Cosmic censorship of rotating Anti-de Sitter black hole
Energy Technology Data Exchange (ETDEWEB)
Gwak, Bogeun; Lee, Bum-Hoon, E-mail: rasenis@sogang.ac.kr, E-mail: bhl@sogang.ac.kr [Center for Quantum Spacetime, Sogang University, Seoul 04107 (Korea, Republic of)
2016-02-01
We test the validity of cosmic censorship in the rotating anti-de Sitter black hole. For this purpose, we investigate whether the extremal black hole can be overspun by the particle absorption. The particle absorption will change the mass and angular momentum of the black hole, which is analyzed using the Hamilton-Jacobi equations consistent with the laws of thermodynamics. We have found that the mass of the extremal black hole increases more than the angular momentum. Therefore, the outer horizon of the black hole still exists, and cosmic censorship is valid.
Cosmic censorship of rotating Anti-de Sitter black hole
International Nuclear Information System (INIS)
Gwak, Bogeun; Lee, Bum-Hoon
2016-01-01
We test the validity of cosmic censorship in the rotating anti-de Sitter black hole. For this purpose, we investigate whether the extremal black hole can be overspun by the particle absorption. The particle absorption will change the mass and angular momentum of the black hole, which is analyzed using the Hamilton-Jacobi equations consistent with the laws of thermodynamics. We have found that the mass of the extremal black hole increases more than the angular momentum. Therefore, the outer horizon of the black hole still exists, and cosmic censorship is valid
Thermodynamic stability of asymptotically anti-de Sitter rotating black holes in higher dimensions
International Nuclear Information System (INIS)
Dolan, Brian P
2014-01-01
Conditions for thermodynamic stability of asymptotically anti-de Sitter (AdS) rotating black holes in D-dimensions are determined. Local thermodynamic stability requires not only positivity conditions on the specific heat and the moment of inertia tensor but it is also necessary that the adiabatic compressibility be positive. It is shown that, in the absence of a cosmological constant, neither rotation nor charge is sufficient to ensure full local thermodynamic stability of a black hole. Thermodynamic stability properties of AdS Myers–Perry black holes are investigated for both singly spinning and multi-spinning black holes. Simple expressions are obtained for the specific heat and moment of inertia tensor in any dimension. An analytic expression is obtained for the boundary of the region of parameter space in which such space-times are thermodynamically stable. (paper)
International Nuclear Information System (INIS)
Peng Junjin; Wu Shuangqing
2008-01-01
Motivated by the success of the recently proposed method of anomaly cancellation to derive Hawking fluxes from black hole horizons of spacetimes in various dimensions, we have further extended the covariant anomaly cancellation method shortly simplified by Banerjee and Kulkarni to explore the Hawking radiation of the (3+1)-dimensional charged rotating black strings and their higher dimensional extensions in anti-de Sitter spacetimes, whose horizons are not spherical but can be toroidal, cylindrical or planar, according to their global identifications. It should be emphasized that our analysis presented here is very general in the sense that the determinant of the reduced (1+1)-dimensional effective metric from these black strings need not be equal to one (√(-g)≠1). Our results indicate that the gauge and energy-momentum fluxes needed to cancel the (1+1)-dimensional covariant gauge and gravitational anomalies are compatible with the Hawking fluxes. Besides, thermodynamics of these black strings are studied in the case of a variable cosmological constant
International Nuclear Information System (INIS)
Jiang Qingquan; Wu Shuangqing
2007-01-01
Robinson-Wilczek's recent work, which treats Hawking radiation as a compensating flux to cancel gravitational anomaly at the horizon of a Schwarzschild-type black hole, is extended to study Hawking radiation of rotating black holes in anti-de Sitter spaces, especially that in dragging coordinate system, via gauge and gravitational anomalies. The results show that in order to restore gauge invariance and general coordinate covariance at the quantum level in the effective field theory, the charge and energy flux by requiring to cancel gauge and gravitational anomalies at the horizon, must have a form equivalent to that of a (1+1)-dimensional blackbody radiation at Hawking temperature with an appropriate chemical potential
Hawking radiation from black holes in de Sitter spaces
International Nuclear Information System (INIS)
Jiang Qingquan
2007-01-01
Recently, Hawking radiation has been treated, by Robinson and Wilczek (2005 Phys. Rev. Lett. 95 011303), as a compensating flux of the energy-momentum tensor required to cancel a gravitational anomaly at the event horizon (EH) of a Schwarzschild-type black hole. In this paper, motivated by this work, Hawking radiation from the event horizon (EH) and the de Sitter cosmological horizon (CH) of black holes in de Sitter spaces, specifically including the purely de Sitter black hole and the static, spherically symmetric Schwarzschild-de Sitter black hole as well as the rotating Kerr-de Sitter black hole, have been studied by anomalies. The results show that the gauge-current and energy-momentum tensor fluxes, required to restore gauge invariance and general coordinate covariance at the EH and the CH, are precisely equal to those of Hawking radiation from the EH and the CH, respectively. It should be noted that gauge and gravitational anomalies taking place at the CH arise from the fact that the effective field theory is formulated inside the CH to integrate out the classically irrelevant outgoing modes at the CH, which are different from those at the black hole horizon
Supersymmetry of anti-de Sitter black holes
International Nuclear Information System (INIS)
Caldarelli, Marco M.; Klemm, Dietmar
1999-01-01
We examine supersymmetry of four-dimensional asymptotically anti-de Sitter (AdS) dyonic black holes in the context of gauged N = 2 supergravity. Our calculations concentrate on black holes with unusual topology and their rotating generalizations, but we also reconsider the spherical rotating dyonic Ker-Newman-AdS black hole, whose supersymmetry properties have previously been investigated by Kostelecky and Perry within another approach. We find that in the case of spherical, toroidal or cylindrical event horizon topology, the black holes must rotate in order to preserve some supersymmetry; the non-rotating supersymmetric configurations representing naked singularities. However, we show that this is no more true for black holes whose event horizons are Riemann surfaces of genus g > 1, where we find a non-rotating extremal solitonic black hole carrying magnetic charge and permitting one Killing spinor. For the non-rotating supersymmetric configurations of various topologies, all Killing spinors are explicitly constructed
Entropy of Kerr-de Sitter black hole
Li, Huai-Fan; Ma, Meng-Sen; Zhang, Li-Chun; Zhao, Ren
2017-07-01
Based on the consideration that the black hole horizon and the cosmological horizon of Kerr-de Sitter black hole are not independent of each other, we conjecture the total entropy of the system should have an extra term contributed from the correlations between the two horizons, except for the sum of the two horizon entropies. By employing globally effective first law and effective thermodynamic quantities, we obtain the corrected total entropy and find that the region of stable state for Kerr-de Sitter is related to the angular velocity parameter a, i.e., the region of stable state becomes bigger as the rotating parameters a is increases.
Kerr–anti-de Sitter/de Sitter black hole in perfect fluid dark matter background
Xu, Zhaoyi; Hou, Xian; Wang, Jiancheng
2018-06-01
We obtain the Kerr–anti-de-sitter (Kerr–AdS) and Kerr–de-sitter (Kerr–dS) black hole (BH) solutions to the Einstein field equation in the perfect fluid dark matter background using the Newman–Janis method and Mathematica package. We discuss in detail the black hole properties and obtain the following main results: (i) From the horizon equation g rr = 0, we derive the relation between the perfect fluid dark matter parameter α and the cosmological constant Λ when the cosmological horizon exists. For , we find that α is in the range for and for . For positive cosmological constant Λ (Kerr–AdS BH), decreases if , and increases if . For negative cosmological constant (Kerr–dS BH), increases if and decreases if ; (ii) An ergosphere exists between the event horizon and the outer static limit surface. The size of the ergosphere evolves oppositely for and , while decreasing with the increasing . When there is sufficient dark matter around the black hole, the black hole spacetime changes remarkably; (iii) The singularity of these black holes is the same as that of rotational black holes. In addition, we study the geodesic motion using the Hamilton–Jacobi formalism and find that when α is in the above ranges for , stable orbits exist. Furthermore, the rotational velocity of the black hole in the equatorial plane has different behaviour for different α and the black hole spin a. It is asymptotically flat and independent of α if while is asymptotically flat only when α is close to zero if . We anticipate that Kerr–Ads/dS black holes could exist in the universe and our future work will focus on the observational effects of the perfect fluid dark matter on these black holes.
Quasinormal modes of Kerr-de Sitter black holes
International Nuclear Information System (INIS)
Yoshida, Shijun; Uchikata, Nami; Futamase, Toshifumi
2010-01-01
We calculate the fundamental quasinormal modes of the Kerr-de Sitter black hole for the first time. In order to calculate the quasinormal modes, we employ the master equations derived by Suzuki, Takasugi, and Umetsu, who transform the Teukolsky equations for the Kerr-de Sitter black hole into the standard form of the Heun's equation. The transformed functions are expanded around the outer horizon of the black hole or the symmetric axis in the Froebenius series whose coefficients satisfy a three-term recurrence relation. These three-term recurrence relations allow us to use Leaver's continued fraction method to calculate the angular separation constant and the quasinormal mode frequency. Any unstable fundamental quasinormal mode is not found in this paper. It is also observed that for some black holes characterized by a large mass parameter, some retrograde modes in the slow rotation limit become prograde as the black hole spin increases. This phenomenon does not occur for the fundamental modes of the Kerr black hole.
(Anti-)Evaporation of Schwarzschild-de Sitter Black Holes
Bousso, Raphael; Hawking, Stephen
1997-01-01
We study the quantum evolution of black holes immersed in a de Sitter background space. For black holes whose size is comparable to that of the cosmological horizon, this process differs significantly from the evaporation of asymptotically flat black holes. Our model includes the one-loop effective action in the s-wave and large N approximation. Black holes of the maximal mass are in equilibrium. Unexpectedly, we find that nearly maximal quantum Schwarzschild-de Sitter black holes anti-evapor...
Small Kerr-anti-de Sitter black holes are unstable
International Nuclear Information System (INIS)
Cardoso, Vitor; Dias, Oscar J.C.
2004-01-01
Superradiance in black hole spacetimes can trigger instabilities. Here we show that, due to superradiance, small Kerr-anti-de Sitter black holes are unstable. Our demonstration uses a matching procedure, in a long wavelength approximation
Relativistic rotators: a quantum mechanical de Sitter bundle
International Nuclear Information System (INIS)
Boehm, A.
1976-02-01
If de Sitter fiber bundle over space time is the classical picture of hadrons then for a quantum mechanical description one has to generalize the concept of a principal fiber bundle to a bundle that contains the representation of the group of motion. This idea is related to the relativistic rotator model, and the radius of the de Sitter fiber is determined from the experimental hadron spectrum
Instability of charged anti-de Sitter black holes
International Nuclear Information System (INIS)
Gwak, Bogeun; Lee, Bum-Hoon; Ro, Daeho
2016-01-01
We have studied the instability of charged anti-de Sitter black holes in four- or higher-dimensions under fragmentation. The unstable black holes under fragmentation can be broken into two black holes. Instability depends not only on the mass and charge of the black hole but also on the ratio between the fragmented black hole and its predecessor. We have found that the near extremal black holes are unstable, and Schwarzschild-AdS black holes are stable. These are qualitatively similar to black holes in four dimensions and higher. The detailed instabilities are numerically investigated.
Stable black strings in anti-de sitter space
International Nuclear Information System (INIS)
Hirayama, Takayuki
2002-01-01
In my talk I show a black string which is a foliation of anti-de Sitter (AdS) Schwarzschild black hole becomes classically stable if the size of black hole horizon is larger than the AdS radius even if the black string extends infinitely. I will also give a comment on the relation with the Gubser-Mitra conjecture. This talk is based on our paper (Phys. Rev. D64: 064010, 2001) which is a collaboration with Gungwon Kang
Noncommutative geometry-inspired rotating black hole in three ...
Indian Academy of Sciences (India)
We ﬁnd a new rotating black hole in three-dimensional anti-de Sitter space using an anisotropic perfect ﬂuid inspired by the noncommutative black hole. We deduce the thermodynamical quantities of this black hole and compare them with those of a rotating BTZ solution and give corrections to the area law to get the exact ...
Stability of black holes in de Sitter space
International Nuclear Information System (INIS)
Mellor, F.; Moss, I.
1990-01-01
The theory of black-hole perturbations is extended to charged black holes in de Sitter space. These spacetimes have wormholes connecting different asymptotic regions. It appears that, at least in some cases, these holes are stable even at the Cauchy horizon. It follows that they violate cosmic censorship and an observer could in principle travel through the black hole to another universe. The stability of these spacetimes also implies the existence of a cosmological ''no hair'' theorem
Quantum statistical entropy for Kerr-de Sitter black hole
Institute of Scientific and Technical Information of China (English)
Zhang Li-Chun; Wu Yue-Qin; Zhao Ren
2004-01-01
Improving the membrane model by which the entropy of the black hole is studied, we study the entropy of the black hole in the non-thermal equilibrium state. To give the problem stated here widespread meaning, we discuss the (n+2)-dimensional de Sitter spacetime. Through discussion, we obtain that the black hole's entropy which contains two horizons (a black hole's horizon and a cosmological horizon) in the non-thermal equilibrium state comprises the entropy corresponding to the black hole's horizon and the entropy corresponding to the cosmological horizon. Furthermore, the entropy of the black hole is a natural property of the black hole. The entropy is irrelevant to the radiation field out of the horizon. This deepens the understanding of the relationship between black hole's entropy and horizon's area. A way to study the bosonic and fermionic entropy of the black hole in high non-thermal equilibrium spacetime is given.
Phase Transitions for Flat Anti - de Sitter Black Holes
International Nuclear Information System (INIS)
Surya, Sumati; Schleich, Kristin; Witt, Donald M.
2001-01-01
We reexamine the thermodynamics of anti - de Sitter (adS) black holes with Ricci flat horizons using the adS soliton as the thermal background. We find that there is a phase transition which is dependent not only on the temperature but also on the black hole area, which is an independent parameter. As in the spherical adS black hole, this phase transition is related via the adS/conformal-field-theory correspondence to a confinement-deconfinement transition in the large-N gauge theory on the conformal boundary at infinity
Distortion of Schwarzschild-anti-de Sitter black holes to black strings
International Nuclear Information System (INIS)
Tomimatsu, Akira
2005-01-01
Motivated by the existence of black holes with various topologies in four-dimensional spacetimes with a negative cosmological constant, we study axisymmetric static solutions describing any large distortions of Schwarzschild-anti-de Sitter black holes parametrized by the mass m. Under the approximation such that m is much larger than the anti-de Sitter radius, it is found that a cylindrically symmetric black string is obtained as a special limit of distorted spherical black holes. Such a prolonged distortion of the event horizon connecting a Schwarzschild-anti-de Sitter black hole to a black string is allowed without violating both the usual black hole thermodynamics and the hoop conjecture for the horizon circumference
Quantum loop corrections of a charged de Sitter black hole
Naji, J.
2018-03-01
A charged black hole in de Sitter (dS) space is considered and logarithmic corrected entropy used to study its thermodynamics. Logarithmic corrections of entropy come from thermal fluctuations, which play a role of quantum loop correction. In that case we are able to study the effect of quantum loop on black hole thermodynamics and statistics. As a black hole is a gravitational object, it helps to obtain some information about the quantum gravity. The first and second laws of thermodynamics are investigated for the logarithmic corrected case and we find that it is only valid for the charged dS black hole. We show that the black hole phase transition disappears in the presence of logarithmic correction.
A note on entropy of de Sitter black holes
Energy Technology Data Exchange (ETDEWEB)
Bhattacharya, Sourav [University of Crete, ITCP and Department of Physics, Heraklion (Greece); Inter-University Centre for Astronomy and Astrophysics (IUCAA), Pune (India)
2016-03-15
A de Sitter black hole or a black hole spacetime endowed with a positive cosmological constant has two Killing horizons - a black hole and a cosmological event horizon surrounding it. It is natural to expect that the total Bekenstein-Hawking entropy of such spacetimes should be the sum of the two horizons' areas. In this work we apply the recently developed formalism using the Gibbons-Hawking-York boundary term and the near horizon symmetries to derive the total entropy of such two horizon spacetimes. We construct a suitable general geometric set up for general stationary axisymmetric spacetimes with two or more than two commuting Killing vector fields in an arbitrary spacetime dimensions. This framework helps us to deal with both horizons on an equal footing. We show that in order to obtain the total entropy of such spacetimes, the near horizon mode functions for the diffeomorphism generating vector fields have to be restricted in a certain manner, compared to the single horizon spacetimes. We next discuss specific known exact solutions belonging to the Kerr-Newman or the Plebanski-Demianski-de Sitter families to show that they fall into the category of our general framework. We end with a sketch of further possible extensions of this work. (orig.)
Thermodynamics of de Sitter black holes: Thermal cosmological constant
International Nuclear Information System (INIS)
Sekiwa, Y.
2006-01-01
We study the thermodynamic properties associated with the black hole event horizon and the cosmological horizon for black hole solutions in asymptotically de Sitter spacetimes. We examine thermodynamics of these horizons on the basis of the conserved charges according to Teitelboim's method. In particular, we have succeeded in deriving the generalized Smarr formula among thermodynamical quantities in a simple and natural way. We then show that cosmological constant must decrease when one takes into account the quantum effect. These observations have been obtained if and only if the cosmological constant plays the role of a thermodynamical state variable. We also touch upon the relation between inflation of our universe and a phase transition of black holes
Geometrothermodynamics for black holes and de Sitter space
Kurihara, Yoshimasa
2018-02-01
A general method to extract thermodynamic quantities from solutions of the Einstein equation is developed. In 1994, Wald established that the entropy of a black hole could be identified as a Noether charge associated with a Killing vector of a global space-time (pseudo-Riemann) manifold. We reconstruct Wald's method using geometrical language, e.g., via differential forms defined on the local space-time (Minkowski) manifold. Concurrently, the abstract thermodynamics are also reconstructed using geometrical terminology, which is parallel to general relativity. The correspondence between the thermodynamics and general relativity can be seen clearly by comparing the two expressions. This comparison requires a modification of Wald's method. The new method is applied to Schwarzschild, Kerr, and Kerr-Newman black holes and de Sitter space. The results are consistent with previous results obtained using various independent methods. This strongly supports the validity of the area theorem for black holes.
Spin Interaction under the Collision of Two Kerr-(Anti-de Sitter Black Holes
Directory of Open Access Journals (Sweden)
Bogeun Gwak
2017-12-01
Full Text Available We investigate herein the spin interaction during collisions between Kerr-(anti-de Sitter black holes. The spin interaction potential depends on the relative rotation directions of the black holes, and this potential can be released as gravitational radiation upon collision. The energy of the radiation depends on the cosmological constant and corresponds to the spin interaction potential in the limit that one of the black holes has negligibly small mass and angular momentum. We then determine the approximate overall behaviors of the upper bounds on the radiation using thermodynamics. The results indicate that the spin interaction can consistently contribute to the radiation. In addition, the radiation depends on the stability of the black hole produced by the collision.
Rotating black string with nonlinear source
International Nuclear Information System (INIS)
Hendi, S. H.
2010-01-01
In this paper, we derive rotating black string solutions in the presence of two kinds of nonlinear electromagnetic fields, so-called Born-Infeld and power Maxwell invariant. Investigation of the solutions show that for the Born-Infeld black string the singularity is timelike and the asymptotic behavior of the solutions is anti-de Sitter, but for power Maxwell invariant solutions, depending on the values of nonlinearity parameter, the singularity may be timelike as well as spacelike and the solutions are not asymptotically anti-de Sitter for all values of the nonlinearity parameter. Next, we calculate the conserved quantities of the solutions by using the counterterm method, and find that these quantities do not depend on the nonlinearity parameter. We also compute the entropy, temperature, the angular velocity, the electric charge, and the electric potential of the solutions, in which the conserved and thermodynamics quantities satisfy the first law of thermodynamics.
Thermodynamics of the Schwarzschild-de Sitter black hole: Thermal stability of the Nariai black hole
International Nuclear Information System (INIS)
Myung, Yun Soo
2008-01-01
We study the thermodynamics of the Schwarzschild-de Sitter black hole in five dimensions by introducing two temperatures based on the standard and Bousso-Hawking normalizations. We use the first-law of thermodynamics to derive thermodynamic quantities. The two temperatures indicate that the Nariai black hole is thermodynamically unstable. However, it seems that black hole thermodynamics favors the standard normalization and does not favor the Bousso-Hawking normalization
Stuchlík, Zdeněk; Charbulák, Daniel; Schee, Jan
2018-03-01
We construct the light escape cones of isotropic spot sources of radiation residing in special classes of reference frames in the Kerr-de Sitter (KdS) black hole spacetimes, namely in the fundamental class of `non-geodesic' locally non-rotating reference frames (LNRFs), and two classes of `geodesic' frames, the radial geodesic frames (RGFs), both falling and escaping, and the frames related to the circular geodesic orbits (CGFs). We compare the cones constructed in a given position for the LNRFs, RGFs, and CGFs. We have shown that the photons locally counter-rotating relative to LNRFs with positive impact parameter and negative covariant energy are confined to the ergosphere region. Finally, we demonstrate that the light escaping cones govern the shadows of black holes located in front of a radiating screen, as seen by the observers in the considered frames. For shadows related to distant static observers the LNRFs are relevant.
International Nuclear Information System (INIS)
Zanchin, Vilson T.; Kleber, Antares; Lemos, Jose P.S.
2002-01-01
The dimensional reduction of black hole solutions in four-dimensional (4D) general relativity is performed and new 3D black hole solutions are obtained. Considering a 4D spacetime with one spacelike Killing vector, it is possible to split the Einstein-Hilbert-Maxwell action with a cosmological term in terms of 3D quantities. Definitions of quasilocal mass and charges in 3D spacetimes are reviewed. The analysis is then particularized to the toroidal charged rotating anti-de Sitter black hole. The reinterpretation of the fields and charges in terms of a three-dimensional point of view is given in each case, and the causal structure analyzed
The first law of thermodynamics for Kerr-anti-de Sitter black holes
International Nuclear Information System (INIS)
Gibbons, G W; Perry, M J; Pope, C N
2005-01-01
We obtain expressions for the mass and angular momenta of rotating black holes in anti-de Sitter backgrounds in four, five and higher dimensions. We verify explicitly that our expressions satisfy the first law of thermodynamics, thus allowing an unambiguous identification of the entropy of these black holes with 1/4 of the area. We find that the associated thermodynamic potential equals the background-subtracted Euclidean action multiplied by the temperature. Our expressions differ from many given in the literature. We find that in more than four dimensions, only our expressions satisfy the first law of thermodynamics. Moreover, in all dimensions we show that our expression for the mass coincides with that given by the conformal conserved charge introduced by Ashtekar, Magnon and Das. We indicate the relevance of these results to the AdS/CFT correspondence
Rotating hairy black holes in arbitrary dimensions
Erices, Cristián; Martínez, Cristián
2018-01-01
A class of exact rotating black hole solutions of gravity nonminimally coupled to a self-interacting scalar field in arbitrary dimensions is presented. These spacetimes are asymptotically locally anti-de Sitter manifolds and have a Ricci-flat event horizon hiding a curvature singularity at the origin. The scalar field is real and regular everywhere, and its effective mass, coming from the nonminimal coupling with the scalar curvature, saturates the Breitenlohner-Freedman bound for the corresponding spacetime dimension. The rotating black hole is obtained by applying an improper coordinate transformation to the static one. Although both spacetimes are locally equivalent, they are globally different, as it is confirmed by the nonvanishing angular momentum of the rotating black hole. It is found that the mass is bounded from below by the angular momentum, in agreement with the existence of an event horizon. The thermodynamical analysis is carried out in the grand canonical ensemble. The first law is satisfied, and a Smarr formula is exhibited. The thermodynamical local stability of the rotating hairy black holes is established from their Gibbs free energy. However, the global stability analysis establishes that the vacuum spacetime is always preferred over the hairy black hole. Thus, the hairy black hole is likely to decay into the vacuum one for any temperature.
Spherical and planar three-dimensional anti-de Sitter black holes
International Nuclear Information System (INIS)
Zanchin, Vilson T; Miranda, Alex S
2004-01-01
The technique of dimensional reduction was used in a recent paper (Zanchin V T, Kleber A and Lemos J P S 2002 Phys. Rev. D 66 064022) where a three-dimensional (3D) Einstein-Maxwell-dilaton theory was built from the usual four-dimensional (4D) Einstein-Maxwell-Hilbert action for general relativity. Starting from a class of 4D toroidal black holes in asymptotically anti-de Sitter (AdS) spacetimes several 3D black holes were obtained and studied in such a context. In the present work we choose a particular case of the 3D action which presents Maxwell field, dilaton field and an extra scalar field, besides gravity field and a negative cosmological constant, and obtain new 3D static black hole solutions whose horizons may have spherical or planar topology. We show that there is a 3D static spherically symmetric solution analogous to the 4D Reissner-Nordstroem-AdS black hole, and obtain other new 3D black holes with planar topology. From the static spherical solutions, new rotating 3D black holes are also obtained and analysed in some detail
Pair creation of anti-de Sitter black holes on a cosmic string background
International Nuclear Information System (INIS)
Dias, Oscar J.C.
2004-01-01
We analyze the quantum process in which a cosmic string breaks in an anti-de Sitter (AdS) background, and a pair of charged or neutral black holes is produced at the ends of the strings. The energy to materialize and accelerate the pair comes from the string tension. In an AdS background this is the only study done on the process of production of a pair of correlated black holes with spherical topology. The acceleration A of the produced black holes is necessarily greater than √(|Λ|/3), where Λ A bh /4 , where A bh is the black hole horizon area. We also conclude that the general behavior of the pair creation rate with the mass and acceleration of the black holes is similar in the AdS, flat and de Sitter cases, and our AdS results reduce to the ones of the flat case when Λ→0
Relationship between five-dimensional black holes and de Sitter spaces
International Nuclear Information System (INIS)
Myung, Y S
2004-01-01
We study a close relationship between the topological anti-de Sitter (TAdS) black holes and topological de Sitter (TdS) spaces including the Schwarzschild-de Sitter (SdS) black hole in five dimensions. We show that all thermal properties of the TdS spaces can be found from those of the TAdS black holes by replacing k by -k. Also we find that all thermal information for the cosmological horizon of the SdS black hole is obtained from either the hyperbolic-AdS black hole or the Schwarzschild-TdS space by substituting m with -m. For this purpose we calculate thermal quantities of bulk (Euclidean) conformal field theory (ECFT) and moving domain wall by using the A(dS)/(E)CFT correspondences. Further, we compute logarithmic corrections to the Bekenstein-Hawking entropy, Cardy-Verlinde formula and Friedmann equation due to thermal fluctuations. It implies that in the thermal relation between the TdS spaces and TAdS black holes, the cosmological horizon plays the same role as the horizon of TAdS black holes. Finally we note that the dS/ECFT correspondence is valid for the TdS spaces in conjunction with the AdS/CFT correspondence for the TAdS black holes
Toldo, C.
2014-01-01
This thesis is devoted to the analysis of asymptotically Anti-de Sitter (AdS) black holes arising as solutions of theories of gauged Supergravity in four spacetime dimensions. After a brief recap of the main features of gauged supergravity, the first part of the thesis deals with the explicit
Linear waves on higher dimensional Schwarzschild black holes and Schwarzschild de Sitter spacetimes
Schlue, Volker
2012-01-01
I study linear waves on higher dimensional Schwarzschild black holes and Schwarzschild de Sitter spacetimes. In the first part of this thesis two decay results are proven for general finite energy solutions to the linear wave equation on higher dimensional Schwarzschild black holes. I establish uniform energy decay and improved interior first order energy decay in all dimensions with rates in accordance with the 3 + 1-dimensional case. The method of proof departs from earlier work on th...
Tunneling across dilaton coupled black holes in anti de Sitter spacetime
International Nuclear Information System (INIS)
Ghosh, Tanwi; SenGupta, Soumitra
2011-01-01
Considering generalised action for dilaton coupled Maxwell-Einstein theory in four dimensions, Gao and Zhang obtained black holes solutions for asymptotically anti de Sitter (Ads) and de Sitter (ds) spacetimes. We study the Hawking radiation in Parikh-Wilczek's tunneling formalism as well as using Bogoliubov transformations. We compare the expression of the Hawking temperature obtained from these two different approaches. Stability and the extremality conditions for such black holes are discussed. The exact dependences of the Hawking temperature and flux on the dilaton coupling parameter are determined. It is shown that the Hawking flux increases with the dilaton coupling parameter. Finally we show that the expression for the Hawking flux obtained using Bogoliubov transformation matches exactly with flux calculated via chiral gauge and gravitational anomalies. This establishes a correspondence among all these different approaches of estimating Hawking radiation from these classes of black holes.
Coalescing black hole solution in the De-Sitter universe
International Nuclear Information System (INIS)
Ahmed, Mainuddin
2005-01-01
A new coalescing black hole solution of Einstein-Maxwell equation in general relativity is given. The new solution is also found to support the 'Nerst Theorem' of thermodynamics in the case of black hole. Thus this solution poses to solve an outstanding problem of thermodynamics and black hole physics. (author)
Stability of black holes and solitons in Anti-de Sitter space-time
Energy Technology Data Exchange (ETDEWEB)
Hartmann, Betti
2014-06-15
The stability of black holes and solitons in d-dimensional Anti-de Sitter (AdS{sub d}) space-time against scalar field condensation is discussed. The resulting solutions are “hairy” black holes and solitons, respectively. In particular, we will discuss static black hole solutions with hyperbolic, flat and spherical horizon topology and emphasize that two different type of instabilities exist depending on whether the scalar field is charged or uncharged, respectively. We will also discuss the influence of Gauss-Bonnet curvature terms. The results have applications within the AdS/CFT correspondence and describe e.g. holographic insulator/conductor/superconductor phase transitions.
Thermodynamics of de Sitter black holes with a conformally coupled scalar field
International Nuclear Information System (INIS)
Barlow, Anne-Marie; Doherty, Daniel; Winstanley, Elizabeth
2005-01-01
We study the thermodynamics of de Sitter black holes with a conformally coupled scalar field. The geometry is that of the lukewarm Reissner-Nordstroem-de Sitter black holes, with the event and cosmological horizons at the same temperature. This means that the region between the event and cosmological horizons can form a regular Euclidean instanton. The entropy is modified by the nonminimal coupling of the scalar field to the geometry, but can still be derived from the Euclidean action, provided suitable modifications are made to deal with the electrically charged case. We use the first law as derived from the isolated horizons formalism to compute the local horizon energies for the event and cosmological horizons
Hawking radiation from the dilaton—(anti) de Sitter black hole via covariant anomaly
International Nuclear Information System (INIS)
Yi-Wen, Han; Yun, Hong; Zhi-Qing, Bao
2009-01-01
Adopting the anomaly cancellation method, initiated by Robinson and Wilczek recently, this paper discusses Hawking radiation from the dilaton—(anti) de Sitter black hole. To save the underlying gauge and general covariance, it introduces covariant fluxes of gauge and energy-momentum tensor to cancel the gauge and gravitational anomalies. The result shows that the introduced compensating fluxes are equivalent to those of a 2-dimensional blackbody radiation at Hawking temperature with appropriate chemical potential. (general)
Quasinormal modes of the near extremal Schwarzschild-de Sitter black hole
International Nuclear Information System (INIS)
Cardoso, Vitor; Lemos, Jose P.S.
2003-01-01
We present an exact expression for the quasinormal modes of scalar, electromagnetic, and gravitational perturbations of a near extremal Schwarzschild-de Sitter black hole and we show that is why a previous approximation holds exactly in this near extremal regime. In particular, our results give the asymptotic behavior of the quasinormal frequencies for highly damped modes, which has recently attracted much attention due to the proposed identification of its real part with the Barbero-Immirzi parameter
Configurational entropy of anti-de Sitter black holes
International Nuclear Information System (INIS)
Braga, Nelson R.F.; Rocha, Roldão da
2017-01-01
Recent studies indicate that the configurational entropy is an useful tool to investigate the stability and (or) the relative dominance of states for diverse physical systems. Recent examples comprise the connection between the variation of this quantity and the relative fraction of light mesons and glueballs observed in hadronic processes. Here we develop a technique for defining a configurational entropy for an AdS-Schwarzschild black hole. The achieved result corroborates consistency with the Hawking–Page phase transition. Namely, the dominance of the black hole configurational entropy will be shown to increase with the temperature. In order to verify the consistency of the new procedure developed here, we also consider the case of black holes in flat space-time. For such a black hole, it is known that evaporation leads to instability. The configurational entropy obtained for the flat space case is thoroughly consistent with the physical expectation. In fact, we show that the smaller the black holes, the more unstable they are. So, the configurational entropy furnishes a reliable measure for stability of black holes.
Configurational entropy of anti-de Sitter black holes
Energy Technology Data Exchange (ETDEWEB)
Braga, Nelson R.F., E-mail: braga@if.ufrj.br [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, RJ 21941-972 (Brazil); Rocha, Roldão da, E-mail: roldao.rocha@ufabc.edu.br [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC – UFABC, 09210-580, Santo André (Brazil)
2017-04-10
Recent studies indicate that the configurational entropy is an useful tool to investigate the stability and (or) the relative dominance of states for diverse physical systems. Recent examples comprise the connection between the variation of this quantity and the relative fraction of light mesons and glueballs observed in hadronic processes. Here we develop a technique for defining a configurational entropy for an AdS-Schwarzschild black hole. The achieved result corroborates consistency with the Hawking–Page phase transition. Namely, the dominance of the black hole configurational entropy will be shown to increase with the temperature. In order to verify the consistency of the new procedure developed here, we also consider the case of black holes in flat space-time. For such a black hole, it is known that evaporation leads to instability. The configurational entropy obtained for the flat space case is thoroughly consistent with the physical expectation. In fact, we show that the smaller the black holes, the more unstable they are. So, the configurational entropy furnishes a reliable measure for stability of black holes.
Nonlinear Evolution and Final Fate of Charged Anti-de Sitter Black Hole Superradiant Instability.
Bosch, Pablo; Green, Stephen R; Lehner, Luis
2016-04-08
We describe the full nonlinear development of the superradiant instability for a charged massless scalar field coupled to general relativity and electromagnetism, in the vicinity of a Reissner-Nordström-anti-de Sitter black hole. The presence of the negative cosmological constant provides a natural context for considering perfectly reflecting boundary conditions and studying the dynamics as the scalar field interacts repeatedly with the black hole. At early times, small superradiant perturbations grow as expected from linearized studies. Backreaction then causes the black hole to lose charge and mass until the perturbation becomes nonsuperradiant, with the final state described by a stable hairy black hole. For large gauge coupling, the instability extracts a large amount of charge per unit mass, resulting in greater entropy increase. We discuss the implications of the observed behavior for the general problem of superradiance in black hole spacetimes.
Three-dimensional black hole from a stringy anti endash de Sitter background
International Nuclear Information System (INIS)
Hjelmeland, S.E.
1997-01-01
A new black hole solution in 2+1 dimensions is found by taking cosmic strings as part of the vacuum structure of the anti endash de Sitter space-time. The solution has a structure that in many ways is similar to that of the Reissner-Nordstroem solution. With a vanishing cosmological constant, a space-time with a black hole of infinite extension appears with the inner horizon playing the role of a cosmological event horizon. The timelike and null geodesics are discussed. In particular it is shown that photons may follow conic sections. copyright 1997 The American Physical Society
Entropy of Reissner–Nordström–de Sitter black hole
Energy Technology Data Exchange (ETDEWEB)
Zhang, Li-Chun [Department of Physics, Shanxi Datong University, Datong 037009 (China); Institute of Theoretical Physics, Shanxi Datong University, Datong 037009 (China); Zhao, Ren [Institute of Theoretical Physics, Shanxi Datong University, Datong 037009 (China); Ma, Meng-Sen, E-mail: mengsenma@gmail.com [Department of Physics, Shanxi Datong University, Datong 037009 (China); Institute of Theoretical Physics, Shanxi Datong University, Datong 037009 (China)
2016-10-10
Based on the consideration that the black hole horizon and the cosmological horizon of Reissner–Nordström black hole in de Sitter space are not independent each other, we conjecture the total entropy of the system should have an extra term contributed from the entanglement between the two horizons, except for the sum of the two horizon entropies. Making use of the globally effective first law and the effective thermodynamic quantities, we derive the total entropy and find that it will diverge as the two horizons tend to coincide.
Thermodynamics and stability of flat anti-de Sitter black strings
International Nuclear Information System (INIS)
Chen Si; Schleich, Kristin; Witt, Donald M.
2008-01-01
We examine the thermodynamics and stability of 5-dimensional flat anti-de Sitter (AdS) black strings, locally asymptotically anti-de Sitter spacetimes whose spatial sections are AdS black holes with Ricci flat horizons. We find that there is a phase transition for the flat AdS black string when the AdS soliton string is chosen as the thermal background. We find that this bulk phase transition corresponds to a 4-dimensional flat AdS black hole to AdS soliton phase transition on the boundary Karch-Randall branes. We compute the possibility of a phase transition from a flat AdS black string to a 5-dimensional AdS soliton and show that, though possible for certain thin black strings, the transition to the AdS soliton string is preferred. In contrast to the case of the Schwarzschild-AdS black string, we find that the specific heat of the flat AdS black string is always positive; hence it is thermodynamically stable. We show numerically that both the flat AdS black string and AdS soliton string are free of a Gregory-Laflamme instability for all values of the mass parameter. Therefore thermodynamic stability implies perturbative stability for this spacetime. This may indicate that a generalization of the Gubser-Mitra conjecture, in which the assumption of a translational killing vector is weakened to that of a conformal killing vector of translational form, holds under certain conditions.
Expanding plasmas from anti de Sitter black holes
Energy Technology Data Exchange (ETDEWEB)
Camilo, Giancarlo [Instituto de Fisica, Universidade de Sao Paulo, Departamento de Fisica Matematica, Sao Paulo (Brazil)
2016-12-15
We introduce a new foliation of AdS{sub 5} black holes such that the conformal boundary takes the form of a 4-dimensional FLRW spacetime with scale factor a(t). The foliation employs Eddington-Finkelstein-like coordinates and is applicable to a large class of AdS black holes, supported by matter fields or not, considerably extending previous efforts in the literature. We argue that the holographic dual picture of a CFT plasma on a FLRW background provides an interesting prototype to study the nonequilibrium dynamics of expanding plasmas and use holographic renormalization to extract the renormalized energy-momentum tensor of the dual plasma. We illustrate the procedure for three black holes of interest, namely AdS-Schwarzschild, AdS-Gauss-Bonnet, and AdS-Reissner-Nordstroem. For the latter, as a by-product, we show that the nonequilibrium dynamics of a CFT plasma subject to a quench in the chemical potential (i.e., a time-dependent chemical potential) resembles a cosmological evolution with the scale factor a(t) being inversely related to the quench profile μ(t). (orig.)
Expanding plasmas from anti de Sitter black holes
International Nuclear Information System (INIS)
Camilo, Giancarlo
2016-01-01
We introduce a new foliation of AdS_5 black holes such that the conformal boundary takes the form of a 4-dimensional FLRW spacetime with scale factor a(t). The foliation employs Eddington-Finkelstein-like coordinates and is applicable to a large class of AdS black holes, supported by matter fields or not, considerably extending previous efforts in the literature. We argue that the holographic dual picture of a CFT plasma on a FLRW background provides an interesting prototype to study the nonequilibrium dynamics of expanding plasmas and use holographic renormalization to extract the renormalized energy-momentum tensor of the dual plasma. We illustrate the procedure for three black holes of interest, namely AdS-Schwarzschild, AdS-Gauss-Bonnet, and AdS-Reissner-Nordstroem. For the latter, as a by-product, we show that the nonequilibrium dynamics of a CFT plasma subject to a quench in the chemical potential (i.e., a time-dependent chemical potential) resembles a cosmological evolution with the scale factor a(t) being inversely related to the quench profile μ(t). (orig.)
Pair creation of higher dimensional black holes on a de Sitter background
International Nuclear Information System (INIS)
Dias, Oscar J.C.; Lemos, Jose P.S.
2004-01-01
We study in detail the quantum process in which a pair of black holes is created in a higher D-dimensional de Sitter (dS) background. The energy to materialize and accelerate the pair comes from the positive cosmological constant. The instantons that describe the process are obtained from the Tangherlini black hole solutions. Our pair creation rates reduce to the pair creation rate for Reissner-Nordstroem-dS solutions when D=4. Pair creation of black holes in the dS background becomes less suppressed when the dimension of the spacetime increases. The dS space is the only background in which we can discuss analytically the pair creation process of higher dimensional black holes, since the C-metric and the Ernst solutions, which describe, respectively, a pair accelerated by a string and by an electromagnetic field, are not known yet in a higher dimensional spacetime
Inside and outside stories of black-branes in anti de Sitter space
International Nuclear Information System (INIS)
Hansen, Jakob; Lee, Bum-Hoon; Park, Chanyong; Yeom, Dong-han
2013-01-01
In this paper, we investigate the dynamics inside and outside of black-branes in anti de Sitter space by numerical simulations using double-null formalism. We prepare a charged planar matter shell which, due to a negative cosmological constant, collapses and dynamically forms a black-brane with an apparent horizon, a singularity and a Cauchy horizon. The gravitational collapse cannot form a naked overcharged black-brane and hence weak cosmic censorship is safe. Although mass inflation occurs, the effect is much milder than in the case of charged black holes; hence, strong cosmic censorship seems not to be safe. We observed the scalar field dynamics outside the horizon. There should remain a non-trivial scalar field combination—‘charge cloud’—between the horizon and the boundary. This can give some meaning in terms of the AdS/CFT correspondence. (paper)
A nonsingular rotating black hole
International Nuclear Information System (INIS)
Ghosh, Sushant G.
2015-01-01
The spacetime singularities in classical general relativity are inevitable, as predicated by the celebrated singularity theorems. However, it is a general belief that singularities do not exist in Nature and that they are the limitations of the general relativity. In the absence of a welldefined quantum gravity, models of regular black holes have been studied. We employ a probability distribution inspired mass function m(r) to replace the Kerr black hole mass M to represent a nonsingular rotating black hole that is identified asymptotically (r >> k, k > 0 constant) exactly as the Kerr-Newman black hole, and as the Kerr black hole when k = 0. The radiating counterpart renders a nonsingular generalization of Carmeli's spacetime as well as Vaidya's spacetime, in the appropriate limits. The exponential correction factor changing the geometry of the classical black hole to remove the curvature singularity can also be motivated by quantum arguments. The regular rotating spacetime can also be understood as a black hole of general relativity coupled to nonlinear electrodynamics. (orig.)
Regular black holes: electrically charged solutions, Reissner-Nordstroem outside a De Sitter core
Energy Technology Data Exchange (ETDEWEB)
Lemos, Jose P.S. [Universidade Tecnica de Lisboa (CENTRA/IST/UTL) (Portugal). Instituto Superior Tecnico. Centro Multidisciplinar de Astrofisica; Zanchin, Vilson T. [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil). Centro de Ciencias Naturais e Humanas
2011-07-01
Full text: The understanding of the inside of a black hole is of crucial importance in order to have the correct picture of a black hole as a whole. The singularities that lurk inside of the usual black hole solutions are things to avoid. Their substitution by a regular part is of great interest, the process generating regular black holes. In the present work regular black hole solutions are found within general relativity coupled to Maxwell's electromagnetism and charged matter. We show that there are objects which correspond to regular charged black holes, whose interior region is de Sitter, whose exterior region is Reissner-Nordstroem, and the boundary between both regions is made of an electrically charged spherically symmetric coat. There are several solutions: the regular nonextremal black holes with a null matter boundary, the regular nonextremal black holes with a timelike matter boundary, the regular extremal black holes with a timelike matter boundary, and the regular overcharged stars with a timelike matter boundary. The main physical and geometrical properties of such charged regular solutions are analyzed. (author)
Breit-Wigner resonances and the quasinormal modes of anti-de Sitter black holes
International Nuclear Information System (INIS)
Berti, Emanuele; Cardoso, Vitor; Pani, Paolo
2009-01-01
We show that the theory of Breit-Wigner resonances can be used as an efficient numerical tool to compute black hole quasinormal modes. For illustration, we focus on the Schwarzschild anti-de Sitter (SAdS) spacetime. The resonance method is better suited to small SAdS black holes than the traditional series expansion method, allowing us to confirm that the damping time scale of small SAdS black holes for scalar and gravitational fields is proportional to r + -2l-2 , where r + is the horizon radius. The proportionality coefficients are in good agreement with analytic calculations. We also examine the eikonal limit of SAdS quasinormal modes, confirming quantitatively Festuccia and Liu's [arXiv:0811.1033] prediction of the existence of very long-lived modes. Our results are particularly relevant for the AdS/CFT correspondence, since long-lived modes presumably dominate the decay time scale of the perturbations.
Pair of accelerated black holes in a de Sitter background: The dS C metric
International Nuclear Information System (INIS)
Dias, Oscar J.C.; Lemos, Jose P.S.
2003-01-01
Following the work of Kinnersley and Walker for flat spacetimes, we analyzed the anti-de Sitter C metric in a previous paper. In this paper we study the de Sitter C metric (dS C metric). The C metric with a generic cosmological constant and other extra parameters was introduced by Plebanski and Demianski. When one then sets to zero some of the extra parameters, and works with a positive cosmological constant, one has the dS C metric which has been analyzed and physically interpreted by Podolsky and Griffiths. It describes a pair of accelerated black holes in the dS background with the acceleration being provided (in addition to the cosmological constant) by a strut that pushes away the two black holes or, alternatively, by a string that pulls them. We extend their analysis mainly in four directions. First, we draw the Carter-Penrose diagrams of the massless uncharged dS C metric, of the massive uncharged dS C metric and of the massive charged dS C metric. These diagrams allow us to clearly identify the presence of two dS black holes and to conclude that they cannot interact gravitationally. Second, we reexamine the embedding of the dS C metric in the 5D Minkowski spacetime and we represent the motion of the dS C metric origin in the dS 4-hyperboloid as well as the localization of the strut. Third, we comment on the physical properties of the strut that connects the two black holes. Finally, we find the range of parameters that correspond to nonextreme black holes, extreme black holes, and naked particles
International Nuclear Information System (INIS)
Krishnan, Chethan
2011-01-01
Recent developments suggest that the near-region of rotating black holes behaves like a CFT. To understand this better, I propose to study quantum fields in this region. An instructive approach for this might be to put a large black hole in AdS and to think of the entire geometry as a toy model for the 'near-region'. Quantum field theory on rotating black holes in AdS can be well-defined (unlike in flat space), if fields are quantized in the co-rotating-with-the-horizon frame. First, some generalities of constructing Hartle-Hawking Green functions in this approach are discussed. Then as a specific example where the details are easy to handle, I turn to 2+1 dimensions (BTZ), write down the Green functions explicitly starting with the co-rotating frame, and observe some structural similarities they have with the Kerr-CFT scattering amplitudes. Finally, in BTZ, there is also an alternate construction for the Green functions: we can start from the covering AdS 3 space and use the method of images. Using a 19th century integral formula, I show the equality between the boundary correlators arising via the two constructions.
Charged de Sitter-like black holes: quintessence-dependent enthalpy and new extreme solutions
Energy Technology Data Exchange (ETDEWEB)
Azreg-Ainou, Mustapha [Baskent University, Faculty of Engineering, Ankara (Turkey)
2015-01-01
We consider Reissner-Nordstroem black holes surrounded by quintessence where both a non-extremal event horizon and a cosmological horizon exist besides an inner horizon (-1 ≤ ω < -1/3). We determine new extreme black hole solutions that generalize the Nariai horizon to asymptotically de Sitter-like solutions for any order relation between the squares of the charge q{sup 2} and the mass parameter M{sup 2} provided q{sup 2} remains smaller than some limit, which is larger than M{sup 2}. In the limit case q{sup 2} = 9ω{sup 2}M{sup 2}/(9ω{sup 2}-1), we derive the general expression of the extreme cosmo-blackhole, where the three horizons merge, and we discuss some of its properties.We also show that the endpoint of the evaporation process is independent of any order relation between q{sup 2} and M{sup 2}. The Teitelboim energy and the Padmanabhan energy are related by a nonlinear expression and are shown to correspond to different ensembles. We also determine the enthalpy H of the event horizon, as well as the effective thermodynamic volume which is the conjugate variable of the negative quintessential pressure, and show that in general the mass parameter and the Teitelboim energy are different from the enthalpy and internal energy; only in the cosmological case, that is, for Reissner-Nordstroem-de Sitter black hole we have H = M. Generalized Smarr formulas are also derived. It is concluded that the internal energy has a universal expression for all static charged black holes, with possibly a variable mass parameter, but it is not a suitable thermodynamic potential for static-black-hole thermodynamics if M is constant. It is also shown that the reverse isoperimetric inequality holds. We generalize the results to the case of the Reissner-Nordstroem-de Sitter black hole surrounded by quintessence with two physical constants yielding two thermodynamic volumes. (orig.)
Reissner–Nordström Anti-de Sitter Black Holes in Mimetic F(R Gravity
Directory of Open Access Journals (Sweden)
V. K. Oikonomou
2016-05-01
Full Text Available In this paper, we study under which conditions the Reissner–Nordström anti-de Sitter black hole can be a solution of the vacuum mimetic F ( R gravity with Lagrange multiplier and mimetic scalar potential. As the author demonstrates, the resulting picture in the mimetic F ( R gravity case is a trivial extension of the standard F ( R approach, and in effect, the metric perturbations in the mimetic F ( R gravity case, for the Reissner–Nordström anti-de Sitter black hole metric, at the first order of the perturbed variables are the same at the leading order.
Kanti, P.; Pappas, T.
2017-07-01
The absence of a true thermodynamical equilibrium for an observer located in the causal area of a Schwarzschild-de Sitter spacetime has repeatedly raised the question of the correct definition of its temperature. In this work, we consider five different temperatures for a higher-dimensional Schwarzschild-de Sitter black hole: the bare T0, the normalized TBH, and three effective ones given in terms of both the black-hole and cosmological horizon temperatures. We find that these five temperatures exhibit similarities but also significant differences in their behavior as the number of extra dimensions and the value of the cosmological constant are varied. We then investigate their effect on the energy emission spectra of Hawking radiation. We demonstrate that the radiation spectra for the normalized temperature TBH—proposed by Bousso and Hawking over twenty years ago—leads to the dominant emission curve, while the other temperatures either support a significant emission rate only in a specific Λ regime or have their emission rates globally suppressed. Finally, we compute the bulk-over-brane emissivity ratio and show that the use of different temperatures may lead to different conclusions regarding the brane or bulk dominance.
