WorldWideScience

Sample records for situ electrochemical rutherford

  1. Auger electron spectroscopy and Rutherford backscattering studies of copper in 2024-T3 aluminum following electrochemical anodization in phosphoric acid

    Science.gov (United States)

    Solomon, J. S.

    1981-05-01

    The effects of the electrochemical anodization of dioxidized 2024-T3 aluminum on copper were characterized by Auger electron spectroscopy and Rutherford backscattering. Anodization was performed in phosphoric acid at constant potential. Data is presented which shows that constant potential anodization of 2024-T3 is more efficient than aluminum in terms of oxide growth rates for short anodization times. However the maximum anodic oxide thickness achievable on the alloy is less than the pure metal. Copper is shown to be enriched at the oxide metal interface because of its diffusion from the bulk during anodization. The presence of copper at the oxide-metal interface is shown to affect oxide morphology.

  2. Rutherford's war

    Science.gov (United States)

    Campbell, John

    2016-02-01

    Seagulls, sea lions and the comic-book hero Professor Radium were all recruited to fight the threat of submarines during the First World War. But as John Campbell explains, it was Ernest Rutherford who led the way a century ago in using acoustics to deter these deadly craft.

  3. In situ monitoring of the electrochemical dissolution of tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Krebsz, Melinda [Christian Doppler Laboratory for Combinatorial Oxide Chemistry at ICTAS, Johannes Kepler University Linz (Austria); Kollender, Jan Philipp [Institute for Chemical Technology of Inorganic Materials (ICTAS), Johannes Kepler University Linz (Austria); Hassel, Achim Walter [Christian Doppler Laboratory for Combinatorial Oxide Chemistry at ICTAS, Johannes Kepler University Linz (Austria); Institute for Chemical Technology of Inorganic Materials (ICTAS), Johannes Kepler University Linz (Austria)

    2017-09-15

    In the present work, which is aimed to monitor in situ the electrochemical dissolution of tungsten by using a Flow-Type Scanning Droplet Cell Microscope (FT-SDCM) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS), novel results are reported. The anodic oxide growth and its dissolution on the surface of W have been monitored in situ. The results of this current study show the importance of coupling electrochemical experiments to ICP-MS. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Microfluidic electrochemical device and process for chemical imaging and electrochemical analysis at the electrode-liquid interface in-situ

    Science.gov (United States)

    Yu, Xiao-Ying; Liu, Bingwen; Yang, Li; Zhu, Zihua; Marshall, Matthew J.

    2016-03-01

    A microfluidic electrochemical device and process are detailed that provide chemical imaging and electrochemical analysis under vacuum at the surface of the electrode-sample or electrode-liquid interface in-situ. The electrochemical device allows investigation of various surface layers including diffuse layers at selected depths populated with, e.g., adsorbed molecules in which chemical transformation in electrolyte solutions occurs.

  5. Monitoring dynamic electrochemical processes with in situ ptychography

    Science.gov (United States)

    Kourousias, George; Bozzini, Benedetto; Jones, Michael W. M.; Van Riessen, Grant A.; Dal Zilio, Simone; Billè, Fulvio; Kiskinova, Maya; Gianoncelli, Alessandra

    2018-03-01

    The present work reports novel soft X-ray Fresnel CDI ptychography results, demonstrating the potential of this method for dynamic in situ studies. Specifically, in situ ptychography experiments explored the electrochemical fabrication of Co-doped Mn-oxide/polypyrrole nanocomposites for sustainable and cost-effective fuel-cell air-electrodes. Oxygen-reduction catalysts based on Mn-oxides exhibit relatively high activity, but poor durability: doping with Co has been shown to improve both reduction rate and stability. In this study, we examine the chemical state distribution of the catalytically crucial Co dopant to elucidate details of the Co dopant incorporation into the Mn/polymer matrix. The measurements were performed using a custom-made three-electrode thin-layer microcell, developed at the TwinMic beamline of Elettra Synchrotron during a series of experiments that were continued at the SXRI beamline of the Australian Synchrotron. Our time-resolved ptychography-based investigation was carried out in situ after two representative growth steps, controlled by electrochemical bias. In addition to the observation of morphological changes, we retrieved the spectroscopic information, provided by multiple ptychographic energy scans across Co L3-edge, shedding light on the doping mechanism and demonstrating a general approach for the molecular-level investigation complex multimaterial electrodeposition processes.

  6. Design of an electrochemical cell for in situ XAS studies

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, N. [Instituto de Quimica, Universidade Estadual de Campinas (UNICAMP), Box 6154, CEP 13083-970, Campinas, SP (Brazil); Morais, J. [Instituto de Fisica, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Goncalves, 9500, Bairro Agronomia, CP 15051, CEP 91501-970, Porto Alegre, RS (Brazil); Alves, M.C.M. [Instituto de Quimica, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Goncalves, 9500, Bairro Agronomia, CP 15003, CEP 91501-970, Porto Alegre, RS (Brazil)], E-mail: maria@iq.ufrgs.br

    2007-05-15

    In situ X-ray absorption spectroscopy (XAS) studies have been carried out on the electrochemical insertion of Co metal particles in polypyrrole. This has become possible due to the development of an electrochemical cell to allow XAS studies in fluorescence geometry under steady-state conditions. The experimental set-up allows the in situ monitoring of the structural and electronic changes of the selected atom in a matrix. The project of the electrochemical cell is presented with the results obtained at different stages of the electrochemical process. XANES and EXAFS results showed that the initial stage of the cobalt insertion in polypyrrole took place in an ionic form, like [-[(C{sub 4}H{sub 2}N){sub 3}CH{sub 3}(CH{sub 2}){sub 11}OSO{sub 3}{sup -}]{sub 6}Co{sup 2+}] with posterior reduction to a metallic form. The quantitative analysis of the first shell shows that, at -0.60 V, the cobalt atoms are surrounded by 6 ({+-}0.5) atoms located at 2.12 ({+-}0.05) A with a large Debye-Waller factor ({sigma}{sup 2}) value of 0.0368 ({+-}0.0074). At -0.80 V, two distances of R = 1.99 ({+-}0.01) and R = 2.50 ({+-}0.01) A show the coexistence of cobalt in the oxidized and reduced (Co{sup 0}) forms. The Co-Co distance corresponds to that of bulk cobalt. At -1.20 V, the obtained values of N = 12 ({+-}0.5) and R = 2.56 ({+-}0.01) A and a Debye-Waller factor of 0.0176 ({+-}0.0004) suggest the formation of metallic cobalt in a quite disordered form.

  7. Working with Rutherford

    International Nuclear Information System (INIS)

    Oliphant, M.

    1984-01-01

    The author describes what it was like to work with Rutherford at the Cavendish Laboratory in the early 1930's. The memories are detailed and the anecdotes recounted give a vivid account of Rutherford at that time. Some experiments on heavy water are described. In one, deuterium nuclei were fused to form a new isotope of hydrogen of atomic mass 3, tritium. An alternative reaction of two deuterons produced a neutron and a helium particle of mass 3, helium-3. (UK)

  8. In situ electrochemical atomic force microscope study on graphite electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Hirasawa, K.A.; Sato, Tomohiro; Asahina, Hitoshi; Yamaguchi, Shoji; Mori, Shoichiro [Mitsubishi Chemical Corp., Inashiki, Ibaraki (Japan). Tsukuba Research Center

    1997-04-01

    Interest in the formation of the solid electrolyte interphase (SEI) film on graphite electrodes has increased recently in the quest to improve the performance of lithium-ion batteries. Topographic and frictional changes on the surface of a highly oriented pyrolytic graphite electrode in 1 M LiCiO{sub 4} ethylene carbonate/ethylmethyl carbonate (1:1) electrolyte were examined during charge and discharge by in situ electrochemical atomic force microscopy and friction force microscopy simultaneously in real-time. Solid electrolyte interphase film formation commenced at approximately 2 V vs. Li/Li{sup +} and stable film formation with an island-like morphology was observed below approximately 0.9 V vs. Li/Li{sup +}. Further experiments on a KS-44 graphite/polyvinylidene difluoride binder composite electrode showed similar phenomena.

  9. Rutherford and Bohr*

    Indian Academy of Sciences (India)

    IAS Admin

    He was always concerned about hurting any person's feelings, and he found great ... classical picture might be modified by using Planck's quantum of action. A first manuscript .... problem soon was made academic by Rutherford moving to Cambridge. ..... I hope it will not have too much of a reaction on them'. And later: 'I am ...

  10. Earnest Rutherford, the solution

    CERN Multimedia

    2003-01-01

    If you did not make it to the Science & Society talk by John Campbell last week and are still wondering about the spelling of "Earnest", here is the solution: Two months after the birth of his fourth child on 30 August 1871 in Spring Grove, New Zealand, James Rutherford registered his son, who was recorded as "Earnest" in the Birth Register. Presumably the Registrar wrote the name down as it sounded and the father failed to notice the mistake when signing the Register.

  11. Ernest Rutherford: scientist supreme

    International Nuclear Information System (INIS)

    Campbell, J.

    1998-01-01

    One hundred years ago this month, Ernest Rutherford a talented young New Zealander who had just spent three years as a postgraduate student in Britain left for Canada, where he was to do the work that won him a Nobel prize. All three countries can justifiably claim this great scientist as their own. Ernest Rutherford is one of the most illustrious scientists that the world has ever seen. He achieved enduring international fame because of an incredibly productive life, during which he altered our view of nature on three separate occasions. Combining brilliantly conceived experiments with much hard work and special insight, he explained the perplexing problem of naturally occurring radioactivity, determined the structure of the atom, and was the world's first successful alchemist, changing nitrogen into oxygen. Rutherford received a Nobel prize for the first discovery, but the other two would have been equally worthy candidates, had they been discovered by someone else. Indeed, any one of his other secondary achievements many of which are now almost forgotten would have been enough to bring fame to a lesser scientist. For example, he invented an electrical method for detecting individual ionizing radiations, he dated the age of the Earth, and briefly held the world record for the distance over which wireless waves could be detected. He predicted the existence of neutrons, he oversaw the development of large-scale particle accelerators, and, during the First World War, he led the allied research into the detection of submarines. In this article the author describes the life and times of Ernest Rutherford. (UK)

  12. Rutherford-Bohr atom

    Science.gov (United States)

    Heilbron, J. L.

    1981-03-01

    Bohr used to introduce his attempts to explain clearly the principles of the quantum theory of the atom with an historical sketch, beginning invariably with the nuclear model proposed by Rutherford. That was sound pedagogy but bad history. The Rutherford-Bohr atom stands in the middle of a line of work initiated by J.J. Thomson and concluded by the invention of quantum mechanics. Thompson's program derived its inspiration from the peculiar emphasis on models characteristic of British physics of the 19th century. Rutherford's atom was a late product of the goals and conceptions of Victorian science. Bohr's modifications, although ultimately fatal to Thomson's program, initially gave further impetus to it. In the early 1920s the most promising approach to an adequate theory of the atom appeared to be the literal and detailed elaboration of the classical mechanics of multiply periodic orbits. The approach succeeded, demonstrating in an unexpected way the force of an argument often advanced by Thomson: because a mechanical model is richer in implications than the considerations for which it was advanced, it can suggest new directions of research that may lead to important discoveries.

  13. Electrochemically Modulated Gas/Liquid Separation Technology for In Situ Resource Utilization Process Streams, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this phase I program MicroCell Technologies, LLC (MCT) proposes to demonstrate the feasibility of an electrochemically modulated phase separator for in situ...

  14. New insights on electrochemical hydrogen storage in nanoporous carbons by in situ Raman spectroscopy

    OpenAIRE

    Leyva García, Sarai; Morallón Núñez, Emilia; Cazorla Amorós, Diego; Béguin, François; Lozano Castelló, Dolores

    2014-01-01

    In situ Raman spectroscopy was exploited to analyze the interaction between carbon and hydrogen during electrochemical hydrogen storage at cathodic conditions. Two different activated carbons were used and characterized by different electrochemical techniques in two electrolytes (6 M KOH and 0.5 M Na2SO4). The in situ Raman spectra collected showed that, in addition to the D and G bands associated to the graphitic carbons, two bands appear simultaneously at about 1110 and 1500 cm−1 under cath...

  15. In Situ Investigation of Electrochemically Mediated Surface-Initiated Atom Transfer Radical Polymerization by Electrochemical Surface Plasmon Resonance.

    Science.gov (United States)

    Chen, Daqun; Hu, Weihua

    2017-04-18

    Electrochemically mediated atom transfer radical polymerization (eATRP) initiates/controls the controlled/living ATRP chain propagation process by electrochemically generating (regenerating) the activator (lower-oxidation-state metal complex) from deactivator (higher-oxidation-state metal complex). Despite successful demonstrations in both of the homogeneous polymerization and heterogeneous systems (namely, surface-initiated ATRP, SI-ATRP), the eATRP process itself has never been in situ investigated, and important information regarding this process remains unrevealed. In this work, we report the first investigation of the electrochemically mediated SI-ATRP (eSI-ATRP) by rationally combining the electrochemical technique with real-time surface plasmon resonance (SPR). In the experiment, the potential of a SPR gold chip modified by the self-assembled monolayer of the ATRP initiator was controlled to electrochemically reduce the deactivator to activator to initiate the SI-ATRP, and the whole process was simultaneously monitored by SPR with a high time resolution of 0.1 s. It is found that it is feasible to electrochemically trigger/control the SI-ATRP and the polymerization rate is correlated to the potential applied to the gold chip. This work reveals important kinetic information for eSI-ATRP and offers a powerful platform for in situ investigation of such complicated processes.

  16. Quantifying Chemical and Electrochemical Reactions in Liquids by in situ Electron Microscopy

    DEFF Research Database (Denmark)

    Canepa, Silvia

    and developing a robust imaging analysis method for quantitatively understand chemical and electrochemical process during in situ liquid electron microscopy. By using two custom-made liquid cells (an electrochemical scanning electron microscopy (EC-SEM) platform and Liquid Flow S/TEM holder) beam...... of electrochemical deposition of copper (Cu) by electrochemical liquid scanning electron microscopy (EC-SEM) was done in order to direct observe the formation of dendritic structures. Finally the shape evolution from solid to hollow structures through galvanic replacement reactions were observed for different silver...

  17. In situ anodization of aluminum surfaces studied by x-ray reflectivity and electrochemical impedance spectroscopy

    International Nuclear Information System (INIS)

    Bertram, F.; Evertsson, J.; Messing, M. E.; Mikkelsen, A.; Lundgren, E.; Zhang, F.; Pan, J.; Carlà, F.; Nilsson, J.-O.

    2014-01-01

    We present results from the anodization of an aluminum single crystal [Al(111)] and an aluminum alloy [Al 6060] studied by in situ x-ray reflectivity, in situ electrochemical impedance spectroscopy and ex situ scanning electron microscopy. For both samples, a linear increase of oxide film thickness with increasing anodization voltage was found. However, the slope is much higher in the single crystal case, and the break-up of the oxide film grown on the alloy occurs at a lower anodization potential than on the single crystal. The reasons for these observations are discussed as are the measured differences observed for x-ray reflectivity and electrochemical impedance spectroscopy.

  18. Rutherford Appleton Laboratory

    International Nuclear Information System (INIS)

    1993-01-01

    Rutherford Appleton Laboratory (RAL), described in this document, supports a wide variety of projects. Each year more than 1000 scientists and engineers visit RAL to use its world-class laser and neutron-scattering facilities. RAL staff design and build instruments which circle the Earth in satellites, increasing our understanding of ozone depletion and global warming, of the life cycles of stars and galaxies and, indeed, of the origin of the Universe itself. They work with their academic colleagues at international laboratories such as European Organization for Nuclear Research (CERN), Geneva, where massive underground machines probe the microstructure of the atomic nucleus. Vastly complex calculations are carried out on the design of anti-cancer drugs, for example, using supercomputers at RAL. (author)

  19. Electrocatalytic oxygen reduction and hydrogen evolution reactions on phthalocyanine modified electrodes: Electrochemical, in situ spectroelectrochemical, and in situ electrocolorimetric monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Koca, Atif, E-mail: akoca@eng.marmara.edu.tr [Department of Chemical Engineering, Faculty of Engineering, Marmara University, Goeztepe, 34722 Istanbul (Turkey); Kalkan, Ayfer; Bayir, Zehra Altuntas [Department of Chemistry, Technical University of Istanbul, Maslak, 34469 Istanbul (Turkey)

    2011-06-30

    Highlights: > Electrochemical and in situ spectroelectrochemical characterizations of the metallophthalocyanines were performed. > The presence of O{sub 2} influences both oxygen reduction reaction and the electrochemical behaviors of the complexes. > Homogeneous catalytic ORR process occurs via an 'inner sphere' chemical catalysis process. > CoPc and CuPc coated on a glassy carbon electrode decrease the overpotential of the working electrode for H{sup +} reduction. - Abstract: This study describes electrochemical, in situ spectroelectrochemical, and in situ electrocolorimetric monitoring of the electrocatalytic reduction of molecular oxygen and hydronium ion on the phthalocyanine-modified electrodes. For this purpose, electrochemical and in situ spectroelectrochemical characterizations of the metallophthalocyanines (MPc) bearing tetrakis-[4-((4'-trifluoromethyl)phenoxy)phenoxy] groups were performed. While CoPc gives both metal-based and ring-based redox processes, H{sub 2}Pc, ZnPc and CuPc show only ring-based electron transfer processes. In situ electrocolorimetric method was applied to investigate the color of the electrogenerated anionic and cationic forms of the complexes. The presence of O{sub 2} in the electrolyte system influences both oxygen reduction reaction and the electrochemical and spectral behaviors of the complexes, which indicate electrocatalytic activity of the complexes for the oxygen reduction reaction. Perchloric acid titrations monitored by voltammetry represent possible electrocatalytic activities of the complexes for hydrogen evolution reaction. CoPc and CuPc coated on a glassy carbon electrode decrease the overpotential of the working electrode for H{sup +} reduction. The nature of the metal center changes the electrocatalytic activities for hydrogen evolution reaction in aqueous solution. Although CuPc has an inactive metal center, its electrocatalytic activity is recorded more than CoPc for H{sup +} reduction in aqueous

  20. In situ generation of diazonium cations in organic electrolyte for electrochemical modification of electrode surface

    International Nuclear Information System (INIS)

    Baranton, Steve; Belanger, Daniel

    2008-01-01

    The modification of glassy carbon electrode was achieved by electrochemical reduction of in situ generated diazonium cations in acetonitrile. The in situ generation of 4-nitrophenyl diazonium cations in acetonitrile was investigated by spectroscopic methods. UV-visible spectroscopy revealed slow kinetics for the reaction of 4-nitroaniline with tert-butylnitrite in acetonitrile to form the corresponding diazonium cation. As a result, a coupling reaction, which implies a consumption of the amine and loss of the already formed diazonium cations, was evidenced by 1 H NMR spectroscopy. This spectroscopic study allowed the optimization of the in situ diazonium cations generation prior to the modification step. The electrochemical modification of the carbon electrodes with 4-nitrophenyl, 4-bromophenyl and anthraquinone groups was characterized by cyclic voltammetry and the resulting grafted layer were characterized by electrochemical techniques. The cyclic voltammetric behaviour during the electrochemical grafting was very similar to the one observed for an isolated diazonium salt dissolved in acetonitrile. In the case of the anthraquinone-modified electrode, the use of acetonitrile, into which the corresponding amine is soluble but not in aqueous media, allowed for its grafting by the in situ approach. The barrier properties of these grafted layers are similar to those obtained from isolated diazonium salts. Finally, the chemical composition of the grafted layers was determined by X-ray photoelectron spectroscopy and surface coverage in the range 5-7 x 10 -10 mol cm -2 was estimated for films grown in our experimental conditions

  1. In situ generation of diazonium cations in organic electrolyte for electrochemical modification of electrode surface

    Energy Technology Data Exchange (ETDEWEB)

    Baranton, Steve [Departement de Chimie, Universite du Quebec a Montreal, Case Postale 8888, succursale Centre-Ville, Montreal (Quebec), H3C 3P8 (Canada); Belanger, Daniel [Departement de Chimie, Universite du Quebec a Montreal, Case Postale 8888, succursale Centre-Ville, Montreal (Quebec), H3C 3P8 (Canada)], E-mail: belanger.daniel@uqam.ca

    2008-10-01

    The modification of glassy carbon electrode was achieved by electrochemical reduction of in situ generated diazonium cations in acetonitrile. The in situ generation of 4-nitrophenyl diazonium cations in acetonitrile was investigated by spectroscopic methods. UV-visible spectroscopy revealed slow kinetics for the reaction of 4-nitroaniline with tert-butylnitrite in acetonitrile to form the corresponding diazonium cation. As a result, a coupling reaction, which implies a consumption of the amine and loss of the already formed diazonium cations, was evidenced by {sup 1}H NMR spectroscopy. This spectroscopic study allowed the optimization of the in situ diazonium cations generation prior to the modification step. The electrochemical modification of the carbon electrodes with 4-nitrophenyl, 4-bromophenyl and anthraquinone groups was characterized by cyclic voltammetry and the resulting grafted layer were characterized by electrochemical techniques. The cyclic voltammetric behaviour during the electrochemical grafting was very similar to the one observed for an isolated diazonium salt dissolved in acetonitrile. In the case of the anthraquinone-modified electrode, the use of acetonitrile, into which the corresponding amine is soluble but not in aqueous media, allowed for its grafting by the in situ approach. The barrier properties of these grafted layers are similar to those obtained from isolated diazonium salts. Finally, the chemical composition of the grafted layers was determined by X-ray photoelectron spectroscopy and surface coverage in the range 5-7 x 10{sup -10} mol cm{sup -2} was estimated for films grown in our experimental conditions.

  2. A simplified in-situ electrochemical decontamination of lead from polluted soil (abstract)

    International Nuclear Information System (INIS)

    Ansari, T.M.; Ahmad, I.; Khan, Q.M.; Chaudhry, A.H.

    2011-01-01

    This paper reports a simplified In-Situ electrochemical method for remediation of field soil contaminated with lead. A series of electrochemical decontamination experiments including variable conditions such as operating duration and application of enhancement reagent were performed to demonstrate the efficiency of lead removal from spiked and polluted soil samples collected from Lahore, Pakistan. The results showed that the efficiency of lead removal from the contaminated soil increased with increasing the operating duration under a set of experimental conditions. The reagent used as complexing and solubilizing agent i.e. EDTA was found to be efficient in removing lead from the polluted soil. After 15 days duration, 85 % lead removal efficiency was observed in spiked soil under enhanced conditions , however, 63 % lead removal was achieved from the polluted soil samples by the simplified In-situ electrochemical decontamination method. The method is simple, rapid, cheaper and suitable for soil remediation purposes. (author)

  3. In SITU Transmission Electron Microscopy on Operating Electrochemical CELLS

    DEFF Research Database (Denmark)

    Gualandris, Fabrizio; Simonsen, Søren Bredmose; Mogensen, Mogens Bjerg

    2016-01-01

    Solid oxide cells (SOC) have the potential of playing a significant role in the future efficient energy system scenario. In order to become widely commercially available, an improved performance and durability of the cells has to be achieved [1]. Conventional scanning and transmission SEM and TEM...... have been often used for ex-situ post mortem characterization of SOFCs and SOECs [2,3]. However, in order to get fundamental insight of the microstructural development of SOFC/SOEC during operation conditions in situ studies are necessary [4]....

  4. Electrochemical in situ regeneration of granular activated carbon using a three-dimensional reactor.

    Science.gov (United States)

    Sun, Hong; Liu, Zhigang; Wang, Ying; Li, Yansheng

    2013-12-01

    Electrochemical in situ regeneration of granular activated carbon (GAC) saturated with phenol was experimentally investigated using a three-dimensional electrode reactor with titanium filter electrode arrays. The feasibility of the electrochemical regeneration has been assessed by monitoring the regeneration efficiency and chemical oxygen demand (COD). The influence of the applied current, the effluent flow rate, and the effluent path of the electrochemical cell have been systematically studied. Under the optimum conditions, the regeneration efficiency of GAC could reach 94% in 2 hr, and no significant declination was observed after five-time continuous adsorption-regeneration cycles. The adsorption of organic pollutants was almost completely mineralized due to electrochemical oxidation, indicating that this regeneration process is much more potentially cost-effective for application. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  5. A novel in situ electrochemical NMR cell with a palisade gold film electrode

    Science.gov (United States)

    Ni, Zu-Rong; Cui, Xiao-Hong; Cao, Shuo-Hui; Chen, Zhong

    2017-08-01

    In situ electrochemical nuclear magnetic resonance (EC-NMR) has attracted considerable attention because of its ability to directly observe real-time electrochemical processes. Therefore, minimizing the incompatibility between the electrochemical device and NMR detection has become an important challenge. A circular thin metal film deposited on the outer surface of a glass tube with a thickness considerably less than the metal skin depth is considered to be the ideal working electrode. In this study, we demonstrate that such a thin film electrode still has a great influence on the radio frequency field homogeneity in the detective zone of the NMR spectrometer probe and provide theoretical and experimental confirmation of its electromagnetic shielding. Furthermore, we propose a novel palisade gold film device to act as the working electrode. The NMR nutation behavior of protons shows that the uniformity of the radio frequency field is greatly improved, increasing the sensitivity in NMR detection. Another advantage of the proposed device is that an external reference standard adapted to the reaction compound can be inserted as a probe to determine the fluctuation of the physico-chemical environment and achieve high-accuracy quantitative NMR analysis. A three-chamber electrochemical device based on the palisade gold film design was successfully fabricated and the in situ electrochemical NMR performance was validated in a standard 5 mm NMR probe by acquiring voltammograms and high-resolution NMR spectra to characterize the electrochemically generated species. The evolution of in situ EC-NMR spectrum monitoring of the redox transformation between p-benzoquinone and hydroquinone demonstrates the ability of the EC-NMR device to simultaneously quantitatively determine the reactants and elucidate the reaction mechanism at the molecular level.

  6. A novel in situ electrochemical NMR cell with a palisade gold film electrode

    Directory of Open Access Journals (Sweden)

    Zu-Rong Ni

    2017-08-01

    Full Text Available In situ electrochemical nuclear magnetic resonance (EC-NMR has attracted considerable attention because of its ability to directly observe real-time electrochemical processes. Therefore, minimizing the incompatibility between the electrochemical device and NMR detection has become an important challenge. A circular thin metal film deposited on the outer surface of a glass tube with a thickness considerably less than the metal skin depth is considered to be the ideal working electrode. In this study, we demonstrate that such a thin film electrode still has a great influence on the radio frequency field homogeneity in the detective zone of the NMR spectrometer probe and provide theoretical and experimental confirmation of its electromagnetic shielding. Furthermore, we propose a novel palisade gold film device to act as the working electrode. The NMR nutation behavior of protons shows that the uniformity of the radio frequency field is greatly improved, increasing the sensitivity in NMR detection. Another advantage of the proposed device is that an external reference standard adapted to the reaction compound can be inserted as a probe to determine the fluctuation of the physico-chemical environment and achieve high-accuracy quantitative NMR analysis. A three-chamber electrochemical device based on the palisade gold film design was successfully fabricated and the in situ electrochemical NMR performance was validated in a standard 5 mm NMR probe by acquiring voltammograms and high-resolution NMR spectra to characterize the electrochemically generated species. The evolution of in situ EC-NMR spectrum monitoring of the redox transformation between p-benzoquinone and hydroquinone demonstrates the ability of the EC-NMR device to simultaneously quantitatively determine the reactants and elucidate the reaction mechanism at the molecular level.

  7. In-situ SEM microchip setup for electrochemical experiments with water based solutions

    International Nuclear Information System (INIS)

    Jensen, E.; Købler, C.; Jensen, P.S.; Mølhave, K.

    2013-01-01

    Studying electrochemical (EC) processes with electron microscopes offers the possibility of achieving much higher resolution imaging of nanoscale processes in real time than with optical microscopes. We have developed a vacuum sealed liquid sample electrochemical cell with electron transparent windows, microelectrodes and an electrochemical reference electrode. The system, called the EC-SEM Cell, is used to study electrochemical reactions in liquid with a standard scanning electron microscope (SEM). The central component is a microfabricated chip with a thin (50 nm) Si-rich silicon nitride (SiNx) window with lithographically defined platinum microelectrodes. We show here the design principles of the EC-SEM system, its detailed construction and how it has been used to perform a range of EC experiments, two of which are presented here. It is shown that the EC-SEM Cell can survive extended in-situ EC experiments. Before the EC experiments we characterized the beam current being deposited in the liquid as this will affect the experiments. The first EC experiment shows the influence of the electron-beam (e-beam) on a nickel solution by inducing electroless nickel deposition on the window when increasing the current density from the e-beam. The second experiment shows electrolysis in EC-SEM Cell, induced by the built-in electrodes. - Highlights: • New in-situ SEM system for electrochemistry. • In-situ Beam current measurements through liquid. • In-situ SEM E-beam-induced electroless deposition of Ni. • In-situ electrolysis

  8. In-situ SEM microchip setup for electrochemical experiments with water based solutions

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, E., E-mail: eric.jensen@nanotech.dtu.dk [DTU Nanotech, Technical University of Denmark, Ørsteds Plads, Building 345E, 2800 Kongens Lyngby (Denmark); DTU CEN, Technical University of Denmark, Fysikvej, Building 307, 2800 Kongens Lyngby (Denmark); Købler, C., E-mail: carsten.kobler@nanotech.dtu.dk [DTU Nanotech, Technical University of Denmark, Ørsteds Plads, Building 345E, 2800 Kongens Lyngby (Denmark); DTU CEN, Technical University of Denmark, Fysikvej, Building 307, 2800 Kongens Lyngby (Denmark); Jensen, P.S., E-mail: psj@kemi.dtu.dk [DTU Kemi, Technical University of Denmark, Kemitorvet, Building 207, 2800 Kongens Lyngby (Denmark); Mølhave, K., E-mail: kristian.molhave@nanotech.dtu.dk [DTU Nanotech, Technical University of Denmark, Ørsteds Plads, Building 345E, 2800 Kongens Lyngby (Denmark)

    2013-06-15

    Studying electrochemical (EC) processes with electron microscopes offers the possibility of achieving much higher resolution imaging of nanoscale processes in real time than with optical microscopes. We have developed a vacuum sealed liquid sample electrochemical cell with electron transparent windows, microelectrodes and an electrochemical reference electrode. The system, called the EC-SEM Cell, is used to study electrochemical reactions in liquid with a standard scanning electron microscope (SEM). The central component is a microfabricated chip with a thin (50 nm) Si-rich silicon nitride (SiNx) window with lithographically defined platinum microelectrodes. We show here the design principles of the EC-SEM system, its detailed construction and how it has been used to perform a range of EC experiments, two of which are presented here. It is shown that the EC-SEM Cell can survive extended in-situ EC experiments. Before the EC experiments we characterized the beam current being deposited in the liquid as this will affect the experiments. The first EC experiment shows the influence of the electron-beam (e-beam) on a nickel solution by inducing electroless nickel deposition on the window when increasing the current density from the e-beam. The second experiment shows electrolysis in EC-SEM Cell, induced by the built-in electrodes. - Highlights: • New in-situ SEM system for electrochemistry. • In-situ Beam current measurements through liquid. • In-situ SEM E-beam-induced electroless deposition of Ni. • In-situ electrolysis.

  9. In-Situ Transmission Electron Microscopy on Operating Electrochemical Cells

    DEFF Research Database (Denmark)

    Gualandris, Fabrizio; Simonsen, Søren Bredmose; Mogensen, Mogens Bjerg

    have been often used for ex-situpost mortem characterization of SOFCs and SOECs [2,3]. However, in order to get fundamental insight of themicrostructural development of SOFC/SOEC during operation conditions in-situ studies are necessary [4]. Thedevelopment of advanced TEM chips and holders makes...... it possible to undertake analysis during exposure to theSOFC/SOEC sample of reactive gas flow, elevated temperatures and electrical biasing in combination. Thisallows the study of nanostructure development under temperature and electrode polarisation conditions similarto operation conditions.In this work, we...... with animage corrector and a differential pumping system.A symmetric cell was prepared by depositing a cell consisting of three thin films on a strontium titanate (STO)single crystal substrate by pulsed laser deposition (PLD). Lanthanum strontium cobaltite La0.6Sr0.4CoO3-δ (LSC)was chosen as electrode...

  10. Hydrogen embrittlement, revisited by in situ electrochemical nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Barnoush, Afrooz

    2007-07-01

    The fine scale mechanical probing capability of NI-AFM was used to examine hydrogen interaction with plasticity. To realize this, an electrochemical three electrode setup was incorporated into the NI-AFM. The developed ECNI-AFM is capable of performing nanoindentation as well as imaging surfaces inside electrolytes. The developed ECNI-AFM setup was used to examine the effect of cathodically charged hydrogen on dislocation nucleation in pure metals and alloys. It was shown that hydrogen reduces the pop-in load in all of the tested materials except Cu. The reduced pop-in load can be interpreted as the HELP mechanism. Classical dislocation theory was used to model the homogeneous dislocation nucleation and it was shown that H reduces the activation energy for dislocation nucleation in H sensitive metals which are not undergoing a phase transformation. The activation energy for dislocation nucleation is related to the material specific parameters; shear modulus {mu}, dislocation core radius {rho} and in the case of partial dislocation nucleation, stacking fault energy {gamma}. These material properties can be influenced by H resulting in a reduced activation energy for dislocation nucleation. The universality of cohesion in bulk metals relates the reduction of the shear modulus to the reduction of the cohesion, meaning HEDE mechanism. The increase in the core radius of a dislocation due to H is a direct evidence of decrease in dislocation line energy and H segregation on the dislocation line. In the case of partial dislocations, the H can segregate on to the stacking fault ribbon and decrease {gamma}. This inhibits the cross slip process and enhances the slip planarity. Thus, HELP and HEDE are the two sides of a coin resulting in H embrittlement. However depending on the experimental approach utilized to probe the H effect, either HELP or HEDE can be observed. In this study, however, by utilizing a proper experimental approach, it was possible to resolve the

  11. Fabrication and testing of an electrochemical microcell for in situ soft X-ray microspectroscopy measurements

    Science.gov (United States)

    Gianoncelli, A.; Kaulich, B.; Kiskinova, M.; Mele, C.; Prasciolu, M.; Sgura, I.; Bozzini, B.

    2013-03-01

    In this paper we report on the fabrication and testing of a novel concept of electrochemical microcell for in-situ soft X-ray microspectroscopy in transmission. The microcell, fabricated by electron-beam lithography, implements an improved electrode design, with optimal current density distribution and minimised ohmic drop, allowing the same three-electrode electrochemical control achievable with traditional cells. Moreover standard electroanalytical measurements, such as cyclic voltammetry, can be routinely performed. As far as the electrolyte is concerned, we selected a room-temperature ionic-liquid. Some of the materials belonging to this class, in addition to a broad range of outstanding electrochemical properties, feature two highlights that are crucial for in situ, soft X-ray transmission work: spinnability, enabling accurate thickness control, and stability to UHV, allowing operation of an open cell in the analysis chamber vacuum (10-6 mbar). The cell can, of course, be used also with non-vacuum stable electrolytes in the sealed version developed in previous work in our group. In this study, the microcell designed, fabricated and tested in situ by applying an anodic polarisation to a Au electrode and following the formation of a distribution of corrosion features. This specific material combination presented in this work does not limit the cell concept, that can implement any electrodic material grown by lithography, any liquid electrolyte and any spinnable solid electrolyte.

  12. A Rutherford Scattering Simulation with Microcomputer Graphics.

    Science.gov (United States)

    Calle, Carlos I.; Wright, Lavonia F.

    1989-01-01

    Lists a program for a simulation of Rutherford's gold foil experiment in BASIC for both Apple II and IBM compatible computers. Compares Rutherford's model of the atom with Thompson's plum pudding model of the atom. (MVL)

  13. Electrochemical cell for in situ x-ray diffraction under ultrapure conditions

    DEFF Research Database (Denmark)

    Koop, T.; Schindler, W.; Kazimirov, A.

    1998-01-01

    within a few seconds. The oxygen level in the electrolyte is reduced by continuous N(2) flow to less than 0.2% compared to that of a fresh electrolyte. This can be done while rotating the cell by 360 degrees about the surface normal. The electrode potential is accurately measured at the position......An electrochemical cell has been developed for in situ x-ray diffraction from a working electrode under clean conditions equivalent to ultrahigh vacuum conditions of 5 x 10(-10) mbar. The substrate crystals can be prepared ex situ and transferred into the cell under protection of ultrapure water...... of the crystal using a Luggin capillary and a standard reference electrode. We demonstrate the performance of our cell by in situ synchrotron x-ray diffraction measurements on ultrathin Co layers electrodeposited on Cu(001) in an aqueous H(2)SO(4)/CoSO(4) solution. (C) 1998 American Institute of Physics....

  14. Rutherford, Maestro of the Atom

    International Nuclear Information System (INIS)

    Campbell, John

    2003-01-01

    This talk will cover some of the lesser known aspects of Rutherford's work, including his early work in wireless signaling and his later encouragement of radio studies of the ionosphere, the development of what was later improved to be now called the Geiger-Muller tube, his acoustic work for submarine detection during the First World War, the development of particle accelerators and the race to splitting the atom, the first use of coincidence detectors, and why he received just one Nobel Prize.

  15. In-situ polymerization of polyaniline on the surface of graphene oxide for high electrochemical capacitance

    International Nuclear Information System (INIS)

    Li, Xinlu; Zhong, Qineng; Zhang, Xinlin; Li, Tongtao; Huang, Jiamu

    2015-01-01

    Conducting polymer polyaniline (PANI) was in-situ polymerized on the surface of graphene oxide (GO) to form PANI encapsulating GO nanocomposites. The morphology and microstructure were examined by scanning electron microscopy, X-ray diffraction and N 2 absorption/desorption analysis. Electrochemical properties were tested by cyclic voltammetry, galvanostatic charge/discharge cycles and electrochemical impedance spectroscopy. Experimental results showed that ethanol assisted the dispersion of GO in water and facilitated the diffusion of polymer monomers on GO. GO as a support material can provide sufficient reaction sites for the deposition of aniline to form the film-like GO/PANI composites. Capacitive performance illustrated that the in-situ polymerization of PANI on GO was effective in improving the specific capacitance and cycling stability. - Highlights: • GO/PANI nanocomposites were achieved by in-situ polymerization. • PANI was uniformly coated on the surface of GO with addition of ethanol. • GO/PANI show high specific capacitance and cycling stability

  16. Electrochemical performance of trimethylolpropane trimethylacrylate-based gel polymer electrolyte prepared by in situ thermal polymerization

    International Nuclear Information System (INIS)

    Zhou, Dong; Fan, Li-Zhen; Fan, Huanhuan; Shi, Qiao

    2013-01-01

    Cross-linked trimethylolpropane trimethylacrylate-based gel polymer electrolytes (GPE) were prepared by in situ thermal polymerization. The ionic conductivity of the GPEs are >10 −3 S cm −1 at 25 °C, and continuously increased with the increase of liquid electrolyte content. The GPEs have excellent electrochemical stability up to 5.0 V versus Li/Li + . The LiCoO 2 |TMPTMA-based GPE|graphite cells exhibit an initial discharge capacity of 129 mAh g −1 at the 0.2C, and good cycling stability with around 83% capacity retention after 100 cycles. Both the simple fabricating process of polymer cell and outstanding electrochemical performance of such new GPE make it potentially one of the most promising electrolyte materials for next generation lithium ion batteries

  17. Opto-electrochemical In Situ Monitoring of the Cathodic Formation of Single Cobalt Nanoparticles.

    Science.gov (United States)

    Brasiliense, Vitor; Clausmeyer, Jan; Dauphin, Alice L; Noël, Jean-Marc; Berto, Pascal; Tessier, Gilles; Schuhmann, Wolfgang; Kanoufi, Fréderic

    2017-08-21

    Single-particle electrochemistry at a nanoelectrode is explored by dark-field optical microscopy. The analysis of the scattered light allows in situ dynamic monitoring of the electrodeposition of single cobalt nanoparticles down to a radius of 65 nm. Larger sub-micrometer particles are directly sized optically by super-localization of the edges and the scattered light contains complementary information concerning the particle redox chemistry. This opto-electrochemical approach is used to derive mechanistic insights about electrocatalysis that are not accessible from single-particle electrochemistry. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. In situ AFM investigation of electrochemically induced surface-initiated atom-transfer radical polymerization.

    Science.gov (United States)

    Li, Bin; Yu, Bo; Zhou, Feng

    2013-02-12

    Electrochemically induced surface-initiated atom-transfer radical polymerization is traced by in situ AFM technology for the first time, which allows visualization of the polymer growth process. It affords a fundamental insight into the surface morphology and growth mechanism simultaneously. Using this technique, the polymerization kinetics of two model monomers were studied, namely the anionic 3-sulfopropyl methacrylate potassium salt (SPMA) and the cationic 2-(metharyloyloxy)ethyltrimethylammonium chloride (METAC). The growth of METAC is significantly improved by screening the ammonium cations by the addition of ionic liquid electrolyte in aqueous solution. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. In situ TEM experiments of electrochemical lithiation and delithiation of individual nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiao Hua; Liu, Yang; Huang, Jian Yu [Center for Integrated Nanotechnologies (CINT), Sandia National Laboratories, Albuquerque, New Mexico (United States); Kushima, Akihiro; Li, Ju [Department of Nuclear Science and Engineering and Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts (United States); Zhang, Sulin [Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania (United States); Zhu, Ting [Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia (United States)

    2012-07-15

    Understanding the microscopic mechanisms of electrochemical reaction and material degradation is crucial for the rational design of high-performance lithium ion batteries (LIBs). A novel nanobattery assembly and testing platform inside a transmission electron microscope (TEM) has been designed, which allows a direct study of the structural evolution of individual nanowire or nanoparticle electrodes with near-atomic resolution in real time. In this review, recent progresses in the study of several important anode materials are summarized. The consistency between in situ and ex situ results is shown, thereby validating the new in situ testing paradigm. Comparisons between a variety of nanostructures lead to the conclusion that electrochemical reaction and mechanical degradation are material specific, size dependent, and geometrically and compositionally sensitive. For example, a highly anisotropic lithiation in Si is observed, in contrast to the nearly isotropic response in Ge. The Ge nanowires can develop a spongy network, a unique mechanism for mitigating the large volume changes during cycling. The Si nanoparticles show a critical size of {proportional_to}150 nm below which fracture is averted during lithiation, and above which surface cracking, rather than central cracking, is observed. In carbonaceous nanomaterials, the lithiated multi-walled carbon nanotubes (MWCNTs) are drastically embrittled, while few-layer graphene nanoribbons remain mechanically robust after lithiation. This distinct contrast manifests a strong 'geometrical embrittlement' effect as compared to a relatively weak 'chemical embrittlement' effect. In oxide nanowires, discrete cracks in ZnO nanowires are generated near the lithiation reaction front, leading to leapfrog cracking, while a mobile dislocation cloud at the reaction front is observed in SnO{sub 2} nanowires. This contrast is corroborated by ab initio calculations that indicate a strong chemical embrittlement of Zn

  20. Electrochemically Smart Bimetallic Materials Featuring Group 11 Metals: In-situ Conductive Network Generation and Its Impact on Cell Capacity

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Esther [Stony Brook Univ., NY (United States)

    2016-11-30

    Our results for this program “Electrochemically smart bimetallic materials featuring Group 11 metals: in-situ conductive matrix generation and its impact on battery capacity, power and reversibility” have been highly successful: 1) we demonstrated material structures which generated in-situ conductive networks through electrochemical activation with increases in conductivity up to 10,000 fold, 2) we pioneered in situ analytical methodology to map the cathodes at several stages of discharge through the use of Energy Dispersive X-ray Diffraction (EDXRD) to elucidate the kinetic dependence of the conductive network formation, and 3) we successfully designed synthetic methodology for direct control of material properties including crystallite size and surface area which showed significant impact on electrochemical behavior.

  1. In situ monitoring magnetism and resistance of nanophase platinum upon electrochemical oxidation

    Directory of Open Access Journals (Sweden)

    Eva-Maria Steyskal

    2013-06-01

    Full Text Available Controlled tuning of material properties by external stimuli represents one of the major topics of current research in the field of functional materials. Electrochemically induced property tuning has recently emerged as a promising pathway in this direction making use of nanophase materials with a high fraction of electrode-electrolyte interfaces. The present letter reports on electrochemical property tuning of porous nanocrystalline Pt. Deeper insight into the underlying processes could be gained by means of a direct comparison of the charge-induced response of two different properties, namely electrical resistance and magnetic moment. For this purpose, four-point resistance measurements and SQUID magnetometry were performed under identical in situ electrochemical control focussing on the regime of electrooxidation. Fully reversible variations of the electrical resistance and the magnetic moment of 6% and 1% were observed upon the formation or dissolution of a subatomic chemisorbed oxygen surface layer, respectively. The increase of the resistance, which is directly correlated to the amount of deposited oxygen, is considered to be primarily caused by charge-carrier scattering processes at the metal–electrolyte interfaces. In comparison, the decrease of the magnetic moment upon positive charging appears to be governed by the electric field at the nanocrystallite–electrolyte interfaces due to spin–orbit coupling.

  2. In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells.

    Science.gov (United States)

    Blanc, Frédéric; Leskes, Michal; Grey, Clare P

    2013-09-17

    Electrochemical cells, in the form of batteries (or supercapacitors) and fuel cells, are efficient devices for energy storage and conversion. These devices show considerable promise for use in portable and static devices to power electronics and various modes of transport and to produce and store electricity both locally and on the grid. For example, high power and energy density lithium-ion batteries are being developed for use in hybrid electric vehicles where they improve the efficiency of fuel use and help to reduce greenhouse gas emissions. To gain insight into the chemical reactions involving the multiple components (electrodes, electrolytes, interfaces) in the electrochemical cells and to determine how cells operate and how they fail, researchers ideally should employ techniques that allow real-time characterization of the behavior of the cells under operating conditions. This Account reviews the recent use of in situ solid-state NMR spectroscopy, a technique that probes local structure and dynamics, to study these devices. In situ NMR studies of lithium-ion batteries are performed on the entire battery, by using a coin cell design, a flat sealed plastic bag, or a cylindrical cell. The battery is placed inside the NMR coil, leads are connected to a potentiostat, and the NMR spectra are recorded as a function of state of charge. (7)Li is used for many of these experiments because of its high sensitivity, straightforward spectral interpretation, and relevance to these devices. For example, (7)Li spectroscopy was used to detect intermediates formed during electrochemical cycling such as LixC and LiySiz species in batteries with carbon and silicon anodes, respectively. It was also used to observe and quantify the formation and growth of metallic lithium microstructures, which can cause short circuits and battery failure. This approach can be utilized to identify conditions that promote dendrite formation and whether different electrolytes and additives can help

  3. In situ electrochemical XRD study of (de)hydrogenation of MgyTi100-y thin films

    NARCIS (Netherlands)

    Vermeulen, P.; Wondergem, H.J.; Graat, P.C.J.; Borsa, D.M.; Schreuders, H.; Dam, B.; Griessen, R.; Notten, P.H.L.

    2008-01-01

    X-ray diffraction and electrochemical (de)hydrogenation were performed in situ to monitor the symmetry of the unit cells of MgyTi100-y thin film alloys (with 70 to 90 at.% Mg) along the pressure composition isotherms at room temperature. The diffraction patterns show that the crystal structures of

  4. In situ characterization of natural pyrite bioleaching using electrochemical noise technique

    Science.gov (United States)

    Chen, Guo-bao; Yang, Hong-ying; Li, Hai-jun

    2016-02-01

    An in situ characterization technique called electrochemical noise (ECN) was used to investigate the bioleaching of natural pyrite. ECN experiments were conducted in four active systems (sulfuric acid, ferric-ion, 9k culture medium, and bioleaching solutions). The ECN data were analyzed in both the time and frequency domains. Spectral noise impedance spectra obtained from power spectral density (PSD) plots for different systems were compared. A reaction mechanism was also proposed on the basis of the experimental data analysis. The bioleaching system exhibits the lowest noise resistance of 0.101 MΩ. The bioleaching of natural pyrite is considered to be a bio-battery reaction, which distinguishes it from chemical oxidation reactions in ferric-ion and culture-medium (9k) solutions. The corrosion of pyrite becomes more severe over time after the long-term testing of bioleaching.

  5. In situ chemical synthesis of ruthenium oxide/reduced graphene oxide nanocomposites for electrochemical capacitor applications.

    Science.gov (United States)

    Kim, Ji-Young; Kim, Kwang-Heon; Yoon, Seung-Beom; Kim, Hyun-Kyung; Park, Sang-Hoon; Kim, Kwang-Bum

    2013-08-07

    An in situ chemical synthesis approach has been developed to prepare ruthenium oxide/reduced graphene oxide (RGO) nanocomposites. It is found that as the C/O ratio increases, the number density of RuO2 nanoparticles decreases, because the chemical interaction between the Ru ions and the oxygen-containing functional groups provides anchoring sites where the nucleation of particles takes place. For electrochemical capacitor applications, the microwave-hydrothermal process was carried out to improve the conductivity of RGO in RuO2/RGO nanocomposites. The significant improvement in capacitance and high rate capability might result from the RuO2 nanoparticles used as spacers that make the interior layers of the reduced graphene oxide electrode available for electrolyte access.

  6. Instrumentation for in situ flow electrochemical Scanning Transmission X-ray Microscopy (STXM)

    Science.gov (United States)

    Prabu, Vinod; Obst, Martin; Hosseinkhannazer, Hooman; Reynolds, Matthew; Rosendahl, Scott; Wang, Jian; Hitchcock, Adam P.

    2018-06-01

    We report the design and performance of a 3-electrode device for real time in situ scanning transmission X-ray microscopy studies of electrochemical processes under both static (sealed, non-flow) conditions and with a continuous flow of electrolytes. The device was made using a combination of silicon microfabrication and 3D printing technologies. The performance is illustrated by results of a study of copper deposition and stripping at a gold working electrode. X-ray absorption spectromicroscopy at the Cu 2p edge was used to follow the evolution as a function of potential and time of the spatial distributions of Cu(0) and Cu(i) species electro-deposited from an aqueous solution of copper sulphate. The results are interpreted in terms of competing mechanisms for the reduction of Cu(ii).

  7. Multiwalled carbon nanotubes enhance electrochemical properties of titanium to determine in situ bone formation

    Energy Technology Data Exchange (ETDEWEB)

    Sirivisoot, Sirinrath; Webster, Thomas J [Division of Engineering, Brown University, Providence, RI 02912 (United States)], E-mail: Thomas_Webster@Brown.edu

    2008-07-23

    Multiwalled carbon nanotubes (MWCNTs) enhance osteoblast (bone-forming cell) calcium deposition compared to currently implanted materials (such as titanium). In this study, MWCNTs were grown out of nanopores anodized on titanium (MWCNT-Ti). The electrochemical responses of MWCNT-Ti were investigated in an attempt to ascertain if MWCNT-Ti can serve as novel in situ sensors of bone formation. For this purpose, MWCNT-Ti was subjected to a ferri/ferrocyanide redox couple and its electrochemical behavior measured. Cyclic voltammograms (CVs) showed an enhanced redox potential for the MWCNT-Ti. These redox signals were superior to that obtained with bare unmodified Ti, which did not sense either oxidation or reduction peaks in the CVs. A further objective of this study was to investigate the redox reactions of MWCNT-Ti in a solution of extracellular components secreted by osteoblasts in vitro. It was found that MWCNT-Ti exhibited well-defined and persistent CVs, similar to the ferri/ferrocyanide redox reaction. The higher electrodic performance and electrocatalytic activity of the MWCNT-Ti compared to the bare titanium observed in this study were likely due to the fact that MWCNTs enhanced direct electron transfer and facilitated double-layer effects, leading to a strong redox signal. Thus these results encourage the further study and modification of MWCNT-Ti to sense new bone growth in situ next to orthopedic implants and perhaps monitor other events (such as infection and/or harmful scar tissue formation) to improve the current clinical diagnosis of orthopedic implants.

  8. Multiwalled carbon nanotubes enhance electrochemical properties of titanium to determine in situ bone formation

    International Nuclear Information System (INIS)

    Sirivisoot, Sirinrath; Webster, Thomas J

    2008-01-01

    Multiwalled carbon nanotubes (MWCNTs) enhance osteoblast (bone-forming cell) calcium deposition compared to currently implanted materials (such as titanium). In this study, MWCNTs were grown out of nanopores anodized on titanium (MWCNT-Ti). The electrochemical responses of MWCNT-Ti were investigated in an attempt to ascertain if MWCNT-Ti can serve as novel in situ sensors of bone formation. For this purpose, MWCNT-Ti was subjected to a ferri/ferrocyanide redox couple and its electrochemical behavior measured. Cyclic voltammograms (CVs) showed an enhanced redox potential for the MWCNT-Ti. These redox signals were superior to that obtained with bare unmodified Ti, which did not sense either oxidation or reduction peaks in the CVs. A further objective of this study was to investigate the redox reactions of MWCNT-Ti in a solution of extracellular components secreted by osteoblasts in vitro. It was found that MWCNT-Ti exhibited well-defined and persistent CVs, similar to the ferri/ferrocyanide redox reaction. The higher electrodic performance and electrocatalytic activity of the MWCNT-Ti compared to the bare titanium observed in this study were likely due to the fact that MWCNTs enhanced direct electron transfer and facilitated double-layer effects, leading to a strong redox signal. Thus these results encourage the further study and modification of MWCNT-Ti to sense new bone growth in situ next to orthopedic implants and perhaps monitor other events (such as infection and/or harmful scar tissue formation) to improve the current clinical diagnosis of orthopedic implants

  9. Electrochemical membrane reactor: In situ separation and recovery of chromic acid and metal ions

    International Nuclear Information System (INIS)

    Khan, Jeeshan; Tripathi, Bijay P.; Saxena, Arunima; Shahi, Vinod K.

    2007-01-01

    An electrochemical membrane reactor with three compartments (anolyte, catholyte and central compartment) based on in-house-prepared cation- and anion-exchange membrane was developed to achieve in situ separation and recovery of chromic acid and metal ions. The physicochemical and electrochemical properties of the ion-exchange membrane under standard operating conditions reveal its suitability for the proposed reactor. Experiments using synthetic solutions of chromate and dichromate of different concentrations were carried out to study the feasibility of the process. Electrochemical reactions occurring at the cathode and anode under operating conditions are proposed. It was observed that metal ion migrated through the cation-exchange membrane from central compartment to catholyte and OH - formation at the cathode leads to the formation of metal hydroxide. Simultaneously, chromate ion migrated through the anion-exchange membrane from central compartment to the anolyte and formed chromic acid by combining H + produced their by oxidative water splitting. Thus a continuous decay in the concentration of chromate and metal ion was observed in the central compartment, which was recovered separately in the anolyte and catholyte, respectively, from their mixed solution. This process was completely optimized in terms of operating conditions such as initial concentration of chromate and metal ions in the central compartment, the applied cell voltage, chromate and metal ion flux, recovery percentage, energy consumption, and current efficiency. It was concluded that chromic acid and metal ions can be recovered efficiently from their mixed solution leaving behind the uncharged organics and can be reused as their corresponding acid and base apart from the purifying water for further applications

  10. In-situ electrochemical impedance spectroscopy measurements of zirconium alloy oxide conductivity: Relationship to hydrogen pickup

    International Nuclear Information System (INIS)

    Couet, Adrien; Motta, Arthur T.; Ambard, Antoine; Livigni, Didier

    2017-01-01

    Highlights: • In-situ electrochemistry on zirconium alloys in 360 °C pure water show oxide layer resistivity changes during corrosion. • A linear relationship is observed between oxide resistivity and instantaneous hydrogen pickup fraction. • The resistivity of the oxide layer formed on Zircaloy-4 (and thus its hydrogen pickup fraction) is higher than on Zr-2.5Nb. - Abstract: Hydrogen pickup during nuclear fuel cladding corrosion is a critical life-limiting degradation mechanism for nuclear fuel. Following a program dedicated to zirconium alloys, corrosion, it has been hypothesized that oxide electronic resistivity determines hydrogen pickup. In-situ electrochemical impedance spectroscopy experiments were performed on Zircaloy-4 and Zr-2.5Nb alloys in 360 °C water. The oxide resistivity was measured as function of time. The results show that as the oxide resistivity increases so does the hydrogen pickup fraction. The resistivity of the oxide layer formed on Zircaloy-4 is higher than on Zr-2.5Nb, resulting in a higher hydrogen pickup fraction of Zircaloy-4, compared to Zr-2.5Nb.

  11. In situ biosensing of the nanomechanical property and electrochemical spectroscopy of Streptococcus mutans-containing biofilms

    Science.gov (United States)

    Haochih Liu, Bernard; Li, Kun-Lin; Kang, Kai-Li; Huang, Wen-Ke; Liao, Jiunn-Der

    2013-07-01

    This work presents in situ biosensing approaches to study the nanomechanical and electrochemical behaviour of Streptococcus mutans biofilms under different cultivation conditions and microenvironments. The surface characteristics and sub-surface electrochemistry of the cell wall of S. mutans were measured by atomic force microscopy (AFM) based techniques to monitor the in situ biophysical status of biofilms under common anti-pathogenic procedures such as ultraviolet (UV) radiation and alcohol treatment. The AFM nanoindentation suggested a positive correlation between nanomechanical strength and the level of UV radiation of S. mutans; scanning impedance spectroscopy of dehydrated biofilms revealed reduced electrical resistance that is distinctive from that of living biofilms, which can be explained by the discharge of cytoplasm after alcohol treatment. Furthermore, the localized elastic moduli of four regions of the biofilm were studied: septum (Z-ring), cell wall, the interconnecting area between two cells and extracellular polymeric substance (EPS) area. The results indicated that cell walls exhibit the highest elastic modulus, followed by Z-ring, interconnect and EPS. Our approach provides an effective alternative for the characterization of the viability of living cells without the use of biochemical labelling tools such as fluorescence dyeing, and does not rely on surface binding or immobilization for detection. These AFM-based techniques can be very promising approaches when the conventional methods fall short.

  12. In situ biosensing of the nanomechanical property and electrochemical spectroscopy of Streptococcus mutans-containing biofilms

    International Nuclear Information System (INIS)

    Liu, Bernard Haochih; Li, Kun-Lin; Kang, Kai-Li; Huang, Wen-Ke; Liao, Jiunn-Der

    2013-01-01

    This work presents in situ biosensing approaches to study the nanomechanical and electrochemical behaviour of Streptococcus mutans biofilms under different cultivation conditions and microenvironments. The surface characteristics and sub-surface electrochemistry of the cell wall of S. mutans were measured by atomic force microscopy (AFM) based techniques to monitor the in situ biophysical status of biofilms under common anti-pathogenic procedures such as ultraviolet (UV) radiation and alcohol treatment. The AFM nanoindentation suggested a positive correlation between nanomechanical strength and the level of UV radiation of S. mutans; scanning impedance spectroscopy of dehydrated biofilms revealed reduced electrical resistance that is distinctive from that of living biofilms, which can be explained by the discharge of cytoplasm after alcohol treatment. Furthermore, the localized elastic moduli of four regions of the biofilm were studied: septum (Z-ring), cell wall, the interconnecting area between two cells and extracellular polymeric substance (EPS) area. The results indicated that cell walls exhibit the highest elastic modulus, followed by Z-ring, interconnect and EPS. Our approach provides an effective alternative for the characterization of the viability of living cells without the use of biochemical labelling tools such as fluorescence dyeing, and does not rely on surface binding or immobilization for detection. These AFM-based techniques can be very promising approaches when the conventional methods fall short. (paper)

  13. Dynamics of electrochemical lithiation/delithiation of graphene-encapsulated silicon nanoparticles studied by in-situ TEM.

    Science.gov (United States)

    Luo, Langli; Wu, Jinsong; Luo, Jiayan; Huang, Jiaxing; Dravid, Vinayak P

    2014-01-24

    The incorporation of nanostructured carbon has been recently reported as an effective approach to improve the cycling stability when Si is used as high-capacity anodes for the next generation Li-ion battery. However, the mechanism of such notable improvement remains unclear. Herein, we report in-situ transmission electron microscopy (TEM) studies to directly observe the dynamic electrochemical lithiation/delithiation processes of crumpled graphene-encapsulated Si nanoparticles to understand their physical and chemical transformations. Unexpectedly, in the first lithiation process, crystalline Si nanoparticles undergo an isotropic to anisotropic transition, which is not observed in pure crystalline and amorphous Si nanoparticles. Such a surprising phenomenon arises from the uniformly distributed localized voltage around the Si nanoparticles due to the highly conductive graphene sheets. It is observed that the intimate contact between graphene and Si is maintained during volume expansion/contraction. Electrochemical sintering process where small Si nanoparticles react and merge together to form large agglomerates following spikes in localized electric current is another problem for batteries. In-situ TEM shows that graphene sheets help maintain the capacity even in the course of electrochemical sintering. Such in-situ TEM observations provide valuable phenomenological insights into electrochemical phenomena, which may help optimize the configuration for further improved performance.

  14. Redox cycling-based amplifying electrochemical sensor for in situ clozapine antipsychotic treatment monitoring

    International Nuclear Information System (INIS)

    Ben-Yoav, Hadar; Winkler, Thomas E.; Kim, Eunkyoung; Chocron, Sheryl E.; Kelly, Deanna L.; Payne, Gregory F.; Ghodssi, Reza

    2014-01-01

    Highlights: • A new concept for clozapine in situ sensing with minimal pre-treatment procedures. • A catechol-chitosan redox cycling system amplifies clozapine oxidation current. • The modified amplifier signal is 3 times greater than the unmodified system. • Differentiation between clozapine and its metabolite norclozapine has been shown. • The sensor has the capability to detect clozapine in human serum. - Abstract: Schizophrenia is a lifelong mental disorder with few recent advances in treatment. Clozapine is the most effective antipsychotic for schizophrenia treatment. However, it remains underutilized since frequent blood draws are required to monitor adverse side effects, and maintain clozapine concentrations in a therapeutic range. Micro-system technology utilized towards real-time monitoring of efficacy and safety will enable personalized medicine and better use of this medication. Although work has been reported on clozapine detection using its electrochemical oxidation, no in situ monitoring of clozapine has been described. In this work, we present a new concept for clozapine in situ sensing based on amplifying its oxidation current. Specifically, we use a biofabricated catechol-modified chitosan redox cycling system to provide a significant amplification of the generated oxidizing current of clozapine through a continuous cycle of clozapine reduction followed by re-oxidation. The amplified signal has improved the signal-to-noise ratio and provided the required limit-of-detection and dynamic range for clinical applications with minimal pre-treatment procedures. The sensor reports on the functionality and sensitivity of clozapine detection between 0.1 and 10 μg/mL. The signal generated by clozapine using the catechol-modified chitosan amplifier has shown to be 3 times greater than the unmodified system. The sensor has the ability to differentiate between clozapine and its metabolite norclozapine, as well as the feasibility to detect clozapine in

  15. Electrochemical synthesis, in situ spectroelectrochemistry of conducting indole-titanium dioxide and zinc oxide polymer nanocomposites for rechargeable batteries

    International Nuclear Information System (INIS)

    Parvin, Mohammad Hadi; Pirnia, Mahsa; Arjomandi, Jalal

    2015-01-01

    Highlights: • Two novel hybrid materials-based conducting PIn rechargeable batteries were developed. • The charge-discharging behavior of PIn-nanocomposite batteries were studied. • The characterization of samples has been done by in situ spectroelectrochemical method. • PIn-TiO 2 and ZnO nanocomposites were synthesized electrochemically on Au and ITO. • The PIn-TiO 2 and ZnO nanocomposites resistances were less than PIn. - Abstract: Electrochemical synthesis, in situ spectroelectrochemistry of conducting polyindole (PIn), polyindole-TiO 2 (PIn-TiO 2 ) and polyindole-ZnO (PIn-ZnO) nanocomposites were investigated. The PIn and polymer nanocomposites were tested electrochemically for rechargeable batteries. The films were characterized by means of CVs, in situ UV-visible, FT-IR spectroscopies, in situ resistivity measurements, energy dispersive X-ray (EDX), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The charge-discharging behavior of a Zn/1 M ZnSO 4 /PIn cell with a capacity of around 90 Ah Kg −1 and on open circuit potential of around 1.45 V was compared with Zn/1 M ZnSO 4 /PIn-nanocomposite. The potential differences of redox couples (ΔE) for nanocomposites films show very good reversibility. A positive shift of potential was observed for polymer nanocomposites during redox scan. A significant variability was observed for in situ conductivity of the PIn and polymer nanocomposites. During in situ UV-visible and FT-IR measurements, intermediate spectroscopic behavior and positive shifts of wavelengths were observed for PIn and polymer nanocomposites. The SEM, TEM and EDX of nanocomposite films show the presence of nano particle in PIn.

  16. Quasi-reference electrodes in confined electrochemical cells can result in in situ production of metallic nanoparticles.

    Science.gov (United States)

    Perera, Rukshan T; Rosenstein, Jacob K

    2018-01-31

    Nanoscale working electrodes and miniaturized electroanalytical devices are valuable platforms to probe molecular phenomena and perform chemical analyses. However, the inherent close distance of metallic electrodes integrated into a small volume of electrolyte can complicate classical electroanalytical techniques. In this study, we use a scanning nanopipette contact probe as a model miniaturized electrochemical cell to demonstrate measurable side effects of the reaction occurring at a quasi-reference electrode. We provide evidence for in situ generation of nanoparticles in the absence of any electroactive species and we critically analyze the origin, nucleation, dissolution and dynamic behavior of these nanoparticles as they appear at the working electrode. It is crucial to recognize the implications of using quasi-reference electrodes in confined electrochemical cells, in order to accurately interpret the results of nanoscale electrochemical experiments.

  17. In situ electrochemical impedance spectroscopy of Zr-1%Nb under VVER primary circuit conditions

    International Nuclear Information System (INIS)

    Nagy, Gabor; Kerner, Zsolt; Pajkossy, Tamas

    2002-01-01

    Oxide layers were grown on tubular samples of Zr-1%Nb under conditions simulating those in VVER-type pressurised water reactors, viz. in near-neutral borate solutions in an autoclave at 290 deg. C. These samples were investigated using electrochemical impedance spectroscopy which was found to be suitable to follow in situ the corrosion process. A -CPE ox parallel R ox - element was used to characterise the oxide layer on Zr-1%Nb. Both the CPE ox coefficient, σ ox , and the parallel resistance, R ox , were found to be thickness dependent. The layer thickness, however, can only be calculated after a calibration procedure. The temperature dependence of the CPE ox element was also found to be anomalous while the temperature dependence of R ox indicates that the oxide layer has semiconductor properties. The relaxation time - defined as (R ox σ ox ) 1/α - was found to be quasi-independent of oxidation time and temperature; thus it is characteristic to the oxide layer on Zr-1%Nb

  18. In-situ SEM microchip setup for electrochemical experiments with water based solutions

    DEFF Research Database (Denmark)

    Jensen, Eric; Købler, C.; Jensen, Palle Skovhus

    2013-01-01

    Studying electrochemical (EC) processes with electron microscopes offers the possibility of achieving much higher resolution imaging of nanoscale processes in real time than with optical microscopes. We have developed a vacuum sealed liquid sample electrochemical cell with electron transparent wi...

