WorldWideScience

Sample records for situ reactive barriers

  1. Advanced hydraulic fracturing methods to create in situ reactive barriers

    International Nuclear Information System (INIS)

    Murdoch, L.

    1997-01-01

    This article describes the use of hydraulic fracturing to increase permeability in geologic formations where in-situ remedial action of contaminant plumes will be performed. Several in-situ treatment strategies are discussed including the use of hydraulic fracturing to create in situ redox zones for treatment of organics and inorganics. Hydraulic fracturing methods offer a mechanism for the in-situ treatment of gently dipping layers of reactive compounds. Specialized methods using real-time monitoring and a high-energy jet during fracturing allow the form of the fracture to be influenced, such as creation of assymmetric fractures beneath potential sources (i.e. tanks, pits, buildings) that should not be penetrated by boring. Some examples of field applications of this technique such as creating fractures filled with zero-valent iron to reductively dechlorinate halogenated hydrocarbons, and the use of granular activated carbon to adsorb compounds are discussed

  2. Advanced hydraulic fracturing methods to create in situ reactive barriers

    International Nuclear Information System (INIS)

    Murdoch, L.; Siegrist, B.; Vesper, S.

    1997-01-01

    Many contaminated areas consist of a source area and a plume. In the source area, the contaminant moves vertically downward from a release point through the vadose zone to an underlying saturated region. Where contaminants are organic liquids, NAPL may accumulate on the water table, or it may continue to migrate downward through the saturated region. Early developments of permeable barrier technology have focused on intercepting horizontally moving plumes with vertical structures, such as trenches, filled with reactive material capable of immobilizing or degrading dissolved contaminants. This focus resulted in part from a need to economically treat the potentially large volumes of contaminated water in a plume, and in part from the availability of construction technology to create the vertical structures that could house reactive compounds. Contaminant source areas, however, have thus far remained largely excluded from the application of permeable barrier technology. One reason for this is the lack of conventional construction methods for creating suitable horizontal structures that would place reactive materials in the path of downward-moving contaminants. Methods of hydraulic fracturing have been widely used to create flat-lying to gently dipping layers of granular material in unconsolidated sediments. Most applications thus far have involved filling fractures with coarse-grained sand to create permeable layers that will increase the discharge of wells recovering contaminated water or vapor. However, it is possible to fill fractures with other compounds that alter the chemical composition of the subsurface. One early application involved development and field testing micro-encapsulated sodium percarbonate, a solid compound that releases oxygen and can create aerobic conditions suitable for biodegradation in the subsurface for several months

  3. In situ formation of magnetite reactive barriers in soil for waste stabilization

    Science.gov (United States)

    Moore, Robert C.

    2003-01-01

    Reactive barriers containing magnetite and methods for making magnetite reactive barriers in situ in soil for sequestering soil contaminants including actinides and heavy metals, organic materials, iodine and technetium are disclosed. According to one embodiment, a two-step reagent introduction into soil takes place. In the first step, free oxygen is removed from the soil by separately injecting into the soil aqueous solutions of iron (II) salt, for example FeCl.sub.2, and base, for example NaOH or NH.sub.3 in about a 1:1 volume ratio. Then, in the second step, similar reagents are injected a second time (however, according to about a 1:2 volume ratio, iron to salt) to form magnetite. The magnetite formation is facilitated, in part, due to slow intrusion of oxygen into the soil from the surface. The invention techniques are suited to injection of reagents into soil in proximity to a contamination plume or source allowing in situ formation of the reactive barrier at the location of waste or hazardous material. Mixing of reagents to form. precipitate is mediated and enhanced through movement of reagents in soil as a result of phenomena including capillary action, movement of groundwater, soil washing and reagent injection pressure.

  4. Enhancing the design of in situ chemical barriers with multicomponent reactive transport modeling

    International Nuclear Information System (INIS)

    Sevougian, S.D.; Steefel, C.I.; Yabusaki, S.B.

    1994-11-01

    This paper addresses the need for systematic control of field-scale performance in the emplacement and operation of in situ chemical treatment barriers; in particular, it addresses the issue of how the local coupling of reaction kinetics and material heterogeneities at the laboratory or bench scale can be accurately upscaled to the field. The authors have recently developed modeling analysis tools that can explicitly account for all relevant chemical reactions that accompany the transport of reagents and contaminants through a chemically and physically heterogeneous subsurface rock or soil matrix. These tools are incorporated into an enhanced design methodology for in situ chemical treatment technologies, and the new methodology is demonstrated in the ongoing design of a field experiment for the In Situ Redox Manipulation (ISRM) project at the U.S. Department of Energy (DOE) Hanford Site. The ISRM design approach, which systematically integrates bench-scale and site characterization information, provides an ideal test for the new reactive transport techniques. The need for the enhanced chemistry capability is demonstrated by an example that shows how intra-aqueous redox kinetics can affect the transport of reactive solutes. Simulations are carried out on massively parallel computer architectures to resolve the influence of multiscale heterogeneities on multicomponent, multidimensional reactive transport. The technology will soon be available to design larger-scale remediation schemes

  5. PERMEABLE REACTIVE BARRIERS FOR IN-SITU TREATMENT OF ARSENIC-CONTAMINATED GROUNDWATER

    Science.gov (United States)

    Laboratory and field research has shown that permeable reactive barriers (PRBs) containing a variety of materials can treat arsenic (As) contaminated groundwater. Sites where these PRBs are located include a mine tailings facility, fertilizer and chemical manufacturing sites, a...

  6. INFLUENCE OF GROUNDWATER GEOCHEMISTRY ON THE LONG-TERM PERFORMANCE OF IN-SITU PERMEABLE REACTIVE BARRIERS CONTAINING ZERO-VALENT IRON

    Science.gov (United States)

    Reactive barriers that couple subsurface fluid flow with a passive chemical treatment zone are emerging, cost effective approaches for in-situ remediation of contaminated groundwater. Factors such as the build-up of surface precipitates, bio-fouling, and changes in subsurface tr...

  7. In-situ treatment of a mixed hydrocarbon plume through a permeable reactive barrier and enhanced bio-remediation

    International Nuclear Information System (INIS)

    Aglietto, I.; Bretti, L.L.

    2005-01-01

    Groundwater is frequently polluted with mixtures of contaminants that are amenable to different types of remediation. One example is the combination of petroleum hydrocarbons (mostly BTEX) and chlorinated solvents (chlorinated ethenes and propanes), as it occurs in the groundwater beneath the industrial site that is the objective of the present case study. The site is located in Italy near a main river (Arno), which is supposed to be the final recipient of the contamination and where a possible exposure might take place. The aim of the treatment is the plume containment within the site boundaries in order to avoid further migration of the contaminants towards the river. The design of the remediation system was based on an extensive site characterization that included - but was not limited to - the following information: geological and geochemical, microbiological and hydrological data, together with analytical data (i.e. contaminant concentrations). Pilot tests were also implemented in order to collect the necessary parameters for the full-scale treatment design and calibration. The site was contaminated by a mixed plume of more than 30 different contaminants, ranging from BTEX, to MTBE, to PAH, to chlorinated solvents. The concentration peaks were in the order of 1-100 mg/l for each contaminant. Petroleum hydrocarbons are quickly degradable through oxidative mechanisms (especially aerobic biodegradation), whereas fully-chlorinated compounds are only degradable via reductive pathways. A mixed plume of both types of contaminants therefore requires a combined approach with the application of different treatment technologies. The remediation strategy elaborated combines a permeable reactive barrier (PRB) in a funnel and gate configuration for the down-gradient plume containment, with the enhanced bio-remediation of the contaminants for the control of the plume boundaries and for the abatement of the concentration peaks. Pilot tests were carried out in order to assess

  8. Sea sand for reactive barriers

    International Nuclear Information System (INIS)

    Garcia R, G.; Ordonez R, E.; Ordonez R, En.

    2002-01-01

    Some phosphates have the property to suck in radioactive metals in solution, what it is taken in advance to make reactive barriers which are placed in the nuclear waste repositories. In an effort for contributing to the study of this type of materials, it has been obtained the zirconium silicate (ZrSiO 4 ) and the alpha zirconium hydrogen phosphate (Zr(HPO 4 ) 2H 2 O) starting from sea sand in an easy and economic way. (Author)

  9. Permeable reactive barriers for pollutant removal from groundwater

    International Nuclear Information System (INIS)

    Simon, F.G.; Meggyes, T.

    2001-01-01

    The removal of pollutants from the groundwater using permeable reactive barriers is a novel in-situ groundwater remediation technology. The most relevant decontamination processes used are chemical reduction, oxidation, precipitation and sorption, for which examples are given. Some common organic pollutants are halogenated hydrocarbons, aromatic and nitroaromatic compounds which can be treated in reactive barriers successfully. Lead, chromium and, in particular, uranium are dealt with in great detail among inorganic pollutants because of their occurrence in many European countries. Construction methods for cut-off walls and reactive barriers exhibit similar features. Apart from conventional methods, drilling, deep soil mixing, jet technology, arrays of wells, injected systems and biobarriers are applied to construct permeable reactive barriers. Permeable reactive barriers bear great potential for the future in remediation engineering. (orig.)

  10. Analytical model for the design of in situ horizontal permeable reactive barriers (HPRBs) for the mitigation of chlorinated solvent vapors in the unsaturated zone

    NARCIS (Netherlands)

    Verginelli, Iason; Capobianco, Oriana; Hartog, Niels; Baciocchi, Renato

    In this work we introduce a 1-D analytical solution that can be used for the design of horizontal permeable reactive barriers (HPRBs) as a vapor mitigation system at sites contaminated by chlorinated solvents. The developed model incorporates a transient diffusion-dominated transport with a

  11. MENDING THE IN SITU MANIPULATION BARRIER

    Energy Technology Data Exchange (ETDEWEB)

    PETERSEN, S.W.

    2006-02-06

    In early 2004, the U.S. Department of Energy (DOE) Richland and Fluor Hanford requested technical assistance from the DOE Headquarters EM-23 Technical Assistance Program to provide a team of technical experts to develop recommendations for mending the In Situ Redox Manipulation (ISRM) Barrier in the 100-D Area of the Hanford Site in Washington State. To accommodate this request, EM-23 provided support to convene a group of technical experts from industry, a national laboratory, and a DOE site to participate in a 2 1/2-day workshop with the objective of identifying and recommending options to enhance the performance of the 100-D Area reactive barrier and of a planned extension to the northeast. This report provides written documentation of the team's findings and recommendations. In 1995, a plume of dissolved hexavalent chromium [Cr(VI)], which resulted from operation of the D/DR Reactors at the Hanford site, was discovered along the Columbia River shoreline and in the 100-D Area. Between 1999 and 2003, a reactive barrier using the In Situ Redox Manipulation (ISRM) technology, was installed a distance of 680 meters along the river to reduce the Cr(VI) in the groundwater. The ISRM technology creates a treatment zone within the aquifer by injection of sodium dithionite, a strong reducing agent that scavenges dissolved oxygen (DO) from the aquifer and reduces ferric iron [Fe(III)], related metals, and oxy-ions. The reduction of Fe(III) to ferrous [Fe(II)] iron provides the primary reduction capacity to reduce Cr(VI) to the +3 state, which is less mobile and less toxic. Bench-scale and field-scale treatability tests were initially conducted to demonstrate proof-of principle and to provide data for estimation of barrier longevity. These calculations estimated barrier longevity in excess of twenty years. However, several years after initial and secondary treatment, groundwater in a number of wells has been found to contain elevated chromium (Cr) concentrations

  12. X-231A demonstration of in-situ remediation of DNAPL compounds in low permeability media by soil fracturing with thermally enhanced mass recovery or reactive barrier destruction

    International Nuclear Information System (INIS)

    Siegrist, R.L.; Slack, W.W.; Houk, T.C.

    1998-03-01

    The overall goal of the program of activities is to demonstrate robust and cost-effective technologies for in situ remediation of DNAPL compounds in low permeability media (LPM), including adaptations and enhancements of conventional technologies to achieve improved performance for DNAPLs in LPM. The technologies sought should be potential for application at simple, small sites (e.g., gasoline underground storage tanks) as well as at complex, larger sites (e.g., DOE land treatment units). The technologies involved in the X-231A demonstration at Portsmouth Gaseous Diffusion Plant (PORTS) utilized subsurface manipulation of the LPM through soil fracturing with thermally enhanced mass recovery or horizontal barrier in place destruction. To enable field evaluation of these approaches, a set of four test cells was established at the X-231A land treatment unit at the DOE PORTS plant in August 1996 and a series of demonstration field activities occurred through December 1997. The principal objectives of the PORTS X-231A demonstration were to: determine and compare the operational features of hydraulic fractures as an enabling technology for steam and hot air enhanced soil vapor extraction and mass recovery, in situ interception and reductive destruction by zero valent iron, and in situ interception and oxidative destruction by potassium permanganate; determine the interaction of the delivered agents with the LPM matrix adjacent to the fracture and within the fractured zone and assess the beneficial modifications to the transport and/or reaction properties of the LPM deposit; and determine the remediation efficiency achieved by each of the technology strategies

  13. CARBON-BASED REACTIVE BARRIER FOR NITRATE ...

    Science.gov (United States)

    Nitrate (NO3-) is a common ground water contaminant related to agricultural activity, waste water disposal, leachate from landfills, septic systems, and industrial processes. This study reports on the performance of a carbon-based permeable reactive barrier (PRB) that was constructed for in-situ bioremediation of a ground water nitrate plume caused by leakage from a swine CAFO (concentrated animal feeding operation) lagoon. The swine CAFO, located in Logan County, Oklahoma, was in operation from 1992-1999. The overall site remediation strategy includes an ammonia recovery trench to intercept ammonia-contaminated ground water and a hay straw PRB which is used to intercept a nitrate plume caused by nitrification of sorbed ammonia. The PRB extends approximately 260 m to intercept the nitrate plume. The depth of the trench averages 6 m and corresponds to the thickness of the surficial saturated zone; the width of the trench is 1.2 m. Detailed quarterly monitoring of the PRB began in March, 2004, about 1 year after construction activities ended. Nitrate concentrations hydraulically upgradient of the PRB have ranged from 23 to 77 mg/L N, from 0 to 3.2 mg/L N in the PRB, and from 0 to 65 mg/L N hydraulically downgradient of the PRB. Nitrate concentrations have generally decreased in downgradient locations with successive monitoring events. Mass balance considerations indicate that nitrate attenuation is dominantly from denitrification but with some component of

  14. AN IN SITU PERMEABLE REACTIVE BARRIER FOR THE TREATMENT OF HEXAVALENT CHROMIUM AND TRICHLOROETHYLENE IN GROUNDWATER:VOLUME 2 PERFORMANCE MONITORING

    Science.gov (United States)

    A 46 m long, 7.3 m deep, and 0.6 m wide permeable subsurface reactive wall was installed at the U.S. Coast Guard (USCG) Support Center, near Elizabeth City, North Carolina, in June 1996. The reactive wall was designed to remediate hexavalent chromium [Cr(VI)] contaminated ground ...

  15. AN IN-SITU PERMEABLE REACTIVE BARRIER FOR THE TREATMENT OF HEXAVALENT CHROMIUM AND TRICHLOROETHYLENE IN GROUND WATER: VOLUME 1 DESIGN AND INSTALLATION

    Science.gov (United States)

    A 46 m long, 7.3 m deep, and 0.6 m wide permeable subsurface reactive wall was installed at the U.S. Coast Guard (USCG) Support Center, near Elizabeth City, North Carolina, in June 1996. The reactive wall was designed to remediate hexavalent chromium [Cr(VI)] contaminated ground ...

  16. LONG-TERM GEOCHEMICAL BEHAVIOR OF A ZEROVALENT IRON PERMEABLE REACTIVE BARRIER FOR THE TREATMENT OF HEXAVALENT CHROMIUM IN GROUNDWATER

    Science.gov (United States)

    Passive, in-situ reactive barriers have proven to be viable, cost-effective systems for the remediation of Cr-contaminated groundwater at some sites. Permeable reactive barriers (PRBs) are installed in the flow-path of groundwater, most typically as vertical treatment walls. Re...

  17. The biofiltration permeable reactive barrier: Practical experience from Synthesia

    Energy Technology Data Exchange (ETDEWEB)

    Vesela, L.; Nemecek, J.; Siglova, M.; Kubal, M. [DEKONTA, Prague (Czech Republic)

    2006-10-15

    The paper refers to utilization of biological elements within permeable reactive barriers. The concept of a biofiltration permeable barrier has been tested in the laboratory and in pilot-scale. Oxyhumolite (oxidized young lignite) was examined as an absorption material and a biofilm carrier. Laboratory tests performed before the pilot verification confirmed that oxyhumolite adsorbs organic pollutants at a minimum value, but that it can be used for biofilm attachment. An experimental barrier was built on premises of a chemical factory contaminated mainly by various organic pollutants (benzene, toluene, ethylbenzene, and xylenes (BTEX), chlorobenzenes, naphthalene, nitro-derivatives, phenols, trichloroethylene (TCE), and total petroleum hydrocarbon (TPH)). Before the barrier was installed, a preliminary survey of the unsaturated zone, hydrogeological investigation, and a microbiological survey had been performed. The barrier was designed as a trench-and-gate system with an in situ bioreactor. During the year 2004, measurements of groundwater flux and retention time under current hydrological conditions, together with chemical and microbiological monitoring, were carried out on the site. The results showed high effectiveness of organic contamination removal. Average elimination varied from 57.3% (naphthalene) to 99.9% (nitro-derivatives, BTEX); microbial density in the bioreactor was approx. 10{sup 5} CFU mL{sup -1}.

  18. Reactive barriers for 137Cs retention

    International Nuclear Information System (INIS)

    Krumhansl, James L.; Brady, Patrick V.; Anderson, Howard L.

    2000-01-01

    137 Cs was dispersed globally by cold war activities and, more recently, by the Chernobyl accident. Engineered extraction of 137 Cs from soils and groundwaters is exceedingly difficult. Because the half life of 137 Cs is only 30.2 years, remediation might be more effective (and less costly) if 137 Cs bioavailability could be demonstrably limited for even a few decades by use of a reactive barrier. Essentially permanent isolation must be demonstrated in those few settings where high nuclear level wastes contaminated the environment with 135 Cs (half life 2.3x10 6 years) in addition to 137 Cs. Clays are potentially a low-cost barrier to Cs movement, though their long-term effectiveness remains untested. To identify optimal clays for Cs retention Cs resorption was measured for five common clays: Wyoming Montmorillonite (SWy-1), Georgia Kaolinites (KGa-1 and KGa-2), Fithian Illite (F-Ill), and K-Metabentonite (K-Mbt). Exchange sites were pre-saturated with 0.16 M CsCl for 14 days and readily exchangeable Cs was removed by a series of LiNO 3 and LiCl washes. Washed clay were then placed into dialysis bags and the Cs release to the deionized water outside the bags measured. Release rates from 75 to 139 days for SWy-1, K-Mbt and F- 111 were similar; 0.017 to 0.021% sorbed Cs released per day. Both kaolinites released Cs more rapidly (0.12 to 0.05% of the sorbed Cs per day). In a second set of experiments, clays were doped for 110 days and subjected to an extreme and prolonged rinsing process. All the clays exhibited some capacity for irreversible Cs uptake so most soils have some limited ability to act as a natural barrier to Cs migration. However, the residual loading was greatest on K-Mbt (∼ 0.33 wt% Cs). Thus, this clay would be the optimal material for constructing artificial reactive barriers

  19. Permeable bio-reactive barriers for hydrocarbon remediation in Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Mumford, K.A.; Stevens, G.W.; Gore, D.B. [Melbourne Univ., Victoria (Australia). Dept. of Chemical and Biomoleculuar Engineering, Particulate Fluids Processing Centre; Snape, I.; Rayner, J.L. [Australian Antarctic Div., Kingston, Tasmania (Australia); Gore, D.B. [Macquarie Univ., Sydney, NSW (Australia). Dept. of Environmental Science

    2010-07-01

    This study assessed the performance of a permeable bio-reactive barrier designed to treat contaminated water. The bio-reactive barrier was installed at a fuel spill site located in the Windmill Islands, Antarctica. A funnel and gate design was used to prevent contaminant migration beyond the barrier location as well as to ensure controlled nutrient delivery. The study also investigated the performance of the bio-reactive barrier in regions with freeze-thaw conditions. The 4-year project was also conducted to assess optimal conditions for enhancing the barrier's ability to degrade hydrocarbons.

  20. Automated Impedance Tomography for Monitoring Permeable Reactive Barrier Health

    Energy Technology Data Exchange (ETDEWEB)

    LaBrecque, D J; Adkins, P L

    2009-07-02

    The objective of this research was the development of an autonomous, automated electrical geophysical monitoring system which allows for near real-time assessment of Permeable Reactive Barrier (PRB) health and aging and which provides this assessment through a web-based interface to site operators, owners and regulatory agencies. Field studies were performed at four existing PRB sites; (1) a uranium tailing site near Monticello, Utah, (2) the DOE complex at Kansas City, Missouri, (3) the Denver Federal Center in Denver, Colorado and (4) the Asarco Smelter site in East Helena, Montana. Preliminary surface data over the PRB sites were collected (in December, 2005). After the initial round of data collection, the plan was modified to include studies inside the barriers in order to better understand barrier aging processes. In September 2006 an autonomous data collection system was designed and installed at the EPA PRB and the electrode setups in the barrier were revised and three new vertical electrode arrays were placed in dedicated boreholes which were in direct contact with the PRB material. Final data were collected at the Kansas City, Denver and Monticello, Utah PRB sites in the fall of 2007. At the Asarco Smelter site in East Helena, Montana, nearly continuous data was collected by the autonomous monitoring system from June 2006 to November 2007. This data provided us with a picture of the evolution of the barrier, enabling us to examine barrier changes more precisely and determine whether these changes are due to installation issues or are normal barrier aging. Two rounds of laboratory experiments were carried out during the project. We conducted column experiments to investigate the effect of mineralogy on the electrical signatures resulting from iron corrosion and mineral precipitation in zero valent iron (ZVI) columns. In the second round of laboratory experiments we observed the electrical response from simulation of actual field PRBs at two sites: the

  1. GEOCHEMISTRY OF SUBSURFACE REACTIVE BARRIERS FOR REMEDIATION OF CONTAMINATED GROUND WATER

    Science.gov (United States)

    Reactive barriers that couple subsurface fluid flow with a passive chemical treatment zone are emerging, cost effective approaches for in-situ remediation of contaminated groundwater. Factors such as the build-up of surface precipitates, bio-fouling, and changes in subsurface tr...

  2. Permeable reactive barrier - innovative technology for ground-water remediation

    International Nuclear Information System (INIS)

    Vidic, D.R.

    2002-01-01

    Significant advances in the application of permeable reactive barriers (PRBs) for ground-water remediation have been witnessed in the last 5 years. From only a few full-scale systems and pilot-scale demonstrations, there are currently at least 38 full-scale PRBs using zero-valent iron (ZVI) as a reactive material. Of those, 26 are continuous reactive walls, 9 are funnel-and- gate systems and 3 are in situ reactive vessels. Most of the PRB systems have used granular iron media and have been applied to address the control of contamination caused by chlorinated volatile organic compounds or heavy metals. Many regulatory agencies have expressed interest in PRB systems and are becoming more comfortable in issuing permits. The main advantage of PRB systems is that the installation costs are comparable with those of other ground-water remediation technologies, while the O and M costs are significantly lower and are mostly due to monitoring requirements, which are required for all remediation approaches. In addition, the land use can resume after the installation of the PRB systems, since there are few visible signs of the installation above grounds except for the monitoring wells. It is difficult to make any definite conclusions about the long-term performance of PRB systems because there is no more than 5 years of the record of performance that can be used for such analysis. The two main challenges still facing this technology are: (1) evaluating the longevity (geochemistry) of a PRB; and (2) ensuring/verifying hydraulic performance. A number of public/private partnerships have been established in recent years that are working together to resolve some of these problems. This organized approach by combining the efforts of several government agencies and private companies will likely result in better understanding and, hopefully, better acceptance of this technology in the future. (author)

  3. Chemical gel barriers as low-cost alternative to containment and in situ cleanup of hazardous wastes to protect groundwater

    International Nuclear Information System (INIS)

    1997-01-01

    Chemical gel barriers are being considered as a low-cost alternative for containment and in situ cleanup of hazardous wastes to protect groundwater. Most of the available gels in petroleum application are non-reactive and relative impermeable, providing a physical barriers for all fluids and contaminants. However, other potential systems can be envisioned. These systems could include gels that are chemically reactive and impermeable such that most phase are captured by the barriers but the contaminants could diffuse through the barriers. Another system that is chemically reactive and permeable could have potential applications in selectivity capturing contaminants while allowing water to pass through the barriers. This study focused on chemically reactive and permeable gel barriers. The gels used in experiment are DuPont LUDOX SM colloidal silica gel and Pfizer FLOPAAM 1330S hydrolyzed polyacrylamide (HPAM) gel

  4. Hydraulic performance of permeable barriers for in situ treatment of contaminated groundwater

    International Nuclear Information System (INIS)

    Smyth, D.J.A.; Shikaze, S.G.; Cherry, J.A.

    1997-01-01

    The passive interception and in situ treatment of dissolved contaminants in groundwater by permeable reactive barriers has recently gained favor at an increasing number of sites as an alternative to conventional approaches to groundwater remediation such as the pump-and-treat method. Permeable reactive barriers have two essential functions. The first is that the barriers must be installed in a position such that all of the plume passes through the reactive system. The second function is to achieve acceptable treatment of the contamination by physical, chemical or biological means within or downgradient of the barrier. In this paper, issues associated with the hydraulic performance of permeable reaction barriers are evaluated using a three-dimensional groundwater flow model. The efficiency of plume capture by permeable wall and funnel-and-gate systems is examined for some generic and for site-specific hydrogeologic systems. The results have important implications to decisions pertaining to the selection, design and installation of permeable reactive barrier systems

  5. Laboratory and field scale demonstration of reactive barrier systems

    International Nuclear Information System (INIS)

    Dwyer, B.P.; Marozas, D.C.; Cantrell, K.; Stewart, W.

    1996-10-01

    In an effort to devise a cost efficient technology for remediation of uranium contaminated groundwater, the Department of Energy's Uranium Mill Tailings Remedial Action (DOE-UMTRA) Program through Sandia National Laboratories (SNL) fabricated a pilot scale research project utilizing reactive subsurface barriers at an UMTRA site in Durango, Colorado. A reactive subsurface barrier is produced by placing a reactant material (in this experiment, metallic iron) in the flow path of the contaminated groundwater. The reactive media then removes and/or transforms the contaminant(s) to regulatory acceptable levels. Experimental design and results are discussed with regard to other potential applications of reactive barrier remediation strategies at other sites with contaminated groundwater problems

  6. Fifteen-year Assessment of a Permeable Reactive Barrier for Treatment of Chromate and Trichloroethylene in Groundwater

    Science.gov (United States)

    The fifteen-year performance of a granular iron, permeable reactive barrier (PRB; Elizabeth City, North Carolina) is reviewed with respect to contaminant treatment (hexavalent chromium and trichloroethylene) and hydraulic performance. Due to in-situ treatment of the chromium sou...

  7. Reactive Membrane Barriers for Containment of Subsurface Contamination

    Energy Technology Data Exchange (ETDEWEB)

    William A. Arnold; Edward L. Cussler

    2007-02-26

    The overall goal of this project was to develop reactive membrane barriers--a new and flexible technique to contain and stabilize subsurface contaminants. Polymer membranes will leak once a contaminant is able to diffuse through the membrane. By incorporating a reactive material in the polymer, however, the contaminant is degraded or immobilized within the membrane. These processes increase the time for contaminants to breakthrough the barrier (i.e. the lag time) and can dramatically extend barrier lifetimes. In this work, reactive barrier membranes containing zero-valent iron (Fe{sup 0}) or crystalline silicotitanate (CST) were developed to prevent the migration of chlorinated solvents and cesium-137, respectively. These studies were complemented by the development of models quantifying the leakage/kill time of reactive membranes and describing the behavior of products produced via the reactions within the membranes. First, poly(vinyl alcohol) (PVA) membranes containing Fe{sup 0} and CST were prepared and tested. Although PVA is not useful in practical applications, it allows experiments to be performed rapidly and the results to be compared to theory. For copper ions (Cu{sup 2+}) and carbon tetrachloride, the barrier was effective, increasing the time to breakthrough over 300 times. Even better performance was expected, and the percentage of the iron used in the reaction with the contaminants was determined. For cesium, the CST laden membranes increased lag times more than 30 times, and performed better than theoretical predictions. A modified theory was developed for ion exchangers in reactive membranes to explain this result. With the PVA membranes, the effect of a groundwater matrix on barrier performance was tested. Using Hanford groundwater, the performance of Fe{sup 0} barriers decreased compared to solutions containing a pH buffer and high levels of chloride (both of which promote iron reactivity). For the CST bearing membrane, performance improved by a

  8. Reactive Membrane Barriers for Containment of Subsurface Contamination

    International Nuclear Information System (INIS)

    William A. Arnold; Edward L. Cussler

    2007-01-01

    The overall goal of this project was to develop reactive membrane barriers--a new and flexible technique to contain and stabilize subsurface contaminants. Polymer membranes will leak once a contaminant is able to diffuse through the membrane. By incorporating a reactive material in the polymer, however, the contaminant is degraded or immobilized within the membrane. These processes increase the time for contaminants to breakthrough the barrier (i.e. the lag time) and can dramatically extend barrier lifetimes. In this work, reactive barrier membranes containing zero-valent iron (Fe 0 ) or crystalline silicotitanate (CST) were developed to prevent the migration of chlorinated solvents and cesium-137, respectively. These studies were complemented by the development of models quantifying the leakage/kill time of reactive membranes and describing the behavior of products produced via the reactions within the membranes. First, poly(vinyl alcohol) (PVA) membranes containing Fe 0 and CST were prepared and tested. Although PVA is not useful in practical applications, it allows experiments to be performed rapidly and the results to be compared to theory. For copper ions (Cu 2+ ) and carbon tetrachloride, the barrier was effective, increasing the time to breakthrough over 300 times. Even better performance was expected, and the percentage of the iron used in the reaction with the contaminants was determined. For cesium, the CST laden membranes increased lag times more than 30 times, and performed better than theoretical predictions. A modified theory was developed for ion exchangers in reactive membranes to explain this result. With the PVA membranes, the effect of a groundwater matrix on barrier performance was tested. Using Hanford groundwater, the performance of Fe 0 barriers decreased compared to solutions containing a pH buffer and high levels of chloride (both of which promote iron reactivity). For the CST bearing membrane, performance improved by a factor of three when

  9. Permeable Reactive Barriers: a multidisciplinary approach of a new emerging sustainable groundwater treatment technology

    Energy Technology Data Exchange (ETDEWEB)

    Diels, L.; Bastiaens, L. [Vito, Mol (BL); O' Hannessin, S. [EnviroMetal Technologies Inc., Ontario (Canada); Cortina, J.L. [Univ. Politecnica de Catalunya, Barcelona (Spain). Dept. d' Enginyeria Quimica; Alvarez, P.J. [Univ. of Iowa, Iowa-City (United States). Center for Biocatalysis and Bioprocessing; Ebert, M. [Christian-Albrechts Univ. Kiel (Germany). Inst. fuer Geowissenschaften; Schad, H. [I.M.E.S. GmbH, Amtzell (Germany)

    2003-07-01

    Permeable reactive barriers or zones are becoming an interesting sustainable and cost-effective technology for in situ treatment of contaminated groundwater. The technology is based on chemical processes as the dehalogenating activity of zerovalent iron, biological processes in bioscreens or reactive zones and on sorption technology (e.g. heavy metal adsorption or adsorption on granular activated carbon). Three technical sessions will be devoted to this nowadays becoming mature technology. This special session intends to pay attention to the discussion about some questions related to PRBs. These include the sustainability (e.g. life time and clogging) especially for zerovalent iron barriers, the need and quality of feasibility tests, drawbacks and restrictions of PRBs. Combined with long term performance monitoring os these systems will be discussed. Further attention will be paid to cost evaluation and the relationship between zerovalent barriers and bacterial growth. Also attention will be paid to new reactive materials (e.g. activated carbon for organics and inorganic materials for heavy metals) and consequences (e.g. environmental impact). Finally the session will combine al these approaches in a discussion about combined barriers or multibarriers for treatment of mixed pollution (e.g. landfill leachates contaminated groundwater). Specialists involved in these subjects will introduce these topics and allow for a large and intensive discussion to improve future applications of this technology. (orig.)

  10. Strength and Numerical Analysis in the Design of Permeable Reactive Barriers

    Science.gov (United States)

    Pawluk, Katarzyna; Wrzesiński, Grzegorz; Lendo-Siwicka, Marzena

    2017-10-01

    Permeable reactive barriers are one of the most important in situ technologies in groundwater remediation. Most of the installed PRBs have tended to use singular reactive media, but there is an increasing number of applications using combined or sequenced media to treat mixtures of contaminants within a groundwater plume. The concept of a multi-layered permeable reactive barrier (MPRB) to prevent and protect groundwater along traffic routes, especially in ecologically and naturally valuable areas, was developed following several field and laboratory investigations conducted in the Department of Geotechnical Engineering of the Warsaw University of Life Sciences. In accordance with the guidelines of the Interstate Technology & Regulatory Council for the selection of reactive materials, numerous laboratory and field investigations should be performed to determine the environmental conditions, type and concentrations of the contaminants, and the physical-chemical and permeability properties of the reactive materials. However, the deformation and strength properties of the reactive materials should be also considered in the design and evaluation of the safety conditions. In this paper, strength and deformation properties of silica spongolite, zeolite, and activated carbon were investigated using direct shear and oedometer tests. The laboratory test results were used in numerical calculations with the application of the finite element method. The aim of this study was to define the impact of the installation stages of a multi-layered permeable reactive barrier on the stability of a road embankment. Numerical analysis may prevent, reduce or eliminate the risk in the case of a breakdown during the construction or/and exploitation of a PRB.

  11. Evaluation of synthetic zeolite as engineering passive permeable reactive barrier

    International Nuclear Information System (INIS)

    Ibrahim, O.A.A.

    2011-01-01

    The presence of toxic pollutants in groundwater brings about significant changes in the properties of water resources and has to be avoided in order to preserve the environmental quality. Heavy metals are among the most dangerous inorganic water pollutants, that related to many anthropogenic sources and their compounds are extremely toxic. The treatment of contaminated groundwater is among the most difficult and expensive environmental problems. Over the past years, permeable reactive barriers have provided an increasingly important role in the passive insitu treatment of contaminated groundwater. There are a large number of materials that are able to immobilize contaminants by sorption, including granulated active carbon, zeolite, montmorillonite, peat, compost, sawdust, etc. Zeolite X is a synthetic counterpart of the naturally occurring mineral Faujasite. It has one of the largest cavities and cavity entrances of any known zeolites. The main aim of this work is to examine the possibility of using synthetic zeolite X as an engineering permeable reactive barrier to remove heavy metals from a contaminated groundwater. Within this context, the following investigations were carried out: 1. Review on the materials most commonly used as engineered permeable reactive barriers to identify the important features to be considered in the examination of the proposed permeable reactive barrier material (zeolite X). 2. Synthesis of zeolite X and characterization of the synthesized material using different techniques. 3. Batch tests were carried out to characterize the equilibrium and kinetic sorption properties of the synthesized zeolite X towards the concerned heavy metals; zinc and cadmium ions. 4. Column tests were also performed to determine the design factors for permeable reactive barrier against zinc and cadmium ions solutions.Breakthrough curves measured in such experiments used to determine the hydrodynamic dispersion coefficients for both metal ions. 5. Analytical

  12. Reactivation of presumed adenoviral keratitis after laser in situ keratomileusis.

    Science.gov (United States)

    Safak, Nilgün; Bilgihan, Kamil; Gürelik, Gökhan; Ozdek, Sengül; Hasanreisoğlu, Berati

    2002-04-01

    We report a patient with reactivation of presumed adenoviral keratoconjunctivitis after laser in situ keratomileusis (LASIK) to correct high myopia. The preoperative refraction was -13.00 diopters (D) in the right eye and -14.00 D in the left eye, and the best corrected visual acuity was 20/20 in both eyes. On the first postoperative day, mild conjunctival hyperemia and multiple subepithelial infiltrations localized in the flap zone consistent with adenoviral keratoconjunctivitis were seen. After prompt treatment, the lesions resolved. As a consequence, LASIK successfully corrected the high myopia. Adenoviral keratoconjunctivitis can be reactivated after LASIK, unlike after photorefractive keratectomy, despite the absence of symptomatic and clinical findings before the procedure.

  13. Groundwater protection from cadmium contamination by permeable reactive barriers

    Energy Technology Data Exchange (ETDEWEB)

    Di Natale, F. [Dipartimento di Ingegneria chimica, Universita di Federico II, P.le Tecchio, 80-80125 Naples (Italy)], E-mail: fdinatal@unina.it; Di Natale, M.; Greco, R. [Centro Interdipartimentale di Ricerca in Ingegneria Ambientale (CIRIAM), Dipartimento di Ingegneria Civile, Seconda Universita di Napoli, via Roma 29-81031 Aversa (Caserta) (Italy); Lancia, A. [Dipartimento di Ingegneria chimica, Universita di Federico II, P.le Tecchio, 80-80125 Naples (Italy); Laudante, C.; Musmarra, D. [Centro Interdipartimentale di Ricerca in Ingegneria Ambientale (CIRIAM), Dipartimento di Ingegneria Civile, Seconda Universita di Napoli, via Roma 29-81031 Aversa (Caserta) (Italy)

    2008-12-30

    This work studies the reliability of an activated carbon permeable reactive barrier in removing cadmium from a contaminated shallow aquifer. Laboratory tests have been performed to characterize the equilibrium and kinetic adsorption properties of the activated carbon in cadmium-containing aqueous solutions. A 2D numerical model has been used to describe pollutant transport within a groundwater and the pollutant adsorption on the permeable adsorbing barrier (PRB). In particular, it has been considered the case of a permeable adsorbing barrier (PAB) used to protect a river from a Cd(II) contaminated groundwater. Numerical results show that the PAB can achieve a long-term efficiency by preventing river pollution for several months.

  14. Reactive barrier technologies for treatment of contaminated groundwater at Rocky Flats

    International Nuclear Information System (INIS)

    Marozas, D.C.; Bujewski, G.E.; Castaneda, N.

    1997-01-01

    The U.S. Department of Energy (DOE) Office of Science and Technology Subsurface Contaminants Focus Area is supporting the investigation of reactive barrier technologies to mitigate the risks associated with mixed organic/radioactive waste at several DOE sites. Groundwater from a small contaminated plume at the Rocky Flats Environmental Technology Site (RFETS) is being used to evaluate passive reactive material treatment. Permeable reactive barriers which intercept contaminants and destroy the VOC component while containing radionuclides are attractive for a number of reasons relating to public and regulatory acceptance. In situ treatment keeps contaminants away from the earth's surface, there is no above-ground treatment equipment that could expose workers and the public and operational costs are expected to be lower than currently used technologies. This paper will present results from preliminary site characterization and in-field small-scale column testing of reactive materials at RFETS. Successful demonstration is expected to lead to full-scale implementation of the technology at several DOE sites, including Rocky Flats

  15. In situ construction of horizontal soil containment barrier at Fernald

    International Nuclear Information System (INIS)

    Ridenour, D.; Pettit, P.J.; Walker, J.

    1995-01-01

    An innovative method of placing soil barriers to contain vertical flow is being prepared for demonstration by the Fernald Environmental Restoration Management Corporation (FERMCO), working in conjunction with the Department of Energy Office of Technology Development (DOE/OTD) and two principle subcontractors. The method employs proven directional drilling techniques, jet grouting technology and unique placement tooling to form horizontal soil barriers in situ. This is done without disturbance to existing land disposed wastes. This paper is a summary report on the current state of that demonstration, including: a discussion of the construction methods, the results of the initial tool tests, an overview of the Fernald site conditions and, the resulting path of tooling development for the second phase of tool testing

  16. Assessment of solid reactive mixtures for the development of biological permeable reactive barriers

    International Nuclear Information System (INIS)

    Pagnanelli, Francesca; Viggi, Carolina Cruz; Mainelli, Sara; Toro, Luigi

    2009-01-01

    Solid reactive mixtures were tested as filling material for the development of biological permeable reactive barriers for the treatment of heavy metals contaminated waters. Mixture selection was performed by taking into account the different mechanisms operating in sulphate and cadmium removal with particular attention to bioprecipitation and sorption onto the organic matrices in the mixtures. Suspensions of eight reactive mixtures were tested for sulphate removal (initial concentration 3 g L -1 ). Each mixture was made up of four main functional components: a mix of organic sources for bacterial growth, a neutralizing agent, a porous medium and zero-valent iron. The best mixture among the tested ones (M8: 6% leaves, 9% compost, 3% zero-valent iron, 30% silica sand, 30% perlite, 22% limestone) presented optimal conditions for SRB growth (pH 7.8 ± 0.1; E h = -410 ± 5 mV) and 83% sulphate removal in 22 days (25% due to bioreduction, 32% due to sorption onto compost and 20% onto leaves). M8 mixture allowed the complete abatement of cadmium with a significant contribution of sorption over bioprecipitation (6% Cd removal due to SRB activity). Sorption properties, characterised by potentiometric titrations and related modelling, were mainly due to carboxylic sites of organic components used in reactive mixtures.

  17. Double barrier system for an in situ conversion process

    Science.gov (United States)

    McKinzie, Billy John [Houston, TX; Vinegar, Harold J [Bellaire, TX; Cowan, Kenneth Michael [Sugar land, TX; Deeg, Wolfgang Friedrich Johann [Houston, TX; Wong, Sau-Wai [Rijswijk, NL

    2009-05-05

    A barrier system for a subsurface treatment area is described. The barrier system includes a first barrier formed around at least a portion of the subsurface treatment area. The first barrier is configured to inhibit fluid from exiting or entering the subsurface treatment area. A second barrier is formed around at least a portion of the first barrier. A separation space exists between the first barrier and the second barrier.

  18. Field Applications of In Situ Remediation Technologies: Permeable Reactive Barriers

    Science.gov (United States)

    2002-01-01

    enter PRB; level of Fax: 43-2243-22843 contamination Email: niederbacher@geol.at varies with groundwater level Marzone Inc./ Tifton , GA 1998 BHC, beta...system should be constructed to allow for gas venting (Bodo Canyon, Marzone). � The length of trench box should be mini- mized to reduce slope failure

  19. ECONOMICS ANALYSIS OF THE IMPLEMENTATION OF PERMEABLE REACTIVE BARRIERS FOR REMEDIATION OF CONTAMINATED GROUND WATER

    Science.gov (United States)

    This report presents an analysis of the cost of using permeable reactive barriers to remediate contaminated ground water. When possible, these costs are compared with the cost of pump-and-treat technology for similar situations. Permeable reactive barriers are no longer perceiv...

  20. [Removal of nitrate from groundwater using permeable reactive barrier].

    Science.gov (United States)

    Li, Xiu-Li; Yang, Jun-Jun; Lu, Xiao-Xia; Zhang, Shu; Hou, Zhen

    2013-03-01

    To provide a cost-effective method for the remediation of nitrate-polluted groundwater, column experiments were performed to study the removal of nitrate by permeable reactive barrier filled with fermented mulch and sand (biowall), and the mechanisms and influence factors were explored. The experimental results showed that the environmental condition in the simulated biowall became highly reduced after three days of operation (oxidation-reduction potential was below - 100 mV), which was favorable for the reduction of nitrate. During the 15 days of operation, the removal rate of nitrate nitrogen (NO3(-) -N) by the simulated biowall was 80%-90% (NO3(-)-N was reduced from 20 mg x L(-1) in the inlet water to 1.6 mg x L(-1) in the outlet water); the concentration of nitrite nitrogen (NO2(-) -N) in the outlet water was below 2.5 mg x L(-1); the concentration of ammonium nitrogen (NH4(+) -N) was low in the first two days but increased to about 12 mg x L(-1) since day three. The major mechanisms involved in the removal of nitrate nitrogen were adsorption and biodegradation. When increasing the water flow velocity in the simulated biowall, the removal rate of NO3(-) -N was reduced and the concentration of NH4(+) -N in the outlet water was significantly reduced. A simulated zeolite wall was set up following the simulated biowall and 98% of the NH4(+) -N could be removed from the water.

  1. Stability of gas atomized reactive powders through multiple step in-situ passivation

    Science.gov (United States)

    Anderson, Iver E.; Steinmetz, Andrew D.; Byrd, David J.

    2017-05-16

    A method for gas atomization of oxygen-reactive reactive metals and alloys wherein the atomized particles are exposed as they solidify and cool in a very short time to multiple gaseous reactive agents for the in-situ formation of a protective reaction film on the atomized particles. The present invention is especially useful for making highly pyrophoric reactive metal or alloy atomized powders, such as atomized magnesium and magnesium alloy powders. The gaseous reactive species (agents) are introduced into the atomization spray chamber at locations downstream of a gas atomizing nozzle as determined by the desired powder or particle temperature for the reactions and the desired thickness of the reaction film.

  2. Transformation of Reactive Iron Minerals in a Permeable Reactive Barrier (Biowall) Used to Treat TCE in Groundwater

    Science.gov (United States)

    Abstract: Iron and sulfur reducing conditions are generally created in permeable reactive barrier (PRB) systems constructed for groundwater treatment, which usually leads to formation of iron sulfide phases. Iron sulfides have been shown to play an important role in degrading ch...

  3. Performance Monitoring of the Permeable Reactive Barrier at Dover AFB

    National Research Council Canada - National Science Library

    1999-01-01

    Based on column tests conducted between February and June 1997, NERL recommended that in terms of effectiveness in achieving cleanup standards and kinetics, a pyrite-iron combination ranked as the best reactive medium (EPA, 1997...

  4. Design, installation, and performance of a multi-layered permeable reactive barrier, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Kaszuba, John P.; Longmire, Patrick A.; Strietelmeier, Elizabeth A.; Taylor, Tammy P.; Den-Baars, Peter S.

    2004-01-01

    A multi-layered permeable reactive barrier (PRB) has been installed in Mortandad Canyon, on the Pajarito Plateau in the north-central part of LANL, to demonstrate in-situ treatment of a suite of contaminants with dissimilar geochemical properties. The PRB will also mitigate possible vulnerabilities from downgradient contaminant movement within alluvial and deeper perched groundwater. Mortandad Canyon was selected as the location for this demonstration project because the flow of alluvial groundwater is constrained by the geology of the canyon, a large network of monitoring wells already were installed along the canyon reach, and the hydrochemistry and contaminant history of the canyon is well-documented. The PRB uses a funnel-and-gate system with a series of four reactive media cells to immobilize or destroy contaminants present in alluvial groundwater, including strontium-90, plutonium-238,239,240, americium-241, perchlorate, and nitrate. The four cells, ordered by sequence of contact with the groundwater, consist of gravel-sized scoria (for colloid removal); phosphate rock containing apatite (for metals and radionuclides); pecan shells and cotton seed admixed with gravel (bio-barrier, to deplete dissolved oxygen and destroy potential RCRA organic compounds, nitrate and perchlorate); and limestone (pH buffering and anion adsorption). Design elements of the PRB are based on laboratory-scale treatability studies and on a field investigation of hydrologic, geochemical, and geotechnical parameters. The PRB was designed with the following criteria: 1-day residence time within the biobarrier, 10-year lifetime, minimization of surface water infiltration and erosion, optimization of hydraulic capture, and minimization of excavated material requiring disposal. Each layer has been equipped with monitoring wells or ports to allow sampling of groundwater and reactive media, and monitor wells are located immediately adjacent to the up- and down-gradient perimeter of the

  5. Assessment of a Hydroxyapatite Permeable Reactive Barrier to Remediate Uranium at the Old Rifle Site Colorado

    International Nuclear Information System (INIS)

    Moore, Robert C.; Szecsody, James; Rigali, Mark J.; Vermuel, Vince; Leullen, Jon

    2016-01-01

    We have performed an initial evaluation and testing program to assess the effectiveness of a hydroxyapatite (Ca10(PO4)6(OH)2) permeable reactive barrier and source area treatment to decrease uranium mobility at the Department of Energy (DOE) former Old Rifle uranium mill processing site in Rifle, western Colorado. Uranium ore was processed at the site from the 1940s to the 1970s. The mill facilities at the site as well as the uranium mill tailings previously stored there have all been removed. Groundwater in the alluvial aquifer beneath the site still contains elevated concentrations of uranium, and is currently used for field tests to study uranium behavior in groundwater and investigate potential uranium remediation technologies. The technology investigated in this work is based on in situ formation of apatite in sediment to create a subsurface apatite PRB and also for source area treatment. The process is based on injecting a solution containing calcium citrate and sodium into the subsurface for constructing the PRB within the uranium plume. As the indigenous sediment micro-organisms biodegrade the injected citrate, the calcium is released and reacts with the phosphate to form hydroxyapatite (precipitate). This paper reports on proof-of-principle column tests with Old Rifle sediment and synthetic groundwater.

  6. Assessment of a Hydroxyapatite Permeable Reactive Barrier to Remediate Uranium at the Old Rifle Site Colorado.

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Robert C.; Szecsody, James (PNNL); Rigali, Mark J.; Vermuel, Vince (PNNL); Leullen, Jon (AECOM)

    2016-02-01

    We have performed an initial evaluation and testing program to assess the effectiveness of a hydroxyapatite (Ca10(PO4)6(OH)2) permeable reactive barrier and source area treatment to decrease uranium mobility at the Department of Energy (DOE) former Old Rifle uranium mill processing site in Rifle, western Colorado. Uranium ore was processed at the site from the 1940s to the 1970s. The mill facilities at the site as well as the uranium mill tailings previously stored there have all been removed. Groundwater in the alluvial aquifer beneath the site still contains elevated concentrations of uranium, and is currently used for field tests to study uranium behavior in groundwater and investigate potential uranium remediation technologies. The technology investigated in this work is based on in situ formation of apatite in sediment to create a subsurface apatite PRB and also for source area treatment. The process is based on injecting a solution containing calcium citrate and sodium into the subsurface for constructing the PRB within the uranium plume. As the indigenous sediment micro-organisms biodegrade the injected citrate, the calcium is released and reacts with the phosphate to form hydroxyapatite (precipitate). This paper reports on proof-of-principle column tests with Old Rifle sediment and synthetic groundwater.

  7. Redox-active media for permeable reactive barriers

    International Nuclear Information System (INIS)

    Sivavec, T.M.; Mackenzie, P.D.; Horney, D.P.; Baghel, S.S.

    1997-01-01

    In this paper, three classes of redox-active media are described and evaluated in terms of their long-term effectiveness in treating TCE-contaminated groundwater in permeable reactive zones. Zero-valent iron, in the form of recycled cast iron filings, the first class, has received considerable attention as a reactive media and has been used in about a dozen pilot- and full-scale subsurface wall installations. Criteria used in selecting commercial sources of granular iron, will be discussed. Two other classes of redox-active media that have not yet seen wide use in pilot- or full-scale installations will also be described: Fe(II) minerals and bimetallic systems. Fe(II) minerals, including magnetite (Fe 3 O 4 ), and ferrous sulfide (troilite, FeS), are redox-active and afford TCE reduction rates and product distributions that suggest that they react via a reductive mechanism similar to that which operates in the FeO system. Fe(II) species within the passive oxide layer coating the iron metal may act as electron transfer mediators, with FeO serving as the bulk reductant. Bimetallic systems, the third class of redox-active media, are commonly prepared by plating a second metal onto zero-valent iron (e.g., Ni/Fe and Pd/Fe) and have been shown to accelerate solvent degradation rates relative to untreated iron metal. The long-term effectiveness of this approach, however, has not yet been determined in groundwater treatability tests. The results of a Ni-plated iron column study using site groundwater indicate that a change in reduction mechanism (to catalytic dehydrohalogenation/hydrogenation) accounts for the observed rate enhancement. A significant loss in media reactivity was observed over time, attributable to Ni catalyst deactivation or poisoning. Zero-valent iron systems have not shown similar losses in reactivity in long-term laboratory, pilot or field investigations

  8. Development of Permeable Reactive Barriers (PRB) Using Edible Oils

    Science.gov (United States)

    2008-06-01

    naturally occurring processes of advection and dispersion to bring the contaminants to the treatment barrier. A large scale approach would be to form a...process has been developed for distributing soybean oil as an oil-in-water emulsion consisting of small oil droplets dispersed in a continuous...Thiele Kaolin Company, Sandersville, Georgia) was added to certain materials to evaluate the effect of increasing clay content. Grain size

  9. In situ fluorescence spectroscopy correlates ionomer degradation to reactive oxygen species generation in an operating fuel cell.

    Science.gov (United States)

    Prabhakaran, Venkateshkumar; Arges, Christopher G; Ramani, Vijay

    2013-11-21

    The rate of generation of reactive oxygen species (ROS) within the polymer electrolyte membrane (PEM) of an operating proton exchange member fuel cell (PEMFC) was monitored using in situ fluorescence spectroscopy. A modified barrier layer was introduced between the PEM and the electrocatalyst layer to eliminate metal-dye interactions and fluorescence resonance energy transfer (FRET) effects during measurements. Standard fuel cell operating parameters (temperature, relative humidity, and electrode potential) were systematically varied to evaluate their influence on the rate of ROS generation during PEMFC operation. Independently, the macroscopic rate of PEM degradation was measured by monitoring the fluoride ion emission rate (FER) in the effluent stream at each operating condition. The ROS generation reaction rate constant (estimated from the in situ fluorescence experiments) correlated perfectly with the measured FER across all conditions, demonstrating unequivocally for the first time that a direct correlation exists between in situ ROS generation and PEM macroscopic degradation. The activation energy for ROS generation within the PEM was estimated to be 12.5 kJ mol(-1).

  10. Long-term Performance of Permeable Reactive Barriers Using Zero-valent Iron: An Evaluation at Two Sites

    National Research Council Canada - National Science Library

    Wilkin, Richard T; Puls, Robert W; Sewell, Guy W

    2002-01-01

    Research described in this research brief explores the geochemical and microbiological processes occurring within zero-valent iron treatment zones in permeable reactive barriers that may contribute...

  11. Preparation of Ti-aluminide reinforced in situ aluminium matrix composites by reactive hot pressing

    International Nuclear Information System (INIS)

    Roy, D.; Ghosh, S.; Basumallick, A.; Basu, B.

    2007-01-01

    Aluminium based metal matrix composites reinforced with in situ Ti-aluminide and alumina particles were prepared by reactive hot pressing a powder mix of aluminium and nanosized TiO 2 powders. The reinforcements were formed in situ by exothermal reaction between the TiO 2 nano crystalline powder and aluminium. The thermal characteristics of the in situ reaction were studied with the aid of Differential scanning calorimetry (DSC). X-ray diffraction (XRD), Energy dispersive spectroscopy (EDS) and Scanning electron microscopy (SEM) techniques were employed to study the microstructural architecture of the composites as a function of hot pressing temperature and volume percent reinforcement. Microhardness measurements on the as prepared in situ aluminium matrix composites exhibit significant increase in hardness with increase in hot pressing temperature and volume fraction of reinforcement

  12. Oxidation of trichloroethylene, toluene, and ethanol vapors by a partially saturated permeable reactive barrier

    Science.gov (United States)

    Mahmoodlu, Mojtaba G.; Hassanizadeh, S. Majid; Hartog, Niels; Raoof, Amir

    2014-08-01

    The mitigation of volatile organic compound (VOC) vapors in the unsaturated zone largely relies on the active removal of vapor by ventilation. In this study we considered an alternative method involving the use of solid potassium permanganate to create a horizontal permeable reactive barrier for oxidizing VOC vapors. Column experiments were carried out to investigate the oxidation of trichloroethylene (TCE), toluene, and ethanol vapors using a partially saturated mixture of potassium permanganate and sand grains. Results showed a significant removal of VOC vapors due to the oxidation. We found that water saturation has a major effect on the removal capacity of the permeable reactive layer. We observed a high removal efficiency and reactivity of potassium permanganate for all target compounds at the highest water saturation (Sw = 0.6). A change in pH within the reactive layer reduced oxidation rate of VOCs. The use of carbonate minerals increased the reactivity of potassium permanganate during the oxidation of TCE vapor by buffering the pH. Reactive transport of VOC vapors diffusing through the permeable reactive layer was modeled, including the pH effect on the oxidation rates. The model accurately described the observed breakthrough curve of TCE and toluene vapors in the headspace of the column. However, miscibility of ethanol in water in combination with produced water during oxidation made the modeling results less accurate for ethanol. A linear relationship was found between total oxidized mass of VOC vapors per unit volume of permeable reactive layer and initial water saturation. This behavior indicates that pH changes control the overall reactivity and longevity of the permeable reactive layer during oxidation of VOCs. The results suggest that field application of a horizontal permeable reactive barrier can be a viable technology against upward migration of VOC vapors through the unsaturated zone.

  13. In situ surface enhanced resonance Raman scattering analysis of a reactive dye covalently bound to cotton.

    Science.gov (United States)

    White, P C; Munro, C H; Smith, W E

    1996-06-01

    An in situ surface enhanced resonance Raman scattering (SERRS) procedure is described for the analysis of a reactive dye covalently bound to a single strand of a cotton fibre. This procedure can be completed in 5 h, whereas an alternative enzyme digestion method takes approximately 21 h. These two fibre preparation methods give similar spectra from picogram quantities of dye present on a 2-5 mm length of fibre. The in situ nature of the analysis and the small sample size make this method particularly suitable for forensic applications.

  14. Monitoring trichloroethene remediation at an iron permeable reactive barrier using stable carbon isotopic analysis

    Science.gov (United States)

    VanStone, Nancy; Przepiora, Andrzej; Vogan, John; Lacrampe-Couloume, Georges; Powers, Brian; Perez, Ernesto; Mabury, Scott; Sherwood Lollar, Barbara

    2005-08-01

    Stable carbon isotopic analysis, in combination with compositional analysis, was used to evaluate the performance of an iron permeable reactive barrier (PRB) for the remediation of ground water contaminated with trichloroethene (TCE) at Spill Site 7 (SS7), F.E. Warren Air Force Base, Wyoming. Compositional data indicated that although the PRB appeared to be reducing TCE to concentrations below treatment goals within and immediately downgradient of the PRB, concentrations remained higher than expected at wells further downgradient (i.e. > 9 m) of the PRB. At two wells downgradient of the PRB, TCE concentrations were comparable to upgradient values, and δ13C values of TCE at these wells were not significantly different than upgradient values. Since the process of sorption/desorption does not significantly fractionate carbon isotope values, this suggests that the TCE observed at these wells is desorbing from local aquifer materials and was present before the PRB was installed. In contrast, three other downgradient wells show significantly more enriched δ13C values compared to the upgradient mean. In addition, δ13C values for the degradation products of TCE, cis-dichloroethene and vinyl chloride, show fractionation patterns expected for the products of the reductive dechlorination of TCE. Since concentrations of both TCE and degradation products drop to below detection limit in wells within the PRB and directly below it, these downgradient chlorinated hydrocarbon concentrations are attributed to desorption from local aquifer material. The carbon isotope values indicate that this dissolved contaminant is subject to local degradation, likely due to in situ microbial activity.

  15. Monitoring trichloroethene remediation at an iron permeable reactive barrier using stable carbon isotopic analysis.

    Science.gov (United States)

    VanStone, Nancy; Przepiora, Andrzej; Vogan, John; Lacrampe-Couloume, Georges; Powers, Brian; Perez, Ernesto; Mabury, Scott; Sherwood Lollar, Barbara

    2005-08-01

    Stable carbon isotopic analysis, in combination with compositional analysis, was used to evaluate the performance of an iron permeable reactive barrier (PRB) for the remediation of ground water contaminated with trichloroethene (TCE) at Spill Site 7 (SS7), F.E. Warren Air Force Base, Wyoming. Compositional data indicated that although the PRB appeared to be reducing TCE to concentrations below treatment goals within and immediately downgradient of the PRB, concentrations remained higher than expected at wells further downgradient (i.e. >9 m) of the PRB. At two wells downgradient of the PRB, TCE concentrations were comparable to upgradient values, and delta13C values of TCE at these wells were not significantly different than upgradient values. Since the process of sorption/desorption does not significantly fractionate carbon isotope values, this suggests that the TCE observed at these wells is desorbing from local aquifer materials and was present before the PRB was installed. In contrast, three other downgradient wells show significantly more enriched delta13C values compared to the upgradient mean. In addition, delta13C values for the degradation products of TCE, cis-dichloroethene and vinyl chloride, show fractionation patterns expected for the products of the reductive dechlorination of TCE. Since concentrations of both TCE and degradation products drop to below detection limit in wells within the PRB and directly below it, these downgradient chlorinated hydrocarbon concentrations are attributed to desorption from local aquifer material. The carbon isotope values indicate that this dissolved contaminant is subject to local degradation, likely due to in situ microbial activity.

  16. A Tracer Test to Characterize Treatment of TCE in a Permeable Reactive Barrier

    Science.gov (United States)

    A tracer test was conducted to characterize the flow of ground water surrounding a permeable reactive barrier constructed with plant mulch (a biowall) at the OU-1 site on Altus Air Force Base, Oklahoma. This biowall is intended to intercept and treat ground water contaminated by ...

  17. Reviews of the In-situ Demonstration Test of the Engineered Barrier System in Many Countries

    International Nuclear Information System (INIS)

    Lee, Minsoo; Choi, Heui Joo

    2013-01-01

    Many nations considering the deep geologic disposal of HLW are now planning or executing in-situ demonstration experiments on their regional EBS (Engineering barrier system) at their deep underground research facilities. The main purpose of the in-situ EBS test is the experimental confirmation of its performance, and the prediction of its long-term evolution through the modeling of EBS based on the experimental data. Additionally, the engineering feasibility for the construction of an engineering barrier system can also be checked through full scale construction of an in-situ test. KAERI is currently preparing an in-situ test at a large 1/3 scale, called IN-DEBS (In-situ Demonstration of EBS) at KURT (KAERI Underground Research Tunnel) for the generic EBS suggested in A-KRS (Advanced KAERI Reference System), which was developed to treat the HLW from pyroprocessing. As the first step for the design of IN-DEBS, the foreign in-situ demonstrations of EBS were reviewed in this paper. The demonstration projects, which were completed or are still being executed in some countries such as Sweden, France, Finland, Canada, Belgium, Switzerland, Spain, and Japan, were surveyed and summarized. In particular, hardware constitutions such as the heating element or compact bentonite, and the experimental procedures, have focused more on reviews than on experimental results in this survey, since their hardware information is very important for the design of the IN-DEBS

  18. Reviews of the In-situ Demonstration Test of the Engineered Barrier System in Many Countries

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Minsoo; Choi, Heui Joo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    Many nations considering the deep geologic disposal of HLW are now planning or executing in-situ demonstration experiments on their regional EBS (Engineering barrier system) at their deep underground research facilities. The main purpose of the in-situ EBS test is the experimental confirmation of its performance, and the prediction of its long-term evolution through the modeling of EBS based on the experimental data. Additionally, the engineering feasibility for the construction of an engineering barrier system can also be checked through full scale construction of an in-situ test. KAERI is currently preparing an in-situ test at a large 1/3 scale, called IN-DEBS (In-situ Demonstration of EBS) at KURT (KAERI Underground Research Tunnel) for the generic EBS suggested in A-KRS (Advanced KAERI Reference System), which was developed to treat the HLW from pyroprocessing. As the first step for the design of IN-DEBS, the foreign in-situ demonstrations of EBS were reviewed in this paper. The demonstration projects, which were completed or are still being executed in some countries such as Sweden, France, Finland, Canada, Belgium, Switzerland, Spain, and Japan, were surveyed and summarized. In particular, hardware constitutions such as the heating element or compact bentonite, and the experimental procedures, have focused more on reviews than on experimental results in this survey, since their hardware information is very important for the design of the IN-DEBS.

  19. Demonstration of in situ-constructed horizontal soil containment barrier at Fernald

    International Nuclear Information System (INIS)

    Pettit, P.J.; Ridenour, D.; Walker, J.; Saugier, K.

    1994-01-01

    A new design of jet grouting tool that can be guided by horizontal well casings and that operates in the horizontal plane has been used for the in situ placement of grout and construction of a prototype horizontal barrier that is free of windows. Jet grouting techniques have been advanced to permit construction of horizontal barriers underneath contaminated soil without having to excavate or disturb the waste. The paper describes progress on the Fernald Environmental Restoration Management Corporation (FERMCO) In Situ Land Containment Project which is sponsored by the US Department of Energy's (DOE) Office of Technology Development (OTD) for DOE's Fernald Environmental Management Project (FEMP). The Fernald project is to demonstrate a novel, enabling technology for the controlled underground placement of horizontal panels of grout, and the joining of adjacent panels to construct practical, extensive barriers. Construction strategy, equipment mechanics and operating details of this new method are described

  20. Environmental life cycle assessment of permeable reactive barriers: effects of construction methods, reactive materials and groundwater constituents.

    Science.gov (United States)

    Mak, Mark S H; Lo, Irene M C

    2011-12-01

    The effects of the construction methods, materials of reactive media and groundwater constituents on the environmental impacts of a permeable reactive barrier (PRB) were evaluated using life cycle assessment (LCA). The PRB is assumed to be installed at a simulated site contaminated by either Cr(VI) alone or Cr(VI) and As(V). Results show that the trench-based construction method can reduce the environmental impacts of the remediation remarkably compared to the caisson-based method due to less construction material consumption by the funnel. Compared to using the zerovalent iron (Fe(0)) and quartz sand mixture, the use of the Fe(0) and iron oxide-coated sand (IOCS) mixture can reduce the environmental impacts. In the presence of natural organic matter (NOM) in groundwater, the environmental impacts generated by the reactive media were significantly increased because of the higher usage of Fe(0). The environmental impacts are lower by using the Fe(0) and IOCS mixture in the groundwater with NOM, compared with using the Fe(0) and quartz sand mixture. Since IOCS can enhance the removal efficiency of Cr(VI) and As(V), the usage of the Fe(0) can be reduced, which in turn reduces the impacts induced by the reactive media.

  1. Utilization of coal-biomass fly ash in reactive barriers for treating acid mine drainage

    International Nuclear Information System (INIS)

    Penney, K.; Mohammedelhassan, E.; Catalan, L.J.

    2009-01-01

    Coal- and biomass-derived fly ash (CBFA) was used as a reactive barrier system for treating acid mine drainage. Two reactive barriers were investigated, notably a flow-through reactive barrier with minimum disruption to the existing flow regime, and a low-permeability barrier for the construction of containment dams. A synthetic acid mine drainage system was prepared in a laboratory. Kinetic column tests were conducted to analyze the effects of acid mine drainage flow on the hydraulic conductivity and leachate composition for mixtures of mine tailings and CBFA. The tests demonstrated that a mixture of the CBFA of between 10 to 50 per cent with mine tailings increased the pH and decreased the dissolved concentrations of heavy metals in acid mine drainage. Mineral precipitation caused large reductions in hydraulic conductivity in relation to the cumulative amounts of acid mine drainage flowing through the columns. It was concluded that the number of progressive pore volumes of acid mine drainage required for achieving reductions in hydraulic conductivity is inversely related to the fly ash content of the column packs. 13 refs., 4 tabs., 7 figs.

  2. Effect of hydrogen on the diode properties of reactively sputtered amorphous silicon Schottky barrier structures

    International Nuclear Information System (INIS)

    Morel, D.L.; Moustakas, T.D.

    1981-01-01

    The diode properties of reactively sputtered hydrogenated amorphous silicon Schottky barrier structures (a-SiH/sub x/ /Pt) have been investigated. We find a systematic relation between the changes in the open circuit voltage, the barrier height, and the diode quality factor. These results are accounted for by assuming that hydrogen incorporation into the amorphous silicon network removes states from the top of the valence band and sharpens the valence-band tail. Interfacial oxide layers play a significant role in the low hydrogen content, and low band-gap regime

  3. Permeable reactive barriers for the remediation of groundwater in a mining area: results for a pilot-scale project

    Science.gov (United States)

    Martinez-Sanchez, Maria Jose; Perez-Sirvent, Carmen; Garcia-Lorenzo, Maria Luz; Martinez-Lopez, Salvadora; Perez-Espinosa, Victor; Gonzalez-Ciudad, Eva; Belen Martinez-Martinez, Lucia; Hernandez, Carmen; Molina-Ruiz, Jose

    2017-04-01

    The Sierra Minera of Cartagena-La Union is located in the Region of Murcia, Southeast of Spain. This zone presents high levels of heavy metals due to natural, geogenic reasons. In addition, the prolonged mining activity, and subsequent abandonment of farms, has had consequences on the environment, including severe affectation of the groundwater in the area. To remediate this situation, the Permeable Reactive Barrier (PRB) technology was assayed, which required in addition to the hydro-geological study of the zone, a careful optimization study for the design and construction of PRBs. For such a purpose a pilot-scale project was developed, and this communication reports some of the most relevant findings obtained after a four-years monitorization period. The selected reactive material for the PRBs was limestone filler. The filler is a waste material produced in many factories in the zone. These residues have good adsorption properties, high alkalinity, low cost and high availability, which make them suitable for use in remediation. The PRB was constituted by a 50% limestone filler and 50% sand, a proportion optimized by means of independent batch experiments. A layer of gravel was placed at the top, and on it a layer of natural soil. The barrier was designed in the form of a continuous trench, because the level of the contaminated groundwater was not very deep. In this way, the barrier could be prepared with standard excavation equipment. Parallel to the barrier, 6 wells where arranged downstream for sample collection. The pH and conductivity of the samples was measured directly in situ, and the content of Zn, Cd, Cu, Fe, and Pb were analyzed in the laboratory. All the samples collected after the PRB was constructed had basic pH values between 7.5 and 8. The conductivity was between 5 and 11 mS / cm except for the well 4, which had a value of 3.70 mS / cm. The concentration values of trace elements were below the detection limit (atomic absorption measurement) in

  4. Remediation of arsenic-contaminated groundwater using media-injected permeable reactive barriers with a modified montmorillonite: sand tank studies.