Quintessence Reissner Nordström Anti de Sitter Black Holes and Joule Thomson Effect
Ghaffarnejad, H.; Yaraie, E.; Farsam, M.
2018-06-01
In this work we investigate corrections of the quintessence regime of the dark energy on the Joule-Thomson (JT) effect of the Reissner Nordström anti de Sitter (RNAdS) black hole. The quintessence dark energy has equation of state as p q = ω ρ q in which -1black hole mass, we calculate inversion temperature T i of the quintessence RNAdS black hole where its cooling phase is changed to heating phase at a particular (inverse) pressure P i . Position of the inverse point { T i , P i } is determined by crossing the inverse curves with the corresponding Gibbons-Hawking temperature on the T-P plan. We determine position of the inverse point versus different numerical values of the mass M and the charge Q of the quintessence AdS RN black hole. The cooling-heating phase transition (JT effect) is happened for M > Q in which the causal singularity is still covered by the horizon. Our calculations show sensitivity of the inverse point { T i , P i } position on the T-P plan to existence of the quintessence dark energy just for large numerical values of the AdS RN black holes charge Q. In other words the quintessence dark energy dose not affect on position of the inverse point when the AdS RN black hole takes on small charges.
Applications of gauge/gravity dualities with charged Anti-de Sitter black holes
International Nuclear Information System (INIS)
Grass, Viviane Theresa
2010-01-01
In this thesis, we deal with different applications of the Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence. The AdS/CFT correspondence, which is also more generally referred to as gauge/gravity duality, is a conjectured duality in superstring theory between strongly-coupled four-dimensional N=4 superconformal Yang-Mills theory and weakly-coupled type IIB string theory in five-dimensional AdS spacetime. This duality provides a powerful method to investigate strongly-coupled low-energy systems in four dimensions by substitutionally carrying out calculations in five-dimensional weakly-coupled supergravity. In this work, we use the AdS/CFT correspondence to explore three different strongly-coupled systems, namely a brane world accommodating a strongly-coupled field theory, a strongly-coupled fluid on a three-sphere and a strongly-coupled p-wave superfluid. In all these cases, the dual supergravity descriptions involve charged AdS black holes. The first system studied here is a Randall-Sundrum brane world moving in the background of a five-dimensional non-extremal black hole of N=2 gauged supergravity. The equations of motion of the brane are found to be equal to the Friedmann-Robertson-Walker (FRW) equations for a closed universe. The closed brane universe has special thermodynamic properties. The energy of the brane field theory exhibits a subextensive Casimir contribution, and the entropy can be expressed as a Cardy-Verlinde-type formula. We show that the equations for both quantities can take forms that strongly resemble the two FRW equations. At the horizon of the black hole, these two sets of equations are shown to even merge with each other which might suggest the existence of a common underlying theory. In addition, as a by-product result, the non-extremal black hole solutions considered here are found to admit an alternative description in terms of first-order flow equations similar to those which are well-known from the attractor mechanism of
Applications of gauge/gravity dualities with charged Anti-de Sitter black holes
Energy Technology Data Exchange (ETDEWEB)
Grass, Viviane Theresa
2010-05-17
In this thesis, we deal with different applications of the Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence. The AdS/CFT correspondence, which is also more generally referred to as gauge/gravity duality, is a conjectured duality in superstring theory between strongly-coupled four-dimensional N=4 superconformal Yang-Mills theory and weakly-coupled type IIB string theory in five-dimensional AdS spacetime. This duality provides a powerful method to investigate strongly-coupled low-energy systems in four dimensions by substitutionally carrying out calculations in five-dimensional weakly-coupled supergravity. In this work, we use the AdS/CFT correspondence to explore three different strongly-coupled systems, namely a brane world accommodating a strongly-coupled field theory, a strongly-coupled fluid on a three-sphere and a strongly-coupled p-wave superfluid. In all these cases, the dual supergravity descriptions involve charged AdS black holes. The first system studied here is a Randall-Sundrum brane world moving in the background of a five-dimensional non-extremal black hole of N=2 gauged supergravity. The equations of motion of the brane are found to be equal to the Friedmann-Robertson-Walker (FRW) equations for a closed universe. The closed brane universe has special thermodynamic properties. The energy of the brane field theory exhibits a subextensive Casimir contribution, and the entropy can be expressed as a Cardy-Verlinde-type formula. We show that the equations for both quantities can take forms that strongly resemble the two FRW equations. At the horizon of the black hole, these two sets of equations are shown to even merge with each other which might suggest the existence of a common underlying theory. In addition, as a by-product result, the non-extremal black hole solutions considered here are found to admit an alternative description in terms of first-order flow equations similar to those which are well-known from the attractor mechanism of
Eikonal instability of Gauss-Bonnet-(anti-)-de Sitter black holes
Konoplya, R. A.; Zhidenko, A.
2017-05-01
Here we have shown that asymptotically anti-de Sitter (AdS) black holes in the Einstein-Gauss-Bonnet (GB) theory are unstable under linear perturbations of space-time in some region of parameters. This (eikonal) instability develops at high multipole numbers. We found the exact parametric regions of the eikonal instability and extended this consideration to asymptotically flat and de Sitter cases. The approach to the threshold of instability is driven by purely imaginary quasinormal modes, which are similar to those found recently in Grozdanov, Kaplis, and Starinets, [J. High Energy Phys. 07 (2016) 151, 10.1007/JHEP07(2016)151] for the higher curvature corrected black hole with the planar horizon. The found instability may indicate limits of holographic applicability of the GB-AdS backgrounds. Recently, through the analysis of critical behavior in AdS space-time in the presence of the Gauss-Bonnet term, it was shown [Deppe et al, Phys. Rev. Lett. 114, 071102 (2015), 10.1103/PhysRevLett.114.071102], that, if the total energy content of the AdS space-time is small, then no black holes can be formed with mass less than some critical value. A similar mass gap was also found when considering collapse of mass shells in asymptotically flat Gauss-Bonnet theories [Frolov, Phys. Rev. Lett. 115, 051102 (2015), 10.1103/PhysRevLett.115.051102]. The found instability of all sufficiently small Einstein-Gauss-Bonnet-AdS, dS and asymptotically flat black holes may explain the existing mass gaps in their formation.
The Cardy-Verlinde formula and entropy of topological Kerr-Newman black holes in de Sitter spaces
International Nuclear Information System (INIS)
Setare, M.R.; Altaie, M.B.
2003-01-01
In this paper we show that the entropy of a cosmological horizon in 4-dimensional topological Kerr-Newman-de Sitter spaces can be described by the Cardy-Verlinde formula, which is supposed to be an entropy formula of conformal field theory in any number of dimensions. Furthermore, we find that the entropy of a black hole horizon can also be rewritten in terms of the Cardy-Verlinde formula for these black holes in de Sitter spaces, if we use the definition due to Abbott and Deser for conserved charges in asymptotically de Sitter spaces. Such results presume a well-defined dS/CFT correspondence, which has not yet attained the credibility of its AdS analogue. (orig.)
Entropy of Reissner-Nordstrom-De Sitter Black Hole in Nonthermal Equilibrium
Institute of Scientific and Technical Information of China (English)
ZHAO Ren; ZHANG Jun-Fang; ZHANG Li-Chun
2002-01-01
By making use of the method of quantum statistics, we directly derive the partition function of bosonic and fermionic fields in Reissner-Nordstrom-De Sitter black hole and obtain the integral expression of black hole's entropy and the entropy to which the cosmic horizon surface corresponds. It avoids the difficulty in solving the wave equation of various particles. Then via the improved brick-wall method, i.e. the membrane model, we calculate black hole's entropy and cosmic entropy and find out that if we let the integral upper limit and lower limit both tend to the horizon, the entropy of black hole is proportional to the area of horizon and the entropy to which cosmic horizon surface corresponds is proportional to the area of cosmic horizon. In our result, the stripped term and the divergent logarithmic term in the original brick-wall method no longer exist. In the whole process, the physical idea is clear and the calculation is simple.We offer a new simple and direct way for calculating the entropy of different complicated black holes.
Hawking radiation as tunneling from the event horizon of NUT-Kerr-Newman de Sitter black hole
International Nuclear Information System (INIS)
Hui-Ling, Li; Shu-Shenh, Yang; Qing-Quan, Jiang; De-Jiang, Qi
2005-01-01
Adopting the method of quantum radiation as tunneling, Hawking radiation as tunneling from the event horizon of NUT-Kerr-Newman de Sitter black hole is studied. The result indicates that the tunneling rate of the particle on the event horizon is related to the change of Bekenstein-Hawking entropy and the real spectrum is not strictly thermal at all
Pair of accelerated black holes in an anti-de Sitter background: The AdS C metric
International Nuclear Information System (INIS)
Dias, Oscar J.C.; Lemos, Jose P.S.
2003-01-01
The anti-de Sitter C metric (AdS C metric) is characterized by a quite interesting new feature when compared with the C metric in flat or de Sitter backgrounds. Indeed, contrary to what happens in these two last exact solutions, the AdS C metric only describes a pair of accelerated black holes if the acceleration parameter satisfies A>1/l, where l is the cosmological length. The two black holes cannot interact gravitationally and their acceleration is totally provided by the pressure exerted by a strut that pushes the black holes apart. Our analysis is based on the study of the causal structure, on the description of the solution in the AdS 4-hyperboloid in a 5D Minkowski spacetime, and on the physics of the strut. We also analyze the cases A=1/l and A<1/l that represent a single accelerated black hole in the AdS background
Thermodynamics of rotating black branes in gravity with first order string corrections
Directory of Open Access Journals (Sweden)
M. H. Dehghani
2005-09-01
Full Text Available In this paper, the rotating black brane solutions with zero curvature horizon of classical gravity with first order string corrections are introduced. Although these solutions are not asymptotically anti de Sitter, one can use the counterterm method in order to compute the conserved quantities of these solutions. Here, by reviewing the counterterm method for asymptotically anti de Sitter spacetimes, the conserved quantities of these rotating solutions are computed. Also a Smarr-type formula for the mass as a function of the entropy and the angular momenta is obtained, and it is shown that the conserved and thermodynamic quantities satisfy the first law of thermodynamics. Finally, a stability analysis in the canonical ensemble is performed, and it is shown that the system is thermally stable. This is in commensurable with the fact that there is no Hawking-Page phase transition for black object with zero curvature horizon.
Gravitational quasinormal modes of static Einstein-Gauss-Bonnet anti-de Sitter black holes
Ma, Hong; Li, Jin
2018-04-01
In this paper, we describe quasinormal modes (QNMs) for gravitational perturbations of Einstein-Gauss-Bonnet black holes (BHs) in higher dimensional spacetimes, and derive the corresponding parameters of such black holes in three types of spacetime (flat, de Sitter (dS) and anti-de Sitter (AdS)). Our attention is concentrated on discussing the (in)stability of Einstein-Gauss-Bonnet AdS BHs through the temporal evolution of all types of gravitational perturbation fields (tensor, vector and scalar). It is concluded that the potential functions in vector and scalar gravitational perturbations have negative regions, which suppress quasinormal ringing. Furthermore, the influences of the Gauss-Bonnet coupling parameter α, the number of dimensions n and the angular momentum quantum number l on the Einstein-Gauss-Bonnet AdS BHs quasinormal spectrum are analyzed. The QNM frequencies have greater oscillation and lower damping rate with the growth of α. This indicates that QNM frequencies become increasingly unstable with large α. Meanwhile, the dynamic evolutions of the perturbation field are compliant with the results of computation from the Horowitz and Hubeny method. Because the number of extra dimensions is connected with the string scale, the relationship between α and properties of Einstein-Gauss-Bonnet AdS BHs might be beneficial for the exploitation of string theory and extra-dimensional brane worlds. Supported by FAPESP (2012/08934-0), National Natural Science Foundation of China (11205254, 11178018, 11375279, 11605015), the Natural Science Foundation Project of CQ CSTC (2011BB0052), and the Fundamental Research Funds for the Central Universities (106112016CDJXY300002, 106112017CDJXFLX0014, CDJRC10300003)
International Nuclear Information System (INIS)
Myung, Y.S.
2003-01-01
We calculate corrections to the Bekenstein-Hawking entropy formula for the five-dimensional topological AdS (TAdS)-black holes and topological de Sitter (TdS) spaces due to thermal fluctuations. We can derive all thermal properties of the TdS spaces from those of the TAdS black holes by replacing k by -k. Also we obtain the same correction to the Cardy-Verlinde formula for TAdS and TdS cases including the cosmological horizon of the Schwarzschild-de Sitter (SdS) black hole. Finally we discuss the AdS/CFT and dS/CFT correspondences and their dynamic correspondences
International Nuclear Information System (INIS)
Akcay, Sarp; Matzner, Richard A
2011-01-01
It is now widely accepted that the universe as we understand it is accelerating in expansion and fits the de Sitter model rather well. As such, a realistic assumption of black holes must place them on a de Sitter background and not Minkowski as is typically done in general relativity. The most astrophysically relevant black hole is the uncharged, rotating Kerr solution, a member of the more general Kerr-Newman metrics. A generalization of the rotating Kerr black hole to a solution of the Einstein's equation with a cosmological constant Λ was discovered by Carter (1973 Les Astres Occlus ed B DeWitt and C M DeWitt (New York: Gordon and Breach)). It is typically referred to as the Kerr-de Sitter spacetime. Here, we discuss the horizon structure of this spacetime and its dependence on Λ. We recall that in a Λ > 0 universe, the term 'extremal black hole' refers to a black hole with angular momentum J > M 2 . We obtain explicit numerical results for the black hole's maximal spin value and get a distribution of admissible Kerr holes in the (Λ, spin) parameter space. We look at the conformal structure of the extended spacetime and the embedding of the 3-geometry of the spatial hypersurfaces. In analogy with Reissner-Nordstroem-de Sitter spacetime, in particular by considering the Kerr-de Sitter causal structure as a distortion of the Reissner-Nordstroem-de Sitter one, we show that spatial sections of the extended spacetime are 3-spheres containing two-dimensional topologically spherical sections of the horizons of Kerr holes at the poles. Depending on how a t = constant 3-space is defined, these holes may be seen as black or white holes (four possible combinations).
Critical phenomena of regular black holes in anti-de Sitter space-time
Energy Technology Data Exchange (ETDEWEB)
Fan, Zhong-Ying [Peking University, Center for High Energy Physics, Beijing (China)
2017-04-15
In General Relativity, addressing coupling to a non-linear electromagnetic field, together with a negative cosmological constant, we obtain the general static spherical symmetric black hole solution with magnetic charges, which is asymptotic to anti-de Sitter (AdS) space-times. In particular, for a degenerate case the solution becomes a Hayward-AdS black hole, which is regular everywhere in the full space-time. The existence of such a regular black hole solution preserves the weak energy condition, while the strong energy condition is violated. We then derive the first law and the Smarr formula of the black hole solution. We further discuss its thermodynamic properties and study the critical phenomena in the extended phase space where the cosmological constant is treated as a thermodynamic variable as well as the parameter associated with the non-linear electrodynamics. We obtain many interesting results such as: the Maxwell equal area law in the P-V (or S-T) diagram is violated and consequently the critical point (T{sub *},P{sub *}) of the first order small-large black hole transition does not coincide with the inflection point (T{sub c},P{sub c}) of the isotherms; the Clapeyron equation describing the coexistence curve of the Van der Waals (vdW) fluid is no longer valid; the heat capacity at constant pressure is finite at the critical point; the various exponents near the critical point are also different from those of the vdW fluid. (orig.)
Rotating black holes and Coriolis effect
Directory of Open Access Journals (Sweden)
Chia-Jui Chou
2016-10-01
Full Text Available In this work, we consider the fluid/gravity correspondence for general rotating black holes. By using the suitable boundary condition in near horizon limit, we study the correspondence between gravitational perturbation and fluid equation. We find that the dual fluid equation for rotating black holes contains a Coriolis force term, which is closely related to the angular velocity of the black hole horizon. This can be seen as a dual effect for the frame-dragging effect of rotating black hole under the holographic picture.
Rotating black holes and Coriolis effect
Energy Technology Data Exchange (ETDEWEB)
Chou, Chia-Jui, E-mail: agoodmanjerry.ep02g@nctu.edu.tw [Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan, ROC (China); Wu, Xiaoning, E-mail: wuxn@amss.ac.cn [Institute of Mathematics, Academy of Mathematics and System Science, CAS, Beijing, 100190 (China); Yang, Yi, E-mail: yiyang@mail.nctu.edu.tw [Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan, ROC (China); Yuan, Pei-Hung, E-mail: phyuan.py00g@nctu.edu.tw [Institute of Physics, National Chiao Tung University, Hsinchu, Taiwan, ROC (China)
2016-10-10
In this work, we consider the fluid/gravity correspondence for general rotating black holes. By using the suitable boundary condition in near horizon limit, we study the correspondence between gravitational perturbation and fluid equation. We find that the dual fluid equation for rotating black holes contains a Coriolis force term, which is closely related to the angular velocity of the black hole horizon. This can be seen as a dual effect for the frame-dragging effect of rotating black hole under the holographic picture.
Gyromagnetic ratio of charged Kerr-anti-de Sitter black holes
International Nuclear Information System (INIS)
Aliev, Alikram N
2007-01-01
We examine the gyromagnetic ratios of rotating and charged AdS black holes in four and higher spacetime dimensions. We compute the gyromagnetic ratio for Kerr-AdS black holes with an arbitrary electric charge in four dimensions and show that it corresponds to g = 2 irrespective of the AdS nature of the spacetime. We also compute the gyromagnetic ratio for Kerr-AdS black holes with a single angular momentum and with a test electric charge in all higher dimensions. The gyromagnetic ratio crucially depends on the dimensionless ratio of the rotation parameter to the curvature radius of the AdS background. At the critical limit, when the boundary Einstein universe is rotating at the speed of light, it exhibits a striking feature leading to g 2 regardless of the spacetime dimension. Next, we extend our consideration to include the exact metric for five-dimensional rotating charged black holes in minimal gauged supergravity. We show that the value of the gyromagnetic ratio found in the 'test-charge' approach remains unchanged for these black holes
International Nuclear Information System (INIS)
Anninos, Dionysios; Pastras, Georgios
2009-01-01
The local and global thermal phase structure for asymptotically anti-de Sitter black holes charged under an abelian gauge group, with both Gauss-Bonnet and quartic field strength corrections, is mapped out for all parameter space. We work in the grand canonical ensemble where the external electric potential is held fixed. The analysis is performed in an arbitrary number of dimensions, for all three possible horizon topologies - spherical, flat or hyperbolic. For spherical horizons, new metastable configurations are exhibited both for the pure Gauss-Bonnet theory as well as the pure higher derivative gauge theory and combinations thereof. In the pure Gauss-Bonnet theory with negative coefficient and five or more spatial dimensions, two locally thermally stable black hole solutions are found for a given temperature. Either one or both of them may be thermally favored over the anti-de Sitter vacuum - corresponding to a single or a double decay channel for the metastable black hole. Similar metastable configurations are uncovered for the theory with pure quartic field strength corrections, as well combinations of the two types of corrections, in three or more spatial dimensions. Finally, a secondary Hawking-Page transition between the smaller thermally favored black hole and thermal anti-de Sitter space is observed when both corrections are turned on and their couplings are both positive.
International Nuclear Information System (INIS)
Chen Qiang; Ren Ji-Rong
2013-01-01
In this paper, we use the modified Hod's treatment and the Kunstatter's method to study the horizon area spectrum and entropy spectrum in Gauss—Bonnet de-Sitter space-time, which is regarded as the natural generalization of Einstein gravity by including higher derivative correction terms to the original Einstein—Hilbert action. The horizon areas have some properties that are very different from the vacuum solutions obtained from the frame of Einstein gravity. With the new physical interpretation of quasinormal modes, the area/entropy spectrum for the event horizon for near-extremal Gauss—Bonnet de Sitter black holes are obtained. Meanwhile, we also extend the discussion of area/entropy quantization to the non-extremal black holes solutions. (general)
International Nuclear Information System (INIS)
Cvetic, Mirjam; Nojiri, Shin'ichi; Odintsov, S.D.
2002-01-01
We investigate the charged Schwarzschild-anti-de Sitter (SAdS) BH thermodynamics in 5d Einstein-Gauss-Bonnet gravity with electromagnetic field. The Hawking-Page phase transitions between SAdS BH and pure AdS space are studied. The corresponding phase diagrams (with critical line defined by GB term coefficient and electric charge) are drawn. The possibility to account for higher derivative Maxwell terms is mentioned. In frames of proposed dS/CFT correspondence it is demonstrated that brane gravity maybe localized similarly to AdS/CFT. SdS BH thermodynamics in 5d Einstein and Einstein-Gauss-Bonnet gravity is considered. The corresponding (complicated) surface counterterms are found and used to get the conserved BH mass, free energy and entropy. The interesting feature of higher derivative gravity is the possibility for negative (or zero) SdS (or SAdS) BH entropy which depends on the parameters of higher derivative terms. We speculate that the appearance of negative entropy may indicate a new type instability where a transition between SdS (SAdS) BH with negative entropy to SAdS (SdS) BH with positive entropy would occur
Integrability in conformally coupled gravity: Taub-NUT spacetimes and rotating black holes
Energy Technology Data Exchange (ETDEWEB)
Bardoux, Yannis [Laboratoire de Physique Théorique (LPT), Université Paris-Sud, CNRS UMR 8627, F-91405 Orsay (France); Caldarelli, Marco M. [Mathematical Sciences and STAG research centre, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Charmousis, Christos [Laboratoire de Physique Théorique (LPT), Université Paris-Sud, CNRS UMR 8627, F-91405 Orsay (France); Laboratoire de Mathématiques et Physique Théorique (LMPT), Université Tours, UFR Sciences et Techniques, Parc de Grandmont, F-37200 Tours (France)
2014-05-09
We consider four dimensional stationary and axially symmetric spacetimes for conformally coupled scalar-tensor theories. We show that, in analogy to the Lewis-Papapetrou problem in General Relativity (GR), the theory at hand can be recast in an analogous integrable form. We give the relevant rod formalism, introduced by Weyl for vacuum GR, explicitly giving the rod structure of the black hole of Bocharova et al. and Bekenstein (BBMB), in complete analogy to the Schwarzschild solution. The additional scalar field is shown to play the role of an extra Weyl potential. We then employ the Ernst method as a concrete solution generating example to obtain the Taub-NUT version of the BBMB hairy black hole. The solution is easily extended to include a cosmological constant. We show that the anti-de Sitter hyperbolic version of this solution is free of closed timelike curves that plague usual Taub-NUT metrics, and thus consists of a rotating, asymptotically locally anti-de Sitter black hole. This stationary solution has no curvature singularities whatsoever in the conformal frame, and the NUT charge is shown here to regularize the central curvature singularity of the corresponding static black hole. Given our findings we discuss the anti-de Sitter hyperbolic version of Taub-NUT in four dimensions, and show that the curvature singularity of the NUT-less solution is now replaced by a neighbouring chronological singularity screened by horizons. We argue that the properties of this rotating black hole are very similar to those of the rotating BTZ black hole in three dimensions.
International Nuclear Information System (INIS)
Hasan, M. Khayrul; Ali, M. Hossain
2009-01-01
We formulate the general relativistic magnetohydrodynamic equations for isothermal plasma in spatially flat Reissner–Nordström–de Sitter metric by using 3+1 split of spacetime. Respective perturbed equations are linearized for rotating magnetized surroundings. These are then Fourier analyzed and the corresponding dispersion relations are obtained. These relations are discussed both analytically and numerically in order to investigate the nature of waves with positive angular frequency around the horizon
Bulk and brane decay of a (4+n)-dimensional Schwarzschild-de Sitter black hole: Scalar radiation
International Nuclear Information System (INIS)
Kanti, P.; Grain, J.; Barrau, A.
2005-01-01
In this paper, we extend the idea that the spectrum of Hawking radiation can reveal valuable information on a number of parameters that characterize a particular black hole background--such as the dimensionality of spacetime and the value of coupling constants--to gain information on another important aspect: the curvature of spacetime. We investigate the emission of Hawking radiation from a D-dimensional Schwarzschild-de Sitter black hole emitted in the form of scalar fields, and employ both analytical and numerical techniques to calculate greybody factors and differential energy emission rates on the brane and in the bulk. The energy emission rate of the black hole is significantly enhanced in the high-energy regime with the number of spacelike dimensions. On the other hand, in the low-energy part of the spectrum, it is the cosmological constant that leaves a clear footprint, through a characteristic, constant emission rate of ultrasoft quanta determined by the values of black hole and cosmological horizons. Our results are applicable to 'small' black holes arising in theories with an arbitrary number and size of extra dimensions, as well as to pure 4-dimensional primordial black holes, embedded in a de Sitter spacetime
Energy Technology Data Exchange (ETDEWEB)
Prasia, P.; Kuriakose, V.C. [Cochin University of Science and Technology, Department of Physics, Kochi (India)
2017-01-15
In this work we study the Quasi-Normal Modes (QNMs) under massless scalar perturbations and the thermodynamics of linearly charged BTZ black holes in massive gravity in the (Anti)de Sitter ((A)dS) space-time. It is found that the behavior of QNMs changes with the massive parameter of the graviton and also with the charge of the black hole. The thermodynamics of such black holes in the (A)dS space-time is also analyzed in detail. The behavior of specific heat with temperature for such black holes gives an indication of a phase transition that depends on the massive parameter of the graviton and also on the charge of the black hole. (orig.)
Hod, Shahar
2018-05-01
The quasinormal resonant modes of massless neutral fields in near-extremal Kerr-Newman-de Sitter black-hole spacetimes are calculated in the eikonal regime. It is explicitly proved that, in the angular momentum regime a bar >√{1 - 2 Λ bar/4 + Λ bar / 3 }, the black-hole spacetimes are characterized by slowly decaying resonant modes which are described by the compact formula ℑ ω (n) =κ+ ṡ (n + 1/2 ) [here the physical parameters { a bar ,κ+ , Λ bar , n } are respectively the dimensionless angular momentum of the black hole, its characteristic surface gravity, the dimensionless cosmological constant of the spacetime, and the integer resonance parameter]. Our results support the validity of the Penrose strong cosmic censorship conjecture in these black-hole spacetimes.
Compressibility of rotating black holes
International Nuclear Information System (INIS)
Dolan, Brian P.
2011-01-01
Interpreting the cosmological constant as a pressure, whose thermodynamically conjugate variable is a volume, modifies the first law of black hole thermodynamics. Properties of the resulting thermodynamic volume are investigated: the compressibility and the speed of sound of the black hole are derived in the case of nonpositive cosmological constant. The adiabatic compressibility vanishes for a nonrotating black hole and is maximal in the extremal case--comparable with, but still less than, that of a cold neutron star. A speed of sound v s is associated with the adiabatic compressibility, which is equal to c for a nonrotating black hole and decreases as the angular momentum is increased. An extremal black hole has v s 2 =0.9 c 2 when the cosmological constant vanishes, and more generally v s is bounded below by c/√(2).
Collision of two rotating Hayward black holes
Energy Technology Data Exchange (ETDEWEB)
Gwak, Bogeun [Sejong University, Department of Physics and Astronomy, Seoul (Korea, Republic of)
2017-07-15
We investigate the spin interaction and the gravitational radiation thermally allowed in a head-on collision of two rotating Hayward black holes. The Hayward black hole is a regular black hole in a modified Einstein equation, and hence it can be an appropriate model to describe the extent to which the regularity effect in the near-horizon region affects the interaction and the radiation. If one black hole is assumed to be considerably smaller than the other, the potential of the spin interaction can be analytically obtained and is dependent on the alignment of angular momenta of the black holes. For the collision of massive black holes, the gravitational radiation is numerically obtained as the upper bound by using the laws of thermodynamics. The effect of the Hayward black hole tends to increase the radiation energy, but we can limit the effect by comparing the radiation energy with the gravitational waves GW150914 and GW151226. (orig.)
International Nuclear Information System (INIS)
Uchikata, Nami; Yoshida, Shijun
2011-01-01
We investigate quasinormal modes of a massless charged scalar field on a small Reissner-Nordstroem-anti-de Sitter (RN-AdS) black hole both with analytical and numerical approaches. In the analytical approach, by using the small black hole approximation (r + + /L→0, where r + and L stand for the black hole event horizon radius and the AdS scale, respectively. We then show that the small RN-AdS black hole is unstable if its quasinormal modes satisfy the superradiance condition and that the instability condition of the RN-AdS black hole in the limit of r + /L→0 is given by Q>(3/eL)Q c , where Q, Q c , and e are the charge of the black hole, the critical (maximum) charge of the black hole, and the charge of the scalar field, respectively. In the numerical approach, we calculate the quasinormal modes for the small RN-AdS black holes with r + + =0.2L, 0.1L, and 0.01L become unstable against scalar perturbations with eL=4 when the charge of the black hole satisfies Q > or approx. 0.8Q c , 0.78Q c , and 0.76Q c , respectively.
Ultraspinning instability of rotating black holes
International Nuclear Information System (INIS)
Dias, Oscar J. C.; Figueras, Pau; Monteiro, Ricardo; Santos, Jorge E.
2010-01-01
Rapidly rotating Myers-Perry black holes in d≥6 dimensions were conjectured to be unstable by Emparan and Myers. In a previous publication, we found numerically the onset of the axisymmetric ultraspinning instability in the singly spinning Myers-Perry black hole in d=7, 8, 9. This threshold also signals a bifurcation to new branches of axisymmetric solutions with pinched horizons that are conjectured to connect to the black ring, black Saturn and other families in the phase diagram of stationary solutions. We firmly establish that this instability is also present in d=6 and in d=10, 11. The boundary conditions of the perturbations are discussed in detail for the first time, and we prove that they preserve the angular velocity and temperature of the original Myers-Perry black hole. This property is fundamental to establishing a thermodynamic necessary condition for the existence of this instability in general rotating backgrounds. We also prove a previous claim that the ultraspinning modes cannot be pure gauge modes. Finally we find new ultraspinning Gregory-Laflamme instabilities of rotating black strings and branes that appear exactly at the critical rotation predicted by the aforementioned thermodynamic criterium. The latter is a refinement of the Gubser-Mitra conjecture.
International Nuclear Information System (INIS)
Daghigh, Ramin G; Green, Michael D
2009-01-01
We analyze analytically the asymptotic regions of the quasinormal mode frequency spectra with infinitely large overtone numbers for D-dimensional Schwarzschild black holes in anti de Sitter spacetimes. In this limit, we confirm the analytic results obtained previously in the literature using different methods. In addition, we show that in certain spacetime dimensions these techniques imply the existence of other regions of the asymptotic quasinormal mode frequency spectrum which have not previously appeared in the literature. For large black holes, some of these modes have a damping rate of 1.2T H , where T H is the Hawking temperature. This is less than the damping rate of the lowest overtone quasinormal mode calculated by other authors. It is not completely clear whether these modes actually exist or are an artifact of an unknown flaw in the analytic techniques being used. We discuss the possibility of the existence of these modes and explore some of the consequences. We also examine the possible connection between the asymptotic quasinormal modes of Schwarzschild-anti de Sitter black holes and the quantum level spacing of their horizon area spectrum.
Directory of Open Access Journals (Sweden)
R. da Rocha
2017-12-01
Full Text Available Sound waves on a fluid stream, in a de Laval nozzle, are shown to correspond to quasinormal modes emitted by black holes that are physical solutions in a quadratic curvature gravity with cosmological constant. Sound waves patterns in transsonic regimes at a laboratory are employed here to provide experimental data regarding generalized theories of gravity, comprised by the exact de Sitter-like solution and a perturbative solution around the Schwarzschildâde Sitter standard solution as well. Using the classical tests of General Relativity to bound free parameters in these solutions, acoustic perturbations on fluid flows in nozzles are then regarded, to study quasinormal modes of these black holes solutions, providing deviations of the de Laval nozzle cross-sectional area, when compared to the Schwarzschild solution. The fluid sonic point in the nozzle, for sound waves in the fluid, is shown to implement the acoustic event horizon corresponding to quasinormal modes. Keywords: Black holes, Fluid branes, Fluid dynamics, Quadratic curvature gravity, de Laval nozzle
Pappas, T.; Kanti, P.; Pappas, N.
2016-01-01
In this work, we study the propagation of scalar fields in the gravitational background of a higher-dimensional Schwarzschild-de-Sitter black hole as well as on the projected-on-the-brane 4-dimensional background. The scalar fields have also a non-minimal coupling to the corresponding, bulk or brane, scalar curvature. We perform a comprehensive study by deriving exact numerical results for the greybody factors, and study their profile in terms of particle and spacetime properties. We then pro...
International Nuclear Information System (INIS)
Chen Shiwu; Liu Xiongwei; Lin Kai; Zeng Xiaoxiong; Yang Shuzheng
2008-01-01
Hawking radiation from cosmological horizon and event horizon of the Reissner-Nordstroem de Sitter black hole with a global monopole is studied via a new method that was propounded by Robinson and Wilzek and elaborated by Banerjee and Kulkarni. The results show that the gauge current and energy-momentum tensor fluxes, which required keeping gauge covariance and general coordinate invariance at the quantum level in the effective field theory, are exactly equivalent to those of Hawking radiation from the event horizon and the cosmological horizon, respectively
The large dimension limit of a small black hole instability in anti-de Sitter space
Herzog, Christopher P.; Kim, Youngshin
2018-02-01
We study the dynamics of a black hole in an asymptotically AdS d × S d space-time in the limit of a large number of dimensions, d → ∞. Such a black hole is known to become dynamically unstable below a critical radius. We derive the dispersion relation for the quasinormal mode that governs this instability in an expansion in 1 /d. We also provide a full nonlinear analysis of the instability at leading order in 1 /d. We find solutions that resemble the lumpy black spots and black belts previously constructed numerically for small d, breaking the SO( d + 1) rotational symmetry of the sphere down to SO( d). We are also able to follow the time evolution of the instability. Due possibly to limitations in our analysis, our time dependent simulations do not settle down to stationary solutions. This work has relevance for strongly interacting gauge theories; through the AdS/CFT correspondence, the special case d = 5 corresponds to maximally supersymmetric Yang-Mills theory on a spatial S 3 in the microcanonical ensemble and in a strong coupling and large number of colors limit.
Rotating dilaton black holes with hair
International Nuclear Information System (INIS)
Kleihaus, Burkhard; Kunz, Jutta; Navarro-Lerida, Francisco
2004-01-01
We consider stationary rotating black holes in SU(2) Einstein-Yang-Mills theory, coupled to a dilaton. The black holes possess nontrivial non-Abelian electric and magnetic fields outside their regular event horizon. While generic solutions carry no non-Abelian magnetic charge, but non-Abelian electric charge, the presence of the dilaton field allows also for rotating solutions with no non-Abelian charge at all. As a consequence, these special solutions do not exhibit the generic asymptotic noninteger power falloff of the non-Abelian gauge field functions. The rotating black hole solutions form sequences, characterized by the winding number n and the node number k of their gauge field functions, tending to embedded Abelian black holes. The stationary non-Abelian black hole solutions satisfy a mass formula, similar to the Smarr formula, where the dilaton charge enters instead of the magnetic charge. Introducing a topological charge, we conjecture that black hole solutions in SU(2) Einstein-Yang-Mills-dilaton theory are uniquely characterized by their mass, their angular momentum, their dilaton charge, their non-Abelian electric charge, and their topological charge
Pappas, T.; Kanti, P.; Pappas, N.
2016-07-01
In this work, we study the propagation of scalar fields in the gravitational background of a higher-dimensional Schwarzschild-de Sitter black hole as well as on the projected-on-the-brane four-dimensional background. The scalar fields have also a nonminimal coupling to the corresponding, bulk or brane, scalar curvature. We perform a comprehensive study by deriving exact numerical results for the greybody factors, and study their profile in terms of particle and spacetime properties. We then proceed to derive the Hawking radiation spectra for a higher-dimensional Schwarzschild-de Sitter black hole, and we study both bulk and brane channels. We demonstrate that the nonminimal field coupling, which creates an effective mass term for the fields, suppresses the energy emission rates while the cosmological constant assumes a dual role. By computing the relative energy rates and the total emissivity ratio for bulk and brane emission, we demonstrate that the combined effect of a large number of extra dimensions and value of the field coupling gives to the bulk channel the clear domination in the bulk-brane energy balance.
International Nuclear Information System (INIS)
Cardoso, Vitor; Konoplya, Roman; Lemos, Jose P. S.
2003-01-01
We present a thorough analysis of the quasinormal (QN) behavior associated with the decay of scalar, electromagnetic, and gravitational perturbations of Schwarzschild black holes in anti-de Sitter (AdS) spacetimes. As is known, the AdS QN spectrum crucially depends on the relative size of the black hole to the AdS radius. There are three different types of behavior depending on whether the black hole is large, intermediate, or small. The results of previous works, concerning lower overtones for large black holes, are completed here by obtaining higher overtones for all three black hole regimes. There are two major conclusions that one can draw from this work: First, asymptotically for high overtones, all the modes are evenly spaced, and this holds for all three types of regime, large, intermediate, and small black holes, independently of l, where l is the quantum number characterizing the angular distribution; second, the spacing between modes is apparently universal in that it does not depend on the field; i.e., scalar, electromagnetic, and gravitational QN modes all have the same spacing for high overtones. We are also able to prove why scalar and gravitational perturbations are isospectral, asymptotically for high overtones, by introducing appropriate superpartner potentials
Horizon quantum mechanics of rotating black holes
Energy Technology Data Exchange (ETDEWEB)
Casadio, Roberto [Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); I.N.F.N., Sezione di Bologna, I.S. FLAG, Bologna (Italy); Giugno, Andrea [Ludwig-Maximilians-Universitaet, Arnold Sommerfeld Center, Munich (Germany); Giusti, Andrea [Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); I.N.F.N., Sezione di Bologna, I.S. FLAG, Bologna (Italy); Ludwig-Maximilians-Universitaet, Arnold Sommerfeld Center, Munich (Germany); Micu, Octavian [Institute of Space Science, Bucharest, P.O. Box MG-23, Bucharest-Magurele (Romania)
2017-05-15
The horizon quantum mechanics is an approach that was previously introduced in order to analyze the gravitational radius of spherically symmetric systems and compute the probability that a given quantum state is a black hole. In this work, we first extend the formalism to general space-times with asymptotic (ADM) mass and angular momentum. We then apply the extended horizon quantum mechanics to a harmonic model of rotating corpuscular black holes. We find that simple configurations of this model naturally suppress the appearance of the inner horizon and seem to disfavor extremal (macroscopic) geometries. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Lin Kai, E-mail: lk314159@126.co [Institute of Theoretical Physics, China West Normal University, NanChong, SiChuan 637002 (China); Yang Shuzheng, E-mail: szyangcwnu@126.co [Institute of Theoretical Physics, China West Normal University, NanChong, SiChuan 637002 (China)
2009-10-12
Applying the method beyond semiclassical approximation, fermion tunneling from higher-dimensional anti-de Sitter Schwarzschild black hole is researched. In our work, the 'tortoise' coordinate transformation is introduced to simplify Dirac equation, so that the equation proves that only the (r-t) sector is important to our research. Because we only need to study the (r-t) sector, the Dirac equation is decomposed into several pairs of equations spontaneously, and we then prove the components of wave functions are proportional to each other in every pair of equations. Therefore, the suitable action forms of the wave functions are obtained, and finally the correctional Hawking temperature and entropy can be determined via the method beyond semiclassical approximation.
Page, Don N.
2018-01-01
In an asymptotically flat spacetime of dimension d >3 and with the Newtonian gravitational constant G , a spherical black hole of initial horizon radius rh and mass M ˜rhd -3/G has a total decay time to Hawking emission of td˜rhd -1/G ˜G2 /(d -3 )M(d -1 )/(d -3 ) which grows without bound as the radius rh and mass M are taken to infinity. However, in asymptotically anti-de Sitter spacetime with a length scale ℓ and with absorbing boundary conditions at infinity, the total Hawking decay time does not diverge as the mass and radius go to infinity but instead remains bounded by a time of the order of ℓd-1/G .
Planck absolute entropy of a rotating BTZ black hole
Riaz, S. M. Jawwad
2018-04-01
In this paper, the Planck absolute entropy and the Bekenstein-Smarr formula of the rotating Banados-Teitelboim-Zanelli (BTZ) black hole are presented via a complex thermodynamical system contributed by its inner and outer horizons. The redefined entropy approaches zero as the temperature of the rotating BTZ black hole tends to absolute zero, satisfying the Nernst formulation of a black hole. Hence, it can be regarded as the Planck absolute entropy of the rotating BTZ black hole.
Phase structure of the Born-Infeld-anti-de Sitter black holes probed by non-local observables
Energy Technology Data Exchange (ETDEWEB)
Zeng, Xiao-Xiong [Chongqing Jiaotong University, School of Material Science and Engineering, Chongqing (China); Chinese Academy of Sciences, Institute of Theoretical Physics, Beijing (China); Liu, Xian-Ming [Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA (United States); Hubei University for Nationalities, Center for Theoretical Physics, School of Sciences, Enshi, Hubei (China); Li, Li-Fang [Chinese Academy of Sciences, State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Beijing (China)
2016-11-15
With the non-local observables such as two point correlation function and holographic entanglement entropy, we probe the phase structure of the Born-Infeld-anti-de Sitter black holes. For the case bQ > 0.5, where b is the Born-Infeld parameter and Q is the charge of the black hole, the phase structure is found to be similar to that of the Van der Waals phase transition, namely the black hole undergoes a first order phase transition and a second order phase transition before it reaches a stable phase. While for the case bQ < 0.5, a new phase branch emerges besides the Van der Waals phase transition. For the first order phase transition, the equal area law is checked, and for the second order phase transition, the critical exponent of the heat capacity is obtained. All these results are found to be the same as that observed in the entropy-temperature plane. (orig.)
Directory of Open Access Journals (Sweden)
A. Sheykhi
2016-01-01
Full Text Available We construct a new class of charged rotating black brane solutions in the presence of logarithmic nonlinear electrodynamics with complete set of the rotation parameters in arbitrary dimensions. The topology of the horizon of these rotating black branes is flat, while due to the presence of the dilaton field the asymptotic behavior of them is neither flat nor (anti-de Sitter [(AdS]. We investigate the physical properties of the solutions. The mass and angular momentum of the spacetime are obtained by using the counterterm method inspired by AdS/CFT correspondence. We derive temperature, electric potential, and entropy associated with the horizon and check the validity of the first law of thermodynamics on the black brane horizon. We study thermal stability of the solutions in both canonical and grand-canonical ensemble and disclose the effects of the rotation parameter, nonlinearity of electrodynamics, and dilaton field on the thermal stability conditions. We find the solutions are thermally stable for α1 the solutions may encounter an unstable phase, where α is dilaton-electromagnetic coupling constant.
Interior structure of rotating black holes. III. Charged black holes
International Nuclear Information System (INIS)
Hamilton, Andrew J. S.
2011-01-01
This paper extends to the case of charged rotating black holes the conformally stationary, axisymmetric, conformally separable solutions presented for uncharged rotating black holes in a companion paper. In the present paper, the collisionless fluid accreted by the black hole may be charged. The charge of the black hole is determined self-consistently by the charge accretion rate. As in the uncharged case, hyper-relativistic counterstreaming between ingoing and outgoing streams drives inflation at (just above) the inner horizon, followed by collapse. If both ingoing and outgoing streams are charged, then conformal separability holds during early inflation, but fails as inflation develops. If conformal separability is imposed throughout inflation and collapse, then only one of the ingoing and outgoing streams can be charged: the other must be neutral. Conformal separability prescribes a hierarchy of boundary conditions on the ingoing and outgoing streams incident on the inner horizon. The dominant radial boundary conditions require that the incident ingoing and outgoing number densities be uniform with latitude, but the charge per particle must vary with latitude such that the incident charge densities vary in proportion to the radial electric field. The subdominant angular boundary conditions require specific forms of the incident number- and charge-weighted angular motions. If the streams fall freely from outside the horizon, then the prescribed angular conditions can be achieved by the charged stream, but not by the neutral stream. Thus, as in the case of an uncharged black hole, the neutral stream must be considered to be delivered ad hoc to just above the inner horizon.
Thermodynamics of DBI Black Holes in Anti-de Sitter Spacetime
International Nuclear Information System (INIS)
Jia Dongyan; Yue Ruihong; Huang Shiming
2011-01-01
Through the gauge field theory, we obtain the solution of the DBI-AdS black hole. In the meantime, according to the relations between the action and the grand partition function, we obtain the grand partition function in the DBI-AdS black hole. The temperature and the potential of the DBI-AdS black hole are gained from differential of the grand partition function. With the thermodynamic relations, other thermodynamics are also obtained. The solution and the thermodynamics of the DBI-AdS black hole are turned out that they can reduce to the case of a charged black hole in four-dimensional spacetimes. (general)
Thermodynamics of Born-Infeld-anti-de Sitter black holes in the grand canonical ensemble
International Nuclear Information System (INIS)
Fernando, Sharmanthie
2006-01-01
The main objective of this paper is to study thermodynamics and stability of static electrically charged Born-Infeld black holes in AdS space in D=4. The Euclidean action for the grand canonical ensemble is computed with the appropriate boundary terms. The thermodynamical quantities such as the Gibbs free energy, entropy and specific heat of the black holes are derived from it. The global stability of black holes are studied in detail by studying the free energy for various potentials. For small values of the potential, we find that there is a Hawking-Page phase transition between a BIAdS black hole and the thermal-AdS space. For large potentials, the black hole phase is dominant and is preferred over the thermal-AdS space. Local stability is studied by computing the specific heat for constant potentials. The nonextreme black holes have two branches: small black holes are unstable and the large black holes are stable. The extreme black holes are shown to be stable both globally as well as locally. In addition to the thermodynamics, we also show that the phase structure relating the mass M and the charge Q of the black holes is similar to the liquid-gas-solid phase diagram
Daudé, Thierry
2017-01-01
In this paper, the authors study the direct and inverse scattering theory at fixed energy for massless charged Dirac fields evolving in the exterior region of a Kerr-Newman-de Sitter black hole. In the first part, they establish the existence and asymptotic completeness of time-dependent wave operators associated to our Dirac fields. This leads to the definition of the time-dependent scattering operator that encodes the far-field behavior (with respect to a stationary observer) in the asymptotic regions of the black hole: the event and cosmological horizons. The authors also use the miraculous property (quoting Chandrasekhar)-that the Dirac equation can be separated into radial and angular ordinary differential equations-to make the link between the time-dependent scattering operator and its stationary counterpart. This leads to a nice expression of the scattering matrix at fixed energy in terms of stationary solutions of the system of separated equations. In a second part, the authors use this expression of ...
Lemos, José P. S.; Minamitsuji, Masato; Zaslavskii, Oleg B.
2017-10-01
Using a thin shell, the first law of thermodynamics, and a unified approach, we study the thermodymanics and find the entropy of a (2 +1 )-dimensional extremal rotating Bañados-Teitelbom-Zanelli (BTZ) black hole. The shell in (2 +1 ) dimensions, i.e., a ring, is taken to be circularly symmetric and rotating, with the inner region being a ground state of the anti-de Sitter spacetime and the outer region being the rotating BTZ spacetime. The extremal BTZ rotating black hole can be obtained in three different ways depending on the way the shell approaches its own gravitational or horizon radius. These ways are explicitly worked out. The resulting three cases give that the BTZ black hole entropy is either the Bekenstein-Hawking entropy, S =A/+ 4 G , or an arbitrary function of A+, S =S (A+) , where A+=2 π r+ is the area, i.e., the perimeter, of the event horizon in (2 +1 ) dimensions. We speculate that the entropy of an extremal black hole should obey 0 ≤S (A+)≤A/+ 4 G . We also show that the contributions from the various thermodynamic quantities, namely, the mass, the circular velocity, and the temperature, for the entropy in all three cases are distinct. This study complements the previous studies in thin shell thermodynamics and entropy for BTZ black holes. It also corroborates the results found for a (3 +1 )-dimensional extremal electrically charged Reissner-Nordström black hole.
M-theory and stringy corrections to anti-de Sitter black holes and conformal field theories
International Nuclear Information System (INIS)
Caldarelli, Marco M.; Klemm, Dietmar
1999-01-01
We consider black holes in anti-de Sitter space AdS p+2 (p = 2, 3, 5), which have hyperbolic, flat or spherical event horizons. The O(α' 3 ) corrections (or the leading corrections in powers of the eleven-dimensional Planck length, in the case of M-theory compactifications) to the black hole metrics are computed for the various topologies and dimensions. We investigate the consequences of the stringy or M-theory corrections for the black hole thermodynamics. In particular, we show the emergence of a stable branch of small spherical black holes. Surprisingly, for any of the considered dimension and topologies, the corrected thermodynamical quantities turn out to coincide with those calculated within a simplified approach, which uses only the unperturbed metric. We obtain the corrected Hawking-Page transition temperature for black holes with spherical horizons, and show that for p = 3 this phase transition disappears at a value of α' considerably smaller than that estimated previously by Gao and Li. Using the AdS/CFT correspondence, we determine the S 1 x S 3 N = 4 SYM phase diagram for sufficiently large 't Hooft coupling, and show that the critical point at which the Hawking-Page transition disappears (the correspondence point of Horowitz-Polchinski), occurs at g 2 YM N ∼ 20.5. The d = 4 and d = 7 black hole phase diagrams are also determined, and connection is made with the corresponding boundary CFTs. Finally, for flat and hyperbolic horizons, we show that the leading stringy or M-theory corrections do not give rise to any phase transition. However, if the horizon is compactified to a torus T p or to a quotient of hyperbolic space, H p /Γ, the appearance of light winding modes around non-contractible cycles signal new phase transitions, which in the toroidal case have previously been discussed by Barbon et al. We comment on these phase transitions for SYM on H p /Γ and on T p , when the moduli of the torus are taken into account
Near horizon geometry of rotating black holes in five dimensions
International Nuclear Information System (INIS)
Cvetic, M.; Larsen, F.
1998-01-01
We interpret the general rotating black holes in five dimensions as rotating black strings in six dimensions. In the near-horizon limit the geometry is locally AdS 3 x S 3 , as in the non-rotating case. However, the global structure couples the AdS 3 and the S 3 , giving angular velocity to the S 3 . The asymptotic geometry is exploited to count the microstates and recover the precise value of the Bekenstein-Hawking entropy, with rotation taken properly into account. We discuss the perturbation spectrum of the rotating black hole, and its relation to the underlying conformal field theory. (orig.)
