WorldWideScience

Sample records for situ oil droplet

  1. Self-propelled oil droplets consuming "fuel" surfactant

    DEFF Research Database (Denmark)

    Toyota, Taro; Maru, Naoto; Hanczyc, Martin M

    2009-01-01

    A micrometer-sized oil droplet of 4-octylaniline containing 5 mol % of an amphiphilic catalyst exhibited a self-propelled motion, producing tiny oil droplets, in an aqueous dispersion of an amphiphilic precursor of 4-octylaniline. The tiny droplets on the surface of the self-propelled droplet wer...

  2. Experimental investigation of flash pyrolysis oil droplet combustion

    DEFF Research Database (Denmark)

    Ibrahim, Norazana; Jensen, Peter A.; Dam-Johansen, Kim

    2013-01-01

    at a temperature ranging between 1000 and 1400°C with an initial gas velocity of 1.6 m/s and oxygen concentration of 3%. The evolution of combustion of bio-oil droplets was recorded by a digital video camera. It was observed that the combustion behaviour of pyrolysis oil droplet differ from the heavy oil in terms......The aim of this work is to investigate and compare the combustion behaviour of a single droplet of pyrolysis oil derived from wheat straw and heavy fossil oil in a single droplet combustion chamber. The initial oil droplet diameters were in between 500 μm to 2500 μm. The experiments were performed...

  3. In Situ Raman Spectroscopic Observations of Gas-Saturated Rising Oil droplets: Simulation with Decane as an Oil-Equivalent Substitute

    Science.gov (United States)

    Peltzer, E. T.; Walz, P. M.; Brewer, P. G.

    2016-02-01

    Oil droplets rising from the sea floor, whether from seeps or well leakage, contain very large quantities of dissolved gas that profoundly affects their density and critical oil-water interfacial characteristics. The primary dissolved gas is methane which may be up to 30% of the molar volume. This can create a hydrate skin as the methane gas is shed from the oil as it rises through the water column, thus decreasing in pressure and increasing in temperature, and steadily changing the rising droplet buoyancy. We have explored this phenomenon by executing controlled ROV based experiments with a "bubble cup" technique in which a small volume of gas saturated decane (saturated with pure methane, a mix of methane and nitrogen , or a mix of methane and CO2) is interrogated by laser Raman spectroscopy. The use of decane as an oil "substitute" is required since natural oil samples are highly fluorescent due to the presence of polycyclic aromatic hydrocarbons. We have devised Matlab techniques for extracting the spectroscopic dissolved methane signal from the thicket of decane peaks that surround it. We have directly observed the rate at which gases are lost from the "oil" per unit area at depths in the water column that are both within and outside the hydrate forming phase boundary. We have compared the behavior of both a non-hydrate forming dissolved gas (nitrogen) with CO2 where the hydrate phase boundary is at significantly shallower depth. The results indicate complex interfacial behavior and physical chemistry. We did not observe direct gas bubble formation on the decane outer surface but did observe gas bubble formation within the oil droplets as they rose through the water column. Because there are significant energy barriers for homogeneous bubble formation within the decane phase, we took this as evidence of significant gas super-saturation within the oil droplet. The gas loss rates increased significantly in all cases when the hydrate phase boundary was crossed.

  4. Size Distribution and Dispersion of Droplets Generated by Impingement of Breaking Waves on Oil Slicks

    Science.gov (United States)

    Li, C.; Miller, J.; Wang, J.; Koley, S. S.; Katz, J.

    2017-10-01

    This laboratory experimental study investigates the temporal evolution of the size distribution of subsurface oil droplets generated as breaking waves entrain oil slicks. The measurements are performed for varying wave energy, as well as large variations in oil viscosity and oil-water interfacial tension, the latter achieved by premixing the oil with dispersant. In situ measurements using digital inline holography at two magnifications are applied for measuring the droplet sizes and Particle Image Velocimetry (PIV) for determining the temporal evolution of turbulence after wave breaking. All early (2-10 s) size distributions have two distinct size ranges with different slopes. For low dispersant to oil ratios (DOR), the transition between them could be predicted based on a turbulent Weber (We) number in the 2-4 range, suggesting that turbulence plays an important role. For smaller droplets, all the number size distributions have power of about -2.1, and for larger droplets, the power decreases well below -3. The measured steepening of the size distribution over time is predicted by a simple model involving buoyant rise and turbulence dispersion. Conversely, for DOR 1:100 and 1:25 oils, the diameter of slope transition decreases from ˜1 mm to 46 and 14 µm, respectively, much faster than the We-based prediction, and the size distribution steepens with increasing DOR. Furthermore, the concentration of micron-sized droplets of DOR 1:25 oil increases for the first 10 min after entrainment. These phenomena are presumably caused by the observed formation and breakup oil microthreads associated with tip streaming.

  5. Dispersant Effectiveness, In-Situ Droplet Size Distribution and ...

    Science.gov (United States)

    This report summarizes two projects covered under an Interagency Agreement between the Bureau of Safety and Environmental Enforcement (BSEE) and the U.S. Environmental Protection Agency (EPA) in collaboration with the Bedford Institute of Oceanography, Department of Fisheries and Oceans Canada (BIO DFO), New Jersey Institute of Technology (NJIT) and Dalhousie University. Both projects dovetail together in addressing the ability to differentiate physical from chemical dispersion effectiveness using dispersed oil simulations within a flume tank for improving forensic response monitoring tools. This report is split into separateTasks based upon the two projects funded by BSEE: 1) Dispersant Effectiveness, In-Situ Droplet Size Distribution and Numerical Modeling to Assess Subsurface Dispersant Injection as a Deepwater Blowout Oil Spill Response Option. 2) Evaluation of Oil Fluorescence Characteristics to Improve Forensic Response Tools. This report summarizes 2 collaborative projects funded through an Interagency Agreement with DOI BSEE and a Cooperative Agreement with DFO Canada. BSEE required that the projects be combined into one report as they are both covered under the one Interagency Agreement. Task B (Fluorescence of oils) is an SHC 3.62 FY16 product.

  6. Prediction of oil droplet size distribution in agitated aquatic environments

    International Nuclear Information System (INIS)

    Khelifa, A.; Lee, K.; Hill, P.S.

    2004-01-01

    Oil spilled at sea undergoes many transformations based on physical, biological and chemical processes. Vertical dispersion is the hydrodynamic mechanism controlled by turbulent mixing due to breaking waves, vertical velocity, density gradients and other environmental factors. Spilled oil is dispersed in the water column as small oil droplets. In order to estimate the mass of an oil slick in the water column, it is necessary to know how the droplets formed. Also, the vertical dispersion and fate of oil spilled in aquatic environments can be modelled if the droplet-size distribution of the oil droplets is known. An oil spill remediation strategy can then be implemented. This paper presented a newly developed Monte Carlo model to predict droplet-size distribution due to Brownian motion, turbulence and a differential settling at equilibrium. A kinematic model was integrated into the proposed model to simulate droplet breakage. The key physical input of the model is the maximum droplet size permissible in the simulation. Laboratory studies were found to be in good agreement with field studies. 26 refs., 1 tab., 5 figs

  7. Magnetically tunable oil droplet lens of deep-sea shrimp

    Science.gov (United States)

    Iwasaka, M.; Hirota, N.; Oba, Y.

    2018-05-01

    In this study, the tunable properties of a bio-lens from a deep-sea shrimp were investigated for the first time using magnetic fields. The skin of the shrimp exhibited a brilliantly colored reflection of incident white light. The light reflecting parts and the oil droplets in the shrimp's skin were observed in a glass slide sample cell using a digital microscope that operated in the bore of two superconducting magnets (maximum strengths of 5 and 13 T). In the ventral skin of the shrimp, which contained many oil droplets, some comparatively large oil droplets (50 to 150 μm in diameter) were present. A distinct response to magnetic fields was found in these large oil droplets. Further, the application of the magnetic fields to the sample cell caused a change in the size of the oil droplets. The phenomena observed in this work indicate that the oil droplets of deep sea shrimp can act as lenses in which the optical focusing can be modified via the application of external magnetic fields. The results of this study will make it possible to fabricate bio-inspired soft optical devices in future.

  8. Evolution, Development and Function of Vertebrate Cone Oil Droplets

    Directory of Open Access Journals (Sweden)

    Matthew B. Toomey

    2017-12-01

    Full Text Available To distinguish colors, the nervous system must compare the activity of distinct subtypes of photoreceptors that are maximally sensitive to different portions of the light spectrum. In vertebrates, a variety of adaptations have arisen to refine the spectral sensitivity of cone photoreceptors and improve color vision. In this review article, we focus on one such adaptation, the oil droplet, a unique optical organelle found within the inner segment of cone photoreceptors of a diverse array of vertebrate species, from fish to mammals. These droplets, which consist of neutral lipids and carotenoid pigments, are interposed in the path of light through the photoreceptor and modify the intensity and spectrum of light reaching the photosensitive outer segment. In the course of evolution, the optical function of oil droplets has been fine-tuned through changes in carotenoid content. Species active in dim light reduce or eliminate carotenoids to enhance sensitivity, whereas species active in bright light precisely modulate carotenoid double bond conjugation and concentration among cone subtypes to optimize color discrimination and color constancy. Cone oil droplets have sparked the curiosity of vision scientists for more than a century. Accordingly, we begin by briefly reviewing the history of research on oil droplets. We then discuss what is known about the developmental origins of oil droplets. Next, we describe recent advances in understanding the function of oil droplets based on biochemical and optical analyses. Finally, we survey the occurrence and properties of oil droplets across the diversity of vertebrate species and discuss what these patterns indicate about the evolutionary history and function of this intriguing organelle.

  9. Early Decomposition of Retained Heavy Silicone Oil Droplets

    Directory of Open Access Journals (Sweden)

    Touka Banaee

    2012-01-01

    Full Text Available Purpose: To report a case of early decomposition of retained heavy silicone oil droplets. Case Report: The single highly myopic eye of a 16-year-old boy with history of scleral buckling and buckle revision developed redetachment due to inferior retinal dialysis. The patient underwent pars plana vitrectomy and injection of heavy silicone oil. Early emulsification of the silicone oil was observed following surgery, which was removed 4 weeks later in another operation. Retained heavy silicone droplets lost their heavier- than-water specific gravity within 2 months together with extensive iris depigmentation, and release of pigment granules into the anterior chamber and vitreous cavity. Conclusion: This case report demonstrates that heavy silicone oil droplets can undergo in vivo chemical decomposition with possible toxic effects on ocular tissues.

  10. A Computational Study of Internal Flows in a Heated Water-Oil Emulsion Droplet

    KAUST Repository

    Sim, Jaeheon

    2015-01-05

    The vaporization characteristics of water-oil emulsion droplets are investigated by high fidelity computational simulations. One of the key objectives is to identify the physical mechanism for the experimentally observed behavior that the component in the dispersed micro-droplets always vaporizes first, for both oil-in-water and water-in-oil emulsion droplets. The mechanism of this phenomenon has not been clearly understood. In this study, an Eulerian-Lagrangian method was implemented with a temperature-dependent surface tension model and a dynamic adaptive mesh refinement in order to effectively capture the thermo-capillary effect of a micro-droplet in an emulsion droplet efficiently. It is found that the temperature difference in an emulsion droplet creates a surface tension gradient along the micro-droplet surface, inducing surface movement. Subsequently, the outer shear flow and internal flow circulation inside the droplet, referred to as the Marangoni convection, are created. The present study confirms that the Marangoni effect can be sufficiently large to drive the micro-droplets to the emulsion droplet surface at higher temperature, for both water-in-oil and oil-and-water emulsion droplets. A further parametric study with different micro-droplet sizes and temperature gradients demonstrates that larger micro-droplets move faster with larger temperature gradient. The oil micro-droplet in oil-in-water emulsion droplets moves faster due to large temperature gradients by smaller thermal conductivity.

  11. Effects of chemical dispersants on oil-brine interfacial tension and droplet formation

    International Nuclear Information System (INIS)

    Khelifa, A.; So, L.L.C.

    2009-01-01

    The dispersion of oil spilled in water is influenced by chemical dispersants via the modification of the interfacial properties of the oil, such as oil-brine interfacial tension (IFT). In this study, the physical properties and dispersion of oil were measured in order to determine the effects of chemical dispersants on IFT and oil viscosity and the effects on oil droplet formation. In theory, the maximum size of oil droplet that forms under turbulent mixing increases with IFT. Therefore, a reduction in IFT reduces the size distribution of oil droplets. This paper presented the results of an ongoing project aimed at providing quantitative understanding the influence that chemical dispersants have on the size distribution of oil droplets and oil dispersion. Findings showed that a valid approach is to separate the direct effects of chemical dispersants on oil properties, specifically oil-brine IFT and the effects of mixing on dispersion of chemically treated oil. Under constant mixing conditions, the reduction of the maximum oil droplet size that overcomes the breakage process is determined by the effects of chemical dispersant on oil properties. This correlates well with the dispersant-to-oil ratio (DOR) up to the critical micelle concentration (CMC). This good agreement can be attributed to the reduction of IFT with DOR. It was concluded that the reduction of IFT with dispersant concentration is an additional signature of oil composition on droplet formation, while mixing energy is an external parameter that is independent of oil properties. 17 refs., 3 tabs., 9 figs

  12. Direct numerical simulation of water droplet coalescence in the oil

    International Nuclear Information System (INIS)

    Mohammadi, Mehdi; Shahhosseini, Shahrokh; Bayat, Mahmoud

    2012-01-01

    Highlights: ► VOF computational technique has been used to simulate coalescence of two water droplets in oil. ► The model was validated with the experimental data for binary droplet coalescence. ► Based on the CFD simulation results a correlation has been proposed to predict the coalescence time. - Abstract: Coalescence of two water droplets in the oil was simulated using Computational Fluid Dynamics (CFD) techniques. The finite volume numerical method was applied to solve the Navier–Stokes equations in conjunction with the Volume of Fluid (VOF) approach for interface tracking. The effects of some parameters consisting of the collision velocity, off-center collision parameter, oil viscosity and water–oil interfacial tension on the coalescence time were investigated. The simulation results were validated against the experimental data available in the literature. The results revealed that quicker coalescence could be achieved if the head-on collisions occur or the droplets approach each other with a high velocity. In addition, low oil viscosities or large water–oil interfacial tensions cause less coalescence time. Moreover, a correlation was developed to predict coalescence efficiency as a function of the mentioned parameters.

  13. Experimental and numerical study of palm oil and castor oil biodiesel droplet evaporation

    OpenAIRE

    Botero, M.L; Molina, A.

    2017-01-01

    ABSTRACT: The vaporization characteristics of Palm and Castor oil biodiesel (Ricinus comunis) droplets were studied. An experimental set-up for measuring the evaporation rate of fuel droplets at atmospheric pressure and variable temperatures was developed. The droplets were suspended on a quartz fiber with initial droplet diameters ranging from 0.9 mm to 1.3 mm. The D2 law model for droplet evaporation was used to predict the evaporation rate of the fuels. Biodiesel physical properties were e...

  14. Combustion Characterization of Individual Bio-oil Droplets

    DEFF Research Database (Denmark)

    Hansen, Brian Brun; Jensen, Peter Arendt

    2015-01-01

    Single droplet combustion characteristics has been investigated for bio-oil slurries, containing biomass residue, and compared to conventional fuels for pulverized burners, such as fuel oil (start up) and wood chips (solid biomass fuel). The investigated fuels ignition delays and pyrolysis behavior...

  15. Droplets on posterior surface of intraocular lens in silicone oil filled eye.

    Directory of Open Access Journals (Sweden)

    Sharma Y

    2003-01-01

    Full Text Available Silicone oil adherence to silicone IOLs after silicone oil removal is a known complication in pseudophakic patients. Droplet removal is difficult and may require IOL exchange. We describe two cases in which silicone oil droplets were observed early in the postoperative period in PMMA pseudophakic eyes and disappeared during silicone oil-fluid exchange--a phenomenon that has not been reported earlier in human PMMA pseudophakic eyes.

  16. Emulsion oil droplet size significantly affects satiety: A pre-ingestive approach.

    Science.gov (United States)

    Lett, Aaron M; Norton, Jennifer E; Yeomans, Martin R

    2016-01-01

    Previous research has demonstrated that the manipulation of oil droplet size within oil-in-water emulsions significantly affects sensory characteristics, hedonics and expectations of food intake, independently of energy content. Smaller oil droplets enhanced perceived creaminess, increased Liking and generated greater expectations of satiation and satiety, indicating that creaminess is a satiety-relevant sensory cue within these systems. This paper extends these findings by investigating the effect of oil droplet size (d4,3: 2 and 50 μm) on food intake and appetite. Male participants (n = 34 aged 18-37; BMI of 22.7 ± 1.6 kg/m(2); DEBQ restricted eating score of 1.8 ± 0.1.) completed two test days, where they visited the laboratory to consume a fixed-portion breakfast, returning 3 h later for a "drink", which was the emulsion preload containing either 2 or 50 μm oil droplets. This was followed 20 min later with an ad libitum pasta lunch. Participants consumed significantly less at the ad libitum lunch after the preload containing 2 μm oil droplets than after the 50 μm preload, with an average reduction of 12% (62.4 kcal). Despite the significant differences in intake, no significant differences in sensory characteristics were noted. The findings show that the impact that an emulsion has on satiety can be enhanced without producing significantly perceivable differences in sensory properties. Therefore, by introducing a processing step which results in a smaller droplets, emulsion based liquid food products can be produced that enhance satiety, allowing covert functional redesign. Future work should consider the mechanism responsible for this effect. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Simulating oil droplet dispersal from the Deepwater Horizon spill with a Lagrangian approach

    Science.gov (United States)

    North, Elizabeth W.; Schlag, Zachary; Adams, E. Eric; Sherwood, Christopher R.; He, Ruoying; Hyun, Hoon; Socolofsky, Scott A.

    2011-01-01

    An analytical multiphase plume model, combined with time-varying flow and hydrographic fields generated by the 3-D South Atlantic Bight and Gulf of Mexico model (SABGOM) hydrodynamic model, were used as input to a Lagrangian transport model (LTRANS), to simulate transport of oil droplets dispersed at depth from the recent Deepwater Horizon MC 252 oil spill. The plume model predicts a stratification-dominated near field, in which small oil droplets detrain from the central plume containing faster rising large oil droplets and gas bubbles and become trapped by density stratification. Simulated intrusion (trap) heights of ∼ 310–370 m agree well with the midrange of conductivity-temperature-depth observations, though the simulated variation in trap height was lower than observed, presumably in part due to unresolved variability in source composition (percentage oil versus gas) and location (multiple leaks during first half of spill). Simulated droplet trajectories by the SABGOM-LTRANS modeling system showed that droplets with diameters between 10 and 50 μm formed a distinct subsurface plume, which was transported horizontally and remained in the subsurface for >1 month. In contrast, droplets with diameters ≥90 μm rose rapidly to the surface. Simulated trajectories of droplets ≤50 μm in diameter were found to be consistent with field observations of a southwest-tending subsurface plume in late June 2010 reported by Camilli et al. [2010]. Model results suggest that the subsurface plume looped around to the east, with potential subsurface oil transport to the northeast and southeast. Ongoing work is focusing on adding degradation processes to the model to constrain droplet dispersal.

  18. Self-Propelled Motion of Monodisperse Underwater Oil Droplets Formed by a Microfluidic Device.

    Science.gov (United States)

    Ueno, Naoko; Banno, Taisuke; Asami, Arisa; Kazayama, Yuki; Morimoto, Yuya; Osaki, Toshihisa; Takeuchi, Shoji; Kitahata, Hiroyuki; Toyota, Taro

    2017-06-06

    We evaluated the speed profile of self-propelled underwater oil droplets comprising a hydrophobic aldehyde derivative in terms of their diameter and the surrounding surfactant concentration using a microfluidic device. We found that the speed of the oil droplets is dependent on not only the surfactant concentration but also the droplet size in a certain range of the surfactant concentration. This tendency is interpreted in terms of combination of the oil and surfactant affording spontaneous emulsification in addition to the Marangoni effect.

  19. Investigation on Electrostatical Breakup of Bio-Oil Droplets

    Directory of Open Access Journals (Sweden)

    John Z. Wen

    2012-10-01

    Full Text Available In electrostatic atomization, the input electrical energy causes breaking up of the droplet surface by utilizing a mutual repulsion of net charges accumulating on that surface. In this work a number of key parameters controlling the bio-oil droplet breakup process are identified and these correlations among the droplet size distribution, specific charges of droplets and externally applied electrical voltages are quantified. Theoretical considerations of the bag or strip breakup mechanism of biodiesel droplets experiencing electrostatic potential are compared to experimental outcomes. The theoretical analysis suggests the droplet breakup process is governed by the Rayleigh instability condition, which reveals the effects of droplets size, specific charge, surface tension force, and droplet velocities. Experiments confirm that the average droplet diameters decrease with increasing specific charges and this decreasing tendency is non-monotonic due to the motion of satellite drops in the non-uniform electrical field. The measured specific charges are found to be smaller than the theoretical values. And the energy transformation from the electrical energy to surface energy, in addition to the energy loss, Taylor instability breakup, non-excess polarization and some system errors, accounts for this discrepancy. The electrostatic force is the dominant factor controlling the mechanism of biodiesel breakup in electrostatic atomization.

  20. Oil droplets of bird eyes : Microlenses acting as spectral filters

    NARCIS (Netherlands)

    Stavenga, Doekele G.; Wilts, Bodo D.

    2014-01-01

    An important component of the cone photoreceptors of bird eyes is the oil droplets located in front of the visual-pigment-containing outer segments. The droplets vary in colour and are transparent, clear, pale or rather intensely yellow or red owing to various concentrations of carotenoid pigments.

  1. Retrievals of Cloud Droplet Size from the RSP Data: Validation Using in Situ Measurements

    Science.gov (United States)

    Alexandrov, Mikhail D.; Cairns, Brian; Sinclair, Kenneth; Wasilewski, Andrzej P.; Ziemba, Luke; Crosbie, Ewan; Hair, John; Hu, Yongxiang; Hostetler, Chris; Stamnes, Snorre

    2016-01-01

    We present comparisons of cloud droplet size distributions retrieved from the Research Scanning Polarimeter (RSP) data with correlative in situ measurements made during the North Atlantic Aerosols and Marine Ecosystems Study (NAAMES). This field experiment was based at St. Johns airport, Newfoundland, Canada with the latest deployment in May - June 2016. RSP was onboard the NASA C-130 aircraft together with an array of in situ and other remote sensing instrumentation. The RSP is an along-track scanner measuring polarized and total reflectances in9 spectral channels. Its unique high angular resolution allows for characterization of liquid water droplet size using the rainbow structure observed in the polarized reflectances in the scattering angle range between 135 and 165 degrees. A parametric fitting algorithm applied to the polarized reflectances provides retrievals of the droplet effective radius and variance assuming a prescribed size distribution shape (gamma distribution). In addition to this, we use a non-parametric method, Rainbow Fourier Transform (RFT), which allows us to retrieve the droplet size distribution (DSD) itself. The latter is important in the case of clouds with complex structure, which results in multi-modal DSDs. During NAAMES the aircraft performed a number of flight patterns specifically designed for comparison of remote sensing retrievals and in situ measurements. These patterns consisted of two flight segments above the same straight ground track. One of these segments was flown above clouds allowing for remote sensing measurements, while the other was at the cloud top where cloud droplets were sampled. We compare the DSDs retrieved from the RSP data with in situ measurements made by the Cloud Droplet Probe (CDP). The comparisons show generally good agreement with deviations explainable by the position of the aircraft within cloud and by presence of additional cloud layers in RSP view that do not contribute to the in situ DSDs. In the

  2. Large Scale Behavior and Droplet Size Distributions in Crude Oil Jets and Plumes

    Science.gov (United States)

    Katz, Joseph; Murphy, David; Morra, David

    2013-11-01

    The 2010 Deepwater Horizon blowout introduced several million barrels of crude oil into the Gulf of Mexico. Injected initially as a turbulent jet containing crude oil and gas, the spill caused formation of a subsurface plume stretching for tens of miles. The behavior of such buoyant multiphase plumes depends on several factors, such as the oil droplet and bubble size distributions, current speed, and ambient stratification. While large droplets quickly rise to the surface, fine ones together with entrained seawater form intrusion layers. Many elements of the physics of droplet formation by an immiscible turbulent jet and their resulting size distribution have not been elucidated, but are known to be significantly influenced by the addition of dispersants, which vary the Weber Number by orders of magnitude. We present experimental high speed visualizations of turbulent jets of sweet petroleum crude oil (MC 252) premixed with Corexit 9500A dispersant at various dispersant to oil ratios. Observations were conducted in a 0.9 m × 0.9 m × 2.5 m towing tank, where large-scale behavior of the jet, both stationary and towed at various speeds to simulate cross-flow, have been recorded at high speed. Preliminary data on oil droplet size and spatial distributions were also measured using a videoscope and pulsed light sheet. Sponsored by Gulf of Mexico Research Initiative (GoMRI).

  3. In situ droplet size and speed determination in a fluid-bed granulator.

    Science.gov (United States)

    Ehlers, Henrik; Larjo, Jussi; Antikainen, Osmo; Räikkönen, Heikki; Heinämäki, Jyrki; Yliruusi, Jouko

    2010-05-31

    The droplet size affects the final product in fluid-bed granulation and coating. In the present study, spray characteristics of aqueous granulation liquid (purified water) were determined in situ in a fluid-bed granulator. Droplets were produced by a pneumatic nozzle. Diode laser stroboscopy (DLS) was used for droplet detection and particle tracking velocimetry (PTV) was used for determination of droplet size and speed. Increased atomization pressure decreased the droplet size and the effect was most strongly visible in the 90% size fractile. The droplets seemed to undergo coalescence after which only slight evaporation occurred. Furthermore, the droplets were subjected to a strong turbulence at the event of atomization, after which the turbulence reached a minimum value in the lower halve of the chamber. The turbulence increased as speed and droplet size decreased due to the effects of the fluidizing air. The DLS and PTV system used was found to be a useful and rapid tool in determining spray characteristics and in monitoring and predicting nozzle performance. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  4. Soft colloidal probes for AFM force measurements between water droplets in oil

    KAUST Repository

    Vakarelski, Ivan Uriev; Li, Erqiang; Thoroddsen, Sigurdur T

    2014-01-01

    Here we introduce an extension of the atomic force microscopy (AFM) colloidal probe technique, as a simple and reliable experimental approach to measure the interaction forces between small water droplets (~80-160. μm) dispersed in oil. Small water droplets are formed by capillary breakup of a microscale water jet in air, which is forced out of a fine capillary nozzle, and deposited on a superhydrophobic substrate immersed in tetradecane oil medium. In these conditions the water droplets are very loosely attached to the superhydrophobic substrate and are easily picked up with a hydrophobic AFM cantilever to form a soft colloidal probe. Sample force measurements are conducted to demonstrate the capability of the technique.

  5. Soft colloidal probes for AFM force measurements between water droplets in oil

    KAUST Repository

    Vakarelski, Ivan Uriev

    2014-11-01

    Here we introduce an extension of the atomic force microscopy (AFM) colloidal probe technique, as a simple and reliable experimental approach to measure the interaction forces between small water droplets (~80-160. μm) dispersed in oil. Small water droplets are formed by capillary breakup of a microscale water jet in air, which is forced out of a fine capillary nozzle, and deposited on a superhydrophobic substrate immersed in tetradecane oil medium. In these conditions the water droplets are very loosely attached to the superhydrophobic substrate and are easily picked up with a hydrophobic AFM cantilever to form a soft colloidal probe. Sample force measurements are conducted to demonstrate the capability of the technique.

  6. Redistribution of charged aluminum nanoparticles on oil droplets in water in response to applied electrical field

    Energy Technology Data Exchange (ETDEWEB)

    Li, Mengqi; Li, Dongqing, E-mail: dongqing@mme.uwaterloo.ca [University of Waterloo, Department of Mechanical and Mechatronics Engineering (Canada)

    2016-05-15

    Janus droplets with two opposite faces of different physical or chemical properties have great potentials in many fields. This paper reports a new method for making Janus droplets by covering one side of the droplet with charged nanoparticles in an externally applied DC electric field. In this paper, aluminum oxide nanoparticles on micro-sized and macro-sized oil droplets were studied. In order to control the surface area covered by the nanoparticles on the oil droplets, the effects of the concentration of nanoparticle suspension, the droplet size as well as the strength of electric field on the final accumulation area of the nanoparticles are studied.Graphical abstract.

  7. Electroporation of micro-droplet encapsulated HeLa cells in oil phase

    KAUST Repository

    Xiao, Kang; Zhang, Mengying; Chen, Shuyu; Wang, Limu; Chang, Donald Choy; Wen, Weijia

    2010-01-01

    Electroporation (EP) is a method widely used to introduce foreign genes, drugs or dyes into cells by permeabilizing the plasma membrane with an external electric field. A variety of microfluidic EP devices have been reported so far. However, further integration of prior and posterior EP processes turns out to be very complicated, mainly due to the difficulty of developing an efficient method for precise manipulation of cells in microfluidics. In this study, by means of a T-junction structure within a delicate microfluidic device, we encapsulated HeLa cells in micro-droplet of poration medium in oil phase before EP, which has two advantages: (i) precise control of cell-encapsulating droplets in oil phase is much easier than the control of cell populations or individuals in aqueous buffers; (ii) this can minimize the electrochemical reactions on the electrodes. Finally, we successfully introduced fluorescent dyes into the micro-droplet encapsulated HeLa cells in oil phase. Our results reflected a novel way to realize the integrated biomicrofluidic system for EP. © 2010 Wiley-VCH Verlag GmbH & Co. KGaA.

  8. Electroporation of micro-droplet encapsulated HeLa cells in oil phase

    KAUST Repository

    Xiao, Kang

    2010-08-27

    Electroporation (EP) is a method widely used to introduce foreign genes, drugs or dyes into cells by permeabilizing the plasma membrane with an external electric field. A variety of microfluidic EP devices have been reported so far. However, further integration of prior and posterior EP processes turns out to be very complicated, mainly due to the difficulty of developing an efficient method for precise manipulation of cells in microfluidics. In this study, by means of a T-junction structure within a delicate microfluidic device, we encapsulated HeLa cells in micro-droplet of poration medium in oil phase before EP, which has two advantages: (i) precise control of cell-encapsulating droplets in oil phase is much easier than the control of cell populations or individuals in aqueous buffers; (ii) this can minimize the electrochemical reactions on the electrodes. Finally, we successfully introduced fluorescent dyes into the micro-droplet encapsulated HeLa cells in oil phase. Our results reflected a novel way to realize the integrated biomicrofluidic system for EP. © 2010 Wiley-VCH Verlag GmbH & Co. KGaA.

  9. Combustion characteristics of crude jatropha oil droplets using rhodium liquid as a homogeneous combustion catalyst

    Science.gov (United States)

    Nanlohy, Hendry Y.; Wardana, I. N. G.; Hamidi, N.; Yuliati, L.

    2018-01-01

    Combustion characteristics of crude jatropha oil droplet at room temperature with and without catalyst have been studied experimentally. Its combustion characteristics have been observed by igniting the oil droplet on a junction of a thermocouple, and the combustion characteristics of oil droplets are observed using a high-speed camera. The results show that the uniqueness of crude jatropha oil as alternative fuel is evidenced by the different stages of combustion caused by thermal cracking in burning droplets. The results also show that the role of the catalyst is not only an accelerator agent, but there are other unique functions and roles as a stabilizer. Moreover, the results also found that the catalyst was able to shorten the ignition timing and burnout time. This phenomenon proves that the presence of catalysts alters and weakens the structure of the triglyceride geometry so that the viscosity and flash point is reduced, the fuel absorbs heat well and flammable.

  10. Study on condensation of biomass pyrolysis gas by spray bio-oil droplets

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Kun; Cheng, Wen-Long [University of Science and Technology of China (China)], email: wlcheng@ustc.edu.cn; Chen, Jing [Anhui Electric Power Design Institute (China); Shi, Wen-Jing [Anhui Heli Co., Ltd (China)

    2011-07-01

    This is a study of bio-oil generated by fast pyrolysis; a biomass feedstock is heated to pyrolyze at a rapid rate, the gas pyrolyzed is then condensed rapidly. The interesting result is a potential alternative fuel oil. An analysis was made of the effects of the initial pyrolysis gas temperatures, the initial bio-oil droplets temperatures and diameters, and the flow ratio of the gas and the liquid droplets on the heat and mass transfer between the gas and the liquid droplets. A few criterion equations were achieved with respect to the spray condenser. This paper established the gas-liquid phase equilibrium of an aqueous multi-composition system and the spray condensation model coupling heat and mass transfer. Model calculation and analysis showed that: spray condensation can effectively cool the high-temperature pyrolysis gas quickly; with gas liquid flowing, mass transfer rate reduces; and the relationship of gas and liquid flow ratio can achieve good accuracy.

  11. Multiple-division of self-propelled oil droplets through acetal formation.

    Science.gov (United States)

    Banno, Taisuke; Kuroha, Rie; Miura, Shingo; Toyota, Taro

    2015-02-28

    We demonstrate a novel system that exhibits both self-propelled motion and division of micrometer-sized oil droplets induced by chemical conversion of the system components. Such unique dynamics were observed in an oil-in-water emulsion of a benzaldehyde derivative, an alkanol and a cationic surfactant at a low pH.

  12. In situ production of bio-surfactants: An alternative method for dispersing and bioremediating marine oil spills

    International Nuclear Information System (INIS)

    Josefsen, K.D.; Sveum, P.; Ramstad, P.; Markussen, S.; Folkvord, K.; Krigsvoll, K.; Aune, R.; Storroe, I.

    1995-01-01

    Some oil degrading bacteria are able to produce surfactants. These biosurfactants enhance dispersion of oil droplets into the water column. A large number of surfactant producing bacterial strains have been isolated from seawater samples collected at different sites around the world. Strains isolated from seawater samples collected in cold regions generally had better properties than strains isolated from warm seawater. Many of the isolated strains were able to disperse crude oils with a large variation of composition, as well as the water-in-emulsion (chocolate mousse) formed during weathering of crude oil in the sea. The results show that in situ application of surfactant producing bacteria can be a viable tool in future oil spill contingency, and that dispersion of oil may increase the biodegradation rate. Work is in progress to examine the use of such bacteria in the bioremediation of oil contaminated shorelines. 10 refs., 3 figs., 2 tabs

  13. Asymmetric membranes for destabilization of oil droplets in produced water from alkaline-surfactant-polymer (ASP) flooding

    Science.gov (United States)

    Ramlee, Azierah; Chiam, Chel-Ken; Sarbatly, Rosalam

    2018-05-01

    This work presents a study of destabilization of oil droplets in the produced water from alkaline-surfactant-polymer (ASP) flooding by using four types of laboratory-fabricated polyvinylidene fluoride (PVDF) membranes. The PVDF membranes were fabricated via immersion precipitation method with ethanol (0 - 30 %, v/v) as the coagulant. The membranes with the effective area of 17.35 cm2 were tested with synthesized ASP solution as the feed in cross-flow microfiltration process. The ASP feed solution initially contained the oil droplets with radius ranged from 40 to 100 nm and the mean radius was 61 nm. Results have shown that the concentration of the ethanol in the coagulation bath affects the formation of the membrane structure and the corresponding porosity, while no significance influence on the membrane thickness. Coalescence of the oil droplets was occurred when the ASP solution permeated through the asymmetric PVDF membranes. Through the coalescence process, the oil droplets were destabilized where the radius of the oil droplets in the permeates increased to 1.5-4 µm with the corresponding mean radius ranged from 2.4 to 2.7 µm.

  14. Structure observation of single solidified droplet by in situ controllable quenching based on nanocalorimetry

    International Nuclear Information System (INIS)

    Zhao, Bingge; Li, Linfang; Yang, Bin; Yan, Ming; Zhai, Qijie; Gao, Yulai

    2013-01-01

    Highlights: •Controllable quenching rate up to 15,000 K/s was realized by FSC. •FSC sample was novelly characterized by FIB and HRTEM. •Solidification structure with undercooling of 110.9 K was investigated. •This study opens a new approach in rapid solidification and FSC measurement. -- Abstract: Fast scanning calorimetry (FSC) based on nanocalorimetry and thin film technique is a newly developed attractive tool to investigate the solidification behavior of single droplet by in situ controllable ultrafast cooling. In this paper, we introduced this novel technique to in situ control the quenching of single Sn3.5Ag metallic droplet at cooling rate up to 15,000 K/s with corresponding undercooling of 110.9 K. In particular, the solidification structure of this real time quenched single droplet was observed and analyzed with focused ion beam (FIB), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). This research proposed a new approach to research the solidification structure of single droplet with precisely controlled size and extreme cooling rate

  15. pH-Sensitive self-propelled motion of oil droplets in the presence of cationic surfactants containing hydrolyzable ester linkages.

    Science.gov (United States)

    Banno, Taisuke; Kuroha, Rie; Toyota, Taro

    2012-01-17

    Self-propelled oil droplets in a nonequilibrium system have drawn much attention as both a primitive type of inanimate chemical machinery and a dynamic model of the origin of life. Here, to create the pH-sensitive self-propelled motion of oil droplets, we synthesized cationic surfactants containing hydrolyzable ester linkages. We found that n-heptyloxybenzaldehyde oil droplets were self-propelled in the presence of ester-containing cationic surfactant. In basic solution prepared with sodium hydroxide, oil droplets moved as molecular aggregates formed on their surface. Moreover, the self-propelled motion in the presence of the hydrolyzable cationic surfactant lasted longer than that in the presence of nonhydrolyzable cationic surfactant. This is probably due to the production of a fatty acid by the hydrolysis of the ester-containing cationic surfactant and the subsequent neutralization of the fatty acid with sodium hydroxide. A complex surfactant was formed in the aqueous solution because of the cation and anion combination. Because such complex formation can induce both a decrease in the interfacial tension of the oil droplet and self-assembly with n-heptyloxybenzaldehyde and lauric acid in the aqueous dispersion, the prolonged movement of the oil droplet may be explained by the increase in heterogeneity of the interfacial tension of the oil droplet triggered by the hydrolysis of the ester-containing surfactant. © 2011 American Chemical Society

  16. Research on the porous flow of the mechanism of viscous-elastic fluids displacing residual oil droplets in micro pores

    Science.gov (United States)

    Dong, Guanyu

    2018-03-01

    In order to analyze the microscopic stress field acting on residual oil droplets in micro pores, calculate its deformation, and explore the hydrodynamic mechanism of viscous-elastic fluids displacing oil droplets, the viscous-elastic fluid flow equations in micro pores are established by choosing the Upper Convected Maxwell constitutive equation; the numerical solutions of the flow field are obtained by volume control and Alternate Direction Implicit methods. From the above, the velocity field and microscopic stress field; the forces acting on residual oil droplets; the deformations of residual oil droplets by various viscous-elastic displacing fluids and at various Wiesenberg numbers are calculated and analyzed. The result demonstrated that both the normal stress and horizontal force acting on the residual oil droplets by viscous-elastic fluids are much larger compared to that of inelastic fluid; the distribution of normal stress changes abruptly; under the condition of the same pressure gradient in the system under investigation, the ratio of the horizontal forces acting on the residual oil droplets by different displacing fluids is about 1:8:20, which means that under the above conditions, the driving force on a oil droplet is 20 times higher for a viscous-elastic fluid compared to that of a Newtonian Fluid. The conclusions are supportive of the mechanism that viscous-elastic driving fluids can increase the Displacement Efficiency. This should be of help in designing new chemicals and selecting Enhanced Oil Recovery systems.

  17. Dissolution and degradation of crude oil droplets by different bacterial species and consortia by microcosm microfluidics

    Science.gov (United States)

    Jalali, Maryam; Sheng, Jian

    2017-11-01

    Bacteria are involved in cleanup and degradation of crude oil in polluted marine and soil environments. A number of bacterial species have been identified for consuming petroleum hydrocarbons with diverse metabolic capabilities. We conducted laboratory experiments to investigate bacterial consumption by monitoring the volume change to oil droplets as well as effects of oil droplet size on this process. To conduct our study, we developed a micro-bioassay containing an enclosed chamber with bottom substrate printed with stationary oil microdroplets and a digital holographic interferometer (DHI). The morphology of microdroplets was monitored in real time over 100 hours and instantaneous flow field was also measured by digital holographic microscope. The substrates with printed oil droplets were further evaluated with atomic force microscopy (AFM) at the end of each experiment. Three different bacteria species, Pseudomonas sp, Alcanivorax borkumensis, and Marinobacter hydrocarbonoclasticus, as well as six bacterial consortia were used in this study. The results show that droplets smaller than 20µm in diameter are not subject to bacterial degradation and the volume of droplet did not change beyond dissolution. Substantial species-specific behaviors have been observed in isolates. The experiments of consortia and various flow shears on biodegradation and dissolution are ongoing and will be reported.

  18. Distribution of retinal cone photoreceptor oil droplets, and identification of associated carotenoids in crow (Corvus macrorhynchos).

    Science.gov (United States)

    Rahman, Mohammad Lutfur; Yoshida, Kazuyuki; Maeda, Isamu; Tanaka, Hideuki; Sugita, Shoei

    2010-06-01

    The topography of cone oil droplets and their carotenoids were investigated in the retina of jungle crow (Corvus macrorhynchos). Fresh retina was sampled for the study of retinal cone oil droplets, and extracted retinal carotenoids were saponified using methods adapted from a recent study, then identified with reverse-phase high-performance liquid chromatography (HPLC). To assess the effects of saponification conditions on carotenoid recovery from crow retina, we varied base concentration and total time of saponification across a wide range of conditions, and again used HPLC to compare carotenoid concentrations. Based on colors, at least four types of oil droplets were recognized, i.e., red, orange, green, and translucent, across the retina. With an average of 91,202 /mm(2), density gradually declines in an eccentric manner from optic disc. In retina, the density and size of droplets are inversely related. In the peripheral zone, oil droplets were significantly larger than those of the central area. The proportion of orange oil droplets (33%) was higher in the central area, whereas green was predominant in other areas. Three types of carotenoid (astaxanthin, galloxanthin and lutein), together with one unknown carotenoid, were recovered from the crow retina; astaxanthin was the dominant carotenoid among them. The recovery of carotenoids was affected by saponification conditions. Astaxanthin was well recovered in weak alkali (0.06 M KOH), in contrast, xanthophyllic carotenoids were best recovered in strong alkali (0.6 M KOH) after 12 h of saponification at freeze temperature.

  19. Evolution of oil droplets in a chemorobotic platform

    Science.gov (United States)

    Gutierrez, Juan Manuel Parrilla; Hinkley, Trevor; Taylor, James Ward; Yanev, Kliment; Cronin, Leroy

    2014-12-01

    Evolution, once the preserve of biology, has been widely emulated in software, while physically embodied systems that can evolve have been limited to electronic and robotic devices and have never been artificially implemented in populations of physically interacting chemical entities. Herein we present a liquid-handling robot built with the aim of investigating the properties of oil droplets as a function of composition via an automated evolutionary process. The robot makes the droplets by mixing four different compounds in different ratios and placing them in a Petri dish after which they are recorded using a camera and the behaviour of the droplets analysed using image recognition software to give a fitness value. In separate experiments, the fitness function discriminates based on movement, division and vibration over 21 cycles, giving successive fitness increases. Analysis and theoretical modelling of the data yields fitness landscapes analogous to the genotype-phenotype correlations found in biological evolution.

  20. Mathematical modelling of oil spill fate and transport in the marine environment incorporating biodegradation kinetics of oil droplets

    Science.gov (United States)

    Spanoudaki, Katerina

    2016-04-01

    Oil biodegradation by native bacteria is one of the most important natural processes that can attenuate the environmental impacts of marine oil spills. However, very few numerical models of oil spill fate and transport include biodegradation kinetics of spilled oil. Furthermore, in models where biodegradation is included amongst the oil transformation processes simulated, it is mostly represented as a first order decay process neglecting the effect of several important parameters that can limit biodegradation rate, such as oil composition and oil droplets-water interface. To this end, the open source numerical model MEDSKIL-II, which simulates oil spill fate and transport in the marine environment, has been modified to include biodegradation kinetics of oil droplets dispersed in the water column. MEDSLIK-II predicts the transport and weathering of oil spills following a Lagrangian approach for the solution of the advection-diffusion equation. Transport is governed by the 3D sea currents and wave field provided by ocean circulation models. In addition to advective and diffusive displacements, the model simulates several physical and chemical processes that transform the oil (evaporation, emulsification, dispersion in the water column, adhesion to coast). The fate algorithms employed in MEDSLIK-II consider the oil as a uniform substance whose properties change as the slick weathers, an approach that can lead to reduced accuracy, especially in the estimation of oil evaporation and biodegradation. Therefore MEDSLIK-II has been modified by adopting the "pseudo-component" approach for simulating weathering processes. Spilled oil is modelled as a relatively small number of discrete, non-interacting components (pseudo-components). Chemicals in the oil mixture are grouped by physical-chemical properties and the resulting pseudo-component behaves as if it were a single substance with characteristics typical of the chemical group. The fate (evaporation, dispersion

  1. Amine functionalized magnetic nanoparticles for removal of oil droplets from produced water and accelerated magnetic separation

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Saebom, E-mail: saebomko@austin.utexas.edu [University of Texas, Department of Petroleum and Geosystems Engineering (United States); Kim, Eun Song [University of Texas, Department of Biomedical Engineering (United States); Park, Siman [University of Texas, Department of Civil, Architectural and Environmental Engineering (United States); Daigle, Hugh [University of Texas, Department of Petroleum and Geosystems Engineering (United States); Milner, Thomas E. [University of Texas, Department of Biomedical Engineering (United States); Huh, Chun [University of Texas, Department of Petroleum and Geosystems Engineering (United States); Bennetzen, Martin V. [Maersk Oil Corporate (Denmark); Geremia, Giuliano A. [Maersk Oil Research and Technology Centre (Qatar)

    2017-04-15

    Magnetic nanoparticles (MNPs) with surface coatings designed for water treatment, in particular for targeted removal of contaminants from produced water in oil fields, have drawn considerable attention due to their environmental merit. The goal of this study was to develop an efficient method of removing very stable, micron-scale oil droplets dispersed in oilfield produced water. We synthesized MNPs in the laboratory with a prescribed surface coating. The MNPs were superparamagnetic magnetite, and the hydrodynamic size of amine functionalized MNPs ranges from 21 to 255 nm with an average size of 66 nm. The initial oil content of 0.25 wt.% was reduced by as much as 99.9% in separated water. The electrostatic attraction between negatively charged oil-in-water emulsions and positively charged MNPs controls, the attachment of MNPs to the droplet surface, and the subsequent aggregation of the electrically neutral oil droplets with attached MNPs (MNPs-oils) play a critical role in accelerated and efficient magnetic separation. The total magnetic separation time was dramatically reduced to as short as 1 s after MNPs, and oil droplets were mixed, in contrast with the case of free, individual MNPs with which separation took about 36∼72 h, depending on the MNP concentrations. Model calculations of magnetic separation velocity, accounting for the MNP magnetization and viscous drag, show that the total magnetic separation time will be approximately 5 min or less, when the size of the MNPs-oils is greater than 360 nm, which can be used as an optimum operating condition.

  2. Acoustic separation of oil droplets, colloidal particles and their mixtures in a microfluidic cell

    KAUST Repository

    Vakarelski, Ivan Uriev; Li, Erqiang; Abdel-Fattah, Amr I.; Thoroddsen, Sigurdur T

    2016-01-01

    Here we report direct macroscopic and microscopic observations of acoustic driven separation of dodecane oil droplets in water in the presence and absence of colloidal silica particles suspended in the water phase. The experiments were conducted in a simple rectangular channel glass microfluidic cell in which an ultrasound standing wave pattern was generated at 300 KHz frequency. The separation process of both oil droplets and colloidal particles inside the cell was recorded using a high-speed video camera equipped with a macro-objective lens for macroscopic observation or with a high-speed camera attached to an inverted optical microscope for a higher resolution microscopic observation. We characterize the clustering process in the case of emulsion droplets or solid colloidal particles and ultimately demonstrate the emulsion droplets separation from the solid particles in the mixtures based on their different acoustic contrast factors. Finally, we conduct proof of concept experiment to show that the same approach can be used in a continuous fluid flow process.

  3. Acoustic separation of oil droplets, colloidal particles and their mixtures in a microfluidic cell

    KAUST Repository

    Vakarelski, Ivan Uriev

    2016-06-15

    Here we report direct macroscopic and microscopic observations of acoustic driven separation of dodecane oil droplets in water in the presence and absence of colloidal silica particles suspended in the water phase. The experiments were conducted in a simple rectangular channel glass microfluidic cell in which an ultrasound standing wave pattern was generated at 300 KHz frequency. The separation process of both oil droplets and colloidal particles inside the cell was recorded using a high-speed video camera equipped with a macro-objective lens for macroscopic observation or with a high-speed camera attached to an inverted optical microscope for a higher resolution microscopic observation. We characterize the clustering process in the case of emulsion droplets or solid colloidal particles and ultimately demonstrate the emulsion droplets separation from the solid particles in the mixtures based on their different acoustic contrast factors. Finally, we conduct proof of concept experiment to show that the same approach can be used in a continuous fluid flow process.

  4. In-Situ Burning of Crude Oil on Water

    DEFF Research Database (Denmark)

    van Gelderen, Laurens

    in the small scale water basin. Boilovers were also observed during the burning of a heavy crude oil with a substantial light fraction without a water layer, however, which suggests that water is not essential for boilover occurrence. Further studies are required to determine the conditions under which......The fire dynamics and fire chemistry of in-situ burning of crude oil on water was studied in order to improve predictions on the suitability of this oil spill response method. For this purpose, several operational parameters were studied to determine the factors that control the burning efficiency...... of in-situ burning, i.e. the amount of oil (in wt%) removed from the water surface by the burning process. The burning efficiency is the main parameter for expressing the oil removal effectiveness of in-situ burning as response method and is thus relevant for suitability predictions of in-situ burning...

  5. Effect of Surfactants on the Deformation and Detachment of Oil Droplets in a Model Laminar Flow Cell

    Directory of Open Access Journals (Sweden)

    Fréville V.

    2013-10-01

    Full Text Available Sugar-based surfactants are increasingly present in the development of eco-friendly detergents due to current regulations and consumer demand. In order to assess the degreasing performance of these new surfactants, the behavior of model oil droplets subjected to the action of a flow of surfactant solutions of different concentrations was studied in a laminar flow cell and related to the physico-chemical properties measured at the liquid/liquid (interfacial tension and solid/liquid/liquid interfaces (contact angle. With the surfactant solutions and the model oils employed in this study, three main behaviors were observed when a critical flow rate was reached: elongation, fragmentation or spontaneous detachment of the droplet. The analysis of the results leads to a correlation between the droplet behavior and the balance of the forces applied on the droplet in its initial position, in particular the gravity force Fg, which tends to move the oil droplet upwards (given the density difference, and the capillary force Fc, which tends to keep the droplet spherical. A state diagram could be established, based on the dimensionless Bond number (Fg/Fc and cosθ, θ being the initial contact angle of the drop on the surface before the establishment of the flow. One can thus predict the droplet behavior as a function of the system initial characteristics. The results allowed the comparison of degreasing performance of the different surfactants used and illustrated the potential of AlkylPolyPentosides (APP for detergent formulations.

  6. In situ viscosity of oil sands using low field NMR

    International Nuclear Information System (INIS)

    Bryan, J.; Moon, D.; Kantzas, A.

    2005-01-01

    In heavy oil and bitumen reservoirs, oil viscosity is a vital piece of information that will have great bearing on the chosen EOR scheme and the recovery expected. Prediction of in situ viscosity with a logging tool would he very beneficial in reservoir characterization and exploitation design. Low field NMR is a technology that has shown great potential as a tool for characterizing hydrocarbon properties in heavy oil and bitumen reservoirs. An oil viscosity correlation has previously been developed that is capable of providing order of magnitude viscosity estimates for a wide range of oils taken from various fields in Alberta. This paper presents tuning procedures to improve the NMR predictions for different viscosity ranges, and extends the NMR viscosity model to in situ heavy oil in unconsolidated sands. The results of this work show that the NMR oil peak can be de-convoluted from the in situ signals of the oil and water, and the bulk viscosity correlation that was developed for bulk oils can he applied to predict the in situ oil viscosity. These results can be translated to an NMR logging tool algorithm, allowing for in situ measurements of oil viscosity at the proper reservoir conditions. (author)

  7. Droplet size effects on film drainage between droplet and substrate.

    Science.gov (United States)

    Steinhaus, Benjamin; Spicer, Patrick T; Shen, Amy Q

    2006-06-06

    When a droplet approaches a solid surface, the thin liquid film between the droplet and the surface drains until an instability forms and then ruptures. In this study, we utilize microfluidics to investigate the effects of film thickness on the time to film rupture for water droplets in a flowing continuous phase of silicone oil deposited on solid poly(dimethylsiloxane) (PDMS) surfaces. The water droplets ranged in size from millimeters to micrometers, resulting in estimated values of the film thickness at rupture ranging from 600 nm down to 6 nm. The Stefan-Reynolds equation is used to model film drainage beneath both millimeter- and micrometer-scale droplets. For millimeter-scale droplets, the experimental and analytical film rupture times agree well, whereas large differences are observed for micrometer-scale droplets. We speculate that the differences in the micrometer-scale data result from the increases in the local thin film viscosity due to confinement-induced molecular structure changes in the silicone oil. A modified Stefan-Reynolds equation is used to account for the increased thin film viscosity of the micrometer-scale droplet drainage case.

  8. In situ droplet surface tension and viscosity measurements in gas metal arc welding

    International Nuclear Information System (INIS)

    Bachmann, B; Siewert, E; Schein, J

    2012-01-01

    In this paper, we present an adaptation of a drop oscillation technique that enables in situ measurements of thermophysical properties of an industrial pulsed gas metal arc welding (GMAW) process. Surface tension, viscosity, density and temperature were derived expanding the portfolio of existing methods and previously published measurements of surface tension in pulsed GMAW. Natural oscillations of pure liquid iron droplets are recorded during the material transfer with a high-speed camera. Frame rates up to 30000 fps were utilized to visualize iron droplet oscillations which were in the low kHz range. Image processing algorithms were employed for edge contour extraction of the droplets and to derive parameters such as oscillation frequencies and damping rates along different dimensions of the droplet. Accurate surface tension measurements were achieved incorporating the effect of temperature on density. These are compared with a second method that has been developed to accurately determine the mass of droplets produced during the GMAW process which enables precise surface tension measurements with accuracies up to 1% and permits the study of thermophysical properties also for metals whose density highly depends on temperature. Thermophysical properties of pure liquid iron droplets formed by a wire with 1.2 mm diameter were investigated in a pulsed GMAW process with a base current of 100 A and a pulse current of 600 A. Surface tension and viscosity of a sample droplet were 1.83 ± 0.02 N m -1 and 2.9 ± 0.3 mPa s, respectively. The corresponding droplet temperature and density are 2040 ± 50 K and 6830 ± 50 kg m -3 , respectively. (paper)

  9. Study on Spray Characteristics and Spray Droplets Dynamic Behavior of Diesel Engine Fueled by Rapeseed Oil

    Directory of Open Access Journals (Sweden)

    Sapit Azwan

    2014-07-01

    Full Text Available Fuel-air mixing is important process in diesel combustion. It directly affects the combustion and emission of diesel engine. Biomass fuel needs great help to atomize because the fuel has high viscosity and high distillation temperature. This study investigates the atomization characteristics and droplet dynamic behaviors of diesel engine spray fueled by rapeseed oil (RO. Optical observation of RO spray was carried out using shadowgraph photography technique. Single nano-spark photography technique was used to study the characteristics of the rapeseed oil spray while dual nano-spark shadowgraph technique was used to study the spray droplet behavior. The results show that RO has very poor atomization due to the high viscosity nature of the fuel. This is in agreement with the results from spray droplet dynamic behavior studies that shows due to the high viscosity, the droplets are large in size and travel downward, with very little influence of entrainment effect due to its large kinematic energy.

  10. In-Situ Microprobe Observations of Dispersed Oil with Low-Temperature Low-Vacuum Scanning Electron Microscope

    International Nuclear Information System (INIS)

    Mohsen, H.T.

    2010-01-01

    A low cost cryostat stage from high heat capacity material is designed and constructed, in attempt to apply size distribution techniques for examination of oil dispersions. Different materials were tested according to their heat capacity to keep the liquid under investigation in frozen state as long as possible during the introduction of the cryostat stage to the low-vacuum scanning electron microscope. Different concentrations of non ionic surfactant were added to artificially contaminated with 10000 ppm Balayeam base oil in 3.5 % saline water, where oil and dispersing liquid have been added and shacked well to be investigated under the microscope as fine frozen droplets. The efficiency of dispersion was examined using low temperature low-vacuum scanning electron microscope. The shape and size distributions of freeze oil droplets were studied by digital imaging processing technique in conjunction with scanning electron microscope counting method. Also elemental concentration of oil droplets was analyzed.

  11. Fusion of microlitre water-in-oil droplets for simple, fast and green chemical assays.

    Science.gov (United States)

    Chiu, S-H; Urban, P L

    2015-08-07

    A simple format for microscale chemical assays is proposed. It does not require the use of test tubes, microchips or microtiter plates. Microlitre-range (ca. 0.7-5.0 μL) aqueous droplets are generated by a commercial micropipette in a non-polar matrix inside a Petri dish. When two droplets are pipetted nearby, they spontaneously coalesce within seconds, priming a chemical reaction. Detection of the reaction product is accomplished by colorimetry, spectrophotometry, or fluorimetry using simple light-emitting diode (LED) arrays as the sources of monochromatic light, while chemiluminescence detection of the analytes present in single droplets is conducted in the dark. A smartphone camera is used as the detector. The limits of detection obtained for the developed in-droplet assays are estimated to be: 1.4 nmol (potassium permanganate by colorimetry), 1.4 pmol (fluorescein by fluorimetry), and 580 fmol (sodium hypochlorite by chemiluminescence detection). The format has successfully been used to monitor the progress of chemical and biochemical reactions over time with sub-second resolution. A semi-quantitative analysis of ascorbic acid using Tillman's reagent is presented. A few tens of individual droplets can be scanned in parallel. Rapid switching of the LED light sources with different wavelengths enables a spectral analysis of multiple droplets. Very little solid waste is produced. The assay matrix is readily recycled, thus the volume of liquid waste produced each time is also very small (typically, 1-10 μL per analysis). Various water-immiscible translucent liquids can be used as the reaction matrix: including silicone oil, 1-octanol as well as soybean cooking oil.

  12. In-situ burning of oil spills: Review and research properties

    International Nuclear Information System (INIS)

    Fingas, M.

    1992-01-01

    In-situ burning of oil spills has been tried over the past thirty years but has never been fully-accepted as an oil-spill cleanup option - largely because of the lack of understanding of the combustion products and the principles governing the combustibility of oil-on-water. Extensive research is currently underway to understand the many facets of burning oil. A consortium of over 15 agencies in the United States and Canada have joined forces to study burning and to conduct large scale experiments. This effort will result in data which should lead to broader acceptance of in-situ burning as an acceptable spill countermeasures alternative. Burning has distinct advantages over other counter-measures. First and foremost, it offers the potential to rapidly remove large quantities of oil. In-situ burning has the potential to remove as much oil in one day as several mechanical devices could in one month. Application of in-situ burning could prevent a large amount of shoreline contamination and damage to biota by removing oil before it spreads and moves to other areas. Secondly, in-situ burning requires minimal equipment and much less labor than any other technique. It can be applied in areas where other methods cannot be used because of distances and lack of infra-structure. Thirdly, burning of oil is a final solution compared to mechanical recovery. When oil is recovered mechanically it still has to be transported, stored and disposed of. Fourth and finally, burning may be the only option available in certain situations. Oil amongst ice and on ice are examples of situations where practical alternatives to burning do not exist. There are disadvantages to burning. The first and most visible disadvantage is the large black smoke plume that burning oil produces. The second disadvantage is that the oil must be a minimum thickness to burn

  13. Optical calorimetry in microfluidic droplets.

    Science.gov (United States)

    Chamoun, Jacob; Pattekar, Ashish; Afshinmanesh, Farzaneh; Martini, Joerg; Recht, Michael I

    2018-05-29

    A novel microfluidic calorimeter that measures the enthalpy change of reactions occurring in 100 μm diameter aqueous droplets in fluoropolymer oil has been developed. The aqueous reactants flow into a microfluidic droplet generation chip in separate fluidic channels, limiting contact between the streams until immediately before they form the droplet. The diffusion-driven mixing of reactants is predominantly restricted to within the droplet. The temperature change in droplets due to the heat of reaction is measured optically by recording the reflectance spectra of encapsulated thermochromic liquid crystals (TLC) that are added to one of the reactant streams. As the droplets travel through the channel, the spectral characteristics of the TLC represent the internal temperature, allowing optical measurement with a precision of ≈6 mK. The microfluidic chip and all fluids are temperature controlled, and the reaction heat within droplets raises their temperature until thermal diffusion dissipates the heat into the surrounding oil and chip walls. Position resolved optical temperature measurement of the droplets allows calculation of the heat of reaction by analyzing the droplet temperature profile over time. Channel dimensions, droplet generation rate, droplet size, reactant stream flows and oil flow rate are carefully balanced to provide rapid diffusional mixing of reactants compared to thermal diffusion, while avoiding thermal "quenching" due to contact between the droplets and the chip walls. Compared to conventional microcalorimetry, which has been used in this work to provide reference measurements, this new continuous flow droplet calorimeter has the potential to perform titrations ≈1000-fold faster while using ≈400-fold less reactants per titration.

  14. Dynamic behaviour of natural oil droplets through the water column in deep-water environment: the case of the Lower Congo Basin

    Science.gov (United States)

    Jatiault, R.; Dhont, D.; Loncke, L.; Durrieu De Madron, X.; Dubucq, D.; Channelliere, C.; Bourrin, F.

    2017-12-01

    Key words: Hydrocarbon seepage, Oil Slick, Lower Congo Basin, Underwater deflection, Deep-water Pockmark, Ascent speedThe space-borne imagery provides a significant means to locate active oil seeps and to estimate the expelled volume in the marine environment. The analysis of numerous overlapping satellite images revealed an abundant volume of 4400 m3 of oil naturally reaching the sea surface per year, expelled from more than a hundred seep sites through the Lower Congo Basin. The active seepage area is located in the distal compressional province of the basin where salt napes and squeezed diapirs. The integration of current data was used to link accurately sea surface manifestations of natural oil leakages with active fluid flow features on the seafloor. A mooring with ADCPs (Acoustic Doppler Current Profilers) distributed throughout the water column provided an efficient calibration tool to evaluate the horizontal deflection of oil droplets. Using a Eulerian propagation model that considered a range of probable ascent speeds, we estimated the oil migration pathways through the water column using two different approaches. The first approach consisted in simulating the backwards trajectory of oil droplets using sea surface oil slicks locations and concomitant current measurements. The second method analyzed the spatial spreading of the surfacing signatures of natural oil slicks based on 21 years of satellite observations. The location of the surfacing points of oil droplets at the sea surface is restricted to a circle of 2.5 km radius around the release point at the seafloor. Both approaches provided a range of ascent speeds of oil droplets between 3 to 8 cm.s-1. The low deflection values validate the near-vertical links between the average surfacing area of oil slicks at the sea surface with specific seafloor disturbances (i.e. pockmarks or mounds) known to expel fluids.

  15. Butschli Dynamic Droplet System

    DEFF Research Database (Denmark)

    Armstrong, R.; Hanczyc, M.

    2013-01-01

    Dynamical oil-water systems such as droplets display lifelike properties and may lend themselves to chemical programming to perform useful work, specifically with respect to the built environment. We present Butschli water-in-oil droplets as a model for further investigation into the development...... reconstructed the Butschli system and observed its life span under a light microscope, observing chemical patterns and droplet behaviors in nearly three hundred replicate experiments. Self-organizing patterns were observed, and during this dynamic, embodied phase the droplets provided a means of introducing...... temporal and spatial order in the system with the potential for chemical programmability. The authors propose that the discrete formation of dynamic droplets, characterized by their lifelike behavior patterns, during a variable window of time (from 30 s to 30 min after the addition of alkaline water...

  16. Protocol for Enhanced in situ Bioremediation Using Emulsified Edible Oil

    Science.gov (United States)

    2006-05-01

    through a two-step process where the ester linkages between the glycerol and the fatty acids are hydrolyzed releasing free fatty acids and glycerol to...interfacial tension of edible oils can be lowered by the addition of different surfactants including lecithin , mono and diglycerides, free fatty acids...in Table 3.2. The cumulative oil volume vs. droplet diameter for the different mixers is presented in Figure 3.4. The modified lecithin

  17. In Situ burning of Arctic marine oil spills

    DEFF Research Database (Denmark)

    Fritt-Rasmussen, Janne

    experiments where the ignitability of oil spill as a function of oil type and weathering conditions (time/ice) was tested. The results show that the composition of the oil and the ice cover is important for the in situ burning time-window. The results were used to develop an algorithm that was implemented...

  18. Mitigating in situ oil sands carbon costs

    Energy Technology Data Exchange (ETDEWEB)

    Theriault, D.J.; Peterson, J. [Laricina Energy Ltd., Calgary, AB (Canada); Heinrichs, H. [Canadian Chemical Technology Inc., Calgary, AB (Canada)

    2008-10-15

    Carbon capture and sequestration is a complex problem with a variety of dimensions that need to be considered. The political, social, and regulatory pressures are forcing carbon costs on the oil sands industry in an effort to reduce the carbon footprint of oil sands operations. This paper reviewed the political, social, and regulatory pressures and obligations for the in-situ oil sands industry. It presented the views and insights of Laricina Energy on the carbon challenge. It also described the initiatives that Laricina Energy is taking to manage these imperatives and outlined the challenges the industry is facing. The purpose of the paper was to encourage dialogue and collaboration by the oil sands industry. The paper also described the dimensions of the carbon problem and how the industry can contribute to a solution. Last, the paper reviewed the parameters of carbon dioxide or greenhouse gas containment and storage issues. It was concluded that the regulatory and policy requirements need to be clarified so that industry understands the new business landscape as well as the requirements that influence the economics of in-situ oil sands development. 7 refs., 7 figs.

  19. Chip-based droplet sorting

    Energy Technology Data Exchange (ETDEWEB)

    Beer, Neil Reginald; Lee, Abraham; Hatch, Andrew

    2017-11-21

    A non-contact system for sorting monodisperse water-in-oil emulsion droplets in a microfluidic device based on the droplet's contents and their interaction with an applied electromagnetic field or by identification and sorting.

  20. Magnetic fluid droplet in a harmonic electric field

    Energy Technology Data Exchange (ETDEWEB)

    Kvasov, D., E-mail: kvasovdmitry@gmail.com [Lomonosov Moscow State University, Moscow (Russian Federation); Naletova, V. [Lomonosov Moscow State University, Moscow (Russian Federation); Beketova, E.; Dikanskii, Yu. [North-Caucasus Federal University, Stavropol (Russian Federation)

    2017-06-01

    A magnetic fluid droplet immersed in oil in an applied harmonic electric field is studied experimentally and theoretically. It is shown that deformations of the droplet observed experimentally are not described by the well-known theory. New double-layer droplet model which describes experimental data well is proposed. - Highlights: • The magnetic fluid droplet in the oil in a harmonic electric field is studied. • The paradoxical flattening effect of the droplet is observed experimentally. • For explaining this effect the model of the double-layer droplet is proposed. • Numerical and experimental data coincide qualitatively and quantitatively.

  1. In-situ burning of heavy oils and Orimulsion : mid-scale burns

    International Nuclear Information System (INIS)

    Fingas, M.F.; Fieldhouse, B.; Brown, C.E.; Gamble, L.

    2004-01-01

    In-situ burning is considered to be a viable means to clean oil spills on water. In-situ burning, when performed under the right conditions, can reduce the volume of spilled oil and eliminate the need to collect, store, transport and dispose of the recovered oil. This paper presented the results of bench-scale in-situ burning tests in which Bunker C, Orimulsion and weathered bitumen were burned outdoors during the winter in burn pans of approximately 1 square metre. Each test was conducted on salt water which caused the separation of the bitumen from the water in the Orimulsion. Small amounts of diesel fuel was used to ignite the heavy oils. Quantitative removal of the fuels was achieved in all cases, but re-ignition was required for the Orimulsion. Maximum efficiency was in the order of 70 per cent. The residue was mostly asphaltenes and resins which cooled to a solid, glass like material that could be readily removed. The study showed that the type of oil burned influences the behaviour of the burns. Bunker C burned quite well and Orimulsion burned efficiently, but re-ignition was necessary. It was concluded that there is potential for burning heavy oils of several types in-situ. 6 refs., 7 tabs., 18 figs

  2. Oil companies push in-situ recovery

    International Nuclear Information System (INIS)

    McIntyre, H.

    1977-01-01

    Possibly, a third Athabaska tar-sand plant using surface mining will be built in the 1980's, but future development beyond that point will probably depend on in-situ recovery. The discussion of in-situ recovery focusses on the effect it will have on the Canadian chemical industry, for example, the market for sodium hydroxide. To obtain the highest yields of oil from bitumen, an external source of hydrogen is necessary; for example Syncrude imports natural gas to make hydrogen for desulphurization. Gasification of coal is a possible source of hydrogen. Research on hydrocracking is progressing. Use of a prototype CANDU OCR reactor to raise the hot steam necessary for in-situ recovery has been suggested. Venezuela is interested in Canadian upgrading technology. (N.D.H.)

  3. In-situ burning of spilled oil

    International Nuclear Information System (INIS)

    Tennyson, E.J.