    Science.gov (United States)

    Luo, Ximing; Liu, Haifei; Huang, Guoxin; Li, Ye; Zhao, Yan; Li, Xu

    2016-01-01

    A modified montmorillonite (MMT) was prepared using an acid activation-sodium activation-iron oxide coating method to improve the adsorption capacities of natural MMTs. For MMT, its interlamellar distance increased from 12.29 to 13.36 Å, and goethite (α-FeOOH) was intercalated into its clay layers. Two novel media-injected permeable reactive barrier (MI-PRB) configurations were proposed for removing arsenic from groundwater. Sand tank experiments were conducted to investigate the performance of the two MI-PRBs: Tank A was filled with quartz sand. Tank B was packed with quartz sand and zero-valent iron (ZVI) in series, and the MMT slurry was respectively injected into them to form reactive zones. The results showed that for tank A, total arsenic (TA) removal of 98.57% was attained within the first 60 mm and subsequently descended slowly to 88.84% at the outlet. For tank B, a similar spatial variation trend was observed in the quartz sand layer, and subsequently, TA removal increased to ≥99.80% in the ZVI layer. TA removal by MMT mainly depended on both surface adsorption and electrostatic adhesion. TA removal by ZVI mainly relied on coagulation/precipitation and adsorption during the iron corrosion. The two MI-PRBs are feasible alternatives for in situ remediation of groundwater with elevated As levels.

  5. Removal of chromate in a permeable reactive barrier using zero-valent iron

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Locht, T

    2002-01-01

    Chromate is a commonly found groundwater contaminant. Permeable reactive barriers containing zero-valent iron as iron filings are able to remove the chromate by a combined reduction/precipitation reaction. However, due to the passivation of the reduction capability of the iron surfaces by the pre......). Mixing in sand had no significant enhancing effect on the removal capacity, in contrast to a pH adjustment of the groundwater to pH 4, which significantly increased the removal capacity....

  6. Design of in-situ reactive wall systems - a combined hydraulical-geochemical-economical simulation study

    International Nuclear Information System (INIS)

    Teutsch, G.; Tolksdorff, J.; Schad, H.

    1997-01-01

    The paper presents a coupled hydraulical-geochemical-economical simulation model for the design of in-situ reactive wall systems. More specific, the model is used for cost-optimization and sensitivity analysis of a funnel-and-gate system with an in-situ sorption reactor. The groundwater flow and advective transport are simulated under steady-state conditions using a finite-difference numerical model. This model is coupled to an analytical solution describing the sorption kinetics of hydrophobic organic compounds within the reactor (gate). The third part of the model system is an economical model which calculates (a) the investment costs for the funnel-and-gate construction and (b) the operation cost based on the number of reactor refills, which depends on the breakthrough time for a given contaminant and the anticipated total operation time. For practical applications a simplified approximation of the cost-function is derived and tested

  7. In-situ reactive of x-ray optics by glow discharge

    International Nuclear Information System (INIS)

    Johnson, E.D.; Garrett, R.F.

    1987-01-01

    We have developed a method of in-situ reactive glow discharge cleaning of x-ray optical surfaces which is capable of complete removal of carbon contamination. Our work is the first to successfully clean an entire optical system in-situ and characterize its performance at short wavelengths (as low as 10 /angstrom/). The apparatus required is quite simple and can easily be fitted to most existing UHV (ultra high vacuum) mirror boxes of monochromators. The advantages of this technique over previously available methods include dramatic improvements in instrument performance and reductions in down time since the whole process typically takes a few days. This paper will briefly describe our results and detail the experimental considerations for application of the technique on different monochromator geometries. Possible improvements and extensions of the technique are also discussed

  8. Evaluation of a permeable reactive barrier technology for use at Rocky Flats Environmental Technology Site (RFETS)

    International Nuclear Information System (INIS)

    Dwyer, Brian P.

    2000-01-01

    Three reactive materials were evaluated at laboratory scale to identify the optimum treatment reagent for use in a Permeable Reactive Barrier Treatment System at Rocky Flats Environmental Technology Site (RFETS). The contaminants of concern (COCS) are uranium, TCE, PCE, carbon tetrachloride, americium, and vinyl chloride. The three reactive media evaluated included high carbon steel iron filings, an iron-silica alloy in the form of a foam aggregate, and a peculiar humic acid based sorbent (Humasorb from Arctech) mixed with sand. Each material was tested in the laboratory at column scale using simulated site water. All three materials showed promise for the 903 Mound Site however, the iron filings were determined to be the least expensive media. In order to validate the laboratory results, the iron filings were further tested at a pilot scale (field columns) using actual site water. Pilot test results were similar to laboratory results; consequently, the iron filings were chosen for the fill-scale demonstration of the reactive barrier technology. Additional design parameters including saturated hydraulic conductivity, treatment residence time, and head loss across the media were also determined and provided to the design team in support of the final design. The final design was completed by the Corps of Engineers in 1997 and the system was constructed in the summer of 1998. The treatment system began fill operation in December, 1998 and despite a few problems has been operational since. Results to date are consistent with the lab and pilot scale findings, i.e., complete removal of the contaminants of concern (COCs) prior to discharge to meet RFETS cleanup requirements. Furthermore, it is fair to say at this point in time that laboratory developed design parameters for the reactive barrier technology are sufficient for fuel scale design; however,the treatment system longevity and the long-term fate of the contaminants are questions that remain unanswered. This

  9. Behavior of nine selected emerging trace organic contaminants in an artificial recharge system supplemented with a reactive barrier.

    Science.gov (United States)

    Valhondo, Cristina; Carrera, Jesús; Ayora, Carlos; Barbieri, Manuela; Nödler, Karsten; Licha, Tobias; Huerta, Maria

    2014-10-01

    Artificial recharge improves several water quality parameters, but has only minor effects on recalcitrant pollutants. To improve the removal of these pollutants, we added a reactive barrier at the bottom of an infiltration basin. This barrier contained aquifer sand, vegetable compost, and clay and was covered with iron oxide dust. The goal of the compost was to sorb neutral compounds and release dissolved organic carbon. The release of dissolved organic carbon should generate a broad range of redox conditions to promote the transformation of emerging trace organic contaminants (EOCs). Iron oxides and clay increase the range of sorption site types. In the present study, we examined the effectiveness of this barrier by analyzing the fate of nine EOCs. Water quality was monitored before and after constructing the reactive barrier. Installation of the reactive barrier led to nitrate-, iron-, and manganese-reducing conditions in the unsaturated zone below the basin and within the first few meters of the saturated zone. Thus, the behavior of most EOCs changed after installing the reactive barrier. The reactive barrier enhanced the removal of some EOCs, either markedly (sulfamethoxazole, caffeine, benzoylecgonine) or slightly (trimethoprim) and decreased the removal rates of compounds that are easily degradable under aerobic conditions (ibuprofen, paracetamol). The barrier had no remarkable effect on 1H-benzotriazole and tolyltriazole.

  10. Effect of In-Situ Curing on Compressive Strength of Reactive Powder Concrete

    Directory of Open Access Journals (Sweden)

    Bali Ika

    2016-01-01

    Full Text Available A development of Reactive Powder Concrete (RPC currently is the use of quartz powder as a stabilizing agent with the content to cement ratio of 30% and steam curing method in an autoclave temperature of 250ºC which produced a high compressive strength of 180 MPa. That RPC can be generated due to one reason for using the technique of steam curing in an autoclave in the laboratory. This study proposes in-situ curing method in order the curing can be applied in the field and with a reasonable compressive strength results of RPC. As the benchmarks in this study are the curing methods in laboratory that are steam curing of 90°C for 8 hours (C1, and water curing for 28 days (C2. For the in-situ curing methods that are covering with tarpaulins and flowed steam of 3 hours per day for 7 days (C3, covering with wet sacks for 28 days (C4, and covering with wet sacks for 28 days for specimen with unwashed sand as fine aggregate (C5. The comparison of compressive strength of the specimens in this study showed compressive strength of RPC with in-situ steam curing (101.64 MPa close to the compressive strength of RPC with steam curing in the laboratory with 8.2% of different. While in-situ wet curing compared with the water curing in laboratory has the different of 3.4%. These results indicated that the proposed in-situ curing methods are reasonable good in term of the compressive strength that can be achieved.

  11. Generation of reactive species in atmospheric pressure dielectric barrier discharge with liquid water

    Science.gov (United States)

    Zelong, ZHANG; Jie, SHEN; Cheng, CHENG; Zimu, XU; Weidong, XIA

    2018-04-01

    Atmospheric pressure helium/water dielectric barrier discharge (DBD) plasma is used to investigate the generation of reactive species in a gas-liquid interface and in a liquid. The emission intensity of the reactive species is measured by optical emission spectroscopy (OES) with different discharge powers at the gas-liquid interface. Spectrophotometry is used to analyze the reactive species induced by the plasma in the liquid. The concentration of OH radicals reaches 2.2 μm after 3 min of discharge treatment. In addition, the concentration of primary long-lived reactive species such as H2O2, {{{{NO}}}3}- and O3 are measured based on plasma treatment time. After 5 min of discharge treatment, the concentration of H2O2, {{{{NO}}}3}-, and O3 increased from 0 mg · L-1 to 96 mg · L-1, 19.5 mg · L-1, and 3.5 mg · L-1, respectively. The water treated by plasma still contained a considerable concentration of reactive species after 6 h of storage. The results will contribute to optimizing the DBD plasma system for biological decontamination.

  12. Long-Term Groundwater Monitoring Optimization, Clare Water Supply Superfund Site, Permeable Reactive Barrier and Soil Remedy Areas, Clare, Michigan

    Science.gov (United States)

    This report contains a review of the long-term groundwater monitoring network for the Permeable Reactive Barrier (PRB) and Soil Remedy Areas at the Clare Water Supply Superfund Site in Clare, Michigan.

  13. Decolorization of reactive textile dyes using water falling film dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Dojcinovic, Biljana P. [Institute of Chemistry, Technology and Metallurgy, Center of Chemistry, Studentski trg 12-16, 11000 Belgrade (Serbia); Roglic, Goran M. [Faculty of Chemistry, University of Belgrade, P.O. Box 158, 11000 Belgrade (Serbia); Obradovic, Bratislav M., E-mail: obrat@ff.bg.ac.rs [Faculty of Physics, University of Belgrade, P.O. Box 368, 11000 Belgrade (Serbia); Kuraica, Milorad M. [Faculty of Physics, University of Belgrade, P.O. Box 368, 11000 Belgrade (Serbia); Kostic, Mirjana M. [Faculty of Technology and Metallurgy, Department of Textile Engineering, Karnegijeva 4, 11000 Belgrade (Serbia); Nesic, Jelena; Manojlovic, Dragan D. [Faculty of Chemistry, University of Belgrade, P.O. Box 158, 11000 Belgrade (Serbia)

    2011-08-30

    Highlights: {yields} Decolorization of four reactive textile dyes using non-thermal plasma reactor. {yields} Influence of applied energy on decolorization. {yields} Effects of initial pH and addition of homogeneous catalysts. {yields} Toxicity evaluation using the brine shrimp as a test organism. - Abstract: Decolorization of reactive textile dyes Reactive Black 5, Reactive Blue 52, Reactive Yellow 125 and Reactive Green 15 was studied using advanced oxidation processes (AOPs) in a non-thermal plasma reactor, based on coaxial water falling film dielectric barrier discharge (DBD). Used initial dye concentrations in the solution were 40.0 and 80.0 mg/L. The effects of different initial pH of dye solutions, and addition of homogeneous catalysts (H{sub 2}O{sub 2}, Fe{sup 2+} and Cu{sup 2+}) on the decolorization during subsequent recirculation of dye solution through the DBD reactor, i.e. applied energy density (45-315 kJ/L) were studied. Influence of residence time was investigated over a period of 24 h. Change of pH values and effect of pH adjustments of dye solution after each recirculation on the decolorization was also tested. It was found that the initial pH of dye solutions and pH adjustments of dye solution after each recirculation did not influence the decolorization. The most effective decolorization of 97% was obtained with addition of 10 mM H{sub 2}O{sub 2} in a system of 80.0 mg/L Reactive Black 5 with applied energy density of 45 kJ/L, after residence time of 24 h from plasma treatment. Toxicity was evaluated using the brine shrimp Artemia salina as a test organism.

  14. Decolorization of reactive textile dyes using water falling film dielectric barrier discharge

    International Nuclear Information System (INIS)

    Dojcinovic, Biljana P.; Roglic, Goran M.; Obradovic, Bratislav M.; Kuraica, Milorad M.; Kostic, Mirjana M.; Nesic, Jelena; Manojlovic, Dragan D.

    2011-01-01

    Highlights: → Decolorization of four reactive textile dyes using non-thermal plasma reactor. → Influence of applied energy on decolorization. → Effects of initial pH and addition of homogeneous catalysts. → Toxicity evaluation using the brine shrimp as a test organism. - Abstract: Decolorization of reactive textile dyes Reactive Black 5, Reactive Blue 52, Reactive Yellow 125 and Reactive Green 15 was studied using advanced oxidation processes (AOPs) in a non-thermal plasma reactor, based on coaxial water falling film dielectric barrier discharge (DBD). Used initial dye concentrations in the solution were 40.0 and 80.0 mg/L. The effects of different initial pH of dye solutions, and addition of homogeneous catalysts (H 2 O 2 , Fe 2+ and Cu 2+ ) on the decolorization during subsequent recirculation of dye solution through the DBD reactor, i.e. applied energy density (45-315 kJ/L) were studied. Influence of residence time was investigated over a period of 24 h. Change of pH values and effect of pH adjustments of dye solution after each recirculation on the decolorization was also tested. It was found that the initial pH of dye solutions and pH adjustments of dye solution after each recirculation did not influence the decolorization. The most effective decolorization of 97% was obtained with addition of 10 mM H 2 O 2 in a system of 80.0 mg/L Reactive Black 5 with applied energy density of 45 kJ/L, after residence time of 24 h from plasma treatment. Toxicity was evaluated using the brine shrimp Artemia salina as a test organism.

  15. In-situ high-pressure measurements and detailed numerical predictions of the catalytic reactivity of methane over platinum

    Energy Technology Data Exchange (ETDEWEB)

    Reinke, M.; Mantzaras, I.; Schaeren, R.; Bombach, R.; Inauen, A.; Schenker, S.

    2003-03-01

    The catalytic reactivity of methane over platinum at pressures of up to 14 bar was evaluated with in-situ Raman measurements and detailed numerical predictions from two different heterogeneous chemical reaction schemes. The best agreement to the measurements was achieved with Deutschmann's reaction scheme that yielded the correct trend for the pressure dependence of the catalytic reactivity, although in absolute terms the reactivity was overpredicted. The catalytic reactivity was consistently underpredicted at all pressures with the reaction scheme of Vlachos. (author)

  16. In-situ reactive glow discharge cleaning of NSLS distributed ion pumps

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, E.D.; Chou, T.S.

    1988-01-01

    Based on our experience with the in-situ cleaning of optical systems by reactive r.f. glow discharges and the conditioning and preparation of distributed ion pump (DIP) elements, we have sought to develop strategies for recovering from severe vacuum accidents by restoring DIP elements of storage rings such as those at the NSLS in-situ. In this paper we will describe a series of experiments conducted in a test apparatus to condition a so called ''egg-crate'' DIP in-situ, (this older type element being common in older storage rings). A new untreated element which was unable to pump below 5x10 /sup /minus/8/ Torr in its initial condition was treated in oxygen and subsequent argon r.f. discharges utilizing the pump element as the discharge electrode producing a nitrogen pumping speed of 168 l/s at 2x10 /sup /minus/8/ Torr. A light bake at 75/degree/C increased this to nearly 500 l/s at 5x10 /sup /minus/8/ Torr. After exposure to atmosphere the speed was reduced to nil at these pressures but subsequently recovered, without bakeout, by glow discharge cleaning. 22 refs., 6 figs.

  17. In-situ reactive glow discharge cleaning of NSLS distributed ion pumps

    International Nuclear Information System (INIS)

    Johnson, E.D.; Chou, T.S.

    1988-01-01

    Based on our experience with the in-situ cleaning of optical systems by reactive r.f. glow discharges and the conditioning and preparation of distributed ion pump (DIP) elements, we have sought to develop strategies for recovering from severe vacuum accidents by restoring DIP elements of storage rings such as those at the NSLS in-situ. In this paper we will describe a series of experiments conducted in a test apparatus to condition a so called ''egg-crate'' DIP in-situ, (this older type element being common in older storage rings). A new untreated element which was unable to pump below 5x10 /sup /minus/8/ Torr in its initial condition was treated in oxygen and subsequent argon r.f. discharges utilizing the pump element as the discharge electrode producing a nitrogen pumping speed of 168 l/s at 2x10 /sup /minus/8/ Torr. A light bake at 75/degree/C increased this to nearly 500 l/s at 5x10 /sup /minus/8/ Torr. After exposure to atmosphere the speed was reduced to nil at these pressures but subsequently recovered, without bakeout, by glow discharge cleaning. 22 refs., 6 figs

  18. The in-situ vitrification of subsurface containment barriers: An overview

    International Nuclear Information System (INIS)

    Murphy, M.; Stottlemyre, J.A.

    1990-11-01

    In situ vitrification (ISV) is an environmental engineering process in which soil or soil/waste mixtures are melted through the direct application of electrical current and subsequently cooled to a glassy solid. The technology was developed by Pacific Northwest Laboratory (PNL) in the 1980s and has been tested on transuranic, mixed-hazardous, and PCB/organic waste similar to that found at US Department of Energy (DOE) and other facilities nationwide. PNL is conducting a wide range of field tests, expanding the scientific basis of ISV, and assessing its extension into new applications. One such project is ISV--Selective Barriers, an investigation into the construction and performance of ISV--generated, vertical and/or horizontal subsurface barriers to ground-water flow and biogenic intrusion. In some situations, it may be impractical or unnecessary to either excavate or vitrify an entire waste site. Vitrified barriers could minimize the diffusive or fluid transport of hazardous components with either a ground-water diversion wall or an in situ, ''box-like'' structure. During the first year of this project, engineering-scale tests are being conducted between graphite electrodes within a 1.8-m-diameter, 2.4-m-high test cell. Several methods are being tested, including passive metal electrodes, electrode feeding systems, fluxed soil, and fluxed boreholes. In addition, basic data have been collected on the thermal and material properties of ISV melt and solidified glass. 7 refs., 6 figs

  19. A calcite permeable reactive barrier for the remediation of Fluoride from spent potliner (SPL) contaminated groundwater

    DEFF Research Database (Denmark)

    Turner, B.D.; Binning, Philip John; Sloan, S.W.

    2008-01-01

    The use of calcite (CaCO3) as a substrate for a permeable reactive barrier (PRB) for removing fluoride from contaminated groundwater is proposed and is illustrated by application to groundwater contaminated by spent potliner leachate (SPL), a waste derived from the aluminium smelting process...... leachate indicate that the complex chemical matrix of the SPL leachate can impact fluoride removal significantly. For SPL contaminant mixtures, fluoride removal is initially less than expected from idealized, pure, solutions. However, with time, the effect of other contaminants on fluoride removal...... diminishes. Column tests also show that pH control is important for optimizing fluoride removal with the mass removed increasing with decreasing pH. Barrier pH can be regulated by CO2 addition with the point of injection being critical for optimising the remediation performance. Experimental and model...

  20. Sea sand for reactive barriers; Arena de mar para barreras reactivas

    Energy Technology Data Exchange (ETDEWEB)

    Garcia R, G.; Ordonez R, E.; Ordonez R, En. [Instituto Nacional de Investigaciones Nucleares, Km. 36.5 Carretera Mexico-Toluca, Municipio de Ocoyoacac, 52045 Estado de Mexico (Mexico)

    2002-07-01

    Some phosphates have the property to suck in radioactive metals in solution, what it is taken in advance to make reactive barriers which are placed in the nuclear waste repositories. In an effort for contributing to the study of this type of materials, it has been obtained the zirconium silicate (ZrSiO{sub 4}) and the alpha zirconium hydrogen phosphate (Zr(HPO{sub 4}) 2H{sub 2}O) starting from sea sand in an easy and economic way. (Author)

  1. Biogeochemical processes in a clay formation in situ experiment: Part F - Reactive transport modelling

    Energy Technology Data Exchange (ETDEWEB)

    Tournassat, Christophe, E-mail: c.tournassat@brgm.fr [BRGM, French Geological Survey, Orleans (France); Alt-Epping, Peter [Rock-Water Interaction Group, Institute of Geological Sciences, University of Bern (Switzerland); Gaucher, Eric C. [BRGM, French Geological Survey, Orleans (France); Gimmi, Thomas [Rock-Water Interaction Group, Institute of Geological Sciences, University of Bern (Switzerland)] [Laboratory for Waste Management, Paul Scherrer Institut, Villigen (Switzerland); Leupin, Olivier X. [NAGRA, CH-5430 Wettingen (Switzerland); Wersin, Paul [Gruner Ltd., CH-4020 Basel (Switzerland)

    2011-06-15

    Highlights: > Reactive transport modelling was used to simulate simultaneously solute transport, thermodynamic reactions, ion exchange and biodegradation during an in-situ experiment in a clay-rock formation. > Opalinus clay formation has a high buffering capacity in terms of chemical perturbations caused by bacterial activity. > Buffering capacity is mainly attributed to the carbonate system and to the reactivity of clay surfaces (cation exchange, pH buffering). - Abstract: Reactive transport modelling was used to simulate solute transport, thermodynamic reactions, ion exchange and biodegradation in the Porewater Chemistry (PC) experiment at the Mont Terri Rock Laboratory. Simulations show that the most important chemical processes controlling the fluid composition within the borehole and the surrounding formation during the experiment are ion exchange, biodegradation and dissolution/precipitation reactions involving pyrite and carbonate minerals. In contrast, thermodynamic mineral dissolution/precipitation reactions involving alumo-silicate minerals have little impact on the fluid composition on the time-scale of the experiment. With the accurate description of the initial chemical condition in the formation in combination with kinetic formulations describing the different stages of bacterial activities, it has been possible to reproduce the evolution of important system parameters, such as the pH, redox potential, total organic C, dissolved inorganic C and SO{sub 4} concentration. Leaching of glycerol from the pH-electrode may be the primary source of organic material that initiated bacterial growth, which caused the chemical perturbation in the borehole. Results from these simulations are consistent with data from the over-coring and demonstrate that the Opalinus Clay has a high buffering capacity in terms of chemical perturbations caused by bacterial activity. This buffering capacity can be attributed to the carbonate system as well as to the reactivity of

  2. Reactive molecular beam epitaxial growth and in situ photoemission spectroscopy study of iridate superlattices

    Directory of Open Access Journals (Sweden)

    C. C. Fan

    2017-08-01

    Full Text Available High-quality (001-oriented perovskite [(SrIrO3m/(SrTiO3] superlattices (m=1/2, 1, 2, 3 and ∞ films have been grown on SrTiO3(001 epitaxially using reactive molecular beam epitaxy. Compared to previously reported superlattices synthesized by pulsed laser deposition, our superlattices exhibit superior crystalline, interface and surface structure, which have been confirmed by high-resolution X-ray diffraction, scanning transmission electron microscopy and atomic force microscopy, respectively. The transport measurements confirm a novel insulator-metal transition with the change of dimensionality in these superlattices, and our first systematic in situ photoemission spectroscopy study indicates that the increasing strength of effective correlations induced by reducing dimensionality would be the dominating origin of this transition.

  3. Performance of a sequential reactive barrier for bioremediation of coal tar contaminated groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Oriol Gibert; Andrew S. Ferguson; Robert M. Kalin; Rory Doherty; Keith W. Dickson; Karen L. McGeough; Jamie Robinson; Russell Thomas [Queen' s University Belfast (United Kingdom). EERC, School of Planning Architecture and Civil Engineering

    2007-10-01

    Following a thorough site investigation, a biological Sequential Reactive Barrier (SEREBAR), designed to remove polycyclic aromatic hydrocarbons (PAHs) and benzene, toluene, ethylbenzene, xylene (BTEX) compounds was installed at a former manufactured gas pPlant (FMGP) site currently used for gas storage and distribution within the UK. The novel design of the barrier comprises, in series, an interceptor and six reactive chambers. The first four chambers (2 nonaerated-2 aerated) were filled with sand to encourage microbial colonization. Sorbant granular activated carbon (GAC) was present in the final two chambers in order to remove any recalcitrant compounds. The SEREBAR has been in continuous operation for 2 years at different operational flow rates (ranging from 320 L/d to 4000 L/d, with corresponding residence times in each chamber of 19 days and 1.5 days, respectively). Under low flow rate conditions (320-520 L/d) the majority of contaminant removal ({gt}93%) occurred biotically within the interceptor and the aerated chambers. Under high flow rates (1000-4000 L/d) and following the installation of a new interceptor to prevent passive aeration, the majority of contaminant removal ({gt}80%) again occurred biotically within the aerated chambers. The sorption zone (GAC) proved to be an effective polishing step, removing any remaining contaminants to acceptable concentrations before discharge down-gradient of the SEREBAR (overall removals {gt}95%). 22 refs., 4 figs., 1 tab.

  4. IMPORTANCE OF IN SITU MONITORS IN THE PREPARATION OF LAYERED OXIDE HETEROSTRUCTURES BY REACTIVE MBE.

    Energy Technology Data Exchange (ETDEWEB)

    Schlom, Darrell G.; Haeni, J. H.; Theis, C. D. (Christopher); Tian, W.; Pan, X. Q.; Brown, G. W. (Geoffrey W.); Hawley, M. E. (Marilyn E.)

    2001-01-01

    Using a variety of in situ monitors and when possible adsorption-controlled growth conditions, layered oxide heterostructures including new compounds and metastable superlattices have been grown by reactive molecular beam epitaxy (MBE). The heteroepitaxial layers grown include Bi{sub 4}Ti{sub 3}O{sub 12}-SrTiO{sub 3} and Bi{sub 4}Ti{sub 3}O{sub 12}-PbTiO{sub 3} Aurivillius phases, Sr{sub n+1}Ti{sub n}O{sub 3n+1} Ruddlesden-Popper phases, and metastable PbTiO{sub 3}/SrTiO{sub 3} and BaTiO{sub 3}/SrTiO{sub 3} superlattices. Accurate composition control is key to the controlled growth of such structures, and to this end combinations of reflection high-energy electron diffraction (RHEED), atomic absorption spectroscopy (AA), a quartz crystal microbalance (QCM), and adsorption-controlled growth conditions were employed during growth. The structural perfection of the films has been investigated using in situ RHEED, four-circle x-ray diffraction, atomic force microscopy (AFM), and high-resolution transmission electron microscopy (TEM).

  5. Steam hydration-reactivation of FBC ashes for enhanced in situ desulphurization

    Energy Technology Data Exchange (ETDEWEB)

    Fabio Montagnaro; Marianna Nobili; Antonio Telesca; Gian Lorenz Valenti; Edward J. Anthony; Piero Salatino [Universita degli Studi di Napoli Federico II, Napoli (Italy). Dipartimento di Chimica

    2009-06-15

    Bed and fly ashes originating from industrial-scale fluidized bed combustors (FBCs) were steam hydrated to produce sorbents suitable for further in situ desulphurization. Samples of the hydrated ash were characterized by X-ray diffraction analysis, scanning electron microscopy and porosimetry. Bed ashes were hydrated in a pressure bomb for 30 and 60 min at 200{sup o}C and 250{sup o}C. Fly ash was hydrated in an electrically heated tubular reactor for 10 and 60 min at 200{sup o}C and 300{sup o}C. The results were interpreted by considering the hydration process and the related development of accessible porosity suitable for resulphation. The performance of the reactivated bed ash as sulphur sorbent improved with a decrease of both the hydration temperature and time. For reactivated fly ash, more favourable porosimetric features were observed at longer treatment times and lower hydration temperatures. Finally, it was shown that an ashing treatment (at 850{sup o}C for 20 min) promoted a speeding up of the hydration process and an increase in the accessible porosity. 36 refs., 6 figs., 2 tabs.

  6. Zero-Valent Iron Permeable Reactive Barriers: A Review of Performance

    International Nuclear Information System (INIS)

    Korte, NE

    2001-01-01

    This report briefly reviews issues regarding the implementation of the zero-valent iron permeable reactive barrier (PRB) technology at sites managed by the U.S. Department of Energy (DOE). Initially, the PRB technology, using zero-valent iron for the reactive media, was received with great enthusiasm, and DOE invested millions of dollars testing and implementing PRBs. Recently, a negative perception of the technology has been building. This perception is based on the failure of some deployments to satisfy goals for treatment and operating expenses. The purpose of this report, therefore, is to suggest reasons for the problems that have been encountered and to recommend whether DOE should invest in additional research and deployments. The principal conclusion of this review is that the most significant problems have been the result of insufficient characterization, which resulted in poor engineering implementation. Although there are legitimate concerns regarding the longevity of the reactive media, the ability of zero-valent iron to reduce certain chlorinated hydrocarbons and to immobilize certain metals and radionuclides is well documented. The primary problem encountered at some DOE full-scale deployments has been an inadequate assessment of site hydrology, which resulted in misapplication of the technology. The result is PRBs with higher than expected flow velocities and/or incomplete plume capture

  7. Evaluation of five strategies to limit the impact of fouling in permeable reactive barriers

    International Nuclear Information System (INIS)

    Li Lin; Benson, Craig H.

    2010-01-01

    Ground water flow and geochemical reactive transport models were used to assess the effectiveness of five strategies used to limit fouling and to enhance the long-term hydraulic behavior of continuous-wall permeable reactive barriers (PRBs) employing granular zero valent iron (ZVI). The flow model accounted for geological heterogeneity and the reactive transport model included a geochemical algorithm for simulating iron corrosion and mineral precipitation reactions that have been observed in ZVI PRBs. The five strategies that were evaluated are pea gravel equalization zones, a sacrificial pre-treatment zone, pH adjustment, large ZVI particles, and mechanical treatment. Results of simulations show that installation of pea gravel equalization zones results in flow equalization and a more uniform distribution of residence times within the PRB. Residence times within the PRB are less affected by mineral precipitation when a pre-treatment zone is employed. pH adjustment limits the total amount of hydroxide ions in ground water to reduce porosity reduction and to retain larger residence times. Larger ZVI particles reduce porosity reduction as a result of the smaller iron surface area for iron corrosion, and retain longer residence time. Mechanical treatment redistributes the porosity uniformly throughout the PRB over time, which is effective in maintaining residence time.

  8. Reactive Transport and Coupled THM Processes in Engineering Barrier Systems (EBS)

    International Nuclear Information System (INIS)

    Steefel, Carl; Rutqvist, Jonny; Tsang, Chin-Fu; Liu, Hui-Hai; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens

    2010-01-01

    Geological repositories for disposal of high-level nuclear wastes generally rely on a multi-barrier system to isolate radioactive wastes from the biosphere. The multi-barrier system typically consists of a natural barrier system, including repository host rock and its surrounding subsurface environment, and an engineering barrier system (EBS). EBS represents the man-made, engineered materials placed within a repository, including the waste form, waste canisters, buffer materials, backfill and seals (OECD, 2003). EBS plays a significant role in the containment and long-term retardation of radionuclide release. EBS is involved in complex thermal, hydrogeological, mechanical, chemical and biological processes, such as heat release due to radionuclide decay, multiphase flow (including gas release due to canister corrosion), swelling of buffer materials, radionuclide diffusive transport, waste dissolution and chemical reactions. All these processes are related to each other. An in-depth understanding of these coupled processes is critical for the performance assessment (PA) for EBS and the entire repository. Within the EBS group of Used Fuel Disposition (UFD) Campaign, LBNL is currently focused on (1) thermal-hydraulic-mechanical-chemical (THMC) processes in buffer materials (bentonite) and (2) diffusive transport in EBS associated with clay host rock, with a long-term goal to develop a full understanding of (and needed modeling capabilities to simulate) impacts of coupled processes on radionuclide transport in different components of EBS, as well as the interaction between near-field host rock (e.g., clay) and EBS and how they effect radionuclide release. This final report documents the progress that LBNL has made in its focus areas. Specifically, Section 2 summarizes progress on literature review for THMC processes and reactive-diffusive radionuclide transport in bentonite. The literature review provides a picture of the state-of-the-art of the relevant research areas

  9. Reactive Transport and Coupled THM Processes in Engineering Barrier Systems (EBS)

    Energy Technology Data Exchange (ETDEWEB)

    Steefel, Carl; Rutqvist, Jonny; Tsang, Chin-Fu; Liu, Hui-Hai; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens

    2010-08-31

    Geological repositories for disposal of high-level nuclear wastes generally rely on a multi-barrier system to isolate radioactive wastes from the biosphere. The multi-barrier system typically consists of a natural barrier system, including repository host rock and its surrounding subsurface environment, and an engineering barrier system (EBS). EBS represents the man-made, engineered materials placed within a repository, including the waste form, waste canisters, buffer materials, backfill and seals (OECD, 2003). EBS plays a significant role in the containment and long-term retardation of radionuclide release. EBS is involved in complex thermal, hydrogeological, mechanical, chemical and biological processes, such as heat release due to radionuclide decay, multiphase flow (including gas release due to canister corrosion), swelling of buffer materials, radionuclide diffusive transport, waste dissolution and chemical reactions. All these processes are related to each other. An in-depth understanding of these coupled processes is critical for the performance assessment (PA) for EBS and the entire repository. Within the EBS group of Used Fuel Disposition (UFD) Campaign, LBNL is currently focused on (1) thermal-hydraulic-mechanical-chemical (THMC) processes in buffer materials (bentonite) and (2) diffusive transport in EBS associated with clay host rock, with a long-term goal to develop a full understanding of (and needed modeling capabilities to simulate) impacts of coupled processes on radionuclide transport in different components of EBS, as well as the interaction between near-field host rock (e.g., clay) and EBS and how they effect radionuclide release. This final report documents the progress that LBNL has made in its focus areas. Specifically, Section 2 summarizes progress on literature review for THMC processes and reactive-diffusive radionuclide transport in bentonite. The literature review provides a picture of the state-of-the-art of the relevant research areas

  10. Influence of Nitrate on the Hanford 100D Area In Situ Redox Manipulation Barrier Longevity

    International Nuclear Information System (INIS)

    Szecsody, Jim E.; Phillips, Jerry L.; Vermeul, Vince R.; Fruchter, Jonathan S.; Williams, Mark D.

    2005-01-01

    The purpose of this laboratory study is to determine the influence of nitrate on the Hanford 100D Area in situ redox manipulation (ISRM) barrier longevity. There is a wide spread groundwater plume of 60 mg/L nitrate upgradient of the ISRM barrier with lower nitrate concentrations downgradient, suggestive of nitrate reduction occurring. Batch and 1-D column experiments showed that nitrate is being slowly reduced to nitrite and ammonia. These nitrate reduction reactions are predominantly abiotic, as experiments with and without bactericides present showed no difference in nitrate degradation rates. Nitrogen species transformation rates determined in experiments covered a range of ferrous iron/nitrate ratios such that the data can be used to predict rates in field scale conditions. Field scale reaction rate estimates for 100% reduced sediment (16 C) are: (a) nitrate degradation = 202 ± 50 h (half-life), (b) nitrite production = 850 ± 300 h, and (c) ammonia production = 650 ± 300 h. Calculation of the influence of nitrate reduction on the 100D Area reductive capacity requires consideration of mass balance and reaction rate effects. While dissolved oxygen and chromate reduction rates are rapid and essentially at equilibrium in the aquifer, nitrate transformation reactions are slow (100s of hours). In the limited (20-40 day) residence time in the ISRM barrier, only a portion of the nitrate will be reduced, whereas dissolved oxygen and chromate are reduced to completion. Assuming a groundwater flow rate of 1 ft/day, it is estimated that the ISRM barrier reductive capacity is 160 pore volumes (with no nitrate), and 85 pore volumes if 60 mg/L nitrate is present (i.e., a 47% decrease in the ISRM barrier longevity). Zones with more rapid groundwater flow will be less influenced by nitrate reduction. For example, a zone with a groundwater flow rate of 3 ft/day and 60 mg/L nitrate will have a reductive capacity of 130 pore volumes. Finally, long-term column experiments

  11. Study on the application of permeable reactive barriers for remediation of uranium mine pit water

    International Nuclear Information System (INIS)

    Li Na'na; Zhu Yucheng

    2012-01-01

    Permeable reactive barrier (PRB) is economical and convenient on in suit remediation of polluted groundwater. In this paper, according to characteristics of uranium mine pit water, laboratory-scale PRB reactors were designed with the mixture of valent iron, active carbon, hydrated lime and quartz sands as reaction media. The feasibility and effectiveness of treating uranium mine pit water by PRB were tested under 3 different proportions of contaminants through dynamic simulation tests, which came out the optimal proportion of contaminants. The result indicated that the remediation effect of reactor B was the best, whose average removal rate to U was up to 99%. The quality of effluent attained the relevant standards, which indicated that the PRB technology is a feasible method for the treatment of uranium mine pit water. (authors)

  12. Penetrating the oxide barrier in situ and separating freestanding porous anodic alumina films in one step.

    Science.gov (United States)

    Tian, Mingliang; Xu, Shengyong; Wang, Jinguo; Kumar, Nitesh; Wertz, Eric; Li, Qi; Campbell, Paul M; Chan, Moses H W; Mallouk, Thomas E

    2005-04-01

    A simple method for penetrating the barrier layer of an anodic aluminum oxide (AAO) film and for detaching the AAO film from residual Al foil was developed by reversing the bias voltage in situ after the anodization process is completed. With this technique, we have been able to obtain large pieces of free-standing AAO membranes with regular pore sizes of sub-10 nm. By combining Ar ion milling and wetting enhancement processes, Au nanowires were grown in the sub-10 nm pores of the AAO films. Further scaling down of the pore size and extension to the deposition of nanowires and nanotubes of materials other than Au should be possible by further optimizing this procedure.

  13. Electrochemically induced dual reactive barriers for transformation of TCE and mixture of contaminants in groundwater.

    Science.gov (United States)

    Mao, Xuhui; Yuan, Songhu; Fallahpour, Noushin; Ciblak, Ali; Howard, Joniqua; Padilla, Ingrid; Loch-Caruso, Rita; Alshawabkeh, Akram N

    2012-11-06

    A novel reactive electrochemical flow system consisting of an iron anode and a porous cathode is proposed for the remediation of mixture of contaminants in groundwater. The system consists of a series of sequentially arranged electrodes, a perforated iron anode, a porous copper cathode followed by a mesh-type mixed metal oxide anode. The iron anode generates ferrous species and a chemically reducing environment, the porous cathode provides a reactive electrochemically reducing barrier, and the inert anode provides protons and oxygen to neutralize the system. The redox conditions of the electrolyte flowing through this system can be regulated by controlling the distribution of the electric current. Column experiments are conducted to evaluate the process and study the variables. The electrochemical reduction on a copper foam cathode produced an electrode-based reductive potential capable of reducing TCE and nitrate. Rational electrodes arrangement, longer residence time of electrolytes and higher surface area of the foam electrode improve the reductive transformation of TCE. More than 82.2% TCE removal efficiency is achieved for the case of low influent concentration (45 mA). The ferrous species produced from the iron anode not only enhance the transformation of TCE on the cathode, but also facilitates transformation of other contaminants including dichromate, selenate and arsenite. Removal efficiencies greater than 80% are achieved for these contaminants in flowing contaminated water. The overall system, comprising the electrode-based and electrolyte-based barriers, can be engineered as a versatile and integrated remedial method for a relatively wide spectrum of contaminants and their mixtures.

  14. Pervious concrete reactive barrier for removal of heavy metals from acid mine drainage − column study

    Energy Technology Data Exchange (ETDEWEB)

    Shabalala, Ayanda N., E-mail: Ayanda.Shabalala@ump.ac.za [University of Johannesburg, PO Box 524, Auckland Park 2006 (South Africa); Ekolu, Stephen O. [University of Johannesburg, PO Box 524, Auckland Park 2006 (South Africa); Diop, Souleymane [Council for Geoscience, Private bag x112, Pretoria, 0001 (South Africa); Solomon, Fitsum [University of Johannesburg, PO Box 524, Auckland Park 2006 (South Africa)

    2017-02-05

    Highlights: • Pervious concrete raises the low pH of acid mine drainage up to 12; heavy metals precipitate. • Pervious concrete successfully removed greater than 99% of inorganic contaminants. • Ca(OH){sub 2} in pervious concrete reacts with SO{sub 4}{sup 2−} in acid mine drainage to form expansive gypsum. • Incorporating fly ash into pervious concrete mitigates damage caused by gypsum. • Pervious concrete reactive barrier offers a promising alternative method for treatment of acid mine drainage. - Abstract: This paper presents a column study conducted to investigate the potential use of pervious concrete as a reactive barrier for treatment of water impacted by mine waste. The study was done using acid mine drainage (AMD) collected from a gold mine (WZ) and a coalfield (TDB). Pervious concrete mixtures consisting of Portland cement CEM I 52.5R with or without 30% fly ash (FA) were prepared at a water-cementitious ratio of 0.27 then used to make cubes which were employed in the reactor columns. It was found that the removal efficiency levels of Al, Fe, Mn, Co and Ni were 75%, 98%, 99%, 94% and 95% for WZ; 87%, 96%, 99%, 98% and 90% for TDB, respectively. The high rate of acid reduction and metal removal by pervious concrete is attributed to dissolution of portlandite which is a typical constituent of concrete. The dominant reaction product in all four columns was gypsum, which also contributed to some removal of sulphate from AMD. Formation of gypsum, goethite, and Glauber’s salt were identified. Precipitation of metal hydroxides seems to be the dominant metal removal mechanism. Use of pervious concrete offers a promising alternative treatment method for polluted or acidic mine water.

  15. Pervious concrete reactive barrier for removal of heavy metals from acid mine drainage − column study

    International Nuclear Information System (INIS)

    Shabalala, Ayanda N.; Ekolu, Stephen O.; Diop, Souleymane; Solomon, Fitsum

    2017-01-01

    Highlights: • Pervious concrete raises the low pH of acid mine drainage up to 12; heavy metals precipitate. • Pervious concrete successfully removed greater than 99% of inorganic contaminants. • Ca(OH)_2 in pervious concrete reacts with SO_4"2"− in acid mine drainage to form expansive gypsum. • Incorporating fly ash into pervious concrete mitigates damage caused by gypsum. • Pervious concrete reactive barrier offers a promising alternative method for treatment of acid mine drainage. - Abstract: This paper presents a column study conducted to investigate the potential use of pervious concrete as a reactive barrier for treatment of water impacted by mine waste. The study was done using acid mine drainage (AMD) collected from a gold mine (WZ) and a coalfield (TDB). Pervious concrete mixtures consisting of Portland cement CEM I 52.5R with or without 30% fly ash (FA) were prepared at a water-cementitious ratio of 0.27 then used to make cubes which were employed in the reactor columns. It was found that the removal efficiency levels of Al, Fe, Mn, Co and Ni were 75%, 98%, 99%, 94% and 95% for WZ; 87%, 96%, 99%, 98% and 90% for TDB, respectively. The high rate of acid reduction and metal removal by pervious concrete is attributed to dissolution of portlandite which is a typical constituent of concrete. The dominant reaction product in all four columns was gypsum, which also contributed to some removal of sulphate from AMD. Formation of gypsum, goethite, and Glauber’s salt were identified. Precipitation of metal hydroxides seems to be the dominant metal removal mechanism. Use of pervious concrete offers a promising alternative treatment method for polluted or acidic mine water.

  16. Modeling of the sorptive behavior of a clay material used as reactive barrier for cesium migration in Huelva (Spain)

    International Nuclear Information System (INIS)

    Missana, Tiziana; Garcia-Gutierrez, Miguel

    2012-01-01

    Document available in extended abstract form only. On 1998 a 137 Cs source was accidentally molten in the installations of a Spanish company of stainless steel production. Not being aware of the contamination with Cs, the produced powder was treated in an inert plant and these inert materials were normally used as filling material to restore phosphogypsum piles. The contaminated material ended up in the phosphogypsum piles at the Center of Inert Recuperation (CRI), located at the salt marshes of Huelva (Spain). This is a large extension oriented towards the sea with marsh vegetation subject to the tide. Since the cesium contamination was discovered, this zone has been thoroughly analyzed in order to evaluate the radiological impact of the presence of cesium and the possible contamination of soils and water in the surrounding. Recently, in two different locations at CRI, permeable reactive barriers were constructed to retard cesium migration. The main component of these barriers is a clay material called Rojo Carbonero (RC), whose properties as cesium sorbent have to be analyzed in depth. This material is mainly formed by: quartz (27%), phyllosilicates (58%), dolomite (8%), feldspar (2%), hematite (5%). The clayey fraction (<2 μm) is composed by a 98% of illite and the rest is chlorite/kaolinite. Different studies were carried out to quantify the sorption of cesium in this material previous to the construction of the reactive barriers. Due to the large variability of the chemical composition of the waters at the site a significant variability of sorption values, in terms of distribution coefficients (Kd) was also observed. In order to predict the migration of cesium in these barriers, taking into account this variability and the presence of competing ions, a detailed experimental study was carried out with the aim of determining the selectivity coefficients of cesium with respect to the main ions present in the water. Basically, the material was converted in

  17. Decolorization of reactive black 5 using dielectric barrier discharge in the presence of inorganic salts

    Directory of Open Access Journals (Sweden)

    Dojčinović Biljana P.

    2012-01-01

    Full Text Available Inorganic salts improve the coloration of textiles, which increase pollution load on dyehouse effluent in general. Decolorization of reactive textile dye C.I. Reactive Black 5 was studied using Advanced Oxidation Processes (AOPs in a non-thermal plasma reactor, based on coaxial water falling film Dielectric Barrier Discharge (DBD. Initial dye concentration in the solution was 40.0 mg L-1. The effects of addition of inorganic salt different high concentrations (NaCl, Na2SO4 and Na2CO3 on the degree of decolorization were studied. Recirculation of dye solution through the DBD reactor with applied energy density 45-315 kJ L-1 was used. The influence of residence time was investigated after 5 minutes and 24 hours of plasma treatment. Decolorization of the dyes was monitored by spectrophotometric measurement. Changes of pH values and the conductivity of dye solution after each recirculation were tested. The most effective decolorization of over 90% was obtained with the addition of NaCl (50 g L-1, applied energy density of 135 kJ L-1 and after residence time of 24 hours of plasma treatment. Decolorization of solutions containing inorganic salts Na2SO4 and Na2CO3 were lower than for the solution without salt.

  18. In Situ Denitrification and Biological Nitrogen Fixation Under Enhanced Atmospheric Reactive Nitrogen Deposition in UK Peatlands

    Science.gov (United States)

    Ullah, Sami; Saiz Val, Ernesto; Sgouridis, Fotis; Peichl, Matthias; Nilsson, Mats

    2017-04-01

    Dinitrogen (N2) and nitrous oxide (N2O) losses due to denitrification and biological N2 fixation (BNF) are the most uncertain components of the nitrogen (N) cycle in peatlands under enhanced atmospheric reactive nitrogen (Nr) deposition. This uncertainty hampers our ability to assess the contribution of denitrification to the removal of biologically fixed and/or atmospherically deposited Nr in peatlands. This uncertainty emanates from the difficulty in measuring in situ soil N2 and N2O production and consumption in peatlands. In situ denitrification and its contribution to total N2O flux was measured monthly between April 2013 and October 2014 in peatlands in two UK catchments. An adapted 15N-Gas Flux method1 with low level addition of 15N tracer (0.03 ± 0.005 kg 15N ha-1) was used to measure denitrification and its contribution to net N2O production (DN2O/TN2O). BNF was measured in situ through incubation of selected sphagnum species under 15N2 gas tracer. Denitrification2 varied temporally and averaged 8 kg N-N2 ha-1 y-1. The contribution of denitrification was about 48% to total N2O flux3 of 0.05 kg N ha-1 y-1. Soil moisture, temperature, ecosystem respiration, pH and mineral N content mainly regulated the flux of N2 and N2O. Preliminary results showed suppression of BNF, which was 1.8 to 7 times lower in peatland mosses exposed to ˜15 to 20 kg N ha-1 y-1 Nr deposition in the UK than in peatland mosses in northern Sweden with background Nr deposition. Overall, the contribution of denitrification to Nr removal in the selected peatlands was ˜50% of the annual Nr deposition rates, making these ecosystems vulnerable to chronic N saturation. These results point to a need for a more comprehensive annual BNF measurement to more accurately account for total Nr input into peatlands and its atmospheric loss due to denitrification. References Sgouridis F, Stott A & Ullah S, 2016. Application of the 15N-Gas Flux method for measuring in situ N2 and N2O fluxes due to

  19. In situ groundwater and sediment bioremediation: barriers and perspectives at European contaminated sites.

    Science.gov (United States)

    Majone, Mauro; Verdini, Roberta; Aulenta, Federico; Rossetti, Simona; Tandoi, Valter; Kalogerakis, Nicolas; Agathos, Spiros; Puig, Sebastià; Zanaroli, Giulio; Fava, Fabio

    2015-01-25

    This paper contains a critical examination of the current application of environmental biotechnologies in the field of bioremediation of contaminated groundwater and sediments. Based on analysis of conventional technologies applied in several European Countries and in the US, scientific, technical and administrative barriers and constraints which still need to be overcome for an improved exploitation of bioremediation are discussed. From this general survey, it is evident that in situ bioremediation is a highly promising and cost-effective technology for remediation of contaminated soil, groundwater and sediments. The wide metabolic diversity of microorganisms makes it applicable to an ever-increasing number of contaminants and contamination scenarios. On the other hand, in situ bioremediation is highly knowledge-intensive and its application requires a thorough understanding of the geochemistry, hydrogeology, microbiology and ecology of contaminated soils, groundwater and sediments, under both natural and engineered conditions. Hence, its potential still remains partially unexploited, largely because of a lack of general consensus and public concerns regarding the lack of effectiveness and control, poor reliability, and possible occurrence of side effects, for example accumulation of toxic metabolites and pathogens. Basic, applied and pre-normative research are all needed to overcome these barriers and make in situ bioremediation more reliable, robust and acceptable to the public, as well as economically more competitive. Research efforts should not be restricted to a deeper understanding of relevant microbial reactions, but also include their interactions with the large array of other relevant phenomena, as a function of the truly variable site-specific conditions. There is a need for a further development and application of advanced biomolecular tools for site investigation, as well as of advanced metabolic and kinetic modelling tools. These would allow a

  20. Long Alkyl Chain Organophosphorus Coupling Agents for in Situ Surface Functionalization by Reactive Milling

    Directory of Open Access Journals (Sweden)

    Annika Betke

    2014-08-01

    Full Text Available Innovative synthetic approaches should be simple and environmentally friendly. Here, we present the surface modification of inorganic submicrometer particles with long alkyl chain organophosphorus coupling agents without the need of a solvent, which makes the technique environmentally friendly. In addition, it is of great benefit to realize two goals in one step: size reduction and, simultaneously, surface functionalization. A top-down approach for the synthesis of metal oxide particles with in situ surface functionalization is used to modify titania with long alkyl chain organophosphorus coupling agents. A high energy planetary ball mill was used to perform reactive milling using titania as inorganic pigment and long alkyl chain organophosphorus coupling agents like dodecyl and octadecyl phosphonic acid. The final products were characterized by IR, NMR and X-ray fluorescence spectroscopy, thermal and elemental analysis as well as by X-ray powder diffraction and scanning electron microscopy. The process entailed a tribochemical phase transformation from the starting material anatase to a high-pressure modification of titania and the thermodynamically more stable rutile depending on the process parameters. Furthermore, the particles show sizes between 100 nm and 300 nm and a degree of surface coverage up to 0.8 mmol phosphonate per gram.

  1. A transparent Pyrex μ-reactor for combined in situ optical characterization and photocatalytic reactivity measurements

    International Nuclear Information System (INIS)

    Dionigi, F.; Hansen, O.; Nielsen, M. G.; Chorkendorff, I.; Vesborg, P. C. K.; Pedersen, T.

    2013-01-01

    A new Pyrex-based μ-reactor for photocatalytic and optical characterization experiments is presented. The reactor chamber and gas channels are microfabricated in a thin poly-silicon coated Pyrex chip that is sealed with a Pyrex lid by anodic bonding. The device is transparent to light in the UV-vis-near infrared range of wavelengths (photon energies between ∼0.4 and ∼4.1 eV). The absorbance of a photocatalytic film obtained with a light transmission measurement during a photocatalytic reaction is presented as a proof of concept of a photocatalytic reactivity measurement combined with in situ optical characterization. Diffuse reflectance measurements of highly scattering photocatalytic nanopowders in a sealed Pyrex μ-reactor are also possible using an integrating sphere as shown in this work. These experiments prove that a photocatalyst can be characterized with optical techniques after a photocatalytic reaction without removing the material from the reactor. The catalyst deposited in the cylindrical reactor chamber can be illuminated from both top and bottom sides and an example of application of top and bottom illumination is presented

  2. Grafting of bacterial polyhydroxybutyrate (PHB) onto cellulose via in situ reactive extrusion with dicumyl peroxide.

    Science.gov (United States)

    Wei, Liqing; McDonald, Armando G; Stark, Nicole M

    2015-03-09

    Polyhydroxybutyrate (PHB) was grafted onto cellulose fiber by dicumyl peroxide (DCP) radical initiation via in situ reactive extrusion. The yield of the grafted (cellulose-g-PHB) copolymer was recorded and grafting efficiency was found to be dependent on the reaction time and DCP concentration. The grafting mechanism was investigated by electron spin resonance (ESR) analysis and showed the presence of radicals produced by DCP radical initiation. The grafted copolymer structure was determined by nuclear magnetic resonance (NMR) spectroscopy. Scanning electronic microscopy (SEM) showed that the cellulose-g-PHB copolymer formed a continuous phase between the surfaces of cellulose and PHB as compared to cellulose-PHB blends. The relative crystallinity of cellulose and PHB were quantified from Fourier transform infrared (FTIR) spectra and X-ray diffraction (XRD) results, while the absolute degree of crystallinity was evaluated by differential scanning calorimetry (DSC). The reduction of crystallinity indicated the grafting reaction occurred not just in the amorphous region but also slightly in crystalline regions of both cellulose and PHB. The smaller crystal sizes suggested the brittleness of PHB was decreased. Thermogravimetric analysis (TGA) showed that the grafted copolymer was stabilized relative to PHB. By varying the reaction parameters the compositions (%PHB and %cellulose) of resultant cellulose-g-PHB copolymer are expected to be manipulated to obtain tunable properties.

  3. Repeatability and reproducibility of in situ measurements of sound reflection and airborne sound insulation index of noise barriers

    NARCIS (Netherlands)

    Garai, M.; Schoen, E.; Behler, G.; Bragado, B.; Chudalla, M.; Conter, M.; Defrance, J.; Demizieux, P.; Glorieux, C.; Guidorzi, P.

    2014-01-01

    In Europe, in situ measurements of sound reflection and airborne sound insulation of noise barriers are usually done according to CEN/TS 1793-5. This method has been improved substantially during the EU funded QUIESST collaborative project. Within the same framework, an inter-laboratory test has

  4. Enhanced chitosan beads-supported Fe(0)-nanoparticles for removal of heavy metals from electroplating wastewater in permeable reactive barriers.

    Science.gov (United States)

    Liu, Tingyi; Yang, Xi; Wang, Zhong-Liang; Yan, Xiaoxing

    2013-11-01

    The removal of heavy metals from electroplating wastewater is a matter of paramount importance due to their high toxicity causing major environmental pollution problems. Nanoscale zero-valent iron (NZVI) became more effective to remove heavy metals from electroplating wastewater when enhanced chitosan (CS) beads were introduced as a support material in permeable reactive barriers (PRBs). The removal rate of Cr (VI) decreased with an increase of pH and initial Cr (VI) concentration. However, the removal rates of Cu (II), Cd (II) and Pb (II) increased with an increase of pH while decreased with an increase of their initial concentrations. The initial concentrations of heavy metals showed an effect on their removal sequence. Scanning electron microscope images showed that CS-NZVI beads enhanced by ethylene glycol diglycidyl ether (EGDE) had a loose and porous surface with a nucleus-shell structure. The pore size of the nucleus ranged from 19.2 to 138.6 μm with an average aperture size of around 58.6 μm. The shell showed a tube structure and electroplating wastewaters may reach NZVI through these tubes. X-ray photoelectron spectroscope (XPS) demonstrated that the reduction of Cr (VI) to Cr (III) was complete in less than 2 h. Cu (II) and Pb (II) were removed via predominant reduction and auxiliary adsorption. However, main adsorption and auxiliary reduction worked for the removal of Cd (II). The removal rate of total Cr, Cu (II), Cd (II) and Pb (II) from actual electroplating wastewater was 89.4%, 98.9%, 94.9% and 99.4%, respectively. The findings revealed that EGDE-CS-NZVI-beads PRBs had the capacity to remediate actual electroplating wastewater and may become an effective and promising technology for in situ remediation of heavy metals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. In Situ Detection of Regulatory T Cells in Human Genital Herpes Simplex Virus Type 2 (HSV-2) Reactivation and Their Influence on Spontaneous HSV-2 Reactivation.

    Science.gov (United States)

    Milman, Neta; Zhu, Jia; Johnston, Christine; Cheng, Anqi; Magaret, Amalia; Koelle, David M; Huang, Meei-Li; Jin, Lei; Klock, Alexis; Layton, Erik D; Corey, Lawrence

    2016-07-01

    Herpes simplex virus type 2 (HSV-2) reactivation is accompanied by a sustained influx of CD4(+) and CD8(+) T cells that persist in genital tissue for extended periods. While CD4(+) T cells have long been recognized as being present in herpetic ulcerations, their role in subclinical reactivation and persistence is less well known, especially the role of CD4(+) regulatory T cells (Tregs). We characterized the Treg (CD4(+)Foxp3(+)) population during human HSV-2 reactivation in situ in sequential genital skin biopsy specimens obtained from HSV-2-seropositive subjects at the time of lesion onset up to 8 weeks after healing. High numbers of Tregs infiltrated to the site of viral reactivation and persisted in proximity to conventional CD4(+) T cells (Tconvs) and CD8(+) T cells. Treg density peaked during the lesion stage of the reactivation. The number of Tregs from all time points (lesion, healed, 2 weeks after healing, 4 weeks after healing, and 8 weeks after healing) was significantly higher than in control biopsy specimens from unaffected skin. There was a direct correlation between HSV-2 titer and Treg density. The association of a high Treg to Tconv ratio with high viral shedding suggests that the balance between regulatory and effector T cells influences human HSV-2 disease. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  6. Gas barrier properties of titanium oxynitride films deposited on polyethylene terephthalate substrates by reactive magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Lin, M.-C. [Department of Materials Science and Engineering, National ChungHsin University, 250, Kuo-Kung Road, 40227 Taichung, Taiwan (China); Chang, L.-S. [Department of Materials Science and Engineering, National ChungHsin University, 250, Kuo-Kung Road, 40227 Taichung, Taiwan (China)], E-mail: lschang@dragon.nchu.edu.tw; Lin, H.C. [Department of Materials Science and Engineering, National Taiwan University, 1, Roosevelt Road, Sec. 4, 106 Taipei, Taiwan (China)

    2008-03-30

    Titanium oxynitride (TiN{sub x}O{sub y}) films were deposited on polyethylene terephthalate (PET) substrates by means of a reactive radio frequency (RF) magnetron sputtering system in which the power density and substrate bias were the varied parameters. Experimental results show that the deposited TiN{sub x}O{sub y} films exhibited an amorphous or a columnar structure with fine crystalline dependent on power density. The deposition rate increases significantly in conjunction as the power density increases from 2 W/cm{sup 2} to 7 W/cm{sup 2}. The maximum deposition rate occurs, as the substrate bias is -40 V at a certain power densities chosen in this study. The film's roughness slightly decreases with increasing substrate bias. The TiN{sub x}O{sub y} films deposited at power densities above 4 W/cm{sup 2} show a steady Ti:N:O ratio of about 1:1:0.8. The water vapor and oxygen transmission rates of the TiN{sub x}O{sub y} films reach values as low as 0.98 g/m{sup 2}-day-atm and 0.60 cm{sup 3}/m{sup 2}-day-atm which are about 6 and 47 times lower than those of the uncoated PET substrate, respectively. These transmission rates are comparable to those of DLC, carbon-based and Al{sub 2}O{sub 3} barrier films. Therefore, TiN{sub x}O{sub y} films are potential candidates to be used as a gas permeation barrier for PET substrate.

  7. Reliability enhancement due to in-situ post-oxidation of sputtered MgO barrier in double MgO barrier magnetic tunnel junction

    Directory of Open Access Journals (Sweden)

    Chikako Yoshida

    2017-06-01

    Full Text Available We have investigated the effects of in-situ post-oxidation (PO of a sputtered MgO barrier in a double-MgO-barrier magnetic tunnel junction (MTJ and found that the short error rate was significantly reduced, the magnetoresistance (MR ratio was increased approximately 18%, and the endurance lifetime was extend. In addition, we found that the distribution of breakdown number (a measure of endurance exhibits trimodal characteristics, which indicates competition between extrinsic and intrinsic failures. This improvement in reliability might be related to the suppression of Fe and Co diffusion to the MgO barrier, as revealed by electron energy-loss spectroscopy (EELS analysis.

  8. EDX and ion beam treatment studies of filamentary in situ MgB2 wires with Ti barrier

    International Nuclear Information System (INIS)

    Rosova, A.; Kovac, P.; Husek, I.; Kopera, L.

    2011-01-01

    Highlights: → SiC-doped MgB 2 wires with Ti barrier showed good Jc in magnetic field. → Explanation why the Ti barrier fits to SiC-doped MgB 2 filaments. → Ti barrier getters Si from SiC-doped filaments and improve their properties. → Si accumulated in an inner layer of Ti barrier protects filaments from Cu diffusion. → Ion beam treatment helps to discover microstructure of complicated systems. - Abstract: In situ SiC-doped filamentary MgB 2 wires (with the diameter of 0.860 and 0.375 mm) with Cu stabilization separated by Ti barrier layers supported by outer SS sheath and annealed at 800 deg. C/0.5 h have been studied by combination of EDX analysis and ion beam selective etching. It was found that several Ti-Cu inter-metallic compounds were created by Cu-Ti interdiffusion and thus the barrier protection against Cu penetration into the superconducting filaments is limited. We showed an advantage of Ti use as the barrier material in our wires. Ti getters silicon out from the superconducting filament, what purges superconducting MgB 2 from Si and creates an additional Si-rich layer in inner part of Ti barrier which prevents Cu diffusion more effectively.

  9. Creation of a subsurface permeable treatment barrier using in situ redox manipulation

    International Nuclear Information System (INIS)

    Fruchter, J.S.; Cole, C.R.; Williams, M.D.

    1997-01-01

    The goal of in situ redox manipulation is to create a permeable treatment zone in the subsurface for remediating redox-sensitive contaminants in groundwater. The permeable treatment zone is created just downstream of the contaminant plume or contaminant source through the injection of reagents and/or microbial nutrients to alter the redox potential of the aquifer fluids and sediments. Contaminant plumes migrating through this manipulated zone can then be destroyed or immobilized. In a field test at the Hanford Site, ∼77,000 L of buffered sodium dithionite solution were successfully injected into the unconfined aquifer at the 100-H Area in September 1995. The target contaminant was chromate. No significant plugging of the well screen or the formation was detected during any phase of the test. Dithionite was detected in monitoring wells at least 7.5 m from the injection point. Data were obtained from all three phases of the test (i.e., injection, reaction, withdrawal). Preliminary core data show that from 60% to 100% of the available reactive iron in the targeted aquifer sediments was reduced by the injected dithionite. One year after the injection, groundwater in the treatment zone remains anoxic. Total and hexavalent chromium levels in groundwater have been reduced from a preexperiment concentration of ∼60 μg/L to below the detection limit of the analytical methods

  10. Utilization of natural hematite as reactive barrier for immobilization of radionuclides from radioactive liquid waste.

    Science.gov (United States)

    El Afifi, E M; Attallah, M F; Borai, E H

    2016-01-01

    Potential utilization of hematite as a natural material for immobilization of long-lived radionuclides from radioactive liquid waste was investigated. Hematite ore has been characterized by different analytical tools such as Fourier transformer infrared (FTIR), X-ray fluorescence (XRF), powder X-ray diffraction (XRD), thermogravimetry (TG) and differential thermal (DT) analysis, scanning electron microscopy (SEM) and BET-surface area. In this study, europium was used as REEs(III) and as a homolog of Am(III)-isotopes (such as (241)Am of 432.6 y, (242m)Am of 141 y and (243)Am of 7370 y). Micro particles of the hematite ore were used for treatment of radioactive waste containing (152+154)Eu(III). The results indicated that 96% (4.1 × 10(4) Bq) of (152+154)Eu(III) was efficiently retained onto hematite ore. Kinetic experiments indicated that the processes could be simulated by a pseudo-second-order model and suggested that the process may be chemisorption in nature. The applicability of Langmuir, Freundlich and Temkin models was investigated. It was found that Langmuir isotherm exhibited the best fit with the experimental results. It can be concluded that hematite is an economic and efficient reactive barrier for immobilization of long-lived radio isotopes of actinides and REEs(III). Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Implementation of a permeable reactive barrier for treatment of groundwater impacted by strontium-90

    International Nuclear Information System (INIS)

    Przepiora, A.; Bodine, D.; Dollar, P.; Smith, P.

    2014-01-01

    A funnel and gate permeable reactive barrier (PRB) system was constructed to treat strontium-90 (Sr- 90) in groundwater migrating from a legacy waste disposal area into an adjacent wetland. The PRB system was designed to contain and direct the Sr-90 impacted groundwater into treatment 'gates' containing zeolite using a low permeability 'funnel' sections constructed with soil-bentonite slurry. The constructed PRB met all dimension and permeability specifications. Initial performance monitoring results indicate that the PRB captured the Sr-90 impacted groundwater plume and the beta radiation values in groundwater emerging from the treatment gates ranged from 35 to 86 Becquerel's per litre (Bq/L), equivalent to a reduction by 88% to 99% from the influent values. Those initial performance results were influenced by residual impacts present in the aquifer material prior to PRB installation. It is anticipated that the clean-up target of 5 Bq/L will be achieved with time as treated groundwater emerging from the PRB flushes through the downgradient aquifer zone. (author)

  12. Measurement and modelling of reactive transport in geological barriers for nuclear waste containment.

    Science.gov (United States)

    Xiong, Qingrong; Joseph, Claudia; Schmeide, Katja; Jivkov, Andrey P

    2015-11-11

    Compacted clays are considered as excellent candidates for barriers to radionuclide transport in future repositories for nuclear waste due to their very low hydraulic permeability. Diffusion is the dominant transport mechanism, controlled by a nano-scale pore system. Assessment of the clays' long-term containment function requires adequate modelling of such pore systems and their evolution. Existing characterisation techniques do not provide complete pore space information for effective modelling, such as pore and throat size distributions and connectivity. Special network models for reactive transport are proposed here using the complimentary character of the pore space and the solid phase. This balances the insufficient characterisation information and provides the means for future mechanical-physical-chemical coupling. The anisotropy and heterogeneity of clays is represented using different length parameters and percentage of pores in different directions. Resulting networks are described as mathematical graphs with efficient discrete calculus formulation of transport. Opalinus Clay (OPA) is chosen as an example. Experimental data for the tritiated water (HTO) and U(vi) diffusion through OPA are presented. Calculated diffusion coefficients of HTO and uranium species are within the ranges of the experimentally determined data in different clay directions. This verifies the proposed pore network model and validates that uranium complexes are diffusing as neutral species in OPA. In the case of U(vi) diffusion the method is extended to account for sorption and convection. Rather than changing pore radii by coarse grained mathematical formula, physical sorption is simulated in each pore, which is more accurate and realistic.