Coalescence of rotating black holes on Eguchi-Hanson space
International Nuclear Information System (INIS)
Matsuno, Ken; Ishihara, Hideki; Kimura, Masashi; Tomizawa, Shinya
2007-01-01
We obtain new charged rotating multi-black hole solutions on the Eguchi-Hanson space in the five-dimensional Einstein-Maxwell system with a Chern-Simons term and a positive cosmological constant. In the two-black holes case, these solutions describe the coalescence of two rotating black holes with the horizon topologies of S 3 into a single rotating black hole with the horizon topology of the lens space L(2;1)=S 3 /Z 2 . We discuss the differences in the horizon areas between our solutions and the two-centered Klemm-Sabra solutions which describe the coalescence of two rotating black holes with the horizon topologies of S 3 into a single rotating black hole with the horizon topology of S 3
HKT geometry and de Sitter supergravity
International Nuclear Information System (INIS)
Grover, Jai; Gutowski, Jan B.; Herdeiro, Carlos A.R.; Sabra, Wafic
2009-01-01
Solutions of five-dimensional minimal de Sitter supergravity admitting Killing spinors are considered. It is shown that the 'timelike' solutions are determined in terms of a four-dimensional hyper-Kaehler torsion (HKT) manifold. If the HKT manifold is conformally hyper-Kaehler the most general solution can be obtained from a sub-class of supersymmetric solutions of minimal N=2 ungauged supergravity, by means of a simple transformation. Examples include a multi-BMPV de Sitter solution, describing multiple rotating black holes co-moving with the expansion of the universe. If the HKT manifold is not conformally hyper-Kaehler, examples admitting a tri-holomorphic Killing vector field are constructed in terms of certain solutions of three-dimensional Einstein-Weyl geometry
One-Loop Test of Quantum Black Holes in anti-de Sitter Space
Liu, James T.; Pando Zayas, Leopoldo A.; Rathee, Vimal; Zhao, Wenli
2018-06-01
Within 11-dimensional supergravity we compute the logarithmic correction to the entropy of magnetically charged asymptotically AdS4 black holes with arbitrary horizon topology. We find perfect agreement with the expected microscopic result arising from the dual field theory computation of the topologically twisted index. Our result relies crucially on a particular limit to the extremal black hole case and clarifies some aspects of quantum corrections in asymptotically AdS spacetimes.
Generalized Uncertainty Principle and Black Hole Entropy of Higher-Dimensional de Sitter Spacetime
International Nuclear Information System (INIS)
Zhao Haixia; Hu Shuangqi; Zhao Ren; Li Huaifan
2007-01-01
Recently, there has been much attention devoted to resolving the quantum corrections to the Bekenstein-Hawking black hole entropy. In particular, many researchers have expressed a vested interest in the coefficient of the logarithmic term of the black hole entropy correction term. In this paper, we calculate the correction value of the black hole entropy by utilizing the generalized uncertainty principle and obtain the correction term caused by the generalized uncertainty principle. Because in our calculation we think that the Bekenstein-Hawking area theorem is still valid after considering the generalized uncertainty principle, we derive that the coefficient of the logarithmic term of the black hole entropy correction term is positive. This result is different from the known result at present. Our method is valid not only for four-dimensional spacetimes but also for higher-dimensional spacetimes. In the whole process, the physics idea is clear and calculation is simple. It offers a new way for studying the entropy correction of the complicated spacetime.
Black-hole creation in quantum cosmology
Energy Technology Data Exchange (ETDEWEB)
Zhong Chao, Wu [Rome, Univ. `La Sapienza` (Italy). International Center for Relativistic Astrophysics]|[Specola Vaticana, Vatican City State (Vatican City State, Holy See)
1997-11-01
It is proven that the probability of a black hole created from the de Sitter space-time background, at the Wkb level, is the exponential of one quarter of the sum of the black hole and cosmological horizon areas, or the total entropy of the universe. This is true not only for the spherically symmetric cases of the Schwarzschild or Reissner-Nordstroem black holes, but also for the rotating cases of the Kerr black hole and the rotating charged case of the Newman black hole. The de Sitter metric is the most probable evolution at the Planckian era of the universe.
Canonical Entropy and Phase Transition of Rotating Black Hole
International Nuclear Information System (INIS)
Ren, Zhao; Yue-Qin, Wu; Li-Chun, Zhang
2008-01-01
Recently, the Hawking radiation of a black hole has been studied using the tunnel effect method. The radiation spectrum of a black hole is derived. By discussing the correction to spectrum of the rotating black hole, we obtain the canonical entropy. The derived canonical entropy is equal to the sum of Bekenstein–Hawking entropy and correction term. The correction term near the critical point is different from the one near others. This difference plays an important role in studying the phase transition of the black hole. The black hole thermal capacity diverges at the critical point. However, the canonical entropy is not a complex number at this point. Thus we think that the phase transition created by this critical point is the second order phase transition. The discussed black hole is a five-dimensional Kerr-AdS black hole. We provide a basis for discussing thermodynamic properties of a higher-dimensional rotating black hole. (general)
Graviatoms with de Sitter Interior
Directory of Open Access Journals (Sweden)
Irina Dymnikova
2013-01-01
Full Text Available We present a graviatom with de Sitter interior as a new candidate to atomic dark matter generically related to a vacuum dark energy through its de Sitter vacuum interior. It is a gravitationally bound quantum system consisting of a nucleus represented by a regular primordial black hole (RPBH, its remnant or gravitational vacuum soliton G-lump, and a charged particle. We estimate probability of formation of RPBHs and G-lumps in the early Universe and evaluate energy spectrum and electromagnetic radiation of graviatom which can in principle bear information about a fundamental symmetry scale responsible for de Sitter interior and serve as its observational signatures.
Charged anti-de Sitter BTZ black holes in Maxwell-f(T) gravity
Nashed, G. G. L.; Capozziello, S.
2018-05-01
Inspired by the Bañados, Teitelboim and Zanelli (BTZ) formalism, we discuss the Maxwell-f(T) gravity in (2 + 1) dimensions. The main task is to derive exact solutions for a special form of f(T) = T + 𝜖T2, with T being the torsion scalar of Weitzenböck geometry. To this end, a triad field is applied to the equations of motion of charged f(T) and sets of circularly symmetric noncharged and charged solutions have been derived. We show that, in the charged case, the monopole-like and the ln terms are linked by a correlative constant despite the known results in teleparallel geometry and its extensions.39 Furthermore, it is possible to show that the event horizon is not identical with the Cauchy horizon due to such a constant. The singularities and the horizons of these black holes are examined: they are new and have no analogue in the literature due to the fact that their curvature singularities are soft. We calculate the energy content of these solutions by using the general vector form of the energy-momentum within the framework of f(T) gravity. Finally, some thermodynamical quantities, like entropy and Hawking temperature, are derived.
Thermodynamics of rotating black branes in (n+1)-dimensional Einstein-Born-Infeld gravity
International Nuclear Information System (INIS)
Dehghani, M. H.; Sedehi, H. R. Rastegar
2006-01-01
We construct a new class of charged rotating solutions of (n+1)-dimensional Einstein-Born-Infeld gravity with cylindrical or toroidal horizons in the presence of cosmological constant and investigate their properties. These solutions are asymptotically (anti)-de Sitter and reduce to the solutions of Einstein-Maxwell gravity as the Born-Infeld parameters goes to infinity. We find that these solutions can represent black branes, with inner and outer event horizons, an extreme black brane or a naked singularity provided the parameters of the solutions are chosen suitably. We compute temperature, mass, angular momentum, entropy, charge and electric potential of the black brane solutions. We obtain a Smarr-type formula and show that these quantities satisfy the first law of thermodynamics. We also perform a stability analysis by computing the heat capacity and the determinant of Hessian matrix of mass of the system with infinite boundary with respect to its thermodynamic variables in both the canonical and the grand-canonical ensembles, and show that the system is thermally stable in the whole phase space. Also, we find that there exists an unstable phase when the finite size effect is taken into account
Horizon structure of rotating Bardeen black hole and particle acceleration
International Nuclear Information System (INIS)
Ghosh, Sushant G.; Amir, Muhammed
2015-01-01
We investigate the horizon structure and ergosphere in a rotating Bardeen regular black hole, which has an additional parameter (g) due to the magnetic charge, apart from the mass (M) and the rotation parameter (a). Interestingly, for each value of the parameter g, there exists a critical rotation parameter (a = a E ), which corresponds to an extremal black hole with degenerate horizons, while for a < a E it describes a non-extremal black hole with two horizons, and no black hole for a > a E . We find that the extremal value a E is also influenced by the parameter g, and so is the ergosphere. While the value of a E remarkably decreases when compared with the Kerr black hole, the ergosphere becomes thicker with the increase in g.We also study the collision of two equal mass particles near the horizon of this black hole, and explicitly show the effect of the parameter g. The center-of-mass energy (E CM ) not only depend on the rotation parameter a, but also on the parameter g. It is demonstrated that the E CM could be arbitrarily high in the extremal cases when one of the colliding particles has a critical angular momentum, thereby suggesting that the rotating Bardeen regular black hole can act as a particle accelerator. (orig.)
Equatorial circular orbits in the Kerr-de Sitter spacetimes
International Nuclear Information System (INIS)
Stuchlik, Zdenek; Slany, Petr
2004-01-01
Equatorial motion of test particles in Kerr-de Sitter spacetimes is considered. Circular orbits are determined, their properties are discussed for both black-hole and naked-singularity spacetimes, and their relevance for thin accretion disks is established. The circular orbits constitute two families that coalesce at the so-called static radius. The orientation of the motion along the circular orbits is, in accordance with case of asymptotically flat Kerr spacetimes, defined by relating the motion to the locally nonrotating frames. The minus-family orbits are all counterrotating, while the plus-family orbits are usually corotating relative to these frames. However, the plus-family orbits become counterrotating in the vicinity of the static radius in all Kerr-de Sitter spacetimes, and they become counterrotating in the vicinity of the ring singularity in Kerr-de Sitter naked-singularity spacetimes with a low enough rotational parameter. In such spacetimes, the efficiency of the conversion of the rest energy into heat energy in the geometrically thin plus-family accretion disks can reach extremely high values exceeding the efficiency of the annihilation process. The transformation of a Kerr-de Sitter naked singularity into an extreme black hole due to accretion in the thin disks is briefly discussed for both the plus-family and minus-family disks. It is shown that such a conversion leads to an abrupt instability of the innermost parts of the plus-family accretion disks that can have strong observational consequences
Scale-Invariant Rotating Black Holes in Quadratic Gravity
Directory of Open Access Journals (Sweden)
Guido Cognola
2015-07-01
Full Text Available Black hole solutions in pure quadratic theories of gravity are interesting since they allow the formulation of a set of scale-invariant thermodynamics laws. Recently, we have proven that static scale-invariant black holes have a well-defined entropy, which characterizes equivalent classes of solutions. In this paper, we generalize these results and explore the thermodynamics of rotating black holes in pure quadratic gravity.
A rotating charged black hole solution in f (R) gravity
Indian Academy of Sciences (India)
Abstract. In the context of f (R) theories of gravity, we address the problem of finding a rotating charged black hole solution in the case of constant curvature. A new metric is obtained by solving the field equations and we show that its behaviour is typical of a rotating charged source. In addition, we analyse the ...
International Nuclear Information System (INIS)
Paudel, Eak Raj
2007-01-01
Gravitational field of Schwarzschild and Schwarzschild de-sitter Black hole with a straight string passing through it. In such space analytical and numerical solutions of null and time like geodesics are investigated. The string parameter a + is found to affect both the angle of deflection in null geodesics and the precession of perihelion on time like geodesics .It is seen that the deflection of null and time like geodesics near the gravitating mass of de-sitter space time increases with t he gravitational field of a straight string in flat space time has the property that the Newtonian potential vanishes yet there are non trivial gravitational effects. A test particle is neither attracted nor repelled by a string, yet the conical nature of space outside of string produces observable effects such as light deflection . Schwarzschild Black hole is a mathematical solution to the Einstein's field equations and corresponds to the gravitational field of massive compact spherically symmetric ob normal. References 1. Aryal, M.M, A. Vilenkin and L.H Ford, 1986, Phys.Rev. D32 ,2262 2. Moriyasu ,K ., 1980 , An introduction to gauge Invariance 3. Vilenkin A., 1985 , Physical reports , cosmic strings and Domain walls 4. Berry, M. , 1976 , Principle of cosmology and Gravitation 5. Mishner , C.W ., K.S .Throne , J.A wheeler , 1973. (Author)
Scattering of particles by deformed non-rotating black holes
International Nuclear Information System (INIS)
Pei, Guancheng; Bambi, Cosimo
2015-01-01
We study the excitation of axial quasi-normal modes of deformed non-rotating black holes by test particles and we compare the associated gravitational wave signal with that expected in general relativity from a Schwarzschild black hole. Deviations from standard predictions are quantified by an effective deformation parameter, which takes into account deviations from both the Schwarzschild metric and the Einstein equations. We show that, at least in the case of non-rotating black holes, it is possible to test the metric around the compact object, in the sense that the measurement of the gravitational wave spectrum can constrain possible deviations from the Schwarzschild solution. (orig.)
Interior structure of rotating black holes. I. Concise derivation
International Nuclear Information System (INIS)
Hamilton, Andrew J. S.; Polhemus, Gavin
2011-01-01
This paper presents a concise derivation of a new set of solutions for the interior structure of accreting, rotating black holes. The solutions are conformally stationary, axisymmetric, and conformally separable. Hyper-relativistic counter-streaming between freely-falling collisionless ingoing and outgoing streams leads to mass inflation at the inner horizon, followed by collapse. The solutions fail at an exponentially tiny radius, where the rotational motion of the streams becomes comparable to their radial motion. The papers provide a fully nonlinear, dynamical solution for the interior structure of a rotating black hole from just above the inner horizon inward, down to a tiny scale.
Charged rotating black holes on a 3-brane
International Nuclear Information System (INIS)
Aliev, A.N.; Guemruekcueoglu, A.E.
2005-01-01
We study exact stationary and axisymmetric solutions describing charged rotating black holes localized on a 3-brane in the Randall-Sundrum braneworld. The charges of the black holes are considered to be of two types, the first being an induced tidal charge that appears as an imprint of nonlocal gravitational effects from the bulk space and the second is a usual electric charge arising due to a Maxwell field trapped on the brane. We assume a special ansatz for the metric on the brane taking it to be of the Kerr-Schild form and show that the Kerr-Newman solution of ordinary general relativity in which the electric charge is superseded by a tidal charge satisfies a closed system of the effective gravitational field equations on the brane. It turns out that the negative tidal charge may provide a mechanism for spinning up the black hole so that its rotation parameter exceeds its mass. This is not allowed in the framework of general relativity. We also find a new solution that represents a rotating black hole on the brane carrying both charges. We show that for a rapid enough rotation the combined influence of the rotational dynamics and the local bulk effects of the 'squared' energy-momentum tensor on the brane distort the horizon structure of the black hole in such a way that it can be thought of as composed of nonuniformly rotating null circles with growing radii from the equatorial plane to the poles. We finally study the geodesic motion of test particles in the equatorial plane of a rotating black hole with tidal charge. We show that the effects of negative tidal charge tend to increase the horizon radius, as well as the radii of the limiting photon orbit, the innermost bound and the innermost stable circular orbits for both direct and retrograde motions of the particles
Physics of Rotating and Expanding Black Hole Universe
Directory of Open Access Journals (Sweden)
Seshavatharam U. V. S.
2010-04-01
Full Text Available Throughout its journey universe follows strong gravity. By unifying general theory of relativity and quantum mechanics a simple derivation is given for rotating black hole's temperature. It is shown that when the rotation speed approaches light speed temperature approaches Hawking's black hole temperature. Applying this idea to the cosmic black hole it is noticed that there is "no cosmic temperature" if there is "no cosmic rotation". Starting from the Planck scale it is assumed that universe is a rotating and expanding black hole. Another key assumption is that at any time cosmic black hole rotates with light speed. For this cosmic sphere as a whole while in light speed rotation "rate of decrease" in temperature or "rate of increase" in cosmic red shift is a measure of "rate of cosmic expansion". Since 1992, measured CMBR data indicates that, present CMB is same in all directions equal to $2.726^circ$ K, smooth to 1 part in 100,000 and there is no continuous decrease! This directly indicates that, at present rate of decrease in temperature is practically zero and rate of expansion is practically zero. Universe is isotropic and hence static and is rotating as a rigid sphere with light speed. At present galaxies are revolving with speeds proportional to their distances from the cosmic axis of rotation. If present CMBR temperature is $2.726^circ$ K, present value of obtained angular velocity is $2.17 imes 10^{-18}$ rad/sec $cong$ 67 Km/sec$imes$Mpc. Present cosmic mass density and cosmic time are fitted with a $ln (volume ratio$ parameter. Finally it can be suggested that dark matter and dark energy are ad-hoc and misleading concepts.
Rotating Hayward’s regular black hole as particle accelerator
International Nuclear Information System (INIS)
Amir, Muhammed; Ghosh, Sushant G.
2015-01-01
Recently, Bañados, Silk and West (BSW) demonstrated that the extremal Kerr black hole can act as a particle accelerator with arbitrarily high center-of-mass energy (E CM ) when the collision takes place near the horizon. The rotating Hayward’s regular black hole, apart from Mass (M) and angular momentum (a), has a new parameter g (g>0 is a constant) that provides a deviation from the Kerr black hole. We demonstrate that for each g, with M=1, there exist critical a E and r H E , which corresponds to a regular extremal black hole with degenerate horizons, and a E decreases whereas r H E increases with increase in g. While ablack hole with outer and inner horizons. We apply the BSW process to the rotating Hayward’s regular black hole, for different g, and demonstrate numerically that the E CM diverges in the vicinity of the horizon for the extremal cases thereby suggesting that a rotating regular black hole can also act as a particle accelerator and thus in turn provide a suitable framework for Plank-scale physics. For a non-extremal case, there always exist a finite upper bound for the E CM , which increases with the deviation parameter g.
Bulk-boundary thermodynamic equivalence, and the Bekenstein and cosmic-censorship bounds for rotating charged AdS black holes
International Nuclear Information System (INIS)
Gibbons, G.W.; Perry, M.J.; Pope, C.N.
2005-01-01
We show that one may pass from bulk to boundary thermodynamic quantities for rotating anti-de Sitter (AdS) black holes in arbitrary dimensions so that if the bulk quantities satisfy the first law of thermodynamics then so do the boundary conformal field theory (CFT) quantities. This corrects recent claims that boundary CFT quantities satisfying the first law may only be obtained using bulk quantities measured with respect to a certain frame rotating at infinity, and which therefore do not satisfy the first law. We show that the bulk black-hole thermodynamic variables, or equivalently therefore the boundary CFT variables, do not always satisfy a Cardy-Verlinde type formula, but they do always satisfy an AdS-Bekenstein bound. The universal validity of the Bekenstein bound is a consequence of the more fundamental cosmic-censorship bound, which we find to hold in all cases examined. We also find that at fixed entropy, the temperature of a rotating black hole is bounded above by that of a nonrotating black hole, in four and five dimensions, but not in six or more dimensions. We find evidence for universal upper bounds for the area of cosmological event horizons and black-hole horizons in rotating black-hole spacetimes with a positive cosmological constant
Physics of Rotating and Expanding Black Hole Universe
Directory of Open Access Journals (Sweden)
Seshavatharam U. V. S.
2010-04-01
Full Text Available Throughout its journey universe follows strong gravity. By unifying general theory of relativity and quantum mechanics a simple derivation is given for rotating black hole’s temperature. It is shown that when the rotation speed approaches light speed temperature approaches Hawking’s black hole temperature. Applying this idea to the cosmic black hole it is noticed that there is “no cosmic temperature” if there is “no cosmic rotation”. Starting from the Planck scale it is assumed that- universe is a rotating and expanding black hole. Another key assumption is that at any time cosmic black hole rotates with light speed. For this cosmic sphere as a whole while in light speed rotation “rate of decrease” in temperature or “rate of increase” in cosmic red shift is a measure of “rate of cosmic expansion”. Since 1992, measured CMBR data indicates that, present CMB is same in all directions equal to 2 : 726 K ; smooth to 1 part in 100,000 and there is no continuous decrease! This directly indicates that, at present rate of decrease in temperature is practically zero and rate of expansion is practically zero. Universe is isotropic and hence static and is rotating as a rigid sphere with light speed. At present galaxies are revolving with speeds proportional to their distances from the cosmic axis of rotation. If present CMBR temperature is 2 : 726 K, present value of obtained angular velocity is 2 : 17 10 Present cosmic mass density and cosmic time are fitted with a ln ( volume ratio parameter. Finally it can be suggested that dark matter and dark energy are ad-hoc and misleading concepts.
Spherical null geodesics of rotating Kerr black holes
International Nuclear Information System (INIS)
Hod, Shahar
2013-01-01
The non-equatorial spherical null geodesics of rotating Kerr black holes are studied analytically. Unlike the extensively studied equatorial circular orbits whose radii are known analytically, no closed-form formula exists in the literature for the radii of generic (non-equatorial) spherical geodesics. We provide here an approximate formula for the radii r ph (a/M;cosi) of these spherical null geodesics, where a/M is the dimensionless angular momentum of the black hole and cos i is an effective inclination angle (with respect to the black-hole equatorial plane) of the orbit. It is well-known that the equatorial circular geodesics of the Kerr spacetime (the prograde and the retrograde orbits with cosi=±1) are characterized by a monotonic dependence of their radii r ph (a/M;cosi=±1) on the dimensionless spin-parameter a/M of the black hole. We use here our novel analytical formula to reveal that this well-known property of the equatorial circular geodesics is actually not a generic property of the Kerr spacetime. In particular, we find that counter-rotating spherical null orbits in the range (3√(3)−√(59))/4≲cosi ph (a/M;cosi=const) on the dimensionless rotation-parameter a/M of the black hole. Furthermore, it is shown that spherical photon orbits of rapidly-rotating black holes are characterized by a critical inclination angle, cosi=√(4/7), above which the coordinate radii of the orbits approach the black-hole radius in the extremal limit. We prove that this critical inclination angle signals a transition in the physical properties of the spherical null geodesics: in particular, it separates orbits which are characterized by finite proper distances to the black-hole horizon from orbits which are characterized by infinite proper distances to the horizon.
Strong Gravity Effects of Rotating Black Holes: Quasiperiodic Oscillations
Aliev, Alikram N.; Esmer, Göksel Daylan; Talazan, Pamir
2012-01-01
We explore strong gravity effects of the geodesic motion in the spacetime of rotating black holes in general relativity and braneworld gravity. We focus on the description of the motion in terms of three fundamental frequencies: The orbital frequency, the radial and vertical epicyclic frequencies. For a Kerr black hole, we perform a detailed numerical analysis of these frequencies at the innermost stable circular orbits and beyond them as well as at the characteristic stable orbits, at which ...
Stationary strings near a higher-dimensional rotating black hole
International Nuclear Information System (INIS)
Frolov, Valeri P.; Stevens, Kory A.
2004-01-01
We study stationary string configurations in a space-time of a higher-dimensional rotating black hole. We demonstrate that the Nambu-Goto equations for a stationary string in the 5D (five-dimensional) Myers-Perry metric allow a separation of variables. We present these equations in the first-order form and study their properties. We prove that the only stationary string configuration that crosses the infinite redshift surface and remains regular there is a principal Killing string. A worldsheet of such a string is generated by a principal null geodesic and a timelike at infinity Killing vector field. We obtain principal Killing string solutions in the Myers-Perry metrics with an arbitrary number of dimensions. It is shown that due to the interaction of a string with a rotating black hole, there is an angular momentum transfer from the black hole to the string. We calculate the rate of this transfer in a space-time with an arbitrary number of dimensions. This effect slows down the rotation of the black hole. We discuss possible final stationary configurations of a rotating black hole interacting with a string
Regular black hole in three dimensions
Myung, Yun Soo; Yoon, Myungseok
2008-01-01
We find a new black hole in three dimensional anti-de Sitter space by introducing an anisotropic perfect fluid inspired by the noncommutative black hole. This is a regular black hole with two horizons. We compare thermodynamics of this black hole with that of non-rotating BTZ black hole. The first-law of thermodynamics is not compatible with the Bekenstein-Hawking entropy.
Hawking radiation of a high-dimensional rotating black hole
Energy Technology Data Exchange (ETDEWEB)
Zhao, Ren; Zhang, Lichun; Li, Huaifan; Wu, Yueqin [Shanxi Datong University, Institute of Theoretical Physics, Department of Physics, Datong (China)
2010-01-15
We extend the classical Damour-Ruffini method and discuss Hawking radiation spectrum of high-dimensional rotating black hole using Tortoise coordinate transformation defined by taking the reaction of the radiation to the spacetime into consideration. Under the condition that the energy and angular momentum are conservative, taking self-gravitation action into account, we derive Hawking radiation spectrums which satisfy unitary principle in quantum mechanics. It is shown that the process that the black hole radiates particles with energy {omega} is a continuous tunneling process. We provide a theoretical basis for further studying the physical mechanism of black-hole radiation. (orig.)
State-space Manifold and Rotating Black Holes
Bellucci, Stefano
2010-01-01
We study a class of fluctuating higher dimensional black hole configurations obtained in string theory/ $M$-theory compactifications. We explore the intrinsic Riemannian geometric nature of Gaussian fluctuations arising from the Hessian of the coarse graining entropy, defined over an ensemble of brane microstates. It has been shown that the state-space geometry spanned by the set of invariant parameters is non-degenerate, regular and has a negative scalar curvature for the rotating Myers-Perry black holes, Kaluza-Klein black holes, supersymmetric $AdS_5$ black holes, $D_1$-$D_5$ configurations and the associated BMPV black holes. Interestingly, these solutions demonstrate that the principal components of the state-space metric tensor admit a positive definite form, while the off diagonal components do not. Furthermore, the ratio of diagonal components weakens relatively faster than the off diagonal components, and thus they swiftly come into an equilibrium statistical configuration. Novel aspects of the scali...
Late-time dynamics of rapidly rotating black holes
International Nuclear Information System (INIS)
Glampedakis, K.; Andersson, N.
2001-01-01
We study the late-time behaviour of a dynamically perturbed rapidly rotating black hole. Considering an extreme Kerr black hole, we show that the large number of virtually undamped quasinormal modes (that exist for nonzero values of the azimuthal eigenvalue m) combine in such a way that the field (as observed at infinity) oscillates with an amplitude that decays as 1/t at late times. For a near extreme black hole, these modes, collectively, give rise to an exponentially decaying field which, however, is considerably 'long-lived'. Our analytic results are verified using numerical time-evolutions of the Teukolsky equation. Moreover, we argue that the physical mechanism behind the observed behaviour is the presence of a 'superradiance resonance cavity' immediately outside the black hole. We present this new feature in detail, and discuss whether it may be relevant for astrophysical black holes. (author)
International Nuclear Information System (INIS)
Urano, Miho; Tomimatsu, Akira; Saida, Hiromi
2009-01-01
The mechanical first law (MFL) of black hole spacetimes is a geometrical relation which relates variations of the mass parameter and horizon area. While it is well known that the MFL of an asymptotic flat black hole is equivalent to its thermodynamical first law, however we do not know the detail of the MFL of black hole spacetimes with a cosmological constant which possess a black hole and cosmological event horizons. This paper aims to formulate an MFL of the two-horizon spacetimes. For this purpose, we try to include the effects of two horizons in the MFL. To do so, we make use of the Iyer-Wald formalism and extend it to regard the mass parameter and the cosmological constant as two independent variables which make it possible to treat the two horizons on the same footing. Our extended Iyer-Wald formalism preserves the existence of the conserved Noether current and its associated Noether charge, and gives an abstract form of the MFL of black hole spacetimes with a cosmological constant. Then, as a representative application of this formalism, we derive the MFL of the Schwarzschild-de Sitter (SdS) spacetime. Our MFL of the SdS spacetime relates the variations of three quantities: the mass parameter, the total area of the two horizons and the volume enclosed by the two horizons. If our MFL is regarded as a thermodynamical first law of the SdS spacetime, it offers a thermodynamically consistent description of the SdS black hole evaporation process: the mass decreases while the volume and the entropy increase. In our suggestion, a generalized second law is not needed to ensure the second law of SdS thermodynamics for its evaporation process.
On the generalized second law for rotating black holes
International Nuclear Information System (INIS)
Curir, A.
1986-01-01
The generalized second law of thermodynamics for rotating black holes is reexamined in the superradiant range in order to take account of the contribution to the production of entropy coming from the semiclassical non-thermal emission. After including this new contribution, the validity of the law is proved by using statistical thermodynamics arguments. (orig.)
Lemos, José P. S.; Minamitsuji, Masato; Zaslavskii, Oleg B.
2017-02-01
In a (2 +1 )-dimensional spacetime with a negative cosmological constant, the thermodynamics and the entropy of an extremal rotating thin shell, i.e., an extremal rotating ring, are investigated. The outer and inner regions with respect to the shell are taken to be the Bañados-Teitelbom-Zanelli (BTZ) spacetime and the vacuum ground state anti-de Sitter spacetime, respectively. By applying the first law of thermodynamics to the extremal thin shell, one shows that the entropy of the shell is an arbitrary well-behaved function of the gravitational area A+ alone, S =S (A+). When the thin shell approaches its own gravitational radius r+ and turns into an extremal rotating BTZ black hole, it is found that the entropy of the spacetime remains such a function of A+, both when the local temperature of the shell at the gravitational radius is zero and nonzero. It is thus vindicated by this analysis that extremal black holes, here extremal BTZ black holes, have different properties from the corresponding nonextremal black holes, which have a definite entropy, the Bekenstein-Hawking entropy S (A+)=A/+4G , where G is the gravitational constant. It is argued that for extremal black holes, in particular for extremal BTZ black holes, one should set 0 ≤S (A+)≤A/+4G;i.e., the extremal black hole entropy has values in between zero and the maximum Bekenstein-Hawking entropy A/+4 G . Thus, rather than having just two entropies for extremal black holes, as previous results have debated, namely, 0 and A/+4 G , it is shown here that extremal black holes, in particular extremal BTZ black holes, may have a continuous range of entropies, limited by precisely those two entropies. Surely, the entropy that a particular extremal black hole picks must depend on past processes, notably on how it was formed. A remarkable relation between the third law of thermodynamics and the impossibility for a massive body to reach the velocity of light is also found. In addition, in the procedure, it
Analytic continuation of the rotating black hole state counting
Energy Technology Data Exchange (ETDEWEB)
Achour, Jibril Ben [Departement of Physics, Center for Field Theory and Particles Physics, Fudan University,20433 Shanghai (China); Noui, Karim [Fédération Denis Poisson, Laboratoire de Mathématiques et Physique Théorique (UMR 7350),Université François Rabelais,Parc de Grandmont, 37200 Tours (France); Laboratoire APC - Astroparticule et Cosmologie, Université Paris Diderot Paris 7,75013 Paris (France); Perez, Alejandro [Centre de Physique Théorique (UMR 7332), Aix Marseille Université and Université de Toulon,13288 Marseille (France)
2016-08-24
In loop quantum gravity, a spherical black hole can be described in terms of a Chern-Simons theory on a punctured 2-sphere. The sphere represents the horizon. The punctures are the edges of spin-networks in the bulk which cross the horizon and carry quanta of area. One can generalize this construction and model a rotating black hole by adding an extra puncture colored with the angular momentum J in the 2-sphere. We compute the entropy of rotating black holes in this model and study its semi-classical limit. After performing an analytic continuation which sends the Barbero-Immirzi parameter to γ=±i, we show that the leading order term in the semi-classical expansion of the entropy reproduces the Bekenstein-Hawking law independently of the value of J.
Directory of Open Access Journals (Sweden)
Ran Li
2016-07-01
Full Text Available Reissner–Nordström Anti-de Sitter (RNAdS black holes are unstable against the charged scalar field perturbations due to the well-known superradiance phenomenon. We present the time domain analysis of charged scalar field perturbations in the RNAdS black hole background in general dimensions. We show that the instabilities of charged scalar field can be explicitly illustrated from the time profiles of evolving scalar field. By using the Prony method to fit the time evolution data, we confirm the mode that dominates the long time behavior of scalar field is in accordance with the quasinormal mode from the frequency domain analysis. The superradiance origin of the instability can also be demonstrated by comparing the real part of the dominant mode with the superradiant condition of charged scalar field. It is shown that all the unstable modes are superradiant, which is consistent with the analytical result in the frequency domain analysis. Furthermore, we also confirm there exists the rapid exponential growing modes in the RNAdS case, which makes the RNAdS black hole a good test ground to investigate the nonlinear evolution of superradiant instability.
Strong cosmic censorship in de Sitter space
Dias, Oscar J. C.; Eperon, Felicity C.; Reall, Harvey S.; Santos, Jorge E.
2018-05-01
Recent work indicates that the strong cosmic censorship hypothesis is violated by nearly extremal Reissner-Nordström-de Sitter black holes. It was argued that perturbations of such a black hole decay sufficiently rapidly that the perturbed spacetime can be extended across the Cauchy horizon as a weak solution of the equations of motion. In this paper we consider the case of Kerr-de Sitter black holes. We find that, for any nonextremal value of the black hole parameters, there are quasinormal modes which decay sufficiently slowly to ensure that strong cosmic censorship is respected. Our analysis covers both scalar field and linearized gravitational perturbations.
Direct imaging rapidly-rotating non-Kerr black holes
Energy Technology Data Exchange (ETDEWEB)
Bambi, Cosimo, E-mail: Cosimo.Bambi@physik.uni-muenchen.de [Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universitaet Muenchen, 80333 Munich (Germany); Caravelli, Francesco, E-mail: fcaravelli@perimeterinstitute.ca [Max Planck Institute for Gravitational Physics, Albert Einstein Institute, 14476 Golm (Germany); Department of Physics, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5 (Canada); Modesto, Leonardo, E-mail: lmodesto@perimeterinstitute.ca [Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5 (Canada)
2012-05-01
Recently, two of us have argued that non-Kerr black holes in gravity theories different from General Relativity may have a topologically non-trivial event horizon. More precisely, the spatial topology of the horizon of non-rotating and slow-rotating objects would be a 2-sphere, like in Kerr space-time, while it would change above a critical value of the spin parameter. When the topology of the horizon changes, the black hole central singularity shows up. The accretion process from a thin disk can potentially overspin these black holes and induce the topology transition, violating the Weak Cosmic Censorship Conjecture. If the astrophysical black hole candidates are not the black holes predicted by General Relativity, we might have the quite unique opportunity to see their central region, where classical physics breaks down and quantum gravity effects should appear. Even if the quantum gravity region turned out to be extremely small, at the level of the Planck scale, the size of its apparent image would be finite and potentially observable with future facilities.
Rotating black holes at future colliders. III. Determination of black hole evolution
International Nuclear Information System (INIS)
Ida, Daisuke; Oda, Kin-ya; Park, Seong Chan
2006-01-01
TeV scale gravity scenario predicts that the black hole production dominates over all other interactions above the scale and that the Large Hadron Collider will be a black hole factory. Such higher-dimensional black holes mainly decay into the standard model fields via the Hawking radiation whose spectrum can be computed from the greybody factor. Here we complete the series of our work by showing the greybody factors and the resultant spectra for the brane-localized spinor and vector field emissions for arbitrary frequencies. Combining these results with the previous works, we determine the complete radiation spectra and the subsequent time evolution of the black hole. We find that, for a typical event, well more than half a black hole mass is emitted when the hole is still highly rotating, confirming our previous claim that it is important to take into account the angular momentum of black holes
Rotating Dilaton Black Strings Coupled to Exponential Nonlinear Electrodynamics
Directory of Open Access Journals (Sweden)
Ahmad Sheykhi
2014-01-01
Full Text Available We construct a new class of charged rotating black string solutions coupled to dilaton and exponential nonlinear electrodynamic fields with cylindrical or toroidal horizons in the presence of a Liouville-type potential for the dilaton field. Due to the presence of the dilaton field, the asymptotic behaviors of these solutions are neither flat nor (AdS. We analyze the physical properties of the solutions in detail. We compute the conserved and thermodynamic quantities of the solutions and verify the first law of thermodynamics on the black string horizon. When the nonlinear parameter β2 goes to infinity, our results reduce to those of black string solutions in Einstein-Maxwell-dilaton gravity.
Criteria for retrograde rotation of accreting black holes
Mikhailov, A. G.; Piotrovich, M. Yu; Gnedin, Yu N.; Natsvlishvili, T. M.; Buliga, S. D.
2018-06-01
Rotating supermassive black holes produce jets and their origin is connected to the magnetic field that is generated by accreting matter flow. There is a point of view that electromagnetic fields around rotating black holes are brought to the hole by accretion. In this situation the prograde accreting discs produce weaker large-scale black hole threading magnetic fields, implying weaker jets than in retrograde regimes. The basic goal of this paper is to find the best candidates for retrograde accreting systems in observed active galactic nuclei. We show that active galactic nuclei with low Eddington ratio are really the best candidates for retrograde systems. This conclusion is obtained for kinetically dominated Fanaroff-Riley class II radio galaxies, flat-spectrum radio-loud narrow-line Seyfert I galaxies and a number of nearby galaxies. Our conclusion is that the best candidates for retrograde systems are the noticeable population of active galactic nuclei in the Universe. This result corresponds to the conclusion that in the merging process the interaction of merging black holes with a retrograde circumbinary disc is considerably more effective for shrinking the binary system.
Faraday rotation near charged black holes and other electrovacuum geometries
International Nuclear Information System (INIS)
Gerlach, U.H.
1975-01-01
In space permeated by a steady background electromagnetic field a gravitational wave and an electromagnetic wave not only undergo beat frequency oscillations, but the linear polarizations of these waves undergo Faraday rotations as well. The beating and the Faraday rotations are inextricably related. The classification of these phenomena requires three parameters, the three Euler parameters of SU(2). They specify in a more general sense the ''polarization'' of an electrograviton mode. The evolution of the beat frequency oscillations and the Faraday rotations along a propagating wave front is described as a moving point in SU(2). Consequently, a charged black hole serves not only as a catalyst for converting suitably directed electromagnetic radiation into gravitational radiation, but also as an agent that randomized the linear polarizations of radiation emerging from it. An assessment of these phenomena in relation to the origin of Weber's signals is given
International Nuclear Information System (INIS)
Dias, Goncalo A. S.; Lemos, Jose P. S.
2009-01-01
The Hamiltonian thermodynamics formalism is applied to the general d-dimensional Reissner-Nordstroem-anti-de Sitter black hole with spherical, planar, and hyperbolic horizon topology. After writing its action and performing a Legendre transformation, surface terms are added in order to guarantee a well-defined variational principle with which to obtain sensible equations of motion, and also to allow later on the thermodynamical analysis. Then a Kuchar canonical transformation is done, which changes from the metric canonical coordinates to the physical parameters coordinates. Again, a well-defined variational principle is guaranteed through boundary terms. These terms influence the falloff conditions of the variables and at the same time the form of the new Lagrange multipliers. Reduction to the true degrees of freedom is performed, which are the conserved mass and charge of the black hole. Upon quantization a Lorentzian partition function Z is written for the grand canonical ensemble, where the temperature T and the electric potential φ are fixed at infinity. After imposing Euclidean boundary conditions on the partition function, the respective effective action I * , and thus the thermodynamical partition function, is determined for any dimension d and topology k. This is a quite general action. Several previous results can be then condensed in our single general formula for the effective action I * . Phase transitions are studied for the spherical case, and it is shown that all the other topologies have no phase transitions. A parallel with the Bose-Einstein condensation can be established. Finally, the expected values of energy, charge, and entropy are determined for the black hole solution.
The rotating dyonic black holes of Kaluza-Klein theory
International Nuclear Information System (INIS)
Rasheed, D.
1995-01-01
The most general electrically and magnetically charged rotating black hole solutions of 5 dimensional Kaluza-Klein theory are given in an explicit form. Various classical quantities associated with the black holes are derived. In particular, one finds the very surprising result that the gyromagnetic and gyroelectric ratios can become arbitrarily large. The thermodynamic quantities of the black holes are calculated and a Smarr-type formula is obtained leading to a generalized first law of black hole thermodynamics. The properties of the extreme solutions are investigated and it is shown how they naturally separate into two classes. The extreme solutions in one class are found to have two unusual properties: (i) Their event horizons have zero angular velocity and yet they have non-zero ADM angular momentum. (ii) In certain circumstances it is possible to add angular momentum to these extreme solutions without changing the mass or charges and yet still maintain an extreme solution. Regarding the extreme black holes as elementary particles, their stability is discussed and it is found that they are stable provided they have sufficient angular momentum. (orig.)
Featured Image: Making a Rapidly Rotating Black Hole
Kohler, Susanna
2017-10-01
These stills from a simulation show the evolution (from left to right and top to bottom) of a high-mass X-ray binary over 1.1 days, starting after the star on the right fails to explode as a supernova and then collapses into a black hole. Many high-mass X-ray binaries like the well-known Cygnus X-1, the first source widely accepted to be a black hole host rapidly spinning black holes. Despite our observations of these systems, however, were still not sure how these objects end up with such high rotation speeds. Using simulations like that shown above, a team of scientists led by Aldo Batta (UC Santa Cruz) has demonstrated how a failed supernova explosion can result in such a rapidly spinning black hole. The authors work shows that in a binary where one star attempts to explode as a supernova and fails it doesnt succeed in unbinding the star the large amount of fallback material can interact with the companion star and then accrete onto the black hole, spinning it up in the process. You can read more about the authors simulations and conclusions in the paper below.CitationAldo Batta et al 2017 ApJL 846 L15. doi:10.3847/2041-8213/aa8506
International Nuclear Information System (INIS)
Giribet, Gaston; Oliva, Julio; Tempo, David; Troncoso, Ricardo
2009-01-01
Asymptotically anti-de Sitter rotating black holes for the Bergshoeff-Hohm-Townsend massive gravity theory in three dimensions are considered. In the special case when the theory admits a unique maximally symmetric solution, apart from the mass and the angular momentum, the black hole is described by an independent 'gravitational hair' parameter, which provides a negative lower bound for the mass. This bound is saturated at the extremal case, and since the temperature and the semiclassical entropy vanish, it is naturally regarded as the ground state. The absence of a global charge associated with the gravitational hair parameter reflects itself through the first law of thermodynamics in the fact that the variation of this parameter can be consistently reabsorbed by a shift of the global charges, giving further support to consider the extremal case as the ground state. The rotating black hole fits within relaxed asymptotic conditions as compared with the ones of Brown and Henneaux, such that they are invariant under the standard asymptotic symmetries spanned by two copies of the Virasoro generators, and the algebra of the conserved charges acquires a central extension. Then it is shown that Strominger's holographic computation for general relativity can also be extended to the Bergshoeff-Hohm-Townsend theory; i.e., assuming that the quantum theory could be consistently described by a dual conformal field theory at the boundary, the black hole entropy can be microscopically computed from the asymptotic growth of the number of states according to Cardy's formula, in exact agreement with the semiclassical result.
Chaotic cold accretion on to black holes in rotating atmospheres
Gaspari, M.; Brighenti, F.; Temi, P.
2015-07-01
The fueling of black holes is one key problem in the evolution of baryons in the universe. Chaotic cold accretion (CCA) profoundly differs from classic accretion models, as Bondi and thin disc theories. Using 3D high-resolution hydrodynamic simulations, we now probe the impact of rotation on the hot and cold accretion flow in a typical massive galaxy. In the hot mode, with or without turbulence, the pressure-dominated flow forms a geometrically thick rotational barrier, suppressing the black hole accretion rate to ~1/3 of the spherical case value. When radiative cooling is dominant, the gas loses pressure support and quickly circularizes in a cold thin disk; the accretion rate is decoupled from the cooling rate, although it is higher than that of the hot mode. In the more common state of a turbulent and heated atmosphere, CCA drives the dynamics if the gas velocity dispersion exceeds the rotational velocity, i.e., turbulent Taylor number Tat 1), the broadening of the distribution and the efficiency of collisions diminish, damping the accretion rate ∝ Tat-1, until the cold disk drives the dynamics. This is exacerbated by the increased difficulty to grow TI in a rotating halo. The simulated sub-Eddington accretion rates cover the range inferred from AGN cavity observations. CCA predicts inner flat X-ray temperature and r-1 density profiles, as recently discovered in M 87 and NGC 3115. The synthetic Hα images reproduce the main features of cold gas observations in massive ellipticals, as the line fluxes and the filaments versus disk morphology. Such dichotomy is key for the long-term AGN feedback cycle. As gas cools, filamentary CCA develops and boosts AGN heating; the cold mode is thus reduced and the rotating disk remains the sole cold structure. Its consumption leaves the atmosphere in hot mode with suppressed accretion and feedback, reloading the cycle.
Entropy of non-extreme rotating black holes in string theories
International Nuclear Information System (INIS)
Youm, D.
1998-01-01
We formulate the Rindler space description of rotating black holes in string theories. We argue that the comoving frame is the natural frame for studying the thermodynamics of rotating black holes and the statistical analysis of rotating black holes gets simplified in this frame. We also calculate statistical entropies of a general class of rotating black holes in heterotic strings on tori by applying the D-brane description and the correspondence principle. We find at least a qualitative agreement between the Bekenstein-Hawking entropies and the statistical entropies of these black hole solutions. (orig.)
Kerr-de Sitter spacetime, Penrose process, and the generalized area theorem
Bhattacharya, Sourav
2018-04-01
We investigate various aspects of energy extraction via the Penrose process in the Kerr-de Sitter spacetime. We show that the increase in the value of a positive cosmological constant, Λ , always reduces the efficiency of this process. The Kerr-de Sitter spacetime has two ergospheres associated with the black hole and the cosmological event horizons. We prove by analyzing turning points of the trajectory that the Penrose process in the cosmological ergoregion is never possible. We next show that in this process both the black hole and cosmological event horizons' areas increase, and the latter becomes possible when the particle coming from the black hole ergoregion escapes through the cosmological event horizon. We identify a new, local mass function instead of the mass parameter, to prove this generalized area theorem. This mass function takes care of the local spacetime energy due to the cosmological constant as well, including that which arises due to the frame-dragging effect due to spacetime rotation. While the current observed value of Λ is quite small, its effect in this process could be considerable in the early Universe scenario where its value is much larger, where the two horizons could have comparable sizes. In particular, the various results we obtain here are also evaluated in a triply degenerate limit of the Kerr-de Sitter spacetime we find, in which radial values of the inner, the black hole and the cosmological event horizons are nearly coincident.
3-D collapse of rotating stars to Kerr black holes
International Nuclear Information System (INIS)
Baiotti, L; Hawke, I; Montero, P J; Loeffler, F L; Rezzolla, L; Stergioulas, N; Font, J A; Seidel, E
2005-01-01
We study gravitational collapse of uniformly rotating neutron stars to Kerr black holes, using a new three-dimensional, fully general relativistic hydrodynamics code, which uses high-resolution shock-capturing techniques and a conformal traceless formulation of the Einstein equations. We investigate the gravitational collapse by carefully studying not only the dynamics of the matter, but also that of the trapped surfaces, i.e. of both the apparent and event horizons formed during the collapse. The use of these surfaces, together with the dynamical horizon framework, allows for a precise measurement of the black-hole mass and spin. The ability to successfully perform these simulations for sufficiently long times relies on excising a region of the computational domain which includes the singularity and is within the apparent horizon. The dynamics of the collapsing matter is strongly influenced by the initial amount of angular momentum in the progenitor star and, for initial models with sufficiently high angular velocities, the collapse can lead to the formation of an unstable disc in differential rotation
Evolution of Binary Supermassive Black Holes in Rotating Nuclei
Energy Technology Data Exchange (ETDEWEB)
Rasskazov, Alexander; Merritt, David [School of Physics and Astronomy and Center for Computational Relativity and Gravitation, Rochester Institute of Technology, Rochester, NY 14623 (United States)
2017-03-10
The interaction of a binary supermassive black hole with stars in a galactic nucleus can result in changes to all the elements of the binary’s orbit, including the angles that define its orientation. If the nucleus is rotating, the orientation changes can be large, causing large changes in the binary’s orbital eccentricity as well. We present a general treatment of this problem based on the Fokker–Planck equation for f , defined as the probability distribution for the binary’s orbital elements. First- and second-order diffusion coefficients are derived for the orbital elements of the binary using numerical scattering experiments, and analytic approximations are presented for some of these coefficients. Solutions of the Fokker–Planck equation are then derived under various assumptions about the initial rotational state of the nucleus and the binary hardening rate. We find that the evolution of the orbital elements can become qualitatively different when we introduce nuclear rotation: (1) the orientation of the binary’s orbit evolves toward alignment with the plane of rotation of the nucleus and (2) binary orbital eccentricity decreases for aligned binaries and increases for counteraligned ones. We find that the diffusive (random-walk) component of a binary’s evolution is small in nuclei with non-negligible rotation, and we derive the time-evolution equations for the semimajor axis, eccentricity, and inclination in that approximation. The aforementioned effects could influence gravitational wave production as well as the relative orientation of host galaxies and radio jets.
Tsukamoto, Naoki
2018-03-01
The shadow of a black hole can be one of the strong observational evidences for stationary black holes. If we see shadows at the center of galaxies, we would say whether the observed compact objects are black holes. In this paper, we consider a formula for the contour of a shadow in an asymptotically-flat, stationary, and axisymmetric black hole spacetime. We show that the formula is useful for obtaining the contour of the shadow of several black holes such as the Kerr-Newman black hole and rotating regular black holes. Using the formula, we can obtain new examples of the contour of the shadow of rotating black holes if assumptions are satisfied.
Phase transition for black holes with scalar hair and topological black holes
International Nuclear Information System (INIS)
Myung, Yun Soo
2008-01-01
We study phase transitions between black holes with scalar hair and topological black holes in asymptotically anti-de Sitter spacetimes. As the ground state solutions, we introduce the non-rotating BTZ black hole in three dimensions and topological black hole with hyperbolic horizon in four dimensions. For the temperature matching only, we show that the phase transition between black hole with scalar hair (Martinez-Troncoso-Zanelli black hole) and topological black hole is second-order by using differences between two free energies. However, we do not identify what order of the phase transition between scalar and non-rotating BTZ black holes occurs in three dimensions, although there exists a possible decay of scalar black hole to non-rotating BTZ black hole
Energy Technology Data Exchange (ETDEWEB)
Anabalón, Andrés, E-mail: andres.anabalon-at@uai.cl [Departamento de Ciencias, Facultad de Artes Liberales y Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar (Chile); Astefanesei, Dumitru [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile)
2015-03-26
We review the existence of exact hairy black holes in asymptotically flat, anti-de Sitter and de Sitter space-times. We briefly discuss the issue of stability and the charging of the black holes with a Maxwell field.