    1992-01-01

    This presentation provided an overview of results from the Minerals Management Service's (MMS) funded research on in situ burning of spilled oil. The program began in 1983 to determine the limitations of this innovative response strategies. Specific physical variables evaluated were slick thickness, degree of weathering (sparging), sea state, wind velocities, air and water temperatures, degrees of emulsification and degree of ice-coverage. All of the oils tested burned with 50 to 95 percent removal ratios as long as emulsification had not occurred. Slick thickness of 3mm or thicker were required to sustain ignition and extinguishment occurred when the slick reached approximately 1mm thick. The next phase of the research involved quantitative analysis of the pollutants created by in situ burning including chemical composition of the parent oil, burn residue, and airborne constituents. These studies were conducted at the National Institute of Standards and Technology (NIST) with emphasis on particulate, and gaseous components created by the burning process. Research efforts over several years, and a variety of crude oils, yielded data which indicated that aldehydes ketones, dioxans, furans, and polyaromatic compounds (PAHS) were not formed in the burning process. The airborne pollutants reflected similar concentrations of these compounds that were present in the parent oil. Lighter molecular weight PAHs tended to be converted to higher molecular weight compounds. Heavier molecular weight compounds are considered less acutely toxic than lighter molecular weight PAHS. Predominant burn products released into the air were by weight: 75% carbon dioxide, 12% water vapor, 10% soot, 3% carbon monoxide and 0.2% other products including those listed above

  4. In situ oil burning in the marshland environment : soil temperatures resulting from crude oil and diesel fuel burns

    International Nuclear Information System (INIS)

    Bryner, N.P.; Walton, W.D.; Twilley, W.H.; Roadarmel, G.; Mendelssohn, I.A.; Lin, Q.; Mullin, J.V.

    2001-01-01

    The unique challenge associated with oil spill cleanups in sensitive marsh environments was discussed. Mechanical recovery of crude or refined hydrocarbons in wetlands may cause more damage to the marsh than the oil itself. This study evaluated whether in situ burning of oiled marshlands would provide a less damaging alternative than mechanical recovery. This was done through a series of 6 crude oil and 5 diesel fuel burns conducted in a test tank to examine the impact of intentional burning of oil spilled in a wetlands environment. There are several factors which may influence how well such an environment would recover from an in situ oil burn, such as plant species, fuel type and load, water level, soil type, and burn duration. This paper focused on soil, air and water temperatures, as well as total heat fluxes that resulted when 3 plant species were exposed to full-scale in situ burns that were created by burning diesel fuel and crude oil. The soil temperatures were monitored during the test burn at three different soil/water elevations for 700 second burn exposures. A total of 184 plant sods were harvested from marshlands in southern Louisiana and were subjected to the burning fuel. They were instrumental in characterizing the thermal and chemical stress that occur during an in-situ burn. The plants were inserted into the test tanks at various water and soil depths. The results indicated that diesel fuel and crude oil burns produced similar soil temperature profiles at each of three plant sod elevations. Although in-situ burning did not appear to remediate oil that had penetrated into the soil, it did effectively remove floating oil from the water surface, thereby preventing it from potentially contaminating adjacent habitats and penetrating the soil when the water recedes. The regrowth and recovery of the plants will be described in a separate report. 25 refs., 7 tabs., 15 figs

  5. Generation of Oil Droplets in a Non-Newtonian Liquid Using a Microfluidic T-Junction

    Directory of Open Access Journals (Sweden)

    Enrico Chiarello

    2015-11-01

    Full Text Available We have compared the formation of oil drops in Newtonian and non-Newtonian fluids in a T-junction microfluidic device. As Newtonian fluids, we used aqueous solutions of glycerol, while as non-Newtonian fluids we prepared aqueous solutions of xanthan, a stiff rod-like polysaccharide, which exhibit strong shear-thinning effects. In the squeezing regime, the formation of oil droplets in glycerol solutions is found to scale with the ratio of the dispersed flow rate to the continuous one and with the capillary number associated to the continuous phase. Switching to xanthan solutions does not seem to significantly alter the droplet formation process. Any quantitative difference with respect to the Newtonian liquid can be accounted for by a suitable choice of the capillary number, corresponding to an effective xanthan viscosity that depends on the flow rates. We have deduced ample variations in the viscosity, on the order of 10 and more, during normal operation conditions of the T-junction. This allowed estimating the actual shear rates experienced by the xanthan solutions, which go from tens to hundreds of s−1.

  6. Contact lines are unstable even under non-splashing droplets

    Science.gov (United States)

    Pack, Min; Kaneelil, Paul; Sun, Ying

    2017-11-01

    Drop impact is fundamental to natural and industrial processes such as rain-induced soil erosion and spray coating technologies. In this study, we elucidate the interfacial instabilities formed by air entrainment at the wetting front of impacting droplets on atomically smooth, viscous silicone oil films of constant thickness with varying droplet velocity, viscosity, surface tension, and ambient pressures. A high-speed total internal reflection microscopy technique accounting for the Fresnel relations at the droplet interface allowed for in-situ measurements of an entrained air rim at the wetting front. The growth of the air rim is a prerequisite to the instability which is formed when the gas pressure balances the capillary pressure near the wetting front. A critical capillary number, which inversely scales as the ambient pressure, is predicted and the result agrees well with the experiments. The wavenumber in the instability is shown to increase with viscosity and velocity but decrease with surface tension of the impacting drop. We thus conclude that the instability mechanism is in qualitative agreement with the Saffman-Taylor instability - where the low viscosity air is displacing the higher viscosity droplet. The low We contact line instabilities observed in this study provide a paradigm shift in the conventional understanding of hydrodynamic instabilities under drop impact which usually require We >>10.

  7. Detection of Oil in Water Column, Final Report: Detection Prototype Tests

    Science.gov (United States)

    2014-07-01

    nautical miles per hour) LED Light-emitting diode LISST Laser In Situ Scattering and Transmissometry LUT Look-up table μm Micron or micrometer...nozzles are attached to an electrically actuated solenoid valve. When a remotely operated switch energizes the valve, oil flows through the nozzles...smaller droplet sizes below 70 μm. Ohmsett personnel used a Sequoia Laser In Situ Scattering and Transmissometry (LISST) 100X off-the-shelf particle

  8. Fast electric control of the droplet size in a microfluidic T-junction droplet generator

    Science.gov (United States)

    Shojaeian, Mostafa; Hardt, Steffen

    2018-05-01

    The effect of DC electric fields on the generation of droplets of water and xanthan gum solutions in sunflower oil at a microfluidic T-junction is experimentally studied. The electric field leads to a significant reduction of the droplet diameter, by about a factor of 2 in the case of water droplets. The droplet size can be tuned by varying the electric field strength, an effect that can be employed to produce a stream of droplets with a tailor-made size sequence. Compared to the case of purely hydrodynamic droplet production without electric fields, the electric control has about the same effect on the droplet size if the electric stress at the liquid/liquid interface is the same as the hydrodynamic stress.

  9. Engineering Surfaces for Enhanced Nucleation and Droplet Removal During Dropwise Condensation

    Science.gov (United States)

    Dutta, Sanmitra; Khan, Sameera; Anand, Sushant

    2017-11-01

    Condensation plays critical role in numerous industrial applications, such as condensers, HVAC,etc In the most applications, fast formation (i.e. high nucleation) and subsequent removal of water droplets is critical for enhancing the efficiencies of their associated systems. Significant focus has been placed on the aspect of droplet removal from surfaces. This has led to, development of superhydrophobic surfaces with special textures on which droplets are self-removed after coalescence. However,because of their inherent low surface energy, nucleation energy barriers are also high on such surfaces. In contrast to conventional superhydrophobic surfaces, here we show that surfaces can be engineered such that the simultaneous benefits of high nucleation rates and fast droplet removal can be obtained during the condensation process.These benefits are obtained by impregnating a superhydrophobic surface with an oil that despite its defect-free interface provides low nucleation energy barrier during condensation. At the same time, the oil facilitates high droplet shedding rates by providing a lubricating layer below the droplets due to which droplets have negligible contact angle hysteresis. We provide a guide to choose oils that lead to enhanced nucleation, and provide experimental evidence supporting the proposed guide. We discuss the importance of different oil properties in affecting the droplet growth and subsequent removal of water droplets.

  10. Endocytosis of Corn Oil-Caseinate Emulsions In Vitro: Impacts of Droplet Sizes

    Science.gov (United States)

    Fan, Yuting; Yokoyama, Wally; Yi, Jiang

    2017-01-01

    The relative uptake and mechanisms of lipid-based emulsions of three different particle diameters by Caco-2 cells were studied. The corn oil-sodium caseinate emulsions showed little or no cytotoxicity even at 2 mg/mL protein concentration for any of the three droplet size emulsions. Confocal laser scanning microscopy (CLSM) of Nile red containing emulsions showed that the lipid-based emulsions were absorbed by Caco-2 cells. A negative correlation between the mean droplet size and cellular uptake was observed. There was a time-dependent and energy-dependent uptake as shown by incubation at different times and treatment with sodium azide a general inhibitor of active transport. The endocytosis of lipid-based emulsions was size-dependent. The internalization of nanoemulsion droplets into Caco-2 cells mainly occurred through clathrin- and caveolae/lipid raft-related pathways, while macropinocytosis route played the most important role for 556 nm emulsion endocytosis as shown by the use of specific pathway inhibitors. Permeability of the emulsion through the apical or basal routes also suggested that active transport may be the main route for lipid-based nanoemulsions. The results may assist in the design and application of lipid-based nanoemulsions in nutraceuticals and pharmaceuticals delivery. PMID:29072633

  11. Endocytosis of Corn Oil-Caseinate Emulsions In Vitro: Impacts of Droplet Sizes

    Directory of Open Access Journals (Sweden)

    Yuting Fan

    2017-10-01

    Full Text Available The relative uptake and mechanisms of lipid-based emulsions of three different particle diameters by Caco-2 cells were studied. The corn oil-sodium caseinate emulsions showed little or no cytotoxicity even at 2 mg/mL protein concentration for any of the three droplet size emulsions. Confocal laser scanning microscopy (CLSM of Nile red containing emulsions showed that the lipid-based emulsions were absorbed by Caco-2 cells. A negative correlation between the mean droplet size and cellular uptake was observed. There was a time-dependent and energy-dependent uptake as shown by incubation at different times and treatment with sodium azide a general inhibitor of active transport. The endocytosis of lipid-based emulsions was size-dependent. The internalization of nanoemulsion droplets into Caco-2 cells mainly occurred through clathrin- and caveolae/lipid raft-related pathways, while macropinocytosis route played the most important role for 556 nm emulsion endocytosis as shown by the use of specific pathway inhibitors. Permeability of the emulsion through the apical or basal routes also suggested that active transport may be the main route for lipid-based nanoemulsions. The results may assist in the design and application of lipid-based nanoemulsions in nutraceuticals and pharmaceuticals delivery.

  12. A compact and facile microfluidic droplet creation device using a piezoelectric diaphragm micropump for droplet digital PCR platforms.

    Science.gov (United States)

    Okura, Naoaki; Nakashoji, Yuta; Koshirogane, Toshihiro; Kondo, Masaki; Tanaka, Yugo; Inoue, Kohei; Hashimoto, Masahiko

    2017-10-01

    We have exploited a compact and facile microfluidic droplet creation device consisting of a poly(dimethylsiloxane) microfluidic chip possessing T-junction channel geometry, two inlet reservoirs, and one outlet reservoir, and a piezoelectric (PZT) diaphragm micropump with controller. Air was evacuated from the outlet reservoir using the PZT pump, reducing the pressure inside. The reduced pressure within the outlet reservoir pulled oil and aqueous solution preloaded in the inlet reservoirs into the microchannels, which then merged at the T-junction, successfully forming water-in-oil emulsion droplets at a rate of ∼1000 per second with minimal sample loss. We confirmed that the onset of droplet formation occurred immediately after turning on the pump (<1 s). Over repeated runs, droplet formation was highly reproducible, with droplet size purity (polydispersity, <4%) comparable to that achieved using other microfluidic droplet preparation techniques. We also demonstrated single-molecule PCR amplification in the created droplets, suggesting that the device could be used for effective droplet digital PCR platforms in most laboratories without requiring great expense, space, or time for acquiring technical skills. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Cold Heat Release Characteristics of Solidified Oil Droplet-Water Solution Latent Heat Emulsion by Air Bubbles

    Science.gov (United States)

    Inaba, Hideo; Morita, Shin-Ichi

    The present work investigates the cold heat-release characteristics of the solidified oil droplets (tetradecane, C14H30, freezing point 278.9 K)/water solution emulsion as a latent heat-storage material having a low melting point. An air bubbles-emulsion direct-contact heat exchange method is selected for the cold heat-results from the solidified oil droplet-emulsion layer. This type of direct-contact method results in the high thermal efficiency. The diameter of air bubbles in the emulsion increases as compared with that in the pure water. The air bubbles blown from a nozzle show a strong mixing behavior during rising in the emulsion. The temperature effectiveness, the sensible heat release time and the latent heat release time have been measured as experimental parameters. The useful nondimensional emulsion level equations for these parameters have been derived in terms of the nondimensional emalsion level expressed the emulsion layer dimensions, Reynolds number for air flow, Stefan number and heat capacity ratio.

  14. Label-free in situ imaging of oil body dynamics and chemistry in germination.

    Science.gov (United States)

    Waschatko, Gustav; Billecke, Nils; Schwendy, Sascha; Jaurich, Henriette; Bonn, Mischa; Vilgis, Thomas A; Parekh, Sapun H

    2016-10-01

    Plant oleosomes are uniquely emulsified lipid reservoirs that serve as the primary energy source during seed germination. These oil bodies undergo significant changes regarding their size, composition and structure during normal seedling development; however, a detailed characterization of these oil body dynamics, which critically affect oil body extractability and nutritional value, has remained challenging because of a limited ability to monitor oil body location and composition during germination in situ Here, we demonstrate via in situ, label-free imaging that oil bodies are highly dynamic intracellular organelles that are morphologically and biochemically remodelled extensively during germination. Label-free, coherent Raman microscopy (CRM) combined with bulk biochemical measurements revealed the temporal and spatial regulation of oil bodies in native soya bean cotyledons during the first eight days of germination. Oil bodies undergo a cycle of growth and shrinkage that is paralleled by lipid and protein compositional changes. Specifically, the total protein concentration associated with oil bodies increases in the first phase of germination and subsequently decreases. Lipids contained within the oil bodies change in saturation and chain length during germination. Our results show that CRM is a well-suited platform to monitor in situ lipid dynamics and local chemistry and that oil bodies are actively remodelled during germination. This underscores the dynamic role of lipid reservoirs in plant development. © 2016 The Authors.

  15. Bioaugmentation of oil reservoir indigenous Pseudomonas aeruginosa to enhance oil recovery through in-situ biosurfactant production without air injection.

    Science.gov (United States)

    Zhao, Feng; Li, Ping; Guo, Chao; Shi, Rong-Jiu; Zhang, Ying

    2018-03-01

    Considering the anoxic conditions within oil reservoirs, a new microbial enhanced oil recovery (MEOR) technology through in-situ biosurfactant production without air injection was proposed. High-throughput sequencing data revealed that Pseudomonas was one of dominant genera in Daqing oil reservoirs. Pseudomonas aeruginosa DQ3 which can anaerobically produce biosurfactant at 42 °C was isolated. Strain DQ3 was bioaugmented in an anaerobic bioreactor to approximately simulate MEOR process. During bioaugmentation process, although a new bacterial community was gradually formed, Pseudomonas was still one of dominant genera. Culture-based data showed that hydrocarbon-degrading bacteria and biosurfactant-producing bacteria were activated, while sulfate reducing bacteria were controlled. Biosurfactant was produced at simulated reservoir conditions, decreasing surface tension to 33.8 mN/m and emulsifying crude oil with EI 24  = 58%. Core flooding tests revealed that extra 5.22% of oil was displaced by in-situ biosurfactant production. Bioaugmenting indigenous biosurfactant producer P. aeruginosa without air injection is promising for in-situ MEOR applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Rheological properties of soybean protein isolate gels containing emulsion droplets

    NARCIS (Netherlands)

    Kim, K.H.; Renkema, J.M.S.; Vliet, van T.

    2001-01-01

    Rheological properties of soybean protein gels containing various volume fractions oil droplets have been studied at small and large deformations. Dynamic viscoelastic properties of soybean protein isolate gels were determined as a function of the volume fraction of oil droplets stabilised by the

  17. Seeing red to being red: conserved genetic mechanism for red cone oil droplets and co-option for red coloration in birds and turtles.

    Science.gov (United States)

    Twyman, Hanlu; Valenzuela, Nicole; Literman, Robert; Andersson, Staffan; Mundy, Nicholas I

    2016-08-17

    Avian ketocarotenoid pigments occur in both the red retinal oil droplets that contribute to colour vision and bright red coloration used in signalling. Turtles are the only other tetrapods with red retinal oil droplets, and some also display red carotenoid-based coloration. Recently, the CYP2J19 gene was strongly implicated in ketocarotenoid synthesis in birds. Here, we investigate CYP2J19 evolution in relation to colour vision and red coloration in reptiles using genomic and expression data. We show that turtles, but not crocodiles or lepidosaurs, possess a CYP2J19 orthologue, which arose via gene duplication before turtles and archosaurs split, and which is strongly and specifically expressed in the ketocarotenoid-containing retina and red integument. We infer that CYP2J19 initially functioned in colour vision in archelosaurs and conclude that red ketocarotenoid-based coloration evolved independently in birds and turtles via gene regulatory changes of CYP2J19 Our results suggest that red oil droplets contributed to colour vision in dinosaurs and pterosaurs. © 2016 The Author(s).

  18. Flow Analysis of a Rising Crude Oil Micro-Droplet Affected by Attached Microbial Streamers

    Science.gov (United States)

    Amaro, Matthew; White, Andrew; Jalali, Maryam; Sheng, Jian

    2017-11-01

    Microfluidic experiments show bacteria flowing past a pinned crude oil droplet produce microbial aggregates and streamers on the oil-water interface. High speed DIC microscopy at 1000 fps for 1 sec with a sampling interval of 10 min captures the evolving flow and bacterial motility as well as adhesion, aggregation and streamer events. With bacteria as tracers, velocity measurements are acquired with in-house PIV-assisted PTV software. Flow fields with spatial resolution 2.5 μm are measured around an O(100) μm drop in a 700 ×700 μm window. Full budgets of the 2D Navier-Stokes equation are faithfully resolved to determine pressure gradients by performing the balance over a control volume enclosing the droplet. Pressure gradients are integrated over the border of the control region to obtain pressure profiles at the leading and trailing edges. A momentum balance can be used to determine the drag induced by the drop and any attached streamers. Cases with and without streamers and their differing flow features are presented. Additionally streamers produce nonzero curl in the pressure gradient field providing a tool for identifying the position of otherwise invisible streamers. Ongoing experiments and future applications of the tools presented here will be discussed. Funded by GoMRI, NSF, ARO.

  19. A Fast Algorithm to Simulate Droplet Motions in Oil/Water Two Phase Flow

    KAUST Repository

    Zhang, Tao

    2017-06-09

    To improve the research methods in petroleum industry, we develop a fast algorithm to simulate droplet motions in oil and water two phase flow, using phase field model to describe the phase distribution in the flow process. An efficient partial difference equation solver—Shift-Matrix method is applied here, to speed up the calculation coding in high-level language, i.e. Matlab and R. An analytical solution of order parameter is derived, to define the initial condition of phase distribution. The upwind scheme is applied in our algorithm, to make it energy decay stable, which results in the fast speed of calculation. To make it more clear and understandable, we provide the specific code for forming the coefficient matrix used in Shift-Matrix Method. Our algorithm is compared with other methods in different scales, including Front Tracking and VOSET method in macroscopic and LBM method using RK model in mesoscopic scale. In addition, we compare the result of droplet motion under gravity using our algorithm with the empirical formula common used in industry. The result proves the high efficiency and robustness of our algorithm and it’s then used to simulate the motions of multiple droplets under gravity and cross-direction forces, which is more practical in industry and can be extended to wider application.

  20. Droplet size in a rectangular Venturi scrubber

    OpenAIRE

    Costa, M. A. M.; Henrique, P. R.; Gonçalves, J. A. S.; Coury, J.R.

    2004-01-01

    The Venturi scrubber is a device which uses liquid in the form of droplets to efficiently remove fine particulate matter from gaseous streams. Droplet size is of fundamental importance for the scrubber performance. In the present experimental study, a laser diffraction technique was used in order to measure droplet size in situ in a Venturi scrubber with a rectangular cross section. Droplet size distribution was measured as a function of gas velocity (58.3 to 74.9 m/s), liquid-to-gas ratio (0...

  1. Supplying synthetic crude oil from Canadian oil sands: A comparative study of the costs and CO2 emissions of mining and in-situ recovery

    International Nuclear Information System (INIS)

    Méjean, Aurélie; Hope, Chris

    2013-01-01

    High crude oil prices and the eventual decline of conventional oil production raise the issue of alternative fuels such as non-conventional oil. The paper describes a simple probabilistic model of the costs of synthetic crude oil produced from Canadian oil sands. Synthetic crude oil is obtained by upgrading bitumen that is first produced through mining or in-situ recovery techniques. This forward-looking analysis quantifies the effects of learning and production constraints on the costs of supplying synthetic crude oil. The sensitivity analysis shows that before 2035, the most influential parameters are the learning parameter in the case of in-situ bitumen and the depletion parameter in the case of mined bitumen. After 2035, depletion dominates in both cases. The results show that the social cost of CO 2 has a large impact on the total costs of synthetic crude oil, in particular in the case of synthetic crude oil from in-situ bitumen, due to the carbon intensity of the recovery techniques: taking into account the social cost of CO 2 adds more than half to the cost of producing synthetic crude oil from mined bitumen in 2050 (mean value), while the cost of producing synthetic crude oil from in-situ bitumen more than doubles. - Highlights: • We model the cost of Canadian synthetic crude oil (SCO) using Monte-Carlo techniques. • We reveal the uncertainty associated with each input parameter. • We quantify the effect of learning, depletion and CO 2 using sensitivity analyses. • Accounting for the social cost of CO 2 doubles the cost of SCO from in-situ bitumen. • CO 2 pricing could have a large effect on the economics of the oil sands

  2. How much crude oil can zooplankton ingest? Estimating the quantity of dispersed crude oil defecated by planktonic copepods

    International Nuclear Information System (INIS)

    Almeda, Rodrigo; Connelly, Tara L.; Buskey, Edward J.

    2016-01-01

    We investigated and quantified defecation rates of crude oil by 3 species of marine planktonic copepods (Temora turbinata, Acartia tonsa, and Parvocalanus crassirostris) and a natural copepod assemblage after exposure to mechanically or chemically dispersed crude oil. Between 88 and 100% of the analyzed fecal pellets from three species of copepods and a natural copepod assemblage exposed for 48 h to physically or chemically dispersed light crude oil contained crude oil droplets. Crude oil droplets inside fecal pellets were smaller (median diameter: 2.4–3.5 μm) than droplets in the physically and chemically dispersed oil emulsions (median diameter: 6.6 and 8.0 μm, respectively). This suggests that copepods can reject large crude oil droplets or that crude oil droplets are broken into smaller oil droplets before or during ingestion. Depending on the species and experimental treatments, crude oil defecation rates ranged from 5.3 to 245 ng-oil copepod"−"1 d"−"1, which represent a mean weight-specific defecation rate of 0.026 μg-oil μg-C_c_o_p_e_p_o_d"1 d"−"1. Considering a dispersed crude oil concentration commonly found in the water column after oil spills (1 μl L"−"1) and copepod abundances in high productive coastal areas, copepods may defecate ∼1.3–2.6 mg-oil m"−"3 d"−"1, which would represent ∼0.15%–0.30% of the total dispersed oil per day. Our results indicate that ingestion and subsequent defecation of crude oil by planktonic copepods has a small influence on the overall mass of oil spills in the short term, but may be quantitatively important in the flux of oil from surface water to sediments and in the transfer of low-solubility, toxic petroleum hydrocarbons into food webs after crude oil spills in the sea. - Highlights: • Copepods exposed to dispersed crude oil produced fecal pellets contained numerous small oil droplets (2.4 to 3.5 µm). • Copepods could reject large oil droplets or oil droplets are broken into

  3. Surfactant-aided recovery/in situ bioremediation for oil-contaminated sites

    International Nuclear Information System (INIS)

    Ducreaux, J.; Baviere, M.; Seabra, P.; Razakarisoa, O.; Shaefer, G.; Arnaud, C.

    1995-01-01

    Bioremediation has been the most commonly used method way for in situ cleaning of soils contaminated with low-volatility petroleum products such as diesel oil. However, whatever the process (bioventing, bioleaching, etc.), it is a time-consuming technique that may be efficiency limited by both accessibility and too high concentrations of contaminants. A currently developed process aims at quickly recovering part of the residual oil in the vadose and capillary zones by surfactant flushing, then activating in situ biodegradation of the remaining oil in the presence of the same or other surfactants. The process has been tested in laboratory columns and in an experimental pool, located at the Institut Franco-Allemand de Recherche sur l'Environnement (IFARE) in Strasbourg, France. Laboratory column studies were carried out to fit physico-chemical and hydraulic parameters of the process to the field conditions. The possibility of recovering more than 80% of the oil in the flushing step was shown. For the biodegradation step, forced aeration as a mode of oxygen supply, coupled with nutrient injection aided by surfactants, was tested

  4. Estimating sub-surface dispersed oil concentration using acoustic backscatter response.

    Science.gov (United States)

    Fuller, Christopher B; Bonner, James S; Islam, Mohammad S; Page, Cheryl; Ojo, Temitope; Kirkey, William

    2013-05-15

    The recent Deepwater Horizon disaster resulted in a dispersed oil plume at an approximate depth of 1000 m. Several methods were used to characterize this plume with respect to concentration and spatial extent including surface supported sampling and autonomous underwater vehicles with in situ instrument payloads. Additionally, echo sounders were used to track the plume location, demonstrating the potential for remote detection using acoustic backscatter (ABS). This study evaluated use of an Acoustic Doppler Current Profiler (ADCP) to quantitatively detect oil-droplet suspensions from the ABS response in a controlled laboratory setting. Results from this study showed log-linear ABS responses to oil-droplet volume concentration. However, the inability to reproduce ABS response factors suggests the difficultly in developing meaningful calibration factors for quantitative field analysis. Evaluation of theoretical ABS intensity derived from the particle size distribution provided insight regarding method sensitivity in the presence of interfering ambient particles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Negative/positive chemotaxis of a droplet: Dynamic response to a stimulant gas

    Science.gov (United States)

    Sakuta, Hiroki; Magome, Nobuyuki; Mori, Yoshihito; Yoshikawa, Kenichi

    2016-05-01

    We report here the repulsive/attractive motion of an oil droplet floating on an aqueous phase caused by the application of a stimulant gas. A cm-sized droplet of oleic acid is repelled by ammonia vapor. In contrast, a droplet of aniline on an aqueous phase moves toward hydrochloric acid as a stimulant. The mechanisms of these characteristic behaviors of oil droplets are discussed in terms of the spatial gradient of the interfacial tension caused by the stimulant gas.

  6. Tests for oil/dispersant toxicity: In situ laboratory assays

    International Nuclear Information System (INIS)

    Wright, D.A.; Coelho, G.M.; Aurand, D.V.

    1995-01-01

    As part of its readiness program in oil spill response, the Marine Pollution Control Unit (MPCU), Department of Transport, U.K. conducts annual field trials in the North Sea, approximately 30 nautical miles from the southeast coast of England. The trials take the form of controlled releases of crude oil or Medium Fuel/Gas Oil mix (MFO), with and without the application of Corexit 9527 dispersant. In 1994 and 1995 the authors conducted a series of in situ toxicity bioassays in association with these spills with included 48h LC50 tests for turbot (Scophthalmus maximus) and oyster (Crassostrea gigas) larvae, a 48 h oyster (C. gigas) embryonic development test and two full life-cycle assays using the copepods Acartia tonsa and Tisbe battagliai. Tests were also conducted in the Chesapeake Bay laboratory using estuarine species including the copepod Eurytemora affinis and the inland silverside Menidia beryllina. Here, the authors report on the results of these assays, together with 1996 in situ toxicity data resulting from Norwegian field trials in the northern North Sea

  7. Highly efficient capillary polymerase chain reaction using an oscillation droplet microreactor

    International Nuclear Information System (INIS)

    Liu Dayu; Liang Guangtie; Lei Xiuxia; Chen Bin; Wang Wei; Zhou Xiaomian

    2012-01-01

    Graphical abstract: An oscillation-flow approach using a droplet reactor was developed to fully explore the potential of continuous-flow PCR. By fully utilizing interfacial chemistry, a water-in-oil (w/o) droplet was automatically generated by allowing an oil–water plug to flow through a polytetrafluoroethylene (PTFE) capillary. Due to the movement of aqueous phase relative to the oil phase, the droplet moves further into the middle of the oil plug with increase in migration distance. The resulting droplet was transported spanning the two heating zones and was employed as the reactor of oscillating-flow PCR. Highlights: ► Droplet formation in a capillary. ► Transport the droplet using oscillation-flow. ► Oscillation droplet PCR. ► Improved reaction efficiency. - Abstract: The current work presents the development of a capillary-based oscillation droplet approach to maximize the potential of a continuous-flow polymerase chain reaction (PCR). Through the full utilization of interfacial chemistry, a water-in-oil (w/o) droplet was generated by allowing an oil–water plug to flow along a polytetrafluoroethylene (PTFE) capillary. The w/o droplet functioned as the reactor for oscillating-flow PCR to provide a stable reaction environment, accelerate reagent mixing, and eliminate surface adsorption. The capillary PCR approach proposed in the current research offers high amplification efficiency, fast reaction speed, and easy system control attributable to the oscillation droplet reactor. Experimental results show that the droplet-based micro-PCR assay requires lower reaction volume (2 μL) and shorter reaction time (12 min) compared with conventional PCR methods. Taking the amplification of the New Delhi metallo-beta-lactamase (NDM-1) gene as an example, the present work demonstrates that the oscillation droplet PCR assay is capable of achieving high efficiency up to 89.5% and a detection limit of 10 DNA copies. The miniature PCR protocol developed in the current

  8. In situ X-ray scattering studies of protein solution droplets drying on micro- and nanopatterned superhydrophobic PMMA surfaces.

    Science.gov (United States)

    Accardo, Angelo; Gentile, Francesco; Mecarini, Federico; De Angelis, Francesco; Burghammer, Manfred; Di Fabrizio, Enzo; Riekel, Christian

    2010-09-21

    Superhydrophobic poly(methyl methacrylate) surfaces with contact angles of ∼170° and high optical and X-ray transparencies have been fabricated through the use of optical lithography and plasma etching. The surfaces contain either a microscale pattern of micropillars or a random nanofibrillar pattern. Nanoscale asperities on top of the micropillars closely resemble Nelumbo nucifera lotus leaves. The evolution of the contact angle of water and lysozyme solution droplets during evaporation was studied on the micro- and nanopatterned surfaces, showing in particular contact-line pinning for the protein solution droplet on the nanopatterned surface. The microstructural evolution of lysozyme solution droplets was studied on both types of surfaces in situ under nearly contact-free conditions by synchrotron radiation microbeam wide-angle and small-angle X-ray scattering revealing the increasing protein concentration and the onset of precipitation. The solid residuals show hollow sphere morphologies. Rastermicrodiffraction of the detached residuals suggests about a 1/3 volume fraction of ≥17 nm lysozyme nanocrystalline domains and about a 2/3 short-range-order volume fraction. About 5-fold larger nanocrystalline domains were observed at the attachment points of the sphere to the substrates, which is attributed to particle growth in a shear flow. Such surfaces represent nearly contact-free sample supports for studies of inorganic and organic solution droplets, which find applications in biochips.

  9. A review of the literature on soot production during in-situ burning of oil

    International Nuclear Information System (INIS)

    Fraser, J.; Buist, I.

    1997-01-01

    Available literature on soot production during in-situ burning of oil was reviewed to determine the range of smoke yields generated by in-situ burning of petroleum oils in water, and to determine the effects of the size of fire and the type of oil burned. For crude oil, data sets statistical analysis showed that, with a fairly high degree of confidence, smoke yield increases with fire diameter. Based on a limited number of available data sets for identifiable oil types, it appears that most oils (Arabian crude the only exception) show roughly the same correlation of smoke yield with fire diameter. Pool fires from aromatic hydrocarbons such as toluene appear to produce more soot than similar fires with crude oil. Fires of lower molecular weight non-aromatics produce an order of magnitude less soot than crude oil fires. Predictive equations with correlation coefficients are provided for specific crude oils. 50 refs., 5 tabs., 13 figs

  10. Fundamentals of magnet-actuated droplet manipulation on an open hydrophobic surface†

    Science.gov (United States)

    Long, Zhicheng; Shetty, Abhishek M.; Solomon, Michael J.; Larson, Ronald G.

    2010-01-01

    We systematically investigate droplet movement, coalescence, and splitting on an open hydrophobic surface. These processes are actuated by magnetic beads internalized in an oil-coated aqueous droplet using an external magnet. Results are organized into an ‘operating diagram’ that describes regions of droplet stable motion, breakage, and release from the magnet. The results are explained theoretically with a simple model that balances magnetic, friction, and capillary-induced drag forces and includes the effects of particle type, droplet size, surrounding oil layer, surface tension, and viscosity. Finally, we discuss the implications of the results for the design of magnet-actuated droplet systems for applications such as nucleic acid purification, immunoassay and drug delivery. PMID:19458864

  11. Electrical actuation of dielectric droplets

    International Nuclear Information System (INIS)

    Kumari, N; Bahadur, V; Garimella, S V

    2008-01-01

    Electrical actuation of liquid droplets at the microscale offers promising applications in the fields of microfluidics and lab-on-a-chip devices. Much prior research has targeted the electrical actuation of electrically conducting liquid droplets; however, the actuation of dielectric droplets has remained relatively unexplored, despite the advantages associated with the use of a dielectric droplet. This paper presents modeling and experimental results on the electrical actuation of dielectric droplets between two flat plates. A first-order analytical model, based on the energy-minimization principle, is developed to estimate the electrical actuation force on a dielectric droplet as it moves between two flat plates. Two versions of this analytical model are benchmarked for their suitability and accuracy against a detailed numerical model. The actuation force prediction is then combined with available semi-analytical expressions for predicting the forces opposing droplet motion to develop a model that predicts transient droplet motion under electrical actuation. Electrical actuation of dielectric droplets is experimentally demonstrated by moving transformer oil droplets between two flat plates under the influence of an actuation voltage. Droplet velocities and their dependence on the plate spacing and the applied voltage are experimentally measured and showed reasonable agreement with predictions from the models developed

  12. Encapsulation of emulsion droplets by organo–silica shells

    NARCIS (Netherlands)

    Zoldesi, C.; Steegstra, Patrick; Imhof, Arnout

    2007-01-01

    Surfactant-stabilized emulsion droplets were used as templates for the synthesis of hollow colloidal particles. Monodisperse silicone oil droplets were prepared by hydrolysis and polymerization of dimethyldiethoxysiloxane monomer, in the presence of surfactant: sodium dodecyl sulphate (SDS, anionic)

  13. Field instruments for real time in-situ crude oil concentration measurements

    International Nuclear Information System (INIS)

    Fuller, C.B.; Bonner, J.S.; Page, C.A.; Arrambide, G.; Sterling, M.C.Jr.; Ojo, T.O.

    2003-01-01

    Accidental oil spills, contaminant release during resuspension, storms, and harmful algal blooms are all episodic events that can effect coastal margins. It is important to quantitatively describe water and ecological quality evolution and predict the impact to these areas by such events, but traditional sampling methods miss environmental activity during cyclical events. This paper presents a new sampling approach that involves continuous, real-time in-situ monitoring to provide data for development of comprehensive modeling protocols. It gives spill response coordinators greater assurance in making decisions using the latest visualization tools which are based on a good understanding of the physical processes at work in pulsed events. Five sensors for rapid monitoring of crude oil concentrations in aquatic systems were described. The in-situ and ex-situ sensors can measure plume transport and estimate polycyclic aromatic hydrocarbon exposure concentrations to assess risk of toxicity. A brief description and evaluation of the following 5 sensors was provided: the LISST-100 by Sequoia Instrument, a submersible multi-angle laser scattering instrument; the AU-10 field fluorometer by Turner Designs, an ex-situ single wavelength fluorometer; the Flashlamp by WET Labs Inc., an in-situ single wavelength fluorometer; and, the ECO-FL3 and SAFire by WET Labs Inc., two in-situ multiple wavelength fluorometers. These instruments were used to analyze crude oil emissions of various concentrations. All of the instruments followed a linear response within the tested concentration range. At the lowest concentrations the LISST-100 was not as effective as the fluorometers because of limited particle volume for scatter. For the AU-10 field fluorometer, the highest concentrations tested were above the measurement range of the instrument. 6 refs., 5 figs

  14. Numerical Simulation of In Situ Combustion of Oil Shale

    Directory of Open Access Journals (Sweden)

    Huan Zheng

    2017-01-01

    Full Text Available This paper analyzes the process of in situ combustion of oil shale, taking into account the transport and chemical reaction of various components in porous reservoirs. The physical model is presented, including the mass and energy conservation equations and Darcy’s law. The oxidation reactions of oil shale combustion are expressed by adding source terms in the conservation equations. The reaction rate of oxidation satisfies the Arrhenius law. A numerical method is established for calculating in situ combustion, which is simulated numerically, and the results are compared with the available experiment. The profiles of temperature and volume fraction of a few components are presented. The temperature contours show the temperature variation in the combustion tube. It is found that as combustion reaction occurs in the tube, the concentration of oxygen decreases rapidly, while the concentration of carbon dioxide and carbon monoxide increases contrarily. Besides, the combustion front velocity is consistent with the experimental value. Effects of gas injection rate, permeability of the reservoir, initial oil content, and injected oxygen content on the ISC process were investigated in this study. Varying gas injection rate and oxygen content is important in the field test of ISC.

  15. Testing of in situ and ex situ bioremediation approaches for an oil-contaminated peat bog following a pipeline break

    International Nuclear Information System (INIS)

    Wilson, J.J.; Lee, D.W.; Yeske, B.M.; Kuipers, F.

    2000-01-01

    The feasibility of treating a 1985 pipeline spill of light Pembina Cardium crude oil at a bog near Violet Grove, Alberta was discussed. Pembina Pipeline Corporation arranged for a treatability test to be conducted on oil-contaminated sphagnum peat moss from the site to determine effective in situ or ex situ remediation options for the site. The test was used to evaluate the biodegradation potential of contaminants. Four tests were designed to simulate field different field treatment approaches and to collect critical data on toxicity and leachability of the peat moss. The tests included a bioslurry test, a soil microcosm test, an aerated water saturated peat column test, and a standard toxicity characteristic leachate potential test. The first three tests gave similar results of at least 74 per cent biodegradation of the residual crude oil on the peat solids and no residual toxicity as measured by the Microtox Assay. It was determined that both in situ bioremediation using an aerated water injection system or an ex situ landfarming approach would achieve required criteria and no fertilizers would be necessary to maintain active bioremediation. The new gas-liquid reactor (GLR) aeration technology used in these tests creates a constant supply of hyperoxygenated water prior to column injection. The continuous release of tiny air bubbles maximizes air surface area and increases the gas transfer rates. 3 tabs., 3 figs

  16. Impacts and mitigations of in situ bitumen production from Alberta oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Edmunds, Neil

    2010-09-15

    85% or more of Alberta's oil sands is too deep to mine and will be recovered by in situ methods, i.e. from drill holes. This has been made commercially possible through the development in Alberta of Steam Assisted Gravity Drainage (SAGD). Does this impending development threaten the local ecosystem? A quantitative account is given of the principal impacts of in situ oil sands development in Alberta. Impacts on land (habitats), water, and air are considered in terms of local capacity, global benchmarks, and comparisons to alternative renewable technologies. Improvements due to new solvent-additive technology are highlighted.

  17. How much crude oil can zooplankton ingest? Estimating the quantity of dispersed crude oil defecated by planktonic copepods

    DEFF Research Database (Denmark)

    Almeda, Rodrigo; Connelly, Tara L.; Buskey, Edward J.

    2016-01-01

    % of the analyzed fecal pellets from three species of copepods and a natural copepod assemblage exposed for 48 h to physically or chemically dispersed light crude oil contained crude oil droplets. Crude oil droplets inside fecal pellets were smaller (median diameter: 2.4-3.5 mu m) than droplets in the physically...

  18. Improvement of stability of oil-in-water emulsions containing caseinate-coated droplets by addition of sodium alginate.

    Science.gov (United States)

    Pallandre, S; Decker, E A; McClements, D J

    2007-11-01

    The potential of sodium alginate for improving the stability of emulsions containing caseinate-coated droplets was investigated. One wt% corn oil-in-water emulsions containing anionic caseinate-coated droplets (0.15 wt% sodium caseinate) and anionic sodium alginate (0 to 1 wt%) were prepared at pH 7. The pH of these emulsions was then adjusted to 3.5, so that the anionic alginate molecules adsorbed to the cationic caseinate-coated droplets. Extensive droplet aggregation occurred when there was insufficient alginate to completely saturate the droplet surfaces due to bridging flocculation, and when the nonadsorbed alginate concentration was high enough to induce depletion flocculation. Emulsions with relatively small particle sizes could be formed over a range of alginate concentrations (0.1 to 0.4 wt%). The influence of pHs (3 to 7) and sodium chloride (0 to 500 mM) on the properties of primary (0 wt% alginate) and secondary (0.15 wt% alginate) emulsions was studied. Alginate adsorbed to the droplet surfaces at pHs 3, 4, and 5, but not at pHs 6 and 7, due to electrostatic attraction between anionic groups on the alginate and cationic groups on the adsorbed caseinate. Secondary emulsions had better stability than primary emulsions at pH values near caseinate's isoelectric point (pHs 4 and 5). In addition, secondary emulsions were stable up to higher ionic strengths (< 300 mM) than primary emulsions (<50 mM). The controlled electrostatic deposition method utilized in this study could be used to extend the range of application of dairy protein emulsifiers in the food industry.

  19. Droplet size in a rectangular Venturi scrubber

    Directory of Open Access Journals (Sweden)

    M. A. M. Costa

    2004-06-01

    Full Text Available The Venturi scrubber is a device which uses liquid in the form of droplets to efficiently remove fine particulate matter from gaseous streams. Droplet size is of fundamental importance for the scrubber performance. In the present experimental study, a laser diffraction technique was used in order to measure droplet size in situ in a Venturi scrubber with a rectangular cross section. Droplet size distribution was measured as a function of gas velocity (58.3 to 74.9 m/s, liquid-to-gas ratio (0.07 to 0.27 l/m³, and distance from liquid injection point (64 to 173 mm. It was found that all these variables significantly affect droplet size. The results were compared with the predictions from correlations found in the literature.

  20. Deposition of micron liquid droplets on wall in impinging turbulent air jet

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tianshu; Nink, Jacob; Merati, Parviz [Western Michigan University, Department of Mechanical and Aeronautical Engineering, Kalamazoo, MI (United States); Tian, Tian; Li, Yong [Massachusetts Institute of Technology, Sloan Automotive Laboratory, Cambridge, MA (United States); Shieh, Tom [Toyota Technical Center, Toyota Motor Engineering and Manufacturing North America, Inc, Ann Arbor, MI (United States)

    2010-06-15

    The fluid mechanics of the deposition of micron liquid (olive oil) droplets on a glass wall in an impinging turbulent air jet is studied experimentally. The spatial patterns of droplets deposited on a wall are measured by using luminescent oil visualization technique, and the statistical data of deposited droplets are obtained through microscopic imagery. Two distinct rings of droplets deposited on a wall are found, and the mechanisms of the formation of the inner and outer rings are investigated based on global diagnostics of velocity and skin friction fields. In particular, the intriguing effects of turbulence, including large-scale coherent vortices and small-scale random turbulence, on micron droplet deposition on a wall and coalescence in the air are explored. (orig.)

  1. Differential Impacts of Soybean and Fish Oils on Hepatocyte Lipid Droplet Accumulation and Endoplasmic Reticulum Stress in Primary Rabbit Hepatocytes

    Directory of Open Access Journals (Sweden)

    Xueping Zhu

    2016-01-01

    Full Text Available Parenteral nutrition-associated liver disease (PNALD is a severe ailment associated with long-term parenteral nutrition. Soybean oil-based lipid emulsions (SOLE are thought to promote PNALD development, whereas fish oil-based lipid emulsions (FOLE are thought to protect against PNALD. This study aimed to investigate the effects of SOLE and FOLE on primary rabbit hepatocytes. The results reveal that SOLE caused significant endoplasmic reticulum (ER and mitochondrial damage, ultimately resulting in lipid droplets accumulation and ER stress. While these deleterious events induce hepatocyte injury, FOLE at high doses cause only minor ER and mitochondrial damage, which has no effect on hepatic function. SOLE also significantly upregulated glucose-regulated protein 94 mRNA and protein expression. These data indicate that SOLE, but not FOLE, damage the ER and mitochondria, resulting in lipid droplets accumulation and ER stress and, finally, hepatocyte injury. This likely contributes to the differential impacts of SOLE and FOLE on PNALD development and progression.

  2. In situ upgrading of heavy oil under steam injection with tetralin and catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Mohammad, A.A. [Texas A and M Univ., College Station, TX (United States); Mamora, D.D. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Texas A and M Univ., College Station, TX (United States)

    2008-10-15

    Steam injection has become the most successful thermal recovery method for heavy oil production. Heavy oil refineries use upgrading processes to improve oil quality. They generally involve the use of catalysts that are used to remove heavy metals, sulfur and nitrogen, or used in hydro-treating and hydro-cracking. In-situ upgrading is thought to have advantages over conventional surface upgrading technology. Experiments were performed to verify the feasibility of in-situ upgrading of heavy crude oil. A hydrogen donor called tetralin was used along with an organometallic catalyst, at steam injection temperatures and pressures normally encountered in the field. Crude oil from the Jobo Oil Field, located in Venezuela was used. The paper described the experimental methodology with reference to the injection cell; fluid injection system; fluid production system; data measurement and recording system; and experimental procedure. It also discussed the extent of upgrading by comparing the properties of the original and produced oil. Oil properties that were measured and compared included hydrogen-to-carbon ratio; heavy metal content; viscosity; and API gravity. The paper also presented a comparison of oil recovery and fluid production between all cases. It was concluded that in the field, the reaction time was significantly longer than encountered in the experiments and may lead to further upgrading, assuming the catalyst could be dispersed in the formation. 10 refs., 1 tab., 9 figs.

  3. Research on using oil herding surfactants to thicken oil slicks in pack ice for in situ burning

    International Nuclear Information System (INIS)

    Buist, I.; Morrison, J.

    2005-01-01

    The severe limitations of conventional containment and recovery systems for oil spills in pack ice have been demonstrated during skimmer tests conducted in the Alaskan Beaufort Sea. In-situ burning may be one of the few viable alternatives to quickly remove oil spilled in pack ice, but the slicks are often too thin, preventing effective ignition or burning. This study examined ways to thicken the slicks to the 2- to 5-mm range so that effective burns could be carried out. Specific chemical surface-active agents known as oil herders or oil collecting agents can be used to clear and contain oil slicks on water surfaces. Since these agents can spread quickly on water, only a small quantity is needed to clear thin films of oil from large areas of water. Applying a chemical herder around the periphery of spilled oil can contract the oil into a thicker slick. Two chemical products were developed and tested in the 1970s and 1980s: Shell Herder and Exxon OC-5 Oil Collector. However, they are no longer used because they were effective only in very calm conditions. Corexit EC9580 which exhibits similar slick herding abilities and which has a spreading pressure of 39.5 mN/m is still commercially available. This study tested formulations of herding agents for use in pack ice. Concerns regarding the potential toxicity risk of using these agents in pack ice were also addressed. The agents should not harm the environment because they have low toxicity and only very small quantities are used. Two series of tests conducted to assess the potential for herding agents to help ignite and effectively burn thin oil slicks in loose pack ice conditions. The agents proved to be effective on cold water and on thick slicks. The composition of the oil played an important role in determining potential efficiency. It was concluded that applying herders to thin oil slicks in pack ice shows considerable promise for thickening them for in-situ burning. 12 refs., 4 tabs., 17 figs

  4. Investigation of the Geokinetics horizontal in situ oil-shale-retorting process. Fourth annual report, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, D.L. (ed.)

    1981-03-01

    The Geokinetics in situ shale oil project is a cooperative venture between Geokinetics Inc. and the US Department of Energy. The objective is to develop a true in situ process for recovering shale oil using a fire front moving in a horizontal direction. The project is being conducted at a field site, Kamp Kerogen, located 70 miles south of Vernal, Utah. This Fourth Annual Report covers work completed during the calendar year 1980. During 1980 one full-size retort was blasted. Two retorts, blasted the previous year, were burned. A total of 4891 barrels of oil was produced during the year.

  5. Charge Transfer into Aqueous Droplets via Kilovolt Potentials

    Science.gov (United States)

    Hamlin, B. S.; Rosenberg, E. R.; Ristenpart, W. D.

    2012-11-01

    When an aqueous droplet immersed in an insulating oil contacts an electrified surface, the droplet acquires net charge. For sufficiently large field strengths, the charged droplet is driven back and forth electrophoretically between the electrodes, in essence ``bouncing'' between them. Although it is clear that the droplet acquires charge, the underlying mechanism controlling the charge transfer process has been unclear. Here we demonstrate that the chemical species present in the droplet strongly affect the charge transfer process into the drop. Using two independent charge measurement techniques, high speed video velocimetry and direct current measurement, we show that the charge acquired during contact is strongly influenced by the droplet pH. We also provide physical evidence that the electrodes undergo electroplating or corrosion for droplets with appropriate chemical species present. Together, the observations strongly suggest that electrochemical reactions govern the charge transfer process into the droplet.

  6. Identification of a new class of lipid droplet-associated proteins in plants

    Science.gov (United States)

    Lipid droplets in plants (also known as oil bodies, lipid bodies or oleosomes) are well characterized in seeds, and oleosins, the major proteins associated with their surface, were shown to be important for stabilizing lipid droplets during seed desiccation and rehydration. However, lipid droplets ...

  7. In-situ burning of Orimulsion : small scale burns

    International Nuclear Information System (INIS)

    Fingas, M.F.

    2002-01-01

    This study examined the feasibility of burning Orimulsion. In-situ burning has always been a viable method for cleaning oil spills on water because it can effectively reduce the amount of spilled oil and eliminate the need to collect, store, transport and dispose of recovered oil. Orimulsion, however, behaves very differently from conventional oil when it is spilled because of its composition of 70 per cent bitumen in 30 per cent water. In-situ burning of this surfactant-stablized oil-in-water emulsion has never been seriously considered because of the perception that Orimulsion could not be ignited, and if it could, ignition would not be sustained. In this study, burn tests were conducted on 3 scales in a Cleveland Open Cup apparatus of 5 cm, 10 cm and 50 cm diameters. Larger scale burns were conducted in specially built pans. All tests were conducted on salt water which caused the bitumen to separate from the water. The objective was to determine if sufficient vapours could be generated to ignite the Orimulsion. The study also measured if a sustained flame would result in successful combustion. Both objectives were successfully accomplished. Diesel fuel was used to ignite the Orimulsion in the specially designed pan for large scale combustion. Quantitative removal of Orimulsion was achieved in all cases, but in some burns it was necessary to re-ignite the Orimulsion. It was noted that when Orimulsion burns, some trapped water droplets in the bitumen explode with enough force to extinguish a small flame. This did not occur on large-scale burns. It was concluded that the potential for successful in-situ burning increases with size. It was determined that approximately 1 mm in thickness of diesel fuel is needed to ignite a burn. 5 refs., 3 tabs., 4 figs

  8. Influence of palmitoyl pentapeptide and Ceramide III B on the droplet size of nanoemulsion

    Science.gov (United States)

    Sondari, Dewi; Haryono, Agus; Harmami, Sri Budi; Randy, Ahmad

    2010-05-01

    The influence of the Palmitoyl Pentapeptide (PPp) and Ceramide IIIB (Cm III B) as active ingredients on the droplet size of nano-emulsion was studied using different kinds of oil (avocado oil, sweet almond oil, jojoba oil, mineral oil and squalene). The formation of nano-emulsions were prepared in water mixed non ionic surfactant/oils system using the spontaneous emulsification mechanism. The aqueous solution, which consist of water and Tween® 20 as a hydrophilic surfactant was mixed homogenously. The organic solution, which consist of oil and Span® 80 as a lipophilic surfactant was mixed homogenously in ethanol. Ethanol was used as a water miscible solvent, which can help the formation of nano-emulsion. The oil phase (containing the blend of surfactant Span® 80, ethanol, oil and active ingredient) and the aqueous phase (containing water and Tween® 20) were separately prepared at room temperatures. The oil phase was slowly added into aqueous phase under continuous mechanical agitation (18000 rpm). All samples were subsequently homogenized with Ultra-Turrax for 30 minutes. The characterizations of nano-emulsion were carried out using photo-microscope and particle size analyzer. Addition of active ingredients on the formation of nano-emulsion gave smallest droplet size compared without active ingredients addition on the formation of nano-emulsion. Squalene oil with Palmitoyl Pentapeptide (PPm) and Ceramide IIIB (Cm IIIB) gave smallest droplet size (184.0 nm) compared without Palmitoyl Pentapeptide and Ceramide IIIB (214.9 nm), however the droplets size of the emulsion prepared by the other oils still in the range of nano-emulsion (below 500 nm). The stability of nano-emulsion was observed using two methods. In one method, the stability of nano-emulsion was observed for three months at temperature of 5°C and 50°C, while in the other method, the stability nano-emulsion was observed by centrifuged at 12000 rpm for 30 minutes. Nanoemulsion with active ingredient

  9. Feasibility study of the in-situ combustion in shallow, thin, and multi-layered heavy oil reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, L. [Society of Petroleum Engineers, Kuala Lumpur (Malaysia)]|[Daqing Petroleum Inst., Beijing (China); Yu, D. [Daqing Petroleum Inst., Beijing (China); Gong, Y. [China National Petroleum Corp., Beijing (China). Liaohe Oilfield; Wang, P.; Zhang, L. [China National Petroleum Corp., Beijing (China). Huabei Oilfield; Liu, C. [China National Petroleum Corp., Beijing (China). JiLin Oilfield

    2008-10-15

    In situ combustion is a process where oxygen is injected into oil reservoirs in order to oxidize the heavier components of crude oil. The oil is driven towards the production wells by the combustion gases and steam generated by the combustion processes. This paper investigated dry and wet forward in situ combustion processes designed for an oil reservoir with thin sand layers. Laboratory and numerical simulations were conducted to demonstrate the feasibility of the processes in a shallow, thin, heterogenous heavy oil reservoir in China. Combustion tube experiments were conducted in order to determine fuel consumption rates. A numerical geological model was constructed to represent the reservoir conditions. Gas, water, oil and solid phases were modelled. Four processes were considered: cracking; pyrolysis of heavy fractions; the combustion of light and heavy fractions; and the combustion of coke. Oil recovery rates were calculated for a period of 10 years. Reactor experiments were conducted to investigate igniting temperatures and air injection rates using an apparatus comprised of an electric heater, oil sand pack tube and a computerized control system. Experiments were performed at different temperature and injection rates. The experiments demonstrated that ignition times and air volumes decreased when air temperature was increased. Results of the study showed that a 20 per cent increase in oil recovery using the in situ combustion processes. It was concluded that adequate air injection rates are needed to ensure effective combustion front movement. 4 refs., 6 tabs., 4 figs.

  10. Evidence for the microbial in situ conversion of oil to methane in the Dagang oilfield

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, N.; Richnow, H.H. [Helmholtz-Zentrum fuer Umweltforschung (UFZ), Leipzig (Germany). Abt. Isotopenbiogeochemie; Cai, M. [Helmholtz-Zentrum fuer Umweltforschung (UFZ), Leipzig (Germany). Abt. Isotopenbiogeochemie; University of Science and Technology, Beijing (China). School of Civil and Environment Engineering; Straaten, N.; Krueger, M. [Bundesanstalt fuer Geowissenschaften und Rohstoffe BGR Geozentrum (BGR), Hannover (Germany). Fachbereich Geochemie der Rohstoffe; Yao, Jun [University of Science and Technology, Beijing (China). School of Civil and Environment Engineering

    2013-08-01

    In situ biotransformation of oil to methane was investigated in a reservoir in Dagang, China using chemical fingerprinting, isotopic analyses, and molecular and biological methods. The reservoir is highly methanogenic despite chemical indications of advanced oil degradation, such as depletion of n-alkanes, alkylbenzenes, and light polycyclic aromatic hydrocarbon (PAHs) fractions or changes in the distribution of several alkylated polycyclic aromatic hydrocarbons. The degree of degradation strongly varied between different parts of the reservoir, ranging from severely degraded to nearly undegraded oil compositions. Geochemical data from oil, water and gas samples taken from the reservoir are consistent with in situ biogenic methane production linked to aliphatic and aromatic hydrocarbon degradation. Microcosms were inoculated with production and injection waters in order to characterize these processes in vitro. Subsequent degradation experiments revealed that autochthonous microbiota are capable of producing methane from {sup 13}C-labelled n-hexadecane or 2-methylnaphthalene, and suggest that further methanogenesis may occur from the aromatic and polyaromatic fractions of Dagang reservoir fluids. The microbial communities from produced oil-water samples were composed of high numbers of microorganisms (on the order to 10{sup 7}), including methane-producing Archaea within the same order of magnitude. In summary, the investigated sections of the Dagang reservoir may have significant potential for testing the viability of in situ conversion of oil to methane as an enhanced recovery method, and biodegradation of the aromatic fractions of the oil may be an important methane source. (orig.)

  11. Design and optimization of hybrid ex situ/in situ steam generation recovery processes for heavy oil and bitumen

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X.; Gates, I.D. [Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering; Larter, S.R. [Calgary Univ., AB (Canada). Dept. of Geoscience]|[Alberta Ingenuity Centre for In Situ Energy, Edmonton, AB (Canada)

    2008-10-15

    Hybrid steam-air based oil recovery techniques were investigated using advanced 3-D reactive thermal reservoir simulations. The hybrid techniques combined ex situ steam and in situ steam generation processes in order to raise efficiency, lower natural gas consumption, and reduce gas emissions. The steam-air based processes used 70 per cent of the energy of conventional steam assisted gravity drainage (SAGD) techniques to recover the same amount of oil. The process used an SAGD wellpair arrangement, where steam and air were injected through the top injection well. The kinetic parameters used in the study were developed by history matching a combustion tube experiments with Athabasca bitumen conducted to predict cumulative bitumen and gas production volumes and compositions. A total of 6 SAGD and 6 in situ combustion simulations were conducted with steam oxygen volume ratios set at 50 per cent steam and 50 per cent oxygen. Various case studies were considered over a 5 year period. Carbon dioxide (CO{sub 2}) emissions were also measured as well as cumulative water and methane consumption rates. Results of the study were used to develop an optimized hybrid operation that consisted of a SAGD well pair arrangement operating with cyclic steam-oxygen injection at high pressures. It was concluded that the high pressure operation increased the steam partial pressure within the reservoir and enhanced combustion performance. A 29 per cent improvement in the cumulative energy to oil ratio was obtained. 23 refs., 2 tabs., 9 figs.

  12. Liquid crystal droplet formation and anchoring dynamics in a microfluidic device

    Science.gov (United States)

    Steinhaus, Ben; Shen, Amy; Feng, James; Link, Darren

    2004-11-01

    Liquid crystal drops dispersed in a continuous phase of silicon oil are generated with a narrow distribution in droplet size in microfluidic devices both above and below the nematic to isotropic transition temperature. For these two cases, we observe not only the different LC droplet generation and coalescence dynamics, but also distinct droplet morphology. Our experiments show that the nematic liquid crystalline order is important for the LC droplet formation and anchoring dynamics.

  13. Tribological properties and lubrication mechanism of in situ graphene-nickel matrix composite impregnated with lubricating oil

    Science.gov (United States)

    Lei, Yu; Du, Jinfang; Pang, Xianjuan; Wang, Haizhong; Yang, Hua; Jiang, Jinlong

    2018-05-01

    A solid-liquid synergetic lubricating system has been designed to develop a novel self-lubricating nickel matrix composite. The graphene-nickel (G-Ni) matrix composite with porous structure was fabricated by in situ growing graphene in bulk nickel using a powder metallurgy method. The porous structures of the composite were used to store polyalphaolefin (PAO) oil for self-lubricating. It is found that the G-Ni matrix composite under oil lubrication condition exhibited superior tribological properties as compared to pure nickel and the composite under dry sliding condition. The prestored oil was released from pores to the sliding surface forming a lubricating oil film during friction process. This lubricating oil film can protect the worn surface from severe oxidation, and help the formation and transfer of a carbon-based solid tribofilm derived from graphene and lubricating oil. This solid (graphene)-liquid (oil) synergistic lubricating mechanism is responsible for the reduction of friction coefficient and improvement of wear resistance of the in situ fabricated G-Ni matrix composite.

  14. Binary particle separation in droplet microfluidics using acoustophoresis

    Science.gov (United States)

    Fornell, Anna; Cushing, Kevin; Nilsson, Johan; Tenje, Maria

    2018-02-01

    We show a method for separation of two particle species with different acoustic contrasts originally encapsulated in the same droplet in a continuous two-phase system. This was realized by using bulk acoustic standing waves in a 380 μm wide silicon-glass microfluidic channel. Polystyrene particles (positive acoustic contrast particles) and in-house synthesized polydimethylsiloxane (PDMS) particles (negative acoustic contrast particles) were encapsulated inside water-in-oil droplets either individually or in a mixture. At acoustic actuation of the system at the fundamental resonance frequency, the polystyrene particles were moved to the center of the droplet (pressure node), while the PDMS particles were moved to the sides of the droplet (pressure anti-nodes). The acoustic particle manipulation step was combined in series with a trifurcation droplet splitter, and as the original droplet passed through the splitter and was divided into three daughter droplets, the polystyrene particles were directed into the center daughter droplet, while the PDMS particles were directed into the two side daughter droplets. The presented method expands the droplet microfluidics tool-box and offers new possibilities to perform binary particle separation in droplet microfluidic systems.

  15. Variable focus microscopy using a suspended water droplet

    International Nuclear Information System (INIS)

    Chowdhury, F A; Chau, K J

    2012-01-01

    We explore a low-technology methodology to dispense and shape water droplets for application as the magnifying element in a microscope using either reflection-mode or transmission-mode illumination. A water droplet is created at the end of a syringe and then coated with a thin layer of silicone oil to mitigate evaporation. By applying mechanical pressure to the water droplet using a metal tip, the shape of the droplet is tuned to yield focusing properties amenable for microscopy. Images captured using the microscope demonstrate micron-scale resolution, variable magnification and imaging quality comparable to that obtained by a conventional, laboratory-grade microscope. (paper)

  16. Emulsion droplet interactions: a front-tracking treatment

    Science.gov (United States)

    Mason, Lachlan; Juric, Damir; Chergui, Jalel; Shin, Seungwon; Craster, Richard V.; Matar, Omar K.

    2017-11-01

    Emulsion coalescence influences a multitude of industrial applications including solvent extraction, oil recovery and the manufacture of fast-moving consumer goods. Droplet interaction models are vital for the design and scale-up of processing systems, however predictive modelling at the droplet-scale remains a research challenge. This study simulates industrially relevant moderate-inertia collisions for which a high degree of droplet deformation occurs. A hybrid front-tracking/level-set approach is used to automatically account for interface merging without the need for `bookkeeping' of interface connectivity. The model is implemented in Code BLUE using a parallel multi-grid solver, allowing both film and droplet-scale dynamics to be resolved efficiently. Droplet interaction simulations are validated using experimental sequences from the literature in the presence and absence of background turbulence. The framework is readily extensible for modelling the influence of surfactants and non-Newtonian fluids on droplet interaction processes. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM), PETRONAS.

  17. Experimental test of liquid droplet radiator performance

    Science.gov (United States)

    Mattick, A. T.; Simon, M. A.

    The liquid droplet radiator (LDR) is a heat rejection system for space power systems wherein an array of heated liquid droplets radiates energy directly to space. The use of submillimeter droplets provides large radiating area-to-mass ratio, resulting in radiator systems which are several times lighter than conventional solid surface radiators. An experiment is described in which the power radiated by an array of 2300 streams of silicone oil droplets is measured to test a previously developed theory of the LDR radiation process. This system would be capable of rejecting several kW of heat in space. Furthermore, it would be suitable as a modular unit of an LDR designed for 100-kW power levels. The experiment provided confirmation of the theoretical dependence of droplet array emissivity on optical depth. It also demonstrated the ability to create an array of more than 1000 droplet streams having a divergence less than 1 degree.

  18. Experimental Investigation of Extensional Deformation of Immiscible Droplets in a Laminar, Converging Flow

    Science.gov (United States)

    Sangli, Aditya; Arispe-Guzman, Marcelo; Armstrong, Connor; Bigio, David

    2017-11-01

    The deformation of an immiscible droplet in an extensional flow has been widely studied by researchers using experimental four-roll mills where the bulk liquid imposes a stagnation extensional deformation on the droplet. However, it is of vital interest to study the behavior of an immiscible droplet in a non-stagnant extensional flow which can be produced using a converging channel. A hyperbolic converging channel was built, which could produce a constant extensional rate in the center of the channel, and deformation of droplets of Castor oil injected in a matrix of Silicone oil was observed. Droplets injected in the center of the channel experienced a pure extensional deformation while the droplets injected at an offset position attained the affine state. The nature of the droplet deformation and the critical Capillary numbers are compared with the four-roll mill experiments. Additional experiments were performed with the initial position of the droplet being vertically off center. Higher strain rates were exhibited compared to the pure extensional flow condition. An analysis of the flow field helps explaining the phenomenon and provides insight into the droplet behavior.

  19. In situ bioremediation strategies for oiled shoreline environments

    International Nuclear Information System (INIS)

    Lee, K.; Mora, S. de

    1999-01-01

    Despite advances in preventative measures, recent events have demonstrated that accidental oil spills at sea will still occur. While physical (e.g. booms and skimmers) and chemical (e.g. chemical dispersants) methods have been developed to recover and/or disperse oil spilled at sea, they are not 100% effective and are frequently limited by operational constraints attributed to sea state and/or nature of the contamination. As a result, oil spills frequently impact shoreline environments. In situ bioremediation, the addition of substances or modification of habitat at contaminated sites to accelerate natural biodegradation processes, is now recognised as an alternative spill response technology of the remediation of these sites. Recommended for use following the physical removal of bulk oil, this treatment strategy has an operational advantage in that it breaks down and/or removes the residual contamination in place. Laboratory experiments and field trials have demonstrated the feasibility and success of bioremediation strategies such as nutrient enrichment to enhance bacterial degradation of oil on cobble, sand beach and salt marsh environments. With improved knowledge of the factors that limit natural oil degradation rates, the feasibility of other strategies such as phytoremediation, enhanced oil-mineral fines interaction and the addition of oxygen or alternative electron acceptors are now being evaluated. Laboratory and field test protocols are being refined for the selection of effective bioremediation agents and methods of application. It is recommended that future operational guidelines include real time product efficacy test and environmental effects monitoring programs. Termination of treatment should be implemented when: 1) it is no longer effective; 2) the oil has degraded to acceptable biologically benign concentrations; or 3) toxicity due to the treatment is increasing. (Author)

  20. Field research on using oil herding surfactants to thicken oil slicks in pack ice for in-situ burning. Volume 1

    International Nuclear Information System (INIS)

    Buist, I.; Potter, S.; Nedwed, T.; Mullin, J.

    2007-01-01

    Laboratory and field studies have been performed in recent years to determine the capability of herding agents to thicken oil slicks among loose pack ice for the purpose of in situ burning. In loose pack ice conditions where booms are not practical, effective in situ burns may be possible if thin slicks could be thickened to the 2 to 5 mm range. However, specific chemical surface-active agents known as herders are need to clear and contain oil slicks on an open water surface. The agents spread quickly over a water surface into a monomolecular layer due to their high spreading coefficients. The best agents have spreading pressures in the mid 40 mN/m range. As such, only small quantities of these surfactants are needed to clear thin films of oil from large areas of water surface, and to contract it into thicker slicks. This paper summarized the previous studies that evaluated shoreline-cleaning agents with oil herding properties. However, the main focus of this paper was on the final phase of testing conducted at the Prudhoe Bay Fire Training Grounds in November 2006 in which a series of outdoor burns were conducted at the scale of 30 m 2 with herders and crude oil in a test pool containing pieces of ice. The tests revealed that when a herder was used on crude oil slicks that were otherwise unignitable, the slicks could be ignited and burned in situ in brash and slush ice conditions at temperatures as low as -17 degrees C. Both the removal rate and efficiencies for the herded slicks were comparable to the theoretical maximum achievable for mechanically contained slicks on open water. 13 refs., 1 tab., 18 figs

  1. Effect of safflower oil on the protective properties of the in situ formed salivary pellicle.

    Science.gov (United States)

    Hannig, C; Wagenschwanz, C; Pötschke, S; Kümmerer, K; Kensche, A; Hoth-Hannig, W; Hannig, M

    2012-01-01

    The prevalence of dental erosion is still increasing. A possible preventive approach might be rinsing with edible oils to improve the protective properties of the pellicle layer. This was tested in the present in situ study using safflower oil. Pellicle formation was carried out in situ on bovine enamel slabs fixed buccally to individual upper jaw splints (6 subjects). After 1 min of pellicle formation subjects rinsed with safflower oil for 10 min, subsequently the samples were exposed in the oral cavity for another 19 min. Enamel slabs without oral exposure and slabs exposed to the oral cavity for 30 min without any rinse served as controls. After pellicle formation in situ, slabs were incubated in HCl (pH 2; 2.3; 3) for 120 s, and kinetics of calcium and phosphate release were measured photometrically (arsenazo III, malachite green). Furthermore, the ultrastructure of the pellicles was evaluated by transmission electron microscopy (TEM). Pellicle alone reduced erosive calcium and phosphate release significantly at all pH values. Pellicle modification by safflower oil resulted in an enhanced calcium loss at all pH values and caused an enhanced phosphate loss at pH 2.3. TEM indicated scattered accumulation of lipid micelles and irregular vesicle-like structures attached to the oil-treated pellicle layer. Acid etching affected the ultrastructure of the pellicle irrespective of oil rinsing. The protective properties of the pellicle layer against extensive erosive attacks are limited and mainly determined by pH. The protective effects are modified and reduced by rinses with safflower oil. Copyright © 2012 S. Karger AG, Basel.