  13. Laboratory study on sequenced permeable reactive barrier remediation for landfill leachate-contaminated groundwater

    International Nuclear Information System (INIS)

    Dong Jun; Zhao Yongsheng; Zhang Weihong; Hong Mei

    2009-01-01

    Permeable reactive barrier (PRB) was a promising technology for groundwater remediation. Landfill leachate-polluted groundwater riches in various hazardous contaminants. Two lab-scale reactors (reactors A and B) were designed for studying the feasibility of PRB to remedy the landfill leachate-polluted groundwater. Zero valent iron (ZVI) and the mixture of ZVI and zeolites constitute the first section of the reactors A and B, respectively; the second section of two reactors consists of oxygen releasing compounds (ORCs). Experimental results indicated that BOD 5 /COD increased from initial 0.32 up to average 0.61 and 0.6 through reactors A and B, respectively. Removal efficiency of mixed media for pollutants was higher than that of single media (ZVI only). Zeolites exhibited selective removal of Zn, Mn, Mg, Cd, Sr, and NH 4 + , and removal efficiency was 97.2%, 99.6%, 95.9%, 90.5% and 97.4%, respectively. The maximum DO concentration of reactors A and B were 7.64 and 6.78 mg/L, respectively, while the water flowed through the ORC. Therefore, sequenced PRB system was effective and was proposed as an alternative method to remedy polluted groundwater by landfill leachate

  14. IN SITU DESTRUCTION OF CHLORINATED HYDROCARBON COMPOUNDS IN GROUNDWATER USING CATALYTIC REDUCTIVE REDUCTIVE DEHALOGENATION IN A REACTIVE WELL: TESTING AND OPERATIONAL EXPERIENCES. (R825421)

    Science.gov (United States)

    A groundwater treatment technology based on catalytic reductive dehalogenation has been developed to efficiently destroy chlorinated hydrocarbons in situ using a reactive well approach. The treatment process utilizes dissolved H2 as an electron donor, in...

  15. A reactive barrier to enhance the removal of emerging organic compounds during artificial recharge of aquifers through infiltration basins

    OpenAIRE

    Valhondo, Cristina

    2017-01-01

    Artificial recharge of aquifers through infiltration basins (AR) improves water quality and in- creases groundwater resources, which make of it an appropriate technique for the renaturalization of waters affected directly or indirectly by wastewater effluents. Emerging organic compounds (EOCs), typically present in such waters, are mainly reduced during AR by sorption and biotrans- formation. We installed a reactive barrier in an infiltration basin (5000 m2) to enhance the removal of EOCs ...

  16. Non-thermal dielectric barrier discharge plasma induces angiogenesis through reactive oxygen species.

    Science.gov (United States)

    Arjunan, Krishna Priya; Friedman, Gary; Fridman, Alexander; Clyne, Alisa Morss

    2012-01-07

    Vascularization plays a key role in processes such as wound healing and tissue engineering. Non-thermal plasma, which primarily produces reactive oxygen species (ROS), has recently emerged as an efficient tool in medical applications including blood coagulation, sterilization and malignant cell apoptosis. Liquids and porcine aortic endothelial cells were treated with a non-thermal dielectric barrier discharge plasma in vitro. Plasma treatment of phosphate-buffered saline (PBS) and serum-free medium increased ROS concentration in a dose-dependent manner, with a higher concentration observed in serum-free medium compared with PBS. Species concentration inside cells peaked 1 h after treatment, followed by a decrease 3 h post treatment. Endothelial cells treated with a plasma dose of 4.2 J cm(-2) had 1.7 times more cells than untreated samples 5 days after plasma treatment. The 4.2 J cm(-2) plasma dose increased two-dimensional migration distance by 40 per cent compared with untreated control, while the number of cells that migrated through a three-dimensional collagen gel increased by 15 per cent. Tube formation was also enhanced by plasma treatment, with tube lengths in plasma-treated samples measuring 2.6 times longer than control samples. A fibroblast growth factor-2 (FGF-2) neutralizing antibody and ROS scavengers abrogated these angiogenic effects. These data indicate that plasma enhanced proliferation, migration and tube formation is due to FGF-2 release induced by plasma-produced ROS. Non-thermal plasma may be used as a potential tool for applying ROS in precise doses to enhance vascularization.

  17. Reactivity of sulfide-containing silane toward boehmite and in situ modified rubber/boehmite composites by the silane

    Science.gov (United States)

    Lin, Tengfei; Zhu, Lixin; Chen, Weiwei; Wu, Siwu; Guo, Baochun; Jia, Demin

    2013-09-01

    The silanization reaction between boehmite (BM) nanoplatelets and bis-[3-(triethoxysilyl)-propyl]-tetrasulfide (TESPT) was characterized in detail. Via such modification process, the grafted sulfide moieties on the BM endow reactivity toward rubber and substantially improved hydrophobicity for BM. Accordingly, TESPT was employed as in situ modifier for the nitrile rubber (NBR)/BM compounds to improve the mechanical properties of the reinforced vulcanizates. The effects of BM content and in situ modification on the mechanical properties, curing characteristics and morphology were investigated. BM was found to be effective in improving the mechanical performance of NBR vulcanizates. The NBR/BM composites could be further strengthened by the incorporation of TESPT. The interfacial adhesion of NBR/BM composites was obviously improved by the addition of TESPT. The substantially improved mechanical performance was correlated to the interfacial reaction and the improved dispersion of BM in rubber matrix.

  18. Prediction of Groundwater Quality Improvement Down-Gradient of In Situ Permeable Treatment Barriers and Fully-Remediated Source Zones. ESTCP Cost and Performance Report

    National Research Council Canada - National Science Library

    Johnson, Paul C; Carlson, Pamela M; Dahlen, Paul

    2008-01-01

    In situ permeable treatment barriers (PTB) are designed so that contaminated groundwater flows through an engineered treatment zone within which contaminants are eliminated or the concentrations are significantly reduced...

  19. In situ resistance measurements of bronze process Nb-Sn-Cu-Ta multifilamentary composite conductors during reactive diffusion

    International Nuclear Information System (INIS)

    Tan, K S; Hopkins, S C; Glowacki, B A; Majoros, M; Astill, D

    2004-01-01

    The conditions under which the Nb 3 Sn intermetallic layer is formed by solid-state reactive diffusion processes in bronze process multifilamentary conductors greatly influence the performance of the conductors. By convention, isothermal heat treatment is used and often causes non-uniformity of A15 layers formed across the wire. Therefore, characterization and optimization of the conductor during the reactive diffusion processes is crucial in order to improve the overall conductor's performance. In this paper, a different characterization approach and perhaps an optimization technique is presented, namely in situ resistance measurement by an alternating current (AC) method. By treating the components of such multifilamentary wires as a set of parallel resistors, the resistances of the components may be combined using the usual rules for resistors in parallel. The results show that the resistivity of the entire wire changes significantly during the reactive diffusion processes. The development of the Nb 3 Sn layer in bronze process Nb-Sn-Cu-Ta multifilamentary wires at different stages of the reactive diffusion processes has been monitored using measured resistivity changes, and correlated with results from DTA, ACS, SEM and EDS

  20. Estimation of biotransformation and sorption of emerging organic compounds (EOCs) during artificial recharge through a reactive barrier.

    Science.gov (United States)

    Valhondo, C.; Martinez-Landa, L.; Carrera, J.; Hidalgo, J. J.; Ayora, C.

    2016-12-01

    The reuse of lesser quality water such as effluents from wastewater treatment plants or effluent-receiving water bodies has been promoted due to the water shortages affecting many regions of the world. Artificial recharge through infiltration basins is known to improve several water quality parameters including the attenuation of emerging organic compounds (EOCs). Many of these contaminants exhibit redox dependent biotransformation because the redox state is one of the factors controlling microbial community development. Together with biotransformation, sorption also affects the behavior of EOCs in their passage through the soil. We studied EOCs attenuation in an infiltration system is located in Sant Vicenç dells Horts on the Llobregat delta (Barcelona, Spain), where the local water agency has an artificial recharge pilot project . The Llobregat river water used for the artificial recharge is affected by treatment plant effluents which contain EOCs. A reactive barrier consisting of vegetable compost, clay, and iron oxide was installed in the bottom of the infiltration basin to enhance biotransformation and sorption of EOCs. The barrier releases dissolved organic carbon, which favors the development of a broad range of redox environments, and supplies neutral, cationic, and anionic surfaces to favor sorption of different types of contaminants. Results were excellent, but quantitative evaluation of the EOCs attenuation requires knowledge of the residence time distribution of infiltrated water. A tracer test was performed by adding tracers to the infiltration water and interpreting the breakthrough curves at diverse monitoring points with a 2D multilayer numerical model. The calibrated model quantify degradation, as a first order law, and sorption through a linear distribution coefficient for ten selected EOCs. Results indicate higher degradation rates and sorption coefficients in the reactive barrier than in the rest of the aquifer for nine and eight of the ten

  1. In-situ porous reactive wall for treatment of Cr(VI) and trichloroethylene in groundwater

    International Nuclear Information System (INIS)

    Blowes, D.W.; Bennett, T.A.; Gillham, R.W.

    1997-01-01

    A permeable reactive wall for treating groundwater contaminated with hexavalent chromium (Cr(VI)) and trichloroethylene (TCE) was installed at the U.S. Coast Guard Support Center in Elizabeth City, NC in June, 1996. The porous reactive wall is 46 m long, 0.6 m wide, and 7.3 m deep. The reactive wall was installed in less then six hours using a continuous trenching technique which simultaneously removed the aquifer material and replaced it with reactive material. The wall is composed of 100% elemental iron in the form of iron filings. Preliminary laboratory experiments, with site groundwater and reactive materials similar to the full-scale wall components, were successful in decreasing 11 mg/L Cr(VI) to < 0.01 mg/L and 1700 μg/L TCE to < 1 μg/L. Detailed field monitoring commenced in November, 1996. The monitoring program includes groundwater sampling upgradient, downgradient and within the reactive wall, and collection of core samples for mineralogical and microbiological study. Preliminary results from the monitoring program indicate that the wall successfully removes Cr(VI) from influent concentrations of 6 mg/L to < 0.01 mg/L, and TCE from 5600 μg/L to 5.3 μg/L within the wall

  2. In situ mid-infrared analyses of reactive gas-phase intermediates in TEOS/Ozone SAPCVD

    International Nuclear Information System (INIS)

    Whidden, Thomas K.; Doiron, Sarah

    1998-01-01

    In this report, we present in situ characterizations of chemical vapour deposition (CVD) reactors used in silicon dioxide thin film depositions. The characterizations are based on Fourier transform infrared spectroscopy. The infrared absorption data are interpreted within the context of process and thin film properties and the bearing of the spectroscopic data upon the chemical mechanisms extant in the deposition reaction. The relevance of the interpretations to real-time process control is discussed. The process under study in this work is TEOS/ozone-based deposition of silicon dioxide thin films at subatmospheric pressures. This process exhibits many desirable properties but has fundamental problems that may be solvable by reaction control based on in situ analyses and the real-time manipulation of reagent concentrations and process conditions. Herein we discuss our preliminary data on characterizations of TEOS/ozone chemistries in commercial reactor configurations. Reaction products and reactive intermediate species are detected and identified. Quantitative in situ measurements of the reagent materials are demonstrated. Preliminary correlations of these data with process and thin film properties are discussed

  3. SURFACE-ALTERED ZEOLITES AS PERMEABLE BARRIERS FOR IN SITU TREATMENT OF CONTAMINATED GROUNDWATER

    International Nuclear Information System (INIS)

    Bowman, Robert S.; Li, Zhaohui; Roy, Stephen J.; Burt, Todd; Johnson, Timothy L.; Johnson, Richard L.

    1999-01-01

    The overall objective of this effort is to develop and test a zeolite-based permeable barrier system for containing and remediating contaminated groundwater. The projected product is an engineered and tested permeable barrier system that can be adopted by the commercial sector

  4. SURFACE-ALTERED ZEOLITES AS PERMEABLE BARRIERS FOR IN SITU TREATMENT OF CONTAMINATED GROUNDWATER

    Energy Technology Data Exchange (ETDEWEB)

    Robert S. Bowman; Zhaohui Li; Stephen J. Roy; Todd Burt; Timothy L. Johnson; Richard L. Johnson

    1999-08-30

    The overall objective of this effort is to develop and test a zeolite-based permeable barrier system for containing and remediating contaminated groundwater. The projected product is an engineered and tested permeable barrier system that can be adopted by the commercial sector.

  5. Thermo-responsive in-situ forming hydrogels as barriers to prevent post-operative peritendinous adhesion.

    Science.gov (United States)

    Chou, Pang-Yun; Chen, Shih-Heng; Chen, Chih-Hao; Chen, Shih-Hsien; Fong, Yi Teng; Chen, Jyh-Ping

    2017-11-01

    In this study, we aimed to assess whether thermo-responsive in-situ forming hydrogels based on poly(N-isopropylacrylamide) (PNIPAM) could prevent post-operative peritendinous adhesion. The clinical advantages of the thermo-responsive hydrogels are acting as barrier material to block penetration of fibroblasts, providing mobility and flexibility during application and enabling injection through a small opening to fill spaces of any shape after surgery. The thermo-responsiveness of hydrogels was determined to ensure their clinic uses. By grafting hydrophilic biopolymers chitosan (CS) and hyaluronic acid (HA) to PNIPAM, the copolymer hydrogels show enhanced water retention and lubrication, while reduced volume shrinkage during phase transition. In cell culture experiments, the thermo-responsive hydrogel has good biocompatibility and reduces fibroblast penetration. In animal experiments, the effectiveness of preventing post-operative peritendinous adhesion was studied in a rabbit deep flexor tendon model. From gross examination, histology, bending angles of joints, tendon gliding excursion and pull-out force, HA-CS-PNIPAM (HACPN) was confirmed to be the best barrier material to prevent post-operative peritendinous adhesion compared to PNIPAM and CS-PNIPAM (CPN) hydrogels and a commercial barrier film Seprafilm®. There was no significant difference in the breaking strength of HACPN-treated tendons and spontaneously healed ones, indicating HACPN hydrogel application did not interfere with normal tendon healing. We conclude that HACPN hydrogel can provide the best functional outcomes to significantly prevent post-operative tendon adhesion in vivo. We prepared thermo-responsive in-situ forming hydrogels based on poly(N-isopropylacrylamide) (PNIPAM) to prevent post-operative peritendinous adhesion. The injectable barrier hydrogel could have better anti-adhesive properties than current commercial products by acting as barrier material to block penetration of fibroblasts

  6. Attenuation of pyrite oxidation with a fly ash pre-barrier: Reactive transport modelling of column experiments

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Lopez, R.; Cama, J.; Nieto, J.M.; Ayora, C.; Saaltink, M.W. [University of Huelva, Huelva (Spain). Dept. of Geology

    2009-09-15

    Conventional permeable reactive barriers (PRBs) for passive treatment of groundwater contaminated by acid mine drainage (AMD) use limestone as reactive material that neutralizes water acidity. However, the limestone-alkalinity potential ceases as inevitable precipitation of secondary metal-phases on grain surfaces occurs, limiting its efficiency. In the present study, fly ash derived from coal combustion is investigated as an alternative alkalinity generating material for the passive treatment of AMD using solution-saturated column experiments. Unlike conventional systems, the utilization of fly ash in a pre-barrier to intercept the non-polluted recharge water before this water reacts with pyrite-rich wastes is proposed. Chemical variation in the columns was interpreted with the reactive transport code RETRASO. In parallel, kinetics of fly ash dissolution at alkaline pH were studied using flow-through experiments and incorporated into the model. In a saturated column filled solely with pyritic sludge-quartz sand (1: 10), oxidation took place at acidic conditions (pH 3.7). According to SO{sub 4}{sup 2-} release and pH, pyrite dissolution occurred favourably in the solution-saturated porous medium until dissolved O{sub 2} was totally consumed. In a second saturated column, pyrite oxidation took place at alkaline conditions (pH 10.45) as acidity was neutralized by fly ash dissolution in a previous level. At this pH Fe release from pyrite dissolution was immediately depleted as Fe-oxy(hydroxide) phases that precipitated on the pyrite grains, forming Fe-coatings (microencapsulation). With time, pyrite microencapsulation inhibited oxidation in practically 97% of the pyritic sludge. Rapid pyrite-surface passivation decreased its reactivity, preventing AMD production in the relatively short term.

  7. Evaluation and Computational Characterization of the Faciliated Transport of Glc Carbon C-1 Oxime Reactivators Across a Blood Brain Barrier Model

    Science.gov (United States)

    2013-01-01

    blood brain barrier (BBB) to reactivate inhibited brain acetylcholinesterase (AChE). We selected glucose (Glc) transporters (GLUT) for this purpose as...Eur. J. Pharm. 332 (1997) 43–52. [4] N.J. Abbott , L. Ronnback, E. Hansson, Astrocyte-endothelial interactions at the blood –brain barrier, Nat. Rev...5a. CONTRACT NUMBER oxime reactivators across a blood brain barrier model 5b. GRANT NUMBER 1.E005.08.WR 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S

  8. In Situ Raman Spectroscopy of Supported Chromium Oxide Catalysts: Reactivity Studies with Methanol and Butane

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Wachs, I.E.

    1996-01-01

    The interactions of methanol and butane with supported chromium oxide catalysts under oxidizing and reducing conditions were studied by in situ Raman spectroscopy as a function of the specific oxide support (Al2O3, ZrO2, TiO2, SiO2, Nb2O5, 3% SiO2/TiO2, 3% TiO2/SiO2, and a physical mixture of SiO2

  9. Project Work Plan: Hanford 100-D Area Treatability Demonstration - In Situ Biostimulation for Reducing Barrier

    Energy Technology Data Exchange (ETDEWEB)

    Fruchter, Jonathan S.; Truex, Michael J.; Vermeul, Vince R.; Long, Philip E.

    2006-05-31

    This work plan supports a new, integrated approach to accelerate cleanup of chromium in the Hanford 100 Areas. This new approach will provide supplemental treatment upgradient of the ISRM barrier by directly treating chromium and other oxidizing species in groundwater (i.e., nitrate and dissolved oxygen), thereby increasing the longevity of the ISRM barrier and protecting the ecological receptors and human health at the river boundary.

  10. A 3D-printed microbial cell culture platform with in situ PEGDA hydrogel barriers for differential substrate delivery.

    Science.gov (United States)

    Kadilak, Andrea L; Rehaag, Jessica C; Harrington, Cameron A; Shor, Leslie M

    2017-09-01

    Additive manufacturing, or 3D-printing techniques have recently begun to enable simpler, faster, and cheaper production of millifluidic devices at resolutions approaching 100-200  μ m. At this resolution, cell culture devices can be constructed that more accurately replicate natural environments compared with conventional culturing techniques. A number of microfluidics researchers have begun incorporating additive manufacturing into their work, using 3D-printed devices in a wide array of chemical, fluidic, and even some biological applications. Here, we describe a 3D-printed cell culture platform and demonstrate its use in culturing Pseudomonas putida KT2440 bacteria for 44 h under a differential substrate gradient. Polyethylene glycol diacrylate (PEGDA) hydrogel barriers are patterned in situ within a 3D-printed channel. Transport of the toluidine blue tracer dye through the hydrogel barriers is characterized. Nutrients and oxygen were delivered to cells in the culture region by diffusion through the PEGDA hydrogel barriers from adjacent media or saline perfusion channels. Expression of green fluorescent protein by P. putida KT2440 enabled real time visualization of cell density within the 3D-printed channel, and demonstrated cells were actively expressing protein over the course of the experiment. Cells were observed clustering near hydrogel barrier boundaries where fresh substrate and oxygen were being delivered via diffusive transport, but cells were unable to penetrate the barrier. The device described here provides a versatile and easy to implement platform for cell culture in readily controlled gradient microenvironments. By adjusting device geometry and hydrogel properties, this platform could be further customized for a wide variety of biological applications.

  11. Degassing, gas retention and release in Fe(0) permeable reactive barriers.

    Science.gov (United States)

    Ruhl, Aki S; Jekel, Martin

    2014-04-01

    Corrosion of Fe(0) has been successfully utilized for the reductive treatment of multiple contaminants. Under anaerobic conditions, concurrent corrosion leads to the generation of hydrogen and its liberation as a gas. Gas bubbles are mobile or trapped within the irregular pore structure leading to a reduction of the water filled pore volume and thus decreased residence time and permeability (gas clogging). With regard to the contaminant transport to the reactive site, the estimation of surface properties of the reactive material indicated that individual gas bubbles only occupied minor contact areas of the reactive surface. Quantification of gas entrapment by both gravimetrical and tracer investigations revealed that development of preferential flow paths was not significant. A novel continuous gravimetrical method was implemented to record variations in gas entrapment and gas bubble releases from the reactive filling. Variation of grain size fractions revealed that the pore geometry had a significant impact on gas release. Large pores led to the release of comparably large gas amounts while smaller volumes were released from finer pores with a higher frequency. Relevant processes are explained with a simplified pictorial sequence that incorporates relevant mechanisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. In situ reactive compatibilization of natural rubber/acrylic-bentonite composites via peroxide-induced vulcanization

    International Nuclear Information System (INIS)

    Fu, Lihua; Lei, Zhiwen; Xu, Chuanhui; Chen, Yukun

    2016-01-01

    To achieve good interfacial interaction between fillers and rubber matrix is always a hot topic in rubber reinforcing industry. In this paper, acid activated bentonite (Bt) was alkalified to be alkaline calcium-bentonite (ACBt), then acrylic acid (AA) was employed to modify ACBt to obtain acrylic-bentonite (ABt). The results of Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) illustrated that acrylate groups were chemically boned onto the surface of Bt and the layer spacing of Bt was increased. During peroxide-induced vulcanization, in situ compatibilization of ABt was realized via the reaction between the unsaturated bonds of acrylate groups on the surface of Bt and the natural rubber (NR) chains. This resulted in an enhanced cross-linked network which contributed to the improved mechanical properties of NR/ABt composites. - Highlights: • Acrylate groups were chemically boned onto the surface of bentonite. • In situ compatibilization was realized via the reaction of acrylate group and NR. • ABt particles participated in forming the NR crosslink network. • A potential reinforcing material options for “white” rubber products.

  13. In situ reactive compatibilization of natural rubber/acrylic-bentonite composites via peroxide-induced vulcanization

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Lihua; Lei, Zhiwen [Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Xu, Chuanhui, E-mail: xuhuiyee@gxu.edu.cn [Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Chen, Yukun, E-mail: cyk@scut.edu.cn [The Key Laboratory of Polymer Processing Engineering, Ministry of Education, China(South China University of Technology), Guangzhou, 510640 (China)

    2016-02-15

    To achieve good interfacial interaction between fillers and rubber matrix is always a hot topic in rubber reinforcing industry. In this paper, acid activated bentonite (Bt) was alkalified to be alkaline calcium-bentonite (ACBt), then acrylic acid (AA) was employed to modify ACBt to obtain acrylic-bentonite (ABt). The results of Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) illustrated that acrylate groups were chemically boned onto the surface of Bt and the layer spacing of Bt was increased. During peroxide-induced vulcanization, in situ compatibilization of ABt was realized via the reaction between the unsaturated bonds of acrylate groups on the surface of Bt and the natural rubber (NR) chains. This resulted in an enhanced cross-linked network which contributed to the improved mechanical properties of NR/ABt composites. - Highlights: • Acrylate groups were chemically boned onto the surface of bentonite. • In situ compatibilization was realized via the reaction of acrylate group and NR. • ABt particles participated in forming the NR crosslink network. • A potential reinforcing material options for “white” rubber products.

  14. Reactive transport modelling of groundwater-bentonite interaction: Effects on exchangeable cations in an alternative buffer material in-situ test

    International Nuclear Information System (INIS)

    Wallis, I.; Idiart, A.; Dohrmann, R.; Post, V.

    2016-01-01

    Bentonite clays are regarded a promising material for engineered barrier systems for the encapsulation of hazardous wastes because of their low hydraulic permeability, swelling potential, ability to self-seal cracks in contact with water and their high sorption potential. SKB (Svensk Kärnbränslehantering) has been conducting long term field scale experiments on potential buffer materials at the Äspö Hard Rock Laboratory for radioactive waste disposal in Sweden. The Alternative Buffer Material (ABM) test examined buffer properties of eleven different clay materials under the influence of groundwater and at temperatures reaching up to 135 °C, replicating the heat pulse after waste emplacement. Clay materials were emplaced into holes drilled in fractured granite as compacted rings around a central heater element and subsequently brought into contact with groundwater for 880 days. After test termination, and against expectations, all clay materials were found to have undergone large scale alterations in the cation exchange population. A reactive-diffusive transport model was developed to aid the interpretation of the observed large-scale porewater chemistry changes. It was found, that the interaction between Äspö groundwater and the clay blocks, together with the geochemical nature of the clays (Na vs Ca-dominated clays) exerted the strongest control on the porewater chemistry. A pronounced exchange of Na by Ca was observed and simulated, driven by large Ca concentrations in the contacting groundwater. The model was able to link the porewater alterations to the fracture network in the deposition hole. The speed of alterations was in turn linked to high diffusion coefficients under the applied temperatures, which facilitated the propagation of hydrochemical changes into the clays. With diffusion coefficients increased by up to one order of magnitude at the maximum temperatures, the study was able to demonstrate the importance of considering temperature

  15. Remediation of groundwater contaminated with the lead-phenol binary system by granular dead anaerobic sludge-permeable reactive barrier.

    Science.gov (United States)

    Faisal, Ayad A H; Abd Ali, Ziad T

    2017-10-01

    Computer solutions (COMSOL) Multiphysics 3.5a software was used for simulating the one-dimensional equilibrium transport of the lead-phenol binary system including the sorption process through saturated sandy soil as the aquifer and granular dead anaerobic sludge (GDAS) as the permeable reactive barrier. Fourier-transform infrared spectroscopy analysis proved that the carboxylic and alcohol groups are responsible for the bio-sorption of lead onto GDAS, while phosphines, aromatic and alkane are the functional groups responsible for the bio-sorption of phenol. Batch tests have been performed to characterize the equilibrium sorption properties of the GDAS and sandy soil in lead and/or phenol containing aqueous solutions. Numerical and experimental results proved that the barrier plays a potential role in the restriction of the contaminant plume migration and there is a linear relationship between longevity and thickness of the barrier. A good agreement between these results was recognized with root mean squared error not exceeding 0.04.

  16. In situ production of tantalum carbide nanodispersoids in a copper matrix by reactive milling and hot extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Manotas-Albor, Milton, E-mail: manotasm@uninorte.edu.co [Grupo de Investigación en Física Aplicada, Departamento de Física, Universidad del Norte, Km. 5 vía a Puerto Colombia, Barranquilla (Colombia); Departamento de Ingeniería Mecánica, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Beauchef 850, Santiago (Chile); Vargas-Uscategui, Alejandro [Laboratorio de Materiales a Nanoescala, Departamento de Ciencia de los Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Tupper Av. 2069, Santiago (Chile); Palma, Rodrigo [Departamento de Ingeniería Mecánica, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Beauchef 850, Santiago (Chile); Mosquera, Edgar [Laboratorio de Materiales a Nanoescala, Departamento de Ciencia de los Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Tupper Av. 2069, Santiago (Chile)

    2014-06-15

    Highlights: • Tantalum carbide nanodispersoids were obtained in a copper matrix. • Nanodispersoids were obtained by means of reactive milling followed by hot extrusion. • Hexane was used as the liquid medium for the reactive mechanical alloying process. • Hexane provides the carbon (C) needed for the process. • The reaction of tantalum carbide formation takes place in the hot extrusion. - Abstract: This paper presents a study of the in situ production of tantalum carbide nanodispersoids in a copper matrix. The copper matrix composites were produced by means of reactive milling in hexane (C{sub 6}H{sub 14}) followed by hot extrusion. The composite materials were characterized by means of optical emission spectroscopy (OES), X-ray fluorescence (XRF), scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and Vickers micro-hardness. The effect of milling time was analyzed in 10, 20 and 30 h in a composite with a nominal composition Cu–5 vol.% TaC. A systematic increase of the dislocations density and the carbon concentration were observed when the milling time was increased, whereas the crystallite size of the composite matrix decreased. The material milled for 30 h and hot-extruded showed a density of 9037 kg m{sup −3} (98.2% densification) and a softening resistance of 204 HV; however the latter value showed an abrupt drop after an annealing treatment at 923 K for 1 h. Finally, the TEM analysis showed the presence of tantalum carbide (Ta{sub 4}C{sub 3}) nanodispersoids.

  17. In Situ Imaging of Particle Formation and Dynamics in Reactive Material Deflagrations

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Kyle T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-12

    Reactive composites utilizing nanoparticles have been the topic of extensive research in the past two decades. The driver for this is that, as the particle size is decreased, the mixing scale between constituents is greatly reduced, which has long thought to increase the rate of chemical reaction. While a general trend of increased reactivity has been seen for metal / metal oxide, or thermite, reactive materials, some results have demonstrated diminishing returns as the particle size is further decreased. Recent results have shown that nanoparticles, which are typically aggregates of several primary particles, can undergo very rapid coalescence to form micron particles once a critical temperature is reached. Experiments on this topic to date have been performed on very small sample masses, and sometimes under vacuum; conditions which are not representative of the environment during a deflagration. In this feasibility study, a custom burn tube was used to ignite and react 100 mg powdered thermite samples in long acrylic tubes. X-ray imaging at APS Sector 32 was performed to image the particle field as a function of distance and time as the rarefied particle cloud expanded and flowed down the tube. Five different thermite formulations were investigated, Al / CuO, Al / Fe2O3, Al / SnO2, Al / WO3, and Al / Fe2O3, along with Al / CuO formulations with different sizes of Al particles ranging from 80 nm to approximate 10 μm. The results clearly show that the sample powder reacts and unloads into a distribution of larger micron-scale particles (~5-500 μm), which continue to react and propagate as the particle-laden stream flows down the tube. This was the first direct imaging of the particle field during a thermite deflagration, and gives significant insight into the evolution of reactants to products. Analysis of phase is currently being pursued to determine whether this method can be used to extract

  18. In situ SANS study of pore microstructure in YSZ thermal barrier coatings

    Czech Academy of Sciences Publication Activity Database

    Strunz, Pavel; Schumacher, G.; Vassen, R.; Wiedenmann, A.

    2004-01-01

    Roč. 52, č. 11 (2004), s. 3305-3312 ISSN 1359-6454 R&D Projects: GA ČR GA202/03/0891 Institutional research plan: CEZ:AV0Z1048901 Keywords : plasma spraying * thermal barrier coatings * ceramics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.490, year: 2004

  19. Structural modification of the skin barrier by OH radicals: a reactive molecular dynamics study for plasma medicine

    International Nuclear Information System (INIS)

    Van der Paal, J; Verlackt, C C; Yusupov, M; Neyts, E C; Bogaerts, A

    2015-01-01

    While plasma treatment of skin diseases and wound healing has been proven highly effective, the underlying mechanisms, and more generally the effect of plasma radicals on skin tissue, are not yet completely understood. In this paper, we perform ReaxFF-based reactive molecular dynamics simulations to investigate the interaction of plasma generated OH radicals with a model system composed of free fatty acids, ceramides, and cholesterol molecules. This model system is an approximation of the upper layer of the skin (stratum corneum). All interaction mechanisms observed in our simulations are initiated by H-abstraction from one of the ceramides. This reaction, in turn, often starts a cascade of other reactions, which eventually lead to the formation of aldehydes, the dissociation of ceramides or the elimination of formaldehyde, and thus eventually to the degradation of the skin barrier function. (paper)

  20. Highly organic natural media as permeable reactive barriers: TCE partitioning and anaerobic degradation profile in eucalyptus mulch and compost.

    Science.gov (United States)

    Öztürk, Zuhal; Tansel, Berrin; Katsenovich, Yelena; Sukop, Michael; Laha, Shonali

    2012-10-01

    Batch and column experiments were conducted with eucalyptus mulch and commercial compost to evaluate suitability of highly organic natural media to support anaerobic decomposition of trichloroethylene (TCE) in groundwater. Experimental data for TCE and its dechlorination byproducts were analyzed with Hydrus-1D model to estimate the partitioning and kinetic parameters for the sequential dechlorination reactions during TCE decomposition. The highly organic natural media allowed development of a bioactive zone capable of decomposing TCE under anaerobic conditions. The first order TCE biodecomposition reaction rates were 0.23 and 1.2d(-1) in eucalyptus mulch and compost media, respectively. The retardation factors in the eucalyptus mulch and compost columns for TCE were 35 and 301, respectively. The results showed that natural organic soil amendments can effectively support the anaerobic bioactive zone for remediation of TCE contaminated groundwater. The natural organic media are effective environmentally sustainable materials for use in permeable reactive barriers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Organic substrates as electron donors in permeable reactive barriers for removal of heavy metals from acid mine drainage.

    Science.gov (United States)

    Kijjanapanich, P; Pakdeerattanamint, K; Lens, P N L; Annachhatre, A P

    2012-12-01

    This research was conducted to select suitable natural organic substrates as potential carbon sources for use as electron donors for biological sulphate reduction in a permeable reactive barrier (PRB). A number of organic substrates were assessed through batch and continuous column experiments under anaerobic conditions with acid mine drainage (AMD) obtained from an abandoned lignite coal mine. To keep the heavy metal concentration at a constant level, the AMD was supplemented with heavy metals whenever necessary. Under anaerobic conditions, sulphate-reducing bacteria (SRB) converted sulphate into sulphide using the organic substrates as electron donors. The sulphide that was generated precipitated heavy metals as metal sulphides. Organic substrates, which yielded the highest sulphate reduction in batch tests, were selected for continuous column experiments which lasted over 200 days. A mixture of pig-farm wastewater treatment sludge, rice husk and coconut husk chips yielded the best heavy metal (Fe, Cu, Zn and Mn) removal efficiencies of over 90%.

  2. Vibrational deactivation on chemically reactive potential surfaces: An exact quantum study of a low barrier collinear model of H + FH, D + FD, H + FD and D + FH

    International Nuclear Information System (INIS)

    Schatz, G.C.; Kuppermann, A.

    1980-01-01

    We study vibrational deactivation processes on chemically reactive potential energy surfaces by examining accurate quantum mechanical transition probabilities and rate constants for the collinear H + FH(v), D + FD(v), H + FD(v), and D + FH(v) reactions. A low barrier (1.7 kcal/mole) potential surface is used in these calculations, and we find that for all four reactions, the reactive inelastic rate constants are larger than the nonreactive ones for the same initial and final vibrational states. However, the ratios of these reactive and nonreactive rate constants depend strongly on the vibrational quantum number v and the isotopic composition of the reagents. Nonreactive and reactive transition probabilities for multiquantum jump transitions are generally comparable to those for single quantum transitions. This vibrationally nonadiabatic behavior is a direct consequence of the severe distortion of the diatomic that occurs in a collision on a low barrier reactive surface, and can make chemically reactive atoms like H or D more efficient deactivators of HF or DF than nonreactive collision partners. Many conclusions are in at least qualitative agreement with those of Wilkin's three dimensional quasiclassical trajectory study on the same systems using a similar surface. We also present results for H + HF(v) collisions which show that for a higher barrier potential surface (33 rather than 1.7 kcal/mole), the deactivation process becomes similar in character to that for nonreactive partners, with v→v-1 processes dominating

  3. Management of groundwater in-situ bioremediation system using reactive transport modelling under parametric uncertainty: field scale application

    Science.gov (United States)

    Verardo, E.; Atteia, O.; Rouvreau, L.

    2015-12-01

    In-situ bioremediation is a commonly used remediation technology to clean up the subsurface of petroleum-contaminated sites. Forecasting remedial performance (in terms of flux and mass reduction) is a challenge due to uncertainties associated with source properties and the uncertainties associated with contribution and efficiency of concentration reducing mechanisms. In this study, predictive uncertainty analysis of bio-remediation system efficiency is carried out with the null-space Monte Carlo (NSMC) method which combines the calibration solution-space parameters with the ensemble of null-space parameters, creating sets of calibration-constrained parameters for input to follow-on remedial efficiency. The first step in the NSMC methodology for uncertainty analysis is model calibration. The model calibration was conducted by matching simulated BTEX concentration to a total of 48 observations from historical data before implementation of treatment. Two different bio-remediation designs were then implemented in the calibrated model. The first consists in pumping/injection wells and the second in permeable barrier coupled with infiltration across slotted piping. The NSMC method was used to calculate 1000 calibration-constrained parameter sets for the two different models. Several variants of the method were implemented to investigate their effect on the efficiency of the NSMC method. The first variant implementation of the NSMC is based on a single calibrated model. In the second variant, models were calibrated from different initial parameter sets. NSMC calibration-constrained parameter sets were sampled from these different calibrated models. We demonstrate that in context of nonlinear model, second variant avoids to underestimate parameter uncertainty which may lead to a poor quantification of predictive uncertainty. Application of the proposed approach to manage bioremediation of groundwater in a real site shows that it is effective to provide support in

  4. Developments in permeable and low permeability barriers

    International Nuclear Information System (INIS)

    Jefferis, S.A.; Norris, G.H.; Thomas, A.O.

    1997-01-01

    The concept of the reactive treatment zone whereby pollutants are attenuated as they move along a pathway in the ground has enabled a re-thinking of many of the concepts of containment. In particular it offers the potential for the control of the flux from a contaminated area by controlling the contaminant concentration in the pathway(s) as well as or instead of using a low permeability barrier. The paper outlines the basic concepts of the reactive treatment zone and the use of permeable and low permeability reactive systems. The paper then gives a case history of the installation of a permeable barrier using an in-situ reaction chamber

  5. Application of kinetic models to the design of a calcite permeable reactive barrier (PRB) for fluoride remediation.

    Science.gov (United States)

    Cai, Qianqian; Turner, Brett D; Sheng, Daichao; Sloan, Scott

    2018-03-01

    The kinetics of fluoride sorption by calcite in the presence of metal ions (Co, Mn, Cd and Ba) have been investigated and modelled using the intra-particle diffusion (IPD), pseudo-second order (PSO), and the Hill 4 and Hill 5 kinetic models. Model comparison using the Akaike Information Criterion (AIC), the Schwarz Bayseian Information Criterion (BIC) and the Bayes Factor allows direct comparison of model results irrespective of the number of model parameters. Information Criterion results indicate "very strong" evidence that the Hill 5 model was the best fitting model for all observed data due to its ability to fit sigmoidal data, with confidence contour analysis showing the model parameters were well constrained by the data. Kinetic results were used to determine the thickness of a calcite permeable reactive barrier required to achieve up to 99.9% fluoride removal at a groundwater flow of 0.1 m.day -1 . Fluoride removal half-life (t 0.5 ) values were found to increase in the order Ba ≈ stonedust (a 99% pure natural calcite) barrier width of 0.97 ± 0.02 m was found to be required for the fluoride/calcite (stonedust) only system when using no factor of safety, whilst in the presence of Mn and Co, the width increased to 2.76 ± 0.28 and 19.83 ± 0.37 m respectively. In comparison, the PSO model predicted a required barrier thickness of ∼46.0, 62.6 & 50.3 m respectively for the fluoride/calcite, Mn and Co systems under the same conditions. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  6. Decontamination systems information and research program -- Literature review in support of development of standard test protocols and barrier design models for in situ formed barriers project

    International Nuclear Information System (INIS)

    1994-12-01

    The US Department of Energy is responsible for approximately 3,000 sites in which contaminants such as carbon tetrachloride, trichlorethylene, perchlorethylene, non-volatile and soluble organic and insoluble organics (PCBs and pesticides) are encountered. In specific areas of these sites radioactive contaminants are stored in underground storage tanks which were originally designed and constructed with a 30-year projected life. Many of these tanks are now 10 years beyond the design life and failures have occurred allowing the basic liquids (ph of 8 to 9) to leak into the unconsolidated soils below. Nearly one half of the storage tanks located at the Hanford Washington Reservation are suspected of leaking and contaminating the soils beneath them. The Hanford site is located in a semi-arid climate region with rainfall of less than 6 inches annually, and studies have indicated that very little of this water finds its way to the groundwater to move the water down gradient toward the Columbia River. This provides the government with time to develop a barrier system to prevent further contamination of the groundwater, and to develop and test remediation systems to stabilize or remove the contaminant materials. In parallel to remediation efforts, confinement and containment technologies are needed to retard or prevent the advancement of contamination plumes through the environment until the implementation of remediation technology efforts are completed. This project examines the various confinement and containment technologies and protocols for testing the materials in relation to their function in-situ

  7. Integrated evaluation of the performance of a more than seven year old permeable reactive barrier at a site contaminated with chlorinated aliphatic hydrocarbons (CAHs)

    DEFF Research Database (Denmark)

    Muchitsch, Nanna; Nooten, Thomas Van; Bastiaens, Leen

    2011-01-01

    An important issue of concern for permeable reactive iron barriers is the long-term efficiency of the barriers due to the long operational periods required. Mineral precipitation resulting from the anaerobic corrosion of the iron filings and bacteria present in the barrier may play an important...... performed equally well as virgin granular iron of the same type based on determined degradation rates despite that parts of the cored iron material were covered by mineral precipitates (especially iron sulfides, carbonate green rust and aragonite). The PCR analysis performed on the iron core samples...

  8. Densification of Ce0.9Gd0.1O1.95 barrier layer by in-situ solid state reaction

    DEFF Research Database (Denmark)

    Ni, De Wei; Esposito, Vincenzo

    2014-01-01

    A novel methodology, called in-situ solid state reaction (SSR), is developed and achieved for the densification of gadolinia doped ceria (CGO) barrier layer (BL) within the solid oxide fuel cell (SOFC) technology. The method is based on the combined use of impregnation technique and a designed two...

  9. Reinforcement of nylon 6,6/nylon 6,6 grafted nanodiamond composites by in situ reactive extrusion

    Science.gov (United States)

    Choi, Eun-Yeob; Kim, Kiho; Kim, Chang-Keun; Kang, Eunah

    2016-11-01

    Nanodiamond (ND), an emerging new carbon material, was exploited to reinforce nylon 6,6 (PA66) polymer composites. Surface modified nanodiamonds with acyl chloride end groups were employed to chemically graft into PA66, enhancing the interfacial adhesion and thus the mechanical properties. The ND grafted PA66 (PA66-g-ND) reinforced PA66 composite prepared by in situ reactive extrusion exhibited increased tensile strength and modulus. The tensile strength and modulus of PA66/3 wt.% PA66-g-ND composites were enhanced by 11.6 and 20.8%, respectively when compared to those of the bare PA66 matrix. Even the PA66/pristine ND composites exhibited enhanced mechanical properties. The PA66-g-ND and the homogeneously dispersed PA66-g-ND in PA66 matrix were examined using X-ray photoelectron spectroscopy, thermogravimetric analysis, scanning electron microscopy and transmission electron microscopy techniques. The mechanical properties and thermal conductivities of the nanodiamond incorporated PA66 composites were also explored. The enhanced mechanical properties and thermal conductivities of the PA66-g-ND/PA66 composites make them potential materials for new applications as functional engineered thermoplastics.

  10. Surfactant-assisted direct biodiesel production from wet Nannochloropsis occulata by in situ transesterification/reactive extraction

    Directory of Open Access Journals (Sweden)

    Kamoru A. Salam

    2016-03-01

    Full Text Available This article reports an in situ transesterification/reactive extraction of Nannochloropsis occulata for fatty acid methyl ester (FAME production using H2SO4, sodium dodecyl sulphate (SDS plus H2SO4 and zirconium dodecyl sulphate (ZDS. A maximum 67 % FAME yield was produced by ZDS. Effect of inclusion of sodium dodecyl sulphate (SDS in H2SO4 for FAME enhancement and water tolerance was also studied by hydrating the algae with 10 % - 30 % distilled water (w/w dry algae. Treatment with SDS in H2SO4 increases the FAME production rate and water tolerance of the process. Inclusion of SDS in H2SO4 produced a maximum 98.3 % FAME yield at 20 % moisture in the algae. The FAME concentration began to diminish only at 30 % moisture in the algae. Furthermore, the presence of a small amount of water in the biomass or methanol increased the lipid extraction efficiency, improving the FAME yield, rather than inhibiting the reaction.

  11. Management of Animal Carcass Disposal Sites Using a Biochar Permeable Reactive Barrier and Fast Growth Tree (Populus euramericana: A Field Study in Korea

    Directory of Open Access Journals (Sweden)

    Jung-Hwan Yoon

    2017-03-01

    Full Text Available Among many disposal options of animal carcasses due to animal diseases including foot-and-mouth disease (FMD and avian influenza (AI, on-farm burial has been the most frequently used one in Korea. Animal carcasses generate contaminants such as ammonium-N and chloride. This study aimed at testing biochar (BC as a permeable reactive barrier (PRB material in combination with fast growing tree species (Populus euramericana to mitigate groundwater pollution from animal burial sites. For this, a PRB filled with BC was installed and 400 poplar tree (P. euramericana seedlings were planted. Tested BC was obtained from rice husk and its efficiency to mitigate contaminant migration from a burial site of pig carcasses was tested using ammonium-N, chloride, electrical conductivity (EC, and pH as monitoring parameters. Monitoring wells downstream from the burial site were used. Leachates from a monitoring well, three wells inside the burial site close to PRB and three wells outside the burial site close to PRB were sampled and analyzed for ammonium-N, Cl−, EC, and pH for four years from PRB installation. The pH, EC, and ammonium-N of leachate fluctuated during the test period depending on precipitation. pH, EC, and ammonium-N of the leachate samples collected from outside of the burial site close to PRB decreased compared to those from inside of the burial site close to PRB. The concentrations of ammonium-N in the leachate from the monitoring well kept under the threshold value of 10 mg·L−1 for two years from PRB construction. In addition, the growth of poplar plants appeared to be increased via uptaking available N and P released from the burial sites. Achieved results suggest that BC PRBs can be used to in situ mitigate contaminant release from buried animal carcasses.

  12. Performance of a Zerovalent Iron Reactive Barrier for the Treatment of Arsenic in Groundwater: Part 2. Geochemical Modeling and Solid Phase Studies

    Science.gov (United States)

    Arsenic uptake processes were evaluated in a zerovalent iron reactive barrier installed at a lead smelting facility using geochemical modeling, solid-phase analysis, and X-ray absorption spectroscopy techniques. Aqueous speciation of arsenic plays a key role in directing arsenic...

  13. Oxidation of volatile organic compound vapours by potassium permanganate in a horizontal permeable reactive barrier under unsaturated conditions: experiments and modeling

    NARCIS (Netherlands)

    Ghareh Mahmoodlu, Mojtaba|info:eu-repo/dai/nl/357287746

    2014-01-01

    In this research we evaluated the potential of using solid potassium permanganate to create a horizontal permeable reactive barrier (HPRB) for oxidizing VOC vapours in the unsaturated zone. We have performed batch experiments, short column, and long column experiments, and have fully analyzed the

  14. REMOVAL OF ADDED NITRATE IN THE SINGLE, BINARY, AND TERNARY SYSTEMS OF COTTON BURR COMPOST, ZEROVALENT IRON, AND SEDIMENT: IMPLICATIONS FOR GROUNDWATER NITRATE REMEDIATION USING PERMEABLE REACTIVE BARRIERS

    Science.gov (United States)

    Recent research has shown that carbonaceous solid materials and zerovalent iron (Fe0) may potentially be used as media in permeable reactive barriers (PRBs) to degrade groundwater nitrate via heterotrophic denitrification in the solid carbon system, and via abiotic reduction and ...

  15. Remediation of the Highland Drive South Ravine, Port Hope, Ontario: Contaminated Groundwater Discharge Management Using Permeable Reactive Barriers and Contaminated Sediment Removal - 13447

    Energy Technology Data Exchange (ETDEWEB)

    Smyth, David; Roos, Gillian [Golder Associates Ltd., 2390 Argentia Road, Mississauga, ON L5N 5Z7 (Canada); Ferguson Jones, Andrea [MMM Group Ltd., 100 Commerce Valley Drive West, Thornhill, ON L3T 0A1 (Canada); Case, Glenn [AECL Port Hope Area Initiative Management Office, 115 Toronto Road, Port Hope, ON L1A 3S4 (Canada); Yule, Adam [Public Works and Government Services Canada, 4900 Yonge Street, 11th Floor, Toronto, ON, M2N 6A6 (Canada)

    2013-07-01

    The Highland Drive South Ravine (HDSR) is the discharge area for groundwater originating from the Highland Drive Landfill, the Pine Street North Extension (PSNE) roadbed parts of the Highland Drive roadbed and the PSNE Consolidation Site that contain historical low-level radioactive waste (LLRW). The contaminant plume from these LLRW sites contains elevated concentrations of uranium and arsenic and discharges with groundwater to shallow soils in a wet discharge area within the ravine, and directly to Hunt's Pond and Highland Drive South Creek, which are immediately to the south of the wet discharge area. Remediation and environmental management plans for HDSR have been developed within the framework of the Port Hope Project and the Port Hope Area Initiative. The LLRW sites will be fully remediated by excavation and relocation to a new Long-Term Waste Management Facility (LTWMF) as part of the Port Hope Project. It is projected, however, that the groundwater contaminant plume between the remediated LLRW sites and HDSR will persist for several hundreds of years. At the HDSR, sediment remediation within Hunt's Ponds and Highland Drive South Creek, excavation of the existing and placement of clean fill will be undertaken to remove current accumulations of solid-phase uranium and arsenic associated with the upper 0.75 m of soil in the wet discharge area, and permeable reactive barriers (PRBs) will be used for in situ treatment of contaminated groundwater to prevent the ongoing discharge of uranium and arsenic to the area in HDSR where shallow soil excavation and replacement has been undertaken. Bench-scale testing using groundwater from HDSR has confirmed excellent treatment characteristics for both uranium and arsenic using permeable reactive mixtures containing granular zero-valent iron (ZVI). A sequence of three PRBs containing ZVI and sand in backfilled trenches has been designed to intercept the groundwater flow system prior to its discharge to the ground

  16. Remediation of the Highland Drive South Ravine, Port Hope, Ontario: Contaminated Groundwater Discharge Management Using Permeable Reactive Barriers and Contaminated Sediment Removal - 13447

    International Nuclear Information System (INIS)

    Smyth, David; Roos, Gillian; Ferguson Jones, Andrea; Case, Glenn; Yule, Adam

    2013-01-01

    The Highland Drive South Ravine (HDSR) is the discharge area for groundwater originating from the Highland Drive Landfill, the Pine Street North Extension (PSNE) roadbed parts of the Highland Drive roadbed and the PSNE Consolidation Site that contain historical low-level radioactive waste (LLRW). The contaminant plume from these LLRW sites contains elevated concentrations of uranium and arsenic and discharges with groundwater to shallow soils in a wet discharge area within the ravine, and directly to Hunt's Pond and Highland Drive South Creek, which are immediately to the south of the wet discharge area. Remediation and environmental management plans for HDSR have been developed within the framework of the Port Hope Project and the Port Hope Area Initiative. The LLRW sites will be fully remediated by excavation and relocation to a new Long-Term Waste Management Facility (LTWMF) as part of the Port Hope Project. It is projected, however, that the groundwater contaminant plume between the remediated LLRW sites and HDSR will persist for several hundreds of years. At the HDSR, sediment remediation within Hunt's Ponds and Highland Drive South Creek, excavation of the existing and placement of clean fill will be undertaken to remove current accumulations of solid-phase uranium and arsenic associated with the upper 0.75 m of soil in the wet discharge area, and permeable reactive barriers (PRBs) will be used for in situ treatment of contaminated groundwater to prevent the ongoing discharge of uranium and arsenic to the area in HDSR where shallow soil excavation and replacement has been undertaken. Bench-scale testing using groundwater from HDSR has confirmed excellent treatment characteristics for both uranium and arsenic using permeable reactive mixtures containing granular zero-valent iron (ZVI). A sequence of three PRBs containing ZVI and sand in backfilled trenches has been designed to intercept the groundwater flow system prior to its discharge to the ground surface

  17. A binding-site barrier affects imaging efficiency of high affinity amyloid-reactive peptide radiotracers in vivo.

    Science.gov (United States)

    Wall, Jonathan S; Williams, Angela; Richey, Tina; Stuckey, Alan; Huang, Ying; Wooliver, Craig; Macy, Sallie; Heidel, Eric; Gupta, Neil; Lee, Angela; Rader, Brianna; Martin, Emily B; Kennel, Stephen J

    2013-01-01

    Amyloid is a complex pathology associated with a growing number of diseases including Alzheimer's disease, type 2 diabetes, rheumatoid arthritis, and myeloma. The distribution and extent of amyloid deposition in body organs establishes the prognosis and can define treatment options; therefore, determining the amyloid load by using non-invasive molecular imaging is clinically important. We have identified a heparin-binding peptide designated p5 that, when radioiodinated, was capable of selectively imaging systemic visceral AA amyloidosis in a murine model of the disease. The p5 peptide was posited to bind effectively to amyloid deposits, relative to similarly charged polybasic heparin-reactive peptides, because it adopted a polar α helix secondary structure. We have now synthesized a variant, p5R, in which the 8 lysine amino acids of p5 have been replaced with arginine residues predisposing the peptide toward the α helical conformation in an effort to enhance the reactivity of the peptide with the amyloid substrate. The p5R peptide had higher affinity for amyloid and visualized AA amyloid in mice by using SPECT/CT imaging; however, the microdistribution, as evidenced in micro-autoradiographs, was dramatically altered relative to the p5 peptide due to its increased affinity and a resultant "binding site barrier" effect. These data suggest that radioiodinated peptide p5R may be optimal for the in vivo detection of discreet, perivascular amyloid, as found in the brain and pancreatic vasculature, by using molecular imaging techniques; however, peptide p5, due to its increased penetration, may yield more quantitative imaging of expansive tissue amyloid deposits.

  18. A binding-site barrier affects imaging efficiency of high affinity amyloid-reactive peptide radiotracers in vivo.

    Directory of Open Access Journals (Sweden)

    Jonathan S Wall

    Full Text Available Amyloid is a complex pathology associated with a growing number of diseases including Alzheimer's disease, type 2 diabetes, rheumatoid arthritis, and myeloma. The distribution and extent of amyloid deposition in body organs establishes the prognosis and can define treatment options; therefore, determining the amyloid load by using non-invasive molecular imaging is clinically important. We have identified a heparin-binding peptide designated p5 that, when radioiodinated, was capable of selectively imaging systemic visceral AA amyloidosis in a murine model of the disease. The p5 peptide was posited to bind effectively to amyloid deposits, relative to similarly charged polybasic heparin-reactive peptides, because it adopted a polar α helix secondary structure. We have now synthesized a variant, p5R, in which the 8 lysine amino acids of p5 have been replaced with arginine residues predisposing the peptide toward the α helical conformation in an effort to enhance the reactivity of the peptide with the amyloid substrate. The p5R peptide had higher affinity for amyloid and visualized AA amyloid in mice by using SPECT/CT imaging; however, the microdistribution, as evidenced in micro-autoradiographs, was dramatically altered relative to the p5 peptide due to its increased affinity and a resultant "binding site barrier" effect. These data suggest that radioiodinated peptide p5R may be optimal for the in vivo detection of discreet, perivascular amyloid, as found in the brain and pancreatic vasculature, by using molecular imaging techniques; however, peptide p5, due to its increased penetration, may yield more quantitative imaging of expansive tissue amyloid deposits.

  19. Development of modified flyash as a permeable reactive barrier medium for a former manufactured gas plant site, Northern Ireland

    Science.gov (United States)

    Doherty, R.; Phillips, D. H.; McGeough, K. L.; Walsh, K. P.; Kalin, R. M.

    2006-05-01

    A sequential biological permeable reactive barrier (PRB) was determined to be the best option for remediating groundwater that has become contaminated with a wide range of organic contaminants (i.e., benzene, toluene, ethylbenzene, xylene and polyaromatic hydrocarbons), heavy metals (i.e., lead and arsenic), and cyanide at a former manufactured gas plant after 150 years of operation in Portadown, Northern Ireland. The objective of this study was to develop a modified flyash that could be used in the initial cell within a sequential biological PRB to filter complex contaminated groundwater containing ammonium. Flyash modified with lime (CaOH) and alum was subjected to a series of batch tests which investigated the modified cation exchange capacity (CEC) and rate of removal of anions and cations from the solution. These tests showed that a high flyash composition medium (80%) could remove 8.65 mol of ammonium contaminant for every kilogram of medium. The modified CEC procedure ruled out the possibility of cation exchange as the major removal mechanism. The medium could also adsorb anions as well as cations (i.e., Pb and Cr), but not with the same capacity. The initial mechanism for Pb and Cr removal is probably precipitation. This is followed by sorption, which is possibly the only mechanism for the removal of dichromate anions. Scanning electron microscopic analysis revealed very small (productive zeolite formation. Surface area measurements showed that biofilm growth on the medium could be a major factor in the comparative reduction of surface area between real and synthetic contaminant groundwaters. The modified flyash was found to be a highly sorptive granular material that did not inhibit microbiological activity, however, leaching tests revealed that the medium would fail as a long-term barrier material.

  20. Examples of Department of Energy Successes for Remediation of Contaminated Groundwater: Permeable Reactive Barrier and Dynamic Underground Stripping ASTD Projects

    International Nuclear Information System (INIS)

    Purdy, C.; Gerdes, K.; Aljayoushi, J.; Kaback, D.; Ivory, T.

    2002-01-01

    Since 1998, the Department of Energy's (DOE) Office of Environmental Management has funded the Accelerated Site Technology Deployment (ASTD) Program to expedite deployment of alternative technologies that can save time and money for the environmental cleanup at DOE sites across the nation. The ASTD program has accelerated more than one hundred deployments of new technologies under 76 projects that focus on a broad spectrum of EM problems. More than 25 environmental restoration projects have been initiated to solve the following types of problems: characterization of the subsurface using chemical, radiological, geophysical, and statistical methods; treatment of groundwater contaminated with DNAPLs, metals, or radionuclides; and other projects such as landfill covers, purge water management systems, and treatment of explosives-contaminated soils. One of the major goals of the ASTD Program is to deploy a new technology or process at multiple DOE sites. ASTD projects are encouraged to identify subsequent deployments at other sites. Some of the projects that have successfully deployed technologies at multiple sites focusing on cleanup of contaminated groundwater include: Permeable Reactive Barriers (Monticello, Rocky Flats, and Kansas City), treating uranium and organics in groundwater; and Dynamic Underground Stripping (Portsmouth, and Savannah River), thermally treating DNAPL source zones. Each year more and more new technologies and approaches are being used at DOE sites due to the ASTD program. DOE sites are sharing their successes and communicating lessons learned so that the new technologies can replace the baseline or standard approaches at DOE sites, thus expediting cleanup and saving money

  1. Biological permeable reactive barriers coupled with electrokinetic soil flushing for the treatment of diesel-polluted clay soil.

    Science.gov (United States)

    Mena, Esperanza; Ruiz, Clara; Villaseñor, José; Rodrigo, Manuel A; Cañizares, Pablo

    2015-01-01

    Removal of diesel from spiked kaolin has been studied in the laboratory using coupled electrokinetic soil flushing (EKSF) and bioremediation through an innovative biological permeable reactive barriers (Bio-PRBs) positioned between electrode wells. The results show that this technology is efficient in the removal of pollutants and allows the soil to maintain the appropriate conditions for microorganism growth in terms of pH, temperature, and nutrients. At the same time, EKSF was demonstrated to be a very interesting technology for transporting pollutants, microorganisms and nutrients, although results indicate that careful management is necessary to avoid the depletion of nutrients, which are effectively transported by electro-migration. After two weeks of operation, 30% of pollutants are removed and energy consumption is under 70 kWh m(-3). Main fluxes (electroosmosis and evaporation) and changes in the most relevant parameters (nutrients, diesel, microorganisms, surfactants, moisture conductivity and pH) during treatment and in a complete post-study analysis are studied to give a comprehensive description of the most relevant processes occurring in the soil (pollutant transport and biodegradation). Copyright © 2014 Elsevier B.V. All rights reserved.

  2. In-situ studies on the performance of landfill caps (compacted soil liners, geomembranes, geosynthetic clay liners, capillary barriers)

    International Nuclear Information System (INIS)

    Melchior, S.

    1997-01-01

    Since 1986 different types of landfill covers have been studied in-situ on the Georgswerder landfill in Hamburg, Germany. Water balance data are available for eight years. The performance of different carriers has been measured by collecting the leakage on areas ranging from 100 m 2 to 500 m 2 . Composite liners with geomembranes performed best, showing no leakage. An extended capillary barrier also performed well. The performance of compacted soil liners, however, decreased severely within five years due to desiccation, shrinkage and plant root penetration (liner leakage now ranging from 150 mm/a to 200 mm/a). About 50 % of the water that reaches the surface of the liner is leaking through it. The maximum leakage rates have increased from 2 x 10 -10 m 3 m -2 s -1 to 4 x 10 -8 m 3 m -2 s -1 . Two types of geosynthetic clay liners (GCL) have been tested for two years now with disappointing results. The GCL desiccated during the first dry summer of the study. High percolation rates through the GCL were measured during the following winter (45 mm resp. 63 mm in four months). Wetting of the GCL did not significantly reduce the percolation rates

  3. Using dissolved gas analysis to investigate the performance of an organic carbon permeable reactive barrier for the treatment of mine drainage

    Science.gov (United States)

    Williams, R.L.; Mayer, K.U.; Amos, R.T.; Blowes, D.W.; Ptacek, C.J.; Bain, J.G.

    2007-01-01

    The strongly reducing nature of permeable reactive barrier (PRB) treatment materials can lead to gas production, potentially resulting in the formation of gas bubbles and ebullition. Degassing in organic C based PRB systems due to the production of gases (primarily CO2 and CH4) is investigated using the depletion of naturally occurring non-reactive gases Ar and N2, to identify, confirm, and quantify chemical and physical processes. Sampling and analysis of dissolved gases were performed at the Nickel Rim Mine Organic Carbon PRB, which was designed for the treatment of groundwater contaminated by low quality mine drainage characterized by slightly acidic pH, and elevated Fe(II) and SO4 concentrations. A simple 4-gas degassing model was used to analyze the dissolved gas data, and the results indicate that SO4 reduction is by far the dominant process of organic C consumption within the barrier. The data provided additional information to delineate rates of microbially mediated SO4 reduction and confirm the presence of slow and fast flow zones within the barrier. Degassing was incorporated into multicomponent reactive transport simulations for the barrier and the simulations were successful in reproducing observed dissolved gas trends.

  4. Design studies on the engineered barrier system and on the in-situ experiments under the conditions of geological environment in Horonobe

    International Nuclear Information System (INIS)

    Kurihara, Yuji; Yui, Mikazu; Tanai, Kenji

    2004-04-01

    Following studies have been done in this papers in order to apply the technologies based on H12 report to the actual geological conditions of Horonobe underground research laboratory. 1) Reconsidering the process of repository design, the design process charts of a repository were presented. In the H12 report, the design process of the engineering barrier system was followed by the facility design process. In this paper, the both processes were placed in parallel position. 2) The relation between geological conditions and the performance of engineering barrier systems and the specifications of engineering barrier systems was arranged and the geological information needed for design of engineering barrier were selected. 3) The appropriate form of geological information as input-data for design were showed and the procedure for setting input-data was presented. 4) Based on the state of geological investigations at Horonobe, mechanical input-data were arranged for the design of the in-situ experiments on engineered barrier system at HORONOBE. 5) The stability of the hall for the in-situ experiments was studied by numerical analysis and the results indicated that there are difference in stability between the depth of 500 m and 570 m. (author)

  5. Long-term performance of elemental iron and hydroxyapatite for uranium retention in permeable reactive barriers used for groundwater remediation

    International Nuclear Information System (INIS)

    Biermann, V.

    2007-01-01

    Elemental iron (Fe 0 ) and hydroxyapatite (HAP) were evaluated as reactive mate-rials for use in permeable reactive barriers (PRBs) to remove uranium from conta-minated groundwater. Special attention was given to the long-term performance of the materials, which was investigated by means of column tests with a duration of up to 30 months using two different artificial groundwaters (AGW) with varying composition and uranium concentration. The interaction of the materials with AGW was studied in column tests using 237 U as a radiotracer to monitor the movement of the contamination front through the columns. The tested materials were shredded cast iron (granulated grey cast iron, 0.3 - 1.3 mm) supplied by Gotthard Mayer, Rheinfelden, Germany, and food quality grade hydroxyapatite (Ca 5 (PO 4 ) 3 OH, 99 % 0 (AGW with 9.6 mg U/L and low bicarbonate content of 120 mg/L). No breakthrough was observed for the Fe 0 columns with effluent uranium con-centrations being below the detection limit of 10 μg/L after treating more than 2,000 pore volumes (PV) and no uranium could be leached from loaded Fe 0 columns with 200 PV of uranium free AGW. However, columns with high Fe 0 content (≥ 50%) suffered from severe loss of permeability when AGW with ≥ 320 mg/L bicarbonate was used. In the HAP columns a breakthrough occurred with effluent uranium concentrations > 15 μg/l after treating 1,240 PV (10% and 50% breakthrough after 1,460 PV and 2,140 PV respectively). 12.2% of the accu-mulated uranium could be desorbed again with 840 PV of uranium free AGW. Adsorption was found to be the dominant reaction mechanism for uranium and HAP. Image analysis of high uranium content samples showed uranium and phosphate bearing crystals growing from HAP surfaces. The uranium phases chernikovite and meta-ankoleite of the autunite group were identified by x-ray diffraction. The existence of these mineral phases proves that surface precipitation also occurs under favourable conditions. No uranium

  6. Permeable reactive barrier of surface hydrophobic granular activated carbon coupled with elemental iron for the removal of 2,4-dichlorophenol in water

    Energy Technology Data Exchange (ETDEWEB)

    Yang Ji, E-mail: yangji@ecust.edu.cn [School of Resources and Environmental Engineering, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237 (China); Cao Limei; Guo Rui; Jia Jinping [School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2010-12-15

    Granular activated carbon was modified with dimethyl dichlorosilane to improve its surface hydrophobicity, and therefore to improve the performance of permeable reactive barrier constructed with the modified granular activated carbon and elemental iron. X-ray photoelectron spectroscopy shows that the surface silicon concentration of the modified granular activated carbon is higher than that of the original one, leading to the increased surface hydrophobicity. Although the specific surface area decreased from 895 to 835 m{sup 2} g{sup -1}, the modified granular activated carbon could adsorb 20% more 2,4-dichlorophenol than the original one did in water. It is also proven that the permeable reactive barrier with the modified granular activated carbon is more efficient at 2,4-dichlorophenol dechlorination, in which process 2,4-dichlorophenol is transformed to 2-chlorophenol or 4-chlorophenol then to phenol, or to phenol directly.

  7. Permeable reactive barrier of surface hydrophobic granular activated carbon coupled with elemental iron for the removal of 2,4-dichlorophenol in water

    International Nuclear Information System (INIS)

    Yang Ji; Cao Limei; Guo Rui; Jia Jinping

    2010-01-01

    Granular activated carbon was modified with dimethyl dichlorosilane to improve its surface hydrophobicity, and therefore to improve the performance of permeable reactive barrier constructed with the modified granular activated carbon and elemental iron. X-ray photoelectron spectroscopy shows that the surface silicon concentration of the modified granular activated carbon is higher than that of the original one, leading to the increased surface hydrophobicity. Although the specific surface area decreased from 895 to 835 m 2 g -1 , the modified granular activated carbon could adsorb 20% more 2,4-dichlorophenol than the original one did in water. It is also proven that the permeable reactive barrier with the modified granular activated carbon is more efficient at 2,4-dichlorophenol dechlorination, in which process 2,4-dichlorophenol is transformed to 2-chlorophenol or 4-chlorophenol then to phenol, or to phenol directly.

  8. Permeable reactive barrier of surface hydrophobic granular activated carbon coupled with elemental iron for the removal of 2,4-dichlorophenol in water.

    Science.gov (United States)

    Yang, Ji; Cao, Limei; Guo, Rui; Jia, Jinping

    2010-12-15

    Granular activated carbon was modified with dimethyl dichlorosilane to improve its surface hydrophobicity, and therefore to improve the performance of permeable reactive barrier constructed with the modified granular activated carbon and elemental iron. X-ray photoelectron spectroscopy shows that the surface silicon concentration of the modified granular activated carbon is higher than that of the original one, leading to the increased surface hydrophobicity. Although the specific surface area decreased from 895 to 835 m(2)g(-1), the modified granular activated carbon could adsorb 20% more 2,4-dichlorophenol than the original one did in water. It is also proven that the permeable reactive barrier with the modified granular activated carbon is more efficient at 2,4-dichlorophenol dechlorination, in which process 2,4-dichlorophenol is transformed to 2-chlorophenol or 4-chlorophenol then to phenol, or to phenol directly. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Tidal and Seasonal River Stage Fluctuations Impact the Formation of Permeable Natural Reactive Barriers in Riverbank Sediments

    Science.gov (United States)

    Shuai, P.; Myers, K.; Knappett, P.; Cardenas, M. B.