Standing shocks in adiabatic black hole accretion of rotating matter
International Nuclear Information System (INIS)
Abramowicz, M.A.; Chakrabarti, S.K.
1988-08-01
We present all the solutions for stationary, axially symmetric, transonic, adiabatic flows with polytropic, rotating fluid configurations of small transverse thickness, in an arbitrarily chosen potential. Special attention is paid to the formation of the standing shocks in the case of black hole accretion and winds. We point out the possibility of three types of shocks depending upon three extreme physical conditions at the shocks. These are: Rankine-Hugoniot shocks, isentropic compression waves, and isothermal shocks. We write down the shock conditions for these three cases and discuss briefly the physical situations under which these shocks may form. A complete discussion on the properties of these shocks will be presented elsewhere. (author). 21 refs, 4 figs
Rotating black string and the effective Teukolsky equation in the braneworld
International Nuclear Information System (INIS)
Kanno, Sugumi; Soda, Jiro
2004-01-01
In the Randall-Sundrum two-brane (RS1) model, a large Kerr black hole on the brane can be naturally identified with a section of a rotating black string. To estimate Kaluza-Klein (KK) corrections on gravitational waves emitted by perturbed rotating black strings, we give the effective Teukolsky equation on the brane, which is a separable equation and hence numerically manageable. In this process, we derive the master equation for the electric part of the Weyl tensor, E μν , which is also useful in discussing the transition from black strings to localized black holes triggered by Gregory-Laflamme instability
Rotating black holes in dilatonic Einstein-Gauss-Bonnet theory.
Kleihaus, Burkhard; Kunz, Jutta; Radu, Eugen
2011-04-15
We construct generalizations of the Kerr black holes by including higher-curvature corrections in the form of the Gauss-Bonnet density coupled to the dilaton. We show that the domain of existence of these Einstein-Gauss-Bonnet-dilaton (EGBD) black holes is bounded by the Kerr black holes, the critical EGBD black holes, and the singular extremal EGBD solutions. The angular momentum of the EGBD black holes can exceed the Kerr bound. The EGBD black holes satisfy a generalized Smarr relation. We also compare their innermost stable circular orbits with those of the Kerr black holes and show the existence of differences which might be observable in astrophysical systems.
Shadow casted by a Konoplya-Zhidenko rotating non-Kerr black hole
Energy Technology Data Exchange (ETDEWEB)
Wang, Mingzhi; Chen, Songbai; Jing, Jiliang, E-mail: wmz9085@126.com, E-mail: csb3752@hunnu.edu.cn, E-mail: jljing@hunnu.edu.cn [Institute of Physics and Department of Physics, Hunan Normal University, Changsha, Hunan 410081 (China)
2017-10-01
We have investigated the shadow of a Konoplya-Zhidenko rotating non-Kerr black hole with an extra deformation parameter. The spacetime structure arising from the deformed parameter affects sharply the black hole shadow. With the increase of the deformation parameter, the size of the shadow of black hole increase and its shape becomes more rounded for arbitrary rotation parameter. The D-shape shadow of black hole emerges only in the case a <2√3/3\\, M with the proper deformation parameter. Especially, the black hole shadow possesses a cusp shape with small eye lashes in the cases with a >M, and the shadow becomes less cuspidal with the increase of the deformation parameter. Our result show that the presence of the deformation parameter yields a series of significant patterns for the shadow casted by a Konoplya-Zhidenko rotating non-Kerr black hole.
Growth of black holes in the interior of rotating neutron stars
DEFF Research Database (Denmark)
Kouvaris, C.; Tinyakov, P.
2014-01-01
Mini-black holes made of dark matter that can potentially form in the interior of neutron stars always have been thought to grow by accreting the matter of the core of the star via a spherical Bondi accretion. However, neutron stars have sometimes significant angular velocities that can...... in principle stall the spherical accretion and potentially change the conclusions derived about the time it takes for black holes to destroy a star. We study the effect of the star rotation on the growth of such black holes and the evolution of the black hole spin. Assuming no mechanisms of angular momentum...... evacuation, we find that even moderate rotation rates can in fact destroy spherical accretion at the early stages of the black hole growth. However, we demonstrate that the viscosity of nuclear matter can alleviate the effect of rotation, making it possible for the black hole to maintain spherical accretion...
Surface geometry of a rotating black hole in a magnetic field
International Nuclear Information System (INIS)
Kulkarni, R.; Dadhich, N.
1986-01-01
We study the intrinsic geometry of the surface of a rotating black hole in a uniform magnetic field, using a metric discovered by Ernst and Wild. Rotating black holes are analogous to material rotating bodies according to Smarr since black holes also tend to become more oblate on being spun up. Our study shows that the presence of a strong magnetic field ensures that a black hole actually becomes increasingly prolate on being spun up. Studying the intrinsic geometry of the black-hole surface also gives rise to an interesting embedding problem. Smarr shows that a Kerr black hole cannot be globally isometrically embedded in R 3 if its specific angular momentum a exceeds (√3 /2)mapprox.0.866. . .m. We show that in the presence of a magnetic field of strength B, satisfying 2- √3 2 m 2 3 for all values of the angular momentum
BlackMax: A black-hole event generator with rotation, recoil, split branes, and brane tension
International Nuclear Information System (INIS)
Dai Dechang; Starkman, Glenn; Stojkovic, Dejan; Issever, Cigdem; Tseng, Jeff; Rizvi, Eram
2008-01-01
We present a comprehensive black-hole event generator, BlackMax, which simulates the experimental signatures of microscopic and Planckian black-hole production and evolution at the LHC in the context of brane world models with low-scale quantum gravity. The generator is based on phenomenologically realistic models free of serious problems that plague low-scale gravity, thus offering more realistic predictions for hadron-hadron colliders. The generator includes all of the black-hole gray-body factors known to date and incorporates the effects of black-hole rotation, splitting between the fermions, nonzero brane tension, and black-hole recoil due to Hawking radiation (although not all simultaneously). The generator can be interfaced with Herwig and Pythia. The main code can be downloaded from http://www-pnp.physics.ox.ac.uk/~issever/BlackMax/blackmax.html.
Energy Technology Data Exchange (ETDEWEB)
Hod, Shahar [The Ruppin Academic Center, Emek Hefer (Israel); The Hadassah Institute, Jerusalem (Israel)
2015-07-15
It is shown that rapidly-rotating Kerr black holes are characterized by the dimensionless ratio τ{sub gap}/τ{sub emission} = O(1), where τ{sub gap} is the average time gap between the emissions of successive Hawking quanta and τ{sub emission} is the characteristic timescale required for an individual Hawking quantum to be emitted from the black hole. This relation implies that the Hawking cascade from rapidly-rotating black holes has an almost continuous character. Our results correct some inaccurate claims that recently appeared in the literature regarding the nature of the Hawking black-hole evaporation process. (orig.)
International Nuclear Information System (INIS)
Hod, Shahar
2015-01-01
It is shown that rapidly-rotating Kerr black holes are characterized by the dimensionless ratio τ gap /τ emission = O(1), where τ gap is the average time gap between the emissions of successive Hawking quanta and τ emission is the characteristic timescale required for an individual Hawking quantum to be emitted from the black hole. This relation implies that the Hawking cascade from rapidly-rotating black holes has an almost continuous character. Our results correct some inaccurate claims that recently appeared in the literature regarding the nature of the Hawking black-hole evaporation process. (orig.)
International Nuclear Information System (INIS)
Aldrovandi, R; Almeida, J P Beltran; Pereira, J G
2007-01-01
A special relativity based on the de Sitter group is introduced, which is a theory that might hold up in the presence of a non-vanishing cosmological constant. Like ordinary special relativity, it retains the quotient character of spacetime, and a notion of homogeneity. As a consequence, the underlying spacetime will be a de Sitter spacetime, whose associated kinematics will differ from that of ordinary special relativity. The corresponding modified notions of energy and momentum are obtained, and the exact relationship between them, which is invariant under a re-scaling of the involved quantities, explicitly exhibited. Since the de Sitter group can be considered a particular deformation of the Poincare group, this theory turns out to be a specific kind of deformed (or doubly) special relativity. Some experimental consequences, as well as the causal structure of spacetime-modified by the presence of the de Sitter horizon-are briefly discussed
De Sitter projective relativity
Licata, Ignazio; Benedetto, Elmo
2017-01-01
This book presents the Projective approach to de Sitter Relativity. It traces the development of renewed interest in models of the universe at constant positive curvature such as "vacuum" geometry. The De Sitter Theory of Relativity, formulated in 1917 with Willem De Sitter's solution of the Einstein equations, was used in different fields during the 1950s and 1960s, in the work of H. Bacry, J.M. LevyLeblond and F.Gursey, to name some important contributors. From the 1960s to 1980s, L. Fantappié and G. Arcidiacono provided an elegant group approach to the De Sitter universe putting the basis for special and general projective relativity. Today such suggestions flow into a unitary scenario, and this way the De Sitter Relativity is no more a "missing opportunity" (F. Dyson, 1972), but has a central role in theoretical physics. In this volume a systematic presentation is given of the De Sitter Projective relativity, with the recent developments in projective general relativity and quantum cosmology.
Mass, entropy, and holography in asymptotically de Sitter spaces
International Nuclear Information System (INIS)
Balasubramanian, Vijay; Boer, Jan de; Minic, Djordje
2002-01-01
We propose a novel prescription for computing the boundary stress tensor and charges of asymptotically de Sitter (dS) spacetimes from data at early or late time infinity. If there is a holographic dual to dS spaces, defined analogously to the AdS/conformal field theory correspondence, our methods compute the (Euclidean) stress tensor of the dual. We compute the masses of Schwarzschild-de Sitter black holes in four and five dimensions, and the masses and angular momenta of Kerr-de Sitter spaces in three dimensions. All these spaces are less massive than de Sitter space, a fact which we use to qualitatively and quantitatively relate de Sitter entropy to the degeneracy of possible dual field theories. Our results in general dimensions lead to a conjecture: Any asymptotically de Sitter spacetime with mass greater than de Sitter space has a cosmological singularity. Finally, if a dual to de Sitter space exists, the trace of our stress tensor computes the renormalized group (RG) equation of the dual field theory. Cosmological time evolution corresponds to RG evolution in the dual. The RG evolution of the c function is then related to changes in accessible degrees of freedom in an expanding universe
Floating and sinking: the imprint of massive scalars around rotating black holes.
Cardoso, Vitor; Chakrabarti, Sayan; Pani, Paolo; Berti, Emanuele; Gualtieri, Leonardo
2011-12-09
We study the coupling of massive scalar fields to matter in orbit around rotating black holes. It is generally expected that orbiting bodies will lose energy in gravitational waves, slowly inspiraling into the black hole. Instead, we show that the coupling of the field to matter leads to a surprising effect: because of superradiance, matter can hover into "floating orbits" for which the net gravitational energy loss at infinity is entirely provided by the black hole's rotational energy. Orbiting bodies remain floating until they extract sufficient angular momentum from the black hole, or until perturbations or nonlinear effects disrupt the orbit. For slowly rotating and nonrotating black holes floating orbits are unlikely to exist, but resonances at orbital frequencies corresponding to quasibound states of the scalar field can speed up the inspiral, so that the orbiting body sinks. These effects could be a smoking gun of deviations from general relativity.
Hawking radiation of spin-1 particles from a three-dimensional rotating hairy black hole
Energy Technology Data Exchange (ETDEWEB)
Sakalli, I.; Ovgun, A., E-mail: ali.ovgun@emu.edu.tr [Eastern Mediterranean University Famagusta, North Cyprus, Department of Physics (Turkey)
2015-09-15
We study the Hawking radiation of spin-1 particles (so-called vector particles) from a three-dimensional rotating black hole with scalar hair using a Hamilton–Jacobi ansatz. Using the Proca equation in the WKB approximation, we obtain the tunneling spectrum of vector particles. We recover the standard Hawking temperature corresponding to the emission of these particles from a rotating black hole with scalar hair.
Area spectrum of the D-dimensional de Sitter spacetime
International Nuclear Information System (INIS)
Lopez-Ortega, A.
2009-01-01
The determination of the quantum area spectrum of a black hole horizon by means of its asymptotic quasinormal frequencies has been explored recently. We believe that for D-dimensional de Sitter horizon we must study if the idea works. Thus taking into account the local description of the thermodynamics of horizons proposed by Padmanabhan and the results of Hod, Kunstatter, and Maggiore we study the area spectrum of the D-dimensional de Sitter horizon.
Area spectrum of the D-dimensional de Sitter spacetime
Energy Technology Data Exchange (ETDEWEB)
Lopez-Ortega, A., E-mail: alopezo@ipn.m [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Legaria, Instituto Politecnico Nacional, Calzada Legaria 694 Colonia Irrigacion, Delegacion Miguel Hidalgo, Mexico, D.F., C.P. 11500 (Mexico)
2009-11-23
The determination of the quantum area spectrum of a black hole horizon by means of its asymptotic quasinormal frequencies has been explored recently. We believe that for D-dimensional de Sitter horizon we must study if the idea works. Thus taking into account the local description of the thermodynamics of horizons proposed by Padmanabhan and the results of Hod, Kunstatter, and Maggiore we study the area spectrum of the D-dimensional de Sitter horizon.
Kerr metric in the deSitter background
International Nuclear Information System (INIS)
Vaidya, P.C.
1984-01-01
In addition to the Kerr metric with cosmological constant Λ several other metrics are presented giving a Kerr-like solution of Einstein's equations in the background of deSitter universe. A new metric of what may be termed as rotating deSitter space-time devoid of matter but containing null fluid with twisting null rays, has been presented. This metric reduces to the standard deSitter metric when the twist in the rays vanishes. Kerr metric in this background is the immediate generalization of Schwarzschild's exterior metric with cosmological constant. (author)
Hawking radiation from a rotating acoustic black hole
International Nuclear Information System (INIS)
Zhang Lichun; Li Huaifan; Zhao Ren
2011-01-01
Using the new global embedding approach and analytical continuation method of wave function we discuss Hawking radiation of acoustic black holes. Unruh-Hawking temperature of the acoustic black hole is derived. The corresponding relation between these methods calculating Hawking radiation of acoustic black hole is established. The calculation result shows that the contributions of chemical potential to the ingoing wave and the outgoing wave are the same.
CHAOTIC MOTION OF CHARGED PARTICLES IN AN ELECTROMAGNETIC FIELD SURROUNDING A ROTATING BLACK HOLE
International Nuclear Information System (INIS)
Takahashi, Masaaki; Koyama, Hiroko
2009-01-01
The observational data from some black hole candidates suggest the importance of electromagnetic fields in the vicinity of a black hole. Highly magnetized disk accretion may play an importance rule, and large-scale magnetic field may be formed above the disk surface. Then, we expect that the nature of the black hole spacetime would be revealed by magnetic phenomena near the black hole. We will start investigating the motion of a charged test particle which depends on the initial parameter setting in the black hole dipole magnetic field, which is a test field on the Kerr spacetime. Particularly, we study the spin effects of a rotating black hole on the motion of the charged test particle trapped in magnetic field lines. We make detailed analysis for the particle's trajectories by using the Poincare map method, and show the chaotic properties that depend on the black hole spin. We find that the dragging effects of the spacetime by a rotating black hole weaken the chaotic properties and generate regular trajectories for some sets of initial parameters, while the chaotic properties dominate on the trajectories for slowly rotating black hole cases. The dragging effects can generate the fourth adiabatic invariant on the particle motion approximately.
A Cardy-like formula for rotating black holes with planar horizon
Energy Technology Data Exchange (ETDEWEB)
Gaete, Moisés Bravo [Facultad de Ciencias Básicas, Universidad Católica del Maule,Casilla 617, Talca (Chile); Guajardo, Luis; Hassaïne, Mokhtar [Instituto de Matemática y Fisica, Universidad de Talca,Casilla 747, Talca (Chile)
2017-04-18
We show that the semiclassical entropy of D−dimensional rotating (an)isotropic black holes with planar horizon can be successfully computed according to a Cardy-like formula. This formula does not refer to any central charges but instead involves the vacuum energy which is identified with a gravitational bulk soliton. The soliton is obtained from the non-rotating black hole solution by means of a double analytic continuation. The robustness of the Cardy-like formula is tested with numerous and varied examples, including AdS, Lifshitz and hyperscaling violation planar black holes.
Near-horizon of 5D rotating black holes from 2D perspective
International Nuclear Information System (INIS)
Soltanpanahi, Hesam
2014-01-01
We study the CFT dual to five-dimensional extremal rotating black holes, by investigating the two-dimensional perspective of their near-horizon geometry. From the two-dimensional point of view, we show that both gauge fields, related to the two rotations, appear in the same manner in the asymptotic symmetry and in the associated central charge. We find that our results are in perfect agreement with the generalization of the Kerr/CFT approach to five-dimensional extremal rotating black holes. (orig.)
Quantum gravity effects on scalar particle tunneling from rotating BTZ black hole
Meitei, I. Ablu; Singh, T. Ibungochouba; Devi, S. Gayatri; Devi, N. Premeshwari; Singh, K. Yugindro
2018-04-01
Tunneling of scalar particles across the event horizon of rotating BTZ black hole is investigated using the Generalized Uncertainty Principle to study the corrected Hawking temperature and entropy in the presence of quantum gravity effects. We have determined explicitly the various correction terms in the entropy of rotating BTZ black hole including the logarithmic term of the Bekenstein-Hawking entropy (SBH), the inverse term of SBH and terms with inverse powers of SBH, in terms of properties of the black hole and the emitted particles — mass, energy and angular momentum. In the presence of quantum gravity effects, for the emission of scalar particles, the Hawking radiation and thermodynamics of rotating BTZ black hole are observed to be related to the metric element, hence to the curvature of space-time.
Causal extraction of black hole rotational energy by various kinds of electromagnetic fields
International Nuclear Information System (INIS)
Koide, Shinji; Baba, Tamon
2014-01-01
Recent general relativistic magnetohydrodynamics (MHD) simulations have suggested that relativistic jets from active galactic nuclei (AGNs) have been powered by the rotational energy of central black holes. Some mechanisms for extraction of black hole rotational energy have been proposed, like the Penrose process, Blandford-Znajek mechanism, MHD Penrose process, and superradiance. The Blandford-Znajek mechanism is the most promising mechanism for the engines of the relativistic jets from AGNs. However, an intuitive interpretation of this mechanism with causality is not yet clarified, while the Penrose process has a clear interpretation for causal energy extraction from a black hole with negative energy. In this paper, we present a formula to build physical intuition so that in the Blandford-Znajek mechanism, as well as in other electromagnetic processes, negative electromagnetic energy plays an important role in causal extraction of the rotational energy of black holes.
Five-dimensional rotating black hole in a uniform magnetic field: The gyromagnetic ratio
International Nuclear Information System (INIS)
Aliev, A.N.; Frolov, Valeri P.
2004-01-01
In four-dimensional general relativity, the fact that a Killing vector in a vacuum spacetime serves as a vector potential for a test Maxwell field provides one with an elegant way of describing the behavior of electromagnetic fields near a rotating Kerr black hole immersed in a uniform magnetic field. We use a similar approach to examine the case of a five-dimensional rotating black hole placed in a uniform magnetic field of configuration with biazimuthal symmetry that is aligned with the angular momenta of the Myers-Perry spacetime. Assuming that the black hole may also possess a small electric charge we construct the five-vector potential of the electromagnetic field in the Myers-Perry metric using its three commuting Killing vector fields. We show that, like its four-dimensional counterparts, the five-dimensional Myers-Perry black hole rotating in a uniform magnetic field produces an inductive potential difference between the event horizon and an infinitely distant surface. This potential difference is determined by a superposition of two independent Coulomb fields consistent with the two angular momenta of the black hole and two nonvanishing components of the magnetic field. We also show that a weakly charged rotating black hole in five dimensions possesses two independent magnetic dipole moments specified in terms of its electric charge, mass, and angular momentum parameters. We prove that a five-dimensional weakly charged Myers-Perry black hole must have the value of the gyromagnetic ratio g=3
Gravitational collapse in anti de Sitter space
International Nuclear Information System (INIS)
Garfinkle, David
2004-01-01
A numerical and analytic treatment is presented here of the evolution of initial data of the kind that was conjectured by Hertog, Horowitz and Maeda to lead to a violation of cosmic censorship. That initial data is essentially a thick domain wall connecting two regions of anti de Sitter space. The evolution results in no violation of cosmic censorship, but rather the formation of a small black hole
Thin accretion disk signatures of slowly rotating black holes in Horava gravity
International Nuclear Information System (INIS)
Harko, Tiberiu; Kovacs, Zoltan; Lobo, Francisco S N
2011-01-01
In this work, we consider the possibility of observationally testing Horava gravity by using the accretion disk properties around slowly rotating black holes of the Kehagias-Sfetsos (KS) solution in asymptotically flat spacetimes. The energy flux, temperature distribution, the emission spectrum as well as the energy conversion efficiency are obtained, and compared to the standard slowly rotating general relativistic Kerr solution. Comparing the mass accretion in a slowly rotating KS geometry in Horava gravity with the one of a slowly rotating Kerr black hole, we verify that the intensity of the flux emerging from the disk surface is greater for the slowly rotating Kehagias-Sfetsos solution than for rotating black holes with the same geometrical mass and accretion rate. We also present the conversion efficiency of the accreting mass into radiation, and show that the rotating KS solution provides a much more efficient engine for the transformation of the accreting mass into radiation than the Kerr black holes. Thus, distinct signatures appear in the electromagnetic spectrum, leading to the possibility of directly testing Horava gravity models by using astrophysical observations of the emission spectra from accretion disks.
Thin accretion disk signatures of slowly rotating black holes in Horava gravity
Energy Technology Data Exchange (ETDEWEB)
Harko, Tiberiu; Kovacs, Zoltan [Department of Physics and Center for Theoretical and Computational Physics, University of Hong Kong, Pok Fu Lam Road (Hong Kong); Lobo, Francisco S N, E-mail: harko@hkucc.hku.hk, E-mail: zkovacs@hku.hk, E-mail: flobo@cii.fc.ul.pt [Centro de Astronomia e Astrofisica da Universidade de Lisboa, Campo Grande, Ed. C8 1749-016 Lisboa (Portugal)
2011-08-21
In this work, we consider the possibility of observationally testing Horava gravity by using the accretion disk properties around slowly rotating black holes of the Kehagias-Sfetsos (KS) solution in asymptotically flat spacetimes. The energy flux, temperature distribution, the emission spectrum as well as the energy conversion efficiency are obtained, and compared to the standard slowly rotating general relativistic Kerr solution. Comparing the mass accretion in a slowly rotating KS geometry in Horava gravity with the one of a slowly rotating Kerr black hole, we verify that the intensity of the flux emerging from the disk surface is greater for the slowly rotating Kehagias-Sfetsos solution than for rotating black holes with the same geometrical mass and accretion rate. We also present the conversion efficiency of the accreting mass into radiation, and show that the rotating KS solution provides a much more efficient engine for the transformation of the accreting mass into radiation than the Kerr black holes. Thus, distinct signatures appear in the electromagnetic spectrum, leading to the possibility of directly testing Horava gravity models by using astrophysical observations of the emission spectra from accretion disks.
Energetics and optical properties of 6-dimensional rotating black hole in pure Gauss-Bonnet gravity
International Nuclear Information System (INIS)
Abdujabbarov, Ahmadjon; Ahmedov, Bobomurat; Atamurotov, Farruh; Dadhich, Naresh; Stuchlik, Zdenek
2015-01-01
We study physical processes around a rotating black hole in pure Gauss-Bonnet (GB) gravity. In pure GB gravity, the gravitational potential has a slower fall-off as compared to the corresponding Einstein potential in the same dimension. It is therefore expected that the energetics of a pure GB black hole would be weaker, and our analysis bears out that the efficiency of energy extraction by the Penroseprocess is increased to 25.8 % and the particle acceleration is increased to 55.28 %; the optical shadow of the black hole is decreased. These are in principle distinguishing observable features of a pure GB black hole. (orig.)
Electromagnetic field in higher-dimensional black-hole spacetimes
International Nuclear Information System (INIS)
Krtous, Pavel
2007-01-01
A special test electromagnetic field in the spacetime of the higher-dimensional generally rotating NUT-(anti-)de Sitter black hole is found. It is adjusted to the hidden symmetries of the background represented by the principal Killing-Yano tensor. Such an electromagnetic field generalizes the field of charged black hole in four dimensions. In higher dimensions, however, the gravitational backreaction of such a field cannot be consistently solved
International Nuclear Information System (INIS)
Liu, James T.; Sabra, W.A.
2005-01-01
The boundary stress tensor approach has proven extremely useful in defining mass and angular momentum in asymptotically anti-de Sitter spaces with CFT duals. An integral part of this method is the use of boundary counterterms to regulate the gravitational action and stress tensor. In the presence of matter, however, ambiguities may arise that are related to the addition of possible finite counterterms. We demonstrate this explicitly for R-charged black holes in AdS 5 , where introduction of a finite counterterm proportional to φ 2 is necessary to properly reproduce the expected mass/charge relation for the black holes
The force-free magnetosphere of a rotating black hole
Directory of Open Access Journals (Sweden)
Contopoulos Ioannis
2013-12-01
Full Text Available We explore the analogy with pulsars and investigate the structure of the force-free magnetosphere around a Kerr black hole. We propose that the source of the black hole magnetic field is the Poynting-Robertson effect on the plasma electrons at the inner edge of the surrounding accretion disk, the so called Cosmic Battery. The magnetospheric solution is characterized by the distributions of the magnetic field angular velocity and the poloidal electric current. These are not arbitrary. They are determined self-consistently by requiring that magnetic field lines cross smoothly the two singular surfaces of the problem, the inner ‘light surface’ located inside the ergosphere, and the outer ‘light surface’ which is the generalization of the pulsar light cylinder. The black hole forms a relativistic jet only if it is surrounded by a thick disk and/or extended disk outflows.
Relativistic thick discs in the Kerr-de Sitter backgrounds
International Nuclear Information System (INIS)
Slany, Petr; StuchlIk, Zdenek
2005-01-01
Perfect fluid tori with a uniform distribution of the specific angular momentum, l(r, θ) = const, orbiting the Kerr-de Sitter black holes or naked singularities are studied. It is well known that the structure of equipotential surfaces of such marginally stable tori reflects the basic properties of any tori with a general distribution of the specific angular momentum. Closed equipotential surfaces corresponding to stationary thick discs are allowed only in the spacetimes admitting stable circular geodesics. The last closed surface crosses itself in the cusp(s) enabling the outflow of matter from the torus due to the violation of hydrostatic equilibrium. The inner cusp enables an accretion onto the central object. The influence of the repulsive cosmological constant, Λ > 0, on the equipotential surfaces lies in the existence of the outer cusp (with a stabilizing effect on the thick discs) and in the strong collimation of open equipotential surfaces along the rotational axis. Both the effects take place near a so-called static radius where the gravitational attraction is just balanced by the cosmic repulsion. The outer cusp enables excretion, i.e., the outflow of matter from the torus into the outer space. The plus-family discs (which are always co-rotating in the black-hole backgrounds but can be counter-rotating, even with negative energy of the fluid elements, in some naked-singularity backgrounds) are thicker and more extended than the minus-family ones (which are always counter-rotating in all backgrounds). For co-rotating discs in the naked-singularity spacetimes, the potential well between the centre of the disc and its edges at the cusps is usually much higher than in the black-hole spacetimes. If the parameters of naked-singularity spacetimes are very close to the parameters of extreme black-hole spacetimes, the family of possible disc-like configurations includes members with two isolated discs where the inner one is always a counter-rotating accretion
Rotating black holes which saturate a Bogomol close-quote nyi bound
International Nuclear Information System (INIS)
Horowitz, G.T.; Sen, A.
1996-01-01
We construct and study the electrically charged, rotating black hole solution in heterotic string theory compactified on a (10-D)-dimensional torus. This black hole is characterized by its mass, angular momentum, and a (36-2D)-dimensional electric charge vector. One of the features of this solution is that for D>5 its extremal limit saturates the Bogomol close-quote nyi bound. This is in contrast with the D=4 case where the rotating black hole solution develops a naked singularity before the Bogomol close-quote nyi bound is reached. The extremal black holes can be superposed, and by taking a periodic array in D>5, one obtains effectively four-dimensional solutions without naked singularities. copyright 1996 The American Physical Society
Entropy bound of horizons for accelerating, rotating and charged Plebanski–Demianski black hole
International Nuclear Information System (INIS)
Debnath, Ujjal
2016-01-01
We first review the accelerating, rotating and charged Plebanski–Demianski (PD) black hole, which includes the Kerr–Newman rotating black hole and the Taub-NUT spacetime. The main feature of this black hole is that it has 4 horizons like event horizon, Cauchy horizon and two accelerating horizons. In the non-extremal case, the surface area, entropy, surface gravity, temperature, angular velocity, Komar energy and irreducible mass on the event horizon and Cauchy horizon are presented for PD black hole. The entropy product, temperature product, Komar energy product and irreducible mass product have been found for event horizon and Cauchy horizon. Also their sums are found for both horizons. All these relations are dependent on the mass of the PD black hole and other parameters. So all the products are not universal for PD black hole. The entropy and area bounds for two horizons have been investigated. Also we found the Christodoulou–Ruffini mass for extremal PD black hole. Finally, using first law of thermodynamics, we also found the Smarr relation for PD black hole.
Entropy bound of horizons for accelerating, rotating and charged Plebanski–Demianski black hole
Energy Technology Data Exchange (ETDEWEB)
Debnath, Ujjal, E-mail: ujjaldebnath@yahoo.com
2016-09-15
We first review the accelerating, rotating and charged Plebanski–Demianski (PD) black hole, which includes the Kerr–Newman rotating black hole and the Taub-NUT spacetime. The main feature of this black hole is that it has 4 horizons like event horizon, Cauchy horizon and two accelerating horizons. In the non-extremal case, the surface area, entropy, surface gravity, temperature, angular velocity, Komar energy and irreducible mass on the event horizon and Cauchy horizon are presented for PD black hole. The entropy product, temperature product, Komar energy product and irreducible mass product have been found for event horizon and Cauchy horizon. Also their sums are found for both horizons. All these relations are dependent on the mass of the PD black hole and other parameters. So all the products are not universal for PD black hole. The entropy and area bounds for two horizons have been investigated. Also we found the Christodoulou–Ruffini mass for extremal PD black hole. Finally, using first law of thermodynamics, we also found the Smarr relation for PD black hole.
Magnetic layers and neutral points near a rotating black hole
Czech Academy of Sciences Publication Activity Database
Karas, Vladimír; Kopáček, Ondřej
2009-01-01
Roč. 26, č. 2 (2009), s. 1-9 ISSN 0264-9381 R&D Projects: GA ČR GA205/07/0052 Institutional research plan: CEZ:AV0Z10030501 Keywords : black holes * magnetic fields Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.029, year: 2009
On Thermodynamical Relation Between Rotating Charged BTZ Black Holes and Effective String Theory
Institute of Scientific and Technical Information of China (English)
Alexis Larra(~n)aga
2008-01-01
In this paper we study the first law of thermodynamics for the (2+1)-dimensional rotating charged BTZ black hole considering a pair of thermodynamical systems constructed with the two horizons of this solution. We show that these two systems are similar to the right and left movers of string theory and that the temperature associated with the black hole is the harmonic mean of the temperatures associated with these two systems.
Energy extraction from a Konoplya–Zhidenko rotating non-Kerr black hole
Directory of Open Access Journals (Sweden)
Fen Long
2018-01-01
Full Text Available We have investigated the properties of the ergosphere and the energy extraction by Penrose process in a Konoplya–Zhidenko rotating non-Kerr black hole spacetime. We find that the ergosphere becomes thin and the maximum efficiency of energy extraction decreases as the deformation parameter increases. For the case with aM, we find that the maximum efficiency can reach so high that it is almost unlimited as the positive deformation parameter is close to zero, which is a new feature of energy extraction in such kind of rotating non-Kerr black hole spacetime.
Strong gravity effects of rotating black holes: quasi-periodic oscillations
International Nuclear Information System (INIS)
Aliev, Alikram N; Esmer, Göksel Daylan; Talazan, Pamir
2013-01-01
We explore strong gravity effects of the geodesic motion in the spacetime of rotating black holes in general relativity and braneworld gravity. We focus on the description of the motion in terms of three fundamental frequencies: the orbital frequency, the radial and vertical epicyclic frequencies. For a Kerr black hole, we perform a detailed numerical analysis of these frequencies at the innermost stable circular orbits and beyond them as well as at the characteristic stable orbits, at which the radial epicyclic frequency attains its highest value. We find that the values of the epicyclic frequencies for a class of stable orbits exhibit good qualitative agreement with the observed frequencies of the twin peaks quasi-periodic oscillations (QPOs) in some black hole binaries. We also find that at the characteristic stable circular orbits, where the radial (or the vertical) epicyclic frequency has maxima, the vertical and radial epicyclic frequencies exhibit an approximate 2:1 ratio even in the case of near-extreme rotation of the black hole. Next, we perform a similar analysis of the fundamental frequencies for a rotating braneworld black hole and argue that the existence of such a black hole with a negative tidal charge, whose angular momentum exceeds the Kerr bound in general relativity, does not confront with the observations of high-frequency QPOs. (paper)
Shadow cast by rotating braneworld black holes with a cosmological constant
Energy Technology Data Exchange (ETDEWEB)
Eiroa, Ernesto F.; Sendra, Carlos M. [Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Universidad de Buenos Aires, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)
2018-02-15
In this article, we study the shadow produced by rotating black holes having a tidal charge in a Randall-Sundrum braneworld model, with a cosmological constant. We obtain the apparent shape and the corresponding observables for different values of the tidal charge and the rotation parameter, and we analyze the influence of the presence of the cosmological constant. We also discuss the observational prospects for this optical effect. (orig.)
Electrically charged matter in rigid rotation around magnetized black hole
Czech Academy of Sciences Publication Activity Database
Kovář, J.; Slaný, P.; Cremaschini, C.; Stuchlík, Z.; Karas, Vladimír; Trova, Audrey
2014-01-01
Roč. 90, č. 4 (2014), 044029/1-044029/14 ISSN 1550-7998 R&D Projects: GA ČR GB14-37086G Grant - others:GA ČR(CZ) GP14-07753P Institutional support: RVO:67985815 Keywords : black holes * accretion disks Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.643, year: 2014
Entropy of a rotating and charged black string to all orders in the Planck length
International Nuclear Information System (INIS)
Ren, Zhao; Yue-Qin, Wu; Li-Chun, Zhang
2009-01-01
By using the entanglement entropy method, this paper calculates the statistical entropy of the Bose and Fermi fields in thin films, and derives the Bekenstein–Hawking entropy and its correction term on the background of a rotating and charged black string. Here, the quantum field is entangled with quantum states in the black string and thin film to the event horizon from outside the rotating and charged black string. Taking into account the effect of the generalized uncertainty principle on quantum state density, it removes the difficulty of the divergence of state density near the event horizon in the brick-wall model. These calculations and discussions imply that high density quantum states near the event horizon of a black string are strongly correlated with the quantum states in a black string and that black string entropy is a quantum effect. The ultraviolet cut-off in the brick-wall model is not reasonable. The generalized uncertainty principle should be considered in the high energy quantum field near the event horizon. From the viewpoint of quantum statistical mechanics, the correction value of Bekenstein–Hawking entropy is obtained. This allows the fundamental recognition of the correction value of black string entropy at nonspherical coordinates
Charged Fermions Tunneling from a Rotating Charged Black Hole in 5-Dimensional Gauged Supergravity
International Nuclear Information System (INIS)
Li Huiling; Lin Rong; Wang Chuanyin
2010-01-01
Recent research shows that Hawking radiation from black hole horizon can be treated as a quantum tunneling process, and fermions tunneling method can successfully recover Hawking temperature. In this tunneling framework, choosing a set of appropriate matrices γ μ is an important technique for fermions tunneling method. In this paper, motivated by Kerner and Man's fermions tunneling method of 4 dimension black holes, we further improve the analysis to investigate Hawking tunneling radiation from a rotating charged black hole in 5-dimensional gauged supergravity by constructing a set of appropriate matrices γ μ for general covariant Dirac equation. Finally, the expected Hawking temperature of the black hole is correctly recovered, which takes the same form as that obtained by other methods. This method is universal, and can also be directly extend to the other different-type 5-dimensional charged black holes.
International Nuclear Information System (INIS)
Silverstein, Eva
2008-01-01
We present a framework for de Sitter model building in type IIA string theory, illustrated with specific examples. We find metastable de Sitter (dS) minima of the potential for moduli obtained from a compactification on a product of two nil three-manifolds (which have negative scalar curvature) combined with orientifolds, branes, fractional Chern-Simons forms, and fluxes. As a discrete quantum number is taken large, the curvature, field strengths, inverse volume, and four-dimensional string coupling become parametrically small, and the de Sitter Hubble scale can be tuned parametrically smaller than the scales of the moduli, Kaluza Klein (KK), and winding mode masses. A subtle point in the construction is that although the curvature remains consistently weak, the circle fibers of the nilmanifolds become very small in this limit (though this is avoided in illustrative solutions at modest values of the parameters). In the simplest version of the construction, the heaviest moduli masses are parametrically of the same order as the lightest KK and winding masses. However, we provide a method for separating these marginally overlapping scales, and more generally the underlying supersymmetry of the model protects against large corrections to the low-energy moduli potential
Entropy Inequality Violations from Ultraspinning Black Holes.
Hennigar, Robie A; Mann, Robert B; Kubizňák, David
2015-07-17
We construct a new class of rotating anti-de Sitter (AdS) black hole solutions with noncompact event horizons of finite area in any dimension and study their thermodynamics. In four dimensions these black holes are solutions to gauged supergravity. We find that their entropy exceeds the maximum implied from the conjectured reverse isoperimetric inequality, which states that for a given thermodynamic volume, the black hole entropy is maximized for Schwarzschild-AdS space. We use this result to suggest more stringent conditions under which this conjecture may hold.
Horizon structure of rotating Einstein-Born-Infeld black holes and shadow
Energy Technology Data Exchange (ETDEWEB)
Atamurotov, Farruh [Institute of Nuclear Physics, Tashkent (Uzbekistan); Inha University in Tashkent, Tashkent (Uzbekistan); Ulugh Beg Astronomical Institute, Tashkent (Uzbekistan); National University of Uzbekistan, Tashkent (Uzbekistan); Ghosh, Sushant G. [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); University of Kwa-Zulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, Private Bag 54001, Durban (South Africa); Ahmedov, Bobomurat [Institute of Nuclear Physics, Tashkent (Uzbekistan); Ulugh Beg Astronomical Institute, Tashkent (Uzbekistan); National University of Uzbekistan, Tashkent (Uzbekistan)
2016-05-15
We investigate the horizon structure of the rotating Einstein-Born-Infeld solution which goes over to the Einstein-Maxwell's Kerr-Newman solution as the Born-Infeld parameter goes to infinity (β → ∞). We find that for a given β, mass M, and charge Q, there exist a critical spinning parameter a{sub E} and r{sub H}{sup E}, which corresponds to an extremal Einstein-Born-Infeld black hole with degenerate horizons, and a{sub E} decreases and r{sub H}{sup E} increases with increase of the Born-Infeld parameter β, while a < a{sub E} describes a non-extremal Einstein-Born-Infeld black hole with outer and inner horizons. Similarly, the effect of β on the infinite redshift surface and in turn on the ergo-region is also included. It is well known that a black hole can cast a shadow as an optical appearance due to its strong gravitational field. We also investigate the shadow cast by the both static and rotating Einstein-Born-Infeld black hole and demonstrate that the null geodesic equations can be integrated, which allows us to investigate the shadow cast by a black hole which is found to be a dark zone covered by a circle. Interestingly, the shadow of an Einstein-Born-Infeld black hole is slightly smaller than for the Reissner-Nordstrom black hole, which consists of concentric circles, for different values of the Born-Infeld parameter β, whose radius decreases with increase of the value of the parameter β. Finally, we have studied observable distortion parameter for shadow of the rotating Einstein-Born-Infeld black hole. (orig.)
Horizon structure of rotating Einstein-Born-Infeld black holes and shadow
International Nuclear Information System (INIS)
Atamurotov, Farruh; Ghosh, Sushant G.; Ahmedov, Bobomurat
2016-01-01
We investigate the horizon structure of the rotating Einstein-Born-Infeld solution which goes over to the Einstein-Maxwell's Kerr-Newman solution as the Born-Infeld parameter goes to infinity (β → ∞). We find that for a given β, mass M, and charge Q, there exist a critical spinning parameter a E and r H E , which corresponds to an extremal Einstein-Born-Infeld black hole with degenerate horizons, and a E decreases and r H E increases with increase of the Born-Infeld parameter β, while a < a E describes a non-extremal Einstein-Born-Infeld black hole with outer and inner horizons. Similarly, the effect of β on the infinite redshift surface and in turn on the ergo-region is also included. It is well known that a black hole can cast a shadow as an optical appearance due to its strong gravitational field. We also investigate the shadow cast by the both static and rotating Einstein-Born-Infeld black hole and demonstrate that the null geodesic equations can be integrated, which allows us to investigate the shadow cast by a black hole which is found to be a dark zone covered by a circle. Interestingly, the shadow of an Einstein-Born-Infeld black hole is slightly smaller than for the Reissner-Nordstrom black hole, which consists of concentric circles, for different values of the Born-Infeld parameter β, whose radius decreases with increase of the value of the parameter β. Finally, we have studied observable distortion parameter for shadow of the rotating Einstein-Born-Infeld black hole. (orig.)
On the absence of scalar hair for charged rotating black holes in non ...
Indian Academy of Sciences (India)
black holes with exterior non-abelian gauge field or Skyrmion field [8–10] have put ... solutions for charged rotating space-time with a minimally coupled scalar field from the ...... 125, 2163 (1962). [26] G Magnano and L M Sokolowski, Phys.
Imaging a non-singular rotating black hole at the center of the Galaxy
Lamy, F.; Gourgoulhon, E.; Paumard, T.; Vincent, F. H.
2018-06-01
We show that the rotating generalization of Hayward’s non-singular black hole previously studied in the literature is geodesically incomplete, and that its straightforward extension leads to a singular spacetime. We present another extension, which is devoid of any curvature singularity. The obtained metric depends on three parameters and, depending on their values, yields an event horizon or not. These two regimes, named respectively regular rotating Hayward black hole and naked rotating wormhole, are studied both numerically and analytically. In preparation for the upcoming results of the Event Horizon Telescope, the images of an accretion torus around Sgr A*, the supermassive object at the center of the Galaxy, are computed. These images contain, even in the absence of a horizon, a central faint region which bears a resemblance to the shadow of Kerr black holes and emphasizes the difficulty of claiming the existence of an event horizon from the analysis of strong-field images. The frequencies of the co- and contra-rotating orbits at the innermost stable circular orbit (ISCO) in this geometry are also computed, in the hope that quasi-periodic oscillations may permit to compare this model with Kerr’s black hole on observational grounds.
Matter-antimatter separation in the early universe by rotating black holes
Leahy, D. A.
1981-01-01
Consideration of the effect of rotating black holes evaporating early in the universe shows that they would have produced oppositely directed neutrino and antineutrino currents, which push matter and antimatter apart. This separation mechanism is, however, too feeble to account for a present baryon-to-photon ratio of 10 to the -9th, and has no significant observational consequences.
Properties of a thin accretion disk around a rotating non-Kerr black hole
International Nuclear Information System (INIS)
Chen Songbai; Jing Jiliang
2012-01-01
We study the accretion process in the thin disk around a rotating non-Kerr black hole with a deformed parameter and an unbound rotation parameter. Our results show that the presence of the deformed parameter ε modifies the standard properties of the disk. For the case in which the black hole is more oblate than a Kerr black hole, the larger deviation leads to the smaller energy flux, the lower radiation temperature and the fainter spectra luminosity in the disk. For the black hole with positive deformed parameter, we find that the effect of the deformed parameter on the disk becomes more complicated. It depends not only on the rotation direction of the black hole and the orbit particles, but also on the sign of the difference between the deformed parameter ε and a certain critical value ε c . These significant features in the mass accretion process may provide a possibility to test the no-hair theorem in the strong-field regime in future astronomical observations.
Oscillating supertubes and neutral rotating black hole microstates
International Nuclear Information System (INIS)
Mathur, Samir D.; Turton, David
2014-01-01
The construction of neutral black hole microstates is an important problem, with implications for the information paradox. In this paper we conjecture a construction of non-supersymmetric supergravity solutions describing D-brane configurations which carry mass and angular momentum, but no other conserved charges. We first study a classical string solution which locally carries dipole winding and momentum charges in two compact directions, but globally carries no net winding or momentum charge. We investigate its backreaction in the D1-D5 duality frame, where this object becomes a supertube which locally carries oscillating dipole D1-D5 and NS1-NS5 charges, and again carries no net charge. In the limit of an infinite straight supertube, we find an exact supergravity solution describing this object. We conjecture that a similar construction may be carried out based on a class of two-charge non-supersymmetric D1-D5 solutions. These results are a step towards demonstrating how neutral black hole microstates may be constructed in string theory
Sequences of extremal radially excited rotating black holes.
Blázquez-Salcedo, Jose Luis; Kunz, Jutta; Navarro-Lérida, Francisco; Radu, Eugen
2014-01-10
In the Einstein-Maxwell-Chern-Simons theory the extremal Reissner-Nordström solution is no longer the single extremal solution with vanishing angular momentum, when the Chern-Simons coupling constant reaches a critical value. Instead a whole sequence of rotating extremal J=0 solutions arises, labeled by the node number of the magnetic U(1) potential. Associated with the same near horizon solution, the mass of these radially excited extremal solutions converges to the mass of the extremal Reissner-Nordström solution. On the other hand, not all near horizon solutions are also realized as global solutions.
Gravitational collapse in asymptotically anti-de Sitter or de Sitter backgrounds
International Nuclear Information System (INIS)
Madhav, T. Arun; Goswami, Rituparno; Joshi, Pankaj S.
2005-01-01
We study here the gravitational collapse of a matter cloud with a nonvanishing tangential pressure in the presence of a nonzero cosmological term Λ. It is investigated how Λ modifies the dynamics of the collapsing cloud and whether it affects the cosmic censorship. Conditions for bounce and singularity formation are derived. It is seen that when the tangential pressure vanishes, the bounce and singularity conditions reduce to the dust case studied earlier. The collapsing interior is matched to an exterior which is asymptotically de Sitter or anti-de Sitter, depending on the sign of the cosmological constant. The junction conditions for matching the cloud to the exterior are specified. The effect of Λ on apparent horizons is studied in some detail and the nature of central singularity is analyzed. The visibility of singularity and implications for the cosmic censorship conjecture are discussed. It is shown that for a nonvanishing cosmological constant, both black hole and naked singularities do form as collapse end states in spacetimes which are asymptotically de Sitter or anti-de Sitter
Thermodynamics and Hawking radiation of five-dimensional rotating charged Goedel black holes
International Nuclear Information System (INIS)
Wu Shuangqing; Peng Junjin
2011-01-01
We study the thermodynamics of Goedel-type rotating charged black holes in five-dimensional minimal supergravity. These black holes exhibit some peculiar features such as the presence of closed timelike curves and the absence of a globally spatial-like Cauchy surface. We explicitly compute their energies, angular momenta, and electric charges that are consistent with the first law of thermodynamics. Besides, we extend the covariant anomaly cancellation method, as well as the approach of the effective action, to derive their Hawking fluxes. Both the methods of the anomaly cancellation and the effective action give the same Hawking fluxes as those from the Planck distribution for blackbody radiation in the background of the charged rotating Goedel black holes. Our results further support that Hawking radiation is a quantum phenomenon arising at the event horizon.
Generalized uncertainty principle and entropy of three-dimensional rotating acoustic black hole
International Nuclear Information System (INIS)
Zhao, HuiHua; Li, GuangLiang; Zhang, LiChun
2012-01-01
Using the new equation of state density from the generalized uncertainty principle, we investigate statistics entropy of a 3-dimensional rotating acoustic black hole. When λ introduced in the generalized uncertainty principle takes a specific value, we obtain an area entropy and a correction term associated with the acoustic black hole. In this method, there does not exist any divergence and one needs not the small mass approximation in the original brick-wall model. -- Highlights: ► Statistics entropy of a 3-dimensional rotating acoustic black hole is studied. ► We obtain an area entropy and a correction term associated with it. ► We make λ introduced in the generalized uncertainty principle take a specific value. ► There does not exist any divergence in this method.
Euler numbers of four-dimensional rotating black holes with the Euclidean signature
International Nuclear Information System (INIS)
Ma Zhengze
2003-01-01
For a black hole's spacetime manifold in the Euclidean signature, its metric is positive definite and therefore a Riemannian manifold. It can be regarded as a gravitational instanton and a topological characteristic which is the Euler number to which it is associated. In this paper we derive a formula for the Euler numbers of four-dimensional rotating black holes by the integral of the Euler density on the spacetime manifolds of black holes. Using this formula, we obtain that the Euler numbers of Kerr and Kerr-Newman black holes are 2. We also obtain that the Euler number of the Kerr-Sen metric in the heterotic string theory with one boost angle nonzero is 2, which is in accordance with its topology
The Force-Free Magnetosphere of a Rotating Black Hole
Contopoulos, Ioannis; Kazanas, Demosthenes; Papadopoulos, Demetrios B.
2013-01-01
We revisit the Blandford-Znajek process and solve the fundamental equation that governs the structure of the steady-state force-free magnetosphere around a Kerr black hole. The solution depends on the distributions of the magnetic field angular velocity and the poloidal electric current. These are not arbitrary. They are determined self-consistently by requiring that magnetic field lines cross smoothly the two singular surfaces of the problem: the inner "light surface" located inside the ergosphere and the outer "light surface" which is the generalization of the pulsar light cylinder.We find the solution for the simplest possible magnetic field configuration, the split monopole, through a numerical iterative relaxation method analogous to the one that yields the structure of the steady-state axisymmetric force-free pulsar magnetosphere. We obtain the rate of electromagnetic extraction of energy and confirm the results of Blandford and Znajek and of previous time-dependent simulations. Furthermore, we discuss the physical applicability of magnetic field configurations that do not cross both "light surfaces."