  19. In-situ electrochemical study of Zr1nb alloy corrosion in high temperature Li{sup +} containing water

    Energy Technology Data Exchange (ETDEWEB)

    Krausová, Aneta [University of Chemistry and Technology, Technická 3, 166 28 Prague 6 (Czech Republic); Macák, Jan, E-mail: macakj@vscht.cz [University of Chemistry and Technology, Technická 3, 166 28 Prague 6 (Czech Republic); Sajdl, Petr [University of Chemistry and Technology, Technická 3, 166 28 Prague 6 (Czech Republic); Novotný, Radek [JRC-IET, Westerduinveg 3, 1755 LE Petten (Netherlands); Renčiuková, Veronika [University of Chemistry and Technology, Technická 3, 166 28 Prague 6 (Czech Republic); Vrtílková, Věra [ÚJP a.s., Nad Kamínkou 1345, 156 10 Prague 5 (Czech Republic)

    2015-12-15

    Long-term in-situ corrosion tests were performed in order to evaluate the influence of lithium ions on the corrosion of zirconium alloy. Experiments were carried out in a high-pressure high-temperature loop (280 °C, 8 MPa) in a high concentration water solution of LiOH (70 and 200 ppm Li{sup +}) and in a simulated WWER primary coolant environment. The kinetic parameters characterising the oxidation process have been explored using in-situ electrochemical impedance spectroscopy and slow potentiodynamic polarization. Also, a suitable equivalent circuit was suggested, which would approximate the impedance characteristics of the corrosion of Zr–1Nb alloy. The Mott–Schottky approach was used to determine the semiconducting character of the passive film. - Highlights: • Zr1Nb alloy was tested in WWER coolant and in LiOH solutions at 280 °C. • Corrosion rates were estimated in-situ from electrochemical data. • Electrochemical data agreed well with weight gains and metallography data. • Increase of corrosion rate in LiOH appeared after short exposure (300–500 h). • Very high donor densities (1.1–1.2 × 10{sup 20} cm{sup −3}) of Zr oxide grown in LiOH were found.

  20. In situ electrochemical-mass spectroscopic investigation of solid electrolyte interphase formation on the surface of a carbon electrode

    International Nuclear Information System (INIS)

    Gourdin, Gerald; Zheng, Dong; Smith, Patricia H.; Qu, Deyang

    2013-01-01

    The energy density of an electrochemical capacitor can be significantly improved by utilizing a lithiated negative electrode and a high surface area positive electrode. During lithiation of the negative carbon electrode, the electrolyte reacts with the electrode surface and undergoes decomposition to form a solid electrolyte interphase (SEI) layer that passivates the surface of the carbon electrode from further reactions between Li and the electrolyte. The reduction reactions that the solvent undergoes also form insoluble and gaseous by-products. In this work, those gaseous by-products generated by reductive decomposition of a carbonate-based electrolyte, 1.2 M LiPF 6 in EC/PC/DEC (3:1:4), were analyzed at different stages during the lithiation process of an amorphous carbon electrode. The stages in the generation of gaseous by-products were determined to come as a result of two, 1-electron reduction steps of the cyclic carbonate components of the electrolyte. Electrochemical impedance spectroscopy was also used to investigate the two distinct electrochemical processes and the development of the two phases of the SEI structure. This is the first time that the state of an electrochemical cell during the formation of the SEI layer has been systematically correlated with theoretical reaction mechanisms through the use of in situ electrochemical-MS and impedance spectroscopy analyses

  1. Graphene oxide directed in-situ deposition of electroactive silver nanoparticles and its electrochemical sensing application for DNA analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Ningning [College of Chemistry and Environment, Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000 (China); Gao, Feng, E-mail: fgao1981@mnnu.edu.cn [College of Chemistry and Environment, Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000 (China); Department of Chemistry, Graduate School of Science and Engineering, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504 (Japan); He, Suyu; Zhu, Qionghua; Huang, Jiafu [College of Chemistry and Environment, Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000 (China); Tanaka, Hidekazu [Department of Chemistry, Graduate School of Science and Engineering, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504 (Japan); Wang, Qingxiang, E-mail: axiang236@126.com [College of Chemistry and Environment, Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000 (China)

    2017-01-25

    The development of high-performance biosensing platform is heavily dependent on the recognition property of the sensing layer and the output intensity of the signal probe. Herein, we present a simple and highly sensitive biosensing interface for DNA detection on the basis of graphene oxide nanosheets (GONs) directed in-situ deposition of silver nanoparticles (AgNPs). The fabrication process and electrochemical properties of the biosensing interface were probed by electrochemical techniques and scanning electron microscopy. The results indicate that GONs can specifically adsorb at the single-stranded DNA probe surface, and induces the deposition of highly electroactive AgNPs. Upon hybridization with complementary oligonucleotides to generate the duplex DNA on the electrode surface, the GONs with the deposited AgNPs will be liberated from the sensing interface due to the inferior affinity of GONs and duplex DNA, resulting in the reduction of the electrochemical signal. Such a strategy combines the superior recognition of GONs toward single-stranded DNA and double-stranded DNA, and the strong electrochemical response of in-situ deposited AgNPs. Under optimal conditions, the biosensor can detect target DNA over a wide range from 10 fM to 10 nM with a detection limit of 7.6 fM. Also, the developed biosensor shows outstanding discriminating ability toward oligonucleotides with different mismatching degrees. - Highlights: • An novel DNA biosensor was constructed based on GONs with deposited AgNPs. • GONs catalyze the in-situ deposition of AgNPs on the sensing interface. • Unique π-stacking of GONs with probe DNA contributes high selectivity of the biosensor. • High electroactivity of AgNPs leads to low detection limit (7.6 fM) for target DNA.

  2. Flow-induced corrosion of absorbable magnesium alloy: In-situ and real-time electrochemical study

    International Nuclear Information System (INIS)

    Wang, Juan; Jang, Yongseok; Wan, Guojiang; Giridharan, Venkataraman; Song, Guang-Ling; Xu, Zhigang; Koo, Youngmi; Qi, Pengkai; Sankar, Jagannathan; Huang, Nan; Yun, Yeoheung

    2016-01-01

    Highlights: • An in-situ and real-time electrochemical monitoring of flow-induced corrosion of Mg alloy is designed in a vascular bioreactor. • Effect of hydrodynamics on corrosion kinetics, types, rates and products is analyzed. • Flow accelerates mass and electron transfer, leading to an increase in uniform and localized corrosions. • Flow increases not only the thickness of uniform corrosion product layer, but the removal rate of localized corrosion products. • Electrochemical impedance spectroscopy and linear polarization-measured polarization resistances provide a consistent correlation to corrosion rate calculated by computed tomography. - Abstract: An in-situ and real-time electrochemical study in a vascular bioreactor was designed to analyze corrosion mechanism of magnesium alloy (MgZnCa) under mimetic hydrodynamic conditions. Effect of hydrodynamics on corrosion kinetics, types, rates and products was analyzed. Flow-induced shear stress (FISS) accelerated mass and electron transfer, leading to an increase in uniform and localized corrosions. FISS increased the thickness of uniform corrosion layer, but filiform corrosion decreased this layer resistance at high FISS conditions. FISS also increased the removal rate of localized corrosion products. Impedance-estimated and linear polarization-measured polarization resistances provided a consistent correlation to corrosion rate calculated by computed tomography.

  3. Studies on electrochemical hydrodebromination mechanism of 2,5-dibromobenzoic acid on Ag electrode by in situ FTIR spectroscopy

    International Nuclear Information System (INIS)

    Li Meichao; Bao Dandan; Ma Chunan

    2011-01-01

    Research highlights: → Silver is a good catalyst for the hydrodebromination of 2,5-dibromobenzoic acid. → 3-Bromobenzoic acid as main intermediate product. → The finally product is benzoic acid. → In situ FTIR is useful to study the electrochemical hydrodebromination mechanism. - Abstract: Cyclic voltammetry and in situ FTIR were employed to study the electrochemical hydrodebromination (EHB) mechanism of 2,5-dibromobenzoic acid (2,5-DBBA) in NaOH solution. Compared with titanium and graphite electrodes, silver electrode exhibited a high electrocatalytic activity for the hydrodebromination reaction of 2,5-DBBA. On the basis of in situ FTIR data, EHB reaction of 2,5-DBBA on Ag cathode might be represented as a sequence of electron additions and bromine expulsions. Firstly, from potential at approximately -1100 mV, 2,5-DBBA received an electron to form 2,5-DBBA radical anion, which lost a bromine ion in the 2-position to form 3-bromobenzoic acid (3-BBA) free radical. Then the free radical received a proton to give 3-BBA. Finally, 3-BBA further took off another bromine ion to produce benzoic acid free radical and the end product benzoic acid was obtained by receiving another electron and a proton with the potential shifting to more negative values.

  4. Electrochemical activation of Li2MnO3 at elevated temperature investigated by in situ Raman microscopy

    International Nuclear Information System (INIS)

    Lanz, Patrick; Villevieille, Claire; Novák, Petr

    2013-01-01

    Layered-layered oxides of the type xLi 2 MnO 3 ·(1 − x)LiMO 2 (M = Mn, Ni, Co) have been postulated to contain Li 2 MnO 3 domains which, upon electrochemical activation, give rise to a characteristic potential plateau at 4.5 V vs. Li + /Li. To improve our understanding of the complex reaction mechanisms at play, we applied in situ Raman microscopy to investigate the constituent Li 2 MnO 3 . Li 2 MnO 3 synthesised via a two-step solid-state reaction was characterised by scanning electron microscopy and X-ray diffraction. Preliminary electrochemical tests and ex situ Raman microscopy showed the need for elevated temperatures to achieve activation. For the first time, in situ Raman microscopy (at 50 °C) confirmed the activation of Li 2 MnO 3 . The main signal at 615 cm −1 shifted to higher wavenumbers upon charging. After reaching 4.4 V vs. Li + /Li, this shift grew significantly, which is in good agreement with the onset of the potential plateau in both Li 2 MnO 3 and xLi 2 MnO 3 ·(1 − x)LiMO 2 , and is assigned to the partial formation of a spinel-like phase

  5. Corrosion initiation of stainless steel in HCl solution studied using electrochemical noise and in-situ atomic force microscope

    International Nuclear Information System (INIS)

    Li Yan; Hu Ronggang; Wang Jingrun; Huang Yongxia; Lin Changjian

    2009-01-01

    An in-situ atomic force microscope (AFM), optical microscope and electrochemical noise (ECN) techniques were applied to the investigation of corrosion initiations in an early stage of 1Cr18Ni9Ti stainless steel immersed in 0.5 M HCl solution. The electrochemical current noise data has been analyzed using discrete wavelet transform (DWT). For the first time, the origin of wavelet coefficients is discussed based on the correlation between the evolution of the energy distribution plot (EDP) of wavelet coefficients and topographic changes. It is found that the occurrence of initiation of metastable pitting at susceptive sites is resulted from the reductive breakdown of passive film of stainless steel in the diluted HCL solution. The coefficients d 4 -d 6 are originated from metastable pitting, d 7 represents the formation and growth of stable pitting while d 8 corresponds to the general corrosion.

  6. Flow-induced corrosion of absorbable magnesium alloy: In-situ and real-time electrochemical study.

    Science.gov (United States)

    Wang, Juan; Jang, Yongseok; Wan, Guojiang; Giridharan, Venkataraman; Song, Guang-Ling; Xu, Zhigang; Koo, Youngmi; Qi, Pengkai; Sankar, Jagannathan; Huang, Nan; Yun, Yeoheung

    2016-03-01

    An in-situ and real-time electrochemical study in a vascular bioreactor was designed to analyze corrosion mechanism of magnesium alloy (MgZnCa) under mimetic hydrodynamic conditions. Effect of hydrodynamics on corrosion kinetics, types, rates and products was analyzed. Flow-induced shear stress (FISS) accelerated mass and electron transfer, leading to an increase in uniform and localized corrosions. FISS increased the thickness of uniform corrosion layer, but filiform corrosion decreased this layer resistance at high FISS conditions. FISS also increased the removal rate of localized corrosion products. Impedance-estimated and linear polarization-measured polarization resistances provided a consistent correlation to corrosion rate calculated by computed tomography.

  7. Electrochemical studies, in-situ and ex-situ characterizations of different manganese compounds electrodeposited in aerated solutions

    International Nuclear Information System (INIS)

    Peulon, S.; Lacroix, A.; Chausse, A.; Larabi-Gruet, N.

    2007-01-01

    This work deals with the electrodeposition of manganese compounds. A systematic study of the synthesis experimental conditions has been carried out, and the obtained depositions have been characterized by different ex-situ analyses methods (XRD, FTIR, SEM). The in-situ measurements of mass increase with a quartz microbalance during the syntheses have allowed to estimate the growth mechanisms which are in agreement with the ex-situ characterizations. The cation has an important role in the nature of the electrodeposited compounds. In presence of sodium, a mixed lamellar compound Mn(III)/Mn(IV), the birnessite, is deposited, whereas in presence of potassium, bixbyite is formed (Mn 2 O 3 ), these two compounds having a main role in the environment. The substrate can also influence the nature of the formed intermediary compounds. Little studied compounds such as feitkneichtite (β-MnOOH) and groutite (α-MnOOH) have been revealed. (O.M.)

  8. Electrochemical Processes for In-Situ Treatment of Contaminated Soils - Final Report - 09/15/1996 - 01/31/2001

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chin-Pao

    2001-05-31

    This project will study electrochemical processes for the in situ treatment of soils contaminated by mixed wastes, i.e., organic and inorganic. Soil samples collected form selected DOE waste sites will be characterized for specific organic and metal contaminants and hydraulic permeability. The soil samples are then subject to desorption experiments under various physical-chemical conditions such as pH and the presence of surfactants. Batch electro-osmosis experiments will be conducted to study the transport of contaminants in the soil-water systems. Organic contaminants that are released from the soil substrate will be treated by an advanced oxidation process, i.e., electron-Fantan. Finally, laboratory reactor integrating the elector-osmosis and elector-Fantan processes will be used to study the treatment of contaminated soil in situ.

  9. In situ electrochemical impedance spectroscopy/synchrotron radiation grazing incidence X-ray diffraction-A powerful new technique for the characterization of electrochemical surfaces and interfaces

    Energy Technology Data Exchange (ETDEWEB)

    De Marco, Roland [Nanochemistry Research Institute, Department of Applied Chemistry, Curtin University of Technology, GPO Box U 1987, Perth, WA 6845 (Australia)]. E-mail: r.demarco@exchange.curtin.edu.au; Jiang, Z.-T. [Nanochemistry Research Institute, Department of Applied Chemistry, Curtin University of Technology, GPO Box U 1987, Perth, WA 6845 (Australia); Martizano, Jay [Nanochemistry Research Institute, Department of Applied Chemistry, Curtin University of Technology, GPO Box U 1987, Perth, WA 6845 (Australia); Lowe, Alex [Nanochemistry Research Institute, Department of Applied Chemistry, Curtin University of Technology, GPO Box U 1987, Perth, WA 6845 (Australia); Pejcic, Bobby [Nanochemistry Research Institute, Department of Applied Chemistry, Curtin University of Technology, GPO Box U 1987, Perth, WA 6845 (Australia); Riessen, Arie van [Materials Research Group, Department of Applied Physics, Curtin University of Technology, GPO Box U 1987, Perth, WA 6845 (Australia)

    2006-08-15

    A marriage of electrochemical impedance spectroscopy (EIS) and in situ synchrotron radiation grazing incidence X-ray diffraction (SR-GIXRD) has provided a powerful new technique for the elucidation of the mechanistic chemistry of electrochemical systems. In this study, EIS/SR-GIXRD has been used to investigate the influence of metal ion buffer calibration ligands, along with natural organic ligands in seawater, on the behaviour of the iron chalcogenide glass ion-selective electrode (ISE). The SR-GIXRD data demonstrated that citrate - a previously reported poor iron calibration ligand for the analysis of seawater - induced an instantaneous and total dissolution of crystalline GeSe and Sb{sub 2}Se{sub 3} in the modified surface layer (MSL) of the ISE, while natural organic ligands in seawater and a mixture of ligands in a mimetic seawater ligand system protected the MSL's crystalline inclusions of GeSe and Sb{sub 2}Se{sub 3} from oxidative attack. Expectedly, the EIS data showed that citrate induced a loss in the medium frequency time constant for the MSL of the ISE, while seawater's natural organic ligands and the mimetic ligand system preserved the medium frequency EIS response characteristics of the ISE's MSL. The new EIS/SR-GIXRD technique has provided insights into the suitability of iron calibration ligands for the analysis of iron in seawater.

  10. Design, development, and demonstration of a fully LabVIEW controlled in situ electrochemical Fourier transform infrared setup combined with a wall-jet electrode to investigate the electrochemical interface of nanoparticulate electrocatalysts under reaction conditions.

    Science.gov (United States)

    Nesselberger, Markus; Ashton, Sean J; Wiberg, Gustav K H; Arenz, Matthias

    2013-07-01

    We present a detailed description of the construction of an in situ electrochemical ATR-FTIR setup combined with a wall-jet electrode to investigate the electrocatalytic properties of nanoparticulate catalysts in situ under controlled mass transport conditions. The presented setup allows the electrochemical interface to be probed in combination with the simultaneous determination of reaction rates. At the same time, the high level of automation allows it to be used as a standard tool in electrocatalysis research. The performance of the setup was demonstrated by probing the oxygen reduction reaction on a platinum black catalyst in sulfuric electrolyte.

  11. Tailoring the Electrochemical Properties of Carbon Nanotube Modified Indium Tin Oxide via in Situ Grafting of Aryl Diazonium.

    Science.gov (United States)

    Hicks, Jacqueline M; Wong, Zhi Yi; Scurr, David J; Silman, Nigel; Jackson, Simon K; Mendes, Paula M; Aylott, Jonathan W; Rawson, Frankie J

    2017-05-23

    Our ability to tailor the electronic properties of surfaces by nanomodification is paramount for various applications, including development of sensing, fuel cell, and solar technologies. Moreover, in order to improve the rational design of conducting surfaces, an improved understanding of structure/function relationships of nanomodifications and effect they have on the underlying electronic properties is required. Herein, we report on the tuning and optimization of the electrochemical properties of indium tin oxide (ITO) functionalized with single-walled carbon nanotubes (SWCNTs). This was achieved by controlling in situ grafting of aryl amine diazonium films on the nanoscale which were used to covalently tether SWCNTs. The structure/function relationship of these nanomodifications on the electronic properties of ITO was elucidated via time-of-flight secondary ion mass spectrometry and electrochemical and physical characterization techniques which has led to new mechanistic insights into the in situ grafting of diazonium. We discovered that the connecting bond is a nitro group which is covalently linked to a carbon on the aryl amine. The increased understanding of the surface chemistry gained through these studies enabled us to fabricate surfaces with optimized electron transfer kinetics. The knowledge gained from these studies allows for the rational design and tuning of the electronic properties of ITO-based conducting surfaces important for development of various electronic applications.

  12. Enhanced Cyclability of Lithium-Oxygen Batteries with Electrodes Protected by Surface Films Induced via In-Situ Electrochemical Process

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bin; Xu, Wu; Tao, Jinhui; Yan, Pengfei; Zheng, Jianming; Engelhard, Mark H.; Lu, Dongping; Wang, Chongmin; Zhang, Jiguang

    2018-04-16

    Although the rechargeable lithium-oxygen (Li-O2) batteries have extremely high theoretical specific energy, the practical application of these batteries is still limited by the instability of their carbon-based air-electrode, Li metal anode, and electrolytes towards reduced oxygen species. Here we demonstrate a simple one-step in-situ electrochemical pre-charging strategy to generate thin protective films on both carbon nanotubes (CNTs) air-electrode and Li metal anode simultaneously under an inert atmosphere. Li-O2 cells after such pre-treatment demonstrate significantly extended cycle life of 110 and 180 cycles under the capacity-limited protocol of 1000 mAh g-1 and 500 mAh g-1, respectively, which is far more than those without pre-treatment. The thin-films formed from decomposition of electrolyte during in-situ electrochemical pre-charging process in an inert environment can protect both CNTs air-electrode and Li metal anode prior to conventional Li-O2 discharge/charge cycling where reactive reduced oxygen species are formed. This work provides a new approach for protections of carbon-based air-electrode and Li metal anode in practical Li-O2 batteries, and may also be applied to other battery systems.

  13. In situ synthesis of N and Cu functionalized mesoporous FDU-14 resins and carbons for electrochemical hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Kong, AiGuo; Wang, WenJuan; Yang, Fan; Ding, HanMing; Shan, YongKui [Department of Chemistry, East China Normal University, ShangHai 200062 (China)

    2010-07-15

    N and Cu cooperatively functionalized mesoporous resin and carbon materials with bicontinuous cubic structure (FDU-14) were obtained by a novel synthesis method. In this method, block copolymers were used as the templates as well as the precursors for the preparation of these modifying mesoporous materials. The CuC{sub 2}O{sub 4} in the channels of mesoporous FDU-14 resins was gotten by in situ oxidation of the templates in a catalytic redox system containing Cu{sup 2+}, Al{sup 3+}, NO{sub 3}{sup -}, PO{sub 4}{sup 3-}, SO{sub 4}{sup 2-} ions. Simultaneously, the phenol-formaldehyde resin frameworks were in situ functionalized by the amine group resulting from the reduction of NO{sub 3}{sup -}, leading to the formation of N and CuC{sub 2}O{sub 4} modified mesoporous FDU-14 resin materials. Its pyrolysis at the different temperatures resulted in the production of N and Cu cooperatively functionalized mesoporous FDU-14 resin and carbon materials. The structure and composition of these materials were characterized by the X-ray power diffraction, transmission electron microscopy, N{sub 2} adsorption-desorption analysis, X-ray photoelectron spectroscopy, infrared spectroscopy, thermogravimetry analysis, and inductive coupled plasma emission spectroscopy. The electrochemical measurement indicated that N and Cu cooperatively functionalized mesoporous FDU-14 carbon materials possessed the enhanced electrochemical hydrogen storage performance. (author)

  14. The study of redox mechanism of dobutamine at different pH media by electrochemical and in situ spectroelectrochemical methods

    International Nuclear Information System (INIS)

    Yang Gongjun; Xu Jingjuan; Chen Hongyuan

    2004-01-01

    Based on the comprehensive analyses of the experimental results of the electrochemical methods, in situ UV-Vis absorption spectra, in situ electron spin resonance (ESR), and attenuated total-internal reflection (ATR) as well as the calculation of UV-Vis absorption data by PM3 Semi-Empirical method, a reaction mechanism for the redox processes of dobutamine was presented. When the anodic sweep is carried out, dobutamine firstly undergoes a free radical reaction with one-electron and one-proton to form semi-quinone free radicals, which will continuously convert to its corresponding quinone form by further electrochemical oxidation reaction. The formed quinone cannot only undergo a cyclization process by chemical reaction to produce a new compound, which can be reduced at more negative potential, but also be reduced to form dobutamine again when subsequent cathodic sweep is followed. The cyclization rate is depended upon pH values, and it increases with the increase of pH. In neutral medium, the corresponding oxidation form of the cyclization reaction product is easy to convert to melanin

  15. Probing Structural Changes in Poly(3-hexylthiophene) (P3HT) During Electrochemical Oxidation with In Situ X-ray Scattering

    Science.gov (United States)

    Thelen, Jacob L.; Patel, Shrayesh N.; Javier, Anna E.; Balsara, Nitash P.

    2014-03-01

    Mixtures of poly(3-hexylthiophene)-b-poly(ethylene oxide) (P3HT-b-PEO) block copolymer and lithium bis(trifluromethanesulfonyl) imide (LiTFSI) salt can microphase separate into electron (P3HT) and ion (PEO/LiTFSI) conducting domains. P3HT is a semicrystalline polymer with intrinsically semiconducting electronic properties. Electrochemical oxidation (doping) of the P3HT block provides the P3HT-b-PEO/LiTFSI mixtures with electronic conductivity suitable for lithium battery operation. Due to the presence of the solid-state electrolyte (PEO/LiTFSI) in intimate contact with the microphase separated P3HT domains, electrochemical oxidation of P3HT can be performed entirely in the solid state; therefore, P3HT-b-PEO/LiTFSI provides a unique opportunity to study the structural changes in P3HT induced by oxidation. We use in situ x-ray scattering techniques to probe structural changes in P3HT during electrochemical oxidation and correlate these changes with previously observed enhancements in electron mobility. Supported by the Joint Center for Energy Storage Research (JCESR).

  16. Electrochemical generation of mercury cold vapor and its in-situ trapping in gold-covered graphite tube atomizers

    International Nuclear Information System (INIS)

    Cerveny, Vaclav; Rychlovsky, Petr; Netolicka, Jarmila; Sima, Jan

    2007-01-01

    The combination of more efficient flow-through electrochemical mercury cold vapor generation with its in-situ trapping in a graphite tube atomizer is described. This coupled technique has been optimized to attain the maximum sensitivity for Hg determination and to minimize the limits of detection and determination. A laboratory constructed thin-layer flow-through cell with a platinum cathode served as the cold vapor generator. Various cathode arrangements with different active surface areas were tested. Automated sampling equipment for the graphite atomizer with an untreated fused silica capillary was used for the introduction of the mercury vapor. The inner surface of the graphite tube was covered with a gold foil placed against the sampling hole. The results attained for the electrochemical mercury cold vapor generation (an absolute limit of detection of 80 pg; peak absorbance, 3σ criterion) were compared with the traditional vapor generation using NaBH 4 as the reducing agent (an absolute limit of detection of 124 pg; peak absorbance, 3σ criterion). The repeatability at the 5 ng ml -1 level was better than 4.1% (RSD) for electrochemical mercury vapor generation and better than 5.6% for the chemical cold vapor generation. The proposed method was applied to the determination the of Hg contents in a certified reference material and in spiked river water samples

  17. Enhanced electrochemical performance of in situ reduced graphene oxide-polyaniline nanotubes hybrid nanocomposites using redox-additive aqueous electrolyte

    Science.gov (United States)

    Devi, Madhabi; Kumar, A.

    2018-02-01

    Reduced graphene oxide (RGO)-polyaniline nanotubes (PAniNTs) nanocomposites have been synthesized by in situ reduction of GO. The morphology and structure of the nanocomposites are characterized by HRTEM, XRD and micro-Raman spectroscopy. The electrical and electrochemical performances of the nanocomposites are investigated for different RGO concentrations by conductivity measurements, cyclic voltammetry, charge-discharge and electrochemical impedance spectroscopy. Highest gravimetric specific capacitance of 448.71 F g-1 is obtained for 40 wt.% of RGO-PAniNTs nanocomposite as compared to 194.92 F g-1 for pure PAniNTs in 1 M KCl electrolyte. To further improve the electrochemical performance of the nanocomposite electrode, KI is used as redox-additive with 1 M KCl electrolyte. Highest gravimetric specific capacitance of 876.43 F g-1 and an improved cyclic stability of 91% as compared to 79% without KI after 5000 cycles is achieved for an optimized 0.1 M KI concentration. This is attributed to the presence of different ionic species of I- ions that give rise to a number of possible redox reactions improving the pseudocapacitance of the electrode. This improved capacitive performance is compared with that of catechol redox-additive in 1 M KCl electrolyte, and that of KI and catechol redox-additives added to 1 M H2SO4 electrolyte.

  18. Probing Stress States in Silicon Nanowires During Electrochemical Lithiation Using In Situ Synchrotron X-Ray Microdiffraction

    Directory of Open Access Journals (Sweden)

    Imran Ali

    2018-04-01

    Full Text Available Silicon is considered as a promising anode material for the next-generation lithium-ion battery (LIB due to its high capacity at nanoscale. However, silicon expands up to 300% during lithiation, which induces high stresses and leads to fractures. To design silicon nanostructures that could minimize fracture, it is important to understand and characterize stress states in the silicon nanostructures during lithiation. Synchrotron X-ray microdiffraction has proven to be effective in revealing insights of mechanical stress and other mechanics considerations in small-scale crystalline structures used in many important technological applications, such as microelectronics, nanotechnology, and energy systems. In the present study, an in situ synchrotron X-ray microdiffraction experiment was conducted to elucidate the mechanical stress states during the first electrochemical cycle of lithiation in single-crystalline silicon nanowires (SiNWs in an LIB test cell. Morphological changes in the SiNWs at different levels of lithiation were also studied using scanning electron microscope (SEM. It was found from SEM observation that lithiation commenced predominantly at the top surface of SiNWs followed by further progression toward the bottom of the SiNWs gradually. The hydrostatic stress of the crystalline core of the SiNWs at different levels of electrochemical lithiation was determined using the in situ synchrotron X-ray microdiffraction technique. We found that the crystalline core of the SiNWs became highly compressive (up to -325.5 MPa once lithiation started. This finding helps unravel insights about mechanical stress states in the SiNWs during the electrochemical lithiation, which could potentially pave the path toward the fracture-free design of silicon nanostructure anode materials in the next-generation LIB.

  19. Development of self-powered wireless high temperature electrochemical sensor for in situ corrosion monitoring of coal-fired power plant.

    Science.gov (United States)

    Aung, Naing Naing; Crowe, Edward; Liu, Xingbo

    2015-03-01

    Reliable wireless high temperature electrochemical sensor technology is needed to provide in situ corrosion information for optimal predictive maintenance to ensure a high level of operational effectiveness under the harsh conditions present in coal-fired power generation systems. This research highlights the effectiveness of our novel high temperature electrochemical sensor for in situ coal ash hot corrosion monitoring in combination with the application of wireless communication and an energy harvesting thermoelectric generator (TEG). This self-powered sensor demonstrates the successful wireless transmission of both corrosion potential and corrosion current signals to a simulated control room environment. Copyright © 2014 ISA. All rights reserved.

  20. In situ X-ray diffraction study of the electrochemical reaction on lead electrodes in sulphate electrolytes

    International Nuclear Information System (INIS)

    Angerer, P.; Mann, R.; Gavrilovic, A.; Nauer, G.E.

    2009-01-01

    The anodic oxidation of pure lead in two acidic sulphate electrolytes with identical ionic strength (pH ∼ 0 and pH ∼ -0.1) was studied by in situ grazing incidence X-ray diffraction method (GIXD). Crystalline products such as lead sulphate (anglesite, PbSO 4 , orthorhombic), α- and β-lead dioxide (α-PbO 2 , orthorhombic, and β-PbO 2 , tetragonal), and tribasic lead sulphate hydrate with the stoichiometric composition 3PbO.PbSO 4 .H 2 O (triclinic) were detected at defined potentials. A method for the semi-quantitative determination of the thickness of the deposited layer from diffraction data is described. After the in situ measurement, the washed and dried working electrodes were additionally characterized ex situ by GIXD measurements at different angles of incidence. The phase litharge (lead oxide, t-PbO, tetragonal) and lead sulphate were observed at the surface of the lead substrate. The quantitative evaluation of the diffraction intensity of this measurement series enables the modelling of a qualitative depth profile of the layer generated during the electrochemical treatment. The anglesite phase is located in the uppermost layer, while the litharge phase was detected closer to the lead substrate

  1. Electrochemical Performance of LixMn2-yFeyO4-zClz Synthesized Through In-Situ Glycine Nitrate Combustion

    Science.gov (United States)

    2016-06-13

    Electrochemical Performance of LixMn2-yFeyO4-zClz Synthesized Through In-Situ Glycine Nitrate Combustion Ashley L. Ruth, Paula C. Latorre, and...sites as well as the formation of Mn3+ ions via the Jahn- Teller effect. The use of the glycine nitrate combustion synthesis produces small particles at...advantage of submicron ceramic synthesis, namely the glycine nitrate combustion process (GNP), we propose the capability for in-situ B-site doping

  2. In situ electrochemical etching and examination by SPM of titanate ceramics

    International Nuclear Information System (INIS)

    Thorogood, G.J.; Short, K.T; Zhang, Y.

    2002-01-01

    Full text: The aqueous durability of titanate related ceramics is of great importance for the immobilisation of high level radioactive waste-in order to observe the reaction progress at the solid-liquid interface of these durable ceramics, we have attempted to accelerate the dissolution process via electrochemical means by using a SPM cell with electrochemical capability. The experiment involves placing a titanate ceramic disk (with flat polished surfaces) in the electrochemical cell. The cell is then set up with the ceramic acting as one electrode and another electrode being placed in the solution. In a flow through cell it is possible to select the pH and observe the change, not only in surface morphology as dissolution occurs, but also the frictional characteristics of the surface. The SPM tip plays no role in the electrochemical reaction. We will be presenting results from our work and discussing possible mechanisms for dissolution and future directions of the work. Copyright (2002) Australian Society for Electron Microscopy Inc

  3. Probing absorption of deuterium into palladium cathodes during D2O electrolysis with an in situ electrochemical microbalance technique

    International Nuclear Information System (INIS)

    Oyama, Noboru; Yamamoto, Nobushige; Hatozaki, Osamu; Ohsaka, Takeo

    1990-01-01

    The in situ observation of the absorption of deuterium (or hydrogen) into the Pd cathode during D 2 O (or H 2 O) electrolysis was made by an electrochemical microbalance technique which is based on the quartz-crystal electrode. The resonant frequency of the Pd-coated quartz-crystal electrode decreased with increasing amount of charge passed during electrolysis, and the frequency change for the D 2 O electrolysis was about twice that for the H 2 O electrolysis. The atom ratios of H/Pd and D/Pd of the H-Pd and D-Pd compounds resulting from the electrolysis were estimated to be 0.59 and 0.57, respectively. (author)

  4. Flow-induced corrosion of absorbable magnesium alloy: In-situ and real-time electrochemical study

    Science.gov (United States)

    Wang, Juan; Jang, Yongseok; Wan, Guojiang; Giridharan, Venkataraman; Song, Guang-Ling; Xu, Zhigang; Koo, Youngmi; Qi, Pengkai; Sankar, Jagannathan; Huang, Nan; Yun, Yeoheung

    2016-01-01

    An in-situ and real-time electrochemical study in a vascular bioreactor was designed to analyze corrosion mechanism of magnesium alloy (MgZnCa) under mimetic hydrodynamic conditions. Effect of hydrodynamics on corrosion kinetics, types, rates and products was analyzed. Flow-induced shear stress (FISS) accelerated mass and electron transfer, leading to an increase in uniform and localized corrosions. FISS increased the thickness of uniform corrosion layer, but filiform corrosion decreased this layer resistance at high FISS conditions. FISS also increased the removal rate of localized corrosion products. Impedance-estimated and linear polarization-measured polarization resistances provided a consistent correlation to corrosion rate calculated by computed tomography. PMID:28626241

  5. In situ electrochemical enrichment and isolation of a magnetite-reducing bacterium from a high pH serpentinizing spring.

    Science.gov (United States)

    Rowe, Annette R; Yoshimura, Miho; LaRowe, Doug E; Bird, Lina J; Amend, Jan P; Hashimoto, Kazuhito; Nealson, Kenneth H; Okamoto, Akihiro

    2017-06-01

    Serpentinization is a geologic process that produces highly reduced, hydrogen-rich fluids that support microbial communities under high pH conditions. We investigated the activity of microbes capable of extracellular electron transfer in a terrestrial serpentinizing system known as 'The Cedars'. Measuring current generation with an on-site two-electrode system, we observed daily oscillations in current with the current maxima and minima occurring during daylight hours. Distinct members of the microbial community were enriched. Current generation in lab-scale electrochemical reactors did not oscillate, but was correlated with carbohydrate amendment in Cedars-specific minimal media. Gammaproteobacteria and Firmicutes were consistently enriched from lab electrochemical systems on δ-MnO 2 and amorphous Fe(OH) 3 at pH 11. However, isolation of an electrogenic strain proved difficult as transfer cultures failed to grow after multiple rounds of media transfer. Lowering the bulk pH in the media allowed us to isolate a Firmicutes strain (Paenibacillus sp.). This strain was capable of electrode and mineral reduction (including magnetite) at pH 9. This report provides evidence of the in situ activity of microbes using extracellular substrates as sinks for electrons at The Cedars, but also highlights the potential importance of community dynamics for supporting microbial life through either carbon fixation, and/or moderating pH stress. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. In situ one-pot synthesis of graphene–polyaniline nanofiber composite for high-performance electrochemical capacitors

    International Nuclear Information System (INIS)

    Jin, Yuhong; Fang, Mou; Jia, Mengqiu

    2014-01-01

    In this work, graphene–polyaniline nanofiber (G/PANI-F) composite is prepared through a new and one-pot method that includes the reduction of graphene oxide (GO) by aniline and then followed by in-situ polymerization. Aniline plays the two roles in this method: as a chemical reducing agent to reduce GO to graphene and as a monomer to prepare polyaniline nanofiber (PANI-F). Fourier transform infrared spectroscopy, X-ray diffraction, Raman spectra, X-ray photoelectron spectroscopy and transmission electron microscopy are employed to confirm that GO can be reduced by aniline and PANI-F can be deposited on the surface of graphene. The electrochemical properties of G/PANI-F composite electrode are measured by using cyclic voltammetry, galvanostatic charge–discharge test and electrochemical impedance spectroscopy. The G/PANI-F composite electrode exhibits enhanced specific capacitance of 965 F g −1 at 0.5 A g −1 and the capacity retention is 90% after 2000 cycles.

  7. The development of an electrochemical technique for in situ calibrating of combustible gas detectors

    Science.gov (United States)

    Shumar, J. W.; Lantz, J. B.; Schubert, F. H.

    1976-01-01

    A program to determine the feasibility of performing in situ calibration of combustible gas detectors was successfully completed. Several possible techniques for performing the in situ calibration were proposed. The approach that showed the most promise involved the use of a miniature water vapor electrolysis cell for the generation of hydrogen within the flame arrestor of a combustible gas detector to be used for the purpose of calibrating the combustible gas detectors. A preliminary breadboard of the in situ calibration hardware was designed, fabricated and assembled. The breadboard equipment consisted of a commercially available combustible gas detector, modified to incorporate a water vapor electrolysis cell, and the instrumentation required for controlling the water vapor electrolysis and controlling and calibrating the combustible gas detector. The results showed that operation of the water vapor electrolysis at a given current density for a specific time period resulted in the attainment of a hydrogen concentration plateau within the flame arrestor of the combustible gas detector.

  8. In Situ Real-Time Mechanical and Morphological Characterization of Electrodes for Electrochemical Energy Storage and Conversion by Electrochemical Quartz Crystal Microbalance with Dissipation Monitoring.

    Science.gov (United States)

    Shpigel, Netanel; Levi, Mikhael D; Sigalov, Sergey; Daikhin, Leonid; Aurbach, Doron

    2018-01-16

    Quartz crystal microbalance with dissipation monitoring (QCM-D) generates surface-acoustic waves in quartz crystal plates that can effectively probe the structure of films, particulate composite electrodes of complex geometry rigidly attached to quartz crystal surface on one side and contacting a gas or liquid phase on the other side. The output QCM-D characteristics consist of the resonance frequency (MHz frequency range) and resonance bandwidth measured with extra-ordinary precision of a few tenths of Hz. Depending on the electrodes stiffness/softness, QCM-D operates either as a gravimetric or complex mechanical probe of their intrinsic structure. For at least 20 years, QCM-D has been successfully used in biochemical and environmental science and technology for its ability to probe the structure of soft solvated interfaces. Practical battery and supercapacitor electrodes appear frequently as porous solids with their stiffness changing due to interactions with electrolyte solutions or as a result of ion intercalation/adsorption and long-term electrode cycling. Unfortunately, most QCM measurements with electrochemical systems are carried out based on a single (fundamental) frequency and, as such, provided that the resonance bandwidth remains constant, are suitable for only gravimetric sensing. The multiharmonic measurements have been carried out mainly on conducting/redox polymer films rather than on typical composite battery/supercapacitor electrodes. Here, we summarize the most recent publications devoted to the development of electrochemical QCM-D (EQCM-D)-based methodology for systematic characterization of mechanical properties of operating battery/supercapacitor electrodes. By varying the electrodes' composition and structure (thin/thick layers, small/large particles, binders with different mechanical properties, etc.), nature of the electrolyte solutions and charging/cycling conditions, the method is shown to be operated in different application modes. A

  9. In Situ X‐Ray Diffraction Studies on Structural Changes of a P2 Layered Material during Electrochemical Desodiation/Sodiation

    DEFF Research Database (Denmark)

    Jung, Young Hwa; Christiansen, Ane Sælland; Johnsen, Rune E.

    2015-01-01

    for understanding the relationship between layered structures and electrochemical properties. A combination of in situ diffraction and ex situ X‐ray absorption spectroscopy reveals the phase transition mechanism for the ternary transition metal system (Fe–Mn–Co) with P2 stacking. In situ synchrotron X‐ray...... in a volumetric contraction of the lattice toward a fully charged state. Observations on the redox behavior of each transition metal in P2–Na0.7Fe0.4Mn0.4Co0.2O2 using X‐ray absorption spectroscopy indicate that all transition metals are involved in the reduction/oxidation process.......Sodium layered oxides with mixed transition metals have received significant attention as positive electrode candidates for sodium‐ion batteries because of their high reversible capacity. The phase transformations of layered compounds during electrochemical reactions are a pivotal feature...

  10. Interconnecting Carbon Fibers with the In-situ Electrochemically Exfoliated Graphene as Advanced Binder-free Electrode Materials for Flexible Supercapacitor.

    Science.gov (United States)

    Zou, Yuqin; Wang, Shuangyin

    2015-07-07

    Flexible energy storage devices are highly demanded for various applications. Carbon cloth (CC) woven by carbon fibers (CFs) is typically used as electrode or current collector for flexible devices. The low surface area of CC and the presence of big gaps (ca. micro-size) between individual CFs lead to poor performance. Herein, we interconnect individual CFs through the in-situ exfoliated graphene with high surface area by the electrochemical intercalation method. The interconnected CFs are used as both current collector and electrode materials for flexible supercapacitors, in which the in-situ exfoliated graphene act as active materials and conductive "binders". The in-situ electrochemical intercalation technique ensures the low contact resistance between electrode (graphene) and current collector (carbon cloth) with enhanced conductivity. The as-prepared electrode materials show significantly improved performance for flexible supercapacitors.

  11. In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors

    Science.gov (United States)

    Griffin, John M.; Forse, Alexander C.; Tsai, Wan-Yu; Taberna, Pierre-Louis; Simon, Patrice; Grey, Clare P.

    2015-08-01

    Supercapacitors store charge through the electrosorption of ions on microporous electrodes. Despite major efforts to understand this phenomenon, a molecular-level picture of the electrical double layer in working devices is still lacking as few techniques can selectively observe the ionic species at the electrode/electrolyte interface. Here, we use in situ NMR to directly quantify the populations of anionic and cationic species within a working microporous carbon supercapacitor electrode. Our results show that charge storage mechanisms are different for positively and negatively polarized electrodes for the electrolyte tetraethylphosphonium tetrafluoroborate in acetonitrile; for positive polarization charging proceeds by exchange of the cations for anions, whereas for negative polarization, cation adsorption dominates. In situ electrochemical quartz crystal microbalance measurements support the NMR results and indicate that adsorbed ions are only partially solvated. These results provide new molecular-level insight, with the methodology offering exciting possibilities for the study of pore/ion size, desolvation and other effects on charge storage in supercapacitors.

  12. Reflection-mode x-ray powder diffraction cell for in situ studies of electrochemical reactions

    International Nuclear Information System (INIS)

    Roberts, G.A.; Stewart, K.D.

    2004-01-01

    The design and operation of an electrochemical cell for reflection-mode powder x-ray diffraction experiments are discussed. The cell is designed for the study of electrodes that are used in rechargeable lithium batteries. It is designed for assembly in a glove box so that air-sensitive materials, such as lithium foil electrodes and carbonate-based electrolytes with lithium salts, can be used. The cell uses a beryllium window for x-ray transmission and electrical contact. A simple mechanism for compressing the electrodes is included in the design. Sample results for the cell are shown with a Cu Kα source and a position-sensitive detector

  13. First experiences with electrochemical in-situ desalination of bricks in a church vault construction

    DEFF Research Database (Denmark)

    Rörig-Dalgaard, Inge

    2012-01-01

    was chosen. Salt profiles from three different bricks within this area clarified two bricks with low ion contents and one with a high ion content which is representative for church vault constructions. The idea of using a climate chamber for dissolution of present salts for minimizing additional water supply...... problematic in relation to church vault constructions with murals as the surface deterioration can result in loss of valuable cultural heritage. An electrochemical method has been investigated with focus on possible use for desalination of salt loaded vault constructions with murals in laboratory scale...

  14. Electrochemical selenium hydride generation with in situ trapping in graphite tube atomizers

    Czech Academy of Sciences Publication Activity Database

    Šíma, Jan; Rychlovský, P.

    2003-01-01

    Roč. 58, č. 5 (2003), s. 919-930 ISSN 0584-8547 R&D Projects: GA ČR GA203/98/0754; GA ČR GA203/01/0453 Institutional research plan: CEZ:AV0Z4031919 Keywords : hydride generation * electrothermal atomic absorption spectrometry * In situ trapping Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.361, year: 2003

  15. In Situ Detection of Macronutrients and Chloride in Seawater by Submersible Electrochemical Sensors.

    Science.gov (United States)

    Cuartero, Maria; Crespo, Gaston; Cherubini, Thomas; Pankratova, Nadezda; Confalonieri, Fabio; Massa, Francesco; Tercier-Waeber, Mary-Lou; Abdou, Melina; Schäfer, Jörg; Bakker, Eric

    2018-04-03

    A new submersible probe for the in situ detection of nitrate, nitrite, and chloride in seawater is presented. Inline coupling of a desalination unit, an acidification unit, and a sensing flow cell containing all-solid-state membrane electrodes allows for the potentiometric detection of nitrate and nitrite after removal of the key interfering ions in seawater, chloride and hydroxide. Thus, the electrodes exhibited attractive analytical performances for the potentiometric detection of nitrate and nitrite in desalinated and acidified seawater: fast response time ( t 95 macronutrient levels with salinity cycles, which is of special interest in recessed coastal water bodies. The system is capable of autonomous operation during deployment, with routines for repetitive measurements (every 2 h), data storage and management, and computer visualization of the data in real time. In situ temporal profiles observed in the Arcachon Bay (France) showed valuable environmental information concerning tide-dependent cycles of nitrate and chloride levels in the lagoon, which are here observed for the first time using direct in situ measurements. The submersible probe based on membrane electrodes presented herein may facilitate the study of biogeochemical processes occurring in marine ecosystems by the direct monitoring of nitrate and nitrite levels, which are key chemical targets in coastal waters.

  16. RUTHERFORD/APPELTON: ISIS intensity record

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The Rutherford Appleton Laboratory in the UK is home to the world's most intense pulsed neutron source. The heart of ISIS is a 50 Hz proton synchrotron accelerating two bunches of protons from 70 to 800 MeV. After extraction the protons, occupying a total pulse length of less than 0.5 microseconds, strike a heavy metal target: the neutrons generated are moderated and directed through channels in the shielding to any of 14 instruments for condensed matter studies. As neutrinos and muons are copious byproducts, major investments have also been made for investigations in these fields. Efficient charge exchange injection into the synchrotron at 70 MeV is achieved using negative hydrogen ions and an aluminium oxide stripping foil. Some particles are lost during trapping and the early acceleration period, but they are captured by graphite-covered beam collectors to reduce machine activation. Later acceleration and fast-extraction are virtually without loss

  17. Synthesis and electrochemical and in situ spectroelectrochemical characterization of manganese, vanadyl, and cobalt phthalocyanines with 2-naphthoxy substituents

    International Nuclear Information System (INIS)

    Ozcesmeci, Ibrahim; Koca, Atif; Guel, Ahmet

    2011-01-01

    Highlights: → Metallo (Mn, Co, VO) phthalocyanines bearing peripheral 2-naphthoxy-groups were synthesized by cyclotetramerisation of the corresponding phthalonitrile derivative. → Incorporation of the redox active metal ions into the phthalocyanine core extends the redox capabilities of the Pc ring. → The presence of O 2 in the electrolyte system influences both oxygen reduction reaction and the electrochemical and spectral behaviors of the complexes. → Homogeneous catalytic ORR process occurs via an 'inner sphere' chemical catalysis process. - Abstract: Metallo (Mn, Co, VO) phthalocyanines bearing peripheral 2-naphthoxy groups were synthesized by cyclotetramerisation of the corresponding phthalonitrile derivative. The phthalocyanine compounds were characterized by elemental analyses, mass, FT-IR and UV-vis spectral data. Three intense bands in the electronic spectra clearly indicate the absorptions resulting from naphthyl groups along with the Q and B bands of the phthalocyanines. Electrochemical and spectroelectrochemical measurements exhibit that incorporation of redox active metal ions, Co II and Mn III , into the phthalocyanine core extends the redox capabilities of the Pc ring including the metal-based reduction and oxidation couples of the metal. Presence of molecular oxygen in the electrolyte system affects the voltammetric and spectroelectrochemical responses of the cobalt and manganese phthalocyanines due to the interaction between the complexes and molecular oxygen. Interaction reaction of oxygen with CoPc occurs via an 'inner sphere' chemical catalysis process. While CoPc gives the intermediates [O 2 - -Co II Pc -2 ] - and [O 2 2 -Co II Pc -2 ] 2- , MnPc forms μ-oxo MnPc species. An in situ electrocolorimetric method has been applied to investigate the color of the electro-generated anionic and cationic forms of the complexes for possible electrochromatic applications.

  18. In situ electrochemical high-energy X-ray diffraction using a capillary working electrode cell geometry

    Energy Technology Data Exchange (ETDEWEB)

    Young, Matthias J.; Bedford, Nicholas M.; Jiang, Naisheng; Lin, Deqing; Dai, Liming

    2017-05-26

    The ability to generate new electrochemically active materials for energy generation and storage with improved properties will likely be derived from an understanding of atomic-scale structure/function relationships during electrochemical events. Here, the design and implementation of a new capillary electrochemical cell designed specifically forin situhigh-energy X-ray diffraction measurements is described. By increasing the amount of electrochemically active material in the X-ray path while implementing low-Zcell materials with anisotropic scattering profiles, an order of magnitude enhancement in diffracted X-ray signal over traditional cell geometries for multiple electrochemically active materials is demonstrated. This signal improvement is crucial for high-energy X-ray diffraction measurements and subsequent Fourier transformation into atomic pair distribution functions for atomic-scale structural analysis. As an example, clear structural changes in LiCoO2under reductive and oxidative conditions using the capillary cell are demonstrated, which agree with prior studies. Accurate modeling of the LiCoO2diffraction data using reverse Monte Carlo simulations further verifies accurate background subtraction and strong signal from the electrochemically active material, enabled by the capillary working electrode geometry.

  19. PREFACE: Rutherford Centennial Conference on Nuclear Physics

    Science.gov (United States)

    Freeman, Sean

    2012-09-01

    Just over one hundred years ago, Ernest Rutherford presented an interpretation of alpha-particle scattering experiments, performed a couple of years earlier by Geiger and Marsden, to the Manchester Literary and Philosophical Society. The work was summarised shortly afterwards in a paper in the Philosophical Magazine. He postulated that a dense speck of matter must exist at the centre of an atom (later to become known as the nucleus) if the details of the experiments, particularly the yield of alpha particles scattered through large angles, were to be explained. The nuclear hypothesis, combined with the experimental work by Moseley on X-rays and Bohr's theoretical ideas, both also initiated at the Victoria University of Manchester, established our view of atomic structure and gave birth to the field of nuclear physics. The Rutherford Centennial Conference on Nuclear Physics was held at The University of Manchester in August 2011 to celebrate this anniversary by addressing the wide range of contemporary topics that characterise modern nuclear physics. This set of proceedings covers areas including nuclear structure and astrophysics, hadron structure and spectroscopy, fundamental interactions studied within the nucleus and results of relativistic heavy-ion collisions. We would like to thank all those who presented their recent research results at the conference; the proceedings stand as a testament to the excitement and interest that still pervades the pursuit of this field of physics. We would also like to thank those who contributed in other ways to the conference. To colleagues at the Manchester Museum of Science and Industry for putting together an exhibition to coincide with the conference that included the manuscript of the 1911 paper, letters, notebooks and equipment used by Rutherford. These items were kindly loaned by Cambridge and Manchester Universities. Winton Capital generously supported this exhibition. We would also like to thank Professor Mary Fowler

  20. In situ corrosion measurements by electrochemical method (IC experiment) at Mont Terri

    International Nuclear Information System (INIS)

    Dewonck, S.; Bataillon, C.; Crusset, D.; Schwyn, B.; Nakayama, N.; Kwong, G.

    2010-01-01

    Document available in extended abstract form only. The study of the interactions of steel pieces with an argillaceous rock is the aim of the IC experiment carried out in the Mont Terri Rock Laboratory (Switzerland). More precisely, the IC experiment consists in monitoring the corrosion rate of various steel (Inconel 690, 316L stainless steel, 2 carbon steels one representative of Andra concept and another of Nagra concept) at 80 deg. C, in anaerobic condition, in contact with the Opalinus clay formation. The corrosion rate monitoring is based on Electrochemical Impedance Spectroscopy (EIS). This method is not disturbing for the corrosion process i.e. the corrosion rate doesn't change during the electrochemical measurement. The main drawback of this method is that the corrosion process must be in stationary or quasi stationary state: EIS can only measure corrosion rates which do not change quickly with time. This method is well adapted for long term corrosion monitoring because long term corrosion rate evolves slowly. A special design of the experimental setup was developed to allow optimal interactions between rock and steel samples. It consists in mounting the steel samples inside of a bore-core section. This section is then placed at the extremity of the borehole equipment. The equipment is inserted in a vertical descending borehole and sealed by a large packer. Another particularity of the experimental setup is the possibility of heating the experimental section up to 80 deg. C. Finally, the equipment was built in such a way that such that it will be retrievable from the borehole after several years of experiment, in order to perform further analyses on the reacting materials (core and steel samples). A circulation loop links the experimental interval to the sampling, measuring various parameters (pH, Eh, electrical conductivity, dissolved oxygen and hydrogen) and control equipment installed in a cabinet, in the gallery of the underground laboratory. At the

  1. Layer by Layer Ex-Situ Deposited Cobalt-Manganese Oxide as Composite Electrode Material for Electrochemical Capacitor.

    Science.gov (United States)

    Rusi; Chan, P Y; Majid, S R

    2015-01-01

    The composite metal oxide electrode films were fabricated using ex situ electrodeposition method with further heating treatment at 300°C. The obtained composite metal oxide film had a spherical structure with mass loading from 0.13 to 0.21 mg cm(-2). The structure and elements of the composite was investigated using X-ray diffraction (XRD) and energy dispersive X-ray (EDX). The electrochemical performance of different composite metal oxides was studied by cyclic voltammetry (CV) and galvanostatic charge-discharge (CD). As an active electrode material for a supercapacitor, the Co-Mn composite electrode exhibits a specific capacitance of 285 Fg(-1) at current density of 1.85 Ag(-1) in 0.5 M Na2SO4 electrolyte. The best composite electrode, Co-Mn electrode was then further studied in various electrolytes (i.e., 0.5 M KOH and 0.5 M KOH/0.04 M K3Fe(CN) 6 electrolytes). The pseudocapacitive nature of the material of Co-Mn lead to a high specific capacitance of 2.2 x 10(3) Fg(-1) and an energy density of 309 Whkg(-1) in a 0.5 M KOH/0.04 M K3Fe(CN) 6 electrolyte at a current density of 10 Ag(-1). The specific capacitance retention obtained 67% of its initial value after 750 cycles. The results indicate that the ex situ deposited composite metal oxide nanoparticles have promising potential in future practical applications.

  2. In situ one-pot preparation of reduced graphene oxide/polyaniline composite for high-performance electrochemical capacitors

    International Nuclear Information System (INIS)

    Chen, Nali; Ren, Yapeng; Kong, Peipei; Tan, Lin; Feng, Huixia; Luo, Yongchun

    2017-01-01

    Highlights: • A new method to prepare reduced graphene oxide/polyaniline composite is developed. • Aniline serves as a reduction for graphene oxide under weak alkali condition. • Different characterizations confirm that GO can be effectively reduced by aniline. • A high specific capacitance of 524.4 F·g"−"1 is obtained at 0.5 A·g"−"1. - Abstract: Reduced graphene oxide/polyaniline (rGO/PANI) composites are prepared through an effective in situ one-pot synthesis route that includes the reduction of graphene oxide (GO) by aniline under weak alkali condition via hydrothermal method and then followed by in situ polymerization of aniline. X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, ultraviolet-visible spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscope and transmission electron microscope are employed to reveal that GO is successfully reduced by aniline under weak alkali condition and PANI can be deposited on the surfaces of reduced graphene oxide (rGO) sheets. The effect of rGO is optimized by tuning the mass ratios of aniline to GO to improve the electrochemical performance of rGO/PANI composites. The maximum specific capacitance of rGO/PANI composites achieves 524.4 F/g with a mass ratio of aniline to GO 10:1 at a current density of 0.5 A/g, in comparison to the specific capacitance of 397 F/g at the same current density of pure PANI. Particularly, the specific capacity retention rate is 81.1% after 2000 cycles at 100 mv/s scan rate, which is an improvement over that of pure PANI (55.5%).

  3. In situ one-pot preparation of reduced graphene oxide/polyaniline composite for high-performance electrochemical capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Nali [College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, Gansu (China); State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, Gansu (China); Ren, Yapeng; Kong, Peipei; Tan, Lin [College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, Gansu (China); Feng, Huixia, E-mail: fenghx@lut.cn [College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, Gansu (China); Luo, Yongchun, E-mail: luoyc@lut.cn [State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, Gansu (China)

    2017-01-15

    Highlights: • A new method to prepare reduced graphene oxide/polyaniline composite is developed. • Aniline serves as a reduction for graphene oxide under weak alkali condition. • Different characterizations confirm that GO can be effectively reduced by aniline. • A high specific capacitance of 524.4 F·g{sup −1} is obtained at 0.5 A·g{sup −1}. - Abstract: Reduced graphene oxide/polyaniline (rGO/PANI) composites are prepared through an effective in situ one-pot synthesis route that includes the reduction of graphene oxide (GO) by aniline under weak alkali condition via hydrothermal method and then followed by in situ polymerization of aniline. X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, ultraviolet-visible spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscope and transmission electron microscope are employed to reveal that GO is successfully reduced by aniline under weak alkali condition and PANI can be deposited on the surfaces of reduced graphene oxide (rGO) sheets. The effect of rGO is optimized by tuning the mass ratios of aniline to GO to improve the electrochemical performance of rGO/PANI composites. The maximum specific capacitance of rGO/PANI composites achieves 524.4 F/g with a mass ratio of aniline to GO 10:1 at a current density of 0.5 A/g, in comparison to the specific capacitance of 397 F/g at the same current density of pure PANI. Particularly, the specific capacity retention rate is 81.1% after 2000 cycles at 100 mv/s scan rate, which is an improvement over that of pure PANI (55.5%).

  4. In-situ electrochemical study of interaction of tribology and corrosion in artificial hip prosthesis simulators.

    Science.gov (United States)

    Yan, Yu; Dowson, Duncan; Neville, Anne

    2013-02-01

    The second generation Metal-on-Metal (MoM) hip replacements have been considered as an alternative to commonly used Polyethylene-on-Metal (PoM) joint prostheses due to polyethylene wear debris induced osteolysis. However, the role of corrosion and the biofilm formed under tribological contact are still not fully understood. Enhanced metal ion concentrations have been reported widely from hair, blood and urine samples of patients who received metal hip replacements and in isolated cases when abnormally high levels have caused adverse local tissue reactions. An understanding of the origin of metal ions is really important in order to design alloys for reduced ion release. Reciprocating pin-on-plate wear tester is a standard instrument to assess the interaction of corrosion and wear. However, more realistic hip simulator can provide a better understanding of tribocorrosion process for hip implants. It is very important to instrument the conventional hip simulator to enable electrochemical measurements. In this study, simple reciprocating pin-on-plate wear tests and hip simulator tests were compared. It was found that metal ions originated from two sources: (a) a depassivation of the contacting surfaces due to tribology (rubbing) and (b) corrosion of nano-sized wear particles generated from the contacting surfaces. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. In-situ short-circuit protection system and method for high-energy electrochemical cells

    Science.gov (United States)

    Gauthier, Michel; Domroese, Michael K.; Hoffman, Joseph A.; Lindeman, David D.; Noel, Joseph-Robert-Gaetan; Radewald, Vern E.; Rouillard, Jean; Rouillard, Roger; Shiota, Toshimi; Trice, Jennifer L.

    2003-04-15

    An in-situ thermal management system for an energy storage device. The energy storage device includes a plurality of energy storage cells each being coupled in parallel to common positive and negative connections. Each of the energy storage cells, in accordance with the cell's technology, dimensions, and thermal/electrical properties, is configured to have a ratio of energy content-to-contact surface area such that thermal energy produced by a short-circuit in a particular cell is conducted to a cell adjacent the particular cell so as to prevent the temperature of the particular cell from exceeding a breakdown temperature. In one embodiment, a fuse is coupled in series with each of a number of energy storage cells. The fuses are activated by a current spike capacitively produced by a cell upon occurrence of a short-circuit in the cell, thereby electrically isolating the short-circuited cell from the common positive and negative connections.

  6. In-situ short circuit protection system and method for high-energy electrochemical cells

    Science.gov (United States)

    Gauthier, Michel; Domroese, Michael K.; Hoffman, Joseph A.; Lindeman, David D.; Noel, Joseph-Robert-Gaetan; Radewald, Vern E.; Rouillard, Jean; Rouillard, Roger; Shiota, Toshimi; Trice, Jennifer L.

    2000-01-01

    An in-situ thermal management system for an energy storage device. The energy storage device includes a plurality of energy storage cells each being coupled in parallel to common positive and negative connections. Each of the energy storage cells, in accordance with the cell's technology, dimensions, and thermal/electrical properties, is configured to have a ratio of energy content-to-contact surface area such that thermal energy produced by a short-circuit in a particular cell is conducted to a cell adjacent the particular cell so as to prevent the temperature of the particular cell from exceeding a breakdown temperature. In one embodiment, a fuse is coupled in series with each of a number of energy storage cells. The fuses are activated by a current spike capacitively produced by a cell upon occurrence of a short-circuit in the cell, thereby electrically isolating the short-circuited cell from the common positive and negative connections.

  7. Interconnecting Carbon Fibers with the In-situ Electrochemically Exfoliated Graphene as Advanced Binder-free Electrode Materials for Flexible Supercapacitor

    OpenAIRE

    Yuqin Zou; Shuangyin Wang

    2015-01-01

    Flexible energy storage devices are highly demanded for various applications. Carbon cloth (CC) woven by carbon fibers (CFs) is typically used as electrode or current collector for flexible devices. The low surface area of CC and the presence of big gaps (ca. micro-size) between individual CFs lead to poor performance. Herein, we interconnect individual CFs through the in-situ exfoliated graphene with high surface area by the electrochemical intercalation method. The interconnected CFs are us...

  8. Characterization of electro-conductive fabrics prepared by in situ chemical and electrochemical polymerization of pyrrole onto polyester fabric

    Energy Technology Data Exchange (ETDEWEB)

    Maiti, Syamal; Das, Dipayan; Sen, Kushal, E-mail: kushal@textile.iitd.ernet.in

    2014-09-15

    Highlights: • Surface resistivity of the fabrics decreased rapidly with an increase in add-on. • Add-on and resistivity were not correlated below a resistivity value of about 200 Ω. • Higher add-on but lower surface roughness resulted in lower surface resistivity. • The voltage–current and voltage–temperature behaviours were found to be non-linear. • Electro-conductive fabric exhibited 98% electromagnetic shielding efficiency. - Abstract: This paper reports a study on electro-conductive fabrics prepared by a combined in situ chemical and electrochemical polymerization of pyrrole. Specific observations are made to establish the roles of add-on and surface roughness on the surface resistivity of the electro-conductive fabrics. The performance characteristics of the fabrics are reported in terms of electrical conductivity, voltage–current and voltage–temperature characteristics and electromagnetic interference (EMI) shielding capability. The surface resistivity of the fabric was found to be as low as 11.79 Ω. The voltage–current profile of the fabric is observed to be non-ohmic as well as the voltage–temperature curve is found to be exponential. The EMI shielding efficiency of the fabric was found to be about 98%.

  9. In situ self-sacrificed template synthesis of vanadium nitride/nitrogen-doped graphene nanocomposites for electrochemical capacitors.

    Science.gov (United States)

    Liu, Hong-Hui; Zhang, Hong-Ling; Xu, Hong-Bin; Lou, Tai-Ping; Sui, Zhi-Tong; Zhang, Yi

    2018-03-15

    Vanadium nitride and graphene have been widely used as pseudo-capacitive and electric double-layer capacitor electrode materials for electrochemical capacitors, respectively. However, the poor cycling stability of vanadium nitride and the low capacitance of graphene impeded their practical applications. Herein, we demonstrated an in situ self-sacrificed template method for the synthesis of vanadium nitride/nitrogen-doped graphene (VN/NGr) nanocomposites by the pyrolysis of a mixture of dicyandiamide, glucose, and NH 4 VO 3 . Vanadium nitride nanoparticles of the size in the range of 2 to 7 nm were uniformly embedded into the nitrogen-doped graphene skeleton. Furthermore, the VN/NGr nanocomposites with a high specific surface area and pore volume showed a high specific capacitance of 255 F g -1 at 10 mV s -1 , and an excellent cycling stability (94% capacitance retention after 2000 cycles). The excellent capacitive properties were ascribed to the excellent conductivity of nitrogen-doped graphene, high surface area, high pore volume, and the synergistic effect between vanadium nitride and nitrogen-doped graphene.