    2017-12-01

    River stage fluctuations, induced by ocean tides and rainfall, enhance the exchange between oxic river water and reducing groundwater. When mixing occurs within riverbank aquifers high in dissolved iron (Fe) and arsenic (As), the timing and extent of mixing likely control the accumulation and mobility of arsenic (As) within the hyporheic zone. Here we analyzed the impact of tidal and seasonal water level fluctuations on the formation of a Permeable Natural Reactive Barrier (PNRB) within an aquifer adjacent to the Meghna River, Bangladesh and its impact on As mobility. We found that the periodicity and amplitude of river stage fluctuations strongly control the spatial and temporal distribution of the PNRB, comprised of rapidly precipitated iron oxides, in this riverbank along a relatively straight reach of the Meghna River. The PNRB forms much faster and with higher concentration of Fe-oxide under semi-diurnal (12 hr) tidal fluctuations compared to simulations run assuming only neap-spring tides (14 day). As tidal amplitude increases, a larger contact area between oxic river water and reducing groundwater results which in turn leads to the horizontal expansion of the PNRB into the riverbank. Seasonal fluctuations expand the PNRB up to 60 m horizontally and 5 m vertically. In contrast neap-spring tidal fluctuations result in a smaller PNRB that is 10 and 3 m in the horizontal and vertical dimensions. The predicted changes in the spatial distribution of iron oxides within the riverbank would trap and release As at different times of the year. The PNRB could act as a secondary source of As to drinking water aquifers under sustained groundwater pumping scenarios near the river.

  10. Linking field and laboratory studies to investigate nitrate removal using permeable reactive barrier technology during managed recharge

    Science.gov (United States)

    Gorski, G.; Beganskas, S.; Weir, W. B.; Redford, K.; Saltikov, C.; Fisher, A. T.

    2017-12-01

    We present data from a series of field and laboratory studies investigating mechanisms for the enhanced removal of nitrate during infiltration as a part of managed recharge. These studies combine physical, geochemical, and microbiological data collected during controlled infiltration experiments at both a plot and a laboratory scale using permeable reactive barrier (PRB) technology. The presence of a PRB, made of wood chips or biochar, enhances nitrate removal by stimulating the growth and productivity of native soil microbes to process nitrate via denitrification. Earlier work has shown that unamended soil can remove up to 50% of nitrate during infiltration at rates microbiological data show significant population changes below the PRB where most of the cycling occurs. Coupled with isotopic analyses, these results suggest that a PRB expands the range of infiltration rates at which significant nitrate can be removed by microbial activity. Further, nitrate removal occurs at different depths below the biochar and redwood chips, suggesting different mechanisms of nitrate removal in the presence of different PRB materials. In laboratory studies we flowed artificial groundwater through intact sediment cores collected at the same field site where we also ran infiltration tests. These experiments show that the fluid flow rate and the presence of a PRB exhibit primary control on nitrate removal during infiltration, and that the relationship between flow rate and nitrate removal is fundamentally different in the presence of a PRB. These data from multiple scales and flow regimes are combined to offer a deeper understanding how the use of PRB technology during infiltration can help address a significant non-point source issue at the surface-subsurface interface.

  11. FeS-coated sand for removal of arsenic(III) under anaerobic conditions in permeable reactive barriers

    Science.gov (United States)

    Han, Y.-S.; Gallegos, T.J.; Demond, A.H.; Hayes, K.F.

    2011-01-01

    Iron sulfide (as mackinawite, FeS) has shown considerable promise as a material for the removal of As(III) under anoxic conditions. However, as a nanoparticulate material, synthetic FeS is not suitable for use in conventional permeable reactive barriers (PRBs). This study developed a methodology for coating a natural silica sand to produce a material of an appropriate diameter for a PRB. Aging time, pH, rinse time, and volume ratios were varied, with a maximum coating of 4.0 mg FeS/g sand achieved using a pH 5.5 solution at a 1:4 volume ratio (sand: 2 g/L FeS suspension), three days of aging and no rinsing. Comparing the mass deposited on the sand, which had a natural iron-oxide coating, with and without chemical washing showed that the iron-oxide coating was essential to the formation of a stable FeS coating. Scanning electron microscopy images of the FeS-coated sand showed a patchwise FeS surface coating. X-ray photoelectron spectroscopy showed a partial oxidation of the Fe(II) to Fe(III) during the coating process, and some oxidation of S to polysulfides. Removal of As(III) by FeS-coated sand was 30% of that by nanoparticulate FeS at pH 5 and 7. At pH 9, the relative removal was 400%, perhaps due to the natural oxide coating of the sand or a secondary mineral phase from mackinawite oxidation. Although many studies have investigated the coating of sands with iron oxides, little prior work reports coating with iron sulfides. The results suggest that a suitable PRB material for the removal of As(III) under anoxic conditions can be produced through the deposition of a coating of FeS onto natural silica sand with an iron-oxide coating. ?? 2010 Elsevier Ltd.

  12. Lipoteichoic acid from Staphylococcus aureus induces lung endothelial cell barrier dysfunction: role of reactive oxygen and nitrogen species.

    Directory of Open Access Journals (Sweden)

    Amy Barton Pai

    Full Text Available Tunneled central venous catheters (TCVCs are used for dialysis access in 82% of new hemodialysis patients and are rapidly colonized with Gram-positive organism (e.g. Staphylococcus aureus biofilm, a source of recurrent infections and chronic inflammation. Lipoteichoic acid (LTA, a cell wall ribitol polymer from Gram-positive organisms, mediates inflammation through the Toll-like receptor 2 (TLR2. The effect of LTA on lung endothelial permeability is not known. We tested the hypothesis that LTA from Staphylococcus aureus induces alterations in the permeability of pulmonary microvessel endothelial monolayers (PMEM that result from activation of TLR2 and are mediated by reactive oxygen/nitrogen species (RONS. The permeability of PMEM was assessed by the clearance rate of Evans blue-labeled albumin, the activation of the TLR2 pathway was assessed by Western blot, and the generation of RONS was measured by the fluorescence of oxidized dihydroethidium and a dichlorofluorescein derivative. Treatment with LTA or the TLR2 agonist Pam((3CSK((4 induced significant increases in albumin permeability, IκBα phosphorylation, IRAK1 degradation, RONS generation, and endothelial nitric oxide synthase (eNOS activation (as measured by the p-eNOS(ser1177:p-eNOS(thr495 ratio. The effects on permeability and RONS were effectively prevented by co-administration of the superoxide scavenger Tiron, the peroxynitrite scavenger Urate, or the eNOS inhibitor L-NAME and these effects as well as eNOS activation were reduced or prevented by pretreatment with an IRAK1/4 inhibitor. The results indicate that the activation of TLR2 and the generation of ROS/RNS mediates LTA-induced barrier dysfunction in PMEM.

  13. Fabrication of High Gas Barrier Epoxy Nanocomposites: An Approach Based on Layered Silicate Functionalized by a Compatible and Reactive Modifier of Epoxy-Diamine Adduct

    Directory of Open Access Journals (Sweden)

    Ran Wei

    2018-05-01

    Full Text Available To solve the drawbacks of poor dispersion and weak interface in gas barrier nanocomposites, a novel epoxy-diamine adduct (DDA was synthesized by reacting epoxy monomer DGEBA with curing agent D400 to functionalize montmorillonite (MMT, which could provide complete compatibility and reactivity with a DGEBA/D400 epoxy matrix. Thereafter, sodium type montmorillonite (Na-MMT and organic-MMTs functionalized by DDA and polyether amines were incorporated with epoxy to manufacture nanocomposites. The effects of MMT functionalization on the morphology and gas barrier property of nanocomposites were evaluated. The results showed that DDA was successfully synthesized, terminating with epoxy and amine groups. By simulating the small-angle neutron scattering data with a sandwich structure model, the optimal dispersion/exfoliation of MMT was observed in a DDA-MMT/DGEBA nanocomposite with a mean radius of 751 Å, a layer thickness of 30.8 Å, and only two layers in each tactoid. Moreover, the DDA-MMT/DGEBA nanocomposite exhibited the best N2 barrier properties, which were about five times those of neat epoxy. Based on a modified Nielsen model, it was clarified that this excellent gas barrier property was due to the homogeneously dispersed lamellas with almost exfoliated structures. The improved morphology and barrier property confirmed the superiority of the adduct, which provides a general method for developing gas barrier nanocomposites.

  14. Interfacial Chemistry-Induced Modulation of Schottky Barrier Heights: In Situ Measurements of the Pt-Amorphous Indium Gallium Zinc Oxide Interface Using X-ray Photoelectron Spectroscopy.

    Science.gov (United States)

    Flynn, Brendan T; Oleksak, Richard P; Thevuthasan, Suntharampillai; Herman, Gregory S

    2018-01-31

    A method to understand the role of interfacial chemistry on the modulation of Schottky barrier heights for platinum and amorphous indium gallium zinc oxide (a-IGZO) interfaces is demonstrated through thermal processing and background ambient pressure control. In situ X-ray photoelectron spectroscopy was used to characterize the interfacial chemistries that modulate barrier heights in this system. The primary changes were a significant chemical reduction of indium, from In 3+ to In 0 , that occurs during deposition of Pt on to the a-IGZO surface in ultrahigh vacuum. Postannealing and controlling the background ambient O 2 pressure allows further tuning of the reduction of indium and the corresponding Schottky barrier heights from 0.17 to 0.77 eV. Understanding the detailed interfacial chemistries at Pt/a-IGZO interfaces may allow for improved electronic device performance, including Schottky diodes, memristors, and metal-semiconductor field-effect transistors.

  15. Development of high-speed reactive processing system for carbon fiber-reinforced polyamide-6 composite: In-situ anionic ring-opening polymerization

    International Nuclear Information System (INIS)

    Kim, Sang-Woo; Seong, Dong Gi; Yi, Jin-Woo; Um, Moon-Kwang

    2016-01-01

    In order to manufacture carbon fiber-reinforced polyamide-6 (PA-6) composite, we optimized the reactive processing system. The in-situ anionic ring-opening polymerization of ε-caprolactam was utilized with proper catalyst and initiator for PA-6 matrix. The mechanical properties such as tensile strength, inter-laminar shear strength and compressive strength of the produced carbon fiber-reinforced PA-6 composite were measured, which were compared with the corresponding scanning electron microscope (SEM) images to investigate the polymer properties as well as the interfacial interaction between fiber and polymer matrix. Furthermore, kinetics of in-situ anionic ring-opening polymerization of ε-caprolactam will be discussed in the viewpoint of increasing manufacturing speed and interfacial bonding between PA-6 matrix and carbon fiber during polymerization.

  16. Development of high-speed reactive processing system for carbon fiber-reinforced polyamide-6 composite: In-situ anionic ring-opening polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang-Woo; Seong, Dong Gi; Yi, Jin-Woo; Um, Moon-Kwang [Composites Research Division, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam, 642–831 (Korea, Republic of)

    2016-05-18

    In order to manufacture carbon fiber-reinforced polyamide-6 (PA-6) composite, we optimized the reactive processing system. The in-situ anionic ring-opening polymerization of ε-caprolactam was utilized with proper catalyst and initiator for PA-6 matrix. The mechanical properties such as tensile strength, inter-laminar shear strength and compressive strength of the produced carbon fiber-reinforced PA-6 composite were measured, which were compared with the corresponding scanning electron microscope (SEM) images to investigate the polymer properties as well as the interfacial interaction between fiber and polymer matrix. Furthermore, kinetics of in-situ anionic ring-opening polymerization of ε-caprolactam will be discussed in the viewpoint of increasing manufacturing speed and interfacial bonding between PA-6 matrix and carbon fiber during polymerization.

  17. Efficient oxidative dissolution of V2O3 by the in situ electro-generated reactive oxygen species on N-doped carbon felt electrodes

    International Nuclear Information System (INIS)

    Xue, Yudong; Wang, Yunting; Zheng, Shili; Sun, Zhi; Zhang, Yi; Jin, Wei

    2017-01-01

    Highlights: • Novel alkaline electro-Fenton-like was applied for V 2 O 3 oxidative dissolution. • N-doped carbon felt electrode was fabricated for the two-electron ORR. • ROS including ·OH and HO 2 − was in-situ generated from the electrochemical system. • A significant enhancement of V 2 O 3 dissolution was achieved due to the ROS. - Abstract: Oxidative dissolution is a critical step for the efficient remediation of heavy metal oxides in large-scale solid wastes. In the present study, a novel electro-oxidative dissolution process of V 2 O 3 to VO 4 3− is achieved by the in-situ generated reactive oxygen species on the N-doped carbon felt cathode in alkaline media. The electro-catalytic HO 2 − generation and hydrophilic behavior were significantly enhanced by the introduction of nitrogen-containing functional groups. Besides, the mechanism of electrochemical vanadium conversion is systematically illustrated, and a vanadium self-induced electro-Fenton-like reaction is proposed. By employing the radical quenching and ESR measurements, the contributions for V(III) dissolution is determined to be 43.5% by HO 2 − and 56.5% by hydroxyl radicals, respectively. It should be noted that the V 2 O 3 solid particles can be efficiently dissolved via adsorption-reaction scheme on the carbon felt electrode. This novel electrochemical strategy provides a promising solution for the heavy metal oxide treatment and further understanding for the in situ reactive oxygen species.

  18. Transfer of Direct and Moiré Patterns by Reactive Ion Etching Through Ex Situ Fabricated Nanoporous Polymer Masks

    DEFF Research Database (Denmark)

    Shvets, Violetta; Hentschel, Thomas; Schulte, Lars

    2015-01-01

    modification, which are essential prerequisites for the conventional procedure of block copolymer directed self-assembly. The demonstrated elliptic and moire pattern transfers prove that the proposed ex situ procedure allows us to realize nanolithographic patterns that are difficult to realize...

  19. Geochemical barriers formed during in-situ leaching in ore-bearing horizons of hydrogenic uranium deposit

    International Nuclear Information System (INIS)

    Solodov, E.N.

    1994-01-01

    The behaviour of major metallogenetic element and associated elements on the boundary of the leaching solution transiting to the unchanged natural water in a layered uranium deposit of infiltration origin is studied. Neutralization geochemical barrier and their relevant secondary barriers-degassing barrier and neutralization barrier are defined, and recent accumulation of uranium, rare earth elements and a series of other elements at these barriers are in progress. The action of underground microorganism during this process is pointed out; the neutralization capacity of the ore-hosting terrigenous rocks is determined and the dimension of the matter removal, migration and reprecipitation in the studied system is evaluated. The principal conclusion is that the studied geological media have sufficient protective nature to resist direct and strong leaching action of the solution

  20. Uranium Removal from Groundwater by Permeable Reactive Barrier with Zero-Valent Iron and Organic Carbon Mixtures: Laboratory and Field Studies

    Directory of Open Access Journals (Sweden)

    Borys Kornilovych

    2018-06-01

    Full Text Available Zhovty Vody city, located in south-central Ukraine, has long been an important center for the Ukrainian uranium and iron industries. Uranium and iron mining and processing activities during the Cold War resulted in poorly managed sources of radionuclides and heavy metals. Widespread groundwater and surface water contamination has occurred, which creates a significant risk to drinking water supplies. Hydrogeologic and geochemical conditions near large uranium mine tailings storage facility (TSF were characterized to provide data to locate, design and install a permeable reactive barrier (PRB to treat groundwater contaminated by leachate infiltrating from the TSF. The effectiveness of three different permeable reactive materials was investigated: zero-valent iron (ZVI for reduction, sorption, and precipitation of redox-sensitive oxyanions; phosphate material to transform dissolved metals to less soluble phases; and organic carbon substrates to promote bioremediation processes. Batch and column experiments with Zhovty Vody site groundwater were conducted to evaluate reactivity of the materials. Reaction rates, residence time and comparison with site-specific clean-up standards were determined. Results of the study demonstrate the effectiveness of the use of the PRB for ground water protection near uranium mine TSF. The greatest decrease was obtained using ZVI-based reactive media and the combined media of ZVI/phosphate/organic carbon combinations.

  1. Contamination movement around a permeable reactive barrier at Solid Waste Management Unit 12, Naval Weapons Station Charleston, North Charleston, South Carolina, 2009

    Science.gov (United States)

    Vroblesky, Don A.; Petkewich, Matthew D.; Conlon, Kevin J.

    2010-01-01

    The U.S. Geological Survey and the Naval Facilities Engineering Command Southeast investigated natural and engineered remediation of chlorinated volatile organic compound groundwater contamination at Solid Waste Management Unit 12 at the Naval Weapons Station Charleston, North Charleston, South Carolina, beginning in 2000. In early 2004, groundwater contaminants began moving around the southern end of a permeable reactive barrier (PRB) installed by a consultant in December 2002. The PRB is a 130-foot-long and 3-foot-wide barrier consisting of varying amounts of zero-valent iron with or without sand mixture. Contamination moving around the PRB probably has been transported at least 75 feet downgradient from the PRB at a rate of about 15 to 29 feet per year.

  2. In situ remediation of uranium contaminated groundwater

    International Nuclear Information System (INIS)

    Dwyer, B.P.; Marozas, D.C.

    1997-01-01

    In an effort to develop cost-efficient techniques for remediating uranium contaminated groundwater at DOE Uranium Mill Tailing Remedial Action (UMTRA) sites nationwide, Sandia National Laboratories (SNL) deployed a pilot scale research project at an UMTRA site in Durango, CO. Implementation included design, construction, and subsequent monitoring of an in situ passive reactive barrier to remove Uranium from the tailings pile effluent. A reactive subsurface barrier is produced by emplacing a reactant material (in this experiment various forms of metallic iron) in the flow path of the contaminated groundwater. Conceptually the iron media reduces and/or adsorbs uranium in situ to acceptable regulatory levels. In addition, other metals such as Se, Mo, and As have been removed by the reductive/adsorptive process. The primary objective of the experiment was to eliminate the need for surface treatment of tailing pile effluent. Experimental design, and laboratory and field results are discussed with regard to other potential contaminated groundwater treatment applications

  3. Titanium dioxide-based DGT technique for in situ measurement of dissolved reactive phosphorus in fresh and marine waters

    DEFF Research Database (Denmark)

    Panther, Jared G.; Teasdale, Peter R.; Bennett, William W.

    2010-01-01

    A new diffusive gradients in a thin film (DGT) technique for measuring dissolved reactive phosphorus (DRP) in fresh and marine waters is reported. The new method, which uses a commercially available titanium dioxide based adsorbent (Metsorb), was evaluated and compared to the well-established fer...

  4. Reactive diffusion in Sc/Si multilayer X-ray mirrors with CrB2 barrier layers

    International Nuclear Information System (INIS)

    Pershyn, Y.P.; Zubarev, E.N.; Kondratenko, V.V.; Sevryukova, V.A.; Kurbatova, S.V.

    2011-01-01

    Processes undergoing in Sc/Si multilayer X-ray mirrors (MXMs) with periods of ∝27 nm and barrier layers of CrB 2 0.3- and 0.7-nm thick within the temperature range of 420-780 K were studied by methods of small-angle X-ray reflectivity (λ=0.154 nm) and cross-sectional transmission electron microscopy. All layers with the exception of Sc ones are amorphous. Barrier layers are stable at least up to a temperature of 625 K and double the activation energy of diffusional intermixing at moderate temperatures. Introduction of barriers improves the thermal stability of Sc/Si MXMs at least by 80 degrees. Diffusion of Si atoms through barrier layers into Sc layers with formation of silicides was shown to be the main degradation mechanism of MXMs. A comparison of the stability for Sc/Si MXMs with different barriers published in the literature is conducted. The ways of further improvement of barrier properties are discussed. (orig.)

  5. The Ehrlich-Schwoebel barrier on an oxide surface: a combined Monte-Carlo and in situ scanning tunneling microscopy approach.

    Science.gov (United States)

    Gianfrancesco, Anthony G; Tselev, Alexander; Baddorf, Arthur P; Kalinin, Sergei V; Vasudevan, Rama K

    2015-11-13

    The controlled growth of epitaxial films of complex oxides requires an atomistic understanding of key parameters determining final film morphology, such as termination dependence on adatom diffusion, and height of the Ehrlich-Schwoebel (ES) barrier. Here, through an in situ scanning tunneling microscopy study of mixed-terminated La5/8Ca3/8MnO3 (LCMO) films, we image adatoms and observe pile-up at island edges. Image analysis allows determination of the population of adatoms at the edge of islands and fractions on A-site and B-site terminations. A simple Monte-Carlo model, simulating the random walk of adatoms on a sinusoidal potential landscape using Boltzmann statistics is used to reproduce the experimental data, and provides an estimate of the ES barrier as ∼0.18 ± 0.04 eV at T = 1023 K, similar to those of metal adatoms on metallic surfaces. These studies highlight the utility of in situ imaging, in combination with basic Monte-Carlo methods, in elucidating the factors which control the final film growth in complex oxides.

  6. The Ehrlich–Schwoebel barrier on an oxide surface: a combined Monte-Carlo and in situ scanning tunneling microscopy approach

    International Nuclear Information System (INIS)

    Gianfrancesco, Anthony G; Tselev, Alexander; Baddorf, Arthur P; Kalinin, Sergei V; Vasudevan, Rama K

    2015-01-01

    The controlled growth of epitaxial films of complex oxides requires an atomistic understanding of key parameters determining final film morphology, such as termination dependence on adatom diffusion, and height of the Ehrlich–Schwoebel (ES) barrier. Here, through an in situ scanning tunneling microscopy study of mixed-terminated La_5_/_8Ca_3_/_8MnO_3 (LCMO) films, we image adatoms and observe pile-up at island edges. Image analysis allows determination of the population of adatoms at the edge of islands and fractions on A-site and B-site terminations. A simple Monte-Carlo model, simulating the random walk of adatoms on a sinusoidal potential landscape using Boltzmann statistics is used to reproduce the experimental data, and provides an estimate of the ES barrier as ∼0.18 ± 0.04 eV at T = 1023 K, similar to those of metal adatoms on metallic surfaces. These studies highlight the utility of in situ imaging, in combination with basic Monte-Carlo methods, in elucidating the factors which control the final film growth in complex oxides. (paper)

  7. The Ehrlich-Schwoebel barrier on an oxide surface: a combined Monte-Carlo and in situ scanning tunneling microscopy approach

    Science.gov (United States)

    Gianfrancesco, Anthony G.; Tselev, Alexander; Baddorf, Arthur P.; Kalinin, Sergei V.; Vasudevan, Rama K.

    2015-11-01

    The controlled growth of epitaxial films of complex oxides requires an atomistic understanding of key parameters determining final film morphology, such as termination dependence on adatom diffusion, and height of the Ehrlich-Schwoebel (ES) barrier. Here, through an in situ scanning tunneling microscopy study of mixed-terminated La5/8Ca3/8MnO3 (LCMO) films, we image adatoms and observe pile-up at island edges. Image analysis allows determination of the population of adatoms at the edge of islands and fractions on A-site and B-site terminations. A simple Monte-Carlo model, simulating the random walk of adatoms on a sinusoidal potential landscape using Boltzmann statistics is used to reproduce the experimental data, and provides an estimate of the ES barrier as ˜0.18 ± 0.04 eV at T = 1023 K, similar to those of metal adatoms on metallic surfaces. These studies highlight the utility of in situ imaging, in combination with basic Monte-Carlo methods, in elucidating the factors which control the final film growth in complex oxides.

  8. Waste Isolation Pilot Plant Materials Interface Interactions Test: Papers presented at the Commission of European Communities workshop on in situ testing of radioactive waste forms and engineered barriers

    International Nuclear Information System (INIS)

    Molecke, M.A.; Sorensen, N.R.

    1993-08-01

    The three papers in this report were presented at the second international workshop to feature the Waste Isolation Pilot Plant (WIPP) Materials Interface Interactions Test (MIIT). This Workshop on In Situ Tests on Radioactive Waste Forms and Engineered Barriers was held in Corsendonk, Belgium, on October 13--16, 1992, and was sponsored by the Commission of the European Communities (CEC). The Studiecentrum voor Kernenergie/Centre D'Energie Nucleaire (SCK/CEN, Belgium), and the US Department of Energy (via Savannah River) also cosponsored this workshop. Workshop participants from Belgium, France, Germany, Sweden, and the United States gathered to discuss the status, results and overviews of the MIIT program. Nine of the twenty-five total workshop papers were presented on the status and results from the WIPP MIIT program after the five-year in situ conclusion of the program. The total number of published MIIT papers is now up to almost forty. Posttest laboratory analyses are still in progress at multiple participating laboratories. The first MIIT paper in this document, by Wicks and Molecke, provides an overview of the entire test program and focuses on the waste form samples. The second paper, by Molecke and Wicks, concentrates on technical details and repository relevant observations on the in situ conduct, sampling, and termination operations of the MIIT. The third paper, by Sorensen and Molecke, presents and summarizes the available laboratory, posttest corrosion data and results for all of the candidate waste container or overpack metal specimens included in the MIIT program

  9. Structural and chemical reactivity modifications of a cobalt perovskite induced by Sr-substitution. An in situ XAS study

    International Nuclear Information System (INIS)

    Hueso, Jose L.; Holgado, Juan P.; Pereñíguez, Rosa; Gonzalez-DelaCruz, V.M.; Caballero, Alfonso

    2015-01-01

    LaCoO 3 and La 0.5 Sr 0.5 CoO 3−δ perovskites have been studied by in situ Co K-edge XAS. Although the partial substitution of La(III) by Sr(II) species induces an important increase in the catalytic oxidation activity and modifies the electronic state of the perovskite, no changes could be detected in the oxidation state of cobalt atoms. So, maintaining the electroneutrality of the perovskite requires the generation of oxygen vacancies in the network. The presence of these vacancies explains that the substituted perovskite is now much more reducible than the original LaCoO 3 perovskite. As detected by in situ XAS, after a consecutive reduction and oxidation treatment, the original crystalline structure of the LaCoO 3 perovskite is maintained, although in a more disordered state, which is not the case for the Sr doped perovskite. So, the La 0.5 Sr 0.5 CoO 3−δ perovskite submitted to the same hydrogen reduction treatment produces metallic cobalt, while as determined by in situ XAS spectroscopy the subsequent oxidation treatment yields a Co(III) oxide phase with spinel structure. Surprisingly, no Co(II) species are detected in this new spinel phase. - Highlights: • A Sr-substituted lanthanum cobalt perovskite has been prepared by spray pyrolysis. • It has been established that Co(III) cations are present in both perovskites. • LaCoO 3 is a less reducible phase than the substituted La 0.5 Sr 0.5 CoO 3−δ . • After reoxidation of reduced La 0.5 Sr 0.5 CoO 3−δ , a 100% Co(III) spinel is obtained

  10. Super-Robust Polylactide Barrier Films by Building Densely Oriented Lamellae Incorporated with Ductile in Situ Nanofibrils of Poly(butylene adipate-co-terephthalate).

    Science.gov (United States)

    Zhou, Sheng-Yang; Huang, Hua-Dong; Ji, Xu; Yan, Ding-Xiang; Zhong, Gan-Ji; Hsiao, Benjamin S; Li, Zhong-Ming

    2016-03-01

    Remarkable combination of excellent gas barrier performance, high strength, and toughness was realized in polylactide (PLA) composite films by constructing the supernetworks of oriented and pyknotic crystals with the assistance of ductile in situ nanofibrils of poly(butylene adipate-co-terephthalate) (PBAT). On the basis that the permeation of gas molecules through polymer materials with anisotropic structure would be more frustrated, we believe that oriented crystalline textures cooperating with inerratic amorphism can be favorable for the enhancement of gas barrier property. By taking full advantage of intensively elongational flow field, the dispersed phase of PBAT in situ forms into nanofibrils, and simultaneously sufficient row-nuclei for PLA are induced. After appropriate thermal treatment with the acceleration effect of PBAT on PLA crystallization, oriented lamellae of PLA tend to be more perfect in a preferential direction and constitute into a kind of network interconnecting with each other. At the same time, the molecular chains between lamellae tend to be more extended. This unique structure manifests superior ability in ameliorating the performance of PLA film. The oxygen permeability coefficient can be achieved as low as 2 × 10(-15) cm(3) cm cm(-2) s(-1) Pa(-1), combining with the high strength, modulus, and ductility (104.5 MPa, 3484 MPa, and 110.6%, respectively). The methodology proposed in this work presents an industrially scalable processing method to fabricate super-robust PLA barrier films. It would indeed push the usability of biopolymers forward, and certainly prompt wider application of biodegradable polymers in the fields of environmental protection such as food packaging, medical packaging, and biodegradable mulch.

  11. Experimental research on electric field jump in low magnetic fields: Detection of damage in new ex-situ MgB{sub 2} barriers in MgB{sub 2} wires

    Energy Technology Data Exchange (ETDEWEB)

    Gajda, D., E-mail: dangajda@op.pl [International Laboratory of High Magnetic Fields and Low Temperatures, Gajowicka 95, 53-421 Wroclaw (Poland); Morawski, A. [Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warszawa (Poland); Zaleski, A. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw (Poland); Hossain, M.S.A. [Institute for Superconducting and Electronic Materials, AIIM, University of Wollongong, North Wollongong, NSW 2519 (Australia); Rindfleisch, M. [Hyper Tech Research, Inc, 1275 Kinnear Road, Columbus, OH 43212 (United States); Cetner, T. [Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warszawa (Poland)

    2015-10-25

    We explored the incorporation of field sweep (constant current and rapidly increasing magnetic field) into the four-probe method as a new technique to detect defects in barrier layers in superconducting MgB{sub 2} wires. This method allows us to observe jumps in the electric field in low magnetic fields. The scanning electron microscopy results indicate that such a jump originates from cracks in Nb barriers and ex-situ MgB{sub 2} barriers. Our research indicates that the field sweep allows us to detect damage to barriers that are made of superconducting materials. This method can be the basis for an industrial method for detecting damages in MgB{sub 2} wires. These defects reduce the critical current of MgB{sub 2} wire. Detection and removal of these defects will allow us to produce MgB{sub 2} wires with ex-situ MgB{sub 2} and Nb barriers that will have improved critical current density. Manufacturing of MgB{sub 2} wires with new ex-situ MgB{sub 2} barriers is a new technological concept. This type of barrier is cheaper and easier to manufacture, leading to cheaper MgB{sub 2} wires. Moreover, we show that critical current can be measured by two methods: current sweep (constant magnetic field and quickly increasing current) and field sweep. - Graphical abstract: Our results indicate that the jump electric field low magnetic fields. This jump indicates damage in Nb and ex situ MgB{sub 2} barrier. Detection and removal of defects will increase J{sub c} in MgB{sub 2} wires and will increase the applicability of MgB{sub 2} wire. - Highlights: • Jump electric field in the 1 T indicates damage to the Nb barrier. • Jump resistance at 9 K indicates damage to the Nb barrier. • Jump electric field in low magnetic field indicates damage to ex situ MgB{sub 2} barrier. • Damage Nb and ex situ MgB{sub 2} barrier significantly reduces the critical current density in the MgB{sub 2} wire.

  12. In-situ EC-STM studies on the influence of halide anions on structure and reactivity of dibenzylviologen on Cu(100)

    Energy Technology Data Exchange (ETDEWEB)

    Gentz, Knud; Wandelt, Klaus [Institute of Physical and Theoretical Chemistry, Bonn University (Germany); Broekmann, Peter [University of Bern (Switzerland)

    2009-07-01

    Copper has become a focus of research activities over the last two decades due to its use as interconnect material in microchip design. Nitrogen-containing cationic organic molecules have been studied as additives for the so-called copper damascene process. In the present investigation the structures and reactivity of a dibenzylviologen (DBV) layer adsorbed on a bromide-modified Cu(100) surface have been studied by in-situ electrochemical STM and will be compared to the results on the chloride-modified substrate and the related Diphenylviologen (DPV). N,N'-dibenzyl-4,4'-bipyridinium molecules (dibenzylviologen, DBV) spontaneously adsorb on a halide-modified Cu(100)-surface, forming distinctive patterns, which have been characterized by in-situ scanning tunneling microscopy. Depending on the adsorption potential a striped phase, a cavitand phase and an amorphous phase have been identified. Cyclic voltammetry indicates that even more processes take place on the surface, because if the potential is decreased beyond a range of fully reversible processes, an irreversible surface phase formation is observed at -450 mV vs. RHE. This surface phase passivates the surface against adsorption of the dicationic phase, so the charge reversal of the interface in the outer Helmholtz layer seems to be reduced.

  13. Pressure-induced amorphization and reactivity of solid dimethyl acetylene probed by in situ FTIR and Raman spectroscopy

    Science.gov (United States)

    Guan, Jiwen; Daljeet, Roshan; Kieran, Arielle; Song, Yang

    2018-06-01

    Conjugated polymers are prominent semiconductors that have unique electric conductivity and photoluminescence. Synthesis of conjugated polymers under high pressure is extremely appealing because it does not require a catalyst or solvent used in conventional chemical methods. Transformation of acetylene and many of its derivatives to conjugated polymers using high pressure has been successfully achieved, but not with dimethyl acetylene (DMA). In this work, we present a high-pressure study on solid DMA using a diamond anvil cell up to 24.4 GPa at room temperature characterized by in situ Fourier transform infrared and Raman spectroscopy. Our results show that solid DMA exists in a phase II crystal structure and is stable up to 12 GPa. Above this pressure, amorphization was initiated and the process was completed at 24.4 GPa. The expected polymeric transformation was not evident upon compression, but only observed upon decompression from a threshold compression pressure (e.g. 14.4 GPa). In situ florescence measurements suggest excimer formation via crystal defects, which induces the chemical reactions. The vibrational spectral analysis suggests the products contain the amorphous poly(DMA) and possibly additional amorphous hydrogenated carbon material.

  14. In Situ Fabrication of AlN Coating by Reactive Plasma Spraying of Al/AlN Powder

    Directory of Open Access Journals (Sweden)

    Mohammed Shahien

    2011-10-01

    Full Text Available Reactive plasma spraying is a promising technology for the in situ formation of aluminum nitride (AlN coatings. Recently, it became possible to fabricate cubic-AlN-(c-AlN based coatings through reactive plasma spraying of Al powder in an ambient atmosphere. However, it was difficult to fabricate a coating with high AlN content and suitable thickness due to the coalescence of the Al particles. In this study, the influence of using AlN additive (h-AlN to increase the AlN content of the coating and improve the reaction process was investigated. The simple mixing of Al and AlN powders was not suitable for fabricating AlN coatings through reactive plasma spraying. However, it was possible to prepare a homogenously mixed, agglomerated and dispersed Al/AlN mixture (which enabled in-flight interaction between the powder and the surrounding plasma by wet-mixing in a planetary mill. Increasing the AlN content in the mixture prevented coalescence and increased the nitride content gradually. Using 30 to 40 wt% AlN was sufficient to fabricate a thick (more than 200 µm AlN coating with high hardness (approximately 1000 Hv. The AlN additive prevented the coalescence of Al metal and enhanced post-deposition nitriding through N2 plasma irradiation by allowing the nitriding species in the plasma to impinge on a larger Al surface area. Using AlN as a feedstock additive was found to be a suitable method for fabricating AlN coatings by reactive plasma spraying. Moreover, the fabricated coatings consist of hexagonal (h-AlN, c-AlN (rock-salt and zinc-blend phases and certain oxides: aluminum oxynitride (Al5O6N, cubic sphalerite Al23O27N5 (ALON and Al2O3. The zinc-blend c-AlN and ALON phases were attributed to the transformation of the h-AlN feedstock during the reactive plasma spraying. Thus, the zinc-blend c

  15. Reactivity at the film/solution interface of ex situ prepared bismuth film electrodes: A scanning electrochemical microscopy (SECM) and atomic force microscopy (AFM) investigation

    International Nuclear Information System (INIS)

    Hocevar, Samo B.; Daniele, Salvatore; Bragato, Carlo; Ogorevc, Bozidar

    2007-01-01

    Bismuth film electrodes (BiFEs) prepared ex situ with and without complexing bromide ions in the modification solution were investigated using scanning electrochemical microscopy (SECM) and atomic force microscopy (AFM). A feedback mode of the SECM was employed to examine the conductivity and reactivity of a series of thin bismuth films deposited onto disk glassy carbon substrate electrodes (GCEs) of 3 mm in diameter. A platinum micro-electrode (φ = 25 μm) was used as the SECM tip, and current against tip/substrate distance was recorded in solutions containing either Ru(NH 3 ) 6 3+ or Fe(CN) 6 4- species as redox mediators. With both redox mediators positive feedback approach curves were recorded, which indicated that the bismuth film deposition protocol associated with the addition of bromide ions in the modification solution did not compromise the conductivity of the bismuth film in comparison with that prepared without bromide. However, at the former Bi film a slight kinetic hindering was observed in recycling Ru(NH 3 ) 6 3+ , suggesting a different surface potential. On the other hand, the approach curves recorded by using Fe(CN) 6 4- showed that both types of the aforementioned bismuth films exhibited local reactivity with the oxidised form of the redox mediator, and that bismuth film obtained with bromide ions exhibited slightly lower reactivity. The use of SECM in the scanning operation mode allowed us to ascertain that the bismuth deposits were uniformly distributed across the whole surface of the glassy carbon substrate electrode. Comparative AFM measurements corroborated the above findings and additionally revealed a denser growth of smaller bismuth crystals over the surface of the substrate electrode in the presence of bromide ions, while the crystals were bigger but sparser in the absence of bromide ions in the modification solution

  16. Microstructure and mechanical properties of Al/Fe-aluminide in-situ composite prepared by reactive stir casting route

    International Nuclear Information System (INIS)

    Chatterjee, Subhranshu; Sinha, Arijit; Das, Debdulal; Ghosh, Sumit; Basumallick, Amitava

    2013-01-01

    Iron aluminide particulate reinforced aluminium composites were prepared by a simple liquid metal stir casting route. The particulate intermetallic reinforcements were formed by in-situ reaction between molten aluminium and a rotating mild steel stirrer at 800 °C. X-ray diffraction studies were carried out to identify the types of iron aluminide particulates present in the as cast composite. Compositional variations of the composite samples were estimated with the aid of energy dispersive spectroscopy. The microstructural features of the composite were studied with respect to different heat treatment schedules and deformation conditions. Microhardness and nanoindentation measurements were also carried out to assess the micromechanical behaviour e.g., hardness and elastic modulus in micrometric length scale of the composite samples. Tensile tests and fractographic analysis were performed to estimate the mechanical properties and determine the mode of failure of the samples. The microstructure and mechanical properties of the composite samples were correlated and discussed

  17. Chemical dynamics between wells across a time-dependent barrier: Self-similarity in the Lagrangian descriptor and reactive basins.

    Science.gov (United States)

    Junginger, Andrej; Duvenbeck, Lennart; Feldmaier, Matthias; Main, Jörg; Wunner, Günter; Hernandez, Rigoberto

    2017-08-14

    In chemical or physical reaction dynamics, it is essential to distinguish precisely between reactants and products for all times. This task is especially demanding in time-dependent or driven systems because therein the dividing surface (DS) between these states often exhibits a nontrivial time-dependence. The so-called transition state (TS) trajectory has been seen to define a DS which is free of recrossings in a large number of one-dimensional reactions across time-dependent barriers and thus, allows one to determine exact reaction rates. A fundamental challenge to applying this method is the construction of the TS trajectory itself. The minimization of Lagrangian descriptors (LDs) provides a general and powerful scheme to obtain that trajectory even when perturbation theory fails. Both approaches encounter possible breakdowns when the overall potential is bounded, admitting the possibility of returns to the barrier long after the trajectories have reached the product or reactant wells. Such global dynamics cannot be captured by perturbation theory. Meanwhile, in the LD-DS approach, it leads to the emergence of additional local minima which make it difficult to extract the optimal branch associated with the desired TS trajectory. In this work, we illustrate this behavior for a time-dependent double-well potential revealing a self-similar structure of the LD, and we demonstrate how the reflections and side-minima can be addressed by an appropriate modification of the LD associated with the direct rate across the barrier.

  18. Mistura reativa de poliamida 6 e policarbonato: reatividade do copolímero formado "in situ" Polyamide 6 and polycarbonate reactive blends: reactivity of the copolymer formed "in situ"

    Directory of Open Access Journals (Sweden)

    Dilma A. Costa

    2004-01-01

    Full Text Available As misturas físicas de poliamida 6 (PA6 e policarbonato (PC processadas a 240 ºC, durante 10, 30 e 60 minutos formam um copolímero de PA6-PC. A alta temperatura e o longo tempo de processamento podem causar modificações nas propriedades dessas misturas e degradar o copolímero, originando grupos isocianato e subseqüentemente CO2 e grupos NH2 terminais. A quantidade de copolímero PA6-PC formado durante o processo de mistura é maior com o aumento da proporção de PC na mistura. As ligações uretânicas de polímeros termoplásticos exibem mais baixas estabilidades térmica e oxidativa, resultando no aumento da concentração de grupos terminais NH2. A reatividade dessas misturas foi investigada através do torque durante o processo de mistura, da titulação potenciométrica dos grupos NH2 terminais e por microscopia eletrônica de varredura.Polyamide 6 (PA6 and polycarbonate (PC blends processed at 240 °C, during 10, 30 and 60 minutes produced a copolymer of PA6-PC. The high temperature and long processing time can cause modifications on the properties of these blends and degradation of the copolymer. It can also form isocyanate groups and subsequently CO2 and NH2 "end groups". The amount of PA6-PC copolymer formed during the blending process was found to increase when the PC content is increased. The thermoplastic urethanes normally exhibit smaller thermal and oxidative stability, resulting in an increase in the concentration of NH2 terminal groups. The reactivity of the blends was investigated by monitoring the torque during the blending, potentiometer titration of NH2 terminal groups and scanning electronic microscopy (SEM.

  19. Laboratory studies and model simulations of sorbent material behavior for an in-situ passive treatment barrier

    International Nuclear Information System (INIS)

    Aloysius, D.; Fuhrmann, M.

    1995-01-01

    This paper presents a study combining laboratory experiments and model simulations in support of the design and construction of a passive treatment barrier (or filter wall) for retarding the migration of Sr-90 within a water-bearing surficial sand and gravel layer. Preliminary evaluation was used to select materials for column testing. A one-dimensional finite-difference model was used to simulate the laboratory column results and extrapolation of the calibrated model was then used to assess barrier performance over extended time frames with respect to Sr-90 breakthrough and loading on the filter media. The final results of the study showed that 20 by 50 mesh clinoptilolite will attenuate Sr-90 with a maximum life expentancy of approximately 10 years. This time period is based on allowable limits of Sr-90 activity on the filter media and is also a function of site-specific conditions

  20. (001) 3C SiC/Ni contact interface: In situ XPS observation of annealing induced Ni2Si formation and the resulting barrier height changes

    Science.gov (United States)

    Tengeler, Sven; Kaiser, Bernhard; Chaussende, Didier; Jaegermann, Wolfram

    2017-04-01

    The electronic states of the (001) 3C SiC/Ni interface prior and post annealing are investigated via an in situ XPS interface experiment, allowing direct observation of the induced band bending and the transformation from Schottky to ohmic behaviour for the first time. A single domain (001) 3C SiC sample was prepared via wet chemical etching. Nickel was deposited on the sample in multiple in situ deposition steps via RF sputtering, allowing observation of the 3C SiC/Ni interface formation. Over the course of the experiments, an upward band bending of 0.35 eV was observed, along with defect induced Fermi level pinning. This indicates a Schottky type contact behaviour with a barrier height of 0.41 eV. The subsequent annealing at 850 °C for 5 min resulted in the formation of a Ni2Si layer and a reversal of the band bending to 0.06 eV downward. Thus explaining the ohmic contact behaviour frequently reported for annealed n-type 3C SiC/Ni contacts.

  1. CATSIUS CLAY PROJECT: Calculation and testing of behaviour of unsaturated clay as barrier in radioactive waste repositories: stage 3: validation exercises at a large in situ scale

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, E E; Alcoverro, J

    1999-07-01

    Stage 3 of CATSIUS CLAY Project: Validation Exercises at a Large in situ Scale includes two Benchmarks: Benchmark 3.1: In situ Hydration of Boom Clay Pellets (BACCHUS 2) and Benchmark 3.2: FEBEX Mock-up Test. The BACCHUS 2 in situ test was performed in the HADES underground laboratory (Mol, Belgium) to demonstrate and optimize an installation procedure for a clay based material and to study its hydration process. After drilling a vertical shaft (540 mm in diameter, 3.0 m in length) in the host Boom clay, a central filter (90 mm in diameter) was placed, the remaining space was filled with a mixture of clay pellets and clay powder and the assembly was sealed at the upper end by a resin plug (0.20 m in thickness) over which concrete was poured. The test was instrumented so that it could be used as a validation experiment. Total stress, pore water pressure and water content measurements were performed both in the backfill material and in the surrounding clay massif. Once the installation was complete, the natural hydration of the backfill material began (day 0). To accelerate the hydration process, on day 516 water was injected through the central filter. On day 624, after the saturation of the backfill was reached, the hydraulic circuit was closed and the undrained response of the system backfill-host clay was monitored until an overall steady state was reached. Partners were asked to provide predictions for the evolution of the pore water pressure and total pressure of various points where appropriate sensors are installed. This benchmark addresses the Hydro-Mechanical response of an unsaturated low density clay barrier under natural and artificial hydration. (Author)

  2. CATSIUS CLAY PROJECT: Calculation and testing of behaviour of unsaturated clay as barrier in radioactive waste repositories: stage 3: validation exercises at a large in situ scale

    International Nuclear Information System (INIS)

    Alonso, E. E.; Alcoverro, J.

    1999-01-01

    Stage 3 of CATSIUS CLAY Project: Validation Exercises at a Large in situ Scale includes two Benchmarks: Benchmark 3.1: In situ Hydration of Boom Clay Pellets (BACCHUS 2) and Benchmark 3.2: FEBEX Mock-up Test. The BACCHUS 2 in situ test was performed in the HADES underground laboratory (Mol, Belgium) to demonstrate and optimize an installation procedure for a clay based material and to study its hydration process. After drilling a vertical shaft (540 mm in diameter, 3.0 m in length) in the host Boom clay, a central filter (90 mm in diameter) was placed, the remaining space was filled with a mixture of clay pellets and clay powder and the assembly was sealed at the upper end by a resin plug (0.20 m in thickness) over which concrete was poured. The test was instrumented so that it could be used as a validation experiment. Total stress, pore water pressure and water content measurements were performed both in the backfill material and in the surrounding clay massif. Once the installation was complete, the natural hydration of the backfill material began (day 0). To accelerate the hydration process, on day 516 water was injected through the central filter. On day 624, after the saturation of the backfill was reached, the hydraulic circuit was closed and the undrained response of the system backfill-host clay was monitored until an overall steady state was reached. Partners were asked to provide predictions for the evolution of the pore water pressure and total pressure of various points where appropriate sensors are installed. This benchmark addresses the Hydro-Mechanical response of an unsaturated low density clay barrier under natural and artificial hydration. (Author)

  3. Collection of measurement data from in-situ experiment for performance confirmation of engineered barrier system at Horonobe Underground Research Laboratory. FY2014

    International Nuclear Information System (INIS)

    Nakayama, Masashi; Ohno, Hirokazu; Nakayama, Mariko; Kobayashi, Masato

    2015-09-01

    The Horonobe Underground Research Laboratory (URL) Project has being pursued by Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formation at Horonobe, northern Hokkaido. The URL Project consists of two major research areas, “Geoscientific Research” and “Research and Development on Geological Disposal Technologies”, and proceeds in three overlapping phases, “Phase I: Surface-based investigations”, “Phase II: Investigations during tunnel excavation” and “Phase III: Investigations in the underground facilities”, over a period of around 20 years. Phase III investigation was started in 2010 fiscal year. The in-situ experiment for performance confirmation of engineered barrier system (EBS experiment) had been prepared from 2013 to 2014 fiscal year at G.L.-350m gallery, and heating by electric heater in simulated overpack had started in January, 2015. One of objectives of the experiment is acquiring data concerned with Thermal – Hydrological – Mechanical – Chemical (THMC) coupled behavior. These data will be used in order to confirm the performance of engineered barrier system. This report summarizes the measurement data acquired from the EBS experiment from December, 2014 to March, 2015. The summarized data of the EBS experiment will be published periodically. A CD-ROM is attached as an appendix. (J.P.N)

  4. Collection of measurement data from in-situ experiment for performance confirmation of engineered barrier system at Horonobe Underground Research Laboratory. FY2015

    International Nuclear Information System (INIS)

    Nakayama, Masashi; Ohno, Hirokazu; Nakayama, Mariko; Kobayashi, Masato

    2016-07-01

    The Horonobe Underground Research Laboratory (URL) Project has being pursued by Japan Atomic Energy Agency to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formation at Horonobe, northern Hokkaido. The URL Project consists of two major research areas, 'Geoscientific Research' and 'Research and Development on Geological Disposal Technologies', and proceeds in three overlapping phases, 'Phase I: Surface-based investigations', 'Phase II: Investigations during tunnel excavation' and 'Phase III: Investigations in the underground facilities', over a period of around 20 years. Phase III investigation was started in 2010 fiscal year. The in-situ experiment for performance confirmation of engineered barrier system (EBS experiment) had been prepared from 2013 to 2014 fiscal year at G.L.-350m gallery, and heating by electric heater in simulated overpack had started in January, 2015. One of objectives of the experiment is acquiring data concerned with Thermal - Hydrological - Mechanical - Chemical (THMC) coupled behavior. These data will be used in order to confirm the performance of engineered barrier system. This report summarizes the measurement data acquired from the EBS experiment from December, 2014 to March, 2016. The summarized data of the EBS experiment will be published periodically. A CD-ROM is attached as an appendix. (J.P.N)

  5. The influence of reactive side products on the electrooxidation of methanol--a combined in situ infrared spectroscopy and online mass spectrometry study.

    Science.gov (United States)

    Reichert, R; Schnaidt, J; Jusys, Z; Behm, R J

    2014-07-21

    Aiming at a better understanding of the impact of reaction intermediates and reactive side products on electrocatalytic reactions under conditions characteristic for technical applications, i.e., at high reactant conversions, we have investigated the electrooxidation of methanol on a Pt film electrode in mixtures containing defined concentrations of the reaction intermediates formaldehyde or formic acid. Employing simultaneous in situ infrared spectroscopy and online mass spectrometry in parallel to voltammetric measurements, we examined the effects of the latter molecules on the adlayer build-up and composition and on the formation of volatile reaction products CO2 and methylformate, as well as on the overall reaction rate. To assess the individual contributions of each component, we used isotope labeling techniques, where one of the two C1 components in the mixtures of methanol with either formaldehyde or formic acid was (13)C-labeled. The data reveal pronounced effects of the additional components formaldehyde and formic acid on the reaction, although their concentration was much lower (10%) than that of the main reactant methanol. Most important, the overall Faradaic current responses and the amounts of CO2 formed upon oxidation of the mixtures are always lower than the sums of the contributions from the individual components, indicative of a non-additive behavior of both Faradaic current and CO2 formation in the mixtures. Mechanistic reasons and consequences for reactions in a technical reactor, with high reactant conversion, are discussed.

  6. AN INNOVATIVE APPROACH FOR CONSTRUCTING AN IN-SITU BARRIER FOR STRONTIUM-90 AT THE HANFORD SITE WASHINGTON

    Energy Technology Data Exchange (ETDEWEB)

    FABRE RJ

    2008-12-08

    Efforts to reduce the flux of Sr-90 to the Columbia River from Hanford Site 100-N Area past-practice liquid waste disposal sites have been underway since the early 1990s. Termination of all liquid discharges to the ground in 1993 was a major step toward meeting this goal. However, Sr-90 adsorbed on aquifer solids beneath liquid waste disposal sites and extending beneath the near-shore riverbed remains a continuing contaminant source to groundwater and the Columbia River. The initial pump-and-treat system proved to be ineffective as a long-term solution because of the geochemical characteristics of Sr-90. Following an evaluation of potential Sr-90 treatment technologies and their applicability under 100-NR-2 Operable Unit hydrogeologic conditions, the U.S. Department of Energy and the Washington State Department of Ecology agreed to evaluate apatite sequestration as the primary remedial technology, combined with a secondary polishing step utilizing phytoextraction if necessary. Aqueous injection was initiated in July 2005 to assess the efficacy of in-situ apatite along the 100 m of shoreline where Sr-90 concentrations are highest. The remedial technology is being developed by Pacific Northwest National Laboratory. CH2M Hill Plateau Remediation Company is implementing this technology in the field with support from PNNL.

  7. An Innovative Approach for Constructing an In-Situ Barrier for Strontium-90 at the Hanford Site, Washington - 9325

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, K. M.; Fabre, Russel J.; Vermeul, Vincent R.; Szecsody, James E.; Fellows, Robert J.; Williams, Mark D.; Fruchter, Jonathan S.

    2008-12-10

    Efforts to reduce the flux of Sr-90 to the Columbia River from Hanford Site 100-N Area past-practice liquid waste disposal sites have been underway since the early 1990s. Termination of all liquid discharges to the ground in 1993 was a major step toward meeting this goal. However, Sr 90 adsorbed on aquifer solids beneath liquid waste disposal sites and extending beneath the near-shore riverbed remains a continuing contaminant source to groundwater and the Columbia River. The initial pump-and treat system proved to be ineffective as a long-term solution because of the geochemical characteristics of Sr-90. Following an evaluation of potential Sr-90 treatment technologies and their applicability under 100 NR-2 Operable Unit hydrogeologic conditions, the U.S. Department of Energy and the Washington State Department of Ecology agreed to evaluate apatite sequestration as the primary remedial technology, combined with a secondary polishing step utilizing phytoextraction if necessary. Aqueous injection was initiated in July 2005 to assess the efficacy of in-situ apatite along the 100 m of shoreline where Sr-90 concentrations are highest. The remedial technology is being developed by Pacific Northwest National Laboratory. CH2M Hill Plateau Remediation Company is implementing this technology in the field with support from PNNL.

  8. Blendas PVC/NBR por processamento reativo I: desenvolvimento do processo de vulcanização Dinâmica in situ PVC/NBR blends by reactive processing I: in situ dynamic vulcanization process

    Directory of Open Access Journals (Sweden)

    Fábio R. Passador

    2007-06-01

    Full Text Available Vulcanização dinâmica é o processo de vulcanização de um elastômero durante a mistura no estado fundido com um termoplástico, que resulta em uma classe de materiais denominada termoplásticos vulcanizados. Neste trabalho, um novo tipo de termoplástico vulcanizado foi obtido por vulcanização dinâmica in situ da blenda PVC/NBR, utilizando-se um sistema de cura a base de enxofre (S e combinação dos aceleradores 2,2-ditiomercaptobenzotiazol (MBTS e dissulfeto de tetrametiltiuram (TMTD. As blendas PVC/NBR (90/10, 80/20 e 70/30% em massa foram processadas em um reômetro de torque Haake (Rheomix 600 a 160 °C com rotação de 60 rpm. As blendas obtidas por processamento reativo foram caracterizadas por calorimetria diferencial de varredura (DSC para determinação do grau de cura. Observou-se aumento no grau de cura das blendas com o tempo de mistura sendo o sistema de cura considerado eficiente.Dynamic vulcanization is a process of vulcanization of an elastomer during melt mixing with a thermoplastic wich results in material called thermoplastic vulcanizates or TPVs. In this study, a new kind of TPV was obtained by in situ dynamic curing of poly(vinyl chloride (PVC/nitrile rubber (NBR blends. The crosslinking of PVC/NBR blends was accomplished using sulphur (S/tetramethylthiuram disulphide (TMTD and mercaptobenzthiazyl disulphide (MBTS curative system during the reactive processing. The blends of PVC/NBR at the ratio of 90/10; 80/20 and 70/30 wt. (% were melt mixed using a Haake Rheomix 600 at 160 °C and rotor speed of 60 rpm. The curing behavior of NBR was investigated by a Monsanto Rheometer and the degree of cure was calculated using differential scanning calorimetry (DSC for different mixing times. It was observed that the degree of cure increases with the mixing time and the crosslinking system used in this work was considered efficient.

  9. (001) 3C SiC/Ni contact interface: In situ XPS observation of annealing induced Ni{sub 2}Si formation and the resulting barrier height changes

    Energy Technology Data Exchange (ETDEWEB)

    Tengeler, Sven, E-mail: stengeler@surface.tu-darmstadt.de [Institute of Material Science, Technische Universität Darmstadt, 64287 Darmstadt (Germany); Univ. Grenoble Alpes, CNRS, LMGP, F-38000 Grenoble (France); Kaiser, Bernhard [Institute of Material Science, Technische Universität Darmstadt, 64287 Darmstadt (Germany); Chaussende, Didier [Univ. Grenoble Alpes, CNRS, LMGP, F-38000 Grenoble (France); Jaegermann, Wolfram [Institute of Material Science, Technische Universität Darmstadt, 64287 Darmstadt (Germany)

    2017-04-01

    Highlights: • Schottky behavior (Φ{sub B} = 0.41 eV) and Fermi level pining were found pre annealing. • Ni{sub 2}Si formation was confirmed for 5 min at 850 °C. • 3C/Ni{sub 2}Si Fermi level alignment is responsible for ohmic contact behavior. • Wet chemical etching (Si–OH/C–H termination) does not impair Ni{sub 2}Si formation. - Abstract: The electronic states of the (001) 3C SiC/Ni interface prior and post annealing are investigated via an in situ XPS interface experiment, allowing direct observation of the induced band bending and the transformation from Schottky to ohmic behaviour for the first time. A single domain (001) 3C SiC sample was prepared via wet chemical etching. Nickel was deposited on the sample in multiple in situ deposition steps via RF sputtering, allowing observation of the 3C SiC/Ni interface formation. Over the course of the experiments, an upward band bending of 0.35 eV was observed, along with defect induced Fermi level pinning. This indicates a Schottky type contact behaviour with a barrier height of 0.41 eV. The subsequent annealing at 850 °C for 5 min resulted in the formation of a Ni{sub 2}Si layer and a reversal of the band bending to 0.06 eV downward. Thus explaining the ohmic contact behaviour frequently reported for annealed n-type 3C SiC/Ni contacts.

  10. (001) 3C SiC/Ni contact interface: In situ XPS observation of annealing induced Ni_2Si formation and the resulting barrier height changes

    International Nuclear Information System (INIS)

    Tengeler, Sven; Kaiser, Bernhard; Chaussende, Didier; Jaegermann, Wolfram

    2017-01-01

    Highlights: • Schottky behavior (Φ_B = 0.41 eV) and Fermi level pining were found pre annealing. • Ni_2Si formation was confirmed for 5 min at 850 °C. • 3C/Ni_2Si Fermi level alignment is responsible for ohmic contact behavior. • Wet chemical etching (Si–OH/C–H termination) does not impair Ni_2Si formation. - Abstract: The electronic states of the (001) 3C SiC/Ni interface prior and post annealing are investigated via an in situ XPS interface experiment, allowing direct observation of the induced band bending and the transformation from Schottky to ohmic behaviour for the first time. A single domain (001) 3C SiC sample was prepared via wet chemical etching. Nickel was deposited on the sample in multiple in situ deposition steps via RF sputtering, allowing observation of the 3C SiC/Ni interface formation. Over the course of the experiments, an upward band bending of 0.35 eV was observed, along with defect induced Fermi level pinning. This indicates a Schottky type contact behaviour with a barrier height of 0.41 eV. The subsequent annealing at 850 °C for 5 min resulted in the formation of a Ni_2Si layer and a reversal of the band bending to 0.06 eV downward. Thus explaining the ohmic contact behaviour frequently reported for annealed n-type 3C SiC/Ni contacts.

  11. Role of Dissolved Organic Matter and Geochemical Controls on Arsenic Cycling from Sediments to Groundwater along the Meghna River, Bangladesh: Tracking possible links to permeable natural reactive barrier

    Science.gov (United States)

    Datta, S.; Berube, M.; Knappett, P.; Kulkarni, H. V.; Vega, M.; Jewell, K.; Myers, K.

    2017-12-01

    Elevated levels of dissolved arsenic (As), iron (Fe) and manganese (Mn) are seen in the shallow groundwaters of southeast Bangladesh on the Ganges Brahmaputra Meghna River delta. This study takes a multi disciplinary approach to understand the extent of the natural reactive barrier (NRB) along the Meghna River and evaluate the role of the NRB in As sequestration and release in groundwater aquifers. Shallow sediment cores, and groundwater and river water samples were collected from the east and west banks of the Meghna. Groundwater and river water samples were tested for FeT, MnT, and AsT concentrations. Fluorescence spectroscopic characterization of groundwater dissolved organic matter (DOM) provided insight into the hydro geochemical reactions active in the groundwater and the hyporheic zones. Eight sediment cores of 1.5 m depth were collected 10 m away from the edge of the river. Vertical solid phase concentration profiles of Fe, Mn and As were measured via 1.2 M HCl digestion which revealed solid phase As accumulation along the riverbanks up to concentrations of 1500 mg/kg As. Microbial interactions with DOM prompts the reduction of Fe3+ to Fe2+, causing As to mobilize into groundwater and humic-like DOM present in the groundwater may catalyze this process. The extent to which microbially mediated release of As occurs is limited by labile dissolved organic carbon (DOC) availability. Aqueous geochemical results showed the highest dissolved As concentrations in shallow wells (groundwater was found to contain microbial and terrestrial derived DOC, and decomposed, humified and aromatic DOM. Deeper aquifers had a significantly larger microbial OM signature than the shallower aquifers and was less aromatic, decomposed and humified. The results from this study illustrate the potential for humic substances to contribute to As cycling and quantify the extent of As accumulation in the sediments and groundwater along a 1 km stretch of the Meghna. These findings contribute

  12. The effect of tobacco smoke exposure on the generation of reactive oxygen species and cellular membrane damage using co-culture model of blood brain barrier with astrocytes.

    Science.gov (United States)

    Seo, Seung-Beom; Choe, Eun Sang; Kim, Kwang-Sik; Shim, Soon-Mi

    2017-06-01

    Brain tissue is known to be vulnerable to the exposure by tobacco smoke. Tobacco smoke can induce generation of reactive oxygen species (ROS), causing inflammatory activity and blood-brain barrier (BBB) impairment. The aim of the present study was to investigate the effect of tobacco smoke on cell cytotoxicity, generation of ROS, and cellular membrane damage in astrocytes and BBB using a co-culture system. Cell viability of U373MG cells was reduced in a dose-dependent manner, ranging from 96.7% to 40.3% by tobacco smoke condensate (TSC). Cell viability of U373MG co-cultured with human brain microvascular endothelial cells (HBMECs) was 104.9% at the IC 50 value of TSC. Trans-epithelial electric resistance values drastically decreased 80% following 12-h incubation. The value was maintained until 48 h and then increased at 72-h incubation (85%). It then decreased to 75% at 120 h. Generation of ROS increased in a dose-dependent manner, ranging from 102.7% to 107.9%, when various concentrations of TSC (4-16 mg/mL) were administered to the U373MG monoculture. When TSC was added into U373MG co-cultured with HBMECs, production of ROS ranged from 101.7% to 102.6%, slightly increasing over 12 h. Maximum exposure-generated ROS of 104.8% was reached at 24 h. Cell cytotoxicity and oxidative stress levels in the U373MG co-culture model system with HBMECs were lower than U373MG monoculture. HBMECs effectively acted as a barrier to protect the astrocytes (U373MG) from toxicity of TSC.

  13. Soluble reactive phosphorus (SRP) transport and retention in tropical, rain forest streams draining a volcanic landscape in Costa Rica: In situ SRP amendment to streams and laboratory studies

    Science.gov (United States)

    Triska, F.; Pringle, C.M.; Duff, J.H.; Avanzino, R.J.; Zellweger, G.

    2006-01-01

    Soluble reactive phosphorus (SRP) transport/retention was determined in two rain forest streams (Salto, Pantano) draining La Selva Biological Station, Costa Rica. There, SRP levels can be naturally high due to groundwater enriched by geothermal activity within the surfically dormant volcanic landscape, and subsequently discharged at ambient temperature. Combined field and laboratory approaches simulated high but natural geothermal SRP input with the objective of estimating the magnitude of amended SRP retention within high and low SRP settings and determining the underlying mechanisms of SRP retention. First, we examined short-term SRP retention/transport using combined SRP-conservative tracer additions at high natural in situ concentrations. Second, we attempted to observe a DIN response during SRP amendment as an indicator of biological uptake. Third, we determined SRP release/retention using laboratory sediment assays under control and biologically inhibited conditions. Short-term in situ tracer-SRP additions indicated retention in both naturally high and low SRP reaches. Retention of added SRP mass in Upper Salto (low SRP) was 17% (7.5 mg-P m-2 h-1), and 20% (10.9 mg-P m-2 h -1) in Lower Salto (high SRP). No DIN response in either nitrate or ammonium was observed. Laboratory assays using fresh Lower Salto sediments indicated SRP release (15.4 ?? 5.9 ??g-P g dry wt.-1 h -1), when incubated in filter sterilized Salto water at ambient P concentration, but retention when incubated in filter sterilized river water amended to 2.0 mg SRP l-1 (233.2 ?? 5.8 ??g-P g dry wt. -1 h-1). SRP uptake/release was similar in both control- and biocide-treated sediments indicating predominantly abiotic retention. High SRP retention even under biologically saturated conditions, absence of a DIN response to amendment, patterns of desorption following amendment, and similar patterns of retention and release under control and biologically inhibited conditions all indicated

  14. The in-situ experiment for performance confirmation of engineered barrier system at Horonobe Underground Research Laboratory. Examination of backfill material using muck from URL construction

    International Nuclear Information System (INIS)

    Nakayama, Masashi; Ohno, Hirokazu; Tanai, Kenji; Fujita, Tomoo; Sugita, Yutaka

    2016-06-01

    The Horonobe Underground Research Laboratory (URL) Project has being pursued by Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formation at Horonobe, northern Hokkaido. The URL Project consists of two major research areas, “Geoscientific Research” and “Research and Development on Geological Disposal Technologies”, and proceeds in three overlapping phases, “Phase I: Surface-based investigations”, “Phase II: Investigations during tunnel excavation” and “Phase III: Investigations in the underground facilities”, over a period of around 20 years. Phase III investigation was started in 2010 fiscal year. The in-situ experiment for performance confirmation of engineered barrier system (EBS experiment) was prepared from 2013 to 2014 fiscal year at G.L.-350m gallery (Niche No.4), and heating by electric heater in simulated overpack started in January, 2015. One of objectives of the experiment is acquiring data concerned with Thermal – Hydrological – Mechanical – Chemical (THMC) coupled behavior. These data will be used in order to confirm the performance of engineered barrier system. In EBS experiment, the backfill material using mixture of bentonite and muck from Horonobe URL construction was used for backfilling a part of Niche No.4. This report shows the results of properties of the backfill material, confirmation test of compaction method and making backfill material block, and so on. From these results, it was confirmed that the backfill material would satisfy target value of the permeability and the swelling pressure. (author)

  15. Remediation of lead and cadmium from simulated groundwater in loess region in northwestern China using permeable reactive barrier filled with environmentally friendly mixed adsorbents.

    Science.gov (United States)

    Fan, Chunhui; Gao, Yalin; Zhang, Yingchao; Dong, Wanqing; Lai, Miao

    2018-01-01

    Permeable reactive barrier (PRB) is potentially effective for groundwater remediation, especially using environmentally friendly mixed fillers in representative areas, such as semi-arid loess region in northwestern China. The mixed materials, including corn straw (agricultural wastes), fly ash (industrial wastes), zeolite synthesized from fly ash (reutilized products), and iron-manganese nodule derived from loess (materials with regional characteristics) in northwestern China, were chosen as PRB media to reduce the contents of lead and cadmium in simulated groundwater. A series of lab-scale column experiments were investigated, and the response surface methodology (RSM) was used to optimize the working process; Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM) were applied to further reveal the reaction mechanism. It shows that the purification efficiencies are more acceptable when the concentrations of lead and cadmium are approximately 7 and 0.7 mg/L, respectively, at 25 °C in weakly acidic solution, and functional groups of -OH and C=C play an important role for contaminants removal. The mixed adsorbents used are effective to remove lead and cadmium in groundwater. This is the first report on the removal of lead and cadmium from groundwater in loess region in northwestern China using PRB filled with environmentally friendly mixed adsorbents.

  16. Long-term performance monitoring for a permeable reactive barrier at the U.S. Coast Guard Support Center, Elizabeth City, North Carolina.

    Science.gov (United States)

    Puls, R W; Blowes, D W; Gillham, R W

    1999-08-12

    A continuous hanging iron wall was installed in June, 1996, at the U. S. Coast Guard (USCG) Support Center near Elizabeth City, NC, United States, to treat overlapping plumes of chromate and chlorinated solvent compounds. The wall was emplaced using a continuous trenching machine whereby native soil and aquifer sediment was removed and the iron simultaneously emplaced in one continuous excavation and fill operation. To date, there have been seven rounds (November 1996, March 1997, June 1997, September 1997, December 1997, March 1998, and June 1998) of performance monitoring of the wall. At this time, this is the only full-scale continuous 'hanging' wall installed as a permeable reactive barrier to remediate both chlorinated solvent compounds and chromate in groundwater. Performance monitoring entails the following: sampling of 10-5 cm PVC compliance wells and 15 multi-level samplers for the following constituents: TCE, cis-dichloroethylene (c-DCE), vinyl chloride, ethane, ethene, acetylene, methane, major anions, metals, Cr(VI), Fe(II), total sulfides, dissolved H(2), Eh, pH, dissolved oxygen, specific conductance, alkalinity, and turbidity. Electrical conductivity profiles have been conducted using a Geoprobe to verify emplacement of the continuous wall as designed and to locate upgradient and downgradient wall interfaces for coring purposes. Coring has been conducted in November, 1996, in June and September, 1997, and March, 1998, to evaluate the rate of corrosion on the iron surfaces, precipitate buildup (particularly at the upgradient interface), and permeability changes due to wall emplacement. In addition to several continuous vertical cores, angled cores through the 0.6-m thick wall have been collected to capture upgradient and downgradient wall interfaces along approximate horizontal flow paths for mineralogic analyses.