Nernst Theorem and Statistical Entropy of 5-Dimensional Rotating Black Hole
Institute of Scientific and Technical Information of China (English)
ZHAO Ren; WU Yue-Qin; ZHANG Li-Chun
2003-01-01
In this paper, by using quantum statistical method, we obtain the partition function of Bose field and Fermi field on the background of the 5-dimensional rotating black hole. Then via the improved brick-wall method and membrane model, we calculate the entropy of Bose field and Fermi field of the black hole. And it is obtained that the entropy of the black hole is not only related to the area of the outer horizon but also is the function of inner horizon's area. In our results, there are not the left out term and the divergent logarithmic term in the original brick-wall method.The doubt that why the entropy of the scalar or Dirac field outside the event horizon is the entropy of the black hole in the original brick-wall method does not exist. The influence of spinning degeneracy of particles on entropy of the black hole is also given. It is shown that the entropy determined by the areas of the inner and outer horizons will approach zero,when the radiation temperature of the black hole approaches absolute zero. It satisfies Nernst theorem. The entropy can be taken as the Planck absolute entropy. We provide a way to study higher dimensional black hole.
Rotating circular strings, and infinite non-uniqueness of black rings
International Nuclear Information System (INIS)
Emparan, Roberto
2004-01-01
We present new self-gravitating solutions in five dimensions that describe circular strings, i.e., rings, electrically coupled to a two-form potential (as e.g., fundamental strings do), or to a dual magnetic one-form. The rings are prevented from collapsing by rotation, and they create a field analogous to a dipole, with no net charge measured at infinity. They can have a regular horizon, and we show that this implies the existence of an infinite number of black rings, labeled by a continuous parameter, with the same mass and angular momentum as neutral black rings and black holes. We also discuss the solution for a rotating loop of fundamental string. We show how more general rings arise from intersections of branes with a regular horizon (even at extremality), closely related to the configurations that yield the four-dimensional black hole with four charges. We reproduce the Bekenstein-Hawking entropy of a large extremal ring through a microscopic calculation. Finally, we discuss some qualitative ideas for a microscopic understanding of neutral and dipole black rings. (author)
Deng, Gao-Ming; Huang, Yong-Chang
2018-03-01
The geodesics of tunneling particles were derived unnaturally and awkwardly in previous works. For one thing, the previous derivation was inconsistent with the variational principle of action. Moreover, the definition of geodesic equations for massive particles was quite different from that of massless case. Even worse, the relativistic and nonrelativistic foundations were mixed with each other during the past derivation of geodesics. As a highlight, remedying the urgent shortcomings, we improve treatment to derive the geodesic equations of massive and massless particles in a unified and self-consistent way. Besides, we extend to investigate the Hawking radiation via tunneling from Reissner-Nordström black holes in the context of AdS spacetime. Of special interest, the trick of utilizing the first law of black hole thermodynamics manifestly simplifies the calculation of tunneling integration.
Kerr-Newman metric in deSitter background
International Nuclear Information System (INIS)
Patel, L.K.; Koppar, S.S.; Bhatt, P.V.
1987-01-01
In addition to the Kerr-Newman metric with cosmological constant several other metrics are presented giving Kerr-Newman type solutions of Einstein-Maxwell field equations in the background of deSitter universe. The electromagnetic field in all the solutions is assumed to be source-free. A new metric of what may be termed as an electrovac rotating deSitter space-time- a space-time devoid of matter but containing source-free electromagnetic field and a null fluid with twisting rays-has been presented. In the absence of the electromagnetic field, these solutions reduce to those discussed by Vaidya (1984). 8 refs. (author)
QPOs from Random X-ray Bursts around Rotating Black Holes
Kukumura, Keigo; Kazanas, Demosthenes; Stephenson, Gordon
2009-01-01
We continue our earlier studies of quasi-periodic oscillations (QPOs) in the power spectra of accreting, rapidly-rotating black holes that originate from the geometric 'light echoes' of X-ray flares occurring within the black hole ergosphere. Our present work extends our previous treatment to three-dimensional photon emission and orbits to allow for arbitrary latitudes in the positions of the distant observers and the X-ray sources in place of the mainly equatorial positions and photon orbits of the earlier consideration. Following the trajectories of a large number of photons we calculate the response functions of a given geometry and use them to produce model light curves which we subsequently analyze to compute their power spectra and autocorrelation functions. In the case of an optically-thin environment, relevant to advection-dominated accretion flows, we consistently find QPOs at frequencies of order of approximately kHz for stellar-mass black hole candidates while order of approximately mHz for typical active galactic nuclei (approximately equal to 10(exp 7) solar mass) for a wide range of viewing angles (30 degrees to 80 degrees) from X-ray sources predominantly concentrated toward the equator within the ergosphere. As in out previous treatment, here too, the QPO signal is produced by the frame-dragging of the photons by the rapidly-rotating black hole, which results in photon 'bunches' separated by constant time-lags, the result of multiple photon orbits around the hole. Our model predicts for various source/observer configurations the robust presence of a new class of QPOs, which is inevitably generic to curved spacetime structure in rotating black hole systems.
A rotating hairy AdS3 black hole with the metric having only one Killing vector field
International Nuclear Information System (INIS)
Iizuka, Norihiro; Ishibashi, Akihiro; Maeda, Kengo
2015-01-01
We perturbatively construct a three-dimensional rotating AdS black hole with a real scalar hair. We choose the mass of a scalar field slightly above the Breitenlohner-Freedman bound and impose a general boundary condition for the bulk scalar field at AdS infinity. We first show that rotating BTZ black holes are unstable against scalar field perturbations under our more general boundary condition. Next we construct a rotating hairy black hole perturbatively with respect to a small amplitude ϵ of the scalar field, up to O(ϵ 4 ). Our hairy black hole is stationary and exhibits no dissipation, but the lumps of the non-linearly perturbed geometry break axial symmetry, thus providing the first example of a rotating black hole whose metric admits only one Killing vector field. Furthermore, we numerically show that the entropy of our hairy black hole is larger than that of the BTZ black hole with the same energy and the angular momentum. We briefly discuss if our rotating hairy black hole in lumpy geometry could be the endpoint of the instability.
Thermodynamics of charged rotating dilaton black branes with power-law Maxwell field
International Nuclear Information System (INIS)
Zangeneh, M.K.; Sheykhi, A.; Dehghani, M.H.
2015-01-01
In this paper, we construct a new class of charged rotating dilaton black brane solutions, with a complete set of rotation parameters, which is coupled to a nonlinear Maxwell field. The Lagrangian of the matter field has the form of the power-law Maxwell field. We study the causal structure of the spacetime and its physical properties in ample details. We also compute thermodynamic and conserved quantities of the spacetime, such as the temperature, entropy, mass, charge, and angular momentum. We find a Smarr-formula for the mass and verify the validity of the first law of thermodynamics on the black brane horizon. Finally, we investigate the thermal stability of solutions in both the canonical and the grand-canonical ensembles and disclose the effects of dilaton field and nonlinearity of the Maxwell field on the thermal stability of the solutions. We find that, for α ≤ 1, charged rotating black brane solutions are thermally stable independent of the values of the other parameters. For α > 1, the solutions can encounter an unstable phase depending on the metric parameters. (orig.)
Charged rotating black holes in four-dimensional gauged and ungauged supergravities
International Nuclear Information System (INIS)
Chong, Z.-W.; Cvetic, M.; Lue, H.; Pope, C.N.
2005-01-01
We study four-dimensional non-extremal charged rotating black holes in ungauged and gauged supergravity. In the ungauged case, we obtain rotating black holes with four independent charges, as solutions of N=2 supergravity coupled to three Abelian vector multiplets. This is done by reducing the theory along the time direction to three dimensions, where it has an O(4,4) global symmetry. Applied to the reduction of the uncharged Kerr metric, O(1,1) 4 is a subject of O(4,4) transformations generate new solutions that correspond, after lifting back to four dimensions, to the introduction of four independent electromagnetic charges. In the case where these charges are set pairwise equal, we then generalise the four-dimensional rotating black holes to solutions of gauged N=4 supergravity, with mass, angular momentum and two independent electromagnetic charges. The dilaton and axion fields are non-constant. We also find generalisations of the gauged and ungauged solutions to include the NUT parameter, and for the ungauged solutions, the acceleration parameter too. The solutions in gauged supergravity provide new gravitational backgrounds for a further study of the AdS 4 /CFT 3 correspondence at non-zero temperature
Thermodynamics of de Sitter universes
International Nuclear Information System (INIS)
Huang Chaoguang; Liu Liao; Wang Bobo
2002-01-01
It is shown that the first law of thermodynamics can be applied to the de Sitter universe to relate its vacuum energy, pressure, entropy of horizon, chemical potential, etc., when the cosmological constant changes due to the fluctuation of the vacuum or other reasons. The second law should be reformulated in the form that the spontaneous decay of the vacuum never makes the entropy of the de Sitter universe decrease. The third law of thermodynamics, applying to the de Sitter universe, implies that the cosmological constant cannot reach zero by finite physical processes. The relation to the holographic principle is also briefly discussed
Bulk Decay of (4 + n)-Dimensional Simply Rotating Black Holes: Tensor-Type Gravitons
Energy Technology Data Exchange (ETDEWEB)
Pappas, Nikolaos, E-mail: npappas@cc.uoi.gr [Division of Theoretical Physics, Department of Physics, University of Ioannina, Ioannina GR-45110 (Greece)
2011-02-01
We study the emission in the bulk of tensor-type gravitons by a simply rotating (4 + n)-dimensional black hole. The decoupling of the radial and angular part of the graviton field equation makes it possible to solve them analytically (in the limit of low-energy emitted particles and low-angular momentum of the black hole) and find the corresponding absorption probability. We also move to solve these equations numerically. The comparison between analytic and numerical results shows a very good agreement in low and intermediate energy regimes. Finally, the energy and angular momentum emission rates were calculated in order to explore their dependence on the number of additional spacelike dimensions of the spacetime background and the angular momentum of the black hole. Interesting conclusions about the significance of tensor-type gravitons as energy carriers in the context of Hawking radiation were reached.
Bulk Decay of (4 + n)-Dimensional Simply Rotating Black Holes: Tensor-Type Gravitons
International Nuclear Information System (INIS)
Pappas, Nikolaos
2011-01-01
We study the emission in the bulk of tensor-type gravitons by a simply rotating (4 + n)-dimensional black hole. The decoupling of the radial and angular part of the graviton field equation makes it possible to solve them analytically (in the limit of low-energy emitted particles and low-angular momentum of the black hole) and find the corresponding absorption probability. We also move to solve these equations numerically. The comparison between analytic and numerical results shows a very good agreement in low and intermediate energy regimes. Finally, the energy and angular momentum emission rates were calculated in order to explore their dependence on the number of additional spacelike dimensions of the spacetime background and the angular momentum of the black hole. Interesting conclusions about the significance of tensor-type gravitons as energy carriers in the context of Hawking radiation were reached.
Fermion tunneling from anti-de Sitter spaces
International Nuclear Information System (INIS)
Chen, Deyou; Yang, Haitang; Zu, Xiaotao
2008-01-01
Kerner and Mann's recent research on the Hawking radiation of the spherically symmetric uncharged black hole shows that the Hawking temperature can be obtained by the fermion tunneling method. In this paper, we extend this work to the general case and view the Hawking radiations of the Reissner-Nordstroem black hole, Kerr black hole and Kerr-Newman black hole in anti-de Sitter spaces. The Hawking temperatures are recovered and are exactly the same as that obtained by other methods. (orig.)
Hawking fluxes and anomalies in rotating regular black holes with a time-delay
International Nuclear Information System (INIS)
Takeuchi, Shingo
2016-01-01
Based on the anomaly cancellation method we compute the Hawking fluxes (the Hawking thermal flux and the total flux of energy-momentum tensor) from a four-dimensional rotating regular black hole with a time-delay. To this purpose, in the three metrics proposed in [1], we try to perform the dimensional reduction in which the anomaly cancellation method is feasible at the near-horizon region in a general scalar field theory. As a result we can demonstrate that the dimensional reduction is possible in two of those metrics. Hence we perform the anomaly cancellation method and compute the Hawking fluxes in those two metrics. Our Hawking fluxes involve three effects: (1) quantum gravity effect regularizing the core of the black holes, (2) rotation of the black hole, (3) time-delay. Further in this paper toward the metric in which the dimensional could not be performed, we argue that it would be some problematic metric, and mention its cause. The Hawking fluxes we compute in this study could be considered to correspond to more realistic Hawking fluxes. Further what Hawking fluxes can be obtained from the anomaly cancellation method would be interesting in terms of the relation between a consistency of quantum field theories and black hole thermodynamics. (paper)
Energy Technology Data Exchange (ETDEWEB)
Javed, Wajiha; Ali, Riasat [University of Education, Division of Science and Technology, Lahore (Pakistan); Abbas, G. [The Islamia University of Bahawalpur, Department of Mathematics, Bahawalpur (Pakistan)
2017-05-15
The aim of this paper is to study the quantum tunneling process for charged vector particles through the horizons of more generalized black holes by using the Proca equation. For this purpose, we consider a pair of charged accelerating and rotating black holes with Newman-Unti-Tamburino parameter and a black hole in 5D gauged super-gravity theory, respectively. Further, we study the tunneling probability and corresponding Hawking temperature for both black holes by using the WKB approximation. We find that our analysis is independent of the particles species whether or not the background black hole geometries are more generalized. (orig.)
Ringing in de Sitter spacetime
Directory of Open Access Journals (Sweden)
Alex Buchel
2018-03-01
Full Text Available Hydrodynamics is a universal effective theory describing relaxation of quantum field theories towards equilibrium. Massive QFTs in de Sitter spacetime are never at equilibrium. We use holographic gauge theory/gravity correspondence to describe relaxation of a QFT to its Bunch–Davies vacuum — an attractor of its late-time dynamics. Specifically, we compute the analogue of the quasinormal modes describing the relaxation of a holographic toy model QFT in de Sitter.
Hidden conformal symmetry of a rotating black hole with four charges
International Nuclear Information System (INIS)
Shao Kainan; Zhang Zhibai
2011-01-01
Kerr/CFT correspondence exhibits many remarkable connections between the near-horizon Kerr black hole and a conformal field theory (CFT). Recently, Castro, Maloney, and Strominger showed that a hidden conformal symmetry exists in the solution space of a Kerr black hole. In this paper we investigate a rotating black hole with four independent U(1) charges derived from string theory which is known as the four-dimensional Cvetic-Youm solution, and we prove that the same hidden conformal symmetry also holds. We obtain the exact black hole entropy using the temperatures derived. The entropy and absorption cross section agree with the previous results [M. Cvetic and F. Larsen, Nucl. Phys. B506, 107 (1997).] and [M. Cvetic and F. Larsen, J. High Energy Phys. 09 (2009) 088.]. In addition, we clarify a previous explanation on the temperatures of the Cvetic-Youm solution's dual CFT. This work provides more robust derivation of the hidden conformal symmetry of Kerr-like black holes and as well as Kerr/CFT correspondence.
Schwarzschild black hole encircled by a rotating thin disc: Properties of perturbative solution
Kotlařík, P.; Semerák, O.; Čížek, P.
2018-04-01
Will [Astrophys. J. 191, 521 (1974), 10.1086/152992] solved the perturbation of a Schwarzschild black hole due to a slowly rotating light concentric thin ring, using Green's functions expressed as infinite-sum expansions in multipoles and in the small mass and rotational parameters. In a previous paper [P. Čížek and O. Semerák, Astrophys. J. Suppl. Ser. 232, 14 (2017), 10.3847/1538-4365/aa876b], we expressed the Green functions in closed form containing elliptic integrals, leaving just summation over the mass expansion. Such a form is more practical for numerical evaluation, but mainly for generalizing the problem to extended sources where the Green functions have to be integrated over the source. We exemplified the method by computing explicitly the first-order perturbation due to a slowly rotating thin disc lying between two finite radii. After finding basic parameters of the system—mass and angular momentum of the black hole and of the disc—we now add further properties, namely those which reveal how the disc gravity influences geometry of the black-hole horizon and those of circular equatorial geodesics (specifically, radii of the photon, marginally bound and marginally stable orbits). We also realize that, in the linear order, no ergosphere occurs and the central singularity remains pointlike, and check the implications of natural physical requirements (energy conditions and subluminal restriction on orbital speed) for the single-stream as well as counter-rotating double-stream interpretations of the disc.
Perturbation of a Schwarzschild Black Hole Due to a Rotating Thin Disk
Energy Technology Data Exchange (ETDEWEB)
Čížek, P.; Semerák, O., E-mail: oldrich.semerak@mff.cuni.cz [Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University, Prague (Czech Republic)
2017-09-01
Will, in 1974, treated the perturbation of a Schwarzschild black hole due to a slowly rotating, light, concentric thin ring by solving the perturbation equations in terms of a multipole expansion of the mass-and-rotation perturbation series. In the Schwarzschild background, his approach can be generalized to perturbation by a thin disk (which is more relevant astrophysically), but, due to rather bad convergence properties, the resulting expansions are not suitable for specific (numerical) computations. However, we show that Green’s functions, represented by Will’s result, can be expressed in closed form (without multipole expansion), which is more useful. In particular, they can be integrated out over the source (a thin disk in our case) to yield good converging series both for the gravitational potential and for the dragging angular velocity. The procedure is demonstrated, in the first perturbation order, on the simplest case of a constant-density disk, including the physical interpretation of the results in terms of a one-component perfect fluid or a two-component dust in a circular orbit about the central black hole. Free parameters are chosen in such a way that the resulting black hole has zero angular momentum but non-zero angular velocity, as it is just carried along by the dragging effect of the disk.
Probing the universality of synchronised hair around rotating black holes with Q-clouds
Herdeiro, Carlos; Kunz, Jutta; Radu, Eugen; Subagyo, Bintoro
2018-04-01
Recently, various families of black holes (BHs) with synchronised hair have been constructed. These are rotating BHs surrounded, as fully non-linear solutions of the appropriate Einstein-matter model, by a non-trivial bosonic field in synchronised rotation with the BH horizon. Some families bifurcate globally from a bald BH (e.g. the Kerr BH), whereas others bifurcate only locally from a bald BH (e.g. the D = 5 Myers-Perry BH). It would be desirable to understand how generically synchronisation allows hairy BHs to bifurcate from bald ones. However, the construction and scanning of the domain of existence of the former families of BHs can be a difficult and time consuming (numerical) task. Here, we first provide a simple perturbative argument to understand the generality of the synchronisation condition. Then, we observe that the study of Q-clouds is a generic tool to establish the existence of BHs with synchronised hair bifurcating (globally or locally) from a given bald BH without having to solve the fully non-linear coupled system of Einstein-matter equations. As examples, we apply this tool to establish the existence of synchronised hair around D = 6 Myers-Perry BHs, D = 5 black rings and D = 4 Kerr-AdS BHs, where D is the spacetime dimension. The black rings case provides an example of BHs with synchronised hair beyond spherical horizon topology, further establishing the generality of the mechanism.
Rubin, Vera C.
2010-07-01
Charlotte Moore Sitterly was a scientist in an era when it was rare for a woman to have the opportunity to devote her life to forefront science. Following her graduation from Swarthmore College in 1920, she accepted a position at Princeton University as an assistant to Henry Norris Russell. In 1925 she started a study of the solar spectrum. She could then not know that she would devote much of her scientific career to gathering basic atomic data that are invaluable to the scientific community, even today. In 1931 she obtained a Ph.D. degree at the University of California, Berkeley, and returned to Princeton as a staff member of the Princeton University Observatory. In 1945 Moore moved to the National Bureau of Standards (NBS), to supervise preparation of the widely-used tables of atomic energy levels. Following the successful launching (1946) of a V2 rocket to obtain the ultraviolet spectrum of the Sun, she started working also with Richard Tousey and his group at the Naval Research Laboratory (NRL). Ultimately, they extended the solar spectrum down to 2200 angstroms. She continued her affiliations with both the NBS and the NRL until her death in 1990. Charlotte Moore was a rare scientist who devoted her career to obtaining accurate numbers, thus enabling the scientific community to open her tables and know that the data are reliable.
Revisiting the ADT mass of the five-dimensional rotating black holes with squashed horizons
Energy Technology Data Exchange (ETDEWEB)
Peng, Jun-Jin [Guizhou Normal University, Guizhou Provincial Key Laboratory of Radio Astronomy and Data Processing, Guiyang (China)
2017-10-15
We evaluate the Abbott-Deser-Tekin (ADT) mass of the five-dimensional rotating black holes with squashed horizons on two different on-shell reference backgrounds, which are the flat background and the boundary matched Kaluza-Klein (KK) monopole. The mass on the former, identified with the one on the background of the asymptotic geometry, differs from the mass on the latter by that of the KK monopole. However, each mass satisfies the first law of black hole thermodynamics. To test the results in five dimensions, we compute the mass in the context of the dimensionally reduced theory. Finally, in contrast with the original ADT formulation, its off-shell generalisation is applied to calculate the mass as well. (orig.)
Null geodesics and shadow of a rotating black hole in extended Chern-Simons modified gravity
International Nuclear Information System (INIS)
Amarilla, Leonardo; Eiroa, Ernesto F.; Giribet, Gaston
2010-01-01
The Chern-Simons modification to general relativity in four dimensions consists of adding to the Einstein-Hilbert term a scalar field that couples to the first-class Pontryagin density. In this theory, which has attracted considerable attention recently, the Schwarzschild metric persists as an exact solution, and this is why this model resists several observational constraints. In contrast, the spinning black hole solution of the theory is not given by the Kerr metric but by a modification of it, so far only known for slow rotation and small coupling constant. In the present paper, we show that, in this approximation, the null geodesic equation can be integrated, and this allows us to investigate the shadow cast by a black hole. We discuss how, in addition to the angular momentum of the solution, the coupling to the Chern-Simons term deforms the shape of the shadow.
Vacuum polarization of the electromagnetic field near a rotating black hole
International Nuclear Information System (INIS)
Frolov, V.P.; Zel'nikov, A.I.
1985-01-01
The electromagnetic field contribution to the vacuum polarization near a rotating black hole is considered. It is shown that the problem of calculating the renormalized average value of the stress-energy tensor /sup ren/ for the Hartle-Hawking vacuum state at the pole of the event horizon can be reduced to the problem of electro- and magnetostatics in the Kerr spacetime. An explicit expression for /sup ren/ at the pole of the event horizon is obtained and its properties are discussed. It is shown that in the case of a nonrotating black hole the Page-Brown approximation for the electromagnetic stress-energy tensor gives a result which coincides at the event horizon with the exact value of /sup ren/. .AE
Revisiting the ADT mass of the five-dimensional rotating black holes with squashed horizons
International Nuclear Information System (INIS)
Peng, Jun-Jin
2017-01-01
We evaluate the Abbott-Deser-Tekin (ADT) mass of the five-dimensional rotating black holes with squashed horizons on two different on-shell reference backgrounds, which are the flat background and the boundary matched Kaluza-Klein (KK) monopole. The mass on the former, identified with the one on the background of the asymptotic geometry, differs from the mass on the latter by that of the KK monopole. However, each mass satisfies the first law of black hole thermodynamics. To test the results in five dimensions, we compute the mass in the context of the dimensionally reduced theory. Finally, in contrast with the original ADT formulation, its off-shell generalisation is applied to calculate the mass as well. (orig.)
Revisiting the ADT mass of the five-dimensional rotating black holes with squashed horizons
Peng, Jun-Jin
2017-10-01
We evaluate the Abbott-Deser-Tekin (ADT) mass of the five-dimensional rotating black holes with squashed horizons on two different on-shell reference backgrounds, which are the flat background and the boundary matched Kaluza-Klein (KK) monopole. The mass on the former, identified with the one on the background of the asymptotic geometry, differs from the mass on the latter by that of the KK monopole. However, each mass satisfies the first law of black hole thermodynamics. To test the results in five dimensions, we compute the mass in the context of the dimensionally reduced theory. Finally, in contrast with the original ADT formulation, its off-shell generalisation is applied to calculate the mass as well.
Angular momentum in general relativity. II. Perturbations of a rotating black hole
Energy Technology Data Exchange (ETDEWEB)
Prior, C R [Cambridge Univ. (UK). Dept. of Applied Mathematics and Theoretical Physics
1977-06-30
The definition of angular momentum proposed in part I of this series (Prior. Proc. R. Soc. Lond.; A354:379 (1977)) is investigated when applied to rotating black holes. It is shown how to use the formula to evaluate the angular momentum of a stationary black hole. This acts as a description of a background space on which the effect of first matter and then gravitational perturbations is considered. The latter are of most interest and the rate of change of angular momentum, dJ/dt, is found as an expression in the shear induced in the event horizon by the perturbation and in its time integral. Teukolsky's solutions (Astrophys. J.; 185:635 (1973)) for the perturbed component of the Weyl tensor are then used to find this shear and hence to give an exact answer for dJ/dt. One of the implications of the result is a direct verification of Bekenstein's formula (Phys. Rev.; 7D:949 (1973)) relating in a simple way the rate of change of angular momentum to the rate of change of mass caused by a plane wave. A more general expression is also given for dM/dt. Considering only stationary perturbations, it is shown how to generalize the definition of angular momentum so as to include information about its direction as well. Three problems are particularly discussed - a single moon, two or more moons and a ring of matter causing the perturbation - since they provide illustrations of all the main features of the black hole's behaviour. In every case it is found that the black hole realigns its axis of rotation so that the final configuration is axisymmetric if possible; otherwise is slows down completely to reach a static state.
Area spectra of near extremal black holes
International Nuclear Information System (INIS)
Chen, Deyou; Yang, Haitang; Zu, Xiaotao
2010-01-01
Motivated by Maggiore's new interpretation of quasinormal modes, we investigate area spectra of a near extremal Schwarzschild-de Sitter black hole and a higher-dimensional near extremal Reissner-Nordstrom-de Sitter black hole. The result shows that the area spectra are equally spaced and irrelevant to the parameters of the black holes. (orig.)
General rotating black holes in string theory: Greybody factors and event horizons
International Nuclear Information System (INIS)
Cvetic, M.; Larsen, F.
1997-01-01
We derive the wave equation for a minimally coupled scalar field in the background of a general rotating five-dimensional black hole. It is written in a form that involves two types of thermodynamic variables, defined at the inner and outer event horizon, respectively. We model the microscopic structure as an effective string theory, with the thermodynamic properties of the left- and right-moving excitations related to those of the horizons. Previously known solutions to the wave equation are generalized to the rotating case, and their regime of validity is sharpened. We calculate the greybody factors and interpret the resulting Hawking emission spectrum microscopically in several limits. We find a U-duality-invariant expression for the effective string length that does not assume a hierarchy between the charges. It accounts for the universal low-energy absorption cross section in the general nonextremal case. copyright 1997 The American Physical Society
Quantum tunneling from rotating black holes with scalar hair in three dimensions
Energy Technology Data Exchange (ETDEWEB)
Sakalli, I.; Gursel, H. [Eastern Mediterranean University, Department of Physics, Mersin-10 (Turkey)
2016-06-15
We study the Hawking radiation of scalar and Dirac particles (fermions) emitted from a rotating scalar hair black hole (RSHBH) within the context of three dimensional (3D) Einstein gravity using non-minimally coupled scalar field theory. Amalgamating the quantum tunneling approach with the Wentzel-Kramers-Brillouin approximation, we obtain the tunneling rates of the outgoing particles across the event horizon. Inserting the resultant tunneling rates into the Boltzmann formula, we then obtain the Hawking temperature (T{sub H}) of the 3D RSHBH. (orig.)
Penrose inequality in anti-de Sitter space
Husain, Viqar; Singh, Suprit
2017-11-01
For asymptotically flat spacetimes the Penrose inequality gives an initial data test for the weak cosmic censorship hypothesis. We give a formulation of this inequality for asymptotically anti-de Sitter (AAdS) spacetimes, and show that the inequality holds for time asymmetric data in spherical symmetry. Our analysis is motivated by the constant-negative-spatial-curvature form of the AdS black hole metric.
A Spacetime Foam Approach to the Schwarzschild-de Sitter Entropy
Directory of Open Access Journals (Sweden)
Remo Garattini
2000-03-01
Full Text Available The entropy for a black hole in a de Sitter space is approached within the framework of spacetime foam. A simple model made by N wormholes in a semiclassical approximation, is taken under examination to compute the entropy for such a case. An extension to the extreme case when the black hole and cosmological horizons are equal is discussed.
Entropy of Vaidya-deSitter Spacetime
Institute of Scientific and Technical Information of China (English)
LI Xiang; ZHAO Zheng
2001-01-01
As a statistical model of black hole entropy, the brick-wall method based on the thermal equilibrium in a large scale cannot be applied to the cases out of equilibrium, such as the non-static hole or the case with two horizons.However, the leading term of hole entropy called the Bekenstein-Hawking entropy comes from the contribution of the field near the horizon. According to this idea, the entropy of Vaidya-deSitter spacetime is calculated. A difference from the static case is that the result proportional to the area of horizon relies on a time-dependent cut-off. The condition of local equilibrium near the horizon is used as a working postulate.
International Nuclear Information System (INIS)
Zaslavskii, Oleg B
2012-01-01
We study the effect of collisions of ultrahigh energy particles near the black hole horizon (BSW effect) for two scenarios: when one of the particles either (i) moves on a circular orbit or (ii) plunges from it toward the horizon. It is shown that such circular near-horizon orbits can exist for near-extremal black holes only. This includes the innermost stable orbit (ISCO), marginally bound orbit (MBO) and photon one (PhO). We consider generic ‘dirty’ rotating black holes not specifying the metric and show that the energy in the center-of-mass frame has the universal scaling dependence on the surface gravity κ. Namely, E c.m. ∼ κ −n where for the ISCO, n= 1/3 in case (i) or n= 1/2 in case (ii). For the MBO and PhCO, n= 1/2 in both scenarios that agrees with recent calculations of Harada and Kimura for the Kerr metric. We also generalize the Grib and Pavlov observations made for the Kerr metric. The magnitude of the BSW effect on the location of collision has a somewhat paradoxical character: it decreases when approaching the horizon. (paper)
Zaslavskii, Oleg B.
2012-10-01
We study the effect of collisions of ultrahigh energy particles near the black hole horizon (BSW effect) for two scenarios: when one of the particles either (i) moves on a circular orbit or (ii) plunges from it toward the horizon. It is shown that such circular near-horizon orbits can exist for near-extremal black holes only. This includes the innermost stable orbit (ISCO), marginally bound orbit (MBO) and photon one (PhO). We consider generic ‘dirty’ rotating black holes not specifying the metric and show that the energy in the center-of-mass frame has the universal scaling dependence on the surface gravity κ. Namely, Ec.m. ˜ κ-n where for the ISCO, n=\\frac{1}{3} in case (i) or n=\\frac{1}{2} in case (ii). For the MBO and PhCO, n=\\frac{1}{2} in both scenarios that agrees with recent calculations of Harada and Kimura for the Kerr metric. We also generalize the Grib and Pavlov observations made for the Kerr metric. The magnitude of the BSW effect on the location of collision has a somewhat paradoxical character: it decreases when approaching the horizon.
Holographic stress-energy tensor near the Cauchy horizon inside a rotating black hole
Ishibashi, Akihiro; Maeda, Kengo; Mefford, Eric
2017-07-01
We investigate a stress-energy tensor for a conformal field theory (CFT) at strong coupling inside a small five-dimensional rotating Myers-Perry black hole with equal angular momenta by using the holographic method. As a gravitational dual, we perturbatively construct a black droplet solution by applying the "derivative expansion" method, generalizing the work of Haddad [Classical Quantum Gravity 29, 245001 (2012), 10.1088/0264-9381/29/24/245001] and analytically compute the holographic stress-energy tensor for our solution. We find that the stress-energy tensor is finite at both the future and past outer (event) horizons and that the energy density is negative just outside the event horizons due to the Hawking effect. Furthermore, we apply the holographic method to the question of quantum instability of the Cauchy horizon since, by construction, our black droplet solution also admits a Cauchy horizon inside. We analytically show that the null-null component of the holographic stress-energy tensor negatively diverges at the Cauchy horizon, suggesting that a singularity appears there, in favor of strong cosmic censorship.
Fuzzy Euclidean wormholes in de Sitter space
Energy Technology Data Exchange (ETDEWEB)
Chen, Pisin; Hu, Yao-Chieh; Yeom, Dong-han, E-mail: pisinchen@phys.ntu.edu.tw, E-mail: r04244003@ntu.edu.tw, E-mail: innocent.yeom@gmail.com [Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, Taipei 10617, Taiwan (China)
2017-07-01
We investigate Euclidean wormholes in Einstein gravity with a massless scalar field in de Sitter space. Euclidean wormholes are possible due to the analytic continuation of the time as well as complexification of fields, where we need to impose the classicality after the Wick-rotation to the Lorentzian signatures. For some parameters, wormholes are preferred than Hawking-Moss instantons, and hence wormholes can be more fundamental than Hawking-Moss type instantons. Euclidean wormholes can be interpreted in three ways: (1) classical big bounce, (2) either tunneling from a small to a large universe or a creation of a collapsing and an expanding universe from nothing, and (3) either a transition from a contracting to a bouncing phase or a creation of two expanding universes from nothing. These various interpretations shed some light on challenges of singularities. In addition, these will help to understand tensions between various kinds of quantum gravity theories.
Discrete Torsion, (Anti) de Sitter D4-Brane and Tunneling
Singh, Abhishek K.; Pandey, P. K.; Singh, Sunita; Kar, Supriya
2014-06-01
We obtain quantum geometries on a vacuum created pair of a (DDbar)3-brane, at a Big Bang singularity, by a local two form on a D4-brane. In fact our analysis is provoked by an established phenomenon leading to a pair creation by a gauge field at a black hole horizon by Stephen Hawking in 1975. Importantly, the five dimensional microscopic black holes are described by an effective non-perturbative curvature underlying a discrete torsion in a second order formalism. In the case for a non-propagating torsion, the effective curvature reduces to Riemannian, which in a low energy limit may describe Einstein vacuum in the formalism. In particular, our analysis suggests that a non-trivial space begin with a hot de Sitter brane-Universe underlying a nucleation of a vacuum pair of (DDbar)-instanton at a Big Bang. A pair of instanton nucleats a D-particle which in turn combines with an anti D-particle to describe a D-string and so on. The nucleation of a pair of higher dimensional pair of brane/anti-brane from a lower dimensional pair may be viewed via an expansion of the brane-Universe upon time. It is in conformity with the conjecture of a branes within a brane presumably in presence of the non-zero modes of two form. Interestingly, we perform a thermal analysis underlying various emergent quantum de Sitter vacua on a D4-brane and argue for the plausible tunneling geometries underlying a thermal equilibrium. It is argued that a de Sitter Schwarzschild undergoes quantum tunneling to an AdS-brane Schwarzschild via Nariai and de Sitter topological black hole.
Discrete Torsion, (Anti) de Sitter D4-Brane and Tunneling
International Nuclear Information System (INIS)
Singh, Abhishek K.; Pandey, P.K.; Singh, Sunita; Kar, Supriya
2014-01-01
We obtain quantum geometries on a vacuum created pair of a (DD ¯ ) 3 -brane, at a Big Bang singularity, by a local two form on a D 4 -brane. In fact our analysis is provoked by an established phenomenon leading to a pair creation by a gauge field at a black hole horizon by Stephen Hawking in 1975. Importantly, the five dimensional microscopic black holes are described by an effective non-perturbative curvature underlying a discrete torsion in a second order formalism. In the case for a non-propagating torsion, the effective curvature reduces to Riemannian, which in a low energy limit may describe Einstein vacuum in the formalism. In particular, our analysis suggests that a non-trivial space begin with a hot de Sitter brane-Universe underlying a nucleation of a vacuum pair of (DD ¯ )-instanton at a Big Bang. A pair of instanton nucleats a D-particle which in turn combines with an anti D-particle to describe a D-string and so on. The nucleation of a pair of higher dimensional pair of brane/anti-brane from a lower dimensional pair may be viewed via an expansion of the brane-Universe upon time. It is in conformity with the conjecture of a branes within a brane presumably in presence of the non-zero modes of two form. Interestingly, we perform a thermal analysis underlying various emergent quantum de Sitter vacua on a D 4 -brane and argue for the plausible tunneling geometries underlying a thermal equilibrium. It is argued that a de Sitter Schwarzschild undergoes quantum tunneling to an AdS-brane Schwarzschild via Nariai and de Sitter topological black hole
Kazanas, Demosthenes; Fukumura, K.
2009-01-01
We present detailed computations of photon orbits emitted by flares at the ISCO of accretion disks around rotating black holes. We show that for sufficiently large spin parameter, i.e. $a > 0.94 M$, following a flare at ISCO, a sufficient number of photons arrive at an observer after multiple orbits around the black hole, to produce an "photon echo" of constant lag, i.e. independent of the relative phase between the black hole and the observer, of $\\Delta T \\simeq 14 M$. This constant time delay, then, leads to the presence of a QPO in the source power spectrum at a frequency $\
Directory of Open Access Journals (Sweden)
Peter F. Newton
2012-01-01
Full Text Available The objectives of this study were to (1 quantitatively summarize the early yield responses of black spruce (Picea mariana (Mill. B.S.P. to forest vegetation management (FVM treatments through a meta-analytical review of the scientific literature, and (2 given (1, estimate the rotational consequences of these responses through model simulation. Based on a fixed-effects meta-analytic approach using 44 treated-control yield pairs derived from 12 experiments situated throughout the Great Lakes—St. Lawrence and Canadian Boreal Forest Regions, the resultant mean effect size (response ratio and associated 95% confidence interval for basal diameter, total height, stem volume, and survival responses, were respectively: 54.7% (95% confidence limits (lower/upper: 34.8/77.6, 27.3% (15.7/40.0, 198.7% (70.3/423.5, and 2.9% (−5.5/11.8. The results also indicated that early and repeated treatments will yield the largest gains in terms of mean tree size and survival. Rotational simulations indicated that FVM treatments resulted in gains in stand-level operability (e.g., reductions of 9 and 5 yr for plantations established on poor-medium and good-excellent site qualities, resp.. The challenge of maintaining coniferous forest cover on recently disturbed sites, attaining statutory-defined free-to-grow status, and ensuring long-term productivity, suggest that FVM will continue to be an essential silvicultural treatment option when managing black spruce plantations.
Extremal rotating black holes in the near-horizon limit: Phase space and symmetry algebra
Directory of Open Access Journals (Sweden)
G. Compère
2015-10-01
Full Text Available We construct the NHEG phase space, the classical phase space of Near-Horizon Extremal Geometries with fixed angular momenta and entropy, and with the largest symmetry algebra. We focus on vacuum solutions to d dimensional Einstein gravity. Each element in the phase space is a geometry with SL(2,R×U(1d−3 isometries which has vanishing SL(2,R and constant U(1 charges. We construct an on-shell vanishing symplectic structure, which leads to an infinite set of symplectic symmetries. In four spacetime dimensions, the phase space is unique and the symmetry algebra consists of the familiar Virasoro algebra, while in d>4 dimensions the symmetry algebra, the NHEG algebra, contains infinitely many Virasoro subalgebras. The nontrivial central term of the algebra is proportional to the black hole entropy. The conserved charges are given by the Fourier decomposition of a Liouville-type stress-tensor which depends upon a single periodic function of d−3 angular variables associated with the U(1 isometries. This phase space and in particular its symmetries can serve as a basis for a semiclassical description of extremal rotating black hole microstates.
Emission of massive scalar fields by a higher-dimensional rotating black hole
International Nuclear Information System (INIS)
Kanti, P.; Pappas, N.
2010-01-01
We perform a comprehensive study of the emission of massive scalar fields by a higher-dimensional, simply rotating black hole both in the bulk and on the brane. We derive approximate, analytic results as well as exact numerical ones for the absorption probability, and demonstrate that the two sets agree very well in the low and intermediate-energy regime for scalar fields with mass m Φ ≤1 TeV in the bulk and m Φ ≤0.5 TeV on the brane. The numerical values of the absorption probability are then used to derive the Hawking radiation power emission spectra in terms of the number of extra dimensions, angular-momentum of the black hole and mass of the emitted field. We compute the total emissivities in the bulk and on the brane, and demonstrate that, although the brane channel remains the dominant one, the bulk-over-brane energy ratio is considerably increased (up to 34%) when the mass of the emitted field is taken into account.
Natário, José; Queimada, Leonel; Vicente, Rodrigo
2018-04-01
We rederive the equations of motion for relativistic strings, that is, one-dimensional elastic bodies whose internal energy depends only on their stretching, and use them to study circular string loops rotating in the equatorial plane of flat and black hole spacetimes. We start by obtaining the conditions for equilibrium, and find that: (i) if the string’s longitudinal speed of sound does not exceed the speed of light then its radius when rotating in Minkowski’s spacetime is always larger than its radius when at rest; (ii) in Minkowski’s spacetime, equilibria are linearly stable for rotation speeds below a certain threshold, higher than the string’s longitudinal speed of sound, and linearly unstable for some rotation speeds above it; (iii) equilibria are always linearly unstable in Schwarzschild’s spacetime. Moreover, we study interactions of a rotating string loop with a Kerr black hole, namely in the context of the weak cosmic censorship conjecture and the Penrose process. We find that: (i) elastic string loops that satisfy the null energy condition cannot overspin extremal black holes; (ii) elastic string loops that satisfy the dominant energy condition cannot increase the maximum efficiency of the usual particle Penrose process; (iii) if the dominant energy condition (but not the weak energy condition) is violated then the efficiency can be increased. This last result hints at the interesting possibility that the dominant energy condition may underlie the well known upper bounds for the efficiencies of energy extraction processes (including, for example, superradiance).
Energy Technology Data Exchange (ETDEWEB)
Demianski, M [California Inst. of Tech., Pasadena (USA)
1976-07-01
A stationary axially symmetric perturbation of a rotating black hole due to a distribution of test matter is investigated. The Newman-Penrose spin coefficient formalism is used to derive a general set of equations describing the perturbed space-time. In a linear approximation it is shown that the mass and angular momentum of a rotating black hole is not affected by the perturbation. The metric perturbations near the horizon are given. It is concluded that given a perturbing test fluid distribution, one can always find a corresponding metric perturbation such that the mass and angular momentum of the black hole are not changed. It was also noticed that when a tends to M, those perturbed spin coefficients and components of the Weyl tensor which determine the intrinsic properties of the incoming null cone near the horizon grow indefinitely.
Shaymatov, Sanjar; Ahmedov, Bobomurat; Stuchlík, Zdeněk; Abdujabbarov, Ahmadjon
We investigate particle motion and collisions in the vicinity of rotating black holes immersed in combined cosmological quintessential scalar field and external magnetic field. The quintessential dark-energy field governing the spacetime structure is characterized by the quintessential state parameter ωq ∈ (‑1; ‑1/3) characterizing its equation of state, and the quintessential field-intensity parameter c determining the static radius where the black hole attraction is just balanced by the quintessential repulsion. The magnetic field is assumed to be test field that is uniform close to the static radius, where the spacetime is nearly flat, being characterized by strength B there. Deformations of the test magnetic field in vicinity of the black hole, caused by the Ricci non-flat spacetime structure are determined. General expression of the center-of-mass energy of the colliding charged or uncharged particles near the black hole is given and discussed in several special cases. In the case of nonrotating black holes, we discuss collisions of two particles freely falling from vicinity of the static radius, or one such a particle colliding with charged particle revolving at the innermost stable circular orbit. In the case of rotating black holes, we discuss briefly particles falling in the equatorial plane and colliding in close vicinity of the black hole horizon, concentrating attention to the interplay of the effects of the quintessential field and the external magnetic field. We demonstrate that the ultra-high center-of-mass energy can be obtained for black holes placed in an external magnetic field for an infinitesimally small quintessential field-intensity parameter c; the center-of-mass energy decreases if the quintessential field-intensity parameter c increases.
Directory of Open Access Journals (Sweden)
Hang Liu
2016-08-01
Full Text Available In this paper, we investigate the angular momentum independence of the entropy sum and product for AdS rotating black holes based on the first law of thermodynamics and a mathematical lemma related to Vandermonde determinant. The advantage of this method is that the explicit forms of the spacetime metric, black hole mass and charge are not needed but the Hawking temperature and entropy formula on the horizons are necessary for static black holes, while our calculations require the expressions of metric and angular velocity formula. We find that the entropy sum is always independent of angular momentum for all dimensions and the angular momentum-independence of entropy product only holds for the dimensions d>4 with at least one rotation parameter ai=0, while the mass-free of entropy sum and entropy product for rotating black holes only stand for higher dimensions (d>4 and for all dimensions, respectively. On the other hand, we find that the introduction of a negative cosmological constant does not affect the angular momentum-free of entropy sum and product but the criterion for angular momentum-independence of entropy product will be affected.
Stationary black holes: large D analysis
International Nuclear Information System (INIS)
Suzuki, Ryotaku; Tanabe, Kentaro
2015-01-01
We consider the effective theory of large D stationary black holes. By solving the Einstein equations with a cosmological constant using the 1/D expansion in near zone of the black hole we obtain the effective equation for the stationary black hole. The effective equation describes the Myers-Perry black hole, bumpy black holes and, possibly, the black ring solution as its solutions. In this effective theory the black hole is represented as an embedded membrane in the background, e.g., Minkowski or Anti-de Sitter spacetime and its mean curvature is given by the surface gravity redshifted by the background gravitational field and the local Lorentz boost. The local Lorentz boost property of the effective equation is observed also in the metric itself. In fact we show that the leading order metric of the Einstein equation in the 1/D expansion is generically regarded as a Lorentz boosted Schwarzschild black hole. We apply this Lorentz boost property of the stationary black hole solution to solve perturbation equations. As a result we obtain an analytic formula for quasinormal modes of the singly rotating Myers-Perry black hole in the 1/D expansion.
Low-density, radiatively inefficient rotating-accretion flow on to a black hole
Inayoshi, Kohei; Ostriker, Jeremiah P.; Haiman, Zoltán; Kuiper, Rolf
2018-05-01
We study low-density axisymmetric accretion flows on to black holes (BHs) with two-dimensional hydrodynamical simulations, adopting the α-viscosity prescription. When the gas angular momentum is low enough to form a rotationally supported disc within the Bondi radius (RB), we find a global steady accretion solution. The solution consists of a rotational equilibrium distribution around r ˜ RB, where the density follows ρ ∝ (1 + RB/r)3/2, surrounding a geometrically thick and optically thin accretion disc at the centrifugal radius RC(
Noncommutative de Sitter and FRW spaces
International Nuclear Information System (INIS)
Burić, Maja; Madore, John
2015-01-01
Several versions of fuzzy four-dimensional de Sitter space are constructed using the noncommutative frame formalism. Although all noncommutative spacetimes which are found have commutative de Sitter metric as a classical limit, the algebras and the differential calculi which define them have many differences, which we derive and discuss
Energy Technology Data Exchange (ETDEWEB)
Stark, R F; Connors, P A [Oxford Univ. (UK). Dept. of Astrophysics
1977-03-31
It is stated that the degree and plane of linear polarisation of the radiation from Cyg X-1 are being investigated by X-ray satellite experiments. This radiation can be explained as coming from an accretion disk around a black hole, the polarisation of the X-rays being due to electron scattering in the hotter inner regions of the disk. Existing predictions of the polarisation properties, as a function of energy, have been based on a Newtonian approximation, thus neglecting gravitational effects on the rays as they propagate from the surface of the disk to an observer at infinity. Preliminary results are here given of a full general relativistic calculation that shows that gravitational effects completely alter the polarisation properties, and provide a sensitive test of the existence of a black hole. It is found that for a rapidly rotating black hole the general relativistic effects on the polarisation properties are an order of magnitude greater than for a slowly rotating black hole, or for a neutron star. The degree of linear polarisation of the rays as they leave the disk will also differ from the Newtonian value, and gravitational bending of the light will alter the angle at which a ray leaves the surface of the disk. The large general relativistic variation of the polarisation plane with energy is illustrated graphically. The very large general relativistic rotations in the plane of polarisation provide an opportunity for testing the black hole hypothesis for Cyg X-1. In order to observe these effects X-ray satellite experiments will be required with more sensitive polarimetry across a wider energy range than is available at present.
Building an explicit de Sitter
International Nuclear Information System (INIS)
Louis, Jan; Hamburg Univ.; Rummel, Markus; Valandro, Roberto; Westphal, Alexander
2012-11-01
We construct an explicit example of a de Sitter vacuum in type IIB string theory that realizes the proposal of Kaehler uplifting. As the large volume limit in this method depends on the rank of the largest condensing gauge group we carry out a scan of gauge group ranks over the Kreuzer-Skarke set of toric Calabi-Yau threefolds. We find large numbers of models with the largest gauge group factor easily exceeding a rank of one hundred. We construct a global model with Kaehler uplifting on a two-parameter model on CP 4 11169 , by an explicit analysis from both the type IIB and F-theory point of view. The explicitness of the construction lies in the realization of a D7 brane configuration, gauge flux and RR and NS flux choices, such that all known consistency conditions are met and the geometric moduli are stabilized in a metastable de Sitter vacuum with spontaneous GUT scale supersymmetry breaking driven by an F-term of the Kaehler moduli.
Building an explicit de Sitter
Energy Technology Data Exchange (ETDEWEB)
Louis, Jan [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Hamburg Univ. (Germany). Zentrum fuer Mathematische Physik; Rummel, Markus; Valandro, Roberto [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Westphal, Alexander [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie
2012-11-15
We construct an explicit example of a de Sitter vacuum in type IIB string theory that realizes the proposal of Kaehler uplifting. As the large volume limit in this method depends on the rank of the largest condensing gauge group we carry out a scan of gauge group ranks over the Kreuzer-Skarke set of toric Calabi-Yau threefolds. We find large numbers of models with the largest gauge group factor easily exceeding a rank of one hundred. We construct a global model with Kaehler uplifting on a two-parameter model on CP{sup 4}{sub 11169}, by an explicit analysis from both the type IIB and F-theory point of view. The explicitness of the construction lies in the realization of a D7 brane configuration, gauge flux and RR and NS flux choices, such that all known consistency conditions are met and the geometric moduli are stabilized in a metastable de Sitter vacuum with spontaneous GUT scale supersymmetry breaking driven by an F-term of the Kaehler moduli.
