers are more regularised and have better signal to noise ratio compared to original CMP gathers. The improved data can be used in any conventional processing tool instead of the original data, providing enhanced images of better quality. The CRS supergather method is especially suited for low fold seismic reflection data. Application of the new method to synthetic and real low fold data shows a clear improvement of seismograms as well as time and depth-migrated sections. (orig.)

  3. In situ photoelectrochemistry and Raman spectroscopic characterization on the surface oxide film of nickel electrode in 30 wt.% KOH solution

    International Nuclear Information System (INIS)

    Nan Junmin; Yang Yong; Lin Zugeng

    2006-01-01

    The oxide films of nickel electrode formed in 30 wt.% KOH solution under potentiodynamic conditions were characterized by means of electrochemical, in situ PhotoElectrochemistry Measurement (PEM) and Confocal Microprobe Raman spectroscopic techniques. The results showed that a composite oxide film was produced on nickel electrode, in which aroused cathodic or anodic photocurrent depending upon polarization potentials. The cathodic photocurrent at -0.8 V was raised from the amorphous film containing nickel hydroxide and nickel monoxide, and mainly attributed to the formation of NiO through the separation of the cavity and electron when laser light irradiates nickel electrode. With the potential increasing to more positive values, Ni 3 O 4 and high-valence nickel oxides with the structure of NiO 2 were formed successively. The composite film formed in positive potential aroused anodic photocurrent from 0.33 V. The anodic photocurrent was attributed the formation of oxygen through the cavity reaction with hydroxyl on solution interface. In addition, it is demonstrated that the reduction resultants of high-valence nickel oxides were amorphous, and the oxide film could not be reduced completely. A stable oxide film could be gradually formed on the surface of nickel electrode with the cycling and aging in 30 wt.% KOH solution

  4. In situ surface X-ray diffraction study of ultrathin epitaxial Co films on Au(111) in alkaline solution

    International Nuclear Information System (INIS)

    Reikowski, Finn; Maroun, Fouad; Di, Nan; Allongue, Philippe; Ruge, Martin; Stettner, Jochim; Magnussen, Olaf M.

    2016-01-01

    The oxidation behavior of ultrathin electrodeposited Co films on Au(111) in alkaline electrolyte was studied using in situ surface X-ray scattering techniques employing synchrotron radiation and complementary optical reflectivity