  2. Radial Growth of Self-Catalyzed GaAs Nanowires and the Evolution of the Liquid Ga-Droplet Studied by Time-Resolved in Situ X-ray Diffraction.

    Science.gov (United States)

    Schroth, Philipp; Jakob, Julian; Feigl, Ludwig; Mostafavi Kashani, Seyed Mohammad; Vogel, Jonas; Strempfer, Jörg; Keller, Thomas F; Pietsch, Ullrich; Baumbach, Tilo

    2018-01-10

    We report on a growth study of self-catalyzed GaAs nanowires based on time-resolved in situ X-ray structure characterization during molecular-beam-epitaxy in combination with ex situ scanning-electron-microscopy. We reveal the evolution of nanowire radius and polytypism and distinguish radial growth processes responsible for tapering and side-wall growth. We interpret our results using a model for diameter self-stabilization processes during growth of self-catalyzed GaAs nanowires including the shape of the liquid Ga-droplet and its evolution during growth.

  3. A Droplet Microfluidic Platform for Automating Genetic Engineering.

    Science.gov (United States)

    Gach, Philip C; Shih, Steve C C; Sustarich, Jess; Keasling, Jay D; Hillson, Nathan J; Adams, Paul D; Singh, Anup K

    2016-05-20

    We present a water-in-oil droplet microfluidic platform for transformation, culture and expression of recombinant proteins in multiple host organisms including bacteria, yeast and fungi. The platform consists of a hybrid digital microfluidic/channel-based droplet chip with integrated temperature control to allow complete automation and integration of plasmid addition, heat-shock transformation, addition of selection medium, culture, and protein expression. The microfluidic format permitted significant reduction in consumption (100-fold) of expensive reagents such as DNA and enzymes compared to the benchtop method. The chip contains a channel to continuously replenish oil to the culture chamber to provide a fresh supply of oxygen to the cells for long-term (∼5 days) cell culture. The flow channel also replenished oil lost to evaporation and increased the number of droplets that could be processed and cultured. The platform was validated by transforming several plasmids into Escherichia coli including plasmids containing genes for fluorescent proteins GFP, BFP and RFP; plasmids with selectable markers for ampicillin or kanamycin resistance; and a Golden Gate DNA assembly reaction. We also demonstrate the applicability of this platform for transformation in widely used eukaryotic organisms such as Saccharomyces cerevisiae and Aspergillus niger. Duration and temperatures of the microfluidic heat-shock procedures were optimized to yield transformation efficiencies comparable to those obtained by benchtop methods with a throughput up to 6 droplets/min. The proposed platform offers potential for automation of molecular biology experiments significantly reducing cost, time and variability while improving throughput.

  4. A case study of in situ oil contamination in a mangrove swamp (Rio De Janeiro, Brazil).

    Science.gov (United States)

    Brito, Elcia M S; Duran, Robert; Guyoneaud, Rémy; Goñi-Urriza, Marisol; García de Oteyza, T; Crapez, Miriam A C; Aleluia, Irene; Wasserman, Julio C A

    2009-08-01

    Mangroves are sensitive ecosystems of prominent ecological value that lamentably have lost much of their areas across the world. The vulnerability of mangroves grown in proximity to cities requires the development of new technologies for the remediation of acute oil spills and chronic contaminations. Studies on oil remediation are usually performed with in vitro microcosms whereas in situ experiments are rare. The aim of this work was to evaluate oil degradation on mangrove ecosystems using in situ microcosms seeded with an indigenous hydrocarbonoclastic bacterial consortium (HBC). Although the potential degradation of oil through HBC has been reported, their seeding directly on the sediment did not stimulate oil degradation during the experimental period. This is probably due to the availability of carbon sources that are easier to degrade than petroleum hydrocarbons. Our results emphasize the fragility of mangrove ecosystems during accidental oil spills and also the need for more efficient technologies for their remediation.

  5. Effectiveness of a chemical herder in association with in-situ burning of oil spills in ice-infested water

    DEFF Research Database (Denmark)

    van Gelderen, Laurens; Fritt-Rasmussen, Janne; Jomaas, Grunde

    2017-01-01

    The average herded slick thickness, surface distribution and burning efficiency of a light crude oil were studied in ice-infested water to determine the effectiveness of a chemical herder in facilitating the in-situ burning of oil. Experiments were performed in a small scale (1.0m2) and an interm......The average herded slick thickness, surface distribution and burning efficiency of a light crude oil were studied in ice-infested water to determine the effectiveness of a chemical herder in facilitating the in-situ burning of oil. Experiments were performed in a small scale (1.0m2...

  6. Modelling of heating and evaporation of n-Heptane droplets

    DEFF Research Database (Denmark)

    Yin, Chungen

    2015-01-01

    This study is a part of a project that is targeted to optimize the pyrolysis process of biomass pellets for bio-oil production and to develop new technology to upgrade the bio-oil for use in transportation. Among others, study of pyrolysis of the biomass pellets and evaporation of the pyrolysis bio...... and azimuthal directions, respectively, on each of which the flow, heat and mass transfer are numerically solved using the finite volume method. During the transient heating and evaporation process, the interaction between the moving droplets and free-stream flow are properly considered. Droplet dynamics...

  7. Shear-driven redistribution of surfactant affects enzyme activity in well-mixed femtoliter droplets.

    Science.gov (United States)

    Liu, Yu; Jung, Seung-Yong; Collier, C Patrick

    2009-06-15

    We developed a microfluidic platform for splitting well-mixed, femtoliter-volume droplets from larger water-in-oil plugs, where the sizes of the daughter droplets were not limited by channel width. These droplets were separated from mother plugs at a microfabricated T-junction, which enabled the study of how increased confinement affected enzyme kinetics in droplets 4-10 microm in diameter. Initial rates for enzyme catalysis in the mother plugs and the largest daughter drops were close to the average bulk rate, while the rates in smaller droplets decreased linearly with increasing surface to volume ratio. Rates in the smallest droplets decreased by a factor of 4 compared to the bulk rate. Traditional methods for detecting nonspecific adsorption at the water-oil interface were unable to detect evidence of enzyme adsorption, including pendant drop tensiometry, laser scanning confocal microscopy of drops containing labeled proteins in microemulsions, and epifluorescence microscopy of plugs and drops generated on-chip. We propose the slowing of enzyme reaction kinetics in the smaller droplets was the result of increased adsorption and inactivation of enzymes at the water-oil interface arising from transient interfacial shear stresses imparted on the daughter droplets as they split from the mother plugs and passed through the constricted opening of the T-junction. Such stresses are known to modulate the interfacial area and density of surfactant molecules that can passivate the interface. Bright field images of the splitting processes at the junction indicate that these stresses scaled with increasing surface to volume ratios of the droplets but were relatively insensitive to the average flow rate of plugs upstream of the junction.

  8. A novel coarsening mechanism of droplets in immiscible fluid mixtures

    Science.gov (United States)

    Shimizu, Ryotaro; Tanaka, Hajime

    2015-06-01

    In our daily lives, after shaking a salad dressing, we see the coarsening of oil droplets suspended in vinegar. Such a demixing process is observed everywhere in nature and also of technological importance. For a case of high droplet density, domain coarsening proceeds with inter-droplet collisions and the resulting coalescence. This phenomenon has been explained primarily by the so-called Brownian-coagulation mechanism: stochastic thermal forces exerted by molecules induce random motion of individual droplets, causing accidental collisions and subsequent interface-tension-driven coalescence. Contrary to this, here we demonstrate that the droplet motion is not random, but hydrodynamically driven by the composition Marangoni force due to an interfacial tension gradient produced in each droplet as a consequence of composition correlation among droplets. This alters our physical understanding of droplet coarsening in immiscible liquid mixtures on a fundamental level.

  9. Barents Sea field test of herder to thicken oil for in-situ burning in drift ice

    International Nuclear Information System (INIS)

    Buist, I.; Potter, S.; Sorstrom, S.E.

    2009-01-01

    Thick oil slicks are the key to effective in situ burning. Pack ice can enable in situ burning by keeping slicks thick. Oil spills in drift ice conditions can rapidly spread and become too thin to ignite. The application of chemical surface-active agents known as oil herders are commonly used in open waters to clean and contain oil slicks. Herders result in the formation of a monolayer of surfactants on the water surface and reduce the surface tension on the surrounding water considerably. When the surfactant monolayer reaches the edge of a thin oil slick, it changes the balance of interfacial forces acting on the slick edge and allows the interfacial tensions to contract the oil into thicker layers. This study examined the use of chemical herding agents to thicken oil spills in broken ice to allow them to be ignited and burned in situ. Two meso-scale field burn tests were conducted in May 2008 with crude oil slicks of about 0.1 and 0.7 m 3 in open drift ice off Svalbard in the Barents Sea. Prior to the field experiments, 2 series of small laboratory tests were conducted using Heidrun and Statfjord crudes to determine the ability of the U.S. Navy herding agent to contract slicks of the oil. In the first field experiment involving 102 litres of fresh Heidrun, the slick was unexpectedly carried by currents to a nearby ice edge where the oil was ignited and burned. Approximately 80 per cent of the oil was consumed in the burn. In the second field experiment involving 630 litres of fresh Heidrun, the free-drifting oil was allowed to spread for 15 minutes until it was much too thin to ignite. When the herding agent was applied, the slick contracted and thickened for about 10 minutes and was then ignited using a gelled gas igniter. A 9-minute long burn consumed about 90 per cent of the oil. 9 refs., 5 tabs., 34 figs.

  10. In situ observation on the dynamic process of evaporation and crystallization of sodium nitrate droplets on a ZnSe substrate by FTIR-ATR.

    Science.gov (United States)

    Zhang, Qing-Nuan; Zhang, Yun; Cai, Chen; Guo, Yu-Cong; Reid, Jonathan P; Zhang, Yun-Hong

    2014-04-17

    Sodium nitrate is a main component of aging sea salt aerosol, and its phase behavior has been studied repeatedly with wide ranges observed in the efflorescence relative humidity (RH) in particular. Studies of the efflorescence dynamics of NaNO3 droplets deposited on a ZnSe substrate are reported, using an in situ Fourier transform infrared attenuated total reflection (FTIR-ATR) technique. The time-dependence of the infrared spectra of NaNO3 aerosols accompanying step changes in RH have been measured with high signal-to-noise ratio. From the IR difference spectra recorded, changes of the time-dependent absorption peak area of the O-H stretching band (ν-OH, ∼3400 cm(-1)) and the nitrate out-of-plane bending band (ν2-NO3(-), ∼836 cm(-1)) are obtained. From these measurements, changes in the IR signatures can be attributed to crystalline and solution phase nitrate ions, allowing the volume fraction of the solution droplets that have crystallized to be determined. Then, using these clear signatures of the volume fraction of droplets that have yet to crystallize, the homogeneous and heterogeneous nucleation kinetics can be studied from conventional measurements using a steady decline in RH. The nucleation rate measurements confirm that the rate of crystallization in sodium nitrate droplets is considerably less than in ammonium sulfate droplets at any particular degree of solute supersaturation, explaining the wide range of efflorescence RHs observed for sodium nitrate in previous studies. We demonstrate that studying nucleation kinetics using the FTIR-ATR approach has many advantages over brightfield imaging studies on smaller numbers of larger droplets or measurements made on single levitated particles.

  11. Droplet networks with incorporated protein diodes show collective properties

    Science.gov (United States)

    Maglia, Giovanni; Heron, Andrew J.; Hwang, William L.; Holden, Matthew A.; Mikhailova, Ellina; Li, Qiuhong; Cheley, Stephen; Bayley, Hagan

    2009-07-01

    Recently, we demonstrated that submicrolitre aqueous droplets submerged in an apolar liquid containing lipid can be tightly connected by means of lipid bilayers to form networks. Droplet interface bilayers have been used for rapid screening of membrane proteins and to form asymmetric bilayers with which to examine the fundamental properties of channels and pores. Networks, meanwhile, have been used to form microscale batteries and to detect light. Here, we develop an engineered protein pore with diode-like properties that can be incorporated into droplet interface bilayers in droplet networks to form devices with electrical properties including those of a current limiter, a half-wave rectifier and a full-wave rectifier. The droplet approach, which uses unsophisticated components (oil, lipid, salt water and a simple pore), can therefore be used to create multidroplet networks with collective properties that cannot be produced by droplet pairs.

  12. Comparing ignitability for in situ burning of oil spills for an asphaltenic, a waxy and a light crude oil as a function of weathering conditions under arctic conditions

    DEFF Research Database (Denmark)

    Fritt-Rasmussen, Janne; Brandvik, Per Johan; Villumsen, Arne

    2012-01-01

    (asphalthenic), Kobbe (light oil) and Norne (waxy), for ignitability as a function of ice conditions and weathering degree. The crude oils (9 L) were weathered in a laboratory basin (4.8 m3) under simulated arctic conditions (0, 50 and 90% ice cover). The laboratory burning tests show that the ignitability...... is dependent on oil composition, ice conditions and weathering degree. In open water, oil spills rapidly become “not ignitable” due to the weathering e.g. high water content and low content of residual volatile components. The slower weathering of oil spills in ice (50 and 90% ice cover) results in longer time......-windows for the oil to be ignitable. The composition of the oils is important for the window of opportunity. The asphalthenic Grane crude oil had a limited timewindow for in situ burning (9 h or less), while the light Kobbe crude oil and the waxy Norne crude oil had the longest time-windows for in situ burning (from...

  13. The Newfoundland in-situ Oil Burn Experiment - NOBE

    International Nuclear Information System (INIS)

    Fingas, M.; Li, K.; Ackerman, F.; Bissonnette, M.C.; Lambert, P.; Halley, G.; Nelson, R.; Belanger, J.; Pare, J.R.P.; Campagna, P.R.

    1993-01-01

    A group of over 25 Canadian and US agencies conducted a major offshore oil spill burn near Newfoundland. Over 20 vesels, 7 aircraft, and 230 people were involved in this test, the largest of its kind ever conducted. The burn involved release of two oil spills of ca 50 tons each into a towed fireproof boom. Each burn lasted over an hour. The burn plume was sampled using remote-controlled helicopters and a blimp, and air emissions were monitored downwind from remote controlled boats which also took water samples and temperatures. Over 200 sensors or samplers were used; these will yield data on over 2,000 parameters or substances. Preliminary results are reported. Burning occurred outside the boom due to some initial oil splashover, but this did not result in sheening or significant oil loss. The scaling of burns from test tanks to on-sea burns did not always hold true. Quantitative analytical data showed that emissions from this in-situ fire were less than expected; all measured compounds and parameters were below health concern levels beyond ca 150 m from the fire and very little was detected beyond 500 m. Polycyclic aromatic hydrocarbons (PAH) were found to be lower in the soot than in the starting oil and were consumed by the fire to a large degree. Particulates were found to be of concern only up to 150 m downwind at sea level. Combustion gases did not reach levels of concern and volatile organics were in high concentrations but less than those emitted from a non-burning spill. No compounds of concern could be detected in the water samples. Burn residue samples had lower PAH levels than the starting oil. Generally, burning oil spills at sea was found to be feasible and practical. 2 refs., 9 figs., 3 tabs

  14. Ceramic membrane fouling during ultrafiltration of oil/water emulsions: roles played by stabilization surfactants of oil droplets.

    Science.gov (United States)

    Lu, Dongwei; Zhang, Tao; Ma, Jun

    2015-04-07

    Oil/water (O/W) emulsion stabilized by surfactants is the part of oily wastewater that is most difficult to handle. Ceramic membrane ultrafiltration presently is an ideal process to treat O/W emulsions. However, little is known about the fouling mechanism of the ceramic membrane during O/W emulsion treatment. This paper investigated how stabilization surfactants of O/W emulsions influence the irreversible fouling of ceramic membranes during ultrafiltration. An unexpected phenomenon observed was that irreversible fouling was much less when the charge of the stabilization surfactant of O/W emulsions is opposite to the membrane. The less ceramic membrane fouling in this case was proposed to be due to a synergetic steric effect and demulsification effect which prevented the penetration of oil droplets into membrane pores and led to less pore blockage. This proposed mechanism was supported by cross section images of fouled and virgin ceramic membranes taken with scanning electron microscopy, regression results of classical fouling models, and analysis of organic components rejected by the membrane. Furthermore, this mechanism was also verified by the existence of a steric effect and demulsification effect. Our finding suggests that ceramic membrane oppositely charged to the stabilization surfactant should be applied in ultrafiltration of O/W emulsions to alleviate irreversible membrane fouling. It could be a useful rule for ceramic membrane ultrafiltration of oily wastewater.

  15. Ceramic membrane fouling during ultrafiltration of oil/water emulsions: Roles played by stabilization surfactants of oil droplets

    KAUST Repository

    Lu, Dongwei

    2015-04-07

    Oil/water (O/W) emulsion stabilized by surfactants is the part of oily wastewater that is most difficult to handle. Ceramic membrane ultrafiltration presently is an ideal process to treat O/W emulsions. However, little is known about the fouling mechanism of the ceramic membrane during O/W emulsion treatment. This paper investigated how stabilization surfactants of O/W emulsions influence the irreversible fouling of ceramic membranes during ultrafiltration. An unexpected phenomenon observed was that irreversible fouling was much less when the charge of the stabilization surfactant of O/W emulsions is opposite to the membrane. The less ceramic membrane fouling in this case was proposed to be due to a synergetic steric effect and demulsification effect which prevented the penetration of oil droplets into membrane pores and led to less pore blockage. This proposed mechanism was supported by cross section images of fouled and virgin ceramic membranes taken with scanning electron microscopy, regression results of classical fouling models, and analysis of organic components rejected by the membrane. Furthermore, this mechanism was also verified by the existence of a steric effect and demulsification effect. Our finding suggests that ceramic membrane oppositely charged to the stabilization surfactant should be applied in ultrafiltration of O/W emulsions to alleviate irreversible membrane fouling. It could be a useful rule for ceramic membrane ultrafiltration of oily wastewater. © 2015 American Chemical Society.

  16. Performance Analysis of Retrofitted Tribo-Corrosion Test Rig for Monitoring In Situ Oil Conditions

    Directory of Open Access Journals (Sweden)

    Arpith Siddaiah

    2017-09-01

    Full Text Available Oils and lubricants, once extracted after use from a mechanical system, can hardly be reused, and should be refurbished or replaced in most applications. New methods of in situ oil and lubricant efficiency monitoring systems have been introduced for a wide variety of mechanical systems, such as automobiles, aerospace aircrafts, ships, offshore wind turbines, and deep sea oil drilling rigs. These methods utilize electronic sensors to monitor the “byproduct effects” in a mechanical system that are not indicative of the actual remaining lifecycle and reliability of the oils. A reliable oil monitoring system should be able to monitor the wear rate and the corrosion rate of the tribo-pairs due to the inclusion of contaminants. The current study addresses this technological gap, and presents a novel design of a tribo-corrosion test rig for oils used in a dynamic system. A pin-on-disk tribometer test rig retrofitted with a three electrode-potentiostat corrosion monitoring system was used to analyze the corrosion and wear rate of a steel tribo-pair in industrial grade transmission oil. The effectiveness of the retrofitted test rig was analyzed by introducing various concentrations of contaminants in an oil medium that usually leads to a corrosive working environment. The results indicate that the retrofitted test rig can effectively monitor the in situ tribological performance of the oil in a controlled dynamic corrosive environment. It is a useful method to understand the wear–corrosion synergies for further experimental work, and to develop accurate predictive lifecycle assessment and prognostic models. The application of this system is expected to have economic benefits and help reduce the ecological oil waste footprint.

  17. Performance Analysis of Retrofitted Tribo-Corrosion Test Rig for Monitoring In Situ Oil Conditions.

    Science.gov (United States)

    Siddaiah, Arpith; Khan, Zulfiqar Ahmad; Ramachandran, Rahul; Menezes, Pradeep L

    2017-09-28

    Oils and lubricants, once extracted after use from a mechanical system, can hardly be reused, and should be refurbished or replaced in most applications. New methods of in situ oil and lubricant efficiency monitoring systems have been introduced for a wide variety of mechanical systems, such as automobiles, aerospace aircrafts, ships, offshore wind turbines, and deep sea oil drilling rigs. These methods utilize electronic sensors to monitor the "byproduct effects" in a mechanical system that are not indicative of the actual remaining lifecycle and reliability of the oils. A reliable oil monitoring system should be able to monitor the wear rate and the corrosion rate of the tribo-pairs due to the inclusion of contaminants. The current study addresses this technological gap, and presents a novel design of a tribo-corrosion test rig for oils used in a dynamic system. A pin-on-disk tribometer test rig retrofitted with a three electrode-potentiostat corrosion monitoring system was used to analyze the corrosion and wear rate of a steel tribo-pair in industrial grade transmission oil. The effectiveness of the retrofitted test rig was analyzed by introducing various concentrations of contaminants in an oil medium that usually leads to a corrosive working environment. The results indicate that the retrofitted test rig can effectively monitor the in situ tribological performance of the oil in a controlled dynamic corrosive environment. It is a useful method to understand the wear-corrosion synergies for further experimental work, and to develop accurate predictive lifecycle assessment and prognostic models. The application of this system is expected to have economic benefits and help reduce the ecological oil waste footprint.

  18. An in situ FTIR step-scan photoacoustic investigation of kerogen and minerals in oil shale.

    Science.gov (United States)

    Alstadt, Kristin N; Katti, Dinesh R; Katti, Kalpana S

    2012-04-01

    Step-scan photoacoustic infrared spectroscopy experiments were performed on Green River oil shale samples obtained from the Piceance Basin located in Colorado, USA. We have investigated the molecular nature of light and dark colored areas of the oil shale core using FTIR photoacoustic step-scan spectroscopy. This technique provided us with the means to analyze the oil shale in its original in situ form with the kerogen-mineral interactions intact. All vibrational bands characteristic of kerogen were found in the dark and light colored oil shale samples confirming that kerogen is present throughout the depth of the core. Depth profiling experiments indicated that there are changes between layers in the oil shale molecular structure at a length scale of micron. Comparisons of spectra from the light and dark colored oil shale core samples suggest that the light colored regions have high kerogen content, with spectra similar to that from isolated kerogen, whereas, the dark colored areas contain more mineral components which include clay minerals, dolomite, calcite, and pyrite. The mineral components of the oil shale are important in understanding how the kerogen is "trapped" in the oil shale. Comparing in situ kerogen spectra with spectra from isolated kerogen indicate significant band shifts suggesting important nonbonded molecular interactions between the kerogen and minerals. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Ga droplet morphology on GaAs(001) studied by Lloyd's mirror photoemission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tang, W X; Jesson, D E; Pavlov, K M; Morgan, M J [School of Physics, Monash University, Victoria 3800 (Australia); Usher, B F [Department of Electronic Engineering, La Trobe University, Victoria 3086 (Australia)

    2009-08-05

    We apply Lloyd's mirror photoemission electron microscopy (PEEM) to study the surface shape of Ga droplets on GaAs(001). An unusual rectangular-based droplet shape is identified and the contact angle is determined in situ. It is shown that quenching does not appreciably affect droplet shape and ex situ measurements of the contact angle by atomic force microscopy are in good agreement with Lloyd's mirror PEEM. Extension of Lloyd's mirror technique to reconstruct general three-dimensional (3D) surface shapes and the potential use of synchrotron radiation to improve vertical resolution is discussed.

  20. Coalescence and compression in centrifuged emulsions studied with in situ optical microscopy

    NARCIS (Netherlands)

    Krebs, T.; Ershov, D.S.; Schroën, C.G.P.H.; Boom, R.M.

    2013-01-01

    We report an experimental method to investigate droplet dynamics in centrifuged emulsions and its application to study droplet compression and coalescence. The experimental setup permits in situ monitoring of an ensemble of droplets in a centrifuged monolayer of monodisperse emulsion droplets using

  1. Thermocapillary migration of liquid droplets in a temperature gradient in a density matched system

    Science.gov (United States)

    Rashidnia, N.; Balasubramaniam, R.

    1991-01-01

    An experimental investigation of thermocapillary flow in droplets of a vegetable oil (partially hydrogenated soybean oil) immersed in silicone oil was conducted in a test cell with a heated top wall and a cooled bottom wall. The liquids are nearly immiscible and have equal densities at a temperature below the room temperature, thus providing a simulation of low-gravity conditions by reducing the buoyancy forces. The interfacial tension between the two oils was measured in the temperature range 20 to 50 C using a capillary tube and (d sigma)/(d T) was determined to be negative. Droplets ranging in sizes from 3 mm to 1 cm diameter were injected into the silicone oil. The vertical temperature profile in the bulk liquid (silicone oil) produces temperature variations along the interface which induce variations in the interfacial tension. The flow inside the droplet driven by the resulting interfacial shear stresses was observed using a laser light-sheet flow visualization technique. The flow direction is consistent with the sign of (d sigma)/(d T). The observed maximum surface velocities are compared to the theoretical predictions of Young et al. (1959).

  2. Uniform droplet splitting and detection using Lab-on-Chip flow cytometry on a microfluidic PDMS device

    DEFF Research Database (Denmark)

    Kunstmann-Olsen, Casper; Hanczyc, Martin; Hoyland, James

    2016-01-01

    are analyzed in situ based on optical signal intensities. By controlling the hydrodynamic flow focusing, uniform droplets of sizes between 100 μm and 300 μm are created with precise size control. Cross-flow shearing allows one to divide these droplets into anything from 2 to 9 individual droplets, depending...

  3. Importance of the slick thickness for effective in-situ burning of crude oil

    DEFF Research Database (Denmark)

    van Gelderen, Laurens; Brogaard, Nicholas L.; Sørensen, Martin X.

    2015-01-01

    height. The experiments were performed in a new experimental apparatus, the Crude Oil Flammability Apparatus (COFA), which has been developed to study ISB of oil on water in a controlled laboratory environment with large water-to-oil ratios. The regression rate, average mass loss rate and burning...... efficiency reached a constant maximum value for all oils at slick thicknesses exceeding 10–20 mm. For thinner initial slick thicknesses, these values were greatly reduced, most likely due to heat losses to the water. A further increase in the initial slick thickness could not improve the burning efficiency......In order to improve the potential of in-situ burning (ISB), the importance of the oil slick thickness on two pure oils (n-octane and dodecane) and two fresh crude oils (Grane and REBCO) was studied in relation to the regression rate, boilover tendency, mass loss rate, burning efficiency and flame...

  4. Toward single enzyme analysis in a droplet-based micro and nanofluidic system

    NARCIS (Netherlands)

    Arayanarakool, Rerngchai

    2012-01-01

    In this thesis, we have demonstrated the application of micro- and nanofluidic devices to generate an array of aqueous droplets in oil phase for single-enzyme encapsulation and activity measurement. We chose droplet-based microfluidics for this purpose of monitoring single-enzyme reactions since the

  5. Ignition technique for an in situ oil shale retort

    Science.gov (United States)

    Cha, Chang Y.

    1983-01-01

    A generally flat combustion zone is formed across the entire horizontal cross-section of a fragmented permeable mass of formation particles formed in an in situ oil shale retort. The flat combustion zone is formed by either sequentially igniting regions of the surface of the fragmented permeable mass at successively lower elevations or by igniting the entire surface of the fragmented permeable mass and controlling the rate of advance of various portions of the combustion zone.

  6. Sodium leakage and combustion tests. Measurement and distribution of droplet size using various spray nozzles

    International Nuclear Information System (INIS)

    Nagai, Keiichi; Hirabayashi, Masaru; Onojima, T.; Gunji, Minoru; Ara, Kuniaki; Oki, Yoshihisa

    1999-04-01

    In order to develop a numerical code simulating sodium fires initiated frame dispersion of droplets, measured data of droplet diameter as well as its distribution are needed. In the present experiment the distribution of droplet diameter was measured using water, oil and sodium. The tests elucidated the influential factors with respect to the droplet diameter. In addition, we sought to develop a similarity law between water and sodium. The droplet size distribution of sodium using the large diameter droplet (Elnozzle) was predicted. (J.P.N.)

  7. Splash Dynamics of Falling Surfactant-Laden Droplets

    Science.gov (United States)

    Sulaiman, Nur; Buitrago, Lewis; Pereyra, Eduardo

    2017-11-01

    Splashing dynamics is a common issue in oil and gas separation technology. In this study, droplet impact of various surfactant concentrations onto solid and liquid surfaces is studied experimentally using a high-speed imaging analysis. Although this area has been widely studied in the past, there is still not a good understanding of the role of surfactant over droplet impact and characterization of resulting splash dynamics. The experiments are conducted using tap water laden with anionic surfactant. The effects of system parameters on a single droplet impingement such as surfactant concentration (no surfactant, below, at and above critical micelle concentration), parent drop diameter (2-5mm), impact velocity and type of impact surface (thin and deep pool) are investigated. Image analysis technique is shown to be an effective technique for identification of coalescence to splashing transition. In addition, daughter droplets size distributions are analyzed qualitatively in the events of splashing. As expected, it is observed that the formation of secondary droplets is affected by the surfactant concentration. A summary of findings will be discussed.

  8. Droplet evaporation and spread on waxy and hairy leaves associated with type and concentration of adjuvants.

    Science.gov (United States)

    Xu, Linyun; Zhu, Heping; Ozkan, H Erdal; Bagley, William E; Krause, Charles R

    2011-07-01

    Adjuvants can improve pesticide application efficiency and effectiveness. However, quantifications of the adjuvant-amended pesticide droplet actions on foliage, which could affect application efficiencies, are largely unknown. Droplet evaporation rates and spread on waxy or hairy leaves varied greatly with the adjuvant types tested. On waxy leaves, the wetted areas of droplets containing crop oil concentrate (COC) were significantly smaller than those containing modified seed oil (MSO), non-ionic surfactant (NIS) or oil surfactant blend (OSB), whereas the evaporation rates of COC-amended droplets were significantly higher. On hairy leaves, COC-amended droplets remained on top of the hairs without wetting the epidermis. When the relative concentration was 1.50, the wetted area of droplets with NIS was 9.2 times lower than that with MSO and 6.1 times lower than that with OSB. The wetted area increased as the adjuvant concentration increased. MSO- or OSB-amended droplets spread extensively on the hairy leaf surface until they were completely dried. These results demonstrated that the proper concentration of MSO, NIS or OSB in spray mixtures improved the homogeneity of spray coverage on both waxy and hairy leaf surfaces and could reduce pesticide use. This article is a US Government work and is in the public domain in the USA. Published 2011 by John Wiley & Sons, Ltd.

  9. Droplets: Unconventional Protocell Model with Life-Like Dynamics and Room to Grow

    Directory of Open Access Journals (Sweden)

    Martin M Hanczyc

    2014-12-01

    Full Text Available Over the past few decades, several protocell models have been developed that mimic certain essential characteristics of living cells. These protocells tend to be highly reductionist simplifications of living cells with prominent bilayer membrane boundaries, encapsulated metabolisms and/or encapsulated biologically-derived polymers as potential sources of information coding. In parallel with this conventional work, a novel protocell model based on droplets is also being developed. Such water-in-oil and oil-in-water droplet systems can possess chemical and biochemical transformations and biomolecule production, self-movement, self-division, individuality, group dynamics, and perhaps the fundamentals of intelligent systems and evolution. Given the diverse functionality possible with droplets as mimics of living cells, this system has the potential to be the first true embodiment of artificial life that is an orthologous departure from the one familiar type of biological life. This paper will synthesize the recent activity to develop droplets as protocell models.

  10. Microfluidic acoustophoretic force based low-concentration oil separation and detection from the environment.

    Science.gov (United States)

    Wang, Han; Liu, Zhongzheng; Kim, Sungman; Koo, Chiwan; Cho, Younghak; Jang, Dong-Young; Kim, Yong-Joe; Han, Arum

    2014-03-07

    Detecting and quantifying extremely low concentrations of oil from the environment have broad applications in oil spill monitoring in ocean and coastal areas as well as in oil leakage monitoring on land. Currently available methods for low-concentration oil detection are bulky or costly with limited sensitivities. Thus they are difficult to be used as portable and field-deployable detectors in the case of oil spills or for monitoring the long-term effects of dispersed oil on marine and coastal ecosystems. Here, we present a low-concentration oil droplet trapping and detection microfluidic system based on the acoustophoresis phenomenon where oil droplets in water having a negative acoustic contrast factor move towards acoustic pressure anti-nodes. By trapping oil droplets from water samples flowing through a microfluidic channel, even very low concentrations of oil droplets can be concentrated to a detectable level for further analyses, which is a significant improvement over currently available oil detection systems. Oil droplets in water were successfully trapped and accumulated in a circular acoustophoretic trapping chamber of the microfluidic device and detected using a custom-built compact fluorescent detector based on the natural fluorescence of the trapped crude oil droplets. After the on-line detection, crude oil droplets released from the trapping chamber were successfully separated into a collection outlet by acoustophoretic force for further off-chip analyses. The developed microfluidic system provides a new way of trapping, detecting, and separating low-concentration crude oil from environmental water samples and holds promise as a low-cost field-deployable oil detector with extremely high sensitivity. The microfluidic system and operation principle are expected to be utilized in a wide range of applications where separating, concentrating, and detecting small particles having a negative acoustic contrast factor are required.

  11. Addressable droplet microarrays for single cell protein analysis.

    Science.gov (United States)

    Salehi-Reyhani, Ali; Burgin, Edward; Ces, Oscar; Willison, Keith R; Klug, David R

    2014-11-07

    Addressable droplet microarrays are potentially attractive as a way to achieve miniaturised, reduced volume, high sensitivity analyses without the need to fabricate microfluidic devices or small volume chambers. We report a practical method for producing oil-encapsulated addressable droplet microarrays which can be used for such analyses. To demonstrate their utility, we undertake a series of single cell analyses, to determine the variation in copy number of p53 proteins in cells of a human cancer cell line.

  12. In-situ burning of crude oil and emulsions in broken ice

    International Nuclear Information System (INIS)

    Guenette, C.C.; Wighus, R.

    1996-01-01

    Large scale burns were conducted in a fjord in Norway, with fresh and emulsified crude oil to determine the feasibility of in-situ burning operations in an ice zone. The objective was to study the flame spreading characteristics of burning oil and emulsions in broken ice. The effect of wind on the flame spreading from one slick area to another was studied. The thermal environment produced by a crude oil fire on the sea surface and the response of a steel construction to the heat exposure from the fire was determined. The studies showed that high burning efficiencies (95 to 99%) could be obtained when burning fresh oil and emulsions contained in broken ice. Flame spreading was observed mostly in the downwind direction, and was dependent on the wind speed and direction. The temperatures and heat fluxes measured in the flames were higher than previously measured in pool fires. 9 refs., 7 figs

  13. Polarizability of Fluid Droplets and the Kerr Effect on Microemulsions

    CERN Document Server

    Lisy, V

    2001-01-01

    Spheroidal fluid droplets immersed in another fluid and thermally fluctuating in the shape are considered. The polarizability of the droplet is evaluated up to the second order in the fluctuation amplitudes. The correlation functions of the polarizability tensor components are found and used to describe the polarized and depolarized scattering of light, and the Kerr effect on microemulsions. By comparison of the theoretical results with the Kerr constant measurements from the literature, we estimate the bending rigidity of the surfactant monolayer that separates the oil and water phases in droplet microemulsions.

  14. In situ burning of oil in coastal marshes. 1. Vegetation recovery and soil temperature as a function of water depth, oil type, and marsh type.

    Science.gov (United States)

    Lin, Qianxin; Mendelssohn, Irving A; Bryner, Nelson P; Walton, William D

    2005-03-15

    In-situ burning of oiled wetlands potentially provides a cleanup technique that is generally consistent with present wetland management procedures. The effects of water depth (+10, +2, and -2 cm), oil type (crude and diesel), and oil penetration of sediment before the burn on the relationship between vegetation recovery and soil temperature for three coastal marsh types were investigated. The water depth over the soil surface during in-situ burning was a key factor controlling marsh plant recovery. Both the 10- and 2-cm water depths were sufficient to protect marsh vegetation from burning impacts, with surface soil temperatures of fire significantly impeded the post-burn recovery of Spartina alterniflora and Sagittaria lancifolia but did not detrimentally affect the recovery of Spartina patens and Distichlis spicata. Oil type (crude vs diesel) and oil applied to the marsh soil surface (0.5 L x m(-2)) before the burn did not significantly affect plant recovery. Thus, recovery is species-specific when no surface water exists. Even water at the soil surface will most likely protect wetland plants from burning impact.

  15. Formation of oil-SPM aggregates under various mixing intensities

    International Nuclear Information System (INIS)

    Sun, J.; Zheng, X.

    2009-01-01

    A considerable amount of petroleum products spill into aquatic ecosystems as a result of increased marine transportation of crude oil products. The oil spill response community is therefore seeking an economical and environmentally sound technology to remove oil from shorelines. The formation of oil-suspended particulate matter (SPM) aggregates (OSAs) occurs when oil and SPM are present in a turbulent system. This process is known to enhance natural cleaning of oiled shorelines by increasing oil dispersion into the water column and accelerating the biodegradation of the oil. This paper reported on a laboratory study that was conducted to investigate OSA formation under different mixing energy levels. It presented the results of experiments conducted with Arabian heavy crude oil, standard reference material 1941b, artificial seawater, and 3 shaking rates of the reciprocating shaker. The results are intended to offer insight into the rate and extent of oil sediment interaction following an oil spill in the marine environment under different mixing conditions. Mixing energy is expected to have a considerable control on OSA formation because it controls the splitting of an oil slick into small droplets, the aggregation between the droplets and SPM, and the breakage rate of natural flocs. The concentration of the OSA was measured using the gas chromatography-flame ionization detection (GC-FID) method. Ultraviolet epi-fluorescence image analysis was used to measure the structure of OSAs and the concentration of oil droplets forming OSAs. The results showed that the formation of OSAs increased as the mixing energy increased. A consistent increase in droplet concentration in OSAs was also noted as the mixing energy increased. Both oil droplet size and OSA size decreased as the mixing intensity increased. 38 refs., 4 tabs., 3 figs.

  16. Ignition procedure for in situ burning in oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    1971-04-14

    An ignition procedure for an in situ burning process is described. Hydrogen peroxide is used, with a compound to decompose the hydrogen peroxide. The decomposition increases the temperature, and the generated oxygen ignites the oil. The following can be used to decompose the hydrogen peroxide: (1) catalytic compounds having a large surface area, manganese oxide, salts of 2-valent iron, fine platinum, and methals on inert materials; (2) oxidizing agents such as permanganate; and (3) reducing agents such as hydrazine, hydroxylamine and their derivatives. (14 claims)

  17. Efficiency of consortium for in-situ bioremediation and CO2 evolution method of refines petroleum oil in microcosms study

    OpenAIRE

    Dutta, Shreyasri; Singh, Padma

    2017-01-01

    An in-situ bioremediation study was conducted in a laboratory by using mixed microbial consortium. An indigenous microbial consortium was developed by assemble of two Pseudomonas spp. and two Aspergillus spp. which were isolated from various oil contaminated sites of India. The laboratory feasibility study was conducted in a 225 m2 block. Six treatment options-Oil alone, Oil+Best remediater, Oil+Bacterial consortium, Oil+Fungal consortium, Oil+Mixed microbial consortium, Oil+Indigenous microf...

  18. Effects of surface properties on droplet formation inside a microfluidic device

    Science.gov (United States)

    Steinhaus, Ben; Shen, Amy

    2004-11-01

    Micro-fluidic devices offer a unique method of creating and controlling droplets on small length scales. A microfluidic device is used to study the effects of surface properties on droplet formation of a 2-phase flow system. Four phase diagrams are generated to compare the dynamics of the 2 immiscible fluid system (silicone oil and water) inside microchannels with different surface properties. Results show that the channel surface plays an important role in determining the flow patterns and the droplet formation of the 2-phase fluid system.

  19. The Effect of pH and High-Pressure Homogenization on Droplet Size

    Directory of Open Access Journals (Sweden)

    Ah Pis Yong

    2017-12-01

    Full Text Available The aims of this study are to revisit the effect of high pressure on homogenization and the influence of pH on the emulsion droplet sizes. The high-pressure homogenization (HPH involves two stages of processing, where the first stage involves in blending the coarse emulsion by a blender, and the second stage requires disruption of the coarse emulsion into smaller droplets by a high-pressure homogenizer. The pressure range in this review is in between 10-500 MPa. The homogenised droplet sizes can be reduced by increasing the homogenization recirculation, and there is a threshold point beyond that by applying pressure only, the size cannot be further reduced. Normally, homogenised emulsions are classified by their degree of kinetic stability. Dispersed phase present in the form of droplets while continuous phase also known as suspended droplets. With a proper homogenization recirculation and pressure, a more kinetically stable emulsion can be produced. The side effects of increasing homogenization pressure are that it can cause overprocessing of the emulsion droplets where the droplet sizes become larger rather than the expected smaller size. This can cause kinetic instability in the emulsion. The droplet size is usually measured by dynamic light scattering or by laser light scattering technique. The type of samples used in this reviews are such as chocolate and vanilla based powders; mean droplet sizes samples; basil oil; tomato; lupin protein; oil; skim milk, soymilk; coconut milk; tomato homogenate; corn; egg-yolk, rapeseed and sunflower; Poly(4-vinylpyridine/silica; and Complex 1 until complex 4 approaches from author case study. A relationship is developed between emulsion size and pH. Results clearly show that lower pH offers smaller droplet of emulsion and the opposite occurs when the pH is increased.

  20. Relationship between concentration of surfactant and pressure for droplet creation, and effect on droplet size in microchannel O/W emulsification; Maikurochaneru ni yoru O/W nyukaho ni okeru kaimen kasseizai nodo to ekiteki seisei atsuryoku no kankei, oyobi koreraga ekitekikei ni oyobosu eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Kawakatsu, T.; Komori, H.; Oda, N.; Yonemoto, T. [Tohoku Univ., Sendai (Japan). Graduate School of Engineering

    1998-03-01

    O/W (oil in water) emulsion is produced by micro-channel emulsification method, and the effects of surfactant concentration on the pressures at which droplet generation starts and stops are evaluated in connection with the water phase and oil phase interfacial tension. In addition, the effects of surfactant concentration and operational pressure on the droplet size are investigated by measuring the generated droplet distribution, mean droplet size, standard deviation, geometrical standard deviation, and the possibility of producing mono-dispersion emulsion whose droplet size is large than 10 micron. The breakthrough pressure and the minimum pressure for droplet generation become low with the increase of SDS (sodium lauryl sulfate) concentration. The surfactant concentration, however, is found to have no effect on the breakthrough pressure and the minimum pressure for droplet generation when the SDS concentration exceeds the critical micelle concentration. It is true also for a system added with NaCl. As regards droplet size, uniform 20{mu}m droplet is obtained irrespective of the surfactant concentration and pressure. 13 refs., 10 figs., 2 tabs.

  1. The potential of Bacillus licheniformis strains for in situ enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Yakimov, Michail M.; Timmis, Kenneth N. [Microbial Ecology Group, Division of Microbiology, GBF-National Research Centre for Biotechnology, Braunschweig (Germany); Amro, Mohammed M.; Kessel, Dagobert G. [German Petroleum Institute, Clausthal-Zellerfeld (Germany); Bock, Michael; Boseker, Klaus [BGR, Federal Institute for Geoscience and Natural Resources, Hannover (Germany); Fredrickson, Herbert L. [Environmental Laboratory, Waterways Experimental Station, USAGE, Vicksburg, MS (United States)

    1997-07-15

    The ability of microorganisms isolated from oil reservoirs to increase oil recovery by in situ growth and metabolism following the injection of laboratory grown microbial cells and nutrients were studied. Four strains isolated from Northern German oil reservoirs at depths of 866 to 1520 m, and identified as Bacillus licheniformis, were characterized taxonomically and physiologically. All strains grew on a variety of substrates at temperatures of up to 55C and at salinities of up to 12% NaCl. Extracellular polymer production occurred both aerobically and anaerobically over a wide range of temperatures, pressures and salinities, though it was optimal at temperatures around 50C and at salinities between 5 and 10% NaCl. Strain BNP29 was able to produce significant amounts of biomass, polymer, fermentation alcohols and acids in batch culture experiments under simulated reservoir conditions. Oil recovery (core flooding) experiments with strain BNP29 and a sucrose-based nutrient were performed with lime-free and lime-containing, oil-bearing sandstone cores. Oil recovery efficiencies varied from 9.3 to 22.1% of the water flood residual oil saturation. Biogenic acid production that accompanied oil production, along with selective plugging, are important mechanisms leading to increased oil recovery, presumably through resulting changes in rock porosity and alteration of wettability. These data show that strain BNP29 exhibits potential for the development of enhanced oil recovery processes

  2. Experimental study on immiscible jet breakup using refractive index matched oil-water pair

    Science.gov (United States)

    Xue, Xinzhi; Katz, Joseph

    2016-11-01

    A subsea oil well blowout creates an immiscible crude oil jet. This jet fragments shortly after injection, resulting in generation of a droplet cloud. Detailed understanding of the processes involved is crucial for modeling the fragmentation and for predicting the droplet size distribution. High density of opaque droplets near nozzle limits our ability to visualize and quantify the breakup process. To overcome this challenge, two immiscible fluids: silicone oil and sugar water with the same index of refraction (1.4015) are used as surrogates for crude oil and seawater, respectively. Their ratios of kinematic viscosity (5.64), density (0.83) and interfacial tension are closely matched with those of crude oil and seawater. Distribution of the oil phase is visualized by fluorescent tagging. Both phases are also seeded with particles for simultaneous PIV measurements. The measurements are performed within atomization range of Ohnesorge and Reynolds numbers. Index matching facilitates undistorted view of the phase distribution in illuminated section. Ongoing tests show that the jet surface initially rolls up into Kelvin-Helmholtz rings, followed by development of dispersed phase ligaments further downstream, which then break into droplets. Some of these droplets are re-entrained into the high momentum core, resulting in secondary breakup. As the oil layer and ligaments evolve, they often entrain water, resulting in generation of multiple secondary water droplets encapsulated within the oil droplets. This research is made possible by a Grant from Gulf of Mexico Research Initiative.

  3. Seismic monitoring of in situ combustion process in a heavy oil field

    International Nuclear Information System (INIS)

    Zadeh, Hossein Mehdi; Srivastava, Ravi P; Vedanti, Nimisha; Landrø, Martin

    2010-01-01

    Three time-lapse 3D seismic surveys are analysed to monitor the effect of in situ combustion, a thermal-enhanced oil recovery process in the Balol heavy oil reservoir in India. The baseline data were acquired prior to the start of the in situ combustion process in four injection wells, while the two monitor surveys were acquired 1 and 2 years after injection start, respectively. We present the results of baseline and second monitor surveys. Fluid substitution studies based on acoustic well logs predict a seismic amplitude decrease at the top reservoir and an increase at the base reservoir. Both the amplitude dimming at the top reservoir and the brightening at the base reservoir are observed in the field data. The extent of the most pronounced 4D anomaly is estimated from the seismic amplitude and time shift analysis. The interesting result of seismic analysis is that the anomalies are laterally shifted towards the northwest, rather than the expected east, from the injector location suggesting a northwest movement of the in situ combustion front. No clear evidence of air leakage into other sand layers, neither above nor below the reservoir sand, is observed. This does not necessarily mean that all the injected air is following the reservoir sand, especially if the thief sand layers are thin. These layers might be difficult to observe on seismic data

  4. Capacitive sensor for continuous monitoring of high-volume droplet microfluidic generation

    KAUST Repository

    Conchouso Gonzalez, David

    2016-12-19

    This paper presents a capacitive sensor for monitoring parallel microfluidic droplet generation. The great electric permittivity difference between common droplet microfluidic fluids such as air, oil and water (ϵoil ≈ 2–3 and ϵwater ≈ 80.4), allows for accurate detection of water in oil concentration changes. Capacitance variations as large as 10 pF between a channel filled with water or dodecane, are used to continuously monitor the output of a parallelization system producing 150 µl/min of water in dodecane emulsions. We also discuss a low cost fabrication process to manufacture these capacitive sensors, which can be integrated to different substrates.

  5. DWH MC 252: Subsurface Oil Transport

    Science.gov (United States)

    Beegle-Krause, C. J.; Boyer, T.; Murray, D.

    2010-12-01

    Before reaching the ocean surface, the oil and gas released from the DWH MC 252 blowout at 1500 m moves as a buoyant plume until the trapping depth and plume transition point are reached (Zheng et al 2002). At the transition point, the oil droplets and bubbles move independently of each other, and rise at a rate related to their diameter. The oil density, droplet size distribution and currents primarily determine the distribution of the oil between: Large droplets that rise quickly and create a surface expression of the oil. Moderate size droplets that rise over the course of days, and so spread out quite differently than the surface oil, and commonly do not reach the surface in large enough quantities to create a surface sheen. These droplets separate in the currents, particularly in the strong current shear in upper 500 m currents. Very tiny droplets that rise very slowly, over the course or weeks to months, and may be removed by dissolution, biodegradation or marine snow before ever reaching the surface. Modeling and observations (Joint Analysis Group, 2010) confirm the presence of a deep layer of oil and gas between approximately 1100 and 1300 m over the release location and spreading out along the isopycnal surfaces. Later in the event, a small oxygen depression was a proxy for where oil and gas had been. The DWH MC252 well is located at intermediate depth in the Gulf of Mexico (GoM). The water mass is Antarctic Intermediate Water, which enters and exits the GoM through the Yucatan Straits. Surface influences, such as Loop Current Frontal Eddies (e.g. Berger et al 2000) can reach down to these depths, and alter the flow within De Soto Canyon. The water mass containing the deep layer of oil droplets changes depth within the GoM, but does not reach above a depth of about 900 m. There are no physical processes that could cause this deep layer of oil to reach the continental shelf or the Florida Straits. Observed and historical hydrographic data, observations

  6. Probing droplets on superhydrophobic surfaces by synchrotron radiation scattering techniques

    Energy Technology Data Exchange (ETDEWEB)

    Accardo, Angelo [Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163 (Italy); Di Fabrizio, Enzo [KAUST (King Abdullah University of Science and Technology), Jeddah (Saudi Arabia); BIONEM Lab at University Magna Graecia, Campus Salvatore Venuta, Viale Europa 88100, Germaneto-Catanzaro (Italy); Limongi, Tania [KAUST (King Abdullah University of Science and Technology), Jeddah (Saudi Arabia); Marinaro, Giovanni [Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163 (Italy); European Synchrotron Radiation Facility, BP 220, 38043 Grenoble Cedex (France); Riekel, Christian, E-mail: riekel@esrf.fr [European Synchrotron Radiation Facility, BP 220, 38043 Grenoble Cedex (France)

    2014-06-10

    A comprehensive review about the use of micro- and nanostructured superhydrophobic surfaces as a tool for in situ X-ray scattering investigations of soft matter and biological materials. Droplets on artificially structured superhydrophobic surfaces represent quasi contact-free sample environments which can be probed by X-ray microbeams and nanobeams in the absence of obstructing walls. This review will discuss basic surface wettability concepts and introduce the technology of structuring surfaces. Quasi contact-free droplets are compared with contact-free droplets; processes related to deposition and evaporation on solid surfaces are discussed. Droplet coalescence based on the electrowetting effect allows the probing of short-time mixing and reaction processes. The review will show for several materials of biological interest that structural processes related to conformational changes, nucleation and assembly during droplet evaporation can be spatially and temporally resolved by raster-scan diffraction techniques. Orientational ordering of anisotropic materials deposited during solidification at pinning sites facilitates the interpretation of structural data.

  7. Observation and optical implications of oil dewetting patterns in electrowetting displays

    International Nuclear Information System (INIS)

    Sun Bo; Heikenfeld, Jason

    2008-01-01

    Growth of surface instabilities leading to periodic oil patterns in electrowetting display pixels has been experimentally observed. In the electrowetting display pixels, an electrical potential ranging between 0 V and 80 V is applied among a water electrode, dielectric layers consisting of an oil film, fluoropolymer, Parylene C and a lower electrode. As predicted by spinodal dewetting theory, application of electromechanical pressure to the oil film causes the film to dewet into a periodic arrangement of oil droplets. The separation distance, or wavelength, for the dewetted oil droplets decreases with increasing voltage or with decreasing oil film thickness. Various test voltages of 20–80 V and oil thicknesses values of 3.3–8.9 µm were shown to experimentally generate dewetting wavelengths ranging from 10's to 100's of µm. An increased number of oil droplets inside the display pixel decreases the maximum display transmission or reflection proportional to the cube root of the number of droplets. This work therefore provides a means to further understand oil film dewetting in electrowetting display pixels and explains the implications of the dewetting pattern on display optical performance

  8. Experimental characterization of a silicone oil-in-water droplet generator based on a micro T-junction

    Science.gov (United States)

    Rostami, B.; Pulvirenti, B.; Puccetti, G.; Morini, G. L.

    2017-01-01

    This paper deals with the emulsion of two immiscible fluids in a micro T-junction. An opposed-flow micro T-junction obtained by means of square microchannels (with a side of 300 µm) fabricated in a pure fused glass chip has been used for the formation of silicone oil-in-water (O/W) droplets. The experimental results have been obtained by considering both pure deionized water and a mixture of deionized water and surfactant (Tween 20) as the continuous flow. The results shown in this paper highlight that the presence of surfactant, also in very small concentrations, is able to change drastically the flow patterns of the two-phase flow generated by the T-junction. Concentration in weight of Tween 20 between 1 and 2% in the continuous flow is able to promote highly monodispersed emulsions with low polydispersity, especially for low flow rate ratios between the dispersed and continuous phase flows. On the contrary, by avoiding the use of surfactant, a stratified flow is obtained. The experimental results obtained in this work have been used in order to link the depth ratio of the stratified flow and the non-dimensional length of the plugs in droplet-based flow to the flow rate ratio between the dispersed and continuous flows.

  9. Microfluidic passive permeability assay using nanoliter droplet interface lipid bilayers.

    Science.gov (United States)

    Nisisako, Takasi; Portonovo, Shiva A; Schmidt, Jacob J

    2013-11-21

    Membrane permeability assays play an important role in assessing drug transport activities across biological membranes. However, in conventional parallel artificial membrane permeability assays (PAMPA), the membrane model used is dissimilar to biological membranes physically and chemically. Here, we describe a microfluidic passive permeability assay using droplet interface bilayers (DIBs). In a microfluidic network, nanoliter-sized donor and acceptor aqueous droplets are alternately formed in cross-flowing oil containing phospholipids. Subsequently, selective removal of oil through hydrophobic pseudo-porous sidewalls induces the contact of the lipid monolayers, creating arrayed planar DIBs between the donor and acceptor droplets. Permeation of fluorescein from the donor to the acceptor droplets was fluorometrically measured. From the measured data and a simple diffusion model we calculated the effective permeabilities of 5.1 × 10(-6) cm s(-1), 60.0 × 10(-6) cm s(-1), and 87.6 × 10(-6) cm s(-1) with donor droplets at pH values of 7.5, 6.4 and 5.4, respectively. The intrinsic permeabilities of specific monoanionic and neutral fluorescein species were obtained similarly. We also measured the permeation of caffeine in 10 min using UV microspectroscopy, obtaining a permeability of 20.8 × 10(-6) cm s(-1). With the small solution volumes, short measurement time, and ability to measure a wide range of compounds, this device has considerable potential as a platform for high-throughput drug permeability assays.

  10. Quantitative Raman microspectroscopy for water permeability parameters at a droplet interface bilayer.

    Science.gov (United States)

    Braziel, S; Sullivan, K; Lee, S

    2018-01-29

    Using confocal Raman microspectroscopy, we derive parameters for bilayer water transport across an isolated nanoliter aqueous droplet pair. For a bilayer formed with two osmotically imbalanced and adherent nanoliter aqueous droplets in a surrounding oil solvent, a droplet interface bilayer (DIB), the water permeability coefficient across the lipid bilayer was determined from monitoring the Raman scattering from the C[triple bond, length as m-dash]N stretching mode of K 3 Fe(CN) 6 as a measure of water uptake into the swelling droplet of a DIB pair. We also derive passive diffusional permeability coefficient for D 2 O transport across a droplet bilayer using O-D Raman signal. This method provides a significant methodological advance in determining water permeability coefficients in a convenient and reliable way.

  11. Production of microbial rhamnolipid by Pseudomonas aeruginosa MM1011 for ex situ enhanced oil recovery.

    Science.gov (United States)

    Amani, Hossein; Müller, Markus Michael; Syldatk, Christoph; Hausmann, Rudolf

    2013-07-01

    Recently, several investigations have been carried out on the in situ bacteria flooding, but the ex situ biosurfactant production and addition to the sand pack as agents for microbial enhanced oil recovery (MEOR) has little been studied. In order to develop suitable technology for ex situ MEOR processes, it is essential to carry out tests about it. Therefore, this work tries to fill the gap. The intention of this study was to investigate whether the rhamnolipid mix could be produced in high enough quantities for enhanced oil recovery in the laboratory scale and prove its potential use as an effective material for field application. In this work, the ability of Pseudomonas aeruginosa MM1011 to grow and produce rhamnolipid on sunflower as sole carbon source under nitrogen limitation was shown. The production of Rha-C10-C10 and Rha2-C10-C10 was confirmed by thin-layer chromatography and high-performance liquid chromatography analysis. The rhamnolipid mixture obtained was able to reduce the surface and interfacial tension of water to 26 and 2 mN/m, respectively. The critical micelle concentration was 120 mg/L. Maximum rhamnolipid production reached to about 0.7 g/L in a shake flask. The yield of rhamnolipid per biomass (Y RL/x ), rhamnolipid per sunflower oil (Y RL/s ), and the biomass per sunflower oil (Y x/s ) for shake flask were obtained about 0.01, 0.0035, and 0.035 g g(-1), respectively. The stability of the rhamnolipid at different salinities, pH and temperature, and also, its emulsifying activity has been investigated. It is an effective surfactant at very low concentrations over a wide range of temperatures, pHs, and salt concentrations, and it also has the ability to emulsify oil, which is essential for enhanced oil recovery. With 120 mg/L rhamnolipid, 27 % of original oil in place was recovered after water flooding from a sand pack. This result not only suggests rhamnolipids as appropriate model biosurfactants for MEOR, but it even shows the potential as a

  12. Droplet Traffic Control at a simple T junction

    Science.gov (United States)

    Panizza, Pascal; Engl, Wilfried; Colin, Annie; Ajdari, Armand

    2006-03-01

    A basic yet essential element of every traffic flow control is the effect of a junction where the flow is separated into several streams. How do pedestrians, vehicles or blood cells divide when they reach a junction? How does the outcome depend on their density? Similar fundamental questions hold for much simpler systems: in this paper, we have studied the behaviour of periodic trains of water droplets flowing in oil through a channel as they reach a simple, locally symmetric, T junction. Depending on their dilution, we observe that the droplets are either alternately partitioned between both outlets or sorted exclusively into the shortest one. We show that this surprising behaviour results from the hydrodynamic feed-back of drops in the two outlets on the selection process occurring at the junction. Our results offer a first guide for the design and modelling of droplet traffic in complex branched networks, a necessary step towards parallelized droplet-based ``lab-on-chip'' devices.

  13. Nylon 6,6 Nonwoven Fabric Separates Oil Contaminates from Oil-in-Water Emulsions.

    Directory of Open Access Journals (Sweden)

    Ryan A Ortega

    Full Text Available Industrial oil spills into aquatic environments can have catastrophic environmental effects. First responders to oil spills along the coast of the Gulf of Mexico in the southern United States have used spunbond nylon fabric bags and fences to separate spilled oil and oil waste from contaminated water. Low area mass density spunbond nylon is capable of sorbing more than 16 times its mass in low viscosity crude oil and more than 26 times its mass in higher viscosity gear lube oil. Nylon bags separated more than 95% of gear lube oil contaminate from a 4.5% oil-in-water emulsion. Field testing of spunbond nylon fences by oil spill first responders has demonstrated the ability of this material to contain the oily contaminate while allowing water to flow through. We hypothesize that the effectiveness of nylon as an oil filter is due to the fact that it is both more oleophilic and more hydrophilic than other commonly used oil separation materials. The nylon traps oil droplets within the fabric or on the surface, while water droplets are free to flow through the fabric to the water on the opposite side of the fabric.

  14. Slow relaxation mode in concentrated oil-in-water microemulsions consisting of repulsive droplets

    Science.gov (United States)

    Hattori, Y.; Ushiki, H.; Courbin, L.; Panizza, P.

    2007-02-01

    The present contribution reports on the observation of two diffusive relaxation modes in a concentrated microemulsion made of repulsive droplets. These two modes can be interpreted in the frame of Weissman’s and Pusey’s theoretical pioneering works. The fast mode is associated to the collective diffusion of droplets whereas the slow one corresponds to the relaxation of droplet concentration fluctuations associated with composition and/or size. We show that (i) repulsive interactions considerably slow down the latter and (ii) a generalized Stokes Einstein relationship between its coefficient of diffusion and the Newtonian viscosity of the solutions, similar to the Walden’s rule for electrolytes, holds for concentrated microemulsion systems made of repulsive droplets.

  15. Experimental optimization of catalytic process in-situ for heavy oil and bitumen upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Shah, A.; Fishwick, R.P.; Leeke, G.A.; Wood, J. [Birmingham Univ., Birmingham (United Kingdom); Rigby, S.P.; Greaves, M. [Bath Univ., Bath (United Kingdom)

    2010-07-01

    Peak crude oil production is expected to occur in the second decade of this century, followed by a phase of permanent decline in conventional crude oil production. However, very large resources of heavy oil and bitumen exist throughout the world, most notably in Canada and Venezuela. The high viscosity and density of these non-conventional crude oils require more energy intensive operations for production and upgrading, and also for transportation. As such, they are more costly to extract. This paper described some of the technological innovations that are being considered to extract heavier oil supplies with reduced environmental impact. The toe-to-heel air injection (THAI) process and its catalytic added-on (CAPRI) process combine in-situ combustion with catalytic upgrading using an annular catalyst packed around a horizontal producer well. Results of an experimental study concerning optimization of catalyst type and operating conditions showed that CAPRI can effect further upgrading of partially upgraded THAI oil, with upgrading levels of viscosity and API gravity dependent upon temperature and flow rate. 20 refs., 8 tabs., 10 figs.

  16. Microfluidic generation of droplets with a high loading of nanoparticles.

    Science.gov (United States)

    Wan, Jiandi; Shi, Lei; Benson, Bryan; Bruzek, Matthew J; Anthony, John E; Sinko, Patrick J; Prudhomme, Robert K; Stone, Howard A

    2012-09-18

    Microfluidic approaches for controlled generation of colloidal clusters, for example, via encapsulation of colloidal particles in droplets, have been used for the synthesis of functional materials including drug delivery carriers. Most of the studies, however, use a low concentration of an original colloidal suspension (60 wt %) particle concentrations. Three types of microfluidic devices, PDMS flow-focusing, PDMS T-junction, and microcapillary devices, are investigated for direct encapsulation of a high concentration of polystyrene (PS) nanoparticles in droplets. In particular, it is shown that PDMS devices fabricated by soft lithography can generate droplets from a 25 wt % PS suspension, whereas microcapillary devices made from glass capillary tubes are able to produce droplets from a 67 wt % PS nanoparticle suspension. When the PS concentration is between 0.6 and 25 wt %, the size of the droplets is found to change with the oil-to-water flow rate ratio and is independent of the concentration of particles in the initial suspensions. Drop sizes from ~12 to 40 μm are made using flow rate ratios Q(oil)/Q(water) from 20 to 1, respectively, with either of the PDMS devices. However, clogging occurs in PDMS devices at high PS concentrations (>25 wt %) arising from interactions between the PS colloids and the surface of PDMS devices. Glass microcapillary devices, on the other hand, are resistant to clogging and can produce droplets continuously even when the concentration of PS nanoparticles reaches 67 wt %. We believe that our findings indicate useful approaches and guidelines for the controlled generation of emulsions filled with a high loading of nanoparticles, which are useful for drug delivery applications.

  17. Depletion of compounds from thin oil films in seawater

    International Nuclear Information System (INIS)

    Brakstad, O.G.; Faksness, L.G.; Melbye, A.G.

    2002-01-01

    When oil is spilled on water, the oil compounds distribute between droplets and water-soluble phases in the water column. Some small organic acids, phenols, BTEX, and aromatic compounds will dissolve completely, but larger polycyclic aromatic hydrocarbons (PAH) and alkanes will remain in the droplet fraction. The biodegradation of droplets occurs at the oil-water interface. A method for immobilizing the oil films onto hydrophobic surfaces was developed in order to obtain a stable oil surface during the biodegradation period. A test system was also established to determine the depletion of oil compounds from the oil phase, including both abiotic and biotic processes. Three North Sea oils were used in the study. Two were paraffinic oils rich in n-alkanes and aromatic compounds, and one was asphalthenic which was richer in branched alkanes and PAH. The biodegradation period was 2 months at 13 degrees C. Samples from the water and thin film on the fabric was analyzed for carbon 10 and carbon 36 by gas chromatography-flame ionization detection. Semi-volatile organic compounds were analyzed using gas chromatography-mass spectrometry. Results indicated that the depletion process for alkanes was completely caused by biodegradation, while aromatic compounds were depleted by abiotic dissolution as well as by biodegradation. The system has potential for determining oil depletion processes under controlled surface-to-volume conditions, such as thin oil films and dispersed oil droplets. In addition, the system can be used to determine the depletion process in flow-through systems. 13 refs., 3 tabs., 9 figs

  18. Experimental study of heavy oil-water flow structure effects on relative permeabilities in a fracture filled with heavy oil

    Energy Technology Data Exchange (ETDEWEB)

    Shad, S.; Gates, I.D.; Maini, B.B. [Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering]|[Alberta Ingenuity Centre for In Situ Energy, Edmonton, AB (Canada)

    2008-10-15

    An experimental apparatus was used to investigate the flow of water in the presence of heavy oil within a smooth-walled fracture. Different flow patterns were investigated under a variety of flow conditions. Results of the experiments were used to determine the accuracy of VC, Corey, and Shad and Gates models designed to represent the behaviour of oil wet systems. The relative permeability concept was used to describe the behaviour of multiple phases flowing through porous media. A smooth-walled plexiglass Hele-Shaw cell was used to visualize oil and water flow. Changes in flow rates led to different flow regimes. The experiment demonstrated that water flowed co-currently in the form of droplets or slugs. Decreases in the oil flow rate enlarged the size of the water droplets as well as the velocity, until eventually the droplets coalesced and became water slugs. Droplet appearance or disappearance directly impacted the oil and water saturation levels. Changes in fluid saturation altered the pressure gradient. Darcy's law for the 2 liquid phases were used to calculate relative permeability curves. The study showed that at low water saturation, oil relative permeability reached as high as 2.5, while water relative permeability was lower than unity. In the presence of a continuous water channel, water drops formed in oil, and the velocity of the drops was lower than their velocity under a discontinuous water flow regime. It was concluded that the Shad and Gates model overestimated oil relative permeability and underestimated water relative permeability. 38 refs., 2 tabs., 9 figs.

  19. A Microfluidic Method to Assess Emulsion Stability in Crude-Oil/Water Separators

    NARCIS (Netherlands)

    Krebs, T.; Schroën, C.G.P.H.; Boom, R.M.

    2011-01-01

    The control of emulsion stability and droplet size is of crucial importance for oil production, especially for the processes of crude/oil water separation and cleanup of produced water. To recover pure oil and water, coalescence between droplets needs to take place, the extent of which will depend

  20. Preferential nucleation, guiding, and blocking of self-propelled droplets by dislocations

    Science.gov (United States)

    Kanjanachuchai, Songphol; Wongpinij, Thipusa; Kijamnajsuk, Suphakan; Himwas, Chalermchai; Panyakeow, Somsak; Photongkam, Pat

    2018-04-01

    Lattice-mismatched layers of GaAs/InGaAs are grown on GaAs(001) using molecular beam epitaxy and subsequently heated in vacuum while the surface is imaged in situ using low-energy electron microscopy, in order to study (i) the nucleation of group-III droplets formed as a result of noncongruent sublimation and (ii) the dynamics of these self-propelled droplets as they navigate the surface. It is found that the interfacial misfit dislocation network not only influences the nucleation sites of droplets, but also exerts unusual steering power over their subsequent motion. Atypical droplet flow patterns including 90° and 180° turns are found. The directions of these dislocations-guided droplets are qualitatively explained in terms of in-plane and out-of-plane stress fields associated with the buried dislocations and the driving forces due to chemical potential and stress gradients typical of Marangoni flow. The findings would benefit processes and devices that employ droplets as catalysts or active structures such as droplet epitaxy of quantum nanostructures, vapor-liquid-solid growth of nanowires, or the fabrication of self-integrated circuits.

  1. Oxidative stabilization of mixed mayonnaises made with linseed oil and saturated medium-chain triglyceride oil

    NARCIS (Netherlands)

    Raudsepp, P.; Brüggemann, D.A.; Lenferink, Aufrid T.M.; Otto, Cornelis; Andersen, M.L.

    2014-01-01

    Mayonnaises, made with either saturated medium chain triglyceride (MCT) oil or unsaturated purified linseed oil (LSO), were mixed. Raman confocal microspectrometry demonstrated that lipid droplets in mixed mayonnaise remained intact containing either MCT oil or LSO. Peroxide formation during storage

  2. Year-one recovery of an intermediate marsh in south Louisiana after an in-situ burn for oil spill remediation. Volume 1

    International Nuclear Information System (INIS)

    Baustian, J.J.; Mendelssohn, I.A.; Lin, Q.; Rapp, J.; Myers, J.