CFT description of three-dimensional Kerr-de Sitter spacetime
International Nuclear Information System (INIS)
Fjelstad, Jens; Hwang, Stephen; Maansson, Teresia
2002-01-01
We describe three-dimensional Kerr-de Sitter space using similar methods as recently applied to the BTZ black hole. A rigorous form of the classical connection between gravity in three dimensions and two-dimensional conformal field theory is employed, where the fundamental degrees of freedom are described in terms of two dependent SL(2,C) currents. In contrast to the BTZ case, however, quantization does not give the Bekenstein-Hawking entropy connected to the cosmological horizon of Kerr-de Sitter space
CFT description of three-dimensional Kerr-de Sitter spacetime
Energy Technology Data Exchange (ETDEWEB)
Fjelstad, Jens E-mail: jens.fjelstad@kau.se; Hwang, Stephen E-mail: stephen.hwang@kau.se; Maansson, Teresia E-mail: teresia@physto.se
2002-10-07
We describe three-dimensional Kerr-de Sitter space using similar methods as recently applied to the BTZ black hole. A rigorous form of the classical connection between gravity in three dimensions and two-dimensional conformal field theory is employed, where the fundamental degrees of freedom are described in terms of two dependent SL(2,C) currents. In contrast to the BTZ case, however, quantization does not give the Bekenstein-Hawking entropy connected to the cosmological horizon of Kerr-de Sitter space.
Energy Technology Data Exchange (ETDEWEB)
Stettler, R.F.; Hinckley, T.M. [Washington Univ., Seattle, WA (United States). Coll. of Forest Resources; Heilman, P.E. [Washington State Univ., Puyallup, WA (United States). Research and Extension Center; Bradshaw, H.D. Jr. [Washington Univ., Seattle, WA (United States). Dept. of Biochemistry
1993-04-30
This project was initiated in 1978 to serve three objectives: (1) develop genetically improved poplar cultivars offering increased productivity under short-rotation culture; (2) identify the major components of productivity in poplar and determine ways in which they can be manipulated, genetically and culturally; and (3) engage in technology transfer to regional industry and agencies so as to make poplar culture in the Pacific Northwest economically feasible. The project is aimed at capturing natural variation in the native black cottonwood. Populus trichocarpa T & G, and enhancing it through selective breeding. Major emphasis has been placed on hybridization of black cottonwood with P deltoides and P maximowiczii, more recently with p nigra. First-generation (F{sub 1}) hybrids have consistently outperformed black cottonwood by a factor of 1.5.-2. The high yields of woody biomass obtained from these clonally propagated hybrids, in rotations of 4-7 years, have fostered the establishment of large-scale plantations by the pulp and paper industry in the region. Physiological studies have helped to elucidate hybrid superiority and several of the underlying mechanisms.
Warped products and black holes
International Nuclear Information System (INIS)
Hong, Soon-Tae
2005-01-01
We apply the warped product space-time scheme to the Banados-Teitelboim-Zanelli black holes and the Reissner-Nordstroem-anti-de Sitter black hole to investigate their interior solutions in terms of warped products. It is shown that there exist no discontinuities of the Ricci and Einstein curvatures across event horizons of these black holes
Toward de Sitter space from ten dimensions
Moritz, Jakob; Retolaza, Ander; Westphal, Alexander
2018-02-01
Using a 10D lift of nonperturbative volume stabilization in type IIB string theory, we study the limitations for obtaining de Sitter vacua. Based on this we find that the simplest Kachru, Kallosh, Linde, and Trivedi vacua with a single Kähler modulus stabilized by a gaugino condensate cannot be uplifted to de Sitter. Rather, the uplift flattens out due to stronger backreaction on the volume modulus than has previously been anticipated, resulting in vacua which are metastable and supersymmetry breaking, but that are always anti-de Sitter (AdS). However, we also show that setups such as racetrack stabilization can avoid this issue. In these models it is possible to obtain supersymmetric AdS vacua with a cosmological constant that can be tuned to zero while retaining finite moduli stabilization. In this regime, it seems that de Sitter uplifts are possible with negligible backreaction on the internal volume. We exhibit this behavior also from the 10D perspective.
Quantum break-time of de Sitter
Energy Technology Data Exchange (ETDEWEB)
Dvali, Gia; Gómez, César; Zell, Sebastian, E-mail: georgi.dvali@physik.uni-muenchen.de, E-mail: cesar.gomez@uam.es, E-mail: sebastian.zell@campus.lmu.de [Arnold Sommerfeld Center, Ludwig-Maximilians-Universität, Theresienstraße 37, 80333 München (Germany)
2017-06-01
The quantum break-time of a system is the time-scale after which its true quantum evolution departs from the classical mean field evolution. For capturing it, a quantum resolution of the classical background—e.g., in terms of a coherent state—is required. In this paper, we first consider a simple scalar model with anharmonic oscillations and derive its quantum break-time. Next, following [1], we apply these ideas to de Sitter space. We formulate a simple model of a spin-2 field, which for some time reproduces the de Sitter metric and simultaneously allows for its well-defined representation as quantum coherent state of gravitons. The mean occupation number N of background gravitons turns out to be equal to the de Sitter horizon area in Planck units, while their frequency is given by the de Sitter Hubble parameter. In the semi-classical limit, we show that the model reproduces all the known properties of de Sitter, such as the redshift of probe particles and thermal Gibbons-Hawking radiation, all in the language of quantum S -matrix scatterings and decays of coherent state gravitons. Most importantly, this framework allows to capture the 1/ N -effects to which the usual semi-classical treatment is blind. They violate the de Sitter symmetry and lead to a finite quantum break-time of the de Sitter state equal to the de Sitter radius times N . We also point out that the quantum-break time is inversely proportional to the number of particle species in the theory. Thus, the quantum break-time imposes the following consistency condition: older and species-richer universes must have smaller cosmological constants. For the maximal, phenomenologically acceptable number of species, the observed cosmological constant would saturate this bound if our Universe were 10{sup 100} years old in its entire classical history.
Quantum break-time of de Sitter
Dvali, Gia; Gómez, César; Zell, Sebastian
2017-06-01
The quantum break-time of a system is the time-scale after which its true quantum evolution departs from the classical mean field evolution. For capturing it, a quantum resolution of the classical background—e.g., in terms of a coherent state—is required. In this paper, we first consider a simple scalar model with anharmonic oscillations and derive its quantum break-time. Next, following [1], we apply these ideas to de Sitter space. We formulate a simple model of a spin-2 field, which for some time reproduces the de Sitter metric and simultaneously allows for its well-defined representation as quantum coherent state of gravitons. The mean occupation number N of background gravitons turns out to be equal to the de Sitter horizon area in Planck units, while their frequency is given by the de Sitter Hubble parameter. In the semi-classical limit, we show that the model reproduces all the known properties of de Sitter, such as the redshift of probe particles and thermal Gibbons-Hawking radiation, all in the language of quantum S-matrix scatterings and decays of coherent state gravitons. Most importantly, this framework allows to capture the 1/N-effects to which the usual semi-classical treatment is blind. They violate the de Sitter symmetry and lead to a finite quantum break-time of the de Sitter state equal to the de Sitter radius times N. We also point out that the quantum-break time is inversely proportional to the number of particle species in the theory. Thus, the quantum break-time imposes the following consistency condition: older and species-richer universes must have smaller cosmological constants. For the maximal, phenomenologically acceptable number of species, the observed cosmological constant would saturate this bound if our Universe were 10100 years old in its entire classical history.
Covariance Method of the Tunneling Radiation from High Dimensional Rotating Black Holes
Li, Hui-Ling; Han, Yi-Wen; Chen, Shuai-Ru; Ding, Cong
2018-04-01
In this paper, Angheben-Nadalini-Vanzo-Zerbini (ANVZ) covariance method is used to study the tunneling radiation from the Kerr-Gödel black hole and Myers-Perry black hole with two independent angular momentum. By solving the Hamilton-Jacobi equation and separating the variables, the radial motion equation of a tunneling particle is obtained. Using near horizon approximation and the distance of the proper pure space, we calculate the tunneling rate and the temperature of Hawking radiation. Thus, the method of ANVZ covariance is extended to the research of high dimensional black hole tunneling radiation.
McNutt, David D.
2017-11-01
We introduce three approaches to generate curvature invariants that transform covariantly under a conformal transformation of a four-dimensional spacetime. For any black hole conformally related to a stationary black hole, we show how a set of conformally covariant invariants can be combined to produce a conformally covariant invariant that detects the event horizon of the conformally related black hole. As an application we consider the rotating dynamical black holes conformally related to the Kerr-Newman-Unti-Tamburino-(anti)-de Sitter spacetimes and construct an invariant that detects the conformal Killing horizon along with a second invariant that detects the conformal stationary limit surface. In addition, we present necessary conditions for a dynamical black hole to be conformally related to a stationary black hole and apply these conditions to the ingoing Kerr-Vaidya and Vaidya black hole solutions to determine if they are conformally related to stationary black holes for particular choices of the mass function. While two of the three approaches cannot be generalized to higher dimensions, we discuss the existence of a conformally covariant invariant that will detect the event horizon for any higher dimensional black hole conformally related to a stationary black hole which admits at least two conformally covariant invariants, including all vacuum spacetimes.
Inflation as de Sitter instability
Energy Technology Data Exchange (ETDEWEB)
Cadoni, Mariano; Franzin, Edgardo [Universita di Cagliari, Cittadella Universitaria, Dipartimento di Fisica, Monserrato (Italy); INFN, Sezione di Cagliari, Monserrato (Italy); Mignemi, Salvatore [INFN, Sezione di Cagliari, Monserrato (Italy); Universita di Cagliari, Dipartimento di Matematica e Informatica, Cagliari (Italy)
2016-09-15
We consider cosmological inflation generated by a scalar field slowly rolling off from a de Sitter maximum of its potential. The models belong to the class of hilltop models and represent the most general model of this kind in which the scalar potential can be written as the sum of two exponentials. The minimally coupled Einstein-scalar gravity theory obtained in this way is the cosmological version of a two-scale generalization of known holographic models, allowing for solitonic solutions interpolating between an AdS spacetime in the infrared and scaling solutions in the ultraviolet. We then investigate cosmological inflation in the slow-roll approximation. Our model reproduces correctly, for a wide range of its parameters, the most recent experimental data for the power spectrum of primordial perturbations. Moreover, it predicts inflation at energy scales of four to five orders of magnitude below the Planck scale. At the onset of inflation, the mass of the tachyonic excitation, i.e. of the inflaton, turns out to be seven to eight orders of magnitude smaller than the Planck mass. (orig.)
Gravitational wave production by Hawking radiation from rotating primordial black holes
Energy Technology Data Exchange (ETDEWEB)
Dong, Ruifeng; Kinney, William H.; Stojkovic, Dejan, E-mail: ruifengd@buffalo.edu, E-mail: whkinney@buffalo.edu, E-mail: ds77@buffalo.edu [HEPCOS, Department of Physics, SUNY, University at Buffalo, Buffalo, NY 14260-1500 (United States)
2016-10-01
In this paper we analyze in detail a rarely discussed question of gravity wave production from evaporating primordial black holes. These black holes emit gravitons which are, at classical level, registered as gravity waves. We use the latest constraints on their abundance, and calculate the power emitted in gravitons at the time of their evaporation. We then solve the coupled system of equations that gives us the evolution of the frequency and amplitude of gravity waves during the expansion of the universe. The spectrum of gravitational waves that can be detected today depends on multiple factors: fraction of the total energy density which was occupied by primordial black holes, the epoch in which they were formed, and quantities like their mass and angular momentum. We conclude that very small primordial black holes which evaporate before the big-bang nucleosynthesis emit gravitons whose spectral energy fraction today can be as large as 10{sup −7.5}. On the other hand, those which are massive enough so that they still exist now can yield a signal as high as 10{sup −6.5}. However, typical frequencies of the gravity waves from primordial black holes are still too high to be observed with the current and near future gravity wave observations.
General relativistic radiative transfer code in rotating black hole space-time: ARTIST
Takahashi, Rohta; Umemura, Masayuki
2017-02-01
We present a general relativistic radiative transfer code, ARTIST (Authentic Radiative Transfer In Space-Time), that is a perfectly causal scheme to pursue the propagation of radiation with absorption and scattering around a Kerr black hole. The code explicitly solves the invariant radiation intensity along null geodesics in the Kerr-Schild coordinates, and therefore properly includes light bending, Doppler boosting, frame dragging, and gravitational redshifts. The notable aspect of ARTIST is that it conserves the radiative energy with high accuracy, and is not subject to the numerical diffusion, since the transfer is solved on long characteristics along null geodesics. We first solve the wavefront propagation around a Kerr black hole that was originally explored by Hanni. This demonstrates repeated wavefront collisions, light bending, and causal propagation of radiation with the speed of light. We show that the decay rate of the total energy of wavefronts near a black hole is determined solely by the black hole spin in late phases, in agreement with analytic expectations. As a result, the ARTIST turns out to correctly solve the general relativistic radiation fields until late phases as t ˜ 90 M. We also explore the effects of absorption and scattering, and apply this code for a photon wall problem and an orbiting hotspot problem. All the simulations in this study are performed in the equatorial plane around a Kerr black hole. The ARTIST is the first step to realize the general relativistic radiation hydrodynamics.
International Nuclear Information System (INIS)
Abramowicz, M.A.; Prasanna, A.R.
1988-10-01
Anderson and Lemos (1988) noticed that the direction in which viscous torque transports angular momentum changes, close to a black hole, from outwards to inwards. We find here that close to a black hole the centrifugal force attracts particles towards the hole. We argue that these are particular examples of a general reversal in sense of the inward and outward directions for all dynamical effects of rotation close to the hole. Using results from the recent paper by Abramowicz, Carter and Lasota (1988) we explain that the reversal is not connected with dragging of inertial frames or with the difference between the angular velocities of the hole and of the surrounding matter but rather, it is an effect of curvature. For a Schwarzschild black hole the reversal takes place at the circular photon orbit (r=3M-tilde) because the geodesic curvature, R-tilde=r(1-3M-tilde/r), of the circles r = const. changes its sign there. (author). 13 refs, 7 figs, 1 tab
Density fluctuations in the de Sitter universe
International Nuclear Information System (INIS)
Banerjee, N.; Mallik, S.
1991-01-01
The de Sitter space-time appears to be the most widely chosen manifold to study quantum field theories on curved space-time. The reason is, of course, its high symmetry and the related fact that the mode functions can be obtained exactly in terms of known functions. Thus the different problems of quantization on curved space-time, like the non-uniqueness of the vacuum, regularization and renormalization of the stress tensor, have all been studied extensively in this model. The other reason of interest in the de Sitter geometry is related to the inflationary scenario of the early universe. For a brief period, the energy density of the false (symmetric) vacuum may dominate the total energy density, giving rise to de Sitter space-time. The resulting inflation may solve a number of outstanding problems of cosmology and particle physics. The properties of a Higgs-type scalar field theory is of central importance in the investigation of such a scenario. In this paper, a scalar Higgs field theory in de Sitter space-time has been investigated using the real time formulation of Semenoff and Weiss. The authors calculate the two-point function at late times and use it to obtain a general expression for the amplitude of fluctuation in energy density on scales which come out of the de Sitter horizon
Stress-energy tensor near a charged, rotating, evaporating black hole
International Nuclear Information System (INIS)
Hiscock, W.A.
1977-01-01
The recently developed two-dimensional stress-energy regularization techniques are applied to the two-dimensional analog of the Reissner-Nordstroem family of black-hole metrics. The calculated stress-energy tensor in all cases contains the thermal radiation discovered by Hawking. Implications for the evolution of the interior of a charged black hole are considered. The calculated stress-energy tensor is found to diverge on the inner, Cauchy, horizon. Thus the effect of quantum mechanics is to cause the Cauchy horizon to become singular. The stress-energy tensor is also calculated for the ''most reasonable'' two-dimensional analog of the Kerr-Newman family of black-hole metrics. Although the analysis is not as rigorous as in the Reissner-Nordstroem case, it appears that the correct value for the Hawking radiation also appears in this model
A Rigorous Treatment of Energy Extraction from a Rotating Black Hole
Finster, F.; Kamran, N.; Smoller, J.; Yau, S.-T.
2009-05-01
The Cauchy problem is considered for the scalar wave equation in the Kerr geometry. We prove that by choosing a suitable wave packet as initial data, one can extract energy from the black hole, thereby putting supperradiance, the wave analogue of the Penrose process, into a rigorous mathematical framework. We quantify the maximal energy gain. We also compute the infinitesimal change of mass and angular momentum of the black hole, in agreement with Christodoulou’s result for the Penrose process. The main mathematical tool is our previously derived integral representation of the wave propagator.
On the near horizon rotating black hole geometries with NUT charges
Energy Technology Data Exchange (ETDEWEB)
Galajinsky, Anton; Orekhov, Kirill [Tomsk Polytechnic University, Laboratory of Mathematical Physics, Tomsk (Russian Federation)
2016-09-15
The near horizon geometries are usually constructed by implementing a specific limit to a given extreme black hole configuration. Their salient feature is that the isometry group includes the conformal subgroup SO(2, 1). In this work, we turn the logic around and use the conformal invariants for constructing Ricci-flat metrics in d = 4 and d = 5 where the vacuum Einstein equations reduce to a coupled set of ordinary differential equations. In four dimensions the analysis can be carried out in full generality and the resulting metric describes the d = 4 near horizon Kerr-NUT black hole. In five dimensions we choose a specific ansatz whose structure is similar to the d = 5 near horizon Myers-Perry black hole. A Ricci-flat metric involving five arbitrary parameters is constructed. A particular member of this family, which is characterized by three parameters, seems to be a natural candidate to describe the d = 5 near horizon Myers- Perry black hole with a NUT charge. (orig.)
Magnetic Neutral Points and Electric Lines of Force in Strong Gravity of a Rotating Black Hole
Czech Academy of Sciences Publication Activity Database
Karas, Vladimír; Kopáček, Ondřej; Kunneriath, Devaky
2013-01-01
Roč. 3, 3A (2013), s. 18-24 ISSN 2161-4717 R&D Projects: GA ČR(CZ) GC13-00070J Institutional support: RVO:67985815 Keywords : galaxies * nuclei * black hole physics Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics
Effects of turbulence and rotation on protostar formation as a precursor of massive black holes
Van Borm, C.; Bovino, S.; Latif, M. A.; Schleicher, D. R. G.; Spaans, M.; Grassi, T.
2014-01-01
Context. The seeds of the first supermassive black holes may have resulted from the direct collapse of hot primordial gas in ≳104 K haloes, forming a supermassive or quasi-star as an intermediate stage. Aims: We explore the formation of a protostar resulting from the collapse of primordial gas in
Effects of turbulence and rotation on protostar formation as a precursor of massive black holes
DEFF Research Database (Denmark)
Van Borm, C.; Bovino, S.; Latif, M. A.
2014-01-01
Context. The seeds of the first supermassive black holes may have resulted from the direct collapse of hot primordial gas in ≳104 K haloes, forming a supermassive or quasi-star as an intermediate stage. Aims. We explore the formation of a protostar resulting from the collapse of primordial gas...
On the near horizon rotating black hole geometries with NUT charges
International Nuclear Information System (INIS)
Galajinsky, Anton; Orekhov, Kirill
2016-01-01
The near horizon geometries are usually constructed by implementing a specific limit to a given extreme black hole configuration. Their salient feature is that the isometry group includes the conformal subgroup SO(2, 1). In this work, we turn the logic around and use the conformal invariants for constructing Ricci-flat metrics in d = 4 and d = 5 where the vacuum Einstein equations reduce to a coupled set of ordinary differential equations. In four dimensions the analysis can be carried out in full generality and the resulting metric describes the d = 4 near horizon Kerr-NUT black hole. In five dimensions we choose a specific ansatz whose structure is similar to the d = 5 near horizon Myers-Perry black hole. A Ricci-flat metric involving five arbitrary parameters is constructed. A particular member of this family, which is characterized by three parameters, seems to be a natural candidate to describe the d = 5 near horizon Myers- Perry black hole with a NUT charge. (orig.)
Oblique magnetic fields and the role of frame dragging near a rotating black hole
Czech Academy of Sciences Publication Activity Database
Karas, Vladimír; Kopáček, Ondřej; Kunneriath, Devaky; Hamerský, Jaroslav
2014-01-01
Roč. 54, č. 6 (2014), s. 398-413 ISSN 1210-2709 R&D Projects: GA ČR GB14-37086G; GA MŠk(CZ) LH14049 Institutional support: RVO:67985815 Keywords : black holes * accretion discs Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics
Energy Technology Data Exchange (ETDEWEB)
Moritz, Jakob; Retaloza, Ander; Westphal, Alexander
2017-07-15
Using a 10D lift of non-perturbative volume stabilization in type IIB string theory we study the limitations for obtaining de Sitter vacua. Based on this we find that the simplest KKLT vacua with a single Kahler modulus stabilized by a gaugino condensate cannot be uplifted to de Sitter. Rather, the uplift flattens out due to stronger backreaction on the volume modulus than has previously been anticipated, resulting in vacua which are meta-stable and SUSY breaking, but that are always AdS. However, we also show that setups such as racetrack stabilization can avoid this issue. In these models it is possible to obtain supersymmetric AdS vacua with a cosmological constant that can be tuned to zero while retaining finite moduli stabilization. In this regime, it seems that de Sitter uplifts are possible with negligible backreaction on the internal volume. We exhibit this behavior also from the 10D perspective.
International Nuclear Information System (INIS)
Moritz, Jakob; Retaloza, Ander; Westphal, Alexander
2017-07-01
Using a 10D lift of non-perturbative volume stabilization in type IIB string theory we study the limitations for obtaining de Sitter vacua. Based on this we find that the simplest KKLT vacua with a single Kahler modulus stabilized by a gaugino condensate cannot be uplifted to de Sitter. Rather, the uplift flattens out due to stronger backreaction on the volume modulus than has previously been anticipated, resulting in vacua which are meta-stable and SUSY breaking, but that are always AdS. However, we also show that setups such as racetrack stabilization can avoid this issue. In these models it is possible to obtain supersymmetric AdS vacua with a cosmological constant that can be tuned to zero while retaining finite moduli stabilization. In this regime, it seems that de Sitter uplifts are possible with negligible backreaction on the internal volume. We exhibit this behavior also from the 10D perspective.
Anderson, Paul R.; Mottola, Emil; Sanders, Dillon H.
2018-03-01
The decay rate of the Bunch-Davies state of a massive scalar field in the expanding flat spatial sections of de Sitter space is determined by an analysis of the particle pair creation process in real time. The Feynman definition of particle and antiparticle Fourier mode solutions of the scalar wave equation and their adiabatic phase analytically continued to the complexified time domain show conclusively that the Bunch-Davies state is not the vacuum state at late times. The closely analogous creation of charged particle pairs in a uniform electric field is reviewed and Schwinger's result for the vacuum decay rate is recovered by this same real time analysis. The vacuum decay rate in each case is also calculated by switching the background field on adiabatically, allowing it to act for a very long time, and then adiabatically switching it off again. In both the uniform electric field and de Sitter cases, the particles created while the field is switched on are verified to be real, in the sense that they persist in the final asymptotic flat zero-field region. In the de Sitter case, there is an interesting residual dependence of the rate on how the de Sitter phase is ended, indicating a greater sensitivity to spatial boundary conditions. The electric current of the created particles in the E -field case and their energy density and pressure in the de Sitter case are also computed, and the magnitude of their backreaction effects on the background field estimated. Possible consequences of the Hubble scale instability of the de Sitter vacuum for cosmology, vacuum dark energy, and the cosmological "constant" problem are discussed.
Quasinormal modes in pure de Sitter spacetimes
International Nuclear Information System (INIS)
Du Daping; Wang Bin; Su Ruheng
2004-01-01
We have studied scalar perturbations as well as fermion perturbations in pure de Sitter spacetimes. For scalar perturbations we have shown that well-defined quasinormal modes in d-dimensions can exist provided that the mass of scalar field m>(d-1/2l). The quasinormal modes of fermion perturbations in three and four dimensional cases have also been investigated. We found that different from other dimensional cases, in the three dimensional pure de Sitter spacetime there is no quasinormal mode for the s-wave. This interesting difference caused by the spacial dimensions is true for both scalar and fermion perturbations
Phase transitions in de Sitter space
Directory of Open Access Journals (Sweden)
Alexander Vilenkin
1983-10-01
Full Text Available An effective potential in de Sitter space is calculated for a model of two interacting scalar fields in one-loop approximation and in a self-consistent approximation which takes into account an infinite set of diagrams. Various approaches to renormalization in de Sitter space are discussed. The results are applied to analyze the phase transition in the Hawking-Moss version of the inflationary universe scenario. Requiring that inflation is sufficiently large, we derive constraints on the parameters of the model.
New instabilities of de Sitter spacetimes
International Nuclear Information System (INIS)
Copsey, Keith; Mann, Robert
2010-01-01
We construct an instanton describing the pair production of non-Kaluza-Klein bubbles of nothing in higher odd-dimensional de Sitter spaces. In addition to showing that higher-dimensional de Sitter spaces have a nonzero probability to become topologically nontrivial, this process provides direct evidence for the association of entropy with cosmological horizons as well as evidence that non-Kaluza-Klein bubbles of nothing are a necessary ingredient in string theory or any other consistent quantum theory of gravity in higher dimensions.
The de Sitter relativistic top theory
International Nuclear Information System (INIS)
Armenta, J.; Nieto, J.A.
2005-01-01
We discuss the relativistic top theory from the point of view of the de Sitter (or anti-de Sitter) group. Our treatment rests on the Hanson-Regge spherical relativistic top Lagrangian formulation. We propose an alternative method for studying spinning objects via Kaluza-Klein theory. In particular, we derive the relativistic top equations of motion starting with the geodesic equation for a point particle in 4+N dimensions. We compare our approach with Fukuyama's formulation of spinning objects, which is also based on Kaluza-Klein theory. We also report a generalization of our approach to a 4+N+D dimensional theory
de Sitter relativity in static charts
Energy Technology Data Exchange (ETDEWEB)
Cotaescu, Ion I. [West University of Timisoara, Timisoara (Romania)
2018-02-15
The relative geodesic motion in static (and spherically symmetric) local charts on the (1 + 3)-dimensional de Sitter spacetimes is studied in terms of conserved quantities. The Lorentzian isometries are derived, relating the coordinates of the local chart of a fixed observer with the coordinates of a mobile chart considered as the rest frame of a massive particle freely moving on a timelike geodesic. The time dilation and Lorentz contraction are discussed pointing out some notable features of the de Sitter relativity in static charts. (orig.)
Charged particle in higher dimensional weakly charged rotating black hole spacetime
International Nuclear Information System (INIS)
Frolov, Valeri P.; Krtous, Pavel
2011-01-01
We study charged particle motion in weakly charged higher dimensional black holes. To describe the electromagnetic field we use a test field approximation and the higher dimensional Kerr-NUT-(A)dS metric as a background geometry. It is shown that for a special configuration of the electromagnetic field, the equations of motion of charged particles are completely integrable. The vector potential of such a field is proportional to one of the Killing vectors (called a primary Killing vector) from the 'Killing tower' of symmetry generating objects which exists in the background geometry. A free constant in the definition of the adopted electromagnetic potential is proportional to the electric charge of the higher dimensional black hole. The full set of independent conserved quantities in involution is found. We demonstrate that Hamilton-Jacobi equations are separable, as is the corresponding Klein-Gordon equation and its symmetry operators.
Resonant frequencies of massless scalar field in rotating black-brane spacetime
Institute of Scientific and Technical Information of China (English)
Jing Ji-Liang; Pan Qi-Yuan
2008-01-01
This paper investigates the resonant frequencies of the massless scalar field in the near extremal Kerr-like black-brahe spacetime. It is shown that the different angular quantum number will present different resonant frequencies. It is also shown that the real part of the resonant frequencies increases as the compact dimensions parameter μi increases, but the magnitude of the imaginary part decreases as μi increases.
Extremal energy shifts of radiation from a ring near a rotating black hole
Czech Academy of Sciences Publication Activity Database
Karas, Vladimír; Sochora, Vjačeslav
2010-01-01
Roč. 725, č. 2 (2010), s. 1507-1515 ISSN 0004-637X R&D Projects: GA ČR GA205/07/0052; GA MŠk(CZ) LC06014 Grant - others:ESA(XE) ESA- PECS project No. 98040 Institutional research plan: CEZ:AV0Z10030501 Keywords : black holes * accretion Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 7.436, year: 2010
Influence of frame-dragging on magnetic null points near rotating black holes
Czech Academy of Sciences Publication Activity Database
Karas, Vladimír; Kopáček, Ondřej; Kunneriath, Devaky
2012-01-01
Roč. 29, č. 3 (2012), 035010/1-035010/12 ISSN 0264-9381 R&D Projects: GA MŠk ME09036 Grant - others:GA ČR(CZ) GA205/09/H033 Institutional research plan: CEZ:AV0Z10030501 Keywords : Magnetic fields * Reconnection * Black holes Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.562, year: 2012
On the solution of the Dirac equation in de Sitter space
International Nuclear Information System (INIS)
Klishevich, V V; Tyumentsev, V A
2005-01-01
It is shown that the maximal number of first-order symmetry operators for the Dirac equation (including spin symmetries), both in arbitrary signature flat space and in de Sitter space, is equal. The isomorphic representation of 11-dimensional nonlinear symmetry algebra (W-algebra) of first-order operators for the Dirac operator in flat space and de Sitter space is considered. The algebra is an extension of the Lie algebra of the group of pseudo-orthogonal rotations and this extension is unique. We have found all linear Lie subalgebras in the nonlinear algebra that satisfy the conditions of the noncommutative integration theorem. Using one subalgebra we have integrated the Dirac equation in the generalized spherical system of coordinates and have constructed the complete class of exact solutions. The solution is found by a method that differs from the variable separation method and is new in the literature. The massive particle spectrum, models of particle into antiparticle transmutation, the disappearance of particles and the quantization conditions of the motion are discussed. One can use the results of the paper to pose the boundary problem for the Dirac equation in de Sitter space if the interval is used in the boundary condition. As an example, we consider a model of asymptotically flat space that is glued from the de Sitter space and flat space. We interpret the model as a gravitational well or barrier
Santa Vélez, Camilo; Enea Romano, Antonio
2018-05-01
Static coordinates can be convenient to solve the vacuum Einstein's equations in presence of spherical symmetry, but for cosmological applications comoving coordinates are more suitable to describe an expanding Universe, especially in the framework of cosmological perturbation theory (CPT). Using CPT we develop a method to transform static spherically symmetric (SSS) modifications of the de Sitter solution from static coordinates to the Newton gauge. We test the method with the Schwarzschild de Sitter (SDS) metric and then derive general expressions for the Bardeen's potentials for a class of SSS metrics obtained by adding to the de Sitter metric a term linear in the mass and proportional to a general function of the radius. Using the gauge invariance of the Bardeen's potentials we then obtain a gauge invariant definition of the turn around radius. We apply the method to an SSS solution of the Brans-Dicke theory, confirming the results obtained independently by solving the perturbation equations in the Newton gauge. The Bardeen's potentials are then derived for new SSS metrics involving logarithmic, power law and exponential modifications of the de Sitter metric. We also apply the method to SSS metrics which give flat rotation curves, computing the radial energy density profile in comoving coordinates in presence of a cosmological constant.
Black Holes in Higher Dimensions
Directory of Open Access Journals (Sweden)
Reall Harvey S.
2008-09-01
Full Text Available We review black-hole solutions of higher-dimensional vacuum gravity and higher-dimensional supergravity theories. The discussion of vacuum gravity is pedagogical, with detailed reviews of Myers–Perry solutions, black rings, and solution-generating techniques. We discuss black-hole solutions of maximal supergravity theories, including black holes in anti-de Sitter space. General results and open problems are discussed throughout.
Black hole spin from wobbling and rotation of the M87 jet and a sign of a magnetically arrested disc
Sob'yanin, Denis Nikolaevich
2018-06-01
New long-term Very Long Baseline Array observations of the well-known jet in the M87 radio galaxy at 43 GHz show that the jet experiences a sideways shift with an approximately 8-10 yr quasi-periodicity. Such jet wobbling can be indicative of a relativistic Lense-Thirring precession resulting from a tilted accretion disc. The wobbling period together with up-to-date kinematic data on jet rotation opens up the possibility for estimating angular momentum of the central supermassive black hole. In the case of a test-particle precession, the specific angular momentum is J/Mc = (2.7 ± 1.5) × 1014 cm, implying moderate dimensionless spin parameters a = 0.5 ± 0.3 and 0.31 ± 0.17 for controversial gas-dynamic and stellar-dynamic black hole masses. However, in the case of a solid-body-like precession, the spin parameter is much smaller for both masses, 0.15 ± 0.05. Rejecting this value on the basis of other independent spin estimations requires the existence of a magnetically arrested disc in M87.
Schwinger effect in de Sitter space
Energy Technology Data Exchange (ETDEWEB)
Fröb, Markus B.; Garriga, Jaume [Departament de Física Fonamental i Institut de Ciències del Cosmos, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Kanno, Sugumi [Laboratory for Quantum Gravity and Strings and Astrophysics, Cosmology and Gravity Center, Department of Mathematics and Applied Mathematics, University of Cape Town, Private Bag, Rondebosch 7701 (South Africa); Sasaki, Misao; Tanaka, Takahiro [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Soda, Jiro [Department of Physics, Kobe University, Kobe 657-8501 (Japan); Vilenkin, Alexander, E-mail: mfroeb@ffn.ub.edu, E-mail: jaume.garriga@ub.edu, E-mail: sugumi.kanno@uct.ac.za, E-mail: misao@yukawa.kyoto-u.ac.jp, E-mail: jiro@phys.sci.kobe-u.ac.jp, E-mail: tanaka@yukawa.kyoto-u.ac.jp, E-mail: vilenkin@cosmos.phy.tufts.edu [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155 (United States)
2014-04-01
We consider Schwinger pair production in 1+1 dimensional de Sitter space, filled with a constant electric field E. This can be thought of as a model for describing false vacuum decay beyond the semiclassical approximation, where pairs of a quantum field φ of mass m and charge e play the role of vacuum bubbles. We find that the adiabatic ''in'' vacuum associated with the flat chart develops a space-like expectation value for the current J, which manifestly breaks the de Sitter invariance of the background fields. We derive a simple expression for J(E), showing that both ''upward'' and ''downward'' tunneling contribute to the build-up of the current. For heavy fields, with m{sup 2} >> eE,H{sup 2}, the current is exponentially suppressed, in agreement with the results of semiclassical instanton methods. Here, H is the inverse de Sitter radius. On the other hand, light fields with m || H lead to a phenomenon of infrared hyperconductivity, where a very small electric field mH∼
Special Sitters: Youth as Respite Care Providers.
Edgar, Eugene B.; And Others
1988-01-01
A training program taught 120 teenage sitters child care skills identified as important by parents (N=250) of children with disabilities. Training included first aid and 15 hours of instruction emphasizing communication, responsive play, simple behavior management, handling of emergencies, and interviews with parents. The program also linked…
Transforming to Lorentz gauge on de Sitter
Miao, S. P.; Tsamis, N.C.; Woodard, R.P.
2009-01-01
We demonstrate that certain gauge fixing functionals cannot be added to the action on backgrounds such as de Sitter, in which a linearization instability is present. We also construct the field-dependent gauge transformation that carries the electromagnetic vector potential from a convenient, non-de
Krein Spaces in de Sitter Quantum Theories
Czech Academy of Sciences Publication Activity Database
Gazeau, J.P.; Siegl, Petr; Youssef, A.
2010-01-01
Roč. 6, - (2010), 011/1-011/23 ISSN 1815-0659 Institutional research plan: CEZ:AV0Z10480505 Keywords : de Sitter group * undecomposable representations * Krein spaces Subject RIV: BE - Theoretical Physics Impact factor: 0.856, year: 2010
Massive Vector Fields in Rotating Black-Hole Spacetimes: Separability and Quasinormal Modes.
Frolov, Valeri P; Krtouš, Pavel; Kubizňák, David; Santos, Jorge E
2018-06-08
We demonstrate the separability of the massive vector (Proca) field equation in general Kerr-NUT-AdS black-hole spacetimes in any number of dimensions, filling a long-standing gap in the literature. The obtained separated equations are studied in more detail for the four-dimensional Kerr geometry and the corresponding quasinormal modes are calculated. Two of the three independent polarizations of the Proca field are shown to emerge from the separation ansatz and the results are found in an excellent agreement with those of the recent numerical study where the full coupled partial differential equations were tackled without using the separability property.
Discrete Torsion, (Anti) de Sitter D{sub 4}-Brane and Tunneling
Energy Technology Data Exchange (ETDEWEB)
Singh, Abhishek K.; Pandey, P.K.; Singh, Sunita; Kar, Supriya, E-mail: skkar@physics.du.ac.in
2014-06-15
We obtain quantum geometries on a vacuum created pair of a (DD{sup ¯}){sub 3}-brane, at a Big Bang singularity, by a local two form on a D{sub 4}-brane. In fact our analysis is provoked by an established phenomenon leading to a pair creation by a gauge field at a black hole horizon by Stephen Hawking in 1975. Importantly, the five dimensional microscopic black holes are described by an effective non-perturbative curvature underlying a discrete torsion in a second order formalism. In the case for a non-propagating torsion, the effective curvature reduces to Riemannian, which in a low energy limit may describe Einstein vacuum in the formalism. In particular, our analysis suggests that a non-trivial space begin with a hot de Sitter brane-Universe underlying a nucleation of a vacuum pair of (DD{sup ¯})-instanton at a Big Bang. A pair of instanton nucleats a D-particle which in turn combines with an anti D-particle to describe a D-string and so on. The nucleation of a pair of higher dimensional pair of brane/anti-brane from a lower dimensional pair may be viewed via an expansion of the brane-Universe upon time. It is in conformity with the conjecture of a branes within a brane presumably in presence of the non-zero modes of two form. Interestingly, we perform a thermal analysis underlying various emergent quantum de Sitter vacua on a D{sub 4}-brane and argue for the plausible tunneling geometries underlying a thermal equilibrium. It is argued that a de Sitter Schwarzschild undergoes quantum tunneling to an AdS-brane Schwarzschild via Nariai and de Sitter topological black hole.
Distribution and determinants of QRS rotation of black and white persons in the general population.
Prineas, Ronald J; Zhang, Zhu-Ming; Stevens, Cladd E; Soliman, Elsayed Z
The prevalence and determinants of QRS transition zones are not well established. We examined the distributions of Normal, clockwise (CW) and counterclockwise (CCW)) QRS transition zones and their relations to disease, body size and demographics in 4624 black and white men and women free of cardiovascular disease and major ECG abnormalities enrolled in the NHANES-III survey. CW transition zones were least observed (6.2%) and CCW were most prevalent (60.1%) with Normal in an intermediate position (33.7%). In multivariable logistic regression analysis, the adjusted, significant predictors for CCW compared to Normal were a greater proportion of blacks and women, fewer thin people (BMI<20, thin), a greater ratio of chest depth to chest width, and an LVMass index <80g. By contrast, CW persons were older, had larger QRS/T angles, smaller ratio of chest depth to chest width, had a greater proportion of subjects with low voltage QRS, more pulmonary disease, a greater proportion with high heart rates, shorter QRS duration and were more obese (BMI≥30). Normal rather than being the most prevalent transition zone was intermediate in frequency between the most frequently encountered CCW and the least frequently encountered transition zone CW. Differences in the predictors of CW and CCW exist. This requires further investigation to examine how far these differences explain the differences in the published prognostic differences between CW and CCW. Copyright © 2017 Elsevier Inc. All rights reserved.
Stationary black holes with stringy hair
Boos, Jens; Frolov, Valeri P.
2018-01-01
We discuss properties of black holes which are pierced by special configurations of cosmic strings. For static black holes, we consider radial strings in the limit when the number of strings grows to infinity while the tension of each single string tends to zero. In a properly taken limit, the stress-energy tensor of the string distribution is finite. We call such matter stringy matter. We present a solution of the Einstein equations for an electrically charged static black hole with the stringy matter, with and without a cosmological constant. This solution is a warped product of two metrics. One of them is a deformed 2-sphere, whose Gaussian curvature is determined by the energy density of the stringy matter. We discuss the embedding of a corresponding distorted sphere into a three-dimensional Euclidean space and formulate consistency conditions. We also found a relation between the square of the Weyl tensor invariant of the four-dimensional spacetime of the stringy black holes and the energy density of the stringy matter. In the second part of the paper, we discuss test stationary strings in the Kerr geometry and in its Kerr-NUT-(anti-)de Sitter generalizations. Explicit solutions for strings that are regular at the event horizon are obtained. Using these solutions, the stress-energy tensor of the stringy matter in these geometries is calculated. Extraction of the angular momentum from rotating black holes by such strings is also discussed.
Real forms of complex quantum anti-de-Sitter algebra Uq(Sp(4;C)) and their contraction schemes
International Nuclear Information System (INIS)
Lukierski, J.; Nowicki, A.; Ruegg, H.
1991-01-01
We describe four types of inner involutions of the Cartan-Weyl basis providing (for vertical strokeqvertical stroke=1 and q real) three types of real quantum Lie algebras: U q (O(3, 2)) (quantum D=4 anti-de-Sitter), U q (O(4, 1)) (quantum D=4 de-Sitter) and U q (O(5)). We give also two types of inner involutions of the Cartan-Chevalley basis of U q (Sp(4; C)) which cannot be extended to inner involutions of the Cartan-Weyl basis. We outline twelve contraction schemes for quantum D=4 anti-de-Sitter algebra. All these contractions provide four commuting translation generators, but only two (one for vertical strokeqvertical stroke=1, the second for q real) lead to the quantum Poincare algebra with an undeformed space rotation O(3) subalgebra. (orig.)
Analytic rotating black-hole solutions in N-dimensional f(T) gravity
Energy Technology Data Exchange (ETDEWEB)
Nashed, G.G.L. [The British University in Egypt, Centre for Theoretical Physics, P.O. Box 43, Cairo (Egypt); Ain Shams University, Faculty of Science, Mathematics Department, Cairo (Egypt); Egyptian Relativity Group (ERG), Cairo (Egypt); El Hanafy, W. [The British University in Egypt, Centre for Theoretical Physics, P.O. Box 43, Cairo (Egypt); Egyptian Relativity Group (ERG), Cairo (Egypt)
2017-02-15
A non-diagonal vielbein ansatz is applied to the N-dimension field equations of f(T) gravity. An analytical vacuum solution is derived for the quadratic polynomial f(T)=T+εT{sup 2} and an inverse relation between the coupling constant ε and the cosmological constant Λ. Since the induced metric has off-diagonal components, it cannot be removed by a mere coordinate transformation, the solution has a rotating parameter. The curvature and torsion scalars invariants are calculated to study the singularities and horizons of the solution. In contrast to general relativity, the Cauchy horizon differs from the horizon which shows the effect of the higher order torsion. The general expression of the energy-momentum vector of f(T) gravity is used to calculate the energy of the system. Finally, we have shown that this kind of solution satisfies the first law of thermodynamics in the framework of f(T) gravitational theories. (orig.)
International Nuclear Information System (INIS)
Will, C.M.
1975-01-01
We present a detailed description of the phenomenon of energy extraction (''Penrose'') from a slowly rotating black hole perturbed by a stationary axisymmetric ring of matter, and show that the gravitational interaction between the ring and the particles used in the Penrose process must be taken into account. For the case of a black-hole-ring configuration of ''minimum enregy'' we show that a Penrose process can extract further energy, but that by measns of their gravitational forces, the particles used in the process cause the radius of the ring to change, releasing precisely sufficient gravitational potential energy to make up for that extracted. By analyzing the properties of circular test-particle orbits in black-hole-ring spacetimes, we show quantitatively how this change in radius is produced. A ''differential mass formula'' relating the total masses of neighboring black-hole-ring configurations is also derived
Phase transitions and critical behaviour for charged black holes
International Nuclear Information System (INIS)
Carlip, S; Vaidya, S
2003-01-01
We investigate the thermodynamics of a four-dimensional charged black hole in a finite cavity in asymptotically flat and asymptotically de Sitter spaces. In each case, we find a Hawking-Page-like phase transition between a black hole and a thermal gas very much like the known transition in asymptotically anti-de Sitter space. For a 'supercooled' black hole - a thermodynamically unstable black hole below the critical temperature for the Hawking-Page phase transition - the phase diagram has a line of first-order phase transitions that terminates in a second-order point. For the asymptotically flat case, we calculate the critical exponents at the second-order phase transition and find that they exactly match the known results for a charged black hole in anti-de Sitter space. We find strong evidence for similar phase transitions for the de Sitter black hole as well. Thus many of the thermodynamic features of charged anti-de Sitter black holes do not really depend on asymptotically anti-de Sitter boundary conditions; the thermodynamics of charged black holes is surprisingly universal
Cosmic curvature from de Sitter equilibrium cosmology.
Albrecht, Andreas
2011-10-07
I show that the de Sitter equilibrium cosmology generically predicts observable levels of curvature in the Universe today. The predicted value of the curvature, Ω(k), depends only on the ratio of the density of nonrelativistic matter to cosmological constant density ρ(m)(0)/ρ(Λ) and the value of the curvature from the initial bubble that starts the inflation, Ω(k)(B). The result is independent of the scale of inflation, the shape of the potential during inflation, and many other details of the cosmology. Future cosmological measurements of ρ(m)(0)/ρ(Λ) and Ω(k) will open up a window on the very beginning of our Universe and offer an opportunity to support or falsify the de Sitter equilibrium cosmology.
Massive scalar field evolution in de Sitter
Energy Technology Data Exchange (ETDEWEB)
Markkanen, Tommi [Department of Physics, King’s College London,Strand, London WC2R 2LS (United Kingdom); Rajantie, Arttu [Department of Physics, Imperial College London,London SW7 2AZ (United Kingdom)
2017-01-30
The behaviour of a massive, non-interacting and non-minimally coupled quantised scalar field in an expanding de Sitter background is investigated by solving the field evolution for an arbitrary initial state. In this approach there is no need to choose a vacuum in order to provide a definition for particle states, nor to introduce an explicit ultraviolet regularization. We conclude that the expanding de Sitter space is a stable equilibrium configuration under small perturbations of the initial conditions. Depending on the initial state, the energy density can approach its asymptotic value from above or below, the latter of which implies a violation of the weak energy condition. The backreaction of the quantum corrections can therefore lead to a phase of super-acceleration also in the non-interacting massive case.
Design of attitude solution algorithm for tail-sitter VTOL UAV
Directory of Open Access Journals (Sweden)
Donghui LIU
2016-02-01
Full Text Available The tail-sitter Vertical Takeoff and Landing (VTOL Unmanned Aerial Vehicle(UAV, flying in a fixed-wing model, overcomes many shortcomings of traditional fixed-wing UAVs, and inherits the advantage of high overall efficiency, which means it has great development potential and very broad application prospects. The attitude of tail-sitter VTOL UAV shows a wide change range in its takeoff and landing stages, and when the attitude sensor changes more than 90 degrees in pitch direction, the Euler angles converted by the Quaternions will have singular points, which means gimbal deadlock appears. From the solution algorithm, this paper provides a method of changing the order of rotation to avoid the appearance of singular points. The results show that this method can be well applied to the attitude solution of the VTOL UAV.
``Massless'' vector field in de Sitter universe
Garidi, T.; Gazeau, J.-P.; Rouhani, S.; Takook, M. V.
2008-03-01
We proceed to the quantization of the massless vector field in the de Sitter (dS) space. This work is the natural continuation of a previous article devoted to the quantization of the dS massive vector field [J. P. Gazeau and M. V. Takook, J. Math. Phys. 41, 5920 (2000); T. Garidi et al., ibid. 43, 6379 (2002).] The term ``massless'' is used by reference to conformal invariance and propagation on the dS lightcone whereas ``massive'' refers to those dS fields which unambiguously contract to Minkowskian massive fields at zero curvature. Due to the combined occurrences of gauge invariance and indefinite metric, the covariant quantization of the massless vector field requires an indecomposable representation of the de Sitter group. We work with the gauge fixing corresponding to the simplest Gupta-Bleuler structure. The field operator is defined with the help of coordinate-independent de Sitter waves (the modes). The latter are simple to manipulate and most adapted to group theoretical approaches. The physical states characterized by the divergencelessness condition are, for instance, easy to identify. The whole construction is based on analyticity requirements in the complexified pseudo-Riemannian manifold for the modes and the two-point function.
''Massless'' vector field in de Sitter universe
International Nuclear Information System (INIS)
Garidi, T.; Gazeau, J.-P.; Rouhani, S.; Takook, M. V.
2008-01-01
We proceed to the quantization of the massless vector field in the de Sitter (dS) space. This work is the natural continuation of a previous article devoted to the quantization of the dS massive vector field [J. P. Gazeau and M. V. Takook, J. Math. Phys. 41, 5920 (2000); T. Garidi et al., ibid. 43, 6379 (2002).] The term ''massless'' is used by reference to conformal invariance and propagation on the dS lightcone whereas ''massive'' refers to those dS fields which unambiguously contract to Minkowskian massive fields at zero curvature. Due to the combined occurrences of gauge invariance and indefinite metric, the covariant quantization of the massless vector field requires an indecomposable representation of the de Sitter group. We work with the gauge fixing corresponding to the simplest Gupta-Bleuler structure. The field operator is defined with the help of coordinate-independent de Sitter waves (the modes). The latter are simple to manipulate and most adapted to group theoretical approaches. The physical states characterized by the divergencelessness condition are, for instance, easy to identify. The whole construction is based on analyticity requirements in the complexified pseudo-Riemannian manifold for the modes and the two-point function
De Sitter hunting in a classical landscape
International Nuclear Information System (INIS)
Danielsson, U.H.; Van Riet, T.; Haque, S.S.; Koerber, P.; Shiu, G.; Wrase, T.
2011-01-01
We elaborate on the construction of de Sitter solutions from IIA orientifolds of SU(3)-structure manifolds that solve the 10-dimensional equations of motion at tree-level in the approximation of smeared sources. First we classify geometries that are orbifolds of a group manifold covering space which, upon the proper inclusion of O6 planes, can be described within the framework of N = 1 supergravity in 4D. Then we scan systematically for de Sitter solutions, obtained as critical points of an effective 4D potential. Apart from finding many new solutions we emphasize the challenges in constructing explicit classical de Sitter vacua, which have sofar not been met. These challenges are interesting avenues for further research and include finding solutions that are perturbatively stable, satisfy charge and flux quantization, and have genuine localized (versus smeared) orientifold sources. This paper intends to be self-contained and pedagogical, and thus can serve as a guide to the necessary technical tools required for this line of research. In an appendix we explain how to study flux and charge quantization in the presence of a non-trivial H-field using twisted homology. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
De Sitter stability and coarse graining
International Nuclear Information System (INIS)
Markkanen, T.