  10. Electrochemical and in situ TM-AFM studies of the polymerization conditions on poly(o-methoxyaniline) film morphology

    International Nuclear Information System (INIS)

    Szklarczyk, Marek; Wierzbinski, Emil; Bienkowski, Krzysztof; Strawski, Marcin

    2005-01-01

    The in situ atomic force microscopy and the electrochemical studies on electropolymerization of the o-methoxyaniline in the 0.0-0.8 V versus NHE range of the electrode potential are described. It is proved that in the 0.0-0.3 V versus NHE a redox process takes place, resulting in the formation of poly(o-methoxyaniline) in its reduced form, leucoemeraldine. The different morphologies are exhibited by poly(o-methoxyaniline) under different polymerization conditions. The microscopic results show that with the increase of the monomer concentration in the bulk of electrolyte solution the globular morphology, related to the coil like molecular structure, is replaced by the fibrilar one, related to the opened-up, more conductive extended coil structure. It is shown that oxidation of a leucoemeraldine state of polymer to its emeraldine state results in the change of the morphology from the chain like structure to the massive fibrilar like structure. The reduction of oxidized polymer results in its irreversible fragmentation

  11. Characterization of electro-conductive fabrics prepared by in situ chemical and electrochemical polymerization of pyrrole onto polyester fabric

    International Nuclear Information System (INIS)

    Maiti, Syamal; Das, Dipayan; Sen, Kushal

    2014-01-01

    Highlights: • Surface resistivity of the fabrics decreased rapidly with an increase in add-on. • Add-on and resistivity were not correlated below a resistivity value of about 200 Ω. • Higher add-on but lower surface roughness resulted in lower surface resistivity. • The voltage–current and voltage–temperature behaviours were found to be non-linear. • Electro-conductive fabric exhibited 98% electromagnetic shielding efficiency. - Abstract: This paper reports a study on electro-conductive fabrics prepared by a combined in situ chemical and electrochemical polymerization of pyrrole. Specific observations are made to establish the roles of add-on and surface roughness on the surface resistivity of the electro-conductive fabrics. The performance characteristics of the fabrics are reported in terms of electrical conductivity, voltage–current and voltage–temperature characteristics and electromagnetic interference (EMI) shielding capability. The surface resistivity of the fabric was found to be as low as 11.79 Ω. The voltage–current profile of the fabric is observed to be non-ohmic as well as the voltage–temperature curve is found to be exponential. The EMI shielding efficiency of the fabric was found to be about 98%

  12. Study on in-situ electrochemical impedance spectroscopy measurement of anodic reaction in SO_2 depolarized electrolysis process

    International Nuclear Information System (INIS)

    Xue Lulu; Zhang Ping; Chen Songzhe; Wang Laijun

    2014-01-01

    SO_2 depolarized electrolysis (SDE) is the pivotal reaction in hybrid sulfur process, one of the most promising approaches for mass hydrogen production without CO_2 emission. The net result of hybrid sulfur process is to split water into hydrogen and oxygen at a relatively low voltage, which will dramatically decrease the energy consumption for the production of hydrogen. The potential loss of SDE process could be separated into four components, i.e. reversible cell potential, anode overpotential, cathode overpotential and ohmic loss. So far, it has been identified that the total cell potential for the SO_2 depolarized electrolyzer is dominantly controlled by sulfuric acid concentration of the anolyte and electrolysis temperature of the electrolysis process. In this work, an in-situ Electrochemical Impedance Spectroscopy (EIS) measurement of the anodic SDE reaction was conducted. Results show that anodic overpotential is mainly resulted from the SO_2 oxidation reaction other than ohmic resistance or mass transfer limitation. This study extends the understanding to SDE process and gives suggestions for the further improvement of the SDE performance. (author)

  13. Preparation of Atomically Flat Si(111)-H Surfaces in Aqueous Ammonium Fluoride Solutions Investigated by Using Electrochemical, In Situ EC-STM and ATR-FTIR Spectroscopic Methods

    International Nuclear Information System (INIS)

    Bae, Sang Eun; Oh, Mi Kyung; Min, Nam Ki; Paek, Se Hwan; Hong, Suk In; Lee, Chi-Woo J.

    2004-01-01

    Electrochemical, in situ electrochemical scanning tunneling microscope (EC-STM), and attenuated total reflectance-FTIR (ATR-FTIR) spectroscopic methods were employed to investigate the preparation of atomically flat Si(111)-H surface in ammonium fluoride solutions. Electrochemical properties of atomically flat Si(111)-H surface were characterized by anodic oxidation and cathodic hydrogen evolution with the open circuit potential (OCP) of ca. .0.4 V in concentrated ammonium fluoride solutions. As soon as the natural oxide-covered Si(111) electrode was immersed in fluoride solutions, OCP quickly shifted to near .1 V, which was more negative than the flat band potential of silicon surface, indicating that the surface silicon oxide had to be dissolved into the solution. OCP changed to become less negative as the oxide layer was being removed from the silicon surface. In situ EC-STM data showed that the surface was changed from the initial oxide covered silicon to atomically rough hydrogen-terminated surface and then to atomically flat hydrogen terminated surface as the OCP moved toward less negative potentials. The atomically flat Si(111)-H structure was confirmed by in situ EC-STM and ATR-FTIR data. The dependence of atomically flat Si(111)-H terrace on mis-cut angle was investigated by STM, and the results agreed with those anticipated by calculation. Further, the stability of Si(111)-H was checked by STM in ambient laboratory conditions

  14. Rutherford, Radioactivity and the Origins of Nuclear Physics

    International Nuclear Information System (INIS)

    Hughes, J

    2012-01-01

    When Ernest Rutherford became Professor of Physics at Manchester University in 1907, he brought with him the research field in which he had played a leading role over the previous few years: radioactivity. Rutherford turned the Manchester physics lab over to studies of radioactivity and radiation, and through his own work and that of his many collaborators and students, established Manchester as a major international centre in atomic physics. It was out of this powerhouse that the nuclear theory of the atom emerged in 1911. In 1917, Rutherford 'disintegrated' the nitrogen nucleus using α-particles, opening up the possibility of nuclear structure. At Cambridge's Cavendish Laboratory from 1919, Rutherford and his co-workers began to explore the constitution of the nucleus. With Chadwick, Aston and others, Rutherford turned his research school to the emergent field of nuclear physics – a field he dominated (though not without controversy) until his death in 1937. Exploring the intellectual, material and institutional cultures of early twentieth century physics, this paper will outline the background to Rutherford's career and work, the experimental and theoretical origins of nuclear theory of the atom and the early development of nuclear physics. (rutherford centennial conference on nuclear physics university of manchester 8-12 august 2011)

  15. CERN celebrates the ‘Rutherford centenary’

    CERN Document Server

    Maximilien Brice

    2011-01-01

    CERN marked the centenary of the discovery of the atomic nucleus, as published in Ernest Rutherford’s famous paper of 1911, with its Rutherford Centennial Colloquium, held on 15 November in the presence of John Adank, New Zealand’s ambassador to the World Trade Organization in Geneva. After an introduction by CERN’s director-general, Rolf Heuer, the speakers covered topics ranging from Rutherford’s early life in New Zealand, presented by his great grand-daughter Mary Fowler, through to his role as an inspiration to young scientists in his homeland, as seen by New Zealander Mark Kruse, who is now at Duke University and a member of the ATLAS collaboration. Fellow New Zealander, John Campbell, spoke about Rutherford’s road to discovery of the nuclear atom. Rutherford’s scientific legacy in nuclear physics was covered by Sean Freeman, appropriately from Manchester University, where the famous scattering experiment took place. Jerome Friedman delved deeper into matter with his talk detailing the scatt...

  16. Rutherford X-ray spectrometer readout

    International Nuclear Information System (INIS)

    Bateman, J.E.

    1978-07-01

    Rutherford electronic X-ray spectrometer readout is based on the combination of two established techniques (a) the detection and location of soft X-rays by means of multichannel electron multiplier arrays (MCP's), and (b) the electronic readout of charge distributions (generally in multi-wire proportional counters) by means of the delay line techniques. In order for the latter device to function well a charge signal of approximately 10 6 electrons must be available to the delay line wand. This is achieved in the present device by means of two cascaded MCP's which can produce electron gains up to approximately 10 8 , and so operate the delay line from the single electron pulses generated at the front face of an MCP by a soft X-ray. The delay line readout technique was chosen because of its simplicity (both in terms of the necessary hardware and the associated electronics), robustness, and ease of implementation. In order to achieve the target spatial resolution of 50 μm (fwhm) or 20 μm (standard deviation) it was necessary to adapt the charge collection system so that the readout takes place from a length of delay line 200 mm long. The general layout of the system and the functions of the electronic circuits are described. Performance testing, setting up procedures and trouble shooting of the system are discussed. (U.K.)

  17. Electrochemical and spectroscopic in situ techniques for the investigation of the phosphating of zinc coated steel

    International Nuclear Information System (INIS)

    Tomandl, A.

    2003-05-01

    In this work spectroscopic and electrochemical techniques were developed for the investigation of surface treatments used in steel industry. ICP-atomic emission spectroscopy (ICP-AES), Raman spectroscopy and the Quartz crystal microbalance (QCM) were applied to the investigation of the kinetics of phosphating as well as the properties of phosphate layers. Phosphating of zinc coated steel leads to the formation of a crystalline layer consisting of zinc phosphate and is employed to enhance paint adhesion and corrosion protection. For the high reaction rates necessary in industrial production lines, oxidation agents are added to the phosphating bathes to accelerate the reaction. The oxidation agents provide an additional reduction reaction beside the hydrogen formation and therefore decrease the number of gas bubbles, which would block the zinc surface and reduce the rate of phosphating. With addition of H2O2 or nitrates the rate of layer formation is distinctly increased. In a combined experiment of ICP-AES with QCM and potential transients, it was shown that the presence of these accelerators in the phosphating bath increases the rate of zinc dissolution and hence leads to a faster formation of the phosphate layer. In under paint corrosion of painted, zinc coated steel phosphate layers are exposed to a highly alkaline environment. The stability of a phosphate layer against alkaline attack is therefore essential for its performance in corrosion protection. To enhance the alkaline stability Mn and Ni are added to modern phosphating bathes. The incorporation of these elements reduces the dissolution rate in 0.1 M NaOH proportional to their concentration in the phosphate layer. The dissolution of Zn, P, Mn and Ni was determined quantitatively with ICP-AES. Raman spectroscopy showed the formation of a Mn-hydroxide layer during alkaline attack, which protects the phosphate layer and reduces further dissolution. On basis of these results the reaction of phosphate layers

  18. ''In-situ'' spectro-electrochemical studies of radionuclide-contaminated surface films on metals

    International Nuclear Information System (INIS)

    Melendres, C.A.; Mini, S.; Mansour, A.N.

    2000-01-01

    The incorporation of heavy metal ions and radioactive contaminants into hydrous oxide films has been investigated in order to provide fundamental knowledge that could lead to the technological development of cost-effective processes and techniques for the decontamination of storage tanks, piping systems, surfaces, etc., in DOE nuclear facilities. The formation of oxide/hydroxide films was simulated by electrodeposition onto a graphite substrate from solutions of the appropriate metal salt. Synchrotron X-ray Absorption Spectroscopy (XAS), supplemented by Laser Raman Spectroscopy (LRS), was used to determine the structure and composition of the host oxide film, as well as the impurity ion. Results have been obtained for the incorporation of Ce, Sr, Cr, Fe, and U into hydrous nickel oxide films. Ce and Sr oxides/hydroxides are co-precipitated with the nickel oxides in separate phase domains. Cr and Fe, on the other hand, are able to substitute into Ni lattice sites or intercalate in the interlamellar positions of the brucite structure of Ni(OH) 2 . U was found to co-deposit as a U(VI) hydroxide. The mode of incorporation of metal ions depends both on the size and charge of the metal ion. The structure of iron oxide (hydroxide) films prepared by both anodic and cathodic deposition has also been extensively studied. The structure of Fe(OH) 2 was determined to be similar to that of α-Ni(OH) 2 . Anodic deposition from solutions containing Fe 2+ results in a film with a structure similar to γ-FeOOH. From the knowledge gained from the present studies, principles and methods for decontamination have become apparent. Contaminants sorbed on oxide surfaces or co-precipitated may be removed by acid wash and selective dissolution or complexation. Ions incorporated into lattice sites and interlamellar layers will require more drastic cleaning procedures. Electropolishing and the use of an electrochemical brush are among concepts that should be considered seriously for the latter

  19. TCNQ-induced in-situ electrochemical deposition for the synthesis of silver nanodendrites as efficient bifunctional electrocatalysts

    International Nuclear Information System (INIS)

    Chen, Zhengyan; Li, Congling; Ni, Yangyang; Kong, Fantao; Zhang, Yongbo; Kong, Aiguo; Shan, Yongkui

    2017-01-01

    Graphical abstract: Silver nanodendrites with superior electrocatalytic activity for oxygen reduction reaction (ORR) and hydrogen peroxide detection were synthesized by electrodeposition method using organic semiconductor 7,7,8,8-tetracyanoquinodimethane (TCNQ) as the inducer. - Highlights: • AgNDs were obtained by electrodepositing route under the induction of TCNQ. • The AgNDs-TCNQ/GCE showed superior activity comparable to Pt/C for ORR. • The AgNDs-TCNQ/GCE exhibited highly catalytic activity toward H_2O_2 detection. • A novel pathway for synthesizing bifunctional Ag-based electrocatalyst. - Abstract: Sliver (Ag) nanodendrites (AgNDs) directly growing on the glassy carbon electrode (GCE) were obtained by an in-situ electrodepositing route under the induction of organic semiconductor 7,7,8,8-tetracyanoquinodimethane (TCNQ). The morphology of the Ag nanostructures can be controlled by the electrodepositing time, applied potentials, and the concentrations of Ag ions. The AgNDs/TCNQ/GCE obtained at the optimized conditions displays the oxygen reduction reaction (ORR) onset potential of 0.98 V, which is the same as that over Pt/C-JM catalyst (0.98 V). It demonstrated that AgNDs possessed the highest electrocatalytic activity for ORR among the various Ag-based electrocatalysts reported in literature in alkaline electrolyte. At the same time, the performance of AgNDs/TCNQ/GCE toward hydrogen peroxide detection was investigated in a range of the concentration from 10 μM to 17 mM. It also showed the higher catalytic activity for hydrogen peroxide reduction reaction with the hydrogen peroxide detection limit reaching 0.47 μM level. The Tafel polarization curve, electrochemically active surface area, and the electrochemical impedance were measured to understand and explore the catalytic behavior of the prepared AgNDs/TCNQ/GCE. The enhanced performance of AgNDs for ORR and hydrogen peroxide detection can be ascribed to the special tree-like morphology with highly

  20. Ernest Rutherford, his genius shaped our modern world

    International Nuclear Information System (INIS)

    MacGregor Douglas, I.J.

    2011-01-01

    This paper describes how Rutherford deduced the existence of a dense, highly charged nucleus at the heart of the atom and outlines the enormous impact his work has had on science and society. (author)

  1. Guide to the Durham-Rutherford high energy physics databases

    International Nuclear Information System (INIS)

    Gault, F.D.; Lotts, A.P.; Read, B.J.; Crawford, R.L.; Roberts, R.G.

    1979-12-01

    New databases and graphics facilities are added in this edition of the guide. It explains, with examples, how to retrieve tabulated experimental scattering data from databases on the Rutherford Laboratory computer network. (author)

  2. Ernest Rutherford, his genius shaped our modern world

    Energy Technology Data Exchange (ETDEWEB)

    MacGregor Douglas, I.J. [School of Physics and Astronomy, University of Glasgow (United Kingdom)

    2011-07-01

    This paper describes how Rutherford deduced the existence of a dense, highly charged nucleus at the heart of the atom and outlines the enormous impact his work has had on science and society. (author)

  3. A sensitive and selective electrochemical biosensor for the determination of beta-amyloid oligomer by inhibiting the peptide-triggered in situ assembly of silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Xing Y

    2017-04-01

    Full Text Available Yun Xing,1,2 Xiao-Zhen Feng,2 Lipeng Zhang,1 Jiating Hou,2 Guo-Cheng Han,2 Zhencheng Chen2 1Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 2School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, People’s Republic of China Abstract: Soluble beta-amyloid (Aβ oligomer is believed to be the most important toxic species in the brain of Alzheimer’s disease (AD patients. Thus, it is critical to develop a simple method for the selective detection of Aβ oligomer with low cost and high sensitivity. In this paper, we report an electrochemical method for the detection of Aβ oligomer with a peptide as the bioreceptor and silver nanoparticle (AgNP aggregates as the redox reporters. This strategy is based on the conversion of AgNP-based colorimetric assay into electrochemical analysis. Specifically, the peptide immobilized on the electrode surface and presented in solution triggered together the in situ formation of AgNP aggregates, which produced a well-defined electrochemical signal. However, the specific binding of Aβ oligomer to the immobilized peptide prevented the in situ assembly of AgNPs. As a result, a poor electrochemical signal was observed. The detection limit of the method was found to be 6 pM. Furthermore, the amenability of this method for the analysis of Aβ oligomer in serum and artificial cerebrospinal fluid (aCSF samples was demonstrated. Keywords: electrochemical biosensors, Alzheimer’s disease, beta-amyloid oligomer, peptide, silver nanoparticles

  4. Traffic modifications on Routes Rutherford, Democrite and Fermi

    CERN Multimedia

    2015-01-01

    The GS Department would like to inform you that until the end of December, the construction of Building 245 will result in the following traffic modifications: Traffic on Route Rutherford will be partially restricted in front of the construction site, Traffic on Route Democrite will be one-way towards Route Rutherford. Also, please note that due to construction work in front of Building 377, Route Fermi will be closed from Wednesday, 10 June until Friday, 7 August. Thank you for your understanding.

  5. Fabrication of Electrochemically Reduced Graphene Oxide Modified Gas Diffusion Electrode for In-situ Electrochemical Advanced Oxidation Process under Mild Conditions

    International Nuclear Information System (INIS)

    Dong, Heng; Su, Huimin; Chen, Ze; Yu, Han; Yu, Hongbing

    2016-01-01

    With aim to develop an efficient heterogeneous metal-free cathodic electrochemical advance oxidation process (CEAOP) for persistent organic pollutants (POPs) removal from wastewater under mild conditions, electrochemically reduced graphene oxide (ERGO)-modified gas diffusion electrode (GDE) was prepared for oxygen-containing radicals production via electrochemical oxygen reduction reaction (ORR). A detailed physical characterization was carried out by SEM, Raman spectroscopy, XRD and XPS. The electrocatalytic behavior for ORR was investigated by electrochemical measurements and electrolysis experiments under constant current density. Bisphenol A (BPA) of 20 mg L −1 was used as a model of POPs to evaluate the performance of the CEAOP with ERGO-modified GDE. The results showed that the defects concentration and electrochemical active sites of the ERGO was increased as the reduction time (30 min, 60 min and 120 min), leading to different catalysis on ORR. ·O 2 generation via one-electron ORR was found under the electrocatalysis of ERGO (60 min and 120 min), contributing to a complete degradation of BPA within 20 min and a mineralization current efficiency (MCE) of 74.60%. An alternative metal-free CEAOP independent of Fenton reaction was established based on ERGO-modified GDE for POPs removal from wastewater under mild conditions.

  6. Characterization and electrochemical performances of MoO2 modified LiFePO4/C cathode materials synthesized by in situ synthesis method

    International Nuclear Information System (INIS)

    He, Jichuan; Wang, Haibin; Gu, Chunlei; Liu, Shuxin

    2014-01-01

    Graphical abstract: The MoO 2 modified LiFePO 4 /C cathode materials were synthesized by in situ synthesis method. MoO 2 can sufficiently coat on the LiFePO 4 /C particles surface and does not alter LiFePO 4 crystal structure, and the adding of MoO 2 decreases the particles size and increases the tap density of cathode materials. The existence of MoO 2 improves electrochemical performance of LiFePO 4 cathode materials in specific capability and lithium ion diffusion and charge transfer resistance of cathode materials. - Highlights: • The MoO 2 modified LiFePO 4 /C cathode materials were synthesized by in situ synthesis method. • The existence of MoO 2 decreases the particles size and increases the tap density of cathode materials. • MoO 2 can sufficiently coat on the surface of LiFePO 4 /C cathode materials. • The existence of MoO 2 enhanced electrochemical performance of LiFePO 4 /C cathode materials. - Abstract: The MoO 2 modified LiFePO 4 /C cathode materials were synthesized by in situ synthesis method. Phase compositions and microstructures of the products were characterized by X-ray powder diffraction (XRD), SEM, TEM and EDS. Results indicate that MoO 2 can sufficiently coat on the LiFePO 4 surface and does not alter LiFePO 4 crystal structure, the existence of MoO 2 decreases the particles size and increases the tap density of cathode materials. The electrochemical behavior of cathode materials was analyzed using galvanostatic measurement, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results show that the existence of MoO 2 improves electrochemical performance of LiFePO 4 cathode materials in specific capability and lithium ion diffusion and charge transfer resistance. The initial charge–discharge specific capacity and apparent lithium ion diffusion coefficient increase, the charge transfer resistance decreases with MoO 2 content and maximizes around the MoO 2 content is 5 wt%. It has been had further proved that

  7. In situ electrochemical creation of cobalt oxide nanosheets with favorable performance as a high tap density anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Lin, Qian; Sha, Yujing; Zhao, Bote; Chen, Yubo; Tadé, Moses O.; Shao, Zongping

    2015-01-01

    Highlights: • Cobalt oxide nanosheets in situ electrochemical generated from commercial LiCoO_2. • TEM indicates creation of cobalt oxide nanosheets from coarse layered LiCoO_2_. • Coarse-type LiCoO_2 with high tap density shows promising anode performance. • Optimizing weight ratio of LiCoO_2 in electrode, a high capacity was achieved. - Abstract: Cobalt oxides are attractive alternative anode materials for next-generation lithium-ion batteries (LIBs). To improve the performance of conversion-type anode materials such as cobalt oxides, well dispersed and nanosized particulate morphology is typically required. In this study, we describe the in situ electrochemical generation of cobalt oxide nanosheets from commercial micrometer-sized LiCoO_2 oxide as an anode material for LIBs. The electrode material as prepared was analyzed by XRD, FE-SEM and TEM. The electrochemical properties were investigated by cyclic voltammetry and by a constant current galvanostatic discharge–charge test. The material shows a high tap density and promising anode performance in terms of capacity, rate performance and cycling stability. A capacity of 560 mA h g"−"1 is still achieved at a current density of 1000 mA g"−"1 by increasing the amount of additives in the electrode to 40 wt%. This paper provides a new technique for developing a high-performance conversion-type anode for LIBs.

  8. Flexible nanohybrid microelectrode based on carbon fiber wrapped by gold nanoparticles decorated nitrogen doped carbon nanotube arrays: In situ electrochemical detection in live cancer cells.

    Science.gov (United States)

    Zhang, Yan; Xiao, Jian; Sun, Yimin; Wang, Lu; Dong, Xulin; Ren, Jinghua; He, Wenshan; Xiao, Fei

    2018-02-15

    The rapidly growing demand for in situ real-time monitoring of chemical information in vitro and in vivo has attracted tremendous research efforts into the design and construction of high-performance biosensor devices. Herein, we develop a new type of flexible nanohybrid microelectrode based on carbon fiber wrapped by gold nanoparticles decorated nitrogen-doped carbon nanotube arrays, and explore its practical application in in situ electrochemical detection of cancer biomarker H 2 O 2 secreted from live cancer cells. Our results demonstrate that carbon fiber material with microscale size and fascinating mechanical properties can be used as a robust and flexible microelectrode substrate in the electrochemical biosensor system. And the highly ordered nitrogen-doped carbon nanotube arrays that grown on carbon fiber possess high surface area-to-volume ratio and abundant active sites, which facilitate the loading of high-density and uniformly dispersed gold nanoparticles on it. Benefited from the unique microstructure and excellent electrocatalytic properties of different components in the nanohybrid fiber microelectrode, an effective electrochemical sensing platform based on it has been built up for the sensitive and selective detection of H 2 O 2 , the detection limit is calculated to be 50nM when the signal-to-noise ratio is 3:1, and the linear dynamic range is up to 4.3mM, with a high sensitivity of 142µAcm -2 mM -1 . These good sensing performances, coupled with its intrinsic mechanical flexibility and biocompatibility, allow for its use in in situ real-time tracking H 2 O 2 secreted from breast cancer cell lines MCF-7 and MBA-MD-231, and evaluating the sensitivity of different cancer cells to chemotherapy or radiotherapy treatments, which hold great promise for clinic application in cancer diagnose and management. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Detection of an ylide intermediate in the electrochemically-induced Stevens rearrangement of an ammonium salt by in situ UV–vis spectroelectrochemistry

    International Nuclear Information System (INIS)

    Capobianco, Amedeo; Caruso, Tonino; Palombi, Laura; Peluso, Andrea

    2013-01-01

    Highlights: ► Mechanistic insights of the electro-induced Stevens rearrangement are provided. ► The reduction of PhCOCH 2 N + (CH 3 ) 2 CH 2 Ph is ascribed to a one-electron transfer process. ► An electrogenerated ammonium ylide has been detected by UV-spectroelectrochemistry. -- Abstract: The electrochemically-induced Stevens rearrangement of 2-(benzyldimethyl)ammonium acetophenone has been investigated by in situ UV–vis spectroelectrochemistry. Voltammetric analysis and absorption spectra recorded during the potentiostatic reduction indicate that the reaction proceeds via a one-electron transfer with a Platinum cathode and generation of an ammonium ylide intermediate

  10. Electrochemical studies, in-situ and ex-situ characterizations of different manganese compounds electrodeposited in aerated solutions; Etudes electrochimiques, suivis in-situ et caracterisations ex-situ de divers composes de manganese electrodeposes dans des solutions aerees

    Energy Technology Data Exchange (ETDEWEB)

    Peulon, S.; Lacroix, A.; Chausse, A. [Univ. d' Evry-val-d' Essonne, Laboratoire Analyse et Modelisation pour la Biologie et l' Environnement (LAMBE CNRS UMR 8587), 91 - Evry (France); Larabi-Gruet, N. [CEA Saclay, Dept. de Physico-Chimie (DEN/DPC/SECR/L3MR), 91 - Gif sur Yvette (France)

    2007-07-01

    This work deals with the electrodeposition of manganese compounds. A systematic study of the synthesis experimental conditions has been carried out, and the obtained depositions have been characterized by different ex-situ analyses methods (XRD, FTIR, SEM). The in-situ measurements of mass increase with a quartz microbalance during the syntheses have allowed to estimate the growth mechanisms which are in agreement with the ex-situ characterizations. The cation has an important role in the nature of the electrodeposited compounds. In presence of sodium, a mixed lamellar compound Mn(III)/Mn(IV), the birnessite, is deposited, whereas in presence of potassium, bixbyite is formed (Mn{sub 2}O{sub 3}), these two compounds having a main role in the environment. The substrate can also influence the nature of the formed intermediary compounds. Little studied compounds such as feitkneichtite ({beta}-MnOOH) and groutite ({alpha}-MnOOH) have been revealed. (O.M.)

  11. Proximity hybridization-regulated catalytic DNA hairpin assembly for electrochemical immunoassay based on in situ DNA template-synthesized Pd nanoparticles

    International Nuclear Information System (INIS)

    Zhou, Fuyi; Yao, Yao; Luo, Jianjun; Zhang, Xing; Zhang, Yu; Yin, Dengyang; Gao, Fenglei; Wang, Po

    2017-01-01

    Novel hybridization proximity-regulated catalytic DNA hairpin assembly strategy has been proposed for electrochemical immunoassay based on in situ DNA template-synthesized Pd nanoparticles as signal label. The DNA template-synthesized Pd nanoparticles were characterized with atomic force microscopic and X-ray photoelectron spectroscopy. The highly efficient electrocatalysis by DNA template synthesized Pd nanoparticles for NaBH 4 oxidation produced an intense detection signal. The label-free electrochemical method achieved the detection of carcinoembryonic antigen (CEA) with a linear range from 10 −15 to 10 −11  g mL −1 and a detection limit of 0.43 × 10 −15  g mL −1 . Through introducing a supersandwich reaction to increase the DNA length, the electrochemical signal was further amplified, leading to a detection limit of 0.52 × 10 −16  g mL −1 . And it rendered satisfactory analytical performance for the determination of CEA in serum samples. Furthermore, it exhibited good reproducibility and stability; meanwhile, it also showed excellent specificity due to the specific recognition of antigen by antibody. Therefore, the DNA template synthesized Pd nanoparticles based signal amplification approach has great potential in clinical applications and is also suitable for quantification of biomarkers at ultralow level. - Graphical abstract: A novel label-free and enzyme-free electrochemical immunoassay based on proximity hybridization-regulated catalytic DNA hairpin assemblies for recycling of the CEA. - Highlights: • A novel enzyme-free electrochemical immunosensor was developed for detection of CEA. • The signal amplification was based on catalytic DNA hairpin assembly and DNA-template-synthesized Pd nanoparticles. • The biosensor could detect CEA down to 0.52 × 10 −16  g mL −1 level with a dynamic range spanning 5 orders of magnitude.

  12. In-situ electrochemical coating of Ag nanoparticles onto graphite electrode with enhanced performance for Li-ion batteries

    International Nuclear Information System (INIS)

    Yun, Jiaojiao; Wang, Yan; Gao, Tian; Zheng, Huiyuan; Shen, Ming; Qu, Qunting; Zheng, Honghe

    2015-01-01

    The effects of silver hexafluorophosphate (AgPF 6 ) as an electrolyte additive on the electrochemical behaviors of graphite anode are systematically studied by cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy. The surface structure and composition of graphite electrode after electrochemical cycles are investigated through scanning electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. It is found that Ag nanoparticles derived from electrochemical reduction of Ag + are homogenously distributed on the graphite surface. Significant improvements on the discharge capacity, rate behavior, and low-temperature performance of graphite electrode are obtained. The reasons are associated with the decreased resistances of solid-electrolyte interface and charge-transfer process, which improve the electrode kinetics for Li + intercalation/deintercalation

  13. Electrochemically induced reactions in soils - a new approach to the in-situ remediation of contaminated soils?

    Energy Technology Data Exchange (ETDEWEB)

    Rahner, D.; Ludwig, G.; Roehrs, J. [Dresden Univ. of Technology, Inst. of Physical Chemistry and Electrochemistry (Germany); Neumann, V.; Nitsche, C.; Guderitz, I. [Soil and Groundwater Lab. GmbH, Dresden (Germany)

    2001-07-01

    Electrochemical reactions can be induced in soils if the soil matrix contains particles or films with electronic conducting properties ('microconductors'). In these cases the wet soil may act as a 'diluted' electrochemical solid bed reactor. A discussion of this reaction principle within the soil matrix will be presented here. It will be shown, that under certain conditions immobile organic contaminants may be converted. (orig.)

  14. Scientific work as done at the Rutherford-Appleton laboratory

    International Nuclear Information System (INIS)

    Ulehla, I.

    1983-01-01

    The former Rutherford Laboratory founded in 1957 has undergone significant changes. In 1977 the Appleton Laboratory was added. The role of the laboratory in British research is brought out not only by the financial allocations but also by the equipment and staff which now number 1500. At the centre of scientific activity is the physics of elementary particles (high energy physics). In 1982 the laboratory conducted 57 experiments in cooperation with institutions of higher education and other institutions. The Rutherford Laboratory has gained an important position especially in the field of automatic processing of experimental data and in the control and self-control of experiments. (J.P.)

  15. Traffic modifications on Routes Rutherford, Democrite and Fermi

    CERN Multimedia

    2015-01-01

    The GS Department would like to inform you that, until the end of December, the construction of Building 245 will result in the following traffic modifications: Traffic on Route Rutherford will be partially restricted in front of the construction site, Traffic on Route Democrite will be one-way towards Route Rutherford. Also, please note that due to construction work in front of Building 377, Route Fermi will be closed from Wednesday, 10 June until Friday, 7 August. Thank you for your understanding.

  16. An in-situ X-ray diffraction study on the electrochemical formation of PtZn alloys on Pt(1 1 1) single crystal electrode

    Energy Technology Data Exchange (ETDEWEB)

    Drnec, J., E-mail: drnec@esrf.fr [ESRF, Grenoble (France); Bizzotto, D. [Department of Chemistry, AMPEL, University of British Columbia, Vancouver, BC (Canada); Carlà, F. [ESRF, Grenoble (France); Fiala, R. [Charles University, Faculty of Mathematics and Physics, Prague (Czech Republic); Sode, A. [Ruhr-Universität Bochum, Bochum (Germany); Balmes, O.; Detlefs, B.; Dufrane, T. [ESRF, Grenoble (France); Felici, R., E-mail: felici@esrf.fr [ESRF, Grenoble (France)

    2015-11-01

    Highlights: • PtZn electrochemical alloying is observed on single crystal Pt electrodes. • In-situ X-ray characterization during alloy formation and dissolution is provided. • Structural model of the surface during alloying and dissolution is discussed. • X-ray based techniques can be used in in-operando studies of bimetallic fuel cell catalysts. - Abstract: The electrochemical formation and dissolution of the oxygen reduction reaction (ORR) PtZn catalyst on Pt(1 1 1) surface is followed by in-situ X-ray diffraction (XRD) and X-ray reflectivity (XRR) measurements. When the crystalline Pt surface is polarized to sufficiently negative potential values, with respect to an Ag/AgCl|KCl reference electrode, the electrodeposited zinc atoms diffuse into the bulk and characteristic features are observed in the X-ray patterns. The surface structure and composition during deposition and dissolution is determined from analysis of XRR curves and measurements of crystal truncation rods. Thin Zn-rich surface layer is present during the alloy formation while a Zn-depleted layer forms during dissolution.

  17. Controlling the Sn-C bonds content in SnO2@CNTs composite to form in situ pulverized structure for enhanced electrochemical kinetics.

    Science.gov (United States)

    Cheng, Yayi; Huang, Jianfeng; Qi, Hui; Cao, Liyun; Luo, Xiaomin; Li, Jiayin; Xu, Zhanwei; Yang, Jun

    2017-12-07

    The Sn-C bonding content between the SnO 2 and CNTs interface was controlled by the hydrothermal method and subsequent heat treatment. Electrochemical analysis found that the SnO 2 @CNTs with high Sn-C bonding content exhibited much higher capacity contribution from alloying and conversion reaction compared with the low content of Sn-C bonding even after 200 cycles. The high Sn-C bonding content enabled the SnO 2 nanoparticles to stabilize on the CNTs surface, realizing an in situ pulverization process of SnO 2 . The in situ pulverized structure was beneficial to maintain the close electrochemical contact of the working electrode during the long-term cycling and provide ultrafast transfer paths for lithium ions and electrons, which promoted the alloying and conversion reaction kinetics greatly. Therefore, the SnO 2 @CNTs composite with high Sn-C bonding content displayed highly reversible alloying and conversion reaction. It is believed that the composite could be used as a reference for design chemically bonded metal oxide/carbon composite anode materials in lithium-ion batteries.

  18. Mild in situ growth of platinum nanoparticles on multiwalled carbon nanotube-poly (vinyl alcohol) hydrogel electrode for glucose electrochemical oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shumin; Zheng, Yudong, E-mail: zhengyudong@mater.ustb.edu.cn; Qiao, Kun [University of Science and Technology Beijing, School of Material Science and Engineering (China); Su, Lei [University of Science and Technology Beijing, School of Chemistry and Biological Engineering (China); Sanghera, Amendeep; Song, Wenhui [University College London, UCL Centre for Nanotechnology & Regenerative Medicine, Division of Surgery and Interventional Science (United Kingdom); Yue, Lina; Sun, Yi [University of Science and Technology Beijing, School of Material Science and Engineering (China)

    2015-12-15

    This investigation describes an effective strategy to fabricate an electrochemically active hybrid hydrogel made from platinum nanoparticles that are highly dense, uniformly dispersed, and tightly embedded throughout the conducting hydrogel network for the electrochemical oxidation of glucose. A suspension of multiwalled carbon nanotubes and polyvinyl alcohol aqueous was coated on glassy carbon electrode by electrophoretic deposition and then physically crosslinked to form a three-dimensional porous conductive hydrogel network by a process of freezing and thawing. The network offered 3D interconnected mass-transport channels (around 200 nm) and confined nanotemplates for in situ growth of uniform platinum nanoparticles via the moderate reduction agent, ascorbic acid. The resulting hybrid hydrogel electrode membrane demonstrates an effective method for loading platinum nanoparticles on multiwalled carbon nanotubes by the electrostatic adsorption between multiwalled carbon nanotubes and platinum ions within porous hydrogel network. The average diameter of platinum nanoparticles is 37 ± 14 nm, which is less than the particle size by only using the moderate reduction agent. The hybrid hydrogel electrode membrane-coated glassy carbon electrode showed excellent electrocatalytic activity and good long-term stability toward glucose electrochemical oxidation. The glucose oxidation current exhibited a linear relationship with the concentration of glucose in the presence of chloride ions, promising for potential applications of implantable biofuel cells, biosensors, and electronic devices.

  19. In situ electrochemical polymerization of a nanorod-PANI-Graphene composite in a reverse micelle electrolyte and its application in a supercapacitor.

    Science.gov (United States)

    Hu, Liwen; Tu, Jiguo; Jiao, Shuqiang; Hou, Jungang; Zhu, Hongmin; Fray, Derek J

    2012-12-05

    Highly porous nanorod-PANI-Graphene composite films were prepared by in situ electrochemical polymerization onto an ITO substrate in a reverse micelle electrolyte. The morphology and microstructure of the composite films were analyzed by using a field emission scanning electron microscope. It was observed that the films were highly porous and the nanorod PANI films were inserted by graphene nanosheets. This indicated that a good conductive network between PANI nanorods and graphene sheets was formed. Further electrochemical tests involved cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) in 1 mol L(-1) HClO(4) solution. The results showed that the composite film had a favorable capacitance with a high electron transfer rate and low resistance. The highest specific capacitance that could be achieved was as high as 878.57 F g(-1) with the charge loading of 500 mC at a current density of 1 A g(-1). The GCD at different charge loadings showed good cycle stability with a low fading rate of specific capacitance after 1000 cycles. The results demonstrated that the nanorod-PANI-Graphene composite was proved to be of great potential as an electrode material for supercapacitors.

  20. Beat-wave accelerator studies at the Rutherford Appleton Laboratory

    International Nuclear Information System (INIS)

    Lawson, J.D.

    1985-01-01

    The study carried out in 1982-83 at the Rutherford Appleton Laboratory to examine how one might use the beat-wave principle to construct a useful high energy accelerator is reviewed, and comments are made on later developments. A number of problems are evident to which solutions cannot at present be foreseen. (author)

  1. Experimenting from a Distance in the Case of Rutherford Scattering

    Science.gov (United States)

    Grober, S.; Vetter, M.; Eckert, B.; Jodl, H. -J.

    2010-01-01

    The Rutherford scattering experiment plays a central role in working out atomic models in physics and chemistry. Nevertheless, the experiment is rarely performed at school or in introductory physics courses at university. Therefore, we realized this experiment as a remotely controlled laboratory (RCL), i.e. the experiment is set up in reality and…

  2. In-situ conversion of rGO/Ni2P composite from GO/Ni-MOF precursor with enhanced electrochemical property

    Science.gov (United States)

    Lv, Zijian; Zhong, Qin; Bu, Yunfei

    2018-05-01

    Owing to the metalloid characteristic and superior electrical conductivity, the metal phosphides have received increasing interests in energy storage systems. Here, xrGO/Ni2P composites are successfully synthesized via an In-situ phosphorization process with GO/Ni-MOF as precursors. Compared to pure Ni2P, the xrGO/Ni2P composites appear enhanced electrochemical properties in terms of the specific capacitance and cycling performance as electrodes for supercapacitors. Especially, the 2rGO/Ni2P electrode shows a highest specific capacitance of 890 F g-1 at 1 A g-1 among the obtained composites. The enhancement can be attributed to the inherited structure from Ni-MOF and the well assembled of rGO and Ni2P through the In-situ conversion process. Moreover, when applied as positive electrode in a hybrid supercapacitor, an energy density of 35.9 W h kg-1 at a power density of 752 W kg-1 has been achieved. This work provides an In-situ conversion strategy for the synthesis of rGO/Ni2P composite which might be a promising electrode material for SCs.

  3. Proximity hybridization-regulated catalytic DNA hairpin assembly for electrochemical immunoassay based on in situ DNA template-synthesized Pd nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Fuyi [School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 221116 (China); Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical College, 221004, Xuzhou (China); Yao, Yao; Luo, Jianjun; Zhang, Xing; Zhang, Yu; Yin, Dengyang [Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical College, 221004, Xuzhou (China); Gao, Fenglei, E-mail: jsxzgfl@sina.com [Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical College, 221004, Xuzhou (China); Wang, Po, E-mail: wangpo@jsnu.edu.cn [School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 221116 (China)

    2017-05-29

    Novel hybridization proximity-regulated catalytic DNA hairpin assembly strategy has been proposed for electrochemical immunoassay based on in situ DNA template-synthesized Pd nanoparticles as signal label. The DNA template-synthesized Pd nanoparticles were characterized with atomic force microscopic and X-ray photoelectron spectroscopy. The highly efficient electrocatalysis by DNA template synthesized Pd nanoparticles for NaBH{sub 4} oxidation produced an intense detection signal. The label-free electrochemical method achieved the detection of carcinoembryonic antigen (CEA) with a linear range from 10{sup −15} to 10{sup −11} g mL{sup −1} and a detection limit of 0.43 × 10{sup −15} g mL{sup −1}. Through introducing a supersandwich reaction to increase the DNA length, the electrochemical signal was further amplified, leading to a detection limit of 0.52 × 10{sup −16} g mL{sup −1}. And it rendered satisfactory analytical performance for the determination of CEA in serum samples. Furthermore, it exhibited good reproducibility and stability; meanwhile, it also showed excellent specificity due to the specific recognition of antigen by antibody. Therefore, the DNA template synthesized Pd nanoparticles based signal amplification approach has great potential in clinical applications and is also suitable for quantification of biomarkers at ultralow level. - Graphical abstract: A novel label-free and enzyme-free electrochemical immunoassay based on proximity hybridization-regulated catalytic DNA hairpin assemblies for recycling of the CEA. - Highlights: • A novel enzyme-free electrochemical immunosensor was developed for detection of CEA. • The signal amplification was based on catalytic DNA hairpin assembly and DNA-template-synthesized Pd nanoparticles. • The biosensor could detect CEA down to 0.52 × 10{sup −16} g mL{sup −1} level with a dynamic range spanning 5 orders of magnitude.

  4. In-situ electrochemical-AFM study of localized corrosion of AlxCoCrFeNi high-entropy alloys in chloride solution

    Science.gov (United States)

    Shi, Yunzhu; Collins, Liam; Balke, Nina; Liaw, Peter K.; Yang, Bin

    2018-05-01

    In-situ electrochemical (EC)-AFM is employed to investigate the localized corrosion of the AlxCoCrFeNi high-entropy alloys (HEAs). Surface topography changes on the micro/sub-micro scale are monitored at different applied anodizing potentials in a 3.5 wt% NaCl solution. The microstructural evolutions with the increased Al content in the alloys are characterized by SEM, TEM, EDS and EBSD. The results show that by increasing the Al content, the microstructure changes from single solid-solution to multi-phases, leading to the segregations of elements. Due to the microstructural variations in the AlxCoCrFeNi HEAs, localized corrosion processes in different ways after the breakdown of the passive film, which changes from pitting to phase boundary corrosion. The XPS results indicate that an increased Al content in the alloys/phases corresponds to a decreased corrosion resistance of the surface passive film.

  5. Novel implementation of the use of the EPR-in situ technique (Electrochemical potentiodynamic reactivation) to identify intergranular corrosion susceptability of stainless steels exposed to high temperatures

    International Nuclear Information System (INIS)

    Munoz, N.; Pineda, Y.; Vera, E.; Sepulveda, H.; Heyn, Andreas

    2010-01-01

    Austenitic stainless steels (18 % Cr), are often used in pieces that are exposed to temperatures of 450 o C to 900 o C (heat exchangers). At these temperatures sensibilization occurs on the grain boundaries, becoming a key factor in the appearance of intergranular corrosion. In order to prevent this phenomena from occurring 0.3% to 0.8% of niobium is added as an alloying element in the manufacturing process, which prevents the carbon present in the steel combines with the chromium, avoiding the formation of carbides. An electrochemical method for in-situ application was developed to evaluate the corrosive behavior of stainless steel and its susceptibility and degree of sensibilizaton to an intergranular attack. This work shows the effectiveness of this technique in evaluating niobium's inhibitory effect in preventing the formation of chromium carbides on the grain boundaries of 18% chromium steel, and also shows the technique's potentiality in determining how susceptible these steels are to intercrystalline corrosion

  6. In-situ spectro-electrochemical studies of radionuclide contaminated surface films on metals and the mechanism of their formation and dissolution. 1998 annual progress report

    International Nuclear Information System (INIS)

    Melendres, C.A.; Mini, S.M.

    1998-01-01

    'The objective of this research program is to gain a fundamental understanding of the structure, composition, and mechanism of formation of radionuclide-containing surface films on metals that are relevant to the problem of decontamination of piping systems and waste storage tanks at DOE nuclear processing facilities. As of May 1998, after about a year and a half of work towards implementing this project, considerable progress has been made in understanding the mechanism and structure of heavy metal ions incorporated into simulated corrosion films of nickel. The nature of iron and chromium oxide films, which are used to model the other components of steels used in piping systems and waste storage tanks in nuclear facilities, has also been elucidated. The principal techniques used in these investigations consist of coupled electrochemical and in-situ synchrotron X-ray absorption spectroscopy, as well as vibrational spectroscopy (infrared and laser Raman).'

  7. Portable Analyzer Based on Microfluidics/Nanoengineered Electrochemical Sensors for In-situ Characterization of Mixed Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Yuehe Lin; Glen E. Fryxell; Wassana Yantasee; Guodong Liu; Zheming Wang

    2006-06-01

    Required characterizations of the DOE's transuranic (TRU) and mixed wastes (MW) before disposing and treatment of the wastes are currently costly and have lengthy turnaround. Research toward developing faster and more sensitive characterization and analysis tools to reduce costs and accelerate throughputs is therefore desirable. This project is aimed at the development of electrochemical sensors, specific to toxic transition metals, uranium, and technetium, that can be integrated into the portable sensor systems. This system development will include fabrication and performance evaluation of electrodes as well as understanding of electrochemically active sites on the electrodes specifically designed for toxic metals, uranium and technetium detection. Subsequently, these advanced measurement units will be incorporated into a microfluidic prototype specifically designed and fabricated for field-deployable characterizations of such species.

  8. A novel molten-salt electrochemical cell for investigating the reduction of uranium dioxide to uranium metal by lithium using in situ synchrotron radiation.

    Science.gov (United States)

    Brown, Leon D; Abdulaziz, Rema; Jervis, Rhodri; Bharath, Vidal; Mason, Thomas J; Atwood, Robert C; Reinhard, Christina; Connor, Leigh D; Inman, Douglas; Brett, Daniel J L; Shearing, Paul R

    2017-03-01

    A novel electrochemical cell has been designed and built to allow for in situ energy-dispersive X-ray diffraction measurements to be made during reduction of UO 2 to U metal in LiCl-KCl at 500°C. The electrochemical cell contains a recessed well at the bottom of the cell into which the working electrode sits, reducing the beam path for the X-rays through the molten-salt and maximizing the signal-to-noise ratio from the sample. Lithium metal was electrodeposited onto the UO 2 working electrode by exposing the working electrode to more negative potentials than the Li deposition potential of the LiCl-KCl eutectic electrolyte. The Li metal acts as a reducing agent for the chemical reduction of UO 2 to U, which appears to proceed to completion. All phases were fitted using Le Bail refinement. The cell is expected to be widely applicable to many studies involving molten-salt systems.

  9. Preparation of porous lead from shape-controlled PbO bulk by in situ electrochemical reduction in ChCl-EG deep eutectic solvent

    Science.gov (United States)

    Ru, Juanjian; Hua, Yixin; Xu, Cunying; Li, Jian; Li, Yan; Wang, Ding; Zhou, Zhongren; Gong, Kai

    2015-12-01

    Porous lead with different shapes was firstly prepared from controlled geometries of solid PbO bulk by in situ electrochemical reduction in choline chloride-ethylene glycol deep eutectic solvents at cell voltage 2.5 V and 353 K. The electrochemical behavior of PbO powders on cavity microelectrode was investigated by cyclic voltammetry. It is indicated that solid PbO can be directly reduced to metal in the solvent and a nucleation loop is apparent. Constant voltage electrolysis demonstrates that PbO pellet can be completely converted to metal for 13 h, and the current efficiency and specific energy consumption are about 87.79% and 736.82 kWh t-1, respectively. With the electro-deoxidation progress on the pellet surface, the reduction rate reaches the fastest and decreases along the distance from surface to inner center. The morphologies of metallic products are porous and mainly consisted of uniform particles which connect with each other by finer strip-shaped grains to remain the geometry and macro size constant perfectly. In addition, an empirical model of the electro-deoxidation process from spherical PbO bulk to porous lead is also proposed. These findings provide a novel and simple route for the preparation of porous metals from oxide precursors in deep eutectic solvents at room temperature.

  10. Design, processing, and properties of Bi 2212\\/Ag Rutherford cables

    CERN Document Server

    Collings, E W; Scanlan, R M; Dietderich, D R; Motowidlo, L R; Sokolowski, R S; Aoki, Y; Hasegawa, T

    1999-01-01

    In a program intended to explore the use of high temperature superconducting (HTSC) cables in high field synchrotron dipole magnets model Bi:2212/Ag Rutherford cables were designed bearing in mind the needs for mechanical integrity, relatively high tensile strength, and low coupling losses. To satisfy these needs a core-type cable design was selected and a readily available heat-resistant core material acquired. Cables were wound for critical current- and AC loss measurement. Both winding-induced (mechanical) and core-induced (chemical) critical current degradation was examined. Interstrand coupling loss was measured calorimetrically on model cable samples with bare- and oxide-coated cores. From the results it was predicted that the losses of full-scale Bi:2212/Ag-wound LHC-type Rutherford cables would fall close to the acceptability range for the windings of high-field accelerator dipoles. (10 refs).

  11. Science & Society: The search for the real Earnest Rutherford*

    CERN Multimedia

    2003-01-01

    Every physicist knows the name Rutherford who radically altered our understanding of nature on three separate occasions. Through brilliantly conceived experiments, and with special insight, he explained the perplexing problem of radioactivity as the spontaneous disintegration of atoms (they were not necessarily stable entities as had been assumed since the time of the ancient Greeks), he determined the structure of the atom and he was the world's first successful alchemist (he converted nitrogen into oxygen). This talk given by John Campbell, however, will cover some of the lesser known aspects of Rutherford's work, including his early wireless signalling, development of what was later improved to be now called the Geiger-Muller tube, his acoustic work for submarine detection during the First World War, the development of particle accelerators and the race to use them, the first use of a coincidence detector, and why he received just one Nobel Prize. Dr Campbell, a condensed matter physicist at the Universi...

  12. In situ polymerization and characterization of grafted poly (3,4-ethylenedioxythiophene)/multiwalled carbon nanotubes composite with high electrochemical performances

    International Nuclear Information System (INIS)

    Bai, Xiaoxia; Hu, Xiujie; Zhou, Shuyun; Yan, Jun; Sun, Chenghua; Chen, Ping; Li, Laifeng

    2013-01-01

    Graphical abstract: The homogeneously grafted PEDOT/MWCNTs containing numerous whorl fingerprint-like open ends endows with excellent electrochemical performances. Highlights: ► A ternary phase system with the surfactant AOT is utilized to efficiently solve the problem of the aggregation of MWCNTs. ► The homogenously grafted PEDOT/MWCNTs composite is synthesized by in situ chemical polymerization in the ternary phase system. ► The core–shell nanotubes contain many whorl fingerprint-like open ends that are greatly favorable for the transportation of the electrons and ions. ► The energy density of grafted PEDOT/MWCNTs has been enhanced by a factor of four comparing to that of native MWCNTs. ► The grafted PEDOT/MWCNTs composite manifests better cycle durability than both the constituents. - Abstract: The homogenously grafted composite of poly (3,4-ethylenedioxythiophene)/multiwalled carbon nanotubes (PEDOT/MWCNTs) is synthesized by in situ chemical polymerization in a ternary phase system. When carbon nanotubes are dispersed in this system containing sodium bis(2-ethylhexyl) sulfosuccinate (AOT), the surfactant AOT can efficiently hinter the aggregation of MWCNTs by absorbing and arranging regularly on the MWCNT surface. It is greatly advantageous to the stabilization of MWCNTs, which leads to the equally grafted composite. Its morphology was observed by scanning and transmission electron microscopes. Especially, the core–shell nanotubes contain many whorl fingerprint-like open ends that are efficiently favorable for the transportation of the electrons and ions. Such grafted PEDOT/MWCNTs composite nanotubes manifest enhanced electrochemical performances. We investigate the application of PEDOT/MWCNTs as a high-property supercapacitor and test its capacitive performance by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy. The energy density of grafted composite, 11.3 Wh kg −1 , has been enhanced by a factor

  13. Electrochemical lithiation/delithiation of SnP₂O₇ observed by in situ XRD and ex situ⁷Li/³¹P NMR, and ¹¹⁹Sn Mössbauer spectroscopy.

    Science.gov (United States)

    Bezza, Ilham; Kaus, Maximilian; Riekehr, Lars; Pfaffmann, Lukas; Doyle, Stephen; Indris, Sylvio; Ehrenberg, Helmut; Solhy, Abderrahim; Saadoune, Ismael

    2016-04-21

    SnP2O7 was prepared by a sol-gel route. The structural changes of tin pyrophosphate during the electrochemical lithiation were followed by using in situ XRD measurements that reveal the existence of a crystalline phase at the beginning of the discharge process. Nevertheless, it becomes amorphous after the full discharge as a result of a conversion reaction leading to the formation of LixSny alloys. The electrochemical tests show a high capacity with high retention upon cycling. To better understand the reaction mechanism of SnP2O7 with Li, several techniques were applied, such as ex situ(119)Sn Mössbauer and ex situ(7)Li and (31)P NMR spectroscopies with which we can follow the changes in the local environment of each element during cycling.

  14. A MEMS platform for in situ, real-time monitoring of electrochemically induced mechanical changes in lithium-ion battery electrodes

    International Nuclear Information System (INIS)

    Pomerantseva, Ekaterina; Jung, Hyun; Gnerlich, Markus; Baron, Sergio; Gerasopoulos, Konstantinos; Ghodssi, Reza

    2013-01-01

    We report the first successful demonstration of an optical microelectromechanical systems (MEMS) sensing platform for the in situ characterization of electrochemically induced reversible mechanical changes in lithium-ion battery (LIB) electrodes. The platform consists of an array of flexible membranes with a reflective surface on one side and a thin-film LIB electrode on the other side. The membranes deflect due to the active battery material volume change caused by lithium intercalation (expansion) and extraction (contraction). This deflection is monitored using the Fabry–Perot optical interferometry principle. The active material volume change causes high internal stresses and mechanical degradation of the electrodes. The stress evolution observed in a silicon thin-film electrode incorporated into this MEMS platform follows a ‘first elastic, then plastic’ deformation scheme. Understanding of the internal stresses in battery electrodes during discharge/charge is important for improving the reliability and cycle lifetime of LIBs. The developed MEMS platform presents a new method for in situ diagnostics of thin-film LIB electrodes to aid the development of new materials, optimization of electrode performance, and prevention of battery failure. (paper)

  15. In situ Fourier transform infrared spectroscopy and on-line differential electrochemical mass spectrometry study of the NH3BH3 oxidation reaction on gold electrodes

    International Nuclear Information System (INIS)

    Belén Molina Concha, M.; Chatenet, Marian; Lima, Fabio H.B.; Ticianelli, Edson A.

    2013-01-01

    The ammonia borane (NH 3 BH 3 ) oxidation reaction (ABOR) was studied on gold electrodes using the rotating disk electrode (RDE) setup and coupled physical techniques: on-line differential electrochemical mass spectrometry (DEMS) and in situ Fourier transform infrared spectroscopy (FTIR). Non-negligible heterogeneous hydrolysis in the low-potential region was asserted via molecular H 2 detection. As a consequence, the number of electron exchanged per BH 3 OH − species is ca. 3 at low potential, and only reaches ca. 6 above 0.6 V vs. RHE. These figures were confirmed by Levich and Koutecki–Levich calculations using the RDE experiments data. The nature of the ABOR intermediates and products was determined using in situ FTIR. While BH 2 species were detected during the ABOR, it seems that its adsorption onto the Au electrode proceeds via the O atom, in opposition to what happens during the borohydride oxidation reaction (BOR). Therefore, it is likely that the mechanism of the ABOR differs from that of the BOR. From the whole set of data (RDE, DEMS, FTIR), a relevant reaction pathway was proposed, including competition between the BH 3 OH − heterogeneous hydrolysis and oxidation at low potential, and preponderant oxidation at higher potential. Finally, a simplified kinetic modeling accounting with this reaction pathway was proposed, which nicely fits the stationary (i vs. E) ABOR plot

  16. In-situ hydrothermal synthesis of three-dimensional MnO2-CNT nanocomposites and their electrochemical properties

    International Nuclear Information System (INIS)

    Teng, Fei; Santhanagopalan, Sunand; Wang, Ying; Meng, Dennis Desheng

    2010-01-01

    Three-dimensional (3-D) MnO 2 -carbon nanotube (CNT) nanocomposites were prepared by a simple one-pot hydrothermal method. An electrode was then prepared with these nanocomposites. For comparative investigation, MnO 2 microspheres were also hydrothermally prepared without adding CNTs. The as-synthesized MnO 2 microspheres were then mechanically mixed with CNTs to prepare a subsequent electrode. The samples were characterized by electron microscopy, X-ray diffraction, and electrochemical methods. It has been revealed that a 3-D conductive network of CNTs was formed with microspheres of MnO 2 nanorods interwoven with and connected by CNTs. As a result, the hydrothermally mixed MnO 2 -CNT electrode showed a higher specific capacitance than the mechanically mixed electrode. It has therefore been concluded that the hydrothermal mixing method yields a more homogeneous product that is better suited to take full advantages of both the high capacitance of MnO 2 and the high electrical conductivity of CNTs. The 3-D MnO 2 -CNT nanocomposites reported herein have provided a promising electrode material for supercapacitors and other electrochemical energy storage/conversion devices.

  17. In situ fabrication of electrochemically grown mesoporous metallic thin films by anodic dissolution in deep eutectic solvents.

    Science.gov (United States)

    Renjith, Anu; Roy, Arun; Lakshminarayanan, V

    2014-07-15

    We describe here a simple electrodeposition process of forming thin films of noble metallic nanoparticles such as Au, Ag and Pd in deep eutectic solvents (DES). The method consists of anodic dissolution of the corresponding metal in DES followed by the deposition on the cathodic surface. The anodic dissolution process in DES overcomes the problems associated with copious hydrogen and oxygen evolution on the electrode surface when carried out in aqueous medium. The proposed method utilizes the inherent abilities of DES to act as a reducing medium while simultaneously stabilizing the nanoparticles that are formed. The mesoporous metal films were characterized by SEM, XRD and electrochemical techniques. Potential applications of these substrates in surface enhanced Raman spectroscopy and electrocatalysis have been investigated. A large enhancement of Raman signal of analyte was achieved on the mesoporous silver substrate after removing all the stabilizer molecules from the surface by calcination. The highly porous texture of the electrodeposited film provides superior electro catalytic performance for hydrogen evolution reaction (HER). The mechanisms of HER on the fabricated substrates were studied by Tafel analysis and electrochemical impedance spectroscopy (EIS). Copyright © 2014 Elsevier Inc. All rights reserved.

  18. In-situ hydrothermal synthesis of three-dimensional MnO{sub 2}-CNT nanocomposites and their electrochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Fei; Santhanagopalan, Sunand [Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, MI 49931 (United States); Wang, Ying [Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA 70803 (United States); Meng, Dennis Desheng, E-mail: dmeng@mtu.ed [Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, MI 49931 (United States)

    2010-06-11

    Three-dimensional (3-D) MnO{sub 2}-carbon nanotube (CNT) nanocomposites were prepared by a simple one-pot hydrothermal method. An electrode was then prepared with these nanocomposites. For comparative investigation, MnO{sub 2} microspheres were also hydrothermally prepared without adding CNTs. The as-synthesized MnO{sub 2} microspheres were then mechanically mixed with CNTs to prepare a subsequent electrode. The samples were characterized by electron microscopy, X-ray diffraction, and electrochemical methods. It has been revealed that a 3-D conductive network of CNTs was formed with microspheres of MnO{sub 2} nanorods interwoven with and connected by CNTs. As a result, the hydrothermally mixed MnO{sub 2}-CNT electrode showed a higher specific capacitance than the mechanically mixed electrode. It has therefore been concluded that the hydrothermal mixing method yields a more homogeneous product that is better suited to take full advantages of both the high capacitance of MnO{sub 2} and the high electrical conductivity of CNTs. The 3-D MnO{sub 2}-CNT nanocomposites reported herein have provided a promising electrode material for supercapacitors and other electrochemical energy storage/conversion devices.

  19. Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sacci, Robert L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science adn Technology Division; Dudney, Nancy J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science adn Technology Division; More, Karren L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science; Parent, Lucas R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Fundamental and Computational Sciences Directorate; Arslan, Ilke [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Fundamental and Computational Sciences Directorate; Browning, Nigel D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Fundamental and Computational Sciences Directorate; Unocic, Raymond R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science

    2013-12-20

    Deposition of Li is a major safety concern existing in Li-ion secondary batteries. We perform the first in situ high spatial resolution measurement coupled with real-time quantitative electrochemistry to characterize SEI formation on gold using a standard battery electrolyte. We also demonstrate that a dendritic SEI forms prior to Li deposition and that it remains on the surface after Li electrodissolution.

  20. RUTHERFORD APPLETON: What's in a name?!

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Full text: The initials 'RAU are well known in the world of particle physics, but recently the official name of the Laboratory has undergone several transmogrifications. To further complicate matters, the funding body for Particle Physics within the UK has changed too! On 1 April 1994 the Rutherford Appleton Laboratory combined with the Daresbury Laboratory to become a combined laboratory known as the Daresbury and Rutherford Appleton Laboratories (DRAL). At the same time the old Science and Engineering Research Council (SERC) was wound up, and funding was channelled through the newly formed Particle Physics and Astronomy Research Council (PPARC). Also, and just for an interim period, DRAL became part of the new Engineering and Physical Sciences Research Council (EPSRC). One year later a more profound change occurred when DRAL became a Research Council in its own right, and the legal entity created by Royal Charter was named The Council for the Central Laboratory of the Research Councils', abbreviated to CCLRC. On 1 April 1995, DRAL became The Central Laboratory of the Research Councils', and the abbreviation CLRC may be used. In spite of the changes to the official name, the laboratory sited at Chilton, The DAPNIA (Saclay, France) and Argonne transportable polarized target used in 1989- 1990 for a Fermi lab experiment has been used in a new experiment at Dubna. Gilles Durand from DAPNIA (right) and Yuri Usov of Dubna's Joint Institute for Nuclear Research (JINR) were responsible for construction. Oxfordshire, will continue to be known as the Rutherford Appleton Laboratory, or RAL

  1. In-situ observation of deuteride formation in palladium electrochemical cathode by X-ray diffraction method

    International Nuclear Information System (INIS)

    Yamamoto, Takao; Oka, Takashi; Taniguchi, Ryoichi

    1990-01-01

    In-situ X-ray diffraction observation of palladium foil cathode (10 μm) was carried out during electrolysis of 0.1N-LiOD heavy water solution in order to estimate the deuterium content in palladium during the detection of charged particles in our previous work. A complete transformation into β-palladium deuteride phase was observed, and its maximum lattice constant 4.06 A was evaluated as corresponding to D/Pd = 0.73. The deuterium concentration in the previous work was estimated as higher than this considering the difference in cell conditions. (author)

  2. Development of Self-Powered Wireless-Ready High Temperature Electrochemical Sensors for In-Situ Corrosion Monitoring for Boiler Tubes in Next Generation Coal-based Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xingbo [West Virginia Univ., Morgantown, WV (United States)

    2015-06-30

    The key innovation of this project is the synergy of the high temperature sensor technology based on the science of electrochemical measurement and state-of-the-art wireless communication technology. A novel self-powered wireless high temperature electrochemical sensor system has been developed for coal-fired boilers used for power generation. An initial prototype of the in-situ sensor demonstrated the capability of the wireless communication system in the laboratory and in a pilot plant (Industrial USC Boiler Setting) environment to acquire electrochemical potential and current signals during the corrosion process. Uniform and localized under-coal ash deposit corrosion behavior of Inconel 740 superalloy has been studied at different simulated coal ash hot corrosion environments using the developed sensor. Two typical potential noise patterns were found to correlate with the oxidation and sulfidation stages in the hot coal ash corrosion process. Two characteristic current noise patterns indicate the extent of the corrosion. There was a good correlation between the responses of electrochemical test data and the results from corroded surface analysis. Wireless electrochemical potential and current noise signals from a simulated coal ash hot corrosion process were concurrently transmitted and recorded. The results from the performance evaluation of the sensor confirm a high accuracy in the thermodynamic and kinetic response represented by the electrochemical noise and impedance test data.

  3. The collected papers of Lord Rutherford of Nelson

    CERN Document Server

    Rutherford, Ernest

    1962-01-01

    This is the third of three volumes which together contain the complete range of Lord Rutherford's scientific papers, incorporating in addition addresses, general lectures, letters to editors, accounts of his scientific work and personal recollections by friends and colleagues. The final volume, first published in 1965, covers his period as Cavendish Professor from 1919 to 1937. Following on the immense fertility of his years in Manchester - only overshadowed towards the end by the war - we now turn to his last years as a world figure at the Cavendish Laboratory, where he continued his work on

  4. Fast optics for the Rutherford laser compression experiments

    International Nuclear Information System (INIS)

    Micholas, D.J.

    1976-12-01

    The compression chamber optical system proposed for the Rutherford Laboratory Laser compression experiments is described. The system corrects for longitudinal spherical aberration giving a final spot size approximately 15 μm. This could theoretically be improved. The two laser beams are focused via a pair of F/1.2 aspheric lenses onto a double-pass 'clam shell' aspheric mirror system. An analysis of the lens and mirror system is given and compared with an alternative ellipsoidal system already developed. The problems of manufacturing aspheric lenses to operate at 1.06 μm are outlined and an alternative novel approach to this design given. (author)

  5. Rutherford backscattering spectrometry of thin NiCr layers

    International Nuclear Information System (INIS)

    Anklam, H.J.

    1984-01-01

    The possibilities and problems of characterizing thin films of NiCr by means of Rutherford backscattering spectrometry (RBS) are demonstrated. Thin resistor films of NiCr (10 to 30 nm thick) are deposited on SiO 2 by sputtering in air or oxygen. The electrical properties depend both on integral chemical composition of films and on local distribution of elements. The determination of composition (Ni-Cr ratio, oxygen content) and of depth profiles of elements by the aid of RBS is described. For solving special analytical problems different substrates as amorphous SiO 2 , Si monocrystals, and glassy carbon are used

  6. Strand critical current degradation in $Nb_{3}$ Sn Rutherford cables

    CERN Document Server

    Barzi, E; Higley, H C; Scanlan, R M; Yamada, R; Zlobin, A V

    2001-01-01

    Fermilab is developing 11 Tesla superconducting accelerator magnets based on Nb/sub 3/Sn superconductor. Multifilamentary Nb/sub 3/Sn strands produced using the modified jelly roll, internal tin, and powder-in-tube technologies were used for the development and test of the prototype cable. To optimize the cable geometry with respect to the critical current, short samples of Rutherford cable with packing factors in the 85 to 95% range were fabricated and studied. In this paper, the results of measurements of critical current, n-value and RRR made on the round virgin strands and on the strands extracted from the cable samples are presented. (5 refs).