    2007-01-01

    This study examined the recovery of an intermediate marsh in south Louisiana following an oil spill caused by a storage tank that ruptured during Hurricane Katrina. In situ burning of the oil spill was shown to be a successful form of cleanup that did not cause extensive physical damage to the marsh. The burn plan and execution of the burn was described, with particular focus on vegetation recovery in 28 recovery plots. Plots were monitored for aboveground biomass, plant height and stem density. The study showed that when done properly, in-situ burning eliminates oil from the marsh while combusting the oiled aboveground vegetation, leaving the belowground portions of the plant unharmed. Burns performed with as little as 2 cm of water on the marsh surface can buffer the root zone from the burn and increase plant survival. In this study, the structural and functional attributes of burned areas that were heavily and moderately oil were compared to 2 unburned and unoiled reference marshes. Within 9 months of the in situ burn, the above ground vegetation in the marsh had completely recovered. The burn adequately removed the oiled vegetation and allowed for the natural regrowth of the marsh vegetation. 27 refs., 2 tabs., 2 figs

  3. Evidence for the bioavailability of PAH from oiled beach sediments in situ

    International Nuclear Information System (INIS)

    Hodson, P.V.; Cross, T.; Ewert, A.; Zambon, S.; Lee, K.

    2002-01-01

    Biological responses that reflect the flux of hydrocarbons through fish can be used to determine the impact that oil spills have on fish. In this study, the exposure and toxicity to fish of oiled sediments was assessed in a freshwater semidiurnal tidal area of the St. Lawrence River in Quebec and at a tidal salt marsh at Petpeswick Inlet in Nova Scotia. The effectiveness of wetland bioremediation strategies was assessed by monitoring the bioavailability and toxicity of oil-derived polycyclic aromatic hydrocarbons (PAH) to early life stages of fish. Bioavailability was assessed through laboratory bioassays of cytochrome P450 (CYP1A) enzymes in trout exposed to 500 g of sediments in 10 L of water. PAH was found to be still bioavailable to fish up to 14 months after oiling, but the extent of exposure decreased steadily over time. The study presented a worst-case scenario in which sediments are disturbed and mixed. When beach sediments were not disturbed, however, PAH was also bioavailable in situ 12 months after oiling, but to a much lesser degree. It was concluded that these tests are a good way to show the benefits of oil spill remediation in reducing the exposure of fish to PAH. 8 refs., 5 figs

  4. Starting up microbial enhanced oil recovery.

    Science.gov (United States)

    Siegert, Michael; Sitte, Jana; Galushko, Alexander; Krüger, Martin

    2014-01-01

    This chapter gives the reader a practical introduction into microbial enhanced oil recovery (MEOR) including the microbial production of natural gas from oil. Decision makers who consider the use of one of these technologies are provided with the required scientific background as well as with practical advice for upgrading an existing laboratory in order to conduct microbiological experiments. We believe that the conversion of residual oil into natural gas (methane) and the in situ production of biosurfactants are the most promising approaches for MEOR and therefore focus on these topics. Moreover, we give an introduction to the microbiology of oilfields and demonstrate that in situ microorganisms as well as injected cultures can help displace unrecoverable oil in place (OIP). After an initial research phase, the enhanced oil recovery (EOR) manager must decide whether MEOR would be economical. MEOR generally improves oil production but the increment may not justify the investment. Therefore, we provide a brief economical assessment at the end of this chapter. We describe the necessary state-of-the-art scientific equipment to guide EOR managers towards an appropriate MEOR strategy. Because it is inevitable to characterize the microbial community of an oilfield that should be treated using MEOR techniques, we describe three complementary start-up approaches. These are: (i) culturing methods, (ii) the characterization of microbial communities and possible bio-geochemical pathways by using molecular biology methods, and (iii) interfacial tension measurements. In conclusion, we hope that this chapter will facilitate a decision on whether to launch MEOR activities. We also provide an update on relevant literature for experienced MEOR researchers and oilfield operators. Microbiologists will learn about basic principles of interface physics needed to study the impact of microorganisms living on oil droplets. Last but not least, students and technicians trying to understand

  5. 3-Dimensional Microorifice Fabricated Utilizing Single Undercut Etching Process for Producing Ultrasmall Water and Chitosan Droplets

    Directory of Open Access Journals (Sweden)

    Che-Hsin Lin

    2013-01-01

    Full Text Available This research reports a microfluidic device for producing small droplets via a microorifice and a T-junction structure. The orifice is fabricated using an isotropic undercut etching process of amorphous glass materials. Since the equivalent hydraulic diameter of the produced microorifice can be as small as 1.1 μm, the microdevice can easily produce droplets of the size smaller than 10 μm in diameter. In addition, a permanent hydrophobic coating technique is also applied to modify the main channel to be hydrophobic to enhance the formation of water-based droplets. Experimental results show that the developed microfluidic chip with the ultrasmall orifice can steadily produce water-in-oil droplets with different sizes. Uniform water-in-oil droplets with the size from 60 μm to 6.5 μm in diameter can be formed by adjusting the flow rate ratio of the continuous phase and the disperse phases from 1 to 7. Moreover, curable linear polymer of chitosan droplets with the size smaller than 100 μm can also be successfully produced using the developed microchip device. The microfluidic T-junction with a micro-orifice developed in the present study provides a simple yet efficient way to produce various droplets of different sizes.

  6. Ultrasound aided in situ transesterification of crude palm oil adsorbed on spent bleaching clay

    International Nuclear Information System (INIS)

    Boey, Peng-Lim; Ganesan, Shangeetha; Maniam, Gaanty Pragas; Ali, Dafaalla Mohamed Hag

    2011-01-01

    Research highlights: → Crude palm oil adsorbed on spent bleaching clay converted to biodiesel. → Ultrasound dislodges adsorbed oil from spent bleaching clay into reaction mixture. → Co-solvents promotes miscibility of the reactants. -- Abstract: Adsorbed crude palm oil on spent bleaching clay (SBC) was in situ transesterified to methyl esters (biodiesel) by the aid of ultrasound and organic co-solvents (petroleum ether (PE) or ethyl methyl ketone (EMK)). The SBC under study was found to contain 24.2-27.0% of crude oil with free fatty acids (FFA) of 3.01% and moisture content of 0.29%. The optimized reaction conditions were as follows: methanol to oil molar ratio of 150:1; catalyst (KOH), 20%; reaction temperature, 60 ± 2 o C; reaction time, 2 h. Using PE as a co-solvent, highest conversion of 75.2% was achieved while 60% was recorded with EMK.

  7. Oil flow at the scroll compressor discharge: visualization and CFD simulation

    Science.gov (United States)

    Xu, Jiu; Hrnjak, Pega

    2017-08-01

    Oil is important to the compressor but has other side effect on the refrigeration system performance. Discharge valves located in the compressor plenum are the gateway for the oil when leaving the compressor and circulate in the system. The space in between: the compressor discharge plenum has the potential to separate the oil mist and reduce the oil circulation ratio (OCR) in the system. In order to provide information for building incorporated separation feature for the oil flow near the compressor discharge, video processing method is used to quantify the oil droplets movement and distribution. Also, CFD discrete phase model gives the numerical approach to study the oil flow inside compressor plenum. Oil droplet size distributions are given by visualization and simulation and the results show a good agreement. The mass balance and spatial distribution are also discussed and compared with experimental results. The verification shows that discrete phase model has the potential to simulate the oil droplet flow inside the compressor.

  8. Droplet size characteristics and energy input requirements of emulsions formed using high-intensity-pulsed electric fields

    International Nuclear Information System (INIS)

    Scott, T.C.; Sisson, W.G.

    1987-01-01

    Experimental methods have been developed to measure droplet size characteristics and energy inputs associated with the rupture of aqueous droplets by high-intensity-pulsed electric fields. The combination of in situ microscope optics and high-speed video cameras allows reliable observation of liquid droplets down to 0.5 μm in size. Videotapes of electric-field-created emulsions reveal that average droplet sizes of less than 5 μm are easily obtained in such systems. Analysis of the energy inputs into the fluids indicates that the electric field method requires less than 1% of the energy required from mechanical agitation to create comparable droplet sizes. 11 refs., 3 figs., 2 tabs

  9. Performance of droplet generator and droplet collector in liquid droplet radiator under microgravity

    Science.gov (United States)

    Totani, T.; Itami, M.; Nagata, H.; Kudo, I.; Iwasaki, A.; Hosokawa, S.

    2002-06-01

    The Liquid Droplet Radiator (LDR) has an advantage over comparable conventional radiators in terms of the rejected heat power-weight ratio. Therefore, the LDR has attracted attention as an advanced radiator for high-power space systems that will be prerequisite for large space structures. The performance of the LDR under microgravity condition has been studied from the viewpoint of operational space use of the LDR in the future. In this study, the performances of a droplet generator and a droplet collector in the LDR are investigated using drop shafts in Japan: MGLAB and JAMIC. As a result, it is considered that (1) the droplet generator can produce uniform droplet streams in the droplet diameter range from 200 to 280 [µm] and the spacing range from 400 to 950 [µm] under microgravity condition, (2) the droplet collector with the incidence angle of 35 degrees can prevent a uniform droplet stream, in which droplet diameter is 250 [µm] and the velocity is 16 [m/s], from splashing under microgravity condition, whereas splashes may occur at the surface of the droplet collector in the event that a nonuniform droplet stream collides against it.

  10. Generation of micro- and nano-droplets containing immiscible solutions in view of optical studies

    Science.gov (United States)

    Nastasa, V.; Karapantsios, T.; Samaras, K.; Dafnopatidou, E.; Pradines, V.; Miller, R.; Pascu, M. L.

    2010-08-01

    The multiple resistances to treatment, developed by bacteria and malignant tumors require finding alternatives to the existing medicines and treatment procedures. One of them is strengthening the effects of cytostatics by improving the delivery method. Such a method is represented by the use of medicines as micro/nano-droplets. This method can reduce the substance consumption by generating drug micro-droplets incorporated in substances that can favour a faster localization, than the classical mode of medicine administration, to the tumor tissues. This paper contains the results concerning the generation and study of micro/nano-droplets and the generation of micro-droplets with an inner core (medicine) and a thin layer covering it. We have measured the surface tension at water/air interface and water/oil interface for a medicine (Vancomycin) and we have generated and measured droplets of medicine containing a layer of Vitamin A by using a double capillary system. The micro/nano-droplets may be produced by mixing of two immiscible solutions in particular conditions (high rotating speed and/or high pressure difference). For this we have studied the generation of emulsions of vitamin A diluted in sunflower oil and a solution of a surfactant Tween 80 in distilled water. The concentration of surfactant in water was typically 4*10-5M. We have studied in a batch stirred tank system the dependence of the droplet dimensions in emulsion, function of the mixing rotation speed, agitation time and components ratio. The droplet diameters were measured using a Malvern light scattering instrument type Mastersizer Hydro 2000M. We have obtained droplets with diameters smaller than 100 nm; the diameters distribution exhibited a peak at 65 nm.

  11. In Situ Biodiesel Production from Residual Oil Recovered from Spent Bleaching Earth

    Directory of Open Access Journals (Sweden)

    Ramli Mat

    2011-05-01

    Full Text Available Currently, semi-refined and refined vegetable oils are used as a feedstock in biodiesel production. However, due to competition with conventional fossil fuel, economic reasons, shortage supply of food and its social impact on the global scale has somewhat slowed the development of biodiesel industry. Studies have been conducted to recover oil from mill palm oil operation especially from the spent bleaching earth. Hence, the study was to investigate the potential recovery of oil from spent bleaching earth to be used as a feedstock for biodiesel production. The effect of different types of catalysts (sodium hydroxide alkali and sulfuric acid catalysts on biodiesel yield was studied. In addition, the effect of volume addition of methanol to the weight of spent bleaching earth on the product yield was also studied. Furthermore, the effect of ratio of hexane to methanol was also carried out to determine its product yield. The studies were carried out in an in-situ biodiesel reactor system and the biodiesel product was analyzed using gas chromatography mass spectrometry. Result shows that the use of alkali catalyst produced the highest yield of biodiesel and the most optimum biodiesel yield was obtained when the methanol to spent bleaching earth ratio was 3.2:1 (gram of methanol: gram of SBE and hexane to methanol ratio of 0.6:1 (volume of hexane: volume of methanol. © 2011 BCREC UNDIP. All rights reserved(Received: 19th December 2010, Revised: 10th May 2011; Accepted: 18th May 2011[How to Cite: R. Mat, O.S. Ling, A. Johari, M. Mohamed. (2011. In Situ Biodiesel Production from Residual Oil Recovered from Spent Bleaching Earth. Bulletin of Chemical Reaction Engineering & Catalysis, 6(1: 53-57. doi:10.9767/bcrec.6.1.678.53-57][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.1.678.53-57 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/678 ] | View in 

  12. Characterization of essential oil distribution in the root cross-section of Valeriana officinalis L. s.l. by using histological imaging techniques.

    Science.gov (United States)

    Penzkofer, Michael; Baron, Andrea; Naumann, Annette; Krähmer, Andrea; Schulz, Hartwig; Heuberger, Heidi

    2018-01-01

    The essential oil is an important compound of the root and rhizome of medicinally used valerian ( Valeriana officinalis L. s.l.), with a stated minimum content in the European pharmacopoeia. The essential oil is located in droplets, of which the position and distribution in the total root cross-section of different valerian varieties, root thicknesses and root horizons are determined in this study using an adapted fluorescence-microscopy and automatic imaging analysis method. The study was initiated by the following facts:A probable negative correlation between essential oil content and root thickness in selected single plants (elites), observed during the breeding of coarsely rooted valerian with high oil content.Higher essential oil content after careful hand-harvest and processing of the roots. In preliminary tests, the existence of oil containing droplets in the outer and inner regions of the valerian roots was confirmed by histological techniques and light-microscopy, as well as Fourier-transform infrared spectroscopy. Based on this, fluorescence-microscopy followed by image analysis of entire root cross-sections, showed that a large number of oil droplets (on average 43% of total oil droplets) are located close to the root surface. The remaining oil droplets are located in the inner regions (parenchyma) and showed varying density gradients from the inner to the outer regions depending on genotype, root thickness and harvesting depth. Fluorescence-microscopy is suitable to evaluate prevalence and distribution of essential oil droplets of valerian in entire root cross-sections. The oil droplet density gradient varies among genotypes. Genotypes with a linear rather than an exponential increase of oil droplet density from the inner to the outer parenchyma can be chosen for better stability during post-harvest processing. The negative correlation of essential oil content and root thickness as observed in our breeding material can be counteracted through a

  13. Quantum liquid droplets in a mixture of Bose-Einstein condensates

    Science.gov (United States)

    Cabrera, C. R.; Tanzi, L.; Sanz, J.; Naylor, B.; Thomas, P.; Cheiney, P.; Tarruell, L.

    2018-01-01

    Quantum droplets are small clusters of atoms self-bound by the balance of attractive and repulsive forces. Here, we report on the observation of droplets solely stabilized by contact interactions in a mixture of two Bose-Einstein condensates. We demonstrate that they are several orders of magnitude more dilute than liquid helium by directly measuring their size and density via in situ imaging. We show that the droplets are stablized against collapse by quantum fluctuations and that they require a minimum atom number to be stable. Below that number, quantum pressure drives a liquid-to-gas transition that we map out as a function of interaction strength. These ultradilute isotropic liquids remain weakly interacting and constitute an ideal platform to benchmark quantum many-body theories.

  14. Investigation of spherical and concentric mechanism of compound droplets

    Directory of Open Access Journals (Sweden)

    Meifang Liu

    2016-07-01

    Full Text Available Polymer shells with high sphericity and uniform wall thickness are always needed in the inertial confined fusion (ICF experiments. Driven by the need to control the shape of water-in-oil (W1/O compound droplets, the effects of the density matching level, the interfacial tension and the rotation speed of the continuing fluid field on the sphericity and wall thickness uniformity of the resulting polymer shells were investigated and the spherical and concentric mechanisms were also discussed. The centering of W1/O compound droplets, the location and movement of W1/O compound droplets in the external phase (W2 were significantly affected by the density matching level of the key stage and the rotation speed of the continuing fluid field. Therefore, by optimizing the density matching level and rotation speed, the batch yield of polystyrene (PS shells with high sphericity and uniform wall thickness increased. Moreover, the sphericity also increased by raising the oil/water (O/W2 interfacial tension, which drove a droplet to be spherical. The experimental results show that the spherical driving force is from the interfacial tension affected by the two relative phases, while the concentric driving force, as a resultant force, is not only affected by the three phases, but also by the continuing fluid field. The understanding of spherical and concentric mechanism can provide some guidance for preparing polymer shells with high sphericity and uniform wall thickness.

  15. An investigation of the potential for in situ bioremediation of oil sands tailings

    International Nuclear Information System (INIS)

    Herman, D.C.; Costerton, J.W.; Fedorak, P.M.; Mackinnon, M.D.

    1993-01-01

    Oil sand tailings water has been shown to be acutely toxic to aquatic organisms. Naphthenic acids have been shown to be the primary source of this toxicity within oil sand tailings waste. The potential for in-situ bioremediation of oil sand tailings was investigated by determining the ability of indigenous bacteria to biodegrade naphthenic acids. A mixed bacterial culture enriched from oil sand tailings was found to be capable of growth on a commercially available naphthenic acid mixture. When sodium naphthenates (30 mg/l) were added to a minimal salts medium and inoculated with the mixed bacterial culture, gas chromatography revealed that many components of the naphthenic acid mixture were biodegraded within eight days of incubation. The same culture was also tested against the naphthenic acid fraction extracted directly from oil sand tailings. The tailings extract was diluted into the minimal salts medium in sealed flasks and inoculated with the enrichment culture. The production of CO 2 indicated microbial mineralization of components within the oil sands extract. Microtox analysis determined that microbial activity resulted in a reduction in the acute toxicity of the tailings extract. 5 refs., 3 figs

  16. Measurement of interactions between solid particles, liquid droplets, and/or gas bubbles in a liquid using an integrated thin film drainage apparatus.

    Science.gov (United States)

    Wang, Louxiang; Sharp, David; Masliyah, Jacob; Xu, Zhenghe

    2013-03-19

    A novel device was designed to measure drainage dynamics of thin liquid films confined between a solid particle, an immiscible liquid droplet, and/or gas bubble. Equipped with a bimorph force sensor, a computer-interfaced video capture, and a data acquisition system, the newly designed integrated thin film drainage apparatus (ITFDA) allows for the direct and simultaneous measurements of force barrier, true film drainage time, and bubble/droplet deformation under a well-controlled external force, receding and advancing contact angles, capillary force, and adhesion (detachment) force between an air bubble or oil droplet and a solid, a liquid, or an air bubble in an immiscible liquid. Using the diaphragm of a high-frequency speaker as the drive mechanism for the air bubble or oil droplet attached to a capillary tube, this newly designed device is capable of measuring forces over a wide range of hydrodynamic conditions, including bubble approach and retract velocities up to 50 mm/s and displacement range up to 1 mm. The results showed that the ITFDA was capable of measuring hydrodynamic resistance, film drainage time, and other important physical parameters between air bubbles and solid particles in aqueous solutions. As an example of illustrating the versatility, the ITFDA was also applied to other important systems such as interactions between air bubble and oil droplet, two air bubbles, and two oil droplets in an aqueous solution.

  17. Transient deformation of a droplet near a microfluidic constriction: A quantitative analysis

    Science.gov (United States)

    Trégouët, Corentin; Salez, Thomas; Monteux, Cécile; Reyssat, Mathilde

    2018-05-01

    We report on experiments that consist of deforming a collection of monodisperse droplets produced by a microfluidic chip through a flow-focusing device. We show that a proper numerical modeling of the flow is necessary to access the stress applied by the latter on the droplet along its trajectory through the chip. This crucial step enables the full integration of the differential equation governing the dynamical deformation, and consequently the robust measurement of the interfacial tension by fitting the experiments with the calculated deformation. Our study thus demonstrates the feasibility of quantitative in situ rheology in microfluidic flows involving, e.g., droplets, capsules, or cells.

  18. Radio frequency feedback method for parallelized droplet microfluidics

    KAUST Repository

    Conchouso Gonzalez, David

    2016-12-19

    This paper reports on a radio frequency micro-strip T-resonator that is integrated to a parallel droplet microfluidic system. The T-resonator works as a feedback system to monitor uniform droplet production and to detect, in real-time, any malfunctions due to channel fouling or clogging. Emulsions at different W/O flow-rate ratios are generated in a microfluidic device containing 8 parallelized generators. These emulsions are then guided towards the RF sensor, which is then read using a Network Analyzer to obtain the frequency response of the system. The proposed T-resonator shows frequency shifts of 45MHz for only 5% change in the emulsion\\'s water in oil content. These shifts can then be used as a feedback system to trigger alarms and notify production and quality control engineers about problems in the droplet generation process.

  19. Radio frequency feedback method for parallelized droplet microfluidics

    KAUST Repository

    Conchouso Gonzalez, David; Carreno, Armando Arpys Arevalo; McKerricher, Garret; Castro, David; Foulds, Ian G.

    2016-01-01

    This paper reports on a radio frequency micro-strip T-resonator that is integrated to a parallel droplet microfluidic system. The T-resonator works as a feedback system to monitor uniform droplet production and to detect, in real-time, any malfunctions due to channel fouling or clogging. Emulsions at different W/O flow-rate ratios are generated in a microfluidic device containing 8 parallelized generators. These emulsions are then guided towards the RF sensor, which is then read using a Network Analyzer to obtain the frequency response of the system. The proposed T-resonator shows frequency shifts of 45MHz for only 5% change in the emulsion's water in oil content. These shifts can then be used as a feedback system to trigger alarms and notify production and quality control engineers about problems in the droplet generation process.

  20. Vaporization order and burning efficiency of crude oils during in-situ burning on water

    DEFF Research Database (Denmark)

    van Gelderen, Laurens; Malmquist, Linus M.V.; Jomaas, Grunde

    2017-01-01

    furthermore showed that the vaporization was diffusion-limited. Analysis of the heat transfer balance for the crude oils indicated that the energy available for evaporation decreased over time due to increasing heat losses, which were caused by the volatility controlled vaporization order. Presumably, larger......In order to improve the understanding of the burning efficiency and its observed size dependency of in-situ burning of crude oil on water, the vaporization order of the components in crude oils was studied. The vaporization order of such multicomponent fuels was assessed by studying the surface...... these results. The crude oils did not show any steady state behavior, but instead had an increasing surface temperature and decreasing burning rate and flame height, indicating a volatility controlled vaporization order. An increasing concentration gradient from the medium to heavy fraction in the burn residues...

  1. Detection of Oil in Water Column: Sensor Design

    Science.gov (United States)

    2013-02-01

    droplets, because such particles produce spherical lensing effects characterized by distinct and unique constructive and deconstructive interference...increased surface area to volume ratio allowed naturally occurring bacteria greater access to the oil molecules so that they could be degraded. As with...are those that are nearly spherical, namely bubbles and oil droplets, because such particles produce spherical lensing effects characterized by

  2. On-chip real-time single-copy polymerase chain reaction in picoliter droplets

    Energy Technology Data Exchange (ETDEWEB)

    Beer, N R; Hindson, B; Wheeler, E; Hall, S B; Rose, K A; Kennedy, I; Colston, B

    2007-04-20

    The first lab-on-chip system for picoliter droplet generation and PCR amplification with real-time fluorescence detection has performed PCR in isolated droplets at volumes 10{sup 6} smaller than commercial real-time PCR systems. The system utilized a shearing T-junction in a silicon device to generate a stream of monodisperse picoliter droplets that were isolated from the microfluidic channel walls and each other by the oil phase carrier. An off-chip valving system stopped the droplets on-chip, allowing them to be thermal cycled through the PCR protocol without droplet motion. With this system a 10-pL droplet, encapsulating less than one copy of viral genomic DNA through Poisson statistics, showed real-time PCR amplification curves with a cycle threshold of {approx}18, twenty cycles earlier than commercial instruments. This combination of the established real-time PCR assay with digital microfluidics is ideal for isolating single-copy nucleic acids in a complex environment.

  3. Effect of surfactants on the deformation of single droplet in shear flow studied by dissipative particle dynamics

    Science.gov (United States)

    Zhang, Yuzhou; Xu, Junbo; He, Xianfeng

    2018-07-01

    The behaviour of a single droplet in shear flow is a fundamental problem in immiscible liquid-liquid multiphase fluid systems. In this article, the deformation and inclination angle of single droplet covered with surfactants in shear flow at moderate Reynolds number, when both the inertial effects and interfacial tension are the key governing factors, were simulated by dissipative particle dynamics (DPD). Weber number We was adopted to indicate the force state of the droplet and a linear relationship between the deformation parameter D and We was found when Reynolds number Re is about 1-10, which is similar to the relation of D and Capillary number Ca when Re ≪ 1. When the surfactant concentration is lower than the critical micelle concentration (CMC), the distribution of surfactants, the droplet inclination angle θ and the droplet deformation parameter D were investigated at different surfactant density at interface ds and shear rate ?. When the droplet size is close to the characteristic size of surfactant molecules, phase interfaces of water in oil (W/O) and oil in water (O/W) systems have different microstructures, which result in differences in the surfactant distribution, the droplet inclination angle and deformation of the two systems.

  4. Uniform-sized silicone oil microemulsions: preparation, investigation of stability and deposition on hair surface.

    Science.gov (United States)

    Nazir, Habiba; Lv, Piping; Wang, Lianyan; Lian, Guoping; Zhu, Shiping; Ma, Guanghui

    2011-12-01

    Emulsions are commonly used in foods, pharmaceuticals and home-personal-care products. For emulsion based products, it is highly desirable to control the droplet size distribution to improve storage stability, appearance and in-use property. We report preparation of uniform-sized silicone oil microemulsions with different droplets diameters (1.4-40.0 μm) using SPG membrane emulsification technique. These microemulsions were then added into model shampoos and conditioners to investigate the effects of size, uniformity, and storage stability on silicone oil deposition on hair surface. We observed much improved storage stability of uniform-sized microemulsions when the droplets diameter was ≤22.7 μm. The uniform-sized microemulsion of 40.0 μm was less stable but still more stable than non-uniform sized microemulsions prepared by conventional homogenizer. The results clearly indicated that uniform-sized droplets enhanced the deposition of silicone oil on hair and deposition increased with decreasing droplet size. Hair switches washed with small uniform-sized droplets had lower values of coefficient of friction compared with those washed with larger uniform and non-uniform droplets. Moreover the addition of alginate thickener in the shampoos and conditioners further enhanced the deposition of silicone oil on hair. The good correlation between silicone oil droplets stability, deposition on hair and resultant friction of hair support that droplet size and uniformity are important factors for controlling the stability and deposition property of emulsion based products such as shampoo and conditioner. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Theoretical analysis for the optical deformation of emulsion droplets.

    Science.gov (United States)

    Tapp, David; Taylor, Jonathan M; Lubansky, Alex S; Bain, Colin D; Chakrabarti, Buddhapriya

    2014-02-24

    We propose a theoretical framework to predict the three-dimensional shapes of optically deformed micron-sized emulsion droplets with ultra-low interfacial tension. The resulting shape and size of the droplet arises out of a balance between the interfacial tension and optical forces. Using an approximation of the laser field as a Gaussian beam, working within the Rayleigh-Gans regime and assuming isotropic surface energy at the oil-water interface, we numerically solve the resulting shape equations to elucidate the three-dimensional droplet geometry. We obtain a plethora of shapes as a function of the number of optical tweezers, their laser powers and positions, surface tension, initial droplet size and geometry. Experimentally, two-dimensional droplet silhouettes have been imaged from above, but their full side-on view has not been observed and reported for current optical configurations. This experimental limitation points to ambiguity in differentiating between droplets having the same two-dimensional projection but with disparate three-dimensional shapes. Our model elucidates and quantifies this difference for the first time. We also provide a dimensionless number that indicates the shape transformation (ellipsoidal to dumbbell) at a value ≈ 1.0, obtained by balancing interfacial tension and laser forces, substantiated using a data collapse.

  6. Transdermal delivery of forskolin from emulsions differing in droplet size.

    Science.gov (United States)

    Sikora, Elżbieta; Llinas, Meritxell; Garcia-Celma, Maria Jose; Escribano, Elvira; Solans, Conxita

    2015-02-01

    The skin permeation of forskolin, a diterpene isolated from Coleus forsholii, was studied using oil in water (O/W) emulsions as delivery formulations and also an oil solution for comparative purposes. Two forskolin-loaded emulsions of water/Brij 72:Symperonic A7/Miglyol 812:Isohexadecane, at 0.075 wt% forskolin concentration were prepared with the same composition and only differing in droplet size (0.38 μm and 10 μm). The emulsions showed high kinetic stability at 25 °C. In vitro study of forskolin penetration through human skin was carried out using the MicroettePlus(®) system. The concentration of the active in the receptor solution (i.e. ethanol/phosphate buffer 40/60, v/v) was analyzed by high performance liquid chromatography with UV detection. The obtained results showed that forskolin permeation from the emulsions and the oil solution, through human skin, was very high (up to 72.10%), and no effect of droplet size was observed. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Shrinking droplets in electrospray ionization and their influence on chemical equilibria.

    Science.gov (United States)

    Wortmann, Arno; Kistler-Momotova, Anna; Zenobi, Renato; Heine, Martin C; Wilhelm, Oliver; Pratsinis, Sotiris E

    2007-03-01

    We investigated how chemical equilibria are affected by the electrospray process, using simultaneous in situ measurements by laser-induced fluorescence (LIF) and phase Doppler anemometry (PDA). The motivation for this study was the increasing number of publications in which electrospray ionization mass spectrometry is used for binding constant determination. The PDA was used to monitor droplet size and velocity, whereas LIF was used to monitor fluorescent analytes within the electrospray droplets. Using acetonitrile as solvent, we found an average initial droplet diameter of 10 microm in the electrospray. The PDA allowed us to follow the evolution of these droplets down to a size of 1 microm. Rhodamine B-sulfonylchloride was used as a fluorescent analyte within the electrospray. By spatially resolved LIF it was possible to probe the dimerization equilibrium of this dye. Measurements at different spray positions showed no influence of the decreasing droplet size on the monomer-dimer equilibrium. However, with the fluorescent dye pair DCM and oxazine 1 it was shown that a concentration increase does occur within electrosprayed droplets, using fluorescence resonance energy transfer as a probe for the average pair distance.

  8. In-situ data collection for oil palm tree height determination using synthetic aperture radar

    Science.gov (United States)

    Pohl, C.; Loong, C. K.

    2016-04-01

    The oil palm is recognized as the “golden crop,” producing the highest oil yield among oil seed crops. Malaysia, the world's second largest producer of palm oil, has 16 per cent of its territory planted with oil palms. To cope with the increasing global demand on edible oil, additional areas of oil palm are forecast to increase globally by 12 to 19 million hectares by 2050. Due to the limited land bank in Malaysia, new strategies have to be developed to avoid unauthorized clearing of primary forest for the use of oil palm cultivation. Microwave remote sensing could play a part by providing relevant, timely and accurate information for a plantation monitoring system. The use of synthetic aperture radar (SAR) has the advantage of daylight- and weather-independence, a criterion that is very relevant in constantly cloud-covered tropical regions, such as Malaysia. Using interferometric SAR, (InSAR) topographical and tree height profiles of oil palm plantations can be created; such information is useful for mapping oil palm age profiles of the plantations in the country. This paper reports on the use of SAR and InSAR in a multisensory context to provide up-to-date information at plantation level. Remote sensing and in-situ data collection for tree height determination are described. Further research to be carried out over the next two years is outlined.

  9. Dual-Functional Superhydrophobic Textiles with Asymmetric Roll-Down/Pinned States for Water Droplet Transportation and Oil-Water Separation.

    Science.gov (United States)

    Su, Xiaojing; Li, Hongqiang; Lai, Xuejun; Zhang, Lin; Liao, Xiaofeng; Wang, Jing; Chen, Zhonghua; He, Jie; Zeng, Xingrong

    2018-01-31

    Superhydrophobic surfaces with tunable adhesion from lotus-leaf to rose-petal states have generated much attention for their potential applications in self-cleaning, anti-icing, oil-water separation, microdroplet transportation, and microfluidic devices. Herein we report a facile magnetic-field-manipulation strategy to fabricate dual-functional superhydrophobic textiles with asymmetric roll-down/pinned states on the two surfaces of the textile simultaneously. Upon exposure to a static magnetic field, fluoroalkylsilane-modified iron oxide (F-Fe 3 O 4 ) nanoparticles in polydimethylsiloxane (PDMS) moved along the magnetic field to construct discrepant hierarchical structures and roughnesses on the two sides of the textile. The positive surface (closer to the magnet, or P-surface) showed a water contact angle up to 165°, and the opposite surface (or O-surface) had a water contact angle of 152.5°. The P-surface where water droplets easily slid off with a sliding angle of 7.5° appeared in the "roll-down" state as Cassie mode, while the O-surface was in the "pinned" state as Wenzel mode, where water droplets firmly adhered even at vertical (90°) and inverted (180°) angles. The surface morphology and wetting mode were adjustable by varying the ratios of F-Fe 3 O 4 nanoparticles and PDMS. By taking advantage of the asymmetric adhesion behaviors, the as-fabricated superhydrophobic textile was successfully applied in no-loss microdroplet transportation and oil-water separation. Our method is simple and cost-effective. The fabricated textile has the characteristics of superhydrophobicity, magnetic responsiveness, excellent chemical stability, adjustable surface morphology, and controllable adhesion. Our findings conceivably stand out as a new tool to fabricate functional superhydrophobic materials with asymmetric surface properties for various potential applications.

  10. Lipid droplet detection by the cavity perturbation method

    Energy Technology Data Exchange (ETDEWEB)

    Blakey, R T; Mason, A; Al-Shamma' a, A I [School of Built Environment, Liverpool John Moores University, Liverpool L3 3AF (United Kingdom); Rolph, C E [School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE (United Kingdom); Bond, G, E-mail: r.t.blakey@2010.ljmu.ac.uk [School of Forensic and Investigative Sciences, University of Central Lancashire, Preston PR1 2HE (United Kingdom)

    2011-08-17

    There are currently no point-of-care diagnosis strategies available to indicate the presence of neoplasmic growth. This research aims to develop a novel diagnostic strategy based on detecting TAG accumulation in cells. This element of the research is a preliminary experiment to prove the concept of detecting TAG lipid droplets in YEPD media. It was found that a change in mono-unsaturated concentration can be detected by the frequency shift in a resonant cavity. The dielectric constant of TAG vegetable oils was calculated at 2.34-2.39. It was also found that concentrations of lipid droplet can be differentiated up to 5% (v/v).

  11. The Parameters Controlling the Burning Efficiency of In-Situ Burning of Crude Oil on Water

    DEFF Research Database (Denmark)

    van Gelderen, Laurens; Jomaas, Grunde

    2017-01-01

    Parameters that control the burning efficiency of in-situ burning of crude oil on water were identified by studying the influence of the initial slick thickness, vaporization order, oil slick diameter, weathering state of the oil, heat losses to the water layer and heat flux to the fuel surface...... on the burning efficiency for light and heavy crude oils. These parameters were studied in several small scale and intermediate scale experimental setups. The results showed that the heat losses to the water layer increase with increasing burning time because the components in a crude oil evaporate from volatile...... to non-volatile. Due to the relatively low heat feedback (reradiation and convection, in kW/m2) to the fuel surface of small scale pool fires, as compared to large scale pool fires, these heat losses were shown to limit the burning efficiency in small scale experiments. By subjecting small scale crude...

  12. Tribology of steel/steel interaction in oil-in-water emulsion; a rationale for lubricity.

    Science.gov (United States)

    Kumar, Deepak; Daniel, Jency; Biswas, S K

    2010-05-15

    Oil droplets are dispersed in water by an anionic surfactant to form an emulsion. The lubricity of this emulsion in steel/steel interaction is explored in a ball on flat nanotribometer. The droplet size and charge are measured using dynamic light scattering, while the substrate charge density is estimated using the pH titration method. These data are combined to calculate the DLVO forces for the droplets generated for a range of surfactant concentration and two oil to water volume ratios. The droplets have a clear bi-modal size distribution. The study shows that the smaller droplets which experience weak repulsion are situated (at the highest DLVO barrier) much closer to the substrate than the bigger droplets, which experience the same DLVO force, are. We suggest that the smaller droplets thus play a more important role in lubricity than what the bigger droplets do. The largest volume of such small droplets occurs in the 0.5 mM-1 mM range of surfactant concentration and 1% oil to water volume ratio, where the coefficient of friction is also observed to be the least. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Substrate-Coated Illumination Droplet Spray Ionization: Real-Time Monitoring of Photocatalytic Reactions

    Science.gov (United States)

    Zhang, Hong; Li, Na; Zhao, Dandan; Jiang, Jie; You, Hong

    2017-09-01

    Real-time monitoring of photocatalytic reactions facilitates the elucidation of the mechanisms of the reactions. However, suitable tools for real-time monitoring are lacking. Herein, a novel method based on droplet spray ionization named substrate-coated illumination droplet spray ionization (SCI-DSI) for direct analysis of photocatalytic reaction solution is reported. SCI-DSI addresses many of the analytical limitations of electrospray ionization (ESI) for analysis of photocatalytic-reaction intermediates, and has potential for both in situ analysis and real-time monitoring of photocatalytic reactions. In SCI-DSI-mass spectrometry (MS), a photocatalytic reaction occurs by loading sample solutions onto the substrate-coated cover slip and by applying UV light above the modified slip; one corner of this slip adjacent to the inlet of a mass spectrometer is the high-electric-field location for launching a charged-droplet spray. After both testing and optimizing the performance of SCI-DSI, the value of this method for in situ analysis and real-time monitoring of photocatalytic reactions was demonstrated by the removal of cyclophosphamide (CP) in TiO2/UV. Reaction times ranged from seconds to minutes, and the proposed reaction intermediates were captured and identified by tandem mass spectrometry. Moreover, the free hydroxyl radical (·OH) was identified as the main radicals for CP removal. These results show that SCI-DSI is suitable for in situ analysis and real-time monitoring of CP removal under TiO2-based photocatalytic reactions. SCI-DSI is also a potential tool for in situ analysis and real-time assessment of the roles of radicals during CP removal under TiO2-based photocatalytic reactions. Graphical Abstract[Figure not available: see fulltext.

  14. Development of a millimetrically scaled biodiesel transesterification device that relies on droplet-based co-axial fluidics

    Science.gov (United States)

    Yeh, S. I.; Huang, Y. C.; Cheng, C. H.; Cheng, C. M.; Yang, J. T.

    2016-07-01

    In this study, we investigated a fluidic system that adheres to new concepts of energy production. To improve efficiency, cost, and ease of manufacture, a millimetrically scaled device that employs a droplet-based co-axial fluidic system was devised to complete alkali-catalyzed transesterification for biodiesel production. The large surface-to-volume ratio of the droplet-based system, and the internal circulation induced inside the moving droplets, significantly enhanced the reaction rate of immiscible liquids used here - soybean oil and methanol. This device also decreased the molar ratio between methanol and oil to near the stoichiometric coefficients of a balanced chemical equation, which enhanced the total biodiesel volume produced, and decreased the costs of purification and recovery of excess methanol. In this work, the droplet-based co-axial fluidic system performed better than other methods of continuous-flow production. We achieved an efficiency that is much greater than that of reported systems. This study demonstrated the high potential of droplet-based fluidic chips for energy production. The small energy consumption and low cost of the highly purified biodiesel transesterification system described conforms to the requirements of distributed energy (inexpensive production on a moderate scale) in the world.

  15. Communication: Mode bifurcation of droplet motion under stationary laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Takabatake, Fumi [Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan); Department of Bioengineering and Robotics, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579 (Japan); Yoshikawa, Kenichi [Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610-0394 (Japan); Ichikawa, Masatoshi, E-mail: ichi@scphys.kyoto-u.ac.jp [Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan)

    2014-08-07

    The self-propelled motion of a mm-sized oil droplet floating on water, induced by a local temperature gradient generated by CW laser irradiation is reported. The circular droplet exhibits two types of regular periodic motion, reciprocal and circular, around the laser spot under suitable laser power. With an increase in laser power, a mode bifurcation from rectilinear reciprocal motion to circular motion is caused. The essential aspects of this mode bifurcation are discussed in terms of spontaneous symmetry-breaking under temperature-induced interfacial instability, and are theoretically reproduced with simple coupled differential equations.

  16. Controlling the Accumulation of Water at Oil-Solid Interfaces with Gradient Coating.

    Science.gov (United States)

    Li, Yan; Yang, Qiaomu; Mei, Ran Andy; Cai, Meirong; Heng, Jerry Y Y; Yang, Zhongqiang

    2017-07-13

    In this work, we demonstrate a strategy to control the accumulation of water in the oil-solid interface using a gradient coating. Gradient chemistry on glass surface is created by vapor diffusion of organosilanes, leading to a range of contact angles from 110 to 20°. Hexadecane is placed on the gradient substrate as an oil layer, forming a "water/hexadecane/gradient solid substrate" sandwich structure. During incubation, water molecules spontaneously migrate through the micrometer-thick oil layer and result in the formation of micrometer-sized water droplets at the oil-solid interface. It turns out that water droplets at more hydrophobic regions tend to be closer to a regular spherical shape, which is attributed to their higher contact angle with the hydrophobic substrate. However, along the gradient from hydrophobic to hydrophilic, the water droplets gradually form more irregular shapes, as hydrophilic surfaces pin the edges of droplets to form a distorted morphology. It indicates that more hydrophilic surfaces containing more Si-OH groups lead to a higher electrostatic interaction with water and a higher growth rate of interfacial water droplets. This work provides further insights into the mechanism of spontaneous water accumulation at oil-solid interfaces and assists in the rational design for controlling such interfacial phenomenon.

  17. In situ thermal polymerisation of natural oils as novel sustainable approach in nanographite particle production

    Science.gov (United States)

    Datsyuk, Vitaliy; Trotsenko, Svitlana; Reich, Stephanie

    2018-01-01

    A sustainable approach to graphite exfoliation via in situ thermal polymerization of fish oil results in the production of nanographite particles. The material was characterized by elemental analysis, transmission electron microscopy, and Raman spectroscopy. The thermal polymerization of fish oil was controlled by monitoring the viscosity and measuring the iodine number. The number of structural defects on the graphitic surface remained constant during the synthesis. The protocol leads to a hydrophobization of the nanographite surface. Immobilized polyoil islands create sterical hindrance and stabilize the nanographite particles in engineering polymers.

  18. Control of the droplet generation by an infrared laser

    Directory of Open Access Journals (Sweden)

    Zhibin Wang

    2018-01-01

    Full Text Available In this work, the control of the droplet generation by a focused infrared (IR laser with a wavelength of 1550 nm was studied, in which the liquid water and the oil with the surfactant of Span 80 were employed as the disperse and continuous phases, respectively. The characteristics of the droplet generation controlled by the laser was explored under various flow rates, laser powers and spot positions and the comparison between the cases with/without the laser was also performed. The results showed that when the laser was focused on the region away from the outlet of the liquid water inflow channel, the droplet shedding was blocked due to the IR laser heating induced thermocapillary flow, leading to the increase of the droplet volume and the cycle time of the droplet generation as compared to the case without the laser. Decreasing the continuous phase flow rate led to the increase of the droplet volume, cycle time of the droplet generation and the volume increase ratio, while increasing the disperse phase flow rate led to the increase of the droplet volume and the decrease of the cycle time and volume increase ratio. For a given flow rate ratio between the continuous and disperse phases, the increase of the flow rates decreased the volume increase ratio. In addition, it is also found that the droplet volume, the cycle time and the volume increase ratio all increased with the laser power. When the laser was focused at the inlet of the downstream channel, the droplet volume, the cycle time and the volume increase ratio were the largest. Moving the laser spot to the downstream or upstream led to the decrease of them. When the laser was focused on the outlet of the liquid water inflow channel, the generated droplet volume and cycle time of the droplet generation were even lower than the case without the laser because of the lowered viscosity. This works provides a comprehensive understanding of the characteristics of the droplet generation controlled

  19. The formulation of a nasal nanoemulsion zaleplon in situ gel for the treatment of insomnia.

    Science.gov (United States)

    Hosny, Khaled Mohamed; Banjar, Zainy Mohammed

    2013-08-01

    Zaleplon is a drug used for the treatment of insomnia and is available in tablet form; however, it has two major problems. First, the drug undergoes extensive first pass metabolism, resulting in only 30% bioavailability, and second, the drug has a poor aqueous solubility, which delays the onset of action. The objective of this study is to utilise nanotechnology to formulate zaleplon into a nasal in situ nanoemulsion gel (NEG) to provide a solution for the previously mentioned problems. The solubility of zaleplon in various oils, surfactants and co-surfactants was estimated. Pseudo-ternary phase diagrams were developed and various nanoemulsion (NE) formulations were prepared; these formulations were subjected to visual characterisation, thermodynamic stability study and droplet size and conductivity measurements. Carbopol 934 was used as an in situ gelling agent. The gel strength, pH, gelation time, in vitro release and ex vivo nasal permeation were determined. The pharmacokinetic study of the NEG was carried out in rabbits. Stable NEs were successfully developed with a droplet size range of 35 to 73 nm. A NEG composed of 15% Miglyol, 30% Labrasol and 10% PEG 200 successfully provided the maximum in vitro and ex vivo permeation and enhanced the bioavailability in the rabbits by eightfold, when compared with the marketed tablets. The nasal NEG is a promising novel formula for zaleplon that has higher nasal tissue permeability and enhanced systemic bioavailability.

  20. Experimental study on kinetics oil oil-suspended particulate matter aggregation

    International Nuclear Information System (INIS)

    Sun, J.; Environment Canada, Ottawa, ON; Khelifa, A.; Wang, Z.; Brown, C.; Fieldhouse, B.; Yang, C.; Zheng, X.; Wong, S.; So, L.C.

    2009-01-01

    Past studies of oil spills have shown that oil suspended particulate matter aggregates (OSAs) play a role in enhancing the natural cleansing of oiled shorelines. OSAs result from aggregation between suspended oil droplets and suspended particulate matter (SPM) in aquatic environments. During this process, oil dispersion into the water column is significantly increased since the surface of the oil droplet is surrounded by sediment particles. In addition, the accelerated biodegradation of the oil can be attributed to the greater oil-water contact area. This study focused on the kinetic aspects of OSA formation, with particular reference to the time scale of this process and its significance to oil dispersion following oil spills in water. A laboratory study was conducted to measure the time scale of OSA formation and its variations with mixing conditions. A reciprocating shaker and various oil/sediment mixtures were used to prepare the OSAs. Standard reference material 1941b was used as the natural sediment mixed with Arabian medium crude and artificial seawater under various mixing energies. The sediment-to-oil ratio remained constant for all experiments. Gas chromatography-flame ionization detection (GC-FID) analysis was used to measure the total petroleum hydrocarbons (TPH) trapped in negatively buoyant OSAs. Results showed that the TPH in OSAs increased exponentially with shaking time and reached an equilibrium value within 3 hours. The equilibrium decreased from 3 hours to 1.3 hours when the shaking rate increased from 2.0 to 2.3 Hz. It was concluded that high mixing energy enhances OSA formation and shortens the time for OSA formation. 42 refs., 6 tabs., 5 figs

  1. Experimental study on kinetics oil oil-suspended particulate matter aggregation

    Energy Technology Data Exchange (ETDEWEB)

    Sun, J. [Ocean Univ. of China, Qingdoa (China). Environmental Science and Engineering Inst.; Environment Canada, Ottawa, ON (Canada). Emergencies Science and Technology Section, Emergencies, Operational Analytical Laboratories and Research Support Division; Khelifa, A.; Wang, Z.; Brown, C.; Fieldhouse, B.; Yang, C. [Environment Canada, Ottawa, ON (Canada). Emergencies Science and Technology Section, Emergencies, Operational Analytical Laboratories and Research Support Division; Zheng, X. [Ocean Univ. of China, Qingdoa (China). Environmental Science and Engineering Inst.; Wong, S. [Ottawa Univ., ON (Canada). Dept. of Chemistry; So, L.C. [Waterloo Univ., ON (Canada). Faculty of Engineering

    2009-07-01

    Past studies of oil spills have shown that oil suspended particulate matter aggregates (OSAs) play a role in enhancing the natural cleansing of oiled shorelines. OSAs result from aggregation between suspended oil droplets and suspended particulate matter (SPM) in aquatic environments. During this process, oil dispersion into the water column is significantly increased since the surface of the oil droplet is surrounded by sediment particles. In addition, the accelerated biodegradation of the oil can be attributed to the greater oil-water contact area. This study focused on the kinetic aspects of OSA formation, with particular reference to the time scale of this process and its significance to oil dispersion following oil spills in water. A laboratory study was conducted to measure the time scale of OSA formation and its variations with mixing conditions. A reciprocating shaker and various oil/sediment mixtures were used to prepare the OSAs. Standard reference material 1941b was used as the natural sediment mixed with Arabian medium crude and artificial seawater under various mixing energies. The sediment-to-oil ratio remained constant for all experiments. Gas chromatography-flame ionization detection (GC-FID) analysis was used to measure the total petroleum hydrocarbons (TPH) trapped in negatively buoyant OSAs. Results showed that the TPH in OSAs increased exponentially with shaking time and reached an equilibrium value within 3 hours. The equilibrium decreased from 3 hours to 1.3 hours when the shaking rate increased from 2.0 to 2.3 Hz. It was concluded that high mixing energy enhances OSA formation and shortens the time for OSA formation. 42 refs., 6 tabs., 5 figs.

  2. In-situ Alkaline Transesterification of Jatropha Curcas Seed Oil for Production of Biodiesel and Nontoxic Jatropha Seed Cake

    OpenAIRE

    Nazir, Novizar; Mangunwidjaja, Djumali; Setyaningsih, Dwi; Yuliani, Sri; Yarmo, Mohd. Ambar; Salimon, Jumat; Ramli, Nazaruddin

    2014-01-01

    The production of fatty acid methyl ester (FAME) by direct in situ alkaline-catalyzed transesterification of the triglycerides (TG) in Jatropha curcas seeds was examined. The experimental results showed that the amount of Jatropha curcas seed oil dissolved in methanol was approximately 83% of the total oil and the conversion of this oil could achieve 98% under the following conditions: less than 2% moisture content in Jatropha curcas seed flours, 0.3–0.335 mm particle size, 0.08 mol/L NaOH co...

  3. Thermal effect of lubricating oil in positive-displacement air compressors

    International Nuclear Information System (INIS)

    Valenti, Gianluca; Colombo, Luigi; Murgia, Stefano; Lucchini, Andrea; Sampietro, Andrea; Capoferri, Andrea; Araneo, Lucio

    2013-01-01

    The isentropic efficiency of positive-displacement compressors may be improved in order to follow an increasing demand for energy savings. This work analyzes the thermal effect of the lubricating oil presence in the air during compression with the scope of exploiting it as a thermal ballast to mitigate both the gas temperature rise and its compression work. The bibliographic review shows that other authors suggested that oil can have positive effects if properly injected. Here an energy balance analysis is executed with the scope of deriving relations for the gas–liquid compression in analogy with those typical for the gas-only compression and of confirming that ideally the liquid presence may have beneficial effects, making the gas–liquid compression even better than 1- and 2-time intercooled gas compressions. Given these positive results, a heat transfer analysis is conducted to model the thermal interaction between gas and oil droplets within a mid-size rotary vane air compressor. A droplet diameter of the order of 100 μm leads to large reductions of both temperature increase and compression work: air can exit the discharge port at a temperature as low as 60 °C and compression work can be lowered by 23–28% with respect to conventional compressors. Finally, a test rig is constructed and operated to investigate a large-flow and large-angle oil nozzle taken from the market showing that, at the operating conditions of a compressor, oil breaks up into small droplets and undefined structures with large exchange surfaces. -- Highlights: ► Exploitation of thermal effect of oil in gas compressors is assessed numerically. ► Oil in 100 μm-diameter droplets mitigates effectively the gas temperature rise. ► Discharge temperature and compression work result to be much smaller than typical. ► An experimental setup is used to investigate oil atomization via commercial nozzles. ► A tested nozzle creates fine oil droplets and structures at conditions of

  4. In situ generation of steam and alkaline surfactant for enhanced oil recovery using an exothermic water reactant (EWR)

    Science.gov (United States)

    Robertson, Eric P

    2011-05-24

    A method for oil recovery whereby an exothermic water reactant (EWR) encapsulated in a water soluble coating is placed in water and pumped into one or more oil wells in contact with an oil bearing formation. After the water carries the EWR to the bottom of the injection well, the water soluble coating dissolves and the EWR reacts with the water to produce heat, an alkali solution, and hydrogen. The heat from the EWR reaction generates steam, which is forced into the oil bearing formation where it condenses and transfers heat to the oil, elevating its temperature and decreasing the viscosity of the oil. The aqueous alkali solution mixes with the oil in the oil bearing formation and forms a surfactant that reduces the interfacial tension between the oil and water. The hydrogen may be used to react with the oil at these elevated temperatures to form lighter molecules, thus upgrading to a certain extent the oil in situ. As a result, the oil can flow more efficiently and easily through the oil bearing formation towards and into one or more production wells.

  5. Big savings from small holes. [Liquid Droplet Radiator project for space vehicles

    Science.gov (United States)

    White, Alan

    1989-01-01

    The status and results to date of the NASA-Lewis/USAF Astronautics study of technology for large spacecraft heat-dissipation by means of liquid-droplet radiation (LDR) are discussed. The LDR concept uses a droplet generator to create billions of 200-micron droplets of a heatsink fluid which will cool through radiation into deep space as they fly toward a dropet collector. This exposure to the space environment entails the maintenance of vapor pressure as low as 10 to the -7th torr; the fluid must also be very stable chemically. While certain oils are good fluids for LDR use at low temperatures, higher-temperature heatsink fluids include Li, Sn, and Ga liquid metals.

  6. Characterization of water-in-oil emulsions produced with microporous hollow polypropylene fibers

    Directory of Open Access Journals (Sweden)

    HELMAR SCHUBERT

    2000-11-01

    Full Text Available The preparation of fine and monodispersed water-in-oil (W/O emulsions by utilizing hydrophobic hollow polypropylene fibers with 0.4 mm pores was investigated in this work. The experiments were carried out using demineralized water as the disperse phase, mineral oil Velocite No. 3 as the continuous phase, and polyglycerol polyricinoleate (PGPR 90 in the concentration range of 2.5 – 10 wt % as the oil-soluble emulsifier. The size of the water droplets in the prepared emulsions and the droplet size distribution strongly depend on the content of the disperse phase, the transmembrane pressure difference, and the emulsifier concentration. Stable emulsions with a very narrow droplet size distribution and a mean droplet diameter lower than 0.27 µm were produced using 10 wt % PGPR 90 at a pressure difference below 30 kPa.

  7. Simultaneous PLIF and PIV measurement of a near field turbulent immiscible buoyant oil jet fragmentation in water using liquid-liquid refractive index matching

    Science.gov (United States)

    Xue, Xinzhi; Katz, Joseph

    2017-11-01

    Very little experimental data exits on the flow structure in the near field of a crude oil jet fragmenting in water because of inability to probe dense droplet cloud. Refractive index-matching is applied to overcome this challenge by using silicone oil and sugar water as a surrogate liquid pair. Their density ratio, viscosity ratio, and interfacial tension are closely matched with those of crude oil and seawater. Simultaneous PLIF and PIV measurements are conducted by fluorescently tagging the oil and seeding both phases with particles. With increasing jet Reynolds and Weber numbers, the oil plume breakup occurs closer to the nozzle, the spreading angle of the jet increases, and the droplet sizes decrease. The varying spread rate is attributed to differences in droplet size distributions. The location of primary oil breakup is consistent with the region of high strain rate fluctuations. What one may perceive as oil droplets in opaque fluids actually consists of multi-layers containing water droplets, which sometimes encapsulate smaller oil droplets, creating a ``Russian Doll'' like phenomenon. This system forms as ligaments of oil and water wrap around each other during entrainment. Results include profiles of mean velocity and turbulence parameters along with energy spectra. Gulf of Mexico Research Inititave.

  8. Out of the frying pan: Explosive droplet dynamics

    Science.gov (United States)

    Marston, Jeremy; Li, Chao; Truscott, Tadd; Mansoor, Mohammad

    2017-11-01

    Regardless of culinary skills, most people who have used a stove top have encountered the result of water interacting with hot oil. The phenomenon is particularly memorable if the result is impingement of hot fluid on one's skin. Whilst ubiquitous, a deeper probing of this phenomenon reveals a vastly rich dynamical process. We use high-speed imaging to investigate the idealized case of a single water droplet impacting onto a hot oil film. At a qualitative level, we have observed three regimes of fluid ejection - jets, cones and explosive vaporization. The latter of these results in the spectacular creation of aerosol with sizes down to the sub-micrometer range. We present our experimental findings based upon control parameters such as temperature, film thickness and oil type.

  9. Electrocapillary Phenomena at Edible Oil/Saline Interfaces.

    Science.gov (United States)

    Nishimura, Satoshi; Ohzono, Takuya; Shoji, Kohei; Yagihara, Shin; Hayashi, Masafumi; Tanaka, Hisao

    2017-03-01

    Interfacial tension between edible oil and saline was measured under applied electric fields to understand the electrocapillary phenomena at the edible oil/saline interfaces. The electric responses of saline droplets in edible oil were also observed microscopically to examine the relationship between the electrocapillary phenomena and interfacial polarization. When sodium oleate (SO) was added to edible oil (SO-oil), the interfacial tension between SO-oil and saline decreased. However, no decrease was observed for additive-free oil or oleic acid (OA)-added oil (OA-oil). Microscopic observations suggested that the magnitude of interfacial polarization increased in the order of additive-free oil oil oil. The difference in electrocapillary phenomena between OA- and SO-oils was closely related to the polarization magnitude. In the case of SO-oil, the decrease in interfacial tension was remarkably larger for saline (pH 5.4~5.6) than that for phosphate-buffered saline (PBS, pH 7.2~7.4). However, no difference was observed between the electric responses of PBS and saline droplets in SO-oil. The difference in electrocapillary phenomena for PBS and saline could not be simply explained in terms of polarization magnitude. The ratio of ionized and non-ionized OA at the interfaces changed with the saline pH, possibly leading to the above difference.

  10. Microcapsules with a pH responsive polymer: influence of the encapsulated oil on the capsule morphology.

    Science.gov (United States)

    Wagdare, Nagesh A; Marcelis, Antonius T M; Boom, Remko M; van Rijn, Cees J M

    2011-11-01

    Microcapsules were prepared by microsieve membrane cross flow emulsification of Eudragit FS 30D/dichloromethane/edible oil mixtures in water, and subsequent phase separation induced by extraction of the dichloromethane through an aqueous phase. For long-chain triglycerides and jojoba oil, core-shell particles were obtained with the oil as core, surrounded by a shell of Eudragit. Medium chain triglyceride (MCT oil) was encapsulated as relatively small droplets in the Eudragit matrix. The morphology of the formed capsules was investigated with optical and SEM microscopy. Extraction of the oil from the core-shell capsules with hexane resulted in hollow Eudragit capsules with porous shells. It was shown that the differences are related to the compatibility of the oils with the shell-forming Eudragit. An oil with poor compatibility yields microcapsules with a dense Eudragit shell on a single oil droplet as the core; oils having better compatibility yield porous Eudragit spheres with several oil droplets trapped inside. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Model description of dibenzothiophene mass transfer in oil/water dispersions with respect to biodesulfurization

    NARCIS (Netherlands)

    Marcelis, C.L.M.; Leeuwen, van M.; Polderman, H.G.; Janssen, A.J.H.; Lettinga, G.

    2003-01-01

    A mathematical model was developed in order to describe the mass transfer rate of dibenzothiophene within the oil droplet to the oil/water interface of droplets created in a stirred tank reactor. The mass transfer rate of dibenzothiophene was calculated for various complex hydrocarbon distillates

  12. The dynamics of milk droplet-droplet collisions

    Science.gov (United States)

    Finotello, Giulia; Kooiman, Roeland F.; Padding, Johan T.; Buist, Kay A.; Jongsma, Alfred; Innings, Fredrik; Kuipers, J. A. M.

    2018-01-01

    Spray drying is an important industrial process to produce powdered milk, in which concentrated milk is atomized into small droplets and dried with hot gas. The characteristics of the produced milk powder are largely affected by agglomeration, combination of dry and partially dry particles, which in turn depends on the outcome of a collision between droplets. The high total solids (TS) content and the presence of milk proteins cause a relatively high viscosity of the fed milk concentrates, which is expected to largely influence the collision outcomes of drops inside the spray. It is therefore of paramount importance to predict and control the outcomes of binary droplet collisions. Only a few studies report on droplet collisions of high viscous liquids and no work is available on droplet collisions of milk concentrates. The current study therefore aims to obtain insight into the effect of viscosity on the outcome of binary collisions between droplets of milk concentrates. To cover a wide range of viscosity values, three milk concentrates (20, 30 and 46% TS content) are investigated. An experimental set-up is used to generate two colliding droplet streams with consistent droplet size and spacing. A high-speed camera is used to record the trajectories of the droplets. The recordings are processed by Droplet Image Analysis in MATLAB to determine the relative velocities and the impact geometries for each individual collision. The collision outcomes are presented in a regime map dependent on the dimensionless impact parameter and Weber ( We) number. The Ohnesorge ( Oh) number is introduced to describe the effect of viscosity from one liquid to another and is maintained constant for each regime map by using a constant droplet diameter ( d ˜ 700 μ m). In this work, a phenomenological model is proposed to describe the boundaries demarcating the coalescence-separation regimes. The collision dynamics and outcome of milk concentrates are compared with aqueous glycerol

  13. In-situ burning of Alaskan oils and emulsions: preliminary results of laboratory tests with and without waves

    International Nuclear Information System (INIS)

    Buist, I.; McCourt, J.; Karunakaran, K.; Gierer, C.; Comins, D.; Glover, N.; McKenzie, B.

    1996-01-01

    The efficiency of in-situ burning (ISB) as a response tool for oils transported in Alaska was studied. ISB can be an effective measure during an oil spill clean-up and has the potential to quickly remove large amounts of oil from the water surface. However, studies have shown that it is important to act quickly before the oil evaporates and before water-in-oil emulsions form, rendering the slick unignitable. Small-scale laboratory tests were conducted to determine the limits to ignition of slicks of four oils, and to determine the effectiveness of chemical emulsion breakers in extending the ignition limits. Results showed that while evaporation and emulsification could curtail ignition of oil slicks, the addition of a chemical emulsion breaker could extend the limits of ignition and burnability. Preliminary results also showed that waves had an effect on the burning of fresh, weathered and slightly emulsified crude oil. Burn efficiency and burn time were found to decrease with increasing wave energy. 14 refs., 18 tabs., 4 figs

  14. Preliminary Study of Water Repellent Properties of Red Pepper Seed Oil

    Science.gov (United States)

    Kurniawan, F.; Madurani, K. A.; Wahyulis, N. C.

    2017-03-01

    The water-repellent properties of red pepper seed oil (capsicol) have been studied. The oil was coated on the glass surface by spray technique. Water repellent properties were performed by measuring the contact angle of water droplets. The measurement was conducted by varying the drying time of the oil coating at room temperature. The optimum contact angle of the droplets on the glass with capsicol coating is 46.77°, which can be achieved in 30 min of drying time. It also obtained the smallest diameter of the droplets (0.47 cm). The longer drying time decrease the contact angles and increases the diameter. The results were compared with the bare glass and commercial water repellent. The contact angle of the droplets on the glass surface with capsicol coating is higher than bare glass, but lower than glass with commercial water repellent coating. It means that capsicol has the water-repellent properties.

  15. Droplet-fused microreactors for room temperature synthesis of nanoscale needle-like hydroxyapatite

    International Nuclear Information System (INIS)

    Liu Kaiying; Qin Jianhua

    2013-01-01

    A microfluidic device using droplet-fused microreactors is introduced for room temperature synthesis of nanoscale needle-shaped hydroxyapatite (HAp, Ca 10 (PO 4 ) 6 (OH) 2 ). The device is integrated with multifunctional units, e.g., T-junctions for droplet generation and fusion, winding channels for rapid mixing, and a delay line for simple visualization of the HAp formation process. The necessary conditions such as surfactant and fluid flow rate for an aqueous stream to merge with water-in-oil droplets are investigated. The nanoscale morphologies of the HAp produced by this method are also compared with HAp prepared by conventional bulk mixing. This paper shows that further reaction could be initiated by flowing additional reagent streams directly into the droplets of the initial reaction mixture, which is a novel approach for synthesizing a needle-like morphology of the HAp with a high aspect ratio under room temperature. (paper)

  16. Size control of giant unilamellar vesicles prepared from inverted emulsion droplets.

    Science.gov (United States)

    Nishimura, Kazuya; Suzuki, Hiroaki; Toyota, Taro; Yomo, Tetsuya

    2012-06-15

    The production of giant lipid vesicles with controlled size and structure will be an important technology in the design of quantitative biological assays in cell-mimetic microcompartments. For establishing size control of giant vesicles, we investigated the vesicle formation process, in which inverted emulsion droplets are transformed into giant unilamellar vesicles (GUVs) when they pass through an oil/water interface. The relationship between the size of the template emulsion and the converted GUVs was studied using inverted emulsion droplets with a narrow size distribution, which were prepared by microfluidics. We successfully found an appropriate centrifugal acceleration condition to obtain GUVs that had a desired size and narrow-enough size distribution with an improved yield so that emulsion droplets can become the template for GUVs. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  17. Chemotactic droplet swimmers in complex geometries

    Science.gov (United States)

    Jin, Chenyu; Hokmabad, Babak V.; Baldwin, Kyle A.; Maass, Corinna C.

    2018-02-01

    Chemotaxis1 and auto-chemotaxis are key mechanisms in the dynamics of micro-organisms, e.g. in the acquisition of nutrients and in the communication between individuals, influencing the collective behaviour. However, chemical signalling and the natural environment of biological swimmers are generally complex, making them hard to access analytically. We present a well-controlled, tunable artificial model to study chemotaxis and autochemotaxis in complex geometries, using microfluidic assays of self-propelling oil droplets in an aqueous surfactant solution (Herminghaus et al 2014 Soft Matter 10 7008-22 Krüger et al 2016 Phys. Rev. Lett. 117). Droplets propel via interfacial Marangoni stresses powered by micellar solubilisation. Moreover, filled micelles act as a chemical repellent by diffusive phoretic gradient forces. We have studied these chemotactic effects in a series of microfluidic geometries, as published in Jin et al (2017 Proc. Natl Acad. Sci. 114 5089-94): first, droplets are guided along the shortest path through a maze by surfactant diffusing into the maze from the exit. Second, we let auto-chemotactic droplet swimmers pass through bifurcating microfluidic channels and record anticorrelations between the branch choices of consecutive droplets. We present an analytical Langevin model matching the experimental data. In a previously unpublished experiment, pillar arrays of variable sizes and shapes provide a convex wall interacting with the swimmer and, in the case of attachment, bending its trajectory and forcing it to revert to its own trail. We observe different behaviours based on the interplay of wall curvature and negative autochemotaxis, i.e. no attachment for highly curved interfaces, stable trapping at large pillars, and a narrow transition region where negative autochemotaxis makes the swimmers detach after a single orbit.

  18. In-situ stabilization of the Geiger (C and M Oil) Superfund Site

    International Nuclear Information System (INIS)

    Andromalos, K.B.; Ameel, M.E.

    1994-01-01

    The Geiger (C and M Oil) Superfund Site is the first US Army Corps of Engineers managed soil remediation project which utilized the in-situ stabilization/solidification technique to remediate the soil. This project involved the remediation of approximately 23,000 cubic yards of contaminated soil. Contaminants of concern included chromium, lead, PCB'S, toluene, benzene, and other organic compounds. Clean-up criteria for the stabilized material was equal to the National Primary Drinking Water Regulations, when tested using the TCLP leachate extraction method. Chromium, lead, and toluene were the main contaminants of concern, with TCLP clean-up goals of 150, 15 and 1,000 parts per billion (ppb), respectively. This National Priorities List (NPL) site is located near Charleston, SC and was an abandoned old waste oil facility that utilized unlined shallow trenches for the storage of waste oil. This paper summarizes the initial testing programs and the final production work at the site. Extensive testing was performed throughout all phases of the project. This testing was performed for the purpose of mix optimization, quality assurance, and verification testing. Specific parameters tested included: TCLP testing of organics, metals and PCBs, permeability testing, and unconfirmed compression strength

  19. Direct numerical simulation of droplet-laden isotropic turbulence

    Science.gov (United States)

    Dodd, Michael S.

    Interaction of liquid droplets with turbulence is important in numerous applications ranging from rain formation to oil spills to spray combustion. The physical mechanisms of droplet-turbulence interaction are largely unknown, especially when compared to that of solid particles. Compared to solid particles, droplets can deform, break up, coalesce and have internal fluid circulation. The main goal of this work is to investigate using direct numerical simulation (DNS) the physical mechanisms of droplet-turbulence interaction, both for non-evaporating and evaporating droplets. To achieve this objective, we develop and couple a new pressure-correction method with the volume-of-fluid (VoF) method for simulating incompressible two-fluid flows. The method's main advantage is that the variable coefficient Poisson equation that arises in solving the incompressible Navier-Stokes equations for two-fluid flows is reduced to a constant coefficient equation. This equation can then be solved directly using, e.g., the FFT-based parallel Poisson solver. For a 10243 mesh, our new pressure-correction method using a fast Poisson solver is ten to forty times faster than the standard pressure-correction method using multigrid. Using the coupled pressure-correction and VoF method, we perform direct numerical simulations (DNS) of 3130 finite-size, non-evaporating droplets of diameter approximately equal to the Taylor lengthscale and with 5% droplet volume fraction in decaying isotropic turbulence at initial Taylor-scale Reynolds number Relambda = 83. In the droplet-laden cases, we vary one of the following three parameters: the droplet Weber number based on the r.m.s. velocity of turbulence (0.1 ≤ Werms ≤ 5), the droplet- to carrier-fluid density ratio (1 ≤ rhod/rho c ≤ 100) or the droplet- to carrier-fluid viscosity ratio (1 ≤ mud/muc ≤ 100). We derive the turbulence kinetic energy (TKE) equations for the two-fluid, carrier-fluid and droplet-fluid flow. These equations allow

  20. Promising ion-sensitive in situ ocular nanoemulsion gels of terbinafine hydrochloride: design, in vitro characterization and in vivo estimation of the ocular irritation and drug pharmacokinetics in the aqueous humor of rabbits.