2018-01-01
We present a 4-dimensional back reaction analysis of de Sitter space for a conformally coupled scalar field in the presence of vacuum energy initialized in the Bunch-Davies vacuum. In contrast to the usual semi-classical prescription, as the source term in the Friedmann equations we use expectation values where the unobservable information hidden by the cosmological event horizon has been neglected i.e. coarse grained over. It is shown that in this approach the energy-momentum is precisely thermal with constant temperature despite the dilution from the expansion of space due to a flux of energy radiated from the horizon. This leads to a self-consistent solution for the Hubble rate, which is gradually evolving and at late times deviates significantly from de Sitter. Our results hence imply de Sitter space to be unstable in this prescription. The solution also suggests dynamical vacuum energy: the continuous flux of energy is balanced by the generation of negative vacuum energy, which accumulatively decreases the overall contribution. Finally, we show that our results admit a thermodynamic interpretation which provides a simple alternate derivation of the mechanism. For very long times the solutions coincide with flat space. (orig.)
Stress tensor fluctuations in de Sitter spacetime
Energy Technology Data Exchange (ETDEWEB)
Pérez-Nadal, Guillem; Verdaguer, Enric [Departament de Física Fonamental and Institut de Ciències del Cosmos, Universitat de Barcelona, Av. Diagonal 647, 08028 Barcelona (Spain); Roura, Albert, E-mail: guillem@ffn.ub.es, E-mail: albert.roura@aei.mpg.de, E-mail: enric.verdaguer@ub.edu [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1, 14476 Golm (Germany)
2010-05-01
The two-point function of the stress tensor operator of a quantum field in de Sitter spacetime is calculated for an arbitrary number of dimensions. We assume the field to be in the Bunch-Davies vacuum, and formulate our calculation in terms of de Sitter-invariant bitensors. Explicit results for free minimally coupled scalar fields with arbitrary mass are provided. We find long-range stress tensor correlations for sufficiently light fields (with mass m much smaller than the Hubble scale H), namely, the two-point function decays at large separations like an inverse power of the physical distance with an exponent proportional to m{sup 2}/H{sup 2}. In contrast, we show that for the massless case it decays at large separations like the fourth power of the physical distance. There is thus a discontinuity in the massless limit. As a byproduct of our work, we present a novel and simple geometric interpretation of de Sitter-invariant bitensors for pairs of points which cannot be connected by geodesics.
De Sitter stability and coarse graining
Energy Technology Data Exchange (ETDEWEB)
Markkanen, T. [Imperial College London, Department of Physics, London (United Kingdom); King' s College London, Department of Physics, London (United Kingdom)
2018-02-15
We present a 4-dimensional back reaction analysis of de Sitter space for a conformally coupled scalar field in the presence of vacuum energy initialized in the Bunch-Davies vacuum. In contrast to the usual semi-classical prescription, as the source term in the Friedmann equations we use expectation values where the unobservable information hidden by the cosmological event horizon has been neglected i.e. coarse grained over. It is shown that in this approach the energy-momentum is precisely thermal with constant temperature despite the dilution from the expansion of space due to a flux of energy radiated from the horizon. This leads to a self-consistent solution for the Hubble rate, which is gradually evolving and at late times deviates significantly from de Sitter. Our results hence imply de Sitter space to be unstable in this prescription. The solution also suggests dynamical vacuum energy: the continuous flux of energy is balanced by the generation of negative vacuum energy, which accumulatively decreases the overall contribution. Finally, we show that our results admit a thermodynamic interpretation which provides a simple alternate derivation of the mechanism. For very long times the solutions coincide with flat space. (orig.)
Aurongzeb, Deeder
2010-11-01
Anomalous X-ray pulsars and soft gamma-ray repeaters reveal that existence of very strong magnetic field(> 10e15G) from neutron stars. It has been estimated that at the core the magnitude can be even higher at the center. Apart from dynamo mechanism it has been shown that color locked ferromagnetic phase [ Phys. Rev. D. 72,114003(2005)] can be a possible origin of magnetic field. In this study, we explore electric charge of strange quark matter and its effect on forming chirality in the quark-gluon plasma. We show that electromagnetic current induced by chiral magnetic effect [(Phys. Rev. D. 78.07033(2008)] can induce differential rotation in super fluid quark-gluon plasma giving additional boost to the magnetic field. The internal phase and current has no effect from external magnetic field originating from active galactic nuclei due to superconducting phase formation which screens the fields due to Meissner effect. We show that differential motion can create high radial electric field at the surface making all radiation highly polarized and directional including thermal radiation. As the electric field strength can be even stronger for a collapsing neutron star, the implication of this study to detect radiation from black holes will also be discussed. The work was partly completed at the University of Texas at austin
Greybody factors for d-dimensional black holes
DEFF Research Database (Denmark)
Harmark, Troels; Natário, José; Schiappa, Ricardo
2010-01-01
Gravitational greybody factors are analytically computed for static, spherically symmetric black holes in d-dimensions, including black holes with charge and in the presence of a cosmological constant (where a proper definition of greybody factors for both asymptotically de Sitter and anti...... of the details of the black hole. For asymptotically de Sitter black holes the greybody factor is different for even or odd spacetime dimension, and proportional to the ratio of the areas of the event and cosmological horizons. For asymptotically Ads black holes the greybody factor has a rich structure in which...... universality is hidden in the transmission and reflection coefficients. For either charged or asymptotically de Sitter black holes the greybody factors are given by non-trivial functions, while for asymptotically Ads black holes the greybody factor precisely equals one (corresponding to pure blackbody emission)....
Entropy of black holes with multiple horizons
Directory of Open Access Journals (Sweden)
Yun He
2018-05-01
Full Text Available We examine the entropy of black holes in de Sitter space and black holes surrounded by quintessence. These black holes have multiple horizons, including at least the black hole event horizon and a horizon outside it (cosmological horizon for de Sitter black holes and “quintessence horizon” for the black holes surrounded by quintessence. Based on the consideration that the two horizons are not independent each other, we conjecture that the total entropy of these black holes should not be simply the sum of entropies of the two horizons, but should have an extra term coming from the correlations between the two horizons. Different from our previous works, in this paper we consider the cosmological constant as the variable and employ an effective method to derive the explicit form of the entropy. We also try to discuss the thermodynamic stabilities of these black holes according to the entropy and the effective temperature.
Entropy of black holes with multiple horizons
He, Yun; Ma, Meng-Sen; Zhao, Ren
2018-05-01
We examine the entropy of black holes in de Sitter space and black holes surrounded by quintessence. These black holes have multiple horizons, including at least the black hole event horizon and a horizon outside it (cosmological horizon for de Sitter black holes and "quintessence horizon" for the black holes surrounded by quintessence). Based on the consideration that the two horizons are not independent each other, we conjecture that the total entropy of these black holes should not be simply the sum of entropies of the two horizons, but should have an extra term coming from the correlations between the two horizons. Different from our previous works, in this paper we consider the cosmological constant as the variable and employ an effective method to derive the explicit form of the entropy. We also try to discuss the thermodynamic stabilities of these black holes according to the entropy and the effective temperature.
De Sitter structured connection and gauge translations
International Nuclear Information System (INIS)
Aldinger, R.R.
1986-01-01
A local gauge field description of space-time is discussed using fiber bundle techniques as a theoretical framework. The basic idea is to endow ordinary Minkowski space, M 4 , with a somewhat richer structure than that implied by relativity by attaching to each position x epsilon M 4 a copy of a four-dimensional micro-space of constant curvature characterized by an elementary subatomic length parameter R of the order of a Fermi, thus allowing for additional internal degrees-of-freedom. Therefore, two sets of variables are introduced: (i) the usual space-time variables x which determine an element of M 4 and (ii) a second set zeta which are elements of an internal space F (which is identified with the fiber of a bundle constructed over M 4 ). Consequently, they consider a fiber bundle E(B,F,G,P) constructed over a four-dimensional base manifold B (which is taken to be the usual Minkowski space, M 4 ), possessing a four-dimensional fiber F, and associated with the principal bundle P=P(B,G) (on which the connection is defined). The structural (gauge) group G of the bundle plays the role of an internal symmetry group and therefore determines the possible motions of the internal degrees-of-freedom belonging to the fibers. As fiber they choose a four-dimensional pseudo-Riemannian space of constant (negative) curvature R:F = SO(4,1)/SO(3,1) (i.e., a de Sitter space) which contains, at each point of contact with base manifold M 4 , a tangent space which is isomorphic to Minkowski space. The structural group of the bundle is a de Sitter SO(4,1) which contains a Lorentz subgroup and a four parameter family of transformations (the de Sitter boosts), which in the limit R → ∞ corresponding to translations. 10 references
Superfield approach to anti de Sitter supersymmetry
International Nuclear Information System (INIS)
Ivanov, E.A.
1979-01-01
A self-contained superfield approach to global supersymmetry in anti de Sitter space (OSp(1.4)) is developed. General transformation laws for OSp(1.4)-superfields are established, and all basic elements of the OSp(1.4)-covariant formalism in the real basis, such as covariant superfield derivatives, invariant integration measure over the superspace OSp(1.4)/O(1.3), etc., are explicitly given. The reducibility questions are analyzed and realizations of OSp(1.4) in the left- and right-handed chiral superspaces are found
Discrete symmetries and de Sitter spacetime
Energy Technology Data Exchange (ETDEWEB)
Cotăescu, Ion I., E-mail: gpascu@physics.uvt.ro; Pascu, Gabriel, E-mail: gpascu@physics.uvt.ro [West University of Timişoara, V. Pârvan Ave. 4, RO-300223 Timişoara (Romania)
2014-11-24
Aspects of the ambiguity in defining quantum modes on de Sitter spacetime using a commuting system composed only of differential operators are discussed. Discrete symmetries and their actions on the wavefunction in commonly used coordinate charts are reviewed. It is argued that the system of commuting operators can be supplemented by requiring the invariance of the wavefunction to combined discrete symmetries- a criterion which selects a single state out of the α-vacuum family. Two such members of this family are singled out by particular combined discrete symmetries- states between which exists a well-known thermality relation.
Physical renormalization condition for de Sitter QED
Hayashinaka, Takahiro; Xue, She-Sheng
2018-05-01
We considered a new renormalization condition for the vacuum expectation values of the scalar and spinor currents induced by a homogeneous and constant electric field background in de Sitter spacetime. Following a semiclassical argument, the condition named maximal subtraction imposes the exponential suppression on the massive charged particle limit of the renormalized currents. The maximal subtraction changes the behaviors of the induced currents previously obtained by the conventional minimal subtraction scheme. The maximal subtraction is favored for a couple of physically decent predictions including the identical asymptotic behavior of the scalar and spinor currents, the removal of the IR hyperconductivity from the scalar current, and the finite current for the massless fermion.
Compact space-like hypersurfaces in de Sitter space
Lv, Jinchi
2005-01-01
We present some integral formulas for compact space-like hypersurfaces in de Sitter space and some equivalent characterizations for totally umbilical compact space-like hypersurfaces in de Sitter space in terms of mean curvature and higher-order mean curvatures.
Analytic extension of the Schwarzschild-de Sitter metric
International Nuclear Information System (INIS)
Bazanski, S.L.; Ferrari, V.
1986-01-01
In this paper, co-ordinates are derived that are regular, respectively, in the neighbourhood of the two horizons which exist in the so-called Schwarzschild-de Sitter solution known in general relativity, and it is constructed a manifold that is the analytic extension of the manifold being the domain of classical Schwarzschild-de Sitter co-ordinates
Photon motion in Kerr-de Sitter spacetimes
Energy Technology Data Exchange (ETDEWEB)
Charbulak, Daniel; Stuchlik, Zdenek [Silesian University in Opava, Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Opava (Czech Republic)
2017-12-15
We study the general motion of photons in the Kerr-de Sitter black-hole and naked singularity spacetimes. The motion is governed by the impact parameters X, related to the axial symmetry of the spacetime, and q, related to its hidden symmetry. Appropriate 'effective potentials' governing the latitudinal and radial motion are introduced and their behavior is examined by the 'Chinese boxes' technique giving regions allowed for the motion in terms of the impact parameters. Restrictions on the impact parameters X and q are established in dependence on the spacetime parameters M, Λ, a. The motion can be of orbital type (crossing the equatorial plane, q > 0) and vortical type (tied above or below the equatorial plane, q < 0). It is shown that for negative values of q, the reality conditions imposed on the latitudinal motion yield stronger constraints on the parameter X than that following from the reality condition of the radial motion, excluding the existence of vortical motion of constant radius. The properties of the spherical photon orbits of the orbital type are determined and used along with the properties of the effective potentials as criteria of classification of the KdS spacetimes according to the properties of the motion of the photon. (orig.)
High overtones of Schwarzschild-de-Sitter quasinormal spectrum
International Nuclear Information System (INIS)
Konoplya, R.A.; Zhidenko, A.
2004-01-01
We find the high overtones of gravitational and electromagnetic quasinormal spectrum of the Schwarzschild-de Sitter black hole. The calculations show that the real parts of the electromagnetic modes asymptotically approach zero. The gravitational modes show more peculiar behavior at large n: the real part oscillates as a function of imaginary even for very high overtones and these oscillations settles to some 'profile' which just repeats itself with further increasing of the overtone number n. This lets us judge that Reω is not a constant as n →∞ but rather some oscillating function. The spacing for imaginary part Imω n+1 -Imω n for electromagnetic perturbations at high n slowly approach k e as n→∞, where k e is the surface gravity. In addition we find the lower QN modes for which the values obtained with numerical methods are in a very good agreement with those obtained through the 6th order WKB technique. (author)
Charged scalar perturbations around Garfinkle–Horowitz–Strominger black holes
Directory of Open Access Journals (Sweden)
Cheng-Yong Zhang
2015-10-01
Full Text Available We examine the stability of the Garfinkle–Horowitz–Strominger (GHS black hole under charged scalar perturbations. Employing the appropriate numerical methods, we show that the GHS black hole is always stable against charged scalar perturbations. This is different from the results obtained in the de Sitter and anti-de Sitter black holes. Furthermore, we argue that in the GHS black hole background there is no amplification of the incident charged scalar wave to cause the superradiance, so that the superradiant instability cannot exist in this spacetime.
de Sitter symmetry of Neveu-Schwarz spinors
International Nuclear Information System (INIS)
Epstein, Henri; Moschella, Ugo
2016-01-01
We study the relations between Dirac fields living on the 2-dimensional Lorentzian cylinder and the ones living on the double-covering of the 2-dimensional de Sitter manifold, here identified as a certain coset space of the group SL(2,R). We show that there is an extended notion of de Sitter covariance only for Dirac fields having the Neveu-Schwarz anti-periodicity and construct the relevant cocycle. Finally, we show that the de Sitter symmetry is naturally inherited by the Neveu-Schwarz massless Dirac field on the cylinder.
Topology and isometries of the de Sitter space-time
International Nuclear Information System (INIS)
Mitskevich, N.V.; Senin, Yu.E.
1982-01-01
Spaces with a constant four-dimensional curvature, which are locally isometric to the de Sitter space-time but differing from it in topology are considered. The de Sitter spaces are considered in coordinates fitted at best for introduction of topology for three cross sections: S 3 , S 1 x S 2 , S 1 x S 2 x S 3 . It is shown that the de Sitter space-time covered by the family of layers, each of them is topologically identical, may be covered by another family of topologically identical layers. But layers in these families will have different topology
Principle of space existence and De Sitter metric
International Nuclear Information System (INIS)
Mal'tsev, V.K.
1990-01-01
The selection principle for the solutions of the Einstein equations suggested in a series of papers implies the existence of space (g ik ≠ 0) only in the presence of matter (T ik ≠0). This selection principle (principle of space existence, in the Markov terminology) implies, in the general case, the absence of the cosmological solution with the De Sitter metric. On the other hand, the De Sitter metric is necessary for describing both inflation and deflation periods of the Universe. It is shown that the De Sitter metric is also allowed by the selection principle under discussion if the metric experiences the evolution into the Friedmann metric
New regular black hole solutions
International Nuclear Information System (INIS)
Lemos, Jose P. S.; Zanchin, Vilson T.
2011-01-01
In the present work we consider general relativity coupled to Maxwell's electromagnetism and charged matter. Under the assumption of spherical symmetry, there is a particular class of solutions that correspond to regular charged black holes whose interior region is de Sitter, the exterior region is Reissner-Nordstroem and there is a charged thin-layer in-between the two. The main physical and geometrical properties of such charged regular black holes are analyzed.
Twin paradox in de Sitter spacetime
International Nuclear Information System (INIS)
Boblest, Sebastian; Wunner, Guenter; Mueller, Thomas
2011-01-01
The 'twin paradox' of special relativity offers the possibility of making interstellar flights within a lifetime. For very long journeys with velocities close to the speed of light, however, we have to take into account the expansion of the universe. Inspired by the work of Rindler on hyperbolic motion in curved spacetime, we study the worldline of a uniformly accelerated observer in de Sitter spacetime and the communication between the travelling observer and an observer at rest. This paper is intended to give graduate students who are familiar with special relativity and have some basic experience of general relativity a deeper insight into accelerated motion in general relativity, into the relationship between the proper times of different observers and the propagation of light signals between them, and into the use of compactification to describe the global structure of a relativistic model.
Geodesic flows in a charged black hole spacetime with quintessence
Energy Technology Data Exchange (ETDEWEB)
Nandan, Hemwati [Gurukul Kangri Vishwavidyalaya, Department of Physics, Haridwar, Uttarakhand (India); Uniyal, Rashmi [Gurukul Kangri Vishwavidyalaya, Department of Physics, Haridwar, Uttarakhand (India); Government Degree College, Department of Physics, Tehri Garhwal, Uttarakhand (India)
2017-08-15
We investigate the evolution of timelike geodesic congruences, in the background of a charged black hole spacetime surrounded by quintessence. The Raychaudhuri equations for three kinematical quantities namely the expansion scalar, shear and rotation along the geodesic flows in such spacetime are obtained and solved numerically. We have also analysed both the weak and the strong energy conditions for the focussing of timelike geodesic congruences. The effect of the normalisation constant (α) and the equation of state parameter (ε) on the evolution of the expansion scalar is discussed, for the congruences with and without an initial shear and rotation. It is observed that there always exists a critical value of the initial expansion below which we have focussing with smaller values of the normalisation constant and the equation of state parameter. As the corresponding values of both of these parameters are increased, no geodesic focussing is observed. The results obtained are then compared with those of the Reissner Nordstroem and Schwarzschild black hole spacetimes as well as their de Sitter black hole analogues accordingly. (orig.)
Geodesic flows in a charged black hole spacetime with quintessence
International Nuclear Information System (INIS)
Nandan, Hemwati; Uniyal, Rashmi
2017-01-01
We investigate the evolution of timelike geodesic congruences, in the background of a charged black hole spacetime surrounded by quintessence. The Raychaudhuri equations for three kinematical quantities namely the expansion scalar, shear and rotation along the geodesic flows in such spacetime are obtained and solved numerically. We have also analysed both the weak and the strong energy conditions for the focussing of timelike geodesic congruences. The effect of the normalisation constant (α) and the equation of state parameter (ε) on the evolution of the expansion scalar is discussed, for the congruences with and without an initial shear and rotation. It is observed that there always exists a critical value of the initial expansion below which we have focussing with smaller values of the normalisation constant and the equation of state parameter. As the corresponding values of both of these parameters are increased, no geodesic focussing is observed. The results obtained are then compared with those of the Reissner Nordstroem and Schwarzschild black hole spacetimes as well as their de Sitter black hole analogues accordingly. (orig.)
A de Sitter tachyon thick braneworld
Energy Technology Data Exchange (ETDEWEB)
Germán, Gabriel; Herrera-Aguilar, Alfredo; Malagón-Morejón, Dagoberto [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Apdo. Postal 48-3, 62251, Cuernavaca, Morelos (Mexico); Mora-Luna, Refugio Rigel [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Ciudad Universitaria, C.P. 58040, Morelia, Michoacán (Mexico); Rocha, Roldão da, E-mail: gabriel@fis.unam.mx, E-mail: aha@fis.unam.mx, E-mail: malagon@ifm.umich.mx, E-mail: rigel@ifm.umich.mx, E-mail: roldao.rocha@ufabc.edu.br [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Rua Santa Adélia, 166 09210-170, Santo André, SP (Brazil)
2013-02-01
Among the multiple 5D thick braneworld models that have been proposed in the last years, in order to address several open problems in modern physics, there is a specific one involving a tachyonic bulk scalar field. Delving into this framework, a thick braneworld with a cosmological background induced on the brane is here investigated. The respective field equations — derived from the model with a warped 5D geometry — are highly non-linear equations, admitting a non-trivial solution for the warp factor and the tachyon scalar field as well, in a de Sitter 4D cosmological background. Moreover, the non-linear tachyonic scalar field, that generates the brane in complicity with warped gravity, has the form of a kink-like configuration. Notwithstanding, the non-linear field equations restricting character does not allow one to easily find thick brane solutions with a decaying warp factor which leads to the localization of 4D gravity and other matter fields. We derive such a thick brane configuration altogether in this tachyon-gravity setup. When analyzing the spectrum of gravity fluctuations in the transverse traceless sector, the 4D gravity is shown to be localized due to the presence of a single zero mode bound state, separated by a continuum of massive Kaluza-Klein (KK) modes by a mass gap. It contrasts with previous results, where there is a KK massive bound excitation providing no clear physical interpretation. The mass gap is determined by the scale of the metric parameter H. Finally, the corrections to Newton's law in this model are computed and shown to decay exponentially. It is in full compliance to corrections reported in previous results (up to a constant factor) within similar braneworlds with induced 4D de Sitter metric, despite the fact that the warp factor and the massive modes have a different form.
Schwarzschild-de Sitter spacetime: The role of temperature in the emission of Hawking radiation
Pappas, Thomas; Kanti, Panagiota
2017-12-01
We consider a Schwarzschild-de Sitter (SdS) black hole, and focus on the emission of massless scalar fields either minimally or non-minimally coupled to gravity. We use six different temperatures, two black-hole and four effective ones for the SdS spacetime, as the question of the proper temperature for such a background is still debated in the literature. We study their profiles under the variation of the cosmological constant, and derive the corresponding Hawking radiation spectra. We demonstrate that only few of these temperatures may support significant emission of radiation. We finally compute the total emissivities for each temperature, and show that the non-minimal coupling constant of the scalar field to gravity also affects the relative magnitudes of the energy emission rates.
Reissner--Nordstroem--de Sitter metric, the third law, and cosmic censorship
International Nuclear Information System (INIS)
Lake, K.
1979-01-01
The essential features of the Reissner--Nordstroem--de Sitter metric are examined in relation to the third law of black-hole mechanics and the cosmic censorship hypothesis for a nonasymptotically flat situation. The evolution of thin charged dust shells in this metric shows that the thermodynamic character of cosmological event horizons differs from that of black-hole horizons in that a degenerate horizon can be produced in a finite time. Nonetheless the spirit of the third law is preserved since the resultant degenerate configurations do not represent physically attainable limits in our Universe. It is shown that the nakedly singular character of the analytic extensions to these solutions represents an unplysical idealization due to the inherent instability of Killing horizons to the past of their bifurcation. This adds support to the spirit of strong cosmic censorship
Gravity mediated Dark Matter models in the de Sitter space
Vancea, Ion V.
2018-01-01
In this paper, we generalize the simplified Dark Matter models with graviton mediator to the curved space-time, in particular to the de Sitter space. We obtain the generating functional of the Green's functions in the Euclidean de Sitter space for the covariant free gravitons. We determine the generating functional of the interacting theory between Dark Matter particles and the covariant gravitons. Also, we calculate explicitly the 2-point and 3-point interacting Green's functions for the sym...
Test fields cannot destroy extremal black holes
International Nuclear Information System (INIS)
Natário, José; Queimada, Leonel; Vicente, Rodrigo
2016-01-01
We prove that (possibly charged) test fields satisfying the null energy condition at the event horizon cannot overspin/overcharge extremal Kerr–Newman or Kerr–Newman–anti de Sitter black holes, that is, the weak cosmic censorship conjecture cannot be violated in the test field approximation. The argument relies on black hole thermodynamics (without assuming cosmic censorship), and does not depend on the precise nature of the fields. We also discuss generalizations of this result to other extremal black holes. (paper)
Hennigar, Robie A; Mann, Robert B; Tjoa, Erickson
2017-01-13
We present what we believe is the first example of a "λ-line" phase transition in black hole thermodynamics. This is a line of (continuous) second order phase transitions which in the case of liquid ^{4}He marks the onset of superfluidity. The phase transition occurs for a class of asymptotically anti-de Sitter hairy black holes in Lovelock gravity where a real scalar field is conformally coupled to gravity. We discuss the origin of this phase transition and outline the circumstances under which it (or generalizations of it) could occur.
Charlotte Moore Sitterly: A Life of Spectroscopy
Rubin, Vera C.
2010-01-01
Dr. Charlotte Moore Sitterly was a scientist in an era when it was rare for a woman to have the opportunity to devote her life to forefront science. Following her graduation from Swarthmore College in 1920, she accepted a position at Princeton University as an assistant to Henry Norris Russell. In 1925 she started a study of the solar spectrum. She could then not know that she would devote much of her scientific career to gathering basic atomic data that are invaluable to the scientific community, even today. In 1931 she obtained a PhD degree at U. California, Berkeley, and returned to Princeton as a staff member of the Princeton University Observatory. In 1945 she moved to the National Bureau of Science (NBS), to supervise preparation of the widely used tables of atomic energy levels. Following the successful lunching (1946) of a V2 rocket to obtain the ultra violet spectrum of the sun, Moore started working with Richard Tousey and his group at the Naval Research Laboratory (NRL). Ultimately, they extended the solar spectrum down to 2200 angstroms. She continued her affiliations with NBS and NRL until her death in 1990. Charlotte Moore was rare scientist who devoted her career to obtaining accurate numbers, thus enabling the scientific community to open her tables and know that the data are accurate.
Role of angular momentum and cosmic censorship in (2+1)-dimensional rotating shell collapse
International Nuclear Information System (INIS)
Mann, Robert B.; Oh, John J.; Park, Mu-In
2009-01-01
We study the gravitational collapse problem of rotating shells in three-dimensional Einstein gravity with and without a cosmological constant. Taking the exterior and interior metrics to be those of stationary metrics with asymptotically constant curvature, we solve the equations of motion for the shells from the Darmois-Israel junction conditions in the corotating frame. We study various collapse scenarios with arbitrary angular momentum for a variety of geometric configurations, including anti-de Sitter, de Sitter, and flat spaces. We find that the collapsing shells can form a BTZ black hole, a three-dimensional Kerr-dS spacetime, and an horizonless geometry of point masses under certain initial conditions. For pressureless dust shells, the curvature singularity is not formed due to the angular momentum barrier near the origin. However when the shell pressure is nonvanishing, we find that for all types of shells with polytropic-type equations of state (including the perfect fluid and the generalized Chaplygin gas), collapse to a naked singularity is possible under generic initial conditions. We conclude that in three dimensions angular momentum does not in general guard against violation of cosmic censorship.
Jerusalem lectures on black holes and quantum information
Harlow, D.
2016-01-01
These lectures give an introduction to the quantum physics of black holes, including recent developments based on quantum information theory such as the firewall paradox and its various cousins. An introduction is also given to holography and the anti-de Sitter/conformal field theory (AdS/CFT) correspondence, focusing on those aspects which are relevant for the black hole information problem.
Canonical Ensemble Model for Black Hole Horizon of Schwarzschild ...
Indian Academy of Sciences (India)
Abstract. In this paper, we use the canonical ensemble model to discuss the radiation of a Schwarzschild–de Sitter black hole on the black hole horizon. Using this model, we calculate the probability distribution from function of the emission shell. And the statistical meaning which compare with the distribution function is ...
Thermal interpretation of infrared dynamics in de Sitter
Energy Technology Data Exchange (ETDEWEB)
Rigopoulos, Gerasimos, E-mail: gerasimos.rigopoulos@ncl.ac.uk [School of Mathematics and Statistics, Newcastle University, Herschel Building, Newcastle upon Tyne, NE1 7RU U.K. (United Kingdom)
2016-07-01
The infrared dynamics of a light, minimally coupled scalar field in de Sitter spacetime with Ricci curvature R = 12 H {sup 2}, averaged over horizon sized regions of physical volume V {sub H} = (4π/3)(1/ H ){sup 3}, can be interpreted as Brownian motion in a medium with de Sitter temperature T {sub DS} = h-bar H /2π. We demonstrate this by directly deriving the effective action of scalar field fluctuations with wavelengths larger than the de Sitter curvature radius and generalizing Starobinsky's seminal results on stochastic inflation. The effective action describes stochastic dynamics and the fluctuating force drives the field to an equilibrium characterized by a thermal Gibbs distribution at temperature T {sub DS} which corresponds to a de Sitter invariant state. Hence, approach towards this state can be interpreted as thermalization. We show that the stochastic kinetic energy of the coarse-grained description corresponds to the norm of ∂{sub μ}φ and takes a well defined value per horizon volume ½((∇φ){sup 2}) = − ½ T {sub DS}/ V {sub H} . This approach allows for the non-perturbative computation of the de Sitter invariant stress energy tensor ( T {sub μν}) for an arbitrary scalar potential.
International Nuclear Information System (INIS)
Chu, Yi-Zen
2014-01-01
Motivated by the desire to understand the causal structure of physical signals produced in curved spacetimes – particularly around black holes – we show how, for certain classes of geometries, one might obtain its retarded or advanced minimally coupled massless scalar Green's function by using the corresponding Green's functions in the higher dimensional Minkowski spacetime where it is embedded. Analogous statements hold for certain classes of curved Riemannian spaces, with positive definite metrics, which may be embedded in higher dimensional Euclidean spaces. The general formula is applied to (d ≥ 2)-dimensional de Sitter spacetime, and the scalar Green's function is demonstrated to be sourced by a line emanating infinitesimally close to the origin of the ambient (d + 1)-dimensional Minkowski spacetime and piercing orthogonally through the de Sitter hyperboloids of all finite sizes. This method does not require solving the de Sitter wave equation directly. Only the zero mode solution to an ordinary differential equation, the “wave equation” perpendicular to the hyperboloid – followed by a one-dimensional integral – needs to be evaluated. A topological obstruction to the general construction is also discussed by utilizing it to derive a generalized Green's function of the Laplacian on the (d ≥ 2)-dimensional sphere
A de Sitter tachyonic braneworld revisited
Barbosa-Cendejas, Nandinii; Cartas-Fuentevilla, Roberto; Herrera-Aguilar, Alfredo; Rigel Mora-Luna, Refugio; da Rocha, Roldão
2018-01-01
Within the framework of braneworlds, several interesting physical effects can be described in a wide range of energy scales, starting from high-energy physics to cosmology and low-energy physics. An usual way to generate a thick braneworld model relies in coupling a bulk scalar field to higher dimensional warped gravity. Quite recently, a novel braneworld was generated with the aid of a tachyonic bulk scalar field, having several remarkable properties. It comprises a regular and stable solution that contains a relevant 3-brane with de Sitter induced metric, arising as an exact solution to the 5D field equations, describing the inflationary eras of our Universe. Besides, it is asymptotically flat, despite of the presence of a negative 5D cosmological constant, which is an interesting feature that contrasts with most of the known, asymptotically either dS or AdS models. Moreover, it encompasses a graviton spectrum with a single massless bound state, accounting for 4D gravity localized on the brane, separated from the continuum of Kaluza-Klein massive graviton modes by a mass gap that makes the 5D corrections to Newton's law to decay exponentially. Finally, gauge, scalar and fermion fields are also shown to be localized on this braneworld. In this work, we show that this tachyonic braneworld allows for a nontrivial solution with a vanishing 5D cosmological constant that preserves all the above mentioned remarkable properties with a less amount of parameters, constituting an important contribution to the construction of a realistic cosmological braneworld model.
Directory of Open Access Journals (Sweden)
Christin Carl
2017-09-01
Full Text Available Black locust is a drought-resistant tree species with high biomass productivity during juvenility; it is able to thrive on wastelands, such as former brown coal fields and dry agricultural areas. However, research conducted on this species in such areas is limited. This paper aims to provide a basis for predicting tree woody biomass for black locust based on tree, competition, and site variables at 14 sites in northeast Germany that were previously utilized for mining or agriculture. The study areas, which are located in an area covering 320 km × 280 km, are characterized by a variety of climatic and soil conditions. Influential variables, including tree parameters, competition, and climatic parameters were considered. Allometric biomass models were employed. The findings show that the most important parameters are tree and competition variables. Different former land utilizations, such as mining or agriculture, as well as growth by cores or stumps, significantly influenced aboveground woody biomass production. The new biomass models developed as part of this study can be applied to calculate woody biomass production and carbon sequestration of Robinia pseudoacacia L. in short rotation coppices in previous mining and agricultural areas.
Quantum physics of an elementary system in de Sitter space
International Nuclear Information System (INIS)
Rabeie, A.
2012-01-01
We present the coherent states of a scalar massive particle on 1+3-de Sitter space. These states are vectors in Hilbert space, and they are labeled by points in the associated phase space. To do this, we use the fact that the phase space of a scalar massive particle on 1+3-de Sitter space is a cotangent bundle T * (S 3 ) which is isomorphic with the complex sphere S C 3 . Then by using the heat kernel on '' S C 3 '' that was presented by Hall-Mitchell, we construct our coherent states. At the end, by these states we quantize the classical kinetic energy on de Sitter space. (orig.)
Spectator electric fields, de Sitter spacetime, and the Schwinger effect
Giovannini, Massimo
2018-03-01
During a de Sitter stage of expansion, the spectator fields of different spin are constrained by the critical density bound and by further requirements determined by their specific physical nature. The evolution of spectator electric fields in conformally flat background geometries is occasionally concocted by postulating the existence of ad hoc currents, but this apparently innocuous trick violates the second law of thermodynamics. Such a problem occurs, in particular, for those configurations (customarily employed for the analysis of the Schwinger effect in four-dimensional de Sitter backgrounds) leading to an electric energy density which is practically unaffected by the expansion of the underlying geometry. The obtained results are compared with more mundane situations where Joule heating develops in the early stages of a quasi-de Sitter phase.
Rest frames and relativistic effects on de Sitter spacetimes
Energy Technology Data Exchange (ETDEWEB)
Cotaescu, Ion I. [West University of Timisoara, Timisoara (Romania)
2017-07-15
It is shown that the Nachtmann boosting method of introducing coordinates on de Sitter manifolds can be completed with suitable gauge transformations able to keep under control the transformation under isometries of the conserved quantities. With this method, the rest local charts (or natural frames) are defined pointing out the role of the conserved quantities in investigating the relative geodesic motion. The advantages of this approach can be seen from the applications presented here. For the first time, the simple kinematic effects, the electromagnetic field of a free falling charge and the binary fission are solved in terms of conserved quantities on the expanding portion of the de Sitter spacetime. (orig.)
Green's function for anti--de Sitter space gravity
International Nuclear Information System (INIS)
Kleppe, G.
1994-01-01
We solve for the retarded Green's function for linearized gravity in a background with a negative cosmological constant, anti--de Sitter space. In this background, it is possible for a signal to reach spatial infinity in a finite time. Therefore the form of the Green's function depends on a choice of boundary condition at spatial infinity. We take as our condition that a signal which reaches infinity should be lost, not reflected back. We calculate the Green's function associated with this condition, and show that it reproduces the correct classical solution for a point mass at the origin, the anti--de Sitter--Schwarzschild solution
de Sitter space from dilatino condensates in massive IIA supergravity
Souères, Bertrand; Tsimpis, Dimitrios
2018-02-01
We use the superspace formulation of (massive) IIA supergravity to obtain the explicit form of the dilatino terms, and we find that the quartic-dilatino term is positive. The theory admits a ten-dimensional de Sitter solution, obtained by assuming a nonvanishing quartic-dilatino condensate which generates a positive cosmological constant. Moreover, in the presence of dilatino condensates, the theory admits formal four-dimensional de Sitter solutions of the form d S4×M6, where M6 is a six-dimensional Kähler-Einstein manifold of positive scalar curvature.
Super-Hubble de Sitter fluctuations and the dynamical RG
Energy Technology Data Exchange (ETDEWEB)
Burgess, C.P. [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario (Canada); Leblond, L.; Shandera, S. [Perimeter Institute for Theoretical Physics, Waterloo, Ontario (Canada); Holman, R., E-mail: cburgess@perimeterinstitute.ca, E-mail: lleblond@perimeterinstitute.ca, E-mail: rha@andrew.cmu.edu, E-mail: sshandera@perimeterinstitute.ca [Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States)
2010-03-01
Perturbative corrections to correlation functions for interacting theories in de Sitter spacetime often grow secularly with time, due to the properties of fluctuations on super-Hubble scales. This growth can lead to a breakdown of perturbation theory at late times. We argue that Dynamical Renormalization Group (DRG) techniques provide a convenient framework for interpreting and resumming these secularly growing terms. In the case of a massless scalar field in de Sitter with quartic self-interaction, the resummed result is also less singular in the infrared, in precisely the manner expected if a dynamical mass is generated. We compare this improved infrared behavior with large-N expansions when applicable.
The entropy function for the black holes of Nariai class
International Nuclear Information System (INIS)
Cho, Jin-Ho; Nam, Soonkeon
2008-01-01
Based on the fact that the near horizon geometry of the extremal Schwarzschild-de Sitter black holes is Nariai geometry, we define the black holes of Nariai class as the configuration whose near-horizon geometry is factorized as two dimensional de Sitter space-time and some compact topology, that is Nariai geometry. We extend the entropy function formalism to the case of the black holes of Nariai class. The conventional entropy function (for the extremal black holes) is defined as Legendre transformation of Lagrangian density, thus the 'Routhian density', over two dimensional anti-de Sitter. As for the black holes of Nariai class, it is defined as minus 'Routhian density' over two dimensional de Sitter space-time. We found an exact agreement of the result with Bekenstein-Hawking entropy. The higher order corrections are nontrivial only when the space-time dimension is over four, that is, d>4. There is a subtlety as regards the temperature of the black holes of Nariai class. We show that in order to be consistent with the near horizon geometry, the temperature should be non-vanishing despite the extremality of the black holes
Gauss-Bonnet black holes in dS spaces
International Nuclear Information System (INIS)
Cai Ronggen; Guo Qi
2004-01-01
We study the thermodynamic properties associated with the black hole horizon and cosmological horizon for the Gauss-Bonnet solution in de Sitter space. When the Gauss-Bonnet coefficient is positive, a locally stable small black hole appears in the case of spacetime dimension d=5, the stable small black hole disappears, and the Gauss-Bonnet black hole is always unstable quantum mechanically when d≥6. On the other hand, the cosmological horizon is found to be always locally stable independent of the spacetime dimension. But the solution is not globally preferred; instead, the pure de Sitter space is globally preferred. When the Gauss-Bonnet coefficient is negative, there is a constraint on the value of the coefficient, beyond which the gravity theory is not well defined. As a result, there is not only an upper bound on the size of black hole horizon radius at which the black hole horizon and cosmological horizon coincide with each other, but also a lower bound depending on the Gauss-Bonnet coefficient and spacetime dimension. Within the physical phase space, the black hole horizon is always thermodynamically unstable and the cosmological horizon is always stable; furthermore, as in the case of the positive coefficient, the pure de Sitter space is still globally preferred. This result is consistent with the argument that the pure de Sitter space corresponds to an UV fixed point of dual field theory
Semiclassical relations and IR effects in de Sitter and slow-roll space-times
Energy Technology Data Exchange (ETDEWEB)
Giddings, Steven B. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Sloth, Martin S., E-mail: giddings@physics.ucsb.edu, E-mail: sloth@cern.ch [CERN, Physics Department, Theory Unit, CH-1211 Geneva 23 (Switzerland)
2011-01-01
We calculate IR divergent graviton one-loop corrections to scalar correlators in de Sitter space, and show that the leading IR contribution may be reproduced via simple semiclassical consistency relations. One can likewise use such semiclassical relations to calculate leading IR corrections to correlators in slow-roll inflation. The regulated corrections shift the tensor/scalar ratio and consistency relation of single field inflation, and non-gaussianity parameters averaged over very large distances. For inflation of sufficient duration, for example arising from a chaotic inflationary scenario, these corrections become of order unity. First-order corrections of this size indicate a breakdown of the perturbative expansion, and suggest the need for a non-perturbative description of the corresponding regime. This is analogous to a situation argued to arise in black hole evolution, and to interfere with a sharp perturbative calculation of ''missing information'' in Hawking radiation.
Semiclassical relations and IR effects in de Sitter and slow-roll space-times
International Nuclear Information System (INIS)
Giddings, Steven B.; Sloth, Martin S.
2011-01-01
We calculate IR divergent graviton one-loop corrections to scalar correlators in de Sitter space, and show that the leading IR contribution may be reproduced via simple semiclassical consistency relations. One can likewise use such semiclassical relations to calculate leading IR corrections to correlators in slow-roll inflation. The regulated corrections shift the tensor/scalar ratio and consistency relation of single field inflation, and non-gaussianity parameters averaged over very large distances. For inflation of sufficient duration, for example arising from a chaotic inflationary scenario, these corrections become of order unity. First-order corrections of this size indicate a breakdown of the perturbative expansion, and suggest the need for a non-perturbative description of the corresponding regime. This is analogous to a situation argued to arise in black hole evolution, and to interfere with a sharp perturbative calculation of ''missing information'' in Hawking radiation
Black holes in a cubic Galileon universe
Energy Technology Data Exchange (ETDEWEB)
Babichev, E.; Charmousis, C.; Lehébel, A.; Moskalets, T., E-mail: eugeny.babichev@th.u-psud.fr, E-mail: christos.charmousis@th.u-psud.fr, E-mail: antoine.lehebel@th.u-psud.fr, E-mail: tetiana.moskalets@th.u-psud.fr [Laboratoire de Physique Théorique, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay (France)
2016-09-01
We find and study the properties of black hole solutions for a subclass of Horndeski theory including the cubic Galileon term. The theory under study has shift symmetry but not reflection symmetry for the scalar field. The Galileon is assumed to have linear time dependence characterized by a velocity parameter. We give analytic 3-dimensional solutions that are akin to the BTZ solutions but with a non-trivial scalar field that modifies the effective cosmological constant. We then study the 4-dimensional asymptotically flat and de Sitter solutions. The latter present three different branches according to their effective cosmological constant. For two of these branches, we find families of black hole solutions, parametrized by the velocity of the scalar field. These spherically symmetric solutions, obtained numerically, are different from GR solutions close to the black hole event horizon, while they have the same de-Sitter asymptotic behavior. The velocity parameter represents black hole primary hair.
Zero modes in de Sitter background
Energy Technology Data Exchange (ETDEWEB)
Einhorn, Martin B. [Kavli Institute for Theoretical Physics, University of California,Santa Barbara, CA 93106-4030 (United States); Jones, D.R. Timothy [Kavli Institute for Theoretical Physics, University of California,Santa Barbara, CA 93106-4030 (United States); Dept. of Mathematical Sciences, University of Liverpool,Liverpool L69 3BX (United Kingdom)
2017-03-28
There are five well-known zero modes among the fluctuations of the metric of de Sitter (dS) spacetime. For Euclidean signature, they can be associated with certain spherical harmonics on the S{sup 4} sphere, viz., the vector representation 5 of the global SO(5) isometry. They appear, for example, in the perturbative calculation of the on-shell effective action of dS space, as well as in models containing matter fields. These modes are shown to be associated with collective modes of S{sup 4} corresponding to certain coherent fluctuations. When dS space is embedded in flat five dimensions E{sup 5}, they may be seen as a legacy of translation of the center of the S{sup 4} sphere. Rigid translations of the S{sup 4}-sphere on E{sup 5} leave the classical action invariant but are unobservable displacements from the point of view of gravitational dynamics on S{sup 4}. Thus, unlike similar moduli, the center of the sphere is not promoted to a dynamical degree of freedom. As a result, these zero modes do not signify the possibility of physically realizable fluctuations or flat directions for the metric of dS space. They are not associated with Killing vectors on S{sup 4} but can be identified with certain non-isometric, conformal Killing forms that locally correspond to a rescaling of the volume element dV{sub 4}. We frame much of our discussion in the context of renormalizable gravity, but, to the extent that they only depend upon the global symmetry of the background, the conclusions should apply equally to the corresponding zero modes found in Einstein gravity. Although their existence has only been demonstrated at one-loop, we expect that these zero modes will be present to all orders in perturbation theory. They will occur for Lorentzian signature as well, so long as the hyperboloid H{sup 4} is locally stable, but there remain certain infrared issues that need to be clarified. We conjecture that they will appear in any gravitational theory having dS background as a
Mixed-symmetry fields in de Sitter space: a group theoretical glance
Energy Technology Data Exchange (ETDEWEB)
Basile, Thomas [Laboratoire de Mathématiques et Physique Théorique, Unité Mixte de Recherche 7350 du CNRS,Fédération de Recherche 2964 Denis Poisson, Université François Rabelais,Parc de Grandmont, 37200 Tours (France); Groupe de Mécanique et Gravitation, Service de Physique Théorique et Mathématique,Université de Mons - UMONS,20 Place du Parc, 7000 Mons, Belgique (Belgium); Bekaert, Xavier [Laboratoire de Mathématiques et Physique Théorique, Unité Mixte de Recherche 7350 du CNRS,Fédération de Recherche 2964 Denis Poisson, Université François Rabelais,Parc de Grandmont, 37200 Tours (France); B.W. Lee Center for Fields, Gravity and Strings, Institute for Basic Science,Daejeon (Korea, Republic of); Boulanger, Nicolas [Groupe de Mécanique et Gravitation, Service de Physique Théorique et Mathématique,Université de Mons - UMONS,20 Place du Parc, 7000 Mons, Belgique (Belgium)
2017-05-15
We derive the characters of all unitary irreducible representations of the (d+1)-dimensional de Sitter spacetime isometry algebra so(1,d+1), and propose a dictionary between those representations and massive or (partially) massless fields on de Sitter spacetime. We propose a way of taking the flat limit of representations in (anti-) de Sitter spaces in terms of these characters, and conjecture the spectrum resulting from taking the flat limit of mixed-symmetry fields in de Sitter spacetime. We identify the equivalent of the scalar singleton for the de Sitter (dS) spacetime.
Cosmological term in general relativity theory and localization of de Sitter and Einstein groups
International Nuclear Information System (INIS)
Tunyak, V.N.
1984-01-01
The theory of gauge gravitational field with the de Sitter group localization is formulated. proceeding from the de Sitter Universe tetrad components the relationship between Riemann metrics and de Sitter gauge field is established. It is shown that General relativity theory (GRT) with a cosmological term is the simplest variant of the de Sitter gauge gravitation theory passing in the limit of infinite curvature radius of the de Sitter Universe into the Poincare - invariant GRT without cosmological term. Similarly the theory of gauge gravitational field at localization of the dynamical group of the Einstein homogeneous static Universe (Einstein group RxSO(4)) is formulated
Snyder-de Sitter model from two-time physics
International Nuclear Information System (INIS)
Carrisi, M. C.; Mignemi, S.
2010-01-01
We show that the symplectic structure of the Snyder model on a de Sitter background can be derived from two-time physics in seven dimensions and propose a Hamiltonian for a free particle consistent with the symmetries of the model.
A photon propagator on de Sitter in covariant gauges
Domazet, S.; Prokopec, T.
2014-01-01
We construct a de Sitter invariant photon propagator in general covariant gauges. Our result is a natural generalization of the Allen-Jacobson photon propagator in Feynman gauge. Our propagator reproduces the correct response to a point static charge and the one-loop electromagnetic stress-energy
Vacuum states for gravitons field in de Sitter space
Bamba, Kazuharu; Rahbardehghan, Surena; Pejhan, Hamed
2017-11-01
In this paper, considering the linearized Einstein equation with a two-parameter family of linear covariant gauges in de Sitter spacetime, we examine possible vacuum states for the gravitons field with respect to invariance under the de Sitter group S O0(1 ,4 ) . Our calculations explicitly reveal that there exists no natural de Sitter-invariant vacuum state (the Euclidean or Bunch-Davies state) for the gravitons field. Indeed, on the foundation of a rigorous group-theoretical reasoning, we prove that if one insists on full covariance as well as causality for the theory, one has to give up the positivity requirement of the inner product. However, one may still look for states with as much symmetry as possible, more precisely, a restrictive version of covariance by considering the gravitons field and the associated vacuum state which are, respectively, covariant and invariant with respect to some maximal subgroup of the full de Sitter group. In this regard, we treat the S O (4 ) case and find a family of S O (4 )-invariant states. The associated S O (4 )-covariant quantum field is given, as well.
Poisson's equation in de Sitter space-time
Energy Technology Data Exchange (ETDEWEB)
Pessa, E [Rome Univ. (Italy). Ist. di Matematica
1980-11-01
Based on a suitable generalization of Poisson's equation for de Sitter space-time the form of gravitation's law in 'projective relativity' is examined; it is found that, in the interior case, a small difference with the customary Newtonian law arises. This difference, of a repulsive character, can be very important in cosmological problems.
De Sitter universes and the emerging landscape in string theory
Indian Academy of Sciences (India)
We discuss a recent proposal to construct de Sitter vacua in string theory. It is based on flux compactifications in string theory where all the moduli are stabilised and supersymmetry is broken with control. The resulting picture is that of a complicated landscape with many vacua of widely varying values for the cosmological ...
de Sitter limit of inflation and nonlinear perturbation theory
DEFF Research Database (Denmark)
R. Jarnhus, Philip; Sloth, Martin Snoager
2007-01-01
We study the fourth order action of the comoving curvature perturbation in an inflationary universe in order to understand more systematically the de Sitter limit in nonlinear cosmological perturbation theory. We derive the action of the curvature perturbation to fourth order in the comoving gaug...
Discrete symmetries for spinor field in de Sitter space
International Nuclear Information System (INIS)
Moradi, S.; Rouhani, S.; Takook, M.V.