  17. Remediation of persistent organic pollutant-contaminated soil using biosurfactant-enhanced electrokinetics coupled with a zero-valent iron/activated carbon permeable reactive barrier.

    Science.gov (United States)

    Sun, Yuchao; Gao, Ke; Zhang, Yun; Zou, Hua

    2017-12-01

    Zero-valent iron/activated carbon (Fe/C) particles can degrade persistent organic pollutants via micro-electrolysis and therefore, they may be used to develop materials for permeable reactive barriers (PRBs). In this study, surfactant-enhanced electrokinetics (EK) was coupled with a Fe/C-PRB to treat phenanthrene (PHE) and 2,4,6-trichlorophenol (TCP) co-contaminated clay soil. An environment-friendly biosurfactant, rhamnolipid, was selected as the solubility-enhancing agent. Five bench-scale tests were conducted to investigate the performance of EK-PRB on PHE and TCP removal from soil as well as the impact of pH and rhamnolipid concentration. The results show that both PHE and TCP, driven by electro-osmotic flow (EOF), moved toward the cathode and reacted with the Fe/C-PRB. Catholyte acidification and rhamnolipid concentration increase improved the removal efficiencies of PHE and TCP. The highest removal efficiency of PHE in soil column was five times the efficiency of the control group on which only EK was applied (49.89 versus 9.40%). The highest removal efficiency of TCP in soil column was 4.5 times the efficiency of the control group (64.60 versus 14.30%). Desorption and mobility of PHE and TCP improved with the increase of rhamnolipid concentration when this exceeded the critical micelle concentration. This study indicates that the combination of EK and a Fe/C-PRB is efficient and promising for removing persistent organic pollutants (POPs) from contaminated soil with the enhancement of rhamnolipid.

  18. Permeable Reactive Barrier: Technology Update

    Science.gov (United States)

    2011-06-01

    Vukovic 1998; Taylor et al. 2002; Waybrant, Blowes, and Ptacek 1998; Robertson, Vogan, and Lombardo 2008; Hulshof et al. 2003). Solid substrates used...Reductive Dechlorination of Tetrachloroethene to Growth,” Applied Environmental Microbiology 59: 2991–97. Hulshof , A. M. H., D. W. Blowes, C. J

  19. Installation of a permeable reactive barrier at the mining complex facility in Los Gigantes - Cordoba : Monitoring plan of surface and underground water

    International Nuclear Information System (INIS)

    Grande Cobian, Juan D.; Sanchez Proano, Paula; Cicerone, Daniel S.

    2009-01-01

    The Argentine National Atomic Energy Commission declares under its Environmental policy the commitment to restore those sites where activities concerning Uranium mining were developed. It makes it beyond the scope of the Project of Environmental Restitution of the Uranium Mining (PRAMU from its Spanish abbreviation). The Chemistry of Water and Soil Division at the Environmental Chemistry and Energy Generation Department belonging to the Chemistry Management Office assist the PRAMU on the installation of an hydroxyapatite permeable reactive barrier (PRB) inside the Mining Complex facility placed at Los Gigantes in the Argentine province of Cordoba (in advance named the site). Among the preliminary assessment activities that are being carried out before the installation of the PRB, it has been prepared a monitoring program of surface water and groundwater useful to develop an environmental baseline suitable for the efficiency assessment of the corrective action to be applied. An exploratory campaign was conducted in the site with the aim of establishing a monitoring net of meteorological and hydrological, as well as physical, chemical and biological parameters in matrixes of sediments, water and suspended particulate matter collected on a regular time basis from its surface water and groundwater bodies. The processed results turn into useful environmental information to: a) determine the status of the environmental baseline of the site, b) establish a water quality index (WQI) to manage the natural resource quality according to a rational basis, c) plan experiments related to the design process of a biogenic hydroxyapatite PRB and d) apply chemometric and mechanistic models to forecast the contaminants mobilization through different scenarios and improve the engineering design of the PRB. Once achieved the hydrogeological characterisation of the site and taking into account the originality of the system the following results have been reached: 1) The boundaries of

  20. Long-Term Stewardship of Mixed Wastes: Passive Reactive Barriers for Simultaneous In Situ Remediation of Chlorinated Solvent, Heavy Metal, and Radionuclide Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Peyton, Brent, M.; Gerlach, Robin; Cunningham, Al, B.; Apel, William, A.; Roberto, Francisco

    2007-12-04

    This project report summarizes the results of a 3-way collaboration between researchers at Montana State University’s (MSU’s) Center for Biofilm Engineering (CBE) (Drs. Robin Gerlach and Al Cunningham), the WSU/NSF IGERT Center for Multiphase Environmental Research (CMER) at Washington State University (WSU) (Dr. Brent Peyton who recently moved to MSU), and the Idaho National Laboratory (INL) (Drs. William Apel and Frank Roberto). At WSU, removal of uranium (U) from aqueous solution was studied using Cellulomonas sp. strain ES6, under anaerobic, non-growth conditions. The Cellulomonadaceae are environmentally relevant subsurface bacteria, and strain ES6 was isolated from the DOE Hanford subsurface. To better understand the role of the pH buffer in the U immobilization process, both bicarbonate and PIPES buffers were used. Our results show for the first time the strain ES6 has multiple U immobilization mechanisms within one organism. Citations to resulting publications are included in the report.

  1. Long-term Stewardship of Mixed Wastes: Passive Reactive Barriers for Simultaneous In Situ Remediation of Chlorinated Solvent, Heavy Metal and Radioactive

    International Nuclear Information System (INIS)

    Gerlach, Robin

    2005-01-01

    This project report addresses one part of a 3-way collaboration between researchers (Drs. Robin Gerlach and Al Cunningham) at Montana State University's (MSU's) Center for Biofilm Engineering (CBE), (Dr. Brent Peyton at) the WSU/NSF IGERT Center for Multiphase Environmental Research (CMER) at Washington State University (WSU), and (Drs. William Apel and Frank Roberto at) the Biotechnology Department at the INEEL. Each part of this project is funded under a different contract with the Science Division of the US Department of Energy. The project is designed to evaluate the possibility to develop a subsurface remediation technology for mixed wastes at Department of Energy sites using a group of common soil bacteria of the genus Cellulomonas. We are seeking to gain a better understanding of microbial transformation of chromium, uranium, and carbon tetrachloride by Cellulomonas spp. in simulated subsurface environments

  2. Effect of in situ hypothermic perfusion on intrahepatic pO(2) and reactive oxygen species formation after partial hepatectomy under total hepatic vascular exclusion in pigs

    NARCIS (Netherlands)

    Heijnen, Bob H. M.; Straatsburg, Irene H.; Kager, Liesbeth M.; van der Kleij, Ad J.; Gouma, Dirk J.; van Gulik, Thomas M.

    2003-01-01

    Aim: This study examined attenuation of ischemia and reperfusion (I/R) induced liver injury during liver resections by hypothermic perfusion of the liver under total hepatic vascular exclusion (THVE). Method: Reactive oxygen species (ROS) formation, microcirculatory integrity and endothelial cell

  3. In Situ Monitoring of the Mechanosynthesis of the Archetypal Metal-Organic Framework HKUST-1: Effect of Liquid Additives on the Milling Reactivity.

    Science.gov (United States)

    Stolar, Tomislav; Batzdorf, Lisa; Lukin, Stipe; Žilić, Dijana; Motillo, Cristina; Friščić, Tomislav; Emmerling, Franziska; Halasz, Ivan; Užarević, Krunoslav

    2017-06-05

    We have applied in situ monitoring of mechanochemical reactions by high-energy synchrotron powder X-ray diffraction to study the role of liquid additives on the mechanochemical synthesis of the archetypal metal-organic framework (MOF) HKUST-1, which was one of the first and is still among the most widely investigated MOF materials to be synthesized by solvent-free procedures. It is shown here how the kinetics and mechanisms of the mechanochemical synthesis of HKUST-1 can be influenced by milling conditions and additives, yielding on occasion two new and previously undetected intermediate phases containing a mononuclear copper core, and that finally rearrange to form the HKUST-1 architecture. On the basis of in situ data, we were able to tune and direct the milling reactions toward the formation of these intermediates, which were isolated and characterized by spectroscopic and structural means and their magnetic properties compared to those of HKUST-1. The results have shown that despite the relatively large breadth of analysis available for such widely investigated materials as HKUST-1, in situ monitoring of milling reactions can help in the detection and isolation of new materials and to establish efficient reaction conditions for the mechanochemical synthesis of porous MOFs.

  4. Real rock-microfluidic flow cell: A test bed for real-time in situ analysis of flow, transport, and reaction in a subsurface reactive transport environment.

    Science.gov (United States)

    Singh, Rajveer; Sivaguru, Mayandi; Fried, Glenn A; Fouke, Bruce W; Sanford, Robert A; Carrera, Martin; Werth, Charles J

    2017-09-01

    Physical, chemical, and biological interactions between groundwater and sedimentary rock directly control the fundamental subsurface properties such as porosity, permeability, and flow. This is true for a variety of subsurface scenarios, ranging from shallow groundwater aquifers to deeply buried hydrocarbon reservoirs. Microfluidic flow cells are now commonly being used to study these processes at the pore scale in simplified pore structures meant to mimic subsurface reservoirs. However, these micromodels are typically fabricated from glass, silicon, or polydimethylsiloxane (PDMS), and are therefore incapable of replicating the geochemical reactivity and complex three-dimensional pore networks present in subsurface lithologies. To address these limitations, we developed a new microfluidic experimental test bed, herein called the Real Rock-Microfluidic Flow Cell (RR-MFC). A porous 500μm-thick real rock sample of the Clair Group sandstone from a subsurface hydrocarbon reservoir of the North Sea was prepared and mounted inside a PDMS microfluidic channel, creating a dynamic flow-through experimental platform for real-time tracking of subsurface reactive transport. Transmitted and reflected microscopy, cathodoluminescence microscopy, Raman spectroscopy, and confocal laser microscopy techniques were used to (1) determine the mineralogy, geochemistry, and pore networks within the sandstone inserted in the RR-MFC, (2) analyze non-reactive tracer breakthrough in two- and (depth-limited) three-dimensions, and (3) characterize multiphase flow. The RR-MFC is the first microfluidic experimental platform that allows direct visualization of flow and transport in the pore space of a real subsurface reservoir rock sample, and holds potential to advance our understandings of reactive transport and other subsurface processes relevant to pollutant transport and cleanup in groundwater, as well as energy recovery. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Fixed interface charges between AlGaN barrier and gate stack composed of in situ grown SiN and Al2O3 in AlGaN/GaN high electron mobility transistors with normally off capability

    International Nuclear Information System (INIS)

    Capriotti, M.; Alexewicz, A.; Fleury, C.; Gavagnin, M.; Bethge, O.; Wanzenböck, H. D.; Bertagnolli, E.; Pogany, D.; Strasser, G.; Visalli, D.; Derluyn, J.

    2014-01-01

    Using a generalized extraction method, the fixed charge density N int at the interface between in situ deposited SiN and 5 nm thick AlGaN barrier is evaluated by measurements of threshold voltage V th of an AlGaN/GaN metal insulator semiconductor high electron mobility transistor as a function of SiN thickness. The thickness of the originally deposited 50 nm thick SiN layer is reduced by dry etching. The extracted N int is in the order of the AlGaN polarization charge density. The total removal of the in situ SiN cap leads to a complete depletion of the channel region resulting in V th  = +1 V. Fabrication of a gate stack with Al 2 O 3 as a second cap layer, deposited on top of the in situ SiN, is not introducing additional fixed charges at the SiN/Al 2 O 3 interface

  6. Gas barrier properties of nanocomposites based on in situ polymerized poly(n-butyl methacrylate) in the presence of surface modified montmorillonite

    Czech Academy of Sciences Publication Activity Database

    Herrera-Alonso, J. M.; Sedláková, Zdeňka; Marand, E.

    2010-01-01

    Roč. 349, 1-2 (2010), s. 251-257 ISSN 0376-7388 R&D Projects: GA AV ČR KAN100500651; GA MŠk ME09058 Institutional research plan: CEZ:AV0Z40500505 Keywords : barrier membranes * nanocomposites * montmorillonite Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.673, year: 2010

  7. Synthesis and characterization of in situ TiC–TiB2 composite coatings by reactive plasma spraying on a magnesium alloy

    International Nuclear Information System (INIS)

    Zou Binglin; Tao Shunyan; Huang Wenzhi; Khan, Zuhair S.; Fan Xizhi; Gu Lijian; Wang Ying; Xu Jiaying; Cai Xiaolong; Ma Hongmei; Cao Xueqiang

    2013-01-01

    Highlights: ► TiC–TiB 2 composites coatings were produced on Mg alloy by reactive plasma spraying. ► Phase composition, microstructure and wear resistance of the coatings were studied. ► The resultant product in the coatings was composed of TiC and TiB 2 . ► The produced coatings displayed porous and dense microstructures. ► The synthesized coatings exhibited good wear resistance for Mg alloy substrate. - Abstract: TiC–TiB 2 composite coatings were successfully synthesized using the technique of reactive plasma spraying (RPS) on a magnesium alloy. Phase composition, microstructure and wear resistance of the coatings were characterized by using X-ray diffraction, scanning electron microscopy and pin-on-disk wear test, respectively. The results showed that the resultant product in the RPS coatings was composed of TiC and TiB 2 . Depending on the ignition of self-propagating high-temperature synthesis reaction in the agglomerate particles, the RPS coatings displayed porous and dense microstructures. The porosity of the RPS coatings, to some extent, decreased when the feed powders were plasma sprayed with Ni powders. The RPS coatings provided good wear resistance for the substrate under various loads. For high loads (e.g., ≥15 N), the wear resistance could be significantly improved by the proper addition of Ni into the RPS coatings.

  8. Estimating the Reactivation Potential of Pre-Existing Fractures in Subsurface Granitoids from Outcrop Analogues and in-Situ Stress Modeling: Implications for EGS Reservoir Stimulation with an Example from Thuringia (Central Germany)

    Science.gov (United States)

    Kasch, N.; Ustaszewski, K. M.; Siegburg, M.; Navabpour, P.; Hesse, G.

    2014-12-01

    The Mid-German Crystalline Rise (MGCR) in Thuringia (central Germany) is part of the European Variscan orogen and hosts large extents of Visean granites (c. 350 Ma), locally overlain by up to 3 km of Early Permian to Mid-Triassic volcanic and sedimentary rocks. A geothermal gradient of 36°C km-1 suggests that such subsurface granites form an economically viable hot dry rock reservoir at > 4 km depth. In order to assess the likelihood of reactivating any pre-existing fractures during hydraulic reservoir stimulation, slip and dilation tendency analyses (Morris et al. 1996) were carried out. For this purpose, we determined orientations of pre-existing fractures in 14 granite exposures along the southern border fault of an MGCR basement high. Additionally, the strike of 192 Permian magmatic dikes affecting the granite was considered. This analysis revealed a prevalence of NW-SE-striking fractures (mainly joints, extension veins, dikes and subordinately brittle faults) with a maximum at 030/70 (dip azimuth/dip). Borehole data and earthquake focal mechanisms reveal a maximum horizontal stress SHmax trending N150°E and a strike-slip regime. Effective in-situ stress magnitudes at 4.5 km depth, assuming hydrostatic conditions and frictional equilibrium along pre-existing fractures with a friction coefficient of 0.85 yielded 230 and 110 MPa for SHmax and Shmin, respectively. In this stress field, fractures with the prevailing orientations show a high tendency of becoming reactivated as dextral strike-slip faults if stimulated hydraulically. To ensure that a stimulation well creates fluid connectivity on a reservoir volume as large as possible rather than dissipating fluids along existing fractures, it should follow a trajectory at the highest possible angle to the orientation of prevailing fractures, i.e. subhorizontal and NE-SW-oriented. References: Morris, A., D. A. Ferrill, and D. B. Henderson (1996), Slip-tendency analysis and fault reactivation, Geology, 24, 275-278.

  9. Furoxans (oxadiazole-4N-oxides) with Attenuated Reactivity are Neuroprotective, Cross the Blood Brain Barrier, and Improve Passive Avoidance Memory.

    Science.gov (United States)

    Horton, Austin; Nash, Kevin; Tackie-Yarboi, Ethel; Kostrevski, Alexander; Novak, Adam; Raghavan, Aparna; Tulsulkar, Jatin; Alhadidi, Qasim; Wamer, Nathan; Langenderfer, Bryn; Royster, Kalee; Ducharme, Maxwell; Hagood, Katelyn; Post, Megan; Shah, Zahoor A; Schiefer, Isaac T

    2018-04-23

    Nitric oxide (NO) mimetics and other agents capable of enhancing NO/cGMP signaling have demonstrated efficacy as potential therapies for Alzheimer's disease. A group of thiol-dependent NO mimetics known as furoxans may be designed to exhibit attenuated reactivity to provide slow onset NO effects. The present study describes the design, synthesis, and evaluation of a furoxan library resulting in the identification of a prototype furoxan, 5a, which was profiled for use in the CNS. 5a demonstrated negligible reactivity toward generic cellular thiols under physiological conditions. Nonetheless, cGMP dependent neuroprotection was observed. 5a (20 mg/kg) reversed cholinergic memory deficits in a mouse model of passive avoidance fear memory. Importantly, 5a can be prepared as a pharmaceutically acceptable salt and is observed in the brain 12 hr after oral administration, suggesting potential for daily dosing and excellent metabolic stability. Continued investigation into furoxans as attenuated NO mimetics for the CNS is warranted.

  10. Novel implementation of the use of the EPR-in situ technique (Electrochemical potentiodynamic reactivation) to identify intergranular corrosion susceptability of stainless steels exposed to high temperatures

    International Nuclear Information System (INIS)

    Munoz, N.; Pineda, Y.; Vera, E.; Sepulveda, H.; Heyn, Andreas

    2010-01-01

    Austenitic stainless steels (18 % Cr), are often used in pieces that are exposed to temperatures of 450 o C to 900 o C (heat exchangers). At these temperatures sensibilization occurs on the grain boundaries, becoming a key factor in the appearance of intergranular corrosion. In order to prevent this phenomena from occurring 0.3% to 0.8% of niobium is added as an alloying element in the manufacturing process, which prevents the carbon present in the steel combines with the chromium, avoiding the formation of carbides. An electrochemical method for in-situ application was developed to evaluate the corrosive behavior of stainless steel and its susceptibility and degree of sensibilizaton to an intergranular attack. This work shows the effectiveness of this technique in evaluating niobium's inhibitory effect in preventing the formation of chromium carbides on the grain boundaries of 18% chromium steel, and also shows the technique's potentiality in determining how susceptible these steels are to intercrystalline corrosion

  11. A Reactive Oxide Overlayer on Rh Nanoparticles during CO Oxidation and Its Size Dependence Studied by in Situ Ambient Pressure XPS

    International Nuclear Information System (INIS)

    Grass, Michael E.; Zhang, Yawen; Butcher, Derek R.; Park, Jeong Y.; Li, Yimin; Bluhm, Hendrik; Bratlie, Kaitlin M.; Zhang, Tianfu; Somorjai, Gabor A.

    2008-01-01

    CO oxidation is one of the most studied heterogeneous reactions, being scientifically and industrially important, particularly for removal of CO from exhaust streams and preferential oxidation for hydrogen purification in fuel cell applications. The precious metals Ru, Rh, Pd, Pt, and Au are most commonly used for this reaction because of their high activity and stability. Despite the wealth of experimental and theoretical data, it remains unclear what is the active surface for CO oxidation under catalytic conditions for these metals. In this communication, we utilize in situ synchrotron ambient pressure X-ray photoelectron spectroscopy (APXPS) to monitor the oxidation state at the surface of Rh nanoparticles during CO oxidation and demonstrate that the active catalyst is a surface oxide, the formation of which is dependent on particle size. The amount of oxide formed and the reaction rate both increase with decreasing particle size.

  12. Structural, electrical and magnetic characterization of in-situ crystallized ZnO:Co thin films synthesized by reactive magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Lardjane, Soumia, E-mail: lardjanesoumia@yahoo.fr [IRTES-LERMPS, UTBM, Site de Montbéliard, 90010 Belfort Cedex (France); Division Etude et Prédiction des Matériaux, Unité de Recherche Matériaux et Energies Renouvelables, Université Abou Bekr Belkaid, Tlemcen (Algeria); Pour Yazdi, Mohammad Arab [IRTES-LERMPS, UTBM, Site de Montbéliard, 90010 Belfort Cedex (France); Martin, Nicolas [FEMTO-ST, Département MN2S, UMR 6174 CNRS, Université de Franche-Comté, ENSMM, UTBM, 32, Avenue de l’Observatoire, 25044 Besancon Cedex (France); Bellouard, Christine [Laboratoire de Physique des Matériaux, Nancy University, CNRS, 54506 Vandoeuvre-lès-Nancy Cedex (France); Fenineche, Nour-eddine [IRTES-LERMPS, UTBM, Site de Montbéliard, 90010 Belfort Cedex (France); Schuler, Andreas [Solar Energy and Buildings Physics Laboratory, EPFL ENAC IIC LESO-PB, Station 18, Bâtiment LE, 1015 Lausanne (Switzerland); Merad, Ghouti [Division Etude et Prédiction des Matériaux, Unité de Recherche Matériaux et Energies Renouvelables, Université Abou Bekr Belkaid, Tlemcen (Algeria); Billard, Alain [IRTES-LERMPS, UTBM, Site de Montbéliard, 90010 Belfort Cedex (France)

    2015-07-01

    Zn{sub 1−x}Co{sub x}O (0 < x < 0.146) conductive thin films have been deposited by reactive magnetron sputtering of metallic Zn and Co targets at high pressure and temperature. The structural properties have been investigated by using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). It has been observed that all as-deposited films are crystallized in pure hcp ZnO structure and neither traces of metallic nor oxide Co-rich clusters were detected. The average grain size estimated from full width at half maximum of XRD results varied between 65 and 83 nm. XPS analyses exhibit that Co ions are successfully entered into ZnO lattice as Co{sup +2}. The electrical properties including conductivity, carrier density and carrier mobility were determined by Hall effect measurements in a temperature range from 300 K to 475 K. The conductivity of the films decreases from σ{sub 300K} = 2.2 × 10{sup 4} to 2.3 × 10{sup −1} Sm{sup −1} as the Co content changes from 0 to 0.146. Magnetic measurements reveal the absence of ferromagnetism even at 3 K and a paramagnetic Curie–Weiss behavior associated to magnetic clusters. - Highlights: • Zn{sub 1−x}Co{sub x}O conductive thin films were synthesized by reactive magnetron sputtering. • Structural characterization exhibited the absence of Co clusters or secondary phases. • The film conductivity decreased with increasing of Co concentration. • No ferromagnetism was observed in all Co doped ZnO samples. • Magnetic properties are described by a Curie–Weiss behavior associated to clusters.

  13. Engineered passive bioreactive barriers: risk-managing the legacy of industrial soil and groundwater pollution.

    Science.gov (United States)

    Kalin, Robert M

    2004-06-01

    Permeable reactive barriers are a technology that is one decade old, with most full-scale applications based on abiotic mechanisms. Though there is extensive literature on engineered bioreactors, natural biodegradation potential, and in situ remediation, it is only recently that engineered passive bioreactive barrier technology is being considered at the commercial scale to manage contaminated soil and groundwater risks. Recent full-scale studies are providing the scientific confidence in our understanding of coupled microbial (and genetic), hydrogeologic, and geochemical processes in this approach and have highlighted the need to further integrate engineering and science tools.

  14. Intestinal barrier dysfunction develops at the onset of experimental autoimmune encephalomyelitis, and can be induced by adoptive transfer of auto-reactive T cells.

    Directory of Open Access Journals (Sweden)

    Mehrnaz Nouri

    Full Text Available Multiple sclerosis (MS is a chronic inflammatory demyelinating disease of the central nervous system with a pathogenesis involving a dysfunctional blood-brain barrier and myelin-specific, autoreactive T cells. Although the commensal microbiota seems to affect its pathogenesis, regulation of the interactions between luminal antigens and mucosal immune elements remains unclear. Herein, we investigated whether the intestinal mucosal barrier is also targeted in this disease. Experimental autoimmune encephalomyelitis (EAE, the prototypic animal model of MS, was induced either by active immunization or by adoptive transfer of autoreactive T cells isolated from these mice. We show increased intestinal permeability, overexpression of the tight junction protein zonulin and alterations in intestinal morphology (increased crypt depth and thickness of the submucosa and muscularis layers. These intestinal manifestations were seen at 7 days (i.e., preceding the onset of neurological symptoms and at 14 days (i.e., at the stage of paralysis after immunization. We also demonstrate an increased infiltration of proinflammatory Th1/Th17 cells and a reduced regulatory T cell number in the gut lamina propria, Peyer's patches and mesenteric lymph nodes. Adoptive transfer to healthy mice of encephalitogenic T cells, isolated from EAE-diseased animals, led to intestinal changes similar to those resulting from the immunization procedure. Our findings show that disruption of intestinal homeostasis is an early and immune-mediated event in EAE. We propose that this intestinal dysfunction may act to support disease progression, and thus represent a potential therapeutic target in MS. In particular, an increased understanding of the regulation of tight junctions at the blood-brain barrier and in the intestinal wall may be crucial for design of future innovative therapies.

  15. Intestinal Barrier Dysfunction Develops at the Onset of Experimental Autoimmune Encephalomyelitis, and Can Be Induced by Adoptive Transfer of Auto-Reactive T Cells

    Science.gov (United States)

    Nouri, Mehrnaz; Bredberg, Anders; Weström, Björn; Lavasani, Shahram

    2014-01-01

    Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system with a pathogenesis involving a dysfunctional blood-brain barrier and myelin-specific, autoreactive T cells. Although the commensal microbiota seems to affect its pathogenesis, regulation of the interactions between luminal antigens and mucosal immune elements remains unclear. Herein, we investigated whether the intestinal mucosal barrier is also targeted in this disease. Experimental autoimmune encephalomyelitis (EAE), the prototypic animal model of MS, was induced either by active immunization or by adoptive transfer of autoreactive T cells isolated from these mice. We show increased intestinal permeability, overexpression of the tight junction protein zonulin and alterations in intestinal morphology (increased crypt depth and thickness of the submucosa and muscularis layers). These intestinal manifestations were seen at 7 days (i.e., preceding the onset of neurological symptoms) and at 14 days (i.e., at the stage of paralysis) after immunization. We also demonstrate an increased infiltration of proinflammatory Th1/Th17 cells and a reduced regulatory T cell number in the gut lamina propria, Peyer's patches and mesenteric lymph nodes. Adoptive transfer to healthy mice of encephalitogenic T cells, isolated from EAE-diseased animals, led to intestinal changes similar to those resulting from the immunization procedure. Our findings show that disruption of intestinal homeostasis is an early and immune-mediated event in EAE. We propose that this intestinal dysfunction may act to support disease progression, and thus represent a potential therapeutic target in MS. In particular, an increased understanding of the regulation of tight junctions at the blood-brain barrier and in the intestinal wall may be crucial for design of future innovative therapies. PMID:25184418

  16. Numerical simulation of in-situ chemical oxidation (ISCO) and biodegradation of petroleum hydrocarbons using a coupled model for bio-geochemical reactive transport

    Science.gov (United States)

    Marin, I. S.; Molson, J. W.

    2013-05-01

    Petroleum hydrocarbons (PHCs) are a major source of groundwater contamination, being a worldwide and well-known problem. Formed by a complex mixture of hundreds of organic compounds (including BTEX - benzene, toluene, ethylbenzene and xylenes), many of which are toxic and persistent in the subsurface and are capable of creating a serious risk to human health. Several remediation technologies can be used to clean-up PHC contamination. In-situ chemical oxidation (ISCO) and intrinsic bioremediation (IBR) are two promising techniques that can be applied in this case. However, the interaction of these processes with the background aquifer geochemistry and the design of an efficient treatment presents a challenge. Here we show the development and application of BIONAPL/Phreeqc, a modeling tool capable of simulating groundwater flow, contaminant transport with coupled biological and geochemical processes in porous or fractured porous media. BIONAPL/Phreeqc is based on the well-tested BIONAPL/3D model, using a powerful finite element simulation engine, capable of simulating non-aqueous phase liquid (NAPL) dissolution, density-dependent advective-dispersive transport, and solving the geochemical and kinetic processes with the library Phreeqc. To validate the model, we compared BIONAPL/Phreeqc with results from the literature for different biodegradation processes and different geometries, with good agreement. We then used the model to simulate the behavior of sodium persulfate (NaS2O8) as an oxidant for BTEX degradation, coupled with sequential biodegradation in a 2D case and to evaluate the effect of inorganic geochemistry reactions. The results show the advantages of a treatment train remediation scheme based on ISCO and IBR. The numerical performance and stability of the integrated BIONAPL/Phreeqc model was also verified.

  17. Laboratory Testing of a MEMS Sensor System for In-Situ Monitoring of the Engineered Barrier in a Geological Disposal Facility

    Directory of Open Access Journals (Sweden)

    Wenbin Yang

    2017-05-01

    Full Text Available Geological disposal facilities for radioactive waste pose significant challenges for robust monitoring of environmental conditions within the engineered barriers that surround the waste canister. Temperatures are elevated, due to the presence of heat generating waste, relative humidity varies from 20% to 100%, and swelling pressures within the bentonite barrier can typically be 2–10 MPa. Here, we test the robustness of a bespoke design MEMS sensor-based monitoring system, which we encapsulate in polyurethane resin. We place the sensor within an oedometer cell and show that despite a rise in swelling pressure to 2 MPa, our relative humidity (RH measurements are unaffected. We then test the sensing system against a traditional RH sensor, using saturated bentonite with a range of RH values between 50% and 100%. Measurements differ, on average, by 2.87% RH, and are particularly far apart for values of RH greater than 98%. However, bespoke calibration of the MEMS sensing system using saturated solutions of known RH, reduces the measurement difference to an average of 1.97% RH, greatly increasing the accuracy for RH values close to 100%.

  18. Long term performance of the Waterloo denitrification barrier

    International Nuclear Information System (INIS)

    Robertson, W.D.; Cherry, J.A.

    1997-01-01

    Beginning in 1991 a series of laboratory tests and small scale field trials were initiated to test the performance of an innovative permeable reactive barrier for treatment of nitrate from septic systems. The barrier promotes denitrification by providing an energy source in the form of solid organic carbon mixed into the porous media material. Advantages of the system for nitrate treatment are that the reaction is passive and in situ and it is possible to incorporate sufficient carbon mass in conveniently sized barriers to potentially provide treatment for long periods (decades) without the necessity for maintenance. However, longevity can only be demonstrated by careful long term monitoring of field installations. This paper documents four years of operating history at three small scale field trials; two where the denitrification barrier is installed as a horizontal layer positioned in the unsaturated zone below conventional septic system infiltration beds and one where the barrier is installed as a vertical wall intercepting a septic system plume at a downgradient location. The barriers have successfully attenuated 50-100% of NO - 3 -N levels of up to 170 mg/L and treatment has remained consistent over the four year period in each case, thus considerable longevity is indicated. Other field trials have demonstrated this technology to be equally effective in treating nitrogen contamination from other sources such as landfill leachate and farm field runoff

  19. Assessment of the long-term stability of cementitious barriers of radioactive waste repositories by using digital-image-based microstructure generation and reactive transport modelling

    International Nuclear Information System (INIS)

    Galindez, Juan Manuel; Molinero, Jorge

    2010-01-01

    Cement-based grout plays a significant role in the design and performance of nuclear waste repositories: used correctly, it can enhance their safety. However, the high water-to-binder ratios, which are required to meet the desired workability and injection ability at early age, lead to high porosity that may affect the durability of this material and undermine its long-term geochemical performance. In this paper, a new methodology is presented in order to help the process of mix design which best meets the compromise between these two conflicting requirements. It involves the combined use of the computer programs CEMHYD3D for the generation of digital-image-based microstructures and CrunchFlow, for the reactive transport calculations affecting the materials so simulated. This approach is exemplified with two grout types, namely, the so-called Standard mix 5/5, used in the upper parts of the structure, and the 'low-pH' P308B, to be injected at higher depths. The results of the digital reconstruction of the mineralogical composition of the hardened paste are entirely logical, as the microstructures display high degrees of hydration, large porosities and low or nil contents of aluminium compounds. Diffusion of solutes in the pore solution was considered to be the dominant transport process. A single scenario was studied for both mix designs and their performances were compared. The reactive transport model adequately reproduces the process of decalcification of the C-S-H and the precipitation of calcite, which is corroborated by empirical observations. It was found that the evolution of the deterioration process is sensitive to the chemical composition of groundwater, its effects being more severe when grout is set under continuous exposure to poorly mineralized groundwater. Results obtained appear to indicate that a correct conceptualization of the problem was accomplished and support the assumption that, in absence of more reliable empirical data, it might

  20. FEBEX Full-Scalle Engineered barriers experiment in crystalline host rock Preoperational thermo-hydro-mechanical (THM) modelling of the in situ test

    International Nuclear Information System (INIS)

    1998-01-01

    This report contains the results of a set of 1-D and 2-D coupled thermo-hydro-mechanical (THM) analyses carried out during the preoperational stage simulating the in situ FEBEX test. The analyses incorporate available information concerning rock and bentonite properties as well as the final test layout and conditions. The main goals are: -To provide the best estimate of test performance given current models and information - To define a basis for future model improvements. The theoretical bases of the analyses and the computer code used are reviewed. Special reference is made to the process of parameter estimation that tries to incorporate available information on material behaviour obtained in the characterisation work carried out both in the laboratory and in the field. Data obtained in the characterisation stage is also used to define initial and boundary conditions. The results of the 1-D THM Base Case analysis are used to gain a good understanding of expected test behaviour concerning thermal, hydraulic and mechanical problems. A quite extensive programme of sensitivity analyses is also reported in which the effect of a number of parameters and boundary conditions are examined. The results of the sensitivity analyses place an appropriate context the information obtained from the Base Case showing, for instance, that rock desaturation and degree of buffer hydration depend on some critical parameters in a complex way. Two-dimensional effects are discussed on the basis of the results of 2-D axisymmetric THM analysis performed using a longitudinal section that provides a better representation of real test geometry. Quantitative but not qualitative differences are found with respect to the 1-D results. Finally, a 2-D THM cross section analysis has been performed under plane strain conditions. No specific 2-D effects are observed in this case as quasi-axisymmetric conditions have been prescribed. The models employed in the analyses included in this report have not

  1. Atomic nature of the Schottky barrier height formation of the Ag/GaAs(001)-2 × 4 interface: An in-situ synchrotron radiation photoemission study

    International Nuclear Information System (INIS)

    Cheng, Chiu-Ping; Chen, Wan-Sin; Lin, Keng-Yung; Wei, Guo-Jhen; Cheng, Yi-Ting; Lin, Yen-Hsun; Wan, Hsien-Wen; Pi, Tun-Wen; Tung, Raymond T.; Kwo, Jueinai; Hong, Minghwei

    2017-01-01

    Highlights: • The interaction of Ag on a p-type α2 GaAs(001)-2 × 4 surface has been studied. • The dipole formation mechanism of the Ag/GaAs(001)-2 × 4 interface is proposed. • Determination of the SBH prior to metal formation is found. • Inadequacy of the metal-induced gap-state model for explaining the SBH is evident. - Abstract: The Interface of Ag with p-type α2 GaAs(001)-2 × 4 has been studied to further understand the formation mechanism of the Schottky barrier height (SBH). In the initial phase of Ag deposition, high-resolution core-level data show that Ag adatoms effectively passivate the surface As-As dimers without breaking them apart. The Ag(+)-As(−) dipoles are thus generated with a maximal potential energy of 0.26 eV; a SBH of 0.38 eV was measured. Greater Ag coverage causes elemental segregation of As/Ga atoms, reversing the direction of the net dipole. The band bending effect near the interface shows a downward shift of 0.08 eV, and the final SBH is similar to the value as measured at the initial Ag deposition. Both parameters are secured at 0.25 Å of Ag thickness prior to the observation of metallic behavior of Ag. Inadequacy of the metal-induced gap-state model for explaining SBH is evident.

  2. Atomic nature of the Schottky barrier height formation of the Ag/GaAs(001)-2 × 4 interface: An in-situ synchrotron radiation photoemission study

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chiu-Ping, E-mail: cpcheng@mail.ncyu.edu.tw [Department of Electrophysics, National Chiayi University, Chiayi, 60004, Taiwan, ROC (China); Chen, Wan-Sin [Department of Electrophysics, National Chiayi University, Chiayi, 60004, Taiwan, ROC (China); National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan, ROC (China); Lin, Keng-Yung [Graduate Institute of Applied Physics and Department of Physics, National Taiwan University, Taipei, 10617, Taiwan, ROC (China); Wei, Guo-Jhen; Cheng, Yi-Ting [Department of Electrophysics, National Chiayi University, Chiayi, 60004, Taiwan, ROC (China); Lin, Yen-Hsun; Wan, Hsien-Wen [Graduate Institute of Applied Physics and Department of Physics, National Taiwan University, Taipei, 10617, Taiwan, ROC (China); Pi, Tun-Wen, E-mail: pi@nsrrc.org.tw [National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan, ROC (China); Tung, Raymond T. [Department of Physics, Brooklyn College, CUNY, NY 11210 (United States); Kwo, Jueinai, E-mail: raynien@phys.nthu.edu.tw [Department of Physics, National Tsing Hua University, Hsinchu, 30013, Taiwan, ROC (China); Hong, Minghwei, E-mail: mhong@phys.ntu.edu.tw [Graduate Institute of Applied Physics and Department of Physics, National Taiwan University, Taipei, 10617, Taiwan, ROC (China)

    2017-01-30

    Highlights: • The interaction of Ag on a p-type α2 GaAs(001)-2 × 4 surface has been studied. • The dipole formation mechanism of the Ag/GaAs(001)-2 × 4 interface is proposed. • Determination of the SBH prior to metal formation is found. • Inadequacy of the metal-induced gap-state model for explaining the SBH is evident. - Abstract: The Interface of Ag with p-type α2 GaAs(001)-2 × 4 has been studied to further understand the formation mechanism of the Schottky barrier height (SBH). In the initial phase of Ag deposition, high-resolution core-level data show that Ag adatoms effectively passivate the surface As-As dimers without breaking them apart. The Ag(+)-As(−) dipoles are thus generated with a maximal potential energy of 0.26 eV; a SBH of 0.38 eV was measured. Greater Ag coverage causes elemental segregation of As/Ga atoms, reversing the direction of the net dipole. The band bending effect near the interface shows a downward shift of 0.08 eV, and the final SBH is similar to the value as measured at the initial Ag deposition. Both parameters are secured at 0.25 Å of Ag thickness prior to the observation of metallic behavior of Ag. Inadequacy of the metal-induced gap-state model for explaining SBH is evident.

  3. Studies on the optimum conditions using acid-washed zero-valent iron/aluminum mixtures in permeable reactive barriers for the removal of different heavy metal ions from wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Han, Weijiang [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China); South China Institute of Environmental Science, MEP, Guangzhou 510655 (China); Fu, Fenglian, E-mail: fufenglian2006@163.com [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Cheng, Zihang; Tang, Bing; Wu, Shijiao [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China)

    2016-01-25

    Highlights: • Acid-washed zero-valent iron and zero-valent aluminum were used in PRBs. • The time that removal efficiencies of heavy metal were above 99.5% can keep 300 h. • Removal mechanism of Cr(VI), Cd{sup 2+}, Ni{sup 2+}, Cu{sup 2+}, and Zn{sup 2+} was discussed. • Heavy metal ions were removed by reduction, adsorption, and co-precipitation. - Abstract: The method of permeable reactive barriers (PRBs) is considered as one of the most practicable approaches in treating heavy metals contaminated surface and groundwater. The mixture of acid-washed zero-valent iron (ZVI) and zero-valent aluminum (ZVAl) as reactive medium in PRBs to treat heavy metal wastewater containing Cr(VI), Cd{sup 2+}, Ni{sup 2+}, Cu{sup 2+}, and Zn{sup 2+} was investigated. The performance of column filled with the mixture of acid-washed ZVI and ZVAl was much better than the column filled with ZVI or ZVAl alone. At initial pH 5.4 and flow rates of 1.0 mL/min, the time that the removal efficiencies of Cr(VI), Cd{sup 2+}, Ni{sup 2+}, Cu{sup 2+}, and Zn{sup 2+} were all above 99.5% can keep about 300 h using 80 g/40 g acid-washed ZVI/ZVAl when treating wastewater containing each heavy metal ions (Cr(VI), Cd{sup 2+}, Ni{sup 2+}, Cu{sup 2+}, and Zn{sup 2+}) concentration of 20.0 mg/L. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to characterize ZVI/ZVAl before and after reaction and the reaction mechanism of the heavy metal ions with ZVI/ZVAl was discussed.

  4. Studies on the optimum conditions using acid-washed zero-valent iron/aluminum mixtures in permeable reactive barriers for the removal of different heavy metal ions from wastewater

    International Nuclear Information System (INIS)

    Han, Weijiang; Fu, Fenglian; Cheng, Zihang; Tang, Bing; Wu, Shijiao

    2016-01-01

    Highlights: • Acid-washed zero-valent iron and zero-valent aluminum were used in PRBs. • The time that removal efficiencies of heavy metal were above 99.5% can keep 300 h. • Removal mechanism of Cr(VI), Cd 2+ , Ni 2+ , Cu 2+ , and Zn 2+ was discussed. • Heavy metal ions were removed by reduction, adsorption, and co-precipitation. - Abstract: The method of permeable reactive barriers (PRBs) is considered as one of the most practicable approaches in treating heavy metals contaminated surface and groundwater. The mixture of acid-washed zero-valent iron (ZVI) and zero-valent aluminum (ZVAl) as reactive medium in PRBs to treat heavy metal wastewater containing Cr(VI), Cd 2+ , Ni 2+ , Cu 2+ , and Zn 2+ was investigated. The performance of column filled with the mixture of acid-washed ZVI and ZVAl was much better than the column filled with ZVI or ZVAl alone. At initial pH 5.4 and flow rates of 1.0 mL/min, the time that the removal efficiencies of Cr(VI), Cd 2+ , Ni 2+ , Cu 2+ , and Zn 2+ were all above 99.5% can keep about 300 h using 80 g/40 g acid-washed ZVI/ZVAl when treating wastewater containing each heavy metal ions (Cr(VI), Cd 2+ , Ni 2+ , Cu 2+ , and Zn 2+ ) concentration of 20.0 mg/L. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to characterize ZVI/ZVAl before and after reaction and the reaction mechanism of the heavy metal ions with ZVI/ZVAl was discussed.

  5. OH, HO2 and RO2 Radical and OH Reactivity Observations during the Summertime in Beijing: High In-Situ Ozone Production and Evidence of a Missing OH Source.

    Science.gov (United States)

    Whalley, L.; Ye, C.; Slater, E.; Woodward-Massey, R.; Lee, J. D.; Squires, F. A.; Hopkins, J. R.; Dunmore, R.; Shaw, M.; Hamilton, J.; Lewis, A. C.; Crilley, L.; Kramer, L. J.; Bloss, W.; Heard, D. E.

    2017-12-01

    Despite substantial reductions in primary emissions of pollutants in China over the past decade, concentrations of the secondary pollutant, ozone, still frequently exceed air quality threshold limits in urban areas during the summertime. We will present measurements of OH, HO2 and RO2 radicals and OH reactivity made in central Beijing at the Institute of Atmospheric Physics of the Chinese Academy of Sciences, close to the North 4th ring road in May and June 2017 which formed the summer phase of `An Integrated Study of AIR Pollution PROcesses'. Elevated levels of O3 (>100 ppbv) were regularly observed. NO concentrations were elevated during the morning but often decreased to below the instrument limit of detection during the afternoon hours when the ozone concentrations peaked. Biogenic emissions influenced the chemistry at the site, with several ppbv of isoprene measured during the afternoons. The OH measurements were made using the FAGE technique, equipped with an inlet pre injector (IPI) which provides an alternative method to determine the instrument background signal by injecting a scavenger to remove ambient OH and ensures an artefact-free OH measurement. Elevated levels of OH were observed, with a mean peak OH concentration of 1.2×107 molecule cm-3 at noon; but with OH concentrations reaching up to 2.5×107 molecule cm-3 on some days. Mean peak HO2 concentrations of 3×108 molecule cm-3 and total RO2 of 1.2×109 molecule cm-3 were recorded, with maximum concentrations of 1.0×109 molecule cm-3 and 4×109 molecule cm-3 observed for HO2 and RO2 respectively, suggesting significant in situ ozone production. A comparison of the artefact-free OH observations with steady state calculations, constrained to the total OH reactivity measurement and known OH precursors that were measured alongside OH, highlights a significant missing daytime OH source under low [NO], with the steady state OH concentrations approximately a factor of two lower than the OH concentrations

  6. In-situ fabrication of MoSi{sub 2}/SiC–Mo{sub 2}C gradient anti-oxidation coating on Mo substrate and the crucial effect of Mo{sub 2}C barrier layer at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jun [School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing 100084 (China); State Key Laboratory of New Ceramics and Fine Processing, Beijing 100084 (China); Gong, Qianming, E-mail: gongqianming@mail.tsinghua.edu.cn [School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing 100084 (China); State Key Laboratory of New Ceramics and Fine Processing, Beijing 100084 (China); Shao, Yang; Zhuang, Daming [School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing 100084 (China); State Key Laboratory of New Ceramics and Fine Processing, Beijing 100084 (China); Liang, Ji [Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing 100084 (China); Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China)

    2014-07-01

    MoSi{sub 2}/SiC–Mo{sub 2}C gradient coating on molybdenum was in situ prepared with pack cementation process by two steps: (1) carburizing with graphite powder to obtain a Mo{sub 2}C layer on Mo substrate, and (2) siliconizing with Si powder to get a composite MoSi{sub 2}/SiC layer on the upper part of Mo{sub 2}C layer. The microstructure and elemental distribution in the coating were investigated with scanning electron microscopy (SEM), backscattered electron (BSE), energy dispersive spectroscopy (EDS), electron probe microanalysis (EPMA) and X-ray diffraction (XRD). Cyclic oxidation tests (at 500 °C, 1200 °C, 1400 °C and 1600 °C) demonstrated excellent oxidation resistance for the gradient composite coating and the mass loss was only 0.23% in 60 min at 1600 °C. XRD, EPMA, thermal dynamic and phase diagram analyses indicated that the Mo{sub 2}C barrier layer played the key role in slowing down the diffusion of C and Si toward inner Mo substrate at high temperature and principally this contributed to the excellent anti-oxidation for Mo besides the outer MoSi{sub 2}/SiC composite layer.

  7. In-situ fabrication of MoSi2/SiC–Mo2C gradient anti-oxidation coating on Mo substrate and the crucial effect of Mo2C barrier layer at high temperature

    International Nuclear Information System (INIS)

    Liu, Jun; Gong, Qianming; Shao, Yang; Zhuang, Daming; Liang, Ji

    2014-01-01

    MoSi 2 /SiC–Mo 2 C gradient coating on molybdenum was in situ prepared with pack cementation process by two steps: (1) carburizing with graphite powder to obtain a Mo 2 C layer on Mo substrate, and (2) siliconizing with Si powder to get a composite MoSi 2 /SiC layer on the upper part of Mo 2 C layer. The microstructure and elemental distribution in the coating were investigated with scanning electron microscopy (SEM), backscattered electron (BSE), energy dispersive spectroscopy (EDS), electron probe microanalysis (EPMA) and X-ray diffraction (XRD). Cyclic oxidation tests (at 500 °C, 1200 °C, 1400 °C and 1600 °C) demonstrated excellent oxidation resistance for the gradient composite coating and the mass loss was only 0.23% in 60 min at 1600 °C. XRD, EPMA, thermal dynamic and phase diagram analyses indicated that the Mo 2 C barrier layer played the key role in slowing down the diffusion of C and Si toward inner Mo substrate at high temperature and principally this contributed to the excellent anti-oxidation for Mo besides the outer MoSi 2 /SiC composite layer.

  8. A study of the reactivity of elemental Cr/Se/Te thin multilayers using X-ray reflectometry, in situ X-ray diffraction and X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Behrens, Malte; Tomforde, Jan; May, Enno; Kiebach, Ragnar; Bensch, Wolfgang; Haeussler, Dietrich; Jaeger, Wolfgang

    2006-01-01

    The reactivity of [Cr/Se/Te] multilayers under annealing was investigated using X-ray reflectometry, in situ X-ray diffraction, X-ray absorption fine structure (XAFS) measurements and transmission electron microscopy. For all samples, interdiffusion was complete at temperatures between 100 and 300 deg. C, depending on the repeating tri-layer thickness. A crystalline phase nucleated approximately 20 deg. C above the temperature where interdiffusion was finished. The first crystalline phase in a binary Cr/Te sample was layered CrTe 3 nucleating at 230 deg. C. In ternary samples (Se:Te=0.6-1.2), the low-temperature nucleation of such a layered CrQ 3 (Q=Se, Te) phase is suppressed and instead the phase Cr 2 Q 3 nucleates first. Interestingly, this phase decomposes around 500 deg. C into layered CrQ 3 . In contrast, binary Cr/Se samples form stable amorphous alloys after interdiffusion and Cr 3 Se 4 nucleates around 500 deg. C as the only crystalline phase. Evaluation of the XAFS data of annealed samples yield Se-Cr distances of 2.568(1) and 2.552(1) A for Cr 2 Q 3 and CrQ 3 , respectively. In the latter sample, higher coordination shells around Se are seen accounting for the Se-Te contacts in the structure. - Graphical abstract: The first step of the reaction of elemental Cr/Te/Se-multilayers is the interdiffusion of the elements as evidenced by the decay of the modulation peaks in the low-angle region of the X-ray diffraction patterns. The subsequent growth of Bragg peaks at higher scattering angles indicates crystallization of chromium chalcogenide Cr 2 Te 3- x Se x

  9. Geophysical characterization of subsurface barriers

    International Nuclear Information System (INIS)

    Borns, D.J.

    1995-08-01

    An option for controlling contaminant migration from plumes and buried waste sites is to construct a subsurface barrier of a low-permeability material. The successful application of subsurface barriers requires processes to verify the emplacement and effectiveness of barrier and to monitor the performance of a barrier after emplacement. Non destructive and remote sensing techniques, such as geophysical methods, are possible technologies to address these needs. The changes in mechanical, hydrologic and chemical properties associated with the emplacement of an engineered barrier will affect geophysical properties such a seismic velocity, electrical conductivity, and dielectric constant. Also, the barrier, once emplaced and interacting with the in situ geologic system, may affect the paths along which electrical current flows in the subsurface. These changes in properties and processes facilitate the detection and monitoring of the barrier. The approaches to characterizing and monitoring engineered barriers can be divided between (1) methods that directly image the barrier using the contrasts in physical properties between the barrier and the host soil or rock and (2) methods that reflect flow processes around or through the barrier. For example, seismic methods that delineate the changes in density and stiffness associated with the barrier represents a direct imaging method. Electrical self potential methods and flow probes based on heat flow methods represent techniques that can delineate the flow path or flow processes around and through a barrier

  10. The role of confined collagen geometry in decreasing nucleation energy barriers to intrafibrillar mineralization.

    Science.gov (United States)

    Kim, Doyoon; Lee, Byeongdu; Thomopoulos, Stavros; Jun, Young-Shin

    2018-03-06

    Mineralization of collagen is critical for the mechanical functions of bones and teeth. Calcium phosphate nucleation in collagenous structures follows distinctly different patterns in highly confined gap regions (nanoscale confinement) than in less confined extrafibrillar spaces (microscale confinement). Although the mechanism(s) driving these differences are still largely unknown, differences in the free energy for nucleation may explain these two mineralization behaviors. Here, we report on experimentally obtained nucleation energy barriers to intra- and extrafibrillar mineralization, using in situ X-ray scattering observations and classical nucleation theory. Polyaspartic acid, an extrafibrillar nucleation inhibitor, increases interfacial energies between nuclei and mineralization fluids. In contrast, the confined gap spaces inside collagen fibrils lower the energy barrier by reducing the reactive surface area of nuclei, decreasing the surface energy penalty. The confined gap geometry, therefore, guides the two-dimensional morphology and structure of bioapatite and changes the nucleation pathway by reducing the total energy barrier.

  11. Long-term performance of elemental iron and hydroxyapatite for uranium retention in permeable reactive barriers used for groundwater remediation; Langzeitverhalten von elementarem Eisen und Hydroxylapatit zur Uranrueckhaltung in permeablen reaktiven Waenden bei der Grundwassersanierung

    Energy Technology Data Exchange (ETDEWEB)

    Biermann, V.

    2007-11-21

    Elemental iron (Fe{sup 0}) and hydroxyapatite (HAP) were evaluated as reactive mate-rials for use in permeable reactive barriers (PRBs) to remove uranium from conta-minated groundwater. Special attention was given to the long-term performance of the materials, which was investigated by means of column tests with a duration of up to 30 months using two different artificial groundwaters (AGW) with varying composition and uranium concentration. The interaction of the materials with AGW was studied in column tests using {sup 237}U as a radiotracer to monitor the movement of the contamination front through the columns. The tested materials were shredded cast iron (granulated grey cast iron, 0.3 - 1.3 mm) supplied by Gotthard Mayer, Rheinfelden, Germany, and food quality grade hydroxyapatite (Ca{sub 5}(PO{sub 4}){sub 3}OH, 99 % < 0.42 mm) supplied by Che-mische Fabrik Budenheim CFB, Germany. Both materials exhibited uranium retention of more than 99.9% and sorption capacities of up to 28.3 mg U/g HAP and more than 38.4 mg U/g Fe{sup 0} (AGW with 9.6 mg U/L and low bicarbonate content of 120 mg/L). No breakthrough was observed for the Fe{sup 0} columns with effluent uranium con-centrations being below the detection limit of 10 {mu}g/L after treating more than 2,000 pore volumes (PV) and no uranium could be leached from loaded Fe{sup 0} columns with 200 PV of uranium free AGW. However, columns with high Fe{sup 0} content ({>=} 50%) suffered from severe loss of permeability when AGW with {>=} 320 mg/L bicarbonate was used. In the HAP columns a breakthrough occurred with effluent uranium concentrations > 15 {mu}g/l after treating 1,240 PV (10% and 50% breakthrough after 1,460 PV and 2,140 PV respectively). 12.2% of the accu-mulated uranium could be desorbed again with 840 PV of uranium free AGW. Adsorption was found to be the dominant reaction mechanism for uranium and HAP. Image analysis of high uranium content samples showed uranium and phosphate bearing crystals growing

  12. Reactive Arthritis

    Directory of Open Access Journals (Sweden)

    Eren Erken

    2013-06-01

    Full Text Available Reactive arthritis is an acute, sterile, non-suppurative and inflammatory arthropaty which has occured as a result of an infectious processes, mostly after gastrointestinal and genitourinary tract infections. Reiter syndrome is a frequent type of reactive arthritis. Both reactive arthritis and Reiter syndrome belong to the group of seronegative spondyloarthropathies, associated with HLA-B27 positivity and characterized by ongoing inflammation after an infectious episode. The classical triad of Reiter syndrome is defined as arthritis, conjuctivitis and urethritis and is seen only in one third of patients with Reiter syndrome. Recently, seronegative asymmetric arthritis and typical extraarticular involvement are thought to be adequate for the diagnosis. However, there is no established criteria for the diagnosis of reactive arthritis and the number of randomized and controlled studies about the therapy is not enough. [Archives Medical Review Journal 2013; 22(3.000: 283-299

  13. In Situ Immobilization of Selenium in Sediment

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Robert C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stewart, Thomas Austin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    This project focused on the use of a sorbent, carbonated apatite, to immobilize selenium in the environment. It is know that apatite will sorb selenium and based on the mechanism of sorption it is theorized that carbonated apatite will be more effective that pure apatite. Immobilization of selenium in the environment is through the use of a sorbent in a permeable reactive barrier (PRB). A PRB can be constructed by trenching and backfill with the sorbent or in the case of apatite as the sorbent formed in situ using the apatite forming solution of Moore (2003, 2004). There is very little data on selenium sorption by carbonated apatite in the literature. Therefore, in this work, the basic sorptive properties of carbonated apatite were investigated. Carbonated apatite was synthesized by a precipitation method and characterized. Batch selenium kinetic and equilibrium experiments were performed. The results indicate the carbonated apatite contained 9.4% carbonate and uptake of selenium as selenite was rapid; 5 hours for complete uptake of selenium vs. more than 100 hours for pure hydroxyapatite reported in the literature. Additionally, the carbonated apatite exhibited significantly higher distribution coefficients in equilibrium experiments than pure apatite under similar experimental conditions. The next phase of this work will be to seek additional funds to continue the research with the goal of eventually demonstrating the technology in a field application.

  14. Technical considerations for the implementation of subsurface microbial barriers for restoration of groundwater at UMTRA sites

    International Nuclear Information System (INIS)

    Tucker, M.D.

    1996-01-01

    The Uranium Mill Tailings Remediation Action (UMTRA) Program is responsible for the assessment and remedial action at the 24 former uranium mill tailings sites located in the United States. The surface remediation phase, which has primarily focused on containment and stabilization of the abandoned uranium mill tailings piles, is nearing completion. Attention has now turned to the groundwater restoration phase. One alternative under consideration for groundwater restoration at UMTRA sites is the use of in-situ permeable reactive subsurface barriers. In this type of a system, contaminated groundwater will be allowed to flow naturally through a barrier filled with material which will remove hazardous constituents from the water by physical, chemical or microbial processes while allowing passage of the pore water. The subject of this report is a reactive barrier which would remove uranium and other contaminants of concern from groundwater by microbial action (i.e., a microbial barrier). The purpose of this report is to assess the current state of this technology and to determine issues that must be addressed in order to use this technology at UMTRA sites. The report focuses on six contaminants of concern at UMTRA sites including uranium, arsenic, selenium, molybdenum, cadmium and chromium. In the first section of this report, the fundamental chemical and biological processes that must occur in a microbial barrier to control the migration of contaminants are described. The second section contains a literature review of research which has been conducted on the use of microorganisms to immobilize heavy metals. The third section addresses areas which need further development before a microbial barrier can be implemented at an UMTRA site

  15. Technical considerations for the implementation of subsurface microbial barriers for restoration of groundwater at UMTRA sites

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, M.D.

    1996-01-01

    The Uranium Mill Tailings Remediation Action (UMTRA) Program is responsible for the assessment and remedial action at the 24 former uranium mill tailings sites located in the United States. The surface remediation phase, which has primarily focused on containment and stabilization of the abandoned uranium mill tailings piles, is nearing completion. Attention has now turned to the groundwater restoration phase. One alternative under consideration for groundwater restoration at UMTRA sites is the use of in-situ permeable reactive subsurface barriers. In this type of a system, contaminated groundwater will be allowed to flow naturally through a barrier filled with material which will remove hazardous constituents from the water by physical, chemical or microbial processes while allowing passage of the pore water. The subject of this report is a reactive barrier which would remove uranium and other contaminants of concern from groundwater by microbial action (i.e., a microbial barrier). The purpose of this report is to assess the current state of this technology and to determine issues that must be addressed in order to use this technology at UMTRA sites. The report focuses on six contaminants of concern at UMTRA sites including uranium, arsenic, selenium, molybdenum, cadmium and chromium. In the first section of this report, the fundamental chemical and biological processes that must occur in a microbial barrier to control the migration of contaminants are described. The second section contains a literature review of research which has been conducted on the use of microorganisms to immobilize heavy metals. The third section addresses areas which need further development before a microbial barrier can be implemented at an UMTRA site.

  16. Reactive Systems

    DEFF Research Database (Denmark)

    Aceto, Luca; Ingolfsdottir, Anna; Larsen, Kim Guldstrand

    A reactive system comprises networks of computing components, achieving their goals through interaction among themselves and their environment. Thus even relatively small systems may exhibit unexpectedly complex behaviours. As moreover reactive systems are often used in safety critical systems......, the need for mathematically based formal methodology is increasingly important. There are many books that look at particular methodologies for such systems. This book offers a more balanced introduction for graduate students and describes the various approaches, their strengths and weaknesses, and when...... they are best used. Milner's CCS and its operational semantics are introduced, together with the notions of behavioural equivalences based on bisimulation techniques and with recursive extensions of Hennessy-Milner logic. In the second part of the book, the presented theories are extended to take timing issues...

  17. Substation Reactive Power Regulation Strategy

    Science.gov (United States)

    Zhang, Junfeng; Zhang, Chunwang; Ma, Daqing

    2018-01-01

    With the increasing requirements on the power supply quality and reliability of distribution network, voltage and reactive power regulation of substations has become one of the indispensable ways to ensure voltage quality and reactive power balance and to improve the economy and reliability of distribution network. Therefore, it is a general concern of the current power workers and operators that what kind of flexible and effective control method should be used to adjust the on-load tap-changer (OLTC) transformer and shunt compensation capacitor in a substation to achieve reactive power balance in situ, improve voltage pass rate, increase power factor and reduce active power loss. In this paper, based on the traditional nine-zone diagram and combining with the characteristics of substation, a fuzzy variable-center nine-zone diagram control method is proposed and used to make a comprehensive regulation of substation voltage and reactive power. Through the calculation and simulation of the example, this method is proved to have satisfactorily reconciled the contradiction between reactive power and voltage in real-time control and achieved the basic goal of real-time control of the substation, providing a reference value to the practical application of the substation real-time control method.

  18. Reactive Energetic Plasticizers Utilizing Cu-Free Azide-Alkyne 1,3-Dipolar Cycloaddition for In-Situ Preparation of Poly(THF-co-GAP-Based Polyurethane Energetic Binders

    Directory of Open Access Journals (Sweden)

    Mingyang Ma

    2018-05-01

    Full Text Available Reactive energetic plasticizers (REPs coupled with hydroxy-telechelic poly(glycidyl azide-co-tetrahydrofuran (PGT-based energetic polyurethane (PU binders for use in solid propellants and plastic-bonded explosives (PBXs were investigated. The generation of gem-dinitro REPs along with a terminal alkyne stemmed from a series of finely designed approaches to not only satisfy common demands as conventional energetic plasticizers, but also to prevent the migration of plasticizers. The miscibility and rheological behavior of a binary mixture of PGT/REP with various REP fractions were quantitatively determined by differential scanning calorimetry (DSC and rheometer, respectively, highlighting the promising performance of REPs in the formulation process. The kinetics on the distinct reactivity of propargyl vs. 3-butynyl species of REPs towards the azide group of the PGT prepolymer in terms of Cu-free azide-alkyne 1,3-dipolar cycloaddition (1,3-DPCA was studied by monitoring 1H nuclear magnetic resonance spectroscopy and analyzing the activation energies (Ea obtained using DSC. The thermal stability of the finally cured energetic binders with the incorporation of REPs indicated that the thermal stability of the REP/PGT-based PUs was maintained independently of the REP content. The tensile strength and modulus of the PUs increased with an increase in the REP content. In addition, the energetic performance and sensitivity of REP and REP triazole species was predicted.

  19. Malignant mesothelioma in situ.

    Science.gov (United States)

    Churg, Andrew; Hwang, Harry; Tan, Larry; Qing, Gefei; Taher, Altaf; Tong, Amy; Bilawich, Ana M; Dacic, Sanja

    2018-05-01

    The existence of malignant mesothelioma in situ (MIS) is often postulated, but there are no accepted morphological criteria for making such a diagnosis. Here we report two cases that appear to be true MIS on the basis of in-situ genomic analysis. In one case the patient had repeated unexplained pleural unilateral effusions. Two thoracoscopies 9 months apart revealed only visually normal pleura. Biopsies from both thoracoscopies showed only a single layer of mildly reactive mesothelial cells. However, these cells had lost BRCA1-associated protein 1 (BAP1) and showed loss of cyclin-dependent kinase inhibitor 2 (CDKN2A) (p16) by fluorescence in-situ hybridisation (FISH). NF2 was not deleted by FISH but 28% of the mesothelial cells showed hyperploidy. Six months after the second biopsy the patient has persisting effusions but no evidence of pleural malignancy on imaging. The second patient presented with ascites and minimal omental thickening on imaging, but no visual evidence of tumour at laparoscopy. Omental biopsy showed a single layer of minimally atypical mesothelial cells with rare tiny foci of superficial invasion of fat. BAP1 immunostain showed loss of nuclear BAP1 in all the surface mesothelial cells and the invasive cells. There was CDKN2A deletion, but no deletion of NF2 by FISH. These cases show that morphologically bland single-layered surface mesothelial proliferations with molecular alterations seen previously only in invasive malignant mesotheliomas exist, and presumably represent malignant MIS. More cases are need to understand the frequency of such changes and the time-course over which invasive tumour develops. © 2018 John Wiley & Sons Ltd.

  20. In situ Raman spectroscopy studies of bulk and surface metal

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Wachs, I.E.; Jehng, J.M.; Deo, G.; Guliants, V.V.; Benziger, J.B.

    1996-01-01

    Bulk V-P-O and model supported vanadia catalysts were investigated with in situ Raman spectroscopy during n-butane oxidation to maleic anhydride in order to determine the fundamental molecular structure-reactivity/selectivity insights that can be obtained from such experiments. The in situ Raman

  1. Barrier Systems

    NARCIS (Netherlands)

    Heteren, S. van

    2015-01-01

    Barrier-system dynamics are a function of antecedent topography and substrate lithology, Relative sea-level (RSL) changes, sediment availability and type, climate, vegetation type and cover, and various aero- and hydrodynamic processes during fair-weather conditions and extreme events. Global change

  2. Solid-state reactivity explored in situ by synchrotron radiation on single crystals: from SrFeO2.5 to SrFeO3 via electrochemical oxygen intercalation

    International Nuclear Information System (INIS)

    Maity, A; Dutta, R; Penkala, B; Ceretti, M; Letrouit-Lebranchu, A; Perichon, A; Paulus, W; Chernyshov, D; Piovano, A; Bossak, A; Meven, M

    2015-01-01

    In this study we demonstrate the feasibility of following up a chemical reaction by single crystal x-ray (synchrotron) diffraction under operando conditions, carried out in a specially designed electrochemical cell mounted on the BM01A at the European Synchrotron Radiation Facility (ESRF). We investigated in detail the electrochemical oxidation of SrFeO 2.5 to SrFeO 3 on a spherical single crystal of 70 µm diameter by in situ diffraction at an ambient temperature. Complete data sets were obtained by scanning the whole reciprocal space using a 2M Pilatus detector, resulting in 3600 frames with a resolution of 0.1° per data set, each obtained in 18 min. The crystal was mounted in a specially designed electrochemical cell with 1N KOH used as the electrolyte. During the electrochemical oxidation, the reaction proceeds following the phase sequence SrFeO 2.5 /SrFeO 2.75 /SrFeO 2.875 /SrFeO 3 , structurally accompanied by establishing a complex series of long-range oxygen vacancy ordering, which gets instantly organized at ambient temperature. The topotactic reaction pathway is discussed in terms of the evolution of the twin domain structure. The formation of SrFeO 2.875 is accompanied by the formation of diffuse streaks along the [1 0 0]-direction of the perovskite cell, reaching high d-spacings. The diffuse streaks are discussed and are thought to originate from a modified twin structure induced by the SrFeO 2.75 to SrFeO 2.875 transition, and the associated changes in the domain structure, developed during the oxygen intercalation. We equally analysed and discussed in detail the twin structure of all the title compounds. We confirm the ground state of SrFeO 2.5 is able to adopt the Imma space group symmetry, showing stacking faults of the tetrahedral layers along the stacking axis of the brownmillerite unit cell, indicated by the 1D diffuse rods. We showed that in situ single crystal diffraction has huge potential in the study of non-stoichiometric compounds

  3. Solid-state reactivity explored in situ by synchrotron radiation on single crystals: from SrFeO2.5 to SrFeO3 via electrochemical oxygen intercalation

    Science.gov (United States)

    Maity, A.; Dutta, R.; Penkala, B.; Ceretti, M.; Letrouit-Lebranchu, A.; Chernyshov, D.; Perichon, A.; Piovano, A.; Bossak, A.; Meven, M.; Paulus, W.