  7. In Situ TEM Investigation of the Electrochemical Behavior in CNTs/MnO2-Based Energy Storage Devices.

    Science.gov (United States)

    Tsai, Tsung-Chun; Huang, Guan-Min; Huang, Chun-Wei; Chen, Jui-Yuan; Yang, Chih-Chieh; Tseng, Tseung-Yuen; Wu, Wen-Wei

    2017-09-19

    Transition metal oxides have attracted much interest owing to their ability to provide high power density in lithium batteries; therefore, it is important to understand the electrochemical behavior and mechanism of lithiation-delithiation processes. In this study, we successfully and directly observed the structural evolution of CNTs/MnO 2 during the lithiation process using transmission electron microscopy (TEM). CNTs/MnO 2 were selected due to their high surface area and capacitance effect, and the lithiation mechanism of the CNT wall expansion was systematically analyzed. Interestingly, the wall spacings of CNTs/MnO 2 and CNTs were obviously expanded by 10.92% and 2.59%, respectively. The MnO 2 layer caused structural defects on the CNTs surface that could allow penetration of Li + and Mn 4+ through the tube wall and hence improve the ionic transportation speed. This study provided direct evidence for understanding the role of CNTs/MnO 2 in the lithiation process used in lithium ion batteries and also offers potential benefits for applications and development of supercapacitors.

  8. Nonlinear Plasma Response to Resonant Magnetic Perturbation in Rutherford Regime

    Science.gov (United States)

    Zhu, Ping; Yan, Xingting; Huang, Wenlong

    2017-10-01

    Recently a common analytic relation for both the locked mode and the nonlinear plasma response in the Rutherford regime has been developed based on the steady-state solution to the coupled dynamic system of magnetic island evolution and torque balance equations. The analytic relation predicts the threshold and the island size for the full penetration of resonant magnetic perturbation (RMP). It also rigorously proves a screening effect of the equilibrium toroidal flow. In this work, we test the theory by solving for the nonlinear plasma response to a single-helicity RMP of a circular-shaped limiter tokamak equilibrium with a constant toroidal flow, using the initial-value, full MHD simulation code NIMROD. Time evolution of the parallel flow or ``slip frequency'' profile and its asymptotic approach to steady state obtained from the NIMROD simulations qualitatively agree with the theory predictions. Further comparisons are carried out for the saturated island size, the threshold for full mode penetration, as well as the screening effects of equilibrium toroidal flow in order to understand the physics of nonlinear plasma response in the Rutherford regime. Supported by National Magnetic Confinement Fusion Science Program of China Grants 2014GB124002 and 2015GB101004, the 100 Talent Program of the Chinese Academy of Sciences, and U.S. Department of Energy Grants DE-FG02-86ER53218 and DE-FC02-08ER54975.

  9. Preparation of sulfonated graphene/polypyrrole solid-phase microextraction coating by in situ electrochemical polymerization for analysis of trace terpenes.

    Science.gov (United States)

    Zhang, Chengjiang; Zhang, Zhuomin; Li, Gongke

    2014-06-13

    In this study, a novel sulfonated graphene/polypyrrole (SG/PPy) solid-phase microextraction (SPME) coating was prepared and fabricated on a stainless-steel wire by a one-step in situ electrochemical polymerization method. Crucial preparation conditions were optimized as polymerization time of 15min and SG doping amount of 1.5mg/mL. SG/PPy coating showed excellent thermal stability and mechanical durability with a long lifespan of more than 200 stable replicate extractions. SG/PPy coating demonstrated higher extraction selectivity and capacity to volatile terpenes than commonly-used commercial coatings. Finally, SG/PPy coating was practically applied for the analysis of volatile components from star anise and fennel samples. The majority of volatile components identified were terpenes, which suggested the ultra-high extraction selectivity of SG/PPy coating to terpenes during real analytical projects. Four typical volatile terpenes were further quantified to be 0.2-27.4μg/g from star anise samples with good recoveries of 76.4-97.8% and 0.1-1.6μg/g from fennel samples with good recoveries of 80.0-93.1%, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Molecular assembly and electro polymerization of 3,4-ethylenedioxy thiophene on Au(100) single crystal electrode using in-situ electrochemical scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Garcia, Jonyl L.; Tongol, Bernard John V.; ShuehLin Yau

    2012-01-01

    Electrochemical scanning tunneling microscopy (Ec-STM) is a powerful technique that can provide molecular-level information regarding electrode surface processes in-situ in electrolyte solvent under ambient conditions. In this study, the adsorption and electro polymerization of an industrially important conducting polymer precursor, 3,4-ethylenedioxy thiophene (EDOT), on Au (100) single crystal was probed using Ec-STM. The Au (100) single crystal electrode substrate used for this study was fabricated using the well-known Clavilier's flame melting procedure. Cyclic voltammetry (CV) was used along with Ec-STM to characterize the bare, EDOT-modified, and poly(EDOT)-modified Au (100) single crystal electrode. Time-dependent Ec-STM imaging at 0.550 V showed the formation of an EDOT self-assembled monolayer through 2-D surface dillusion. The resulting EDOT molecular assembly on Au (100) single crystal electrode was found to fit in a 4√2χ3√2 unit cell. Difference in apparent corrugation between molecular rows was attributed to different angular orientation with respect to the substrate. The electro polymerization of EDOT on Au (100) single crystal electrode was done by potentiostatic and potentiodynamic methods. Both methods suggested a solution-process mechanism for EDOT electro polymerization. (author)

  11. Molecularly imprinted electrochemical sensing interface based on in-situ-polymerization of amino-functionalized ionic liquid for specific recognition of bovine serum albumin.

    Science.gov (United States)

    Wang, Yanying; Han, Miao; Liu, Guishen; Hou, Xiaodong; Huang, Yina; Wu, Kangbing; Li, Chunya

    2015-12-15

    A molecularly imprinted polymer film was in situ polymerized on a carboxyl functionalized multi-walled carbon nanotubes modified glassy carbon electrode surface under room temperature. This technique provides a promising imprinting approach for protein in an aqueous solution using 3-(3-aminopropyl)-1-vinylimidazolium tetrafluoroborate ionic liquid as functional monomer, N, N'-methylenebisacrylamide as crossing linker, ammonium persulfate and N,N,N',N'-tetramethylethylenediamine as initiator, and bovine serum albumin (BSA) as template. The molecularly imprinted polymerized ionic liquid film shows enhanced accessibility, high specificity and sensitivity towards BSA. Electrochemical sensing performance of the imprinted sensor was thoroughly investigated using K3Fe[CN]6/K4Fe[CN]6 as electroactive probes. Under optimal conditions, the current difference before and after specific recognition of BSA was found linearly related to its concentration in the range from 1.50×10(-9) to 1.50×10(-6) mol L(-1). The detection limit was calculated to be 3.91×10(-10) mol L(-1) (S/N=3). The practical application of the imprinted sensor was demonstrated by determining BSA in liquid milk samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. A self-supported metal-organic framework derived Co3O4 film prepared by an in-situ electrochemically assistant process as Li ion battery anodes

    Science.gov (United States)

    Zhao, Guangyu; Sun, Xin; Zhang, Li; Chen, Xuan; Mao, Yachun; Sun, Kening

    2018-06-01

    Derivates of metal-organic frameworks are promising materials of self-supported Li ion battery anodes due to the good dispersion of active materials, conductive scaffold, and mass transport channels in them. However, the discontinuous growth and poor adherence of metal-organic framework films on substrates hamper their development in self-supported electrodes. In the present study, cobalt-based metal-organic frameworks are anchored on Ti nanowire arrays through an electrochemically assistant method, and then the metal-organic framework films are pyrolyzed to carbon-containing, porous, self-supported anodes of Li ion battery anodes. Scanning electron microscope images indicate that, a layer cobaltosic oxide polyhedrons inserted by the nanowires are obtained with the controllable in-situ synthesis. Thanks to the good dispersion and adherence of cobaltosic oxide polyhedrons on Ti substrates, the self-supported anodes exhibit remarkable rate capability and durability. They possess a capacity of 300 mAh g-1 at a rate current of 20 A g-1, and maintain 2000 charge/discharge cycles without obvious decay.

  13. UV-Vis spectrophotometry of quinone flow battery electrolyte for in situ monitoring and improved electrochemical modeling of potential and quinhydrone formation.

    Science.gov (United States)

    Tong, Liuchuan; Chen, Qing; Wong, Andrew A; Gómez-Bombarelli, Rafael; Aspuru-Guzik, Alán; Gordon, Roy G; Aziz, Michael J

    2017-12-06

    Quinone-based aqueous flow batteries provide a potential opportunity for large-scale, low-cost energy storage due to their composition from earth abundant elements, high aqueous solubility, reversible redox kinetics and their chemical tunability such as reduction potential. In an operating flow battery utilizing 9,10-anthraquinone-2,7-disulfonic acid, the aggregation of an oxidized quinone and a reduced hydroquinone to form a quinhydrone dimer causes significant variations from ideal solution behavior and of optical absorption from the Beer-Lambert law. We utilize in situ UV-Vis spectrophotometry to establish (a), quinone, hydroquinone and quinhydrone molar attenuation profiles and (b), an equilibrium constant for formation of the quinhydrone dimer (K QHQ ) ∼ 80 M -1 . We use the molar optical attenuation profiles to identify the total molecular concentration and state of charge at arbitrary mixtures of quinone and hydroquinone. We report density functional theory calculations to support the quinhydrone UV-Vis measurements and to provide insight into the dimerization conformations. We instrument a quinone-bromine flow battery with a Pd-H reference electrode in order to demonstrate how complexation in both the negative (quinone) and positive (bromine) electrolytes directly impacts measured half-cell and full-cell voltages. This work shows how accounting for electrolyte complexation improves the accuracy of electrochemical modeling of flow battery electrolytes.

  14. In situ electrodeposition of CoP nanoparticles on carbon nanomaterial doped polyphenylene sulfide flexible electrode for electrochemical hydrogen evolution

    Science.gov (United States)

    Wang, Tingxia; Jiang, Yimin; Zhou, Yaxin; Du, Yongling; Wang, Chunming

    2018-06-01

    Active and durable electrocatalyst for hydrogen evolution reaction (HER) is pivotal to generate molecular hydrogen more energy-efficient, but directly grafting electrocatalyst on electrode material by a single-step method without compromising the catalytic activity and stability remains a challenge. Herein, an intriguing electrode, reduced graphene oxide modified carbon nanotube/reduced graphene oxide/polyphenylene sulfide (RGO-CNT/RGO/PPS) film, is used to replace conventional electrodes. In situ electrodeposition is proposed to fabricate CoP on the RGO-CNT/RGO/PPS (CoP-RGO-CNT/RGO/PPS) electrode and achieves a favorably electrical contact between CoP nanoparticles and RGO-CNT/RGO/PPS electrode due to without any polymer binder. Additionally, the coupling of different electrodeposition stages with scanning electron microscope (SEM) can investigate the nanostructure evolution of CoP nanoparticles, which gives valuable insights into the optimized electrodeposition cycles. The rational integration of RGO onto CNT/RGO/PPS film is an effective approach for enhancing its intrinsic electrical conductivity and favoring the formation of a high density of dispersive CoP nanoparticles. The CoP-RGO-CNT/RGO/PPS film has shown outstanding HER electrocatalytic behaviors performed a current density of 10 mA cm-2 at a relatively low overpotential of 160 mV with a Tafel slope of 60 mV dec-1 in acidic medium, which can be mainly attributed to the synergistic effect between optimized morphology and accelerated kinetics. Additionally, this film electrocatalyst exhibits a good HER activity and stability under both neutral and basic conditions.

  15. Rutherford backscattering investigation of the corrosion of borosilicate glass

    International Nuclear Information System (INIS)

    Sales, B.C.; Boatner, L.A.; Naramoto, H.; White, C.W.

    1981-10-01

    The RBS spectra from Frit 21 borosilicate glasses doped with 5 wt % UO 2 , SrO, or Cs 2 O show that: during the initial stages of leaching (0 to 3 h) there is a substantial (300 to 500%) enhancement in the concentration of U, Sr, Ca, and Ti in the outer surface layer and that this enhancement is accompanied by a large depletion of Na, Si, and Cs; and upon further leaching under static conditions (24 h) the leached surface layer composition is indistinguishable from the unleached surface. Other borosilicate glasses such as PNL 76-68 may eventually show the same behavior if the final equilibrium pH value is greater than 9. The technique of Rutherford backscattering depth profile analysis can be a powerful tool for investigating the initial stages of glass corrosion

  16. Algorithms for the rapid simulation of Rutherford backscattering spectra

    Energy Technology Data Exchange (ETDEWEB)

    Doolittle, L.R.

    1985-06-01

    A computer program which simulates Rutherford backscattering spectra is currently in use at Cornell University and other institutions. Straggling and detector resolution are among the effects included. Samples are considered to be made up of a finite number of layers, each with uniform composition. The emphasis in the mathematics is on accuracy beyond that of iterated surface approximation methods. Thicker layers can thus be analyzed without a net loss in accuracy. The mathematical description of the sample can then have fewer layers, and fewer calculations are required. This paper provides estimates of the number of arithmetic operations used by the program for any simulation to demonstrate the tradeoffs between accuracy, computation time, and algorithm sophistication.

  17. Algorithms for the rapid simulation of Rutherford backscattering spectra

    International Nuclear Information System (INIS)

    Doolittle, L.R.

    1985-01-01

    A computer program which simulates Rutherford backscattering spectra is currently in use at Cornell University and other institutions. Straggling and detector resolution are among the effects included. Samples are considered to be made up of a finite number of layers, each with uniform composition. The emphasis in the mathematics is on accuracy beyond that of iterated surface approximation methods. Thicker layers can thus be analyzed without a net loss in accuracy. The mathematical description of the sample can then have fewer layers, and fewer calculations are required. This paper provides estimates of the number of arithmetic operations used by the program for any simulation to demonstrate the tradeoffs between accuracy, computation time, and algorithm sophistication. (orig.)

  18. Space plasma physics at the Rutherford Appleton Laboratory

    International Nuclear Information System (INIS)

    Bryant, D.A.; Bingham, R.; Edwards, T.; Hall, D.S.; Ward, A.K.

    1984-03-01

    The Rutherford Appleton Laboratory (RAL) is contributing instruments and a spacecraft to several imminent and excitingly new explorations of the plasma phenomena arising from the interaction between the solar wind and the Earth, and the solar wind and a comet. The projects in which the Laboratory is engaged, in collaboration with university and other research groups in the UK and abroad, include the AMPTE mission, which will trace the flow of particles injected into the solar wind, the GIOTTO encounter with comet Halley, the VIKING exploration of the generation of the aurora, and the CRRES and ISTP missions to clarify the structure and dynamics of the Earth's magnetosphere. These projects are outlined, together with the results of recent studies of particle acceleration and pulsations in the aurora. (author)

  19. Using Rutherford Backscattering Spectroscopy to Characterize Targets for MTW

    Science.gov (United States)

    Brown, Gunnar; Stockler, Barak; Ward, Ryan; Freeman, Charlie; Padalino, Stephen; Stillman, Collin; Ivancic, Steven; Reagan, S. P.; Sangster, T. C.

    2017-10-01

    A study is underway to determine the composition and thickness of targets used at the Multiterawatt (MTW) laser facility at the Laboratory for Laser Energetics (LLE) using Rutherford backscattering spectroscopy (RBS). In RBS, an ion beam is incident on a sample and the scattered ions are detected with a surface barrier detector. The resulting energy spectra of the scattered ions can be analyzed to determine important parameters of the target including elemental composition and thickness. Proton, helium and deuterium beams from the 1.7 MV Pelletron accelerator at SUNY Geneseo have been used to characterize several different targets for MTW, including CH and aluminum foils of varying thickness. RBS spectra were also obtained for a cylindrical iron buried-layer target with aluminum dopant which was mounted on a silicon carbide stalk. The computer program SIMNRA is used to analyze the spectra. This work was funded in part by a Grant from the DOE through the Laboratory for Laser Energetics.

  20. X-ray absorption spectroscopy study of the LixFePO4 cathode during cycling using a novel electrochemical in situ reaction cell

    International Nuclear Information System (INIS)

    Deb, A.; Bergmann, U.; Cairns, E.L.; California Univ., Berkeley, CA; Cramer, S.P.; California Univ., Davis, CA

    2004-01-01

    The extraction and insertion of lithium in LiFePO 4 has been investigated in practical Li-ion intercalation electrodes for Li-ion batteries using Fe K-edge X-ray absorption spectroscopy (XAS). A versatile electrochemical in situ reaction cell was utilized, specifically designed for long-term X-ray experiments on battery electrodes during the lithium-extraction/insertion process in electrode materials for Li-ion batteries. The electrode contained about 7.7 mg of LiFePO 4 on a 20 μm-thick Al foil. In order to determine the charge compensation mechanism and structural perturbations occurring in the system during cycling, in situ X-ray absorption fine-structure spectroscopy (XAFS) measurements were conducted on the cell at a moderate rate using typical Li-ion battery operating voltages (3.0-4.1 V versus Li/Li + ).XAS studies of the LiFePO 4 electrode measured at the initial state (LiFePO 4 ) showed iron to be in the Fe(II) state corresponding to the initial state (0.0 mAh) of the battery, whereas in the delithiated state (FePO 4 ) iron was found to be in the FE(III) state corresponding to the final charged state (3 m Ah) of the battery. The X-ray absorption near-edge structure (XANES) region of the XAS spectra revealed a high-spin configuration for the two states [Fe(II), d 6 and Fe(III), d 5 ]. The XAFS data analysis confirmed that the olivine structure of the LeFePO 4 and FePO 4 is retained by the electrodes, which is in agreement with the X-ray diffraction observations on these compounds. The XAFS data that were collected continuously during cycling revealed details about the response of the cathode to Li insertion and extraction. These measurements on the LiFePO 4 cathode show that the material retains good structural short-range order leading to superior cycling

  1. Electrochemical and in-situ Surface-Enhanced Raman Spectroscopic (SERS) study of passive films formed on low-carbon steel in highly alkaline environments

    Science.gov (United States)

    Mancio, Mauricio

    In reinforced concrete, a passive layer forms because of the alkaline conditions in the pores of the cement paste, where large concentrations of hydroxides create a solution with pH typically between 12 and 14. The corrosion resistance of the material depends on the characteristics and integrity of the passive film; however, currently very limited information is available about the passive films formed on carbon steel under such conditions. This work presents an electrochemical and in-situ Surface-Enhanced Raman Spectroscopic (SERS) study of passive films formed on low-carbon steel in highly alkaline environments. More specifically, the study focuses on the characterization of the films formed on ASTM A36 steel reinforcing bar exposed to aqueous solutions that aim to reproduce the chemistry of the environment typically found within the cement paste. Electrochemical techniques such as cyclic potentiodynamic polarization curves, galvanostatic cathodic polarization and linear polarization resistance were employed, in addition to in-situ Surface Enhanced Raman Spectroscopy (SERS). The experimental setup was built in a way that SERS experiments could be performed simultaneously with potentiodynamic polarization curves, enabling a detailed analysis of the formation and reduction of the surface films as a function of applied potential. Three solutions with different pH levels were used for the polarization and SERS experiments, namely 0.55M KOH + 0.16M NaOH ([OH-]=0.71), 0.08M KOH + 0.02M NaOH ([OH-]=0.10) and 0.008M KOH + 0.002M NaOH ([OH-]=0.01). Additional NaOH solutions in which the pH was varied from 13 to 9 and the ionic strength from 10 -5 to 10-1 were prepared for a pilot study using linear polarization resistance. Results show that the features observed in the cyclic potentiodynamic polarization curves correlated well with the potential arrests observed in the GCP plots as well as with the changes observed in the SERS spectra, providing valuable information about

  2. In Situ Scanning Tunneling Microscopy Topography Changes of Gold (111) in Aqueous Sulfuric Acid Produced by Electrochemical Surface Oxidation and Reduction and Relaxation Phenomena

    Science.gov (United States)

    Pasquale, M. A.; Nieto, F. J. Rodríguez; Arvia, A. J.

    The electrochemical formation and reduction of O-layers on gold (111) films in 1 m sulfuric acid under different potentiodynamic routines are investigated utilizing in situ scanning tunneling microscopy. The surface dynamics is interpreted considering the anodic and cathodic reaction pathways recently proposed complemented with concurrent relaxation phenomena occurring after gold (111) lattice mild disruption (one gold atom deep) and moderate disruption (several atoms deep). The dynamics of both oxidized and reduced gold topographies depends on the potentiodynamic routine utilized to form OH/O surface species. The topography resulting from a mild oxidative disruption is dominated by quasi-2D holes and hillocks of the order of 5 nm, involving about 500-600 gold atoms each, and their coalescence. A cooperative turnover process at the O-layer, in which the anion ad-layer and interfacial water play a key role, determines the oxidized surface topography. The reduction of these O-layers results in gold clusters, their features depending on the applied potential routine. A moderate oxidative disruption produces a surface topography of hillocks and holes several gold atoms high and deep, respectively. The subsequent reduction leads to a spinodal gold pattern. Concurrent coalescence appears to be the result of an Ostwald ripening that involves the surface diffusion of both gold atoms and clusters. These processes produce an increase in surface roughness and an incipient gold faceting. The dynamics of different topographies can be qualitatively explained employing the arguments from colloidal science theory. For 1.1 V ≤ E ≅ Epzc weak electrostatic repulsions favor gold atom/cluster coalescence, whereas for E < Epzc the attenuated electrostatic repulsions among gold surfaces stabilize small clusters over the substrate producing string-like patterns.

  3. Reactivity at the film/solution interface of ex situ prepared bismuth film electrodes: A scanning electrochemical microscopy (SECM) and atomic force microscopy (AFM) investigation

    International Nuclear Information System (INIS)

    Hocevar, Samo B.; Daniele, Salvatore; Bragato, Carlo; Ogorevc, Bozidar

    2007-01-01

    Bismuth film electrodes (BiFEs) prepared ex situ with and without complexing bromide ions in the modification solution were investigated using scanning electrochemical microscopy (SECM) and atomic force microscopy (AFM). A feedback mode of the SECM was employed to examine the conductivity and reactivity of a series of thin bismuth films deposited onto disk glassy carbon substrate electrodes (GCEs) of 3 mm in diameter. A platinum micro-electrode (φ = 25 μm) was used as the SECM tip, and current against tip/substrate distance was recorded in solutions containing either Ru(NH 3 ) 6 3+ or Fe(CN) 6 4- species as redox mediators. With both redox mediators positive feedback approach curves were recorded, which indicated that the bismuth film deposition protocol associated with the addition of bromide ions in the modification solution did not compromise the conductivity of the bismuth film in comparison with that prepared without bromide. However, at the former Bi film a slight kinetic hindering was observed in recycling Ru(NH 3 ) 6 3+ , suggesting a different surface potential. On the other hand, the approach curves recorded by using Fe(CN) 6 4- showed that both types of the aforementioned bismuth films exhibited local reactivity with the oxidised form of the redox mediator, and that bismuth film obtained with bromide ions exhibited slightly lower reactivity. The use of SECM in the scanning operation mode allowed us to ascertain that the bismuth deposits were uniformly distributed across the whole surface of the glassy carbon substrate electrode. Comparative AFM measurements corroborated the above findings and additionally revealed a denser growth of smaller bismuth crystals over the surface of the substrate electrode in the presence of bromide ions, while the crystals were bigger but sparser in the absence of bromide ions in the modification solution

  4. The electrochemical interface of Ag(111) in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid—A combined in-situ scanning probe microscopy and impedance study

    International Nuclear Information System (INIS)

    Li, Mian-Gang; Chen, Li; Zhong, Yun-Xin; Chen, Zhao-Bin; Yan, Jia-Wei; Mao, Bing-Wei

    2016-01-01

    The electrochemical interface between Ag(111) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMITFSI) has been investigated by in-situ scanning probe microscopy (SPM) and electrochemical impedance spectroscopy (EIS). In-situ scanning tunneling microscopy (STM) characterization has revealed that there is neither surface reconstruction nor strong adsorption of EMITFSI on Ag(111) surface so that EIS investigation can be fulfilled under well-defined surface condition and in the absence of pseudo capacitive process. In-situ atom force microscopy (AFM) force curve measurements further disclose that there exists five layered structures near and normal to the surface, among them three layered structures being charged and forming the electric double layer (EDL) of the interface. An electric equivalent circuit is proposed, which comprises two serial parallel branches involving the innermost layered structure and the next two layered structures in the EDL, respectively. The inner layer circuit is given by a constant phase element (CPE) in parallel to a resistor, while the outer layer circuit is given by a capacity in parallel with a resistor-Warburg element branch. Slow response is observed for the inner layer, which is attributed to the hindrance of reorientation and/or redistribution of ions in the more ordered and robust inner layer region. The inner layer capacitance and outer layer capacitance have opposing potential dependence, and the resultant double layer capacitance shows weak potential dependence.

  5. Quench tests and FEM analysis of Nb3Al Rutherford cables and small racetrack magnets

    International Nuclear Information System (INIS)

    Yamada, R.; Kikuchi, A.; Chlachidze, G.; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Kashikin, V.V.; Kotelnikov, S.; Lamm, M.; Novitski, I.

    2008-01-01

    In collaboration between NIMS and Fermilab, we have made copper stabilized Nb 3 Al Rutherford cables, using Nb-matrixed and Ta-matrixed strands. First these cables were investigated at high current in low self field using a flux pump. Using these Rutherford cables, we built and tested small racetrack magnets. The magnet made with the Nb-matrixed strand showed the flux jump instability in low field. The small racetrack magnet wound with the Ta-matrixed Nb 3 Al Rutherford cable was very stable at 4.5 K operation without any instability, as well as at 2.2 K operation. With the successful operation of the small racetrack magnet up to its short sample data, the feasibility of the Nb 3 Al strand and its Rutherford cable for their application to high field magnets is established. The characteristics of Nb 3 Al Rutherford cable is compared with that of the Nb 3 Sn Rutherford cable and the advantages of Nb 3 Al Rutherford cable are discussed

  6. Quench tests and FEM analysis of Nb3Al Rutherford cables and small racetrack magnets

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, R.; Kikuchi, A.; Chlachidze, G.; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Kashikin, V.V.; Kotelnikov, S.; Lamm, M.; Novitski, I.; /Fermilab /Tsukuba Magnet Lab. /KEK, Tsukuba

    2008-12-01

    In collaboration between NIMS and Fermilab, we have made copper stabilized Nb{sub 3}Al Rutherford cables, using Nb-matrixed and Ta-matrixed strands. First these cables were investigated at high current in low self field using a flux pump. Using these Rutherford cables, we built and tested small racetrack magnets. The magnet made with the Nb-matrixed strand showed the flux jump instability in low field. The small racetrack magnet wound with the Ta-matrixed Nb{sub 3}Al Rutherford cable was very stable at 4.5 K operation without any instability, as well as at 2.2 K operation. With the successful operation of the small racetrack magnet up to its short sample data, the feasibility of the Nb{sub 3}Al strand and its Rutherford cable for their application to high field magnets is established. The characteristics of Nb{sub 3}Al Rutherford cable is compared with that of the Nb{sub 3}Sn Rutherford cable and the advantages of Nb{sub 3}Al Rutherford cable are discussed.

  7. In situ synthesis, electrochemical and quantum chemical analysis of an amino acid-derived ionic liquid inhibitor for corrosion protection of mild steel in 1M HCl solution

    International Nuclear Information System (INIS)

    Kowsari, E.; Arman, S.Y.; Shahini, M.H.; Zandi, H.; Ehsani, A.; Naderi, R.; PourghasemiHanza, A.; Mehdipour, M.

    2016-01-01

    Highlights: • Electrochemical analysis of effectiveness of an amino acid-derived ionic liquid inhibitor. • Quantum chemical analysis of effectiveness of an amino acid-derived ionic liquid inhibitor. • Finding correlation between electrochemical analysis and quantum chemical analysis. - Abstract: In this study, an amino acid-derived ionic liquid inhibitor, namely tetra-n-butyl ammonium methioninate, was synthesized and the role this inhibitor for corrosion protection of mild steel exposed to 1.0 M HCl was investigated using electrochemical, quantum and surface analysis. By taking advantage of potentiodynamic polarization, the inhibitory action of tetra-n-butyl ammonium methioninate was found to be mainly mixed-type with dominant anodic inhibition. The effectiveness of the inhibitor was also indicated using electrochemical impedance spectroscopy (EIS). Moreover, to provide further insight into the mechanism of inhibition, electrochemical noise (EN) and quantum chemical calculations of the inhibitor were performed.

  8. Improvement of sensitivity in high-resolution Rutherford backscattering spectroscopy

    International Nuclear Information System (INIS)

    Hashimoto, H.; Nakajima, K.; Suzuki, M.; Kimura, K.; Sasakawa, K.

    2011-01-01

    The sensitivity (limit of detection) of high-resolution Rutherford backscattering spectroscopy (HRBS) is mainly determined by the background noise of the spectrometer. There are two major origins of the background noise in HRBS, one is the stray ions scattered from the inner wall of the vacuum chamber of the spectrometer and the other is the dark noise of the microchannel plate (MCP) detector which is commonly used as a focal plane detector of the spectrometer in HRBS. In order to reject the stray ions, several barriers are installed inside the spectrometer and a thin Mylar foil is mounted in front of the detector. The dark noise of the MCP detector is rejected by the coincidence measurement with the secondary electrons emitted from the Mylar foil upon the ion passage. After these improvements, the background noise is reduced by a factor of 200 at a maximum. The detection limit can be improved down to 10 ppm for As in Si at a measurement time of 1 h under ideal conditions.

  9. Rutherford backscatter measurements on tellurium and cadmium implanted gallium arsenide

    International Nuclear Information System (INIS)

    Bell, E.C.

    1979-10-01

    The primary aim of the work described in this thesis was to examine implanted layers of the dopant impurities cadmium and tellurium in gallium arsenide and to experimentally assess their potential for producing electrically active layers. 1.5 MeV Rutherford backscattering measurements of lattice disorder and atom site location have been used to assess post implantation thermal annealing and elevated temperature implantations to site the dopant impurities on either gallium or arsenic lattice positions in an otherwise undisordered lattice. Pyrolitically deposited silicon dioxide was used as an encapsulant to prevent thermal dissociation of the gallium arsenide during annealing. It has been shown that high doses of cadmium and tellurium can be implanted without forming amorphous lattice disorder by heating the gallium arsenide during implantation to relatively low temperatures. Atom site location measurements have shown that a large fraction of a tellurium dose implanted at 180 0 C is located on or near lattice sites. Channeled backscatter measurements have shown that there is residual disorder or lattice strain in gallium arsenide implanted at elevated temperatures. The extent of this disorder has been shown to depend on the implanted dose and implantation temperature. The channeling effect has been used to measure annealing of the disorder. (author)

  10. IN10 data processing on the Rutherford Laboratory IBM 360

    International Nuclear Information System (INIS)

    Howells, W.S.; Anderson, I.S.

    1978-09-01

    This report described modifications made to some of the IN10 spectrometer data analysis programs in use at the Institut Laue-Langevin, Grenoble in order that they may be used on the IBM 360 system at the Rutherford Laboratory. Fuller descriptions of the programs are contained in the original manual (Users' Guide to Processing IN10 Data by W S Howells, ILL Internal Report (1977). Programs discussed are: a) FAST. A program for fitting Lorentzians to raw data. This is a modification of the ILL programs FAST and HAST. b) SUPER. A convolution program for fitting quasielastic peaks to corrected data. This program is based on the ILL program SUPER. c) SAND. A convolution program for fitting an elastic and a Quasielastic peak to data. This is similar to the ILL version of SAND. d) SWIFT. A program similar to SUPER but faster. It is based on the ILL program CONTTY. Before using these programs users must consult the NBRU in order to obtain an account number and a user identifier. (U.K.)

  11. Interstrand contact resistances of Bi-2212 Rutherford cables for SMES

    International Nuclear Information System (INIS)

    Kawagoe, A.; Kawabata, Y.; Sumiyoshi, F.; Nagaya, S.; Hirano, N.

    2006-01-01

    Interstrand contact resistances of Bi-2212 Rutherford cables for SMES coils were evaluated from a comparison between measured data and 2D-FEM analyses on interstrand coupling losses in these cables. The cables were composed of 30 non-twisted Bi-2212 strands with a diameter of 0.81 mm and a cable twist pitch of 90 mm. Three samples were measured; one of them had NiCr cores and the others had no cores. One of the latter two samples repeatedly experienced bending. The interstrand coupling losses were measured in liquid helium for the straight samples under transverse ac ripple magnetic fields superposed on dc bias magnetic fields. The transverse magnetic field was applied to the samples in directions both perpendicular and parallel to the flat face of the cable. The effect of the bending on the interstrand coupling losses could be neglected for the non-cored samples. The interstrand coupling losses of NiCr cored sample decreased by about 30% compared with the non-cored samples, in case the direction of the transverse magnetic fields applied to the cable is perpendicular to the flat face of the cable. Using these results and 2D-FEM analyses, taking into account that interstrand contact conditions vary from the center to the edge in the cross-section of cables, gave us the conclusion that the between side-by-side strands contact with metallurgical bond only in both edges of the cables

  12. Interstrand contact resistances of Bi-2212 Rutherford cables for SMES

    Science.gov (United States)

    Kawagoe, A.; Kawabata, Y.; Sumiyoshi, F.; Nagaya, S.; Hirano, N.

    2006-10-01

    Interstrand contact resistances of Bi-2212 Rutherford cables for SMES coils were evaluated from a comparison between measured data and 2D-FEM analyses on interstrand coupling losses in these cables. The cables were composed of 30 non-twisted Bi-2212 strands with a diameter of 0.81 mm and a cable twist pitch of 90 mm. Three samples were measured; one of them had NiCr cores and the others had no cores. One of the latter two samples repeatedly experienced bending. The interstrand coupling losses were measured in liquid helium for the straight samples under transverse ac ripple magnetic fields superposed on dc bias magnetic fields. The transverse magnetic field was applied to the samples in directions both perpendicular and parallel to the flat face of the cable. The effect of the bending on the interstrand coupling losses could be neglected for the non-cored samples. The interstrand coupling losses of NiCr cored sample decreased by about 30% compared with the non-cored samples, in case the direction of the transverse magnetic fields applied to the cable is perpendicular to the flat face of the cable. Using these results and 2D-FEM analyses, taking into account that interstrand contact conditions vary from the center to the edge in the cross-section of cables, gave us the conclusion that the between side-by-side strands contact with metallurgical bond only in both edges of the cables.

  13. Development of scaling rules for Rutherford type superconducting cables

    International Nuclear Information System (INIS)

    Royet, J.M.; Scanlan, R.M.

    1991-01-01

    During the R and D phase of the Superconducting Supercollider (SSC) program, LBL was responsible for establishing the parameters for cables used in SSC dipole and quadrupole magnets. In addition, LBL has collaborated with Fermi National Accelerator Laboratory on the design and fabrication of a new cable for use in the Low Beta Quadrupoles. As a result of the development work on these and other cables, we have arrived a set of scaling rules which provide guidelines for choosing the parameters for a wide range of superconducting cables. These parameters include strand size, strand number, keystone angle, percent compaction, cable pitch and compacted cable dimensions. In addition, we have defined the tolerance ranges for the key cable manufacturing parameters such as mandrel size and shape, strand tension, and Turkshead temperature control. In this paper, the authors present the results on cables ranging from 8 strands to 36 strands of 0.65mm wire and from 8 strands to 30 strands of 0.8mm wire. The authors use these results to demonstrate the application of the scaling rules for Rutherford-type cable

  14. Development of scaling rules for Rutherford type superconducting cables

    International Nuclear Information System (INIS)

    Royet, J.M.; Scanlan, R.M.

    1990-09-01

    During the R ampersand D phase of the Superconducting Supercollider (SSC) program, LBL was responsible for establishing the parameters for cables used in SSC dipole and quadrupole magnets. In addition, the design and fabrication of a new cable for use in the Low Beta Quadrupoles. As a result of the development work on these and other cables, we have arrived a set of scaling rules which provide guidelines for choosing the parameters for a wide range of superconducting cables. These parameters include strand size, strand number, keystone angle, percent compaction, cable pitch and compacted cable dimensions. In addition, we have defined the tolerance ranges for the key cable manufacturing parameters such as mandrel size and shape, stand tension, and Turkshead temperature control. In this paper, we present the results on cables ranging from 8 strands to 36 strands of 0.65mm wire and from 8 strands to 30 strands of 0.8mm wire. We use these results to demonstrate the application of the scaling rules for Rutherford-type cable

  15. Electrochemically assisted organosol method for Pt-Sn nanoparticle synthesis and in situ deposition on graphite felt support: Extended reaction zone anodes for direct ethanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Lycke, Derek R.; Gyenge, Elod L. [Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC (Canada)

    2007-03-20

    Two electrochemically assisted variants of the Boenneman organosol method were developed for Pt-Sn nanoparticle synthesis and in situ deposition on graphite felt electrodes (e.g. thickness up to 2 mm). Tetraoctylammonium triethylhydroborate N(C{sub 8}H{sub 17}){sub 4}BH(C{sub 2}H{sub 5}){sub 3} was employed as colloid stabilizer and reductant dissolved in tetrahydrofuran (THF). The role of the electric field at a low deposition current density of 1.25 mA cm{sup -2} was mainly electrophoretic causing the migration and adsorption of N(C{sub 8}H{sub 17}){sub 4}BH(C{sub 2}H{sub 5}){sub 3} on the graphite felt surface where it reduced the PtCl{sub 2}-SnCl{sub 2} mixture. Faradaic electrodeposition was detected mostly for Sn. Typical Pt-Sn loadings were between 0.4 and 0.9 mg cm{sup -2} depending on the type of pre-deposition exposure of the graphite felt: surfactant-adsorption and metal-adsorption variant, respectively. The catalyst surface area and Pt:Sn surface area ratio was determined by anodic striping of an underpotential deposited Cu monolayer. The two deposition variants gave different catalyst surfaces: total area 233 and 76 cm{sup 2} mg{sup -1}, with Pt:Sn surface area ratio of 3.5:1 and 7.7:1 for surfactant and metal adsorption, respectively. Regarding electrocatalysis of ethanol oxidation, voltammetry and chronopotentiometry studies corroborated by direct ethanol fuel cell experiments using 0.5 M H{sub 2}SO{sub 4} as electrolyte, showed that due to a combination of higher catalyst load and Pt:Sn surface ratio, the graphite felt anodes prepared by the metal-adsorption variant gave better performance. The catalyzed graphite felt provided an extended reaction zone for ethanol electrooxidation and it gave higher catalyst mass specific peak power outputs compared to literature data obtained using gas diffusion anodes with carbon black supported Pt-Sn nanoparticles. (author)

  16. Characterization of nuclear physics targets using Rutherford backscattering and particle induced X-ray emission

    International Nuclear Information System (INIS)

    Rubehn, T.; Wozniak, G.J.; Phair, L.; Moretto, L.G.; Yu, K.M.

    1997-01-01

    Rutherford backscattering and particle induced X-ray emission have been utilized to precisely characterize targets used in nuclear fission experiments. The method allows for a fast and non-destructive determination of target thickness, homogeneity and element composition. (orig.)

  17. Sensitive electrochemical determination of α-fetoprotein using a glassy carbon electrode modified with in-situ grown gold nanoparticles, graphene oxide and MWCNTs acting as signal amplifiers

    International Nuclear Information System (INIS)

    Gao, Yan-Sha; Zhu, Xiao-Fei; Yang, Tao-Tao; Xu, Jing-Kun; Zhang, Kai-Xin; Lu, Li-Min

    2015-01-01

    The authors describe an electrochemical immunoassay for α-fetoprotein (α-FP) using a glassy carbon electrode (GCE) modified with a nanocomposite made from gold nanoparticles, graphene oxide and multi-walled carbon nanotubes (AuNPs/GO-MWCNTs) and acting as a signal amplification matrix. The nanocomposite was synthesized in a one-pot redox reaction between GO and HAuCl 4 without using an additional reductant. The stepwise assembly of the immunoelectrode was characterized by means of cyclic voltammetry and electrochemical impedance spectroscopy. The interaction of antigen and antibody on the surface of the electrode creates a barrier for electrons and causes retarded electron transfer, this resulting in decreased signals in differential pulse voltammetry of hexacyanoferrate which is added as an electrochemical probe. Using this strategy and by working at a potential of 0.2 V (vs. SCE), a wide analytical range (0.01 - 100 ng∙mL -1 ) is covered. The correlation coefficient is 0.9929, and the limit of detection is as low as 3 pg∙mL -1 at a signal-to-noise ratio of 3. This electrochemical immunoassay combines the specificity of an immunological detection scheme with the sensitivity of an electrode modified with AuNPs and GO-MWCNTs. (author)

  18. Solid-state reactivity explored in situ by synchrotron radiation on single crystals: from SrFeO2.5 to SrFeO3 via electrochemical oxygen intercalation

    International Nuclear Information System (INIS)

    Maity, A; Dutta, R; Penkala, B; Ceretti, M; Letrouit-Lebranchu, A; Perichon, A; Paulus, W; Chernyshov, D; Piovano, A; Bossak, A; Meven, M

    2015-01-01

    In this study we demonstrate the feasibility of following up a chemical reaction by single crystal x-ray (synchrotron) diffraction under operando conditions, carried out in a specially designed electrochemical cell mounted on the BM01A at the European Synchrotron Radiation Facility (ESRF). We investigated in detail the electrochemical oxidation of SrFeO 2.5 to SrFeO 3 on a spherical single crystal of 70 µm diameter by in situ diffraction at an ambient temperature. Complete data sets were obtained by scanning the whole reciprocal space using a 2M Pilatus detector, resulting in 3600 frames with a resolution of 0.1° per data set, each obtained in 18 min. The crystal was mounted in a specially designed electrochemical cell with 1N KOH used as the electrolyte. During the electrochemical oxidation, the reaction proceeds following the phase sequence SrFeO 2.5 /SrFeO 2.75 /SrFeO 2.875 /SrFeO 3 , structurally accompanied by establishing a complex series of long-range oxygen vacancy ordering, which gets instantly organized at ambient temperature. The topotactic reaction pathway is discussed in terms of the evolution of the twin domain structure. The formation of SrFeO 2.875 is accompanied by the formation of diffuse streaks along the [1 0 0]-direction of the perovskite cell, reaching high d-spacings. The diffuse streaks are discussed and are thought to originate from a modified twin structure induced by the SrFeO 2.75 to SrFeO 2.875 transition, and the associated changes in the domain structure, developed during the oxygen intercalation. We equally analysed and discussed in detail the twin structure of all the title compounds. We confirm the ground state of SrFeO 2.5 is able to adopt the Imma space group symmetry, showing stacking faults of the tetrahedral layers along the stacking axis of the brownmillerite unit cell, indicated by the 1D diffuse rods. We showed that in situ single crystal diffraction has huge potential in the study of non-stoichiometric compounds

  19. Solid-state reactivity explored in situ by synchrotron radiation on single crystals: from SrFeO2.5 to SrFeO3 via electrochemical oxygen intercalation

    Science.gov (United States)

    Maity, A.; Dutta, R.; Penkala, B.; Ceretti, M.; Letrouit-Lebranchu, A.; Chernyshov, D.; Perichon, A.; Piovano, A.; Bossak, A.; Meven, M.; Paulus, W.

    2015-12-01

    In this study we demonstrate the feasibility of following up a chemical reaction by single crystal x-ray (synchrotron) diffraction under operando conditions, carried out in a specially designed electrochemical cell mounted on the BM01A at the European Synchrotron Radiation Facility (ESRF). We investigated in detail the electrochemical oxidation of SrFeO2.5 to SrFeO3 on a spherical single crystal of 70 µm diameter by in situ diffraction at an ambient temperature. Complete data sets were obtained by scanning the whole reciprocal space using a 2M Pilatus detector, resulting in 3600 frames with a resolution of 0.1° per data set, each obtained in 18 min. The crystal was mounted in a specially designed electrochemical cell with 1N KOH used as the electrolyte. During the electrochemical oxidation, the reaction proceeds following the phase sequence SrFeO2.5/SrFeO2.75/SrFeO2.875/SrFeO3, structurally accompanied by establishing a complex series of long-range oxygen vacancy ordering, which gets instantly organized at ambient temperature. The topotactic reaction pathway is discussed in terms of the evolution of the twin domain structure. The formation of SrFeO2.875 is accompanied by the formation of diffuse streaks along the [1 0 0]-direction of the perovskite cell, reaching high d-spacings. The diffuse streaks are discussed and are thought to originate from a modified twin structure induced by the SrFeO2.75 to SrFeO2.875 transition, and the associated changes in the domain structure, developed during the oxygen intercalation. We equally analysed and discussed in detail the twin structure of all the title compounds. We confirm the ground state of SrFeO2.5 is able to adopt the Imma space group symmetry, showing stacking faults of the tetrahedral layers along the stacking axis of the brownmillerite unit cell, indicated by the 1D diffuse rods. We showed that in situ single crystal diffraction has huge potential in the study of non-stoichiometric compounds under operando

  20. Evolution of the Corrosion Morphology on AZ31B Tracked Electrochemically and by In Situ Microscopy in Chloride-Containing Media

    Science.gov (United States)

    Melia, M. A.; Cain, T. W.; Briglia, B. F.; Scully, J. R.; Fitz-Gerald, J. M.

    2017-11-01

    The evolution of open-circuit corrosion morphology as a function of immersion time for Mg alloy AZ31B in 0.6-M NaCl solution was investigated. Real-time optical microscopy accompanied by simultaneous electrochemical characterization was used to characterize the filiform corrosion (FFC) of AZ31B. Specifically, the behavior of propagating corrosion filaments on the metal surface was observed, and correlations among polarization resistance, filament propagation rates, open-circuit potential, and active coverage of local corrosion sites were revealed. Three distinct stages of corrosion were observed in 0.6-M NaCl. An initial passive region, during which a slow potential rise occurred (termed stage I), a second FFC region (termed stage II) with shallow penetrating, distinct filaments, and a final FFC region (termed stage III) with deeper penetrating filaments, aligned to form a linear front. The electrochemical properties of each stage are discussed, providing insights into the penetration rates and corrosion model.

  1. Depth distribution of damage obtained by Rutherford backscattering combined with channeling

    International Nuclear Information System (INIS)

    Behrisch, R.; Roth, J.

    1976-01-01

    The different approaches to determine depth distributions of damage in solids by Rutherford backscattering combined with channeling are reviewed. These methods are best applicable for damage introduced by ion bombardment. Most investigations up to now have been done at semiconductors where the ion damage seems to be more suited for analysis by this method than the ion damage in metals. The quantity used for getting depth profiles is mostly the increase in minimum yields in single alignment Rutherford backscattering, while only few measurements have been done at double alignment and at slight misalignment, i.e., the sides of the channeling dips

  2. Electroactive crown ester-Cu2+ complex with in-situ modification at molecular beacon probe serving as a facile electrochemical DNA biosensor for the detection of CaMV 35s.

    Science.gov (United States)

    Zhan, Fengping; Liao, Xiaolei; Gao, Feng; Qiu, Weiwei; Wang, Qingxiang

    2017-06-15

    A novel electrochemical DNA biosensor has been facilely constructed by in-situ assembly of electroactive 4'-aminobenzo-18-crown-6-copper(II) complex (AbC-Cu 2+ ) on the free terminal of the hairpin-structured molecule beacon. The 3'-SH modified molecule beacon probe was first immobilized on the gold electrode (AuE) surface through self-assembly chemistry of Au-S bond. Then the crow ester of AbC was covalently coupled with 5'-COOH on the molecule beacon, and served as a platform to attach the Cu 2+ by coordination with ether bond (-O-) of the crown cycle. Thus, an electroactive molecule beacon-based biosensing interface was constructed. In comparison with conventional methods for preparation of electroactive molecule beacon, the approach presented in this work is much simpler, reagent- and labor-saving. Selectivity study shows that the in-situ fabricated electroactive molecule beacon remains excellent recognition ability of pristine molecule beacon probe to well differentiate various DNA fragments. The target DNA can be quantatively determined over the range from 0.10pM to 0.50nM. The detection limit of 0.060pM was estimated based on signal-to-noise ratio of 3. When the biosensor was applied for the detection cauliflower mosaic virus 35s (CaMV 35s) in soybean extraction samples, satisfactory results are achieved. This work opens a new strategy for facilely fabricating electrochemical sensing interface, which also shows great potential in aptasensor and immurosensor fabrication. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Improved electrochemical properties of morphology-controlled titania/titanate nanostructures prepared by in-situ hydrothermal surface modification of self-source Ti substrate for high-performance supercapacitors.

    Science.gov (United States)

    Banerjee, Arghya Narayan; Anitha, V C; Joo, Sang W

    2017-10-16

    Ti substrate surface is modified into two-dimensional (2D) TiO 2 nanoplatelet or one-dimensional (1D) nanorod/nanofiber (or a mixture of both) structure in a controlled manner via a simple KOH-based hydrothermal technique. Depending on the KOH concentration, different types of TiO 2 nanostructures (2D platelets, 1D nanorods/nanofibers and a 2D+1D mixed sample) are fabricated directly onto the Ti substrate surface. The novelty of this technique is the in-situ modification of the self-source Ti surface into titania nanostructures, and its direct use as the electrochemical microelectrode without any modifications. This leads to considerable improvement in the interfacial properties between metallic Ti and semiconducting TiO 2 . Since interfacial states/defects have profound effect on charge transport properties of electronic/electrochemical devices, therefore this near-defect-free interfacial property of Ti-TiO 2 microelectrode has shown high supercapacitive performances for superior charge-storage devices. Additionally, by hydrothermally tuning the morphology of titania nanostructures, the electrochemical properties of the electrodes are also tuned. A Ti-TiO 2 electrode comprising of a mixture of 2D-platelet+1D-nanorod structure reveals very high specific capacitance values (~7.4 mF.cm -2 ) due to the unique mixed morphology which manifests higher active sites (hence, higher utilization of the active materials) in terms of greater roughness at the 2D-platelet structures and higher surface-to-volume-ratio in the 1D-nanorod structures.

  4. Covalent attachment of pyridine-type molecules to glassy carbon surfaces by electrochemical reduction of in situ generated diazonium salts. Formation of ruthenium complexes on ligand-modified surfaces

    International Nuclear Information System (INIS)

    Yesildag, Ali; Ekinci, Duygu

    2010-01-01

    In this study, pyridine, quinoline and phenanthroline molecules were covalently bonded to glassy carbon (GC) electrode surfaces for the first time using the diazonium modification method. Then, the complexation ability of the modified films with ruthenium metal cations was investigated. The derivatization of GC surfaces with heteroaromatic molecules was achieved by electrochemical reduction of the corresponding in situ generated diazonium salts. X-ray photoelectron spectroscopy (XPS) was used to confirm the attachment of heteroaromatic molecules to the GC surfaces and to determine the surface concentration of the films. The barrier properties of the modified GC electrodes were studied in the presence of redox probes such as Fe(CN) 6 3- and Ru(NH 3 ) 6 3+ by cyclic voltammetry. Additionally, the presence of the resulting organometallic films on the surfaces was verified by XPS after the chemical transformation of the characterized ligand films to the ruthenium complex films. The electrochemical behavior of these films in acetonitrile solution was investigated using voltammetric methods, and the surface coverage of the organometallic films was determined from the reversible metal-based Ru(II)/Ru(III) oxidation waves.

  5. Covalent attachment of pyridine-type molecules to glassy carbon surfaces by electrochemical reduction of in situ generated diazonium salts. Formation of ruthenium complexes on ligand-modified surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Yesildag, Ali [Department of Chemistry, Faculty of Sciences, Atatuerk University, 25240 Erzurum (Turkey); Ekinci, Duygu, E-mail: dekin@atauni.edu.t [Department of Chemistry, Faculty of Sciences, Atatuerk University, 25240 Erzurum (Turkey)

    2010-09-30

    In this study, pyridine, quinoline and phenanthroline molecules were covalently bonded to glassy carbon (GC) electrode surfaces for the first time using the diazonium modification method. Then, the complexation ability of the modified films with ruthenium metal cations was investigated. The derivatization of GC surfaces with heteroaromatic molecules was achieved by electrochemical reduction of the corresponding in situ generated diazonium salts. X-ray photoelectron spectroscopy (XPS) was used to confirm the attachment of heteroaromatic molecules to the GC surfaces and to determine the surface concentration of the films. The barrier properties of the modified GC electrodes were studied in the presence of redox probes such as Fe(CN){sub 6}{sup 3-} and Ru(NH{sub 3}){sub 6}{sup 3+} by cyclic voltammetry. Additionally, the presence of the resulting organometallic films on the surfaces was verified by XPS after the chemical transformation of the characterized ligand films to the ruthenium complex films. The electrochemical behavior of these films in acetonitrile solution was investigated using voltammetric methods, and the surface coverage of the organometallic films was determined from the reversible metal-based Ru(II)/Ru(III) oxidation waves.

  6. Influence of an extended fullerene cage: Study of chemical and electrochemical doping of C70 peapods by in situ raman spectroelectrochemistry

    Czech Academy of Sciences Publication Activity Database

    Kalbáč, Martin; Kavan, Ladislav; Zukalová, Markéta; Dunsch, L.

    2007-01-01

    Roč. 111, č. 3 (2007), s. 1079-1085 ISSN 1932-7447 R&D Projects: GA AV ČR IAA4040306; GA AV ČR KJB400400601; GA MŠk LC510 Institutional research plan: CEZ:AV0Z40400503 Keywords : electrochemistry * C70 peapods * in situ Raman spectroscopy Subject RIV: CG - Electrochemistry

  7. Synthesis of ZnO nanorods-Au nanoparticles hybrids via in-situ plasma sputtering-assisted method for simultaneous electrochemical sensing of ascorbic acid and uric acid

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Chao [College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Liu, Hongying, E-mail: liuhongying@hdu.edu.cn [College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210093 (China); Zhang, Dan; Yang, Chi [Department of Pharmacy, Nantong University, Nantong 226001 (China); Zhang, Mingzhen [College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China)

    2016-05-05

    In this study, ZnO nanorods-Au nanoparticles (ZnO NRs-Au NPs) hybrids were prepared using an in-situ plasma sputtering-assisted method without any template. Characterization results from scanning electron microscopy, high-resolution transmission electron microscopy, and energy dispersive X-ray spectroscopy showed that Au NPs are highly dispersed and tightly anchored on the surface of ZnO NRs. The size and surface coverage of Au NPs were well controlled by plasma sputtering time. Moreover, the hybrids exhibited excellent electrocatalytic properties towards oxidation of ascorbic acid (AA) and uric acid (UA) due to large surface area of Au NPs and ZnO NRs, and thus can be used as electrochemical sensors. Differential pulse voltammetry results showed that AA and UA could be detected simultaneously by ZnO NRs-Au NPs hybrids modified glassy carbon electrode. The linear ranges for AA and UA are 0.1 to 4 mM and 0.01 to 0.4 mM, respectively. The results suggest promising future applications in clinical diagnosis. - Highlights: • ZnO nanorods-Au nanoparticles were synthesized by in-situ plasma sputtering method. • Influence of sputtering time on the formation of Au nanoparticles was studied. • It exhibited a strong electrocatalytic activity toward the oxidation of ascorbic acid and uric acid. • A portable and cheap approach for simultaneous detection of ascorbic acid and uric acid was developed.

  8. Synthesis of ZnO nanorods-Au nanoparticles hybrids via in-situ plasma sputtering-assisted method for simultaneous electrochemical sensing of ascorbic acid and uric acid

    International Nuclear Information System (INIS)

    Hou, Chao; Liu, Hongying; Zhang, Dan; Yang, Chi; Zhang, Mingzhen

    2016-01-01

    In this study, ZnO nanorods-Au nanoparticles (ZnO NRs-Au NPs) hybrids were prepared using an in-situ plasma sputtering-assisted method without any template. Characterization results from scanning electron microscopy, high-resolution transmission electron microscopy, and energy dispersive X-ray spectroscopy showed that Au NPs are highly dispersed and tightly anchored on the surface of ZnO NRs. The size and surface coverage of Au NPs were well controlled by plasma sputtering time. Moreover, the hybrids exhibited excellent electrocatalytic properties towards oxidation of ascorbic acid (AA) and uric acid (UA) due to large surface area of Au NPs and ZnO NRs, and thus can be used as electrochemical sensors. Differential pulse voltammetry results showed that AA and UA could be detected simultaneously by ZnO NRs-Au NPs hybrids modified glassy carbon electrode. The linear ranges for AA and UA are 0.1 to 4 mM and 0.01 to 0.4 mM, respectively. The results suggest promising future applications in clinical diagnosis. - Highlights: • ZnO nanorods-Au nanoparticles were synthesized by in-situ plasma sputtering method. • Influence of sputtering time on the formation of Au nanoparticles was studied. • It exhibited a strong electrocatalytic activity toward the oxidation of ascorbic acid and uric acid. • A portable and cheap approach for simultaneous detection of ascorbic acid and uric acid was developed.

  9. In Situ Characterization of Ni and Ni/Fe Thin Film Electrodes for Oxygen Evolution in Alkaline Media by a Raman-Coupled Scanning Electrochemical Microscope Setup.

    Science.gov (United States)

    Steimecke, Matthias; Seiffarth, Gerda; Bron, Michael

    2017-10-17

    We present a spectroelectrochemical setup, in which Raman microscopy is combined with scanning electrochemical microscopy (SECM) in order to provide both spectroscopic and electrochemical information on the very same location of an electrode at the same time. The setup is applied to a subject of high academic and practical interest, namely, the oxygen evolution reaction at Ni and Ni/Fe electrodes. It comprises a transparent substrate electrode, onto which Ni and Ni/Fe thin films are deposited. An ultramicroelectrode (UME) is placed closely above the substrate to obtain electrochemical information, while a Raman microscope probes the same sample spot from below. To obtain information on oxygen evolution activity and structural changes, increasingly positive potentials from 0.1 up to 0.7 V vs Hg|HgO|1 M KOH were applied to the Ni/Fe-electrodes in 0.1 M KOH solution. Evolved oxygen is detected by reduction at a Pt UME, allowing for the determination of onset potentials, while the substrate current, which is recorded in parallel, is due to both overlapping oxygen evolution and the oxidation of Ni(OH) 2 to NiOOH. An optimum of 15% Fe in Ni/Fe films with respect to oxygen evolution activity was determined. At the same time, the potential-dependent formation of γ-NiOOH characterized by the Raman double band at 475 and 557 cm -1 allows for the conclusion that a certain amount of disorder introduced by Fe atoms is necessary to obtain high oxygen evolution reaction (OER) activity.

  10. "Rutherford's Experiment" on Alpha Particles Scattering: The Experiment That Never Was

    Science.gov (United States)

    Leone, M.; Robotti, N.; Verna, G.

    2018-01-01

    The so-called "Rutherford's experiment," as it is outlined in many physics textbooks, is a case in point of the flaws around the history at the educational level of one of the decisive event of modern physics: the discovery that the atom has a nucleus. This paper shows that this alleged experiment is a very approximate and very partial…

  11. Difference in Stability Between Edge and Center in a Rutherford Cable

    NARCIS (Netherlands)

    Willering, G.P.; Verweij, A.P.; Scheuerlein, C.; den Ouden, A.; ten Kate, Herman H.J.

    Keystoned superconducting Rutherford cables are widely used in accelerator magnets like in the LHC at CERN. An essential requirement in the cable design is its stability against local heat releases in the magnet windings originating from for example, strand movement or beam loss. Beam loss is the

  12. Note on some quasielastic neutron scattering analysis programs on the Rutherford Laboratory IBM 360/195

    International Nuclear Information System (INIS)

    Richardson, R.M.

    1979-12-01

    A suite of programs for analysing neutron scattering data from time-of-flight spectrometers has been implemented on the Rutherford Laboratory IBM 360/195 computer system. The programs are intended for near inelastic and quasielastic data and operate by convoluting the measured instrumental resolution function with a model scattering function before fitting to the measured sample scattering law. (author)

  13. The establishment of the Blacknest seismological database on the Rutherford Laboratory system 360/195 computer

    International Nuclear Information System (INIS)

    Blamey, C.

    1977-01-01

    In order to assess the problems which might arise from monitoring a comprehensive test ban treaty by seismological methods, an experimental monitoring operation is being conducted. This work has involved the establishment of a database on the Rutherford Laboratory 360/195 system computer. The database can be accessed in the UK over the public telephone network and in the USA via ARPANET. (author)

  14. A Strange Box and a Stubborn Brit: Rutherford's Experiments with Alpha Particles.

    Science.gov (United States)

    Digilov, M.

    1991-01-01

    Discusses 5 innovative experiments conducted by Rutherford in early 1900s utilizing the 30 milligrams of radium salt he personally carried from Europe to Canada in 1903. Traces his work with alpha particles from his original results which determined their nature, charge, and mass, to his technique of backscattering which helped to advance…

  15. Photonic Rutherford scattering: A classical and quantum mechanical analogy in ray and wave optics

    Science.gov (United States)

    Selmke, Markus; Cichos, Frank

    2013-06-01

    Using Fermat's least-optical-path principle, the family of ray trajectories through a special (but common) type of a gradient refractive index lens n(r)=n0+ΔnR /r is solved analytically. The solution gives a ray equation r(ϕ) that is closely related to Rutherford scattering trajectories; we therefore refer to this refraction process as "photonic Rutherford scattering." It is shown that not only do the classical limits correspond but also the wave-mechanical pictures coincide—the time-independent Schrödingier equation and the Helmholtz equation permit the same mapping between the scattering of massive particles and optical scalar waves. Scattering of narrow beams of light finally recovers the classical trajectories. The analysis suggests that photothermal single-particle microscopy measures photonic Rutherford scattering in specific limits and allows for an individual single-scatterer probing. A macroscopic experiment is demonstrated to directly measure the scattering angle to impact parameter relation, which is otherwise accessible only indirectly in Rutherford-scattering experiments.

  16. Regulation of Electrochemically Generated H2O2 in Situ from a Novel CB-PTFE Cathode for Transformation of Chlorine Benzene in Groundwater

    Science.gov (United States)

    Jiang, J.; Zhang, X.; Li, G.

    2014-12-01

    Fenton's reagents (H2O2 and Fe2+ catalyst commonly) have been widely used in soil and groundwater remediation. But the excessive H2O2 decomposition and the pH modification (acidification) problem have been limitations for Fenton based remediation strategies. The Electro-Fenton (E- Fenton) processes has been recently developed to solve the problems, in which Fe2+ or H2O2are generated in situ as continuing source of Fenton's reagents. In this study, a novel CB-PTFE cathode and a Fe cathode were employed to generate H2O2 and Fe2+ in situ simultaneously. The generated reactive oxidizing species, i.e., O2,H2O2 and hydroxyl radical (HO•), oxidized bio-refractory organics to nontoxic matters in groundwater. Automatic pH adjustments are achieved by appropriately arraying the electrodes. Laboratory batch tests and column tests for the E-Fenton oxidation and hybrid electrolysis system were conducted to evaluate the transformation efficiency of chlorine benzene. Results from batch experiments suggested the CB-PTFE cathode was effective for reducing O2 to H2O2. The H2O2 concentration reached 468 mg/L under the condition of pH 3.0 and 30mA/cm2 in 60 minutes, which was 5 and 10 times of that with a graphite and C-felt cathode. The removal efficiency of chlorine benzene reached 80% in 20 minutes. Both chlorine benzene degradation and H2O2 production increased with decreasing solution pH and increasing current density. The results from the columns tests proved that the in situ E-Fenton system is a feasible method for groundwater remediation.

  17. Optimalization study for ion-temperature measurements by means of Rutherford scattering

    International Nuclear Information System (INIS)

    Donne, A.J.H.; Barbian, E.P.

    1986-03-01

    Small-angle Rutherford scattering of energetic neutrals by plasma ions is governed by energy and momentum conservation. The FWHM of the scattering distibution reveals the ion temperature of the plasma. A feasibility study is performed to optimize the parameters in case Rutherford-scattering technique is applied to a medium-sized tokamak experiment. Together with a time-of-flight analyser with a high energy resolution of about 100, a 20 keV helium probing beam with a neutral current density of 10 A/m 2 can provide a detailed spectrum within 3 ms, from which the ion temperature can be extracted with an accuracy of better than 10%. The influence of plasma impurities and resonant charge exchange on the scattering process is discussed in detail. The good spatial resolution makes the method very suitable to investigate energy deposition profiles in the case of ion-cyclotron radiation applied to the plasma for the purpose of plasma heating. (orig.)

  18. Study of Transient Heat Transport Mechanisms in Superfluid Helium Cooled Rutherford-Cables

    CERN Document Server

    AUTHOR|(CDS)2100615

    The Large Hadron Collider leverages superconducting magnets to focus the particle beam or keep it in its circular track. These superconducting magnets are composed of NbTi-cables with a special insulation that allows superfluid helium to enter and cool the superconducting cable. Loss mechanisms, e.g. continuous random loss of particles escaping the collimation system heating up the magnets. Hence, a local temperature increase can occur and lead to a quench of the magnets when the superconductor warms up above the critical temperature. A detailed knowledge about the temperature increases in the superconducting cable (Rutherford type) ensures a secure operation of the LHC. A sample of the Rutherford cable has been instrumented with temperature sensors. Experiments with this sample have been performed within this study to investigate the cooling performance of the helium in the cable due to heat deposition. The experiment uses a superconducting coil, placed in a cryostat, to couple with the magnetic field loss m...

  19. A didactic proposal about Rutherford backscattering spectrometry with theoretic, experimental, simulation and application activities

    Science.gov (United States)

    Corni, Federico; Michelini, Marisa

    2018-01-01

    Rutherford backscattering spectrometry is a nuclear analysis technique widely used for materials science investigation. Despite the strict technical requirements to perform the data acquisition, the interpretation of a spectrum is within the reach of general physics students. The main phenomena occurring during a collision between helium ions—with energy of a few MeV—and matter are: elastic nuclear collision, elastic scattering, and, in the case of non-surface collision, ion stopping. To interpret these phenomena, we use classical physics models: material point elastic collision, unscreened Coulomb scattering, and inelastic energy loss of ions with electrons, respectively. We present the educational proposal for Rutherford backscattering spectrometry, within the framework of the model of educational reconstruction, following a rationale that links basic physics concepts with quantities for spectra analysis. This contribution offers the opportunity to design didactic specific interventions suitable for undergraduate and secondary school students.

  20. submitter Optimization of Nb$_{3}$Sn Rutherford Cables Geometry for the High Luminosity LHC

    CERN Document Server

    Fleiter, Jerome; Bonasia, Angelo; Bordini, Bernardo; Richter, David

    2017-01-01

    The quadrupole and dipole magnets for the LHC High Luminosity (HL-LHC) upgrade will be based on Nb$_{3}$Sn Rutherford cables that operate at 1.9 K and experience magnetic fields of up to about 12 T. An important step in the design of these magnets is the development of the high aspect ratio Nb$_{3}$Sn cables to achieve the nominal field with sufficient margin. The strong plastic deformation of unreacted $Nb_3Sn$ strands during the Rutherford cabling process may induce non negligible $I_c$ and RRR degradation. In this paper, the cabling degradation is investigated as a function of the cable geometry for both PIT and RRP conductors. Based on this analysis, new baseline geometries for both 11 T and QXF magnets of HL-LHC are proposed.