    Science.gov (United States)

    Tayel, Saadia Ahmed; El-Nabarawi, Mohamed Ahmed; Tadros, Mina Ibrahim; Abd-Elsalam, Wessam Hamdy

    2013-02-25

    Terbinafine hydrochloride (T-HCl) is recommended for the management of fungal keratitis. To maintain effective aqueous humor concentrations, frequent instillation of T-HCl drops is necessary. This work aimed to develop alternative controlled-release in situ ocular drug-loaded nanoemulsion (NE) gels. Twelve pseudoternary-phase diagrams were constructed using oils (isopropyl myristate/Miglyol 812), surfactants (Tween 80/Cremophor EL), a co-surfactant (polyethylene glycol 400) and water. Eight drug-loaded (0.5%, w/v) NEs were evaluated for thermodynamic stability, morphology, droplet size and drug release in simulated tear fluid (pH 7.4). Following dispersion in gellan gum solution (0.2%, w/w), the in situ NE gels were characterized for transparency, rheological behavior, mucoadhesive force, drug release and histopathological assessment of ocular irritation. Drug pharmacokinetics of sterilized F31 [Miglyol 812, Cremophor EL: polyethylene glycol 400 (1:2) and water (5, 55 and 40%, w/w, respectively)] in situ NE gel and oily drug solution were evaluated in rabbit aqueous humor. The NEs were thermodynamically stable and have spherical droplets (<30 nm). The gels were transparent, pseudoplastic, mucoadhesive and showed more retarded zero-order drug release rates. F31 in situ NE gel showed the least ocular irritation potential and significantly (P<0.01) higher C(max), delayed T(max), prolonged mean residence time and increased bioavailability. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Acoustic droplet vaporization of vascular droplets in gas embolotherapy

    Science.gov (United States)

    Bull, Joseph

    2016-11-01

    This work is primarily motivated by a developmental gas embolotherapy technique for cancer treatment. In this methodology, infarction of tumors is induced by selectively formed vascular gas bubbles that arise from the acoustic vaporization of vascular droplets. Additionally, micro- or nano-droplets may be used as vehicles for localized drug delivery, with or without flow occlusion. In this talk, we examine the dynamics of acoustic droplet vaporization through experiments and theoretical/computational fluid mechanics models, and investigate the bioeffects of acoustic droplet vaporization on endothelial cells and in vivo. Functionalized droplets that are targeted to tumor vasculature are examined. The influence of fluid mechanical and acoustic parameters, as well as droplet functionalization, is explored. This work was supported by NIH Grant R01EB006476.

  2. An interface tracking model for droplet electrocoalescence.

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, Lindsay Crowl

    2013-09-01

    This report describes an Early Career Laboratory Directed Research and Development (LDRD) project to develop an interface tracking model for droplet electrocoalescence. Many fluid-based technologies rely on electrical fields to control the motion of droplets, e.g. microfluidic devices for high-speed droplet sorting, solution separation for chemical detectors, and purification of biodiesel fuel. Precise control over droplets is crucial to these applications. However, electric fields can induce complex and unpredictable fluid dynamics. Recent experiments (Ristenpart et al. 2009) have demonstrated that oppositely charged droplets bounce rather than coalesce in the presence of strong electric fields. A transient aqueous bridge forms between approaching drops prior to pinch-off. This observation applies to many types of fluids, but neither theory nor experiments have been able to offer a satisfactory explanation. Analytic hydrodynamic approximations for interfaces become invalid near coalescence, and therefore detailed numerical simulations are necessary. This is a computationally challenging problem that involves tracking a moving interface and solving complex multi-physics and multi-scale dynamics, which are beyond the capabilities of most state-of-the-art simulations. An interface-tracking model for electro-coalescence can provide a new perspective to a variety of applications in which interfacial physics are coupled with electrodynamics, including electro-osmosis, fabrication of microelectronics, fuel atomization, oil dehydration, nuclear waste reprocessing and solution separation for chemical detectors. We present a conformal decomposition finite element (CDFEM) interface-tracking method for the electrohydrodynamics of two-phase flow to demonstrate electro-coalescence. CDFEM is a sharp interface method that decomposes elements along fluid-fluid boundaries and uses a level set function to represent the interface.

  3. Predicting for thermodynamic instabilities in water/oil/surfactant microemulsions: A mesoscopic modelling approach

    Energy Technology Data Exchange (ETDEWEB)

    Duvail, Magali, E-mail: magali.duvail@icsm.fr; Zemb, Thomas; Dufrêche, Jean-François [Institut de Chimie Séparative de Marcoule (ICSM), UMR 5257, CEA-CNRS-Université Montpellier 2-ENSCM, Site de Marcoule, Bâtiment 426, BP 17171, F-30207 Bagnols-sur-Cèze Cedex (France); Arleth, Lise [Niels Bohr Institute, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C (Denmark)

    2014-04-28

    The thermodynamics and structural properties of flexible and rigid nonionic water/oil/surfactant microemulsions have been investigated using a two level-cut Gaussian random field method based on the Helfrich formalism. Ternary stability diagrams and scattering spectra have been calculated for different surfactant rigidities and spontaneous curvatures. A more important contribution of the Gaussian elastic constants compared to the bending one is observed on the ternary stability diagrams. Furthermore, influence of the spontaneous curvature of the surfactant points out a displacement of the instability domains which corresponds to the difference between the spontaneous and effective curvatures. We enlighten that a continuous transition from a connected water in oil droplets to a frustrated locally lamellar (oil in water in oil droplets) microstructure is found to occur when increasing the temperature for an oil-rich microemulsion. This continuous transition translated in a shift in the scattering functions, points out that the phase inversion phenomenon occurs by a coalescence of the water droplets.

  4. Seed-mediated synthesis of silver nanocrystals with controlled sizes and shapes in droplet microreactors separated by air.

    Science.gov (United States)

    Zhang, Lei; Wang, Yi; Tong, Limin; Xia, Younan

    2013-12-17

    Silver nanocrystals with uniform sizes were synthesized in droplet microreactors through seed-mediated growth. The key to the success of this synthesis is the use of air as a carrier phase to generate the droplets. The air not only separates the reaction solution into droplets but also provides O2 for the generation of reducing agent (glycolaldehyde). It also serves as a buffer space for the diffusion of NO, which is formed in situ due to the oxidative etching of Ag nanocrystals with twin defects. For the first time, we were able to generate Ag nanocrystals with controlled sizes and shapes in continuous production by using droplet microreactors. For Ag nanocubes, their edge lengths could be readily controlled in the range of 30-100 nm by varying the reaction time, the amount of seeds, and the concentration of AgNO3 in the droplets. Furthermore, we demonstrated the synthesis of Ag octahedra in the droplet microreactors. We believe that the air-driven droplet generation device can be extended to other noble metals for the production of nanocrystals with controlled sizes and shapes.

  5. Biodiesel Production from Residual Palm Oil Contained in Spent Bleaching Earth by In Situ Trans-Esterification

    Directory of Open Access Journals (Sweden)

    A S Fahmil QRM

    2014-06-01

    Full Text Available Spent Bleaching Earth (SBE is an industrial solid waste of vegetable oil industry that has a high residual oil to be potentialy converted to biodiesel. This study aims at developing a biodiesel production process technology by utilizing residual palm oil contained in SBE and to test the use of hexane in the trans-esterification process. Optimization process was done by using the Response Surface Method (RSM. The variables studied included catalyst concentration and reaction time. On the other hand, the deoiled SBE resulted from biodiesel production was tested as an adsorbent on biodiesel purification after being reactivated. The method used in the biodiesel production included an in situ acid catalysed esterification followed by in situ base catalysed trans-esterification. The results of RSM showed that the optimum process was obtained at NaOH concentration of 1.8% and reaction time of 104.73 minutes, with a predicted response rate of 97.18% and 95.63% for validation results. The use of hexane could also increase the yield of biodiesel which was obtained on the ratio of hexane to methanol of 0.4:1 (volume of hexane: volume of methanol. On the other hand, the reactivated bleaching earth was effective as an adsorbent in biodiesel production, which was still conform with the Indonesian National Standard.

  6. Modified montmorillonite clay microparticles for stable oil-in-seawater emulsions.

    Science.gov (United States)

    Dong, Jiannan; Worthen, Andrew J; Foster, Lynn M; Chen, Yunshen; Cornell, Kevin A; Bryant, Steven L; Truskett, Thomas M; Bielawski, Christopher W; Johnston, Keith P

    2014-07-23

    Environmentally benign clay particles are of great interest for the stabilization of Pickering emulsions. Dodecane-in-synthetic seawater (SSW) emulsions formed with montmorillonite (MMT) clay microparticles modified with bis(2-hydroxyethyl)oleylamine were stable against coalescence, even at clay concentrations down to 0.1% w/v. Remarkably, as little as 0.001% w/v surfactant lowered the hydrophilicity of the clay to a sufficient level for stabilization of oil-in-SSW emulsions. The favorable effect of SSW on droplet size reduction and emulsion stability enhancement is hypothesized to be due to reduced electrostatic repulsion between adsorbed clay particles and a consequent increase in the continuous phase (an aqueous clay suspension) viscosity. Water/oil (W/O) emulsions were inverted to O/W either by decreasing the mass ratio of surfactant-to-clay (transitional inversion) or by increasing the water volume fraction (catastrophic inversion). For both types of emulsions, coalescence was minimal and the sedimentation or creaming was highly correlated with the droplet size. For catastrophic inversions, the droplet size of the emulsions was smaller in the case of the preferred curvature. Suspensions of concentrated clay in oil dispersions in the presence of surfactant were stable against settling. The mass transfer pathways during emulsification of oil containing the clay particles were analyzed on the droplet size/stability phase diagrams to provide insight for the design of dispersant systems for remediating surface and subsurface oceanic oil spills.

  7. High selectivity and stability of Mg-doped Al-MCM-41 for in-situ catalytic upgrading fast pyrolysis bio-oil

    International Nuclear Information System (INIS)

    Karnjanakom, Surachai; Suriya-umporn, Thanyamai; Bayu, Asep; Kongparakul, Suwadee; Samart, Chanatip; Fushimi, Chihiro; Abudula, Abuliti; Guan, Guoqing

    2017-01-01

    Highlights: • Mg-doped Al-MCM-41 was developed for in-situ catalytic upgrading of bio-oils. • Mg/Al-MCM-41 exhibited high selectivity to aromatic hydrocarbons. • The ratio of produced hydrocarbon reached up to 80% in upgraded bio-oil. • 1 wt.% Mg/Al-MCM-41 showed the highest catalytic activity. • Mg/Al-MCM-41 had stable reusability due to its coking inhabitation ability. - Abstract: In-situ catalytic upgrading of bio-oils derived from the fast pyrolysis of cellulose, lignin or sunflower stalk over Mg-doped Al-MCM-41 was investigated in details. It is found that Mg species with doping amounts ranged between 0.25 and 10 wt.% was well dispersed on Al-MCM-41, and that doping Mg on Al-MCM-41 effectively adjusted the acidity and basicity of the catalysts, resulting in significant improvement of bio-oil quality. Mg/Al-MCM-41 exhibited high selective conversion of bio-oils derived from cellulose, lignin or sunflower stalk to high value-added aromatic hydrocarbons via catalytic cracking, deoxygenation and aromatization. In the upgraded bio-oil, the relative total hydrocarbon amount reached up to approximately ≥80%, which consisted of aromatic hydrocarbon approximately 76% and aliphatic hydrocarbon approximately 4% for all feedstocks. The selectivity to the monocyclic aromatic hydrocarbons (MAHs) such as benzene, toluene and xylenes (BTXs) increased while the coke formed on the catalyst decreased with the increase in Mg doping amount. 1 wt.% Mg/Al-MCM-41 resulted in the highest relative total hydrocarbon amount in the upgraded bio-oil at lower catalytic deoxygenation temperature, and showed stable reusability for at least 5 cycles. It is expected that Mg/Al-MCM-41 can be widely applied for bio-oil upgrading in a practical process.

  8. Effect of droplet size on the droplet behavior on the heterogeneous surface

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ho Yeon; Son, Sung Wan; Ha, ManYeong [Pusan National University, Busan (Korea, Republic of); Park, Yong Gap [Pusan National University, Busan (Korea, Republic of)

    2017-06-15

    The characteristics of a three-dimensional hemispherical droplet on a heterogeneous surface were studied using the Lattice Boltzmann method (LBM). The hydrophilic surface has a hydrophobic part at the center. The hemispherical droplets are located at the center of the heterogeneous surface. According to the contact angles of hydrophilic and hydrophobic bottom surfaces, the droplet either separates or reaches a new equilibrium state. The separation time varies according to the change in droplet size, and it affects the status of droplet separation. The droplet separation behavior was investigated by analyzing the velocity vector around the phase boundary line. The shape and separation time of a droplet are determined by the contact angle of each surface. The speed of droplet separation increases as the difference in contact angle increases between the hydrophobic surface and hydrophilic surface. The separation status and the separation time of a droplet are also determined by the change of the droplet size. As the size of the droplet decreases, the effect of surface tension decreases, and the separation time of the droplet also decreases. On the other hand, as the droplet becomes larger, the effect of surface tension increases and the time required for the droplet to separate also increases.

  9. Emulsion stability and properties of fish gelatin-based films as affected by palm oil and surfactants.

    Science.gov (United States)

    Nilsuwan, Krisana; Benjakul, Soottawat; Prodpran, Thummanoon

    2016-05-01

    Gelatin films exhibit the poor water vapour barrier properties. The use of palm oil, which is abundant and available in Thailand, can be a means to lower water vapour migration. To disperse oil in film-forming dispersion (FFD), a surfactant along with appropriate homogenization is required. The study aimed to investigate the influence of palm oil level and surfactants in the absence or presence of glycerol on characteristics of FFD and resulting gelatin films. Similar oil droplet sizes, both d32 and d43 values, of FFD containing soy lecithin were observed, regardless of palm oil level used (P > 0.05). FFD with Tween-20 had larger droplet size as the levels of oil increased (P palm oil level increased (P 0.05). FFD containing 500 or 750 g kg(-1) palm oil using soy lecithin as a surfactant in the presence of 300 g kg(-1) glycerol had the enhanced homogeneity and stability of oil droplets. The resulting gelatin film had the improved water vapour barrier properties. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  10. Theoretical Analysis on Marangoni-driven Cavity Formation in Ice during In Situ Burning of Oil Spills in Ice-infested Waters

    Science.gov (United States)

    Farmahini Farahani, H.; Jomaas, G.; Rangwala, A. S.

    2017-12-01

    In situ burning, intentional burning of discharged oil on the water surface, is a promising response method to oil spill accidents in the Arctic. However, burning of the oil adjacent to ice bodies creates a lateral cavity in the ice. As a result of the cavity formation the removal efficiency which is a key success criterion for in situ burning operation will decrease. The formation of lateral cavities are noticed recently and only a few experimental studies have addressed them. These experiments have shown lateral cavities with a length of severe horizontal temperature gradient which in turn generates a Marangoni flow from hot to cold regions. This is found to be the dominant heat transfer mechanism that is providing the heat for the ice to melt. Here, we introduce an order of magnitude analysis on the governing equations of the ice melting problem to estimate the penetration length of a burning oil near ice. This correlation incorporates the flame heat feedback with the surface flow driven by Marangoni convection. The melting energy continuity is also included in the analysis to complete the energy transfer cycle that leads to melting of the ice. The comparison between this correlation and the existing experimental data shows a very good agreement. Therefore, this correlation can be used to estimate the penetration length for burning of an actual spill and can be applied towards improved guidelines of burning adjacent to ice bodies, so as to enhance the chances for successful implantation of in situ burning.

  11. Droplet centrifugation, droplet DNA extraction, and rapid droplet thermocycling for simpler and faster PCR assay using wire-guided manipulations.

    Science.gov (United States)

    You, David J; Yoon, Jeong-Yeol

    2012-09-04

    A computer numerical control (CNC) apparatus was used to perform droplet centrifugation, droplet DNA extraction, and rapid droplet thermocycling on a single superhydrophobic surface and a multi-chambered PCB heater. Droplets were manipulated using "wire-guided" method (a pipette tip was used in this study). This methodology can be easily adapted to existing commercial robotic pipetting system, while demonstrated added capabilities such as vibrational mixing, high-speed centrifuging of droplets, simple DNA extraction utilizing the hydrophobicity difference between the tip and the superhydrophobic surface, and rapid thermocycling with a moving droplet, all with wire-guided droplet manipulations on a superhydrophobic surface and a multi-chambered PCB heater (i.e., not on a 96-well plate). Serial dilutions were demonstrated for diluting sample matrix. Centrifuging was demonstrated by rotating a 10 μL droplet at 2300 round per minute, concentrating E. coli by more than 3-fold within 3 min. DNA extraction was demonstrated from E. coli sample utilizing the disposable pipette tip to cleverly attract the extracted DNA from the droplet residing on a superhydrophobic surface, which took less than 10 min. Following extraction, the 1500 bp sequence of Peptidase D from E. coli was amplified using rapid droplet thermocycling, which took 10 min for 30 cycles. The total assay time was 23 min, including droplet centrifugation, droplet DNA extraction and rapid droplet thermocycling. Evaporation from of 10 μL droplets was not significant during these procedures, since the longest time exposure to air and the vibrations was less than 5 min (during DNA extraction). The results of these sequentially executed processes were analyzed using gel electrophoresis. Thus, this work demonstrates the adaptability of the system to replace many common laboratory tasks on a single platform (through re-programmability), in rapid succession (using droplets), and with a high level of

  12. Ignition of a floating droplet of organic coal-water fuel

    Science.gov (United States)

    Nakoryakov, V. E.; Kuznetsov, G. V.; Strizhak, P. A.

    2016-06-01

    The results of experimental investigations are presented for the ignition of droplets (particles) of organic coal-water fuels (OCWFs) floating in a flow of an oxidizer using a special combustion chamber from high-temperature quartz glass. The temperature and the velocity of motion of the oxidizer vary in the ranges of 500-900 K and 0.5-3 m/s. The initial sizes (radii) of fuel droplets amounted to 0.3-1.5 mm. As the basic OCWF components, particles (of 80-100 µm in size) of brown coal "B2," water, mazut, and waste castor and compressor oils are used. With use of the system of high-velocity video registration, the conditions providing for floating of OCWF particles without initiation of burning and with the subsequent steady ignition are established. Four modes of OCWF-droplet ignition with different trajectories of their motion in the combustion chamber are singled out. The times of the OCWF-ignition delay in dependence on the size of fuel particles and oxidizer temperatures are determined. The deviations of the OCWF-ignition-delay times obtained under conditions of suspension of a droplet on the thermocouple junction and while floating in the oxidizer flow are established.

  13. Core Flood study for enhanced oil recovery through ex-situ bioaugmentation with thermo- and halo-tolerant rhamnolipid produced by Pseudomonas aeruginosa NCIM 5514.

    Science.gov (United States)

    Varjani, Sunita J; Upasani, Vivek N

    2016-11-01

    The aim of this work was to study the Microbial Enhanced Oil Recovery (MEOR) employing core field model ex-situ bioaugmenting a thermo- and halo-tolerant rhamnolipid produced by Pseudomonas aeruginosa. Thin Layer Chromatography (TLC) revealed that the biosurfactant produced was rhamnolipid type. Nuclear Magnetic Resonance analysis showed that the purified rhamnolipids comprised two principal rhamnolipid homologues, i.e., Rha-Rha-C10-C14:1 and Rha-C8-C10. The rhamnolipid was stable under wide range of temperature (4°C, 30-100°C), pH (2.0-10.0) and NaCl concentration (0-18%, w/v). Core Flood model was designed for oil recovery operations using rhamnolipid. The oil recovery enhancement over Residual Oil Saturation was 8.82% through ex-situ bioaugmentation with rhamnolipid. The thermal stability of rhamnolipid shows promising scope for its application at conditions where high temperatures prevail in oil recovery processes, whereas its halo-tolerant nature increases its application in marine environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Effects of droplet interactions on droplet transport at intermediate Reynolds numbers

    Science.gov (United States)

    Shuen, Jian-Shun

    1987-01-01

    Effects of droplet interactions on drag, evaporation, and combustion of a planar droplet array, oriented perpendicular to the approaching flow, are studied numerically. The three-dimensional Navier-Stokes equations, with variable thermophysical properties, are solved using finite-difference techniques. Parameters investigated include the droplet spacing, droplet Reynolds number, approaching stream oxygen concentration, and fuel type. Results are obtained for the Reynolds number range of 5 to 100, droplet spacings from 2 to 24 diameters, oxygen concentrations of 0.1 and 0.2, and methanol and n-butanol fuels. The calculations show that the gasification rates of interacting droplets decrease as the droplet spacings decrease. The reduction in gasification rates is significant only at small spacings and low Reynolds numbers. For the present array orientation, the effects of interactions on the gasification rates diminish rapidly for Reynolds numbers greater than 10 and spacings greater than 6 droplet diameters. The effects of adjacent droplets on drag are shown to be small.

  15. Production of monodispersed Oil-in Water Emulsion Using Crossflow-Type Silicon Microchannel Plate

    Energy Technology Data Exchange (ETDEWEB)

    Kawakatsu, Takahiro.; Komori, Hideaki.; Yonemoto, Toshikuni. [Tohoku University, Miyagi (Japan). Chemical Engineering Department; Nakajima, Mitsutoshi.; Kikuchi, Yuji. [National Food Research Institute, Ibaraki (Japan)

    1999-04-01

    A novel method for continuous productin of monodispersed oil-in-water (O/W) emulsion is developed using acrossflow-type silicaon microchannel plate. On the single crystal silicon plate, a liquid flow path for continuous phase was made, and at each side of th wall of the path an array of regular-sized slits was precisely fabricated. A flat glass plate was tightly attached on the microchannel plate to cover the top of the slits to form the array of microchannels. Regular-sized oil (triolein) droplets were generated by squeezing the oil through the microchannels into the continuous-phase water (0.3 wt% sodium lauryl sulfate solutin) flowing in the liquid path. Oil droplet size is significantly dependent on the microchannel structure, which is identified with the microchannel width, height, and the length of the terrace (a flat area at the microchannel outlet). Three types of microchannel plates having different microchannel structures generate monodispersed emulsions of different average droplet sizes, 16,20, and 48 {mu}m at the watr flow rate of 1.4x10{sup -2}mL{center_dot}min{sup -1}. For the microchannel plate which generates large droplets of 48 {mu}m, increasing the flow rate causes decreasing droplet size. However, for the microchannel plate which generates small droplets of 16 or 20 {mu}m, the size is not affected by the flow rate within the range from 1.4x10{sup -2}to 2.4 mL{center_dot}min{sup -1}. In every case, the droplet size distribution is narrow, and the geometric standard deviation is 1.03 or less. (author)

  16. Retrieval of cloud droplet size distribution parameters from polarized reflectance measurements

    Directory of Open Access Journals (Sweden)

    M. Alexandrov

    2011-09-01

    Full Text Available We present an algorithm for retrieval of cloud droplet size distribution parameters (effective radius and variance from the Research Scanning Polarimeter (RSP measurements. The RSP is an airborne prototype for the Aerosol Polarimetery Sensor (APS, which is due to be launched as part of the NASA Glory Project. This instrument measures both polarized and total reflectances in 9 spectral channels with center wavelengths ranging from 410 to 2250 nm. For cloud droplet size retrievals we utilize the polarized reflectances in the scattering angle range between 140 and 170 degrees where they exhibit rainbow. The shape of the rainbow is determined mainly by single-scattering properties of the cloud particles, that simplifies the inversions and reduces retrieval uncertainties. The retrieval algorithm was tested using realistically simulated cloud radiation fields. Our retrievals of cloud droplet sizes from actual RSP measurements made during two recent field campaigns were compared with the correlative in situ observations.

  17. Emissions from mesoscale in-situ oil (diesel) fires: the Mobile 1994 experiments

    International Nuclear Information System (INIS)

    Fingas, M.; Ackerman, F.; Lambert, P.; Zhendi, W.; Nelson, R.; Goldthorp, M.; Wang, D.; Steenkammer, A.; Turpin, R.; Campagna, P.; Graham, L.; Hiltabrand, R.

    1996-01-01

    The various aspects of in-situ burning of diesel oil were studied in a series of three mesoscale burns. The burn was conducted in a 15 X 15 m steel pan with an outer berm filled with salt water pumped from Mobile Bay. The diesel fuel which was released and floated on 0.6 metre of water, was ignited and left to burn for about 25 minutes, after-which the water under the burns was analyzed. Four downwind ground stations were set up to conduct extensive sampling and monitoring of the smoke plumes in order to determine their emissions. Particulate samples from the air were analysed for polycyclic aromatic hydrocarbons (PAHs); these were found to be lower in the soot than in the starting oil. Particulates in the air were found to be greater than recommended exposure levels only up to 100 metres downwind at ground level. The study showed that diesel burns produced about 4 times more particulate matter than a similar-sized crude oil burn. The particulate matter was distributed exponentially downwind from the fire. Volatile organic compounds (VOCs) were measured using multiple gas chromatographic techniques. The results of 148 substance analyses were presented. 6 refs., 32 tabs., 12 figs

  18. Sedimentation and deformation of an aqueous sodium hydroxide drop in vegetable oil

    Science.gov (United States)

    White, Andrew; Hyacinthe, Hyaquino; Ward, Thomas

    2013-11-01

    The addition of water droplets in fuels is known to provide benefits such as decreased Nitrous Oxide NOx emissions. Unfortunately the shelf life of a water-fuel emulsion is limited by the sedimentation rate of the water droplets. It is well known that adding surfactants can significantly slow the sedimentation rate due to the introduction of Marangoni stresses. In the case of a vegetable oil fuel, adding sodium hydroxide (NaOH) to the water droplets will produce surfactants through saponification in the form of sodium-carboxylate salts. Pendant drops of aqueous NaOH solutions with pH between 11 and 13 will be suspended in several oils such as corn, olive, canola and soybean oil in order to measure the interfacial tension. The change in interfacial tension with time will be used to estimate the surfactant concentration and the saponification rate. Then individual drops will be placed in the oils to observe the settling velocity and drop deformation. NSF CBET.

  19. Internal flow inside droplets within a concentrated emulsion during droplet rearrangement

    Science.gov (United States)

    Leong, Chia Min; Gai, Ya; Tang, Sindy K. Y.

    2018-03-01

    Droplet microfluidics, in which each droplet serves as a micro-reactor, has found widespread use in high-throughput biochemical screening applications. These droplets are often concentrated at various steps to form a concentrated emulsion. As part of a serial interrogation and sorting process, such concentrated emulsions are typically injected into a tapered channel leading to a constriction that fits one drop at a time for the probing of droplet content in a serial manner. The flow physics inside the droplets under these flow conditions are not well understood but are critical for predicting and controlling the mixing of reagents inside the droplets as reactors. Here we investigate the flow field inside droplets of a concentrated emulsion flowing through a tapered microchannel using micro-particle image velocimetry. The confining geometry of the channel forces the number of rows of drops to reduce by one at specific and uniformly spaced streamwise locations, which are referred to as droplet rearrangement zones. Within each rearrangement zone, the phase-averaged velocity results show that the motion of the droplets involved in the rearrangement process, also known as a T1 event, creates vortical structures inside themselves and their adjacent droplets. These flow structures increase the circulation inside droplets up to 2.5 times the circulation in droplets at the constriction. The structures weaken outside of the rearrangement zones suggesting that the flow patterns created by the T1 process are transient. The time scale of circulation is approximately the same as the time scale of a T1 event. Outside of the rearrangement zones, flow patterns in the droplets are determined by the relative velocity between the continuous and disperse phases.

  20. Separation kinetics of an oil-in-water emulsion under enhanced gravity

    NARCIS (Netherlands)

    Krebs, T.; Schroën, C.G.P.H.; Boom, R.M.

    2012-01-01

    The breakup of crude oil emulsions to produce clean oil and water phases is an important task in crude oil processing. We have investigated the demulsification kinetics of a model oil-in-water emulsion in a centrifugal field to mimic the forces acting on emulsion droplets in oil/water separators

  1. Engineering plant membranes using droplet interface bilayers.

    Science.gov (United States)

    Barlow, N E; Smpokou, E; Friddin, M S; Macey, R; Gould, I R; Turnbull, C; Flemming, A J; Brooks, N J; Ces, O; Barter, L M C

    2017-03-01

    Droplet interface bilayers (DIBs) have become widely recognised as a robust platform for constructing model membranes and are emerging as a key technology for the bottom-up assembly of synthetic cell-like and tissue-like structures. DIBs are formed when lipid-monolayer coated water droplets are brought together inside a well of oil, which is excluded from the interface as the DIB forms. The unique features of the system, compared to traditional approaches (e.g., supported lipid bilayers, black lipid membranes, and liposomes), is the ability to engineer multi-layered bilayer networks by connecting multiple droplets together in 3D, and the capability to impart bilayer asymmetry freely within these droplet architectures by supplying droplets with different lipids. Yet despite these achievements, one potential limitation of the technology is that DIBs formed from biologically relevant components have not been well studied. This could limit the reach of the platform to biological systems where bilayer composition and asymmetry are understood to play a key role. Herein, we address this issue by reporting the assembly of asymmetric DIBs designed to replicate the plasma membrane compositions of three different plant species; Arabidopsis thaliana , tobacco, and oats, by engineering vesicles with different amounts of plant phospholipids, sterols and cerebrosides for the first time. We show that vesicles made from our plant lipid formulations are stable and can be used to assemble asymmetric plant DIBs. We verify this using a bilayer permeation assay, from which we extract values for absolute effective bilayer permeation and bilayer stability. Our results confirm that stable DIBs can be assembled from our plant membrane mimics and could lead to new approaches for assembling model systems to study membrane translocation and to screen new agrochemicals in plants.

  2. Droplet centrifugation, droplet DNA extraction, and rapid droplet thermocycling for simpler and faster PCR assay using wire-guided manipulations

    Directory of Open Access Journals (Sweden)

    You David J

    2012-09-01

    Full Text Available Abstract A computer numerical control (CNC apparatus was used to perform droplet centrifugation, droplet DNA extraction, and rapid droplet thermocycling on a single superhydrophobic surface and a multi-chambered PCB heater. Droplets were manipulated using “wire-guided” method (a pipette tip was used in this study. This methodology can be easily adapted to existing commercial robotic pipetting system, while demonstrated added capabilities such as vibrational mixing, high-speed centrifuging of droplets, simple DNA extraction utilizing the hydrophobicity difference between the tip and the superhydrophobic surface, and rapid thermocycling with a moving droplet, all with wire-guided droplet manipulations on a superhydrophobic surface and a multi-chambered PCB heater (i.e., not on a 96-well plate. Serial dilutions were demonstrated for diluting sample matrix. Centrifuging was demonstrated by rotating a 10 μL droplet at 2300 round per minute, concentrating E. coli by more than 3-fold within 3 min. DNA extraction was demonstrated from E. coli sample utilizing the disposable pipette tip to cleverly attract the extracted DNA from the droplet residing on a superhydrophobic surface, which took less than 10 min. Following extraction, the 1500 bp sequence of Peptidase D from E. coli was amplified using rapid droplet thermocycling, which took 10 min for 30 cycles. The total assay time was 23 min, including droplet centrifugation, droplet DNA extraction and rapid droplet thermocycling. Evaporation from of 10 μL droplets was not significant during these procedures, since the longest time exposure to air and the vibrations was less than 5 min (during DNA extraction. The results of these sequentially executed processes were analyzed using gel electrophoresis. Thus, this work demonstrates the adaptability of the system to replace many common laboratory tasks on a single platform (through re-programmability, in rapid succession (using droplets

  3. A simple system for in-droplet incubation and quantification of agglutination assays

    KAUST Repository

    Castro, David

    2013-10-28

    This work reports on a simple system for quantitative sensing of a target analyte based on agglutination in micro-channels. Functionalized microbeads and analyte with no prior incubation are flowed in droplets (~2μL) through a thin silicone tube filled with mineral oil at a flow rate of 150 μL/min. Hydrodynamic forces alone produce a highly efficient mixing of the beads within the droplet, without the need of complex mixing structures or magnetic actuation. The setup allows rapid observation of agglutination (<2 min), which is quantified using image analysis, and has potential application to high-throughput analysis.

  4. A simple system for in-droplet incubation and quantification of agglutination assays

    KAUST Repository

    Castro, David; Kodzius, Rimantas; Foulds, Ian G.

    2013-01-01

    This work reports on a simple system for quantitative sensing of a target analyte based on agglutination in micro-channels. Functionalized microbeads and analyte with no prior incubation are flowed in droplets (~2μL) through a thin silicone tube filled with mineral oil at a flow rate of 150 μL/min. Hydrodynamic forces alone produce a highly efficient mixing of the beads within the droplet, without the need of complex mixing structures or magnetic actuation. The setup allows rapid observation of agglutination (<2 min), which is quantified using image analysis, and has potential application to high-throughput analysis.

  5. Multi-scale simulation of droplet-droplet interactions and coalescence

    CSIR Research Space (South Africa)

    Musehane, Ndivhuwo M

    2016-10-01

    Full Text Available Conference on Computational and Applied Mechanics Potchefstroom 3–5 October 2016 Multi-scale simulation of droplet-droplet interactions and coalescence 1,2Ndivhuwo M. Musehane?, 1Oliver F. Oxtoby and 2Daya B. Reddy 1. Aeronautic Systems, Council... topology changes that result when droplets interact. This work endeavours to eliminate the need to use empirical correlations based on phenomenological models by developing a multi-scale model that predicts the outcome of a collision between droplets from...

  6. Preventing droplet deformation during dielectrophoretic centering of a compound emulsion droplet

    Science.gov (United States)

    Randall, Greg; Blue, Brent

    2012-11-01

    Compound droplets, or droplets-within-droplets, are traditionally key components in applications ranging from drug delivery to the food industry. Presently, millimeter-sized compound droplets are precursors for shell targets in inertial fusion energy work. However, a key constraint in target fabrication is a uniform shell wall thickness, which in turn requires a centered core droplet in the compound droplet precursor. Previously, Bei et al. (2009, 2010) have shown that compound droplets could be centered in a static fluid using an electric field of 0.7 kV/cm at 20 MHz. Randall et al. (2012) developed a process to center the core of a moving compound droplet, though the ~kV/cm field induced small (fluid mechanics and interfacial rheology perspective and we discuss the effective interfacial charge from an emulsifier and its impact on centering. Work funded by General Atomics Internal R&D.

  7. Novel approaches to microbial enhancement of oil recovery.

    Science.gov (United States)

    Kryachko, Yuriy

    2018-01-20

    Microbially enhanced oil recovery (MEOR) was shown to be feasible in a number of laboratory experiments and field trials. However, it has not been widely used in the oil industry because necessary conditions cannot always be easily established in an oil reservoir. Novel approaches to MEOR, which are based on newly discovered biosurfactant-mediated MEOR-mechanisms, are discussed in this review. Particularly, the possibility of combining MEOR with chemical enhancement of oil recovery in heterogeneous oil reservoirs, which involves rock surface wettability shifts and emulsion inversions, is discussed. In wider (centimeter/millimeter-scale) rock pores, the activity of (bio)surfactants and microbial cells attached to oil may allow releasing trapped oil blobs through oil-in-water emulsification. After no more oil can be emulsified, the addition of alkali or surfactants, which turn rock surface oil-wet, may help release oil droplets trapped in narrow (micrometer-scale) pores through coalescence of the droplets and water-in-oil emulsification. Experiments demonstrating the possibility of (bio)surfactant-mediated enhancement of immiscible gas-driven oil recovery are also reviewed. Interestingly, very low (bio)surfactant concentrations were shown to be needed for enhancement of immiscible gas-driven oil recovery. Some possible side effects of MEOR, such as unintended bioplugging and microbially influenced corrosion (MIC), are discussed as well. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  8. Fast selective trapping and release of picoliter droplets in a 3D microfluidic PDMS multi-trap system with bubbles.

    Science.gov (United States)

    Rambach, Richard W; Biswas, Preetika; Yadav, Ashutosh; Garstecki, Piotr; Franke, Thomas

    2018-02-12

    The selective manipulation and incubation of individual picoliter drops in high-throughput droplet based microfluidic devices still remains challenging. We used a surface acoustic wave (SAW) to induce a bubble in a 3D designed multi-trap polydimethylsiloxane (PDMS) device to manipulate multiple droplets and demonstrate the selection, incubation and on-demand release of aqueous droplets from a continuous oil flow. By controlling the position of the acoustic actuation, individual droplets are addressed and selectively released from a droplet stream of 460 drops per s. A complete trapping and releasing cycle can be as short as 70 ms and has no upper limit for incubation time. We characterize the fluidic function of the hybrid device in terms of electric power, pulse duration and acoustic path.

  9. Controlling in situ crystallization of pharmaceutical particles within the spray dryer.

    Science.gov (United States)

    Woo, Meng Wai; Lee, May Ginn; Shakiba, Soroush; Mansouri, Shahnaz

    2017-11-01

    Simultaneous solidification and in situ crystallization (or partial crystallization) of droplets within the drying chamber are commonly encountered in the spray drying of pharmaceuticals. The crystallinity developed will determine the functionality of the powder and its stability during storage. This review discusses strategies that can be used to control the in situ crystallization process. Areas covered: The premise of the strategies discussed focuses on the manipulation of the droplet drying rate relative to the timescale of crystallization. This can be undertaken by the control of the spray drying operation, by the use of volatile materials and by the inclusion of additives. Several predictive approaches for in situ crystallization control and new spray dryer configuration strategies are further discussed. Expert opinion: Most reports, hitherto, have focused on the crystallinity of the spray dried material or the development of crystallinity during storage. More mechanistic understanding of the in situ crystallization process during spray drying is required to guide product formulation trials. The key challenge will be in adapting the mechanistic approach to the myriad possible formulations in the pharmaceutical industry.

  10. Do oil-in-water (O/W) nano-emulsions have an effect on survival and growth of bacteria?

    Science.gov (United States)

    Kadri, Hani El; Devanthi, Putu Virgina Partha; Overton, Tim W; Gkatzionis, Konstantinos

    2017-11-01

    Nano-emulsions (typically droplet diameternano-emulsions even in reference to similar microbial species and formulations. Following up, this study aimed to investigate the effect of nano-emulsions on four bacterial species (Staphylococcus epidermidis, Bacillus cereus, Lactobacillus acidophilus and five Escherichia coli strains) possessing different surface charge and hydrophobicity. Model oil-in-water (O/W) emulsions with different size of oil droplets were prepared with sunflower oil stabilised by polysorbate 80 (Tween80) emulsifier (hydrophilic), using high shear mixing followed by ultrasonication. The viability of bacteria was monitored by culture, membrane integrity was assessed with flow cytometric analysis with propidium iodide (PI) staining and fluorescence microscopy monitored the spatial distribution of cells within the O/W emulsions. The stability of the nano-O/W emulsions in the presence of bacteria was assessed by monitoring the droplet size [D (4, 3)] and creaming height. In contrast to other reports the survival and growth of bacteria was not affected by the size of the oil droplets, no damage to the bacterial membrane was evident with flow cytometry and emulsion stability was not affected by the presence of bacteria during 7days of storage. Furthermore, the antimicrobial activity of caprylic acid (CA) was compared between O/W coarse and nano-emulsions while varying the concentration of the hydrophilic surfactant Tween80. The activity of CA was similar in nano-emulsion and coarse emulsion; however, it was higher than in bulk oil and was reduced with increasing Tween80 concentration, suggesting that its efficacy is dictated by formulation rather than oil droplet size. The results demonstrated no enhanced antimicrobial activity due to nano-sized oil droplets and that conclusions on nano-emulsions should be taken with caution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Results of laboratory tests on the potential for using in situ burning on seventeen crude oils

    International Nuclear Information System (INIS)

    McCourt, J.; Buist, I.; Buffington, S.

    2000-01-01

    The past five years at SL Ross (Ottawa) have been spent analysing seventeen crude oils to establish whether each oil could be cleaned up using an in situ burning technique in the event of a spill. The process involved a series of laboratory tests and controlled burns. The authors determined the emulsification characteristics, the limits to ignition imposed by evaporation and emulsion formation using a series of baseline burns, as well as the emulsion breaker burn test on emulsions that could not be ignited with gelled gas in the baseline burn test. They also determined the density, viscosity, and for some oils the interfacial tension, pour point, and flash point. The results obtained provided valuable information to be used in the case of a spill. They also indicated avenues to be followed in future research. 10 refs., 2 tabs

  12. Epitaxial GaN films by hyperthermal ion-beam nitridation of Ga droplets

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, J. W.; Ivanov, T.; Neumann, L.; Hoeche, Th.; Hirsch, D.; Rauschenbach, B. [Leibniz-Institut fuer Oberflaechenmodifizierung (IOM), D-04318 Leipzig (Germany)

    2012-06-01

    Epitaxial GaN film formation on bare 6H-SiC(0001) substrates via the process of transformation of Ga droplets into a thin GaN film by applying hyperthermal nitrogen ions is investigated. Pre-deposited Ga atoms in well defined amounts form large droplets on the substrate surface which are subsequently nitridated at a substrate temperature of 630 Degree-Sign C by a low-energy nitrogen ion beam from a constricted glow-discharge ion source. The Ga deposition and ion-beam nitridation process steps are monitored in situ by reflection high-energy electron diffraction. Ex situ characterization by x-ray diffraction and reflectivity techniques, Rutherford backscattering spectrometry, and electron microscopy shows that the thickness of the resulting GaN films depends on the various amounts of pre-deposited gallium. The films are epitaxial to the substrate, exhibit a mosaic like, smooth surface topography and consist of coalesced large domains of low defect density. Possible transport mechanisms of reactive nitrogen species during hyperthermal nitridation are discussed and the formation of GaN films by an ion-beam assisted process is explained.

  13. In situ recovery of oil from Utah tar sand: a summary of tar sand research at the Laramie Energy Technology Center

    Energy Technology Data Exchange (ETDEWEB)

    Marchant, L.C.; Westhoff, J.D.

    1985-10-01

    This report describes work done by the United States Department of Energy's Laramie Energy Technology Center from 1971 through 1982 to develop technology for future recovery of oil from US tar sands. Work was concentrated on major US tar sand deposits that are found in Utah. Major objectives of the program were as follows: determine the feasibility of in situ recovery methods applied to tar sand deposits; and establish a system for classifying tar sand deposits relative to those characteristics that would affect the design and operation of various in situ recovery processes. Contents of this report include: (1) characterization of Utah tar sand; (2) laboratory extraction studies relative to Utah tar sand in situ methods; (3) geological site evaluation; (4) environmental assessments and water availability; (5) reverse combustion field experiment, TS-1C; (6) a reverse combustion followed by forward combustion field experiment, TS-2C; (7) tar sand permeability enhancement studies; (8) two-well steam injection experiment; (9) in situ steam-flood experiment, TS-1S; (10) design of a tar sand field experiment for air-stream co-injection, TS-4; (11) wastewater treatment and oil analyses; (12) economic evaluation of an in situ tar sand recovery process; and (13) appendix I (extraction studies involving Utah tar sands, surface methods). 70 figs., 68 tabs.

  14. The Physical State of Emulsified Edible Oil Modulates Its in Vitro Digestion.

    Science.gov (United States)

    Guo, Qing; Bellissimo, Nick; Rousseau, Dérick

    2017-10-18

    Emulsified lipid digestion was tailored by manipulating the physical state of dispersed oil droplets in whey protein stabilized oil-in-water (O/W) emulsions, where the oil phase consisted of one of five ratios of soybean oil (SO) and fully hydrogenated soybean oil (FHSO). The evolution in particle size distribution, structural changes during oral, gastric, and intestinal digestion, and free fatty acid release during intestinal digestion were all investigated. Irrespective of the physical state and structure of the dispersed oil/fat, all emulsions were stable against droplet size increases during oral digestion. During gastric digestion, the 50:50 SO:FHSO emulsion was more stable against physical breakdown than any other emulsion. All emulsions underwent flocculation and coalescence or partial coalescence upon intestinal digestion, with the SO emulsion being hydrolyzed the most rapidly. The melting point of all emulsions containing FHSO was above 37 °C, with the presence of solid fat within the dispersed oil droplets greatly limiting lipolysis. Fat crystal polymorph and nanoplatelet size did not play an important role in the rate and extent of lipid digestion. Free fatty acid release modeled by the Weibull distribution function showed that the rate of lipid digestion (κ) decreased with increasing solid fat content, and followed an exponential relationship (R 2 = 0.95). Overall, lipid digestion was heavily altered by the physical state of the dispersed oil phase within O/W emulsions.

  15. Oxidative stabilization of mixed mayonnaises made with linseed oil and saturated medium-chain triglyceride oil

    DEFF Research Database (Denmark)

    Raudsepp, Piret; Brüggemann, Dagmar A.; Lenferink, Aufried

    2014-01-01

    Mayonnaises, made with either saturated medium chain triglyceride (MCT) oil or unsaturated purified linseed oil (LSO), were mixed. Raman confocal microspectrometry demonstrated that lipid droplets in mixed mayonnaise remained intact containing either MCT oil or LSO. Peroxide formation during...... showed radicals are formed in the aqueous phase with the same rate independent of the lipids. This was also reflected in decay of α-tocopherol during storage being similar in MCT and LSO mayonnaises, but being stable in mixed oil mayonnaise and mixed mayonnaise. Results suggest that other effects than...

  16. Droplet Growth

    Science.gov (United States)

    Marder, Michael Paolo

    When a mixture of two materials, such as aluminum and tin, or alcohol and water, is cooled below a certain temperature, the two components begin to separate. If one component is dilute in the other, it may separate out in the form of small spheres, and these will begin to enlarge, depleting the supersaturated material around them. If the dynamics is sufficiently slow, thermodynamics gives one considerable information about how the droplets grow. Two types of experiment have explored this behavior and given puzzling results. Nucleation experiments measure the rate at which droplets initially appear from a seemingly homogeneous mixture. Near the critical point in binary liquids, experiments conducted in the 1960's and early 1970's showed that nucleation was vastly slower than theory seemed to predict. The resolution of this problem arises by considering in detail the dynamics of growing droplets and comparing it with what experiments actually measure. Here will be presented a more detailed comparison of theory and experiment than has before been completed, obtaining satisfactory agreement with no free parameters needed. A second type of experiment measures droplet size distributions after long times. In the late stage, droplets compete with each other for material, a few growing at the expense of others. A theory first proposed by Lifshitz and Slyozov claims that this distribution, properly scaled, should be universal, and independent of properties of materials. Yet experimental measurements consistently find distributions that are more broad and squat than the theory would predict. Satisfactory agreement with experiment can be achieved by considering two points. First, one must study the complete time development of droplet size distributions, to understand when the asymptotic regime obtains. Second, droplet size distributions are spread by correlations between droplets. If one finds a small droplet, it is small because large droplets nearby are competing with it

  17. [Synthesis of hollow titania microspheres by using microfluidic droplet-template].

    Science.gov (United States)

    Ma, Jingyun; Jiang, Lei; Qin, Jianhu

    2011-09-01

    Droplet-based microfluidics is of great interest due to its particular characteristics compared with the conventional methods, such as reduced reagent consumption, rapid mixing, high-throughput, shape controlled, etc. A novel method using microfluidic droplet as soft template for the synthesis of hollow titania microspheres was developed. A typical polydimethylsiloxane (PDMS) microfluidic device containing "flow-focusing" geometry was used to generate water/oil (W/O) droplet. The mechanism for the hollow structure formation was based on the interfacial hydrolysis reaction between the continuous phase containing titanium butoxide precursor and the dispersed containing water. The continuous phase mixed with butanol was added in the downstream of the channel after the hydrolysis reaction. This step was used for drawing the water out of the microgels for further hydrolysis. The microgels obtained through a glass pipe integrated were washed, dried under vacuum and calcined after aging for a certain time. The fluorescence and scanning electron microscope (SEM) image of the microspheres indicated the hollow structure and the thickness of the shell. In addition, these microspheres with thin shell (about 2 microm) were apt to rupture and collapse. Droplet-based microfluidic offered a gentle and size-controllable manner to moderate this problem. Moreover, it has potential applications in photocatalysis combined with some modification realized on the chip simultaneously.

  18. Lithography-free nanofluidic concentrator based on droplets-on-demand system

    Science.gov (United States)

    Yu, Miao; Zhou, Hongbo; Yao, Shuhuai

    2013-11-01

    Biomarkers are usually low-abundance proteins in biofluids and below detection limit of conventional biosensors. Nanofluidic concentration devices allow efficient biomolecules trapping by utilizing ion concentration polarization near nanochannels. However, once the electric field is turned off, the electrokinetic concentration plug cannot maintain its concentration status and starts to diffuse. In order to maintain the high concentration and extract the concentrated sample for further analysis, a good approach is to encapsulate these plugs into water-in-oil droplets. Here we developed a nanofluidic concentrator based on droplet-on-demand generator to encapsulate concentrated sample in nL droplets. The lithography-free nanochannels were patterned by thermal cracking on the surface of PS Petri-dish. The resulting nanochannel arrays were 30 nm in depth. In combination with microchannels on PDMS, the micro-nano hybrid chip was developed. We used FITC solution to demonstrate that the chip significantly increased the sample concentration for more than 100 folds within 5 minutes. By tuning the pulsed pressure imposed by the solenoid valve connected to the concentration channel, the system can generate a desired volume of droplet with a target sample concentration at a prescribed time. This work was supported by the Research Grants Council of Hong Kong under General Research Fund (Grant No. 621110).

  19. PROSCARA Inc. in-situ burning summary paper

    International Nuclear Information System (INIS)

    1994-06-01

    In-situ burning as a viable response tactic in the event of an oil spill, was discussed. Key factors which influence a decision to use burning were enumerated, including a detailed analysis of the environmental effects of in-situ burning on soils. The critical parameters were time, soil heating and extent of oil penetration into the soil. It was noted that on water-saturated and frozen soil in-situ burning had no adverse effects. The advantages and disadvantages of in-situ burning vis-a-vis conventional mechanical recovery were discussed. Factors that do, and factors that do not support decisions in favour of in-situ burning were listed. 4 refs., 2 tabs

  20. MEASUREMENTS AND COMPUTATIONS OF FUEL DROPLET TRANSPORT IN TURBULENT FLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Katz and Omar Knio

    2007-01-10

    relevant to the experiments, and (3) to explore whether the corresponding predictions can explain the experimentally-observed behavior of the rise and dispersion of oil droplets in isotropic turbulence. A brief summary of results is presented in Section 4.

  1. Investigating the evolution of the phase behavior of AOT-based w/o microemulsions in dodecane as a function of droplet volume fraction.

    Science.gov (United States)

    Ganguly, R; Choudhury, N

    2012-04-15

    AOT-based water in oil (w/o) microemulsions are one of the most extensively studied reverse micellar systems because of their rich phase behavior and their ability to form in the absence of any co-surfactant. The aggregation characteristics and interaction of the microemulsion droplets in these systems are known to be governed by AOT-oil compatibility and water to AOT molar ratio (w). In this manuscript by using Dynamic Light Scattering (DLS) and viscometry techniques, we show that droplet volume fraction too plays an important role in shaping the phase behavior of these microemulsions in dodecane. The phase separation characteristics and the evolution of the viscosity and the hydrodynamic radius of the microemulsion droplets on approaching the cloud points have thus been found to undergo complete transformation as one goes from low to high droplet volume fraction even at a fixed 'w'. Modeling of the DLS data attributes this to the weakening of inter droplet attractive interaction caused by the growing dominance of the excluded volume effect with increase in droplet volume fraction. In the literature, the inter droplet attractive interaction driven phase separation in these microemulsions is explained based on gas-liquid type phase transition, conceptualized in the framework of Baxter adhesive hard sphere theory. The modeling of our viscosity data, however, does not support such proposition as the characteristic stickiness parameter (τ(-1)) of the microemulsion droplets in this system remains much lower than the critical value (τ(c)(-1)≈10.25) required to enforce such phase transition. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Microfluidic generation of droplets with a high loading of nanoparticles

    Science.gov (United States)

    Wan, Jiandi; Shi, Lei; Benson, Bryan; Bruzek, Matthew J.; Anthony, John E.; Sinko, Patrick J.; Prudhomme, Robert K.; Stone, Howard A.

    2012-01-01

    Microfluidic approaches for controlled generation of colloidal clusters, e.g., via encapsulation of colloidal particles in droplets, have been used for the synthesis of functional materials including drug delivery carriers. Most of the studies, however, use a low concentration of an original colloidal suspension ( 60 wt%) particle concentrations. Three types of microfluidic devices, PDMS flow-focusing, PDMS T-junction, and microcapillary devices, are investigated for direct encapsulation of a high concentration of polystyrene (PS) nanoparticles in droplets. In particular, it is shown that PDMS devices fabricated by soft lithography can generate droplets from a 25 wt% PS suspension, whereas microcapillary devices made from glass capillary tubes are able to produce droplets from a 67 wt% PS nanoparticle suspension. When the PS concentration is between 0.6 and 25 wt%, the size of the droplets is found to change with the oil-to-water flow rate ratio and is independent of the concentration of particles in the initial suspensions. Drop sizes from ~12 to 40 μm are made using flow rate ratios Qoil/Qwater from 20 to 1, respectively, with either of the PDMS devices. However, clogging occurs in PDMS devices at high PS concentrations (> 25 wt%) arising from interactions between the PS colloids and the surface of PDMS devices. Glass microcapillary devices, on the other hand, are resistant to clogging and can produce droplets continuously even when the concentration of PS nanoparticles reaches 67 wt%. We believe that our findings indicate useful approaches and guidelines for the controlled generation of emulsions of microparticles that are filled with a high loading of nanoparticles and which are useful for drug delivery applications. PMID:22934976

  3. [Micro-droplet characterization and its application for amino acid detection in droplet microfluidic system].

    Science.gov (United States)

    Yuan, Huiling; Dong, Libing; Tu, Ran; Du, Wenbin; Ji, Shiru; Wang, Qinhong

    2014-01-01

    Recently, the droplet microfluidic system attracts interests due to its high throughput and low cost to detect and screen. The picoliter micro-droplets from droplet microfluidics are uniform with respect to the size and shape, and could be used as monodispensed micro-reactors for encapsulation and detection of single cell or its metabolites. Therefore, it is indispensable to characterize micro-droplet and its application from droplet microfluidic system. We first constructed the custom-designed droplet microfluidic system for generating micro-droplets, and then used the micro-droplets to encapsulate important amino acids such as glutamic acid, phenylalanine, tryptophan or tyrosine to test the droplets' properties, including the stability, diffusivity and bio-compatibility for investigating its application for amino acid detection and sorting. The custom-designed droplet microfluidic system could generate the uniformed micro-droplets with a controllable size between 20 to 50 microm. The micro-droplets could be stable for more than 20 h without cross-contamination or fusion each other. The throughput of detection and sorting of the system is about 600 micro-droplets per minute. This study provides a high-throughput platform for the analysis and screening of amino acid-producing microorganisms.

  4. Ignition of an organic water-coal fuel droplet floating in a heated-air flow

    Science.gov (United States)

    Valiullin, T. R.; Strizhak, P. A.; Shevyrev, S. A.; Bogomolov, A. R.

    2017-01-01

    Ignition of an organic water-coal fuel (CWSP) droplet floating in a heated-air flow has been studied experimentally. Rank B2 brown-coal particles with a size of 100 μm, used crankcase Total oil, water, and a plasticizer were used as the main CWSP components. A dedicated quartz-glass chamber has been designed with inlet and outlet elements made as truncated cones connected via a cylindrical ring. The cones were used to shape an oxidizer flow with a temperature of 500-830 K and a flow velocity of 0.5-5.0 m/s. A technique that uses a coordinate-positioning gear, a nichrome thread, and a cutter element has been developed for discharging CWSP droplets into the working zone of the chamber. Droplets with an initial size of 0.4 to 2.0 mm were used. Conditions have been determined for a droplet to float in the oxidizer flow long enough for the sustainable droplet burning to be initiated. Typical stages and integral ignition characteristics have been established. The integral parameters (ignition-delay times) of the examined processes have been compared to the results of experiments with CWSP droplets suspended on the junction of a quick-response thermocouple. It has been shown that floating fuel droplets ignite much quicker than the ones that sit still on the thermocouple due to rotation of an CWSP droplet in the oxidizer flow, more uniform heating of the droplet, and lack of heat drainage towards the droplet center. High-speed video recording of the peculiarities of floatation of a burning fuel droplet makes it possible to complement the existing models of water-coal fuel burning. The results can be used for a more substantiated modeling of furnace CWSP burning with the ANSYS, Fluent, and Sigma-Flow software packages.

  5. Physicochemical properties of peanut oil-based diacylglycerol and their derived oil-in-water emulsions stabilized by sodium caseinate.

    Science.gov (United States)

    Long, Zhao; Zhao, Mouming; Liu, Ning; Liu, Daolin; Sun-Waterhouse, Dongxiao; Zhao, Qiangzhong

    2015-10-01

    High purity peanut oil-based diacylglycerol (PO-DAG) (94.95 wt%) was prepared via enzymatic glycerolysis from peanut oil (PO). The resulting dominance of DAGs was proven to greatly influence the properties of corresponding fresh or frozen-thawed emulsions. Stable fresh oil-in-water emulsions were produced using either PO-DAG or PO, with stability enhanced by increased concentrations of Na-CN. The lower equilibrium interfacial tension along with greater negative ζ-potential of PO revealed that Na-CN was preferentially adsorbed to the PO interface. Adding 0.05 mol/L NaCl to the PO emulsions minimized depletion flocculation caused by the unadsorbed Na-CN, but further NaCl addition increased oil droplet size and concomitant coalescence. For the PO-DAG emulsions, adding 0.2 mol/L NaCl did not significantly (p>0.05) affect their ζ-potential but adding 0.05 or 0.1 mol/L NaCl lowered ζ-potential, although NaCl at these concentrations increased oil droplet size and coalescence. Freezing-thawing process considerably weakened the stability of PO-DAG emulsions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Influence of physical and chemical dispersion on the biodegradation of oil under simulated marine conditions

    International Nuclear Information System (INIS)

    Swannell, R. P. J.; Daniel, F.; Croft, B. C.; Engelhardt, M. A.; Wilson, S.; Mitchell, D. J.; Lunel, T.

    1997-01-01

    Dispersion and biodegradation of oil was studied in marine microcosms designed to simulate oil dispersion at sea. Dispersion was studied using both Phase Doppler Particle Analyser and a Chamber Slide technique. In both natural and artificial seawater, oil addition was observed to encourage the growth of hydrocarbon-degrading bacteria in the presence of sufficient nitrogen and phosphorus. Results showed that microorganisms enhanced oil dispersion by colonizing physically-dispersed oil droplets and preventing re-coalescence with the surface slick. The addition of dispersants increased the rate of colonization as well as the number of degraded droplets. These results suggest that stimulation of physical dispersion by chemical means increase the rate of oil biodegradation under natural conditions. 25 refs., 3 tabs., 14 figs

  7. Droplet generating device for droplet-based μTAS using electro-conjugate fluid

    Science.gov (United States)

    Iijima, Y.; Takemura, K.; Edamura, K.

    2017-05-01

    Droplet-based μTAS, which carries out biochemical inspection and synthesis by handling samples as droplets on a single chip, has been attracting attentions in recent years. Although miniaturization of a chip is progressed, there are some problems in miniaturization of a whole system because of the necessity to connect syringe pumps to the chip. Thus, this study aims to realize a novel droplets generating device for droplet-based μTAS using electro-conjugate fluid (ECF). The ECF is a dielectric liquid generating a powerful flow when subjected to high DC voltage. The ECF flow generation allows us to realize a tiny hydraulic power source. Using the ECF flow, we can develop a droplet generating device for droplet-based μTAS by placing minute electrode pairs in flow channels. The device contains two channels filled with the ECF, which are dispersed and continuous phases meeting at a T-junction. When a sample in the dispersed phase is injected by the ECF flow to the continuous phase at T-junction, droplets are generated by shearing force between the two phases. We conducted droplet generating experiment and confirmed that droplets are successfully generated when the flow rate of the continuous phase is between 90 and 360 mm3 s-1, and the flow rate of the dispersed phase is between 10 and 40 mm3 s-1. We also confirmed that the droplet diameter and the droplet production rate are controllable by tuning the applied voltage to the electrode pairs.

  8. Effects of oil and oil burn residues on seabird feathers

    DEFF Research Database (Denmark)

    Fritt-Rasmussen, Janne; Linnebjerg, Jannie Fries; Sørensen, Martin X.

    2016-01-01

    It is well known, that in case of oil spill, seabirds are among the groups of animals most vulnerable. Even small amounts of oil can have lethal effects by destroying the waterproofing of their plumage, leading to loss of insulation and buoyancy. In the Arctic these impacts are intensified....... To protect seabirds, a rapid removal of oil is crucial and in situ burning could be an efficient method. In the present work exposure effects of oil and burn residue in different doses was studied on seabird feathers from legally hunted Common eider (Somateria mollissima) by examining changes in total weight...... of the feather and damages on the microstructure (Amalgamation Index) of the feathers before and after exposure. The results of the experiments indicate that burn residues from in situ burning of an oil spill have similar or larger fouling and damaging effects on seabird feathers, as compared to fresh oil....

  9. Lossless droplet transfer of droplet-based microfluidic analysis

    Science.gov (United States)

    Kelly, Ryan T [West Richland, WA; Tang, Keqi [Richland, WA; Page, Jason S [Kennewick, WA; Smith, Richard D [Richland, WA

    2011-11-22

    A transfer structure for droplet-based microfluidic analysis is characterized by a first conduit containing a first stream having at least one immiscible droplet of aqueous material and a second conduit containing a second stream comprising an aqueous fluid. The interface between the first conduit and the second conduit can define a plurality of apertures, wherein the apertures are sized to prevent exchange of the first and second streams between conduits while allowing lossless transfer of droplets from the first conduit to the second conduit through contact between the first and second streams.

  10. Sustained release formulations of citronella oil nanoemulsion using cavitational techniques.

    Science.gov (United States)

    Agrawal, Naveen; Maddikeri, Ganesh L; Pandit, Aniruddha B

    2017-05-01

    Nanoemulsion synthesis has proven to be an effective way for transportation of immobile, insoluble bioactive compounds. Citronella Oil (lemongrass oil), a natural plant extract, can be used as a mosquito repellent and has less harmful effects compared to its available market counterpart DEET (N, N-Diethyl-meta-toluamide). Nanoemulsion of citronella oil in water was prepared using cavitation-assisted techniques while investigating the effect of system parameters like HLB (Hydrophilic Lipophilic Balance), surfactant concentration, input energy density and mode of power input on emulsion quality. The present work also examines the effect of emulsification on release rate to understand the relationship between droplet size and the release rate. Minimum droplet size (60nm) of the emulsion was obtained at HLB of 14, S/O 1 ratio of 1.0, ultrasound amplitude of 50% and irradiation time of 5min. This study revealed that hydrodynamic cavitation-assisted emulsification is more energy efficient compared to ultrasonic emulsification. It was also found that the release rate of nanoemulsion enhanced as the droplet size of emulsion reduced. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. In situ visualization and effect of glycerol in lipase-catalyzed ethanolysis of rapeseed oil

    DEFF Research Database (Denmark)

    Xu, Yuan; Nordblad, Mathias; Nielsen, Per M.

    2011-01-01

    Immobilized lipases can be used in biodiesel production to overcome many disadvantages of the conventional base-catalyzed process. However, the glycerol by-product poses a potential problem for the biocatalytic process as it is known to inhibit immobilized lipases, most likely by clogging...... of the catalyst particles. In this paper, this negative effect was further investigated and confirmed in ethanolysis of rapeseed oil. A dyeing method was developed for in situ visualization of glycerol in order to study its partitioning and accumulation during the ethanolysis reaction. The method was used...

  12. Field investigation of physical and chemical mechanisms affecting pollutant concentrations in fog droplets

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, D.J.; Waldman, J.M.; Munger, J.W.; Hoffmann, M.R.

    1984-09-01

    High ionic loadings were found in fogwater collected at Bakersfield, California during an extended stagnation episode. The major ions were NH4(+), NO3(-), and SO4(2-), with concentrations usually in the millimolar range. Droplet growth played an important role in determining fogwater concentrations. The amount of solute decreased substantially over the course of each fog event this was attributed, at least in part, to deposition of fog droplets on surfaces. The occurrence of this was attributed, at least in part, to deposition of fog droplets on surfaces. The sulfate fraction in the aerosol increased appreciably over several days of stagnation, but no statistical evidence for in situ S(IV) aqueous-phase oxidation was found. The high ammonia concentrations present were sufficient to neutralize a large fraction of the ambient acidity. As a result, fogwater pH values rarely attained the extremely low values found in other polluted environments. 46 references.

  13. BX in-situ oil-shale project. Quarterly technical progress report, June 1, 1981-August 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Dougan, P.M.

    1981-09-20

    June 1, 1981-August 31, 1981 was the third consecutive quarter of superheated steam injection at the BX In Situ Oil Shale Project. Injection was continuous except for the period of July 14th to August 1st when the injection was suspended during the drilling of core hole BX-37. During the quarter, 99,760 barrels of water as superheated steam were injected into Project injection wells at an average well head temperature of 752/sup 0/F and an average wellhead pressure of 1312 PSIG. During the same period, 135,469 barrels of fluid were produced from the Project production wells for a produced to injected fluid ratio of 1.36 to 1.0. Net oil production during the quarter was 38 barrels.

  14. PM From the Combustion of heavy fuel oils

    KAUST Repository

    Elbaz, Ayman M.

    2018-03-30

    This work presents an experimental study investigating the formation and oxidation of particulate matter from the combustion of heavy fuel oil, HFO, droplets. The study includes results from both a falling droplet in a drop tube furnace and a suspended droplet in a heated convective flow. The falling droplets in a heated coflow air with variable temperature path and velocity were combusted and the resulting particles, cenospheres, were collected. To characterize the microstructure of these particles, scanning electron microscopy (SEM), and energy dispersive X-Ray (EDX) analysis were used. The particles were found to have either a porous or a skeleton/membrane morphology. The percentage of particles of either type appears to be related to the thermal history, which was controlled by the heated co-flow velocity. In the suspended droplet experiments, by suspending the droplet on a thermocouple, the temperature inside the droplet was measured while simultaneously imaging the various burning phases. A number of specific phases were identified, from liquid to solid phase combustion are presented and discussed. The droplet ignition temperature was seen to be independent of the droplet size. However, the liquid phase ignition delay time and the droplet lifetime were directly proportional to the initial droplet diameter.

  15. Food grade microemulsion systems: Sunflower oil/castor oil derivative-ethanol/water. Rheological and physicochemical analysis.

    Science.gov (United States)

    Mori Cortés, Noelia; Lorenzo, Gabriel; Califano, Alicia N

    2018-05-01

    Microemulsions are thermodynamically stable systems that have attracted considerable attention in the food industry as delivery systems for many hydrophobic nutrients. These spontaneous systems are highly dependent on ingredients and composition. In this work phase diagrams were constructed using two surfactants (Kolliphor RH40 and ELP), water, sunflower oil, and ethanol as cosurfactant, evaluating their physicochemical properties. Stability of the systems was studied at 25 and 60 °C, monitoring turbidity at 550 nm for over a month to identify the microemulsion region. Conductivity was measured to classify between water-in-oil and oil-in-water microemulsions. The phase diagram constructed with Kolliphor RH40 exhibited a larger microemulsion area than that formulated with Kolliphor ELP. All formulations showed a monomodal droplet size distribution with low polydispersity index (<0.30) and a mean droplet size below 20 nm. Systems with higher water content presented a Newtonian behavior; increasing the dispersed phase content produced a weak gel-like structure with pseudoplastic behavior under flow conditions that was satisfactorily modeled to obtain structural parameters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Investigation and in situ removal of spatter generated during laser ablation of aluminium composites

    International Nuclear Information System (INIS)

    Popescu, A.C.; Delval, C.; Shadman, S.; Leparoux, M.

    2016-01-01

    Highlights: • Study of spatter generated during laser irradiation of an aluminium nanocomposite. • Number of droplets was 1.5–3 times higher for laser in depth vs surface focused beams. • High speed imaging revealed particles exploding in flight similar to a fireworks effect. • Three methods were selected for droplets removal in situ and the results are analyzed. - Abstract: Spatter generated during laser irradiation of an aluminium alloy nanocomposite (AlMg5 reinforced with Al_2O_3 nanoparticles) was monitored by high speed imaging. Droplets trajectory and speed were assessed by computerized image analysis. The effects of laser peak power and laser focusing on the plume expansion and expulsed droplet speeds were studied in air or under argon flow. It was found that the velocity of visible droplets expulsed laterally or at the end of the plume emission from the metal surface was not dependent on the plasma plume speed. The neighbouring area of irradiation sites was studied by optical and scanning electron microscopy. Droplets deposited on the surface were classified according to their size and counted using a digital image processing software. It was observed that the number of droplets on surface was 1.5–3 times higher when the laser beam was focused in depth as compared to focused beams, even though the populations average diameter were comparable. Three methods were selected for removing droplets in situ, during plume expansion: an argon gas jet crossing the plasma plume, a fused silica plate collector transparent to the laser wavelength placed parallel to the irradiated surface and a mask placed onto the aluminium composite surface. The argon gas jet was efficient only for low power irradiation conditions, the fused silica plate failed in all tested conditions and the mask was successful for all irradiation regimes.