    2015-12-01

    In this study we demonstrate the feasibility of following up a chemical reaction by single crystal x-ray (synchrotron) diffraction under operando conditions, carried out in a specially designed electrochemical cell mounted on the BM01A at the European Synchrotron Radiation Facility (ESRF). We investigated in detail the electrochemical oxidation of SrFeO2.5 to SrFeO3 on a spherical single crystal of 70 µm diameter by in situ diffraction at an ambient temperature. Complete data sets were obtained by scanning the whole reciprocal space using a 2M Pilatus detector, resulting in 3600 frames with a resolution of 0.1° per data set, each obtained in 18 min. The crystal was mounted in a specially designed electrochemical cell with 1N KOH used as the electrolyte. During the electrochemical oxidation, the reaction proceeds following the phase sequence SrFeO2.5/SrFeO2.75/SrFeO2.875/SrFeO3, structurally accompanied by establishing a complex series of long-range oxygen vacancy ordering, which gets instantly organized at ambient temperature. The topotactic reaction pathway is discussed in terms of the evolution of the twin domain structure. The formation of SrFeO2.875 is accompanied by the formation of diffuse streaks along the [1 0 0]-direction of the perovskite cell, reaching high d-spacings. The diffuse streaks are discussed and are thought to originate from a modified twin structure induced by the SrFeO2.75 to SrFeO2.875 transition, and the associated changes in the domain structure, developed during the oxygen intercalation. We equally analysed and discussed in detail the twin structure of all the title compounds. We confirm the ground state of SrFeO2.5 is able to adopt the Imma space group symmetry, showing stacking faults of the tetrahedral layers along the stacking axis of the brownmillerite unit cell, indicated by the 1D diffuse rods. We showed that in situ single crystal diffraction has huge potential in the study of non-stoichiometric compounds under operando

  4. Concurrent bioremediation of perchlorate and 1,1,1-trichloroethane in an emulsified oil barrier

    Science.gov (United States)

    Borden, Robert C.

    2007-10-01

    A detailed field pilot test was conducted to evaluate the use of edible oil emulsions for enhanced in situ biodegradation of perchlorate and chlorinated solvents in groundwater. Edible oil substrate (EOS®) was injected into a line of ten direct push injection wells over a 2-day period to form a 15-m-long biologically active permeable reactive barrier (bio-barrier). Field monitoring results over a 2.5-year period indicate the oil injection generated strongly reducing conditions in the oil-treated zone with depletion of dissolved oxygen, nitrate, and sulfate, and increases in dissolved iron, manganese and methane. Perchlorate was degraded from 3100 to 20,000 μg/L to below detection (oil and adaptation of the in situ microbial community. Approximately 4 months after emulsion injection, concentrations of 1,1,1-trichloroethane (TCA), perchloroethene (PCE), trichloroethene (TCE) and their degradation products appeared to reach a quasi steady-state condition. During the period from 4 to 18 months, TCA was reduced from 30-70 μM to 0.2-4 μM during passage through the bio-barrier. However, 1-9 μM 1,1-dichloroethane (DCA) and 8-14 μM of chloroethane (CA) remained indicating significant amounts of incompletely degraded TCA were discharging from the oil-treated zone. During this same period, PCE and TCE were reduced with concurrent production of 1,2- cis-dichloroethene ( cis-DCE). However, very little VC or ethene was produced indicating reductive dechlorination slowed or stopped at cis-DCE. The incomplete removal of TCA, PCE and TCE is likely associated with the short (5-20 days) hydraulic retention time of contaminants in the oil-treated zone. The permeability of the injection wells declined by 39-91% (average = 68%) presumably due to biomass growth and/or gas production. However, non-reactive tracer tests and detailed monitoring of the perchlorate plume demonstrated that the permeability loss did not result in excessive flow bypassing around the bio-barrier

  5. Endogenous IL-33 is highly expressed in mouse epithelial barrier tissues, lymphoid organs, brain, embryos, and inflamed tissues: in situ analysis using a novel Il-33-LacZ gene trap reporter strain.

    Science.gov (United States)

    Pichery, Mélanie; Mirey, Emilie; Mercier, Pascale; Lefrancais, Emma; Dujardin, Arnaud; Ortega, Nathalie; Girard, Jean-Philippe

    2012-04-01

    IL-33 (previously known as NF from high endothelial venules) is an IL-1 family cytokine that signals through the ST2 receptor and drives cytokine production in mast cells, basophils, eosinophils, invariant NKT and NK cells, Th2 lymphocytes, and type 2 innate immune cells (natural helper cells, nuocytes, and innate helper 2 cells). Little is known about endogenous IL-33; for instance, the cellular sources of IL-33 in mouse tissues have not yet been defined. In this study, we generated an Il-33-LacZ gene trap reporter strain (Il-33(Gt/Gt)) and used this novel tool to analyze expression of endogenous IL-33 in vivo. We found that the Il-33 promoter exhibits constitutive activity in mouse lymphoid organs, epithelial barrier tissues, brain, and embryos. Immunostaining with anti-IL-33 Abs, using Il-33(Gt/Gt) (Il-33-deficient) mice as control, revealed that endogenous IL-33 protein is highly expressed in mouse epithelial barrier tissues, including stratified squamous epithelia from vagina and skin, as well as cuboidal epithelium from lung, stomach, and salivary gland. Constitutive expression of IL-33 was not detected in blood vessels, revealing the existence of species-specific differences between humans and mice. Importantly, IL-33 protein was always localized in the nucleus of producing cells with no evidence for cytoplasmic localization. Finally, strong expression of the Il-33-LacZ reporter was also observed in inflamed tissues, in the liver during LPS-induced endotoxin shock, and in the lung alveoli during papain-induced allergic airway inflammation. Together, our findings support the possibility that IL-33 may function as a nuclear alarmin to alert the innate immune system after injury or infection in epithelial barrier tissues.

  6. Information barriers

    International Nuclear Information System (INIS)

    Fuller, J.L.; Wolford, J.

    2001-01-01

    Full text: An information barrier (IB) consists of procedures and technology that prevent the release of sensitive information during a joint inspection of a sensitive nuclear item, and provides confidence that the measurement system into which it has been integrated functions exactly as designed and constructed. Work in the U.S. on radiation detection system information barriers dates back at least to 1990, even though the terminology is more recent. In January 1999 the Joint DoD-DOE Information Barrier Working Group was formed in the United States to help coordinate technical efforts related to information barrier R and D. This paper presents an overview of the efforts of this group, by its Chairs, as well as recommendations for further information barrier R and D. Progress on the demonstration of monitoring systems containing IBs is also provided. From the U.S. perspective, the basic, top-level functional requirements for the information barrier portion of an integrated radiation signature-information barrier inspection system are twofold: The host must be assured that his classified information is protected from disclosure to the inspecting party; and The inspecting party must be confident that the integrated inspection system measures, processes, and presents the radiation-signature-based measurement conclusion in an accurate and reproducible manner. It is the position of the United States that in the absence of any agreement to share classified nuclear weapons design information in the conduct of an inspection regime, the requirement to protect host country classified warhead design information is paramount and admits no tradeoff versus the confidence provided to the inspecting party in the accuracy and reproducibility of the measurements. The U.S. has reached an internal consensus on several critical design elements that define a general standard for radiation signature information barrier design. These criteria have stood the test of time under intense

  7. SOUND FIELD DIFFUSIVITY AT THE TOP SURFACE OF SCHROEDER DIFFUSER BARRIERS

    OpenAIRE

    M. R. Monazzam

    2006-01-01

    Reactive barriers are one of the most promising and novel environmental noise barriers. In this case using Schroeder diffusers (e.g. quadratic residue diffusers) on the top surface of the T-shape barrier was shown to significantly improve the performance of absorbent T-shape barriers. The reasons behind the high performance of diffuser barriers are considered in this investigation. A question about the diffusivity behavior of Schroeder diffusers when they are utilized on the top of barrier wa...

  8. Floating barrier

    Energy Technology Data Exchange (ETDEWEB)

    1968-05-06

    This floating barrier consists of relatively long elements which can be connected to form a practically continuous assembly. Each element consists of an inflatable tube with an apron of certain height, made of impregnated fabric which is resistant to ocean water and also to hydrocarbons. Means for connecting one element to the following one, and means for attaching ballast to the apron are also provided.

  9. The reactivity meter and core reactivity

    International Nuclear Information System (INIS)

    Siltanen, P.

    1999-01-01

    This paper discussed in depth the point kinetic equations and the characteristics of the point kinetic reactivity meter, particularly for large negative reactivities. From a given input signal representing the neutron flux seen by a detector, the meter computes a value of reactivity in dollars (ρ/β), based on inverse point kinetics. The prompt jump point of view is emphasised. (Author)

  10. Reactivity, structure and physical properties of SrCo{sub 2.5+{delta}} and La{sub 2}CoO{sub 4.0+{delta}}. In situ X-ray diffraction and neutrons study; Reactivite, structure et proprietes physiques de SrCoO{sub 2.5+{delta}} et La{sub 2}CoO{sub 4.0+{delta}}. Etude par diffraction des rayons X et des neutrons in situ

    Energy Technology Data Exchange (ETDEWEB)

    Le Toquin, R.

    2003-11-15

    This work was devoted to the study of the reactivity and more specifically the influence of the intercalated oxygen amount {delta} on the structure and physical properties of SrCoO{sub 2.5+{delta}} et La{sub 2}CoO{sub 4.0+{delta}} We controlled the oxidation level by means of reversible electrochemical red ox reaction at room temperature. Structural modifications, especially disorder, and electronic properties were studied for the first time on large orientated single crystal. In the SrCoO{sub 2.5+{delta}} system, after structural and electronic characterisation of the end phases, we studied the real structure of the brownmillerite SrCoO{sub 2.5} phase using single crystal. Moreover, we investigated structural and magnetic evolution upon red ox cycle using X-ray diffraction on 6 times twinned single crystal and in situ neutron powder diffraction. Two intermediate SrCoO{sub 2.75} and SrCoO{sub 2.82} phases have been observed. The reaction on single crystal has evidenced the evolution of domain structure. For the La{sub 2}CoO{sub 4+{delta}} system, we synthesised a large variety of single crystal with stoichiometry {delta} 0.0, 0.09, 0.12, 0.16, 0.20 and 0.25. Using single crystal X-ray and neutron diffraction, we showed a disorder-order transition of the apical and interstitial oxygen for the higher {delta} values. (author)

  11. Subsurface barrier verification technologies, informal report

    International Nuclear Information System (INIS)

    Heiser, J.H.

    1994-06-01

    One of the more promising remediation options available to the DOE waste management community is subsurface barriers. Some of the uses of subsurface barriers include surrounding and/or containing buried waste, as secondary confinement of underground storage tanks, to direct or contain subsurface contaminant plumes and to restrict remediation methods, such as vacuum extraction, to a limited area. To be most effective the barriers should be continuous and depending on use, have few or no breaches. A breach may be formed through numerous pathways including: discontinuous grout application, from joints between panels and from cracking due to grout curing or wet-dry cycling. The ability to verify barrier integrity is valuable to the DOE, EPA, and commercial sector and will be required to gain full public acceptance of subsurface barriers as either primary or secondary confinement at waste sites. It is recognized that no suitable method exists for the verification of an emplaced barrier's integrity. The large size and deep placement of subsurface barriers makes detection of leaks challenging. This becomes magnified if the permissible leakage from the site is low. Detection of small cracks (fractions of an inch) at depths of 100 feet or more has not been possible using existing surface geophysical techniques. Compounding the problem of locating flaws in a barrier is the fact that no placement technology can guarantee the completeness or integrity of the emplaced barrier. This report summarizes several commonly used or promising technologies that have been or may be applied to in-situ barrier continuity verification

  12. Arsenic removal using steel manufacturing byproducts as permeable reactive materials in mine tailing containment systems.

    Science.gov (United States)

    Ahn, Joo Sung; Chon, Chul-Min; Moon, Hi-Soo; Kim, Kyoung-Woong

    2003-05-01

    Steel manufacturing byproducts were tested as a means of treating mine tailing leachate with a high As concentration. Byproduct materials can be placed in situ as permeable reactive barriers to control the subsurface release of leachate from tailing containment systems. The tested materials had various compositions of elemental Fe, Fe oxides, Ca-Fe oxides and Ca hydroxides typical of different steel manufacturing processes. Among these materials, evaporation cooler dust (ECD), oxygen gas sludge (OGS), basic oxygen furnace slag (BOFS) and to a lesser degree, electrostatic precipitator dust (EPD) effectively removed both As(V) and As(III) during batch experiments. ECD, OGS and BOFS reduced As concentrations to <0.5mg/l from 25mg/l As(V) or As(III) solution in 72 h, exhibiting higher removal capacities than zero-valent iron. High Ca concentrations and alkaline conditions (pH ca. 12) provided by the dissolution of Ca hydroxides may promote the formation of stable, sparingly soluble Ca-As compounds. When initial pH conditions were adjusted to 4, As reduction was enhanced, probably by adsorption onto iron oxides. The elution rate of retained As from OGS and ECD decreased with treatment time, and increasing the residence time in a permeable barrier strategy would be beneficial for the immobilization of As. When applied to real tailing leachate, ECD was found to be the most efficient barrier material to increase pH and to remove As and dissolved metals.

  13. Local Chemical Reactivity of a Metal Alloy Surface

    DEFF Research Database (Denmark)

    Hammer, Bjørk; Scheffler, Matthias

    1995-01-01

    The chemical reactivity of a metal alloy surface is studied by density functional theory investigating the interaction of H2 with NiAl(110). The energy barrier for H2 dissociation is largely different over the Al and Ni sites without, however, reflecting the barriers over the single component metal...

  14. Smart parking barrier

    KAUST Repository

    Alharbi, Abdulrazaq M.

    2016-01-01

    positioning of the movable parking barrier, and a parking controller configured to initiate movement of the parking barrier, via the barrier drive. The movable parking barrier can be positioned between a first position that restricts access to the parking

  15. Assessing Chemical Transformation of Reactive, Interfacial Thin Films Made of End-Tethered Poly(2-vinyl-4,4-dimethyl azlactone) (PVDMA) Chains

    Energy Technology Data Exchange (ETDEWEB)

    Aden, Bethany [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemistry; Kite, Camille M. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemistry; Hopkins, Benjamin W. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemical and Biomolecular Engineering; Zetterberg, Anna [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemical and Biomolecular Engineering; Lokitz, Bradley S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Ankner, John Francis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Kilbey, S. Michael [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemistry; Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemical and Biomolecular Engineering

    2017-01-24

    Designing thin films or surface scaffolds with an appropriate display of chemical functionality is useful for biomedical applications, sensing platforms, adhesives, and barrier coatings. Relationships between the structural characteristics of model thin films based on reactive poly(2-vinyl-4,4-dimethylazlactone) (PVDMA) brushes and the amount and distribution of primary amines used to chemically functionalize the layer in situ are quantitatively detailed via neutron reflectometry and compared with results from ellipsometry. After functionalization, the PVDMA brush thickness increases as a result of the primary amines reacting with the azlactone rings. Both techniques show that the extent of functionalization by small-molecule amines depends on the size of the amine, the grafting density of brush chains and their molecular weight. However, constrained analysis of neutron reflectivity data predicated on that technique’s sensitivity to isotopic substitution and its ability to resolve structure at the nanoscale, shows that the extent of functionalization is not accurately represented by the average extent of functionalization determined from ellipsometric thickness: reactive modification is not uniform, even in modestly dense brushes, except when the penetrant is small. Additionally, there appears to be a loss of PVDMA chains during functionalization, attributed to chain scission resulting from additional stretching brought about by functionalization. These findings provide unprecedented insight into the alteration of surface properties by reactive modification and broadly support efforts to produce tailored surfaces in which properties such as friction, colloidal stability, adhesion, wettability, and biocompatibility can be modulated in situ by chemical modification.

  16. Contribution of thrombin-reactive brain pericytes to blood-brain barrier dysfunction in an in vivo mouse model of obesity-associated diabetes and an in vitro rat model.

    Directory of Open Access Journals (Sweden)

    Takashi Machida

    Full Text Available Diabetic complications are characterized by the dysfunction of pericytes located around microvascular endothelial cells. The blood-brain barrier (BBB exhibits hyperpermeability with progression of diabetes. Therefore, brain pericytes at the BBB may be involved in diabetic complications of the central nervous system (CNS. We hypothesized that brain pericytes respond to increased brain thrombin levels in diabetes, leading to BBB dysfunction and diabetic CNS complications. Mice were fed a high-fat diet (HFD for 2 or 8 weeks to induce obesity. Transport of i.v.-administered sodium fluorescein and 125I-thrombin across the BBB were measured. We evaluated brain endothelial permeability and expression of tight junction proteins in the presence of thrombin-treated brain pericytes using a BBB model of co-cultured rat brain endothelial cells and pericytes. Mice fed a HFD for 8 weeks showed both increased weight gain and impaired glucose tolerance. In parallel, the brain influx rate of sodium fluorescein was significantly greater than that in mice fed a normal diet. HFD feeding inhibited the decline in brain thrombin levels occurring during 6 weeks of feeding. In the HFD fed mice, plasma thrombin levels were significantly increased, by up to 22%. 125I-thrombin was transported across the BBB in normal mice after i.v. injection, with uptake further enhanced by co-injection of unlabeled thrombin. Thrombin-treated brain pericytes increased brain endothelial permeability and caused decreased expression of zona occludens-1 (ZO-1 and occludin and morphological disorganization of ZO-1. Thrombin also increased mRNA expression of interleukin-1β and 6 and tumor necrosis factor-α in brain pericytes. Thrombin can be transported from circulating blood through the BBB, maintaining constant levels in the brain, where it can stimulate pericytes to induce BBB dysfunction. Thus, the brain pericyte-thrombin interaction may play a key role in causing BBB dysfunction in

  17. Review of potential subsurface permeable barrier emplacement and monitoring technologies

    International Nuclear Information System (INIS)

    Riggsbee, W.H.; Treat, R.L.; Stansfield, H.J.; Schwarz, R.M.; Cantrell, K.J.; Phillips, S.J.

    1994-02-01

    This report focuses on subsurface permeable barrier technologies potentially applicable to existing waste disposal sites. This report describes candidate subsurface permeable barriers, methods for emplacing these barriers, and methods used to monitor the barrier performance. Two types of subsurface barrier systems are described: those that apply to contamination.in the unsaturated zone, and those that apply to groundwater and to mobile contamination near the groundwater table. These barriers may be emplaced either horizontally or vertically depending on waste and site characteristics. Materials for creating permeable subsurface barriers are emplaced using one of three basic methods: injection, in situ mechanical mixing, or excavation-insertion. Injection is the emplacement of dissolved reagents or colloidal suspensions into the soil at elevated pressures. In situ mechanical mixing is the physical blending of the soil and the barrier material underground. Excavation-insertion is the removal of a soil volume and adding barrier materials to the space created. Major vertical barrier emplacement technologies include trenching-backfilling; slurry trenching; and vertical drilling and injection, including boring (earth augering), cable tool drilling, rotary drilling, sonic drilling, jetting methods, injection-mixing in drilled holes, and deep soil mixing. Major horizontal barrier emplacement technologies include horizontal drilling, microtunneling, compaction boring, horizontal emplacement, longwall mining, hydraulic fracturing, and jetting methods

  18. Reactive Kripke semantics

    CERN Document Server

    Gabbay, Dov M

    2013-01-01

    This text offers an extension to the traditional Kripke semantics for non-classical logics by adding the notion of reactivity. Reactive Kripke models change their accessibility relation as we progress in the evaluation process of formulas in the model. This feature makes the reactive Kripke semantics strictly stronger and more applicable than the traditional one. Here we investigate the properties and axiomatisations of this new and most effective semantics, and we offer a wide landscape of applications of the idea of reactivity. Applied topics include reactive automata, reactive grammars, rea

  19. Reactive perforating collagenosis

    Directory of Open Access Journals (Sweden)

    Yadav Mukesh

    2009-01-01

    Full Text Available Reactive perforating collagenosis is a rare cutaneous disorder of unknown etiology. We hereby describe a case of acquired reactive perforating collagenosis in a patient of diabetes and chronic renal failure.

  20. A roadmap for OH reactivity research

    Science.gov (United States)

    Williams, Jonathan; Brune, William

    2015-04-01

    A fundamental property of the atmosphere is the frequency of gas-phase reactions with the OH radical, the atmosphere's primary oxidizing agent. This reaction frequency is called the OH reactivity and is the inverse the lifetime of the OH radical itself, which varies from a few seconds in the clean upper troposphere to below 10 ms in forests and polluted city environments. Ever since the discovery of the OH radical's importance to tropospheric chemistry, the characterization of its overall loss rate (OH reactivity) has remained a key question. At first, this property was assessed by summing the reactivity contributions of individually measured compounds; however, as improving analytical technology revealed ever more reactive species in ambient air, it became clear that this approach could provide only a lower limit. Approximately 15 years ago, the direct measurement of total OH reactivity was conceived independently by two groups. The first publications demonstrated direct OH reactivity measurements in the laboratory (Calpini et al., 1999) based on LIDAR and in the ambient air (Kovacs and Brune, 2001) based on in situ laser induced fluorescence detection of OH.

  1. EVALUATION OF AMENDMENTS FOR MENDING THE INSITU REDOX MANIPULATION (ISRM) BARRIER

    Energy Technology Data Exchange (ETDEWEB)

    PETERSEN, S.W.

    2006-02-07

    In May of 2004, the U.S. Department of Energy (DOE) Richland and Fluor Hanford requested technical assistance from DOE Headquarters EM-23 to provide a team of technical experts to evaluate likely chemical/biological amendments for mending the In Situ Redox Manipulation (ISRM) Barrier in the 100-D Area of the Hanford Site. This request was a follow-on to an earlier request for assistance regarding the cause of chromium (Cr) breakthrough and recommendations for mending the barrier (March 2004 workshop). This report provides written documentation of the team's findings and recommendations. In 1995, a plume of dissolved hexavalent chromium [Cr(VI)] was discovered along the Columbia River shoreline and in the 100-D Area. Between 1999 and 2003, a reactive barrier using the ISRM technology, was installed at a distance of 680 meters along the river to reduce the Cr(VI) in the groundwater. The ISRM technology creates a treatment zone within the aquifer by injection of sodium dithionite, a strong reducing agent that scavenges dissolved oxygen (DO) from the aquifer and reduces ferric iron [Fe(III)], related metals, and oxy-ions. Bench-scale and field-scale treatability tests were conducted to demonstrate proof-of principle and to estimate barrier longevity, calculated to be in excess of twenty years. However, several years after initial and secondary treatment, groundwater in approximately 17 wells has been found to contain elevated Cr concentrations. The March 2004 technical assistance team (TAT) identified potential causes of Cr breakthrough as likely related to physical and chemical heterogeneity within the aquifer (including loss of reductive capacity within preferential flow paths) and the presence of other oxidants (DO and nitrate) significantly affecting the reductive capacity of the treated aquifer. These aquifer characteristics may limit the ability of alternative amendments to extend the reducing capacity of the barrier. A 2001 Bechtel Hanford report and

  2. Reactivity on the Web

    OpenAIRE

    Bailey, James; Bry, François; Eckert, Michael; Patrânjan, Paula Lavinia

    2005-01-01

    Reactivity, the ability to detect simple and composite events and respond in a timely manner, is an essential requirement in many present-day information systems. With the emergence of new, dynamic Web applications, reactivity on the Web is receiving increasing attention. Reactive Web-based systems need to detect and react not only to simple events but also to complex, real-life situations. This paper introduces XChange, a language for programming reactive behaviour on the Web,...

  3. Sprache als Barriere (Language as a Barrier)

    Science.gov (United States)

    Mattheier, Klaus

    1974-01-01

    The concept of language barrier has its derivations in the fields of dialectology, sociology and psychology. In contemporary usage however, the concept has two meanings i.e. regional-cultural barrier and socio-cultural barrier. (Text is in German.) (DS)

  4. Monadic Functional Reactive Programming

    NARCIS (Netherlands)

    A.J. van der Ploeg (Atze); C Shan

    2013-01-01

    htmlabstractFunctional Reactive Programming (FRP) is a way to program reactive systems in functional style, eliminating many of the problems that arise from imperative techniques. In this paper, we present an alternative FRP formulation that is based on the notion of a reactive computation: a

  5. In-situ investigations of the photoluminescence properties of SiO2/TiO2 binary and Boron-SiO2/TiO2 ternary oxides prepared by the sol-gel method and their photocatalytic reactivity for the oxidative decomposition of trichloroethylene

    Directory of Open Access Journals (Sweden)

    Kyeong Youl Jung

    2003-01-01

    oxygen. It was found that the photocatalytic reactivity of TiO2-based photocatalysts for the decomposition of trichloroethylene was clearly associated with their relative quenching efficiencies of photoluminescence; photocatalyst showing high quenching efficiency exhibited a high photocatalytic reactivity.

  6. Improved Understanding of In Situ Chemical Oxidation Soil Reactivity

    Science.gov (United States)

    2007-12-01

    followed by a mixture of nitric and perchloric acids . This sequence uses precise heat ramping and holding cycles which takes the sample to dryness...release different kinds of products (e.g., benzenepolycarboxylic acids , phenolic acids , and fatty acids ) with varying resistance to the attack of... oxalate might be the only organic product in the oxidation of humic and non-humic soils by permanganate or even hydrogen peroxide (Harada and Inoko

  7. RCRA corrective measures using a permeable reactive iron wall US Coast Guard Support Center, Elizabeth City, North Carolina

    International Nuclear Information System (INIS)

    Schmithors, W.L.; Vardy, J.A.

    1997-01-01

    A chromic acid release was discovered at a former electroplating shop at the U.S. Coast Guard Support Center in Elizabeth City, North Carolina. Initial investigative activities indicated that chromic acid had migrated into the subsurface soils and groundwater. In addition, trichloroethylene (TCE) was also discovered in groundwater during subsequent investigations of the hexavalent chromium (Cr VI) plume. Corrective measures were required under the Resource Conservation and Recovery Act (RCRA). The in-situ remediation method, proposed under RCRA Interim Measures to passively treat the groundwater contaminants, uses reactive zero-valent iron to reductively dechlorinate the chlorinated compounds and to mineralize the hexavalent chromium. A 47 meter by 0.6 meter subsurface permeable iron wall was installed downgradient of the source area to a depth of 7 meters using a direct trenching machine. The iron filings were placed in the ground as the soils were excavated from the subsurface. This is the first time that direct trenching was used to install reactive zero-valent iron filings. Over 250 metric tons of iron filings were used as the reactive material in the barrier wall. Installation of the iron filings took one full day. Extensive negotiations with regulatory agencies were required to use this technology under the current facility Hazardous Waste Management Permit. All waste soils generated during the excavation activities were contained and treated on site. Once contaminant concentrations were reduced the waste soils were used as fill material

  8. Digital reactivity meter

    International Nuclear Information System (INIS)

    Akkus, B.; Anac, H.; Alsan, S.; Erk, S.

    1991-01-01

    Nowadays, various digital methods making use of microcomputers for neutron detector signals and determining the reactivity by numerical calculations are used in reactor control systems in place of classical reactivity meters. In this work, a calculation based on the ''The Time Dependent Transport Equation'' has been developed for determining the reactivity numerically. The reactivity values have been obtained utilizing a computer-based data acquisition and control system and compared with the analog reactivity meter values as well as the values calculated from the ''Inhour Equation''

  9. Method of controlling reactivity

    International Nuclear Information System (INIS)

    Tochihara, Hiroshi.

    1982-01-01

    Purpose: To improve the reactivity controlling characteristics by artificially controlling the leakage of neutron from a reactor and providing a controller for controlling the reactivity. Method: A reactor core is divided into several water gaps to increase the leakage of neutron, its reactivity is reduced, a gas-filled control rod or a fuel assembly is inserted into the gap as required, the entire core is coupled in a system to reduce the leakage of the neutron, and the reactivity is increased. The reactor shutdown is conducted by the conventional control rod, and to maintain critical state, boron density varying system is used together. Futher, a control rod drive is used with that similar to the conventional one, thereby enabling fast reactivity variation, and the positive reactivity can be obtained by the insertion, thereby improving the reactivity controlling characteristics. (Yoshihara, H.)

  10. Trends in reactivity of oxides

    DEFF Research Database (Denmark)

    Toftelund, Anja

    The results in this thesis are based on Density Functional Theory calculations. The catalytic activity of oxides and other compound materials are investigated. It is found that the adsorption energy of the molecules NH2, NH, OH and SH on transition metal nitride, oxide and sulfide surfaces scales......, and I) and OH on a wide range of rutile oxide surfaces. Furthermore, Brønsted-Evans-Polanyi (BEP) relations are found for the adsorption of a large number of molecules (including Cl, Br and I) on transition metal oxides. In these relations the activation energies scale linearly with the dissociative...... chemisorption energies. It turns out that the BEP relation for rutile oxides is almost coinciding with the dissociation line, i.e. no barrier exists for the reactive surfaces. The heterogeneous catalytic oxidation of hydrogen halides (HCl, HBr, and HI) is investigated. A micro-kinetic model is solved...

  11. Permeable Reactive Barriers: Lessons Learned/New Directions

    Science.gov (United States)

    2005-02-01

    various • compost (various compositions), and • pecan she 2.2 Tre The basic objective of any PRB-treatment material is to either directly destroy or...barrier” of pecan shells and cottonseed admixed with gravel (to deplete dissolved oxygen, and destroy any Resource Conservation and Recovery Act [RCRA...Zone 2 San Antonio, TX, USA BP continuous wall Nov 04 Industrial facility Italy BP continuous wall Nov 04 Industrial facility Ohio, USA Continuous

  12. Diffusion Barriers Evoked in the Rat Cortex by Reactive Astrogliosis

    Czech Academy of Sciences Publication Activity Database

    Roitbak, Tamara; Syková, Eva

    1999-01-01

    Roč. 28, - (1999), s. 40-48 ISSN 0894-1491 R&D Projects: GA ČR GV307/96/K226; GA ČR GV309/97/K048; GA ČR GA309/99/0657; GA AV ČR KSK2011602; GA AV ČR KSK2039602 Subject RIV: FH - Neurology Impact factor: 4.245, year: 1999

  13. Treatment of fue diesel with a permeable reactive barrier technology

    Directory of Open Access Journals (Sweden)

    SANTIAGO ALONSO CARDONA GALLO

    2007-01-01

    Full Text Available La investigación estudió el tratamiento de diesel combustibles de producción mexicana contenidos en agua con un sistema de barrera reactiva permeables a escala de laboratorio (siete columnas. Se uso un suelo agrícola como medio reactivo. Se aplico peroxido de hidrógeno al 50% industrial como fuente de oxigeno y nitrógeno en urea al 46% como nutriente. Se caracterizo el medio reactivo con los principales parámetros de interés (humedad, materia orgánica, pH, nitrógeno total, fósforo disponible, clasificación del suelo, conductividad eléctrica, sólidos suspendidos volátiles, densidad real y aparente, porosidad, textura, color, salinidad, conductividad hidráulica, capacidad de campo y densidad de bacterias. Se determinaron las cinéticas de degradación y la capacidad de adsorción del diesel en el medio reactivo. Las barreras reactivas permeables se diseñaron con los resultados cinéticos obtenidos en los reactores por lotes. Las columnas tenían dimensiones de 30 cm de longitud y 10 cm de diámetro. Las cinéticas de determinaron durante 18 días y las columnas se corrieron durante 70 días presentando remociones arriba del 80%. Se usaron concentraciones iniciales de diesel de 15,000 mg/L. Para la modelación de la adsorción se aplicaron las ecuaciones de Freundlich y Langmuir, donde esta ultima presentó un mejor ajuste a los datos a los datos experimentales y una mayor capacidad de adsorción. Para el suministro de los nutrientes y oxigeno se aplico el modelo propuesto por McCarty y la ecuación media para diesel propuesta por Jackson. Se determinó una velocidad de degradación de 0.0908 d-1, un coeficiente de distribución del diesel en el medio reactivo de 0.8 ml/g, una capacidad de adsorción de diesel en el medio reactivo de 13.50 mg/L y un factor de retardo de 3.69

  14. Innovative reactive barrier technologies for regional contaminated groundwater

    NARCIS (Netherlands)

    Merkel, P.; Weiβ, H.; Teutsch, G.; Rijnaarts, H.H.M.

    2000-01-01

    At many industrial sites inadequate waste disposal, leakages and war damages have led to severe groundwater contamination on a regional scale. Standard hydraulic groundwater remediation methods, such as pump-and-treat, in most cases do not lead to satisfactory results, due to the persistence of

  15. Reactive Programming in Java

    CERN Document Server

    CERN. Geneva

    2017-01-01

    Reactive Programming in gaining a lot of excitement. Many libraries, tools, and frameworks are beginning to make use of reactive libraries. Besides, applications dealing with big data or high frequency data can benefit from this programming paradigm. Come to this presentation to learn about what reactive programming is, what kind of problems it solves, how it solves them. We will take an example oriented approach to learning the programming model and the abstraction.

  16. BN600 reactivity definition

    International Nuclear Information System (INIS)

    Zheltyshev, V.; Ivanov, A.

    2000-01-01

    Since 1980, the fast BN600 reactor with sodium coolant has been operated at Beloyarsk Nuclear Power Plant. The periodic monitoring of the reactivity modifications should be implemented in compliance with the standards and regulations applied in nuclear power engineering. The reactivity measurements are carried out in order to confirm the basic neutronic features of a BN600 reactor. The reactivity measurements are aimed to justify that nuclear safety is provided in course of the in-reactor installation of the experimental core components. Two reactivity meters are to be used on BN600 operation: 1. Digital on-line reactivity calculated under stationary reactor operation on power (approximation of the point-wise kinetics is applied). 2. Second reactivity meter used to define the reactor control rod operating components efficiency under reactor startup and take account of the changing efficiency of the sensor, however, this is more time-consumptive than the on-line reactivity meter. The application of two reactivity meters allows for the monitoring of the reactor reactivity under every operating mode. (authors)

  17. Treatability Test Plan for an In Situ Biostimulation Reducing Barrier

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J.; Vermeul, Vince R.; Long, Philip E.; Brockman, Fred J.; Oostrom, Mart; Hubbard, Susan; Borden, Robert C.; Fruchter, Jonathan S.

    2007-07-21

    This treatability test plan supports a new, integrated strategy to accelerate cleanup of chromium in the Hanford 100 Areas. This plan includes performing a field-scale treatability test for bioreduction of chromate, nitrate, and dissolved oxygen. In addition to remediating a portion of the plume and demonstrating reduction of electron acceptors in the plume, the data from this test will be valuable for designing a full-scale bioremediation system to apply at this and other chromium plumes at Hanford.

  18. Treatability Test Plan for an In Situ Biostimulation Reducing Barrier

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J.; Vermeul, Vince R.; Long, Philip E.; Brockman, Fred J.; Oostrom, Mart; Hubbard, Susan; Borden, Robert C.; Fruchter, Jonathan S.

    2007-10-26

    This treatability test plan supports a new, integrated strategy to accelerate cleanup of chromium in the 100 Areas at the Hanford Site. This plan includes performing a field-scale treatability test for bioreduction of chromate, nitrate, and dissolved oxygen. In addition to remediating a portion of the plume and demonstrating reduction of electron acceptors in the plume, the data from this test will be valuable for designing a full-scale bioremediation system to apply at this and other chromium plumes at the Hanford Site.

  19. Smart parking barrier

    KAUST Repository

    Alharbi, Abdulrazaq M.

    2016-05-06

    Various methods and systems are provided for smart parking barriers. In one example, among others, a smart parking barrier system includes a movable parking barrier located at one end of a parking space, a barrier drive configured to control positioning of the movable parking barrier, and a parking controller configured to initiate movement of the parking barrier, via the barrier drive. The movable parking barrier can be positioned between a first position that restricts access to the parking space and a second position that allows access to the parking space. The parking controller can initiate movement of the movable parking barrier in response to a positive identification of an individual allowed to use the parking space. The parking controller can identify the individual through, e.g., a RFID tag, a mobile device (e.g., a remote control, smartphone, tablet, etc.), an access card, biometric information, or other appropriate identifier.

  20. Characterising the reactivity of metallic iron in Fe 0 /As-rock/H 2 O ...

    African Journals Online (AJOL)

    The intrinsic reactivity of 4 metallic iron materials (Fe0) was investigated in batch and column experiments. The Fe0 reactivity was characterised by the extent of aqueous fixation of in-situ leached arsenic (As). Air-homogenised batch experiments were conducted for 1 month with 10.0 g/. of an As-bearing rock (ore material) ...

  1. Study on characteristics of high frequency dielectric barrier discharge for the removal of organic pollutant adsorbed on activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Qu, G.Z.; Li, G.F. [Dalian Univ. of Technology, Dalian (China). Inst. of Electrostatics and Special Power; Li, J.; Lu, N.; Wu, Y.; Li, D. [Dalian Univ. of Technology, Dalian (China). Inst. of Electrostatics and Special Power; Key Lab of Industrial Ecology and Environmental Engineering, Ministry of Education, Dalian (China)

    2010-07-01

    Advanced oxidation technologies such as photocatalysis, electrochemical degradation, Fenton oxidation, hydrogen peroxide oxidation, and plasma oxidation are increasingly being used to degrade refractory biodegradable organic contaminants. The plasma oxidation method has the advantage of direct in situ production of multiple types of high-reactive chemical species, including molecules and radicals that facilitate the degradation reaction. In addition, plasma oxidation does not produce any secondary pollution. Compared to other plasma technologies, the dielectric barrier discharge (DBD) plasma has been considered as a promising technology for removing toxic compounds because of its stability and its treatability property of biologically recalcitrant compounds in wastewater. However, the energy efficiency of DBD requires improvement for economic reasons. This paper reported on an experimental study that investigated the electrical characteristics of a parallel plate DBD reactor using a high frequency power supply for the removal of pentachlorophenol (PCP) adsorbed on activated carbon (AC). This study examined the effects of AC with different mass on discharge characteristics and compared the voltage and current waveforms, and discharge images of DBD reactors with different dielectric configurations. When the DBD reactor filled with AC, the applied voltage of discharge decreased regardless of the DBD reactor configuration in terms of having a single barrier or two barriers. The discharge characteristics had no significant change with AC mass increasing. The discharge images and current waveforms showed that DBD reactor configuration consisting of two dielectrics is more homogeneous and stable than the one consisting of a single dielectric. Under the same electric field condition, the degradation efficiency of PCP in two barriers reactor is higher than that in single barrier reactor. It was concluded that the findings from this study may be instrumental in treating

  2. Peripheral site ligand conjugation to a non-quaternary oxime enhances reactivation of nerve agent-inhibited human acetylcholinesterase

    NARCIS (Netherlands)

    Koning, M.C. de; Grol, M. van; Noort, D.

    2011-01-01

    Commonly employed pyridinium-oxime (charged) reactivators of nerve agent inhibited acetylcholinesterase (AChE) do not readily pass the blood brain barrier (BBB) because of the presence of charge(s). Conversely, non-ionic oxime reactivators often suffer from a lack of reactivating potency due to a

  3. Membrane barriers for radon gas flow restrictions

    International Nuclear Information System (INIS)

    Archibald, J.F.

    1984-08-01

    Research was performed to assess the feasibility of barrier membrane substances, for use within mining or associated high risk environments, in restricting the diffusion transport of radon gas quantities. Specific tests were conducted to determine permeability parameters of a variety of membrane materials with reference to radon flow capabilities. Tests were conducted both within laboratory and in-situ emanation environments where concentrations and diffusion flows of radon gas were known to exist. Equilibrium radon gas concentrations were monitored in initially radon-free chambers adjacent to gas sources, but separated by specified membrane substances. Membrane barrier effectiveness was demonstrated to result in reduced emanation concentrations of radon gas within the sampling chamber atmosphere. Minimum gas concentrations were evidenced where the barrier membrane material was shown to exhibit lowest radon permeability characteristics

  4. Electrospinning of reactive mesogens

    NARCIS (Netherlands)

    Yao, J.; Picot, O.T.; Hughes-Brittain, N.F.; Bastiaansen, C.W.M.; Peijs, T.

    2016-01-01

    The reinforcement potential of reactive liquid crystals or reactive mesogens (RMs) in electrospun fibers was investigated through the blending of two types of RMs (RM257 and RM82) with two types of thermoplastics; polyamide 6 (PA6) and poly(methyl methacrylate) (PMMA). Polymer/RM blends were

  5. Reactive modification of polyesters and their blends

    Science.gov (United States)

    Wan, Chen

    2004-12-01

    As part of a broader research effort to investigate the chemical modification of polyesters by reactive processing a low molecular weight (MW) unsaturated polyester (UP) and a higher MW saturated polyester, polyethylene terephthalate (PET), alone or blended with polypropylene (PP) were melt processed in a batch mixer and continuous twin screw extruders. Modification was monitored by on-line rheology and the products were characterized primarily by off-line rheology, morphology and thermal analysis. Efforts were made to establish processing/property relationships and provide an insight of the accompanying structural changes. The overall response of the reactively modified systems was found to be strongly dependent on the component characteristics, blend composition, type and concentrations of reactive additives and processing conditions. The work concluded that UP can be effectively modified through reactive melt processing. Its melt viscosity and MW can be increased through chemical reactions between organic peroxides (POX) and chain unsaturation or between MgO and carboxyl/hydroxyl end groups. Reactive blending of PP/UP blends through peroxide modification gave finer and more uniform morphology than unreacted blends and at a given PP/UP weight ratio more thermoplastic elastomers-like rheological behavior. This is due to the continuously decreasing viscosity ratio of PP/UP towards unity by the competing reactions between POX and the blend components and formation of PP-UP copolymers which serve as in-situ compatibilizers to promote better interfacial adhesion. Kinetics of the competing reactions were analyzed through a developed model. In addition to POX concentration and mixing efficiency, rheology and morphology of UP/PP bends were significantly affected by the addition of inorganic and organic coagents. Addition of coagents such as a difunctional maleimide, MgO and/or an anhydride functionalized PP during reactive blending offers effective means for tailoring

  6. Barrier cell sheath formation

    International Nuclear Information System (INIS)

    Kesner, J.

    1980-04-01

    The solution for electrostatic potential within a simply modeled tandem mirror thermal barrier is seen to exhibit a sheath at each edge of the cell. The formation of the sheath requires ion collisionality and the analysis assmes that the collisional trapping rate into the barrier is considerably slower than the barrier pump rate

  7. Inherently safe in situ uranium recovery

    Science.gov (United States)

    Krumhansl, James L; Brady, Patrick V

    2014-04-29

    An in situ recovery of uranium operation involves circulating reactive fluids through an underground uranium deposit. These fluids contain chemicals that dissolve the uranium ore. Uranium is recovered from the fluids after they are pumped back to the surface. Chemicals used to accomplish this include complexing agents that are organic, readily degradable, and/or have a predictable lifetime in an aquifer. Efficiency is increased through development of organic agents targeted to complexing tetravalent uranium rather than hexavalent uranium. The operation provides for in situ immobilization of some oxy-anion pollutants under oxidizing conditions as well as reducing conditions. The operation also artificially reestablishes reducing conditions on the aquifer after uranium recovery is completed. With the ability to have the impacted aquifer reliably remediated, the uranium recovery operation can be considered inherently safe.

  8. Barriers to fusion

    International Nuclear Information System (INIS)

    Berriman, A.C.; Butt, R.D.; Dasgupta, M.; Hinde, D.J.; Morton, C.R.; Newton, J.O.

    1999-01-01

    The fusion barrier is formed by the combination of the repulsive Coulomb and attractive nuclear forces. Recent research at the Australian National University has shown that when heavy nuclei collide, instead of a single fusion barrier, there is a set of fusion barriers. These arise due to intrinsic properties of the interacting nuclei such deformation, rotations and vibrations. Thus the range of barrier energies depends on the properties of both nuclei. The transfer of matter between nuclei, forming a neck, can also affect the fusion process. High precision data have been used to determine fusion barrier distributions for many nuclear reactions, leading to new insights into the fusion process

  9. Extremal surface barriers

    International Nuclear Information System (INIS)

    Engelhardt, Netta; Wall, Aron C.

    2014-01-01

    We present a generic condition for Lorentzian manifolds to have a barrier that limits the reach of boundary-anchored extremal surfaces of arbitrary dimension. We show that any surface with nonpositive extrinsic curvature is a barrier, in the sense that extremal surfaces cannot be continuously deformed past it. Furthermore, the outermost barrier surface has nonnegative extrinsic curvature. Under certain conditions, we show that the existence of trapped surfaces implies a barrier, and conversely. In the context of AdS/CFT, these barriers imply that it is impossible to reconstruct the entire bulk using extremal surfaces. We comment on the implications for the firewall controversy

  10. Safety- barrier diagrams

    DEFF Research Database (Denmark)

    Duijm, Nijs Jan

    2008-01-01

    Safety-barrier diagrams and the related so-called 'bow-tie' diagrams have become popular methods in risk analysis. This paper describes the syntax and principles for constructing consistent and valid safety-barrier diagrams. The relation of safety-barrier diagrams to other methods such as fault...... trees and Bayesian networks is discussed. A simple method for quantification of safety-barrier diagrams is proposed. It is concluded that safety-barrier diagrams provide a useful framework for an electronic data structure that integrates information from risk analysis with operational safety management....

  11. Safety-barrier diagrams

    DEFF Research Database (Denmark)

    Duijm, Nijs Jan

    2007-01-01

    Safety-barrier diagrams and the related so-called "bow-tie" diagrams have become popular methods in risk analysis. This paper describes the syntax and principles for constructing consistent and valid safety-barrier diagrams. The relation with other methods such as fault trees and Bayesian networks...... are discussed. A simple method for quantification of safety-barrier diagrams is proposed, including situations where safety barriers depend on shared common elements. It is concluded that safety-barrier diagrams provide a useful framework for an electronic data structure that integrates information from risk...... analysis with operational safety management....

  12. Feasibility of permeation grouting for constructing subsurface barriers

    International Nuclear Information System (INIS)

    Dwyer, B.P.

    1994-03-01

    The technical feasibility of emplacing a barrier beneath a waste site using directionally drilled boreholes and permeation grouting was investigated. The benefits of this emplacement system are: (1) Directionally drilled boreholes provide access beneath a waste site without disturbing the waste; (2) interim containment of contaminants allows time for the development of remediation options; (3) in the interim, the volume of waste remains fixed; (4) barriers may enhance the effectiveness of in situ remediation actions; and (5) barrier systems may provide permanent waste containment

  13. Digital reactivity meter

    International Nuclear Information System (INIS)

    Jiang Zongbing

    1996-02-01

    The importance and the usual methods of reactivity measurement in a nuclear reactor are presented. Emphasis is put upon the calculation principle, software and hardware components, main specifications, application, as well as the features of the digital reactivity meter. The test results of operation in various reactors shown that the meter possess the following features: high accuracy, short response time, low output noise, high resolution, wide measuring range, simple and flexible to operate, high stability and reliability. In addition, the reactivity meter can save the measuring data automatically and have a perfect capability of self-verifying. It not only meet the requirement of the reactivity measurement in nuclear power plant, but also can be applied to various types of reactors. (1 tab.)

  14. Stress Reactivity in Insomnia.

    Science.gov (United States)

    Gehrman, Philip R; Hall, Martica; Barilla, Holly; Buysse, Daniel; Perlis, Michael; Gooneratne, Nalaka; Ross, Richard J

    2016-01-01

    This study examined whether individuals with primary insomnia (PI) are more reactive to stress than good sleepers (GS). PI and GS (n = 20 per group), matched on gender and age, completed three nights of polysomnography. On the stress night, participants received a mild electric shock and were told they could receive additional shocks during the night. Saliva samples were obtained for analysis of cortisol and alpha amylase along with self-report and visual analog scales (VAS). There was very little evidence of increased stress on the stress night, compared to the baseline night. There was also no evidence of greater stress reactivity in the PI group for any sleep or for salivary measures. In the GS group, stress reactivity measured by VAS scales was positively associated with an increase in sleep latency in the experimental night on exploratory analyses. Individuals with PI did not show greater stress reactivity compared to GS.

  15. Structure, Reactivity and Dynamics

    Indian Academy of Sciences (India)

    Understanding structure, reactivity and dynamics is the core issue in chemical ... functional theory (DFT) calculations, molecular dynamics (MD) simulations, light- ... between water and protein oxygen atoms, the superionic conductors which ...

  16. Taskable Reactive Agent Communities

    National Research Council Canada - National Science Library

    Myers, Karen

    2002-01-01

    The focus of Taskable Reactive Agent Communities (TRAC) project was to develop mixed-initiative technology to enable humans to supervise and manage teams of agents as they perform tasks in dynamic environments...

  17. Reactive sputter deposition

    CERN Document Server

    Mahieu, Stijn

    2008-01-01

    In this valuable work, all aspects of the reactive magnetron sputtering process, from the discharge up to the resulting thin film growth, are described in detail, allowing the reader to understand the complete process. Hence, this book gives necessary information for those who want to start with reactive magnetron sputtering, understand and investigate the technique, control their sputtering process and tune their existing process, obtaining the desired thin films.

  18. Recombination barrier layers in solid-state quantum dot-sensitized solar cells

    KAUST Repository

    Roelofs, Katherine E.; Brennan, Thomas P.; Dominguez, Juan C.; Bent, Stacey F.

    2012-01-01

    in situ by successive ion layer adsorption and reaction (SILAR). Aluminum oxide recombination barrier layers were deposited by atomic layer deposition (ALD) at the TiO2/hole-conductor interface. For low numbers of ALD cycles, the Al2O3 barrier layer

  19. Reactive power compensator

    Science.gov (United States)

    El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.; Chen, Mingliang; Andexler, George; Huang, Tony

    1992-01-01

    A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation.

  20. Reactive power compensator

    Energy Technology Data Exchange (ETDEWEB)

    El-Sharkawi, Mohamed A. (Renton, WA); Venkata, Subrahmanyam S. (Woodinville, WA); Chen, Mingliang (Kirkland, WA); Andexler, George (Everett, WA); Huang, Tony (Seattle, WA)

    1992-01-01

    A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation.

  1. Multilayer moisture barrier

    Science.gov (United States)

    Pankow, Joel W; Jorgensen, Gary J; Terwilliger, Kent M; Glick, Stephen H; Isomaki, Nora; Harkonen, Kari; Turkulainen, Tommy

    2015-04-21

    A moisture barrier, device or product having a moisture barrier or a method of fabricating a moisture barrier having at least a polymer layer, and interfacial layer, and a barrier layer. The polymer layer may be fabricated from any suitable polymer including, but not limited to, fluoropolymers such as polyethylene terephthalate (PET) or polyethylene naphthalate (PEN), or ethylene-tetrafluoroethylene (ETFE). The interfacial layer may be formed by atomic layer deposition (ALD). In embodiments featuring an ALD interfacial layer, the deposited interfacial substance may be, but is not limited to, Al.sub.2O.sub.3, AlSiO.sub.x, TiO.sub.2, and an Al.sub.2O.sub.3/TiO.sub.2 laminate. The barrier layer associated with the interfacial layer may be deposited by plasma enhanced chemical vapor deposition (PECVD). The barrier layer may be a SiO.sub.xN.sub.y film.

  2. Barrier penetration database

    International Nuclear Information System (INIS)

    Fainberg, A.; Bieber, A.M. Jr.

    1978-11-01

    This document is intended to supply the NRC and nuclear power plant licensees with basic data on the times required to penetrate forcibly the types of barriers commonly found in nuclear plants. These times are necessary for design and evaluation of the physical protection system required under 10CFR73.55. Each barrier listed is described in detail. Minor variations in basic barrier construction that result in the same penetration time, are also described

  3. Digital reactivity meter

    International Nuclear Information System (INIS)

    Copie, M.; Valantic, B.

    1978-01-01

    Digital reactivity meters (DRM) are mostly used as measuring instruments, e.g. for calibration of control rods, and there are only a few cases of their incorporation into the control systems of the reactors. To move in this direction there is more development work needed. First of all, fast algorithms are needed for inverse kinetics equations to relieve the computer for more important tasks of reactor model solving in real time. The next problem, currently under investigation, is the incorporation of the reactor thermal-hydraulic model into the DRM so that it can be used in the power range. Such an extension of DHM allows presentation not only of the instantaneous reactivity of the system, but also the inserted reactivity can be estimated from the temperature reactivity feed-backs. One of the applications of this concept is the anomalous digital reactivity monitor (ADRN) as part of the reactor protection system. As a solution of the first problem, a fast algorithm for solving the inverse kinetics equations has been implemented in the off-line program RODCAL on CDC 1700 computer and tested for its accuracy by performing different control rod calibrations on the reactor TRIGA

  4. In situ precipitation and sorption of arsenic from groundwater: Laboratory and ex situ field tests

    International Nuclear Information System (INIS)

    Whang, J.M.; Adu-Wusu, K.; Frampton, W.H.; Staib, J.G.

    1997-01-01

    Permeable, reactive walls may provide long term, low-maintenance prevention of off-site migration of contaminated groundwater. Laboratory and ex situ field tests conducted on several arsenic-contaminated groundwaters indicate that both precipitation and sorption can remove arsenic to levels of less than 10 ppb. Precipitation has been induced by adjusting pH, adding selected cations, and/or reducing the oxidation-reduction potential. Adjusting pH or adding cations was most effective when there were high levels of other ionic species with which arsenic could coprecipitate. Reducing the oxidation-reduction potential was effective on a variety of groundwaters. Humate was an effective sorbent at low pH; aluminum and iron materials were effective over a large range of conditions. Long term performance of precipitation systems can be limited by formation of precipitate on reactive surfaces. Long term sorption can be reduced by competing ions, such as phosphate. Laboratory and ex situ field tests indicate that reactive walls may have lifetimes of decades or more

  5. Transport barriers in plasmas

    International Nuclear Information System (INIS)

    Caldas, I L; Szezech, J D Jr; Kroetz, T; Marcus, F A; Roberto, M; Viana, R L; Lopes, S R

    2012-01-01

    We discuss the creation of transport barriers in magnetically confined plasmas with non monotonic equilibrium radial profiles. These barriers reduce the transport in the shearless region (i.e., where the twist condition does not hold). For the chaotic motion of particles in an equilibrium electric field with a nonmonotonic radial profile, perturbed by electrostatic waves, we show that a nontwist transport barrier can be created in the plasma by modifying the electric field radial profile. We also show non twist barriers in chaotic magnetic field line transport in the plasma near to the tokamak wall with resonant modes due to electric currents in external coils.

  6. Barriers and post-closure monitoring (AL121125)

    International Nuclear Information System (INIS)

    Bostick, K.V.; Janecky, D.

    1995-01-01

    This project focuses on the rapid implementation of near-surface barriers, biotreatment, and post-closure monitoring technology. It uses water-permeable and biologic barriers that chemically capture and/or degrade contaminants without significantly altering the natural water flow regime. Barrier approaches are being tested for two different applications. The first is the use of barriers for confinement of chemical contaminants for in-trench treatments with leach systems or an in-place bioreactor. The second is an enhancement of the current practice of emplacing grout or clay slurry walls into direct horizontal surface and subsurface water flows around a contaminated area by integrating permeable reactive barriers and petroleum reservoir gel/foam/polymer technology

  7. Reactive adsorption: A cleaner technology in nuclear power plants

    International Nuclear Information System (INIS)

    Marton, G.; Szanya, T.; Hanak, L.

    1996-01-01

    Cleaner technology prefers work with minimal loss and the wastes cause the less environmental damages. In the spirit of the previous sentence in the present paper reactive adsorption is investigated for the removal of radioactive nuclides from nuclear power plant decontamination solutions. During alkaline, oxidative decontamination of nuclear power plant equipment a radioactive solution is produced. Owing to the storing difficulties of radioactive solutions it is necessary to develop a method for the in situ treatment of radioactive, alkaline, oxidative decontamination solutions, and for the concentration of radioactive components. Reactive adsorption seems to be promising for this purpose. 3 refs., 8 figs., 1 tab

  8. In-Situ Simulation

    DEFF Research Database (Denmark)

    Bjerregaard, Anders Thais; Slot, Susanne; Paltved, Charlotte

    2015-01-01

    , and organisational characteristic. Therefore, it might fail to fully mimic real clinical team processes. Though research on in situ simulation in healthcare is in its infancy, literature is abundant on patient safety and team training1. Patient safety reporting systems that identify risks to patients can improve......Introduction: In situ simulation offers on-site training to healthcare professionals. It refers to a training strategy where simulation technology is integrated into the clinical encounter. Training in the simulation laboratory does not easily tap into situational resources, e.g. individual, team...... patient safety if coupled with training and organisational support. This study explored the use of critical incidents and adverse events reports for in situ simulation and short-term observations were used to create learning objectives and training scenarios. Method: This study used an interventional case...

  9. In situ groundwater bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.

    2009-02-01

    In situ groundwater bioremediation of hydrocarbons has been used for more than 40 years. Most strategies involve biostimulation; however, recently bioaugmentation have been used for dehalorespiration. Aquifer and contaminant profiles are critical to determining the feasibility and strategy for in situ groundwater bioremediation. Hydraulic conductivity and redox conditions, including concentrations of terminal electron acceptors are critical to determine the feasibility and strategy for potential bioremediation applications. Conceptual models followed by characterization and subsequent numerical models are critical for efficient and cost effective bioremediation. Critical research needs in this area include better modeling and integration of remediation strategies with natural attenuation.

  10. Diffusion barriers for Cu metallisation in Si integrated circuits : deposition and related thin film properties

    NARCIS (Netherlands)

    van Nieuwkasteele-Bystrova, Svetlana Nikolajevna

    2004-01-01

    In modern integrated circuits with Cu interconnects a diffusion barrier is used between the dielectric and Cu in order to prevent diffusion of Cu through the dielectrics. The choice of such a barrier requires a material exploration and a study of the material reactivity with both Cu and the

  11. Prototype Engineered Barrier System Field Tests

    International Nuclear Information System (INIS)

    Ramirez, A.L.; Beatty, J.; Buscheck, T.A.

    1989-01-01

    This paper presents selected preliminary results obtained during the first 54 days of the Prototype Engineered Barrier System Field Tests (PEBSFT) that are being performed in G-Tunnel within the Nevada Test Site. The test described is a precursor to the Engineered Barrier Systems Field Tests (EBSFT). The EBSFT will consist of in situ tests of the geohydrologic and geochemical environment in the near field (within a few meters) of heaters emplaced in welded tuff to simulate the thermal effects of waste packages. The PEBSFTs are being conducted to evaluate the applicability of measurement techniques, numerical models, and procedures for future investigations that will be conducted in the Exploratory Shaft Facilities of the Yucca Mountain Project (YMP). The paper discusses the evolution of hydrothermal behavior during the prototype test, including rock temperatures, changes in rock moisture content, air permeability of fractures, gas pressures, and rock mass gas-phase humidity. 10 refs., 12 figs

  12. Converse Barrier Certificate Theorems

    DEFF Research Database (Denmark)

    Wisniewski, Rafael; Sloth, Christoffer

    2016-01-01

    This paper shows that a barrier certificate exists for any safe dynamical system. Specifically, we prove converse barrier certificate theorems for a class of structurally stable dynamical systems. Other authors have developed a related result by assuming that the dynamical system has neither...

  13. In situ and operando transmission electron microscopy of catalytic materials

    DEFF Research Database (Denmark)

    Crozier, Peter A.; Hansen, Thomas Willum

    2015-01-01

    measurements of gas-phase catalytic products. To overcome this deficiency, operando TEM techniques are being developed that combine atomic characterization with the simultaneous measurement of catalytic products. This article provides a short review of the current status and major developments......) is a powerful technique for revealing the atomic structures of materials at elevated temperatures in the presence of reactive gases. This approach can allow the structure-reactivity relations underlying catalyst functionality to be investigated. Thus far, ETEM has been limited by the absence of in situ...... in the application of ETEM to gas-phase catalysis over the past 10 years....

  14. Skin barrier function

    DEFF Research Database (Denmark)

    2016-01-01

    Renowned experts present the latest knowledge Although a very fragile structure, the skin barrier is probably one of the most important organs of the body. Inward/out it is responsible for body integrity and outward/in for keeping microbes, chemicals, and allergens from penetrating the skin. Since...... the role of barrier integrity in atopic dermatitis and the relationship to filaggrin mutations was discovered a decade ago, research focus has been on the skin barrier, and numerous new publications have become available. This book is an interdisciplinary update offering a wide range of information...... on the subject. It covers new basic research on skin markers, including results on filaggrin and on methods for the assessment of the barrier function. Biological variation and aspects of skin barrier function restoration are discussed as well. Further sections are dedicated to clinical implications of skin...

  15. Barriers to the future

    Energy Technology Data Exchange (ETDEWEB)

    Massey, C T

    1986-09-01

    Opportunities for the British coal industry seem vast yet there are still barriers to progress. Seven areas are identified and discussed: mining mobility (for example, longwall mining systems are rigid and inflexible compared with American stall and pillar working); mine structure (many mines are more suitable to pit ponies than to large pieces of equipment); financial barriers (Government requires the industry to break even in 1987/88); personnel barriers (less specialization, better use of skills); safety barriers (increased use of remote control, ergonomics and robotics to protect workers); microelectronic management (nationalization has cushioned management from the market place; there is a need for a more multidisciplinary approach to the industry); and legal barriers (most legislation in the past has been in response to accidents; legislation external to the industry but affecting it is more fundamental).

  16. Spring 5 & reactive streams

    CERN Multimedia

    CERN. Geneva; Clozel, Brian

    2017-01-01

    Spring is a framework widely used by the world-wide Java community, and it is also extensively used at CERN. The accelerator control system is constituted of 10 million lines of Java code, spread across more than 1000 projects (jars) developed by 160 software engineers. Around half of this (all server-side Java code) is based on the Spring framework. Warning: the speakers will assume that people attending the seminar are familiar with Java and Spring’s basic concepts. Spring 5.0 and Spring Boot 2.0 updates (45 min) This talk will cover the big ticket items in the 5.0 release of Spring (including Kotlin support, @Nullable and JDK9) and provide an update on Spring Boot 2.0, which is scheduled for the end of the year. Reactive Spring (1h) Spring Framework 5.0 has been released - and it now supports reactive applications in the Spring ecosystem. During this presentation, we'll talk about the reactive foundations of Spring Framework with the Reactor project and the reactive streams specification. We'll al...

  17. Reactivity of nitriles

    International Nuclear Information System (INIS)

    Kukushkin, Yu.N.

    1987-01-01

    Reactivity of coordination nitriles in transition metal (Ru, Mo, W, Zr, Hf) complexes, namely: transformation of nitriles of the first coordination sphere into N-acyl-substituted amides, amidines, nitrile interaction; with water, alkalines, alcoholes, hydrogen, azide and cyanide ions is considered. Introduction of acetonitrile molecule to uranium (4)-carbon double bond is discussed

  18. Clojure reactive programming

    CERN Document Server

    Borges, Leonardo

    2015-01-01

    If you are a Clojure developer who is interested in using Reactive Programming to build asynchronous and concurrent applications, this book is for you. Knowledge of Clojure and Leiningen is required. Basic understanding of ClojureScript will be helpful for the web chapters, although it is not strictly necessary.

  19. A Universal Reactive Machine

    DEFF Research Database (Denmark)

    Andersen, Henrik Reif; Mørk, Simon; Sørensen, Morten U.

    1997-01-01

    Turing showed the existence of a model universal for the set of Turing machines in the sense that given an encoding of any Turing machine asinput the universal Turing machine simulates it. We introduce the concept of universality for reactive systems and construct a CCS processuniversal...

  20. Chemical Reactivity Test (CRT)

    Energy Technology Data Exchange (ETDEWEB)

    Zaka, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-13

    The Chemical Reactivity Test (CRT) is used to determine the thermal stability of High Explosives (HEs) and chemical compatibility between (HEs) and alien materials. The CRT is one of the small-scale safety tests performed on HE at the High Explosives Applications Facility (HEAF).

  1. Reactive power compensating system

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Timothy J. (Redondo Beach, CA); El-Sharkawi, Mohamed A. (Renton, WA); Venkata, Subrahmanyam S. (Seattle, WA)

    1987-01-01

    The reactive power of an induction machine is compensated by providing fixed capacitors on each phase line for the minimum compensation required, sensing the current on one line at the time its voltage crosses zero to determine the actual compensation required for each phase, and selecting switched capacitors on each line to provide the balance of the compensation required.

  2. Reactive Power Compensating System.

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Timothy J.; El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.

    1985-01-04

    The circuit was designed for the specific application of wind-driven induction generators. It has great potential for application in any situation where a varying reactive power load is present, such as with induction motors or generators, or for transmission network compensation.

  3. The iodine reactivity

    International Nuclear Information System (INIS)

    2003-01-01

    The iodine is an important element because it has long life isotopes (such as iodine 129) and a great mobility in natural media. Iodine presents a complex chemistry because of its volatility and its strong redox reactivity. The S.E.C.R. works to better understand the reactivity of this element in different natural, industrial or biological environments. It plays a part in thermochemical sites as a possible way of hydrogen formation. This seminar gives some aspects relative to the chemical reactivity of iodine, since its thermochemistry in the I/S cycles to produce hydrogen to its reactivity in the natural medium and its potential radiological impact. This document includes 4 presentations transparencies) dealing with: the 129 I cycle rejected in the low radioactive gaseous and liquid effluents of the La Hague reprocessing plant (C. Frechou); a bibliographic review of iodine retention in soils (F. Bazer-Bachi); the hydrogen production and the iodine/sulfur thermochemical cycle (role of iodine in the process); and the direct characterization by electro-spray ionization mass spectroscopy of iodine fixation by fulvic acids (P. Reiller, B. Amekraz, C. Moulin, V. Moulin)

  4. Upscaling of reactive flows

    NARCIS (Netherlands)

    Kumar, K.

    2012-01-01

    The thesis deals with the upscaling of reactive flows in complex geometry. The reactions which may include deposition or dissolution take place at a part of the boundary and depending on the size of the reaction domain, the changes in the pore structure that are due to the deposition process may or

  5. In situ treatment of cyanide-contaminated groundwater by iron cyanide precipitation

    International Nuclear Information System (INIS)

    Ghosh, R.S.; Dzombak, D.A.; Luthy, R.G.; Smith, J.R.

    1999-01-01

    Groundwater contamination with cyanide is common at many former or active industrial sites. Metal-cyanide complexes typically dominate aqueous speciation of cyanide in groundwater systems, with iron-cyanide complexes often most abundant. Typically, metal-cyanide complexes behave as nonadsorbing solutes in sand-gravel aquifer systems in the neutral pH range, rendering cyanide relatively mobile in groundwater systems. Groundwater pump-and-treat systems have often been used to manage cyanide contamination in groundwater. This study examined the feasibility of using in situ precipitation of iron cyanide in a reactive barrier to attenuate the movement of cyanide in groundwater. Laboratory column experiments were performed in which cyanide solutions were passed through mixtures of sand and elemental iron filings. Removal of dissolved cyanide was evaluated in a variety of cyanide-containing influents under various flow rates and sand-to-iron weight ratios. Long-term column tests performed with various cyanide-containing influents under both oxic and anoxic conditions, at neutral pH and at flow rates typical of sand-gravel porous media, yielded effluent concentrations of total cyanide as low as 0.5 mg/L. Effluent cyanide concentrations achieved were close to the solubilities of Turnbull's blue-hydrous ferric oxide solid solutions, indicating co-precipitation of the two solids. Maximum cyanide removal efficiency was achieved with approximately 10% by weight of iron in the sand-iron mixtures; higher iron contents did not increase removal efficiency significantly. Results obtained indicate that in situ precipitation is a promising passive treatment approach for cyanide in groundwater

  6. Evolution of the argillite / CEM I interface at 70 C.: in situ tests and modelling results

    International Nuclear Information System (INIS)

    Lalan, P.; Dauzeres, A.; Barker, E.; De Windt, L.; Detilleux, V.; Desveaux, P.

    2015-01-01

    French radioactive waste disposal concept involves cementitious materials in a clayey host-rock. The presence of exothermic wastes in the storage cells may induce a temperature of about 70 Celsius degrees at the material interfaces. At present, experiment thermal conditions have been undertaken at about 20 C. degrees and studies at higher temperature are really scarce, especially experiments considering diffusion through the cement / clay interface. The still on-going study presented here is focusing on argillite / CEM-I interface. A one-year experiment under in situ conditions at the Tournemire experimental station (IRSN) was carried out and meanwhile, preliminary reactive transport modelling with HYTEC helped to understand the impact of a high temperature on the physico-chemical behaviour of cement / clay interface. The first results showed decalcification of cement and diffuse carbonation as well as a possible illite precipitation of clay-type phases. A C-S-H ribbon appeared at the interface between the two materials and a layer grew between the C-S-H ribbon and the cementitious material. This layer contained zeolites and behaved as a diffusive barrier. After one year of in situ interactions, the disturbance thickness was about 350 microns in CEM-I cement paste and about 100 microns in argillite. The modelling reproduced relatively well the experimentally observed processes but the extension of the disturbance is too wide and the zeolite layer is misplaced according to the experimental observations. This study highlights the lack of data at highest temperature on the reaction kinetics, diffusion coefficients but also on porosity variations. (authors)

  7. Sex in situ

    DEFF Research Database (Denmark)

    Krøgholt, Ida

    2017-01-01

    Sex er en del af vores sociale praksis og centralt for det, vi hver især er. Men bortset fra pornoindustrien, har vi ikke mange muligheder for at få adgang til billeder af sex. Teater Nordkrafts forestilling Sex in situ vil gøre seksuelle billeder til noget, der kan deles, udveksles og tales om, og...

  8. Vehicle barrier systems

    International Nuclear Information System (INIS)

    Sena, P.A.