  1. submitter Optimization of Nb$_{3}$Sn Rutherford Cables Geometry for the High Luminosity LHC

    CERN Document Server

    Fleiter, Jerome; Bonasia, Angelo; Bordini, Bernardo; Richter, David

    2017-01-01

    The quadrupole and dipole magnets for the LHC High Luminosity (HL-LHC) upgrade will be based on Nb3Sn Rutherford cables that operate at 1.9 K and experience magnetic fields of up to about 12 T. An important step in the design of these magnets is the development of the high aspect ratio Nb3Sn cables to achieve the nominal field with sufficient margin. The strong plastic deformation of unreacted $Nb_3Sn$ strands during the Rutherford cabling process may induce non negligible $I_c$ and RRR degradation. In this paper, the cabling degradation is investigated as a function of the cable geometry for both PIT and RRP conductors. Based on this analysis, new baseline geometries for both 11 T and QXF magnets of HL-LHC are proposed.

  2. ISIDORE, a probe for in situ trace metal speciation based on Donnan membrane technique with related electrochemical detection part 1: Equilibrium measurements

    Energy Technology Data Exchange (ETDEWEB)

    Parat, Corinne, E-mail: corinne.parat@univ-pau.fr [Université de Pau et des Pays de l’Adour, CNRS UMR 5254, LCABIE, 64000 Pau (France); Pinheiro, J.P. [Université de Lorraine/ENSG, CNRS UMR 7360, LIEC, 54500 Nancy (France)

    2015-10-08

    This work presents the development of a new probe (ISIDORE probe) based on the hyphenation of a Donnan Membrane Technique device (DMT) to a screen-printed electrode through a flow-cell to determine the free zinc, cadmium and lead ion concentration in natural samples, such as a freshwater river. The probe displays many advantages namely: (i) the detection can be performed on-site, which avoids all problems inherent to sampling, transport and storage; (ii) the low volume of the acceptor solution implies shorter equilibration times; (ii) the electrochemical detection system allows monitoring the free ion concentration in the acceptor solution without sampling. - Highlights: • A new probe has been developed for on-site analyses of free metal ion. • A screen-printed electrode has been hyphenated to a DMT device. • Analysis time has been reduced to 6H against 36H when using a classical DMT device. • This new probe has been successfully applied on a synthetic freshwater sample.

  3. Investigation by the Rutherford backscattering method of impurity deposited on the T-3M tokamak diaphragm

    International Nuclear Information System (INIS)

    Danelyan, L.S.; Egorova, I.M.; Kulikauskas, V.S.; Baratov, D.G.; Belykh, T.A.

    1994-01-01

    The Rutherford backscattering of helium-4 ions was used for investigation of impurity deposited on the annular graphite diaphragm as a result of the interaction between hydrogen plasma and liquid-metal spray limiter. The experimental RBS spectra distributions of the impurity elements surface densities along the direction from plasma to the chamber wall are presented as depth of the elements. The erosion coefficient of the main liquid-metal limiter element has been estimated

  4. Formation of CrSi2 studied by Rutherford backscattering spectrometry

    International Nuclear Information System (INIS)

    Tobbeche, S.; Benazzouz, C.; Boussaa, N.; Zilabdi, M.; Benouatas, A.; Bouabellou, A.; Halimi, R.

    1994-01-01

    Rutherford backscattering spectrometry (RBS) is used to study the growth of Cr silicides formed by thin film reactions. Thin films of Cr were deposited on phosphorus-implanted silicon and unimplanted silicon substrates. Thermal annealing was subsequently carried out. The analysis has shown a growth of a CrSi 2 phase and allowed the determination of formation kinetics. A retardation effect of the CrSi 2 growth is observed in the case of the phosphorus-implanted silicon substrate. (Author)

  5. Investigation of iron film-substrate interfaces using Rutherford backscattering and channeling techniques

    International Nuclear Information System (INIS)

    Maheswaran, S.; Thevuthasan, S.

    1999-01-01

    Thin films of α-Fe 2 O 3 (0001) (hematite) were epitaxially grown on Al 2 O 3 (0001) substrates using the new molecular beam epitaxy (MBE) system at the Environmental Molecular Sciences Laboratory (EMSL). We have investigated the interface between the hematite films and sapphire substrates using Rutherford Backscattering (RBS) and channeling experiments. Theoretical simulations were performed using VEGAS code to investigate the surface and interface structural properties of the films

  6. Surface structure analysis by means of Rutherford scattering: methods to study surface relaxation

    International Nuclear Information System (INIS)

    Turkenburg, W.C.; Soszka, W.; Saris, F.W.; Kersten, H.H.; Colenbrander, B.G.

    1976-01-01

    The use of Rutherford backscattering for structural analysis of single crystal surfaces is reviewed, and a new method is introduced. With this method, which makes use of the channeling and blocking phenomenon of light ions of medium energy, surface atoms can be located with a precision of 0.02 A. This is demonstrated in a measurement of surface relaxation for the Cu(110) surface. (Auth.)

  7. Analysis of Nb$_{3}$Sn Rutherford cable production and strand deformations

    CERN Document Server

    Peggiani, Sonia; Beghi, Marco

    The development of cutting-edge 11-12 T superconducting magnets made from Nb$_{3}$Sn technology is one of the major milestones for the upgrade of the Large Hadron Collider at CERN. The upgrade, called High Luminosity LHC Project, was planned in order to reach higher luminosity and discover new particles. Replacing the NbTi superconductor with the Nb$_{3}$Sn makes it possible to reach a practical operating magnetic field limit of up to 16 T. The superconducting coils are formed by Nb$_{3}$Sn Rutherford cables with a trapezoidal cross section and composed of 40 strands. Since the superconducting phase of Nb$_{3}$Sn is very brittle and it is reached after a thermal cycle, the Nb$_{3}$Sn Rutherford cable needs to be wound in a coil before the thermal treatment. The cabling process is a delicate step in the production of high performing cables that need different systems to control their quality. This work aims to provide practical tools to analyze the Nb$_{3}$Sn Rutherford cable production and the strands defo...

  8. Effect of in situ pyrolysis of acetylene (C2H2) gas as a carbon source on the electrochemical performance of LiFePO4 for rechargeable lithium-ion batteries

    Science.gov (United States)

    Saroha, Rakesh; Panwar, Amrish K.

    2017-06-01

    The intention of this work is to study the effect of in situ pyrolysis of acetylene (C2H2) gas used as a carbon source on the physicochemical and electrochemical performance of pristine LiFePO4 (LFP). Acetylene gas, which decomposed to carbon and methane along with some side products when exposed to high temperature (>625 °C), is used as a carbon source for coating over the surface of LFP particles. Thermogravimetric (TGA) measurements were performed in an air atmosphere, primarily to estimate the exact amount of carbon deposited on the surface of the olivine cathode material due to the decomposition of C2H2 gas. Raman and TGA results confirm the presence of carbon as coated on the surface of the prepared compositions. Among all the synthesized samples, LFP with 10 min C2H2 treatment (LFPC10) shows the highest discharge capacity at all C-rates and exhibits excellent rate performance. LFPC10 delivers a specific discharge capacity of 144 (±5) mAh g-1 (~85% of the theoretical capacity of 170 mAh g-1) at 0.1C rate. LFPC10 demonstrates the best cycling performance as it offers an initial discharge capacity of about 117 (±5) mAh g-1 (~69% of the theoretical capacity) at 1C-rate and has 97% capacity retention even after 100 charge/discharge cycles.

  9. Electrochemical biosensors

    CERN Document Server

    Cosnier, Serge

    2015-01-01

    "This is an excellent book on modern electrochemical biosensors, edited by Professor Cosnier and written by leading international experts. It covers state-of-the-art topics of this important field in a clear and timely manner."-Prof. Joseph Wang, UC San Diego, USA  "This book covers, in 13 well-illustrated chapters, the potential of electrochemical methods intimately combined with a biological component for the assay of various analytes of biological and environmental interest. Particular attention is devoted to the description of electrochemical microtools in close contact with a biological cell for exocytosis monitoring and to the use of nanomaterials in the electrochemical biosensor architecture for signal improvement. Interestingly, one chapter describes the concept and design of self-powered biosensors derived from biofuel cells. Each topic is reviewed by experts very active in the field. This timely book is well suited for providing a good overview of current research trends devoted to electrochemical...

  10. Azobenzene mesogens mediated preparation of SnS nanocrystals encapsulated with in-situ N-doped carbon and their enhanced electrochemical performance for lithium ion batteries application

    International Nuclear Information System (INIS)

    Wang Meng; Zhou Yang; Chen Dongzhong; Duan Junfei

    2016-01-01

    In this work, azobenzene mesogen-containing tin thiolates have been synthesized, which possess ordered lamellar structures persistent to higher temperature and serve as liquid crystalline precursors. Based on the preorganized tin thiolate precursors, SnS nanocrystals encapsulated with in-situ N-doped carbon layer have been achieved through a simple solventless pyrolysis process with the azobenzene mesogenic thiolate precursor served as Sn, S, N, and C sources simultaneously. Thus prepared nanocomposite materials as anode of lithium ion batteries present a large specific capacity of 604.6 mAh·g −1 at a current density of 100 mA·g −1 , keeping a high capacity retention up to 96% after 80 cycles, and display high rate capability due to the synergistic effect of well-dispersed SnS nanocrystals and N-doped carbon layer. Such encouraging results shed a light on the controlled preparation of advanced nanocomposites based on liquid crystalline metallomesogen precursors and may boost their novel intriguing applications. (special topic)

  11. Facile in situ synthesis of hierarchical porous Ni/Ni(OH)₂ hybrid sponges with excellent electrochemical energy-storage performances for supercapacitors.

    Science.gov (United States)

    Wang, Wanren; Wang, Wenhua; Wang, Mengjiao; Guo, Xiaohui

    2014-09-01

    Herein, we report the in situ growth of single-crystalline Ni(OH)2 nanoflakes on a Ni support by using facile hydrothermal processes. The as-prepared Ni/Ni(OH)2 sponges were well-characterized by using X-ray diffraction (XRD), SEM, TEM, and X-ray photoelectron spectroscopy (XPS) techniques. The results revealed that the nickel-skeleton-supported Ni(OH)2 rope-like aggregates were composed of numerous intercrossed single-crystal Ni(OH)2 flake-like units. The Ni/Ni(OH)2 hybrid sponges served as electrodes and displayed ultrahigh specific capacitance (SC=3247 F g(-1)) and excellent rate-capability performance, likely owing to fast electron and ion transport, sufficient Faradic redox reaction, and robust structural integrity of the Ni/Ni(OH)2 hybrid electrode. These results support the promising application of Ni(OH)2 nanoflakes as advanced pseudocapacitor materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Ernest Rutherford

    Indian Academy of Sciences (India)

    knowing the basics of the working model of an atom, science could not have ..... be sensitive to noise, the performance of his collaborators' equip- ment went wrong ... Women's Suffrage and of the Manchester branch of the Men's. League for ...

  13. Electrochemical Processes

    DEFF Research Database (Denmark)

    Bech-Nielsen, Gregers

    1997-01-01

    The notes describe in detail primary and secondary galvanic cells, fuel cells, electrochemical synthesis and electroplating processes, corrosion: measurments, inhibitors, cathodic and anodic protection, details of metal dissolution reactions, Pourbaix diagrams and purification of waste water from...

  14. Electrochemical analysis

    International Nuclear Information System (INIS)

    Hwang, Hun

    2007-02-01

    This book explains potentiometry, voltametry, amperometry and basic conception of conductometry with eleven chapters. It gives the specific descriptions on electrochemical cell and its mode, basic conception of electrochemical analysis on oxidation-reduction reaction, standard electrode potential, formal potential, faradaic current and faradaic process, mass transfer and overvoltage, potentiometry and indirect potentiometry, polarography with TAST, normal pulse and deferential pulse, voltammetry, conductometry and conductometric titration.

  15. Feasibility study of Nb3Al Rutherford cable for high field accelerator magnet application

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, R.; /Fermilab; Kikuchi, A.; /Tsukuba Magnet Lab.; Ambrosio, G.; Andreev, N.; Barzi, E.; Cooper, C.; Feher, S.; Kashikhin, V.V.; Lamm, M.; Novitski, I.; /Fermilab; Takeuchi, T.; /Tsukuba Magnet Lab.; Tartaglia, M.; Turrioni, D.; /Fermilab; Verweij, A.P.; /CERN; Wake, M.; Willering, G; /Tsukuba Magnet Lab.; Zlobin, A.V.; /Fermilab

    2006-08-01

    Feasibility study of Cu stabilized Nb{sub 3}Al strand and Rutherford cable for the application to high field accelerator magnets are being done at Fermilab in collaboration with NIMS. The Nb{sub 3}Al strand, which was developed and manufactured at NIMS in Japan, has a non-copper Jc of about 844 A/mm{sup 2} at 15 Tesla at 4.2 K, a copper content of 50%, and filament size of about 50 microns. Rutherford cables with 27 Nb{sub 3}Al strands of 1.03 mm diameter were fabricated and tested. Quench tests on a short cable were done to study its stability with only its self field, utilizing a high current transformer. A pair of 2 meter long Nb{sub 3}Al cables was tested extensively at CERN at 4.3 and 1.9 K up to 11 Tesla including its self field with a high transport current of 20.2 kA. In the low field test we observed instability near splices and in the central region. This is related to the flux-jump like behavior, because of excessive amount of Nb in the Nb{sub 3}Al strand. There is possibility that the Nb in Nb{sub 3}Al can cause instability below 2 Tesla field regions. We need further investigation on this problem. Above 8 Tesla, we observed quenches near the critical surface at fast ramp rate from 1000 to 3000 A/sec, with quench velocity over 100 m/sec. A small racetrack magnet was made using a 14 m of Rutherford cable and successfully tested up to 21.8 kA, corresponding to 8.7 T.

  16. Application of Rutherford backscattering and nuclear reaction analysis techniques for investigation of thin films

    International Nuclear Information System (INIS)

    Kiss, A.Z.; Simon, A.; Elekes, Z.; Ditroi, F.; Meszaros, S.; Beke, D.L.; Langer, G.A.; Daroczy, L.

    2002-01-01

    A study of the intermixing of the elements in amorphous Si-Ge multilayers have been carried out using Rutherford backscattering Spectrometry (RBS) technique. Interdiffusion coefficient was determined by measuring the intensity of the first Ge peak (having best depth resolution) in the RBS spectrum as a function of annealing time. The oxygen content of the multilayer was measured by the resonance elastic scattering method in co-operation with Dubna. A cross comparison of multilayered films were performed between the laboratories in Debrecen, Dubna, Albany and Dhaka. An essay to determine the nitrogen content of CVD diamond by the deuteron induced gamma ray emission method has been done. (author)

  17. Study of cerium diffusion in undoped lithium-6 enriched glass with Rutherford backscattering spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaodong, E-mail: xzhang39@utk.edu [Department of Nuclear Engineering, University of Tennessee, TN 37996 (United States); Moore, Michael E.; Lee, Kyung-Min; Lukosi, Eric D. [Department of Nuclear Engineering, University of Tennessee, TN 37996 (United States); Hayward, Jason P. [Department of Nuclear Engineering, University of Tennessee, TN 37996 (United States); Oak Ridge National Lab, Oak Ridge, TN 37831 (United States)

    2016-07-01

    Undoped lithium-6 enriched glasses coated with pure cerium (99.9%) with a gold protection layer on top were heated at three different temperatures (500, 550, and 600 °C) for varied durations (1, 2, and 4 h). Diffusion profiles of cerium in such glasses were obtained with the conventional Rutherford backscattering technique. Through fitting the diffusion profiles with the thin-film solution of Fick’s second law, diffusion coefficients of cerium with different annealing temperatures and durations were solved. Then, the activation energy of cerium for the diffusion process in the studied glasses was found to be 114 kJ/mol with the Arrhenius equation.

  18. Hybrid pulse pile-up rejection system as applied to Rutherford backscattering

    International Nuclear Information System (INIS)

    Boie, R.A.; Wildnauer, K.R.

    1977-01-01

    The problems of pulse on pulse pile-up and noise limited pile-up rejectors are considered in detail for Rutherford backscattering spectra. The forms of these spectra allow the distortions from pile-up and the residual pile-up after rejection to be understood via a simple model. Extended calculations allow us to predict the effects quite accurately. A new pile-up rejection system is described. The ''linear'' rejection method is implemented with peak stretchers and advantageously combined with an event counting rejector to provide a versatile high performance system

  19. The Rutherford Appleton Laboratory's Mark I Multiwire Proportional Counter positron camera

    International Nuclear Information System (INIS)

    Bateman, J.E.; Connolly, J.F.; Stephenson, R.; Tappern, G.J.; Flesher, A.C.

    1983-01-01

    A small model of a proposed large aperture positron camera has been developed at Rutherford Appleton Laboratory. Based on Multiwire Proportional Counter technology it uses lead foil cathodes which function simultaneously as converters for the 511 keV gamma rays and readout electrodes for a delay line readout system. The detectors have been built up into a portable imaging system complete with a dedicated computer for data taking, processing and display. A complete hardware system and sufficient software was provided to permit hospital based colleagues to generate useful images easily. A complete description of the system is given with performance figures and some of the images obtained are presented. (author)

  20. Gravitational Rutherford scattering and Keplerian orbits for electrically charged bodies in heterotic string theory

    International Nuclear Information System (INIS)

    Villanueva, J. R.; Olivares, Marco

    2015-01-01

    Properties of the motion of electrically charged particles in the background of the Gibbons–Maeda–Garfinkle–Horowitz–Strominger black hole is presented in this paper. Radial and angular motions are studied analytically for different values of the fundamental parameter. Therefore, gravitational Rutherford scattering and Keplerian orbits are analyzed in detail. Finally, this paper complements previous work by Fernando for null geodesics (Phys Rev D 85:024033, 2012), Olivares and Villanueva (Eur Phys J C 73:2659, 2013) and Blaga (Automat Comp Appl Math 22:41–48, 2013; Serb Astron 190:41, 2015) for time-like geodesics

  1. Rutherford Memorial Lecture, 1977. Some episodes of the α-particle story, 1903-1977

    International Nuclear Information System (INIS)

    Feather, N.

    1977-01-01

    In this lecture an episodic account of more than seventy years experimental and theoretical α -particle physics is given, largely centred on the work of Rutherford and his colleagues but also including recent advances in the subject. Amongst the episodes included are, the birth of α- radiation in the winter of 1902 -3 when α - radiation finally assumed the character of a stream of 'charged bodies projected with a great velocity', work on measuring the α - particle charge, the discovery of the nucleus, scattering experiments, work on long-range α - Particles, and lastly α - particles in fission. (U.K.)

  2. Proton non-Rutherford backscattering study of oxidation kinetics in Cu and Fe sulphides

    International Nuclear Information System (INIS)

    Chiari, M.; Giuntini, L.; Pratesi, G.; Santo, A.P.

    1998-01-01

    Non-Rutherford backscattering spectrometry (NBS) with 2.4 MeV protons was performed for depth profiling of oxygen in three species of copper and iron sulphides - pyrite, chalcopyrite and bornite - on both altered and fresh surfaces. The tarnished surfaces were obtained by bathing samples in H 2 O 2 (35% vol.) for 100 and 1000 s. The spectra collected were compared to simulations to extract quantitative data on oxygen depth distributions for the different bathing times. The measurements have shown that the kinetics of oxidation has completely different patterns in the three investigated minerals. (orig.)

  3. Formation of CrSi[sub 2] studied by Rutherford backscattering spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Tobbeche, S.; Benazzouz, C.; Boussaa, N.; Zilabdi, M. (Centre de Developpement des Techniques Nucleaires (CDTN), Algiers (Algeria)); Benouatas, A.; Bouabellou, A.; Halimi, R. (Constantine Univ. (Algeria))

    1994-04-01

    Rutherford backscattering spectrometry (RBS) is used to study the growth of Cr silicides formed by thin film reactions. Thin films of Cr were deposited on phosphorus-implanted silicon and unimplanted silicon substrates. Thermal annealing was subsequently carried out. The analysis has shown a growth of a CrSi[sub 2] phase and allowed the determination of formation kinetics. A retardation effect of the CrSi[sub 2] growth is observed in the case of the phosphorus-implanted silicon substrate. (Author).

  4. Gravitational Rutherford scattering and Keplerian orbits for electrically charged bodies in heterotic string theory

    Energy Technology Data Exchange (ETDEWEB)

    Villanueva, J.R. [Universidad de Valparaiso, Instituto de Fisica y Astronomia, Valparaiso (Chile); Centro de Astrofisica de Valparaiso, Valparaiso (Chile); Olivares, Marco [Universidad Diego Portales, Avenida Ejercito Libertador 441, Facultad de Ingenieria, Santiago (Chile)

    2015-11-15

    Properties of the motion of electrically charged particles in the background of the Gibbons-Maeda-Garfinkle-Horowitz-Strominger black hole is presented in this paper. Radial and angular motions are studied analytically for different values of the fundamental parameter. Therefore, gravitational Rutherford scattering and Keplerian orbits are analyzed in detail. Finally, this paper complements previous work by Fernando for null geodesics (Phys Rev D 85:024033, 2012), Olivares and Villanueva (Eur Phys J C 73:2659, 2013) and Blaga (Automat Comp Appl Math 22:41-48, 2013; Serb Astron 190:41, 2015) for time-like geodesics. (orig.)

  5. Study of cerium diffusion in undoped lithium-6 enriched glass with Rutherford backscattering spectrometry

    Science.gov (United States)

    Zhang, Xiaodong; Moore, Michael E.; Lee, Kyung-Min; Lukosi, Eric D.; Hayward, Jason P.

    2016-07-01

    Undoped lithium-6 enriched glasses coated with pure cerium (99.9%) with a gold protection layer on top were heated at three different temperatures (500, 550, and 600 °C) for varied durations (1, 2, and 4 h). Diffusion profiles of cerium in such glasses were obtained with the conventional Rutherford backscattering technique. Through fitting the diffusion profiles with the thin-film solution of Fick's second law, diffusion coefficients of cerium with different annealing temperatures and durations were solved. Then, the activation energy of cerium for the diffusion process in the studied glasses was found to be 114 kJ/mol with the Arrhenius equation.

  6. Experimental verification of Rutherford's transversal section of energies between 200 and 700 Kev

    International Nuclear Information System (INIS)

    Lara E, J.A.

    1976-01-01

    The objective was to try to verify the validity of Rutherford's transversal section, for the interval of energies between 200 and 700 Kev. It was decided to carry out this work in order to underline the fact that a great part of experiments such as: a) the use of thin films to make mirrors or produce condensers, b) the study of the composition of dielectric layers and the formation of metallic contacts with semiconductors, c) the mapping of the mass distribution at depths varying between hundreds and thousands of angstroms, d) the detection of low mass impurities on the crystal surface, e) the implantation of ions are based on the validity of Rutherford's dispersion theory, while this doesn't succeed with high energies due to the appearance of nuclear resonances, or with low energies due to the appearance of atomic effects which distort the results. The results show a standard error of approxiamately 7% with respect to the average. In conclusion, some limitations are noted in relation to the nuclei and the interval of energy; these limitations should be taken into consideration and recommendations are made about how to obtain more reliable results. (author)

  7. Simulation of the cabling process for Rutherford cables: An advanced finite element model

    Science.gov (United States)

    Cabanes, J.; Garlasche, M.; Bordini, B.; Dallocchio, A.

    2016-12-01

    In all existing large particle accelerators (Tevatron, HERA, RHIC, LHC) the main superconducting magnets are based on Rutherford cables, which are characterized by having: strands fully transposed with respect to the magnetic field, a significant compaction that assures a large engineering critical current density and a geometry that allows efficient winding of the coils. The Nb3Sn magnets developed in the framework of the HL-LHC project for improving the luminosity of the Large Hadron Collider (LHC) are also based on Rutherford cables. Due to the characteristics of Nb3Sn wires, the cabling process has become a crucial step in the magnet manufacturing. During cabling the wires experience large plastic deformations that strongly modify the geometrical dimensions of the sub-elements constituting the superconducting strand. These deformations are particularly severe on the cable edges and can result in a significant reduction of the cable critical current as well as of the Residual Resistivity Ratio (RRR) of the stabilizing copper. In order to understand the main parameters that rule the cabling process and their impact on the cable performance, CERN has developed a 3D Finite Element (FE) model based on the LS-Dyna® software that simulates the whole cabling process. In the paper the model is presented together with a comparison between experimental and numerical results for a copper cable produced at CERN.

  8. Lessons from two paradigmatic developments; Rutherford's nuclear atom and halo nuclei

    International Nuclear Information System (INIS)

    Vaagen, J S; Ershov, S N; Zhukov, M V

    2012-01-01

    In its initial 1911 version, underpinned by discoveries in alpha-scattering experiments, Rutherford's atom model made a gross separation of neutral matter; A veil of light negative matter surrounding a tiny impenetrable heavy positive core. The model had however little to say about the atomic (electronic) architecture and dynamics, hence did not make it straight to the catwalk of physics of those days. Three quarters of a century later, in 1985, new discoveries in collision experiments revealed existence of abnormally large light nuclei, but could say less about the nuclear architecture. History sometimes repeats itself: Like Bohr's ad hoc planetary model (1913) changed the fate of Rutherford's discovery, again Scandinavian inspired ideas on architecture, this time nuclear halos, changed our paradigm for the heart of matter. We comment on the need for a concerted Rutherfordian effort between theory and increasingly complete reaction experiments if further ground-breaking progress is going to be made in halo physics, and physics in vicinities of neutron and proton driplines, and generally in the more widely growing field of many-body open quantum systems, where structure and reactions come together.

  9. Low coupling loss core-strengthened Bi 2212\\/Ag Rutherford cables

    CERN Document Server

    Collings, E W; Scanlan, R M; Dietderich, D R; Motowidlo, L R

    1999-01-01

    In a comprehensive "vertically integrated" program multifilamentary (MF) high temperature superconducting (HTSC) Bi:2212/Ag strand was fabricated using the powder-in-tube process and heat treated in oxygen by a modified standard $9 procedure. The reaction-heat-treatment (HT) was adjusted to maximize critical current (density), I/sub c/ (J /sub c/), as measured in various magnetic fields, B. A series of Rutherford cables was designed, each of which included a $9 metallic (Nichrome-80) core for strengthening and reduction of coupling loss. Prior to cable winding a series of tests examined the possibility of strand "poisoning" by the core during HT. Small model Rutherford cables were wound, $9 and after HT were prepared for I/sub c/(B) measurement and calorimetric measurement of AC loss and hence interstrand contact resistance I/sub c/(B). It was deduced that, if in direct contact with the strand during HT, the core $9 material can degrade the I/sub c/ of the cable; but steps can be taken to eliminate this probl...

  10. Study on interstrand coupling losses in Rutherford-type superconducting cables

    International Nuclear Information System (INIS)

    Lei, Y.Z.; Shintomi, T.; Terashima, A.; Hirabayashi, H.

    1993-02-01

    Two sets of experimental apparatus for measuring the AC losses in superconducting strands and Rutherford-type cable conductors have been constructed. A few strand samples and a number of compacted cable samples with and without a CuMn matrix have been measured. The hysteresis loss, loss from coupling within strands and loss from coupling between strands in cables have been distinguished from each other. The results show that, even for Rutherford cables without any soldering and coating, their AC losses may be quite different from each other due to the variation of the interstrand coupling loss. For cables without a CuMn matrix, interstrand coupling loss increases nearly according to a geometrical series with an increase of curing temperature simulating coil fabrication. However, cables with the CuMn matrix show a relatively small curing temperature dependence. For most of the samples, losses do not show any evident dependence on the mechanical pressure. Interstrand resistances in one of these cables have also been measured; the results indicate that the tendency for a decrease in the interstrand resistances is consistent with the results of AC loss measurements. (author)

  11. Magnetization anomaly of Nb3Al strands and instability of Nb3Al Rutherford cables

    International Nuclear Information System (INIS)

    Yamada, Ryuji; Kikuchi, Akihiro; Wake, Masayoshi

    2006-01-01

    Using a Cu stabilized Nb 3 Al strand with Nb matrix, a 30 meter long Nb 3 Al Rutherford cable was made by a collaboration of Fermilab and NIMS. Recently the strand and cable were tested. In both cases instability was observed at around 1.5 Tesla. The magnetization of this Nb 3 Al strand was measured first using a balanced coil magnetometer at 4.2 K. Strands showed an anomalously large magnetization behavior around at 1.6 T, which is much higher than the usual B c2 ∼ 0.5 Tesla (4.2 K) of Nb matrix. This result is compared with the magnetization data of short strand samples using a SQUID magnetometer, in which a flux-jump signal was observed at 0.5 Tesla, but not at higher field. As a possible explanation for this magnetization anomaly, the interfilament coupling through the thin Nb films in the strands is suggested. The instability problem observed in low field tests of the Nb 3 Al Rutherford cables is attributed to this effect

  12. Electrochemical capacitor

    Science.gov (United States)

    Anderson, Marc A.; Liu, Kuo -Chuan; Mohr, Charles M.

    1999-10-05

    An inexpensive porous metal oxide material having high surface area, good conductivity and high specific capacitance is advantageously used in an electrochemical capacitor. The materials are formed in a sol-gel process which affords control over the properties of the resultant metal oxide materials.

  13. Electrochemical construction

    Science.gov (United States)

    Einstein, Harry; Grimes, Patrick G.

    1983-08-23

    An electrochemical cell construction features a novel co-extruded plastic electrode in an interleaved construction with a novel integral separator-spacer. Also featured is a leak and impact resistant construction for preventing the spill of corrosive materials in the event of rupture.

  14. Electrochemical device

    Science.gov (United States)

    Grimes, Patrick G.; Einstein, Harry; Bellows, Richard J.

    1988-01-12

    A tunnel protected electrochemical device features channels fluidically communicating between manifold, tunnels and cells. The channels are designed to provide the most efficient use of auxiliary power. The channels have a greater hydraulic pressure drop and electrical resistance than the manifold. This will provide a design with the optimum auxiliary energy requirements.

  15. Electrochemical Cell

    DEFF Research Database (Denmark)

    1999-01-01

    The invention relates to a rechargeable electrochemical cell comprising a negative electrode, an electrolyte and a positive electrode in which the positive electrode structure comprises a lithium cobalt manganese oxide of the composition Li¿2?Co¿y?Mn¿2-y?O¿4? where 0 ... for capacity losses in lithium ion cells and lithium-alloy cells....

  16. Trace element determination in tomato puree using particle induced X-ray emission and Rutherford backscattering

    International Nuclear Information System (INIS)

    Romero-Davila, E.; Miranda, J.

    2004-01-01

    Particle induced X-ray emission (PIXE) and Rutherford backscattering spectrometry (RBS) were used to determine the concentrations of trace elements in samples of 12 tomato puree brands sold in the Mexican market. While RBS offered information about the main elements present in the matrix, PIXE gave results on trace elements. As a whole, data for 17 elements (C, N, O, Na, Mg, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, and Zn) were obtained. To evaluate the results, a comparison with brands from USA, Japan, Colombia, and Chile was carried out, using tomato purees produced following the domestic technology recipe. Additionally, the results were considered in the light of the Codex Alimentarius and the Mexican standard. It was found that all of the brands fall within the limits established by these standards, being of the same order of magnitude as the foreign brands. (author)

  17. Dimensional Changes of Nb$_{3}$Sn Rutherford Cables During Heat Treatment

    CERN Document Server

    Rochepault, E; Ambrosio, G; Anerella, M; Ballarino, A; Bonasia, A; Bordini, B; Cheng, D; Dietderich, D R; Felice, H; Garcia Fajardo, L; Ghosh, A; Holik, E F; Izquierdo Bermudez, S; Perez, J C; Pong, I; Schmalzle, J; Yu, M

    2016-01-01

    In high field magnet applications, Nb$_{3}$Sn coils undergo a heat treatment step after winding. During this stage, coils radially expand and longitudinally contract due to the Nb$_{3}$Sn phase change. In order to prevent residual strain from altering superconducting performances, the tooling must provide the adequate space for these dimensional changes. The aim of this paper is to understand the behavior of cable dimensions during heat treatment and to provide estimates of the space to be accommodated in the tooling for coil expansion and contraction. This paper summarizes measurements of dimensional changes on strands, single Rutherford cables, cable stacks, and coils performed between 2013 and 2015. These samples and coils have been performed within a collaboration between CERN and the U.S. LHC Accelerator Research Program to develop Nb$_{3}$Sn quadrupole magnets for the HiLumi LHC. The results are also compared with other high field magnet projects.

  18. Rutherford Backscattering and Channeling Studies of Al and Mg Diffusion in Iron Oxide Thin Films

    International Nuclear Information System (INIS)

    Thevuthasan, Theva; McCready, David E.; Jiang, Weilin; Mcdaniel, Emily P.; Yi, Sang I.; Chambers, Scott A.; J.L. Duggan and I.L. Morgan

    1999-01-01

    Thin films of alpha-Fe2O3(0001) (hermatite) and gamma-Fe2O3 (001) (maghemite) were epitaxially grown on Al2O3(0001) substrates, respectively, using the new molecular beam epitaxy (MBE) system at the Environmental Molecular Sciences Laboratory (EMSL). We have investigated the crystalline quality of these films using Rutherford Backscattering (RBS) and channeling experiments. Minimum yields obtained from aligned and random spectra are 2.7+-0.3% for the alpha-Fe2o3(0001) film and 14.5+-0.6% for the gamma-Fe2O3 (001) film. Al and Mg outdiffusion into the hematite and maghemite films were observed at higher temperatures. Indiffusion of Fe atoms from the film into the substrate was observed for the gamma-Fe2o3(001)/MgO(001) system. In contrast, no Fe indiffusion was observed for the sapphire substrate

  19. Rutherford back-scattering and X-ray fluorescence for the study of corroded surfaces

    International Nuclear Information System (INIS)

    Chaudhri, M. Anwar

    2010-01-01

    A combination of Rutherford-Back-Scattering (RBS) and X-Ray Fluorescence Analysis (XRF) has been used to study the corroded inside surfaces of some tooth-paste tubes, which were causing a significant loss of the product. This greyish-brown, thin, corrosion layer on the inside of the tooth-paste tube is easily distinguishable from brand new, as well as from non-corroded used tubes, which are made of 99.7 % Al. The unused clean aluminium tube shows some copper traces (about 0.3 mg/cm 2 ) on the surface, which almost disappears from the surface of the non-corroded used tube but reappears, to a lesser extent, on the surface of the corroded tube. The corroded layer has been found to consist mainly of P and Ca (about 1 mg/cm 2 each) with smaller quantities of Na, Mg, Si, S and Cl. (authors)

  20. Current Redistribution around the Superconducting-to-normal Transition in Superconducting Nb-Ti Rutherford Cables

    CERN Document Server

    Willering, G P; ten Kate, H H J

    2008-01-01

    Sufficient thermal-electromagnetic stability against external heat sources is an essential design criterion for superconducting Rutherford cables, especially if operated close to the critical current. Due to the complex phenomena contributing to stability such as helium cooling, inter-strand current and heat transfer, its level is difficult to quantify. In order to improve our understanding, many stability tests were performed on different cable samples, each incorporating several point-like heaters. The current redistribution around the heat front is measured after inducing a local normal zone in one strand of the cable. By using voltage taps, expansion of the normal zone is monitored in the initially quenched strand as well as in adjacent strands. An array of Hall probes positioned at the cable edge is used to scan the selffield generated by the cable by which it becomes possible to estimate the inter-strand current transfer. In this paper it is demonstrated that two different stability regimes can be disti...

  1. Flares: solar and stellar. Rutherford Appleton Laboratory workshop on astronomy and astrophysics, Abingdon, 19-21 May 1986

    International Nuclear Information System (INIS)

    Gondhalekar, P.M.

    1986-05-01

    The paper concerns solar and stellar flare phenomena reported at the Rutherford Appleton Laboratory Workshop on Astronomy and Astrophysics, May 1986. Eleven papers were presented at the Workshop on: the solar-stellar connection, observational evidence for solar and stellar flares, and flare models; and all are indexed separately. (UK)

  2. Lord Rutherford of Nelson, his 1908 Nobel Prize in Chemistry, and why he didn't get a second prize

    International Nuclear Information System (INIS)

    Jarlskog, Cecilia

    2008-01-01

    'I have dealt with many different transformations with various periods of time, but the quickest that I have met was my own transformation in one moment from a physicist to a chemist.' Ernest Rutherford (Nobel Banquet, 1908) This article is about how Ernest Rutherford (1871-1937) got the 1908 Nobel Prize in Chemistry and why he did not get a second Prize for his subsequent outstanding discoveries in physics, specially the discovery of the atomic nucleus and the proton. Who were those who nominated him and who did he nominate for the Nobel Prizes? In order to put the Prize issue into its proper context, I will briefly describe Rutherford's whereabouts. Rutherford, an exceptionally gifted scientist who revolutionized chemistry and physics, was moulded in the finest classical tradition. What were his opinions on some scientific issues such as Einstein's photon, uncertainty relations and the future prospects for atomic energy? What would he have said about the 'Theory of Everything'? Extended version of an invited talk presented at the conference 'Neutrino 2008', Christchurch, NZ, 25-31 May 2008

  3. Silicon-depth profiling with Rutherford backscattering in photoresist layers; a study on the effects of degradation

    NARCIS (Netherlands)

    IJzendoorn, van L.J.; Schellekens, J.P.W.

    1989-01-01

    The reaction of a silicon-containing vapor with a photoresist layer, as used in some dry developable lithographic processes, was studied with Rutherford backscattering spectrometry. Degradation of the polymer layer under ion beam irradiation was observed, but it was found that this had no influence

  4. Electrochemical cell

    Science.gov (United States)

    Kaun, T.D.

    An improved secondary electrochemical cell is disclosed having a negative electrode of lithium aluminum, a positive electrode of iron sulfide, a molten electrolyte of lithium chloride and potassium chloride, and the combination that the fully charged theoretical capacity of the negative electrode is in the range of 0.5 to 1.0 that of the positive electrode. The cell thus is negative electrode limiting during discharge cycling. Preferably, the negative electrode contains therein, in the approximate range of 1 to 10 volume % of the electrode, an additive from the materials of graphitized carbon, aluminum-iron alloy, and/or magnesium oxide.

  5. Electrochemical attosyringe.

    Science.gov (United States)

    Laforge, François O; Carpino, James; Rotenberg, Susan A; Mirkin, Michael V

    2007-07-17

    The ability to manipulate ultrasmall volumes of liquids is essential in such diverse fields as cell biology, microfluidics, capillary chromatography, and nanolithography. In cell biology, it is often necessary to inject material of high molecular weight (e.g., DNA, proteins) into living cells because their membranes are impermeable to such molecules. All techniques currently used for microinjection are plagued by two common problems: the relatively large injector size and volume of injected fluid, and poor control of the amount of injected material. Here we demonstrate the possibility of electrochemical control of the fluid motion that allows one to sample and dispense attoliter-to-picoliter (10(-18) to 10(-12) liter) volumes of either aqueous or nonaqueous solutions. By changing the voltage applied across the liquid/liquid interface, one can produce a sufficient force to draw solution inside a nanopipette and then inject it into an immobilized biological cell. A high success rate was achieved in injections of fluorescent dyes into cultured human breast cells. The injection of femtoliter-range volumes can be monitored by video microscopy, and current/resistance-based approaches can be used to control injections from very small pipettes. Other potential applications of the electrochemical syringe include fluid dispensing in nanolithography and pumping in microfluidic systems.

  6. Characterization of cesium diffusion behavior into granite matrix using Rutherford backscattering spectrometry

    Science.gov (United States)

    Tsai, Shih-Chin; Lee, Chuan-Pin; Tsai, Tsuey-Lin; Yu, Yueh-Chung

    2017-10-01

    The characterization of radionuclide diffusion behavior is necessary for performance assessment of granite as a geological barrier for high-level radioactive waste disposal. Rutherford backscattering spectrometry (RBS), a novel nuclear ion-beam technique, was selected in this study because it is suitable for analyzing the concentration gradients of heavy elements in a well-defined matrix and allows measuring diffusion coefficients on a micrometer scale. In this study Cs was selected to represent Cs-135 (a key radionuclide in high-level waste) diffusion in granite. The Cs energy spectrum and concentration deep profile were analyzed and the diffusion coefficient of Cs in granite for three different locations were determined, which were 2.06 × 10-19m2 s-1, 3.58 × 10-19m2 s-1, and 7.19 × 10-19m2 s-1-19m2 s-19m2 s-1, respectively, which were of a similiar order of magnitude. Results from other studies are also compared and discussed in this paper.

  7. Determination of surface oxide compositions on Alloy 600 using Rutherford backscattering

    International Nuclear Information System (INIS)

    Hanson, A.L.; Kraner, H.W.

    1984-01-01

    The surface composition of oxides formed on Alloy 600 under conditions similar to those in the primary side of PWR heat exchangers has been studied as a function of potential using Rutherford backscattering and proton inelastic scattering. Electropolished samples of Alloy 600 were exposed at several potentials to a solution of 0.18M H 3 BO 3 (2000ppm B) with 0.21mM LiOH (1.5ppm Li) at 300 0 C for 450 hours. The potentials relative to an internal hydrogen electrode ranged from -.09 to 750 mV. RBS analysis showed little or no oxide formation on samples exposed at 0 mV. Above 0 mV oxide layers formed whose thicknesses increased with potential. In addition the RBS showed a significantly enhanced concentration of aluminum and silicon in oxide. Both the oxygen and the sum of the aluminum and silicon content appeared to maintain a fixed surface concentration independent of the oxide thickness. Boron and lithium concentrations were analyzed with proton inelastic scattering. No lithium was detected in any sample. The boron concentration was found to follow the thickness of the oxide

  8. Determination of surface oxide compositions on Alloy 600 using Rutherford backscattering

    International Nuclear Information System (INIS)

    Hanson, A.L.; Isaacs, H.S.; Kraner, H.W.

    1984-01-01

    The surface composition of oxides formed on Alloy 600 under conditions similar to those in the primary side of PWR heat exchangers has been studied as a function of potential using Rutherford backscattering and proton inelastic scattering. Electropolished samples of Alloy 600 were exposed at several potentials to a solution of 0.18M H 3 BO 3 (2000 ppM B) with 0.28M LiOH (1.4 ppM Li) at 300 0 C for 450 hours. The potentials relative to an internal hydrogen electrode ranged from -.09 to 750 mV. RBS analysis showed little or no oxide formation on samples exposed at 0 mV. Above 0 mV oxide layers formed whose thicknesses increased with potential. In addition the RBS showed a significantly enhanced concentration of aluminum and silicon in oxide. Both the oxygen and the sum of the aluminum and silicon content appeared to maintain a fixed surface concentration independent of the oxide thickness. Boron and lithium concentration were analyzed with proton inelastic scattering. No lithium was found in any sample. The boron concentration was found to follow the thickness of the oxide

  9. submitter Geometrical Behavior of Nb$_{3}$Sn Rutherford Cables During Heat Treatment

    CERN Document Server

    Durante, Maria; Ferracin, Paolo; Manil, Pierre; Perez, Juan Carlos; Rifflet, Jean-Michel; Rondeaux, Francoise

    2016-01-01

    In Nb$_{3}$Sn accelerator magnets, non-superconducting precursor cables are wound into their final coil shape and then heat treated at a high temperature to form the A15 superconducting phase. The growth of cable strands during reaction and the differential thermal dilatation in the coil components lead to both stress in the cable and geometrical deformations of the winding, with possible consequences on magnet performances. An experimental campaign on different types of Rutherford cables has been carried out at CEA Saclay, in collaboration with CERN, in order to measure cable dimension changes in all directions, with respect to cable configuration and winding geometry. A 700-mm-long versatile test bench has been designed for several cable topologies up to 22 mm in width. This paper describes the tooling and presents the results of the experimental campaign led on the cables, made of powder-in-tube and restacked-rod-process strands, of FRESCA2, a 13-T dipole magnet

  10. Measurement of inter-strand contact resistance in epoxy impregnated Nb3Sn Rutherford cables

    International Nuclear Information System (INIS)

    Giorgio Ambrosio

    2003-01-01

    An apparatus for the measurement, under transverse pressure, of the inter-strand contact resistance in epoxy-impregnated Nb 3 Sn Rutherford cables has been recently assembled at Fermilab. Procedures have been developed to instrument and measure samples extracted from Nb 3 Sn coils. Samples were extracted from coils fabricated with the Wind-and-React and the React-and-Wind technology, both presently under development at Fermilab. A ceramic binder is used to improve the insulation and to simplify the fabrication of coils using the Wind-and-React technology. Synthetic oil is used to prevent sintering during the heat treatment of coils to be wound after reaction. In order to evaluate the effects of the ceramic binder and of the synthetic oil on the inter-strand resistance, measurements of samples extracted from coils were compared with measurements of cable stacks with varying characteristics. In this paper we describe the apparatus, the sample preparation, the measurement procedure, and the results of the first series of tests

  11. Non-Rutherford backscattering microscopy using 25 MeV protons

    Energy Technology Data Exchange (ETDEWEB)

    Peeper, Katrin, E-mail: katrin.peeper@unibw.de [Universitaet der Bundeswehr, Angewandte Physik und Messtechnik, Werner-Heisenberg-Weg 39, 85577 Neubiberg (Germany); Moser, Marcus; Reichart, Patrick; Dollinger, Guenther [Universitaet der Bundeswehr, Angewandte Physik und Messtechnik, Werner-Heisenberg-Weg 39, 85577 Neubiberg (Germany)

    2012-02-15

    Protons at energies between 10 and 25 MeV are a very sensitive probe for hydrogen using coincident proton-proton scattering with the possibility for depth profiling samples up to several 100 {mu}m thickness. At the Munich microprobe SNAKE we have developed this method for sensitive 3D hydrogen microscopy . In parallel to sensitive 3D hydrogen microscopy by proton-proton scattering we introduce a non-Rutherford backscattering analysis utilizing 25 MeV protons in order to obtain 3D depth profiles of all major elements. We present energy spectra of backscattered protons at various thin and thick film samples of pure elements which we use as fingerprints to analyse more complex materials like minerals or metals. It is due to the low stopping power of the high energy protons that the depth profiles of several elements do not or do only partially overlap when analysing freestanding samples with thicknesses in the 100 {mu}m range. The merit of our method is that signals of the light elements may not be affected by heavier matrix elements. Analysing thin films smaller than 5 {mu}m we have achieved a mass resolution of {Delta}A/A{<=}1/28 for non-overlapping mass signals utilizing a 5 mm thick Si(Li)-detector.

  12. The Rutherford Appleton Laboratory's Mark I multiwire proportional counter positron camera

    International Nuclear Information System (INIS)

    Bateman, J.E.; Connolly, J.F.; Stephenson, R.; Tappern, G.J.; Flesher, A.C.

    1984-01-01

    A small (30 cmx30 cm) model of a proposed large aperture positron camera has been developed at Rutherford Appleton Laboratory. Based on multiwire proportional counter technology, it uses lead foil cathodes which function simultaneously as converters for the 511 keV gamma rays and readout electrodes for a delay line readout system. The detectors have been built up into a portable imaging system complete with a dedicated computer for data taking, processing and display. This has permitted evaluation of this type of positron imaging system in the clinical environment using both cyclotron generated isotopes ( 15 O, 11 C, 18 F, 124 I) and available isotopic generator systems ( 82 Rb, 68 Ga). AT RAL we provided a complete hardware system and sufficient software to permit our hospital based colleagues to generate useful images with the minimum of effort. A complete description of the system is given with performance figures and some of the images obtained in three hospital visits are presented. Some detailed studies of the imaging performance of the positron camera are reported which have bearing on the design of future, improved systems. (orig.)

  13. Current distribution inside Rutherford-type superconducting cables and impact on performance of LHC dipoles

    CERN Document Server

    Schreiner, T

    2002-01-01

    The windings of high--field superconducting accelerator magnets are usually made of Rutherford--type cables. The magnetic field distribution along the axis of such magnets exhibits a periodic modulation with a wavelength equal to the twist pitch length of the cable used in the winding. Such a Periodic Field Pattern (PFP) has already been observed in number of superconducting accelerator magnets. Additional unbalanced currents in individual strands of the cable appear to be causing this effect. The present thesis describes the investigation of the PFPs performed with a Hall probes array inserted inside the aperture of the LHC superconducting dipoles, both in the small--scale model magnets with a length of one meter and in full--scale prototypes and pre--series magnets with fifteen meters of length. The amplitude and the time dependence of this periodic field oscillation have been studied as a function of the magnet current history. One of the main parameters influencing the properties of the PFP is the cross--...

  14. Target studies for the neutrino factory at the Rutherford Appleton laboratory

    International Nuclear Information System (INIS)

    Drumm, Paul; Densham, Chris; Bennett, Roger

    2001-01-01

    Target studies at the Rutherford Appleton Laboratory have concentrated on studies of a solid heavy metal target. The suggestion to use a radiatively cooled target which rotates in beam was made shortly after the first NuFact workshop as a means of dissipating large amounts of power at a high temperature, and as an alternative to the proposed water-cooled rotating band and liquid metal jet targets. This paper examines the proposed drive scheme for the target ring, which uses induced currents and magnetic forces to both levitate and drive the target. Estimates of the power required to levitate and drive the target ring and the forces exerted on the moving ring as it enters the target capture solenoid are given. One of the principle concerns in the operation of a solid target is the severe shock stress experienced due to the impact of an intense energetic proton beam in a short time compared to the transit time of sound in the material. Calculations of the stresses induced in the target ring and their evolution with time as well as an initial estimation of the expected power densities and stresses in an existing high power density target are presented

  15. Artificial neural networks for automation of Rutherford backscattering spectroscopy experiments and data analysis

    International Nuclear Information System (INIS)

    Barradas, N.P.; Vieira, A.; Patricio, R.

    2002-01-01

    We present an algorithm based on artificial neural networks able to determine optimized experimental conditions for Rutherford backscattering measurements of Ge-implanted Si. The algorithm can be implemented for any other element implanted into a lighter substrate. It is foreseeable that the method developed in this work can be applied to still many other systems. The algorithm presented is a push-button black box, and does not require any human intervention. It is thus suited for automated control of an experimental setup, given an interface to the relevant hardware. Once the experimental conditions are optimized, the algorithm analyzes the final data obtained, and determines the desired parameters. The method is thus also suited for automated analysis of the data. The algorithm presented can be easily extended to other ion beam analysis techniques. Finally, it is suggested how the artificial neural networks required for automated control and analysis of experiments could be automatically generated. This would be suited for automated generation of the required computer code. Thus could RBS be done without experimentalists, data analysts, or programmers, with only technicians to keep the machines running

  16. Characterization of Nb$_{3}$Sn Rutherford cables for the LHC 11-T Dipole Magnet

    CERN Document Server

    Wuis, A J; Ballarino, A; Oberli, L; Ten Kate, H H J

    2013-01-01

    The so-called CERN-LHC DS upgrade relies on the use of 11 T dipole magnets. For these magnets 40 strands Nb$_{3}$Sn type Rutherford cables based on 0.7 mm wires are being developed. Recently four samples of the cables were characterized in the CERN FRESCA cable test station. The critical current and the premature quench current due to magneto-thermal instability were measured at 1.9 K and 4.3 K in a background magnetic field between 0 and 9.6 T (the peak magnetic field on the conductor, including the self-field of the cable, ranges from ~ 2 T to ~ 12 T). Two cable samples were based on Powder-In-Tube (PIT) wire and two on Restacked-Rod-Process (RRP) wire. The PIT samples were identical and without a core in the cable while one of the RRP samples features a 25 μm thick stainless steel core. All cables samples tested have a width and a thickness of about 14.7 mm and 1.25 mm, respectively. Cables and sample holders were manufactured at CERN. In this paper we report and discuss the cable test results and compare...

  17. Experimental results of current distribution in Rutherford-type LHC cables

    CERN Document Server

    Verweij, A P

    2000-01-01

    Current distribution among the wires of multi-strand superconducting cables is an important item for accelerator magnets. A non-uniform distribution could cause additional field distortions in the magnet bore and can as well be one of the reasons of premature quenching. Since two years electrical measurements on superconducting Rutherford-type cables are performed at CERN as part of the reception tests for the Large Hadron Collider (LHC). Cable samples of 2.4 m length are tested at currents up to 32 kA, temperatures around 1.9 and 4.3 K, and fields up to 10 T, applied perpendicularly as well as parallel to the broad face of the cable. Last year, an array of 24 Hall probes was installed in the test set-up in order to measure the self-field of the cable samples along one cable pitch. Each of the probes measures the local field generated by the current in the strands close by, and the results of the all probes reflect therefore the distribution of the strand currents. Experiments are done varying the applied fie...

  18. Computer simulation program for medium-energy ion scattering and Rutherford backscattering spectrometry

    Science.gov (United States)

    Nishimura, Tomoaki

    2016-03-01

    A computer simulation program for ion scattering and its graphical user interface (MEISwin) has been developed. Using this program, researchers have analyzed medium-energy ion scattering and Rutherford backscattering spectrometry at Ritsumeikan University since 1998, and at Rutgers University since 2007. The main features of the program are as follows: (1) stopping power can be chosen from five datasets spanning several decades (from 1977 to 2011), (2) straggling can be chosen from two datasets, (3) spectral shape can be selected as Gaussian or exponentially modified Gaussian, (4) scattering cross sections can be selected as Coulomb or screened, (5) simulations adopt the resonant elastic scattering cross section of 16O(4He, 4He)16O, (6) pileup simulation for RBS spectra is supported, (7) natural and specific isotope abundances are supported, and (8) the charge fraction can be chosen from three patterns (fixed, energy-dependent, and ion fraction with charge-exchange parameters for medium-energy ion scattering). This study demonstrates and discusses the simulations and their results.

  19. Computer simulation program for medium-energy ion scattering and Rutherford backscattering spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Tomoaki, E-mail: t-nishi@hosei.ac.jp

    2016-03-15

    A computer simulation program for ion scattering and its graphical user interface (MEISwin) has been developed. Using this program, researchers have analyzed medium-energy ion scattering and Rutherford backscattering spectrometry at Ritsumeikan University since 1998, and at Rutgers University since 2007. The main features of the program are as follows: (1) stopping power can be chosen from five datasets spanning several decades (from 1977 to 2011), (2) straggling can be chosen from two datasets, (3) spectral shape can be selected as Gaussian or exponentially modified Gaussian, (4) scattering cross sections can be selected as Coulomb or screened, (5) simulations adopt the resonant elastic scattering cross section of {sup 16}O({sup 4}He, {sup 4}He){sup 16}O, (6) pileup simulation for RBS spectra is supported, (7) natural and specific isotope abundances are supported, and (8) the charge fraction can be chosen from three patterns (fixed, energy-dependent, and ion fraction with charge-exchange parameters for medium-energy ion scattering). This study demonstrates and discusses the simulations and their results.

  20. Target studies for the neutrino factory at the Rutherford Appleton laboratory

    CERN Document Server

    Drumm, P V; Bennett, R

    2001-01-01

    Target studies at the Rutherford Appleton Laboratory have concentrated on studies of a solid heavy metal target. The suggestion to use a radiatively cooled target which rotates in beam was made shortly after the first NuFact workshop as a means of dissipating large amounts of power at a high temperature, and as an alternative to the proposed water-cooled rotating band and liquid metal jet targets. This paper examines the proposed drive scheme for the target ring, which uses induced currents and magnetic forces to both levitate and drive the target. Estimates of the power required to levitate and drive the target ring and the forces exerted on the moving ring as it enters the target capture solenoid are given. One of the principle concerns in the operation of a solid target is the severe shock stress experienced due to the impact of an intense energetic proton beam in a short time compared to the transit time of sound in the material. Calculations of the stresses induced in the target ring and their evolution ...

  1. Observation of the antimatter partner of Rutherford's α-particle - 4He-bar

    International Nuclear Information System (INIS)

    Tang, Aihong

    2012-01-01

    The antimatter helium-4 nucleus ( 4 He-bar, or anti-α) has not been observed previously although the α-particle was identified a century ago by Rutherford. High-energy nuclear collisions recreate energy densities similar to that of the universe microseconds after the Big Bang, and in both cases, matter and antimatter are created with comparable abundances. However, the relatively short-lived expansion in nuclear collisions makes it possible for antimatter to decouple quickly from matter. This makes a high-energy accelerator facility the ideal environment for producing and studying antimatter. In this paper, we report 18 antihelium-4 nuclei discovered by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The measured invariant differential cross section is consistent with expectation from thermodynamics and coalescent nucleosynthesis models, which has implications for future production of even heavier antimatter nuclei, as well as for experimental searches for new phenomena in the cosmos. Future directions of rare and exotic matter searches from STAR will also be discussed.

  2. Conversion and improvement of the Rutherford Laboratory's magnetostatic computer code GFUN3D to the NMFECC CDC 7600

    International Nuclear Information System (INIS)

    Tucker, T.C.

    1980-06-01

    The implementation of a version of the Rutherford Laboratory's magnetostatic computer code GFUN3D on the CDC 7600 at the National Magnetic Fusion Energy Computer Center is reported. A new iteration technique that greatly increases the probability of convergence and reduces computation time by about 30% for calculations with nonlinear, ferromagnetic materials is included. The use of GFUN3D on the NMFE network is discussed, and suggestions for future work are presented. Appendix A consists of revisions to the GFUN3D User Guide (published by Rutherford Laboratory( that are necessary to use this version. Appendix B contains input and output for some sample calculations. Appendix C is a detailed discussion of the old and new iteration techniques

  3. Search for an anomalous near-surface yield deficit in Rutherford backscattering spectra from implanted germanium and silicon

    International Nuclear Information System (INIS)

    Lawson, E.M.; Appleton, B.R.

    1983-09-01

    Rutherford backscattering and channelling analysis of high-dose, room-temperature, ion-implanted germanium has revealed an anomalous near-surface yield deficit. Implant dose and species dependencies and the effect of annealing have been examined. A marked loss of implanted impurity was also noted. The yield deficit is attributed to the absorption of oxygen and other light mass contaminants into a highly porous implanted layer upon exposure to air. Loss of implant species is attributed to enhanced sputtering effects

  4. Bulk Copper Electrodeposition on Gold Imaged by In Situ STM

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Bech-Nielsen, Gregers; Møller, Per

    1996-01-01

    Electrochemical measurements were carried out simultaneously with acquisition of in situ STM images of copper electrodeposition at low cathodic overpotentials and subsequent dissolution from the underlying polycrystalline gold surfaces. The morphologies of the copper deposits were examined...

  5. A dedicated beam line for Rutherford backscattering analysis at IFIN-HH cyclotron

    International Nuclear Information System (INIS)

    Ivanov, E. A.; Dudu, D.; Plostinaru, D.; Catana, D.; Vata, I.

    2003-01-01

    Rutherford back-scattering technique (RBS) is an analytical tool that uses elastic scattering of 1-5 MeV charged particles for analysis of the surface and the outer few micrometers of solids. IFIN-HH RBS system consists of the U-120 Cyclotron, a dedicated beam line and a scattering chamber with sample manipulators and particle detectors. In our RBS system the samples are bombarded with 2-5 alpha particles accelerated by U-120 Cyclotron (in 3-rd subharmonic regime) while the scattered particles are detected by a surface barrier detector. The signal from the detector is processed by common nuclear electronics and the particle energy spectra are stored in a computer based multichannel analyser. The data evaluation is accomplished using standard procedures and computer codes. The necessary vacuum inside chamber is obtained with an oil-free turbo pump. The beam spot dimension on the target is 1x1 mm. The standard measurement are done at Θ = 165 angle. The samples are electrically insulated and can be rotated around a vertical axis. The advantage of the RBS technique lies in the quantitative analysis of major and minor constituents lying in the first 0.5 to 2.0 micrometers of a material. Depending on the sample structure and composition, the detection limits vary from 10 11 to 10 15 at. cm -2 for heavy and light elements, respectively. The depth distribution of constituents can be reconstructed with a depth resolution of 10-20 nm. The RBS technique is non-destructive since the erosion and the radiation degradation of the sample material by the particle impact is negligible. The most extensive use of the RBS technique is in the field of electronic and optical materials, special coatings and in the study of various physico-chemical processes on the solid surfaces. (authors)

  6. The ion velocity distribution of tokamak plasmas: Rutherford scattering at TEXTOR

    Energy Technology Data Exchange (ETDEWEB)

    Tammen, H.F.

    1995-01-10

    One of the most promising ways to gererate electricity in the next century on a large scale is nuclear fusion. In this process two light nuclei fuse and create a new nucleus with a smaller mass than the total mass of the original nuclei, the mass deficit is released in the form of kinetic energy. Research into this field has already been carried out for some decades now, and will have to continue for several more decades before a commercially viable fusion reactor can be build. In order to obtain fusion, fuels of extremely high temperatures are needed to overcome the repulsive force of the nuclei involved. Under these circumstances the fuel is fully ionized: it consists of ions and electrons and is in the plasma state. The problem of confining such a hot substance is solved by using strong magnetic fields. One specific magnetic configuration, in common use, is called the tokamak. The plasma in this machine has a toroidal, i.e. doughnut shaped, configuration. For understanding the physical processes which take place in the plasma, a good temporally and spatially resolved knowledge of both the ion and electron velocity distribution is required. The situation concerning the electrons is favourable, but this is not the case for the ions. To improve the existing knowledge of the ion velocity distribution in tokamak plasmas, a Rutherford scattering diagnostic (RUSC), designed and built by the FOM-Institute for Plasmaphysics `Rijnhuizen`, was installed at the TEXTOR tokamak in Juelich (D). The principle of the diagnostic is as follows. A beam of monoenergetic particles (30 keV, He) is injected vertically into the plasma. A small part of these particles collides elastically with the moving plasma ions. By determining the energy of a scattered beam particle under a certain angle (7 ), the initial velocity of the plasma ion in one direction can be computed. (orig./WL).

  7. The ion velocity distribution of tokamak plasmas: Rutherford scattering at TEXTOR

    International Nuclear Information System (INIS)

    Tammen, H.F.

    1995-01-01

    One of the most promising ways to gererate electricity in the next century on a large scale is nuclear fusion. In this process two light nuclei fuse and create a new nucleus with a smaller mass than the total mass of the original nuclei, the mass deficit is released in the form of kinetic energy. Research into this field has already been carried out for some decades now, and will have to continue for several more decades before a commercially viable fusion reactor can be build. In order to obtain fusion, fuels of extremely high temperatures are needed to overcome the repulsive force of the nuclei involved. Under these circumstances the fuel is fully ionized: it consists of ions and electrons and is in the plasma state. The problem of confining such a hot substance is solved by using strong magnetic fields. One specific magnetic configuration, in common use, is called the tokamak. The plasma in this machine has a toroidal, i.e. doughnut shaped, configuration. For understanding the physical processes which take place in the plasma, a good temporally and spatially resolved knowledge of both the ion and electron velocity distribution is required. The situation concerning the electrons is favourable, but this is not the case for the ions. To improve the existing knowledge of the ion velocity distribution in tokamak plasmas, a Rutherford scattering diagnostic (RUSC), designed and built by the FOM-Institute for Plasmaphysics 'Rijnhuizen', was installed at the TEXTOR tokamak in Juelich (D). The principle of the diagnostic is as follows. A beam of monoenergetic particles (30 keV, He) is injected vertically into the plasma. A small part of these particles collides elastically with the moving plasma ions. By determining the energy of a scattered beam particle under a certain angle (7 ), the initial velocity of the plasma ion in one direction can be computed. (orig./WL)

  8. A radially accessible tubular in situ X-ray cell for spatially resolved operando scattering and spectroscopic studies of electrochemical energy storage devices

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hao; Allan, Phoebe K.; Borkiewicz, Olaf J.; Kurtz, Charles; Grey, Clare P.; Chapman, Karena W.; Chupas, Peter J.

    2016-09-16

    A tubularoperandoelectrochemical cell has been developed to allow spatially resolved X-ray scattering and spectroscopic measurements of individual cell components, or regions thereof, during device operation. These measurements are enabled by the tubular cell geometry, wherein the X-ray-transparent tube walls allow radial access for the incident and scattered/transmitted X-ray beam; by probing different depths within the electrode stack, the transformation of different components or regions can be resolved. The cell is compatible with a variety of synchrotron-based scattering, absorption and imaging methodologies. The reliability of the electrochemical cell and the quality of the resulting X-ray scattering and spectroscopic data are demonstrated for two types of energy storage: the evolution of the distribution of the state of charge of an Li-ion battery electrode during cycling is documented using X-ray powder diffraction, and the redistribution of ions between two porous carbon electrodes in an electrochemical double-layer capacitor is documented using X-ray absorption near-edge spectroscopy.

  9. Characterization of gold nanoparticle films: Rutherford backscattering spectroscopy, scanning electron microscopy with image analysis, and atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Pia C. Lansåker

    2014-10-01

    Full Text Available Gold nanoparticle films are of interest in several branches of science and technology, and accurate sample characterization is needed but technically demanding. We prepared such films by DC magnetron sputtering and recorded their mass thickness by Rutherford backscattering spectroscopy. The geometric thickness dg—from the substrate to the tops of the nanoparticles—was obtained by scanning electron microscopy (SEM combined with image analysis as well as by atomic force microscopy (AFM. The various techniques yielded an internally consistent characterization of the films. In particular, very similar results for dg were obtained by SEM with image analysis and by AFM.

  10. The application of low angle Rutherford backscattering and channelling techniques to determine implantation induced disorder profile distributions in semiconductors

    International Nuclear Information System (INIS)

    Ahmed, N.A.G.; Christodoulides, C.E.; Carter, G.; Nobes, M.J.; Titov, A.I.

    1980-01-01

    Low angle exit (9 0 ) Rutherford backscattering geometry and channelling of 2 MeV 4 He + are employed to investigate the disorder depth profiles created by 40 keV N + implantation in (111) silicon and (100) GaAs targets. Parameters which can influence the disordering rate and its spatial distribution, such as ion fluence flux, substrate type and substrate temperature are examined. Under certain implantation conditions, the damage profile distributions are asymmetric - exhibiting a bimodal form in silicon targets or confined much closer to the GaAs surface than the normally expected mean range of 40 keV N + ions. (orig.)

  11. Application of the Rutherford backscattering analysis (RBS analysis) for detecting heavy impurity elements in pBN crucible materials

    International Nuclear Information System (INIS)

    Bethge, K.; Meyer, J.D.; Michelmann, R.; Krauskopf, J.

    1992-01-01

    By means of the Rutherford backscattering analysis evidence is given of an inhomogeneous depth distribution of the elements C, O, F, Na, Mg, Al, Si, P, S, Cl, Ca, Ti, Cr, Fe, Ni in pBN (pyrolytic boron nitride) materials of crucibles. This inhomogenous distribution is observed both at the original surface and at the surface of inner cracks. In addition, the distribution of the elements is found to differ depending on the spots chosen for analysis. The RBS measurements alone do not yield information on the volume concentration of the elements. (orig.) With 2 refs [de

  12. Electrochemical energy generation

    International Nuclear Information System (INIS)

    Kreysa, G.; Juettner, K.