  17. Breeding of in-situ Petroleum Degrading Bacteria in Hangzhou Bay and evaluating for the In-situ repair effect

    Science.gov (United States)

    Lan, Ru; Lin, Hai; Qiao, Bing; Dong, Yingbo; Zhang, Wei; Chang, Wen

    2018-02-01

    In this paper, the restoration behaviour of the in-situ microorganisms in seawater and sediments to the marine accident oil spill was researched. The experimental study on the breeding of in-situ petroleum-degrading bacteria in the seawater and sediments of Hangzhou Bay and the restoration of oil spill were carried out. Making use of the reinforced microbial flora, combined with physical and chemical methods in field environment, petroleum degrading and restoration experiment were performed, the effect of the breeding of in-situ degrading bacteria was evaluated, and the standard process of in-situ bacteria sampling, laboratory screening, domestication and degradation efficiency testing were formed. This study laid a foundation for further evaluation of the advantages and disadvantages for the petroleum-degrading bacteria of Hangzhou Bay during the process of in-situ restoration. The results showed that in-situ microbes of Hangzhou Bay could reach the growth peak in 5 days with the suitable environmental factors and sufficient nutrient elements, and the degradation efficiency could reach 65.2% (or 74.8% after acclimation). And also the microbes could adapt to the local sea water and environmental conditions, with a certain degree of degradation. The research results could provide parameter support for causal judgment and quantitative assessment of oil spill damage.

  18. Printed droplet microfluidics for on demand dispensing of picoliter droplets and cells.

    Science.gov (United States)

    Cole, Russell H; Tang, Shi-Yang; Siltanen, Christian A; Shahi, Payam; Zhang, Jesse Q; Poust, Sean; Gartner, Zev J; Abate, Adam R

    2017-08-15

    Although the elementary unit of biology is the cell, high-throughput methods for the microscale manipulation of cells and reagents are limited. The existing options either are slow, lack single-cell specificity, or use fluid volumes out of scale with those of cells. Here we present printed droplet microfluidics, a technology to dispense picoliter droplets and cells with deterministic control. The core technology is a fluorescence-activated droplet sorter coupled to a specialized substrate that together act as a picoliter droplet and single-cell printer, enabling high-throughput generation of intricate arrays of droplets, cells, and microparticles. Printed droplet microfluidics provides a programmable and robust technology to construct arrays of defined cell and reagent combinations and to integrate multiple measurement modalities together in a single assay.

  19. Application of oxy-fuel CO2 capture for In-situ bitumen extraction from Canada's oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Bohm, Mark; Goold, Scott; Laux, Stefan; Sharma, Apoorva; Aasen, Knut; Neu, Ben

    2010-09-15

    The CO2 Capture Project, along with Praxair, Devon Canada, Cenovus Energy and Statoil are executing a project to demonstrate oxy-fuel combustion as a practical and economic method for CO2 capture from once-through steam generators used in the in-situ production of bitumen in the Canadian Oil Sands. The goal of the project is to develop a reliable, lower cost solution for capturing CO2 that will eliminate up to 90% of the GHG emissions from in-situ operations. The participants will present results of Phase I of this project, and will also outline the future Phases to pilot this technology.

  20. Thyme oil nanoemulsions coemulsified by sodium caseinate and lecithin.

    Science.gov (United States)

    Xue, Jia; Zhong, Qixin

    2014-10-08

    Many nanoemulsions are currently formulated with synthetic surfactants. The objective of the present work was to study the possibility of blending sodium caseinate (NaCas) and lecithin to prepare transparent thyme oil nanoemulsions. Thyme oil was emulsified using NaCas and soy lecithin individually or in combination at neutral pH by shear homogenization. The surfactant combination improved the oil content in transparent/translucent nanoemulsions, from 1.0% to 2.5% w/v for 5% NaCas with and without 1% lecithin, respectively. Nanoemulsions prepared with the NaCas-lecithin blend had hydrodynamic diameters smaller than 100 nm and had significantly smaller and more narrowly distributed droplets than those prepared with NaCas or lecithin alone. Particle dimension and protein surface load data suggested the coadsorption of both surfactants on oil droplets. These characteristics of nanoemulsions minimized destabilization mechanisms of creaming, coalescence, and Ostwald ripening, as evidenced by no significant changes in appearance and particle dimension after 120-day storage at 21 °C.

  1. Coalescence kinetics of oil-in-water emulsions studied with microfluidics

    NARCIS (Netherlands)

    Krebs, T.; Schroen, C.G.P.H.; Boom, R.M.

    2013-01-01

    We report the results of experiments on the coalescence dynamics in flowing oil-in-water emulsions using an integrated microfluidic device. The microfluidic circuit permits direct observation of shear-induced collisions and coalescence events between emulsion droplets. Three mineral oils with a

  2. Comparison of capacitive and radio frequency resonator sensors for monitoring parallelized droplet microfluidic production

    KAUST Repository

    Conchouso Gonzalez, David; McKerricher, Garret; Carreno, Armando Arpys Arevalo; Castro, David; Shamim, Atif; Foulds, Ian G.

    2016-01-01

    with droplets of 100-150 μm in diameter, which were generated in parallelization devices at water-in-oil volume fractions (φ) between 11.1% and 33.3%.Using these sensors, we were able to measure accurately increments as small as 2.4% in the water volume fraction

  3. Droplet based microfluidics

    International Nuclear Information System (INIS)

    Seemann, Ralf; Brinkmann, Martin; Pfohl, Thomas; Herminghaus, Stephan

    2012-01-01

    Droplet based microfluidics is a rapidly growing interdisciplinary field of research combining soft matter physics, biochemistry and microsystems engineering. Its applications range from fast analytical systems or the synthesis of advanced materials to protein crystallization and biological assays for living cells. Precise control of droplet volumes and reliable manipulation of individual droplets such as coalescence, mixing of their contents, and sorting in combination with fast analysis tools allow us to perform chemical reactions inside the droplets under defined conditions. In this paper, we will review available drop generation and manipulation techniques. The main focus of this review is not to be comprehensive and explain all techniques in great detail but to identify and shed light on similarities and underlying physical principles. Since geometry and wetting properties of the microfluidic channels are crucial factors for droplet generation, we also briefly describe typical device fabrication methods in droplet based microfluidics. Examples of applications and reaction schemes which rely on the discussed manipulation techniques are also presented, such as the fabrication of special materials and biophysical experiments.

  4. Synthesis of colloidal metal nanocrystals in droplet reactors: the pros and cons of interfacial adsorption.

    Science.gov (United States)

    Zhang, Lei; Wang, Yi; Tong, Limin; Xia, Younan

    2014-07-09

    Droplet reactors have received considerable attention in recent years as an alternative route to the synthesis and potentially high-volume production of colloidal metal nanocrystals. Interfacial adsorption will immediately become an important issue to address when one seeks to translate a nanocrystal synthesis from batch reactors to droplet reactors due to the involvement of higher surface-to-volume ratios for the droplets and the fact that nanocrystals tend to be concentrated at the water-oil interface. Here we report a systematic study to compare the pros and cons of interfacial adsorption of metal nanocrystals during their synthesis in droplet reactors. On the one hand, interfacial adsorption can be used to generate nanocrystals with asymmetric shapes or structures, including one-sixth-truncated Ag octahedra and Au-Ag nanocups. On the other hand, interfacial adsorption has to be mitigated to obtain nanocrystals with uniform sizes and controlled shapes. We confirmed that Triton X-100, a nonionic surfactant, could effectively alleviate interfacial adsorption while imposing no impact on the capping agent typically needed for a shape-controlled synthesis. With the introduction of a proper surfactant, droplet reactors offer an attractive platform for the continuous production of colloidal metal nanocrystals.

  5. Cross-linking proteins by laccase: Effects on the droplet size and rheology of emulsions stabilized by sodium caseinate.

    Science.gov (United States)

    Sato, A C K; Perrechil, F A; Costa, A A S; Santana, R C; Cunha, R L

    2015-09-01

    The aim of this work was to evaluate the influence of laccase and ferulic acid on the characteristics of oil-in-water emulsions stabilized by sodium caseinate at different pH (3, 5 and 7). Emulsions were prepared by high pressure homogenization of soybean oil with sodium caseinate solution containing varied concentrations of laccase (0, 1 and 5mg/mL) and ferulic acid (5 and 10mM). Laccase treatment and pH exerted a strong influence on the properties with a consequent effect on stability, structure and rheology of emulsions stabilized by Na-caseinate. At pH7, O/W emulsions were kinetically stable due to the negative protein charge which enabled electrostatic repulsion between oil droplets resulting in an emulsion with small droplet size, low viscosity, pseudoplasticity and viscoelastic properties. The laccase treatment led to emulsions showing shear-thinning behavior as a result of a more structured system. O/W emulsions at pH5 and 3 showed phase separation due to the proximity to protein pI, but the laccase treatment improved their stability of emulsions especially at pH3. At pH3, the addition of ferulic acid and laccase produced emulsions with larger droplet size but with narrower droplet size distribution, increased viscosity, pseudoplasticity and viscoelastic properties (gel-like behavior). Comparing laccase treatments, the combined addition of laccase and ferulic acid generally produced emulsions with lower stability (pH5), larger droplet size (pH3, 5 and 7) and higher pseudoplasticity (pH5 and 7) than emulsion with only ferulic acid. The results suggested that the cross-linking of proteins by laccase and ferulic acid improved protein emulsifying properties by changing functional mechanisms of the protein on emulsion structure and rheology, showing that sodium caseinate can be successfully used in acid products when treated with laccase. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. The Influence Of Mass Fraction Of Dressed Coal On Ignition Conditions Of Composite Liquid Fuel Droplet

    Directory of Open Access Journals (Sweden)

    Shlegel Nikita E.

    2015-01-01

    Full Text Available The laws of condition modification of inert heat and ignition in an oxidant flow of composite liquid fuel droplet were studied by the developed experimental setup. Investigations were for composite liquid fuel composition based on the waste of bituminous and nonbaking coal processing, appropriate carbon dust, water, used motor oil. The characteristics of boundary layer inertia heat of composite liquid fuel droplet, thermal decomposition of coal organic part, the yield of volatiles and evaporation of liquid combustion component, ignition of the gas mixture and coke residue were defined.

  7. Experimental investigation on the effect of liquid injection by multiple orifices in the formation of droplets in a Venturi scrubber

    Energy Technology Data Exchange (ETDEWEB)

    Guerra, V.G.; Goncalves, J.A.S. [Department of Chemical Engineering, Federal University of Sao Carlos, Via Washington Luiz, Km. 235, 13565-905 Sao Carlos, SP (Brazil); Coury, J.R. [Department of Chemical Engineering, Federal University of Sao Carlos, Via Washington Luiz, Km. 235, 13565-905 Sao Carlos, SP (Brazil)], E-mail: jcoury@ufscar.br

    2009-01-15

    Venturi scrubbers are widely utilized in gas cleaning. The cleansing elements in these scrubbers are droplets formed from the atomization of a liquid into a dust-laden gas. In industrial scrubbers, this liquid is injected through several orifices so that the cloud of droplets can be evenly distributed throughout the duct. The interaction between droplets when injected through many orifices, where opposite clouds of atomized liquid can reach each other, is to be expected. This work presents experimental measurements of droplet size measured in situ and the evidence of cloud interaction within a Venturi scrubber operating with multi-orifice jet injection. The influence of gas velocity, liquid flow rate and droplet size variation in the axial position after the point of the injection of the liquid were also evaluated for the different injection configurations. The experimental results showed that an increase in the liquid flow rate generated greater interaction between jets. The number of orifices had a significant influence on droplet size. In general, the increase in the velocity of the liquid jet and in the gas velocity favored the atomization process by reducing the size of the droplets.

  8. Experimental investigation on the effect of liquid injection by multiple orifices in the formation of droplets in a Venturi scrubber

    International Nuclear Information System (INIS)

    Guerra, V.G.; Goncalves, J.A.S.; Coury, J.R.

    2009-01-01

    Venturi scrubbers are widely utilized in gas cleaning. The cleansing elements in these scrubbers are droplets formed from the atomization of a liquid into a dust-laden gas. In industrial scrubbers, this liquid is injected through several orifices so that the cloud of droplets can be evenly distributed throughout the duct. The interaction between droplets when injected through many orifices, where opposite clouds of atomized liquid can reach each other, is to be expected. This work presents experimental measurements of droplet size measured in situ and the evidence of cloud interaction within a Venturi scrubber operating with multi-orifice jet injection. The influence of gas velocity, liquid flow rate and droplet size variation in the axial position after the point of the injection of the liquid were also evaluated for the different injection configurations. The experimental results showed that an increase in the liquid flow rate generated greater interaction between jets. The number of orifices had a significant influence on droplet size. In general, the increase in the velocity of the liquid jet and in the gas velocity favored the atomization process by reducing the size of the droplets

  9. Experimental investigation on the effect of liquid injection by multiple orifices in the formation of droplets in a Venturi scrubber.

    Science.gov (United States)

    Guerra, V G; Gonçalves, J A S; Coury, J R

    2009-01-15

    Venturi scrubbers are widely utilized in gas cleaning. The cleansing elements in these scrubbers are droplets formed from the atomization of a liquid into a dust-laden gas. In industrial scrubbers, this liquid is injected through several orifices so that the cloud of droplets can be evenly distributed throughout the duct. The interaction between droplets when injected through many orifices, where opposite clouds of atomized liquid can reach each other, is to be expected. This work presents experimental measurements of droplet size measured in situ and the evidence of cloud interaction within a Venturi scrubber operating with multi-orifice jet injection. The influence of gas velocity, liquid flow rate and droplet size variation in the axial position after the point of the injection of the liquid were also evaluated for the different injection configurations. The experimental results showed that an increase in the liquid flow rate generated greater interaction between jets. The number of orifices had a significant influence on droplet size. In general, the increase in the velocity of the liquid jet and in the gas velocity favored the atomization process by reducing the size of the droplets.

  10. Characteristics and possibilities of some techniques for de-oiling of production water

    International Nuclear Information System (INIS)

    van den Broek, W.M.G.T.; Plat, R.

    1991-01-01

    This paper discusses briefly a number of separation techniques for the treatment of water produced during oil production and gives some advantages and drawbacks. Plate separation and centrifugation are subject to investigation in our laboratory; these techniques are treated in more detail. The characteristic parameters critical oil droplet diameter and separator capacity are defined, and for both plate separation and centrifugation on example of a calculation with these parameters is given. Furthermore some results of laboratory experiments are presented. Finally, ideas for improving both the plate separation technique and the centrifugation technique are discussed. it is expected that critical oil droplet diameters of about 10 μm (plate separation) and less than 1 μm (centrifugation) are achievable

  11. Characterization of Whey Protein Oil-In-Water Emulsions with Different Oil Concentrations Stabilized by Ultra-High Pressure Homogenization

    Directory of Open Access Journals (Sweden)

    Essam Hebishy

    2017-02-01

    Full Text Available In this study, the effect of ultra-high-pressure homogenization (UHPH: 100 or 200 MPa at 25 °C, in comparison to colloid mill (CM: 5000 rpm at 20 °C and conventional homogenization (CH: 15 MPa at 60 °C, on the stability of oil-in-water emulsions with different oil concentrations (10, 30 or 50 g/100 g emulsified by whey protein isolate (4 g/100 g was investigated. Emulsions were characterized for their microstructure, rheological properties, surface protein concentration (SPC, stability to creaming and oxidative stability under light (2000 lux/m2. UHPH produced emulsions containing lipid droplets in the sub-micron range (100–200 nm and with low protein concentrations on droplet surfaces. Droplet size (d3.2, µm was increased in CH and UHPH emulsions by increasing the oil concentration. CM emulsions exhibited Newtonian flow behaviour at all oil concentrations studied; however, the rheological behaviour of CH and UHPH emulsions varied from Newtonian flow (n ≈ 1 to shear-thinning (n ˂ 1 and thixotropic behaviour in emulsions containing 50% oil. This was confirmed by the non-significant differences in the d4.3 (µm value between the top and bottom of emulsions in tubes left at room temperature for nine days and also by a low migration velocity measured with a Turbiscan LAB instrument. UHPH emulsions showed significantly lower oxidation rates during 10 days storage in comparison to CM and CH emulsions as confirmed by hydroperoxides and thiobarbituric acid-reactive substances (TBARS. UHPH emulsions treated at 100 MPa were less oxidized than those treated at 200 MPa. The results from this study suggest that UHPH treatment generates emulsions that have a higher stability to creaming and lipid oxidation compared to colloid mill and conventional treatments.

  12. Development of Permeable Reactive Barriers (PRB) Using Edible Oils

    Science.gov (United States)

    2008-06-01

    naturally occurring processes of advection and dispersion to bring the contaminants to the treatment barrier. A large scale approach would be to form a...process has been developed for distributing soybean oil as an oil-in-water emulsion consisting of small oil droplets dispersed in a continuous...Thiele Kaolin Company, Sandersville, Georgia) was added to certain materials to evaluate the effect of increasing clay content. Grain size

  13. Coupling liquid chromatography/mass spectrometry detection with microfluidic droplet array for label-free enzyme inhibition assay.

    Science.gov (United States)

    Wang, Xiu-Li; Zhu, Ying; Fang, Qun

    2014-01-07

    In this work, the combination of droplet-based microfluidics with liquid chromatography/mass spectrometry (LC/MS) was achieved, for providing a fast separation and high-information-content detection method for the analysis of nanoliter-scale droplets with complex compositions. A novel interface method was developed using an oil-covered droplet array chip to couple with an LC/MS system via a capillary sampling probe and a 4 nL injection valve without the need of a droplet extraction device. The present system can perform multistep operations including parallel enzyme inhibition reactions in nanoliter droplets, 4 nL sample injection, fast separation with capillary LC, and label-free detection with ESI-MS, and has significant flexibility in the accurate addressing and sampling of droplets of interest on demand. The system performance was evaluated using angiotensin I and angiotensin II as model samples, and the repeatabilities of peak area for angiotensin I and angiotensin II were 2.7% and 7.5% (RSD, n = 4), respectively. The present system was further applied to the screening for inhibitors of cytochrome P450 (CYP1A2) and measurement of the IC50 value of the inhibitor. The sample consumption for each droplet assay was 100 nL, which is reduced 10-100 times compared with conventional 384-multi-well plate systems usually used in high-throughput drug screening.

  14. Probing the evaporation of ternary ethanol-methanol-water droplets by cavity enhanced Raman scattering.

    Science.gov (United States)

    Howle, Chris R; Homer, Chris J; Hopkins, Rebecca J; Reid, Jonathan P

    2007-10-21

    Cavity enhanced Raman scattering is used to characterise the evolving composition of ternary aerosol droplets containing methanol, ethanol and water during evaporation into a dry nitrogen atmosphere. Measurements made using non-linear stimulated Raman scattering from these ternary alcohol-water droplets allow the in situ determination of the concentration of the two alcohol components with high accuracy. The overlapping spontaneous Raman bands of the two alcohol components, arising from C-H stretching vibrational modes, are spectrally-resolved in stimulated Raman scattering measurements. We also demonstrate that the evaporation measurements are consistent with a quasi-steady state evaporation model, which can be used to interpret the evaporation dynamics occurring at a range of pressures at a particular evaporation time.

  15. Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources

    Energy Technology Data Exchange (ETDEWEB)

    Spinti, Jennifer [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Birgenheier, Lauren [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Deo, Milind [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Facelli, Julio [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Hradisky, Michal [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Kelly, Kerry [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Miller, Jan [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); McLennan, John [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Ring, Terry [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Ruple, John [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Uchitel, Kirsten [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States)

    2015-09-30

    This report summarizes the significant findings from the Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources program sponsored by the Department of Energy through the National Energy Technology Laboratory. There were four principle areas of research; Environmental, legal, and policy issues related to development of oil shale and oil sands resources; Economic and environmental assessment of domestic unconventional fuels industry; Basin-scale assessment of conventional and unconventional fuel development impacts; and Liquid fuel production by in situ thermal processing of oil shale Multiple research projects were conducted in each area and the results have been communicated via sponsored conferences, conference presentations, invited talks, interviews with the media, numerous topical reports, journal publications, and a book that summarizes much of the oil shale research relating to Utah’s Uinta Basin. In addition, a repository of materials related to oil shale and oil sands has been created within the University of Utah’s Institutional Repository, including the materials generated during this research program. Below is a listing of all topical and progress reports generated by this project and submitted to the Office of Science and Technical Information (OSTI). A listing of all peer-reviewed publications generated as a result of this project is included at the end of this report; Geomechanical and Fluid Transport Properties 1 (December, 2015); Validation Results for Core-Scale Oil Shale Pyrolysis (February, 2015); and Rates and Mechanisms of Oil Shale Pyrolysis: A Chemical Structure Approach (November, 2014); Policy Issues Associated With Using Simulation to Assess Environmental Impacts (November, 2014); Policy Analysis of the Canadian Oil Sands Experience (September, 2013); V-UQ of Generation 1 Simulator with AMSO Experimental Data (August, 2013); Lands with Wilderness Characteristics, Resource Management Plan Constraints, and Land Exchanges

  16. Measurement of grid spacer's enhanced droplet cooling under reflood condition in a PWR by LDA

    International Nuclear Information System (INIS)

    Lee, S.L.; Sheen, H.J.; Cho, S.K.; Issapour, I.; Hua, S.Q.

    1984-01-01

    Reported is an experiment designed for the measurements of grid spacer's enhanced droplet cooling under reflood condition at elevated temperatures in a steam environment. The flow channel consists of a simulated 1.60m-long pressurized water reactor (PWR) fuel rod bundle of 2 x 2 electrically heated rods. Embedded thermocouples are used to measure the rod cladding temperature at various axial levels and an unshielded Chromel-Alumel thermocouple sheathed by a small Inconel tube is traversed in the center of the subchannel to measure the temperatures of the water and steam coolant phases at various levels. The droplet dynamics across the grid spacer is directly obtained by a special laser-Doppler anemometry technique for the in situ simultaneous measurement of velocity and size of droplets through two observation windows on the test channel, one immediately before and one immediately after the grid spacer. Some results are presented and analyzed

  17. Transient heating and evaporation of moving fuel droplets

    DEFF Research Database (Denmark)

    Yin, Chungen

    2014-01-01

    In combustion devices involving direct injection of low-volatility liquid fuel (e.g., bio-oils from pyrolysis process) into the combustor, transient heating and vaporization is an important controlling factor in ignition and combustion of the fuel vapor/air mixture. As a result, quite many...... experimental and numerical efforts have been made on this topic. In this paper, a comprehensive 3D model that addresses the internal circulation, heat and mass transfer within a moving droplet has been successfully developed. The model is calibrated by analytical solutions for simplified cases and validated...

  18. Can a droplet break up under flow without elongating? Fragmentation of smectic monodisperse droplets

    Science.gov (United States)

    Courbin, L.; Engl, W.; Panizza, P.

    2004-06-01

    We study the fragmentation under shear flow of smectic monodisperse droplets at high volume fraction. Using small angle light scattering and optical microscopy, we reveal the existence of a break-up mechanism for which the droplets burst into daughter droplets of the same size. Surprisingly, this fragmentation process, which is strain controlled and occurs homogeneously in the cell, does not require any transient elongation of the droplets. Systematic experiments as a function of the initial droplet size and the applied shear rate show that the rupture is triggered by an instability of the inner droplet structure.

  19. Comparative Demonstration of Active and Semi-Passive In Situ Bioremediation Approaches for Perchlorate Impacted Groundwater: Active In Situ Bioremediation Demonstration

    Science.gov (United States)

    2013-04-01

    http://www.itrcweb.org/Documents/PERC-1.pdf • ITRC Perchlorate Team. 2008. Remediation Technologies for Perchlorate Contamination in Water and Soil ...pdf • Solutions EIS. 2006. Protocol for Enhanced In Situ Bioremediation Using Emulsified Vegetable Oil . Prepared for ESTCP. May 2006. • http...Air Force. 2007. Protocol for In Situ Bioremediation of Chlorinated Solvents Using Edible Oil . Prepared for AFCEC - Environmental Science Division

  20. Dual-nozzle microfluidic droplet generator

    Science.gov (United States)

    Choi, Ji Wook; Lee, Jong Min; Kim, Tae Hyun; Ha, Jang Ho; Ahrberg, Christian D.; Chung, Bong Geun

    2018-05-01

    The droplet-generating microfluidics has become an important technique for a variety of applications ranging from single cell analysis to nanoparticle synthesis. Although there are a large number of methods for generating and experimenting with droplets on microfluidic devices, the dispensing of droplets from these microfluidic devices is a challenge due to aggregation and merging of droplets at the interface of microfluidic devices. Here, we present a microfluidic dual-nozzle device for the generation and dispensing of uniform-sized droplets. The first nozzle of the microfluidic device is used for the generation of the droplets, while the second nozzle can accelerate the droplets and increase the spacing between them, allowing for facile dispensing of droplets. Computational fluid dynamic simulations were conducted to optimize the design parameters of the microfluidic device.

  1. Motion of an Oil Droplet Through a Water-Filled Uneven Pore Déplacement d'une gouttelette d'huile à travers un pore irrégulier rempli d'eau

    Directory of Open Access Journals (Sweden)

    Singhal A. K.

    2006-11-01

    Full Text Available The need to understand various mechanisms governing fluid-fluid displacements associated with enhanced oil recovery provides the motivation for this study. The observation of apparently linear dependence of flow rates upon pressure gradients during multiphase flow through porous media conceals the true nature of displacement phenomena such as Haine's jumps, droplet break-up, coalescence, etc. Most of these phenomena are understood only qualitatively. This study is on attempt to quantitatively describe them for a specific idealized pore geometry using approximate quasi steady-state calculations. The progress of a non-wetting oil droplet down a periodically convergent-divergent pore, the basic unit of which is a truncated bicone, shows a fluctuating, piecewise continuous track that resembles Haine's jumps. In addition to Haine's jumps, variations in the motion of droplets may also occur due to their break-up, coolescence or the instability of their interfacial configurations. Different parts of a droplet may be required to adjust to different curvatures and sometimes it may fail to maintain a constant mean curvature throughout its interface. Consequently, while flowing through constrictions, a droplet may break-up. Some portions of broken droplets may then travel in the middle of the pore and sometimes may coalesce with each other in different portions of the pore. The droplets become immobilized whevener the pressure gradients available across them are insufficient to overcome the threshold pressure offered by their interfaces. Possible implications of these phenomena in the entrapment of residual oil, hystereses in capillary pressure and relative permeability curves, and fluctuations in the multiphase flovv of fluids through porous media are discussed. Le besoin de comprendre les divers mécanismes régissant les déplacements de certains fluides par d'autres, déplacements rencontrés dans la récupération assistée du pétrole, constitue la

  2. Microbial communities related to biodegradation of dispersed Macondo oil at low seawater temperature with Norwegian coastal seawater

    Science.gov (United States)

    Brakstad, Odd G; Throne-Holst, Mimmi; Netzer, Roman; Stoeckel, Donald M; Atlas, Ronald M

    2015-01-01

    The Deepwater Horizon (DWH) accident in 2010 created a deepwater plume of small oil droplets from a deepwater well in the Mississippi Canyon lease block 252 (‘Macondo oil’). A novel laboratory system was used in the current study to investigate biodegradation of Macondo oil dispersions (10 μm or 30 μm median droplet sizes) at low oil concentrations (2 mg l−1) in coastal Norwegian seawater at a temperature of 4–5°C. Whole metagenome analyses showed that oil biodegradation was associated with the successive increased abundances of Gammaproteobacteria, while Alphaproteobacteria (Pelagibacter) became dominant at the end of the experiment. Colwellia and Oceanospirillales were related to n-alkane biodegradation, while particularly Cycloclasticus and Marinobacter were associated with degradation of aromatic hydrocarbons (HCs). The larger oil droplet dispersions resulted in delayed sequential changes of Oceanospirillales and Cycloclasticus, related with slower degradation of alkanes and aromatic HCs. The bacterial successions associated with oil biodegradation showed both similarities and differences when compared with the results from DWH field samples and laboratory studies performed with deepwater from the Gulf of Mexico. PMID:26485443

  3. In situ monitoring of the electrochemical dissolution of tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Krebsz, Melinda [Christian Doppler Laboratory for Combinatorial Oxide Chemistry at ICTAS, Johannes Kepler University Linz (Austria); Kollender, Jan Philipp [Institute for Chemical Technology of Inorganic Materials (ICTAS), Johannes Kepler University Linz (Austria); Hassel, Achim Walter [Christian Doppler Laboratory for Combinatorial Oxide Chemistry at ICTAS, Johannes Kepler University Linz (Austria); Institute for Chemical Technology of Inorganic Materials (ICTAS), Johannes Kepler University Linz (Austria)

    2017-09-15

    In the present work, which is aimed to monitor in situ the electrochemical dissolution of tungsten by using a Flow-Type Scanning Droplet Cell Microscope (FT-SDCM) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS), novel results are reported. The anodic oxide growth and its dissolution on the surface of W have been monitored in situ. The results of this current study show the importance of coupling electrochemical experiments to ICP-MS. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. The Newfoundland oil spill burn experiment

    International Nuclear Information System (INIS)

    Fingas, M.

    1992-01-01

    A major offshore oil-spill combustion experiment is being planned for waters off Newfoundland. The experiment is designed to answer outstanding questions on the acceptability of in-situ oil spill burning. In the experiment, variables will be controlled to allow quantitative measurement of the scientific and operational parameters that will enhance understanding of in-situ combustion as an operational oil-spill response technique. The proposed full-scale tests follow six years of testing in laboratory tanks. Analyses have shown that the high temperatures reached during efficient in-situ combustion result in relatively complete destruction of the oil. Tests have shown that the most important factor in this regard is that the oil must be thickened sufficiently before effective burning will occur. Such thickening is potentially possible in the offshore, under suitable wind and sea conditions, using fireproof containment booms. The experiment will involve measurement of emissions to the air, levels of oil in water, and operational parameters of in-situ burning. Time and location of the experiment are chosen to minimize ecological damage and for operational reasons. When suitable conditions are present in early August 1993, two 45-m 3 batches of crude oil will be released into a containment boom and ignited. The burn residue will be recovered mechanically, and a secondary containment and recovery system will be towed behind the fireproof boom to pick up any fugitive oil or residue. 3 figs., 6 tabs

  5. A Numerical Comparison of Spray Combustion between Raw and Water-in-Oil Emulsified Fuel

    Directory of Open Access Journals (Sweden)

    D. Tarlet

    2010-03-01

    Full Text Available Heavy fuel-oils, used engine oils and animal fat can be used as dense, viscous combustibles within industrial boilers. Burning these combustibles in the form of an emulsion with water enables to decrease the flame length and the formation of carbonaceous residue, in comparison with raw combustibles. These effects are due to the secondary atomization among the spray, which is a consequence of the micro-explosion phenomenon. This phenomenon acts in a single emulsion droplet by the fast (< 0.1 ms vaporization of the inside water droplets, leading to complete disintegration of the whole emulsion droplet. First, the present work demonstrates a model of spray combustion of raw fuel. Secondly, the spray combustion of water-in-oil emulsified fuel is exposed to the same burning conditions, taking into account the micro-explosion phenomenon. Finally, the comparison between the results with and without second atomization shows some similar qualitative tendencies with experimental measurements from the literature.

  6. A flow-free droplet-based device for high throughput polymorphic crystallization.

    Science.gov (United States)

    Yang, Shih-Mo; Zhang, Dapeng; Chen, Wang; Chen, Shih-Chi

    2015-06-21

    Crystallization is one of the most crucial steps in the process of pharmaceutical formulation. In recent years, emulsion-based platforms have been developed and broadly adopted to generate high quality products. However, these conventional approaches such as stirring are still limited in several aspects, e.g., unstable crystallization conditions and broad size distribution; besides, only simple crystal forms can be produced. In this paper, we present a new flow-free droplet-based formation process for producing highly controlled crystallization with two examples: (1) NaCl crystallization reveals the ability to package saturated solution into nanoliter droplets, and (2) glycine crystallization demonstrates the ability to produce polymorphic crystallization forms by controlling the droplet size and temperature. In our process, the saturated solution automatically fills the microwell array powered by degassed bulk PDMS. A critical oil covering step is then introduced to isolate the saturated solution and control the water dissolution rate. Utilizing surface tension, the solution is uniformly packaged in the form of thousands of isolating droplets at the bottom of each microwell of 50-300 μm diameter. After water dissolution, individual crystal structures are automatically formed inside the microwell array. This approach facilitates the study of different glycine growth processes: α-form generated inside the droplets and γ-form generated at the edge of the droplets. With precise temperature control over nanoliter-sized droplets, the growth of ellipsoidal crystalline agglomerates of glycine was achieved for the first time. Optical and SEM images illustrate that the ellipsoidal agglomerates consist of 2-5 μm glycine clusters with inner spiral structures of ~35 μm screw pitch. Lastly, the size distribution of spherical crystalline agglomerates (SAs) produced from microwells of different sizes was measured to have a coefficient variation (CV) of less than 5%, showing

  7. Oral microemulsions of paclitaxel: in situ and pharmacokinetic studies.

    Science.gov (United States)

    Nornoo, Adwoa O; Zheng, Haian; Lopes, Luciana B; Johnson-Restrepo, Boris; Kannan, Kurunthachalam; Reed, Rachel

    2009-02-01

    The overall goal of this study was to develop cremophor-free oral microemulsions of paclitaxel (PAC) to enhance its permeability and oral absorption. The mechanism of this enhancement, as well as characteristics of the microemulsions relevant to the increase in permeability and absorption of the low solubility, low permeability PAC was investigated. Phase diagrams were used to determine the macroscopic phase behavior of the microemulsions and to compare the efficiency of different surfactant-oil mixtures to incorporate water. The microemulsion region on the phase diagrams utilizing surfactant-myvacet oil combinations was in decreasing order: lecithin: butanol: myvacet oil (LBM, 48.5%)>centromix CPS: 1-butanol: myvacet oil (CPS, 45.15%)>capmul MCM: polysorbate 80: myvacet oil (CPM, 27.6%)>capryol 90: polysorbate 80: myvacet oil (CP-P80, 23.9%)>capmul: myvacet oil (CM, 20%). Oil-in-water (o/w) microemulsions had larger droplet sizes (687-1010 nm) than the water-in-oil (w/o) microemulsions (272-363 nm) when measured using a Zetasizer nano series particle size analyzer. Utilizing nuclear magnetic resonance spectroscopy (NMR), the self-diffusion coefficient (D) of PAC in CM, LBM and CPM containing 10% of deuterium oxide (D(2)O) was 2.24x10(-11), 1.97x10(-11) and 0.51x10(-11) m(2)/s, respectively. These values indicate the faster molecular mobility of PAC in the two w/o microemulsions (CM and LBM) than the o/w microemulsion--CPM. The in situ permeability of PAC through male CD-IGS rat intestine was 3- and 11-fold higher from LBM and CM, respectively, than that from the control clinical formulation, Taxol (CE, cremophor: ethanol) in a single pass perfusion study. PAC permeability was significantly increased in the presence of the pgp/CYP3A4 inhibitor cyclosporine A (CsA). This enhancement may be attributed to the pgp inhibitory effect of the surfactants, oil and/or the membrane perturbation effect of the surfactants. The oral disposition of PAC in CM, LBM and CPM compared

  8. Small-scale in-situ burn tests to develop operational proficiencies

    International Nuclear Information System (INIS)

    McCarthy, M.W.

    1996-01-01

    A small-scale hands-on in-situ burning experiment was conducted to prepare members of a response community in the event of an actual full scale in-situ burn. Two different styles of fire booms were deployed in open water and exposed to multiple test tank burns. Residual burned crude oil was recovered and the booms decontaminated. The experiments showed that all the methods used to gauge the depth of oil contained in the booms created an element of doubt in their accuracy. The main lessons learned pertained to pre-combustion volume estimation, oil slick ignition, and residue recovery. It was concluded that in-situ burning was a potential technique in oil spill response, but some refinement is still needed to be done with the oil retention booms. The operational costs associated with the experiment were minimal, given the nature of the project. 1 tab

  9. Preparation of microcapsules containing different contents of different kinds of oils by a segregative coacervation method and their characterization

    Directory of Open Access Journals (Sweden)

    LIDIJA B. PETROVIĆ

    2010-05-01

    Full Text Available Microencapsulation of different oils was performed using a segregative coacervation method. In order to microencapsulate, 20 % oil-in-water (O/W emulsions were prepared in a continuous phase consisting of a 1 % mixture of hydroxypropylmethylcellulose (HPMC/sodium carboxymethylcellulose (NaCMC mass ratio (0.7/0.3 and various concentrations (0, 0.35 and 1 % of the anionic surfactant sodium dodecylsulfate (SDS. Various interactions between the components occur in the continuous phase of emulsions, which influence the structure and properties of the adsorption layer around the oil droplets. The formed HPMC/SDS complexes in the presence of NaCMC molecules undergo segregative phase separation and form a coacervate which adsorbs onto the oil droplets, forming the wall of the microcapsules. Sunflower oil, pumpkin seed oil and a mixture of sunflower and linseed oil were used as the core material. Microcapsules in the solid form were obtained by spray drying the emulsions. The stability of the emulsions, the particle size and particle size distribution of the emulsions and suspensions of microcapsules and the oil content of the microcapsules were determined. The influence of the oil kind on the properties of the microcapsules was also investigated. It was found that at 0.35 % SDS, a coacervate layer around the oil droplets forms a stabile, compact microcapsules wall, which prevents oil extraction. The kind of oil influences the properties of the emulsions and microcapsules, which is important in the selection of oils for microencapsulation by this method.

  10. In Situ Antibacterial Activity of Essential Oils with and without Alcohol on Oral Biofilm: A Randomized Clinical Trial

    Directory of Open Access Journals (Sweden)

    Victor Quintas

    2017-11-01

    Full Text Available Currently, there is little evidence on the in situ antibacterial activity of essential oils (EO without alcohol. This study aimed to evaluate in situ the substantivity and antiplaque effect on the plaque-like biofilm (PL-biofilm of two solutions, a traditional formulation that contains EO with alcohol (T-EO and an alcohol-free formulation of EO (Af-EO. Eighteen healthy adults performed a single mouthwash of: T-EO, Af-EO, and sterile water (WATER after wearing an individualized disk-holding splint for 2 days. The bacterial viability (BV and thickness of the PL-biofilm were quantified at baseline, 30 s, and 1, 3, 5, and 7 h post-rinsing (Test 1. Subsequently, each volunteer wore the splint for 4 days, applying two daily mouthwashes of: T-EO, Af-EO, and WATER. The BV, thickness, and covering grade (CG of the PL-biofilm were quantified (Test 2. Samples were analyzed by confocal laser scanning microscopy after staining with the LIVE/DEAD® BacLight™ solution. To conduct the computations of the BV automatically, a Matlab toolbox called Dentius Biofilm was developed. In test 1, both EO antiseptics had a similar antibacterial effect, reducing BV after a single rinse compared to the WATER, and keeping it below baseline levels up to 7 h post-rinse (P < 0.001. The mean thickness of the PL-biofilm after rinsing was not affected by any of the EO formulations and ranged from 18.58 to 20.19 μm. After 4 days, the T-EO and Af-EO solutions were significantly more effective than the WATER, reducing the BV, thickness, and CG of the PL-biofilm (P < 0.001. Although, both EO antiseptics presented a similar bactericidal activity, the Af-EO rinses led to more significant reductions in the thickness and CG of the PL-biofilm than the T-EO rinses (thickness = 7.90 vs. 9.92 μm, P = 0.012; CG = 33.36 vs. 46.61%, P = 0.001. In conclusion, both essential oils antiseptics had very high immediate antibacterial activity and substantivity in situ on the 2-day PL-biofilm after

  11. In situ net N mineralisation and nitrification under organic and conventionally managed olive oil orchards

    DEFF Research Database (Denmark)

    Gomez Muñoz, Beatriz; Hinojosa, M. B.; García-Ruiz, R.

    2015-01-01

    Olive oil orchard occupies a great percentage of the cropland in southern Spain. Thus, changes in nitrogen (N) fertilization might have a great effect on N dynamics at least at regional scale, which should be investigated for a sustainable N fertilization program. In situ net N mineralization (NM......) and nitrification (NN) were investigated during a year in comparable organic (OR) and conventional (CV) olive oil orchards of two locations differing their N input. Soil samples were collected in two soil positions (under and between trees canopy) and both buried-bags and soil core techniques were used to quantify...... soil TN. Soil TN and PMN explained together a 50 % of the variability in soil N availability, which suggests that these two variables are good predictors of the potential of a soil to provide available N. The highest rates of soil N availability were found in spring, when olive tree demand for N...

  12. Oil-in-water lipid emulsions: implications for parenteral and ocular delivering systems.

    Science.gov (United States)

    Tamilvanan, S

    2004-11-01

    Lipid emulsions (LEs) are heterogenous dispersions of two immiscible liquids (oil-in-water or water-in-oil) and they are subjected to various instability processes like aggregation, flocculation, coalescence and hence eventual phase separation according to the second law of thermodynamics. However, the physical stability of the LE can substantially be improved with help of suitable emulsifiers that are capable of forming a mono- or multi-layer coating film around the dispersed liquid droplets in such a way to reduce interfacial tension or to increase droplet-droplet repulsion. Depending on the concentrations of these three components (oil-water-emulsifier) and the efficiency of the emulsification equipments used to reduce droplet size, the final LE may be in the form of oil-in-water (o/w), water-in-oil (w/o), micron, submicron and double or multiple emulsions (o/w/o and w/o/w). The o/w type LEs (LE) are colloidal drug carriers, which have various therapeutic applications. As an intravenous delivery system it incorporates lipophilic water non-soluble drugs, stabilize drugs that tend to undergo hydrolysis and reduce side effects of various potent drugs. When the LE is used as an ocular delivery systems they increase local bioavailability, sustain the pharmacological effect of drugs and decrease systemic side effects of the drugs. Thus, the rationale of using LE as an integral part of effective treatment is clear. Following administration of LE through these routes, the biofate of LE associated bioactive molecules are somehow related to the vehicles disposition kinetics inside blood or eyeball. However, the LE is not devoid from undergoing various bio-process while exerting their efficacious actions. The purpose of this review is therefore to give an implication of LE for parenteral and ocular delivering systems.

  13. Coalescence kinetics of dispersed crude oil in a laboratory reactor

    International Nuclear Information System (INIS)

    Sterling, M.C. Jr.; Ojo, T.; Autenrieth, R.L.; Bonner, J.S.; Page, C.A.; Ernst, A.N.S.

    2002-01-01

    A study was conducted to examine the effects of salinity and mixing energy on the resurfacing and coalescence rates of chemically dispersed crude oil droplets. This kinetic study involved the use of mean shear rates to characterize the mixing energy in a laboratory reactor. Coagulation kinetics of dispersed crude oil were determined within a range of mean shear rates of 5, 10, 15, and 20 per second, and with salinity values of 10 and 30 per cent. Observed droplet distributions were fit to a transport-reaction model to estimate collision efficiency values and their dependence on salinity and mixing energy. Dispersant efficiencies were compared with those derived from other laboratory testing methods. Experimentally determined dispersant efficiencies were found to be 10 to 50 per cent lower than predicted using a non-interacting droplet model, but dispersant efficiencies were higher than those predicted using other testing methods. 24 refs., 1 tab., 3 figs

  14. Ferrofluid-in-oil two-phase flow patterns in a flow-focusing microchannel

    Science.gov (United States)

    Sheu, T. S.; Chen, Y. T.; Lih, F. L.; Miao, J. M.

    This study investigates the two-phase flow formation process of water-based Fe3O4 ferrofluid (dispersed phase) in a silicon oil (continuous phase) flow in the microfluidic flow-focusing microchannel under various operational conditions. With transparent PDMS chip and optical microscope, four main two-phase flow patterns as droplet flow, slug flow, ring flow and churn flow are observed. The droplet shape, size, and formation mechanism were also investigated under different Ca numbers and intended to find out the empirical relations. The paper marks an original flow pattern map of the ferrofluid-in-oil flows in the microfluidic flow-focusing microchannels. The flow pattern transiting from droplet flow to slug flow appears for an operational conditions of QR < 1 and Lf / W < 1. The power law index that related Lf / W to QR was 0.36 in present device.

  15. Microfluidic methods to assess demulsification kinetics for oil-water-separation

    NARCIS (Netherlands)

    Krebs, T.; Schroën, C.G.P.H.; Boom, R.M.

    2012-01-01

    The control of emulsion stability is of crucial importance in the process of crude/oil water separation, which is a key step in industrial oil production. Separation is enhanced if coalescence between droplets takes place, the extent of which will depend on the flow parameters as well as on the

  16. Water/oil type microemulsion systems containing lidocaine hydrochloride: in vitro and in vivo evaluation.

    Science.gov (United States)

    Dogrul, Ahmet; Arslan, Seyda Akkus; Tirnaksiz, Figen

    2014-01-01

    The purpose of this study was to develop a water/oil microemulsion containing lidocaine hydrochloride (4%) and to compare its local anaesthetic efficacy with commercial products. A pseudoternary diagram (Km:1/1 or 1/2) was constructed using lecithin/ethanol/oil/water. The droplet size, viscosity and release of the microemulsions were evaluated. Tail flick tests were conducted for in vivo effectiveness; the initiation time of effect, maximum effect, time to reach maximum effect, and relative efficacy were evaluated. The drug caused a significant increase in droplet size. The use of olive oil resulted in a decrease in the solubilisation parameter, as well as a reduction in the release. The droplet size and viscosity of the microemulsion composed of Miglyol/lecithin/ethanol/water/drug (Km:1/2) was lower than other microemulsions (8.38 nm, 6.9 mPa), and its release rate (1.61 mg/h) was higher. This system had a faster and more efficient anaesthetic effect than the other microemulsions and commercial products. Results indicate that a water/oil type microemulsion (Miglyol/lecithin/ethanol/water) has promising potential to increase the local anaesthetic effect.

  17. SOVENT BASED ENHANCED OIL RECOVERY FOR IN-SITU UPGRADING OF HEAVY OIL SANDS

    Energy Technology Data Exchange (ETDEWEB)

    Munroe, Norman

    2009-01-30

    With the depletion of conventional crude oil reserves in the world, heavy oil and bitumen resources have great potential to meet the future demand for petroleum products. However, oil recovery from heavy oil and bitumen reservoirs is much more difficult than that from conventional oil reservoirs. This is mainly because heavy oil or bitumen is partially or completely immobile under reservoir conditions due to its extremely high viscosity, which creates special production challenges. In order to overcome these challenges significant efforts were devoted by Applied Research Center (ARC) at Florida International University and The Center for Energy Economics (CEE) at the University of Texas. A simplified model was developed to assess the density of the upgraded crude depending on the ratio of solvent mass to crude oil mass, temperature, pressure and the properties of the crude oil. The simplified model incorporated the interaction dynamics into a homogeneous, porous heavy oil reservoir to simulate the dispersion and concentration of injected CO2. The model also incorporated the characteristic of a highly varying CO2 density near the critical point. Since the major challenge in heavy oil recovery is its high viscosity, most researchers have focused their investigations on this parameter in the laboratory as well as in the field resulting in disparaging results. This was attributed to oil being a complex poly-disperse blend of light and heavy paraffins, aromatics, resins and asphaltenes, which have diverse behaviors at reservoir temperature and pressures. The situation is exacerbated by a dearth of experimental data on gas diffusion coefficients in heavy oils due to the tedious nature of diffusivity measurements. Ultimately, the viscosity and thus oil recovery is regulated by pressure and its effect on the diffusion coefficient and oil swelling factors. The generation of a new phase within the crude and the differences in mobility between the new crude matrix and the

  18. Comparison of capacitive and radio frequency resonator sensors for monitoring parallelized droplet microfluidic production

    KAUST Repository

    Conchouso Gonzalez, David

    2016-06-28

    Scaled-up production of microfluidic droplets, through the parallelization of hundreds of droplet generators, has received a lot of attention to bring novel multiphase microfluidics research to industrial applications. However, apart from droplet generation, other significant challenges relevant to this goal have never been discussed. Examples include monitoring systems, high-throughput processing of droplets and quality control procedures among others. In this paper, we present and compare capacitive and radio frequency (RF) resonator sensors as two candidates that can measure the dielectric properties of emulsions in microfluidic channels. By placing several of these sensors in a parallelization device, the stability of the droplet generation at different locations can be compared, and potential malfunctions can be detected. This strategy enables for the first time the monitoring of scaled-up microfluidic droplet production. Both sensors were prototyped and characterized using emulsions with droplets of 100-150 μm in diameter, which were generated in parallelization devices at water-in-oil volume fractions (φ) between 11.1% and 33.3%.Using these sensors, we were able to measure accurately increments as small as 2.4% in the water volume fraction of the emulsions. Although both methods rely on the dielectric properties of the emulsions, the main advantage of the RF resonator sensors is the fact that they can be designed to resonate at multiple frequencies of the broadband transmission line. Consequently with careful design, two or more sensors can be parallelized and read out by a single signal. Finally, a comparison between these sensors based on their sensitivity, readout cost and simplicity, and design flexibility is also discussed. © 2016 The Royal Society of Chemistry.

  19. An in situ polymerization approach for the synthesis of superhydrophobic and superoleophilic nanofibrous membranes for oil-water separation.

    Science.gov (United States)

    Shang, Yanwei; Si, Yang; Raza, Aikifa; Yang, Liping; Mao, Xue; Ding, Bin; Yu, Jianyong

    2012-12-21

    Superhydrophobic and superoleophilic nanofibrous membranes exhibiting robust oil-water separation performance were prepared by a facile combination of electrospun cellulose acetate (CA) nanofibers and a novel in situ polymerized fluorinated polybenzoxazine (F-PBZ) functional layer that incorporated silica nanoparticles (SiO(2) NPs). By employing the F-PBZ/SiO(2) NPs modification, the pristine hydrophilic CA nanofibrous membranes were endowed with a superhydrophobicity with the water contact angle of 161° and a superoleophilicity with the oil contact angle of 3°. Surface morphological studies have indicated that the wettability of resultant membranes could be manipulated by tuning the surface composition as well as the hierarchical structures. The quantitative hierarchical roughness analysis using the N(2) adsorption method has confirmed the major contribution of SiO(2) NPs on enhancing the porous structure, and a detailed correlation between roughness and solid-liquid interface pinning is proposed. Furthermore, the as-prepared membranes exhibited fast and efficient separation for oil-water mixtures and excellent stability over a wide range of pH conditions, which would make them a good candidate in industrial oil-polluted water treatments and oil spill cleanup, and also provided a new insight into the design and development of functional nanofibrous membranes through F-PBZ modification.

  20. Water-in-oil emulsions results of formation studies and applicability to oil spill modelling

    International Nuclear Information System (INIS)

    Fingas, Merv; Fieldhouse, Ben; Mullin, Joe

    1999-01-01

    This paper summarises studies of water-in-oil emulsions, their stability, and modelling of their formation. Studies show that water-in-oil emulsions might be characterised into three categories (stable, mesostable and unstable). These categories were established by visual appearance, elasticity and viscosity difference. It was also shown that water content was not an important factor. A fourth category of water-in-oil exists, that of water entrainment, which is not an emulsion. Water-in-oil emulsions made from crude oils have different classes of stabilities as a result of the asphaltene and resin contents. The differences in the emulsion types are readily distinguished both by their rheological properties, and simply by appearance. The apparent viscosity of a stable emulsion at a shear rate of one reciprocal second, is at least three orders-of-magnitude greater than the starting oil. An unstable emulsion usually has a viscosity no more than one order-of-magnitude greater than that of the starting oil. A stable emulsion has a significant elasticity, whereas an unstable emulsion does not. Stable emulsions have sufficient asphaltenes (>∼7%) to establish films of these compounds around water droplets. Mesostable emulsions have insufficient asphaltenes to render them completely stable. Stability is achieved by visco-elastic retention of water and secondarily by the presence of asphaltene or resin films. Mesostable emulsions display apparent viscosities of about 80-600 times that of the starting oil and true viscosities of 20-200 times that of the starting oil. Mesostable emulsions have an asphaltene and resin content greater than 3%. Entrained water occurs when a viscous oil retains larger water droplets, but conditions are not suitable for the formation of an emulsion. Entrained water may have a viscosity that is similar or slightly greater (∼ 2-10 times) than the starting oil. It was found that emulsion formation occurs at a threshold energy, however this energy

  1. Polymer boosting effect in the droplet phase studied by small-angle neutron scattering

    CERN Document Server

    Frielinghaus, H; Allgaier, J; Richter, D; Jakobs, B; Sottmann, T; Strey, R

    2002-01-01

    Small-angle neutron-scattering experiments were performed in order to obtain the six partial scattering functions of a droplet microemulsion containing water, decane, C sub 1 sub 0 E sub 4 surfactant and PEP sub 5 -PEO sub 8 sub 0. We systematically varied the contrast around the polymer contrast, where only the polymer becomes visible, and we also measured bulk and film contrasts. With the singular value decomposition method we could extract the desired six partial scattering functions from the 15 measured spectra. We find a sphere-shell-shell structure of the droplets, where the innermost sphere consists of oil, the middle shell of surfactant and the outer shell is a depletion zone where the polymer is almost not present. (orig.)

  2. Development and characterization of evening primrose (Oenothera biennis oil nanoemulsions

    Directory of Open Access Journals (Sweden)

    Railane F. Rodrigues

    Full Text Available AbstractEvening primrose (Oenothera biennis L., Onagraceae seeds oil has great economic importance due to its wide industrial application, mainly for medicines and nutraceutics. However, to our knowledge, it remains almost unexplored regarding development of innovative formulations, such as nanoemulsions. On the present study, required Hydroprophile–Lipophile Balance of evening primrose seeds oil was determined (HLB 12 and a stable nanoemulsion (Day 1: mean droplet size: 214.3 ± 0.69 nm, polydispersity index: 0.253 ± 0.012. Day 7: mean droplet size: 202.8 ± 0.23 nm, polydispersity index: 0.231 ± 0.008 was achieved. Moreover, pseudo-ternary diagram allowed delimitation of nanoemulsion region, contributing to nanobiotechnology of natural products.

  3. Spreading of oil from protein stabilised emulsions at air/water interfaces

    NARCIS (Netherlands)

    Schokker, E.P.; Bos, M.A.; Kuijpers, A.J.; Wijnen, M.E.; Walstra, P.

    2002-01-01

    Spreading of a drop of an emulsion made with milk proteins on air/water interfaces was studied. From an unheated emulsion, all oil molecules could spread onto the air/water interface, indicating that the protein layers around the oil globules in the emulsion droplet were not coherent enough to

  4. Usage of waste products from thermal recycling of plastics waste in enhanced oil recovery or in-situ coal conversion

    Energy Technology Data Exchange (ETDEWEB)

    Fink, M; Fink, J K [Montanuniversitaet Leoben (Austria)

    1998-09-01

    In this contribution a thermal method for crude oil mobilization and in-situ liquefaction of coal is discussed, which will finally yield more organic material, as which has been put in from plastics waste originally into the process. The conversion product from thermal treatment is pumped down into exhausted crude oil reservoirs, where the hydrogen can degrade the residual high viscous oil to cause it to become more prone to flow so that it can be recovered. Such a process will envision two goals: 1. more organic raw material (as crude oil) will be recovered than is initially put in as waste product. 2. atmospheric pollutants from the conversion plant will be trapped in the reservoir, which simplifies the construction of the plant. An analogous process may be performed with coal seams. Coal seams with their high porosity and large specific surface are believed to be in particular useful to filter atmospheric pollutants. Depending on the type of coal the mobilization of organic material by this process may be in the background. (orig./SR)

  5. Arabidopsis SEIPIN Proteins Modulate Triacylglycerol Accumulation and Influence Lipid Droplet Proliferation[OPEN

    Science.gov (United States)

    2015-01-01

    The lipodystrophy protein SEIPIN is important for lipid droplet (LD) biogenesis in human and yeast cells. In contrast with the single SEIPIN genes in humans and yeast, there are three SEIPIN homologs in Arabidopsis thaliana, designated SEIPIN1, SEIPIN2, and SEIPIN3. Essentially nothing is known about the functions of SEIPIN homologs in plants. Here, a yeast (Saccharomyces cerevisiae) SEIPIN deletion mutant strain and a plant (Nicotiana benthamiana) transient expression system were used to test the ability of Arabidopsis SEIPINs to influence LD morphology. In both species, expression of SEIPIN1 promoted accumulation of large-sized lipid droplets, while expression of SEIPIN2 and especially SEIPIN3 promoted small LDs. Arabidopsis SEIPINs increased triacylglycerol levels and altered composition. In tobacco, endoplasmic reticulum (ER)-localized SEIPINs reorganized the normal, reticulated ER structure into discrete ER domains that colocalized with LDs. N-terminal deletions and swapping experiments of SEIPIN1 and 3 revealed that this region of SEIPIN determines LD size. Ectopic overexpression of SEIPIN1 in Arabidopsis resulted in increased numbers of large LDs in leaves, as well as in seeds, and increased seed oil content by up to 10% over wild-type seeds. By contrast, RNAi suppression of SEIPIN1 resulted in smaller seeds and, as a consequence, a reduction in the amount of oil per seed compared with the wild type. Overall, our results indicate that Arabidopsis SEIPINs are part of a conserved LD biogenesis machinery in eukaryotes and that in plants these proteins may have evolved specialized roles in the storage of neutral lipids by differentially modulating the number and sizes of lipid droplets. PMID:26362606

  6. In-situ burning: NIST studies

    International Nuclear Information System (INIS)

    Evans, D.D.

    1992-01-01

    In-situ burning of spilled oil has distinct advantages over other countermeasures. It offers the potential to convert rapidly large quantities of oil into its primary combustion products, carbon dioxide and water, with a small percentage of other unburned and residue byproducts. Because the oil is converted to gaseous products of combustion by burning, the need for physical collection, storage, and transport of recovered fluids is reduced to the few percent of the original spill volume that remains as residue after burning. Burning oil spills produces a visible smoke plume containing smoke particulate and other products of combustion which may persist for many kilometers from the burn. This fact gives rise to public health concerns, related to the chemical content of the smoke plume and the downwind deposition of particulate, which need to be answered. In 1985, a joint Minerals Management Service (MMS) and Environment Canada (EC) in-situ burning research program was begun at the National Institute of Standards and Technology (NIST). This research program was designed to study the burning of large crude oil spills on water and how this burning would affect air quality by quantifying the products of combustion and developing methods to predict the downwind smoke particulate deposition. To understand the important features of in-situ burning, it is necessary to perform both laboratory and mesoscale experiments. Finally, actual burns of spilled oil at sea will be necessary to evaluate the method at the anticipated scale of actual response operations. In this research program there is a continuing interaction between findings from measurements on small fire experiments performed in the controlled laboratory environments of NIST and the Fire Research Institute (FRI) in Japan, and large fire experiments at facilities like the USCG Fire Safety and Test Detachment in Mobile, Alabama where outdoor liquid fuel burns in large pans are possible

  7. Conventional and in situ transesterification of sunflower seed oil for the production of biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Georgogianni, K.G.; Kontominas, M.G.; Pomonis, P.J. [Section of Industrial and Food Chemistry, Department of Chemistry, University of Ioannina 45110-Ioannina (Greece); Avlonitis, D. [Department of Petroleum Technology, TEI of Chalkida, 34600-Kavala (Greece); Gergis, V. [Department of Food Technology, TEI of Athens, 12210-Egaleo (Greece)

    2008-05-15

    In the present work the alkaline transesterification of sunflower seed oil with methanol and ethanol, for the production of biodiesel fuel was studied. Both conventional and in situ transesterification were investigated using low frequency ultrasonication (24 kHz) and mechanical stirring (600 rpm). Use of ultrasonication in conventional transesterification with methanol gave high yields of methyl esters (95%) after a short reaction time (20 min) similar to those using mechanical stirring. Use of ultrasonication in conventional transesterification with ethanol gave similar yields to those using mechanical stirring but significantly lower than respective yields using methanol. In the in situ transesterification the use of ultrasonication and mechanical stirring led to similar high yields (95%) of methyl esters after approximately 20 min of reaction time. In the presence of ethanol use of ultrasonication led to high ester yields (98%) in only 40 min of reaction time while use of mechanical stirring gave lower yields (88%) even after 4 h of reaction time. In situ transesterification gave similar ester yields to those obtained by conventional transesterification being an alternative, efficient and economical process. In all cases a concentration of 2.0% NaOH gave higher ester yields. Reaction rate constants were calculated, using first order reaction kinetics, to be equal to 3.1 x 10{sup -} {sup 3} s{sup -} {sup 1} for conventional transesterification using methanol and 2.0% NaOH, and 9.5 x 10{sup -} {sup 4} s{sup -} {sup 1} using ethanol. (author)

  8. Shock wave-induced evaporation of water droplets in a gas-droplet mixture 646

    NARCIS (Netherlands)

    Goossens, H.W.J.; Cleijne, J.W.; Smolders, H.J.; Dongen, van M.E.H.

    1988-01-01

    A model is presented for the droplet evaporation process induced by a shock wave propagating in a fog. The model is based on the existence of a quasi-steady wet bulb state of the droplets during evaporation. It is shown that for moderate shock strength, Ma = <2,=" and=" droplet=" radii=" in=" the="

  9. Biodegradation of dispersed Macondo crude oil by indigenous Gulf of Mexico microbial communities

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian; Sandoval, Kathia; Ding, Yan [Southeaest Environmental Research Center, Florida International University, North Miami Beach, FL 33181 (United States); Stoeckel, Donald; Minard-Smith, Angela [Battelle 505 King Ave, Columbus, OH 43201 (United States); Andersen, Gary; Dubinsky, Eric A. [Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Atlas, Ronald [Department of Biology, University of Louisville, Louisville, KY 40292 (United States); Gardinali, Piero, E-mail: gardinal@fiu.edu [Southeaest Environmental Research Center, Florida International University, North Miami Beach, FL 33181 (United States); Department of Chemistry & Biochemistry, Florida International University, Miami, FL 33199 (United States)

    2016-07-01

    Because of the extreme conditions of the Deepwater Horizon (DWH) release (turbulent flow at 1500 m depth and 5 °C water temperature) and the sub-surface application of dispersant, small but neutrally buoyant oil droplets < 70 μm were formed, remained in the water column and were subjected to in-situ biodegradation processes. In order to investigate the biodegradation of Macondo oil components during the release, we designed and performed an experiment to evaluate the interactions of the indigenous microbial communities present in the deep waters of the Gulf of Mexico (GOM) with oil droplets of two representative sizes (10 μm and 30 μm median volume diameter) created with Macondo source oil in the presence of Corexit 9500 using natural seawater collected at the depth of 1100–1300 m in the vicinity of the DWH wellhead. The evolution of the oil was followed in the dark and at 5 °C for 64 days by collecting sacrificial water samples at fixed intervals and analyzing them for a wide range of chemical and biological parameters including volatile components, saturated and aromatic hydrocarbons, dispersant markers, dissolved oxygen, nutrients, microbial cell counts and microbial population dynamics. A one phase exponential decay from a plateau model was used to calculate degradation rates and lag times for more than 150 individual oil components. Calculations were normalized to a conserved petroleum biomarker (30αβ-hopane). Half-lives ranged from about 3 days for easily degradable compounds to about 60 days for higher molecular weight aromatics. Rapid degradation was observed for BTEX, 2–3 ring PAHs, and n-alkanes below n-C23. The results in this experimental study showed good agreement with the n-alkane (n-C13 to n-C26) half-lives (0.6–9.5 days) previously reported for the Deepwater Horizon plume samples and other laboratory studies with chemically dispersed Macondo oil conducted at low temperatures (< 8 °C). The responses of the microbial populations also

  10. Encapsulation of Polymethoxyflavones in Citrus Oil Emulsion-Based Delivery Systems.

    Science.gov (United States)

    Yang, Ying; Zhao, Chengying; Chen, Jingjing; Tian, Guifang; McClements, David Julian; Xiao, Hang; Zheng, Jinkai

    2017-03-01

    The purpose of this work was to elucidate the effects of citrus oil type on polymethoxyflavone (PMF) solubility and on the physicochemical properties of PMF-loaded emulsion-based delivery systems. Citrus oils were extracted from mandarin, orange, sweet orange, and bergamot. The major constituents were determined by GC/MS: sweet orange oil (97.4% d-limonene); mandarin oil (72.4% d-limonene); orange oil (67.2% d-limonene); and bergamot oil (34.6% linalyl acetate and 25.3% d-limonene). PMF-loaded emulsions were fabricated using 10% oil phase (containing 0.1% w/v nobiletin or tangeretin) and 90% aqueous phase (containing 1% w/v Tween 80) using high-pressure homogenization. Delivery systems prepared using mandarin oil had the largest mean droplet diameters (386 or 400 nm), followed by orange oil (338 or 390 nm), bergamot oil (129 or 133 nm), and sweet orange oil (122 or 126 nm) for nobiletin- or tangeretin-loaded emulsions, respectively. The optical clarity of the emulsions increased with decreasing droplet size due to reduced light scattering. The viscosities of the emulsions (with or without PMFs) were similar (1.3 to 1.4 mPa·s), despite appreciable differences in oil phase viscosity. The loading capacity and encapsulation efficiency of the emulsions depended on carrier oil type, with bergamot oil giving the highest loading capacity. In summary, differences in the composition and physical characteristics of citrus oils led to PMF-loaded emulsions with different encapsulation and physicochemical characteristics. These results will facilitate the rational design of emulsion-based delivery systems for encapsulation of PMFs and other nutraceuticals in functional foods and beverages.

  11. Organically modified clay removes oil from water

    International Nuclear Information System (INIS)

    Alther, G.R.

    1995-01-01

    When bentonite or other clays and zeolites are modified with quaternary amines, they become organophilic. Such modified bentonites are used to remove mechanically emulsified oil and grease, and other sparingly soluble organics. If the organoclay is granulated, it is placed into a liquid phase carbon filter vessel to remove FOG's and chlorinated hydrocarbons. In this application the clay is mixed with anthrazite to prevent early plugging of the filter by oil or grease droplets. In batch systems a powered organoclay is employed. Types of oil found in water can include fats, lubricants, cutting fluids, heavy hydrocarbons such as tars, grease, crude oil, diesel oils; and light hydrocarbons such as kerosene, jet fuel, and gasoline

  12. Saskatchewan's place in the Canadian oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, L.L. [Saskatchewan Research Council, Saskatoon, SK (Canada); Kramers, J.W. [Owl Ventures Inc., Edmonton, AB (Canada); Isaacs, E.E. [Alberta Energy Research Inst., Calgary, AB (Canada)

    2009-07-01

    This paper provided a detailed description of the oil sands geology and physical properties and highlighted some of the novel recovery technologies that are being developed for shallow in-situ reservoirs in Alberta and Saskatchewan. Canada's oil sands are well known around the world, with Alberta's mined and in-situ oil sands reservoirs being well developed with mature commercial technologies. Shallow in-situ oil sands located in both Saskatchewan and Alberta will be the next frontier in Canadian petroleum development. Shallow reservoirs will need to be developed with new environmentally sound in-situ technologies that will reduce the use of steam and fresh water, and also reduce greenhouse gas emissions. Research and development programs are currently underway to develop and demonstrate such new technologies. It was concluded that innovation has been the key to developing the immense and complex technology oil contained in Canada's heavy oil reservoirs and also in its shallow and deep in-situ oil sands reservoirs. Promising technologies include the solvent vapour extraction and hybrid thermal solvent extraction processes that are being developed and demonstrated in large-scale three-dimensional scaled physical models and associated numerical simulation models. Electrical heating and gravity stable combustion are other examples of technologies that could play a significant role in developing these resources. 88 refs., 3 tabs., 8 figs.

  13. Hydrophobic Janus Foam Motors: Self-Propulsion and On-The-Fly Oil Absorption

    Directory of Open Access Journals (Sweden)

    Xiaofeng Li

    2018-01-01

    Full Text Available In this work, we for the first time have proposed and fabricated a self-propelled Janus foam motor for on-the-fly oil absorption on water by simply loading camphor/stearic acid (SA mixture as fuels into one end of the SA-modified polyvinyl alcohol (PVA foam. The as-fabricated Janus foam motors show an efficient Marangoni effect-based self-propulsion on water for a long lifetime due to the effective inhibition of the rapid release of camphor by the hydrophobic SA in the fuel mixture. Furthermore, they can automatically search, capture, and absorb oil droplets on the fly, and then be spontaneously self-assembled after oil absorption due to the self-propulsion of the motors as well as the attractive capillary interactions between the motors and oil droplets. This facilitates the subsequent collection of the motors from water after the treatment. Since the as-developed Janus foam motors can effectively integrate intriguing behaviors of the self-propulsion, efficient oil capture, and spontaneous self-assembly, they hold great promise for practical applications in water treatment.

  14. Droplet behavior analysis in consideration of droplet entrainment from liquid film in annular dispersed flow

    International Nuclear Information System (INIS)

    Matsuura, Keizo; Otake, Hiroshi; Kataoka, Isao; Serizawa, Akimi

    2000-01-01

    A method of droplet behavior simulation in an annular dispersed flow has been developed. In this method, both droplet deposition and entrainment from liquid film are considered. The Lagrangian method and stochastic model are used to analyze droplet diffusion and deposition behavior in a turbulent flow, and droplet entrainment from liquid film is calculated by an entrainment correlation. For the verification of this method, Gill's experiment is analyzed, in which the transition from annular flow with no entrainment to equilibrium annular dispersed flow was observed. Analysis results can also show the similar transition tendency. The experimental results of radial distribution of droplet mass flux are compared with analysis results. The agreement is good for low liquid flow rate, but entrainment rate must be adjusted for high liquid flow rate, in which gas turbulence is thought to be modified by high droplet density. In future work the effect of high droplet density on turbulence should be considered. (author)

  15. Process for oil shale retorting

    Science.gov (United States)

    Jones, John B.; Kunchal, S. Kumar

    1981-10-27

    Particulate oil shale is subjected to a pyrolysis with a hot, non-oxygenous gas in a pyrolysis vessel, with the products of the pyrolysis of the shale contained kerogen being withdrawn as an entrained mist of shale oil droplets in a gas for a separation of the liquid from the gas. Hot retorted shale withdrawn from the pyrolysis vessel is treated in a separate container with an oxygenous gas so as to provide combustion of residual carbon retained on the shale, producing a high temperature gas for the production of some steam and for heating the non-oxygenous gas used in the oil shale retorting process in the first vessel. The net energy recovery includes essentially complete recovery of the organic hydrocarbon material in the oil shale as a liquid shale oil, a high BTU gas, and high temperature steam.