    1986-01-01

    The ground vehicle is one of the most effective tools available to an adversary force. Vehicles can be used to penetrate many types of perimeter barriers, transport equipment and personnel rapidly over long distances, and deliver large amounts of explosives directly to facilities in suicide missions. The function of a vehicle barrier system is to detain or disable a defined threat vehicle at a selected distance from a protected facility. Numerous facilities are installing, or planning to install, vehicle barrier systems and many of these facilities are requesting guidance to do so adequately. Therefore, vehicle barriers are being evaluated to determine their stopping capabilities so that systems can be designed that are both balanced and capable of providing a desired degree of protection. Equally important, many of the considerations that should be taken into account when establishing a vehicle barrier system have been identified. These considerations which pertain to site preparation, barrier selection, system integration and operation, and vehicle/barrier interaction, are discussed in this paper

  9. In-situ containment and stabilization of buried waste: Annual report FY 1994

    International Nuclear Information System (INIS)

    Allan, M.L.; Kukacka, L.E.

    1994-10-01

    The two landfills of specific interest are the Chemical Waste Landfill (CWL) and the Mixed Waste Landfill (MWL), both located at Sandia National Laboratory. The work is comprised of two subtasks: (1) In-Situ Barriers and (2) In-Situ Stabilization of Contaminated Soils. The main environmental concern at the CWL is a chromium plume resulting from disposal of chromic acid and chromic sulfuric acid into unlined pits. This program has investigated means of in-situ stabilization of chromium contaminated soils and placement of containment barriers around the CWL. The MWL contains a plume of tritiated water. In-situ immobilization of tritiated water with cementitious grouts was not considered to be a method with a high probability of success and was not pursued. This is discussed further in Section 5.0. Containment barriers for the tritium plume were investigated. FY 94 work focused on stabilization of chromium contaminated soil with blast furnace slag modified grouts to bypass the stage of pre-reduction of Cr(6), barriers for tritiated water containment at the MWL, continued study of barriers for the CWL, and jet grouting field trials for CWL barriers at an uncontaminated site at SNL. Cores from the FY 93 permeation grouting field trails were also tested in FY 94

  10. In situ NMR studies of reactions on catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Haw, James F [Texas A and M Univ., College Station, TX (United States). Dept. of Chemistry

    1994-12-31

    Zeolites are useful in the synthesis of fine chemicals. The systematic understanding of organic chemistry of zeolite catalysis may contribute to: the elucidation of reaction mechanisms of existing catalytic processes; the discovery of new catalytic reactions; the application of zeolite catalysis to the synthesis of fine chemicals. This work presents species of zeolites identified by in situ NMR; reactions of organic chemicals on zeolites and proposes mechanisms as well as reactivity trends 3 refs., 7 tabs.

  11. Immune reactivities against gums.

    Science.gov (United States)

    Vojdani, Aristo; Vojdani, Charlene

    2015-01-01

    Different kinds of gums from various sources enjoy an extremely broad range of commercial and industrial use, from food and pharmaceuticals to printing and adhesives. Although generally recognized as safe by the US Food and Drug Administration (FDA), gums have a history of association with sensitive or allergic reactions. In addition, studies have shown that gums have a structural, molecular similarity to a number of common foods. A possibility exists for cross-reactivity. Due to the widespread use of gums in almost every aspect of modern life, the overall goal of the current investigation was to determine the degree of immune reactivity to various gum antigens in the sera of individuals representing the general population. The study was a randomized, controlled trial. 288 sera purchased from a commercial source. The sera was screened for immunoglobulin G (IgG) and immunoglobulin E (IgE) antibodies against extracts of mastic gum, carrageenan, xantham gum, guar gum, gum tragacanth, locust bean gum, and β-glucan, using indirect enzyme-linked immunosorbent assay (ELISA) testing. For each gum antigen, inhibition testing was performed on the 4 sera that showed the highest IgG and IgE immune reactivity against the different gums used in the study. Inhibition testing on these same sera for sesame albumin, lentil, corn, rice, pineapple, peanut, pea protein, shrimp, or kidney bean was used to determine the cross-reactivity of these foods with the gum. Of the 288 samples, 4.2%-27% of the specimens showed a significant elevation in IgG antibodies against various gums. Only 4 of 288, or 1.4%, showed a simultaneous elevation of the IgG antibody against all 7 gum extracts. For the IgE antibody, 15.6%-29.1% of the specimens showed an elevation against the various gums. A significant percentage of the specimens, 12.8%, simultaneously produced IgE antibodies against all 7 tested extracts. Overall, the percentage of elevation in IgE antibodies against different gum extracts, with

  12. Converse Barrier Certificate Theorem

    DEFF Research Database (Denmark)

    Wisniewski, Rafael; Sloth, Christoffer

    2013-01-01

    This paper presents a converse barrier certificate theorem for a generic dynamical system.We show that a barrier certificate exists for any safe dynamical system defined on a compact manifold. Other authors have developed a related result, by assuming that the dynamical system has no singular...... points in the considered subset of the state space. In this paper, we redefine the standard notion of safety to comply with generic dynamical systems with multiple singularities. Afterwards, we prove the converse barrier certificate theorem and illustrate the differences between ours and previous work...

  13. Development of KMnO(4)-releasing composites for in situ chemical oxidation of TCE-contaminated groundwater.

    Science.gov (United States)

    Liang, S H; Chen, K F; Wu, C S; Lin, Y H; Kao, C M

    2014-05-01

    The objective of this study was to develop a controlled-oxidant-release technology combining in situ chemical oxidation (ISCO) and permeable reactive barrier (PRB) concepts to remediate trichloroethene (TCE)-contaminated groundwater. In this study, a potassium permanganate (KMnO4)-releasing composite (PRC) was designed for KMnO4 release. The components of this PRC included polycaprolactone (PCL), KMnO4, and starch with a weight ratio of 1.14:2:0.96. Approximately 64% (w/w) of the KMnO4 was released from the PRC after 76 days of operation in a batch system. The results indicate that the released KMnO4 could oxidize TCE effectively. The results from a column study show that the KMnO4 released from 200 g of PRC could effectively remediate 101 pore volumes (PV) of TCE-contaminated groundwater (initial TCE concentration = 0.5 mg/L) and achieve up to 95% TCE removal. The effectiveness of the PRC system was verified by the following characteristics of the effluents collected after the PRC columns (barrier): (1) decreased TCE concentrations, (2) increased ORP and pH values, and (3) increased MnO2 and KMnO4 concentrations. The results of environmental scanning electron microscope (ESEM) analysis show that the PCL and starch completely filled up the pore spaces of the PRC, creating a composite with low porosity. Secondary micro-scale capillary permeability causes the KMnO4 release, mainly through a reaction-diffusion mechanism. The PRC developed could be used as an ISCO-based passive barrier system for plume control, and it has the potential to become a cost-effective alternative for the remediation of chlorinated solvent-contaminated groundwater. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. What makes ecological systems reactive?

    Science.gov (United States)

    Snyder, Robin E

    2010-06-01

    Although perturbations from a stable equilibrium must ultimately vanish, they can grow initially, and the maximum initial growth rate is called reactivity. Reactivity thus identifies systems that may undergo transient population surges or drops in response to perturbations; however, we lack biological and mathematical intuition about what makes a system reactive. This paper presents upper and lower bounds on reactivity for an arbitrary linearized model, explores their strictness, and discusses their biological implications. I find that less stable systems (i.e. systems with long transients) have a smaller possible range of reactivities for which no perturbations grow. Systems with more species have a higher capacity to be reactive, assuming species interactions do not weaken too rapidly as the number of species increases. Finally, I find that in discrete time, reactivity is determined largely by mean interaction strength and neither discrete nor continuous time reactivity are sensitive to food web topology. 2010 Elsevier Inc. All rights reserved.

  15. In situ Raman spectroscopy for growth monitoring of vertically aligned multiwall carbon nanotubes in plasma reactor

    Energy Technology Data Exchange (ETDEWEB)

    Labbaye, T.; Gaillard, M.; Lecas, T.; Kovacevic, E.; Boulmer-Leborgne, Ch.; Guimbretière, G. [GREMI, Université-CNRS, BP6744, 45067 Orléans Cedex 2 (France); Canizarès, A.; Raimboux, N.; Simon, P.; Ammar, M. R., E-mail: mohamed-ramzi.ammar@cnrs-orleans.fr [CNRS, CEMHTI UPR3079, Univ. Orléans, F-45071 Orléans Cedex 2 (France); Strunskus, T. [Institute of Material Science, Chritian-Albrechts-University of Kiel, D-24143 Kiel (Germany)

    2014-11-24

    Portable and highly sensitive Raman setup was associated with a plasma-enhanced chemical vapor deposition reactor enabling in situ growth monitoring of multi-wall carbon nanotubes despite the combination of huge working distance, high growth speed and process temperature and reactive plasma condition. Near Edge X-ray absorption fine structure spectroscopy was used for ex situ sample analysis as a complementary method to in situ Raman spectroscopy. The results confirmed the fact that the “alternating” method developed here can accurately be used for in situ Raman monitoring under reactive plasma condition. The original analytic tool can be of great importance to monitor the characteristics of these nanostructured materials and readily define the ultimate conditions for targeted results.

  16. Bearing for the reactivation

    International Nuclear Information System (INIS)

    Santamaria Alexandra

    2003-01-01

    Ecopetrol undertook an aggressive plan to reactivate the activities of seismic that allows fulfilling the goals proposed for this year (2003). Although the production registered a descent of 9%, the financial results throw utilities for $1.1 trillion pesos to the closing of September and contributions in bonuses for $1.2 trillions. The author also refers to the general balance, to the finances, raw production, taxes and transfers

  17. Information barriers and authentication

    International Nuclear Information System (INIS)

    MacArthur, D.W.; Wolford, J.K.

    2001-01-01

    Acceptance of nuclear materials into a monitoring regime is complicated if the materials are in classified shapes or have classified composition. An attribute measurement system with an information barrier can be emplo,yed to generate an unclassified display from classified measurements. This information barrier must meet two criteria: (1) classified information cannot be released to the monitoring party, and (2) the monitoring party must be convinced that the unclassified output accurately represents the classified input. Criterion 1 is critical to the host country to protect the classified information. Criterion 2 is critical to the monitoring party and is often termed the 'authentication problem.' Thus, the necessity for authentication of a measurement system with an information barrier stems directly from the description of a useful information barrier. Authentication issues must be continually addressed during the entire development lifecycle of the measurement system as opposed to being applied only after the system is built.

  18. Barrier Infrared Detector (BIRD)

    Data.gov (United States)

    National Aeronautics and Space Administration — A recent breakthrough in MWIR detector design, has resulted in a high operating temperature (HOT) barrier infrared detector (BIRD) that is capable of spectral...

  19. Protective barrier development: Overview

    International Nuclear Information System (INIS)

    Wing, N.R.; Gee, G.W.

    1990-01-01

    Protective barrier and warning marker systems are being developed to isolate wastes disposed of near the earth's surface at the Hanford Site. The barrier is designed to function in an arid to semiarid climate, to limit infiltration and percolation of water through the waste zone to near-zero, to be maintenance free, and to last up to 10,000 yr. Natural materials (e.g., fine soil, sand, gravel, riprap, clay, asphalt) have been selected to optimize barrier performance and longevity and to create an integrated structure with redundant features. These materials isolate wastes by limiting water drainage; reducing the likelihood of plant, animal, and human intrusion; controlling emission of noxious gases; and minimizing erosion. Westinghouse Hanford Company and Pacific Northwest Laboratory efforts to assess the performance of various barrier and marker designs will be discussed

  20. Engineered barriers: current status

    International Nuclear Information System (INIS)

    Atkinson, A.; Marsh, G.P.

    1988-01-01

    This report summarises the current state of research relevant to assessing the performance of engineered barriers made of steel and concrete in radioactive waste repositories. The objective of these barriers is to contain the radionuclides within them by providing both physical and chemical impediment to their release. The physical barriers are of most value for highly soluble isotopes with relatively short half-lives (eg 137 Cs), since they can provide containment until a large fraction of the activity has decayed. In addition they can facilitate retrievability for some period after disposal. The chemical barriers operate by beneficial conditioning of the near field groundwater and providing sites for sorption of radionuclides. Both of these reduce the aqueous concentration of radionuclides in the near field. (author)

  1. Skin barrier composition

    International Nuclear Information System (INIS)

    Osburn, F.G.

    1985-01-01

    A skin barrier composition comprises a mixture of a copolymer resin of ethylene and vinyl acetate (EVA), and a water-insoluble dry tack-providing elastomer such as polyisobutylene. The composition after mixing and molding, is subjected to ionizing irradiation to form cross-linked polymer networks of the EVA. The compositions have exceptional properties for use as barrier sheets, rings, or strips in ostomy, wound drainage, and incontinence devices. (author)

  2. Skin barrier composition

    Energy Technology Data Exchange (ETDEWEB)

    Osburn, F G

    1985-06-12

    A skin barrier composition comprises a mixture of a copolymer resin of ethylene and vinyl acetate (EVA), and a water-insoluble dry tack-providing elastomer such as polyisobutylene. The composition after mixing and molding, is subjected to ionizing irradiation to form cross-linked polymer networks of the EVA. The compositions have exceptional properties for use as barrier sheets, rings, or strips in ostomy, wound drainage, and incontinence devices.

  3. In situ reactor

    Science.gov (United States)

    Radtke, Corey William; Blackwelder, David Bradley

    2004-01-27

    An in situ reactor for use in a geological strata, is described and which includes a liner defining a centrally disposed passageway and which is placed in a borehole formed in the geological strata; and a sampling conduit is received within the passageway defined by the liner and which receives a geological specimen which is derived from the geological strata, and wherein the sampling conduit is in fluid communication with the passageway defined by the liner.

  4. Chemoselective Reduction and Alkylation of Carbonyl Functions Using Phosphonium Salts as an in Situ Protecting Groups.

    Science.gov (United States)

    Ohta, Reiya; Fujioka, Hiromichi

    2017-01-01

    Recent progress in the chemoselective reduction and alkylation of carbonyl functions using our in situ protection method is described. Methods that enable reversal or control of the reactivity of a carbonyl functional group are potentially useful. They open up new areas of synthetic organic chemistry and change the concept of retrosynthesis because they remove the need for complicated protection/deprotection sequences. In this account, we discuss the strategy and applications of our in situ protection method using phosphonium salts.

  5. Programming Reactive Extensions and LINQ

    CERN Document Server

    Liberty, Jesse

    2011-01-01

    Pro Reactive Extensions and LINQ is a deep dive into the next important technology for .NET developers: Reactive Extensions. This in-depth tutorial goes beyond what is available anywhere else to teach how to write WPF, Silverlight, and Windows Phone applications using the Reactive Extensions (Rx) to handle events and asynchronous method calls. Reactive programming allows you to turn those aspects of your code that are currently imperative into something much more event-driven and flexible. For this reason, it's sometimes referred to as LINQ for Events. Reactive programming hinges on the concep

  6. Reactivity costs in MARIA reactor

    International Nuclear Information System (INIS)

    Marcinkowska, Zuzanna E.; Pytel, Krzysztof M.; Frydrysiak, Andrzej

    2017-01-01

    Highlights: • The methodology for calculating consumed fuel cost of excess reactivity is proposed. • Correlation between time integral of the core excess reactivity and released energy. • Reactivity price gives number of fuel elements required for given excess reactivity. - Abstract: For the reactor operation at high power level and carrying out experiments and irradiations the major cost of reactor operation is the expense of nuclear fuel. In this paper the methodology for calculating consumed fuel cost-relatedness of excess reactivity is proposed. Reactivity costs have been determined on the basis of operating data. A number of examples of calculating the reactivity costs for processes such as: strong absorbing material irradiation, molybdenium-99 production, beryllium matrix poisoning and increased moderator temperature illustrates proposed method.

  7. Reactivity insertion accident analysis

    International Nuclear Information System (INIS)

    Moreira, J.M.L.; Nakata, H.; Yorihaz, H.

    1990-04-01

    The correct prediction of postulated accidents is the fundamental requirement for the reactor licensing procedures. Accident sequences and severity of their consequences depend upon the analysis which rely on analytical tools which must be validated against known experimental results. Present work presents a systematic approach to analyse and estimate the reactivity insertion accident sequences. The methodology is based on the CINETHICA code which solves the point-kinetics/thermohydraulic coupled equations with weighted temperature feedback. Comparison against SPERT experimental results shows good agreement for the step insertion accidents. (author) [pt

  8. In situ vitrification applications to hazardous wastes

    International Nuclear Information System (INIS)

    Liikala, S.

    1989-01-01

    In Situ Vitrification is a new hazardous waste remediation alternative that should be considered for contaminated soil matrices. According to the authors the advantages of using ISV include: technology demonstrated at field scale; applicable to a wide variety of soils and contaminants; pyrolyzer organics and encapsulates inorganics; product durable over geologic time period; no threat of harm to the public from exposure; and applications available for barrier walls and structural support. The use of ISV on a large scale basis has thus far been limited to the nuclear industry but has tremendous potential for widespread applications to the hazardous waste field. With the ever changing regulations for the disposal of hazardous waste in landfills, and the increasing positive analytical data of ISV, the process will become a powerful source for on-site treatment and hazardous waste management needs in the very near future

  9. In situ vitrification of buried waste sites

    International Nuclear Information System (INIS)

    Shade, J.W.; Thompson, L.E.; Kindle, C.H.

    1991-04-01

    In situ vitrification (ISV) is a remedial technology initially developed to treat soils contaminated with a variety of organics, heavy metals, and/or radioactive materials. Recent tests have indicated the feasibility of applying the process to buried wastes including containers, combustibles, and buried metals. In addition, ISV is being considered for application to the emplacement of barriers and to the vitrification of underground tanks. This report provides a review of some of the recent experiences of applying ISV in engineering-scale and pilot-scale tests to wastes containing organics, the Environmental Protection Agency (EPA) Toxic metals buried in sealed containers, and buried ferrous metals, with emphasis on the characteristics of the vitrified product and adjacent soil. 9 refs., 2 figs., 3 tabs

  10. Fuzzy barrier distributions

    International Nuclear Information System (INIS)

    Piasecki, E.

    2009-01-01

    Heavy-ion collisions often produce a fusion barrier distribution with structures displaying a fingerprint of couplings to highly collective excitations [1]. Basically the same distribution can be obtained from large-angle quasi-elastic scattering, though here the role of the many weak direct-reaction channels is unclear. For 2 0N e + 9 0Z r we have observed the barrier structures expected for the highly deformed neon projectile, but for 2 0N e + 9 2Z r we find completely smooth distribution (see Fig.1). We find that transfer channels in these systems are of similar strength but single particle excitations are significantly stronger in the latter case. They apparently reduce the 'resolving power' of the quasi-elastic channel, what leads to smeared out, or 'fuzzy' barrier distribution. This is the first case when such a phenomenon has been observed.(author)

  11. Health Barriers to Learning

    Directory of Open Access Journals (Sweden)

    Delaney Gracy

    2014-01-01

    Full Text Available This article summarizes the results from a 2013 online survey with 408 principals and assistant principals in New York City public elementary and middle schools. The survey assessed three primary areas: health issues in the school, health issues perceived as barriers to learning for affected students, and resources needed to address these barriers. Eighteen of the 22 health conditions listed in the survey were considered a moderate or serious issue within their schools by at least 10% of respondents. All 22 of the health issues were perceived as a barrier to learning by between 12% and 87% of the respondents. Representatives from schools that serve a higher percentage of low-income students reported significantly higher levels of concern about the extent of health issues and their impact on learning. Respondents most often said they need linkages with organizations that can provide additional services and resources at the school, especially for mental health.

  12. In situ breast cancer

    International Nuclear Information System (INIS)

    Pacheco, Luis

    2004-01-01

    In situ breast cancer, particularly the ductal type, is increasing in frequency in the developed countries as well as in Ecuador, most probably. These lesions carry a higher risk of developing a subsequent invasive cancer. Treatment has changed recently due to results of randomized studies, from classical mastectomy to conservative surgery associated to radiotherapy. The Van Nuys Prognostic Index is currently the most usual instrument to guide diagnosis and treatment. Tamoxifen seems to decrease significantly the risk of tumor recurrence after initial treatment. (The author)

  13. Reactive documentation system

    Science.gov (United States)

    Boehnlein, Thomas R.; Kramb, Victoria

    2018-04-01

    Proper formal documentation of computer acquired NDE experimental data generated during research is critical to the longevity and usefulness of the data. Without documentation describing how and why the data was acquired, NDE research teams lose capability such as their ability to generate new information from previously collected data or provide adequate information so that their work can be replicated by others seeking to validate their research. Despite the critical nature of this issue, NDE data is still being generated in research labs without appropriate documentation. By generating documentation in series with data, equal priority is given to both activities during the research process. One way to achieve this is to use a reactive documentation system (RDS). RDS prompts an operator to document the data as it is generated rather than relying on the operator to decide when and what to document. This paper discusses how such a system can be implemented in a dynamic environment made up of in-house and third party NDE data acquisition systems without creating additional burden on the operator. The reactive documentation approach presented here is agnostic enough that the principles can be applied to any operator controlled, computer based, data acquisition system.

  14. Validation of the Performance of Engineered Barriers

    International Nuclear Information System (INIS)

    Choi, Jongwon; Cho, Wonjin; Kwon, Sangki

    2012-04-01

    To study the thermal-hydro-mechanical (THM) and thermal-hydro-mechanical-chemical (THMC) behavior of engineered barrier system (EBS), the engineering scale experiments, KENTEX and KENTEX-C were conducted to investigate THM and THMC behavior in the buffer. The computer modelling and simulation programmes were developed to analyze the distribution of temperature, water content, total pressure and the measured data on the migration behavior of anion and cation. In-situ heater test were performed to investigate the effect of the ventilation, thermal characteristics of EDZ, and effect of the anisotropy of rock mass and joint in addition to the investigation of the thermo-mechanical behavior in rock mass. The geophysics exploration and in-situ field tests were carried out to investigate the range of EDZ and its effects on the mechanical properties of rock. Subsequently, crack propagation characteristics and dynamic material properties of jointed rock mass in KURT were measured. Concurrently, the in-situ experiments were performed in the KURT to investigate the change of hydraulic properties in EDZ. The stainless steel molds are manufactured to fabricate the buffer blocks with various shapes. The experiments are carried out to check the mechanical properties, the workability for installation of the fabricated blocks and to investigate the resaturation processes. The state of the technology on application of cementitious materials to the HLW repository was analysed and the optimized low-pH cement recipe was obtained. And the material properties of low-pH and high-pH cement grouts were evaluated based on the grout recipes of ONKALO in Finland. The KURT was operated, and the various technical supports were provided to the in-situ experiments which were carried at KURT

  15. Permeable barrier materials for strontium immobilization: Unsaturated flow apparatus determination of hydraulic conductivity -- Column sorption experiments

    International Nuclear Information System (INIS)

    Moody, T.E.; Conca, J.

    1996-09-01

    Selected materials were tested to emulate a permeable barrier and to examine the (1) capture efficiency of these materials relating to the immobilization of strontium-90 and hexavalent chromium (Cr 6+ ) in Hanford Site groundwater; and (2) hydraulic conductivity of the barrier material relative to the surrounding area. The emplacement method investigated was a permeable reactive barrier to treat contaminated groundwater as it passes through the barrier. The hydraulic conductivity function was measured for each material, and retardation column experiments were performed for each material. Measurements determining the hydraulic conductivity at unsaturated through saturated water content were executed using the Unsaturated Flow Apparatus

  16. Performance characteristics of a self-sealing/self-healing barrier

    International Nuclear Information System (INIS)

    McGregor, R.G.; Stegemann, J.A.

    1997-01-01

    Environment Canada and the Netherlands Energy Research Foundation are co-developers of a patented Self-Sealing/Self-Healing (SS/SH) Barrier system for containment of wastes which is licensed to Water Technology International Corporation. The SS/SH Barrier is intended for use as either a liner or cover for landfills, contaminated sites, secondary containment areas, etc., in the industrial, chemical, mining and municipal sectors, and also as a barrier to hydraulic flow for the transportation and construction industry. The SS/SH Barrier's most significant feature is its capability for self-repair in the event of a breach. By contrast, conventional barrier systems, such as clay, geomembrane, or geosynthetic clay liners can not be repaired without laborious excavation and reconstruction. Laboratory investigations have shown that the SS/SH Barrier concept will function with a variety of reactive materials. Self-Sealing/Self-Healing Barriers are cost competitive and consistently exhibit hydraulic conductivities ranging from 10 -9 to 10 -13 m/s, which decrease with time. These measurements meet or exceed the recommended hydraulic conductivity required by EPA for clay liners ( -9 m/s) used in landfills and hazardous waste sites. Results of mineralogical examination of the seal, diffusion testing, hydraulic conductivity measurement, and durability testing, including wet/dry, freeze/thaw cycling and leachate compatibility are also presented

  17. Nanoparticles laden in situ gel for sustained ocular drug delivery

    Directory of Open Access Journals (Sweden)

    Himanshu Gupta

    2013-01-01

    Full Text Available Proper availability of drug on to corneal surface is a challenging task. However, due to ocular physiological barriers, conventional eye drops display poor ocular bioavailability of drugs (< 1%. To improve precorneal residence time and ocular penetration, earlier our group developed and evaluated in situ gel and nanoparticles for ocular delivery. In interest to evaluate the combined effect of in situ gel and nanoparticles on ocular retention, we combined them. We are the first to term this combination as "nanoparticle laden in situ gel", that is, poly lactic co glycolic acid nanoparticle incorporated in chitosan in situ gel for sparfloxacin ophthalmic delivery. The formulation was tested for various physicochemical properties. It showed gelation pH near pH 7.2. The observation of acquired gamma camera images showed good retention over the entire precorneal area for sparfloxacin nanoparticle laden in situ gel (SNG as compared to marketed formulation. SNG formulation cleared at a very slow rate and remained at corneal surface for longer duration as no radioactivity was observed in systemic circulation. The developed formulation was found to be better in combination and can go up to the clinical evaluation and application.

  18. Nanoparticles laden in situ gelling system for ocular drug targeting

    Directory of Open Access Journals (Sweden)

    Divya Kumar

    2013-01-01

    Full Text Available Designing an ophthalmic drug delivery system is one of the most difficult challenges for the researchers. The anatomy and physiology of eye create barriers like blinking which leads to the poor retention time and penetration of drug moiety. Some conventional ocular drug delivery systems show shortcomings such as enhanced pre-corneal elimination, high variability in efficiency, and blurred vision. To overcome these problems, several novel drug delivery systems such as liposomes, nanoparticles, hydrogels, and in situ gels have been developed. In situ-forming hydrogels are liquid upon instillation and undergo phase transition in the ocular cul-de-sac to form viscoelastic gel and this provides a response to environmental changes. In the past few years, an impressive number of novel temperature, pH, and ion-induced in situ-forming systems have been reported for sustain ophthalmic drug delivery. Each system has its own advantages and drawbacks. Thus, a combination of two drug delivery systems, i.e., nanoparticles and in situ gel, has been developed which is known as nanoparticle laden in situ gel. This review describes every aspects of this novel formulation, which present the readers an exhaustive detail and might contribute to research and development.

  19. Barrier Coatings for Refractory Metals and Superalloys

    International Nuclear Information System (INIS)

    SM Sabol; BT Randall; JD Edington; CJ Larkin; BJ Close

    2006-01-01

    In the closed working fluid loop of the proposed Prometheus space nuclear power plant (SNPP), there is the potential for reaction of core and plant structural materials with gas phase impurities and gas phase transport of interstitial elements between superalloy and refractory metal alloy components during service. Primary concerns are surface oxidation, interstitial embrittlement of refractory metals and decarburization of superalloys. In parallel with kinetic investigations, this letter evaluates the ability of potential coatings to prevent or impede communication between reactor and plant components. Key coating requirements are identified and current technology coating materials are reviewed relative to these requirements. Candidate coatings are identified for future evaluation based on current knowledge of design parameters and anticipated environment. Coatings were identified for superalloys and refractory metals to provide diffusion barriers to interstitial transport and act as reactive barriers to potential oxidation. Due to their high stability at low oxygen potential, alumina formers are most promising for oxidation protection given the anticipated coolant gas chemistry. A sublayer of iridium is recommended to provide inherent diffusion resistance to interstitials. Based on specific base metal selection, a thin film substrate--coating interdiffusion barrier layer may be necessary to meet mission life

  20. Barrier Coatings for Refractory Metals and Superalloys

    Energy Technology Data Exchange (ETDEWEB)

    SM Sabol; BT Randall; JD Edington; CJ Larkin; BJ Close

    2006-02-23

    In the closed working fluid loop of the proposed Prometheus space nuclear power plant (SNPP), there is the potential for reaction of core and plant structural materials with gas phase impurities and gas phase transport of interstitial elements between superalloy and refractory metal alloy components during service. Primary concerns are surface oxidation, interstitial embrittlement of refractory metals and decarburization of superalloys. In parallel with kinetic investigations, this letter evaluates the ability of potential coatings to prevent or impede communication between reactor and plant components. Key coating requirements are identified and current technology coating materials are reviewed relative to these requirements. Candidate coatings are identified for future evaluation based on current knowledge of design parameters and anticipated environment. Coatings were identified for superalloys and refractory metals to provide diffusion barriers to interstitial transport and act as reactive barriers to potential oxidation. Due to their high stability at low oxygen potential, alumina formers are most promising for oxidation protection given the anticipated coolant gas chemistry. A sublayer of iridium is recommended to provide inherent diffusion resistance to interstitials. Based on specific base metal selection, a thin film substrate--coating interdiffusion barrier layer may be necessary to meet mission life.

  1. Flexible Reactive Berm (FRBerm) for Removal of Heavy Metals from Runoff Water

    Science.gov (United States)

    2016-03-01

    coefficient, and sediment clogging coefficients. Also, the flexible reactive barrier system permitted overtopping and filter socks would be arranged in a...FINAL REPORT Flexible Reactive Berm (FRBerm) for Removal of Heavy Metals from Runoff Water ESTCP Project ER-201213 MARCH 2016...GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 6. AUTHOR(S) 7. PERFORMING ORGANIZATION NAME

  2. Reactive Power from Distributed Energy

    Energy Technology Data Exchange (ETDEWEB)

    Kueck, John; Kirby, Brendan; Rizy, Tom; Li, Fangxing; Fall, Ndeye

    2006-12-15

    Distributed energy is an attractive option for solving reactive power and distribution system voltage problems because of its proximity to load. But the cost of retrofitting DE devices to absorb or produce reactive power needs to be reduced. There also needs to be a market mechanism in place for ISOs, RTOs, and transmission operators to procure reactive power from the customer side of the meter where DE usually resides. (author)

  3. Reactive Power from Distributed Energy

    International Nuclear Information System (INIS)

    Kueck, John; Kirby, Brendan; Rizy, Tom; Li, Fangxing; Fall, Ndeye

    2006-01-01

    Distributed energy is an attractive option for solving reactive power and distribution system voltage problems because of its proximity to load. But the cost of retrofitting DE devices to absorb or produce reactive power needs to be reduced. There also needs to be a market mechanism in place for ISOs, RTOs, and transmission operators to procure reactive power from the customer side of the meter where DE usually resides. (author)

  4. Reactive programming in eventsourcing systems

    OpenAIRE

    Kučinskas, Žilvinas

    2017-01-01

    Eventsourcing describes current state as series of events that occurred in a system. Events hold all information that is needed to recreate current state. This method allows to achieve high volume of transactions, and enables efficient replication. Whereas reactive programming lets implement reactive systems in declarative style, decomposing logic into smaller, easier to understand components. Thesis aims to create reactive programming program interface, incorporating both principles. Applyin...

  5. Reactive Programming in Standard ML

    OpenAIRE

    Pucella, Riccardo

    2004-01-01

    Reactive systems are systems that maintain an ongoing interaction with their environment, activated by receiving input events from the environment and producing output events in response. Modern programming languages designed to program such systems use a paradigm based on the notions of instants and activations. We describe a library for Standard ML that provides basic primitives for programming reactive systems. The library is a low-level system upon which more sophisticated reactive behavi...

  6. Positive void reactivity

    International Nuclear Information System (INIS)

    Diamond, D.J.

    1992-09-01

    This report is a review of some of the important aspects of the analysis of large loss-of-coolant accidents (LOCAs). One important aspect is the calculation of positive void reactivity. To study this subject the lattice physics codes used for void worth calculations and the coupled neutronic and thermal-hydraulic codes used for the transient analysis are reviewed. Also reviewed are the measurements used to help validate the codes. The application of these codes to large LOCAs is studied with attention focused on the uncertainty factor for the void worth used to bias the results. Another aspect of the subject dealt with in the report is the acceptance criteria that are applied. This includes the criterion for peak fuel enthalpy and the question of whether prompt criticality should also be a criterion. To study the former, fuel behavior measurements and calculations are reviewed. (Author) (49 refs., 2 figs., tab.)

  7. Massive florid reactive periostitis

    International Nuclear Information System (INIS)

    Nance, K.V.; Renner, J.B.; Brashear, H.R.; Siegal, G.P.; North Carolina Univ., Chapel Hill, NC

    1990-01-01

    Florid reactive periostitis is a rare, benign process usually occurring in the small, tubular bones of the hands and feet. Typically the lesion occurs in an adolescent or young adult and presents as a small area of pain and erythema over the affected bone. Although the histologic features may suggest malignancy, there is usually little radiographic evidence to support such a diagnosis. In the following report an unusual example of this entity is described whose large size and relentless local progression led to initial diagnostic uncertainty and eventual aggressive management. This case suggests that a wide spectrum of radiologic and morphologic changes may be seen in this entity and that a seemingly unrelated genetic disease may alter the typical clinical course. (orig.)

  8. Pembrolizumab reactivates pulmonary granulomatosis

    Directory of Open Access Journals (Sweden)

    Majdi Al-dliw

    2017-01-01

    Full Text Available Sarcoid like reaction is a well-known entity that occurs as a consequence to several malignancies or their therapies. Immunotherapy has gained a lot of interest in the past few years and has recently gained approval as first line therapy in multiple advanced stage malignancies. Pneumonitis has been described as complication of such therapy. Granulomatous inflammation has been only rarely reported subsequent to immunotherapy. We describe a case of granulomatous inflammation reactivation affecting the lungs in a patient previously exposed to Pembrolizumab and have evidence of a distant granulomatous infection. We discuss potential mechanisms of the inflammation and assert the importance of immunosuppression in controlling the dis-inhibited immune system.

  9. Reactive Oxygen Species

    DEFF Research Database (Denmark)

    Franchina, Davide G.; Dostert, Catherine; Brenner, Dirk

    2018-01-01

    T cells are a central component of defenses against pathogens and tumors. Their effector functions are sustained by specific metabolic changes that occur upon activation, and these have been the focus of renewed interest. Energy production inevitably generates unwanted products, namely reactive...... and transcription factors, influencing the outcome of the T cell response. We discuss here how ROS can directly fine-tune metabolism and effector functions of T cells....... oxygen species (ROS), which have long been known to trigger cell death. However, there is now evidence that ROS also act as intracellular signaling molecules both in steady-state and upon antigen recognition. The levels and localization of ROS contribute to the redox modeling of effector proteins...

  10. Exploring the anionic reactivity of ynimines, useful precursors of metalated ketenimines.

    Science.gov (United States)

    Laouiti, Anouar; Couty, François; Marrot, Jérome; Boubaker, Taoufik; Rammah, Mohamed M; Rammah, Mohamed B; Evano, Gwilherm

    2014-04-18

    Insights into the reactivity of ynimines under anionic conditions are reported. They were shown to be excellent precursors of metalated ketenimines, which can be generated in situ by the reaction of ynimines with organolithium reagents or strong bases. The metalated ketenimines can then be trapped with various electrophiles and, depending on their substitution pattern, afford original and divergent entries to various building blocks.

  11. Mg-aminoclay as stabilizer for synthesizing highly stable and reactive nZVI for decontamination

    DEFF Research Database (Denmark)

    Hwang, Yuhoon; Lee, Young-Chul; Mines, Paul D.

    Despite the large surface area and superior reactivity of nZVI, its limited stability is a major obstacle for in situ subsurface remediation. In this study, Mg-aminoclay (MgAC) was applied for the first time as a stabilizer in nZVI synthesis. With increased doses of Mg-aminoclay, nZVI particle gr...

  12. Site-Specific Reactivity of Copper Chabazite Zeolites with Nitric Oxide, Ammonia, and Oxygen

    DEFF Research Database (Denmark)

    Godiksen, Anita; Isaksen, Oliver L.; Rasmussen, Søren B.

    2018-01-01

    In-situ electron paramagnetic resonance (EPR) spectroscopy was applied to dilute copper chabazite (CHA) zeolites under gas flows relevant for the selective catalytic reduction of NO with ammonia (NH3-SCR). Under both reducing and oxidizing conditions, we observed differences in reactivity between...

  13. Weigle Reactivation in Acinetobacter Calcoaceticus

    DEFF Research Database (Denmark)

    Berenstein, Dvora

    1982-01-01

    phage and host survivals of about 5 times 10-6 and 1 times 10-1, respectively. Intracellular development of W-reactivated P78 was followed by one-step growth experiments. Conditions which allowed maximal W-reactivation also extended the period of phage production and yielded a somewhat reduced burst......Weigle (W)-reactivation was demonstrated in Acinetobacter calcoaceticus for the UV-irra-diated lysogenic phage P78. The reactivation factor (survival of irradiated phage on irradiated bacteria/ survival on unirradiated bacteria) reached a maximum value of 20. This was obtained at UV-doses giving...

  14. Methanol conversion to hydrocarbons using modified clinoptilolite catalysts. Investigation of catalyst lifetime and reactivation

    Energy Technology Data Exchange (ETDEWEB)

    Hutchings, G J; Themistocleous, T; Copperthwaite, R G

    1988-10-17

    A study of the deactivation and reactivation of modified clinoptilolite catalysts for methanol conversion to hydrocarbons is reported. Clinoptilolite catalysts, modified by either ammonium ion exchange or hydrochloric acid treatment, exhibit a short useful catalyst lifetime for this reaction (ca. 2-3 h) due to a high rate of coke deposition (3-5.10/sup -3/ g carbon/g catalyst/h). A comparative study of reactivation using oxygen, nitrous oxide and ozone/oxygen as oxidants indicated that nitrous oxide reactivation gives improved catalytic performance when compared to the activity and lifetime of the fresh catalyst. Both oxygen and ozone/oxygen were found to be ineffective for the reactivation of clinoptilolite. Initial studies of in situ on-line reactivation are also described. 3 figs., 15 refs., 4 tabs.

  15. Application of molten salts in pyrochemical processing of reactive metals

    International Nuclear Information System (INIS)

    Mishra, B.; Olson, D.L.; Averill, W.A.

    1992-01-01

    Various mixes of chloride and fluoride salts are used as the media for conducting pyrochemical processes in the production and purification of reactive metals. These processes generate a significant amount of contaminated waste that has to be treated for recycling or disposal. Molten calcium chloride based salt systems have been used in this work to electrolytically regenerate calcium metal from calcium oxide for the in situ reduction of reactive metal oxides. The recovery of calcium is characterized by the process efficiency to overcome back reactions in the electrowinning cell. A thermodynamic analysis, based on fundamental rate theory, has been performed to understand the process parameters controlling the metal deposition, rate, behavior of the ceramic anode-sheath and influence of the back-reactions. It has been observed that the deposition of calcium is dependent on the ionic diffusion through the sheath. It has also been evidenced that the recovered calcium is completely lost through the back-reactions in the absence of a sheath. A practical scenario has also been presented where the electrowon metal can be used in situ as a reductant to reduce another reactive metal oxide

  16. Incomplete copolymer degradation of in situ chemotherapy.

    Science.gov (United States)

    Bourdillon, Pierre; Boissenot, Tanguy; Goldwirt, Lauriane; Nicolas, Julien; Apra, Caroline; Carpentier, Alexandre

    2018-02-17

    In situ carmustine wafers containing 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) are commonly used for the treatment of recurrent glioblastoma to overcome the brain-blood barrier. In theory, this chemotherapy diffuses into the adjacent parenchyma and the excipient degrades in maximum 8 weeks but no clinical data confirms this evolution, because patients are rarely operated again. A 75-year-old patient was operated twice for recurrent glioblastoma, and a carmustine wafer was implanted during the second surgery. Eleven months later, a third surgery was performed, revealing unexpected incomplete degradation of the wafer. 1H-Nuclear Magnetic Resonance was performed to compare this wafer to pure BCNU and to an unused copolymer wafer. In the used wafer, peaks corresponding to hydrophobic units of the excipient were no longer noticeable, whereas peaks of the hydrophilic units and traces of BCNU were still present. These surprising results could be related to the formation of a hydrophobic membrane around the wafer, thus interfering with the expected diffusion and degradation processes. The clinical benefit of carmustine wafers in addition to the standard radio-chemotherapy remains limited, and in vivo behavior of this treatment is not completely elucidated yet. We found that the wafer may remain after several months. Alternative strategies to deal with the blood-brain barrier, such as drug-loaded liposomes or ultrasound-opening, must be explored to offer larger drug diffusion or allow repetitive delivery.

  17. Reactivity of Criegee Intermediates toward Carbon Dioxide.

    Science.gov (United States)

    Lin, Yen-Hsiu; Takahashi, Kaito; Lin, Jim Jr-Min

    2018-01-04

    Recent theoretical work by Kumar and Francisco suggested that the high reactivity of Criegee intermediates (CIs) could be utilized for designing efficient carbon capture technologies. Because the anti-CH 3 CHOO + CO 2 reaction has the lowest barrier in their study, we chose to investigate it experimentally. We probed anti-CH 3 CHOO with its strong UV absorption at 365 nm and measured the rate coefficient to be ≤2 × 10 -17 cm 3 molecule -1 s -1 at 298 K, which is consistent with our theoretical value of 2.1 × 10 -17 cm 3  molecule -1 s -1 at the QCISD(T)/CBS//B3LYP/6-311+G(2d,2p) level but inconsistent with their results obtained at the M06-2X/aug-cc-pVTZ level, which tends to underestimate the barrier heights. The experimental result indicates that the reaction of a Criegee intermediate with atmospheric CO 2 (400 ppmv) would be inefficient (k eff < 0.2 s -1 ) and cannot compete with other decay processes of Criegee intermediates like reactions with water vapor (∼10 3 s -1 ) or thermal decomposition (∼10 2 s -1 ).

  18. Barrier Data Base user's guide

    International Nuclear Information System (INIS)

    Worrell, R.B.; Gould, D.J.; Wall, D.W.

    1977-06-01

    A special purpose data base for physical security barriers has been developed. In addition to barriers, the entities accommodated by the Barrier Data Base (BDB) include threats and references. A threat is established as a configuration of people and equipment which has been employed to penetrate (or attempt to penetrate) a barrier. References are used to cite publications pertinent to the barriers and threats in the data base. Utilization and maintenance of the Barrier Data Base is achieved with LIST, QUERY, ENTER, DELETE, and CHANGE commands which are used to manipulate the data base entities

  19. In situ zymography.

    Science.gov (United States)

    George, Sarah J; Johnson, Jason L

    2010-01-01

    In situ zymography is a unique laboratory technique that enables the localisation of matrix-degrading metalloproteinase (MMP) activity in histological sections. Frozen sections are placed on glass slides coated with fluorescently labelled matrix proteins. After incubation MMP activity can be observed as black holes in the fluorescent background due to proteolysis of the matrix protein. Alternatively frozen sections can be incubated with matrix proteins conjugated to quenched fluorescein. Proteolysis of the substrate by MMPs leads to the release of fluorescence. This technique can be combined with immunohistochemistry to enable co-location of proteins such as cell type markers or other proteins of interest. Additionally, this technique can be adapted for use with cell cultures, permitting precise location of MMP activity within cells, time-lapse analysis of MMP activity and analysis of MMP activity in migrating cells.

  20. Chaotic correlations in barrier billiards with arbitrary barriers

    International Nuclear Information System (INIS)

    Osbaldestin, A H; Adamson, L N C

    2013-01-01

    We study autocorrelation functions in symmetric barrier billiards for golden mean trajectories with arbitrary barriers. Renormalization analysis reveals the presence of a chaotic invariant set and thus that, for a typical barrier, there are chaotic correlations. The chaotic renormalization set is the analogue of the so-called orchid that arises in a generalized Harper equation. (paper)

  1. Regarding KUR Reactivity Measurement System

    International Nuclear Information System (INIS)

    Nakamori, Akira; Hasegawa, Kei; Tsuchiyama, Tatsuo; Yamamoto, Toshihiro; Okumura, Ryo; Sano, Tadafumi

    2012-01-01

    This article reported: (1) the outline of the reactivity measurement system of Kyoto University Research Reactor (KUR), (2) the calibration data of control rod, (3) the problems and the countermeasures for range switching of linear output meter. For the laptop PC for the reactivity measurement system, there are four input signals: (1) linear output meter, (2) logarithmic output meter, (3) core temperature gauge, and (4) control rod position. The hardware of reactivity measurement system is controlled with Labview installed on the laptop. Output, reactivity, reactor period, and the change in reactivity due to temperature effect or Xenon effect are internally calculated and displayed in real-time with Labview based on the four signals above. Calculation results are recorded in the form of a spreadsheet. At KUR, the reactor core arrangement was changed, so the control rod was re-calibrated. At this time, calculated and experimental values of reactivity based on the reactivity measurement system were compared, and it was confirmed that the reactivity calculation by Labview was accurate. The range switching of linear output meter in the nuclear instrumentation should automatically change within the laptop, however sometimes this did not function properly in the early stage. It was speculated that undefined percent values during the transition of percent value were included in the calculation and caused calculation errors. The range switching started working properly after fixing this issue. (S.K.)

  2. Reactive agents and perceptual ambiguity

    NARCIS (Netherlands)

    Dartel, M. van; Sprinkhuizen-Kuyper, I.G.; Postma, E.O.; Herik, H.J. van den

    2005-01-01

    Reactive agents are generally believed to be incapable of coping with perceptual ambiguity (i.e., identical sensory states that require different responses). However, a recent finding suggests that reactive agents can cope with perceptual ambiguity in a simple model (Nolfi, 2002). This paper

  3. Design of engineered sorbent barriers

    International Nuclear Information System (INIS)

    Jones, E.O.; Freeman, H.D.

    1988-08-01

    A sorbent barrier uses sorbent material such as activated carbon or natural zeolites to prevent the migration of radionuclides from a low-level waste site to the aquifer. The sorbent barrier retards the movement of radioactive contaminants, thereby providing time for the radionuclides to decay. Sorbent barriers can be a simple, effective, and inexpensive method for reducing the migration of radionuclides to the environment. Designing a sorbent barrier consists of using soil and sorbent material properties and site conditions as input to a model which will determine the necessary sorbent barrier thickness to meet contaminant limits. The paper will cover the following areas: techniques for measuring sorption properties of barrier materials and underlying soils, use of a radionuclide transport model to determine the required barrier thickness and performance under a variety of site conditions, and cost estimates for applying the barrier. 8 refs., 6 figs., 1 tab

  4. Design of engineered sorbent barriers

    International Nuclear Information System (INIS)

    Jones, E.O.; Freeman, H.D.

    1988-01-01

    A sorbent barrier uses sorbent material such as activated carbon or natural zeolites to prevent the migration of radionuclides from a low-level waste site to the aquifer. The sorbent barrier retards the movement of radioactive contaminants, thereby providing time for the radionuclides to decay. Sorbent barriers can be a simple, effective, and inexpensive method for reducing the migration of radionuclides to the environment. Designing a sorbent barrier consists of using soil and sorbent material properties and site conditions as input to a model which will determine the necessary sorbent barrier thickness to meet contaminant limits. The paper covers the following areas: techniques for measuring sorption properties of barrier materials and underlying soils, use of a radionuclide transport model to determine the required barrier thickness and performance under a variety of site conditions, and cost estimates for applying the barrier

  5. Three-dimensional culture conditions differentially affect astrocyte modulation of brain endothelial barrier function in response to transforming growth factor β1.

    Science.gov (United States)

    Hawkins, Brian T; Grego, Sonia; Sellgren, Katelyn L

    2015-05-22

    Blood-brain barrier (BBB) function is regulated by dynamic interactions among cell types within the neurovascular unit, including astrocytes and endothelial cells. Co-culture models of the BBB typically involve astrocytes seeded on two-dimensional (2D) surfaces, which recent studies indicate cause astrocytes to express a phenotype similar to that of reactive astrocytes in situ. We hypothesized that the culture conditions of astrocytes would differentially affect their ability to modulate BBB function in vitro. Brain endothelial cells were grown alone or in co-culture with astrocytes. Astrocytes were grown either as conventional (2D) monolayers, or in a collagen-based gel which allows them to grow in a three-dimensional (3D) construct. Astrocytes were viable in 3D conditions, and displayed a marked reduction in their expression of glial fibrillary acidic protein (GFAP), suggesting reduced activation. Stimulation of astrocytes with transforming growth factor (TGF)β1 decreased transendothelial electrical resistance (TEER) and reduced expression of claudin-5 in co-cultures, whereas treatment of endothelial cells in the absence of astrocytes was without effect. The effect of TGFβ1 on TEER was significantly more pronounced in endothelial cells cultured with 3D astrocytes compared to 2D astrocytes. These results demonstrate that astrocyte culture conditions differentially affect their ability to modulate brain endothelial barrier function, and suggest a direct relationship between reactive gliosis and BBB permeability. Moreover, these studies demonstrate the potential importance of physiologically relevant culture conditions to in vitro modeling of disease processes that affect the neurovascular unit. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. In-situ bioremediation of TCE-contaminated groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Travis, B.J. [Los Alamos National Lab., NM (United States); Rosenberg, N.D. [Lawrence Livermore National Lab., CA (United States)

    1998-12-31

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). A barrier to wider use of in situ bioremediation technology is that results are often variable and difficult to predict. In situ bioremediation has shown some very notable and well publicized successes, but implementation of the technology is complex. An incomplete understanding of the effects of variable site characteristics and the lack of adequate tools to predict and measure success have made the design, control and validation of bioremediation more empirical than desired. The long-term objective of this project is to improve computational tools used to assess and optimize the expected performance of bioremediation at a site. An important component of the approach is the explicit inclusion of uncertainties and their effect on the end result. The authors have extended their biokinetics model to include microbial competition and predation processes. Predator species can feed on the microbial species that degrade contaminants, and the simulation studies show that species interactions must be considered when designing in situ bioremediation systems. In particular, the results for TCE indicate that protozoan grazing could reduce the amount of biodegradation by about 20%. These studies also indicate that the behavior of barrier systems can become complex due to predator grazing.

  7. A Tariff for Reactive Power

    Energy Technology Data Exchange (ETDEWEB)

    Kueck, John D [ORNL; Kirby, Brendan J [ORNL; Li, Fangxing [ORNL; Tufon, Christopher [Pacific Gas and Electric Company; Isemonger, Alan [California Independent System Operator

    2008-07-01

    Two kinds of power are required to operate an electric power system: real power, measured in watts, and reactive power, measured in volt-amperes reactive or VARs. Reactive power supply is one of a class of power system reliability services collectively known as ancillary services, and is essential for the reliable operation of the bulk power system. Reactive power flows when current leads or lags behind voltage. Typically, the current in a distribution system lags behind voltage because of inductive loads such as motors. Reactive power flow wastes energy and capacity and causes voltage droop. To correct lagging power flow, leading reactive power (current leading voltage) is supplied to bring the current into phase with voltage. When the current is in phase with voltage, there is a reduction in system losses, an increase in system capacity, and a rise in voltage. Reactive power can be supplied from either static or dynamic VAR sources. Static sources are typically transmission and distribution equipment, such as capacitors at substations, and their cost has historically been included in the revenue requirement of the transmission operator (TO), and recovered through cost-of-service rates. By contrast, dynamic sources are typically generators capable of producing variable levels of reactive power by automatically controlling the generator to regulate voltage. Transmission system devices such as synchronous condensers can also provide dynamic reactive power. A class of solid state devices (called flexible AC transmission system devices or FACTs) can provide dynamic reactive power. One specific device has the unfortunate name of static VAR compensator (SVC), where 'static' refers to the solid state nature of the device (it does not include rotating equipment) and not to the production of static reactive power. Dynamic sources at the distribution level, while more costly would be very useful in helping to regulate local voltage. Local voltage regulation would

  8. Polyacrylamide grafting of modified graphene oxides by in situ free radical polymerization

    International Nuclear Information System (INIS)

    Tang, Mingyi; Xu, Xiaoyang; Wu, Tao; Zhang, Sai; Li, Xianxian; Li, Yi

    2014-01-01

    Highlights: • Graphene oxide (GO) was modified by chemical reactions to functionalized GO (FGO). • The FGOs and the GO were then subjected to in situ free radical polymerization. • Hydroxyl groups of GO were the most reactive grafting sites. - Abstract: Graphene oxide (GO) was modified using chemical reactions to obtain three types of functionalized GO sheets (FGO). The FGO sheets and the GO were then subjected to in situ free radical polymerization in order to study the grafting polymerization. The FGO and grafted-.FGO were analyzed with Fourier transform infrared spectroscopy, scanning electronic microscopy, thermo-gravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). The grafting percentages in the materials were calculated using the TGA and XPS results. The FGO sheets with different functional groups exhibited different grafting abilities, and hydroxyl groups were proven to be the most reactive grafting sites for the in situ free radical grafting polymerization of polyacrylamide

  9. Polyacrylamide grafting of modified graphene oxides by in situ free radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Mingyi [Department of Applied Chemistry, School of Science, Tianjin University of Commerce, Tianjin 300134 (China); Xu, Xiaoyang, E-mail: xiaoyangxu2012@163.com [School of Science, Tianjin University, Tianjin 30072 (China); Wu, Tao [School of Science, Tianjin University, Tianjin 30072 (China); Zhang, Sai; Li, Xianxian [Department of Applied Chemistry, School of Science, Tianjin University of Commerce, Tianjin 300134 (China); Li, Yi, E-mail: liyi@tju.edu.cn [School of Science, Tianjin University, Tianjin 30072 (China)

    2014-12-15

    Highlights: • Graphene oxide (GO) was modified by chemical reactions to functionalized GO (FGO). • The FGOs and the GO were then subjected to in situ free radical polymerization. • Hydroxyl groups of GO were the most reactive grafting sites. - Abstract: Graphene oxide (GO) was modified using chemical reactions to obtain three types of functionalized GO sheets (FGO). The FGO sheets and the GO were then subjected to in situ free radical polymerization in order to study the grafting polymerization. The FGO and grafted-.FGO were analyzed with Fourier transform infrared spectroscopy, scanning electronic microscopy, thermo-gravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). The grafting percentages in the materials were calculated using the TGA and XPS results. The FGO sheets with different functional groups exhibited different grafting abilities, and hydroxyl groups were proven to be the most reactive grafting sites for the in situ free radical grafting polymerization of polyacrylamide.

  10. Laboratory evaluation of PAH oxidation by magnesium peroxides and iron oxides mixtures as reactive material for groundwater remediation

    International Nuclear Information System (INIS)

    Valderrama, C.; Gamisans, X.; Cortina, J.L.; Farran, A.; Marti, V.

    2005-01-01

    contaminant(s) of concern; 2) the total oxidant requirements, pH dependence and relative reaction rate, and 3) the reaction by-products formed. The main goal of this work the evaluation of mixtures of magnesium peroxide and iron oxides as reactive materials for Poly-aromatic Hydrocarbons (PAH) degradation reagents in permeable reactive barriers or zones. One goal of this study is to examine and determine the release rate of hydrogen peroxide from magnesium peroxide by means of laboratory experiments. The magnesium peroxide from two different sources (i.e. Regenesis and Solvay) will be compared. Another objective is to study how a catalyst such as iron speeds up the degradation of PAHs. Not only the release rate will be studied, but also the dissolution process of magnesium peroxide. The experiments mentioned above will be carried out in both batch and continuous reactors. The results of this study showed that the magnesium peroxide from Solvay can release more hydrogen peroxide than the magnesium peroxide from Regenesis. The oxidation factors for the two preparations are quite similar, even though the release of hydrogen peroxide differs greatly. Another point, which ought to be considered, is the minor effect of iron oxides in the degradation of PAHs. The dissolution process of magnesium peroxide is a complex process with magnesium hydroxide as the main reaction by product. So, magnesium peroxides can be used as a hydrogen peroxide releasing compound. Further studies on the removal mechanisms should be performed to identify the oxidation products as well as the sorption properties of magnesium hydroxide. The heterogeneous oxidation of a family of poly-aromatic hydrocarbons (anthracene, pyrene, fluorene and naphthalene) proceeds with a highly efficiency ratio and following a first order kinetic

  11. Shottky-barrier formation

    International Nuclear Information System (INIS)

    Guines, F.; Sanchez-Dehesa, J.; Flores, F.

    1983-01-01

    In this paper a realistic selfconsistent calculation of an abrupt metal-semiconductor junction is presented by means of a tight-binding approach. A specific Si-Ag junction has been considered, and the charge neutrality level as well as the barrier height have been determined in good agreement with experiments. For a generaljunction it is shown that the interface properties depend essentially on the characteristics of the first metal layer and its interaction with the semiconductor. (Author) [pt

  12. Energy barrier to decoherence

    International Nuclear Information System (INIS)

    Mizel, Ari; Mitchell, M. W.; Cohen, Marvin L.

    2001-01-01

    We propose a ground-state approach to realizing quantum computers. This scheme is time-independent and inherently defends against decoherence by possessing an energy barrier to excitation. We prove that our time-independent qubits can perform the same algorithms as their time-dependent counterparts. Advantages and disadvantages of the time-independent approach are described. A model involving quantum dots is provided for illustration

  13. PROCEEDINGS: MULTIPOLLUTANT SORBENT REACTIVITY ...

    Science.gov (United States)

    The report is a compilation of technical papers and visual aids presented by representatives of industry, academia, and government agencies at a workshop on multipollutant sorbent reactivity that was held at EPA's Environmental Research Center in Research Triangle Park, NC, on July 19-20, 1994. There were 16 technical presentations in three sessions, and a panel discussion between six research experts. The workshop was a forum for the exchange of ideas and information on the use of sorbents to control air emissions of acid gases (sulfur dioxide, nitrogen oxides, and hydrogen chloride); mercury and dioxins; and toxic metals, primarily from fossil fuel combustion. A secondary purpose for conducting the workshop was to help guide EPA's research planning activities. A general theme of the workshop was that a strategy of controlling many pollutants with a single system rather than systems to control individual pollutants should be a research goal. Some research needs cited were: hazardous air pollutant removal by flue gas desulfurization systems, dioxin formation and control, mercury control, waste minimization, impact of ash recycling on metals partitioning, impact of urea and sorbents on other pollutants, high temperature filtration, impact of coal cleaning on metals partitioning, and modeling dispersion of sorbents in flue gas. information

  14. Reactivation with productivity

    International Nuclear Information System (INIS)

    Garcia, Carlos Hernando

    2002-01-01

    A market to five years that it will move near $63.000 millions, starting from the production of 254.000 reserves that Ecopetrol requires for its maintenance and operation, it was projected with base in the offer study and it demands that they carried out the universities Javeriana and Industrial of Santander for the Colombian Company of Petroleum around the metal mechanic sector. In accordance with the figures of the report, Ecopetrol, like one of the state entities selected by the national government to design pilot programs, guided to reactivate the Colombian industry; it is projecting a good perspective for the Colombian economy and the invigoration of the national productive sector. In practical terms, the report points out that Ecopetrol, in its different operative centers, will require in next five years the quantity of had restored before mentioned in the lines of mechanical stamps, centrifugal bombs, inter chambers of heat, compressors and valves of security; pieces that are elaborated by international makers in 99%. To produce them nationally would represent to the company an economy of 52% of the total value of the purchases in next five years and a reduction of time of delivery of 17 weeks to one week

  15. Performance of engineered barriers

    International Nuclear Information System (INIS)

    Rajaram, V.; Dean, P.V.; McLellan, S.A.

    1997-01-01

    Engineered barriers, both vertical and horizontal, have been used to isolate hazardous wastes from contact, precipitation, surface water and groundwater. The primary objective of this study was to determine the performance of subsurface barriers installed throughout the U.S. over the past 20 years to contain hazardous wastes. Evaluation of Resource Conservation and Recovery Act (RCRA) Subtitle C or equivalent caps was a secondary objective. A nationwide search was launched to select hazardous waste sites at which vertical barrier walls and/or caps had been used as the containment method. None of the sites selected had an engineered floor. From an initial list of 130 sites, 34 sites were selected on the basis of availability of monitoring data for detailed analysis of actual field performance. This paper will briefly discuss preliminary findings regarding the design, construction quality assurance/construction quality control (CQA/CQC), and monitoring at the 34 sites. In addition, the short-term performance of these sites (less than 5 years) is presented since very little long-term performance data was available

  16. Fluctuations in Schottky barrier heights

    International Nuclear Information System (INIS)

    Mahan, G.D.

    1984-01-01

    A double Schottky barrier is often formed at the grain boundary in polycrystalline semiconductors. The barrier height is shown to fluctuate in value due to the random nature of the impurity positions. The magnitude of the fluctuations is 0.1 eV, and the fluctuations cause the barrier height measured by capacitance to differ from the one measured by electrical conductivity

  17. Diamond and Diamond-Like Materials as Hydrogen Isotope Barriers

    International Nuclear Information System (INIS)

    Foreman, L.R.; Barbero, R.S.; Carroll, D.W.; Archuleta, T.; Baker, J.; Devlin, D.; Duke, J.; Loemier, D.; Trukla, M.

    1999-01-01

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The purpose of this project was to develop diamond and diamond-like thin-films as hydrogen isotope permeation barriers. Hydrogen embrittlement limits the life of boost systems which otherwise might be increased to 25 years with a successful non-reactive barrier. Applications in tritium processing such as bottle filling processes, tritium recovery processes, and target filling processes could benefit from an effective barrier. Diamond-like films used for low permeability shells for ICF and HEDP targets were also investigated. Unacceptable high permeabilities for hydrogen were obtained for plasma-CVD diamond-like-carbon films

  18. In-situ formed Ce0.8Gd0.2O1.9 barrier layers on yttria stabilized zirconia backbones by infiltration - A promising path to high performing oxygen electrodes of solid oxide cell

    DEFF Research Database (Denmark)

    Ovtar, Simona; Chen, Ming; Samson, Alfred Junio

    2017-01-01

    Oxygen electrodes for solid oxide cells were prepared by a consecutive infiltration of a gadolinium doped ceria (Ce0.8Gd0.2O1.9, CGO) barrier layer and a lanthanum cobalt nickelate (La0.95Co0.4Ni0.6O3, LCN) electro catalyst layer into a porous yttrium doped zirconia (YSZ) backbone. The influences...... of the following parameters on the microstructure of the formed CGO barrier layer and on the electrochemical performance of the cells were studied: i) surfactants and wetting agents, ii) ceria/gadolinia coverage, iii) calcination profiles and iv) exposure temperature during testing. The infiltration process...... performance and only a small increase of the cell-resistance with increasing exposure temperatures during testing were obtained. A complete and homogenous covering of the YSZ backbone with Ce0.8Gd0.2O1.9 was found to be necessary to maintain high performance also at higher exposure temperatures (> 800 °C)....

  19. Reactive Fe(II) layers in deep-sea sediments

    Science.gov (United States)

    König, Iris; Haeckel, Matthias; Drodt, Matthias; Suess, Erwin; Trautwein, Alfred X.

    1999-05-01

    The percentage of the structural Fe(II) in clay minerals that is readily oxidized to Fe(III) upon contact with atmospheric oxygen was determined across the downcore tan-green color change in Peru Basin sediments. This latent fraction of reactive Fe(II) was only found in the green strata, where it proved to be large enough to constitute a deep reaction layer with respect to the pore water O 2 and NO 3-. Large variations were detected in the proportion of the reactive Fe(II) concentration to the organic matter content along core profiles. Hence, the commonly observed tan-green color change in marine sediments marks the top of a reactive Fe(II) layer, which may represent the major barrier to the movement of oxidation fronts in pelagic subsurface sediments. This is also demonstrated by numerical model simulations. The findings imply that geochemical barriers to pore water oxidation fronts form diagenetically in the sea floor wherever the stage of iron reduction is reached, provided that the sediments contain a significant amount of structural iron in clay minerals.

  20. SOFC anode reduction studied by in situ TEM

    DEFF Research Database (Denmark)

    Simonsen, Søren Bredmose; Wagner, Jakob Birkedal; Hansen, Thomas Willum

    The Solid Oxide Fuel Cell (SOFC) is a promising part of future energy approaches due to a relatively high energy conversion efficiency and low environmental pollution. SOFCs are typically composed of ceramic materials which are highly complex at the nanoscale. TEM is routinely applied ex situ...... for studying these nanoscale structures, but only few SOFC studies have applied in situ TEM to observe the ceramic nanostructures in a reactive gas environment at elevated temperatures. The present contribution focuses on the reduction of an SOFC anode which is a necessary process to form the catalytically...... active Ni surface before operating the fuel cells. The reduction process was followed in the TEM while exposing a NiO/YSZ (YSZ = Y2O3-stabilized ZrO2) model anode to H2 at T = 250-1000⁰C. Pure NiO was used in reference experiments. Previous studies have shown that the reduction of pure Ni...

  1. Modeling in situ vitrification

    International Nuclear Information System (INIS)

    Mecham, D.C.; MacKinnon, R.J.; Murray, P.E.; Johnson, R.W.

    1990-01-01

    In Situ Vitrification (ISV) process is being assessed by the Idaho National Engineering Laboratory (INEL) to determine its applicability to transuranic and mixed wastes buried at INEL'S Subsurface Disposal Area (SDA). This process uses electrical resistance heating to melt waste and contaminated soil in place to produce a durable glasslike material that encapsulates and immobilizes buried wastes. This paper outlines the requirements for the model being developed at the INEL which will provide analytical support for the ISV technology assessment program. The model includes representations of the electric potential field, thermal transport with melting, gas and particulate release, vapor migration, off-gas combustion and process chemistry. The modeling objectives are to help determine the safety of the process by assessing the air and surrounding soil radionuclides and chemical pollution hazards, the nuclear criticality hazard, and the explosion and fire hazards, help determine the suitability of the ISV process for stabilizing the buried wastes involved, and help design laboratory and field tests and interpret results. 3 refs., 2 figs., 1 tab

  2. In-situ uranium leaching

    International Nuclear Information System (INIS)

    Dotson, B.J.

    1986-01-01

    This invention provides a method for improving the recovery of mineral values from ore bodies subjected to in-situ leaching by controlling the flow behaviour of the leaching solution. In particular, the invention relates to an in-situ leaching operation employing a foam for mobility control of the leaching solution. A foam bank is either introduced into the ore bed or developed in-situ in the ore bed. The foam then becomes a diverting agent forcing the leaching fluid through the previously non-contacted regions of the deposit

  3. Present art of reactivity determination

    International Nuclear Information System (INIS)

    Kaneko, Yoshihiko; Nakano, Masafumi; Matsuura, Shojiro

    1977-01-01

    Experimental techniques for reactivity determination of a reactor have been one of the long standing subjects in reactor physics. Recently, such a requirement was proposed by the reactor designers and operators that the values of reactivity should be measured more accurately. This is because importance is emphasized for the role of reactivity to the performance of reactor safety, economics and operability. Motivated by the requirement, some remarkable progresses are being made for the improvement of the experimental techniques. Then, the present review summarizes the research activities on this subject, identifies several reactor physics problems to be overcome, and makes mention of the future targets. (auth.)

  4. Cost and Performance Assessment of In-situ Chemical Oxidation for Intermittent and Continuous Oxidant Injection

    Science.gov (United States)

    Kim, U.; Parker, J.; Borden, R. C.

    2015-12-01

    In situ chemical oxidation (ISCO) is a popular remediation technology that involves injection of chemical oxidant into groundwater to destroy dissolved and non-aqueous liquid phase contaminants. Depending on site conditions, oxidant can be injected into the contaminated subsurface periodically (intermittently) or continuously. A common approach is to intermittently inject oxidant into a network of wells over a period long enough to emplace oxidant over a target treatment volume (referred to ISCO-int). The injection phase is followed by a passive phase when the oxidant is allowed to react with contaminants and natural oxygen demand (NOD) and to migrate under natural hydraulic gradients. This process may be repeated multiple times until termination criteria are met. Recently, some practitioners have adopted an alternative approach in which oxidant is injected continuously with extraction wells recovering unreacted oxidant to recycle with additional makeup oxidant to maintain its constant concentration (referred to ISCO-cont). Each method has certain advantages and disadvantages. This study numerically evaluates those two ISCO practices in terms of remediation costs and performance based on multiple equi-probable parameter sets. Stochastic cost optimization toolbox (SCOToolkit) is used for this purpose. SCOToolkit is an integrated semi-analytical model for contaminant transport and remediation (e.g., thermal source treatment, ISCO, electron donor injections, permeable reactive barriers) enabling inverse solution and Monte Carlo simulations. Four different aquifer settings, slow and fast Darcy velocities combined with low and high NOD conditions, are used for the evaluation. Preliminary results showed that ISCO-cont is effective for a full scale application without large investment while ISCO-int is more efficient to utilize oxidant in well-characterized sites. Pros and cons of each approach are discussed for the practical use of ISCO for various site conditions.