    1993-01-01

    The proceedings encompass 40 conference papers belonging to the following subject areas: Baseline and review papers; electrochemical fuel cells; batteries: Primary and secondary cells; electrochemical, regenerative systems for energy conversion; electrochemical hydrogen generation; electrochemistry for nuclear power plant; electrochemistry for spent nuclear fuel reprocessing; energy efficiency in electrochemical processes. There is an annex listing the authors and titles of the poster session, and compacts of the posters can be obtained from the office of the Gesellschaft Deutscher Chemiker, Abteilung Tagungen. (MM) [de

  13. In-Situ Electrochemical Corrosion Behavior of Nickel-Base 718 Alloy Under Various CO2 Partial Pressures at 150 and 205 °C in NaCl Solution

    Science.gov (United States)

    Zhang, Yubi; Zhao, Yongtao; Tang, An; Yang, Wenjie; Li, Enzuo

    2018-03-01

    The electrochemical corrosion behavior of nickel-base alloy 718 was investigated using electrochemical impedance spectroscopy and potentiodynamic polarization techniques at various partial pressures of CO2 (P_{{{CO}2 }} s) in a 25 wt% NaCl solution at 150 and 205 °C. The passive films composed of FeCO3 exhibit good corrosion resistance with a feature of Warburg impedance, Tafel plots show a complete passivation and the anodic reactions was dominated by a diffusion process at low P_{{{CO}2 }} s (1.8-9.8 MPa) at 150 °C. While numerous dented corrosion areas appeared on the sample surface for the P_{{{CO}2 }} of 11.6 MPa at 205 °C, the Tafel plot with three anodic peaks and the Nyquist diagram with an atrophied impedance arc were present. This dented corrosion attribute to the synergistic effects of stress, temperature, P_{{{CO}2 }} and Cl-, the temperature and stress could play crucial roles on the corrosion of the alloy 718.

  14. Magnetic field effects on electrochemical metal depositions

    Directory of Open Access Journals (Sweden)

    Andreas Bund, Adriana Ispas and Gerd Mutschke

    2008-01-01

    Full Text Available This paper discusses recent experimental and numerical results from the authors' labs on the effects of moderate magnetic (B fields in electrochemical reactions. The probably best understood effect of B fields during electrochemical reactions is the magnetohydrodynamic (MHD effect. In the majority of cases it manifests itself in increased mass transport rates which are a direct consequence of Lorentz forces in the bulk of the electrolyte. This enhanced mass transport can directly affect the electrocrystallization. The partial currents for the nucleation of nickel in magnetic fields were determined using an in situ micro-gravimetric technique and are discussed on the basis of the nucleation model of Heerman and Tarallo. Another focus of the paper is the numerical simulation of MHD effects on electrochemical metal depositions. A careful analysis of the governing equations shows that many MHD problems must be treated in a 3D geometry. In most cases there is a complex interplay of natural and magnetically driven convection.

  15. Development of remote electrochemical decontamination for hot cell applications

    International Nuclear Information System (INIS)

    Turner, A.D.; Pottinger, J.S.; Lain, M.J.; Dawson, R.K.; Neville, M.D.; Junkison, A.R.

    1988-01-01

    The paper concerns the development and evaluation of remote electrochemical decontamination systems for metal surfaces, in connection with the decommissioning of nuclear installations. Two types of technique based on the electrochemical dissolution of thin surface layers of the substrate were investigated: immersion of small items in tanks for electroetching and in situ electropolishing. A description is given of the work programme, the progress of work and the results obtained. (U.K.)

  16. Technical report for fabrication and performance test of electrochemical/spectroscopic measurement system

    International Nuclear Information System (INIS)

    Park, Yong Joon; Cho, Young Hwan; Bae, Sang Eun; Im, Hee Jung; Song, Kyu Seok

    2010-01-01

    Development of evaluation technology of electrochemical reactions is very essential to understand chemical behavior of actinides and lanthanides in molten salt media in relation to the development of Pyrochemical process. The on-line electrochemical/spectroscopic measurement system is to produce electrochemical parameters and thermodynamic parameters of actinides and lanthanides in molten salts by using spectroscopic techniques such as UV-VIS absorption as well as electrochemical in-situ measurement techniques. The on-line electrochemical/spectroscopic measurement system can be applied to understand the chemical reactions and oxidation states of actinides and lanthanides in molten salts eventually for the Pyrochemical process

  17. Methods and systems for in-situ electroplating of electrodes

    Science.gov (United States)

    Zappi, Guillermo Daniel; Zarnoch, Kenneth Paul; Huntley, Christian Andrew; Swalla, Dana Ray

    2015-06-02

    The present techniques provide electrochemical devices having enhanced electrodes with surfaces that facilitate operation, such as by formation of a porous nickel layer on an operative surface, particularly of the cathode. The porous metal layer increases the surface area of the electrode, which may result in increasing the efficiency of the electrochemical devices. The formation of the porous metal layer is performed in situ, that is, after the assembly of the electrodes into an electrochemical device. The in situ process offers a number of advantages, including the ability to protect the porous metal layer on the electrode surface from damage during assembly of the electrochemical device. The enhanced electrode and the method for its processing may be used in any number of electrochemical devices, and is particularly well suited for electrodes in an electrolyzer useful for splitting water into hydrogen and oxygen.

  18. Electrochemical investigations of ion-implanted oxide films

    International Nuclear Information System (INIS)

    Schultze, J.W.; Danzfuss, B.; Meyer, O.; Stimming, U.

    1985-01-01

    Oxide films (passive films) of 40-50 nm thickness were prepared by anodic polarization of hafnium and titanium electrodes up to 20 V. Multiple-energy ion implantation of palladium, iron and xenon was used in order to obtain modified films with constant concentration profiles of the implanted ions. Rutherford backscattering, X-ray photoelectron spectroscopy measurements and electrochemical charging curves prove the presence of implanted ions, but electrochemical and photoelectrochemical measurements indicate that the dominating effect of ion implantation is the disordering of the oxide film. The capacity of hafnium electrodes increases as a result of an increase in the dielectric constant D. For titanium the Schottky-Mott analysis shows that ion implantation causes an increase in D and the donor concentration N. Additional electronic states in the band gap which are created by the implantation improve the conductivity of the semiconducting or insulating films. This is seen in the enhancement of electron transfer reactions and its disappearance during repassivation and annealing. Energy changes in the band gap are derived from photoelectrochemical measurements; the absorption edge of hafnium oxide films decreases by approximately 2 eV because of ion implantation, but it stays almost constant for titanium oxide films. All changes in electrochemical behavior caused by ion implantation show little variation with the nature of the implanted ion. Hence the dominating effect seems to be a disordering of the oxide. (Auth.)

  19. A full-angle Monte-Carlo scattering technique including cumulative and single-event Rutherford scattering in plasmas

    Science.gov (United States)

    Higginson, Drew P.

    2017-11-01

    We describe and justify a full-angle scattering (FAS) method to faithfully reproduce the accumulated differential angular Rutherford scattering probability distribution function (pdf) of particles in a plasma. The FAS method splits the scattering events into two regions. At small angles it is described by cumulative scattering events resulting, via the central limit theorem, in a Gaussian-like pdf; at larger angles it is described by single-event scatters and retains a pdf that follows the form of the Rutherford differential cross-section. The FAS method is verified using discrete Monte-Carlo scattering simulations run at small timesteps to include each individual scattering event. We identify the FAS regime of interest as where the ratio of temporal/spatial scale-of-interest to slowing-down time/length is from 10-3 to 0.3-0.7; the upper limit corresponds to Coulomb logarithm of 20-2, respectively. Two test problems, high-velocity interpenetrating plasma flows and keV-temperature ion equilibration, are used to highlight systems where including FAS is important to capture relevant physics.

  20. Raman scattering and Rutherford backscattering studies on InN films grown by plasma-assisted molecular beam epitaxy

    International Nuclear Information System (INIS)

    Chung, Yee Ling; Peng Xingyu; Liao, Ying Chieh; Yao Shude; Chen, Li Chyong; Chen, Kuei Hsien; Feng, Zhe Chuan

    2011-01-01

    A series of InN thin films was grown on sapphire substrates via plasma-assisted molecular beam epitaxy (PA-MBE) with different nitrogen plasma power. Various characterization techniques, including Hall, photoluminescence, Raman scattering and Rutherford backscattering, have been employed to study these InN films. Good crystalline wurtzite structures have been identified for all PA-MBE grown InN films on sapphire substrate, which have narrower XRD wurtzite (0002) peaks, showed c-axis Raman scattering allowed longitudinal optical (LO) modes of A 1 and E 1 plus E 2 symmetry, and very weak backscattering forbidden transverse optical (TO) modes. The lower plasma power can lead to the lower carrier concentration, to have the InN film close to intrinsic material with the PL emission below 0.70 eV. With increasing the plasma power, high carrier concentration beyond 1 x 10 20 cm -3 can be obtained, keeping good crystalline perfection. Rutherford backscattering confirmed most of InN films keeping stoichiometrical In/N ratios and only with higher plasma power of 400 W leaded to obvious surface effect and interdiffusion between the substrate and InN film.

  1. Preparation and Electrochemical Properties of Silver Doped Hollow Carbon Nanofibers

    Directory of Open Access Journals (Sweden)

    LI Fu

    2016-11-01

    Full Text Available Silver doped PAN-based hollow carbon nanofibers were prepared combining co-electrospinning with in situ reduction technique subsequently heat treatment to improve the electrochemical performances of carbon based supercapacitor electrodes. The morphology, structure and electrochemical performances of the resulted nanofiber were studied. The results show that the silver nanoparticles can be doped on the surface of hollow carbon nanofibers and the addition of silver favors the improvement of the electrochemical performances, exhibiting the enhanced reversibility of electrode reaction and the capacitance and the reduced charge transfer impedance.

  2. Local electrochemical evaluation of a self-healing coating based on encapsulated healing-agent

    NARCIS (Netherlands)

    González-García, Y.; García, S.J.; Fischer, H.R.; Hughes, A.E.; Mol, J.M.C.

    2011-01-01

    In this work local electrochemical techniques are introduced as powerful and complementary techniques for the in-situ evaluation of self-healing systems applied for the protection of metals against corrosion. Scanning vibrating electrode technique (SVET) and scanning electrochemical microscopy

  3. In situ reduction and functionalization of graphene oxide with l-cysteine for simultaneous electrochemical determination of cadmium(ii), lead(ii), copper(ii), and mercury(ii) ions

    KAUST Repository

    Muralikrishna, S. N.; Sureshkumar, K.; Varley, Thomas Stephen; Nagaraju, Doddahalli H.; Ramakrishnappa, Thippeswamy

    2014-01-01

    One pot reduction and functionalization of graphene oxide (GO) with l-cysteine (l-cys-rGO) at the edges and basal planes of the carbon layers are presented. The l-cys-rGO was characterized by X-ray diffraction studies (XRD), X-ray photoelectron spectroscopy (XPS), attenuated infrared spectroscopy (ATIR), and Raman spectroscopy. The surface morphology was studied by scanning electron microscopy (SEM) and transmittance electron microscopy (TEM). The l-cys-rGO was further utilized for the simultaneous electrochemical quantification of environmentally harmful metal ions such as, Cd2+, Pb2+, Cu2+ and Hg2+. Detection limits obtained for these metal ions were 0.366, 0.416, 0.261 and 1.113 μg L-1 respectively. The linear range obtained for Cd2+, Cu2+ and Hg2+ was 0.4 to 2.0 μM and for Pb2+ was 0.4 to 1.2 μM. The detection limits were found to be less than the World Health Organization (WHO) limits. The developed protocol was applied for the determination of the above metal ions in various environmental samples and the results obtained were validated by atomic absorption spectroscopy (AAS). This journal is

  4. First beam measurements on the vessel for extraction and source plasma analyses (VESPA) at the Rutherford Appleton Laboratory (RAL)

    Energy Technology Data Exchange (ETDEWEB)

    Lawrie, Scott R., E-mail: scott.lawrie@stfc.ac.uk [ISIS Neutron and Muon Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, OX11 0QX (United Kingdom); John Adams Institute for Accelerator Science, Department of Physics, University of Oxford (United Kingdom); Faircloth, Daniel C.; Letchford, Alan P.; Perkins, Mike; Whitehead, Mark O.; Wood, Trevor [ISIS Neutron and Muon Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, OX11 0QX (United Kingdom)

    2015-04-08

    In order to facilitate the testing of advanced H{sup −} ion sources for the ISIS and Front End Test Stand (FETS) facilities at the Rutherford Appleton Laboratory (RAL), a Vessel for Extraction and Source Plasma Analyses (VESPA) has been constructed. This will perform the first detailed plasma measurements on the ISIS Penning-type H{sup −} ion source using emission spectroscopic techniques. In addition, the 30-year-old extraction optics are re-designed from the ground up in order to fully transport the beam. Using multiple beam and plasma diagnostics devices, the ultimate aim is improve H{sup −} production efficiency and subsequent transport for either long-term ISIS user operations or high power FETS requirements. The VESPA will also accommodate and test a new scaled-up Penning H{sup −} source design. This paper details the VESPA design, construction and commissioning, as well as initial beam and spectroscopy results.

  5. Characterization of amorphous silicon films by Rutherford backscattering spectrometry. [1. 5-MeV Ho/sup +/

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, K; Imura, T; Iwami, M; Hiraki, A [Osaka Univ., Suita (Japan). Dept. of Electrical Engineering; Satou, M [Government Industrial Research Inst., Osaka, Ikeda (Japan); Fujimoto, F [Tokyo Univ. (Japan). Coll. of General Education; Hamakawa, Y [Osaka Univ., Toyonaka (Japan). Faculty of Engineering Science; Minomura, S [Tokyo Univ. (Japan). Inst. for Solid State Physics; Tanaka, K [Electrotechnical Lab., Tanashi, Tokyo (Japan)

    1980-01-01

    Rutherford backscattering spectrometry (RBS) was applied to the characterization of amorphous silicon films prepared by glow discharge in silane, tetrode- and diode-sputterings of silicon target in ambient argon or hydrogen diluted by argon. This method was able to detect at least 5 at.% hydrogen atoms in amorphous silicon through the change of stopping power. Hydrogen content in films made by glow discharge at the substrate temperature 25/sup 0/C to 300/sup 0/C and at 2 torr of silane gas varied from 50% to 20%. A strong trend was found for oxygen to dissolve into films: Films produced by diode sputtering in argon gas with higher pressure than 3 x 10/sup -2/ torr absorbed oxygen. The potential and fitness of the RBS method for the characterization of amorphous silicon films are emphasized and demonstrated.

  6. The analysis of Rutherford scattering-channelling measurements of disorder production and annealing in ion irradiated semiconductors

    International Nuclear Information System (INIS)

    Carter, G.; Elliman, R.G.

    1983-01-01

    Rutherford scattering and channelling of light probe ions (e.g. He + ) has been extensively used for studies of disorder production in ion implanted semiconductors. Various authors have analysed models of amorphousness accumulation and Carter and Webb have indicated the general difficulties in assessing disorder production models from RBS/channelling studies if the production modes are complex and the manner in which the technique responds to different defect structures is unspecified. For less complex disorder production modes and by making reasonable assumptions about the technique response however, some insight into the form of backscattering yield - ion implant fluence functions can be obtained as is discussed in the present communication. It thus becomes possible to infer the importance of different disorder generation processes from RBS/channelling - ion influence studies. It will also be shown how simple annealing processes modify disorder accumulation and thus again how the operation of such processes may be inferred from RBS/channelling - ion fluence measurements. (author)

  7. Buffered Electrochemical Polishing of Niobium

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Tian, Hui [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); College of William and Mary, Williamsburg, VA (United States); Corcoran, Sean [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2011-03-01

    The standard preparation of superconducting radio-frequency (SRF) cavities made of pure niobium include the removal of a 'damaged' surface layer, by buffered chemical polishing (BCP) or electropolishing (EP), after the cavities are formed. The performance of the cavities is characterized by a sharp degradation of the quality factor when the surface magnetic field exceeds about 90 mT, a phenomenon referred to as 'Q-drop.' In cavities made of polycrystalline fine grain (ASTM 5) niobium, the Q-drop can be significantly reduced by a low-temperature (? 120 °C) 'in-situ' baking of the cavity if the chemical treatment was EP rather than BCP. As part of the effort to understand this phenomenon, we investigated the effect of introducing a polarization potential during buffered chemical polishing, creating a process which is between the standard BCP and EP. While preliminary results on the application of this process to Nb cavities have been previously reported, in this contribution we focus on the characterization of this novel electrochemical process by measuring polarization curves, etching rates, surface finish, electrochemical impedance and the effects of temperature and electrolyte composition. In particular, it is shown that the anodic potential of Nb during BCP reduces the etching rate and improves the surface finish.

  8. In situ electrochemical SFG/DFG study of CN- and nitrile adsorption at Au from 1-butyl-1-methyl-pyrrolidinium bis(trifluoromethylsulfonyl) amide ionic liquid([BMP][TFSA]) containing 4-{2-[1-(2-cyanoethyl)-1,2,3,4-tetrahydroquinolin-6-yl]diazenyl} benzonitrile (CTDB) and K[Au(CN)₂].

    Science.gov (United States)

    Bozzini, Benedetto; Busson, Bertrand; Gayral, Audrey; Humbert, Christophe; Mele, Claudio; Six, Catherine; Tadjeddine, Abderrahmane

    2012-06-25

    In this paper we report an in situ electrochemical Sum-/Difference Frequency Generation (SFG/DFG) spectroscopy investigation of the adsorption of nitrile and CN⁻ from the ionic liquid 1-butyl-1-methyl-pyrrolidinium bis(trifluoromethylsulfonyl) amide ([BMP][TFSA]) containing 4-{2-[1-(2-cyanoethyl)-1,2,3,4-tetrahydroquinolin-6-yl]-diazenyl}benzonitrile (CTDB) at Au electrodes in the absence and in the presence of the Au-electrodeposition process from K[Au(CN)₂]. The adsorption of nitrile and its coadsorption with CN⁻ resulting either from the cathodic decomposition of the dye or from ligand release from the Au(I) cyanocomplex yield potential-dependent single or double SFG bands in the range 2,125-2,140 cm⁻¹, exhibiting Stark tuning values of ca. 3 and 1 cm⁻¹ V⁻¹ in the absence and presence of electrodeposition, respectively. The low Stark tuning found during electrodeposition correlates with the cathodic inhibiting effect of CTDB, giving rise to its levelling properties. The essential insensitivity of the other DFG parameters to the electrodeposition process is due to the growth of smooth Au.

  9. Electrochemical charging of the single-layer graphene membrane

    Czech Academy of Sciences Publication Activity Database

    Komínková, Zuzana; Kalbáč, Martin

    2016-01-01

    Roč. 253, č. 12 (2016), s. 2331-2335 ISSN 0370-1972 R&D Projects: GA MŠk LL1301; GA ČR(CZ) GBP208/12/G016 Institutional support: RVO:61388955 Keywords : electrochemical charging * graphene membrane * in situ Raman spectroelectrochemistry Subject RIV: CG - Electrochemistry Impact factor: 1.674, year: 2016

  10. Lord Rutherford of Nelson, his 1908 Nobel Prize in Chemistry, and why he didn't get a second prize

    Energy Technology Data Exchange (ETDEWEB)

    Jarlskog, Cecilia [Division of Mathematical Physics, LTH, Lund University, Box 118, S-22100 Lund (Sweden)], E-mail: cecilia.jarlskog@matfys.lth.se

    2008-11-01

    'I have dealt with many different transformations with various periods of time, but the quickest that I have met was my own transformation in one moment from a physicist to a chemist.' Ernest Rutherford (Nobel Banquet, 1908) This article is about how Ernest Rutherford (1871-1937) got the 1908 Nobel Prize in Chemistry and why he did not get a second Prize for his subsequent outstanding discoveries in physics, specially the discovery of the atomic nucleus and the proton. Who were those who nominated him and who did he nominate for the Nobel Prizes? In order to put the Prize issue into its proper context, I will briefly describe Rutherford's whereabouts. Rutherford, an exceptionally gifted scientist who revolutionized chemistry and physics, was moulded in the finest classical tradition. What were his opinions on some scientific issues such as Einstein's photon, uncertainty relations and the future prospects for atomic energy? What would he have said about the 'Theory of Everything'? Extended version of an invited talk presented at the conference 'Neutrino 2008', Christchurch, NZ, 25-31 May 2008.

  11. Corrosion monitoring in a straw-fired power plant using an electrochemical noise probe

    DEFF Research Database (Denmark)

    Cappeln, Frederik Vilhelm; Bjerrum, Niels; Petrushina, Irina

    2007-01-01

    Electrochemical Noise Measurements have been carried out in situ in a straw-fired power plant using an experimental probe constructed from alumina and AlSl 347 steel. Based on a framework of controlled laboratory experiments it has been found that electrochemical noise has the unique ability...... to provide in-situ monitoring of intergranular corrosion in progress. The probe had a lifetime of two months. It was shown that down-time corrosion in the boiler was negligible. Electrochemical noise data indicated that metal temperatures around 590 degrees C should be avoided as the intergranular corrosion...

  12. Electrochemical solar energy conversion

    International Nuclear Information System (INIS)

    Gerischer, H.

    1991-01-01

    The principles of solar energy conversion in photoelectrochemical cells are briefly reviewed. Cells for the generation of electric power and for energy storage in form of electrochemical energy are described. These systems are compared with solid state photovoltaic devices, and the inherent difficulties for the operation of the electrochemical systems are analyzed. (author). 28 refs, 10 figs

  13. Electrochemical thermodynamic measurement system

    Science.gov (United States)

    Reynier, Yvan [Meylan, FR; Yazami, Rachid [Los Angeles, CA; Fultz, Brent T [Pasadena, CA

    2009-09-29

    The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate and the cycle life of an electrochemical cell.

  14. Electrochemical Detection with Preconcentration: Nitroenergetic Contaminants

    Directory of Open Access Journals (Sweden)

    Brandy J. Johnson

    2014-06-01

    Full Text Available This effort evaluated the potential of two prototype devices for enhanced electrochemical detection of 2,4,6-trinitrotoluene (TNT and dinitrotoluene (DNT following preconcentration using an organosilicate sorbent. The bench-scale prototype provides adsorption of the targets from aqueous solution followed by elution in a mixture of methanol and potassium chloride (KCl. Following elution, the eluant is diluted using an aqueous KCl solution to provide sufficient electrolyte for electrochemical analysis. Concentrations of methanol greater than 50% were detrimental to sensor performance and lifetime. Calibration of the electrochemical sensor was completed and results of electrochemical analysis were compared to those of HPLC analysis over a range of concentrations and in varied matrices. TNT detection was found to be consistent and detection limits were improved from 200 ppb to 3 ppb depending on the sample volume utilized. DNT detection showed higher variability and significantly greater false response rates. On the basis of these results, a second, more advanced, prototype was developed and utilized in limited field trials with the intention of moving the technology toward in situ applications.

  15. Electrochemical surface modification of titanium in dentistry.

    Science.gov (United States)

    Kim, Kyo-Han; Ramaswamy, Narayanan

    2009-01-01

    Titanium and its alloys have good biocompatibility with body cells and tissues and are widely used for implant applications. However, clinical procedures place more stringent and tough requirements on the titanium surface necessitating artificial surface treatments. Among the many methods of titanium surface modification, electrochemical techniques are simple and cheap. Anodic oxidation is the anodic electrochemical technique while electrophoretic and cathodic depositions are the cathodic electrochemical techniques. By anodic oxidation it is possible to obtain desired roughness, porosity and chemical composition of the oxide. Anodic oxidation at high voltages can improve the crystallinity of the oxide. The chief advantage of this technique is doping of the coating of the bath constituents and incorporation of these elements improves the properties of the oxide. Electrophoretic deposition uses hydroxyapatite (HA) powders dispersed in a suitable solvent at a particular pH. Under these operating conditions these particles acquire positive charge and coatings are obtained on the cathodic titanium by applying an external electric field. These coatings require a post-sintering treatment to improve the coating properties. Cathodic deposition is another type of electrochemical method where HA is formed in situ from an electrolyte containing calcium and phosphate ions. It is also possible to alter structure and/or chemistry of the obtained deposit. Nano-grained HA has higher surface energy and greater biological activity and therefore emphasis is being laid to produce these coatings by cathodic deposition.

  16. In situ Observation of Direct Electron Transfer Reaction of Cytochrome c Immobilized on ITO Electrode Modified with 11-{2-[2-(2-Methoxyethoxy)ethoxy]ethoxy}undecylphosphonic Acid Self-assembled Monolayer Film by Electrochemical Slab Optical Waveguide Spectroscopy.

    Science.gov (United States)

    Matsuda, Naoki; Okabe, Hirotaka; Omura, Ayako; Nakano, Miki; Miyake, Koji

    2017-01-01

    To immobilize cytochrome c (cyt.c) on an ITO electrode while keeping its direct electron transfer (DET) functionality, the ITO electrode surface was modified with 11-{2-[2-(2-methoxyethoxy)ethoxy]ethoxy}undecylphosphonic acid (CH 3 O (CH 2 CH 2 O) 3 C 11 H 22 PO(OH) 2 , M-EG 3 -UPA) self-assembled monolayer (SAM) film. After a 100-times washing process to exchange a phosphate buffer saline solution surrounding cyt.c and ITO electrode to a fresh one, an in situ observation of visible absorption spectral change with slab optical waveguide (SOWG) spectroscopy showed that 87.7% of the cyt.c adsorbed on the M-EG 3 -UPA modified ITO electrode remained on the ITO electrode. The SOWG absorption spectra corresponding to oxidized and reduced cyt.c were observed with setting the ITO electrode potential at 0.3 and -0.3 V vs. Ag/AgCl, respectively, while probing the DET reaction between cyt.c and ITO electrode occurred. The amount of cyt.c was evaluated to be about 19.4% of a monolayer coverage based on the coulomb amount in oxidation and reduction peaks on cyclic voltammetry (CV) data. The CV peak current maintained to be 83.4% compared with the initial value for a M-EG 3 -UPA modified ITO electrode after 60 min continuous scan with 0.1 V/s between 0.3 and -0.3 V vs. Ag/AgCl.

  17. Electrochemical gating in scanning electrochemical microscopy

    NARCIS (Netherlands)

    Ahonen, P.; Ruiz, V.; Kontturi, K.; Liljeroth, P.; Quinn, B.M.

    2008-01-01

    We demonstrate that scanning electrochemical microscopy (SECM) can be used to determine the conductivity of nanoparticle assemblies as a function of assembly potential. In contrast to conventional electron transport measurements, this method is unique in that electrical connection to the film is not

  18. Electrochemical and materials aspects of tribocorrosion systems

    International Nuclear Information System (INIS)

    Landolt, D

    2006-01-01

    Tribocorrosion involves mechanical and chemical/electrochemical interactions between surfaces in relative motion in the presence of a corrosive environment. Tribocorrosion phenomena are encountered in many technological areas where they cause damage to installations, machines and devices. Often tribocorrosion damage is a problem for safety or for human health. In other applications tribocorrosion phenomena are put to good use in manufacturing. The chemo-mechanical mechanisms of tribocorrosion are still incompletely understood, they involve the properties of contacting material surfaces, the mechanics of the contact and the corrosion conditions. Electrochemical methods are widely used for the study of tribocorrosion reactions. To yield information about synergistic and antagonistic mechanisms they must be applied in situ under strictly controlled mechanical conditions, using materials with well-characterized surface properties. Recent progress in modelling and understanding of tribocorrosion systems is discussed and some challenges and opportunities for future research are identified

  19. Stability of nanocrystalline electrochemically deposited layers

    DEFF Research Database (Denmark)

    Pantleon, Karen; Somers, Marcel A. J.

    2009-01-01

    have different microstructure and properties compared to bulk materials and the thermodynamic non-equilibrium state of as-deposited layers frequently results in changes of the microstructure as a function of time and/or temperature. The evolving microstructure affects the functionality and reliability......The technological demand for manufacturing components with complex geometries of micrometer or sub-micrometer dimensions and ambitions for ongoing miniaturization have attracted particular attention to electrochemical deposition methods. Thin layers of electrochemically deposited metals and alloys...... of electrodeposited components, which can be beneficial, as for the electrical conductivity of copper interconnect lines, or detrimental, as for reduced strength of nickel in MEMS applications. The present work reports on in-situ studies of the microstructure stability of as-deposited nanocrystalline Cu-, Ag- and Ni...

  20. Electrochemical force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kalinin, Sergei V.; Jesse, Stephen; Collins, Liam F.; Rodriguez, Brian J.

    2017-01-10

    A system and method for electrochemical force microscopy are provided. The system and method are based on a multidimensional detection scheme that is sensitive to forces experienced by a biased electrode in a solution. The multidimensional approach allows separation of fast processes, such as double layer charging, and charge relaxation, and slow processes, such as diffusion and faradaic reactions, as well as capturing the bias dependence of the response. The time-resolved and bias measurements can also allow probing both linear (small bias range) and non-linear (large bias range) electrochemical regimes and potentially the de-convolution of charge dynamics and diffusion processes from steric effects and electrochemical reactivity.

  1. Fundamentals of electrochemical science

    CERN Document Server

    Oldham, Keith

    1993-01-01

    Key Features* Deals comprehensively with the basic science of electrochemistry* Treats electrochemistry as a discipline in its own right and not as a branch of physical or analytical chemistry* Provides a thorough and quantitative description of electrochemical fundamentals

  2. Electrochemical Analysis of Neurotransmitters

    Science.gov (United States)

    Bucher, Elizabeth S.; Wightman, R. Mark

    2015-07-01

    Chemical signaling through the release of neurotransmitters into the extracellular space is the primary means of communication between neurons. More than four decades ago, Ralph Adams and his colleagues realized the utility of electrochemical methods for the study of easily oxidizable neurotransmitters, such as dopamine, norepinephrine, and serotonin and their metabolites. Today, electrochemical techniques are frequently coupled to microelectrodes to enable spatially resolved recordings of rapid neurotransmitter dynamics in a variety of biological preparations spanning from single cells to the intact brain of behaving animals. In this review, we provide a basic overview of the principles underlying constant-potential amperometry and fast-scan cyclic voltammetry, the most commonly employed electrochemical techniques, and the general application of these methods to the study of neurotransmission. We thereafter discuss several recent developments in sensor design and experimental methodology that are challenging the current limitations defining the application of electrochemical methods to neurotransmitter measurements.

  3. Organic electrochemical transistors

    KAUST Repository

    Rivnay, Jonathan; Inal, Sahika; Salleo, Alberto; Owens, Ró isí n M.; Berggren, Magnus; Malliaras, George G.

    2018-01-01

    Organic electrochemical transistors (OECTs) make effective use of ion injection from an electrolyte to modulate the bulk conductivity of an organic semiconductor channel. The coupling between ionic and electronic charges within the entire volume

  4. Design Modifications, Fabrication and Test of HFDB-03 Racetrack Magnet Wound with Pre-Reacted Nb3Sn Rutherford Cable

    International Nuclear Information System (INIS)

    Ambrosio, G.; Andreev, N.; Barzi, E.; Bhashyam, S.; Carcagno, R.; Feher, S.; Imbasciati, L.; Lamm, M.; Pischalnikov, Y.; Tartaglia, M.; Tompkins, J.; Zlobin, A.V.

    2004-01-01

    A 10 T racetrack magnet (HFDB-03) wound with pre-reacted Nb3Sn Rutherford cable has been fabricated and tested at Fermilab. This magnet is the third one in a proof-of-principle series for the use of the React-and-Wind technology in common-coil dipole magnets for future accelerators. It consists of two flat racetrack coils (28 turns each) separated by 5 mm. The maximum field on the coil, at the short sample limit of 16530 A, is 10 tesla. The cable has 41 strands with 0.7 mm diameter and the minimum bend radius in the magnet ends is 90 mm. The predecessor of this magnet (HFDB-02) reached 78 % of the short sample limit at 7.7 T. The mechanical design was improved and the fabrication procedure was slightly modified in order to address possible causes of limitation. In this paper we present the mechanical design and analysis of HFDB-03, the modifications to the fabrication procedure and the test results

  5. Interaction of europium and nickel with calcite studied by Rutherford Backscattering Spectrometry and Time-Resolved Laser Fluorescence Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sabau, A. [Agence Nationale pour la gestion des Déchets RAdioactifs, 1-7 rue J. Monnet, Parc de la Croix Blanche, 92298 Châtenay-Malabry Cedex (France); Université de Nice Sophia Antipolis, Ecosystèmes Côtiers Marins et Réponses aux Stress (ECOMERS), 28 avenue Valrose, 06108 Nice Cedex 2 (France); Pipon, Y., E-mail: pipon@ipnl.in2p3.fr [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69 622 Villeurbanne Cedex (France); Institut Universitaire de Technologie (IUT) Lyon-1, Université Claude Bernard Lyon 1, 69 622 Villeurbanne Cedex (France); Toulhoat, N. [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69 622 Villeurbanne Cedex (France); CEA/DEN, Saclay, 91191 Gif sur Yvette (France); Lomenech, C. [Université de Nice Sophia Antipolis, Ecosystèmes Côtiers Marins et Réponses aux Stress (ECOMERS), 28 avenue Valrose, 06108 Nice Cedex 2 (France); Jordan, N. [Helmholtz Zentrum Dresden Rossendorf (HZDR), Institute of Resource Ecology (IRE) (Germany); Moncoffre, N. [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69 622 Villeurbanne Cedex (France); Barkleit, A. [Helmholtz Zentrum Dresden Rossendorf (HZDR), Institute of Resource Ecology (IRE) (Germany); and others

    2014-08-01

    This study aims at elucidating the mechanisms regulating the interaction of Eu and Ni with calcite (CaCO{sub 3}). Calcite powders or single crystals (some mm sized) were put into contact with Eu or Ni solutions at concentrations ranging from 10{sup −3} to 10{sup −5} mol L{sup −1} for Eu and 10{sup −3} mol L{sup −1} for Ni. The sorption durations ranged from 1 week to 1 month. Rutherford Backscattering Spectrometry (RBS) well adapted to discriminate incorporation processes such as: (i) adsorption or co precipitation at the mineral surfaces or, (ii) incorporation into the mineral structure (through diffusion for instance), has been carried out. Moreover, using the fluorescence properties of europium, the results have been compared to those obtained by Time-Resolved Laser Fluorescence Spectroscopy (TRLFS) on calcite powders. For the single crystals, complementary SEM observations of the mineral surfaces at low voltage were also performed. Results showed that Ni accumulates at the calcite surface whereas Eu is also incorporated at a greater depth. Eu seems therefore to be incorporated into two different states in calcite: (i) heterogeneous surface accumulation and (ii) incorporation at depth greater than 160 nm after 1 month of sorption. Ni was found to accumulate at the surface of calcite without incorporation.

  6. Nanometric resolution in glow discharge optical emission spectroscopy and Rutherford backscattering spectrometry depth profiling of metal (Cr, Al) nitride multilayers

    International Nuclear Information System (INIS)

    Escobar Galindo, R.; Gago, R.; Fornies, E.; Munoz-Martin, A.; Climent Font, A.; Albella, J.M.

    2006-01-01

    In this work, we address the capability of glow discharge optical emission spectroscopy (GDOES) for fast and accurate depth profiling of multilayer nitride coatings down to the nanometer range. This is shown by resolving the particular case of CrN/AlN structures with individual thickness ranging from hundreds to few nanometers. In order to discriminate and identify artefacts in the GDOES depth profile due to the sputtering process, the layered structures were verified by Rutherford backscattering spectrometry (RBS) and scanning electron microscopy (SEM). The interfaces in the GDOES profiles for CrN/AlN structures are sharper than the ones measured for similar metal multilayers due to the lower sputtering rate of the nitrides. However, as a consequence of the crater shape, there is a linear degradation of the depth resolution with depth (approximately 40 nm/μm), saturating at a value of approximately half the thickness of the thinner layer. This limit is imposed by the simultaneous sputtering of consecutive layers. The ultimate GDOES depth resolution at the near surface region was estimated to be of 4-6 nm

  7. Investigation on LPCVD SiON films by means of Rutherford backscattering, FT-IR and UV-VIS Spectroscopy

    International Nuclear Information System (INIS)

    Dudu, D.; Ivanov, E.; Bercu, B.N.; Bercu, M.; Modreanu, M.

    2003-01-01

    The SiON layers deposited by LPCVD (Low Vapour Chemical Deposition ) on Si (111) substrate has been investigated by complementary techniques as Rutherford backscattering and optical spectroscopy. We have determined the evolution of chemical content in respect with oxygen relative to nitrogen. The change in oxygen content versus time was produced by exposing the sample in wet oxygen at 1000 deg. C for different periods. The change in oxygen amount was determined by monitoring the Si-O-Si integral intensity of the absorption band at 1071cm -1 . Also the behavior of the refractive index versus time in an oxidative atmosphere gave a complementary information about the oxygen content. Alpha scattering spectra obtained by means of cyclotron facilities was used as another technique for oxygen to nitrogen ratio determination. Both visible spectra and RBS data were fitted by using the corresponding simulating approaches based on light propagation in non-homogeneous media and respectively on multiple scattering theory. The time evolution of O content indicated a diffused controlled process through the gas/solid interface. (authors)

  8. Electrochemical polymer electrolyte membranes

    CERN Document Server

    Fang, Jianhua; Wilkinson, David P

    2015-01-01

    Electrochemical Polymer Electrolyte Membranes covers PEMs from fundamentals to applications, describing their structure, properties, characterization, synthesis, and use in electrochemical energy storage and solar energy conversion technologies. Featuring chapters authored by leading experts from academia and industry, this authoritative text: Discusses cutting-edge methodologies in PEM material selection and fabricationPoints out important challenges in developing PEMs and recommends mitigation strategies to improve PEM performanceAnalyzes the cur

  9. Analysis of the quench propagation along Nb$_{3}$Sn Rutherford cables with the THELMA code. Part II: application to the quench longitudinal propagation

    CERN Document Server

    Manfreda, G.; Bajas, H.; Perez, J.C.

    2016-01-01

    To improve the technology of the new generation of accelerator magnets, prototypes are being manufactured and tested in several laboratories. In parallel, many numerical analyses are being carried out to predict the magnets behaviour and interpret the experimental results. This paper focuses on the quench propagation velocity, which is a crucial parameter as regards the energy dissipation along the magnet conductor. The THELMA code, originally developed for cable-in-conduit conductors for fusion magnets, has been used to study such quench propagation. To this purpose, new code modules have been added to describe the Rutherford cable geometry, the material non-linear thermal properties and to describe the thermal conduction problem in transient regime. THELMA can describe the Rutherford cable at the strand level, modelling both the electrical and thermal contact resistances between strands and enabling the analysis of the effects of local hot spots and quench heaters. This paper describes the model application...

  10. Selective Rutherford backscattering techniques in the study of transition-metal implanted YBa{sub 2}C{sub 3}O{sub 7-{delta}}

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J W; Russell, G J [New South Wales Univ., Kensington, NSW (Australia). School of Physics; Cohen, D D; Evans, P J [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1994-12-31

    Using a metal-vapor vacuum arc ion source, several as-grown, large single crystal YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} were implanted with a dose of 1x10{sup 17} zinc, nickel and iron ions. After implantation the crystal was subjected to two anneal cycles that has allowed to examine crystal structure, superconducting transitions and composition, through X-ray diffraction, rutherford backscattering spectroscopy (RBS) and AC susceptibility measurements respectively. Although RBS discriminates strongly against light elements, such as oxygen, the use of resonant reaction {sup 16}O ({alpha}, {alpha}){sup 16}O at 3.4 MeV was beneficial, as its cross section is nearly 23 times that of the rutherford cross section. 4 figs.

  11. Selective Rutherford backscattering techniques in the study of transition-metal implanted YBa{sub 2}C{sub 3}O{sub 7-{delta}}

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J.W.; Russell, G.J. [New South Wales Univ., Kensington, NSW (Australia). School of Physics; Cohen, D.D.; Evans, P.J. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1993-12-31

    Using a metal-vapor vacuum arc ion source, several as-grown, large single crystal YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} were implanted with a dose of 1x10{sup 17} zinc, nickel and iron ions. After implantation the crystal was subjected to two anneal cycles that has allowed to examine crystal structure, superconducting transitions and composition, through X-ray diffraction, rutherford backscattering spectroscopy (RBS) and AC susceptibility measurements respectively. Although RBS discriminates strongly against light elements, such as oxygen, the use of resonant reaction {sup 16}O ({alpha}, {alpha}){sup 16}O at 3.4 MeV was beneficial, as its cross section is nearly 23 times that of the rutherford cross section. 4 figs.

  12. Development of a microfabricated electrochemical-cantilever hybrid platform

    DEFF Research Database (Denmark)

    Fischer, Lee MacKenzie; Pedersen, Christoffer; Elkjær, Karl

    2011-01-01

    The design and fabrication of a combined electrochemical-cantilever microfluidic system is described. A chip integrating cantilevers with electrodes into a microchannel is presented with the accompanying polymer flow cell. Issues such as electrical and fluid connections are addressed......, electromechanical behavior in ionic solution is investigated, and two uses of the system are demonstrated. First, all cantilevers are functionalized with cysteine, to facilitate detection of Cu2+ ions, then one cantilever is electrochemically cleaned in situ to generate a reference cantilever for differential...

  13. An electrochemical-cantilever platform for hybrid sensing applications

    DEFF Research Database (Denmark)

    Fischer, Lee MacKenzie; Dohn, Søren; Boisen, Anja

    2011-01-01

    This work presents a fully-functional, microfabricated electrochemical-cantilever hybrid platform with flow control. A new cantilever chip format is designed, fabricated, and mounted in a custom polymer flow cell. Issues such as leakage and optical/electrical access are addressed, and combined...... mechanical and electrochemical performance is investigated. Lastly, a cantilever is “defunctionalized” in situ to create a reference cantilever for differential measurements in detection of Cu2+ ions at concentrations of 10 μM and 100 nM....

  14. SAFIRA. Subproject B 3.1: reductive dechlorination of chloroaromatics by means of electrochemical methods and membrane-supported catalysts for in-situ treatment of contaminated groundwater. Final report; SAFIRA. Teilprojekt B 3.1: Reduktive Dechlorierung von Chloraromaten mit elektrochemischen Methoden und Membran-gestuetzten Katalysatoren zur in-situ-Behandlung von kontaminierten Grundwaessern. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Kopinke, F.D.; Mackenzie, K.; Koehler, R.; Battke, J.

    2002-12-31

    The objective of the sub-project was the development and experimental testing of a mainly passive, in situ technology for the abiotic dehalogenation of halogenated organic hydrocarbons (HOCs) within the aquifer. The technology to be developed should be applicable not only for aliphatic HOCs but also for dehalogenation of aromatic halogenated pollutants. During the first two years of the project, the main focus of our research was the development and testing of novel membrane-supported catalysts. The catalytically active component Pd was embedded in highly disperse form into non-porous silicone membranes in order to protect it from ionic catalyst poisons and erosion. At the laboratory scale, the novel catalysts proved their suitability for dehalogenation of various classes of HOCs within the water phase. The membrane-supported catalysts were developed in co-operation with a working group from the GKSS Geesthacht and their novelty was protected in a patent disclosure (DE 19952 732A1). Especially for their use under field conditions, membrane-supported Pd catalysts were produced as hollow fibres where the reaction partner hydrogen was fed from the interior of the fibres. Unfortunately, the high activity of these catalysts was not sustainable under Bitterfeld groundwater conditions - sulphur poisoning occurred due to non-ionic catalyst poisons situated in the aquifer and H{sub 2}S produced by sulphate-reducing bacteria. In order to enhance the catalyst stability and therefore their applicability in a scaled-up technology, our studies were then focused on the suppression of microbial activity and on catalyst regeneration. (orig.) [German] Das Ziel des Teilprojektes war die Entwicklung und experimentelle Pruefung eines weitgehend passiven, in-situ-tauglichen Verfahrens zur abiotischen Dehalogenierung von HKW im Aquifer, das auch auf halogenierte aromatische Verbindungen anwendbar ist. In den ersten zwei Jahren des Projektes stand die Entwicklung und Testung von Membran

  15. The electrochemical polymerization of indole with thiophene

    International Nuclear Information System (INIS)

    Sarac, S.

    2004-01-01

    Electropolymerization of indole (IN) in the presence of thiophene (Th) was followed by in situ spectrochemical studies. A correlation between absorbance (390 nm) and charge (at 600 mV) values indicated that oligomeric species were formed in solution, and similar results were found with in situ measurements. The copolymer was characterized by FT-IR, UV-Visible Spectroscopy, Cyclic Voltammetry and four-point probe conductymeter. The increase in conductivity by the incorporation of Th into polyindole was about 60 times for a feed ratio n I N/n T H=1:10 and 19 times for n I N/n T H=1:1. Similar effects were also observed during in situ spectroelectrochemical measurements of copolymer formation. It was also found that the cyclic voltametry peak potentials for the electrogrowth of copolymer films were closely correlated to the conductivities of the corresponding films (measured separately by four-point probe method), thereby allowing us to use the peak potential currents to predict the final copolymer film conductivities during the electrochemical growth process. The ex-situ spectroelectrocopolymerization of indole was also obtained in acetonitril medium.The Tg value of the polymer also increased with the incorporation of Th. The results strongly suggest that IN and Th copolymerize on the electrode surface as well as in solution

  16. Materials for electrochemical capacitors

    Science.gov (United States)

    Simon, Patrice; Gogotsi, Yury

    2008-11-01

    Electrochemical capacitors, also called supercapacitors, store energy using either ion adsorption (electrochemical double layer capacitors) or fast surface redox reactions (pseudo-capacitors). They can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanisms and the development of advanced nanostructured materials. The discovery that ion desolvation occurs in pores smaller than the solvated ions has led to higher capacitance for electrochemical double layer capacitors using carbon electrodes with subnanometre pores, and opened the door to designing high-energy density devices using a variety of electrolytes. Combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries. The use of carbon nanotubes has further advanced micro-electrochemical capacitors, enabling flexible and adaptable devices to be made. Mathematical modelling and simulation will be the key to success in designing tomorrow's high-energy and high-power devices.

  17. Electrochemical reduction of NOx

    DEFF Research Database (Denmark)

    Traulsen, Marie Lund

    NO and NO2 (collectively referred to as NOx) are air pollutants, and the largest single contributor to NOx pollution is automotive exhaust. This study investigates electrochemical deNOx, a technology which aims to remove NOx from automotive diesel exhaust by electrochemical reduction of NOx to N2...... and O2. The focus in this study is on improving the activity and selectivity of solid oxide electrodes for electrochemical deNOx by addition of NOx storage compounds to the electrodes. Two different composite electrodes, La0.85Sr0.15MnO3-δ-Ce0.9Gd0.1O1.95 (LSM15-CGO10) and La0.85Sr0.15FeO3-δ-Ce0.9Gd0.1O......1.95 (LSF15-CGO10), have been investigated in combination with three different NOx storage compounds: BaO, K2O and MnOx. The main focus in the investigation has been on conversion measurements and electrochemical characterization, the latter by means of electrochemical impedance spectroscopy...

  18. Recent H- diagnostics, plasma simulations, and 2X scaled Penning ion source developments at the Rutherford Appleton Laboratory

    Science.gov (United States)

    Lawrie, S. R.; Faircloth, D. C.; Smith, J. D.; Sarmento, T. M.; Whitehead, M. O.; Wood, T.; Perkins, M.; Macgregor, J.; Abel, R.

    2018-05-01

    A vessel for extraction and source plasma analyses is being used for Penning H- ion source development at the Rutherford Appleton Laboratory. A new set of optical elements including an einzel lens has been installed, which transports over 80 mA of H- beam successfully. Simultaneously, a 2X scaled Penning source has been developed to reduce cathode power density. The 2X source is now delivering a 65 mA H- ion beam at 10% duty factor, meeting its design criteria. The long-term viability of the einzel lens and 2X source is now being evaluated, so new diagnostic devices have been installed. A pair of electrostatic deflector plates is used to correct beam misalignment and perform fast chopping, with a voltage rise time of 24 ns. A suite of four quartz crystal microbalances has shown that the cesium flux in the vacuum vessel is only increased by a factor of two, despite the absence of a dedicated cold trap. Finally, an infrared camera has demonstrated good agreement with thermal simulations but has indicated unexpected heating due to beam loss on the downstream electrode. These types of diagnostics are suitable for monitoring all operational ion sources. In addition to experimental campaigns and new diagnostic tools, the high-performance VSim and COMSOL software packages are being used for plasma simulations of two novel ion thrusters for space propulsion applications. In parallel, a VSim framework has been established to include arbitrary temperature and cesium fields to allow the modeling of surface physics in H- ion sources.

  19. Oxygen-free in situ scanning tunnelling microscopy

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Ulstrup, Jens

    2007-01-01

    Scanning tunneling microscopy under full electrochemical potential control (in situ STM) has been used extensively as an efficient method to characterize microstructures at solid/liquid interfaces at the atomic and molecular levels. However, under ambient conditions oxygen may interfere in open i...

  20. Structural Investigation of Sodium Layered Oxides Via in Situ Synchrotron X-Ray Diffraction

    DEFF Research Database (Denmark)

    Jung, Young Hwa; Christiansen, Ane Sælland; Johnsen, Rune

    2015-01-01

    electrochemical reaction is generally considered to be a pivotal feature for understanding the relationship between layered structures and electrochemical properties. Here the structure, phase stability, and electrochemical properties of two kinds of layered oxides, P2 and O3, are investigated through in......-situ synchrotron XRD experiments. A capillary Na-based cell is designed to minimize interference in other substances such as a separator or external battery parts. This approach could give us to obtain clear diffraction patterns with high intensity during electrochemical reaction in a short period of time without...... further relaxation step. We carefully scrutinized reversible structural phase transformations during electrochemical reaction of P2 and O3-layered compounds based on in situ analysis, and detailed results will be discussed....

  1. Electrochemical energy storage

    CERN Document Server

    Tarascon, Jean-Marie

    2015-01-01

    The electrochemical storage of energy has become essential in assisting the development of electrical transport and use of renewable energies. French researchers have played a key role in this domain but Asia is currently the market leader. Not wanting to see history repeat itself, France created the research network on electrochemical energy storage (RS2E) in 2011. This book discusses the launch of RS2E, its stakeholders, objectives, and integrated structure that assures a continuum between basic research, technological research and industries. Here, the authors will cover the technological

  2. Electrochemical Hydrogen Evolution

    DEFF Research Database (Denmark)

    Laursen, A.B.; Varela Gasque, Ana Sofia; Dionigi, F.

    2012-01-01

    The electrochemical hydrogen evolution reaction (HER) is growing in significance as society begins to rely more on renewable energy sources such as wind and solar power. Thus, research on designing new, inexpensive, and abundant HER catalysts is important. Here, we describe how a simple experiment...... catalysts based on this. Suited for upper-level high school and first-year university students, this exercise involves using a basic two-cell electrochemical setup to test multiple electrode materials as catalysts at one applied potential, and then constructing a volcano curve with the resulting currents...

  3. Automatic devices for electrochemical water treatment with cooling of electrolyte

    Directory of Open Access Journals (Sweden)

    Trišović Tomislav Lj.

    2016-01-01

    Full Text Available The most common disinfectants for water treatment are based on chlorine and its compounds. Practically, water treatments with chlorine compounds have no alternative, since they provide, in comparison to other effective processes such as ozonization or ultraviolet irradiation, high residual disinfection capacity. Unfortunately, all of chlorine-based compounds for disinfection tend to degrade during storage, thus reducing the concentration of active chlorine. Apart from degradation, additional problems are transportation, storage and handling of such hazardous compounds. Nowadays, a lot of attention is paid to the development of electrochemical devices for in situ production of chlorine dioxide or sodium hypochlorite as efficient disinfectants for water treatment. The most important part of such a device is the electrochemical reactor. Electrochemical reactor uses external source of direct current in order to produce disinfectants in electrochemical reactions occurring at the electrodes. Construction of an electrochemical device for water treatment is based on evaluation of optimal conditions for electrochemical reactions during continues production of disinfectants. The aim of this study was to develop a low-cost electrochemical device for the production of disinfectant, active chlorine, at the place of its usage, based on newly developed technical solutions and newest commercial components. The projected electrochemical device was constructed and mounted, and its operation was investigated. Investigations involved both functionality of individual components and device in general. The major goal of these investigations was to achieve maximal efficiency in extreme condition of elevated room temperature and humidity with a novel device construction involving coaxial heat exchanger at the solution inlet. Room operation of the proposed device was investigated when relative humidity was set to 90% and the ambient temperature of 38°C. The obtained

  4. Rutherford Appleton Laboratory 1983

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, R T; Wroath, P D [eds.

    1984-01-01

    Efforts are summarized in the areas of: cosmic research; solar and interplanetary research; space plasma science; atmospheric research; distributed computing systems; industrial robotics; software engineering; advanced computer networking (Project UNIVERSE); computing applications in engineering; pattern analysis; electron beam lithography; radio research; applied superconductivity; particle physics; neutron beam research; laser research; and computing facilities and operations. Laboratory resources are summarized, and publications and reports resulting from the work reported for the year are listed, as well as lectures and meetings. (LEW)

  5. RUTHERFORD APPLETON: ISIS nice

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-07-15

    The ISIS pulsed spallation neutron source continues to make good progress. In March the machine reached its highest intensity when 5 x 10{sup 12} protons per pulse at 550 MeV and 50 pulses per second were delivered to the neutron production target. This 40 microamperes of mean proton current is 20% of the design performance and confirms once again the potential of ISIS as a powerful accelerator- based pulsed neutron source.

  6. In Situ Laser Activation of Electrochemical Kinetics at Carbon Electrodes

    Science.gov (United States)

    1994-05-31

    essy ubmli - ppad the practice of fracturing a glue carbon rod in solution has I I I - l11 is ese beashofI I as belechge. if th esur bee dopledi In...0.6 ~ ~ ~ ~ ~ ub 0. .. 03. scam 0-1.6 V vs Ag/A90 in 0.1 M KNO3. DA coricenbsIdoi Floure 3. VObIthISSy of caucha101 anI- frS bm d 020- oopwhS Is 10 04...July 25, 1991. Accepted November 6, i. J. WCn&’od rn. Sac. 1M.4. 131, 1578. 1991. 3124 Reprinted from. The Journal of Physical Clamidstry. 19M2 X6

  7. In-Situ XRD during Electrochemical CO Reduction on Cu

    DEFF Research Database (Denmark)

    Bertheussen, Erlend; Scott, Søren Bertelsen; Hogg, Thomas

    2018-01-01

    Almost all-successful CO2 and CO reduction catalysts to higher chain carbons are based on copper1, however various facets and pre-treatments of copper have shown to give a wide variety of product selectivity.2,3 Currently there are many unanswered questions regarding active sites and mechanisms t...

  8. Single-Molecule Electrochemical Gating in Ionic Liquids

    DEFF Research Database (Denmark)

    Kay, Nicola J.; Higgins, Simon J.; Jeppesen, Jan O.

    2012-01-01

    The single-molecular conductance of a redox active molecular bridge has been studied in an electrochemical single-molecule transistor configuration in a room-temperature ionic liquid (RTIL). The redox active pyrrolo-tetrathiafulvalene (pTTF) moiety was attached to gold contacts at both ends through...... −(CH2)6S– groups, and gating of the redox state was achieved with the electrochemical potential. The water-free, room-temperature, ionic liquid environment enabled both the monocationic and the previously inaccessible dicationic redox states of the pTTF moiety to be studied in the in situ scanning...... and decreases again as the second redox process is passed. This is described as an “off–on–off–on–off” conductance switching behavior. This molecular conductance vs electrochemical potential relation could be modeled well as a sequential two-step charge transfer process with full or partial vibrational...

  9. Study on the electrochemical of the metal deposition from ionic liquids for lithium, titanium and dysprosium

    International Nuclear Information System (INIS)

    Berger, Claudia A.

    2017-01-01

    The thesis was aimed to the characterization of electrochemically deposited film of lithium, titanium and dysprosium on Au(111) from different ionic liquids, finally dysprosium on neodymium-iron-boron magnate for industrial applications. The investigation of the deposits were performed using cyclic voltametry, in-situ scanning tunneling microscopy, electrochemical quartz microbalance, XPS and Auger electron spectroscopy. The sample preparation is described in detail. The deposition rate showed a significant temperature dependence.

  10. A novel method for the in situ determination of concentration gradients in the electrolyte of Li-ion Batteries

    NARCIS (Netherlands)

    Zhou, J.; Danilov, D.; Notten, P.H.L.

    2006-01-01

    An electrochemical method has been developed for the in situ determination of concentration gradients in the electrolyte of sealed Li-ion batteries by measuring the potential difference between microreference electrodes. Formulas relating the concentration gradient and the potential difference

  11. Electrochemical Power Sources

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 7. Electrochemical Power Sources - Rechargeable Batteries. A K Shukla S K Martha. General Article Volume 6 Issue 7 July 2001 pp 52-63. Fulltext. Click here to view fulltext PDF. Permanent link:

  12. Electro-chemical grinding

    Science.gov (United States)

    Feagans, P. L.

    1972-01-01

    Electro-chemical grinding technique has rotation speed control, constant feed rates, and contour control. Hypersonic engine parts of nickel alloys can be almost 100% machined, keeping tool pressure at virtual zero. Technique eliminates galling and permits constant surface finish and burr-free interrupted cutting.

  13. Electrochemical deposition of mineralized BSA/collagen coating

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Junjun [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Lin, Jun; Li, Juan; Wang, Huiming [The First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou 310003 (China); Cheng, Kui [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Weng, Wenjian, E-mail: wengwj@zju.edu.cn [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); The Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2016-09-01

    In this work, mineralized collagen coatings with different loading quantity of bovine serum albumin (BSA) were prepared via in situ electrochemical deposition on titanium substrate. The microstructure and BSA loading quantity of the coatings could be controlled by the electrochemical deposition parameters, such as deposition potential, BSA concentration and its adding sequence in the electrolyte. The BSA loading quantity in the coatings was obtained in the range of 0.0170–0.173 mg/cm{sup 2}, enhancing the cell adhesion and proliferation of the coatings with the simultaneous release. The distinct release behaviors of BSA were attributed to their gradient distribution with different mineralization degrees, which could be adjusted by the deposition process. These results suggest that in situ electrochemical deposition is a promising way to incorporate functional molecules into the mineralized collagen coatings and the mineralized BSA/collagen coatings are highly promising for improving the rhBMP-2 loading capability (1.8-fold). - Highlights: • BSA is incorporated into mineralized collagen coating by electrochemical deposition. • The loading amount of BSA in coatings can be adjusted in the range of 0-173 ng. • The BSA/collagen coating shows good cytocompatibility with free-albumin culture. • The incorporation process is put forward for some other molecules deposition.

  14. Electrochemical oxidation of selective estrogen receptor modulator raloxifene

    International Nuclear Information System (INIS)

    Li, Xi-Qian; He, Jian-Bo; Liu, Lu; Cui, Ting

    2013-01-01

    Highlights: ► Application and analysis of in situ thin-layer spectroelectrochemistry. ► Cyclic voltabsorptometry used for a drug study. ► Highly pH-dependent oxidative metabolism of raloxifene. ► A complex parallel-consecutive mechanism proposed for oxidation of raloxifene. -- Abstract: Raloxifene is a selective estrogen receptor modulator that may produce toxic oxidative species in metabolism. The oxidation mechanism of raloxifene with different pH values was studied by cyclic voltammetry, X-ray photoelectron spectroscopy (XPS), in situ UV–vis spectral analysis and cyclic voltabsorptometry based on a long optical-path thin-layer electrochemical cell. Time-derivative cyclic voltabsorptograms were obtained for comparative discussion with the corresponding cyclic voltammograms. Raloxifene was initially oxidized to reactive phenoxyl radicals, followed by a series of transformation steps leading to different final products in different pH media. A parallel-consecutive reaction mechanism was proposed for the pH-dependent formation of 7-hydroxyraloxifene, raloxifene 6,7-o-quinone and two raloxifene dimers, each pathway following a complex electrochemical-chemical mechanism. Both raloxifene diquinone methide and its N-oxides were not detected by in situ UV–vis spectroscopy and XPS analysis. This work provides an electrochemical viewpoint and comparable information for better understanding of the oxidative metabolism and chemical toxicology of raloxifene under physiological conditions in vivo or in vitro

  15. Electrochemically adsorbed Pb on Ag (111) studied with grazing- incidence x-ray scattering

    International Nuclear Information System (INIS)

    Kortright, J.B.; Ross, P.N.; Melroy, O.R.; Toney, M.F.; Borges, G.L.; Samant, M.G.

    1989-04-01

    Grazing-incidence x-ray scattering studies of the evolution of electrochemically deposited layers of lead on silver (111) as a function of applied electrochemical potential are presented. Measurements were made with the adsorbed layers in contact with solution in a specially designed sample cell. The observed lead structures are a function of the applied potential and range from an incommensurate monolayer, resulting from underpotential deposition, to randomly oriented polycrystalline bulk lead, resulting from lower deposition potentials. These early experiments demonstrate the ability of in situ x-ray diffraction measurements to determine structures associated with electrochemical deposition. 6 refs., 4 figs

  16. Electrochemical behaviour of uranium (IV) in DMF at vitreous carbon

    International Nuclear Information System (INIS)

    Afonso, M.L.; Gomes, A.; Carvalho, A.; Alves, L.C.; Wastin, F.; Goncalves, A.P.

    2009-01-01

    The electrochemical behaviour of UCl 4 (0.01 mol L -1 up to 0.05 mol L -1 ) in 0.1 mol L -1 TBAPF 6 /DMF solution at vitreous carbon was studied, at room temperature, by cyclic voltammetry and potentiostatic techniques. The electrolytic solutions were analyzed by UV spectroscopy (UV), and the electrodeposited films were characterized by Rutherford Backscattering Spectroscopy (RBS) and X-ray diffraction (XRD). The cyclic voltammetric results, at low UCl 4 concentrations (0.01 mol L -1 ), point that the reduction of U(IV) to U(0) occurs in two steps involving mainly U(IV) and U(III) species. The first electron transfer reaction is quasi-reversible and the second irreversible. The diffusion coefficient of U(IV) in DMF and the charge rate constant were determined to be 4.78 x 10 -7 cm 2 s -1 and 1.93 x 10 -3 cm s -1 (at 0.02 V s -1 ), respectively. RBS data obtained from samples prepared at constant potential (-3.10 V) during 3 h at room temperature, indicated the presence of uranium particles deposited all over the vitreous carbon surface with aggregates in some places, confirming that the second reduction step corresponds to uranium electrodeposition. No crystallographic ordering could be seen by XRD, pointing to an amorphous character of the uranium films.

  17. Understanding of electrochemical and structural changes of polypyrrole/polyethylene glycol composite films in aqueous solution

    International Nuclear Information System (INIS)

    Pirvu, Cristian; Manole, Claudiu Constantin; Stoian, Andrei Bogdan; Demetrescu, Ioana

    2011-01-01

    Highlights: → Electrochemical monitoring of PPy and PPy-PEG films over immersion time. → Electrochemical and surface analysis showed that PEG improves the stability of PPy films. → Mott-Schottky analysis reveals p-type conductance for both films. → In situ AFM analysis sustains electrochemical behaviour. → A model of PPy and PPy-PEG films behaviour during immersion was elaborated. - Abstract: Electrochemical monitoring of electrical and structural changes of both PPy and PPy-PEG films electrochemical deposited, in order to highlight if the structural stability offered by PEG has an influence on electrical properties and stability in aqueous solution over immersion time was investigated. Electrochemical analysis suggests that PPy-PEG film inserts cations easier than PPy film for a short immersion time probably due to ability of PEG to form complexes with metal cations. The FTIR spectra showed that the PEG incorporation decreases the rate of PPy overoxidation probably by restraining the electron release and by rendering O 2 inaccessible to PPy. Mott-Schottky analysis based on capacitance measurement reveal p-type conductance for both films. The in situ AFM analysis sustains electrochemical behaviour and has permitted elaboration of a model of PPy and PPy-PEG films behaviour during immersion in testing solution.

  18. Understanding of electrochemical and structural changes of polypyrrole/polyethylene glycol composite films in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Pirvu, Cristian, E-mail: c_pirvu@chim.pub.ro [University Polytechnic of Bucharest, Faculty of Applied Chemistry and Materials Science, 1-7 Polizu, 011061 Bucharest (Romania); Manole, Claudiu Constantin; Stoian, Andrei Bogdan; Demetrescu, Ioana [University Polytechnic of Bucharest, Faculty of Applied Chemistry and Materials Science, 1-7 Polizu, 011061 Bucharest (Romania)

    2011-11-30

    Highlights: > Electrochemical monitoring of PPy and PPy-PEG films over immersion time. > Electrochemical and surface analysis showed that PEG improves the stability of PPy films. > Mott-Schottky analysis reveals p-type conductance for both films. > In situ AFM analysis sustains electrochemical behaviour. > A model of PPy and PPy-PEG films behaviour during immersion was elaborated. - Abstract: Electrochemical monitoring of electrical and structural changes of both PPy and PPy-PEG films electrochemical deposited, in order to highlight if the structural stability offered by PEG has an influence on electrical properties and stability in aqueous solution over immersion time was investigated. Electrochemical analysis suggests that PPy-PEG film inserts cations easier than PPy film for a short immersion time probably due to ability of PEG to form complexes with metal cations. The FTIR spectra showed that the PEG incorporation decreases the rate of PPy overoxidation probably by restraining the electron release and by rendering O{sub 2} inaccessible to PPy. Mott-Schottky analysis based on capacitance measurement reveal p-type conductance for both films. The in situ AFM analysis sustains electrochemical behaviour and has permitted elaboration of a model of PPy and PPy-PEG films behaviour during immersion in testing solution.

  19. Electrochemical characterization of single-walled carbon nanotubes for electrochemical double layer capacitors using non-aqueous electrolyte

    International Nuclear Information System (INIS)

    Ruch, P.W.; Koetz, R.; Wokaun, A.

    2009-01-01

    Single-walled carbon nanotubes (SWCNTs) were investigated by cyclic voltammetry and electrochemical impedance spectroscopy in a non-aqueous electrolyte, 1 M Et 4 NBF 4 in acetonitrile, suitable for supercapacitors. Further, in situ dilatometry and in situ conductance measurements were performed on single electrodes and the results compared to an activated carbon, YP17. Both materials show capacitive behavior characteristic of high surface area electrodes for supercapacitors, with the maximum full cell gravimetric capacitance being 34 F/g for YP17 and 20 F/g for SWCNTs at 2.5 V with respect to the total active electrode mass. The electronic resistance of SWCNTs and activated carbon decreases significantly during charging, showing similarities of the two materials during electrochemical doping. The SWCNT electrode expands irreversibly during the first electrochemical potential sweep as verified by in situ dilatometry, indicative of at least partial debundling of the SWCNTs. A reversible periodic swelling and shrinking during cycling is observed for both materials, with the magnitude of expansion depending on the type of ions forming the double layer.

  20. Investigation of high temperature reactions on solid substrates with Rutherford backscattering spectrometry: interaction of palladium with selenium on heated graphite surfaces

    International Nuclear Information System (INIS)

    Majidi, V.; Robertson, J.D.