  16. Electrohydrodynamic simulation of electrically controlled droplet generation

    International Nuclear Information System (INIS)

    Ouedraogo, Yun; Gjonaj, Erion; Weiland, Thomas; Gersem, Herbert De; Steinhausen, Christoph; Lamanna, Grazia; Weigand, Bernhard

    2017-01-01

    Highlights: • We develop a full electrohydrodynamic simulation approach which allows for the accurate modeling of droplet dynamics under the influence of transient electric fields. The model takes into account conductive, capacitive as well as convective electrical currents in the fluid. • Simulation results are shown for an electrically driven droplet generator using highly conductive acetone droplets and low conductivity pentane droplets, respectively. Excellent agreement with measurement is found. • We investigate the operation characteristic of the droplet generator by computing droplet sizes and detachment times with respect to the applied voltage. • The droplet charging effect is demonstrated for pentane droplets as well as for acetone droplets under long voltage pulses. We show that due to the very different relaxation times, the charging behavior of the two liquids is very different. • We demonstrate that due to this behavior, also the detachment mechanisms for acetone and pentane droplets are different. For low conductivity (pentane) droplets, droplet detachment is only possible after the electric fields are switched off. This is because the effective electric polarization force points upwards, thus, inhibiting the detachment of the droplet from the capillary tip. - Abstract: An electrohydrodynamic model for the simulation of droplet formation, detachment and motion in an electrically driven droplet generator is introduced. The numerical approach is based on the coupled solution of the multiphase flow problem with the charge continuity equation. For the latter, a modified convection-conduction model is applied, taking into account conductive, capacitive as well as convective electrical currents in the fluid. This allows for a proper description of charge relaxation phenomena in the moving fluid. In particular, the charge received by the droplet after detachment is an important parameter influencing the droplet dynamics in the test chamber

  17. Layer-by-layer cell membrane assembly

    Science.gov (United States)

    Matosevic, Sandro; Paegel, Brian M.

    2013-11-01

    Eukaryotic subcellular membrane systems, such as the nuclear envelope or endoplasmic reticulum, present a rich array of architecturally and compositionally complex supramolecular targets that are as yet inaccessible. Here we describe layer-by-layer phospholipid membrane assembly on microfluidic droplets, a route to structures with defined compositional asymmetry and lamellarity. Starting with phospholipid-stabilized water-in-oil droplets trapped in a static droplet array, lipid monolayer deposition proceeds as oil/water-phase boundaries pass over the droplets. Unilamellar vesicles assembled layer-by-layer support functional insertion both of purified and of in situ expressed membrane proteins. Synthesis and chemical probing of asymmetric unilamellar and double-bilayer vesicles demonstrate the programmability of both membrane lamellarity and lipid-leaflet composition during assembly. The immobilized vesicle arrays are a pragmatic experimental platform for biophysical studies of membranes and their associated proteins, particularly complexes that assemble and function in multilamellar contexts in vivo.

  18. Lipid oxidation in fish oil enriched oil-in-water emulsions and cream cheese with pre-emulsified fish oil is affected differently by the emulsifier used

    DEFF Research Database (Denmark)

    Horn, Anna Frisenfeldt; Nielsen, Nina Skall; Andersen, Ulf

    It is well-documented that a high intake of long chain omega-3 polyunsaturated fatty acids has several health beneficial effects in humans. Consequently, the interest in food products enriched with marine oils has increased during recent years. However, addition of these highly unsaturated fatty...... will include results from studies on lipid oxidation in simple oil-in-water emulsions prepared with milk proteins alone or combinations of milk proteins and phospholipids. In addition, a study on fish oil enriched cream cheese will be presented. In this study, the cream cheese was enriched with either neat...... acids to foods invariably increases the risk of lipid oxidation. A possible strategy to avoid lipid oxidation and the consecutive development of unpleasant off-flavours is to protect the oil in a delivery emulsion in which the oil droplets are shielded from its possible pro-oxidative surroundings...

  19. A multilayered supramolecular self-assembled structure from soybean oil by in situ polymerization and its applications.

    Science.gov (United States)

    Kavitha, Varadharajan; Gnanamani, Arumugam

    2013-05-01

    The present study emphasizes in situ transformation of soybean oil to self-assembled supramolecular multilayered biopolymer material. The said polymer material was characterized and the entrapment efficacy of both hydrophilic and hydrophobic moieties was studied. In brief, soybean oil at varying concentration was mixed with mineral medium and incubated under agitation (200 rpm) at 37 degrees C for 240 h. Physical observations were made till 240 h and the transformed biopolymer was separated and subjected to physical, chemical and functional characterization. The maximum size of the polymer material was measured as 2 cm in diameter and the cross sectional view displayed the multilayered onion rings like structures. SEM analysis illustrated the presence of multilayered honeycomb channeled structures. Thermal analysis demonstrated the thermal stability (200 degrees C) and high heat enthalpy (1999 J/g). Further, this multilayered assembly was able to entrap both hydrophilic and hydrophobic components simultaneously, suggesting the potential industrial application of this material.

  20. Uniform-droplet spray forming

    Energy Technology Data Exchange (ETDEWEB)

    Blue, C.A.; Sikka, V.K. [Oak Ridge National Lab., TN (United States); Chun, Jung-Hoon [Massachusetts Institute of Technology, Cambridge, MA (United States); Ando, T. [Tufts Univ., Medford, MA (United States)

    1997-04-01

    The uniform-droplet process is a new method of liquid-metal atomization that results in single droplets that can be used to produce mono-size powders or sprayed-on to substrates to produce near-net shapes with tailored microstructure. The mono-sized powder-production capability of the uniform-droplet process also has the potential of permitting engineered powder blends to produce components of controlled porosity. Metal and alloy powders are commercially produced by at least three different methods: gas atomization, water atomization, and rotating disk. All three methods produce powders of a broad range in size with a very small yield of fine powders with single-sized droplets that can be used to produce mono-size powders or sprayed-on substrates to produce near-net shapes with tailored microstructures. The economical analysis has shown the process to have the potential of reducing capital cost by 50% and operating cost by 37.5% when applied to powder making. For the spray-forming process, a 25% savings is expected in both the capital and operating costs. The project is jointly carried out at Massachusetts Institute of Technology (MIT), Tuffs University, and Oak Ridge National Laboratory (ORNL). Preliminary interactions with both finished parts and powder producers have shown a strong interest in the uniform-droplet process. Systematic studies are being conducted to optimize the process parameters, understand the solidification of droplets and spray deposits, and develop a uniform-droplet-system (UDS) apparatus appropriate for processing engineering alloys.

  1. Integration of Gas Enhanced Oil Recovery in Multiphase Fermentations for the Microbial Production of Fuels and Chemicals

    NARCIS (Netherlands)

    Pedraza de la Cuesta, S.; van der Wielen, L.A.M.; Cuellar Soares, M.C.

    2018-01-01

    In multiphase fermentations where the product forms a second liquid phase or where solvents are added for product extraction, turbulent conditions disperse the oil phase as droplets. Surface-active components (SACs) present in the fermentation broth can stabilize the product droplets thus forming

  2. Smoke plume trajectory from in-situ burning of crude oil: complex terrain modeling

    International Nuclear Information System (INIS)

    McGrattan, K.

    1997-01-01

    Numerical models have been used to predict the concentration of particulate matter or other combustion products downwind from a proposed in- situ burning of an oil spill. One of the models used was the National Institute of Standards and Technology (NIST) model, ALOFT (A Large Outdoor Fire plume Trajectory), which is based on the conservation equations that govern the introduction of hot gases and particulate matter into the atmosphere. By using a model based on fundamental equations, it becomes a relatively simple matter to simulate smoke dispersal flow patterns, and to compute the solution to the equations of motion that govern the transport of pollutants in the lower atmosphere at a resolution that is comparable to that of the underlying terrain data. 9 refs., 2 tabs., 5 figs

  3. ADIOS-automated data inquiry for oil spills

    International Nuclear Information System (INIS)

    Lehr, W.J.; Overstreet, R.; Jones, R.; Watabayashi, G.

    1992-01-01

    An intelligent computer database called ADIOS has been developed which stores properties of several hundred oils and oil products and which is combined with a model for oil weathering. Environmental data are input by the user through a menu-driven graphic interface. The format of the output is designed to provide immediate information for oil spill cleanup decisions. Typical output information includes changes in key physical parameters (density, viscosity, water content of emulsions) over time and an oil loss budget at any specific time. The model includes algorithms for spill spreading, evaporation, entrainment, droplet size distributions, rate of mousse formation, and changes in density and viscosity. ADIOS will eventually be part of a larger spill model which includes oil transport. ADIOS calculations are presented as either pie charts or graphs. 21 refs., 2 figs

  4. Preparation of Biodiesel of Undi seed with In-situ Transesterification

    Directory of Open Access Journals (Sweden)

    Sanjaykumar DALVI

    2012-08-01

    Full Text Available The biodiesel fraction from oil content of Undi (Calophyllum innophyllum L. is found 60-70%. The extraction of oil is a primary step in any biodiesel production system. To escape this step in-situ transesterification method is used in which the Undi seed crush is directly converted into biodiesel with in-situ transesterification which is fatty acid methyl and ethyl ester composition. The single step reaction is eco-friendly as hexane like solvents not have been used for oil extraction. These components of biodiesel were analysed by GC-MS technique.

  5. Hydrodynamics of a quark droplet

    DEFF Research Database (Denmark)

    Bjerrum-Bohr, Johan J.; Mishustin, Igor N.; Døssing, Thomas

    2012-01-01

    We present a simple model of a multi-quark droplet evolution based on the hydrodynamical description. This model includes collective expansion of the droplet, effects of the vacuum pressure and surface tension. The hadron emission from the droplet is described following Weisskopf's statistical...

  6. Evaporation of inclined water droplets

    Science.gov (United States)

    Kim, Jin Young; Hwang, In Gyu; Weon, Byung Mook

    2017-01-01

    When a drop is placed on a flat substrate tilted at an inclined angle, it can be deformed by gravity and its initial contact angle divides into front and rear contact angles by inclination. Here we study on evaporation dynamics of a pure water droplet on a flat solid substrate by controlling substrate inclination and measuring mass and volume changes of an evaporating droplet with time. We find that complete evaporation time of an inclined droplet becomes longer as gravitational influence by inclination becomes stronger. The gravity itself does not change the evaporation dynamics directly, whereas the gravity-induced droplet deformation increases the difference between front and rear angles, which quickens the onset of depinning and consequently reduces the contact radius. This result makes the evaporation rate of an inclined droplet to be slow. This finding would be important to improve understanding on evaporation dynamics of inclined droplets. PMID:28205642

  7. Liquid droplet radiator technology issues

    International Nuclear Information System (INIS)

    Mattick, A.T.; Hertzberg, A.

    1985-01-01

    The operation of the liquid droplet radiator (LDR) is analyzed to establish design constraints for the LDR components and to predict the performance of an integrated LDR system. The design constraints largely result from mass loss considerations: fluid choice is governed by evaporation loss; droplet generation techniques must be capable of precise aiming of >10 5 droplet streams; and collection losses must be less than 1 droplet in 10 7 . Concepts for droplet generation and collection components are discussed and incorporated into a mass model for an LDR system. This model predicts that LDR's using lithium, Dow 705 silicone fluid, or NaK may be several times lighter than heat pipe radiators. 13 refs

  8. Role of clove oil in solvent exchange-induced doxycycline hyclate-loaded Eudragit RS in situ forming gel

    Directory of Open Access Journals (Sweden)

    Thawatchai Phaechamud

    2018-03-01

    Full Text Available Solvent exchange induced in situ forming gel (ISG is the promising drug delivery system for periodontitis treatment owing to the prospect of maintaining an effective high drug level in the gingival crevicular fluid. In the present study, the influence of clove oil (CO on the characteristics of doxycycline hyclate (DH-loaded ISG comprising Eudragit RS (ERS was investigated including viscosity/rheology, syringeability, in vitro gel formation/drug release, matrix formation/solvent diffusion and antimicrobial activities. CO could dissolve ERS and increase the viscosity of ISG and its hydrophobicity could also retard the diffusion of solvent and hinder the drug diffusion; thus, the minimization of burst effect and sustained drug release were achieved effectively. All the prepared ISGs comprising CO could expel through the 27-gauge needle for administration by injection and transform into matrix depot after exposure to the simulated gingival crevicular fluid. The antimicrobial activities against Staphylococcus aureus, Escherichia coli, Streptococcus mutans and Porphyromonas gingivalis were increased when the ratio of CO and N-methyl pyrrolidone (NMP was decreased from 1:1 to 1:10 owing to higher diffusion of DH except that for C. albicans was increased as CO amount was higher. Therefore, CO could minimize the burst while prolonging the drug release of DH-loaded ERS ISG for use as a local drug delivery system for periodontitis treatment. Keywords: In situ forming gel, Eudragit RS, Clove oil, Doxycycline hyclate, Periodonditis, Burst release

  9. Heteroaggregation of lipid droplets coated with sodium caseinate and lactoferrin.

    Science.gov (United States)

    de Figueiredo Furtado, Guilherme; Michelon, Mariano; de Oliveira, Davi Rocha Bernardes; da Cunha, Rosiane Lopes

    2016-11-01

    Formation and characterization of droplet heteroaggregates were investigated by mixing two emulsions previously stabilized by proteins oppositely charged. Emulsions were composed of 5vol.% of sunflower oil and 95vol.% of sodium caseinate or lactoferrin aqueous dispersions. They were produced using ultrasound with fixed power (300W) and sonication time (6min). Different volume ratios (0-100%) of sodium caseinate-stabilized emulsion (droplet diameter around 1.75μm) to lactoferrin-stabilized emulsion (droplet diameter around 1.55μm) were mixed under conditions that both proteins showed opposite charges (pH7). Influence of ionic strength (0-400mM NaCl) on the heteroaggregates stability was also evaluated. Creaming stability, zeta potential, microstructure, mean particle diameter and rheological properties of the heteroaggregates were measured. These properties depended on the volume ratio (0-100%) of sodium caseinate to lactoferrin-stabilized emulsion (C:L) and the ionic strength. In the absence of salt, different zeta potential values were obtained, rheological properties (viscosity and elastic moduli) were improved and the largest heteroaggregates were formed at higher content of lactoferrin-stabilized emulsion (60-80%). The system containing 40 and 60vol.% of sodium caseinate and lactoferrin stabilized emulsion, respectively, presented good stability against phase separation besides showing enhanced rheological and size properties due to extensive droplets aggregation. Phase separation was observed only in the absence of sodium caseinate, demonstrating the higher susceptibility of lactoferrin to NaCl. The heteroaggregates produced may be useful functional agents for texture modification and controlled release since different rheological properties and sizes can be achieved depending on protein concentrations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Statistically Enhanced Model of In Situ Oil Sands Extraction Operations: An Evaluation of Variability in Greenhouse Gas Emissions.

    Science.gov (United States)

    Orellana, Andrea; Laurenzi, Ian J; MacLean, Heather L; Bergerson, Joule A

    2018-02-06

    Greenhouse gas (GHG) emissions associated with extraction of bitumen from oil sands can vary from project to project and over time. However, the nature and magnitude of this variability have yet to be incorporated into life cycle studies. We present a statistically enhanced life cycle based model (GHOST-SE) for assessing variability of GHG emissions associated with the extraction of bitumen using in situ techniques in Alberta, Canada. It employs publicly available, company-reported operating data, facilitating assessment of inter- and intraproject variability as well as the time evolution of GHG emissions from commercial in situ oil sands projects. We estimate the median GHG emissions associated with bitumen production via cyclic steam stimulation (CSS) to be 77 kg CO 2 eq/bbl bitumen (80% CI: 61-109 kg CO 2 eq/bbl), and via steam assisted gravity drainage (SAGD) to be 68 kg CO 2 eq/bbl bitumen (80% CI: 49-102 kg CO 2 eq/bbl). We also show that the median emissions intensity of Alberta's CSS and SAGD projects have been relatively stable from 2000 to 2013, despite greater than 6-fold growth in production. Variability between projects is the single largest source of variability (driven in part by reservoir characteristics) but intraproject variability (e.g., startups, interruptions), is also important and must be considered in order to inform research or policy priorities.

  11. Evaluating the capabilities and uncertainties of droplet measurements for the fog droplet spectrometer (FM-100

    Directory of Open Access Journals (Sweden)

    J. K. Spiegel

    2012-09-01

    Full Text Available Droplet size spectra measurements are crucial to obtain a quantitative microphysical description of clouds and fog. However, cloud droplet size measurements are subject to various uncertainties. This work focuses on the error analysis of two key measurement uncertainties arising during cloud droplet size measurements with a conventional droplet size spectrometer (FM-100: first, we addressed the precision with which droplets can be sized with the FM-100 on the basis of the Mie theory. We deduced error assumptions and proposed a new method on how to correct measured size distributions for these errors by redistributing the measured droplet size distribution using a stochastic approach. Second, based on a literature study, we summarized corrections for particle losses during sampling with the FM-100. We applied both corrections to cloud droplet size spectra measured at the high alpine site Jungfraujoch for a temperature range from 0 °C to 11 °C. We showed that Mie scattering led to spikes in the droplet size distributions using the default sizing procedure, while the new stochastic approach reproduced the ambient size distribution adequately. A detailed analysis of the FM-100 sampling efficiency revealed that particle losses were typically below 10% for droplet diameters up to 10 μm. For larger droplets, particle losses can increase up to 90% for the largest droplets of 50 μm at ambient wind speeds below 4.4 m s−1 and even to >90% for larger angles between the instrument orientation and the wind vector (sampling angle at higher wind speeds. Comparisons of the FM-100 to other reference instruments revealed that the total liquid water content (LWC measured by the FM-100 was more sensitive to particle losses than to re-sizing based on Mie scattering, while the total number concentration was only marginally influenced by particle losses. Consequently, for further LWC measurements with the FM-100 we strongly recommend to consider (1 the

  12. The environmental radiation monitoring system and in-situ measurements for early notification and OIL (Operational Intervention Levels) calculations

    International Nuclear Information System (INIS)

    Haquin, G.; Ne'eman, E.; Brenner, S.; Lavi, N.

    1997-01-01

    The efficiency of the environmental radiation monitoring, low level laboratory and in-situ gamma-ray spectrometry are evaluated as the systems for early notification and for determination of dose rate in air, surface contamination and activity concentration in food during emergencies for Operational Intervention Levels (OIL) recalculation.The National Environmental Radiation Monitoring System has proved its efficiency in the early detection of unregistered radiography work. A mobile station of the network can be used for absorbed dose rate measurement during emergencies in contaminated areas. The calibrated in-situ gamma-ray spectrometry system in an open phosphate ore mine has showed the efficiency of this technique for fast and accurate determination of soil activity concentration. The calibration for an uniform depth distribution can be easily mathematically converted to an exponential depth distribution in cases of radioactive material fallout

  13. Microfluidic preparation and self diffusion PFG-NMR analysis of monodisperse water-in-oil-in-water double emulsions.

    Science.gov (United States)

    Hughes, Eric; Maan, Abid Aslam; Acquistapace, Simone; Burbidge, Adam; Johns, Michael L; Gunes, Deniz Z; Clausen, Pascal; Syrbe, Axel; Hugo, Julien; Schroen, Karin; Miralles, Vincent; Atkins, Tim; Gray, Richard; Homewood, Philip; Zick, Klaus

    2013-01-01

    Monodisperse water-in-oil-in-water (WOW) double emulsions have been prepared using microfluidic glass devices designed and built primarily from off the shelf components. The systems were easy to assemble and use. They were capable of producing double emulsions with an outer droplet size from 100 to 40 μm. Depending on how the devices were operated, double emulsions containing either single or multiple water droplets could be produced. Pulsed-field gradient self-diffusion NMR experiments have been performed on the monodisperse water-in-oil-in-water double emulsions to obtain information on the inner water droplet diameter and the distribution of the water in the different phases of the double emulsion. This has been achieved by applying regularization methods to the self-diffusion data. Using these methods the stability of the double emulsions to osmotic pressure imbalance has been followed by observing the change in the size of the inner water droplets over time. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. High internal phase emulsion (HIPE)-templated biopolymeric oleofilms containing an ultra-high concentration of edible liquid oil.

    Science.gov (United States)

    Wijaya, Wahyu; Van der Meeren, Paul; Dewettinck, Koen; Patel, Ashok R

    2018-04-25

    We report, for the first time, the fabrication of oleofilms (containing more than 97 wt% edible liquid oil) using high internal phase emulsions (with oil volume fraction φoil = 0.82) as templates. Advanced microscopy studies revealed an interesting microstructure of these films where jammed oil droplets were embedded in a dried matrix of biopolymeric complexes.

  15. Effects of chemical dispersants on oil physical properties and dispersion. Volume 1

    International Nuclear Information System (INIS)

    Khelifa, A.; Fingas, M.; Hollebone, B.P.; Brown, C.E.; Pjontek, D.

    2007-01-01

    Laboratory and field testing have shown that the dispersion of oil spilled in water is influenced by chemical dispersants via the modification of the interfacial properties of the oil, such as oil-brine interfacial tension (IFT). This study focused on new laboratory experiments that measured the effects on the physical properties and dispersion of oil, with particular reference to the effects of chemical dispersants on IFT and oil viscosity and the subsequent effects on oil droplet formation. Experiments were conducted at 15 degrees C using Arabian Medium, Alaska North Slope and South Louisiana crude and Corexit 9500 and Corexit 9527 chemical dispersants. The dispersants were denser than the 3 oils. The effect of IFT reduction on oil dispersion was measured and showed substantial reduction in the size and enhancement of the concentration of oil droplets in the water column. It was shown that the brine-oil IFT associated with the 3 crudes reduced to less than 3.6 mN/m with the application of the chemical dispersants, even at a low dispersant-to-oil ratio (DOR) value of 1:200. The use of chemical dispersants increased the viscosity of the dispersant-oil mixture up to 40 per cent over the neat crude oil. It was shown that for each mixing condition, an optimum value of DOR exists that provides for maximal dispersant effectiveness. The IFT reaches maximum reduction at optimum DOR. It was suggested that oil spill modelling can be improved with further study of IFT reduction with DOR and variations of critical micelle concentration with the type and solubility of chemical dispersant, oil type and oil to water ratio. 13 refs., 3 tabs., 7 figs

  16. A parameterization of cloud droplet nucleation

    International Nuclear Information System (INIS)

    Ghan, S.J.; Chuang, C.; Penner, J.E.

    1993-01-01

    Droplet nucleation is a fundamental cloud process. The number of aerosols activated to form cloud droplets influences not only the number of aerosols scavenged by clouds but also the size of the cloud droplets. Cloud droplet size influences the cloud albedo and the conversion of cloud water to precipitation. Global aerosol models are presently being developed with the intention of coupling with global atmospheric circulation models to evaluate the influence of aerosols and aerosol-cloud interactions on climate. If these and other coupled models are to address issues of aerosol-cloud interactions, the droplet nucleation process must be adequately represented. Here we introduce a droplet nucleation parametrization that offers certain advantages over the popular Twomey (1959) parameterization

  17. Control of charged droplets using electrohydrodynamic repulsion for circular droplet patterning

    International Nuclear Information System (INIS)

    Kim, Bumjoo; Sung, Jungwoo; Lim, Geunbae; Nam, Hyoryung; Kim, Sung Jae; Joo, Sang W

    2011-01-01

    We report a novel method to form a circular pattern of monodisperse microdroplets using an electrohydrodynamic repulsion (EDR) mechanism. EDR is a phenomenon of electrostatical bounced microdroplets from an accumulated droplet on a bottom substrate. In addition to a regular EDR system, by placing a ring electrode between the capillary and ground substrate, two separate regions were created. A parameter study of two regions was carried out for droplet formation and falling velocity to control the radius of the generated droplets and the circular patterns independently. Based on energy conservation theory, our experimental results showed that the free-falling region exerted crucial influences on the sizes of the circular patterns

  18. Transdermal delivery of diclofenac using water-in-oil microemulsion: formulation and mechanistic approach of drug skin permeation.

    Science.gov (United States)

    Thakkar, Priyanka J; Madan, Parshotam; Lin, Senshang

    2014-05-01

    The objective of the present investigation was to enhance skin permeation of diclofenac using water-in-oil microemulsion and to elucidate its skin permeation mechanism. The w/o microemulsion formulations were selected based on constructed pseudoternary phase diagrams depending on water solubilization capacity and thermodynamic stability. These formulations were also subjected to physical characterization based on droplet size, viscosity, pH and conductivity. Permeation of diclofenac across rat skin using side-by-side permeation cells from selected w/o microemulsion formulations were evaluated and compared with control formulations. The selected w/o microemulsion formulations were thermodynamically stable, and incorporation of diclofenac sodium into microemulsion did not affect the phase behavior of system. All microemulsion formulations had very low viscosity (11-17 cps) and droplet size range of 30-160 nm. Microemulsion formulations exhibited statistically significant increase in diclofenac permeation compared to oily solution, aqueous solution and oil-Smix solution. Higher skin permeation of diclofenac was observed with low Smix concentration and smaller droplet size. Increase in diclofenac loading in aqueous phase decreased the partition of diclofenac. Diclofenac from the oil phase of microemulsion could directly partition into skin, while diclofenac from the aqueous droplets was carried through skin by carrier effect.

  19. Chemical and Microbial Characterization of North Slope Viscous Oils to Assess Viscosity Reduction and Enhanced Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Shirish Patil; Abhijit Dandekar; Mary Beth Leigh

    2008-12-31

    A large proportion of Alaska North Slope (ANS) oil exists in the form of viscous deposits, which cannot be produced entirely using conventional methods. Microbially enhanced oil recovery (MEOR) is a promising approach for improving oil recovery for viscous deposits. MEOR can be achieved using either ex situ approaches such as flooding with microbial biosurfactants or injection of exogenous surfactant-producing microbes into the reservoir, or by in situ approaches such as biostimulation of indigenous surfactant-producing microbes in the oil. Experimental work was performed to analyze the potential application of MEOR to the ANS oil fields through both ex situ and in situ approaches. A microbial formulation containing a known biosurfactant-producing strain of Bacillus licheniformis was developed in order to simulate MEOR. Coreflooding experiments were performed to simulate MEOR and quantify the incremental oil recovery. Properties like viscosity, density, and chemical composition of oil were monitored to propose a mechanism for oil recovery. The microbial formulation significantly increased incremental oil recovery, and molecular biological analyses indicated that the strain survived during the shut-in period. The indigenous microflora of ANS heavy oils was investigated to characterize the microbial communities and test for surfactant producers that are potentially useful for biostimulation. Bacteria that reduce the surface tension of aqueous media were isolated from one of the five ANS oils (Milne Point) and from rock oiled by the Exxon Valdez oil spill (EVOS), and may prove valuable for ex situ MEOR strategies. The total bacterial community composition of the six different oils was evaluated using molecular genetic tools, which revealed that each oil tested possessed a unique fingerprint indicating a diverse bacterial community and varied assemblages. Collectively we have demonstrated that there is potential for in situ and ex situ MEOR of ANS oils. Future work

  20. Selfbound quantum droplets

    Science.gov (United States)

    Langen, Tim; Wenzel, Matthias; Schmitt, Matthias; Boettcher, Fabian; Buehner, Carl; Ferrier-Barbut, Igor; Pfau, Tilman

    2017-04-01

    Self-bound many-body systems are formed through a balance of attractive and repulsive forces and occur in many physical scenarios. Liquid droplets are an example of a self-bound system, formed by a balance of the mutual attractive and repulsive forces that derive from different components of the inter-particle potential. On the basis of the recent finding that an unstable bosonic dipolar gas can be stabilized by a repulsive many-body term, it was predicted that three-dimensional self-bound quantum droplets of magnetic atoms should exist. Here we report on the observation of such droplets using dysprosium atoms, with densities 108 times lower than a helium droplet, in a trap-free levitation field. We find that this dilute magnetic quantum liquid requires a minimum, critical number of atoms, below which the liquid evaporates into an expanding gas as a result of the quantum pressure of the individual constituents. Consequently, around this critical atom number we observe an interaction-driven phase transition between a gas and a self-bound liquid in the quantum degenerate regime with ultracold atoms.

  1. Effects of oil and chemically treated oil on nearshore under-ice meiofauna studied in-situ

    Energy Technology Data Exchange (ETDEWEB)

    Cross, W.E.; Martin, C.M.

    1987-01-01

    Meiofauna were collected during May 1982 in the soft bottom layer of nearshore landfast ice at Cape Hatt, northern Baffin Island. Average abundance of all ice meiofauna was 54,000 individualsm/sup -2/. Densities of all meiofauna groups were spatially variable, but only nematodes and cyclopoid copepods showed evidence of progressive temporal change between 18 May and 2 June. Undisturbed, enclosed areas of the under-ice surface were treated with oil on 23-24 May. Dispersed oil was in contact with the ice for 5 hours, whereas untreated oil and solidified oil remained in the enclosures for the duration of the study (12 days post-treatment). Sampling was carried out in areas where oil contacted the ice and moved away or in areas near oil that remained in contact with the under-ice surface. Five hours after treatment, oil concentrations in the water within the enclosures were similar (0.15-0.28 ppm) in untreated oil, solidified oil and control enclosures. In contrast, dispersed oil concentrations were 5.8-36.5 ppm. Densities of all copepods and polychaetes decreased dramatically in each dispersed oil enclosure by the second post-spill day, and slight density increases were evident by the tenth post-spill day. Harpacticoid copepods apparently were more sensitive to dispersed oil than were cyclopoid copepods. Densities of nematodes and cyclopoid copepod nauplii were not affected by dispersed oil. Densities of nematodes, polychaetes and all copepods were not affected by untreated or solidified oil, but there was some evidence of a stimulatory effect of those treatments on some copepod groups and life stages. 24 refs., 2 figs., 4 tabs.

  2. Oil Contact Angles in a Water-Decane-Silicon Dioxide System: Effects of Surface Charge.

    Science.gov (United States)

    Xu, Shijing; Wang, Jingyao; Wu, Jiazhong; Liu, Qingjie; Sun, Chengzhen; Bai, Bofeng

    2018-04-19

    Oil wettability in the water-oil-rock systems is very sensitive to the evolution of surface charges on the rock surfaces induced by the adsorption of ions and other chemical agents in water flooding. Through a set of large-scale molecular dynamics simulations, we reveal the effects of surface charge on the oil contact angles in an ideal water-decane-silicon dioxide system. The results show that the contact angles of oil nano-droplets have a great dependence on the surface charges. As the surface charge density exceeds a critical value of 0.992 e/nm 2 , the contact angle reaches up to 78.8° and the water-wet state is very apparent. The variation of contact angles can be confirmed from the number density distributions of oil molecules. With increasing the surface charge density, the adsorption of oil molecules weakens and the contact areas between nano-droplets and silicon dioxide surface are reduced. In addition, the number density distributions, RDF distributions, and molecular orientations indicate that the oil molecules are adsorbed on the silicon dioxide surface layer-by-layer with an orientation parallel to the surface. However, the layered structure of oil molecules near the silicon dioxide surface becomes more and more obscure at higher surface charge densities.

  3. Capacitance variation induced by microfluidic two-phase flow across insulated interdigital electrodes in lab-on-chip devices.

    Science.gov (United States)

    Dong, Tao; Barbosa, Cátia

    2015-01-26

    Microfluidic two-phase flow detection has attracted plenty of interest in various areas of biology, medicine and chemistry. This work presents a capacitive sensor using insulated interdigital electrodes (IDEs) to detect the presence of droplets in a microchannel. This droplet sensor is composed of a glass substrate, patterned gold electrodes and an insulation layer. A polydimethylsiloxane (PDMS) cover bonded to the multilayered structure forms a microchannel. Capacitance variation induced by the droplet passage was thoroughly investigated with both simulation and experimental work. Olive oil and deionized water were employed as the working fluids in the experiments to demonstrate the droplet sensor. The results show a good sensitivity of the droplet with the appropriate measurement connection. This capacitive droplet sensor is promising to be integrated into a lab-on-chip device for in situ monitoring/counting of droplets or bubbles.

  4. Oil Well Blowout 3D computational modeling: review of methodology and environmental requirements

    Directory of Open Access Journals (Sweden)

    Pedro Mello Paiva

    2016-12-01

    Full Text Available This literature review aims to present the different methodologies used in the three-dimensional modeling of the hydrocarbons dispersion originated from an oil well blowout. It presents the concepts of coastal environmental sensitivity and vulnerability, their importance for prioritizing the most vulnerable areas in case of contingency, and the relevant legislation. We also discuss some limitations about the methodology currently used in environmental studies of oil drift, which considers simplification of the spill on the surface, even in the well blowout scenario. Efforts to better understand the oil and gas behavior in the water column and three-dimensional modeling of the trajectory gained strength after the Deepwater Horizon spill in 2010 in the Gulf of Mexico. The data collected and the observations made during the accident were widely used for adjustment of the models, incorporating various factors related to hydrodynamic forcing and weathering processes to which the hydrocarbons are subjected during subsurface leaks. The difficulties show to be even more challenging in the case of blowouts in deep waters, where the uncertainties are still larger. The studies addressed different variables to make adjustments of oil and gas dispersion models along the upward trajectory. Factors that exert strong influences include: speed of the subsurface currents;  gas separation from the main plume; hydrate formation, dissolution of oil and gas droplets; variations in droplet diameter; intrusion of the droplets at intermediate depths; biodegradation; and appropriate parametrization of the density, salinity and temperature profiles of water through the column.

  5. Design of a lube oil reservoir by using flow calculations

    Energy Technology Data Exchange (ETDEWEB)

    Rinkinen, J; Alfthan, A. [Institute of Hydraulics and Automation IHA, Tampere University of Technology, Tampere (Finland)] Suominen, J. [Institute of Energy and Process Engineering, Tampere University of Technology, Tampere (Finland); Airaksinen, A; Antila, K [R and D Engineer Safematic Oy, Muurame (Finland)

    1998-12-31

    The volume of usual oil reservoir for lubrication oil systems is designed by the traditional rule of thumb so that the total oil volume is theoretically changed in every 30 minutes by rated pumping capacity. This is commonly used settling time for air, water and particles to separate by gravity from the oil returning of the bearings. This leads to rather big volumes of lube oil reservoirs, which are sometimes difficult to situate in different applications. In this presentation traditionally sized lube oil reservoir (8 m{sup 3}) is modelled in rectangular coordinates and laminar oil flow is calculated by using FLUENT software that is based on finite difference method. The results of calculation are velocity and temperature fields inside the reservoir. The velocity field is used to visualize different particle paths through the reservoir. Particles that are studied by the model are air bubbles and water droplets. The interest of the study has been to define the size of the air bubbles that are released and the size of the water droplets that are separated in the reservoir. The velocity field is also used to calculate the modelled circulating time of the oil volume which is then compared with the theoretical circulating time that is obtained from the rated pump flow. These results have been used for designing a new lube oil reservoir. This reservoir has also been modelled and optimized by the aid of flow calculations. The best shape of the designed reservoir is constructed in real size for empirical measurements. Some results of the oil flow measurements are shown. (orig.) 7 refs.

  6. Design of a lube oil reservoir by using flow calculations

    Energy Technology Data Exchange (ETDEWEB)

    Rinkinen, J.; Alfthan, A. [Institute of Hydraulics and Automation IHA, Tampere University of Technology, Tampere (Finland)] Suominen, J. [Institute of Energy and Process Engineering, Tampere University of Technology, Tampere (Finland); Airaksinen, A.; Antila, K. [R and D Engineer Safematic Oy, Muurame (Finland)

    1997-12-31

    The volume of usual oil reservoir for lubrication oil systems is designed by the traditional rule of thumb so that the total oil volume is theoretically changed in every 30 minutes by rated pumping capacity. This is commonly used settling time for air, water and particles to separate by gravity from the oil returning of the bearings. This leads to rather big volumes of lube oil reservoirs, which are sometimes difficult to situate in different applications. In this presentation traditionally sized lube oil reservoir (8 m{sup 3}) is modelled in rectangular coordinates and laminar oil flow is calculated by using FLUENT software that is based on finite difference method. The results of calculation are velocity and temperature fields inside the reservoir. The velocity field is used to visualize different particle paths through the reservoir. Particles that are studied by the model are air bubbles and water droplets. The interest of the study has been to define the size of the air bubbles that are released and the size of the water droplets that are separated in the reservoir. The velocity field is also used to calculate the modelled circulating time of the oil volume which is then compared with the theoretical circulating time that is obtained from the rated pump flow. These results have been used for designing a new lube oil reservoir. This reservoir has also been modelled and optimized by the aid of flow calculations. The best shape of the designed reservoir is constructed in real size for empirical measurements. Some results of the oil flow measurements are shown. (orig.) 7 refs.

  7. Crossflow type silicon microchannel substrate monodispersion oil-in-water emulsion manufacture; Kurosufuro gata shirikon maikuro chaneru kiban wo mochiita tanbunsan suchuyu emarushon no sakusei

    Energy Technology Data Exchange (ETDEWEB)

    Kawakatsu, Takahiro [Tohoku University, Miyagi (Japan). Graduate School; Komori, Hideai; Najima, Mitsutashi; Kikuchi, Yuji; Yonemoto, Toshikuni

    1999-05-05

    The new technique, which continuously produced the monodispersion oil-in-water (0/W) emulsion using the crossflow type silicon microchannel substrate, was developed. On the silicon monocrystal substrate, the watercourse as the liquid of the continuous phase flowed was produced, and the column of the equal slit of the size in both walls of the watercourse was precisely processed. By closing the upper part in the slit by the clamp of the flat glass board in the microchannel substrate, the microchannel column was formed. Through the microchannel, the oil droplet in which the size was even was formed by sending out the oil (triolein) in the water (0.3wt% sodium lauryl sulfate aqueous solution) of continuous phase which is flowing in respect of the watercourse. The size of the oil droplet is greatly dependent on the structure of the microchannel regulated by microchannel width, microchannel height and terrace length (the even part of which the microchannel exit was equipped). Monodispersion emulsion of 16,20 and 48 {mu}m at the average droplet diameter was formed by using microchannel substrate of the three types of which the structure differs. Droplet diameter decreased, when the substrate which formed large droplet of 48 {mu}m in which the water current quantity is 1.4x10{sup -2}mLmin{sup -1} was used, when the flow rate increased. However, there was no a flow rate at droplet diameter, even if it was made to change from 1.4x10{sup -2} to 2.4mLmin{sup -1}, 16 {mu}m 20 {mu}m small change. In all cases, the droplet size distribution was narrow, and the geometry standard deviation was under 1.03. (translated by NEDO)

  8. Oil-in-Water Emulsions Stabilized by Saponified Epoxidized Soybean Oil-Grafted Hydroxyethyl Cellulose.

    Science.gov (United States)

    Huang, Xujuan; Li, Qiaoguang; Liu, He; Shang, Shibin; Shen, Minggui; Song, Jie

    2017-05-03

    An oil-in-water emulsion stabilized by saponified epoxidized soybean oil-grafted hydroxyethyl cellulose (H-ESO-HEC) was investigated. By using an ultrasonic method, oil-in-water emulsions were prepared by blending 50 wt % soybean oil and 50 wt % H-ESO-HEC aqueous suspensions. The influence of H-ESO-HEC concentrations on the properties of oil-in-water emulsions was examined. The H-ESO-HEC concentrations in the aqueous phase varied from 0.02 to 0.40 wt %. When the H-ESO-HEC concentration was 0.4 wt %, the emulsion remained stable for >80 days. The mean droplet sizes of the emulsions decreased by increasing the H-ESO-HEC concentration and extending the ultrasonic time. The adsorption amounts of H-ESO-HEC at the oil-water interface increased when the H-ESO-HEC concentrations in the aqueous phase increased. The rheological property revealed that the apparent viscosity of the H-ESO-HEC-stabilized oil-in-water emulsions increased when the H-ESO-HEC concentrations increased. Steady flow curves indicated an interfacial film formation in the emulsions. The evolution of G', G″, and tan η indicated the predominantly elastic behaviors of all the emulsions.

  9. Down-hole catalytic upgrading of heavy crude oil

    Energy Technology Data Exchange (ETDEWEB)

    Weissman, J.G.; Kessler, R.V.; Sawicki, R.A.; Belgrave, J.D.M.; Laureshen, C.J.; Mehta, S.A.; Moore, R.G.; Ursenbach, M.G. [University of Calgary, Calgary, AB (Canada). Dept. of Chemical and Petroleum Engineering

    1996-07-01

    Several processing options have been developed to accomplish near-well bore in-situ upgrading of heavy crude oils. These processes are designed to pass oil over a fixed bed of catalyst prior to entering the production well, the catalyst being placed by conventional gravel pack methods. The presence of brine and the need to provide heat and reactant gases in a down-hole environment provide challenges not present in conventional processing. These issues were addressed and the processes demonstrated by use of a modified combustion tube apparatus. Middle-Eastern heavy crude oil and the corresponding brine were used at the appropriate reservoir conditions. In-situ combustion was used to generate reactive gases and to drive fluids over a heated sand or catalysts bed, simulating the catalyst contacting portion of the proposed processes. The heavy crude oil was found to be amenable to in-situ combustion at anticipated reservoir conditions, with a relatively low air requirement. Forcing the oil to flow over a heated zone prior to production results in some upgrading of the oil, as compared to the original oil, due to thermal effects. Passing the oil over a hydroprocessing catalyst located in the heated zone results in a product that is significantly upgraded as compared to either the original oil or thermally processed oil. Catalytic upgrading is due to hydrogenation and the results in about a 50% sulfur removal and an 8{degree} API gravity increase. Additionally, the heated catalyst was found to be efficient at converting CO to additional H{sub 2}. While all of the technologies needed for a successful field trial of in-situ catalytic upgrading exist, a demonstration has yet to be undertaken. 27 refs., 5 figs., 5 tabs.

  10. Dependence of the Internal Structure on Water/Particle Volume Ratio in an Amphiphilic Janus Particle-Water-Oil Ternary System: From Micelle-like Clusters to Emulsions of Spherical Droplets.

    Science.gov (United States)

    Noguchi, Tomohiro G; Iwashita, Yasutaka; Kimura, Yasuyuki

    2017-01-31

    Amphiphilic Janus particles (AJP), composed of hydrophilic and hydrophobic hemispheres, are one of the simplest anisotropic colloids, and they exhibit higher surface activities than particles with homogeneous surface properties. Consequently, a ternary system of AJP, water, and oil can form extremely stable Pickering emulsions, with internal structures that depend on the Janus structure of the particles and the system composition. However, the detail of these structures has not been fully explored, especially for the composition range where the amount of the minority liquid phase and AJP are comparable, where one would expect the Janus characteristics to be directly reflected. In this study, we varied the volume ratio of the particles and the minority liquid phase, water, by 2 orders of magnitude around the comparable composition range, and observed the resultant structures at the resolution of the individual particle dimensions by optical microscopy. When the volume ratio of water is smaller than that of the Janus particles, capillary interactions between the hydrophilic hemispheres of the particles induce micelle-like clusters in which the hydrophilic sides of the particles face inward. With increasing water content, these clusters grow into a rodlike morphology. When the water volume exceeds that of the particles, the structure transforms into an emulsion state composed of spherical droplets, colloidosomes, because of the surface activity of particles at the liquid-liquid interface. Thus, we found that a change in volume fraction alters the mechanism of structure formation in the ternary system, and large resulting morphological changes in the self-assembled structures reflect the anisotropy of the particles. The self-assembly shows essential commonalities with that in microemulsions of surfactant molecules, however the AJP system is stabilized only kinetically. Analysis of the dependence of the emulsion droplet size on composition shows that almost all the

  11. Droplet electrospray ionization mass spectrometry for high throughput screening for enzyme inhibitors.

    Science.gov (United States)

    Sun, Shuwen; Kennedy, Robert T

    2014-09-16

    High throughput screening (HTS) is important for identifying molecules with desired properties. Mass spectrometry (MS) is potentially powerful for label-free HTS due to its high sensitivity, speed, and resolution. Segmented flow, where samples are manipulated as droplets separated by an immiscible fluid, is an intriguing format for high throughput MS because it can be used to reliably and precisely manipulate nanoliter volumes and can be directly coupled to electrospray ionization (ESI) MS for rapid analysis. In this study, we describe a "MS Plate Reader" that couples standard multiwell plate HTS workflow to droplet ESI-MS. The MS plate reader can reformat 3072 samples from eight 384-well plates into nanoliter droplets segmented by an immiscible oil at 4.5 samples/s and sequentially analyze them by MS at 2 samples/s. Using the system, a label-free screen for cathepsin B modulators against 1280 chemicals was completed in 45 min with a high Z-factor (>0.72) and no false positives (24 of 24 hits confirmed). The assay revealed 11 structures not previously linked to cathepsin inhibition. For even larger scale screening, reformatting and analysis could be conducted simultaneously, which would enable more than 145,000 samples to be analyzed in 1 day.

  12. OCS in He droplets

    Energy Technology Data Exchange (ETDEWEB)

    Grebenev, V.

    2000-06-01

    Phenomenon of superfluidity of para-hydrogen (pH{sub 2}){sub 1-17} and helium {sup 4}He{sub 1-7000} systems doped with an OCS chromophore molecule was investigated in this work. The study of such systems became possible after the development of the depletion spectroscopy technique in helium droplets. The droplets can be easily created and doped with up to 100 particles such as OCS, para-hydrogen or ortho-hydrogen molecules and {sup 4}He atoms. The measured infrared depletion spectra give the information about the temperature of the droplets and their aggregate state. The depletion spectrum of OCS in pure {sup 4}He droplets was comprehensively studied. The rovibrational OCS spectrum shows well resolved narrow lines. The spectrum is shifted to the red relative to the corresponding gas phase spectrum and the rotational constant of OCS in {sup 4}He droplet is three times smaller than that for free molecule. Different models of OCS rotation in the helium environment were discussed. It was shown that the shapes of the rovibrational lines are defined mainly by inhomogeneous broadening due to the droplet size distribution. The sub-rotational structure of the OCS rovibrational lines was revealed in microwave-infrared double resonance experiments. This structure arises due to the interaction of the OCS with the He environment. However, the information obtained in the experiments was not enough to understand the nature of this interaction. (orig.)

  13. Microencapsulation of Algal Oil Using Spray Drying Technology

    Directory of Open Access Journals (Sweden)

    Xueshan Pan

    2018-01-01

    Full Text Available This work aims at developing a process of microencapsulation of algal oil containing ≥40 % docosahexaenoic acid (DHA using spray drying technology. Purity Gum® 2000 and Capsul®, both obtained from waxy corn starch, were chosen as the encapsulation materials. The effects of emulsification conditions on the droplet size, stability, viscosity and surface tension, and the effects of spraying conditions on the particle size, moisture content and surface oil content were investigated successively. The morphology of emulsion droplets and the microcapsules was observed by optical microscope and scanning electron micro scopy. The results showed that the produced spherical microcapsules were smooth and free of pores, cracks, and surface indentation when shear velocity was 8.63 m/s in the first step of emulsification, homogenization pressure was 1.75·10˄8 Pa and number of passes through homogenization unit was six for fine emulsification, rotational speed of spray disk was 400 s-1, and air inlet temperature was 170 °C. Therefore, it was concluded that the emulsification and encapsulation of algal oil containing DHA with above process was feasible.

  14. Produced water treatment for beneficial use : emulsified oil removal

    NARCIS (Netherlands)

    Waisi, Basma

    2016-01-01

    The development of novel carbon material, high accessible surface area, interconnected porosity, and stable nanofiber nonwoven media for emulsified oil droplets separation from oily wastewater, in particular for oilfields produced water treatment, is discussed in this thesis. Firstly, the quantity

  15. Smart swelling biopolymer microparticles by a microfluidic approach: synthesis, in situ encapsulation and controlled release.

    Science.gov (United States)

    Fang, Aiping; Cathala, Bernard

    2011-01-01

    This paper reports a microfluidic synthesis of biopolymer microparticles aiming at smart swelling. Monodisperse aqueous emulsion droplets comprising biopolymer and its cross-linking agent were formed in mineral oil and solidified in the winding microfluidic channels by in situ chaotic mixing, which resulted in internal chemical gelation for hydrogels. The achievement of pectin microparticles from in situ mixing pectin with its cross-linking agent, calcium ions, successfully demonstrates the reliability of this microfluidic synthesis approach. In order to achieve hydrogels with smart swelling, the following parameters and their impacts on the swelling behaviour, stability and morphology of microparticles were investigated: (1) the type of biopolymers (alginate or mixture of alginate and carboxymethylcellulose, A-CMC); (2) rapid mixing; (3) concentration and type of cross-linking agent. Superabsorbent microparticles were obtained from A-CMC mixture by using ferric chloride as an additional external cross-linking agent. The in situ encapsulation of a model protein, bovine serum albumin (BSA), was also carried out. As a potential protein drug-delivery system, the BSA release behaviours of the biopolymer particles were studied in simulated gastric and intestinal fluids. Compared with alginate and A-CMC microparticles cross-linked with calcium ions, A-CMC microparticles cross-linked with both calcium and ferric ions demonstrate a significantly delayed release. The controllable release profile, the facile encapsulation as well as their biocompatibility, biodegradability, mucoadhesiveness render this microfluidic approach promising in achieving biopolymer microparticles as protein drug carrier for site-specific release. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Detection of avian influenza antigens in proximity fiber, droplet, and optical waveguide microfluidics

    Science.gov (United States)

    Yoon, Jeong-Yeol; Heinze, Brian C.; Gamboa, Jessica; You, David J.

    2009-05-01

    Virus antigens of avian influenza subtype H3N2 were detected on two different microfluidic platforms: microchannel and droplet. Latex immunoagglutination assays were performed using 920-nm highly carboxylated polystyrene beads that are conjugated with antibody to avian influenza virus. The bead suspension was merged with the solutions of avian influenza virus antigens in a Y-junction of a microchannel made by polydimethylsiloxane soft lithography. The resulting latex immunoagglutinations were measured with two optical fibers in proximity setup to detect 45° forward light scattering. Alternatively, 10 μL droplets of a bead suspension and an antigen solution were merged on a superhydrophobic surface (water contact angle = 155°), whose movement was guided by a metal wire, and 180° back light scattering is measured with a backscattering optical probe. Detection limits were 0.1 pg mL-1 for both microchannel with proximity fibers and droplet microfluidics, thanks to the use of micro-positioning stages to help generate reproducible optical signals. Additionally, optical waveguide was tested by constructing optical waveguide channels (filled with mineral oil) within a microfluidic device to detect the same light scattering. Detection limit was 0.1 ng mL-1 for an optical waveguide device, with a strong potential of improvement in the near future. The use of optical waveguide enabled smaller device setup, easier operation, smaller standard deviations and broader linear range of assay than proximity fiber microchannel and droplet microfluidics. Total assay time was less than 10 min.

  17. Identification of bacteria used for microbial enhanced oil recovery process by fluorescence in situ hybridization technique

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, K.; Tanaka, S.; Otsuka, M. [Kansai Research Institute, Kyoto (Japan). Lifescience Lab.; Yonebayashi, H. [Japan National Oil Corp., Chiba (Japan). Tech. Research Center; Enomoto, H. [Tohoku University, Sendai (Japan). Dept. of Geoscience and Tech.

    2000-01-01

    A fluorescence in situ hybridization (FISH) technique using 16S rRNA-targeted oligonucleotide probes was developed for rapid detection of microorganisms for use in the microbial enhancement of oil recovery (MEOR) process. Two microorganisms, Enterobacter cloacae TRC-322 and Bacillus licheniformis TRC-18-2-a, were selected from a collection of Enterobacter sp. and Bacillus sp. which were screened in previous studies as candidate microorganisms for injection, and were used for this experiment. Oligonucleotide probes, design based on specific sequences in the 16S rRNA gene were labeled with either fluorescein isothiocyanate (FITC), or 6-car-boxy-X-rhodamine (ROX), and were allowed to hybridize with fixed cells of the two microorganisms noted above. The fluorescence signal emitted from each microorganism cells could clearly be detected by an epifluorescence microscope. Moreover, E. cloacae TRC-322 and B, licheniformis TRC-18-2-a, suspended in actual reservoir brine, including inorganic salts, oil and aboriginal cells of the reservoir brine, could be detected directly by this hybridization method, without the need for cultivation and isolation. (author)

  18. One-step fabrication of highly stable, superhydrophobic composites from controllable and low-cost PMHS/TEOS sols for efficient oil cleanup.

    Science.gov (United States)

    Guo, Ping; Zhai, Shangru; Xiao, Zuoyi; An, Qingda

    2015-05-15

    Facing the issues of significant increase of industrial oily wastewater and frequent accident of oil spills, the developing of efficient and affordable absorbents for improving oil pollution is of practical significance. Herein, several superhydrophobic and superoleophilic materials, utilizing filter paper, filter cloth and polyester sponge as substrates, through facile coating of hybrid SiO2 colloid particles from controllable PMHS-TEOS sol system were presented. These methyl-modified particles not only provided hierarchical micro/nano-scale structure with distinct roughness, but also largely lowered the surface energy of the coated substances, leading to excellent superhydrophobic and superoleophilic surfaces. The modified filter cloths could be applied for oil/water separation owing to the flexible and foldable property; sponges could efficiently absorb oil or organic solvents in situ on account of its low density and high porosity, and meanwhile the absorbed oil could be easily recollected by simple squeezing. It is worth mentioning that both modified filter cloths and sponges exhibited excellent selectivity, high efficiency, outstanding rapidity and remarkable recyclability. More importantly, after treatment of 100 abrasion cycles with metal scalpel and strongly acidic and basic water droplets, the whole WCA values of resultant filter cloths still maintained superhydrophobic character (>150°), illuminating the charming mechanical and chemical stability of sol-gel processed coating with hierarchical roughness and covalently bonded methyl groups. Combining controllable fabrication process and cheap raw precursors, this method enables scalable manufacturing of stable and superhydrophobic substances, which are promising in practical applications involved in oil/water separation and oil sorption. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Sensitivity of the deep-sea amphipod Eurythenes gryllus to chemically dispersed oil.

    Science.gov (United States)

    Olsen, Gro Harlaug; Coquillé, Nathalie; Le Floch, Stephane; Geraudie, Perrine; Dussauze, Matthieu; Lemaire, Philippe; Camus, Lionel

    2016-04-01

    In the context of an oil spill accident and the following oil spill response, much attention is given to the use of dispersants. Dispersants are used to disperse an oil slick from the sea surface into the water column generating a cloud of dispersed oil droplets. The main consequence is an increasing of the sea water-oil interface which induces an increase of the oil biodegradation. Hence, the use of dispersants can be effective in preventing oiling of sensitive coastal environments. Also, in case of an oil blowout from the seabed, subsea injection of dispersants may offer some benefits compared to containment and recovery of the oil or in situ burning operation at the sea surface. However, biological effects of dispersed oil are poorly understood for deep-sea species. Most effects studies on dispersed oil and also other oil-related compounds have been focusing on more shallow water species. This is the first approach to assess the sensitivity of a macro-benthic deep-sea organism to dispersed oil. This paper describes a toxicity test which was performed on the macro-benthic deep-sea amphipod (Eurythenes gryllus) to determine the concentration causing lethality to 50% of test individuals (LC50) after an exposure to dispersed Brut Arabian Light (BAL) oil. The LC50 (24 h) was 101 and 24 mg L(-1) after 72 h and 12 mg L(-1) at 96 h. Based on EPA scale of toxicity categories to aquatic organisms, an LC50 (96 h) of 12 mg L(-1) indicates that the dispersed oil was slightly to moderately toxic to E. gryllus. As an attempt to compare our results to others, a literature study was performed. Due to limited amount of data available for dispersed oil and amphipods, information on other crustacean species and other oil-related compounds was also collected. Only one study on dispersed oil and amphipods was found, the LC50 value in this study was similar to the LC50 value of E. gryllus in our study. Since toxicity data are important input to risk assessment and net environmental

  20. Extraction of tributyltin and triphenyltin across a single oil droplet/water interface

    International Nuclear Information System (INIS)

    Chikama, Katsumi; Negishi, Takayuki; Nakatani, Kiyoharu

    2004-01-01

    Tributyltin (TBT + ) and triphenyltin (TPT + ) were extracted with merocyanine 540 (MC - ) from water into a 1,6-dichlorohexane droplet with the radius of 40 μm and the absorption spectra of MC - were measured by a single microdroplet manipulation and microabsorption technique. The mass transfer rate and the partitioning ratio of MC - were characteristically influenced by the TBT + , TPT + , MC - , and Cl - concentrations in water. The ion pair extraction processes of the organotin compounds with the anions were discussed in terms of the ion transfer and adsorption-desorption of the solutes

  1. Dancing droplets: Contact angle, drag, and confinement

    Science.gov (United States)

    Benusiglio, Adrien; Cira, Nate; Prakash, Manu

    2015-11-01

    When deposited on a clean glass slide, a mixture of water and propylene glycol forms a droplet of given contact angle, when both pure liquids spread. (Cira, Benusiglio, Prakash: Nature, 2015). The droplet is stabilized by a gradient of surface tension due to evaporation that induces a Marangoni flow from the border to the apex of the droplets. The apparent contact angle of the droplets depends on both their composition and the external humidity as captured by simple models. These droplets present remarkable properties such as lack of a large pinning force. We discuss the drag on these droplets as a function of various parameters. We show theoretical and experimental results of how various confinement geometries change the vapor gradient and the dynamics of droplet attraction.

  2. In-situ active/passive bioreclamation of vadose zone soils contaminated with gasoline and waste oil using soil vapor extraction/bioventing: Laboratory pilot study to full scale site operation

    International Nuclear Information System (INIS)

    Zachary, S.P.; Everett, L.G.

    1993-01-01

    The use of soil venting to supply oxygen and remove metabolites from the biodegradation of light hydrocarbons is a cost effective in-situ remediation approach. To date, little data exists on the effective in-situ bioreclamation of vadose zone soil contaminated with waste/hydraulic oil without excavation or the addition of water or nutrients to degrade the heavy petroleum contaminants. Gasoline and waste/hydraulic oil contaminated soils below an active commercial building required an in-situ non-disruptive remediation approach. Initial soil vapor samples collected from the vadose zone revealed CO 2 concentrations in excess of 16% and O 2 concentrations of less than 1% by volume. Soil samples were collected from below the building within the contaminated vadose zone for laboratory chemical and physical analysis as well as to conduct a laboratory biotreatability study. The laboratory biotreatability study was conducted for 30 days to simulate vadose zone bioventing conditions using soil taken from the contaminated vadose zone. Results of the biotreatability study revealed that the waste oil concentrations had been reduced from 960 mg/Kg to non-detectable concentrations within 30 days and the volatile hydrocarbon content had decreased exponentially to less than 0.1% of the original concentration. Post treatability study biological enumeration revealed an increase in the microbial population of two orders of magnitude

  3. Particle Manipulation Methods in Droplet Microfluidics.

    Science.gov (United States)

    Tenje, Maria; Fornell, Anna; Ohlin, Mathias; Nilsson, Johan

    2018-02-06

    This Feature describes the different particle manipulation techniques available in the droplet microfluidics toolbox to handle particles encapsulated inside droplets and to manipulate whole droplets. We address the advantages and disadvantages of the different techniques to guide new users.

  4. Colliding droplets: A short film presentation

    Science.gov (United States)

    Hendricks, C. D.

    1981-12-01

    A series of experiments were performed in which liquid droplets were caused to collide. Impact velocities to several meters per second and droplet diameters up to 600 micrometers were used. The impact parameters in the collisions vary from zero to greater than the sum of the droplet radii. Photographs of the collisions were taken with a high speed framing camera in order to study the impacts and subsequent behavior of the droplets.

  5. Lecithins - promising oil spill cleaner?

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    A new, non-polluting method of cleaning up oil spills at sea as well as on land has been developed by researchers at the Hebrew University of Jerusalem. Their technique is based on the use of lecithins, a byproduct of producing edible oils from plants. Lecithin molecules are hydrophyllic at one end and lipophilic at their tail ends. When they come into contact with water, they organize themselves into bilayers whose heads all face the water and whose tails are all directed towards each other. These bilayers form particles called liposomes that, when spread on water fouled by oil spills, change the properties of the oil thereby stopping the spreading and breaking it down into sticky droplets that continue to float on the surface and can be easily collected. The treatment is said to be effective in both fresh and salt water and is almost temperature and pH independent. Another beneficial effect is that the physical change generated by liposomes in the spilled oil improves the ability of oil-eating bacteria in the water to remove some of the spill by bioremediation

  6. Synergistic performance of lecithin and glycerol monostearate in oil/water emulsions.

    Science.gov (United States)

    Moran-Valero, María I; Ruiz-Henestrosa, Víctor M Pizones; Pilosof, Ana M R

    2017-03-01

    The effects of the combination of two low-molecular weight emulsifiers (lecithin and glycerol-monostearate (GMS)) on the stability, the dynamic interfacial properties and rheology of emulsions have been studied. Different lecithin/GMS ratios were tested in order to assess their impact in the formation and stabilization of oil in water emulsions. The combination of the two surfactants showed a synergistic behaviour, mainly when combined at the same ratio. The dynamic film properties and ζ-potential showed that lecithin dominated the surface of oil droplets, providing stability to the emulsions against flocculation and coalescence, while allowing the formation of small oil droplets. At long times of adsorption, all of the mixtures showed similar interfacial activity. However, higher values of interfacial pressure at the initial times were reached when lecithin and GMS were at the same ratio. Interfacial viscoelasticity and viscosity of mixed films were also similar to that of lecithin alone. On the other hand, emulsions viscosity was dominated by GMS. The synergistic performance of lecithin-GMS blends as stabilizers of oil/water emulsions is attributed to their interaction both in the bulk and at the interface. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. The Role of Shearing Energy and Interfacial Gibbs Free Energy in the Emulsification Mechanism of Waxy Crude Oil

    Directory of Open Access Journals (Sweden)

    Zhihua Wang

    2017-05-01

    Full Text Available Crude oil is generally produced with water, and the water cut produced by oil wells is increasingly common over their lifetime, so it is inevitable to create emulsions during oil production. However, the formation of emulsions presents a costly problem in surface process particularly, both in terms of transportation energy consumption and separation efficiency. To deal with the production and operational problems which are related to crude oil emulsions, especially to ensure the separation and transportation of crude oil-water systems, it is necessary to better understand the emulsification mechanism of crude oil under different conditions from the aspects of bulk and interfacial properties. The concept of shearing energy was introduced in this study to reveal the driving force for emulsification. The relationship between shearing stress in the flow field and interfacial tension (IFT was established, and the correlation between shearing energy and interfacial Gibbs free energy was developed. The potential of the developed correlation model was validated using the experimental and field data on emulsification behavior. It was also shown how droplet deformation could be predicted from a random deformation degree and orientation angle. The results indicated that shearing energy as the energy produced by shearing stress working in the flow field is the driving force activating the emulsification behavior. The deformation degree and orientation angle of dispersed phase droplet are associated with the interfacial properties, rheological properties and the experienced turbulence degree. The correlation between shearing stress and IFT can be quantified if droplet deformation degree vs. droplet orientation angle data is available. When the water cut is close to the inversion point of waxy crude oil emulsion, the interfacial Gibbs free energy change decreased and the shearing energy increased. This feature is also presented in the special regions where

  8. Oil Droplet Clouds Suspended in the Sea: Can They Be Remotely Detected?

    Directory of Open Access Journals (Sweden)

    Zbigniew Otremba

    2016-10-01

    Full Text Available Oil floating on the sea surface can be detected by both passive and active methods using the ultraviolet-to-microwave spectrum, whereas oil immersed below the sea surface can signal its presence only in visible light. This paper presents an optical model representing a selected case of the sea polluted by an oil suspension for a selected concentration (10 ppm located in a layer of exemplary thickness (5 m separated from the sea surface by an unpolluted layer (thickness 1 m. The impact of wavelength and state of the sea surface on reflectance changes is presented based on the results of Monte Carlo ray tracing. A two-wavelength index of reflectance is proposed to detect oil suspended in the water column (645–469 nm.

  9. Droplets, Bubbles and Ultrasound Interactions.

    Science.gov (United States)

    Shpak, Oleksandr; Verweij, Martin; de Jong, Nico; Versluis, Michel

    2016-01-01

    The interaction of droplets and bubbles with ultrasound has been studied extensively in the last 25 years. Microbubbles are broadly used in diagnostic and therapeutic medical applications, for instance, as ultrasound contrast agents. They have a similar size as red blood cells, and thus are able to circulate within blood vessels. Perfluorocarbon liquid droplets can be a potential new generation of microbubble agents as ultrasound can trigger their conversion into gas bubbles. Prior to activation, they are at least five times smaller in diameter than the resulting bubbles. Together with the violent nature of the phase-transition, the droplets can be used for local drug delivery, embolotherapy, HIFU enhancement and tumor imaging. Here we explain the basics of bubble dynamics, described by the Rayleigh-Plesset equation, bubble resonance frequency, damping and quality factor. We show the elegant calculation of the above characteristics for the case of small amplitude oscillations by linearizing the equations. The effect and importance of a bubble coating and effective surface tension are also discussed. We give the main characteristics of the power spectrum of bubble oscillations. Preceding bubble dynamics, ultrasound propagation is introduced. We explain the speed of sound, nonlinearity and attenuation terms. We examine bubble ultrasound scattering and how it depends on the wave-shape of the incident wave. Finally, we introduce droplet interaction with ultrasound. We elucidate the ultrasound-focusing concept within a droplets sphere, droplet shaking due to media compressibility and droplet phase-conversion dynamics.

  10. Droplet Vaporization In A Levitating Acoustic Field

    Science.gov (United States)

    Ruff, G. A.; Liu, S.; Ciobanescu, I.

    2003-01-01

    Combustion experiments using arrays of droplets seek to provide a link between single droplet combustion phenomena and the behavior of complex spray combustion systems. Both single droplet and droplet array studies have been conducted in microgravity to better isolate the droplet interaction phenomena and eliminate or reduce the effects of buoyancy-induced convection. In most experiments involving droplet arrays, the droplets are supported on fibers to keep them stationary and close together before the combustion event. The presence of the fiber, however, disturbs the combustion process by introducing a source of heat transfer and asymmetry into the configuration. As the number of drops in a droplet array increases, supporting the drops on fibers becomes less practical because of the cumulative effect of the fibers on the combustion process. To eliminate the effect of the fiber, several researchers have conducted microgravity experiments using unsupported droplets. Jackson and Avedisian investigated single, unsupported drops while Nomura et al. studied droplet clouds formed by a condensation technique. The overall objective of this research is to extend the study of unsupported drops by investigating the combustion of well-characterized drop clusters in a microgravity environment. Direct experimental observations and measurements of the combustion of droplet clusters would provide unique experimental data for the verification and improvement of spray combustion models. In this work, the formation of drop clusters is precisely controlled using an acoustic levitation system so that dilute, as well as dense clusters can be created and stabilized before combustion in microgravity is begun. While the low-gravity test facility is being completed, tests have been conducted in 1-g to characterize the effect of the acoustic field on the vaporization of single and multiple droplets. This is important because in the combustion experiment, the droplets will be formed and

  11. In-Situ Burn Gaps Analysis

    Science.gov (United States)

    2015-02-01

    This Report) UNCLAS//Public 20. Security Class (This Page) UNCLAS//Public 21. No of Pages 76 22. Price UNCLAS//Public | CG-926 RDC | Merrick...surveillance and spotting techniques/equipment to keep responders in the heaviest oil concentrations where their operation to skim , burn, or disperse...Offshore Oil Skim And Burn System For Use With Vessels Of Opportunity. UNCLAS//Public | CG-926 RDC | Merrick, et al. Public | June 2015 In-Situ Burn Gaps

  12. Soybean (Glycine max) oil bodies and their associated phytochemicals.

    Science.gov (United States)

    Fisk, Ian D; Gray, David A

    2011-01-01

    Soybean oil bodies were isolated from 3 cultivars (Ustie, K98, and Elena) and the occurrence of 2 classes of phytochemicals (tocopherol isoforms and isoflavones) and strength of their association with isolated oil bodies was evaluated. Tocopherol is shown to be closely associated with soybean oil bodies; δ-tocopherol demonstrated a significantly greater association with oil bodies over other tocopherol isoforms. Isoflavones do not show a significant physical association with oil bodies, although there is some indication of a passive association of the more hydrophobic aglycones during oil body isolation. Oil bodies are small droplets of oil that are stored as energy reserves in the seeds of oil seeds, and have the potential to be used as future food ingredients. If oil body suspensions are commercialized on a large scale, knowledge of the association of phytochemicals with oil bodies will be valuable in deciding species of preference and predicting shelf life and nutritional value. © 2011 Institute of Food Technologists®

  13. Mass spectrometry of acoustically levitated droplets.

    Science.gov (United States)

    Westphall, Michael S; Jorabchi, Kaveh; Smith, Lloyd M

    2008-08-01

    Containerless sample handling techniques such as acoustic levitation offer potential advantages for mass spectrometry, by eliminating surfaces where undesired adsorption/desorption processes can occur. In addition, they provide a unique opportunity to study fundamental aspects of the ionization process as well as phenomena occurring at the air-droplet interface. Realizing these advantages is contingent, however, upon being able to effectively interface levitated droplets with a mass spectrometer, a challenging task that is addressed in this report. We have employed a newly developed charge and matrix-assisted laser desorption/ionization (CALDI) technique to obtain mass spectra from a 5-microL acoustically levitated droplet containing peptides and an ionic matrix. A four-ring electrostatic lens is used in conjunction with a corona needle to produce bursts of corona ions and to direct those ions toward the droplet, resulting in droplet charging. Analyte ions are produced from the droplet by a 337-nm laser pulse and detected by an atmospheric sampling mass spectrometer. The ion generation and extraction cycle is repeated at 20 Hz, the maximum operating frequency of the laser employed. It is shown in delayed ion extraction experiments that both positive and negative ions are produced, behavior similar to that observed for atmospheric pressure matrix-assisted laser absorption/ionization. No ion signal is observed in the absence of droplet charging. It is likely, although not yet proven, that the role of the droplet charging is to increase the strength of the electric field at the surface of the droplet, reducing charge recombination after ion desorption.