  5. Barrier mechanisms in the Drosophila blood-brain barrier

    Directory of Open Access Journals (Sweden)

    Samantha Jane Hindle

    2014-12-01

    Full Text Available The invertebrate blood-brain barrier field is growing at a rapid pace and, in recent years, studies have shown a physiologic and molecular complexity that has begun to rival its vertebrate counterpart. Novel mechanisms of paracellular barrier maintenance through GPCR signaling were the first demonstrations of the complex adaptive mechanisms of barrier physiology. Building upon this work, the integrity of the invertebrate blood-brain barrier has recently been shown to require coordinated function of all layers of the compound barrier structure, analogous to signaling between the layers of the vertebrate neurovascular unit. These findings strengthen the notion that many blood-brain barrier mechanisms are conserved between vertebrates and invertebrates, and suggest that novel findings in invertebrate model organisms will have a significant impact on the understanding of vertebrate BBB functions. In this vein, important roles in coordinating localized and systemic signaling to dictate organism development and growth are beginning to show how the blood-brain barrier can govern whole animal physiologies. This includes novel functions of blood-brain barrier gap junctions in orchestrating synchronized neuroblast proliferation, and of blood-brain barrier secreted antagonists of insulin receptor signaling. These advancements and others are pushing the field forward in exciting new directions. In this review, we provide a synopsis of invertebrate blood-brain barrier anatomy and physiology, with a focus on insights from the past 5 years, and highlight important areas for future study.

  6. Quantum coherence in the reflection of above barrier wavepackets

    Science.gov (United States)

    Petersen, Jakob; Pollak, Eli

    2018-02-01

    region before exiting. A classical Wigner approximation, using classical trajectories which upon reaching an edge of the barrier are reflected or transmitted as if the edge was a step potential, is quantitative in the incoherent regime. The implications of the coherence observed on resonance reactive scattering are discussed.

  7. Processing of polymers using reactive solvents

    NARCIS (Netherlands)

    Lemstra, P.J.; Kurja, J.; Meijer, H.E.H.; Meijer, H.E.H.

    1997-01-01

    A review with many refs. on processing of polymers using reactive solvents including classification of synthetic polymers, guidelines for the selection of reactive solvents, basic aspects of processing, examples of intractable and tractable polymer/reactive solvent system

  8. Barriers to accessing urethroplasty.

    Science.gov (United States)

    Consolo, Michael J; Syed, Kirin K; Robison, Christopher; McFadden, Jacob; Shalowitz, David I; Brown, Gordon A; Sussman, David O; Figler, Bradley D

    2016-01-01

    Urethroplasty is an effective treatment for men with anterior urethral strictures, but is utilized less frequently than ineffective treatments such as internal urethrotomy. We sought to identify provider-level barriers to urethroplasty. An anonymous online survey was emailed to all Mid-Atlantic American Urological Association members. Six scenarios in which urethroplasty was the most appropriate treatment were presented. Primary outcome was recommendation for urethroplasty in ≥ three clinical scenarios. Other factors measured include practice zip code, urethroplasty training, and proximity to a urethroplasty surgeon. Multivariate logistic regression identified factors associated with increased likelihood of urethroplasty recommendation. Of 670 members emailed, 109 (16%) completed the survey. Final analysis included 88 respondents. Mean years in practice was 17.2. Most respondents received formal training in urethroplasty: 43 (49%) in residency, 5 (6%) in fellowship, and 10 (11%) in both; 48 respondents (55%) had a urethroplasty surgeon in their practice, whereas 18 (20%) had a urethroplasty surgeon within 45 minutes of his or her primary practice location. The only covariate that was associated with an increased likelihood of recommending urethroplasty in ≥ three scenarios was formal urethroplasty training. Most members (68%) reported no barriers to referring patients for urethroplasty; the most common barriers cited were long distance to urethroplasty surgeon (n 5 13, 15%) and concern about complications (n 5 8, 9%). Urethroplasty continues to be underutilized in men with anterior urethral strictures, potentially due to lack of knowledge dissemination and access to a urethroplasty surgeon. Appropriate urethroplasty utilization may increase with greater exposure to urethroplasty in training.

  9. Racial Trade Barriers?

    DEFF Research Database (Denmark)

    Bjerre, Jacob Halvas

    . This paper analyzes the racial policies pursued in the foreign trade and argues that we need to recognize Aryanization as a world-wide policy in order to fully understand its character and possible consequences. I focus on the pre-war period and analyze the case of Denmark from three different perspectives......: perpetrators, victims and bystanders. The analysis will show that race, economy and foreign trade were combined in an attempt to raise racial trade barriers. This forced the question of German racial policies on the Danish government, Danish-Jewish businesses, and German companies involved in foreign trade...

  10. Support or Barrier?

    DEFF Research Database (Denmark)

    Sanden, Guro Refsum; Lønsmann, Dorte

    This study offers a critical look at how corporate-level language management influences front-line language practices among employees in three multinational corporations (MNCs) headquartered in Scandinavia. Based on interview and document data, we examine, firstly, what front-line practices...... employees use to cross language boundaries in their everyday work, and, secondly, how these practices relate to top-down language management in the case companies. Our findings show that employees are often dependent on ad hoc and informal solutions in cross- language situations, which leads us...... to a discussion of how a company’s language policy may be seen as both support and a barrier....

  11. In situ leaching of uranium

    International Nuclear Information System (INIS)

    Martin, B.

    1980-01-01

    A process is described for the in-situ leaching of uranium-containing ores employing an acidic leach liquor containing peroxymonosulphuric acid. Preferably, additionally, sulphuric acid is present in the leach liquor. (author)

  12. Reactive Collision Avoidance Algorithm

    Science.gov (United States)

    Scharf, Daniel; Acikmese, Behcet; Ploen, Scott; Hadaegh, Fred

    2010-01-01

    The reactive collision avoidance (RCA) algorithm allows a spacecraft to find a fuel-optimal trajectory for avoiding an arbitrary number of colliding spacecraft in real time while accounting for acceleration limits. In addition to spacecraft, the technology can be used for vehicles that can accelerate in any direction, such as helicopters and submersibles. In contrast to existing, passive algorithms that simultaneously design trajectories for a cluster of vehicles working to achieve a common goal, RCA is implemented onboard spacecraft only when an imminent collision is detected, and then plans a collision avoidance maneuver for only that host vehicle, thus preventing a collision in an off-nominal situation for which passive algorithms cannot. An example scenario for such a situation might be when a spacecraft in the cluster is approaching another one, but enters safe mode and begins to drift. Functionally, the RCA detects colliding spacecraft, plans an evasion trajectory by solving the Evasion Trajectory Problem (ETP), and then recovers after the collision is avoided. A direct optimization approach was used to develop the algorithm so it can run in real time. In this innovation, a parameterized class of avoidance trajectories is specified, and then the optimal trajectory is found by searching over the parameters. The class of trajectories is selected as bang-off-bang as motivated by optimal control theory. That is, an avoiding spacecraft first applies full acceleration in a constant direction, then coasts, and finally applies full acceleration to stop. The parameter optimization problem can be solved offline and stored as a look-up table of values. Using a look-up table allows the algorithm to run in real time. Given a colliding spacecraft, the properties of the collision geometry serve as indices of the look-up table that gives the optimal trajectory. For multiple colliding spacecraft, the set of trajectories that avoid all spacecraft is rapidly searched on

  13. Mannuronic Acids : Reactivity and Selectivity

    NARCIS (Netherlands)

    Codee, Jeroen D. C.; Walvoort, Marthe T. C.; de Jong, Ana-Rae; Lodder, Gerrit; Overkleeft, Herman S.; van der Marel, Gijsbert A.

    2011-01-01

    This review describes our recent studies toward the reactivity and selectivity of mannopyranosyl uronic acid donors, which have been found to be very powerful donors for the construction of beta-mannosidic linkages.

  14. Angstrom analysis with dynamic in-situ aberration corrected electron microscopy

    International Nuclear Information System (INIS)

    Gai, P L; Boyes, E D

    2010-01-01

    Following the pioneering development of atomic resolution in-situ environmental TEM (ETEM) for direct probing of gas-solid reactions, recent developments are presented of dynamic real time in-situ studies at the Angstrom level in an aberration corrected electron microscope. The in-situ data from Pt-Pd nanoparticles on carbon with the corresponding FFT/optical diffractogram (OD) illustrate an achieved resolution of 0 C and higher, in a double aberration corrected JEOL 2200 FS TEM/STEM employing a wider gap objective pole piece and gas tolerant TMP column pumping system. Direct observations of dynamic biofuel catalysts under controlled calcinations conditions and quantified with catalytic reactivity and physico-chemical studies show the benefits in-situ aberration correction in unveiling the evolution of surface active sites necessary for the development efficient heterogeneous catalysts. The new results open up opportunities for dynamic studies of materials in an aberration corrected environment and direct future development activities.

  15. Fuel Temperature Coefficient of Reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Loewe, W.E.

    2001-07-31

    A method for measuring the fuel temperature coefficient of reactivity in a heterogeneous nuclear reactor is presented. The method, which is used during normal operation, requires that calibrated control rods be oscillated in a special way at a high reactor power level. The value of the fuel temperature coefficient of reactivity is found from the measured flux responses to these oscillations. Application of the method in a Savannah River reactor charged with natural uranium is discussed.

  16. [Hyper-reactive malarial splenomegaly].

    Science.gov (United States)

    Maazoun, F; Deschamps, O; Barros-Kogel, E; Ngwem, E; Fauchet, N; Buffet, P; Froissart, A

    2015-11-01

    Hyper-reactive malarial splenomegaly is a rare and severe form of chronic malaria. This condition is a common cause of splenomegaly in endemic areas. The pathophysiology of hyper-reactive malarial splenomegaly involves an intense immune reaction (predominantly B cell-driven) to repeated/chronic infections with Plasmodium sp. The diagnosis may be difficult, due to a poorly specific clinical presentation (splenomegaly, fatigue, cytopenias), a long delay between residence in a malaria-endemic area and onset of symptoms, and a frequent absence of parasites on conventional thin and thick blood smears. A strongly contributive laboratory parameter is the presence of high levels of total immunoglobulin M. When the diagnostic of hyper-reactive malarial splenomegaly is considered, search for anti-Plasmodium antibodies and Plasmodium nucleic acids (genus and species) by PCR is useful. Diagnosis of hyper-reactive malarial splenomegaly relies on the simultaneous presence of epidemiological, clinical, biological and follow-up findings. Regression of both splenomegaly and hypersplenism following antimalarial therapy allows the differential diagnosis with splenic lymphoma, a common complication of hyper-reactive malarial splenomegaly. Although rare in Western countries, hyper-reactive malarial splenomegaly deserves increased medical awareness to reduce the incidence of incorrect diagnosis, to prevent progression to splenic lymphoma and to avoid splenectomy. Copyright © 2015 Société nationale française de médecine interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  17. Application of anatectic mineralization to prospecting in-situ leachable sandstone type uranium ore in South Songliao Basin

    International Nuclear Information System (INIS)

    Zhao Zhonghua

    2001-01-01

    The deep ore-forming origin is a new theory for prospecting in-situ leachable sandstone type uranium. Tectonics, lithologic and geochemistry are basic forecasting criteria. Previous unconsolidated sand, source area and geochemical barrier are three essential conditions for forming uranium deposit. Metallogenic environment and prospective region are found. Tertiary system is prospective layer for prospecting in-situ leachable sandstone type uranium ore in south Songliao Basin

  18. Stability of barrier buckets with zero RF-barrier separations

    Energy Technology Data Exchange (ETDEWEB)

    Ng, K.Y.; /Fermilab

    2005-03-01

    A barrier bucket with very small separation between the rf barriers (relative to the barrier widths) or even zero separation has its synchrotron tune decreasing rather slowly from a large value towards the boundary of the bucket. As a result, large area at the bucket edges can become unstable under the modulation of rf voltage and/or rf phase. In addition, chaotic regions may form near the bucket center and extend outward under increasing modulation. Application is made to those barrier buckets used in the process of momentum mining at the Fermilab Recycler Ring.

  19. IN-SITU RADIONUCLIDE TRANSPORT NEAR THE NOPAL I URANIUM DEPOSIT AT PENA BLANCA, MEXICO: CONSTRAINTS FROM SHORT-LIVED DECAY-SERIES RADIONUCLIDES

    International Nuclear Information System (INIS)

    Luo, S.; Ku, T.L.; Todd, V.; Murrell, M.; Pineda, J. Alfredo Rodriguez; Dinsmoor, J.; Mitchell, A.

    2005-01-01

    For nuclear waste management, an important mechanism by which radioactive waste components are isolated from returning to the human environment, the biosphere, is by the geological barrier in which the effectiveness of the barrier is characterized by in-situ retardation factor, i.e., the transport rate of a radionuclide relative to that of groundwater. As part of natural analog studies of the Yucca Mountain Project of the U. S. Department of Energy, we propose such characterization by using naturally-occurring decay-series radioisotopes as an analog. We collected large-volume (>1000 liters) groundwater samples from three wells (PB, Pozos, and PB4, respectively) near the Nopal I Uranium Ore site at Pena Blanca, Mexico, by using an in-situ Mn-cartridge filtration technique for analysis of short-lived decay-series radionuclides. Results show that the activities of short-lived radioisotopes ( 228 Ra, 224 Ra and 223 Ra) and activity ratios of 224 Ra/ 228 Ra and 224 Ra/ 223 Ra are higher at PB and Pozos than at PB4. In contrast, the 210 Po activity is much lower at PB and Pozos than at PB4. The high Ra activities and activities ratios at PB and Pozos are attributable to the high alpha-recoil input from the aquifer rocks, while the high 210 Po activity at PB4 is due to the enhanced colloidal transport. Based on a uranium-series transport model, we estimate that the in-situ retardation factor of Ra is (0.43 ± 0.02) x 10 3 at PB, (1.68 ± 0.08) x 10 3 at Pozos, and (1.19 ± 0.08) x 10 3 at PB4 and that the mean fracture width in the aquifer rocks is about 0.23 (micro)m at PB, 0.37 (micro)m at Posos, and 4.0 (micro)m at PB4, respectively. The large fracture width at PB4 as derived from the model provides an additional evidence to the inference from the Po measurements that particle-reactive radionuclides are transported mainly as colloidal forms through the large fractures in rocks. Our model also suggests that in addition to alpha recoil, decay of 226 Ra from the adsorbed

  20. IN-SITU RADIONUCLIDE TRANSPORT NEAR THE NOPAL I URANIUM DEPOSIT AT PENA BLANCA, MEXICO: CONSTRAINTS FROM SHORT-LIVED DECAY-SERIES RADIONUCLIDES

    Energy Technology Data Exchange (ETDEWEB)

    S. Luo; T.L. Ku; V. Todd; M. Murrell; J. Alfredo Rodriguez Pineda; J. Dinsmoor; A. Mitchell

    2005-07-11

    For nuclear waste management, an important mechanism by which radioactive waste components are isolated from returning to the human environment, the biosphere, is by the geological barrier in which the effectiveness of the barrier is characterized by in-situ retardation factor, i.e., the transport rate of a radionuclide relative to that of groundwater. As part of natural analog studies of the Yucca Mountain Project of the U. S. Department of Energy, we propose such characterization by using naturally-occurring decay-series radioisotopes as an analog. We collected large-volume (>1000 liters) groundwater samples from three wells (PB, Pozos, and PB4, respectively) near the Nopal I Uranium Ore site at Pena Blanca, Mexico, by using an in-situ Mn-cartridge filtration technique for analysis of short-lived decay-series radionuclides. Results show that the activities of short-lived radioisotopes ({sup 228}Ra, {sup 224}Ra and {sup 223}Ra) and activity ratios of {sup 224}Ra/{sup 228}Ra and {sup 224}Ra/{sup 223}Ra are higher at PB and Pozos than at PB4. In contrast, the {sup 210}Po activity is much lower at PB and Pozos than at PB4. The high Ra activities and activities ratios at PB and Pozos are attributable to the high alpha-recoil input from the aquifer rocks, while the high {sup 210}Po activity at PB4 is due to the enhanced colloidal transport. Based on a uranium-series transport model, we estimate that the in-situ retardation factor of Ra is (0.43 {+-} 0.02) x 10{sup 3} at PB, (1.68 {+-} 0.08) x 10{sup 3} at Pozos, and (1.19 {+-} 0.08) x 10{sup 3} at PB4 and that the mean fracture width in the aquifer rocks is about 0.23 {micro}m at PB, 0.37 {micro}m at Posos, and 4.0 {micro}m at PB4, respectively. The large fracture width at PB4 as derived from the model provides an additional evidence to the inference from the Po measurements that particle-reactive radionuclides are transported mainly as colloidal forms through the large fractures in rocks. Our model also suggests that

  1. [Reactive collisions of high-temperature systems]: Progress report

    International Nuclear Information System (INIS)

    Graff, M.M.

    1988-01-01

    We are developing an experiment to study the reactive collisions of systems with large activation barriers or endothermicities. The basis design involves the collision of fast radicals with a stable reactant gas (hydrogen) in a collision cell. Initially, products will be detected by ionization and mass analysis. Later, laser-induced fluorescence will be used to probe internal states of products. Studies will include an investigation of rotational effects by comparing results for rotational levels J = O and 1 of molecular hydrogen. 2 figs

  2. Performing a local barrier operation

    Science.gov (United States)

    Archer, Charles J; Blocksome, Michael A; Ratterman, Joseph D; Smith, Brian E

    2014-03-04

    Performing a local barrier operation with parallel tasks executing on a compute node including, for each task: retrieving a present value of a counter; calculating, in dependence upon the present value of the counter and a total number of tasks performing the local barrier operation, a base value, the base value representing the counter's value prior to any task joining the local barrier; calculating, in dependence upon the base value and the total number of tasks performing the local barrier operation, a target value of the counter, the target value representing the counter's value when all tasks have joined the local barrier; joining the local barrier, including atomically incrementing the value of the counter; and repetitively, until the present value of the counter is no less than the target value of the counter: retrieving the present value of the counter and determining whether the present value equals the target value.

  3. In-situ containment and stabilization of buried waste

    International Nuclear Information System (INIS)

    Allan, M.L.; Kukacka, L.E.

    1993-10-01

    In FY 1993 research continued on development and testing of grout materials for in-situ containment and stabilization of buried waste. Specifically, the work was aimed at remediation of the Chemical Waste Landfill (CWL) at Sandia National Laboratories (SNL) in Albuquerque, New Mexico as part of the Mixed Waste Landfill Integrated Demonstration (MWLID). The work on grouting materials was initiated in FY 1992 and the accomplishments for that year are documented in the previous annual report (Allan, Kukacka and Heiser, 1992). The remediation plan involves stabilization of the chromium plume, placement of impermeable vertical and horizontal barriers to isolate the landfill and installation of a surface cap. The required depth of subsurface barriers is approximately 33 m (100 ft). The work concentrated on optimization of grout formulations for use as grout and soil cement barriers and caps. The durability of such materials was investigated, in addition to shrinkage cracking resistance, compressive and flexural strength and permeability. The potential for using fibers in grouts to control cracking was studied. Small scale field trials were conducted to test the practicality of using the identified formulations and to measure the long term performance. Large scale trials were conducted at Sandia as part of the Subsurface Barrier Emplacement Technology Program. Since it was already determined in FY 1992 that cementitious grouts could effectively stabilize the chromium plume at the CWL after pre-treatment is performed, the majority of the work was devoted to the containment aspect

  4. Reactive sites influence in PMMA oligomers reactivity: a DFT study

    Science.gov (United States)

    Paz, C. V.; Vásquez, S. R.; Flores, N.; García, L.; Rico, J. L.

    2018-01-01

    In this work, we present a theoretical study of methyl methacrylate (MMA) living anionic polymerization. The study was addressed to understanding two important experimental observations made for Michael Szwarc in 1956. The unexpected effect of reactive sites concentration in the propagation rate, and the self-killer behavior of MMA (deactivating of living anionic polymerization). The theoretical calculations were performed by density functional theory (DFT) to obtain the frontier molecular orbitals values. These values were used to calculate and analyze the chemical interaction descriptors in DFT-Koopmans’ theorem. As a result, it was observed that the longest chain-length species (related with low concentration of reactive sites) exhibit the highest reactivity (behavior associated with the increase of the propagation rate). The improvement in this reactivity was attributed to the crosslinking produced in the polymethyl methacrylate chains. Meanwhile, the self-killer behavior was associated with the intermolecular forces present in the reactive sites. This behavior was associated to an obstruction in solvation, since the active sites remained active through all propagation species. The theoretical results were in good agreement with the Szwarc experiments.

  5. Barrier rf systems in synchrotrons

    International Nuclear Information System (INIS)

    Bhat, Chandra M.

    2004-01-01

    Recently, many interesting applications of the barrier RF system in hadron synchrotrons have been realized. A remarkable example of this is the development of longitudinal momentum mining and implementation at the Fermilab Recycler for extraction of low emittance pbars for the Tevatron shots. At Fermilab, we have barrier RF systems in four different rings. In the case of Recycler Ring, all of the rf manipulations are carried out using a barrier RF system. Here, the author reviews various uses of barrier rf systems in particle accelerators including some new schemes for producing intense proton beam and possible new applications

  6. Tunnel superpenetrability of potential barriers

    International Nuclear Information System (INIS)

    Zakhariev, B N.

    1982-01-01

    The transmission of two particles through the same barrier is considered. The limiting cases are compared when the particles are joined together in a single particle with double mass-energy and potential and when they pass the barrier independently. As an intermediate case a pair of particles bound in a quasideuteron of a finite size is considered. It is shown that long-range collective correlations of particles (of the superfluidity type and others) simplify very much for them passing through high potential barriers. This happens due to the transfer of the additional energy from the particles outside the barriers to those inside it

  7. Barriers for recess physical activity

    DEFF Research Database (Denmark)

    Pawlowski, Charlotte Skau; Tjørnhøj-Thomsen, Tine; Schipperijn, Jasper

    2014-01-01

    BACKGROUND: Many children, in particular girls, do not reach the recommended amount of daily physical activity. School recess provides an opportunity for both boys and girls to be physically active, but barriers to recess physical activity are not well understood. This study explores gender...... differences in children's perceptions of barriers to recess physical activity. Based on the socio-ecological model four types of environmental barriers were distinguished: natural, social, physical and organizational environment. METHODS: Data were collected through 17 focus groups (at 17 different schools...... this study, we recommend promoting recess physical activity through a combination of actions, addressing barriers within the natural, social, physical and organizational environment....

  8. Linguistic Barriers and Bridges

    DEFF Research Database (Denmark)

    Thuesen, Frederik

    2016-01-01

    The influence of language on social capital in low-skill and ethnically diverse workplaces has thus far received very limited attention within the sociology of work. As the ethnically diverse workplace is an important social space for the construction of social relations bridging different social...... groups, the sociology of work needs to develop a better understanding of the way in which linguistic diversity influences the formation of social capital, i.e. resources such as the trust and reciprocity inherent in social relations in such workplaces. Drawing on theories about intergroup contact...... and intercultural communication, this article analyses interviews with 31 employees from two highly ethnically diverse Danish workplaces. The article shows how linguistic barriers such as different levels of majority language competence and their consequent misunderstandings breed mistrust and hostility, whilst...

  9. Countermeasures and barriers

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Johannes [Oersted - DTU, Automation, Kgs. Lyngby (Denmark)

    2005-10-01

    In 1973 Haddon proposed ten strategies for reducing and avoiding damages based on a model of potential harmful energy transfer (Haddon, 1973). The strategies apply to a large variety of unwanted phenomena. Haddon's pioneering work on countermeasures has had a major influence on later thinking about safety. Considering its impact it is remarkable that the literature offers almost no discussions related to the theoretical foundations of Haddon's countermeasure strategies. The present report addresses a number of theoretical issues related to Haddon's countermeasure strategies, which are: 1) A reformulation and formalization of Haddon's countermeasure strategies. 2) An identification and description of some of the problems associated with the term 'barrier'. 3) Suggestions for a more precise terminology based on the causal structure of countermeasures. 4) Extending the scope of countermeasures to include sign-based countermeasures. (au)

  10. Countermeasures and barriers

    International Nuclear Information System (INIS)

    Petersen, Johannes

    2005-10-01

    In 1973 Haddon proposed ten strategies for reducing and avoiding damages based on a model of potential harmful energy transfer (Haddon, 1973). The strategies apply to a large variety of unwanted phenomena. Haddon's pioneering work on countermeasures has had a major influence on later thinking about safety. Considering its impact it is remarkable that the literature offers almost no discussions related to the theoretical foundations of Haddon's countermeasure strategies. The present report addresses a number of theoretical issues related to Haddon's countermeasure strategies, which are: 1) A reformulation and formalization of Haddon's countermeasure strategies. 2) An identification and description of some of the problems associated with the term 'barrier'. 3) Suggestions for a more precise terminology based on the causal structure of countermeasures. 4) Extending the scope of countermeasures to include sign-based countermeasures. (au)

  11. Computational Study of Chemical Reactivity Using Information-Theoretic Quantities from Density Functional Reactivity Theory for Electrophilic Aromatic Substitution Reactions.

    Science.gov (United States)

    Wu, Wenjie; Wu, Zemin; Rong, Chunying; Lu, Tian; Huang, Ying; Liu, Shubin

    2015-07-23

    The electrophilic aromatic substitution for nitration, halogenation, sulfonation, and acylation is a vastly important category of chemical transformation. Its reactivity and regioselectivity is predominantly determined by nucleophilicity of carbon atoms on the aromatic ring, which in return is immensely influenced by the group that is attached to the aromatic ring a priori. In this work, taking advantage of recent developments in quantifying nucleophilicity (electrophilicity) with descriptors from the information-theoretic approach in density functional reactivity theory, we examine the reactivity properties of this reaction system from three perspectives. These include scaling patterns of information-theoretic quantities such as Shannon entropy, Fisher information, Ghosh-Berkowitz-Parr entropy and information gain at both molecular and atomic levels, quantitative predictions of the barrier height with both Hirshfeld charge and information gain, and energetic decomposition analyses of the barrier height for the reactions. To that end, we focused in this work on the identity reaction of the monosubstituted-benzene molecule reacting with hydrogen fluoride using boron trifluoride as the catalyst in the gas phase. We also considered 19 substituting groups, 9 of which are ortho/para directing and the other 9 meta directing, besides the case of R = -H. Similar scaling patterns for these information-theoretic quantities found for stable species elsewhere were disclosed for these reactions systems. We also unveiled novel scaling patterns for information gain at the atomic level. The barrier height of the reactions can reliably be predicted by using both the Hirshfeld charge and information gain at the regioselective carbon atom. The energy decomposition analysis ensued yields an unambiguous picture about the origin of the barrier height, where we showed that it is the electrostatic interaction that plays the dominant role, while the roles played by exchange-correlation and

  12. Reactive Strength Index: A Poor Indicator of Reactive Strength?

    Science.gov (United States)

    Healy, Robin; Kenny, Ian; Harrison, Drew

    2017-11-28

    The primary aim was to assess the relationships between reactive strength measures and associated kinematic and kinetic performance variables achieved during drop jumps. A secondary aim was to highlight issues with the use of reactive strength measures as performance indicators. Twenty eight national and international level sprinters, consisting of fourteen men and women, participated in this cross-sectional analysis. Athletes performed drop jumps from a 0.3 m box onto a force platform with dependent variables contact time (CT), landing time (TLand), push-off time (TPush), flight time (FT), jump height (JH), reactive strength index (RSI, calculated as JH / CT), reactive strength ratio (RSR, calculated as FT / CT) and vertical leg spring stiffness (Kvert) recorded. Pearson's correlation test found very high to near perfect relationships between RSI and RSR (r = 0.91 to 0.97), with mixed relationships found between RSI, RSR and the key performance variables, (Men: r = -0.86 to -0.71 between RSI/RSR and CT, r = 0.80 to 0.92 between RSI/RSR and JH; Women: r = -0.85 to -0.56 between RSR and CT, r = 0.71 between RSI and JH). This study demonstrates that the method of assessing reactive strength (RSI versus RSR) may be influenced by the performance strategies adopted i.e. whether an athlete achieves their best reactive strength scores via low CTs, high JHs or a combination. Coaches are advised to limit the variability in performance strategies by implementing upper and / or lower CT thresholds to accurately compare performances between individuals.

  13. Thames barrier (flood protection barriers on the Thames)

    International Nuclear Information System (INIS)

    Ilkovic, J.

    2005-01-01

    In this paper the flood protection barriers on the Thames are presented. The flood protection system on the Thames in 1984 was commissioned. During two decades this barrier was used 54 times against to the high water and 34 times against storm-sewage. There is installed buttress type hydroelectric power plant

  14. Magnetron sputtered gadolinia-doped ceria diffusion barriers for metal-supported solid oxide fuel cells

    DEFF Research Database (Denmark)

    Sønderby, Steffen; Klemensø, Trine; Christensen, Bjarke H.

    2014-01-01

    Gadolinia-doped ceria (GDC) thin films are deposited by reactive magnetron sputtering in an industrial-scale setup and implemented as barrier layers between the cathode and electrolyte in metal-based solid oxide fuel cells consisting of a metal support, an electrolyte of ZrO2 co-doped with Sc2O3...

  15. Protective effects of monomethyl fumarate at the inflamed blood-brain barrier

    NARCIS (Netherlands)

    Lim, J.L.; van der Pol, S.M.A.; Di Dio, F.; van het Hof, B.; Kooij, G.; de Vries, H.E.; van Horssen, J.

    2015-01-01

    Background: Reactive oxygen species play a key role in the pathogenesis of multiple sclerosis as they induce blood-brain barrier disruption and enhance transendothelial leukocyte migration. Thus, therapeutic compounds with antioxidant and anti-inflammatory potential could have clinical value in

  16. Biodecolorization and biodegradation of Reactive Blue by ...

    African Journals Online (AJOL)

    SERVER

    2007-06-18

    Jun 18, 2007 ... Aspergillus sp. effectively decolorized Reactive Blue and other structurally different synthetic dyes. Agitation was found to be an important ... Few chemically different dyes such as Reactive Black (75%), Reactive Yellow (70%),. Reactive Red (33%) and ..... Degradation of azo dyes by the lignin degrading ...

  17. CONTRIBUTION OF QUADRATIC RESIDUE DIFFUSERS TO EFFICIENCY OF TILTED PROFILE PARALLEL HIGHWAY NOISE BARRIERS

    Directory of Open Access Journals (Sweden)

    M. R. Monazzam ، P. Nassiri

    2009-10-01

    Full Text Available This paper presents the results of an investigation on the acoustic performance of tilted profile parallel barriers with quadratic residue diffuser (QRD tops and faces. A 2D boundary element method (BEM is used to predict the barrier insertion loss. The results of rigid and with absorptive coverage are also calculated for comparisons. Using QRD on the top surface and faces of all tilted profile parallel barrier models introduced here is found to improve the efficiency of barriers compared with rigid equivalent parallel barrier at the examined receiver positions. Applying a QRD with frequency design of 400 Hz on 5 degrees tilted parallel barrier improves the overall performance of its equivalent rigid barrier by 1.8 dB(A. Increase in the treated surfaces with reactive elements shifts the effective performance toward lower frequencies. It is found that by tilting the barriers from 0 to 10 degrees in parallel set up, the degradation effects in parallel barriers is reduced but the absorption effect of fibrous materials and also diffusivity of the quadratic residue diffuser is reduced significantly. In this case all the designed barriers have better performance with 10 degrees tilting in parallel set up. The most economic traffic noise parallel barrier which produces significantly high performance, is achieved by covering the top surface of the barrier closed to the receiver by just a QRD with frequency design of 400 Hz and tilting angle of 10 degrees. The average A-weighted insertion loss in this barrier is predicted to be 16.3 dB (A.

  18. Contribution of diffuser surfaces to efficiency of tilted T shape parallel highway noise barriers

    Directory of Open Access Journals (Sweden)

    N. Javid Rouzi

    2009-04-01

    Full Text Available Background and aimsThe paper presents the results of an investigation on the acoustic  performance of tilted profile parallel barriers with quadratic residue diffuser tops and faces.MethodsA2D boundary element method (BEM is used to predict the barrier insertion loss. The results of rigid and with absorptive coverage are also calculated for comparisons. Using QRD on the top surface and faces of all tilted profile parallel barrier models introduced here is found to  improve the efficiency of barriers compared with rigid equivalent parallel barrier at the examined  receiver positions.Results Applying a QRD with frequency design of 400 Hz on 5 degrees tilted parallel barrier  improves the overall performance of its equivalent rigid barrier by 1.8 dB(A. Increase the treated surfaces with reactive elements shifts the effective performance toward lower frequencies. It is  found that by tilting the barriers from 0 to 10 degrees in parallel set up, the degradation effects in  parallel barriers is reduced but the absorption effect of fibrous materials and also diffusivity of thequadratic residue diffuser is reduced significantly. In this case all the designed barriers have better  performance with 10 degrees tilting in parallel set up.ConclusionThe most economic traffic noise parallel barrier, which produces significantly  high performance, is achieved by covering the top surface of the barrier closed to the receiver by  just a QRD with frequency design of 400 Hz and tilting angle of 10 degrees. The average Aweighted  insertion loss in this barrier is predicted to be 16.3 dB (A.

  19. Particle beam experiments for the analysis of reactive sputtering processes in metals and polymer surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Corbella, Carles; Grosse-Kreul, Simon; Kreiter, Oliver; Arcos, Teresa de los; Benedikt, Jan; Keudell, Achim von [RD Plasmas with Complex Interactions, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum (Germany)

    2013-10-15

    A beam experiment is presented to study heterogeneous reactions relevant to plasma-surface interactions in reactive sputtering applications. Atom and ion sources are focused onto the sample to expose it to quantified beams of oxygen, nitrogen, hydrogen, noble gas ions, and metal vapor. The heterogeneous surface processes are monitored in situ by means of a quartz crystal microbalance and Fourier transform infrared spectroscopy. Two examples illustrate the capabilities of the particle beam setup: oxidation and nitriding of aluminum as a model of target poisoning during reactive magnetron sputtering, and plasma pre-treatment of polymers (PET, PP)

  20. Fabrication of submicron structures in nanoparticle/polymer composite by holographic lithography and reactive ion etching

    Science.gov (United States)

    Zhang, A. Ping; He, Sailing; Kim, Kyoung Tae; Yoon, Yong-Kyu; Burzynski, Ryszard; Samoc, Marek; Prasad, Paras N.

    2008-11-01

    We report on the fabrication of nanoparticle/polymer submicron structures by combining holographic lithography and reactive ion etching. Silica nanoparticles are uniformly dispersed in a (SU8) polymer matrix at a high concentration, and in situ polymerization (cross-linking) is used to form a nanoparticle/polymer composite. Another photosensitive SU8 layer cast upon the nanoparticle/SU8 composite layer is structured through holographic lithography, whose pattern is finally transferred to the nanoparticle/SU8 layer by the reactive ion etching process. Honeycomb structures in a submicron scale are experimentally realized in the nanoparticle/SU8 composite.

  1. The reactivity of natural phenols

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, Evgenii T; Denisova, Taisa G [Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region (Russian Federation)

    2009-11-30

    This review surveys physicochemical data of natural phenols published in recent years. The structures of some compounds of this class are given. A complete set of the dissociation energies of the O-H bonds for 71 natural phenols is presented. Kinetic characteristics of the reactions of peroxyl, alkyl and thiyl radicals with natural phenols, exchange reactions of phenoxyl radicals with phenols and reactions of phenoxyl radicals with lipids, hydroperoxides, cysteine and ascorbic acid are compiled and described systematically. The reactivity of phenols in radical reactions and the factors that determine the reactivity (the enthalpy of reaction, triplet repulsion, the electronegativities of atoms at the reaction centre, the presence of pi-electrons adjacent to the reaction centre, the radii of atoms at the reaction centre, steric hindrance, the force constants of the reacting bonds) are discussed. An important role of hydrogen bonding between surrounding molecules and the OH groups of natural phenols in decreasing their reactivities is noted.

  2. In Situ TEM Electrical Measurements

    DEFF Research Database (Denmark)

    Canepa, Silvia; Alam, Sardar Bilal; Ngo, Duc-The

    2016-01-01

    understanding of complex physical and chemical interactions in the pursuit to optimize nanostructure function and device performance. Recent developments of sample holder technology for TEM have enabled a new field of research in the study of functional nanomaterials and devices via electrical stimulation...... influence the sample by external stimuli, e.g. through electrical connections, the TEM becomes a powerful laboratory for performing quantitative real time in situ experiments. Such TEM setups enable the characterization of nanostructures and nanodevices under working conditions, thereby providing a deeper...... and measurement of the specimen. Recognizing the benefits of electrical measurements for in situ TEM, many research groups have focused their effort in this field and some of these methods have transferred to ETEM. This chapter will describe recent advances in the in situ TEM investigation of nanostructured...

  3. NbCN Josephson junctions with AlN barriers

    International Nuclear Information System (INIS)

    Thomasson, S.L.; Murduck, J.M.; Chan, H.

    1991-01-01

    This paper reports on niobium carbonitride (NbCN) Josephson circuits which operate over a wider temperature range than either niobium or niobium nitride circuits. Higher operating temperature places NbCN technology more comfortably within the range of closed cycle refrigerators, a key factor in aerospace applications. We have fabricated tunnel junctions from NbCN films with transition temperatures up to 18 Kelvin. High quality NbCN tunnel junction fabrication generally requires low stress films with roughness less than the barrier thickness (∼20 Angstrom). We have developed scanning tunneling microscopy as a tool for measuring and optimizing film smoothness. Junctions formed in situ with AIN tunneling barriers show reproducible I-V characteristics

  4. Energy barriers in patterned media

    NARCIS (Netherlands)

    de Vries, Jeroen

    2013-01-01

    Due to the fact that thermal activation aids in overcoming the energy barrier, the required field for reversal varies from instance to instance for the same island. This thermally induced switching field distribution can be used to determine the difference in energy barrier of magneticallyweak and

  5. Simulating complex noise barrier reflections

    NARCIS (Netherlands)

    Eerden, F.J.M. van der; Lutgendorf, D.; Roo, F. de

    2011-01-01

    Within the EU FP7 QUIESST project, QUIeting the Environment for a Sustainable Surface Transport, a test method is being developed for the reflectivity of noise barriers. The method needs to account for a complex shape of barriers and the use of various types of absorbing materials. The performance

  6. BARRIERS OF STRATEGIC ALLIANCES ORGANIZATION

    Directory of Open Access Journals (Sweden)

    Vladislav M. Sannikov

    2014-01-01

    Full Text Available General barriers of organization of different types of strategic alliances have beenconsidered in the article. There are several recommendations for overcoming themin cases of international alliances, and in case of work in one state. The article also identified goals and tasks of single coordination center of alliance to overcome organization barriers.

  7. Treatment of dyeing wastewater including reactive dyes (Reactive ...

    African Journals Online (AJOL)

    Fungal growth was not observed at pH 2. Maximum fungal decolourisation ocurred at pH 3 for anionic reactive dyes (RR, RBB, RB) and pH 6 for cationic MB dye. The fungal dye bioremoval was associated with the surface charge of the fungus due to electrostatic interactions. Growing R. arrhizus strain decolourised 100% of ...

  8. Direct measurement of NO3 radical reactivity in a boreal forest

    Science.gov (United States)

    Liebmann, Jonathan; Karu, Einar; Sobanski, Nicolas; Schuladen, Jan; Ehn, Mikael; Schallhart, Simon; Quéléver, Lauriane; Hellen, Heidi; Hakola, Hannele; Hoffmann, Thorsten; Williams, Jonathan; Fischer, Horst; Lelieveld, Jos; Crowley, John N.

    2018-03-01

    We present the first direct measurements of NO3 reactivity (or inverse lifetime, s-1) in the Finnish boreal forest. The data were obtained during the IBAIRN campaign (Influence of Biosphere-Atmosphere Interactions on the Reactive Nitrogen budget) which took place in Hyytiälä, Finland during the summer/autumn transition in September 2016. The NO3 reactivity was generally very high with a maximum value of 0.94 s-1 and displayed a strong diel variation with a campaign-averaged nighttime mean value of 0.11 s-1 compared to a daytime value of 0.04 s-1. The highest nighttime NO3 reactivity was accompanied by major depletion of canopy level ozone and was associated with strong temperature inversions and high levels of monoterpenes. The daytime reactivity was sufficiently large that reactions of NO3 with organic trace gases could compete with photolysis and reaction with NO. There was no significant reduction in the measured NO3 reactivity between the beginning and end of the campaign, indicating that any seasonal reduction in canopy emissions of reactive biogenic trace gases was offset by emissions from the forest floor. Observations of biogenic hydrocarbons (BVOCs) suggested a dominant role for monoterpenes in determining the NO3 reactivity. Reactivity not accounted for by in situ measurement of NO and BVOCs was variable across the diel cycle with, on average, ≈ 30 % missing during nighttime and ≈ 60 % missing during the day. Measurement of the NO3 reactivity at various heights (8.5 to 25 m) both above and below the canopy, revealed a strong nighttime, vertical gradient with maximum values closest to the ground. The gradient disappeared during the daytime due to efficient vertical mixing.

  9. Memory reactivation improves visual perception.

    Science.gov (United States)

    Amar-Halpert, Rotem; Laor-Maayany, Rony; Nemni, Shlomi; Rosenblatt, Jonathan D; Censor, Nitzan

    2017-10-01

    Human perception thresholds can improve through learning. Here we report findings challenging the fundamental 'practice makes perfect' basis of procedural learning theory, showing that brief reactivations of encoded visual memories are sufficient to improve perceptual discrimination thresholds. Learning was comparable to standard practice-induced learning and was not due to short training per se, nor to an epiphenomenon of primed retrieval enhancement. The results demonstrate that basic perceptual functions can be substantially improved by memory reactivation, supporting a new account of perceptual learning dynamics.

  10. Triplex in-situ hybridization

    Science.gov (United States)

    Fresco, Jacques R.; Johnson, Marion D.

    2002-01-01

    Disclosed are methods for detecting in situ the presence of a target sequence in a substantially double-stranded nucleic acid segment, which comprises: a) contacting in situ under conditions suitable for hybridization a substantially double-stranded nucleic acid segment with a detectable third strand, said third strand being capable of hybridizing to at least a portion of the target sequence to form a triple-stranded structure, if said target sequence is present; and b) detecting whether hybridization between the third strand and the target sequence has occured.

  11. Reactive dual magnetron sputtering for large area application

    International Nuclear Information System (INIS)

    Struempfel, J.

    2002-01-01

    Production lines for large area coating demand high productivity of reactive magnetron sputtering processes. Increased dynamic deposition rates for oxides and nitrides were already obtained by using of highly powered magnetrons in combination with advanced sputter techniques. However, besides high deposition rates the uniformity of such coatings has to be carefully considered. First the basics of reactive sputtering processes and dual magnetron sputtering are summarized. Different methods for process stabilization and control are commonly used for reactive sputtering. The Plasma Emission Monitor (PE M) offers the prerequisite for fast acting process control derived from the in-situ intensity measurements of a spectral line of the sputtered target material. Combined by multiple Plasma Emission Monitor control loops segmented gas manifolds are able to provide excellent thin film uniformity at high deposition rates. The Dual Magnetron allows a broad range of processing by different power supply modes. Medium frequency, DC and pulsed DC power supplies can be used for high quality layers. Whereas the large area coating of highly isolating layers like TiO 2 or SiO 2 is dominated by MF sputtering best results for coating with transparent conductive oxides are obtained by dual DC powering of the dual magnetron arrangement. (Author)

  12. Neutrophil-Mediated Delivery of Therapeutic Nanoparticles across Blood Vessel Barrier for Treatment of Inflammation and Infection

    OpenAIRE

    Chu, Dafeng; Gao, Jin; Wang, Zhenjia

    2015-01-01

    Endothelial cells form a monolayer in lumen of blood vessels presenting a great barrier for delivery of therapeutic nanoparticles (NPs) into extravascular tissues where most diseases occur, such as inflammation disorders and infection. Here, we report a strategy for delivering therapeutic NPs across this blood vessel barrier by nanoparticle in situ hitchhiking activated neutrophils. Using intravital microscopy of TNF-α-induced inflammation of mouse cremaster venules and a mouse model of acute...

  13. Tunnelling without barriers

    International Nuclear Information System (INIS)

    Lee, K.

    1987-01-01

    The evolution in flat and curved space-time of quantum fields in theories with relative flat potential and its consequences are considered. It is shown that bubble nucleation, a quantum mechanical tunnelling process, may occur in flat space-time, having a bounce solution, even if V(phi) has no barrier. It is shown that bubble nucleation can also occur in curved space-time even though there is no bounce solution in the standard formalism for the bubble nucleation rate in curved space-time. Additionally, bubbles can nucleate during the slow rolling period on the potential in flat and curved space-time, in this case also there is no bounce solution. It is known in the new inflationary scenario that energy density perturbations caused by quantum fluctuations of the scalar field can satisfy the presently observed bounds on density perturbations. Bubble nucleation during the slow rolling period also gives rise to density perturbations. For a model potential density perturbations by bubbles are calculated at the horizon reentering. By applying the bound from the almost isotropic microwave black body radiation on these density perturbations, a constraint on the model potential is obtained. Finally, some further implications on the galaxy formation and applications in more realistic potential are discussed

  14. Development of engineered barrier

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Kwan Sik; Cho, Won Jin; Lee, Jae Owan; Kim, Seung Soo; Kang, Mu Ja

    1999-03-01

    Engineered barrier development was carried out into the three research fields : waste form, disposal container, and buffer. The waste form field dealt with long-term leaching tests with borosilicate waste glasses surrounded by compacted bentonite. The leach rate decreased with increasing time, and was higher for the waste specimen rich in U and Na. In the container field, preliminary concepts of disposal containers were recommended by conducting structural analysis, thermal analysis, and shielding analysis, and major properties of stainless steel, copper, and titanium as a container material were surveyed. The sensitization degrees of SUS 316 and316L were lower than those of SUS 304 and 304L, respectively. The crevice corrosion of sensitized stainless steel was sensitive to the content of salt. Researches into the buffer included establishment of its performance criteria followed by investigating major properties of buffer using potential material in Korea. Experiments were made for measuring hydraulic conductivities, swelling properties, mechanical properties, thermal conductivities, pore-water chemistry properties, and adsorption properties was also investigated. (author)

  15. Omnidirectional ventilated acoustic barrier

    Science.gov (United States)

    Zhang, Hai-long; Zhu, Yi-fan; Liang, Bin; Yang, Jing; Yang, Jun; Cheng, Jian-chun

    2017-11-01

    As an important problem in acoustics, sound insulation finds applications in a great variety of situations. In the existing schemes, however, there has always been a trade-off between the thinness of sound-insulating devices and their ventilating capabilities, limiting their potentials in the control of low-frequency sound in high ventilation environments. Here, we design and experimentally implement an omnidirectional acoustic barrier with a planar profile, subwavelength thickness ( 0.18 λ ), yet high ventilation. The proposed mechanism is based on the interference between the resonant scattering of discrete states and the background scattering of continuous states which induces a Fano-like asymmetric transmission profile. Benefitting from the binary-structured design of the coiled unit and hollow pipe, it maximally simplifies the design and fabrication while ensuring the ventilation for all the non-resonant units with open tubes. The simulated and measured results agree well, showing the effectiveness of our proposed mechanism to block low frequency sound coming from various directions while allowing 63% of the air flow to pass. We anticipate our design to open routes to design sound insulators and to enable applications in traditionally unattainable cases such as those calling for noise reduction and cooling simultaneously.

  16. Alternative geochemical barrier materials

    International Nuclear Information System (INIS)

    1991-07-01

    Previous investigations of the effects of neutralization and reduction on uranium mill tailings pore fluids by the Technical Support Contractor indicated that arsenic, selenium, and molybdenum continue to remain in solution in all but reducing conditions. These hazardous constituents are present in groundwaters as oxyanions and, therefore, are not expected to be removed by adsorption into clays and most other soil constituents. It was decided to investigate the attenuation capacity of two commonly available crystalline iron oxides, taconite and scoria, and a zeolite, a network aluminosilicate with a cage structure. Columns of the candidate materials were exposed to solutions of individual constituents, including arsenic, molybdenum, selenium, and, uranium, and to the spiked tailings pore fluid from the Bodo Canyon disposal cell near Durango, Colorado. In addition to the single material columns, a homogeneous blend of the three materials and layers of the materials were exposed to spiked tailings pore fluids. The results of these experiments indicate that with the exception of molybdenum, the constituents of concern are attenuated by the taconite; however, they are not sufficiently attenuated to meet the groundwater protection standards applicable to the UMTRA Project. Therefore, the candidate barrier materials did not prove to be useful to the UMTRA Project for the cleanup of groundwaters

  17. Mobilitet, barrierer & muligheder

    DEFF Research Database (Denmark)

    Petersen, Mimi

    2011-01-01

    stereotypering. På den ene side peger udsagn fra de unge drenge på en oplevelse af at blive kriminaliseret i kraft af deres køn (det maskuline kombineret med at have en anden hudfarve). Og de unge piger oplever, at de udover at blive kategoriseret som ”indvandrere” også bliver kategoriseret som passive, umyndige...... som en vej ud af irakiske Kurdistan, men ikke tilbage til Danmark. Drengene fra familier med bedre økonomiske ressourcer giver udtryk for, ønske om at rejse til andre lande. På grund af begrænsede sproglige kompetencer oplever hovedparten af de unge (både i Danmark og i irakiske Kurdistan) barrierer i...... har planer for at flytte fra Kurdistan. De har dansk statsborgerskab, men de vil ikke tilbage til Danmark. I de fortællinger, som afhandlingen bygger på, er det tydeligt at samspillet mellem flere sociale dimensioner, spiller ind på de unges selvforståelse, tilhørsforhold, erfaringer og deres valg af...

  18. Development of engineered barrier

    International Nuclear Information System (INIS)

    Chun, Kwan Sik; Cho, Won Jin; Lee, Jae Owan; Kim, Seung Soo; Kang, Mu Ja

    1999-03-01

    Engineered barrier development was carried out into the three research fields : waste form, disposal container, and buffer. The waste form field dealt with long-term leaching tests with borosilicate waste glasses surrounded by compacted bentonite. The leach rate decreased with increasing time, and was higher for the waste specimen rich in U and Na. In the container field, preliminary concepts of disposal containers were recommended by conducting structural analysis, thermal analysis, and shielding analysis, and major properties of stainless steel, copper, and titanium as a container material were surveyed. The sensitization degrees of SUS 316 and 316L were lower than those of SUS 304 and 304L, respectively. The crevice corrosion of sensitized stainless steel was sensitive to the content of salt. Researches into the buffer included establishment of its performance criteria followed by investigating major properties of buffer using potential material in Korea. Experiments were made for measuring hydraulic conductivities, swelling properties, mechanical properties, thermal conductivities, pore-water chemistry properties, and adsorption properties was also investigated. (author)

  19. Combined TPRx, in situ GISAXS and GIXAS studies of model semiconductor-supported platinumcatalysts in the hydrogenation of ethene

    NARCIS (Netherlands)

    Wyrzgol, S.A.; Schäfer, S.; Lee, S.; Lee, B.; Di Vece, M.; Li, Xuebing; Seifert, S.; Winans, R.E.; Stutzmann, M.; Lercher, J.A.; Vajda, S.

    2010-01-01

    The preparation, characterization and catalytic reactivity of a GaN supported Ptcatalyst in the hydrogenation of ethene are presented in this feature article, highlighting the use of in situ characterization of the material properties during sample handling and catalysis by combining temperature

  20. Microstructure of in-situ Synthesized (TiB+TiC)/Ti Composites Prepared by Hot-pressing

    Institute of Scientific and Technical Information of China (English)

    Zhenzhu ZHENG; Lin GENG; Honglin WANG; Weimin ZHOU; Hongyu XU

    2003-01-01

    In-situ 5 vol.pct TiB whiskers and TiC particulates reinforced Ti composites were fabricated by blending Ti powderand B4C particulates followed by reactive hot-pressing. The microstructure of the composites was investigated byusing differential scanning c

  1. Chelator induced phytoextraction and in situ soil washing of Cu

    International Nuclear Information System (INIS)

    Kos, Bostjan; Lestan, Domen

    2004-01-01

    In a soil column experiment, we investigated the effect of 5 mmol kg -1 soil addition of citric acid, ethylenediamine tetraacetate (EDTA), diethylenetriamine-pentaacetate (DTPA) and [S,S]-stereoisomer of ethylenediamine-disuccinate (EDDS) on phytoextraction of Cu from a vineyard soil with 162.6 mg kg -1 Cu, into the test plant Brassica rapa var. pekinensis. We also examined the use of a horizontal permeable barrier, composed of layers of nutrient enriched sawdust and apatite, for reduction of chelator induced Cu leaching. The addition of all chelators, except citric acid, enhanced Cu mobility and caused leaching of 19.5-23% of initial total Cu from the soil column. However, Cu plant uptake did not increase accordingly; the most effective was the EDDS treatment, in which plant Cu concentration reached 37.8±1.3 mg kg -1 Cu and increased by 3.3-times over the control treatment. The addition of none of the chelators in the concentration range from 5 to 15 mmol kg -1 exerted any toxic effect on respiratory soil microorganisms. When EDDS was applied into the columns with horizontal permeable barriers, only 0.53±0.32% of the initial total Cu was leached. Cu (36.7%) was washed from the 18 cm soil layer above the barrier and accumulated in the barrier. Our results indicate that rather than for a reduction of Cu leaching during rather ineffective chelate induced Cu phytoextraction, horizontal permeable barriers could be more effective in a new remediation technique of controlled in situ soil washing of Cu with biodegradable chelates

  2. Hydroxyl radical reactivity with diethylhydroxylamine

    International Nuclear Information System (INIS)

    Gorse, R.A. Jr.; Lii, R.R.; Saunders, B.B.

    1977-01-01

    Diethylhydroxylamine (DEHA) reacts with gas-phase hydroxyl radicals on every third collision, whereas the corresponding reaction in aqueous solution is considerably slower. The high gas-phase reactivity explains the predicted inhibitory effect of DEHA in atmospheric smog processes. Results from the studies in the aqueous phase are helpful in predicting the mechanism of the reaction of DEHA with hydroxyl radicals

  3. Backup passive reactivity shutdown systems

    International Nuclear Information System (INIS)

    Ashurko, Yu.M.; Kuznetsov, L.A.

    1996-01-01

    The paper reviews self-actuated shutdown systems (SASSs) for liquid metal-cooled fast reactors (LMFRs). Principles of operation are described, advantages and drawbacks analyzed, and prospects for application in advanced fast reactors examined. Ways to improve reactor self-protection via reactivity feedback amplification and related problems are discussed. (author). 9 refs, 12 figs

  4. Insertion material for controlling reactivity

    International Nuclear Information System (INIS)

    Baba, Iwao.

    1994-01-01

    Moderators and a group of suspended materials having substantially the same density as the moderator are sealed in a hollow rod vertically inserted to a fuel assembly. Specifically, the group of suspended materials is adapted to have a density changing stepwise from density of the moderator at the exit temperature of the reactor core to that at the inlet temperature of the reactor core. Reactivity is selectively controlled for a portion of high power and a portion of high reactivity by utilizing the density of the moderator and the distribution of the density. That is, if the power distribution is flat, the density of the moderators changes at a constant rate over the vertical direction of the reactor core and the suspended materials stay at a portion of the same density, to form a uniform distribution. Further, upon reactor shutdown, since the liquid temperature of the moderators is lowered and the density is increased, all of beads are collected at the upper portion to remove water at the upper portion of the reactor core of low burnup degree thereby selectively controlling the reactivity at a portion of high power and a portion of high reactivity. (N.H.)

  5. Treating water-reactive wastes

    International Nuclear Information System (INIS)

    Lussiez, G.W.

    1993-01-01

    Some compounds and elements, such as lithium hydride, magnesium, sodium, and calcium react violently with water to generate much heat and produce hydrogen. The hydrogen can ignite or even form an explosive mixture with air. Other metals may react rapidly only if they are finely divided. Some of the waste produced at Los Alamos National Laboratory includes these metals that are contaminated with radioactivity. By far the greatest volume of water-reactive waste is lithium hydride contaminated with depleted uranium. Reactivity of the water-reactive wastes is neutralized with an atmosphere of humid nitrogen, which prevents the formation of an explosive mixture of hydrogen and air. When we adjust the temperature of the nitrogen and the humidifier, the nitrogen can be more or less humid, and the rate of reaction can be adjusted and controlled. Los Alamos has investigated the rates of reaction of lithium hydride as a function of the temperature and humidity, and, as anticipated, they in with in temperature and humidity. Los Alamos will investigate other variables. For example, the nitrogen flow will be optimized to conserve nitrogen and yet keep the reaction rates high. Reaction rates will be determined for various forms of lithium waste, from small chips to powder. Bench work will lead to the design of a skid-mounted process for treating wastes. Other water-reactive wastes will also be investigated

  6. Reactive surfactants in heterophase polymerization

    NARCIS (Netherlands)

    Guyot, A.; Tauer, K.; Asua, J.M.; Es, van J.J.G.S.; Gauthier, C.; Hellgren, A.C.; Sherrington, D.C.; Montoya-Goni, A.; Sjöberg, M.; Sindt, O.; Vidal, F.F.M.; Unzue, M.; Schoonbrood, H.A.S.; Schipper, E.T.W.M.; Lacroix-Desmazes, P.

    1999-01-01

    This paper summarizes the work carried out during 3 years in a Network of the program "Human Capital and Mobility" of the European Union CHRX 93-0159 entitled "Reactive surfactants in heterophase polymerization for high performance polymers". A series of about 25 original papers will be published in

  7. Backup passive reactivity shutdown systems

    Energy Technology Data Exchange (ETDEWEB)

    Ashurko, Yu M; Kuznetsov, L A [Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    1996-12-01

    The paper reviews self-actuated shutdown systems (SASSs) for liquid metal-cooled fast reactors (LMFRs). Principles of operation are described, advantages and drawbacks analyzed, and prospects for application in advanced fast reactors examined. Ways to improve reactor self-protection via reactivity feedback amplification and related problems are discussed. (author). 9 refs, 12 figs.

  8. Quantitative reactive modeling and verification.

    Science.gov (United States)

    Henzinger, Thomas A

    Formal verification aims to improve the quality of software by detecting errors before they do harm. At the basis of formal verification is the logical notion of correctness , which purports to capture whether or not a program behaves as desired. We suggest that the boolean partition of software into correct and incorrect programs falls short of the practical need to assess the behavior of software in a more nuanced fashion against multiple criteria. We therefore propose to introduce quantitative fitness measures for programs, specifically for measuring the function, performance, and robustness of reactive programs such as concurrent processes. This article describes the goals of the ERC Advanced Investigator Project QUAREM. The project aims to build and evaluate a theory of quantitative fitness measures for reactive models. Such a theory must strive to obtain quantitative generalizations of the paradigms that have been success stories in qualitative reactive modeling, such as compositionality, property-preserving abstraction and abstraction refinement, model checking, and synthesis. The theory will be evaluated not only in the context of software and hardware engineering, but also in the context of systems biology. In particular, we will use the quantitative reactive models and fitness measures developed in this project for testing hypotheses about the mechanisms behind data from biological experiments.

  9. Separability of local reactivity descriptors

    Indian Academy of Sciences (India)

    Unknown

    Abstract. The size-dependence of different local reactivity descriptors of dimer A2 and AB type of sys- tems is discussed. We derive analytic results of these descriptors calculated using finite difference approximation. In particular, we studied Fukui functions, relative electrophilicity and relative nucleo- philicity, local softness ...

  10. The reduction of optimal heat treatment temperature and critical current density enhancement of ex situ processed MgB2 tapes using ball milled filling powder

    Science.gov (United States)

    Fujii, Hiroki; Iwanade, Akio; Kawada, Satoshi; Kitaguchi, Hitoshi

    2018-01-01

    The optimal heat treatment temperature (Topt) at which best performance in the critical current density (Jc) property at 4.2 K is obtained is influenced by the quality or reactivity of the filling powder in ex situ processed MgB2 tapes. Using a controlled fabrication process, the Topt decreases to 705-735 °C, which is lower than previously reported by more than 50 °C. The Topt decrease is effective to suppress both the decomposition of MgB2 and hence the formation of impurities such as MgB4, and the growth of crystallite size which decreases upper critical filed (Hc2). These bring about the Jc improvement and the Jc value at 4.2 K and 10 T reaches 250 A/mm2. The milling process also decreases the critical temperature (Tc) below 30 K. The milled powder is easily contaminated in air and thus, the Jc property of the contaminated tapes degrades severely. The contamination can raise the Topt by more than 50 °C, which is probably due to the increased sintering temperature required against contaminated surface layer around the grains acting as a barrier.

  11. Horonobe underground research laboratory project. The plan for the in-situ experiments in Phase 2 and Phase 3 in/around URL

    International Nuclear Information System (INIS)

    Matsui, Hiroya

    2005-09-01

    This report describes for preliminary research plan in Phase 2 and Phase 3 taken into consideration of expected geological environment at location of URL based on the results of the investigations until FY 2003/2004. Duration of construction phase and total cost are considered as important factors for planning as well. The below items are planned for in-situ experiments in Phase 2 and Phase 3 in/around URL are planning. Phase 2. (In-situ experiments for understanding of geological environment) Geological survey at tunnel. Inflow measurement in shafts. Water pressure monitoring and groundwater sampling around shafts during excavation of URL. Investigation for EDZ around shafts. Stress measurement on support. Detail investigations for geological environment around drifts. Excavation disturbance experiment in a drift. Investigation for desaturation zone and REDOX condition around drifts. (Engineered barrier system) In-situ experiment on low-alkali concrete. In-situ experiment for gas migration in engineering barrier system. Phase 3. (In-situ experiments for understanding of geological environment) EDZ experiment for stress interference. Investigation of long-term behavior of EDZ around drifts. Detail investigation on fault/fault zone. Monitoring for the change of geological environment at earthquake. Backfill test in boreholes. (Engineered barrier system) T-H-M-C experiment. In-situ experiment for corrosion of overpack. Investigation of the influence of a concrete to engineering barrier system and geological environment. In-situ experiment for interference between backfill material and geological environment. Backfill test in a drift. (Safety assessment) Tracer tests in engineering barrier system, natural barrier and fault/fault zone. (author)

  12. Design and optimization of hybrid ex situ/in situ steam generation recovery processes for heavy oil and bitumen

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X.; Gates, I.D. [Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering; Larter, S.R. [Calgary Univ., AB (Canada). Dept. of Geoscience]|[Alberta Ingenuity Centre for In Situ Energy, Edmonton, AB (Canada)

    2008-10-15

    Hybrid steam-air based oil recovery techniques were investigated using advanced 3-D reactive thermal reservoir simulations. The hybrid techniques combined ex situ steam and in situ steam generation processes in order to raise efficiency, lower natural gas consumption, and reduce gas emissions. The steam-air based processes used 70 per cent of the energy of conventional steam assisted gravity drainage (SAGD) techniques to recover the same amount of oil. The process used an SAGD wellpair arrangement, where steam and air were injected through the top injection well. The kinetic parameters used in the study were developed by history matching a combustion tube experiments with Athabasca bitumen conducted to predict cumulative bitumen and gas production volumes and compositions. A total of 6 SAGD and 6 in situ combustion simulations were conducted with steam oxygen volume ratios set at 50 per cent steam and 50 per cent oxygen. Various case studies were considered over a 5 year period. Carbon dioxide (CO{sub 2}) emissions were also measured as well as cumulative water and methane consumption rates. Results of the study were used to develop an optimized hybrid operation that consisted of a SAGD well pair arrangement operating with cyclic steam-oxygen injection at high pressures. It was concluded that the high pressure operation increased the steam partial pressure within the reservoir and enhanced combustion performance. A 29 per cent improvement in the cumulative energy to oil ratio was obtained. 23 refs., 2 tabs., 9 figs.

  13. In situ solution mining technique

    International Nuclear Information System (INIS)

    Learmont, R.P.

    1978-01-01

    A method of in situ solution mining is disclosed in which a primary leaching process employing an array of 5-spot leaching patterns of production and injection wells is converted to a different pattern by converting to injection wells all the production wells in alternate rows

  14. 'In situ' expanded graphite extinguishant

    International Nuclear Information System (INIS)

    Cao Qixin; Shou Yuemei; He Bangrong

    1987-01-01

    This report is concerning the development of the extinguishant for sodium fire and the investigation of its extinguishing property. The experiment result shows that 'in situ' expanded graphite developed by the authors is a kind of extinguishant which extinguishes sodium fire quickly and effectively and has no environment pollution during use and the amount of usage is little

  15. In Situ Cardiovascular Tissue Engineering

    NARCIS (Netherlands)

    Talacua, H

    2016-01-01

    In this thesis, the feasibility of in situ TE for vascular and valvular purposes were tested with the use of different materials, and animal models. First, the feasibility of a decellularized biological scaffold (pSIS-ECM) as pulmonary heart valve prosthesis is examined in sheep (Chapter 2). Next,

  16. ROS-activated calcium signaling mechanisms regulating endothelial barrier function.

    Science.gov (United States)

    Di, Anke; Mehta, Dolly; Malik, Asrar B

    2016-09-01

    Increased vascular permeability is a common pathogenic feature in many inflammatory diseases. For example in acute lung injury (ALI) and its most severe form, the acute respiratory distress syndrome (ARDS), lung microvessel endothelia lose their junctional integrity resulting in leakiness of the endothelial barrier and accumulation of protein rich edema. Increased reactive oxygen species (ROS) generated by neutrophils (PMNs) and other inflammatory cells play an important role in increasing endothelial permeability. In essence, multiple inflammatory syndromes are caused by dysfunction and compromise of the barrier properties of the endothelium as a consequence of unregulated acute inflammatory response. This review focuses on the role of ROS signaling in controlling endothelial permeability with particular focus on ALI. We summarize below recent progress in defining signaling events leading to increased endothelial permeability and ALI. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Tritium/hydrogen barrier development

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Simonen, E.P.; Kalinen, G.; Terlain, A.

    1994-06-01

    A review of hydrogen permeation barriers that can be applied to structural metals used in fusion power plants is presented. Both implanted and chemically available hydrogen isotopes must be controlled in fusion plants. The need for permeation barriers appears strongest in Li17-Pb blanket designs, although barriers also appear necessary for other blanket and coolant systems. Barriers that provide greater than a 1000 fold reduction in the permeation of structural metals are desired. In laboratory experiments, aluminide and titanium ceramic coatings provide permeation reduction factors, PRFS, from 1000 to over 100,000 with a wide range of scatter. The rate-controlling mechanism for hydrogen permeation through these barriers may be related to the number and type of defects in the barriers. Although these barriers appear robust and resistant to liquid metal corrosion, irradiation tests which simulate blanket environments result in very low PRFs in comparison to laboratory experiments, i.e., <150. It is anticipated from fundamental research activities that the REID enhancement of hydrogen diffusion in oxides may contribute to the lower permeation reduction factors during in-reactor experiments

  18. Enershield : energy saving air barriers

    Energy Technology Data Exchange (ETDEWEB)

    Hallihan, D. [Enershield Industries Ltd., Edmonton, AB (Canada)

    2008-07-01

    Enershield Industries is a leader in air barrier technology and provides solution for the Canadian climate. This presentation described the advantages of air barriers and the impact of rising energy costs. An air barrier is used to separate areas of differing environments and makes existing building systems more efficient. This presentation discussed how an air barrier works. It also identified how Enershield Industries calculates energy savings. It described air barrier applications and those who use barrier technology. These include the commercial and industrial sector as well as the personnel and retail sector. Barrier technology can be used for cold storage; vehicle and equipment washes; food processing; and environmental separation. Features and benefits such as the ability to create seal, acoustic insulation, and long term durability were also discussed. Last, the presentation addressed model selection and design criteria issues. Design criteria that were presented included a discussion of acoustic installation, articulating nozzles, scroll cased fans, and structural frame. Other design criteria presented were galvanized frames, telescopic sliders, and off the shelf parts. It was concluded that the ability to reduce energy consumption and enhance employee/client comfort is beneficial to the employer as well as to the employee. figs.

  19. Reactive Coevaporation Synthesis and Characterization of SrTiO3 Thin Films

    Science.gov (United States)

    Yamaguchi, Hiromu; Matsubara, Shogo; Miyasaka, Yoichi

    1991-09-01

    SrTiO3 thin films were prepared by the reactive coevaporation method, where the Ti and Sr metals were evaporated in oxygen ambient with an E-gun and K-cell, respectively. A uniform depth profile in composition was achieved by altering the Ti evaporation rate according to the Sr evaporation rate change. A typical dielectric constant of 170 was measured on films of 75 nm in thickness. The in-situ annealing in oxygen plasma reduced the leakage current.

  20. Morphogenesis of polycrystalline dendritic patterns from evaporation of a reactive nanofluid sessile drop

    Science.gov (United States)

    Wu, Hua; Briscoe, Wuge H.

    2018-04-01

    We report polycrystalline residual patterns with dendritic micromorphologies upon fast evaporation of a mixed-solvent sessile drop containing reactive ZnO nanoparticles. The molecular and particulate species generated in situ upon evaporative drying collude with and modify the Marangoni solvent flows and Bénard-Marangoni instabilities, as they undergo self-assembly and self-organization under conditions far from equilibrium, leading to the ultimate hierarchical central cellular patterns surrounded by a peripheral coffee ring upon drying.