    1991-01-01

    Selenium and palladium interactions on heated pyrolytically coated graphite substrates were investigated using Rutherford backscattering spectrometry. The studies were performed using selenium alone, palladium alone, and a combination of selenium and palladium deposited on the graphite substrates. The results indicate that palladium instantaneously stabilizes selenium at ambient temperatures and prevents the diffusion of selenium into the graphite. As the substrate is heated, temperature dependent diffusion of all analytes into the graphite is observed. Furthermore, it appears that the stabilization of selenium is due to the formation of a stoichiometric compound with palladium and oxygen. This compound decomposes at a temperature between 1070 and 1770 K. (author)

  1. Investigation of high temperature reactions on graphite with Rutherford backscattering spectrometry: interaction of cadmium, lead and silver with a phosphate modifier

    Energy Technology Data Exchange (ETDEWEB)

    Eloi, C.; Robertson, J.D.; Majidi, V. (Kentucky Univ., Lexington, KY (United States))

    1993-03-01

    The depth-dependent concentration profiles of nitrate salts of Pb, Cd and Ag were observed with and without the addition of (NH[sub 4])H[sub 2]PO[sub 4] chemical modifier using Rutherford backscattering spectrometry (RBS). The RBS results demonstrate that the analytes, in all the systems investigated, readily migrate ([>=]3 [mu]m) into the pyrolytic graphite coated graphite substrate at room temperature. The stabilization of Cd and Pb with the phosphate modifier is proposed to be due to the formation of a phosphate glass. Silver did not extensively interact with the phosphate modifier and was, as a result, not stabilized. (author).

  2. Investigation of high temperature reactions on graphite with Rutherford backscattering spectrometry: interaction of cadmium, lead and silver with a phosphate modifier

    International Nuclear Information System (INIS)

    Eloi, C.; Robertson, J.D.; Majidi, V.

    1993-01-01

    The depth-dependent concentration profiles of nitrate salts of Pb, Cd and Ag were observed with and without the addition of (NH 4 )H 2 PO 4 chemical modifier using Rutherford backscattering spectrometry (RBS). The RBS results demonstrate that the analytes, in all the systems investigated, readily migrate (≥3 μm) into the pyrolytic graphite coated graphite substrate at room temperature. The stabilization of Cd and Pb with the phosphate modifier is proposed to be due to the formation of a phosphate glass. Silver did not extensively interact with the phosphate modifier and was, as a result, not stabilized. (author)

  3. Investigation of high temperature reactions on solid substrates with Rutherford backscattering spectrometry: interaction of palladium with selenium on heated graphite surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Majidi, V.; Robertson, J.D. (Kentucky Univ., Lexington, KY (United States). Dept. of Chemistry)

    1991-01-01

    Selenium and palladium interactions on heated pyrolytically coated graphite substrates were investigated using Rutherford backscattering spectrometry. The studies were performed using selenium alone, palladium alone, and a combination of selenium and palladium deposited on the graphite substrates. The results indicate that palladium instantaneously stabilizes selenium at ambient temperatures and prevents the diffusion of selenium into the graphite. As the substrate is heated, temperature dependent diffusion of all analytes into the graphite is observed. Furthermore, it appears that the stabilization of selenium is due to the formation of a stoichiometric compound with palladium and oxygen. This compound decomposes at a temperature between 1070 and 1770 K. (author).

  4. Study of SiO2 surface sputtering by a 250-550 keV He+ ion beam during high-resolution Rutherford backscattering measurements

    International Nuclear Information System (INIS)

    Kusanagi, Susumu; Kobayashi, Hajime

    2006-01-01

    Decreases in oxygen signal intensities in spectra of high-resolution Rutherford backscattering spectrometry (HRBS) were observed during measurements on a 5-nm thick SiO 2 layer on a Si substrate when irradiated by 250-550 keV He + ions. Shifts in an implanted arsenic profile in a 5-nm thick SiO 2 /Si substrate were also observed as a result of He + ion irradiation. These results lead to the conclusion that the SiO 2 surface was sputtered by He + ions in this energy range

  5. Analysis of the quench propagation along Nb3Sn Rutherford cables with the THELMA code. Part I: Geometric and thermal models

    Science.gov (United States)

    Manfreda, G.; Bellina, F.

    2016-12-01

    The paper describes the new lumped thermal model recently implemented in THELMA code for the coupled electromagnetic-thermal analysis of superconducting cables. A new geometrical model is also presented, which describes the Rutherford cables used for the accelerator magnets. A first validation of these models has been given by the analysis of the quench longitudinal propagation velocity in the Nb3Sn prototype coil SMC3, built and tested in the frame of the EUCARD project for the development of high field magnets for LHC machine. This paper shows in detail the models, while their application to the quench propagation analysis is presented in a companion paper.

  6. Non-Rutherford cross-sections for alpha elastic scattering off Z = 28-38 elements in the energy range up to 10 MeV

    Science.gov (United States)

    Gurbich, A. F.; Bokhovko, M. V.

    2018-04-01

    The alpha elastic scattering cross-sections for Ni, Cu, and Y were measured at the energies above the onset of the non-Rutherford scattering. The obtained experimental data along with data from literature were incorporated into the theoretical analysis in the framework of the optical model. The optimization of the model parameters provided a basis for the calculations of the differential cross-sections for Z = 28-38 elements in the energy range up to 10 MeV. The obtained cross sections were made available for common use through the SigmaCalc web site at http://sigmacalc.iate.obninsk.ru/.

  7. Highly resolving Rutherford-scattering spectrometry for the study of ZrO{sub 2} layer growth in the beginning stage; Hochaufloesende Rutherford-Streuspektrometrie zur Untersuchung von ZrO{sub 2}-Schichtwachstum im Anfangsstadium

    Energy Technology Data Exchange (ETDEWEB)

    Vieluf, Maik

    2010-06-15

    By means of High Resolution Rutherford Backscattering Spectrometry (HR-RBS) the diffusion behaviour and layer growth of ZrO{sub 2} on SiO{sub 2} and TiN in the initial regime were investigated. The analysis of concentration profiles in ultrathin layers and interfaces was the focus of this work, made possible by the excellent depth resolution of less than 0.3 nm near the surface. For the first time a two-dimensional position sensitive semiconductor detector was implemented and characterized in the setup of the HR-RBS for the improvement of the quality of the measurement results. Furthermore, a measurement procedure was put into operation that allowed the reduction of ion induced damage. Through the optimization of the experimental conditions and the development of a program package for the support of the analyst, an efficient measurement procedure could be routinely ensured. At the time of a binary collision between the incident ion and the target element with a small impact factor, the charge state changes frequently, especially due to the abruptly decreasing ion velocity of the projectile and the overlapping of the electron clouds. For HR-RBS with an energy-separating dipole magnet, the charge state distribution of the scattered ions must be known for the interpretation of the measured spectra. For the first time a significant dependence of the charge state distribution of the scattered C ions on the layer thickness as well as atomic number of the detected target elements, here from the fourth subgroup, was demonstrated. This new knowledge allowed systematic investigations of the ZrO{sub 2} layer growth in the initial regime. The ZrO{sub 2} layers were produced by means of the atomic layer deposition (ALD). Based on the evidence for agglomeration of ZrO{sub 2} on SiO{sub 2} a method was introduced, which takes local thickness variations into account during the simulation of the HR-RBS spectra. An accurate statement about the ZrO{sub 2}/SiO{sub 2} interface was

  8. Electrochemical Techniques in Textile Processes and Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Mireia Sala

    2012-01-01

    Full Text Available The textile industry uses the electrochemical techniques both in textile processes (such as manufacturing fibers, dyeing processes, and decolorizing fabrics and in wastewaters treatments (color removal. Electrochemical reduction reactions are mostly used in sulfur and vat dyeing, but in some cases, they are applied to effluents discoloration. However, the main applications of electrochemical treatments in the textile sector are based on oxidation reactions. Most of electrochemical oxidation processes involve indirect reactions which imply the generation of hypochlorite or hydroxyl radical in situ. These electrogenerated species are able to bleach indigo-dyed denim fabrics and to degrade dyes in wastewater in order to achieve the effluent color removal. The aim of this paper is to review the electrochemical techniques applied to textile industry. In particular, they are an efficient method to remove color of textile effluents. The reuse of the discolored effluent is possible, which implies an important saving of salt and water (i.e., by means of the “UVEC Cell”.

  9. Electrochemical immunosensors - A powerful tool for analytical applications.

    Science.gov (United States)

    Felix, Fabiana S; Angnes, Lúcio

    2018-04-15

    Immunosensors are biosensors based on interactions between an antibody and antigen on a transducer surface. Either antibody or antigen can be the species immobilized on the transducer to detect antigen or antibody, respectively. Because of the strong binding forces between these biomolecules, immunosensors present high selectivity and very high sensitivity, making them very attractive for many applications in different science fields. Electrochemical immunosensors explore measurements of an electrical signal produced on an electrochemical transductor. This signal can be voltammetric, potentiometric, conductometric or impedimetric. Immunosensors utilizing electrochemical detection have been explored in several analyses since they are specific, simple, portable, and generally disposable and can carry out in situ or automated detection. This review addresses the potential of immunosensors destined for application in food and environmental analysis, and cancer biomarker diagnosis. Emphasis is given to the approaches that have been used for construction of electrochemical immunosensors. Additionally, the fundamentals of immunosensors, technology of transducers and nanomaterials and a general overview of the possible applications of electrochemical immunosensors to the food, environmental and diseases analysis fields are described. Copyright © 2017. Published by Elsevier B.V.

  10. Voltammetric, in-situ spectroelectrochemical and in-situ electrocolorimetric characterization of phthalocyanines

    Energy Technology Data Exchange (ETDEWEB)

    Koca, Atif [Department of Chemical Engineering, Faculty of Engineering, Marmara University, Goeztepe, 34722 Istanbul (Turkey)], E-mail: akoca@eng.marmara.edu.tr; Bayar, Serife; Dincer, Hatice A. [Department of Chemistry, Technical University of Istanbul, Maslak, 34469 Istanbul (Turkey); Gonca, Erguen [Department of Chemistry, Fatih University, TR34500 B.Cekmece, Istanbul (Turkey)

    2009-04-01

    In this work, electrochemical, and in-situ spectroelectrochemical characterization of the metallophthalocyanines bearing tetra-(1,1-(dicarbethoxy)-2-(2-methylbenzyl))-ethyl 3,10,17,24-tetra chloro groups were performed. Voltammetric and in-situ spectroelectrochemical measurements show that while cobalt phthalocyanine complex gives both metal-based and ring-based redox processes, zinc and copper phthalocyanines show only ring-based reduction and oxidation processes. The redox processes are generally diffusion-controlled, reversible and one-electron transfer processes. Differently lead phthalocyanine demetallized during second oxidation reaction while it was stable during reduction processes. An in-situ electrocolorimetric method, based on the 1931 CIE (Commission Internationale de l'Eclairage) system of colorimetry, has been applied to investigate the color of the electro-generated anionic and cationic forms of the complexes for the first time in this study.

  11. Highly resolving Rutherford-scattering spectrometry for the study of ZrO2 layer growth in the beginning stage

    International Nuclear Information System (INIS)

    Vieluf, Maik

    2010-06-01

    By means of High Resolution Rutherford Backscattering Spectrometry (HR-RBS) the diffusion behaviour and layer growth of ZrO 2 on SiO 2 and TiN in the initial regime were investigated. The analysis of concentration profiles in ultrathin layers and interfaces was the focus of this work, made possible by the excellent depth resolution of less than 0.3 nm near the surface. For the first time a two-dimensional position sensitive semiconductor detector was implemented and characterized in the setup of the HR-RBS for the improvement of the quality of the measurement results. Furthermore, a measurement procedure was put into operation that allowed the reduction of ion induced damage. Through the optimization of the experimental conditions and the development of a program package for the support of the analyst, an efficient measurement procedure could be routinely ensured. At the time of a binary collision between the incident ion and the target element with a small impact factor, the charge state changes frequently, especially due to the abruptly decreasing ion velocity of the projectile and the overlapping of the electron clouds. For HR-RBS with an energy-separating dipole magnet, the charge state distribution of the scattered ions must be known for the interpretation of the measured spectra. For the first time a significant dependence of the charge state distribution of the scattered C ions on the layer thickness as well as atomic number of the detected target elements, here from the fourth subgroup, was demonstrated. This new knowledge allowed systematic investigations of the ZrO 2 layer growth in the initial regime. The ZrO 2 layers were produced by means of the atomic layer deposition (ALD). Based on the evidence for agglomeration of ZrO 2 on SiO 2 a method was introduced, which takes local thickness variations into account during the simulation of the HR-RBS spectra. An accurate statement about the ZrO 2 /SiO 2 interface was possible due to the extraction of the

  12. Synthesis, Characterization, and Electrochemical Properties of Polyaniline Thin Films

    Science.gov (United States)

    Rami, Soukaina

    Conjugated polymers have been used in various applications (battery, supercapacitor, electromagnetic shielding, chemical sensor, biosensor, nanocomposite, light-emitting-diode, electrochromic display etc.) due to their excellent conductivity, electrochemical and optical properties, and low cost. Polyaniline has attracted the researchers from all disciplines of science, engineering, and industry due to its redox properties, environmental stability, conductivity, and optical properties. Moreover, it is a polymer with fast electroactive switching and reversible properties displayed at low potential, which is an important feature in many applications. The thin oriented polyaniline films have been fabricated using self-assembly, Langmuir-Blodgett, in-situ self-assembly, layer-by-layer, and electrochemical technique. The focus of this thesis is to synthesize and characterize polyaniline thin films with and without dyes. Also, the purpose of this thesis is to find the fastest electroactive switching PANI electrode in different electrolytic medium by studying their electrochemical properties. These films were fabricated using two deposition techniques: in-situ self-assembly and electrochemical deposition. The characterization of these films was done using techniques such as Fourier Transform Infrared Spectroscopy (FTIR), UV-spectroscopy, Scanning Electron Microscope (SEM), and X-Ray Diffraction (XRD). FTIR and UV-spectroscopy showed similar results in the structure of the polyaniline films. However, for the dye incorporated films, since there was an addition in the synthesis of the material, peak locations shifted, and new peaks corresponding to these materials appeared. The 1 layer PANI showed compact film morphology, comparing to other PANI films, which displayed a fiber-like structure. Finally, the electrochemical properties of these thin films were studied using cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS) in

  13. Heat transfer through the flat surface of Rutherford superconducting cable samples with novel pattern of electrical insulation immersed in He II

    Science.gov (United States)

    Strychalski, M.; Chorowski, M.; Polinski, J.

    2014-05-01

    Future accelerator magnets will be exposed to heat loads that exceed even by an order of magnitude presently observed heat fluxes transferred to superconducting magnet coils. To avoid the resistive transition of the superconducting cables, the efficiency of heat transfer between the magnet structure and the helium must be significantly increased. This can be achieved through the use of novel concepts of the cable’s electrical insulation wrapping, characterized by an enhanced permeability to helium while retaining sufficient electrical resistivity. This paper presents measurement results of the heat transfer through Rutherford NbTi cable samples immersed in a He II bath and subjected to the pressure loads simulating the counteracting of the Lorentz forces observed in powered magnets. The Rutherford cable samples that were tested used different electrical insulation wrapping schemes, including the scheme that is presently used and the proposed scheme for future LHC magnets. A new porous polyimide cable insulation with enhanced helium permeability was proposed in order to improve the evacuation of heat form the NbTi coil to He II bath. These tests were performed in a dedicated Claudet-type cryostat in pressurized He II at 1.9 K and 1 bar.

  14. Cluster tool for in situ processing and comprehensive characteriza tion of thin films at high temperatures.

    Science.gov (United States)

    Wenisch, Robert; Lungwitz, Frank; Hanf, Daniel; Heller, Rene; Zscharschuch, Jens; Hübner, René; von Borany, Johannes; Abrasonis, Gintautas; Gemming, Sibylle; Escobar-Galindo, Ramon; Krause, Matthias

    2018-05-31

    A new cluster tool for in situ real-time processing and depth-resolved compositional, structural and optical characterization of thin films at temperatures from -100 to 800 °C is described. The implemented techniques comprise magnetron sputtering, ion irradiation, Rutherford backscattering spectrometry, Raman spectroscopy and spectroscopic ellipsometry. The capability of the cluster tool is demonstrated for a layer stack MgO/ amorphous Si (~60 nm)/ Ag (~30 nm), deposited at room temperature and crystallized with partial layer exchange by heating up to 650°C. Its initial and final composition, stacking order and structure were monitored in situ in real time and a reaction progress was defined as a function of time and temperature.

  15. Neutron Production from In-situ Heavy Ice Coated Targets at Vulcan

    Science.gov (United States)

    Morrison, John; Krygier, A. G.; Kar, S.; Ahmed, H.; Alejo, A.; Clarke, R.; Fuchs, J.; Green, A.; Jung, D.; Kleinschmidt, A.; Najmudin, Z.; Nakamura, H.; Norreys, P.; Notley, M.; Oliver, M.; Roth, M.; Vassura, L.; Zepf, M.; Borghesi, M.; Freeman, R. R.

    2015-05-01

    Laser based neutron production experiments have been performed utilizing ultra-high intensity laser accelerated ions impinging upon a secondary target. The neutron yield from such experiments may be improved if the accelerated ions were primarily deuterons taking advantage of the d-d cross section. Recent experiments have demonstrated that selective deuteron acceleration from in-situ heavy ice coating of targets can produce ion spectra where deuterons comprise > 99 % of the measured ions. Results will be presented from integrated neutron production experiments from heavy ice targets coated in-situ recently performed on the Vulcan laser at Rutherford Appleton Laboratory. We are grateful for the Staff at RAL and acknowledge funding from the US DoE. AFOSR, European Social Fund, and the Czech Republic.

  16. In Situ Electrochemical SFG/DFG Study of CN and Nitrile Adsorption at Au from 1-Butyl-1-methyl-pyrrolidinium Bis(trifluoromethylsulfonyl Amide Ionic Liquid ([BMP][TFSA] Containing 4-{2-[1-(2-Cyanoethyl-1,2,3,4-tetrahydroquinolin-6-yl]diazenyl} Benzonitrile (CTDB and K[Au(CN2

    Directory of Open Access Journals (Sweden)

    Benedetto Bozzini

    2012-06-01

    Full Text Available In this paper we report an in situ electrochemical Sum-/Difference Frequency Generation (SFG/DFG spectroscopy investigation of the adsorption of nitrile and CN from the ionic liquid 1-butyl-1-methyl-pyrrolidinium bis(trifluoromethylsulfonyl amide ([BMP][TFSA] containing 4-{2-[1-(2-cyanoethyl-1,2,3,4-tetrahydroquinolin-6-yl]- diazenyl}benzonitrile (CTDB at Au electrodes in the absence and in the presence of the Au-electrodeposition process from K[Au(CN2]. The adsorption of nitrile and its coadsorption with CN resulting either from the cathodic decomposition of the dye or from ligand release from the Au(I cyanocomplex yield potential-dependent single or double SFG bands in the range 2,125–2,140 cm1, exhibiting Stark tuning values of ca. 3 and 1 cm1 V1 in the absence and presence of electrodeposition, respectively. The low Stark tuning found during electrodeposition correlates with the cathodic inhibiting effect of CTDB, giving rise to its levelling properties. The essential insensitivity of the other DFG parameters to the electrodeposition process is due to the growth of smooth Au.

  17. Addition of nitrite enhances the electrochemical defluorination of 2-fluoroaniline

    International Nuclear Information System (INIS)

    Feng, Huajun; Liang, Yuxiang; Guo, Kun; Long, Yuyang; Cong, Yanqing; Shen, Dongsheng

    2015-01-01

    Highlights: • A method for improving defluorination performance by in situ self-assembly of pollutants was developed. • The mechanisms of 2-FA modification and defluorination are discussed. • Positively-charged diazonium salt is used to weaken the C–F bond. - Abstract: This study introduces a novel approach that uses the interaction of pollutants with added nitrite to produce diazonium salts, which cause in situ self-assembly of the pollutants on carbon electrodes, to improve their 2-fluoroaniline (2-FA) defluorination and removal performance. The 2-FA degradation performance, electrode properties, electrochemical properties and degradation pathway were investigated. The reactor containing NO_2"− achieved a 2-FA removal efficiency of 90.1% and a defluorination efficiency of 38% within 48 h, 1.4 and 2.3 times higher than the corresponding results achieved without NO_2"−, respectively. The residual NO_2"− was less than 0.5 mg/L in the reactor containing added NO_2"−, which would not cause serious secondary pollution. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) results proved that the carbon anode surface was successfully modified with benzene polymer, and electrochemical tests confirmed that the electrochemical activity of the modified anode was enhanced significantly. The C–F bond was weakened by the effect of the positive charge of the benzenediazonium groups, and the high electrochemical activity of the carbon anode enhanced the electrochemical performance of the system to accelerate defluorination. Thus, the present electrical method involving nitrite nitrogen is very promising for the treatment of wastewater containing fluoroaniline compounds.

  18. Addition of nitrite enhances the electrochemical defluorination of 2-fluoroaniline

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Huajun [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012 (China); Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012 (China); Laboratory of Microbial Ecology and Technology, Ghent University, Coupure Links 653, B-9000 Ghent (Belgium); Liang, Yuxiang [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012 (China); Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012 (China); Guo, Kun [Laboratory of Microbial Ecology and Technology, Ghent University, Coupure Links 653, B-9000 Ghent (Belgium); Long, Yuyang [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012 (China); Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012 (China); Cong, Yanqing, E-mail: yqcong@hotmail.com [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012 (China); Shen, Dongsheng [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012 (China); Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012 (China)

    2015-12-30

    Highlights: • A method for improving defluorination performance by in situ self-assembly of pollutants was developed. • The mechanisms of 2-FA modification and defluorination are discussed. • Positively-charged diazonium salt is used to weaken the C–F bond. - Abstract: This study introduces a novel approach that uses the interaction of pollutants with added nitrite to produce diazonium salts, which cause in situ self-assembly of the pollutants on carbon electrodes, to improve their 2-fluoroaniline (2-FA) defluorination and removal performance. The 2-FA degradation performance, electrode properties, electrochemical properties and degradation pathway were investigated. The reactor containing NO{sub 2}{sup −} achieved a 2-FA removal efficiency of 90.1% and a defluorination efficiency of 38% within 48 h, 1.4 and 2.3 times higher than the corresponding results achieved without NO{sub 2}{sup −}, respectively. The residual NO{sub 2}{sup −} was less than 0.5 mg/L in the reactor containing added NO{sub 2}{sup −}, which would not cause serious secondary pollution. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) results proved that the carbon anode surface was successfully modified with benzene polymer, and electrochemical tests confirmed that the electrochemical activity of the modified anode was enhanced significantly. The C–F bond was weakened by the effect of the positive charge of the benzenediazonium groups, and the high electrochemical activity of the carbon anode enhanced the electrochemical performance of the system to accelerate defluorination. Thus, the present electrical method involving nitrite nitrogen is very promising for the treatment of wastewater containing fluoroaniline compounds.

  19. Electrochemical Sensors for Clinic Analysis

    Directory of Open Access Journals (Sweden)

    Guang Li

    2008-03-01

    Full Text Available Demanded by modern medical diagnosis, advances in microfabrication technology have led to the development of fast, sensitive and selective electrochemical sensors for clinic analysis. This review addresses the principles behind electrochemical sensor design and fabrication, and introduces recent progress in the application of electrochemical sensors to analysis of clinical chemicals such as blood gases, electrolytes, metabolites, DNA and antibodies, including basic and applied research. Miniaturized commercial electrochemical biosensors will form the basis of inexpensive and easy to use devices for acquiring chemical information to bring sophisticated analytical capabilities to the non-specialist and general public alike in the future.

  20. Electrochemical destruction of nitrosamines

    Energy Technology Data Exchange (ETDEWEB)

    Lejen, T; Volchek, K; Ladanowski, C; Velicogna, D; Whittaker, H [Environment Canada, Ottawa, ON (Canada). Emergencies Engineering Div.

    1996-09-01

    Treatment conditions for the electrolytic destruction of nitrosamines were studied. The joint investigation between Canada and the Ukraine was part of an assessment of hazardous contaminants at former Soviet ICBM missile sites. The electrochemical destruction of N-dimethylnitrosamines (NDMA) on carbon/platinum electrodes was studied under basic and acidic conditions by UV spectroscopy, gas chromatography, mass spectroscopy, and colorimetry. Experiments with a 100 ppm NDMA solution showed that electrolytic-reduction was pH sensitive within a range of pH 0.5 to 4.0. Electrolysis was effective for the reduction of NDMA in strong acidic conditions. 30 refs., 1 tab., 4 figs.

  1. Electrochemical Science and Technology

    CERN Document Server

    Oldham, Keith; Bond, Alan

    2011-01-01

    The book addresses the scientific principles underlying electrochemistry. Starting with the basic concepts of electricity, the early chapters discuss the physics and chemistry of the materials from which electrochemical cells are constructed and the properties that make these materials appropriate as cell components. Much of the importance of electrochemistry lies in the conversion of electrical energy into chemical energy and vice versa; the thermodynamics of these processes is described, in the context of a wide range of applications of these interconversions. An electrode is a surface at wh

  2. Formation of tilted clusters in the electrochemical deposition of copper on n-gas(001)

    DEFF Research Database (Denmark)

    Smilgies, D.M.; Feidenhans'l, Robert Krarup; Scherb, G.

    1996-01-01

    Using in-situ synchrotron X-ray diffraction, we have studied the epitaxial properties of Cu clusters electrochemically deposited on n-GaAs(001) substrates. The Cu clusters have (001) base planes and their [100] directions are aligned with the [110] directions of the GaAs(001) surface unit cell, b...

  3. Electrochemical migration of lead-free solder alloys in Na2SO4 environment

    DEFF Research Database (Denmark)

    Medgyes, Balint; Ádám, Sándor; Tar, Lajos

    2017-01-01

    The effect of sulphate ion concentration on electrochemical migration of lead-free solder alloys was investigated with the use of water drop tests, by applying an in-situ optical and electrical inspection system. According to the Mean-Time-To-Failure (MTTF) values it was found that in the case of...

  4. Electrochemical DNA biosensor based on grafting-to mode of terminal deoxynucleoside transferase-mediated extension.

    Science.gov (United States)

    Chen, Jinyuan; Liu, Zhoujie; Peng, Huaping; Zheng, Yanjie; Lin, Zhen; Liu, Ailin; Chen, Wei; Lin, Xinhua

    2017-12-15

    Previously reported electrochemical DNA biosensors based on in-situ polymerization approach reveal that terminal deoxynucleoside transferase (TdTase) has good amplifying performance and promising application in the design of electrochemical DNA biosensor. However, this method, in which the background is significantly affected by the amount of TdTase, suffers from being easy to produce false positive result and poor stability. Herein, we firstly present a novel electrochemical DNA biosensor based on grafting-to mode of TdTase-mediated extension, in which DNA targets are polymerized in homogeneous solution and then hybridized with DNA probes on BSA-based DNA carrier platform. It is surprising to find that the background in the grafting-to mode of TdTase-based electrochemical DNA biosensor have little interference from the employed TdTase. Most importantly, the proposed electrochemical DNA biosensor shows greatly improved detection performance over the in-situ polymerization approach-based electrochemical DNA biosensor. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. In situ atomic force microscopy in the study of electrogeneration of polybithiophene on Pt electrode

    International Nuclear Information System (INIS)

    Innocenti, M.; Loglio, F.; Pigani, L.; Seeber, R.; Terzi, F.; Udisti, R.

    2005-01-01

    Electrochemical AFM technique has been used for the in situ study of the electrogeneration-deposition process of polybithiophene at varying the polymerisation conditions, such as supporting electrolyte, i.e., LiClO 4 or tetrabutylammonium hexafluorophosphate, and polymerisation procedure, i.e., either potentiostatic or potentiodynamic method. In order to better follow the evolution of the morphology of the deposit, particularly during the early stages of the polymer film growth, a suitable home-made electrochemical cell has been used

  6. Improved electrochemical performance of hierarchical porous carbon/polyaniline composites

    International Nuclear Information System (INIS)

    Hu Juan; Wang Huanlei; Huang Xiao

    2012-01-01

    Highlights: ► Polyaniline-coated hierarchical porous carbon (HPC) composites have been synthesized by in situ polymerization. ► The HPC/polyaniline composite has significantly better electrochemical capacitance performance than pure HPC and polyaniline. ► The amount of polyaniline loading has a significant effect on the composites’ electrochemical performances. - Abstract: Polyaniline (PANI)-coated hierarchical porous carbon (HPC) composites (HPC/PANI) for use as supercapacitor electrodes were prepared by in situ chemical oxidation polymerization at 273 K of an aniline solution containing well-dispersed HPC particles. After polymerization, a thin layer of PANI was coated on the surface of the HPC particles, which was confirmed by Fourier transform infrared spectroscopy (FT-IR), transmission electron microscope (TEM) and scanning electron microscopy (SEM). Compared to pure PANI and HPC, the electrochemical capacitance performance of the composites was significantly improved. The highest specific capacitance of the composites obtained is 478 F g −1 at 1 mV s −1 , which is more than twice as that of pure PANI and three times as that of pure HPC. Because of the influence from the hierarchical pore structure of the carbon material, the calculated specific capacitance of PANI in the composite (pseudocapacitance contribution from PANI) is almost one magnitude higher than that of pure PANI.

  7. Electrochemical and spectroscopic study on thiolation of polyaniline

    International Nuclear Information System (INIS)

    Blomquist, Maija; Bobacka, Johan; Ivaska, Ari; Levon, Kalle

    2013-01-01

    Highlights: ► We have thiolated and characterized polyaniline films in order to verify that the thiolation process has taken place. ► Such extensive characterization of thiolation of polyaniline has not previously been reported. ► Thiolation alters the electrochemical properties of polyaniline and the process should be understood. ► Through thiolation many reactive groups may covalently be bound to the polymer backbone. ► Possibility of covalent binding makes polyaniline films an attractive substrate for, e.g., biosensors. -- Abstract: Polyaniline (PANI) is a conducting polymer, easily synthesized and lucrative for many electrochemical applications like ion-selective sensors and biosensors. Thiolated molecules, including biological ones, can be bound by nucleophilic attachment to the polyaniline backbone. These covalently bound thiols add functionality to PANI, but also cause changes in the electrochemical properties of PANI. Polyaniline studied in this work was electropolymerized on glassy carbon electrodes. 2-Mercaptoethanol (MCE) and 6-(ferrocenyl)hexanethiol (FCHT) were used as the thiols to form functionalized films. The films were characterized by cyclic voltammetry (CV), ex situ FTIR and Raman spectroscopies, electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS). The goal of this work was to confirm the thiolation by spectroscopic methods and to study the impact of thiolation on the electrochemical properties of PANI. Our study showed that thiolated PANI has different electrochemical properties than PANI. Although the thiolation partially reduced the PANI backbone it still remained conductive after the thiolation. Detailed understanding of the thiolation process can be very useful for future applications of PANI

  8. Electrochemical properties of copper-based compounds with polyanion frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, Yoshifumi; Hata, Shoma; Suzuki, Kota; Hirayama, Masaaki; Kanno, Ryoji, E-mail: kanno@echem.titech.ac.jp

    2016-03-15

    The copper-based polyanion compounds Li{sub 6}CuB{sub 4}O{sub 10} and Li{sub 2}CuP{sub 2}O{sub 7} were synthesized using a conventional solid-state reaction, and their electrochemical properties were determined. Li{sub 6}CuB{sub 4}O{sub 10} showed reversible capacity of 340 mA g{sup −1} at the first discharge–charge process, while Li{sub 2}CuP{sub 2}O{sub 7} showed large irreversible capacity and thus low charge capacity. Ex situ X-ray diffraction (XRD) and X-ray absorption near edge structure (XANES) measurements revealed that the electrochemical Li{sup +} intercalation/deintercalation reaction in Li{sub 6}CuB{sub 4}O{sub 10} occurred via reversible Cu{sup 2+}/Cu{sup +} reduction/oxidation reaction. These differences in their discharge/charge mechanisms are discussed based on the strength of the Cu–O covalency via their inductive effects. - Graphical abstract: Electrochemical properties for Cu-based polyanion compounds were investigated. The electrochemical reaction mechanisms are strongly affected by their Cu–O covalentcy. - Highlights: • Electrochemical properties of Cu-based polyanion compounds were investigated. • The Li{sup +} intercalation/deintercalation reaction progressed in Li{sub 6}CuB{sub 4}O{sub 10}. • The electrochemical displacement reaction progressed in Li{sub 2}CuP{sub 2}O{sub 7}. • The strength of Cu–O covalency affects the reaction mechanism.

  9. Electrochemical photovoltaic cells and electrodes

    Science.gov (United States)

    Skotheim, Terje A.

    1984-01-01

    Improved electrochemical photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

  10. Thermodynamics of irreversible electrochemical phenomena

    NARCIS (Netherlands)

    Groot, S.R. de; Mazur, P.; Tolhoek, H.A.

    1953-01-01

    A discussion from first principles is given of the energy and entropy laws in electrochemical systems. It is found that it is possible to clarify such controversial concepts as the form of the second law and the role of the electrochemical potential in the systems concerned.

  11. Electrochemical biosensors for hormone analyses.

    Science.gov (United States)

    Bahadır, Elif Burcu; Sezgintürk, Mustafa Kemal

    2015-06-15

    Electrochemical biosensors have a unique place in determination of hormones due to simplicity, sensitivity, portability and ease of operation. Unlike chromatographic techniques, electrochemical techniques used do not require pre-treatment. Electrochemical biosensors are based on amperometric, potentiometric, impedimetric, and conductometric principle. Amperometric technique is a commonly used one. Although electrochemical biosensors offer a great selectivity and sensitivity for early clinical analysis, the poor reproducible results, difficult regeneration steps remain primary challenges to the commercialization of these biosensors. This review summarizes electrochemical (amperometric, potentiometric, impedimetric and conductometric) biosensors for hormone detection for the first time in the literature. After a brief description of the hormones, the immobilization steps and analytical performance of these biosensors are summarized. Linear ranges, LODs, reproducibilities, regenerations of developed biosensors are compared. Future outlooks in this area are also discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Use of phase information with a stepper motor to control frequency for tuning system of the Front End Test Stand Radio Frequency Quadrupole at Rutherford Appleton Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Alsari, S., E-mail: s.alsari@imperial.ac.uk; Aslaninejad, M.; Pozimski, J.

    2015-03-01

    For the Front End Test Stand (FETS) linear accelerator project at the Rutherford Appleton Laboratory in the UK, a 4 m, 4 vanes Radio Frequency Quadrupole (RFQ) with a resonant frequency of 324 MHz has been designed. The RF power feeding the RFQ gives rise to the temperature increase in the RFQ, which in turn, results in shifting the resonant frequency of the RFQ. The frequency shift and the stability in the RFQ frequency can be maintained based on the reflected power or signal phase information. We have, however, investigated restoration of the RFQ nominal frequency based on the RF signal phases driving a stepper motor. The concept and the system set-up and electronics are described in detail. Results of the measurements indicating the full restoration of the RFQ nominal frequency based on the RF signal phases and stepper motor are presented. Moreover, measured sensitivity of tuner with respect to its position is given.

  13. Use of phase information with a stepper motor to control frequency for tuning system of the Front End Test Stand Radio Frequency Quadrupole at Rutherford Appleton Laboratory

    International Nuclear Information System (INIS)

    Alsari, S.; Aslaninejad, M.; Pozimski, J.

    2015-01-01

    For the Front End Test Stand (FETS) linear accelerator project at the Rutherford Appleton Laboratory in the UK, a 4 m, 4 vanes Radio Frequency Quadrupole (RFQ) with a resonant frequency of 324 MHz has been designed. The RF power feeding the RFQ gives rise to the temperature increase in the RFQ, which in turn, results in shifting the resonant frequency of the RFQ. The frequency shift and the stability in the RFQ frequency can be maintained based on the reflected power or signal phase information. We have, however, investigated restoration of the RFQ nominal frequency based on the RF signal phases driving a stepper motor. The concept and the system set-up and electronics are described in detail. Results of the measurements indicating the full restoration of the RFQ nominal frequency based on the RF signal phases and stepper motor are presented. Moreover, measured sensitivity of tuner with respect to its position is given

  14. Development of the front end test stand and vessel for extraction and source plasma analyses negative hydrogen ion sources at the Rutherford Appleton Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Lawrie, S. R., E-mail: scott.lawrie@stfc.ac.uk [STFC ISIS Pulsed Spallation Neutron and Muon Facility, Rutherford Appleton Laboratory, Harwell Oxford, Harwell (United Kingdom); John Adams Institute of Accelerator Science, University of Oxford, Oxford (United Kingdom); Faircloth, D. C.; Letchford, A. P.; Perkins, M.; Whitehead, M. O.; Wood, T. [STFC ISIS Pulsed Spallation Neutron and Muon Facility, Rutherford Appleton Laboratory, Harwell Oxford, Harwell (United Kingdom); Gabor, C. [ASTeC Intense Beams Group, Rutherford Appleton Laboratory, Harwell Oxford, Harwell (United Kingdom); Back, J. [High Energy Physics Department, University of Warwick, Coventry (United Kingdom)

    2014-02-15

    The ISIS pulsed spallation neutron and muon facility at the Rutherford Appleton Laboratory (RAL) in the UK uses a Penning surface plasma negative hydrogen ion source. Upgrade options for the ISIS accelerator system demand a higher current, lower emittance beam with longer pulse lengths from the injector. The Front End Test Stand is being constructed at RAL to meet the upgrade requirements using a modified ISIS ion source. A new 10% duty cycle 25 kV pulsed extraction power supply has been commissioned and the first meter of 3 MeV radio frequency quadrupole has been delivered. Simultaneously, a Vessel for Extraction and Source Plasma Analyses is under construction in a new laboratory at RAL. The detailed measurements of the plasma and extracted beam characteristics will allow a radical overhaul of the transport optics, potentially yielding a simpler source configuration with greater output and lifetime.

  15. In situ observation techniques of protective oxide layer

    International Nuclear Information System (INIS)

    Doi, Takashi; Adachi, Takeharu; Usuki, Noriaki

    2015-01-01

    In situ analyzing techniques for investigating a surface and interface change during corrosion and oxidation of metals by using Raman scattering spectroscopy (Raman), X-ray diffraction (XRD) and X-ray photoemission spectroscopy (XPS) are present. The Raman spectra revealed that a crystal structure and distribution of corrosion products varied during corrosion progress at elevated temperature and high pressure electrolyte. Time dependent XRD measurements made clear the behavior of the electrochemical reduction of a rust and the iso thermal transformation of a scale on a steel. It was demonstrated that XPS was capable of the in-situ measurements for initial stage of high temperature oxidation. (author)

  16. ELECTROCHEMICAL OXIDATION OF ETHANOL USING Ni-Co-PVC COMPOSITE ELECTRODE

    Directory of Open Access Journals (Sweden)

    Riyanto Riyanto

    2011-07-01

    Full Text Available The morphological characteristics and electrochemical behavior of nickel metal foil (Ni, nickel-polyvinyl chloride (Ni-PVC and nickel-cobalt-polyvinyl chloride (Ni-Co-PVC electrodes in alkaline solution has been investigated. The morphological characteristics of the electrode surface were studied using SEM and EDS, while the electrochemical behavior of the electrodes was studied using cyclic voltammetry (CV. It was found that composite electrodes (Ni-PVC and Ni-Co-PVC have a porous, irregular and rough surface. In situ studies using electrochemical technique using those three electrodes exhibited electrochemical activity for redox system, as well as selectivity in the electrooxidation of ethanol to acetic acid. The studies also found that an electrokinetics and electrocatalytic activity behaviors of the electrodes prepared were Ni metal foil

  17. Electrochemical hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Digby Macdonald

    2010-08-09

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not

  18. Electrochemical hydrogen Storage Systems

    International Nuclear Information System (INIS)

    Macdonald, Digby

    2010-01-01

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the

  19. Material removal mechanisms in electrochemical-mechanical polishing of tantalum

    International Nuclear Information System (INIS)

    Gao, F.; Liang, H.

    2009-01-01

    Material removal mechanisms in tantalum chemical-mechanical polishing (CMP) and electrochemical-mechanical polishing (ECMP) were investigated using the single frequency electrochemical impedance spectroscopy (EIS). Through measuring the impedance of the tantalum surface, the single frequency EIS scan made it possible to observe the CMP and ECMP processes in situ. The impedance results presented competing mechanisms of removal and formation of a surface oxide layer of tantalum. Analysis indicated that the thickness of the oxide layer formed during polishing was related to the mechanical power correlated to the friction force and the rotating speed. Furthermore, the rate of growth and removal of the oxide film was a function of the mechanical power. This understanding is beneficial for optimization of CMP and ECMP processes.

  20. A Printed Organic Amplification System for Wearable Potentiometric Electrochemical Sensors.

    Science.gov (United States)

    Shiwaku, Rei; Matsui, Hiroyuki; Nagamine, Kuniaki; Uematsu, Mayu; Mano, Taisei; Maruyama, Yuki; Nomura, Ayako; Tsuchiya, Kazuhiko; Hayasaka, Kazuma; Takeda, Yasunori; Fukuda, Takashi; Kumaki, Daisuke; Tokito, Shizuo

    2018-03-02

    Electrochemical sensor systems with integrated amplifier circuits play an important role in measuring physiological signals via in situ human perspiration analysis. Signal processing circuitry based on organic thin-film transistors (OTFTs) have significant potential in realizing wearable sensor devices due to their superior mechanical flexibility and biocompatibility. Here, we demonstrate a novel potentiometric electrochemical sensing system comprised of a potassium ion (K + ) sensor and amplifier circuits employing OTFT-based pseudo-CMOS inverters, which have a highly controllable switching voltage and closed-loop gain. The ion concentration sensitivity of the fabricated K + sensor was 34 mV/dec, which was amplified to 160 mV/dec (by a factor of 4.6) with high linearity. The developed system is expected to help further the realization of ultra-thin and flexible wearable sensor devices for healthcare applications.

  1. Photoproduction of Hydrogen by Decamethylruthenocene Combined with Electrochemical Recycling.

    Science.gov (United States)

    Rivier, Lucie; Peljo, Pekka; Vannay, Laurent A C; Gschwend, Grégoire C; Méndez, Manuel A; Corminboeuf, Clémence; Scanlon, Micheál D; Girault, Hubert H

    2017-02-20

    The photoinduced hydrogen evolution reaction (HER) by decamethylruthenocene, Cp 2 *Ru II (Cp*=C 5 Me 5 ), is reported. The use of a metallocene to photoproduce hydrogen is presented as an alternative strategy to reduce protons without involving an additional photosensitizer. The mechanism was investigated by (spectro)electrochemical and spectroscopic (UV/Vis and 1 H NMR) measurements. The photoactivated hydride involved was characterized spectroscopically and the resulting [Cp 2 *Ru III ] + species was electrochemically regenerated in situ on a fluorinated tin oxide electrode surface. A promising internal quantum yield of 25 % was obtained. Optimal experimental conditions- especially the use of weakly coordinating solvent and counterions-are discussed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Development of remote electrochemical decontamination for hot cell applications

    International Nuclear Information System (INIS)

    Turner, A.D.; Lain, M.J.; Fletcher, P.A.; Dawson, R.K.; Pottinger, J.S.

    1989-01-01

    The primary aim of the programme is to develop and evaluate remote electrochemical decontamination systems for metal surfaces. The bulk of the waste volume should be reduced to a reuse or low-level waste disposal category, while concentrating most of the activity in a small volume suitable for immobilisation. The goal of the development programme is to test these techniques in both alpha-active and alpha-beta-gamma hot cells in order to ascertain their usefulness as a component of an overall decommissioning strategy. As a result of the radiological environment, particular emphasis will be placed on remote operation in order to reduce occupational radiation exposure. Two types of technique based on the electrochemical dissolution of thin surface layers of the substrate will be investigated: immersion of small items in tanks for electroetching and in situ electropolishing. In both cases, reagents will be chosen with their subsequent disposal in mind. (Author)

  3. Electrochemical treatment of graphite

    Energy Technology Data Exchange (ETDEWEB)

    Podlovilin, V.I.; Egorov, I.M.; Zhernovoj, A.I.

    1983-01-01

    In the course of investigating various modes of electrochemical treatment (ECT) it has been found that graphite anode treatment begins under the ''glow mode''. A behaviour of some marks of graphite with the purpose of ECT technique development in different electrolytes has been tested. Electrolytes have been chosen of three types: highly alkaline (pH 13-14), neutral (pH-Z) and highly acidic (pH 1-2). For the first time parallel to mechanical electroerosion treatment, ECT of graphite and carbon graphite materials previously considered chemically neutral is proposed. ECT of carbon graphite materials has a number of advantages as compared with electroerrosion and mechanical ones with respect to the treatment rate and purity (ronghness) of the surface. A small quantity of sludge (6-8%) under ECT is in highly alkali electrolytes.

  4. Organic electrochemical transistors

    Science.gov (United States)

    Rivnay, Jonathan; Inal, Sahika; Salleo, Alberto; Owens, Róisín M.; Berggren, Magnus; Malliaras, George G.

    2018-02-01

    Organic electrochemical transistors (OECTs) make effective use of ion injection from an electrolyte to modulate the bulk conductivity of an organic semiconductor channel. The coupling between ionic and electronic charges within the entire volume of the channel endows OECTs with high transconductance compared with that of field-effect transistors, but also limits their response time. The synthetic tunability, facile deposition and biocompatibility of organic materials make OECTs particularly suitable for applications in biological interfacing, printed logic circuitry and neuromorphic devices. In this Review, we discuss the physics and the mechanism of operation of OECTs, focusing on their identifying characteristics. We highlight organic materials that are currently being used in OECTs and survey the history of OECT technology. In addition, form factors, fabrication technologies and applications such as bioelectronics, circuits and memory devices are examined. Finally, we take a critical look at the future of OECT research and development.

  5. Electrochemical Hydrogen Compressor

    Energy Technology Data Exchange (ETDEWEB)

    Lipp, Ludwig [FuelCell Energy, Inc., Torrington, CT (United States)

    2016-01-21

    Conventional compressors have not been able to meet DOE targets for hydrogen refueling stations. They suffer from high capital cost, poor reliability and pose a risk of fuel contamination from lubricant oils. This project has significantly advanced the development of solid state hydrogen compressor technology for multiple applications. The project has achieved all of its major objectives. It has demonstrated capability of Electrochemical Hydrogen Compression (EHC) technology to potentially meet the DOE targets for small compressors for refueling sites. It has quantified EHC cell performance and durability, including single stage hydrogen compression from near-atmospheric pressure to 12,800 psi and operation of EHC for more than 22,000 hours. Capital cost of EHC was reduced by 60%, enabling a path to meeting the DOE cost targets for hydrogen compression, storage and delivery ($2.00-2.15/gge by 2020).

  6. Fast electrochemical actuator

    International Nuclear Information System (INIS)

    Uvarov, I V; Postnikov, A V; Svetovoy, V B

    2016-01-01

    Lack of fast and strong microactuators is a well-recognized problem in MEMS community. Electrochemical actuators can develop high pressure but they are notoriously slow. Water electrolysis produced by short voltage pulses of alternating polarity can overcome the problem of slow gas termination. Here we demonstrate an actuation regime, for which the gas pressure is relaxed just for 10 μs or so. The actuator consists of a microchamber filled with the electrolyte and covered with a flexible membrane. The membrane bends outward when the pressure in the chamber increases. Fast termination of gas and high pressure developed in the chamber are related to a high density of nanobubbles in the chamber. The physical processes happening in the chamber are discussed so as problems that have to be resolved for practical applications of this actuation regime. The actuator can be used as a driving engine for microfluidics. (paper)

  7. Organic electrochemical transistors

    KAUST Repository

    Rivnay, Jonathan

    2018-01-16

    Organic electrochemical transistors (OECTs) make effective use of ion injection from an electrolyte to modulate the bulk conductivity of an organic semiconductor channel. The coupling between ionic and electronic charges within the entire volume of the channel endows OECTs with high transconductance compared with that of field-effect transistors, but also limits their response time. The synthetic tunability, facile deposition and biocompatibility of organic materials make OECTs particularly suitable for applications in biological interfacing, printed logic circuitry and neuromorphic devices. In this Review, we discuss the physics and the mechanism of operation of OECTs, focusing on their identifying characteristics. We highlight organic materials that are currently being used in OECTs and survey the history of OECT technology. In addition, form factors, fabrication technologies and applications such as bioelectronics, circuits and memory devices are examined. Finally, we take a critical look at the future of OECT research and development.

  8. Characterising of solid state electrochemical cells under operation

    DEFF Research Database (Denmark)

    Holtappels, Peter

    2014-01-01

    Compared to significant progress in PEMFC especially regarding the utilization of complex fuels such as methanol significant progress has been made by applying spectroscopic / differential IR and spectrometric techniques to working fuel cells, the processes in solid state high temperature...... electrochemical cells are still a "black box". In order to identify local reaction sites, surface coverage and potential/current introduced materials and surface modifications, in situ techniques are needed to gain a better understanding of the elementary and performance limiting steps for these cells...

  9. Tunable nanogap devices for ultra-sensitive electrochemical impedance biosensing

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yong [Department of Chemistry, Wannan Medical College, Wuhu 241002 (China); Guo, Zheng [Nanomaterials and Environmental Detection Laboratory, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Song, Jing-Jing; Huang, Qin-An; Zhu, Si-Wei [Department of Chemistry, Wannan Medical College, Wuhu 241002 (China); Huang, Xing-Jiu [Nanomaterials and Environmental Detection Laboratory, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Wei, Yan, E-mail: yanwei_wnmc@hotmail.com [Department of Chemistry, Wannan Medical College, Wuhu 241002 (China)

    2016-01-28

    A wealth of research has been available discussing nanogap devices for detecting very small quantities of biomolecules by observing their electrical behavior generally performed in dry conditions. We report that a gold nanogapped electrode with tunable gap length for ultra-sensitive detection of streptavidin based on electrochemical impedance technique. The gold nanogap is fabricated using simple monolayer film deposition and in-situ growth of gold nanoparticles in a traditional interdigitated array (IDA) microelectrode. The electrochemical impedance biosensor with a 25-nm nanogap is found to be ultra-sensitive to the specific binding of streptavidin to biotin. The binding of the streptavidin hinder the electron transfer between two electrodes, resulting in a large increase in electron-transfer resistance (R{sub et}) for operating the impedance. A linear relation between the relative R{sub et} and the logarithmic value of streptavidin concentration is observed in the concentration range from 1 pM (picomolar) to 100 nM (nanomolar). The lowest detectable concentration actually measured reaches 1 pM. We believe that such an electrochemical impedance nanogap biosensor provides a useful approach towards biomolecular detection that could be extended to a number of other systems. - Highlights: • A tunable gold nanogap device was used as to electrochemical impedance biosensor. • Linear range from 1 pM to 100 nM with LOD of 1 pM for streptavidin detection was obtained. • The nanogap devices exhibit a satisfactory precision, stability, and reproducibility. • The combination of electrochemical impedance technique and nanogap devices was achieved.

  10. Characterization of Electrochemically Generated Silver

    Science.gov (United States)

    Adam, Niklas; Martinez, James; Carrier, Chris

    2014-01-01

    Silver biocide offers a potential advantage over iodine, the current state of the art in US spacecraft disinfection technology, in that silver can be safely consumed by the crew. Low concentrations of silver (Silver does not require hardware to remove it from a water system, and therefore can provide a simpler means for disinfecting water. The Russian segment of the International Space Station has utilized an electrochemically generated silver solution, which is colloidal in nature. To be able to reliably provide a silver biocide to drinking water by electrochemical means would reduce mass required for removing another biocide such as iodine from the water. This would also aid in crew time required to replace iodine removal cartridges. Future long term missions would benefit from electrochemically produced silver as the biocide could be produced on demand and requires only a small concentration to be effective. Since it can also be consumed safely, there is less mass in removal hardware and little consumables required for production. The goal of this project initially is to understand the nature of the electrochemically produced silver, the particle sizes produced by the electrochemical cell and the effect that voltage adjustment has on the particle size. In literature, it has been documented that dissolved oxygen and pH have an effect on the ionization of the electrochemical silver so those parameters would be measured and possibly adjusted to understand their effect on the silver.

  11. Need for In Operando Characterization of Electrochemical Interface Features

    DEFF Research Database (Denmark)

    Traulsen, Marie Lund; Chatzichristodoulou, Christodoulos; Hansen, Karin Vels

    2015-01-01

    and changing experimental conditions with respect to electrical, structural and chemical properties at the nano-scale. Going through the various known techniques, it becomes clear that there are not sufficient in operando techniques available to make a comprehensive electrode characterization, and therefore...... during the recent 2 decades. This progress has to a large extent been based on combination of electrochemical characterization and in situ and in operando and in situ surface analysis techniques, which so far have been less developed for high temperature electrochemistry above 300 °C. In spite...... that such techniques have only recently started becoming available for SOC electrochemistry, they are strongly needed. The high temperature solid-solid and solid-gas interfaces tend to change a lot over time due to segregation of electrolyte and electrode constituents and unavoidable trace impurities on a level of few...

  12. Electrochemical incineration of wastes

    Science.gov (United States)

    Kaba, L.; Hitchens, G. D.; Bockris, J. OM.

    1989-01-01

    The disposal of domestic organic waste in its raw state is a matter of increasing public concern. Earlier, it was regarded as permissible to reject wastes into the apparently infinite sink of the sea but, during the last 20 years, it has become clear that this is environmentally unacceptable. On the other hand, sewage farms and drainage systems for cities and for new housing developments are cumbersome and expensive to build and operate. New technology whereby waste is converted to acceptable chemicals and pollution-free gases at site is desirable. The problems posed by wastes are particularly demanding in space vehicles where it is desirable to utilize treatments that will convert wastes into chemicals that can be recycled. In this situation, the combustion of waste is undesirable due to the inevitable presence of oxides of nitrogen and carbon monoxide in the effluent gases. Here, in particular, electrochemical techniques offer several advantages including the low temperatures which may be used and the absence of any NO and CO in the evolved gases. Work done in this area was restricted to technological papers, and the present report is an attempt to give a more fundamental basis to the early stages of a potentially valuable technology.

  13. In situ analytical techniques for battery interface analysis.

    Science.gov (United States)

    Tripathi, Alok M; Su, Wei-Nien; Hwang, Bing Joe

    2018-02-05

    Lithium-ion batteries, simply known as lithium batteries, are distinct among high energy density charge-storage devices. The power delivery of batteries depends upon the electrochemical performances and the stability of the electrode, electrolytes and their interface. Interfacial phenomena of the electrode/electrolyte involve lithium dendrite formation, electrolyte degradation and gas evolution, and a semi-solid protective layer formation at the electrode-electrolyte interface, also known as the solid-electrolyte interface (SEI). The SEI protects electrodes from further exfoliation or corrosion and suppresses lithium dendrite formation, which are crucial needs for enhancing the cell performance. This review covers the compositional, structural and morphological aspects of SEI, both artificially and naturally formed, and metallic dendrites using in situ/in operando cells and various in situ analytical tools. Critical challenges and the historical legacy in the development of in situ/in operando electrochemical cells with some reports on state-of-the-art progress are particularly highlighted. The present compilation pinpoints the emerging research opportunities in advancing this field and concludes on the future directions and strategies for in situ/in operando analysis.

  14. Determination of redox-active centers in praseodymium doped ceria by in situ-XANES spectroscopy

    DEFF Research Database (Denmark)

    Kiebach, Wolff-Ragnar; Chatzichristodoulou, Christodoulos; Werchmeister, Rebecka Maria Larsen

    2012-01-01

    Praseodymium doped ceria, a material of interest for electrochemical flue gas purification, was investigated with in situ X-ray Absorption Near Edge Structure spectroscopy between room temperature and 500°C in air and diluted nitrogen(II) oxide (NO/Ar) (1% NO in Ar). For temperatures above 400°C...

  15. Submolecular Electronic Mapping of Single Cysteine Molecules by in Situ Scanning Tunneling Imaging

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Chi, Qijin; Nazmutdinov, R. R.

    2009-01-01

    We have used L-Cysteine (Cys) as a model system to study the surface electronic structures of single molecules at the submolecular level in aqueous buffer solution by a combination of electrochemical scanning tunneling microscopy (in situ STM), electrochemistry including voltammetry and chronocou...

  16. In situ neutron depth profiling: A powerful method to probe lithium transport in micro-batteries

    NARCIS (Netherlands)

    Oudenhoven, J.F.M.; Labohm, F.; Mulder, M.; Niessen, R.A.H.; Mulder, F.M.; Notten, P.H.L.

    2011-01-01

    In situ neutron depth profiling (NDP) offers the possibility to observe lithium transport inside micro-batteries during battery operation. It is demonstrated that NDP results are consistent with the results of electrochemical measurements, and that the use of an enriched6LiCoO2 cathode offers more

  17. In Situ X-ray Diffraction Studies of (De)lithiation Mechanism in Silicon Nanowire Anodes

    KAUST Repository

    Misra, Sumohan; Liu, Nian; Nelson, Johanna; Hong, Seung Sae; Cui, Yi; Toney, Michael F.

    2012-01-01

    -Si product has been observed. In this work, we use an X-ray transparent battery cell to perform in situ synchrotron X-ray diffraction on SiNWs in real time during electrochemical cycling. At deep lithiation voltages the known metastable Li 15Si 4 phase forms

  18. Electrochemical oxidation of organic waste

    International Nuclear Information System (INIS)

    Almon, A.C.; Buchanan, B.R.

    1990-01-01

    Both silver catalyzed and direct electrochemical oxidation of organic species are examined in analytical detail. This paper describes the mechanisms, reaction rates, products, intermediates, capabilities, limitations, and optimal reaction conditions of the electrochemical destruction of organic waste. A small bench-top electrocell being tested for the treatment of small quantities of laboratory waste is described. The 200-mL electrochemical cell used has a processing capacity of 50 mL per day, and can treat both radioactive and nonradioactive waste. In the silver catalyzed process, Ag(I) is electrochemically oxidized to Ag(II), which attacks organic species such as tributylphosphate (TBP), tetraphenylborate (TPB), and benzene. In direct electrochemical oxidation, the organic species are destroyed at the surface of the working electrode without the use of silver as an electron transfer agent. This paper focuses on the destruction of tributylphosphate (TBP), although several organic species have been destroyed using this process. The organic species are converted to carbon dioxide, water, and inorganic acids

  19. Stoichiometry and local bond configuration of In{sub 2}S{sub 3}:Cl thin films by Rutherford backscattering spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Juma, Albert O., E-mail: jumaa@biust.ac.bw

    2016-10-15

    In{sub 2}S{sub 3} thin films deposited using chemical methods always contain residual elements from the precursors, which modify their properties. As buffer layers in solar cells, the residual elements in the In{sub 2}S{sub 3} layer affect the performance of these devices. The stoichiometry of In{sub 2}S{sub 3} thin films deposited by spray ion layer gas reaction (ILGAR) was studied as a function of the residual Cl from InCl{sub 3} precursor by varying the deposition parameters. The chemical formula was deduced from the elemental composition determined using Rutherford backscattering (RBS). Incomplete sulfurization of the precursor implies that residual Cl{sup −} remains bonded to the In{sup 3+} ions while some occupy interstitial and/or antisite positions in the In{sub 2}S{sub 3} matrix. This results in thin films with different stoichiometry, described by the formula In{sub 4}S{sub 6−x}Cl{sub 2x+2y}. This changes the local bond configuration and geometry and underpins the influence of residual Cl on the physical properties of In{sub 2}S{sub 3} thin films.

  20. Rutherford scattering of neutral atoms: a technique for measuring plasma ion temperatures. An analysis of the applicability to the central cell plasma of TMX

    International Nuclear Information System (INIS)

    Granneman, E.H.A.

    1980-01-01

    Rutherford scattering of neutral particles by plasma ions is examined as a method for determining plasma ion in the central cell fo the Tandem Mirror Experiment (TMX). When a scattering configuration, consisting of a 20-keV-, 10-A-deuterium neutral beam and an energy analyzer with a 1% resolution, is arranged such that only neutral particles scattered by plasma ions over an angle of 10 0 are accepted, central-cell ion temperatures in the 30- to 1000-eV range can be measured. The count rate registered by the detector(s) is estimated to be 2000 counts/ms. Consequently, good statistical accuracy and time resolution are attainable simultaneously. The results of the calculation are presented such that the scaling of the count rates and the energy broadening with scattering angle, neutral-beam energy, ion temperature, and plasma density can easily be deduced. Neutral helium beams are also considered; they have some advantages over deuterium beams. The background signal, caused by neutral particles entering the detector after two successive charge-exchange collisions, is examined and ways to completely eliminate this background are indicated

  1. The potential of materials analysis by electron rutherford backscattering as illustrated by a case study of mouse bones and related compounds.

    Science.gov (United States)

    Vos, Maarten; Tökési, Károly; Benkö, Ilona

    2013-06-01

    Electron Rutherford backscattering (ERBS) is a new technique that could be developed into a tool for materials analysis. Here we try to establish a methodology for the use of ERBS for materials analysis of more complex samples using bone minerals as a test case. For this purpose, we also studied several reference samples containing Ca: calcium carbonate (CaCO(3)) and hydroxyapatite and mouse bone powder. A very good understanding of the spectra of CaCO(3) and hydroxyapatite was obtained. Quantitative interpretation of the bone spectrum is more challenging. A good fit of these spectra is only obtained with the same peak widths as used for the hydroxyapatite sample, if one allows for the presence of impurity atoms with a mass close to that of Na and Mg. Our conclusion is that a meaningful interpretation of spectra of more complex samples in terms of composition is indeed possible, but only if widths of the peaks contributing to the spectra are known. Knowledge of the peak widths can either be developed by the study of reference samples (as was done here) or potentially be derived from theory.

  2. On the annealing behaviour of dysprosium ion implanted nickel: a combined study using Rutherford backscattering, transmission electron microscopy, and total current spectroscopy

    International Nuclear Information System (INIS)

    Chadderton, L.T.; Johnson, E.

    1977-01-01

    Despite continuing improvements in applications of the analytical method of Rutherford backscattering (RBS) to solid state physics it is recognized that more complete information can be obtained if other techniques - for example transmission electron microscopy (TEM) - are employed simultaneously. Experiments are described in which a combined RBS and TEM study of the annealing of nickel, rendered amorphous by implantation of 20 keV dysprosium ions is supplemented with a completely new technique - total current spectroscopy (TCS). In TCS low energy electrons (0-15 eV) are used to probe the damaged nickel. Observations have been made during annealing of both the reappearance of the bulk band structure of the metal and of a 'surface peak' which is highly sensitive to the recovery process. Changes in the height of the surface peak reveal three sharp annealing stages, the first two being preceded by reverse annealing which correlates well with RBS and TEM results. The first annealing stage - following the amorphous to crystalline transition - may be associated with electronic effects in the vicinity of the Curie point. Changes in the position of the surface peak allow one to trace the diffusion of dysprosium to the surface. Quantum mechanical resonances at the damage/crystal interface have also been followed throughout annealing. The initially amorphous layer (approximately 2.2nm) increases in thickness slightly during recovery. (Auth.)

  3. Lattice location of O{sup 18} in ion implanted Fe crystals by Rutherford backscattering spectrometry, channeling and nuclear reaction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vairavel, Mathayan; Sundaravel, Balakrishnan, E-mail: bsundar@igcar.gov.in; Panigrahi, Binaykumar

    2016-09-15

    There are contradictory theoretical predictions of lattice location of oxygen interstitial atom at tetrahedral and octahedral interstices in bcc Fe. For validating these predictions, 300 keV O{sup 18} ions with fluence of 5 × 10{sup 15} ions/cm{sup 2} are implanted into bcc Fe single crystals at room temperature and annealed at 400 °C. The Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis (NRA)/channeling measurements are carried out with 850 keV protons. The lattice location of implanted O{sup 18} is analysed using the α-particles yield from O{sup 18}(p,α)N{sup 15} nuclear reaction. The tilt angular scans of α-particle yield along 〈110〉 and 〈100〉 axial directions are performed at room temperature. Lattice location of O{sup 18} is found to be at tetrahedral interstitial site by comparing the experimental scan with simulated scans using FLUX7 software.

  4. In situ methods for Li-ion battery research: A review of recent developments

    Science.gov (United States)

    Harks, P. P. R. M. L.; Mulder, F. M.; Notten, P. H. L.

    2015-08-01

    A considerable amount of research is being directed towards improving lithium-ion batteries in order to meet today's market demands. In particular in situ investigations of Li-ion batteries have proven extremely insightful, but require the electrochemical cell to be fully compatible with the conditions of the testing method and are therefore often challenging to execute. Advantageously, in the past few years significant progress has been made with new, more advanced, in situ techniques. Herein, a comprehensive overview of in situ methods for studying Li-ion batteries is given, with the emphasis on new developments and reported experimental highlights.

  5. New analytical portable instrument for microchip electrophoresis with electrochemical detection.

    Science.gov (United States)

    Fernández-la-Villa, Ana; Pozo-Ayuso, Diego F; Castaño-Alvarez, Mario

    2010-08-01

    A new portable instrument that includes a high voltage power supply, a bipotentiostat, and a chip holder has been especially developed for using microchips electrophoresis with electrochemical detection. The main unit of the instrument has dimensions of 150 x 165 x 70 mm (wxdxh) and consists of a four-outputs high voltage power supply with a maximum voltage of +/-3 KV and an acquisition system with two channels for dual amperometric (DC or pulsed amperometric detection) detection. Electrochemical detection has been selected as signal transduction method because it is relatively easily implemented, since nonoptical elements are required. The system uses a lithium-ion polymer battery and it is controlled from a desktop or laptop PC with a graphical user interface based on LabVIEW connected by serial RS232 or Bluetooth. The last part of the system consists of a reusable chip holder for housing the microchips, which contain all the electrical connections and reservoirs for making the work with microchips easy. The performance of the new instrument has been evaluated and compared with other commercially available apparatus using single- and dual-channel pyrex microchips for the separation of the neurotransmitters dopamine, epinephrine, and 3,4-dihydroxy-L-phenyl-alanine. The reduction of the size of the instrument has not affected the good performance of the separation and detection using microchips electrophoresis with electrochemical detection. Moreover, the new portable instrument paves the way for in situ analysis making the use of microchips electrophoresis easier.

  6. Opto-electrochemical spectroscopy of metals in aqueous solutions

    International Nuclear Information System (INIS)

    Habib, K.

    2016-01-01

    In the present investigation, holographic interferometry was utilized for the first time to determine the rate change of the electrical resistance of aluminium samples during the initial stage of anodisation processes in aqueous solution. In fact, because the resistance values in this investigation were obtained by holographic interferometry, electromagnetic method rather than electronic method, the abrupt rate change of the resistance was called electrical resistance–emission spectroscopy. The anodisation process of the aluminium samples was carried out by electrochemical impedance spectroscopy (EIS) in different sulphuric acid concentrations (1.0%–2.5% H 2 SO 4 ) at room temperature. In the meantime, the real time holographic interferometry was used to determine the difference between the electrical resistance of two subsequent values, dR, as a function of the elapsed time of the EIS experiment for the aluminium samples in 1.0%, 1.5%, 2.0%, and 2.5% H 2 SO 4 solutions. The electrical resistance–emission spectra of the present investigation represent a detailed picture of not only the rate change of the electrical resistance throughout the anodisation processes but also the spectra represent the rate change of the growth of the oxide films on the aluminium samples in different solutions. As a result, a new spectrometer was developed based on the combination of the holographic interferometry and electrochemical impedance spectroscopy for studying in situ the electrochemical behavior of metals in aqueous solutions.