  14. Leidenfrost boiling of water droplet

    Directory of Open Access Journals (Sweden)

    Orzechowski Tadeusz

    2017-01-01

    Full Text Available The investigations concerned a large water droplet at the heating surface temperature above the Leidenfrost point. The heating cylinder was the main component of experimental stand on which investigations were performed. The measurement system was placed on the high-sensitivity scales. Data transmission was performed through RS232 interface. The author-designed program, with extended functions to control the system, was applied. The present paper examines the behaviour of a large single drop levitating over a hot surface, unsteady mass of the drop, and heat transfer. In computations, the dependence, available in the literature, for the orthogonal droplet projection on the heating surface as a function of time was employed. It was confirmed that the local value of the heat transfer coefficient is a power function of the area of the droplet surface projection. Also, a linear relationship between the flux of mass evaporated from the droplet and the droplet orthogonal projection was observed.

  15. Leidenfrost boiling of water droplet

    Science.gov (United States)

    Orzechowski, Tadeusz

    The investigations concerned a large water droplet at the heating surface temperature above the Leidenfrost point. The heating cylinder was the main component of experimental stand on which investigations were performed. The measurement system was placed on the high-sensitivity scales. Data transmission was performed through RS232 interface. The author-designed program, with extended functions to control the system, was applied. The present paper examines the behaviour of a large single drop levitating over a hot surface, unsteady mass of the drop, and heat transfer. In computations, the dependence, available in the literature, for the orthogonal droplet projection on the heating surface as a function of time was employed. It was confirmed that the local value of the heat transfer coefficient is a power function of the area of the droplet surface projection. Also, a linear relationship between the flux of mass evaporated from the droplet and the droplet orthogonal projection was observed.

  16. Treating oil in a maritime environment

    International Nuclear Information System (INIS)

    Seebacher, G.

    2002-01-01

    Some details of the International Maritime Organisation's marine pollution regulations are discussed. In simple terms, under IMO regulations oily water must be processed through approved equipment and can be legally discharged if the oil content in the treated effluent is less than 15 ppm. These regulations also make it clear that it is not permitted to use emulsifiers to hide the oil in the effluent. To separate the free oil from water, gravity enhanced separators can be used effectively. With conventional means it is possible to remove free oil from an oily water mixture, to the less than 15 part per million oil content. Conventional IMO certified oil content meters accurately read free oil content in the 0-30 ppm region, to prevent formation of an oil film from treated oily water discharges. Some additional basic rules of thumb worthy of consideration when separating oil from oily water: in general, it is cheaper to prevent oil discharge of oil into the effluent stream than to remove it; emulsifier-enriched lubricating oils emulsify readily and are difficult to remove when present in suspended droplets; the larger the amount of contamination, the greater the difficulty of removing the oil; an ounce of prevention is worth a pound of cure

  17. COMPARISON OF PHYSICAL STABILITY PROPERTIES OF POMEGRANATE SEED OIL NANOEMULSION DOSAGE FORMS WITH LONG-CHAIN TRIGLYCERIDE AND MEDIUM-CHAIN TRIGLYCERIDE AS THE OIL PHASE

    Directory of Open Access Journals (Sweden)

    Sri Hartanti Yuliani

    2016-08-01

    Full Text Available Pomegranate seed oil has antioxidant, anti-inflammatory, and chemo preventive activities. Pomegranate seed oil is lipophilic substance suitable to be prepared in emulsion dosage forms. Long-chain triglyceride (LCT and medium-chain triglyceride (MCT are commonly used as oil phase in emulsion dosage forms. This research aimed to compare the use of LCT and MCT in the Nano emulsion formula of pomegranate seed oil dosage forms. Formulation of pomegranate seed oil Nano emulsion was conducted using high energy emulsification. Parameters observed were pH, Nano emulsion type, percent transmittance, viscosity, turbidity, and droplet size before and after 3 cycles of freeze-thaw. The result showed that there was no significant difference between physical properties of pomegranate oil Nano emulsion with LCT as oil phase and pomegranate oil Nano emulsion with MCT as oil phase. Moreover, physical stability of pomegranate oil Nano emulsion with LCT as oil phase was better than pomegranate oil Nano emulsion with MCT as oil phase.

  18. The environmental radiation monitoring system and in-situ measurements for early notification and OIL (Operational Intervention Levels) calculations

    Energy Technology Data Exchange (ETDEWEB)

    Haquin, G.; Ne`eman, E.; Brenner, S.; Lavi, N. [Tel Aviv Univ. (Israel). Sackler School of Medicine. Inst. for Environmental Research

    1997-12-31

    The efficiency of the environmental radiation monitoring, low level laboratory and in-situ gamma-ray spectrometry are evaluated as the systems for early notification and for determination of dose rate in air, surface contamination and activity concentration in food during emergencies for Operational Intervention Levels (OIL) recalculation.The National Environmental Radiation Monitoring System has proved its efficiency in the early detection of unregistered radiography work. A mobile station of the network can be used for absorbed dose rate measurement during emergencies in contaminated areas. The calibrated in-situ gamma-ray spectrometry system in an open phosphate ore mine has showed the efficiency of this technique for fast and accurate determination of soil activity concentration. The calibration for an uniform depth distribution can be easily mathematically converted to an exponential depth distribution in cases of radioactive material fallout 7 refs., 3 figs., 1 tab.; e-mail: envirad at post.tau.ac.il; env{sub r}ad at netvision,net.il

  19. Past In-Situ Burning Possibilities

    National Research Council Canada - National Science Library

    Yoshioka, Gary

    1999-01-01

    This study evaluated the feasibility of conducting in-situ burning (ISB) using current technology on post 1967 major oil spills over 10,00 barrels in North America and over 50,00 barrels in South America and Europe...

  20. Exotic Vegetable Oils for Cosmetic O/W Nanoemulsions: In Vivo Evaluation

    OpenAIRE

    Tatiana A. Pereira; Carolina M. Guerreiro; Monica Maruno; Marcio Ferrari; Pedro Alves Rocha-Filho

    2016-01-01

    Oil-in-water nanoemulsions are stable systems with droplet sizes in the 20–200 nm range. The physicochemical properties of these systems may be influenced by the addition of additives. Thus, the influence of ethoxylated (EL) and acetylated lanolin (AL) addition on the droplet size, pH values, electrical conductivity and stability of nanoemulsions was investigated. Then, effect of nano-emulsions additives with EL (NE-EL) or AL (NE-AL) in hydration, oiliness and pH of the skin were evaluated. N...

  1. Numerical Simulation and Optimization of Enhanced Oil Recovery by the In Situ Generated CO2 Huff-n-Puff Process with Compound Surfactant

    Directory of Open Access Journals (Sweden)

    Yong Tang

    2016-01-01

    Full Text Available This paper presents the numerical investigation and optimization of the operating parameters of the in situ generated CO2 Huff-n-Puff method with compound surfactant on the performance of enhanced oil recovery. First, we conducted experiments of in situ generated CO2 and surfactant flooding. Next, we constructed a single-well radial 3D numerical model using a thermal recovery chemical flooding simulator to simulate the process of CO2 Huff-n-Puff. The activation energy and reaction enthalpy were calculated based on the reaction kinetics and thermodynamic models. The interpolation parameters were determined through history matching a series of surfactant core flooding results with the simulation model. The effect of compound surfactant on the Huff-n-Puff CO2 process was demonstrated via a series of sensitivity studies to quantify the effects of a number of operation parameters including the injection volume and mole concentration of the reagent, the injection rate, the well shut-in time, and the oil withdrawal rate. Based on the daily production rate during the period of Huff-n-Puff, a desirable agreement was shown between the field applications and simulated results.

  2. Low temperature combustion of organic coal-water fuel droplets containing petrochemicals while soaring in a combustion chamber model

    Directory of Open Access Journals (Sweden)

    Valiullin Timur R.

    2017-01-01

    Full Text Available The paper examines the integral characteristics (minimum temperature, ignition delay times of stable combustion initiation of organic coal-water fuel droplets (initial radius is 0.3-1.5 mm in the oxidizer flow (the temperature and velocity varied in ranges 500-900 K, 0.5-3 m/s. The main components of organic coal-water fuel were: brown coal particles, filter-cakes obtained in coal processing, waste engine, and turbine oils. The different modes of soaring and ignition of organic coal-water fuel have been established. The conditions have been set under which it is possible to implement the sustainable soaring and ignition of organic coal-water fuel droplets. We have compared the ignition characteristics with those defined in the traditional approach (based on placing the droplets on a low-inertia thermocouple junction into the combustion chamber. The paper shows the scale of the influence of heat sink over the thermocouple junction on ignition inertia. An original technique for releasing organic coal-water fuel droplets to the combustion chamber was proposed and tested. The limitations of this technique and the prospects of experimental results for the optimization of energy equipment operation were also formulated.

  3. Microfluidic droplet generator with controlled break-up mechanism

    KAUST Repository

    Gonzalez, David Conchouso

    2017-04-13

    Droplet generation devices and systems that parallelize droplet generation devices are provided. The droplet generation devices can include a symmetric block-and-break system and a tapered droplet generation zone. The symmetric block-and-break system can include a pair of break channels and a pair of bypass channels symmetrically arranged with respect to the dispersed-phase input channel and the output channel. The droplet generation devices can generate monodisperse droplets with a predefined volume over a range of flow rates, pressures, and fluid properties. The droplet generation devices are therefore capable of parallelization to achieve large-capacity droplet generation, e.g. greater than 1 L/hr, with small overall coefficients of variation.

  4. Droplet generation during core reflood

    International Nuclear Information System (INIS)

    Kocamustafaogullari, G.; De Jarlais, G.; Ishii, M.

    1983-01-01

    The process of entrainment and disintegration of liquid droplets by a flow of steam has considerable practical importance in calculating the effectivenes of the emergency core cooling system. Liquid entrainment is also important in determination of the critical heat flux point in general. Thus the analysis of the reflooding phase of a LOCA requires detailed knowledge of droplet size. Droplet size is mainly determined by the droplet generation mechanisms involved. To study these mechanisms, data generated in the PWR FLECHT SEASET series of experiments was analyzed. In addition, an experiment was performed in which the hydrodynamics of low quality post-CHF flow (inverted annular flow) were simulated in an adiabatic test section

  5. Influence of film dimensions on film droplet formation.

    Science.gov (United States)

    Holmgren, Helene; Ljungström, Evert

    2012-02-01

    Aerosol particles may be generated from rupturing liquid films through a droplet formation mechanism. The present work was undertaken with the aim to throw some light on the influence of film dimensions on droplet formation with possible consequences for exhaled breath aerosol formation. The film droplet formation process was mimicked by using a purpose-built device, where fluid films were spanned across holes of known diameters. As the films burst, droplets were formed and the number and size distributions of the resulting droplets were determined. No general relation could be found between hole diameter and the number of droplets generated per unit surface area of fluid film. Averaged over all film sizes, a higher surface tension yielded higher concentrations of droplets. Surface tension did not influence the resulting droplet diameter, but it was found that smaller films generated smaller droplets. This study shows that small fluid films generate droplets as efficiently as large films, and that droplets may well be generated from films with diameters below 1 mm. This has implications for the formation of film droplets from reopening of closed airways because human terminal bronchioles are of similar dimensions. Thus, the results provide support for the earlier proposed mechanism where reopening of closed airways is one origin of exhaled particles.

  6. Research of hard-to-recovery and unconventional oil-bearing formations according to the principle «in-situ reservoir fabric»

    OpenAIRE

    А. Д. Алексеев; В. В. Жуков; К. В. Стрижнев; С. А. Черевко

    2017-01-01

    Currently in Russia and the world due to the depletion of old highly productive deposits, the role of hard-to-recover and unconventional hydrocarbons is increasing. Thanks to scientific and technical progress, it became possible to involve in the development very low permeable reservoirs and even synthesize oil and gas in-situ. Today, wells serve not only for the production of hydrocarbons, but also are important elements of stimulation technology, through which the technogenic effect on the ...

  7. Hydrodynamics of Leidenfrost droplets in one-component fluids

    KAUST Repository

    Xu, Xinpeng; Qian, Tiezheng

    2013-01-01

    Using the dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)], we numerically investigate the hydrodynamics of Leidenfrost droplets under gravity in two dimensions. Some recent theoretical predictions and experimental observations are confirmed in our simulations. A Leidenfrost droplet larger than a critical size is shown to be unstable and break up into smaller droplets due to the Rayleigh-Taylor instability of the bottom surface of the droplet. Our simulations demonstrate that an evaporating Leidenfrost droplet changes continuously from a puddle to a circular droplet, with the droplet shape controlled by its size in comparison with a few characteristic length scales. The geometry of the vapor layer under the droplet is found to mainly depend on the droplet size and is nearly independent of the substrate temperature, as reported in a recent experimental study [Phys. Rev. Lett. 109, 074301 (2012)]. Finally, our simulations demonstrate that a Leidenfrost droplet smaller than a characteristic size takes off from the hot substrate because the levitating force due to evaporation can no longer be balanced by the weight of the droplet, as observed in a recent experimental study [Phys. Rev. Lett. 109, 034501 (2012)].

  8. Hydrodynamics of Leidenfrost droplets in one-component fluids

    KAUST Repository

    Xu, Xinpeng

    2013-04-24

    Using the dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)], we numerically investigate the hydrodynamics of Leidenfrost droplets under gravity in two dimensions. Some recent theoretical predictions and experimental observations are confirmed in our simulations. A Leidenfrost droplet larger than a critical size is shown to be unstable and break up into smaller droplets due to the Rayleigh-Taylor instability of the bottom surface of the droplet. Our simulations demonstrate that an evaporating Leidenfrost droplet changes continuously from a puddle to a circular droplet, with the droplet shape controlled by its size in comparison with a few characteristic length scales. The geometry of the vapor layer under the droplet is found to mainly depend on the droplet size and is nearly independent of the substrate temperature, as reported in a recent experimental study [Phys. Rev. Lett. 109, 074301 (2012)]. Finally, our simulations demonstrate that a Leidenfrost droplet smaller than a characteristic size takes off from the hot substrate because the levitating force due to evaporation can no longer be balanced by the weight of the droplet, as observed in a recent experimental study [Phys. Rev. Lett. 109, 034501 (2012)].

  9. Experimental test of liquid droplet radiator performance

    International Nuclear Information System (INIS)

    Mattick, A.T.; Simon, M.A.

    1986-01-01

    This liquid droplet radiator (LDR) is evolving rapidly as a lightweight system for heat rejection in space power systems. By using recirculating free streams of submillimeter droplets to radiate waste energy directly to space, the LDR can potentially be an order of magnitude lighter than conventional radiator systems which radiate from solid surfaces. The LDR is also less vulnerable to micrometeoroid damage than are conventional radiators, and it has a low transport volume. Three major development issues of this new heat rejection system are the ability to direct the droplet streams with sufficient precision to avoid fluid loss, radiative performance of the array of droplet streams which comprise the radiating elements of the LDR, and the efficacy of the droplet stream collector, again with respect to fluid loss. This paper reports experimental results bearing on the first two issues - droplet aiming in a multikilowatt-sized system, and radiated power from a large droplet array. Parallel efforts on droplet collection and LDR system design are being pursued by several research groups

  10. Eucalyptus oil nanoemulsion-impregnated chitosan film: antibacterial effects against a clinical pathogen, Staphylococcus aureus, in vitro

    Directory of Open Access Journals (Sweden)

    Sugumar S

    2015-10-01

    Full Text Available Saranya Sugumar, Amitava Mukherjee, Natarajan Chandrasekaran Centre for Nanobiotechnology, VIT University, Vellore, India Abstract: Eucalyptus oil (Eucalyptus globulus nanoemulsion was formulated using low- and high-energy emulsification methods. Development of nanoemulsion was optimized for system parameters such as emulsifier type, emulsifier concentration, and emulsification methods to obtain a lower droplet size with greater stability. The minimized droplet diameter was achieved using the high-energy method of ultrasonication. Tween 80 was more effective in reducing droplet size and emulsion appearance when compared to Tween 20. Stable nanoemulsion was formulated with Tween 80 as a surfactant, and the particle size was found to be 9.4 nm (1:2 v/v. The eucalyptus oil nanoemulsion was impregnated into chitosan (1% as a biopolymer in varying concentrations. Further, the film was characterized by moisture content, microscopic study, X-ray diffraction, and Fourier transform infrared spectroscopy. Also, the film with and without nanoemulsion was evaluated against Staphylococcus aureus. The nanoemulsion-impregnated chitosan film showed higher antibacterial activity than chitosan film. These results support the inclusion of nanoemulsion-impregnated chitosan film in wound management studies. Keywords: essential oil, emulsion, biopolymer, impregnation, thin film, wound isolate

  11. Impinging Water Droplets on Inclined Glass Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Armijo, Kenneth Miguel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lance, Blake [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ho, Clifford K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Multiphase computational models and tests of falling water droplets on inclined glass surfaces were developed to investigate the physics of impingement and potential of these droplets to self-clean glass surfaces for photovoltaic modules and heliostats. A multiphase volume-of-fluid model was developed in ANSYS Fluent to simulate the impinging droplets. The simulations considered different droplet sizes (1 mm and 3 mm), tilt angles (0°, 10°, and 45°), droplet velocities (1 m/s and 3 m/s), and wetting characteristics (wetting=47° contact angle and non-wetting = 93° contact angle). Results showed that the spread factor (maximum droplet diameter during impact divided by the initial droplet diameter) decreased with increasing inclination angle due to the reduced normal force on the surface. The hydrophilic surface yielded greater spread factors than the hydrophobic surface in all cases. With regard to impact forces, the greater surface tilt angles yielded lower normal forces, but higher shear forces. Experiments showed that the experimentally observed spread factor (maximum droplet diameter during impact divided by the initial droplet diameter) was significantly larger than the simulated spread factor. Observed spread factors were on the order of 5 - 6 for droplet velocities of ~3 m/s, whereas the simulated spread factors were on the order of 2. Droplets were observed to be mobile following impact only for the cases with 45° tilt angle, which matched the simulations. An interesting phenomenon that was observed was that shortly after being released from the nozzle, the water droplet oscillated (like a trampoline) due to the "snapback" caused by the surface tension of the water droplet being released from the nozzle. This oscillation impacted the velocity immediately after the release. Future work should evaluate the impact of parameters such as tilt angle and surface wettability on the impact of particle/soiling uptake and removal to investigate ways that

  12. Composite Membrane with Underwater-Oleophobic Surface for Anti-Oil-Fouling Membrane Distillation.

    Science.gov (United States)

    Wang, Zhangxin; Hou, Deyin; Lin, Shihong

    2016-04-05

    In this study, we fabricated a composite membrane for membrane distillation (MD) by modifying a commercial hydrophobic polyvinylidene fluoride (PVDF) membrane with a nanocomposite coating comprising silica nanoparticles, chitosan hydrogel and fluoro-polymer. The composite membrane exhibits asymmetric wettability, with the modified surface being in-air hydrophilic and underwater oleophobic, and the unmodified surface remaining hydrophobic. By comparing the performance of the composite membrane and the pristine PVDF membrane in direct contact MD experiments using a saline emulsion with 1000 ppm crude oil (in water), we showed that the fabricated composite membrane was significantly more resistant to oil fouling compared to the pristine hydrophobic PVDF membrane. Force spectroscopy was conducted for the interaction between an oil droplet and the membrane surface using a force tensiometer. The difference between the composite membrane and the pristine PVDF membrane in their interaction with an oil droplet served to explain the difference in the fouling propensities between these two membranes observed in MD experiments. The results from this study suggest that underwater oleophobic coating can effectively mitigate oil fouling in MD operations, and that the fabricated composite membrane with asymmetric wettability can enable MD to desalinate hypersaline wastewater with high concentrations of hydrophobic contaminants.

  13. The collaborative work of droplet assembly.

    Science.gov (United States)

    Chen, Xiao; Goodman, Joel M

    2017-10-01

    Three proteins have been implicated in the assembly of cytoplasmic lipid droplets: seipin, FIT2, and perilipin. This review examines the current theories of seipin function as well as the evidence for the involvement of all three proteins in droplet biogenesis, and ends with a proposal of how they collaborate to regulate the formation of droplets. This article is part of a Special Issue entitled: Recent Advances in Lipid Droplet Biology edited by Rosalind Coleman and Matthijs Hesselink. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Droplet collisions in turbulence

    NARCIS (Netherlands)

    Oldenziel, G.

    2014-01-01

    Liquid droplets occur in many natural phenomena and play an important role in a large number of industrial applications. One of the distinct properties of droplets as opposed to solid particles is their ability to merge, or coalesce upon collision. Coalescence of liquid drops is of importance in for

  15. Evaporation of nanofluid droplet on heated surface

    Directory of Open Access Journals (Sweden)

    Yeung Chan Kim

    2015-04-01

    Full Text Available In this study, an experiment on the evaporation of nanofluid sessile droplet on a heated surface was conducted. A nanofluid of 0.5% volumetric concentration mixed with 80-nm-sized CuO powder and pure water were used for experiment. Droplet was applied to the heated surface, and images of the evaporation process were obtained. The recorded images were analyzed to find the volume, diameter, and contact angle of the droplet. In addition, the evaporative heat transfer coefficient was calculated from experimental result. The results of this study are summarized as follows: the base diameter of the droplet was maintained stably during the evaporation. The measured temperature of the droplet was increased rapidly for a very short time, then maintained constantly. The nanofluid droplet was evaporated faster than the pure water droplet under the experimental conditions of the same initial volume and temperature, and the average evaporative heat transfer coefficient of the nanofluid droplet was higher than that of pure water. We can consider the effects of the initial contact angle and thermal conductivity of nanofluid as the reason for this experimental result. However, the effect of surface roughness on the evaporative heat transfer of nanofluid droplet appeared unclear.

  16. Evaluation of hepatic steatosis in dogs with congenital portosystemic shunts using Oil-Red-O staining

    Science.gov (United States)

    Hunt, GB; Luff, J; Daniel, L; Van den Bergh, R.

    2015-01-01

    The aims of this prospective study were to quantify steatosis in dogs with congenital portosystemic shunts using a fat-specific stain, to compare the amount of steatosis in different lobes of the liver, and to evaluate intra- and inter-Observer variability in lipid point counting. Computer-assisted point counting of lipid droplets was undertaken following Oil-Red-O staining in 21 dogs with congenital portosystemic shunts and 9 control dogs. Dogs with congenital portosystemic shunts had significantly more small lipid droplets ( 9 μ) and lipogranulomas per tissue point (p = 0.023 and 0.01, respectively). In conclusion, computer-assisted counting of lipid droplets following Oil Red O staining of liver biopsy samples allows objective measurement and detection of significant differences between dogs with CPS and normal dogs. This method will allow future evaluation of the relationship between different presentations of CPS (anatomy, age, breed) and lipidosis, as well as the impact of hepatic lipidosis on outcomes following surgical shunt attenuation. PMID:23528942

  17. Extraction of tributyltin and triphenyltin across a single oil droplet/water interface

    Energy Technology Data Exchange (ETDEWEB)

    Chikama, Katsumi; Negishi, Takayuki; Nakatani, Kiyoharu

    2004-07-01

    Tributyltin (TBT{sup +}) and triphenyltin (TPT{sup +}) were extracted with merocyanine 540 (MC{sup -}) from water into a 1,6-dichlorohexane droplet with the radius of 40 {mu}m and the absorption spectra of MC{sup -} were measured by a single microdroplet manipulation and microabsorption technique. The mass transfer rate and the partitioning ratio of MC{sup -} were characteristically influenced by the TBT{sup +}, TPT{sup +}, MC{sup -}, and Cl{sup -} concentrations in water. The ion pair extraction processes of the organotin compounds with the anions were discussed in terms of the ion transfer and adsorption-desorption of the solutes.

  18. Patchwork policy, fragmented forests: In-situ oil sands, industrial development, and the ecological integrity of Alberta's boreal forest

    International Nuclear Information System (INIS)

    MacCrimmon, G.; Marr-Laing, T.

    2000-05-01

    Environmental impacts of current oil sands industry activities and the potential cumulative impacts of new in-situ oil sands development on the boreal forest of northeastern Alberta are reviewed. The objective is to improve understanding of the impacts of existing industrial activity on the broader boreal forest ecosystem, and the environmental implications of further disturbance to this ecosystem from future development of heavy and conventional fossil fuel reserves in the province. The report also outlines elements of a boreal forest use framework that could assist in managing industrial activity within ecologically sustainable limits and makes recommendations for specific actions that need to be taken by government and industry to guide future development decisions. The top 50 key landscape areas of interest in the province, identified by the World Wildlife Federation, based primarily on a series of reports by Alberta Environmental Protection, are briefly described. Implications of failure to act are also outlined. 138 end-notes, 8 tabs., 16 figs

  19. Droplet Translation Actuated by Photoelectrowetting.

    Science.gov (United States)

    Palma, Cesar; Deegan, Robert D

    2018-03-13

    In traditional electrowetting-on-dielectric (EWOD) devices, droplets are moved about a substrate using electric fields produced by an array of discrete electrodes. In this study, we show that a drop can be driven across a substrate with a localized light beam by exploiting the photoelectrowetting (PEW) effect, a light-activated variant of EWOD. Droplet transport actuated by PEW eliminates the need for electrode arrays and the complexities entailed in their fabrication and control, and offers a new approach for designing lab-on-a-chip applications. We report measurements of the maximum droplet speed as a function of frequency and magnitude of the applied bias, intensity of illumination, volume of the droplet, and viscosity and also introduce a model that reproduces these data.

  20. Colliding droplets: a short film presentation

    International Nuclear Information System (INIS)

    Hendricks, C.D.

    1981-01-01

    A series of experiments were performed in which liquid droplets were caused to collide. Impact velocities to several meters per second and droplet diameters up to 600 micrometers were used. The impact parameters in the collisions vary from zero to greater than the sum of the droplet radii. Photographs of the collisions were taken with a high speed framing camera in order to study the impacts and subsequent behavior of the droplets. The experiments will be discussed and a short movie film presentation of some of the impacts will be shown

  1. Physical and Oxidative Stability of Flaxseed Oil-in-Water Emulsions Fabricated from Sunflower Lecithins: Impact of Blending Lecithins with Different Phospholipid Profiles.

    Science.gov (United States)

    Liang, Li; Chen, Fang; Wang, Xingguo; Jin, Qingzhe; Decker, Eric Andrew; McClements, David Julian

    2017-06-14

    There is great interest in the formulation of plant-based foods enriched with nutrients that promote health, such as polyunsaturated fatty acids. This study evaluated the impact of sunflower phospholipid type on the formation and stability of flaxseed oil-in-water emulsions. Two sunflower lecithins (Sunlipon 50 and 90) with different phosphatidylcholine (PC) levels (59 and 90%, respectively) were used in varying ratios to form emulsions. Emulsion droplet size, charge, appearance, microstructure, and oxidation were measured during storage at 55 °C in the dark. The physical and chemical stability increased as the PC content of the lecithin blends decreased. The oxidative stability of emulsions formulated using Sunlipon 50 was better than emulsions formulated using synthetic surfactants (SDS or Tween 20). The results are interpreted in terms of the impact of emulsifier type on the colloidal interactions between oil droplets and on the molecular interactions between pro-oxidants and oil droplet surfaces.

  2. Techno-economic and uncertainty analysis of in situ and ex situ fast pyrolysis for biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Li, Boyan; Ou, Longwen; Dang, Qi; Meyer, Pimphan A.; Jones, Susanne B.; Brown, Robert C.; Wright, Mark

    2015-11-01

    This study evaluates the techno-economic uncertainty in cost estimates for two emerging biorefinery technologies for biofuel production: in situ and ex situ catalytic pyrolysis. Stochastic simulations based on process and economic parameter distributions are applied to calculate biorefinery performance and production costs. The probability distributions for the minimum fuel-selling price (MFSP) indicate that in situ catalytic pyrolysis has an expected MFSP of $4.20 per gallon with a standard deviation of 1.15, while the ex situ catalytic pyrolysis has a similar MFSP with a smaller deviation ($4.27 per gallon and 0.79 respectively). These results suggest that a biorefinery based on ex situ catalytic pyrolysis could have a lower techno-economic risk than in situ pyrolysis despite a slightly higher MFSP cost estimate. Analysis of how each parameter affects the NPV indicates that internal rate of return, feedstock price, total project investment, electricity price, biochar yield and bio-oil yield are significant parameters which have substantial impact on the MFSP for both in situ and ex situ catalytic pyrolysis.

  3. Settling of fixed erythrocyte suspension droplets

    Science.gov (United States)

    Omenyi, S. N.; Snyder, R. S.

    1983-01-01

    It is pointed out that when particles behave collectively rather than individually, the fractionation of micron-size particles on the basis of size, density, and surface characteristics by centrifugation and electrophoresis is hindered. The formation and sedimentation of droplets containing particles represent an extreme example of collective behavior and pose a major problem for these separation methods when large quantities of particles need to be fractionated. Experiments are described that measure droplet sizes and settling rates for a variety of particles and droplets. Expressions relating the particle concentration in a drop to measurable quantities of the fluids and particles are developed. The number of particles in each droplet is then estimated, together with the effective droplet density. Red blood cells from different animals fixed in glutaraldehyde provide model particle groups.

  4. Orange oil/water nanoemulsions prepared by high pressure homogenizer

    International Nuclear Information System (INIS)

    Kourniatis, Loretta R.; Spinelli, Luciana S.; Mansur, Claudia R.E.

    2010-01-01

    The objective of this work was to use the high-pressure homogenizer (HPH) to prepare stable oil/water nanoemulsions presenting narrow particle size distribution. The dispersions were prepared using nonionic surfactants based on ethoxylated ether. The size and distribution of the droplets formed, along with their stability, were determined in a Zetasizer Nano ZS particle size analyzer. The stability and the droplet size distribution in these systems do not present the significant differences with the increase of the processing pressure in the HPH). The processing time can promote the biggest dispersion in the size of particles, thus reducing its stability. (author)

  5. Multicomponent droplet vaporization in a convecting environment

    International Nuclear Information System (INIS)

    Megaridis, C.M.; Sirignano, W.A.

    1990-01-01

    In this paper a parametric study of the fundamental exchange processes for energy, mass and momentum between the liquid and gas phases of multicomponent liquid vaporizing droplets is presented. The model, which examines an isolated, vaporizing, multicomponent droplet in an axisymmetric, convecting environment, considers the different volatilities of the liquid components, the alteration of the liquid-phase properties due to the spatial/temporal variations of the species concentrations and also the effects of multicomponent diffusion. In addition, the model accounts for variable thermophysical properties, surface blowing and droplet surface regression due to vaporization, transient droplet heating with internal liquid circulation, and finally droplet deceleration with respect to the free flow due to drag. The numerical calculation employs finite-difference techniques and an iterative solution procedure that provides time-varying spatially-resolved data for both phases. The effects of initial droplet composition, ambient temperature, initial Reynolds number (based on droplet diameter), and volatility differential between the two liquid components are investigated for a liquid droplet consisting of two components with very different volatilities. It is found that mixtures with higher concentration of the less volatile substance actually vaporize faster on account of intrinsically higher liquid heating rates

  6. Effective adsorption of oil droplets from oil-in-water emulsion using metal ions encapsulated biopolymers: Role of metal ions and their mechanism in oil removal.

    Science.gov (United States)

    Elanchezhiyan, S Sd; Prabhu, Subbaiah Muthu; Meenakshi, Sankaran

    2018-06-01

    Herein, synthesized and compared the three different kinds of hybrid bio-polymeric composites viz., lanthanum embedded chitosan/gelatin (La@CS-GEL), zirconium embedded chitosan/gelatin (Zr@CS-GEL) and cerium embedded chitosan/gelatin (Ce@CS-GEL) in terms of their oil uptake efficiency. The adsorption efficiency was studied under various optimized parameters like contact time, pH, dose, initial oil concentration and temperature. The oil adsorption capacity was found to be 91, 82 and 45% for La@CS-GEL, Zr@CS-GEL and Ce@CS-GEL composites respectively. The metals were used as a bridging material to connect both CS and GEL using the hydrophilic groups to enhance the oil recovery by hydrophobic interaction. Also, the introduction of metal ions on the surface of biopolymers would modify the oil/water properties which in turn, decrease the interfacial tension between oil and water phases. The mechanism of oil uptake was explained using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscope (SEM), energy dispersive X-ray (EDAX) and heat of combustion. The experimental data confirmed Langmuir isotherm as the best fit for oil adsorption process. Thermodynamic parameters such as standard free energy (ΔG°), standard enthalpy (ΔH°) and standard entropy (ΔS°) indicated that the oil adsorption was spontaneous and endothermic. The oil adsorption mechanism was established based on isotherm and thermodynamic models. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Centennial review-forecast--oil sands, shales spar for markets

    Energy Technology Data Exchange (ETDEWEB)

    Pamenter, C B

    1967-09-01

    The relationship between possible developments of tar sands and oil shale deposits to the future of the oil and gas industry is examined. The Athabasca tar sands are estimated to contain 85 billion bbl of synthetic crude oil which can be exploited using currently available mining equipment and proven techniques. Another 240 billion bbl of synthetic crude are potentially available through in-situ extraction methods. Great Canadian Oil Sands Ltd. is using an extraction procedure which involves a surface mining operation, extraction and processing of the bitumen, and product shipments via a 266-mile pipeline. This procedure will be used to produce 45,000 bpd of synthetic crude and 300 ton per day of sulfur. Syncrude Canada Ltd. and Shell Canada Ltd. both have applied to the Alberta government for permission to operate 100,000-bpd operations. Syncrudes is a mining operation and Shell plans to use in-situ extraction. A number of companies have conducted research projects concerning shale oil recovery. The majority of these projects have been aimed at improving mining operations. In-situ retorting of kerogen and extraction of oil has also received consideration.

  8. Collisions of droplets on spherical particles

    Science.gov (United States)

    Charalampous, Georgios; Hardalupas, Yannis

    2017-10-01

    Head-on collisions between droplets and spherical particles are examined for water droplets in the diameter range between 170 μm and 280 μm and spherical particles in the diameter range between 500 μm and 2000 μm. The droplet velocities range between 6 m/s and 11 m/s, while the spherical particles are fixed in space. The Weber and Ohnesorge numbers and ratio of droplet to particle diameter were between 92 deposition and splashing regimes, a regime is observed in the intermediate region, where the droplet forms a stable crown, which does not breakup but propagates along the particle surface and passes around the particle. This regime is prevalent when the droplets collide on small particles. The characteristics of the collision at the onset of rim instability are also described in terms of the location of the film on the particle surface and the orientation and length of the ejected crown. Proper orthogonal decomposition identified that the first 2 modes are enough to capture the overall morphology of the crown at the splashing threshold.

  9. Biostimulation proved to be the most efficient method in the comparison of in situ soil remediation treatments after a simulated oil spill accident.

    Science.gov (United States)

    Simpanen, Suvi; Dahl, Mari; Gerlach, Magdalena; Mikkonen, Anu; Malk, Vuokko; Mikola, Juha; Romantschuk, Martin

    2016-12-01

    The use of in situ techniques in soil remediation is still rare in Finland and most other European countries due to the uncertainty of the effectiveness of the techniques especially in cold regions and also due to their potential side effects on the environment. In this study, we compared the biostimulation, chemical oxidation, and natural attenuation treatments in natural conditions and pilot scale during a 16-month experiment. A real fuel spill accident was used as a model for experiment setup and soil contamination. We found that biostimulation significantly decreased the contaminant leachate into the water, including also the non-aqueous phase liquid (NAPL). The total NAPL leachate was 19 % lower in the biostimulation treatment that in the untreated soil and 34 % lower in the biostimulation than oxidation treatment. Soil bacterial growth and community changes were first observed due to the increased carbon content via oil amendment and later due to the enhanced nutrient content via biostimulation. Overall, the most effective treatment for fresh contaminated soil was biostimulation, which enhanced the biodegradation of easily available oil in the mobile phase and consequently reduced contaminant leakage through the soil. The chemical oxidation did not enhance soil cleanup and resulted in the mobilization of contaminants. Our results suggest that biostimulation can decrease or even prevent oil migration in recently contaminated areas and can thus be considered as a potentially safe in situ treatment also in groundwater areas.

  10. Oil shale research related to proposed nuclear projects

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, H C; Sohns, H W; Dinneen, G U [Laramie Petroleum Research Center, Bureau of Mines, Department of the Interior, Laramie, WY (United States)

    1970-05-15

    The Bureau of Mines is conducting research to develop data pertinent to in situ retorting of oil shale fractured by a nuclear explosion or other means. Maximum utilization of the Green River oil shale found in Colorado, Utah, and Wyoming, at depths ranging from outcrops to several thousand feet, requires development of several methods of processing. Early research was devoted to developing processes for application to oil shale occurring at depths suitable for mining. In present research, the emphasis is on in situ retorting and recovery processes that would be more satisfactory for oil shales occurring at greater depths. Development of an in situ process depends upon finding or establishing sufficient permeability in the oil shale beds for the passage of fluids which serve as a heat carrier in bringing the oil shale to retorting temperature. Use of a nuclear explosive seems to offer the best chance for successfully fracturing the thicker and more deeply buried portions of the deposit to give the required permeability. Processing the very large quantity of broken and fractured oil shale that would be produced presents many problems which require new background data for their solution. This paper describes research the Bureau of Mines is conducting to develop pertinent data. Primarily this research involves laboratory determination of properties of oil shale, pilot scale investigation of retorting characteristics of ungraded broken shale, and underground combustion of shale fractured by pressure and chemical explosives. Application of the research results should aid in designing the oil recovery phase and provide an estimate of the quantity of oil that may be obtained in a nuclear experiment in oil shale. (author)

  11. Oil shale research related to proposed nuclear projects

    International Nuclear Information System (INIS)

    Carpenter, H.C.; Sohns, H.W.; Dinneen, G.U.

    1970-01-01

    The Bureau of Mines is conducting research to develop data pertinent to in situ retorting of oil shale fractured by a nuclear explosion or other means. Maximum utilization of the Green River oil shale found in Colorado, Utah, and Wyoming, at depths ranging from outcrops to several thousand feet, requires development of several methods of processing. Early research was devoted to developing processes for application to oil shale occurring at depths suitable for mining. In present research, the emphasis is on in situ retorting and recovery processes that would be more satisfactory for oil shales occurring at greater depths. Development of an in situ process depends upon finding or establishing sufficient permeability in the oil shale beds for the passage of fluids which serve as a heat carrier in bringing the oil shale to retorting temperature. Use of a nuclear explosive seems to offer the best chance for successfully fracturing the thicker and more deeply buried portions of the deposit to give the required permeability. Processing the very large quantity of broken and fractured oil shale that would be produced presents many problems which require new background data for their solution. This paper describes research the Bureau of Mines is conducting to develop pertinent data. Primarily this research involves laboratory determination of properties of oil shale, pilot scale investigation of retorting characteristics of ungraded broken shale, and underground combustion of shale fractured by pressure and chemical explosives. Application of the research results should aid in designing the oil recovery phase and provide an estimate of the quantity of oil that may be obtained in a nuclear experiment in oil shale. (author)

  12. Velocity and rotation measurements in acoustically levitated droplets

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Abhishek [University of Central Florida, Orlando, FL 32816 (United States); Basu, Saptarshi [Indian Institute of Science, Bangalore 560012 (India); Kumar, Ranganathan, E-mail: ranganathan.kumar@ucf.edu [University of Central Florida, Orlando, FL 32816 (United States)

    2012-10-01

    The velocity scale inside an acoustically levitated droplet depends on the levitator and liquid properties. Using Particle Imaging Velocimetry (PIV), detailed velocity measurements have been made in a levitated droplet of different diameters and viscosity. The maximum velocity and rotation are normalized using frequency and amplitude of acoustic levitator, and droplet viscosity. The non-dimensional data are fitted for micrometer- and millimeter-sized droplets levitated in different levitators for different viscosity fluids. It is also shown that the rotational speed of nanosilica droplets at an advanced stage of vaporization compares well with that predicted by exponentially fitted parameters. -- Highlights: ► Demonstrates the importance of rotation in a levitated droplet that leads to controlled morphology. ► Provides detailed measurements of Particle Image Velocimetry inside levitated droplets. ► Shows variation of vortex strength with the droplet diameter and viscosity of the liquid.

  13. Velocity and rotation measurements in acoustically levitated droplets

    International Nuclear Information System (INIS)

    Saha, Abhishek; Basu, Saptarshi; Kumar, Ranganathan

    2012-01-01

    The velocity scale inside an acoustically levitated droplet depends on the levitator and liquid properties. Using Particle Imaging Velocimetry (PIV), detailed velocity measurements have been made in a levitated droplet of different diameters and viscosity. The maximum velocity and rotation are normalized using frequency and amplitude of acoustic levitator, and droplet viscosity. The non-dimensional data are fitted for micrometer- and millimeter-sized droplets levitated in different levitators for different viscosity fluids. It is also shown that the rotational speed of nanosilica droplets at an advanced stage of vaporization compares well with that predicted by exponentially fitted parameters. -- Highlights: ► Demonstrates the importance of rotation in a levitated droplet that leads to controlled morphology. ► Provides detailed measurements of Particle Image Velocimetry inside levitated droplets. ► Shows variation of vortex strength with the droplet diameter and viscosity of the liquid.

  14. The interaction of fine particles with stranded oil

    International Nuclear Information System (INIS)

    Owens, E.H.

    1999-01-01

    The interaction of micron-sized mineral particles with stranded oil reduces its adhesion to solid surfaces, such as sediments or bedrock. The net result is the formation of stable, micron-sized, oil droplets that disperse into the water column. In turn, the increase in surface area makes the oil more available for biodegradation. Oil and Fine-particle Interaction ('OFI') can explain how oiled shorelines are cleaned naturally in the absence of wave action in very sheltered coastal environments. Fine-particle interaction can be accelerated during a spill response by relocating the oiled sediments into the surf zone. This has been achieved successfully on two occasions to date: the Tampa Bay response in Florida, and the Sea Empress operation in Wales. Sediment relocation also causes physical abrasion by the hydraulic action of waves so that the processes of fine-particle interaction and surf washing usually occur in combination on open coasts. (author)

  15. Solidification/stabilisation of liquid oil waste in metakaolin-based geopolymer

    Energy Technology Data Exchange (ETDEWEB)

    Cantarel, V.; Nouaille, F.; Rooses, A.; Lambertin, D., E-mail: david.lambertin@cea.fr; Poulesquen, A.; Frizon, F.

    2015-09-15

    Highlights: • Formulation with 20 vol.% of oil in a geopolymer have been successful tested. • Oil waste is encapsulated as oil droplets in metakaolin-based geopolymer. • Oil/geopolymer composite present good mechanical performance. • Carbon lixiviation of oil/geopolymer composite is very low. - Abstract: The solidification/stabilisation of liquid oil waste in metakaolin based geopolymer was studied in the present work. The process consists of obtaining a stabilised emulsion of oil in a water-glass solution and then adding metakaolin to engage the setting of a geopolymer block with an oil emulsion stabilised in the material. Geopolymer/oil composites have been made with various oil fraction (7, 14 and 20 vol.%). The rigidity and the good mechanical properties have been demonstrated with compressive strength tests. Leaching tests evidenced the release of oil from the composite material is very limited whereas the constitutive components of the geopolymer (Na, Si and OH{sup −}) are involved into diffusion process.

  16. Evaluation of stability and viscosity measurement of emulsion from oil from production in northern oilfield in Thailand

    Science.gov (United States)

    Juntarasakul, O.; Maneeintr, K.

    2018-04-01

    Emulsion is normally present in oil due to the mixing occurring during oil recovery. The formation of emulsion can cause some problems in production and transportation. Viscosity and stability of emulsion play a key roles in oil transportation and separation to meet sales specification. Therefore, the aims of this research are to measure the viscosity of oil an emulsion and to evaluate the stability of emulsion of light oil from Fang oilfield in Thailand. The parameters of this study are temperature, shear rate and water cut ranging from 50 to 80 °C, 3.75 to 70 s-1 and 0 to 60%, respectively. These effects of parameters on viscosity and stability of emulsion are required for the design of the process and to increase oil production with various conditions. The results shows that viscosity decreases as temperature and shear rate increase. In contrast, viscosity becomes higher when water cut is lower. Furthermore, droplet sizes of water-in-oil emulsion at different conditions are investigated the stability of emulsion. The droplet sizes become smaller when high shear rate is applied and emulsion becomes more stable. Furthermore, correlations are developed to predict the viscosity and stability of the oil and emulsion from Thailand.

  17. Method for explosive expansion toward horizontal free faces for forming an in situ oil shale retort

    Science.gov (United States)

    Ricketts, Thomas E.

    1980-01-01

    Formation is excavated from within a retort site in formation containing oil shale for forming a plurality of vertically spaced apart voids extending horizontally across different levels of the retort site, leaving a separate zone of unfragmented formation between each pair of adjacent voids. Explosive is placed in each zone, and such explosive is detonated in a single round for forming an in situ retort containing a fragmented permeable mass of formation particles containing oil shale. The same amount of formation is explosively expanded upwardly and downwardly toward each void. A horizontal void excavated at a production level has a smaller horizontal cross-sectional area than a void excavated at a lower level of the retort site immediately above the production level void. Explosive in a first group of vertical blast holes is detonated for explosively expanding formation downwardly toward the lower void, and explosive in a second group of vertical blast holes is detonated in the same round for explosively expanding formation upwardly toward the lower void and downwardly toward the production level void for forming a generally T-shaped bottom of the fragmented mass.

  18. Levitated droplet dye laser

    DEFF Research Database (Denmark)

    Azzouz, H.; Alkafadiji, L.; Balslev, Søren

    2006-01-01

    a high quality optical resonator. Our 750 nL lasing droplets consist of Rhodamine 6G dissolved in ethylene glycol, at a concentration of 0.02 M. The droplets are optically pumped at 532 nm light from a pulsed, frequency doubled Nd:YAG laser, and the dye laser emission is analyzed by a fixed grating...

  19. Water Entry by a Train of Droplets

    Science.gov (United States)

    Ohl, Claus-Dieter; Huang, Xin; Chan, Chon U.; Frommhold, Philipp Erhard; Lippert, Alexander

    2014-11-01

    The impact of single droplets on a deep pool is a well-studied phenomenon which reveals reach fluid mechanics. Lesser studied is the impact of a train of droplet and the accompanied formation of largely elongated cavities, in particular for well controlled droplets. The droplets with diameters of 20-40 μm and velocities of approx. 20 m/s are generated with a piezo-actuated nozzle at rates of 200-300 kHz. Individual droplets are selected by electric charging and deflection and the impact is visualized with stroboscopic photography and high-speed videos. We study in particular the formation and shape of the cavity as by varying the number of droplets from one to 64. The cavities reach centimetres in length with lateral diameters of the order of 100 of micrometres.

  20. Saskatchewan's place in Canadian oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, L.L. [Saskatchewan Research Council, Regina, SK (Canada); Kramers, J.W. [Owl Ventures Inc., Edmonton, AB (Canada); Isaacs, E.E. [Alberta Energy Research Inst., Edmonton, AB (Canada)

    2010-11-15

    The current daily bitumen and synthetic crude production from the Western Canada Sedimentary Basin is 180,000 m{sup 3}, which represents approximately 40 percent of crude oil produced in Canada. In a time of peaking conventional oil production, the search for new oil reserves has led to unconventional in-situ bitumen and heavy oil resources, including shallow in-situ resources. The great difficulty in producing bitumen and managing water flows in such reservoirs will require innovative approaches and increasingly environmentally sustainable practices. This paper presented an overview of shallow in-situ oil sands and the novel recovery technologies that are being developed that will reduce the use of steam and fresh water, and also reduce greenhouse gas emissions. Research and development programs are currently underway to develop and demonstrate such new technologies. Promising technologies include the solvent vapour extraction and hybrid thermal solvent extraction processes that are being developed and demonstrated in large-scale three-dimensional scaled physical models and associated numerical simulation models. Electrical heating and gravity stable combustion are other examples of technologies that could play a significant role in developing these resources. 81 refs., 3 tabs., 8 figs.

  1. Impact of entrainment on cloud droplet spectra: theory, observations, and modeling

    Science.gov (United States)

    Grabowski, W.

    2016-12-01

    Understanding the impact of entrainment and mixing on microphysical properties of warm boundary layer clouds is an important aspect of the representation of such clouds in large-scale models of weather and climate. Entrainment leads to a reduction of the liquid water content in agreement with the fundamental thermodynamics, but its impact on the droplet spectrum is difficult to quantify in observations and modeling. For in-situ (e.g., aircraft) observations, it is impossible to follow air parcels and observe processes that lead to changes of the droplet spectrum in different regions of a cloud. For similar reasons traditional modeling methodologies (e.g., the Eulerian large eddy simulation) are not useful either. Moreover, both observations and modeling can resolve only relatively narrow range of spatial scales. Theory, typically focusing on differences between idealized concepts of homogeneous and inhomogeneous mixing, is also of a limited use for the multiscale turbulent mixing between a cloud and its environment. This presentation will illustrate the above points and argue that the Lagrangian large-eddy simulation with appropriate subgrid-scale scheme may provide key insights and eventually lead to novel parameterizations for large-scale models.

  2. Electrostatic charging and control of droplets in microfluidic devices.

    Science.gov (United States)

    Zhou, Hongbo; Yao, Shuhuai

    2013-03-07

    Precharged droplets can facilitate manipulation and control of low-volume liquids in droplet-based microfluidics. In this paper, we demonstrate non-contact electrostatic charging of droplets by polarizing a neutral droplet and splitting it into two oppositely charged daughter droplets in a T-junction microchannel. We performed numerical simulation to analyze the non-contact charging process and proposed a new design with a notch at the T-junction in aid of droplet splitting for more efficient charging. We experimentally characterized the induced charge in droplets in microfabricated devices. The experimental results agreed well with the simulation. Finally, we demonstrated highly effective droplet manipulation in a path selection unit appending to the droplet charging. We expect our work could enable precision manipulation of droplets for more complex liquid handling in microfluidics and promote electric-force based manipulation in 'lab-on-a-chip' systems.

  3. Ultrasound assisted synthesis of stable oil in milk emulsion: Study of operating parameters and scale-up aspects.

    Science.gov (United States)

    Patil, Leena; Gogate, Parag R

    2018-01-01

    In the present work, application of ultrasound and stirring individually or in combination for improved emulsification of turmeric oil in skimmed milk has been investigated. The effect of different operating parameters/strategies such as addition of surfactant, sodium dodecyl sulfate (SDS), at different concentrations, quantity of oil phase, applied power, sonication time and duty cycle on the droplet size have been investigated. The stability of emulsion was analyzed in terms of the fraction of the emulsion that remains stable for a period of 28days. Optimized set of major emulsification process variables has been used at higher emulsion volumes. The effectiveness of treatment approach was analyzed based on oil droplet size, energy density and the time required for the formation of stable emulsion. It was observed that the stable emulsion at 50mL capacity with mean droplet diameter of about 235.4nm was obtained with the surfactant concentration of 5mg/mL, 11% of rated power (power density: 0.31W/mL) and irradiation time of 5min. The emulsion stability was higher in the case of ultrasound assisted approach as compared to the stirring. For the preparation of stable emulsion at 300mL capacity, it was observed that the sequential approach, i.e., stirring followed by ultrasound, gave lower mean droplet diameter (232.6nm) than the simultaneous approach, i.e., ultrasound and stirring together (257.9nm). However, the study also revealed that the simultaneous approach required very less time (15min) to synthesize stable emulsion as compared to the sequential approach (30min stirring and 60min ultrasound). It was successfully demonstrated that the ultrasound-assisted emulsification in the presence of SDS could be used for the preparation of stable turmeric oil-dairy emulsions, also providing insights into the role of SDS in increasing the stability of emulsions and of ultrasound in giving lower droplet sizes. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Supersonic laser-induced jetting of aluminum micro-droplets

    International Nuclear Information System (INIS)

    Zenou, M.; Sa'ar, A.; Kotler, Z.

    2015-01-01

    The droplet velocity and the incubation time of pure aluminum micro-droplets, printed using the method of sub-nanosecond laser induced forward transfer, have been measured indicating the formation of supersonic laser-induced jetting. The incubation time and the droplet velocity were extracted by measuring a transient electrical signal associated with droplet landing on the surface of the acceptor substrate. This technique has been exploited for studying small volume droplets, in the range of 10–100 femto-litters for which supersonic velocities were measured. The results suggest elastic propagation of the droplets across the donor-to-acceptor gap, a nonlinear deposition dynamics on the surface of the acceptor and overall efficient energy transfer from the laser beam to the droplets

  5. Supersonic laser-induced jetting of aluminum micro-droplets

    Energy Technology Data Exchange (ETDEWEB)

    Zenou, M. [Racah Institute of Physics and the Harvey M. Kruger Family Center for Nano-science and Nanotechnology, The Hebrew University of Jerusalem, 91904 Jerusalem (Israel); Additive Manufacturing Lab, Orbotech Ltd., P.O. Box 215, 81101 Yavne (Israel); Sa' ar, A. [Racah Institute of Physics and the Harvey M. Kruger Family Center for Nano-science and Nanotechnology, The Hebrew University of Jerusalem, 91904 Jerusalem (Israel); Kotler, Z. [Additive Manufacturing Lab, Orbotech Ltd., P.O. Box 215, 81101 Yavne (Israel)

    2015-05-04

    The droplet velocity and the incubation time of pure aluminum micro-droplets, printed using the method of sub-nanosecond laser induced forward transfer, have been measured indicating the formation of supersonic laser-induced jetting. The incubation time and the droplet velocity were extracted by measuring a transient electrical signal associated with droplet landing on the surface of the acceptor substrate. This technique has been exploited for studying small volume droplets, in the range of 10–100 femto-litters for which supersonic velocities were measured. The results suggest elastic propagation of the droplets across the donor-to-acceptor gap, a nonlinear deposition dynamics on the surface of the acceptor and overall efficient energy transfer from the laser beam to the droplets.

  6. Oleoplaning droplets on lubricated surfaces

    Science.gov (United States)

    Daniel, Dan; Timonen, Jaakko V. I.; Li, Ruoping; Velling, Seneca J.; Aizenberg, Joanna

    2017-10-01

    Recently, there has been much interest in using lubricated surfaces to achieve extreme liquid repellency: a foreign droplet immiscible with the underlying lubricant layer was shown to slide off at a small tilt angle behaviour was hypothesized to arise from a thin lubricant overlayer film sandwiched between the droplet and solid substrate, but this has not been observed experimentally. Here, using thin-film interference, we are able to visualize the intercalated film under both static and dynamic conditions. We further demonstrate that for a moving droplet, the film thickness follows the Landau-Levich-Derjaguin law. The droplet is therefore oleoplaning--akin to tyres hydroplaning on a wet road--with minimal dissipative force and no contact line pinning. The techniques and insights presented in this study will inform future work on the fundamentals of wetting for lubricated surfaces and enable their rational design.

  7. Lipidomic and proteomic analysis of Caenorhabditis elegans lipid droplets and identification of ACS-4 as a lipid droplet-associated protein

    Energy Technology Data Exchange (ETDEWEB)

    Vrablik, Tracy L. [Washington State Univ., Pullman, WA (United States); Petyuk, Vladislav A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Larson, Emily M. [Washington State Univ., Pullman, WA (United States); Smith, Richard D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Watts, Jennifer [Washington State Univ., Pullman, WA (United States)

    2015-06-27

    Lipid droplets are cytoplasmic organelles that store neutral lipids for membrane synthesis and energy reserves. In this study, we characterized the lipid and protein composition of purified C. elegans lipid droplets. These lipid droplets are composed mainly of triacylglycerols, surrounded by a phospholipid monolayer composed primarily of phosphatidylcholine and phosphatidylethanolamine. The fatty acid composition of the triacylglycerols was rich in fatty acid species obtained from the dietary E. coli, including cyclopropane fatty acids and cis-vaccenic acid. Unlike other organisms, C. elegans lipid droplets contain very little cholesterol or cholesterol esters. Comparison of the lipid droplet proteomes of wild type and high-fat daf-2 mutant strains shows a relative decrease of MDT-28 abundance in lipid droplets isolated from daf-2 mutants. Functional analysis of lipid droplet proteins identified in our proteomic studies indicated an enrichment of proteins required for growth and fat homeostasis in C. elegans.

  8. Janus droplet as a catalytic micromotor

    Science.gov (United States)

    Shklyaev, Sergey

    2015-06-01

    Self-propulsion of a Janus droplet in a solution of surfactant, which reacts on a half of a drop surface, is studied theoretically. The droplet acts as a catalytic motor creating a concentration gradient, which generates its surface-tension-driven motion; the self-propulsion speed is rather high, 60 μ \\text{m/s} and more. This catalytic motor has several advantages over other micromotors: simple manufacturing, easily attained neutral buoyancy. In contrast to a single-fluid droplet, which demonstrates a self-propulsion as a result of symmetry breaking instability, for the Janus one no stability threshold exists; hence, the droplet radius can be scaled down to micrometers.

  9. Transient Droplet Behavior and Droplet Breakup during Bulk and Confined Shear Flow in Blends with One Viscoelastic Component: Experiments, Modelling and Simulations

    Science.gov (United States)

    Cardinaels, Ruth; Verhulst, Kristof; Renardy, Yuriko; Moldenaers, Paula

    2008-07-01

    The transient droplet deformation and droplet orientation after inception of shear, the shape relaxation after cessation of shear and droplet breakup during shear, are microscopically studied, both under bulk and confined conditions. The studied blends contain one viscoelastic Boger fluid phase. A counter rotating setup, based on a Paar Physica MCR300, is used for the droplet visualisation. For bulk shear flow, it is shown that the droplet deformation during startup of shear flow and the shape relaxation after cessation of shear flow are hardly influenced by droplet viscoelasticity, even at moderate to high capillary and Deborah numbers. The effects of droplet viscoelasticity only become visible close to the critical conditions and a novel break-up mechanism is observed. Matrix viscoelasticity has a more pronounced effect, causing overshoots in the deformation and significantly inhibiting relaxation. However, different applied capillary numbers prior to cessation of shear flow, with the Deborah number fixed, still result in a single master curve for shape retraction, as in fully Newtonian systems. The long tail in the droplet relaxation can be qualitatively described with a phenomenological model for droplet deformation, when using a 5-mode Giesekus model for the fluid rheology. It is found that the shear flow history significantly affects the droplet shape evolution and the breakup process in blends with one viscoelastic component. Confining a droplet between two plates accelerates the droplet deformation kinetics, similar to fully Newtonian systems. However, the increased droplet deformation, due to wall effects, causes the steady state to be reached at a later instant in time. Droplet relaxation is less sensitive to confinement, leading to slower relaxation kinetics only for highly confined droplets. For the blend with a viscoelastic droplet, a non-monotonous trend is found for the critical capillary number as a function of the confinement ratio. Finally

  10. Transient Droplet Behavior and Droplet Breakup during Bulk and Confined Shear Flow in Blends with One Viscoelastic Component: Experiments, Modelling and Simulations

    International Nuclear Information System (INIS)

    Cardinaels, Ruth; Verhulst, Kristof; Moldenaers, Paula; Renardy, Yuriko

    2008-01-01

    The transient droplet deformation and droplet orientation after inception of shear, the shape relaxation after cessation of shear and droplet breakup during shear, are microscopically studied, both under bulk and confined conditions. The studied blends contain one viscoelastic Boger fluid phase. A counter rotating setup, based on a Paar Physica MCR300, is used for the droplet visualisation. For bulk shear flow, it is shown that the droplet deformation during startup of shear flow and the shape relaxation after cessation of shear flow are hardly influenced by droplet viscoelasticity, even at moderate to high capillary and Deborah numbers. The effects of droplet viscoelasticity only become visible close to the critical conditions and a novel break-up mechanism is observed. Matrix viscoelasticity has a more pronounced effect, causing overshoots in the deformation and significantly inhibiting relaxation. However, different applied capillary numbers prior to cessation of shear flow, with the Deborah number fixed, still result in a single master curve for shape retraction, as in fully Newtonian systems. The long tail in the droplet relaxation can be qualitatively described with a phenomenological model for droplet deformation, when using a 5-mode Giesekus model for the fluid rheology. It is found that the shear flow history significantly affects the droplet shape evolution and the breakup process in blends with one viscoelastic component. Confining a droplet between two plates accelerates the droplet deformation kinetics, similar to fully Newtonian systems. However, the increased droplet deformation, due to wall effects, causes the steady state to be reached at a later instant in time. Droplet relaxation is less sensitive to confinement, leading to slower relaxation kinetics only for highly confined droplets. For the blend with a viscoelastic droplet, a non-monotonous trend is found for the critical capillary number as a function of the confinement ratio. Finally

  11. Interface-Resolving Simulation of Collision Efficiency of Cloud Droplets

    Science.gov (United States)

    Wang, Lian-Ping; Peng, Cheng; Rosa, Bodgan; Onishi, Ryo

    2017-11-01

    Small-scale air turbulence could enhance the geometric collision rate of cloud droplets while large-scale air turbulence could augment the diffusional growth of cloud droplets. Air turbulence could also enhance the collision efficiency of cloud droplets. Accurate simulation of collision efficiency, however, requires capture of the multi-scale droplet-turbulence and droplet-droplet interactions, which has only been partially achieved in the recent past using the hybrid direct numerical simulation (HDNS) approach. % where Stokes disturbance flow is assumed. The HDNS approach has two major drawbacks: (1) the short-range droplet-droplet interaction is not treated rigorously; (2) the finite-Reynolds number correction to the collision efficiency is not included. In this talk, using two independent numerical methods, we will develop an interface-resolved simulation approach in which the disturbance flows are directly resolved numerically, combined with a rigorous lubrication correction model for near-field droplet-droplet interaction. This multi-scale approach is first used to study the effect of finite flow Reynolds numbers on the droplet collision efficiency in still air. Our simulation results show a significant finite-Re effect on collision efficiency when the droplets are of similar sizes. Preliminary results on integrating this approach in a turbulent flow laden with droplets will also be presented. This work is partially supported by the National Science Foundation.

  12. Environmental significance of atmospheric emission resulting from in situ burning of oiled salt marsh

    International Nuclear Information System (INIS)

    Devai, I.; DeLaune, R.D.; Henry, C.B. Jr.; Roberts, P.O.; Lindau, C.W.

    1998-01-01

    The environmental significance of atmospheric emissions resulting from in-situ burning used as remediation technique for removal of petroleum hydrocarbons entering Louisiana coastal salt marshes was quantified. Research conducted documented atmospheric pollutants produced and emitted to the atmosphere as the result of burning of oil contaminated wetlands. Samples collected from the smoke plume contained a variety of gaseous sulfur and carbon compounds. Carbonyl sulfide and carbon disulfide were the main volatile sulfur compounds. In contrast, concentrations of sulfur dioxide were almost negligible. Concentrations of methane and carbon dioxide in the smoke plume increased compared to ambient levels. Air samples collected for aromatic hydrocarbons in the smoke plume were dominated by pyrogenic or combustion derived aromatic hydrocarbons. The particulate fraction was dominated by phenanthrene and the C-1 and C-2 alkylated phenanthrene homologues. The vapor fraction was dominated by naphthalene and the C-1 to C-3 naphthalene homologues. (author)

  13. Modelling and assessment of accidental oil release from damaged subsea pipelines.

    Science.gov (United States)

    Li, Xinhong; Chen, Guoming; Zhu, Hongwei

    2017-10-15

    This paper develops a 3D, transient, mathematical model to estimate the oil release rate and simulate the oil dispersion behavior. The Euler-Euler method is used to estimate the subsea oil release rate, while the Eulerian-Lagrangian method is employed to track the migration trajectory of oil droplets. This model accounts for the quantitative effect of backpressure and hole size on oil release rate, and the influence of oil release rate, oil density, current speed, water depth and leakage position on oil migration is also investigated in this paper. Eventually, the results, e.g. transient release rate of oil, the rise time of oil and dispersion distance are determined by above-mentioned model, and the oil release and dispersion behavior under different scenarios is revealed. Essentially, the assessment results could provide a useful guidance for detection of leakage positon and placement of oil containment boom. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Research on oil recovery mechanisms in heavy oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Kovscek, Anthony R.; Brigham, William E., Castanier, Louis M.

    2000-03-16

    The research described here was directed toward improved understanding of thermal and heavy-oil production mechanisms and is categorized into: (1) flow and rock properties, (2) in-situ combustion, (3) additives to improve mobility control, (4) reservoir definition, and (5) support services. The scope of activities extended over a three-year period. Significant work was accomplished in the area of flow properties of steam, water, and oil in consolidated and unconsolidated porous media, transport in fractured porous media, foam generation and flow in homogeneous and heterogeneous porous media, the effects of displacement pattern geometry and mobility ratio on oil recovery, and analytical representation of water influx.

  15. Riboflavin-induced oxidation in fish oil-in-water emulsions: Impact of particle size and optical transparency.

    Science.gov (United States)

    Uluata, Sibel; McClements, D Julian; Decker, Eric A

    2016-12-15

    The influence of particle size and optical properties on the stability of fish oil-in-water emulsions to riboflavin-induced oxidation by blending different combinations of small (d=44nm) and large (d=216nm) lipid droplets was examined. Emulsion turbidity increased with increasing mean droplet diameter due to greater light scattering by larger particles. The influence of droplet size on the stability of the emulsions to riboflavin-induced lipid oxidation during storage at 20 or 37°C was measured. At 37°C, the rate of lipid hydroperoxide formation increased with decreasing droplet diameter, but there were no significant differences in propanal concentrations. At 20°C, both peroxide and propanal values indicated that the rate of oxidation increased with decreasing droplet size. These data show that riboflavin was more effective at promoting oxidation in nanoemulsions containing small droplets because light was able to penetrate more easily and generate reactive oxygen species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Development of an imaging system for single droplet characterization using a droplet generator.

    Science.gov (United States)

    Minov, S Vulgarakis; Cointault, F; Vangeyte, J; Pieters, J G; Hijazi, B; Nuyttens, D

    2012-01-01

    The spray droplets generated by agricultural nozzles play an important role in the application accuracy and efficiency of plant protection products. The limitations of the non-imaging techniques and the recent improvements in digital image acquisition and processing increased the interest in using high speed imaging techniques in pesticide spray characterisation. The goal of this study was to develop an imaging technique to evaluate the characteristics of a single spray droplet using a piezoelectric single droplet generator and a high speed imaging technique. Tests were done with different camera settings, lenses, diffusers and light sources. The experiments have shown the necessity for having a good image acquisition and processing system. Image analysis results contributed in selecting the optimal set-up for measuring droplet size and velocity which consisted of a high speed camera with a 6 micros exposure time, a microscope lens at a working distance of 43 cm resulting in a field of view of 1.0 cm x 0.8 cm and a Xenon light source without diffuser used as a backlight. For measuring macro-spray characteristics as the droplet trajectory, the spray angle and the spray shape, a Macro Video Zoom lens at a working distance of 14.3 cm with a bigger field of view of 7.5 cm x 9.5 cm in combination with a halogen spotlight with a diffuser and the high speed camera can be used.

  17. Rheological characterization of gel-in-oil-in-gel type structured emulsions

    OpenAIRE

    Patel, Ashok; Dumlu, Pinar; Vermeir, Lien; Lewille, Benny; Lesaffer, Ans; Dewettinck, Koen

    2015-01-01

    We report the fabrication of multiple emulsions where both the enclosed and the external water phases are structured using a combination of two non-gelling biopolymers. Emulsions (with gelled inner water droplets and gelled water continuous phase) were created using a simple 'one-step' process where the oil phase (triglyceride oil and polyglycerol polyricinoleate) and the water phase (containing a combination of locust bean gum and carrageenan) were emulsified at an elevated temperature (70 d...

  18. Phase rainbow refractometry for accurate droplet variation characterization.

    Science.gov (United States)

    Wu, Yingchun; Promvongsa, Jantarat; Saengkaew, Sawitree; Wu, Xuecheng; Chen, Jia; Gréhan, Gérard

    2016-10-15

    We developed a one-dimensional phase rainbow refractometer for the accurate trans-dimensional measurements of droplet size on the micrometer scale as well as the tiny droplet diameter variations at the nanoscale. The dependence of the phase shift of the rainbow ripple structures on the droplet variations is revealed. The phase-shifting rainbow image is recorded by a telecentric one-dimensional rainbow imaging system. Experiments on the evaporating monodispersed droplet stream show that the phase rainbow refractometer can measure the tiny droplet diameter changes down to tens of nanometers. This one-dimensional phase rainbow refractometer is capable of measuring the droplet refractive index and diameter, as well as variations.

  19. Modulation and Stabilization of Silk Fibroin-Coated Oil-in-Water Emulsions

    Directory of Open Access Journals (Sweden)

    Zhong-Min Chen

    2009-01-01

    Full Text Available The purpose of this study is to prepare and characterize stable oil-in-water emulsions containing droplets coated with silk fibroin. Silk fibroin, a native edible fibrous protein originating from silkworm cocoons, was used to prepare 10 % (by mass corn oil-in-water emulsions at ambient temper