  7. Hybrid carbon nanomaterials for electrochemical detection of biomolecules

    International Nuclear Information System (INIS)

    Laurila, Tomi

    2015-01-01

    Electrochemical detection of different biomolecules in vivo is a promising path towards in situ monitoring of human body and its functions. However, there are several major obstacles, such as sensitivity, selectivity and biocompatiblity, which must be tackled in order to achieve reliably and safely operating sensor devices. Here we show that by utilizing hybrid carbon materials as electrodes to detect two types of neurotransmitters, dopamine and glutamate, several advantages over commonly used electrode materials can be achieved. In particular, we will demonstrate here that it is possible to combine the properties of different carbon allotropes to obtain hybrid materials with greatly improved electrochemical performance. Three following examples of the approach are given: (i) diamond-like carbon (DLC) thin film electrodes with different layer thicknesses, (ii) multi-walled carbon nanotubes grown directly on top of DLC and (iii) carbon nanofibres synthesized on top of DLC thin films. Detailed structural and electrochemical characterization is carried out to rationalize the reasons behind the observed behvior. In addition, results from the atomistic simulations are utilized to obtain more information about the properties of the amorphous carbon thin films. (paper)

  8. Controlling the properties of graphene produced by electrochemical exfoliation

    International Nuclear Information System (INIS)

    Hofmann, Mario; D Nguyễn, Tuân; Chiang, Wan-Yu; Hsieh, Ya-Ping

    2015-01-01

    The synthesis of graphene with controllable electronic and mechanical characteristics is of significant importance for its application in various fields ranging from drug delivery to energy storage. Electrochemical exfoliation of graphite has yielded graphene with widely varying behavior and could be a suitable approach. Currently, however the limited understanding of the exfoliation process obstructs targeted modification of graphene properties. We here investigate the process of electrochemical exfoliation and the impact of its parameters on the produced graphene. Using in situ optical and electrical measurements we determine that solvent intercalation is the required first step and the degree of intercalation controls the thickness of the exfoliated graphene. Electrochemical decomposition of water into gas bubbles causes the expansion of graphite and controls the functionalization and lateral size of the exfoliated graphene. Both process steps proceed at different time scales and can be individually addressed through application of pulsed voltages. The potential of the presented approach was demonstrated by improving the performance of graphene-based transparent conductors by 30times. (paper)

  9. Superhydrophobic surfaces by electrochemical processes.

    Science.gov (United States)

    Darmanin, Thierry; Taffin de Givenchy, Elisabeth; Amigoni, Sonia; Guittard, Frederic

    2013-03-13

    This review is an exhaustive representation of the electrochemical processes reported in the literature to produce superhydrophobic surfaces. Due to the intensive demand in the elaboration of superhydrophobic materials using low-cost, reproducible and fast methods, the use of strategies based on electrochemical processes have exponentially grown these last five years. These strategies are separated in two parts: the oxidation processes, such as oxidation of metals in solution, the anodization of metals or the electrodeposition of conducting polymers, and the reduction processed such as the electrodeposition of metals or the galvanic deposition. One of the main advantages of the electrochemical processes is the relative easiness to produce various surface morphologies and a precise control of the structures at a micro- or a nanoscale. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. High damage tolerance of electrochemically lithiated silicon

    Science.gov (United States)

    Wang, Xueju; Fan, Feifei; Wang, Jiangwei; Wang, Haoran; Tao, Siyu; Yang, Avery; Liu, Yang; Beng Chew, Huck; Mao, Scott X.; Zhu, Ting; Xia, Shuman

    2015-01-01

    Mechanical degradation and resultant capacity fade in high-capacity electrode materials critically hinder their use in high-performance rechargeable batteries. Despite tremendous efforts devoted to the study of the electro–chemo–mechanical behaviours of high-capacity electrode materials, their fracture properties and mechanisms remain largely unknown. Here we report a nanomechanical study on the damage tolerance of electrochemically lithiated silicon. Our in situ transmission electron microscopy experiments reveal a striking contrast of brittle fracture in pristine silicon versus ductile tensile deformation in fully lithiated silicon. Quantitative fracture toughness measurements by nanoindentation show a rapid brittle-to-ductile transition of fracture as the lithium-to-silicon molar ratio is increased to above 1.5. Molecular dynamics simulations elucidate the mechanistic underpinnings of the brittle-to-ductile transition governed by atomic bonding and lithiation-induced toughening. Our results reveal the high damage tolerance in amorphous lithium-rich silicon alloys and have important implications for the development of durable rechargeable batteries. PMID:26400671

  11. In-situ SEM electrochemistry and radiolysis

    DEFF Research Database (Denmark)

    Møller-Nilsen, Rolf Erling Robberstad; Norby, Poul

    are backscattered and an image is reconstructed by the microscope. But the high energy electrons are a form of ionising radiation which can significantly affect the chemistry in liquid experiments. Ionising radiation can split water, produce radicals, reduce dissolved metal ions to metal particles, and more...... experiments. During the course of these studies it has also been possible to improve on the EC-SEM system. This has resulted in pyrolysed carbon electrodes, which offer the benefit of stability at 0.75 V higher potentials than traditional gold thin-film electrodes. With the quantitative insight...... microelectrodes on the windows to enable studies of electrohcemical processes. In this way it is possible to perform in-situ electrochemical experiments such as electroplating and charge and discharge analysis of battery electrodes. In a typical liquid cell, electrons are accelerated to sufficiently high energies...

  12. Ultrahigh-vacuum in situ electrochemistry with solid polymer electrolyte and x-ray photoelectron spectroscopy studies of polypyrrole

    International Nuclear Information System (INIS)

    Skotheim, T.A.; Florit, M.I.; Melo, A.; O'Grady, W.E.

    1984-01-01

    A new in situ combined electrochemistry and x-ray-photoelectron-spectroscopy (XPS) technique using solid polymer electrolytes has been used to characterize electrically conducting films of polypyrrole perchlorate. The technique allows in situ electrochemical oxidation and reduction (doping and undoping) in ultrahigh vacuum and the simultaneous study of the polymer with XPS as a function of its electrochemical potential. We demonstrate that some anion species interact strongly electrostatically with the nitrogen heteroatoms. We also show conclusively that the electrochemistry of polypyrrole is highly irreversible

  13. Characterization of electrochemical and passive behaviour of Alloy 59 in acid solution

    International Nuclear Information System (INIS)

    Luo, Hong; Gao, Shujun; Dong, Chaofang; Li, Xiaogang

    2014-01-01

    Highlights: • A considerably thinner n-type passive film is observed on the Alloy-59. • The passive film formed in air was thicker than that formed in acid solution. • Primary constituents of passive film in air and acid solution are (Cr, Ni)-oxides and (Cr, Ni) hydroxides, respectively. - Abstract: The electrochemical behaviour and passive film properties of the Alloy 59 in sulfuric acid solution was evaluated by the potentiodynamic electrochemical measurements, electrochemical impedance spectroscopy, Mott-Schottky approach, and ex situ surface analytical technique as X-ray photoelectron spectroscopy (XPS) and Auger Electronic Spectrometer (AES). The results confirmed that the Alloy 59 exhibits well passive behaviour. A considerably thinner n-type passive film is observed on this type alloy. Based on the evaluations of surface composition analysis, the primary constituents of passive film formed in the air and acid solution are different, with the (Cr, Ni)-oxides and (Cr, Ni) hydroxides, respectively

  14. Electrochemical functionalization of glassy carbon electrode by reduction of diazonium cations in protic ionic liquid

    International Nuclear Information System (INIS)

    Shul, Galyna; Ruiz, Carlos Alberto Castro; Rochefort, Dominic; Brooksby, Paula A.; Bélanger, Daniel

    2013-01-01

    Protic ionic liquid based on 2-methoxypyridine and trifluoroacetic acid was used as electrolyte for the functionalization of a glassy carbon electrode surface by electrochemical reduction of in situ generated 4-chlorobenzene diazonium and 4-nitrobenzene diazonium cations. The diazonium cations were synthesized in an electrochemical cell by reaction of the corresponding amines with NaNO 2 dissolved in protic ionic liquid. The resulting electrografted organic layers exhibit similar properties to those layers obtained by the derivatization from isolated diazonium salts dissolved in protic ionic liquid. Functionalized glassy carbon electrode surfaces were characterized by cyclic voltammetry, Fourier transform infrared and X-ray photoelectron spectroscopies. Atomic force microscopy thickness measurements revealed that, in our experimental conditions, the use of protic ionic liquid led to the formation of film with a thickness of about 1.5 nm. It is also demonstrated that the nitrobenzene chemisorbed on glassy carbon electrode or dissolved in protic ionic liquid undergoes electrochemical conversion to hydroxyaminobenzene

  15. Electrochemical migration of tin in electronics and microstructure of the dendrites

    DEFF Research Database (Denmark)

    Minzari, Daniel; Grumsen, Flemming Bjerg; Jellesen, Morten Stendahl

    2011-01-01

    The macro-, micro-, and nano-scale morphology and structure of tin dendrites, formed by electrochemical migration on a surface mount ceramic chip resistor having electrodes consisting of tin with small amounts of Pb (∼2wt.%) was investigated by scanning electron microscopy and transmission electr...... by the dehydration of the hydrated oxide originally formed in solution ex-situ in ambient air.......The macro-, micro-, and nano-scale morphology and structure of tin dendrites, formed by electrochemical migration on a surface mount ceramic chip resistor having electrodes consisting of tin with small amounts of Pb (∼2wt.%) was investigated by scanning electron microscopy and transmission electron...... microscopy including Energy dispersive X-ray spectroscopy and electron diffraction. The tin dendrites were formed under 5 or 12V potential bias in 10ppm by weight NaCl electrolyte as a micro-droplet on the resistor during electrochemical migration experiments. The dendrites formed were found to have...

  16. Imaging by Electrochemical Scanning Tunneling Microscopy and Deconvolution Resolving More Details of Surfaces Nanomorphology

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    observed in high-resolution images of metallic nanocrystallites may be effectively deconvoluted, as to resolve more details of the crystalline morphology (see figure). Images of surface-crystalline metals indicate that more than a single atomic layer is involved in mediating the tunneling current......Upon imaging, electrochemical scanning tunneling microscopy (ESTM), scanning electrochemical micro-scopy (SECM) and in situ STM resolve information on electronic structures and on surface topography. At very high resolution, imaging processing is required, as to obtain information that relates...... to crystallographic-surface structures. Within the wide range of new technologies, those images surface features, the electrochemical scanning tunneling microscope (ESTM) provides means of atomic resolution where the tip participates actively in the process of imaging. Two metallic surfaces influence ions trapped...

  17. Membrane-Coated Electrochemical Sensor for Corrosion Monitoring in Natural Gas Pipelines

    Directory of Open Access Journals (Sweden)

    J. Beck

    2017-07-01

    Full Text Available Electrochemical sensors can be used for a wide range of online in- situ process monitoring applications. However, the lack of a consistent electrolyte layer has previously limited electrochemical monitoring in gas and supercritical fluid streams. A solid state sensor is being designed that uses an ion conducting membrane to perform conductivity and corrosion measurements in natural gas pipelines up to 1000 psi. Initial results show that membrane conductivity measurements can be correlated directly to water content down to dew points of 1°C with good linearity. Corrosion monitoring can also be performed using methods such as linear polarization resistance and electrochemical impedance spectroscopy (EIS, though care must be taken in the electrode design to minimize deviation between sensors.

  18. Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring

    OpenAIRE

    Chen, Yihao; Lu, Siyuan; Zhang, Shasha; Li, Yan; Qu, Zhe; Chen, Ying; Lu, Bingwei; Wang, Xinyan; Feng, Xue

    2017-01-01

    Currently, noninvasive glucose monitoring is not widely appreciated because of its uncertain measurement accuracy, weak blood glucose correlation, and inability to detect hyperglycemia/hypoglycemia during sleep. We present a strategy to design and fabricate a skin-like biosensor system for noninvasive, in situ, and highly accurate intravascular blood glucose monitoring. The system integrates an ultrathin skin-like biosensor with paper battery–powered electrochemical twin channels (ETCs). The ...

  19. Study of the zirconium passive layer in nitric medium, by the means of electrochemical impedance spectrometry

    International Nuclear Information System (INIS)

    Musy, C.

    1996-01-01

    Although zirconium exhibits a very low corrosion rate in nitric medium at 100 C, electrochemical impedance spectrometry enabled the in-situ monitoring of the zirconium oxide growth in theses conditions. The growth curve shows a very clear deceleration of the oxide growth kinetics after the first hundred hours of immersion in hot nitric medium. The initial thickness of the native oxide film is also examined

  20. SUPPLEMENTARY INFORMATION A combined Electrochemical ...

    Indian Academy of Sciences (India)

    DELL

    A combined Electrochemical and Theoretical study of pyridine-based Schiff bases as novel corrosion inhibitors for mild steel in hydrochloric acid medium. PARUL DOHAREa, M A QURAISHIb* and I B OBOTb. aDepartment of Chemistry, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar. Pradesh 221 ...

  1. Electrolytes for magnesium electrochemical cells

    Science.gov (United States)

    Burrell, Anthony K.; Sa, Niya; Proffit, Danielle Lee; Lipson, Albert; Liao, Chen; Vaughey, John T.; Ingram, Brian J.

    2017-07-04

    An electrochemical cell includes a high voltage cathode configured to operate at 1.5 volts or greater; an anode including Mg.sup.0; and an electrolyte including an ether solvent and a magnesium salt; wherein: a concentration of the magnesium salt in the ether is 1 M or greater.

  2. All-Polymer Electrochemical Sensors

    DEFF Research Database (Denmark)

    Kafka, Jan Robert

    This thesis presents fabrication strategies to produce different types of all-polymer electrochemical sensors based on electrodes made of the highly conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT). Three different systems are presented, fabricated either by using microdrilling or by hot...

  3. Electrochemical method for transferring graphene

    DEFF Research Database (Denmark)

    2015-01-01

    The present application discloses a method for separating a graphene-support layer laminate from a conducting substrate-graphene-support layer laminate, using a gentle, controllable electrochemical method. In this way, substrates which are fragile, expensive or difficult to manufacture can be used...... - and even re-used - without damage or destruction of the substrate or the graphene....

  4. Materials for electrochemical device safety

    Science.gov (United States)

    Vissers, Daniel R.; Amine, Khalil; Thackeray, Michael M.; Kahaian, Arthur J.; Johnson, Christopher S.

    2015-04-07

    An electrochemical device includes a thermally-triggered intumescent material or a gas-triggered intumescent material. Such devices prevent or minimize short circuits in a device that could lead to thermal run-away. Such devices may include batteries or supercapacitors.

  5. (Bio)electrochemical ammonia recovery

    NARCIS (Netherlands)

    Kuntke, P.; Sleutels, T.H.J.A.; Rodríguez Arredondo, M.; Georg, S.; Barbosa, S.G.; Heijne, Ter A.; Hamelers, Hubertus V.M.; Buisman, C.J.N.

    2018-01-01

    In recent years, (bio)electrochemical systems (B)ES have emerged as an energy efficient alternative for the recovery of TAN (total ammonia nitrogen, including ammonia and ammonium) from wastewater. In these systems, TAN is removed or concentrated from the wastewater under the influence of an

  6. Graphene-based electrochemical supercapacitors

    Indian Academy of Sciences (India)

    Graphenes prepared by three different methods have been investigated as electrode materials in electrochemical supercapacitors. The samples prepared by exfoliation of graphitic oxide and by the transformation of nanodiamond exhibit high specific capacitance in aq. H2SO4, the value reaching up to 117 F/g. By using an ...

  7. Graphene-based electrochemical supercapacitors

    Indian Academy of Sciences (India)

    WINTEC

    been great interest in graphene, which constitutes an entirely new class of carbon. Electrical characteriza- tion of single-layer graphene has been reported. 12,13. We have investigated the use of graphene as elec- trode material in electrochemical supercapacitors. For this purpose, we have employed graphene prepared.

  8. SURFACE PROPERTIES OF ELECTROCHEMICALLY REDUCED ...

    African Journals Online (AJOL)

    DJFLEX

    A viscose rayon based activated carbon cloth (ACC) was electrochemically reduced ..... bath of liquid nitrogen at a temperature of 77 K. ... that above 59,400 c/g extent of oxidation, the ..... ACC react with aldehyde groups to produce ether.

  9. ELECTROCHEMICAL DETERMINATION OF ETHANOL, 2 ...

    African Journals Online (AJOL)

    2014-12-31

    Dec 31, 2014 ... ABSTRACT. In this work, we present the modification of a glassy carbon electrode with nickel oxide film which is performed in two successive steps. In the first one, the electrochemical deposition of metallic nickel on the glassy carbon electrode (GCE) is achieved in 0.1M boric acid; in the second step, the ...

  10. In-situ CdS/CdTe Heterojuntions Deposited by Pulsed Laser Deposition

    KAUST Repository

    Avila-Avendano, Jesus

    2016-04-09

    In this paper pulsed laser deposition (PLD) methods are used to study p-n CdTe/CdS heterojunctions fabricated in-situ. In-situ film deposition allows higher quality p-n interfaces by minimizing spurious contamination from the atmosphere. Morphologic and structural analyses were carried for CdTe films deposited on various substrates and different deposition conditions. The electrical characteristics and performance of the resulting p-n heterojunctions were studied as function of substrate and post-deposition anneal temperature. In-situ growth results on diodes with a rectification factor of ~ 105, an ideality factor < 2, and a reverse saturation current ~ 10-8 A. The carrier concentration in the CdTe film was in the range of ~ 1015 cm-3, as measured by C-V methods. The possible impact of sulfur diffusion from the CdS into the CdTe film is also investigated using High Resolution Rutherford Back-Scattering.

  11. In-situ CdS/CdTe Heterojuntions Deposited by Pulsed Laser Deposition

    KAUST Repository

    Avila-Avendano, Jesus; Mejia, Israel; Alshareef, Husam N.; Guo, Zaibing; Young, Chadwin; Quevedo-Lopez, Manuel

    2016-01-01

    In this paper pulsed laser deposition (PLD) methods are used to study p-n CdTe/CdS heterojunctions fabricated in-situ. In-situ film deposition allows higher quality p-n interfaces by minimizing spurious contamination from the atmosphere. Morphologic and structural analyses were carried for CdTe films deposited on various substrates and different deposition conditions. The electrical characteristics and performance of the resulting p-n heterojunctions were studied as function of substrate and post-deposition anneal temperature. In-situ growth results on diodes with a rectification factor of ~ 105, an ideality factor < 2, and a reverse saturation current ~ 10-8 A. The carrier concentration in the CdTe film was in the range of ~ 1015 cm-3, as measured by C-V methods. The possible impact of sulfur diffusion from the CdS into the CdTe film is also investigated using High Resolution Rutherford Back-Scattering.

  12. A combined electrochemical-irradiation treatment of highly colored and polluted industrial wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Barrera-Diaz, C. E-mail: cbarrera@uaemex.mx; Urena-Nunez, F. E-mail: fun@nuclear.inin.mx; Campos, E.; Palomar-Pardave, M. E-mail: mepp@correo.azc.uam.mx; Romero-Romo, M

    2003-07-01

    This study reports on the attainment of optimal conditions for two electrolytic methods to treat wastewater: namely, electrocoagulation and particle destabilization of a highly polluted industrial wastewater, and electrochemically induced oxidation induced by in situ generation of Fenton's reactive. Additionally, a combined method that consisted of electrochemical treatment plus {gamma}-irradiation was carried out. A typical composition of the industrial effluent treated was COD 3400 mg/l, color 3750 Pt/Co units, and fecal coliforms 21000 MPN/ml. The best removal efficiency was obtained with electrochemical oxidation induced in situ, that resulted in the reduction of 78% for the COD, 86% color and 99.9% fecal coliforms removal. A treatment sequence was designed and carried out, such that after both electrochemical processes, a {gamma}-irradiation technique was used to complete the procedure. The samples were irradiated with various doses in an ALC {gamma}-cell unit provided with a Co-60 source. The removal efficiency obtained was 95% for the COD values, 90% color and 99.9% for fecal coliforms.

  13. A combined electrochemical-irradiation treatment of highly colored and polluted industrial wastewater

    International Nuclear Information System (INIS)

    Barrera-Diaz, C.; Urena-Nunez, F.; Campos, E.; Palomar-Pardave, M.; Romero-Romo, M.

    2003-01-01

    This study reports on the attainment of optimal conditions for two electrolytic methods to treat wastewater: namely, electrocoagulation and particle destabilization of a highly polluted industrial wastewater, and electrochemically induced oxidation induced by in situ generation of Fenton's reactive. Additionally, a combined method that consisted of electrochemical treatment plus γ-irradiation was carried out. A typical composition of the industrial effluent treated was COD 3400 mg/l, color 3750 Pt/Co units, and fecal coliforms 21000 MPN/ml. The best removal efficiency was obtained with electrochemical oxidation induced in situ, that resulted in the reduction of 78% for the COD, 86% color and 99.9% fecal coliforms removal. A treatment sequence was designed and carried out, such that after both electrochemical processes, a γ-irradiation technique was used to complete the procedure. The samples were irradiated with various doses in an ALC γ-cell unit provided with a Co-60 source. The removal efficiency obtained was 95% for the COD values, 90% color and 99.9% for fecal coliforms

  14. A combined electrochemical-irradiation treatment of highly colored and polluted industrial wastewater

    Science.gov (United States)

    Barrera-Díaz, C.; Ureña-Nuñez, F.; Campos, E.; Palomar-Pardavé, M.; Romero-Romo, M.

    2003-07-01

    This study reports on the attainment of optimal conditions for two electrolytic methods to treat wastewater: namely, electrocoagulation and particle destabilization of a highly polluted industrial wastewater, and electrochemically induced oxidation induced by in situ generation of Fenton's reactive. Additionally, a combined method that consisted of electrochemical treatment plus γ-irradiation was carried out. A typical composition of the industrial effluent treated was COD 3400 mg/l, color 3750 Pt/Co units, and fecal coliforms 21000 MPN/ml. The best removal efficiency was obtained with electrochemical oxidation induced in situ , that resulted in the reduction of 78% for the COD, 86% color and 99.9% fecal coliforms removal. A treatment sequence was designed and carried out, such that after both electrochemical processes, a γ-irradiation technique was used to complete the procedure. The samples were irradiated with various doses in an ALC γ-cell unit provided with a Co-60 source. The removal efficiency obtained was 95% for the COD values, 90% color and 99.9% for fecal coliforms.

  15. Investigation of the interaction of Greek dolomitic marble with metal aqueous solutions using Rutherford backscattering and X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Godelitsas, A.; Kokkoris, M.; Misaelides, P.

    2005-01-01

    The interaction of dolomitic marble from Thassos Island (northern Aegean sea, Greece) with Co 2+ -, Cd 2+ -, Pb 2+ - and Cr 3+ - aqueous solutions (metal concentration: 1000 mgL -1 ) was investigated using Rutherford backscattering (RBS) and X-ray photoelectron spectroscopy (XPS). The initial material as well as the interaction products were also characterized by scanning electron microscopy (SEM/EDS), radioisotope induced X-ray fluorescence analysis (RI-XRFA), powder X-ray diffraction (Powder-XRD) and Fourier transform infra-red spectroscopy (FT-IR). The contact time of the samples with the aqueous solutions was one week and took place under ambient temperature. To our knowledge, the sorption of the above mentioned metals with dolomite (CaMg(CO 3 ) 2 ) has not yet been presented in the literature and the only data available concern the adsorption of Ca, Mg and Nd from NaCl solutions. The Thassos island dolomitic marble is a snow-white homogeneous carbonate metamorphic rock, with fine physicochemical and mechanical properties, currently used as natural building stone in many parts of the world (see http://www.thassosmarble.com), This dolomite-bearing material was also extensively used in the past as construction material of many .classical Greek and Roman sculptures and architectural elements; in 301 AD the Roman emperor Diocletian included 'Thassian marble' in the list of the 19 most expensive and important 'marbles' produced in the imperial quarries. Previous literature presented the isotopic analysis(δ 13 C, δ 18 O) and EPR studies (Mn 2+ and Fe 3+ ) of this stone. The obtained results indicated a limited Cd 2+ - and Co 2+ -sorption on the dissolved surface of the carbonate substrate, whereas, under the same experimental conditions, the Pb 2+ - and Cr 3+ -interaction is more intense leading to extended overgrowth of crystalline Pb-carbonates and surface precipitation of amorphous Cr-hydroxides/oxyhydroxides.

  16. In situ hydrogenation of molybdenum oxide nanowires for enhanced supercapacitors

    KAUST Repository

    Shakir, Imran

    2014-01-01

    In situ hydrogenation of orthorhombic molybdenum trioxide (α-MoO 3) nanowires has been achieved on a large scale by introducing alcohol during the hydrothermal synthesis for electrochemical energy storage supercapacitor devices. The hydrogenated molybdenum trioxide (H xMoO3) nanowires yield a specific capacitance of 168 F g-1 at 0.5 A g-1 and maintain 108 F g-1 at 10 A g-1, which is 36-fold higher than the capacitance obtained from pristine MoO3 nanowires at the same conditions. The electrochemical devices made with HxMoO3 nanowires exhibit excellent cycling stability by retaining 97% of their capacitance after 3000 cycles due to an enhanced electronic conductivity and increased density of hydroxyl groups on the surface of the MoO3 nanowires. This journal is © The Royal Society of Chemistry.

  17. In situ 119Sn Moessbauer spectroscopy used to study lithium insertion in c-Mg2Sn

    International Nuclear Information System (INIS)

    Aldon, L.; Ionica, C. M.; Lippens, P. E.; Larcher, D.; Tarascon, J.-M.; Olivier-Fourcade, J.; Jumas, J.-C.

    2006-01-01

    The electrochemical reactions of Li with c-Mg 2 Sn have been investigated by in situ Moessbauer spectroscopy of 119 Sn and X-ray diffraction. The lithiation transforms initially c-Mg 2 Sn part into Li x Mg 2 Sn alloy (x 2 MgSn ternary alloy. In situ Moessbauer spectroscopy provides valuable information on local environment of tin and swelling behavior and cracking of the particles during discharge and charge processes.

  18. In-Situ Simulation

    DEFF Research Database (Denmark)

    Bjerregaard, Anders Thais; Slot, Susanne; Paltved, Charlotte

    2015-01-01

    , and organisational characteristic. Therefore, it might fail to fully mimic real clinical team processes. Though research on in situ simulation in healthcare is in its infancy, literature is abundant on patient safety and team training1. Patient safety reporting systems that identify risks to patients can improve......Introduction: In situ simulation offers on-site training to healthcare professionals. It refers to a training strategy where simulation technology is integrated into the clinical encounter. Training in the simulation laboratory does not easily tap into situational resources, e.g. individual, team...... patient safety if coupled with training and organisational support. This study explored the use of critical incidents and adverse events reports for in situ simulation and short-term observations were used to create learning objectives and training scenarios. Method: This study used an interventional case...

  19. Method for in situ carbon deposition measurement for solid oxide fuel cells

    Science.gov (United States)

    Kuhn, J.; Kesler, O.

    2014-01-01

    Previous methods to measure carbon deposition in solid oxide fuel cell (SOFC) anodes do not permit simultaneous electrochemical measurements. Electrochemical measurements supplemented with carbon deposition quantities create the opportunity to further understand how carbon affects SOFC performance and electrochemical impedance spectra (EIS). In this work, a method for measuring carbon in situ, named here as the quantification of gasified carbon (QGC), was developed. TGA experiments showed that carbon with a 100 h residence time in the SOFC was >99.8% gasified. Comparison of carbon mass measurements between the TGA and QGC show good agreement. In situ measurements of carbon deposition in SOFCs at varying molar steam/carbon ratios were performed to further validate the QGC method, and suppression of carbon deposition with increasing steam concentration was observed, in agreement with previous studies. The technique can be used to investigate in situ carbon deposition and gasification behavior simultaneously with electrochemical measurements for a variety of fuels and operating conditions, such as determining conditions under which incipient carbon deposition is reversible.

  20. In situ groundwater bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.

    2009-02-01

    In situ groundwater bioremediation of hydrocarbons has been used for more than 40 years. Most strategies involve biostimulation; however, recently bioaugmentation have been used for dehalorespiration. Aquifer and contaminant profiles are critical to determining the feasibility and strategy for in situ groundwater bioremediation. Hydraulic conductivity and redox conditions, including concentrations of terminal electron acceptors are critical to determine the feasibility and strategy for potential bioremediation applications. Conceptual models followed by characterization and subsequent numerical models are critical for efficient and cost effective bioremediation. Critical research needs in this area include better modeling and integration of remediation strategies with natural attenuation.

  1. Electrochemical sensing carcinogens in beverages

    CERN Document Server

    Zia, Asif Iqbal

    2016-01-01

    This book describes a robust, low-cost electrochemical sensing system that is able to detect hormones and phthalates – the most ubiquitous endocrine disruptor compounds – in beverages and is sufficiently flexible to be readily coupled with any existing chemical or biochemical sensing system. A novel type of silicon substrate-based smart interdigital transducer, developed using MEMS semiconductor fabrication technology, is employed in conjunction with electrochemical impedance spectroscopy to allow real-time detection and analysis. Furthermore, the presented interdigital capacitive sensor design offers a sufficient penetration depth of the fringing electric field to permit bulk sample testing. The authors address all aspects of the development of the system and fully explain its benefits. The book will be of wide interest to engineers, scientists, and researchers working in the fields of physical electrochemistry and biochemistry at the undergraduate, postgraduate, and research levels. It will also be high...

  2. Electrochemical treatment of liquid wastes

    International Nuclear Information System (INIS)

    Hobbs, D.

    1996-01-01

    Electrochemical treatment processes are being evaluated and developed for the destruction of organic compounds and nitrates/nitrites and the removal of other hazardous species from liquid wastes stored throughout the DOE complex. This activity consists of five major tasks: (1) evaluation of different electrochemical reactors for the destruction and removal of hazardous waste components, (2) development and validation of engineering process models, (3) radioactive laboratory-scale tests, (4) demonstration of the technology in an engineering-scale size reactor, and (5) analysis and evaluation of testing data. The development program team is comprised of individuals from federal, academic, and private industry. Work is being carried out in DOE, academic, and private industrial laboratories

  3. Recent Advances in Electrochemical Glycobiosensing

    Directory of Open Access Journals (Sweden)

    Germarie Sánchez-Pomales

    2011-01-01

    Full Text Available Biosensors based on electrochemical transduction mechanisms have recently made advances into the field of glycan analysis. These glyco-biosensors offer simple, rapid, sensitive, and economical approaches to the measurement need for rapid glycan analysis for biomarker detection, cancer and disease diagnostics, and bioprocess monitoring of therapeutic glycoproteins. Although the prevalent methods of glycan analysis (high-performance liquid chromatography, mass spectrometry, and nuclear magnetic resonance spectroscopy provide detailed identification and structural analysis of glycan species, there are significantly few low-cost, rapid glycan assays available for diagnostic and screening applications. Here we review instances in which glyco-biosensors have been used for glycan analysis using a variety of electrochemical transduction mechanisms (e.g., amperometric, potentiometric, impedimetric, and voltammetric, selective binding agents (e.g., lectins and antibodies, and redox species (e.g., enzyme substrates, inorganic, and nanomaterial.

  4. Sex in situ

    DEFF Research Database (Denmark)

    Krøgholt, Ida

    2017-01-01

    Sex er en del af vores sociale praksis og centralt for det, vi hver især er. Men bortset fra pornoindustrien, har vi ikke mange muligheder for at få adgang til billeder af sex. Teater Nordkrafts forestilling Sex in situ vil gøre seksuelle billeder til noget, der kan deles, udveksles og tales om, og...

  5. Electrochemical Applications in Metal Bioleaching.

    Science.gov (United States)

    Tanne, Christoph Kurt; Schippers, Axel

    2017-12-10

    Biohydrometallurgy comprises the recovery of metals by biologically catalyzed metal dissolution from solids in an aqueous solution. The application of this kind of bioprocessing is described as "biomining," referring to either bioleaching or biooxidation of sulfide metal ores. Acidophilic iron- and sulfur-oxidizing microorganisms are the key to successful biomining. However, minerals such as primary copper sulfides are recalcitrant to dissolution, which is probably due to their semiconductivity or passivation effects, resulting in low reaction rates. Thus, further improvements of the bioleaching process are recommendable. Mineral sulfide dissolution is based on redox reactions and can be accomplished by electrochemical technologies. The impact of electrochemistry on biohydrometallurgy affects processing as well as analytics. Electroanalysis is still the most widely used electrochemical application in mineralogical research. Electrochemical processing can contribute to bioleaching in two ways. The first approach is the coupling of a mineral sulfide to a galvanic partner or electrocatalyst (spontaneous electron transfer). This approach requires only low energy consumption and takes place without technical installations by the addition of higher redox potential minerals (mostly pyrite), carbonic material, or electrocatalytic ions (mostly silver ions). Consequently, the processed mineral (often chalcopyrite) is preferentially dissolved. The second approach is the application of electrolytic bioreactors (controlled electron transfer). The electrochemical regulation of electrolyte properties by such reactors has found most consideration. It implies the regulation of ferrous and ferric ion ratios, which further results in optimized solution redox potential, less passivation effects, and promotion of microbial activity. However, many questions remain open and it is recommended that reactor and electrode designs are improved, with the aim of finding options for simplified

  6. Composite Electrodes for Electrochemical Supercapacitors

    OpenAIRE

    Li, Jun; Yang, QuanMin; Zhitomirsky, Igor

    2010-01-01

    Abstract Manganese dioxide nanofibers with length ranged from 0.1 to 1 μm and a diameter of about 4–6 nm were prepared by a chemical precipitation method. Composite electrodes for electrochemical supercapacitors were fabricated by impregnation of the manganese dioxide nanofibers and multiwalled carbon nanotubes (MWCNT) into porous Ni plaque current collectors. Obtained composite electrodes, containing 85% of manganese dioxide and 15 mass% of MWCNT, as a conductive additive, with to...

  7. Electrochemical Design of Optical Nanoantennas

    Directory of Open Access Journals (Sweden)

    Vasilchenko V.E.

    2015-01-01

    Full Text Available Electrochemical techniques for fabricating tapered gold nanoantennas (tips are discussed. In the paper, the tunable design of nanoantennas is demonstrated. Tip parameters such as a tip apex curvature, mesoscopic morphology, aspect ratio and enhancement factor can be varied with etching electrolyte and applied voltage. The low-cost method makes tipehnahced optical spectroscopy and microscopy feasible for routine optical measurements beyond the diffraction limit.

  8. Electrochemical studies of ruthenium compounds

    International Nuclear Information System (INIS)

    Kumar Ghosh, B.; Chakravorty, A.

    1989-01-01

    In many ways the chemistry of transition metals is the chemistry of multiple oxidation states and the associated redox phenomena. If a particular element were to be singeld out to illustrate this viewpoint, a model choice would be ruthenium - an element that is directly or indirectly the active centre of a plethora of redox phenomena encompassing ten different oxidation states and a breathtaking diversity of structure and bonding. In the present review the authors are primarily concerned with the oxidation states of certain ligands coordinated to ruthenium. This choice is deliberate since this is one area where the unique power of electrochemical methods is splendidly revealed. Without these methods, development in this area would have been greatly hampered. A brief summary of metal oxidation states is also included as a prelude to the main subject of this review. The authors have generally emphasize the information derived which is of chemical interest leaving the details of formal electrochemical arguments in the background. The authors have reviewed the pattern and systematics of ligand redox in ruthenium complexes. The synergistic combination of electrochemical and spectroscopic methods have vastly increased our understanding of ligand phenomena during the last 15 years or so. This in turn has led to better understanding and new developments in other fields. Photophysics and photochemistry could be cited as examples. (author). 176 refs.; 10 figs.; 10 tabs

  9. Neutron dosimetry using electrochemical etching

    International Nuclear Information System (INIS)

    Su, S.J.; Stillwagon, G.B.; Morgan, K.Z.

    1977-01-01

    Registration of α-tracks and fast-neutron-induced recoils tracks by the electrochemical etching technique as applied to sensitive polymer foils (e.g., polycarbonate) provides a simple, sensitive and inexpensive means of fast neutron personnel dosimetry as well as a valuable research tool for microdosimetry. When tracks were amplified by our electrochemical technique and the etching results compared with conventional etching technique a striking difference was noted. The electrochemically etched tracks were of much larger diameter (approx. 100 μm) and gave superior contrast. Two optical devices--the transparency projector and microfiche reader--were adapted to facilitate counting of the tracks appearing on our polycarbonate foils. The projector produced a magnification of 14X for a screen to projector distance of 5.0 meter and read's magnification was 50X. A Poisson distribution was determined for the number of tracks located in a particular area of the foil and experimentally verified by random counting of quarter sections of the microfiche reader screen. Finally, in an effort to determine dose equivalent (rem), a conversion factor is being determined by finding the sensitivity response (tracks/neutron) of recoil particle induced tracks as a function of monoenergetic fast neutrons and comparing results with those obtained by others

  10. The potential of materials analysis by electron Rutherford backscattering as illustrated by a case study of mouse bones and related compounds

    International Nuclear Information System (INIS)

    Vos, M.; Toekesi, K.; Benkoe, I.

    2012-01-01

    Complete text of publication follows. Electron Rutherford backscattering (ERBS) has a number of distinct advantages for semi-quantitative analysis of samples. These are for example: a) Its high energy makes it rather insensitive to surface effects. b) The peaks appear well approximated by Gaussian with no obvious problems due to background subtraction. c) All the electrons involved have very similar kinetic energy, and hence one does not need to consider changes of the mean-free path or the analyzer transmission function. d) There are no intrinsic satellites to complicate the quantitative interpretation. On the other hand ERBS has a weak point, peaks tend to overlap. Peak separation is proportional to the incoming energy E0, but the intrinsic peak width increases proportional to the square root of E 0 . In practice one has to live with overlapping peaks. In the present work we mainly focus on the measurement and analysis procedure, and compare our best estimate of the concentration of the various elements in mouse bone with that obtained in a recent paper. The promise of ERBS as an analytical technique is clear from the successful analysis of the simple case of calcium carbonate and the somewhat more complicated case of hydroxyapatite. Here agreement between the measured and actual composition are on a very respectable 10% level. The actual bone sample showed more variation in outcome and a somewhat less satisfactory agreement between experiment and theory (see Fig. 1). The variation in outcome between the different measurements can be due to the fact that we average over very few grains, and that the grain composition will vary somewhat with its original position in the bone. In summary, ERBS can become a useful tool to study bone mineralization. As our knowledge of bone mineralization is incomplete this is currently an active topic of multidisciplinary research involving people working in physics, chemistry and biological/medical sciences. One of the important

  11. Voltammetry and in situ scanning tunnelling spectroscopy of osmium, iron, and ruthenium complexes of 2,2′:6′,2′′-terpyridine covalently linked to Au(111)-electrodes

    DEFF Research Database (Denmark)

    Salvatore, Princia; Hansen, Allan Glargaard; Moth-Poulsen, Kasper

    2011-01-01

    prepared in situ by first linking the terpy ligand to the surface via the S-atom, followed by addition of suitable metal compounds. The metal-terpy SAMs were studied by cyclic voltammetry (CV), and in situ scanning tunnelling microscopy with full electrochemical potential control of substrate and tip (in...

  12. Development of reliable lithium microreference electrodes for long-term in situ studies of lithium-based battery systems

    NARCIS (Netherlands)

    Zhou, J.; Notten, P.H.L.

    2004-01-01

    An in situ method to prepare lithium microreference electrodes has been developed. The microreference electrodes are made by electrochemical deposition of metallic lithium from both the positive and negative electrodes onto a copper wire positioned in-between the two Li-based battery electrodes. The

  13. Kinetic mechanism for modeling of electrochemical reactions.

    Science.gov (United States)

    Cervenka, Petr; Hrdlička, Jiří; Přibyl, Michal; Snita, Dalimil

    2012-04-01

    We propose a kinetic mechanism of electrochemical interactions. We assume fast formation and recombination of electron donors D- and acceptors A+ on electrode surfaces. These mediators are continuously formed in the electrode matter by thermal fluctuations. The mediators D- and A+, chemically equivalent to the electrode metal, enter electrochemical interactions on the electrode surfaces. Electrochemical dynamics and current-voltage characteristics of a selected electrochemical system are studied. Our results are in good qualitative agreement with those given by the classical Butler-Volmer kinetics. The proposed model can be used to study fast electrochemical processes in microsystems and nanosystems that are often out of the thermal equilibrium. Moreover, the kinetic mechanism operates only with the surface concentrations of chemical reactants and local electric potentials, which facilitates the study of electrochemical systems with indefinable bulk.

  14. A high-performance flexible fibre-shaped electrochemical capacitor based on electrochemically reduced graphene oxide.

    Science.gov (United States)

    Li, Yingru; Sheng, Kaixuan; Yuan, Wenjing; Shi, Gaoquan

    2013-01-11

    A fibre-shaped solid electrochemical capacitor based on electrochemically reduced graphene oxide has been fabricated, exhibiting high specific capacitance and rate capability, long cycling life and attractive flexibility.

  15. Applications of Nonlinear Electrochemical Impedance Spectroscopy (NLEIS)

    KAUST Repository

    Adler, S. B.

    2013-08-31

    This paper reviews the use of nonlinear electrochemical impedance spectroscopy (NLEIS) in the analysis of SOFC electrode reactions. By combining EIS and NLEIS, as well as other independent information about an electrode material, it becomes possible to establish quantitative links between electrochemical kinetics and materials properties, even when systems are unstable with time. After a brief review of the method, this paper summarizes recent results analyzing the effects of Sr segregation in thin-film LSC electrodes. © The Electrochemical Society.

  16. Fabrication of Micro Components by Electrochemical Deposition

    DEFF Research Database (Denmark)

    Tang, Peter Torben

    The main issue of this thesis is the combination of electrochemical deposition of metals and micro machining. Processes for electroplating and electroless plating of nickel and nickel alloys have been developed and optimised for compatibility with microelectronics and silicon based micromechanics...... of electrochemical machining and traditional machining is compared to micro machining techniques as performed in the field of microelectronics. Various practical solutions and equipment for electrochemical deposition of micro components are demonstrated, as well as the use and experience obtained utilising...

  17. Management of processes of electrochemical dimensional processing

    Science.gov (United States)

    Akhmetov, I. D.; Zakirova, A. R.; Sadykov, Z. B.

    2017-09-01

    In different industries a lot high-precision parts are produced from hard-processed scarce materials. Forming such details can only be acting during non-contact processing, or a minimum of effort, and doable by the use, for example, of electro-chemical processing. At the present stage of development of metal working processes are important management issues electrochemical machining and its automation. This article provides some indicators and factors of electrochemical machining process.

  18. Electrochemical ion separation in molten salts

    Science.gov (United States)

    Spoerke, Erik David; Ihlefeld, Jon; Waldrip, Karen; Wheeler, Jill S.; Brown-Shaklee, Harlan James; Small, Leo J.; Wheeler, David R.

    2017-12-19

    A purification method that uses ion-selective ceramics to electrochemically filter waste products from a molten salt. The electrochemical method uses ion-conducting ceramics that are selective for the molten salt cations desired in the final purified melt, and selective against any contaminant ions. The method can be integrated into a slightly modified version of the electrochemical framework currently used in pyroprocessing of nuclear wastes.

  19. Microbial electrochemical separation of CO2 for biogas upgrading

    DEFF Research Database (Denmark)

    Kokkoli, Argyro; Zhang, Yifeng; Angelidaki, Irini

    2018-01-01

    was obtained at 1.2 V, inlet biogas rate of 0.088 mL/h/mL reactor and NaCl concentration of 100 mM at a 5-day operation. Meanwhile, the organic matter of the domestic wastewater in the anode was almost completely removed at the end. The study demonstrated a new sustainable way to simultaneously upgrade biogas......Biogas upgrading to natural gas quality has been under focus the recent years for increasing the utilization potential of biogas. Conventional methods for CO2 removal are expensive and have environmental challenges, such as increased emissions of methane in the atmosphere with serious greenhouse...... impact. In this study, an innovative microbial electrochemical separation cell (MESC) was developed to in-situ separate and regenerate CO2 via alkali and acid regeneration. The MESC was tested under different applied voltages, inlet biogas rates and electrolyte concentrations. Pure biomethane...

  20. DEMONSTRATION OF ELECTROCHEMICAL REMEDIATION TECHNOLOGIES-INDUCED COMPLEXATION

    Energy Technology Data Exchange (ETDEWEB)

    Barry L. Burks

    2002-12-01

    The Project Team is submitting this Topical Report on the results of its bench-scale demonstration of ElectroChemical Remediation Technologies (ECRTs) and in particular the Induced Complexation (ECRTs-IC) process for remediation of mercury contaminated soils at DOE Complex sites. ECRTs is an innovative, in-situ, geophysically based soil remediation technology with over 50 successful commercial site applications involving remediation of over two million metric tons of contaminated soils. ECRTs-IC has been successfully used to remediate 220 cu m of mercury-contaminated sediments in the Union Canal, Scotland. In that operation, ECRTs-IC reduced sediment total mercury levels from an average of 243 mg/kg to 6 mg/kg in 26 days of operation. The clean up objective was to achieve an average total mercury level in the sediment of 20 mg/kg.

  1. Graphene-Paper Based Electrochemical Sensors

    DEFF Research Database (Denmark)

    Zhang, Minwei; Halder, Arnab; Cao, Xianyi

    2017-01-01

    in electrochemical sensors and energy technologies amongothers. In this chapter, we present some examples to overview recent advances in theresearch and development of two-dimensional (2D) graphene papers as new materialsfor electrochemical sensors. The chapter covers the design, fabrication, functionalizationand...... functionalization ofgraphene papers with polymer and nanoscale functional building blocks for electrochemical-sensing purposes. In terms of electrochemical-sensing applications, the emphasis ison enzyme-graphene and nanoparticle-graphene paper-based systems for the detectionof glucose. We finally conclude...

  2. Study of SiO{sub 2} surface sputtering by a 250-550 keV He{sup +} ion beam during high-resolution Rutherford backscattering measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kusanagi, Susumu [Materials Analysis Laboratory, Advanced Design Technology Center, Sony Corporation, 4-16-1 Okata Atsugi-shi, Kanagawa 243-0021 (Japan)]. E-mail: susumu.kusanagi@jp.sony.com; Kobayashi, Hajime [Materials Analysis Laboratory, Advanced Design Technology Center, Sony Corporation, 4-16-1 Okata Atsugi-shi, Kanagawa 243-0021 (Japan)

    2006-08-15

    Decreases in oxygen signal intensities in spectra of high-resolution Rutherford backscattering spectrometry (HRBS) were observed during measurements on a 5-nm thick SiO{sub 2} layer on a Si substrate when irradiated by 250-550 keV He{sup +} ions. Shifts in an implanted arsenic profile in a 5-nm thick SiO{sub 2}/Si substrate were also observed as a result of He{sup +} ion irradiation. These results lead to the conclusion that the SiO{sub 2} surface was sputtered by He{sup +} ions in this energy range.

  3. An Electrochemical Method to Predict Corrosion Rates in Soils

    Energy Technology Data Exchange (ETDEWEB)

    Dafter, M. R. [Hunter Water Australia Pty Ltd, Newcastle (Australia)

    2016-10-15

    Linear polarization resistance (LPR) testing of soils has been used extensively by a number of water utilities across Australia for many years now to determine the condition of buried ferrous water mains. The LPR test itself is a relatively simple, inexpensive test that serves as a substitute for actual exhumation and physical inspection of buried water mains to determine corrosion losses. LPR testing results (and the corresponding pit depth estimates) in combination with proprietary pipe failure algorithms can provide a useful predictive tool in determining the current and future conditions of an asset{sup 1)}. A number of LPR tests have been developed on soil by various researchers over the years{sup 1)}, but few have gained widespread commercial use, partly due to the difficulty in replicating the results. This author developed an electrochemical cell that was suitable for LPR soil testing and utilized this cell to test a series of soil samples obtained through an extensive program of field exhumations. The objective of this testing was to examine the relationship between short-term electrochemical testing and long-term in-situ corrosion of buried water mains, utilizing an LPR test that could be robustly replicated. Forty-one soil samples and related corrosion data were obtained from ad hoc condition assessments of buried water mains located throughout the Hunter region of New South Wales, Australia. Each sample was subjected to the electrochemical test developed by the author, and the resulting polarization data were compared with long-term pitting data obtained from each water main. The results of this testing program enabled the author to undertake a comprehensive review of the LPR technique as it is applied to soils and to examine whether correlations can be made between LPR testing results and long-term field corrosion.

  4. Single-Atom Catalysts of Precious Metals for Electrochemical Reactions.

    Science.gov (United States)

    Kim, Jiwhan; Kim, Hee-Eun; Lee, Hyunjoo

    2018-01-10

    Single-atom catalysts (SACs), in which metal atoms are dispersed on the support without forming nanoparticles, have been used for various heterogeneous reactions and most recently for electrochemical reactions. In this Minireview, recent examples of single-atom electrocatalysts used for the oxygen reduction reaction (ORR), hydrogen oxidation reaction (HOR), hydrogen evolution reaction (HER), formic acid oxidation reaction (FAOR), and methanol oxidation reaction (MOR) are introduced. Many density functional theory (DFT) simulations have predicted that SACs may be effective for CO 2 reduction to methane or methanol production while suppressing H 2 evolution, and those cases are introduced here as well. Single atoms, mainly Pt single atoms, have been deposited on TiN or TiC nanoparticles, defective graphene nanosheets, N-doped covalent triazine frameworks, graphitic carbon nitride, S-doped zeolite-templated carbon, and Sb-doped SnO 2 surfaces. Scanning transmission electron microscopy, extended X-ray absorption fine structure measurement, and in situ infrared spectroscopy have been used to detect the single-atom structure and confirm the absence of nanoparticles. SACs have shown high mass activity, minimizing the use of precious metal, and unique selectivity distinct from nanoparticle catalysts owing to the absence of ensemble sites. Additional features that SACs should possess for effective electrochemical applications were also suggested. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Electrochemical removal of biofilms from titanium dental implant surfaces.

    Science.gov (United States)

    Schneider, Sebastian; Rudolph, Michael; Bause, Vanessa; Terfort, Andreas

    2018-06-01

    The infection of dental implants may cause severe inflammation of tissue and even bone degradation if not treated. For titanium implants, a new, minimally invasive approach is the electrochemical removal of the biofilms including the disinfection of the metal surface. In this project, several parameters, such as electrode potentials and electrolyte compositions, were varied to understand the underlying mechanisms. Optimal electrolytes contained iodide as well as lactic acid. Electrochemical experiments, such as cyclic voltammetry or measurements of open circuit potentials, were performed in different cell set-ups to distinguish between different possible reactions. At the applied potentials of E species are formed at the anode, such as triiodide and hydrogen peroxide. Ex situ tests with model biofilms of E. coli clearly demonstrated the effectiveness of the respective anolytes in killing the bacteria, as determined by the LIVE/DEAD™ assay. Using optimized electrolysis parameters of 30 s at 7.0 V and 300 mA, a 14-day old wildtype biofilm could be completely removed from dental implants in vitro. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. In Situ Study of Thermal Stability of Copper Oxide Nanowires at Anaerobic Environment

    Directory of Open Access Journals (Sweden)

    Lihui Zhang

    2014-01-01

    Full Text Available Many metal oxides with promising electrochemical properties were developed recently. Before those metal oxides realize the use as an anode in lithium ion batteries, their thermal stability at anaerobic environment inside batteries should be clearly understood for safety. In this study, copper oxide nanowires were investigated as an example. Several kinds of in situ experiment methods including in situ optical microscopy, in situ Raman spectrum, and in situ transmission electron microscopy were adopted to fully investigate their thermal stability at anaerobic environment. Copper oxide nanowires begin to transform as copper(I oxide at about 250°C and finish at about 400°C. The phase transformation proceeds with a homogeneous nucleation.

  7. In situ reactor

    Science.gov (United States)

    Radtke, Corey William; Blackwelder, David Bradley

    2004-01-27

    An in situ reactor for use in a geological strata, is described and which includes a liner defining a centrally disposed passageway and which is placed in a borehole formed in the geological strata; and a sampling conduit is received within the passageway defined by the liner and which receives a geological specimen which is derived from the geological strata, and wherein the sampling conduit is in fluid communication with the passageway defined by the liner.

  8. Electrochemical and partial oxidation of methane

    Science.gov (United States)

    Singh, Rahul

    2008-10-01

    Hydrogen has been the most common fuel used for the fuel cell research but there remains challenging technological hurdles and storage issues with hydrogen fuel. The direct electrochemical oxidation of CH4 (a major component of natural gas) in a solid oxide fuel cell (SOFC) to generate electricity has a potential of commercialization in the area of auxiliary and portable power units and battery chargers. They offer significant advantages over an external reformer based SOFC, namely, (i) simplicity in the overall system architecture and balance of plant, (ii) more efficient and (iii) availability of constant concentration of fuel in the anode compartment of SOFC providing stability factor. The extreme operational temperature of a SOFC at 700-1000°C provides a thermodynamically favorable pathway to deposit carbon on the most commonly used Ni anode from CH4 according to the following reaction (CH4 = C + 2H2), thus deteriorating the cell performance, stability and durability. The coking problem on the anode has been a serious and challenging issue faced by the catalyst research community worldwide. This dissertation presents (i) a novel fabricated bi-metallic Cu-Ni anode by electroless plating of Cu on Ni anode demonstrating significantly reduced or negligible coke deposition on the anode for CH4 and natural gas fuel after long term exposure, (ii) a thorough microstructural examination of Ni and Cu-Ni anode exposed to H2, CH4 and natural gas after long term exposure at 750°C by scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction and (iii) in situ electrochemical analysis of Ni and Cu-Ni for H2, CH4 and natural gas during long term exposure at 750°C by impedance spectroscopy. A careful investigation of variation in the microstructure and performance characteristics (voltage-current curve and impedance) of Ni and Cu-Ni anode before and after a long term exposure of CH4 and natural gas would allow us to test the validation of a

  9. Electrochemical modeling of hydrogen storage in hydride-forming electrodes

    NARCIS (Netherlands)

    Ledovskikh, A.; Danilov, D.; Vermeulen, P.; Notten, P.H.L.

    2009-01-01

    An electrochemical kinetic model (EKM) is developed, describing the electrochemical hydrogen storage in hydride-forming materials under equilibrium conditions. This model is based on first principles of electrochemical reaction kinetics and statistical thermodynamics and describes the complex,

  10. Mediated electrochemical hazardous waste destruction

    International Nuclear Information System (INIS)

    Hickman, R.G.; Farmer, J.C.; Wang, F.T.

    1992-03-01

    There are few permitted processes for mixed waste (radioactive plus chemically hazardous) treatment. We are developing an electrochemical process, based upon mediated electrochemical oxidation (MEO), that converts toxic organic components of mixed waste to water, carbon dioxide, and chloride or chloride precipitates. Aggressive oxidizer ions such as Ag 2+ , Co 3+ , or Fe 3+ are produced at an anode. These can attack organic molecules directly, and may also produce hydroxyl free radicals that promote destruction. Solid and liquid radioactive waste streams containing only inorganic radionuclide forms may be treated with existing technology and prepared for final disposal. The coulombic efficiency of the process has been determined, as well as the destruction efficiency for ethylene glycol, a surrogate waste. In addition, hazardous organic materials are becoming very expensive to dispose of and when they are combined with transuranic radioactive elements no processes are presently permitted. Mediated electrochemical oxidation is an ambient- temperature aqueous-phase process that can be used to oxidize organic components of mixed wastes. Problems associated with incineration, such as high-temperature volatilization of radionuclides, are avoided. Historically, Ag(II) has been used as a mediator in this process. Fe(III) and Co(III) are attractive alternatives to Ag(II) since they form soluble chlorides during the destruction of chlorinated solvents. Furthermore, silver itself is toxic heavy metal. Quantitative data have been obtained for the complete oxidation of ethylene glycol by Fe(III) and Co(III). Though ethylene glycol is a nonhalogenated organic, these data have enabled us to make direct comparisons of activities of Fe(III) and Co(III) with Ag(II). Very good quantitative data for the oxidation of ethylene glycol by Ag(II) had already been collected

  11. Electrochemical properties of quaternary ammonium salts for electrochemical capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Ue, Makoto; Takeda, Masayuki; Takehara, Masahiro; Mori, Shoichiro [Mitsubishi Chemical Corp., Inashiki, Ibaraki (Japan). Tsukuba Research Center

    1997-08-01

    The limiting reduction and oxidation potentials and electrolytic conductivities of new quaternary ammonium salts were examined for electrochemical capacitor applications, whose anions have already been tested as lithium salts for lithium battery applications. The anodic stability was in the following order BR{sub 4}{sup {minus}} < ClO{sub 4}{sup {minus}} {le} CF{sub 3}SO{sub 3}{sup {minus}} < (CF{sub 3}SO{sub 2}){sub 2}N{sup {minus}} {le} C{sub 4}F{sub 9}SO{sub 3}{sup {minus}} < BF{sub 4}{sup {minus}} < PF{sub 6}{sup {minus}} {le} AsF{sub 6}{sup {minus}} < SbF{sub 6}{sup {minus}}. The electrolytic conductivities of Me{sub 4{minus}n}Et{sub n}N(CF{sub 3}SO{sub 2}){sub 2}N (n = 0--4) were examined in comparison with Me{sub 4{minus}n}Et{sub n}NBF{sub 4} counterparts. These imide salts showed good solubility, relatively high conductivity, and anodic stability in propylene carbonate. Et{sub 4}N(CF{sub 3}SO{sub 2}){sub 2}N was found to be a good supporting salt for low permittivity organic solvents, and it afforded a highly conductive electrolyte system based on the ethylene carbonate-dimethyl carbonate mixed solvent, which is useful for electrochemical capacitor applications.

  12. Nanoporous carbon for electrochemical capacitors.

    Energy Technology Data Exchange (ETDEWEB)

    Siegal, Michael P.; Bunker, Bruce Conrad; Limmer, Steven J.; Yelton, William Graham

    2010-05-01

    Nanoporous carbon (NPC) is a purely graphitic material with highly controlled densities ranging from less than 0.1 to 2.0 g/cm3, grown via pulsed-laser deposition. Decreasing the density of NPC increases the interplanar spacing between graphene-sheet fragments. This ability to tune the interplanar spacing makes NPC an ideal model system to study the behavior of carbon electrodes in electrochemical capacitors and batteries. We examine the capacitance of NPC films in alkaline and acidic electrolytes, and measure specific capacitances as high as 242 F/g.

  13. Nanoelectrode array for electrochemical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yelton, William G [Sandia Park, NM; Siegal, Michael P [Albuquerque, NM

    2009-12-01

    A nanoelectrode array comprises a plurality of nanoelectrodes wherein the geometric dimensions of the electrode controls the electrochemical response, and the current density is independent of time. By combining a massive array of nanoelectrodes in parallel, the current signal can be amplified while still retaining the beneficial geometric advantages of nanoelectrodes. Such nanoelectrode arrays can be used in a sensor system for rapid, non-contaminating field analysis. For example, an array of suitably functionalized nanoelectrodes can be incorporated into a small, integrated sensor system that can identify many species rapidly and simultaneously under field conditions in high-resistivity water, without the need for chemical addition to increase conductivity.

  14. Nanoporous carbon for electrochemical capacitors.

    Energy Technology Data Exchange (ETDEWEB)

    Overmyer, Donald L.; Siegal, Michael P.; Bunker, Bruce Conrad; Limmer, Steven J.; Yelton, William Graham

    2010-04-01

    Nanoporous carbon (NPC) is a purely graphitic material with highly controlled densities ranging from less than 0.1 to 2.0 g/cm3, grown via pulsed-laser deposition. Decreasing the density of NPC increases the interplanar spacing between graphene-sheet fragments. This ability to tune the interplanar spacing makes NPC an ideal model system to study the behavior of carbon electrodes in electrochemical capacitors and batteries. We examine the capacitance of NPC films in alkaline and acidic electrolytes, and measure specific capacitances as high as 242 F/g.

  15. Electrochemical characterization of liquid resistors

    International Nuclear Information System (INIS)

    Wilson, J.M.; Whiteley, R.V.

    1983-01-01

    During the first two years of operation of Sandia's Particle Beam Fusion Accelerator (PBFA I) the reliability of the CuSO 4 solution resistors in the Marx Generator Energy Storage System has been unsatisfactory. Resistor failure, which is characterized by a large increase in resistance, has been attributed to materials, production techniques, and operating parameters. The problems associated with materials and production techniques have been identified and solutions are proposed. Non-ideal operating parameters are shown to cause polarization of the cathode in the resistor. This initiates electrochemical reactions in the resistor. These reactions often lead to resistance changes and to eventual resistor failure

  16. Lead-nickel electrochemical batteries

    CERN Document Server

    Glaize, Christian

    2012-01-01

    The lead-acid accumulator was introduced in the middle of the 19th Century, the diverse variants of nickel accumulators between the beginning and the end of the 20th Century. Although old, these technologies are always very present on numerous markets. Unfortunately they are still not used in optimal conditions, often because of the misunderstanding of the internal electrochemical phenomena.This book will show that batteries are complex systems, made commercially available thanks to considerable amounts of scientific research, empiricism and practical knowledge. However, the design of

  17. In-situ real time measurements of net erosion rates of copper during hydrogen plasma exposure

    Science.gov (United States)

    Kesler, Leigh; Wright, Graham; Peterson, Ethan; Whyte, Dennis

    2013-10-01

    In order to properly understand the dynamics of net erosion/deposition in fusion reactors, such as tokamaks, a diagnostic measuring the real time rates of net erosion/deposition during plasma exposure is necessary. The DIONISOS experiment produces real time measurements of net erosion/deposition by using Rutherford backscattering spectroscopy (RBS) ion beam analysis simultaneously with plasma exposure from a helicon plasma source. This in-situ method improves on ex-situ weight loss measurements by allowing measurement of possible synergistic effects of high ion implantation rates and net erosion rate and by giving a real time response to changes in plasma parameters. Previous work has validated this new technique for measuring copper (Cu) erosion from helium (He) plasma ion bombardment. This technique is now extended to measure copper erosion due to deuterium and hydrogen plasma ion exposure. Targets used were a 1.5 μm Cu layer on an aluminum substrate. Cu layer thickness is tracked in real time using 1.2 MeV proton RBS. Measured erosion rates will be compared to results from literature and He erosion rates. Supported by US DoE award DE-SC00-02060.

  18. Electrochemically active manganese oxides: structural modelling, modifications induced by thermal processing and photon insertion

    International Nuclear Information System (INIS)

    Ripert, Michel

    1990-01-01

    The objective of this research study is to understand the mechanism of proton insertion into manganese dioxide. It comprised the performances of in situ discharges of two commercial samples in an electrochemical cell designed for this purpose. In order to characterise the structure of electrochemically active manganese dioxides, and particularly to elucidate the orthorhombic-hexagonal dilemma, the author proposes a crystalline-chemical approach which comprises the development of a unique structural model which takes the structure of all forms of electrochemically active manganese dioxides into account, and a numerical simulation of diffraction diagrams (X rays and neutrons) of these structures. The development of this modelling results in the development of a method which allows, from experimental diffraction diagrams, characteristic structural parameters of each sample of EMD (electrolytic manganese dioxide) or CMD (chemical manganese dioxide) to be obtained. Moreover, the observation of the structural evolution of the dioxide is possible by using in situ neutron diffraction. Reduction has been studied by using slow potential scanning voltammetry. By using these both techniques (neutron diffraction and voltammetry), it is possible to explain the structural mechanism of reduction of MnO_2 and to show the origin of the non-reversibility of the proton/MnO_2 system, to quantitatively explain the shape voltammetry curves, and to highlight experimentally for the first time the different sites of insertion of the proton

  19. Real-time studies of battery electrochemical reactions inside a transmission electron microscope.

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Kevin; Hudak, Nicholas S.; Liu, Yang; Liu, Xiaohua H.; Fan, Hongyou; Subramanian, Arunkumar; Shaw, Michael J.; Sullivan, John Patrick; Huang, Jian Yu

    2012-01-01

    We report the development of new experimental capabilities and ab initio modeling for real-time studies of Li-ion battery electrochemical reactions. We developed three capabilities for in-situ transmission electron microscopy (TEM) studies: a capability that uses a nanomanipulator inside the TEM to assemble electrochemical cells with ionic liquid or solid state electrolytes, a capability that uses on-chip assembly of battery components on to TEM-compatible multi-electrode arrays, and a capability that uses a TEM-compatible sealed electrochemical cell that we developed for performing in-situ TEM using volatile battery electrolytes. These capabilities were used to understand lithiation mechanisms in nanoscale battery materials, including SnO{sub 2}, Si, Ge, Al, ZnO, and MnO{sub 2}. The modeling approaches used ab initio molecular dynamics to understand early stages of ethylene carbonate reduction on lithiated-graphite and lithium surfaces and constrained density functional theory to understand ethylene carbonate reduction on passivated electrode surfaces.

  20. Surface structured platinum electrodes for the electrochemical reduction of carbon dioxide in imidazolium based ionic liquids.

    Science.gov (United States)

    Hanc-Scherer, Florin A; Montiel, Miguel A; Montiel, Vicente; Herrero, Enrique; Sánchez-Sánchez, Carlos M

    2015-10-07

    The direct CO2 electrochemical reduction on model platinum single crystal electrodes Pt(hkl) is studied in [C2mim(+)][NTf2(-)], a suitable room temperature ionic liquid (RTIL) medium due to its moderate viscosity, high CO2 solubility and conductivity. Single crystal electrodes represent the most convenient type of surface structured electrodes for studying the impact of RTIL ion adsorption on relevant electrocatalytic reactions, such as surface sensitive electrochemical CO2 reduction. We propose here based on cyclic voltammetry and in situ electrolysis measurements, for the first time, the formation of a stable adduct [C2mimH-CO2(-)] by a radical-radical coupling after the simultaneous reduction of CO2 and [C2mim(+)]. It means between the CO2 radical anion and the radical formed from the reduction of the cation [C2mim(+)] before forming the corresponding electrogenerated carbene. This is confirmed by the voltammetric study of a model imidazolium-2-carboxylate compound formed following the carbene pathway. The formation of that stable adduct [C2mimH-CO2(-)] blocks CO2 reduction after a single electron transfer and inhibits CO2 and imidazolium dimerization reactions. However, the electrochemical reduction of CO2 under those conditions provokes the electrochemical cathodic degradation of the imidazolium based RTIL. This important limitation in CO2 recycling by direct electrochemical reduction is overcome by adding a strong acid, [H(+)][NTf2(-)], into solution. Then, protons become preferentially adsorbed on the electrode surface by displacing the imidazolium cations and inhibiting their electrochemical reduction. This fact allows the surface sensitive electro-synthesis of HCOOH from CO2 reduction in [C2mim(+)][NTf2(-)], with Pt(110) being the most active electrode studied.