2005-01-01
Discrete symmetries, parity, time reversal, antipodal, and charge conjugation transformations for spinor field in de Sitter space, are presented in the ambient space notation, i.e., in a coordinate independent way. The PT and PCT transformations are also discussed in this notation. The five-current density is studied and their transformation under the discrete symmetries is discussed
How to use retarded Green's functions in de Sitter spacetime
International Nuclear Information System (INIS)
Higuchi, Atsushi; Cheong, Lee Yen
2008-01-01
We demonstrate in examples that the covariant retarded Green's functions in electromagnetism and linearized gravity work as expected in de Sitter spacetime. We first clarify how retarded Green's functions should be used in spacetimes with spacelike past infinity such as de Sitter spacetime. In particular, we remind the reader of a general formula which gives the field for given initial data on a Cauchy surface and a given source (a charge or stress-energy tensor distribution) in its future. We then apply this formula to three examples: (i) electromagnetism in the future of a Cauchy surface in Minkowski spacetime, (ii) electromagnetism in de Sitter spacetime, and (iii) linearized gravity in de Sitter spacetime. In each example the field is reproduced correctly as predicted by the general argument. In the third example we construct a linearized gravitational field from two equal point masses located at the 'North and South Poles' which is nonsingular on the cosmological horizon and satisfies a covariant gauge condition and show that this field is reproduced by the retarded Green's function with corresponding gauge parameters.
Wang, Mengjie; Herdeiro, Carlos; Jing, Jiliang
2017-11-01
We study Dirac quasinormal modes of Schwarzschild-anti-de Sitter (Schwarzschild-AdS) black holes, following the generic principle for allowed boundary conditions proposed in [M. Wang, C. Herdeiro, and M. O. P. Sampaio, Phys. Rev. D 92, 124006 (2015)., 10.1103/PhysRevD.92.124006]. After deriving the equations of motion for Dirac fields on the aforementioned background, we impose vanishing energy flux boundary conditions to solve these equations. We find a set of two Robin boundary conditions are allowed. These two boundary conditions are used to calculate Dirac normal modes on empty AdS and quasinormal modes on Schwarzschild-AdS black holes. In the former case, we recover the known normal modes of empty AdS; in the latter case, the two sets of Robin boundary conditions lead to two different branches of quasinormal modes. The impact on these modes of the black hole size, the angular momentum quantum number and the overtone number are discussed. Our results show that vanishing energy flux boundary conditions are a robust principle, applicable not only to bosonic fields but also to fermionic fields.
On the thermodynamics of hairy black holes
Energy Technology Data Exchange (ETDEWEB)
Anabalón, Andrés [Departamento de Ciencias, Facultad de Artes Liberales y Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar (Chile); Astefanesei, Dumitru [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile); Choque, David, E-mail: brst1010123@gmail.com [Universidad Técnica Federico Santa María, Av. España 1680, Valparaiso (Chile)
2015-04-09
We investigate the thermodynamics of a general class of exact 4-dimensional asymptotically Anti-de Sitter hairy black hole solutions and show that, for a fixed temperature, there are small and large hairy black holes similar to the Schwarzschild–AdS black hole. The large black holes have positive specific heat and so they can be in equilibrium with a thermal bath of radiation at the Hawking temperature. The relevant thermodynamic quantities are computed by using the Hamiltonian formalism and counterterm method. We explicitly show that there are first order phase transitions similar to the Hawking–Page phase transition.
Thermodynamics of higher spin black holes in AdS3
International Nuclear Information System (INIS)
Boer, Jan de; Jottar, Juan I.
2014-01-01
We discuss the thermodynamics of recently constructed three-dimensional higher spin black holes in SL(N,ℝ)×SL(N,ℝ) Chern-Simons theory with generalized asymptotically-anti-de Sitter boundary conditions. From a holographic perspective, these bulk theories are dual to two-dimensional CFTs with W N symmetry algebras, and the black hole solutions are dual to thermal states with higher spin chemical potentials and charges turned on. Because the notion of horizon area is not gauge-invariant in the higher spin theory, the traditional approaches to the computation of black hole entropy must be reconsidered. One possibility, explored in the recent literature, involves demanding the existence of a partition function in the CFT, and consistency with the first law of thermodynamics. This approach is not free from ambiguities, however, and in particular different definitions of energy result in different expressions for the entropy. In the present work we show that there are natural definitions of the thermodynamically conjugate variables that follow from careful examination of the variational principle, and moreover agree with those obtained via canonical methods. Building on this intuition, we derive general expressions for the higher spin black hole entropy and free energy which are written entirely in terms of the Chern-Simons connections, and are valid for both static and rotating solutions. We compare our results to other proposals in the literature, and provide a new and efficient way to determine the generalization of the Cardy formula to a situation with higher spin charges
Thermodynamics of higher spin black holes in AdS3
de Boer, Jan; Jottar, Juan I.
2014-01-01
We discuss the thermodynamics of recently constructed three-dimensional higher spin black holes in SL( N, ) × SL( N, ) Chern-Simons theory with generalized asymptotically-anti-de Sitter boundary conditions. From a holographic perspective, these bulk theories are dual to two-dimensional CFTs with WN symmetry algebras, and the black hole solutions are dual to thermal states with higher spin chemical potentials and charges turned on. Because the notion of horizon area is not gauge-invariant in the higher spin theory, the traditional approaches to the computation of black hole entropy must be reconsidered. One possibility, explored in the recent literature, involves demanding the existence of a partition function in the CFT, and consistency with the first law of thermodynamics. This approach is not free from ambiguities, however, and in particular different definitions of energy result in different expressions for the entropy. In the present work we show that there are natural definitions of the thermodynamically conjugate variables that follow from careful examination of the variational principle, and moreover agree with those obtained via canonical methods. Building on this intuition, we derive general expressions for the higher spin black hole entropy and free energy which are written entirely in terms of the Chern-Simons connections, and are valid for both static and rotating solutions. We compare our results to other proposals in the literature, and provide a new and efficient way to determine the generalization of the Cardy formula to a situation with higher spin charges.
Surface geometry of 5D black holes and black rings
International Nuclear Information System (INIS)
Frolov, Valeri P.; Goswami, Rituparno
2007-01-01
We discuss geometrical properties of the horizon surface of five-dimensional rotating black holes and black rings. Geometrical invariants characterizing these 3D geometries are calculated. We obtain a global embedding of the 5D rotating black horizon surface into a flat space. We also describe the Kaluza-Klein reduction of the black ring solution (along the direction of its rotation) which, though it is nakedly singular, relates this solution to the 4D metric of a static black hole distorted by the presence of external scalar (dilaton) and vector ('electromagnetic') fields. The properties of the reduced black hole horizon and its embedding in E 3 are briefly discussed
Schwarzschildâde Sitter spacetime: The role of temperature in the emission of Hawking radiation
Directory of Open Access Journals (Sweden)
Thomas Pappas
2017-12-01
Full Text Available We consider a Schwarzschildâde Sitter (SdS black hole, and focus on the emission of massless scalar fields either minimally or non-minimally coupled to gravity. We use six different temperatures, two black-hole and four effective ones for the SdS spacetime, as the question of the proper temperature for such a background is still debated in the literature. We study their profiles under the variation of the cosmological constant, and derive the corresponding Hawking radiation spectra. We demonstrate that only few of these temperatures may support significant emission of radiation. We finally compute the total emissivities for each temperature, and show that the non-minimal coupling constant of the scalar field to gravity also affects the relative magnitudes of the energy emission rates.
Null geodesics in black hole metrics with non-zero cosmological constant
International Nuclear Information System (INIS)
Stuchlik, Z.; Calvani, M.
1990-02-01
We study the radial motion along null geodesics in the Reissner-Nordstroem-de Sitter and Kerr-de Sitter space-times. We analyze the properties of the effective potential and we discuss circular orbits. We find that the radii of circular geodesics in the Reissner-Nordstroem-de Sitter space-time do not depend on the cosmological constant, and we explain this property using the optical reference geometry. In addition, we describe the unusual consequences of the interplay between rotation of the source and cosmological repulsion. (author). 16 refs, 8 figs
On classical de Sitter and Minkowski solutions with intersecting branes
Andriot, David
2018-03-01
Motivated by the connection of string theory to cosmology or particle physics, we study solutions of type II supergravities having a four-dimensional de Sitter or Minkowski space-time, with intersecting D p -branes and orientifold O p -planes. Only few such solutions are known, and we aim at a better characterisation. Modulo a few restrictions, we prove that there exists no classical de Sitter solution for any combination of D 3/ O 3 and D 7/ O 7, while we derive interesting constraints for intersecting D 5/ O 5 or D 6/ O 6, or combinations of D 4/ O 4 and D 8/ O 8. Concerning classical Minkowski solutions, we understand some typical features, and propose a solution ansatz. Overall, a central information appears to be the way intersecting D p / O p overlap each other, a point we focus on.
Massless Interacting Scalar Fields in de Sitter space
López Nacir, Diana
2016-10-28
We present a method to compute the two-point functions for an $O(N)$ scalar field model in de Sitter spacetime, avoiding the well known infrared problems for massless fields. The method is based on an exact treatment of the Euclidean zero modes and a perturbative one of the nonzero modes, and involves a partial resummation of the leading secular terms. This resummation, crucial to obtain a decay of the correlation functions, is implemented along with a double expansion in an effective coupling constant $\\sqrt\\lambda$ and in $1/N$. The results reduce to those known in the leading infrared approximation and coincide with the ones obtained directly in Lorentzian de Sitter spacetime in the large $N$ limit. The new method allows for a systematic calculation of higher order corrections both in $\\sqrt\\lambda$ and in $1/N$.
Asymptotically anti-de Sitter spacetimes in topologically massive gravity
International Nuclear Information System (INIS)
Henneaux, Marc; Martinez, Cristian; Troncoso, Ricardo
2009-01-01
We consider asymptotically anti-de Sitter spacetimes in three-dimensional topologically massive gravity with a negative cosmological constant, for all values of the mass parameter μ (μ≠0). We provide consistent boundary conditions that accommodate the recent solutions considered in the literature, which may have a slower falloff than the one relevant for general relativity. These conditions are such that the asymptotic symmetry is in all cases the conformal group, in the sense that they are invariant under asymptotic conformal transformations and that the corresponding Virasoro generators are finite. It is found that, at the chiral point |μl|=1 (where l is the anti-de Sitter radius), allowing for logarithmic terms (absent for general relativity) in the asymptotic behavior of the metric makes both sets of Virasoro generators nonzero even though one of the central charges vanishes.
Linearized curvatures for auxiliary fields in the de Sitter space
Energy Technology Data Exchange (ETDEWEB)
Vasiliev, M A
1988-09-19
New consistent linearized curvatures in the de Sitter space are constructed. The sequence of actions, describing bosonic and fermionic gauge auxiliary fields, is found based on these curvatures. The proposed actions are parametrized by two integer parameters, n greater than or equal to 0 and m greater than or equal to 0. The simplest case n=m=0 corresponds in the flat limit to the auxiliary fields of 'new minimal' supergravity. The hamiltonian formulation is developed for the auxiliary fields suggested; hamiltonians and first- and second-class constraints are constructed. Using these results, it is shown that the systems of fields proposed possess no dynamical degrees of freedom in de Sitter and flat spaces. In addition the hamiltonian formalism is analysed for some free dynamical systems based on linearized higher-spin curvatures introduced previously.
Instanton transition in thermal and moduli deformed de Sitter cosmology
International Nuclear Information System (INIS)
Kounnas, Costas; Partouche, Herve
2008-01-01
We consider the de Sitter cosmology deformed by the presence of a thermal bath of radiation and/or time-dependent moduli fields. Depending on the parameters, either a first or second-order phase transition can occur. In the first case, an instanton allows a double analytic continuation. It induces a probability to enter the inflationary evolution by tunnel effect from another cosmological solution. The latter starts with a big bang and, in the case the transition does not occur, ends with a big crunch. A temperature duality exchanges the two cosmological branches. In the limit where the pure de Sitter universe is recovered, the tunnel effect reduces to a 'creation from nothing', due to the vanishing of the big bang branch. However, the latter may be viable in some range of the deformation parameter. In the second case, there is a smooth evolution from a big bang to the inflationary phase
Refining the boundaries of the classical de Sitter landscape
Energy Technology Data Exchange (ETDEWEB)
Andriot, David [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,Am Mühlenberg 1, 14467 Potsdam-Golm (Germany); Institut für Mathematik, Humboldt-Universität zu Berlin, IRIS-Adlershof,Zum Großen Windkanal 6, 12489 Berlin (Germany); Blåbäck, Johan [Institut de Physique Théorique, Université Paris Saclay, CEA, CNRS,F-91191 Gif sur Yvette (France)
2017-03-20
We derive highly constraining no-go theorems for classical de Sitter backgrounds of string theory, with parallel sources; this should impact the embedding of cosmological models. We study ten-dimensional vacua of type II supergravities with parallel and backreacted orientifold O{sub p}-planes and D{sub p}-branes, on four-dimensional de Sitter space-time times a compact manifold. Vacua for p=3, 7 or 8 are completely excluded, and we obtain tight constraints for p=4, 5, 6. This is achieved through the derivation of an enlightening expression for the four-dimensional Ricci scalar. Further interesting expressions and no-go theorems are obtained. The paper is self-contained so technical aspects, including conventions, might be of more general interest.
Stringy stability of charged dilaton black holes with flat event horizon
Energy Technology Data Exchange (ETDEWEB)
Ong, Yen Chin [National Taiwan Univ., Taipei (Taiwan); Chen, Pisin [National Taiwan Univ., Taipei (Taiwan); SLAC National Accelerator Lab., Menlo Park, CA (United States)
2015-01-15
Electrically charged black holes with flat event horizon in anti-de Sitter space have received much attention due to various applications in Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence, from modeling the behavior of quark-gluon plasma to superconductor. Critical to the physics on the dual field theory is the fact that when embedded in string theory, black holes in the bulk may become vulnerable to instability caused by brane pair-production. Since dilation arises naturally in the context of string theory, we study the effect of coupling dilation to Maxwell field on the stability of flat charged AdS black holes.
On electric field in anti-de Sitter spacetime
Energy Technology Data Exchange (ETDEWEB)
Cheong, Lee Yen, E-mail: lee-yencheong@petronas.com.my, E-mail: chewxy01813@gmail.com, E-mail: dennis.ling@petronas.com.my; Yan, Chew Xiao, E-mail: lee-yencheong@petronas.com.my, E-mail: chewxy01813@gmail.com, E-mail: dennis.ling@petronas.com.my; Ching, Dennis Ling Chuan, E-mail: lee-yencheong@petronas.com.my, E-mail: chewxy01813@gmail.com, E-mail: dennis.ling@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi Petronas, Bandar Seri Iskandar, Tronoh 31750, Perak (Malaysia)
2014-10-24
In this paper we calculate the electromagnetic field produced using retarded Green's function in Anti-de Sitter spacetime (AdS). Since this spacetime is non-globally hyperbolic and has no Cauchy surface, we only consider the field originated from a charge moving along its geodesic in the region consists of points covered by future null geodesic of the charge.
Hybridizing the Skyrmion with an Anti-de-Sitter bag
International Nuclear Information System (INIS)
Rosu, H.
1992-02-01
We discuss a phenomenological model of the nucleon in which a small Anti-de-Sitter bag is placed into the Skyrmion configuration. Such a bag has a timelike boundary and allows naturally the Cheshire Cat Principle. Very important in this model is the membrane of the bag, the 3-dimensional manifold S 1 xS 2 , in which topological techniques will come into play. (author). 63 refs
Quantum corrections for spinning particles in de Sitter
Energy Technology Data Exchange (ETDEWEB)
Fröb, Markus B. [Department of Mathematics, University of York, Heslington, York, YO10 5DD (United Kingdom); Verdaguer, Enric, E-mail: mbf503@york.ac.uk, E-mail: enric.verdaguer@ub.edu [Departament de Física Quàntica i Astrofísica, Institut de Ciències del Cosmos (ICC), Universitat de Barcelona (UB), C/ Martí i Franquès 1, 08028 Barcelona (Spain)
2017-04-01
We compute the one-loop quantum corrections to the gravitational potentials of a spinning point particle in a de Sitter background, due to the vacuum polarisation induced by conformal fields in an effective field theory approach. We consider arbitrary conformal field theories, assuming only that the theory contains a large number N of fields in order to separate their contribution from the one induced by virtual gravitons. The corrections are described in a gauge-invariant way, classifying the induced metric perturbations around the de Sitter background according to their behaviour under transformations on equal-time hypersurfaces. There are six gauge-invariant modes: two scalar Bardeen potentials, one transverse vector and one transverse traceless tensor, of which one scalar and the vector couple to the spinning particle. The quantum corrections consist of three different parts: a generalisation of the flat-space correction, which is only significant at distances of the order of the Planck length; a constant correction depending on the undetermined parameters of the renormalised effective action; and a term which grows logarithmically with the distance from the particle. This last term is the most interesting, and when resummed gives a modified power law, enhancing the gravitational force at large distances. As a check on the accuracy of our calculation, we recover the linearised Kerr-de Sitter metric in the classical limit and the flat-space quantum correction in the limit of vanishing Hubble constant.
Asymptotic symmetries in de Sitter and inflationary spacetimes
Energy Technology Data Exchange (ETDEWEB)
Ferreira, Ricardo Z.; Sandora, McCullen; Sloth, Martin S., E-mail: ferreira@cp3.sdu.dk, E-mail: sandora@cp3.sdu.dk, E-mail: sloth@cp3.sdu.dk [CP3-Origins, Center for Cosmology and Particle Physics Phenomenology, University of Southern Denmark, Campusvej 55, 5230 Odense M (Denmark)
2017-04-01
Soft gravitons produced by the expansion of de Sitter can be viewed as the Nambu-Goldstone bosons of spontaneously broken asymptotic symmetries of the de Sitter spacetime. We explicitly construct the associated charges, and show that acting with the charges on the vacuum creates a new state equivalent to a change in the local coordinates induced by the soft graviton. While the effect remains unobservable within the domain of a single observer where the symmetry is unbroken, this change is physical when comparing different asymptotic observers, or between a transformed and un-transformed initial state, consistent with the scale-dependent statistical anisotropies previously derived using semiclassical relations. We then compute the overlap, (0| 0'), between the unperturbed de Sitter vacuum |0), and the state | 0') obtained by acting N times with the charge. We show that when N→ M {sub p} {sup 2}/ H {sup 2} this overlap receives order one corrections and 0(0| 0')→ , which corresponds to an infrared perturbative breakdown after a time t {sub dS} ∼ M {sub p} {sup 2}/ H {sup 3} has elapsed, consistent with earlier arguments in the literature arguing for a perturbative breakdown on this timescale. We also discuss the generalization to inflation, and rederive the 3-point and one-loop consistency relations.
Ghosh, Shubhrangshu; Banik, Prabir
2015-07-01
In this paper, we present a complete work on steady state spherically symmetric Bondi type accretion flow in the presence of cosmological constant (Λ) in both Schwarzschild-de Sitter (SDS) and Schwarzschild anti-de Sitter (SADS) backgrounds considering an isolated supermassive black hole (SMBH), with the inclusion of a simple radiative transfer scheme, in the pseudo-general relativistic paradigm. We do an extensive analysis on the transonic behavior of the Bondi type accretion flow onto the cosmological BHs including a complete analysis of the global parameter space and the stability of flow, and do a complete study of the global family of solutions for a generic polytropic flow. Bondi type accretion flow in SADS background renders multiplicity in its transonic behavior with inner "saddle" type and outer "center" type sonic points, with the transonic solutions forming closed loops or contours. There is always a limiting value for ∣Λ∣ up to which we obtain valid stationary transonic solutions, which correspond to both SDS and SADS geometries; this limiting value moderately increases with the increasing radiative efficiency of the flow, especially correspond to Bondi type accretion flow in SADS background. Repulsive Λ suppresses the Bondi accretion rate by an order of magnitude for relativistic Bondi type accretion flow for a certain range in temperature, and with a marginal increase in the Bondi accretion rate if the corresponding accretion flow occurs in SADS background. However, for a strongly radiative Bondi type accretion flow with high mass accretion rate, the presence of cosmological constant do not much influence the corresponding Bondi accretion rate of the flow. Our analysis show that the relic cosmological constant has a substantial effect on Bondi type accretion flow onto isolated SMBHs and their transonic solutions beyond length-scale of kiloparsecs, especially if the Bondi type accretion occurs onto the host supergiant ellipticals or central
Spontaneously broken continuous symmetries in hyperbolic (or open) de Sitter spacetime
International Nuclear Information System (INIS)
Ratra, B.
1994-01-01
The functional Schroedinger approach is used to study scalar field theory in hyperbolic (or open) de Sitter spacetime. While on intermediate length scales (small compared to the spatial curvature length scale) the massless minimally coupled scalar field two-point correlation function does have a term that varies logarithmically with scale, as in flat and closed de Sitter spacetime, the spatial curvature tames the infrared behavior of this correlation function at larger scales in the open model. As a result, and contrary to what happens in flat and closed de Sitter spacetime, spontaneously broken continuous symmetries are not restored in open de Sitter spacetime (with more than one spatial dimension)
Black-hole universe: time evolution.
Yoo, Chul-Moon; Okawa, Hirotada; Nakao, Ken-ichi
2013-10-18
Time evolution of a black hole lattice toy model universe is simulated. The vacuum Einstein equations in a cubic box with a black hole at the origin are numerically solved with periodic boundary conditions on all pairs of faces opposite to each other. Defining effective scale factors by using the area of a surface and the length of an edge of the cubic box, we compare them with that in the Einstein-de Sitter universe. It is found that the behavior of the effective scale factors is well approximated by that in the Einstein-de Sitter universe. In our model, if the box size is sufficiently larger than the horizon radius, local inhomogeneities do not significantly affect the global expansion law of the Universe even though the inhomogeneity is extremely nonlinear.
Black holes as possible sources of closed and semiclosed worlds
International Nuclear Information System (INIS)
Frolov, V.P.; Markov, M.A.; Mukhanov, V.F.
1988-05-01
The internal structure of spacetime inside a black hole is investigated on the assumption that some limiting curvature exists. It is shown that the Schwarzschild metric inside a black hole can be attached to the de Sitter one at some spacelike junction hypersurface which represents a short transition layer. After passing the deflation stage the de Sitter space inside the black hole begins to inflate and may become a source of a new macroscopic Universe. The corresponding conformal Penrose diagrams are given. The described model may be considered as an example of ''a creation of a closed or semiclosed world in laboratory''. The fate of an evaporating black hole is also briefly discussed. (author). 21 refs, 12 figs
ADM Mass for Asymptotically de Sitter Space-Time
International Nuclear Information System (INIS)
Huang Shiming; Yue Ruihong; Jia Dongyan
2010-01-01
In this paper, an ADM mass formula for asymptotically de Sitter(dS) space-time is derived from the energy-momentum tensor. We take the vacuum dS space as the background and investigate the ADM mass of the (d + 3)-dimensional sphere-symmetric space with a positive cosmological constant, and find that the ADM mass of asymptotically dS space is based on the ADM mass of Schwarzschild field and the cosmological background brings some small mass contribution as well. (general)
Kinematics of a relativistic particle with de Sitter momentum space
International Nuclear Information System (INIS)
Arzano, Michele; Kowalski-Glikman, Jerzy
2011-01-01
We discuss kinematical properties of a free relativistic particle with deformed phase space in which momentum space is given by (a submanifold of) de Sitter space. We provide a detailed derivation of the action, Hamiltonian structure and equations of motion for such a free particle. We study the action of deformed relativistic symmetries on the phase space and derive explicit formulae for the action of the deformed Poincare group. Finally we provide a discussion on parametrization of the particle worldlines stressing analogies and differences with ordinary relativistic kinematics.
A fond farewell to anti De Sitter space
International Nuclear Information System (INIS)
Freedman, D.Z.
1986-01-01
Recent results on supersymmetry in a fixed Anti de Sitter (AdS) background geometry are summarized. These results include i) required modification of the generators of the O(3,2) isometry group in the AdS Wess-Zumino model, ii) the one-loop renormalization structure of this model, showing that the special 'naturalness' properties of flat space supersymmetry do not extend to AdS, and iii) a non-perturbative Lehmann spectral representation. Open problems suggested by recent work are emphasized. (author)
Gravitational radiation reaction in the NUT-de Sitter spacetime
International Nuclear Information System (INIS)
Ahmed, M.
1988-07-01
The equations for gravitational perturbation in the NUT-de Sitter spacetime are obtained. Using these equations, some preliminary calculations have been made with a view to constructing the retarded Green functions. Then with the help of the retarded Green functions, the radiative Green functions have been constructed. With the aid of these radiative Green functions, the reaction force on a particle is computed and this reaction force is then shown to account correctly for the energy and the angular momentum carried away by gravitational radiation to infinity and to the horizon. (author). 9 refs
The deflationary universe: An instability of the de Sitter universe
International Nuclear Information System (INIS)
Barrow, J.D.
1986-01-01
The relevance is discussed of the initial value structure of the cosmological problem for inflationary explanations of its present structure. Existing proofs of the cosmic ''no hair'' conjecture are found to make use of an unrealistic strong energy condition on the stress tensor of the matter fields not driving the inflation. It is shown by explicit example that the no hair conjecture fails even in isotropic cosmological models if the strong energy condition is relaxed. A class of exact cosmological models are given which begin in a de Sitter state but subsequently deflate towards the flat Friedman model. Various implications of these examples are discussed. (orig.)
On de Sitter-like and Minkowski-like spacetimes
International Nuclear Information System (INIS)
Luebbe, Christian; Kroon, Juan Antonio Valiente
2009-01-01
Friedrich's proofs for the global existence results of de Sitter-like spacetimes and of semi-global existence of Minkowski-like spacetimes (Friedrich 1986 Commun. Math. Phys. 107 587) are re-examined and discussed, making use of the extended conformal field equations and a gauge based on conformal geodesics. In this gauge, the location of the conformal boundary of the spacetimes is known a priori once the initial data have been prescribed. Thus, it provides an analysis which is conceptually and calculationally simpler.
Schwinger mechanism in electromagnetic field in de Sitter spacetime
Directory of Open Access Journals (Sweden)
Bavarsad Ehsan
2018-01-01
Full Text Available We investigate Schwinger scalar pair production in a constant electromagnetic field in de Sitter (dS spacetime. We obtain the pair production rate, which agrees with the Hawking radiation in the limit of zero electric field in dS. The result describes how a cosmic magnetic field affects the pair production rate. In addition, using a numerical method we study the effect of the magnetic field on the induced current. We find that in the strong electromagnetic field the current has a linear response to the electric and magnetic fields, while in the infrared regime, is inversely proportional to the electric field and leads to infrared hyperconductivity.
Is the Einstein de Sitter model actually ruled out?
International Nuclear Information System (INIS)
Blanchard, A.
2003-01-01
The standard model for cosmology which is now strongly favored is a flat model, dominated by a vacuum density term. However, the actual direct evidences for such term are limited, essentially based on the supernova probe, i.e. based on a standard candle hypothesis. Here I would like to point out that contrary to the general belief there is room for an Einstein de Sitter universe. Actually several independent measurements, not based on stellar reference, pointed towards a high matter density Universe, weakening the need for a cosmological constant
All possible de-Sitter superalgebras and the presence of ghosts
International Nuclear Information System (INIS)
Lukierski, J.; Nowicki, A.
1984-09-01
De-Sitter superalgebras which supersymmetrize SO(d;1) by introducing the spinorial supercharges, exist for d=2,3,4 and 5. It is shown however that it is possible only for d=2 to write a nontrivial representation of de-Sitter superalgebra in the Hilbert space, with positive-definite metric. (orig.)
Achterbergh, J.M.I.M.; Vriens, D.J.
2011-01-01
- Purpose – The purpose of this paper is to show how the viable system model (VSM) and de Sitter's design theory can complement each other in the context of the diagnosis and design of viable organizations. - Design/methodology/approach – Key concepts from Beer's model and de Sitter's design theory
The BTZ black hole as a Lorentz-flat geometry
Energy Technology Data Exchange (ETDEWEB)
Alvarez, Pedro D., E-mail: alvarez@physics.ox.ac.uk [Rudolf Peierls Centre for Theoretical Physics, University of Oxford (United Kingdom); Pais, Pablo, E-mail: pais@cecs.cl [Centro de Estudios Científicos (CECs), Av. Arturo Prat 514, Valdivia (Chile); Universidad Andrés Bello, Av. República 440, Santiago (Chile); Rodríguez, Eduardo, E-mail: eduarodriguezsal@unal.edu.co [Departamento de Matemática y Física Aplicadas, Universidad Católica de la Santísima Concepción, Concepción (Chile); Salgado-Rebolledo, Patricio, E-mail: pasalgado@udec.cl [Centro de Estudios Científicos (CECs), Av. Arturo Prat 514, Valdivia (Chile); Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Physique Théorique et Mathématique, Université Libre de Bruxelles and International Solvay Institutes, Campus Plaine C.P. 231, B-1050 Bruxelles (Belgium); Zanelli, Jorge, E-mail: z@cecs.cl [Centro de Estudios Científicos (CECs), Av. Arturo Prat 514, Valdivia (Chile); Universidad Andrés Bello, Av. República 440, Santiago (Chile)
2014-11-10
It is shown that 2+1 dimensional anti-de Sitter spacetimes are Lorentz-flat. This means, in particular, that any simply-connected patch of the BTZ black hole solution can be endowed with a Lorentz connection that is locally pure gauge. The result can be naturally extended to a wider class of black hole geometries and point particles in three-dimensional spacetime.
Hawking temperature of constant curvature black holes
International Nuclear Information System (INIS)
Cai Ronggen; Myung, Yun Soo
2011-01-01
The constant curvature (CC) black holes are higher dimensional generalizations of Banados-Teitelboim-Zanelli black holes. It is known that these black holes have the unusual topology of M D-1 xS 1 , where D is the spacetime dimension and M D-1 stands for a conformal Minkowski spacetime in D-1 dimensions. The unusual topology and time-dependence for the exterior of these black holes cause some difficulties to derive their thermodynamic quantities. In this work, by using a globally embedding approach, we obtain the Hawking temperature of the CC black holes. We find that the Hawking temperature takes the same form when using both the static and global coordinates. Also, it is identical to the Gibbons-Hawking temperature of the boundary de Sitter spaces of these CC black holes.
Charged topological black hole pair creation
International Nuclear Information System (INIS)
Mann, R.B.
1998-01-01
I examine the pair creation of black holes in space-times with a cosmological constant of either sign. I consider cosmological C-metrics and show that the conical singularities in this metric vanish only for three distinct classes of black hole metric, two of which have compact event horizons on each spatial slice. One class is a generalization of the Reissner-Nordstroem (anti-)de Sitter black holes in which the event horizons are the direct product of a null line with a 2-surface with topology of genus g. The other class consists of neutral black holes whose event horizons are the direct product of a null conoid with a circle. In the presence of a domain wall, black hole pairs of all possible types will be pair created for a wide range of mass and charge, including even negative mass black holes. I determine the relevant instantons and Euclidean actions for each case. (orig.)
Thin-shell bubbles and information loss problem in anti de Sitter background
Energy Technology Data Exchange (ETDEWEB)
Sasaki, Misao [Yukawa Institute for Theoretical Physics,Kyoto University, Kyoto 606-8502 (Japan); Tomsk State Pedagogical University,634050 Tomsk (Russian Federation); Yeom, Dong-han [Yukawa Institute for Theoretical Physics,Kyoto University, Kyoto 606-8502 (Japan); Leung Center for Cosmology and Particle Astrophysics, National Taiwan University,Taipei 10617, Taiwan (China)
2014-12-24
We study the motion of thin-shell bubbles and their tunneling in anti de Sitter (AdS) background. We are interested in the case when the outside of a shell is a Schwarzschild-AdS space (false vacuum) and the inside of it is an AdS space with a lower vacuum energy (true vacuum). If a collapsing true vacuum bubble is created, classically it will form a Schwarzschild-AdS black hole. However, this collapsing bubble can tunnel to a bouncing bubble that moves out to spatial infinity. Then, although the classical causal structure of a collapsing true vacuum bubble has the singularity and the event horizon, quantum mechanically the wavefunction has support for a history without any singularity nor event horizon which is mediated by the non-perturbative, quantum tunneling effect. This may be regarded an explicit example that shows the unitarity of an asymptotic observer in AdS, while a classical observer who only follows the most probable history effectively lose information due to the formation of an event horizon.
Thin-shell bubbles and information loss problem in anti de Sitter background
International Nuclear Information System (INIS)
Sasaki, Misao; Yeom, Dong-han
2014-01-01
We study the motion of thin-shell bubbles and their tunneling in anti de Sitter (AdS) background. We are interested in the case when the outside of a shell is a Schwarzschild-AdS space (false vacuum) and the inside of it is an AdS space with a lower vacuum energy (true vacuum). If a collapsing true vacuum bubble is created, classically it will form a Schwarzschild-AdS black hole. However, this collapsing bubble can tunnel to a bouncing bubble that moves out to spatial infinity. Then, although the classical causal structure of a collapsing true vacuum bubble has the singularity and the event horizon, quantum mechanically the wavefunction has support for a history without any singularity nor event horizon which is mediated by the non-perturbative, quantum tunneling effect. This may be regarded an explicit example that shows the unitarity of an asymptotic observer in AdS, while a classical observer who only follows the most probable history effectively lose information due to the formation of an event horizon.
De Sitter vacua from heterotic M-theory
International Nuclear Information System (INIS)
Becker, Melanie; Curio, Gottfried; Krause, Axel
2004-01-01
It is shown how metastable de Sitter vacua might arise from heterotic M-theory. The balancing of its two non-perturbative effects, open membrane instantons against gaugino condensation on the hidden boundary, which act with opposing forces on the interval length, is used to stabilize the orbifold modulus (dilaton) and other moduli. The non-perturbative effects break supersymmetry spontaneously through F-terms which leads to a positive vacuum energy density. In contrast to the situation for the weakly coupled heterotic string, the charged scalar matter fields receive non-vanishing vacuum expectation values and therefore masses in a phenomenologically relevant regime. It is important that in order to obtain these de Sitter vacua we are not relying on exotic effects or fine-tuning of parameters. Vacua with more realistic supersymmetry breaking scales and gravitino masses are obtained by breaking the hidden E 8 gauge group down to groups of smaller rank. Also small values for the open membrane instanton Pfaffian are favored in this respect. Finally we outline how the incorporation of additional flux superpotentials can be used to stabilize the remaining moduli
de Sitter Space in Non-Critical String Theory
Energy Technology Data Exchange (ETDEWEB)
Silverstein, Eva M
2002-08-13
Supercritical string theories in D > 10 dimensions with no moduli are described, generalizing the asymmetric orientifold construction of one of the authors [1]. By taking the number of dimensions to be large and turning on fluxes, dilaton potentials are generated with nontrivial minima at arbitrarily small cosmological constant and D-dimensional string coupling, separated by a barrier from a flat-space linear dilaton region, but possibly suffering from strong coupling problems. The general issue of the decay of a de Sitter vacuum to flat space is discussed. For relatively small barriers, such decays are described by gravitational instantons. It is shown that for a sufficiently large potential barrier, the bubble wall crosses the horizon. At the same time the instanton decay time exceeds the Poincare recurrence time. It is argued that the inclusion of such instantons is neither physically meaningful nor consistent with basic principles such as causality. This raises the possibility that such de Sitter vacua are effectively stable. In the case of the supercritical flux models, decays to the linear dilaton region can be forbidden by such large barriers, but decays to lower flux vacua including AdS minima nevertheless proceed consistently with this criterion. These models provide concrete examples in which cosmological constant reduction by flux relaxation can be explored.
Analogies between Kruskal space and de Sitter space
International Nuclear Information System (INIS)
Rindler, W.
1986-01-01
Kruskal space is the analytical completion of Schwarzschild space and it consists of two outside and two inside Schwarzchild regions. Under suppression of the two angular coordinates, this space is usually diagrammed in terms of the Kruskal coordinates, μ,upsilon, much like Minkowski space is in terms of x, y. In particular, radial light paths correspond to +- 45 0 lines, the hyperbolas of μ/sup 2/ - upsilon/sup 2/ = a/sup 2/ represent uniformly accelerated particles (these being at rest in outer Schwarzschild space), and Lorentz transformations in μ, upsilon map the space into itself. Hermann Weyl first gave the analytic completion of de Sitter space as a hyper-hyperboloid μ/sub 1//sup 2/ + μ/sub 2//sup 2/ + μ/sub 3//sup 2/ + μ/sub 4//sup 2/ - upsilon/sup 2/ = a/sup 2/ in five-dimensional Minkowski space, which also contains two outside inside de Sitter regions. In a Weyl diagram, μ/sub 3/ and μ/sub 4/ are suppressed. There are many analogies: Lorentz transformations in μ/sub i/, upsilon map Weyl space into itself, the +- 45 0 generators are light paths, timelike plane hyperbolic sections are uniformly accelerated particles, and the horizon structure relative to each free worldline is analogous to the absolute horizon structure in Kruskal space
Black Holes with Anisotropic Fluid in Lyra Scalar-Tensor Theory
Directory of Open Access Journals (Sweden)
Melis ULU DOĞRU
2018-02-01
Full Text Available In this paper, we investigate distribution of anisotropic fluid which is a resource of black holes in regard to Lyra scalar-tensor theory. As part of the theory, we obtain field equations of spherically symmetric space-time with anisotropic fluid. By using field equations, we suggest distribution of anisotropic fluid, responsible for space-time geometries such as Schwarzschild, Reissner-Nordström, Minkowski type, de Sitter type, Anti-de Sitter type, BTZ and charged BTZ black holes. Finally, we discuss obtained pressures and density of the fluid for different values of arbitrary constants, geometrically and physically.
Poincare and de Sitter gauge theories of gravity with propagating torsion
International Nuclear Information System (INIS)
Tseytlin, A.A.
1982-01-01
We consider a gauge approach to the gravitational theory based on the local Poincare P 10 de Sitter S 10 groups. The P 10 gauge rotations and translations take place in the tangent spaces to the space-time manifold. We interpret the independence of matter fields from the tangent vectors as the necessity to use a nonlinear realization of the P 10 or S 10 groups thus effectively breaking the full symmetry to the Lorentz group. The Lagrangian we choose is the S 10 Yang-Mills invariant with the space-time metric expressed in terms of the translational part of the S 10 nonlinear gauge field. Various consequences of the theory are discussed, including the correspondence with general relativity, the propagating spin-connection interactions, the analogy with the chiral Higgs mechanism, instantonlike solutions, a possibility of gravitational repulsion due to the noncompactness of the Lorentz group, etc. We also analyze the quantization of the theories with torsion with special emphasis on the presence of the nonlinear realization. We stress the possibility of obtaining a renormalizable theory if the metric is not quantized but is expressed in terms of a mean value of the quantized S 10 nonlinear gauge field
A black hole with torsion in 5D Lovelock gravity
Cvetković, B.; Simić, D.
2018-03-01
We analyze static spherically symmetric solutions of five dimensional (5D) Lovelock gravity in the first order formulation. In the Riemannian sector, when torsion vanishes, the Boulware–Deser black hole represents a unique static spherically symmetric black hole solution for the generic choice of the Lagrangian parameters. We show that a special choice of the Lagrangian parameters, different from the Lovelock Chern–Simons gravity, leads to the existence of a static black hole solution with torsion, the metric of which is asymptotically anti-de Sitter (AdS). We calculate the conserved charges and thermodynamical quantities of this black hole solution.
Indian Academy of Sciences (India)
Abstract. A Kerr metric describing a rotating black hole is obtained on the three brane in a five-dimensional Randall-Sundrum brane world by considering a rotating five-dimensional black string in the bulk. We examine the causal structure of this space-time through the geodesic equations.
Cosmological production of noncommutative black holes
International Nuclear Information System (INIS)
Mann, Robert B.; Nicolini, Piero
2011-01-01
We investigate the pair creation of noncommutative black holes in a background with a positive cosmological constant. As a first step we derive the noncommutative geometry inspired Schwarzschild-de Sitter solution. By varying the mass and the cosmological constant parameters, we find several spacetimes compatible with the new solution: positive-mass spacetimes admit one cosmological horizon and two, one, or no black hole horizons, while negative-mass spacetimes have just a cosmological horizon. These new black holes share the properties of the corresponding asymptotically flat solutions, including the nonsingular core and thermodynamic stability in the final phase of the evaporation. As a second step we determine the action which generates the matter sector of gravitational field equations and we construct instantons describing the pair production of black holes and the other admissible topologies. As a result we find that for current values of the cosmological constant the de Sitter background is quantum mechanically stable according to experience. However, positive-mass noncommutative black holes and solitons would have plentifully been produced during inflationary times for Planckian values of the cosmological constant. As a special result we find that, in these early epochs of the Universe, Planck size black holes production would have been largely disfavored. We also find a potential instability for production of negative-mass solitons.
De Sitter en Einstein. ‘Het lijkt mij dat Einstein hier een vergissing begaan heeft’
Directory of Open Access Journals (Sweden)
Jan Guichelaar
2016-10-01
Full Text Available De Sitter and EinsteinWillem de Sitter’s interest in gravity was based on his work on celestial mechanics, in particular on the four big moons of Jupiter. His work on cosmology was based on the general theory of relativity of Albert Einstein. De Sitter published in 1917, on request of Arthur Eddington to inform the English astronomers, a series of four articles in The Observatory and the Monthly Notices of the Royal Astronomical Society. Einstein developed his own cosmological models, containing mass. De Sitter found a different solution and described a universe without mass. Einstein could not accept De Sitter’s model and they ‘fought out’ two controversies in their correspondence. In theend Einstein had to confess De Sitter was mainly right in his criticisms. In 1932 Einstein and De Sitter published an article on a new model, the so-called Einstein-De Sitter Model of the universe. So, De Sitter was able to do fundamental work in classical celestial mechanics as well as in the new cosmological theories.
Insight into the microscopic structure of an AdS black hole from a thermodynamical phase transition.
Wei, Shao-Wen; Liu, Yu-Xiao
2015-09-11
Comparing with an ordinary thermodynamic system, we investigate the possible microscopic structure of a charged anti-de Sitter black hole completely from the thermodynamic viewpoint. The number density of the black hole molecules is introduced to measure the microscopic degrees of freedom of the black hole. We found that the number density suffers a sudden change accompanied by a latent heat when the black hole system crosses the small-large black hole coexistence curve, while when the system passes the critical point, it encounters a second-order phase transition with a vanishing latent heat due to the continuous change of the number density. Moreover, the thermodynamic scalar curvature suggests that there is a weak attractive interaction between two black hole molecules. These phenomena might cast new insight into the underlying microscopic structure of a charged anti-de Sitter black hole.
Inner mechanics of three-dimensional black holes.
Detournay, Stéphane
2012-07-20
We investigate properties of the inner horizons of certain black holes in higher-derivative three-dimensional gravity theories. We focus on Bañados-Teitelboim-Zanelli and spacelike warped anti-de Sitter black holes, as well as on asymptotically warped de Sitter solutions exhibiting both a cosmological and a black hole horizon. We verify that a first law is satisfied at the inner horizon, in agreement with the proposal of Castro and Rodriguez [arXiv:1204.1284]. We then show that, in topologically massive gravity, the product of the areas of the inner and outer horizons fails to be independent on the mass, and we trace this to the diffeomorphism anomaly of the theory.
Thermodynamic studies of different black holes with modifications of entropy
Haldar, Amritendu; Biswas, Ritabrata
2018-02-01
In recent years, the thermodynamic properties of black holes are topics of interests. We investigate the thermodynamic properties like surface gravity and Hawking temperature on event horizon of regular black holes viz. Hayward Class and asymptotically AdS (Anti-de Sitter) black holes. We also analyze the thermodynamic volume and naive geometric volume of asymptotically AdS black holes and show that the entropy of these black holes is simply the ratio of the naive geometric volume to thermodynamic volume. We plot the different graphs and interpret them physically. We derive the `cosmic-Censorship-Inequality' for both type of black holes. Moreover, we calculate the thermal heat capacity of aforesaid black holes and study their stabilities in different regimes. Finally, we compute the logarithmic correction to the entropy for both the black holes considering the quantum fluctuations around the thermal equilibrium and study the corresponding thermodynamics.
Revisiting the conformal invariance of the scalar field: From Minkowski space to de Sitter space
International Nuclear Information System (INIS)
Huguet, E.; Queva, J.; Renaud, J.
2008-01-01
In this article, we clarify the link between the conformal (i.e. Weyl) correspondence from the Minkowski space to the de Sitter space and the conformal [i.e. SO(2,d)] invariance of the conformal scalar field on both spaces. We exhibit the realization on de Sitter space of the massless scalar representation of SO(2,d). It is obtained from the corresponding representation in Minkowski space through an intertwining operator inherited from the Weyl relation between the two spaces. The de Sitter representation is written in a form which allows one to take the point of view of a Minkowskian observer who sees the effect of curvature through additional terms
Conformal use of retarded Green's functions for the Maxwell field in de Sitter space
International Nuclear Information System (INIS)
Faci, S.; Huguet, E.; Renaud, J.
2011-01-01
We propose a new propagation formula for the Maxwell field in de Sitter space which exploits the conformal invariance of this field together with a conformal gauge condition. This formula allows to determine the classical electromagnetic field in the de Sitter space from given currents and initial data. It only uses the Green's function of the massless Minkowskian scalar field. This leads to drastic simplifications in practical calculations. We apply this formula to the classical problem of the two charges of opposite signs at rest at the North and South Poles of the de Sitter space.
Energy, momentum and angular momentum conservations in de Sitter gravity
International Nuclear Information System (INIS)
Lu, Jia-An
2016-01-01
In de Sitter (dS) gravity, where gravity is a gauge field introduced to realize the local dS invariance of the matter field, two kinds of conservation laws are derived. The first kind is a differential equation for a dS-covariant current, which unites the canonical energy-momentum (EM) and angular momentum (AM) tensors. The second kind presents a dS-invariant current which is conserved in the sense that its torsion-free divergence vanishes. The dS-invariant current unites the total (matter plus gravity) EM and AM currents. It is well known that the AM current contains an inherent part, called the spin current. Here it is shown that the EM tensor also contains an inherent part, which might be observed by its contribution to the deviation of the dust particle’s world line from a geodesic. All the results are compared to the ordinary Lorentz gravity. (paper)
On the ghost-induced instability on de Sitter background
Peter, Patrick; Salles, Filipe de O.; Shapiro, Ilya L.
2018-03-01
It is known that the perturbative instability of tensor excitations in higher derivative gravity may not take place if the initial frequency of the gravitational waves is below the Planck threshold. One can assume that this is a natural requirement if the cosmological background is sufficiently mild, since in this case the situation is qualitatively close to the free gravitational wave in flat space. Here, we explore the opposite situation and consider the effect of a very far from Minkowski radiation-dominated or de Sitter cosmological background with a large Hubble rate, e.g., typical of an inflationary period. It turns out that, then, for initial Planckian or even trans-Planckian frequencies, the instability is rapidly suppressed by the very fast expansion of the Universe.
Brane induced supersymmetry breaking and de Sitter supergravity
Energy Technology Data Exchange (ETDEWEB)
Bandos, Igor [Department of Theoretical Physics, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain); Martucci, Luca [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); I.N.F.N. Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Sorokin, Dmitri [I.N.F.N. Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); Tonin, Mario [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); I.N.F.N. Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy)
2016-02-12
We obtain a four-dimensional supergravity with spontaneously broken supersymmetry allowing for de Sitter vacua by coupling a superspace action of minimal N=1, D=4 supergravity to a locally supersymmetric generalization of the Volkov-Akulov goldstino action describing the dynamics of a space-filling non-BPS 3-brane in N=1, D=4 superspace. To the quadratic order in the goldstino field the obtained action coincides with earlier constructions of supergravities with nilpotent superfields, while matching the higher-order contributions will require a non-linear redefinition of fields. In the unitary gauge, in which the goldstino field is set to zero, the action coincides with that of Volkov and Soroka. We also show how a nilpotency constraint on a chiral curvature superfield emerges in this formulation.
De Sitter space in gauge/gravity duality
Directory of Open Access Journals (Sweden)
Lilia Anguelova
2015-10-01
Full Text Available We investigate gauge/gravity duality for gauge theories in de Sitter space. More precisely, we study a five-dimensional consistent truncation of type IIB supergravity, which encompasses a wide variety of gravity duals of strongly coupled gauge theories, including the Maldacena–Nunez solution and its walking deformations. We find several solutions of the 5d theory with dS4 spacetime and nontrivial profiles for (some of the scalars along the fifth (radial direction. In the process, we prove that one of the equations of motion becomes dependent on the others, for nontrivial warp factor. This dependence reduces the number of field equations and, thus, turns out to be crucial for the existence of solutions with (AdS4 spacetime. Finally, we comment on the implications of our dS4 solutions for building gravity duals of Glueball Inflation.
Flow equation, conformal symmetry, and anti-de Sitter geometry
Aoki, Sinya; Yokoyama, Shuichi
2018-03-01
We argue that the anti-de Sitter (AdS) geometry in d+1 dimensions naturally emerges from an arbitrary conformal field theory in d dimensions using the free flow equation. We first show that an induced metric defined from the flowed field generally corresponds to the quantum information metric, called the Bures or Helstrom metric, if the flowed field is normalized appropriately. We next verify that the induced metric computed explicitly with the free flow equation always becomes the AdS metric when the theory is conformal. We finally prove that the conformal symmetry in d dimensions converts to the AdS isometry in d+1 dimensions after d-dimensional quantum averaging. This guarantees the emergence of AdS geometry without explicit calculation.
Covariant fields on anti-de Sitter spacetimes
Cotăescu, Ion I.
2018-02-01
The covariant free fields of any spin on anti-de Sitter (AdS) spacetimes are studied, pointing out that these transform under isometries according to covariant representations (CRs) of the AdS isometry group, induced by those of the Lorentz group. Applying the method of ladder operators, it is shown that the CRs with unique spin are equivalent with discrete unitary irreducible representations (UIRs) of positive energy of the universal covering group of the isometry one. The action of the Casimir operators is studied finding how the weights of these representations (reps.) may depend on the mass and spin of the covariant field. The conclusion is that on AdS spacetime, one cannot formulate a universal mass condition as in special relativity.
Higher order corrections to asymptotic-de Sitter inflation
Mohsenzadeh, M.; Yusofi, E.
2017-08-01
Since trans-Planckian considerations can be associated with the re-definition of the initial vacuum, we investigate further the influence of trans-Planckian physics on the spectra produced by the initial quasi-de Sitter (dS) state during inflation. We use the asymptotic-dS mode to study the trans-Planckian correction of the power spectrum to the quasi-dS inflation. The obtained spectra consist of higher order corrections associated with the type of geometry and harmonic terms sensitive to the fluctuations of space-time (or gravitational waves) during inflation. As an important result, the amplitude of the power spectrum is dependent on the choice of c, i.e. the type of space-time in the period of inflation. Also, the results are always valid for any asymptotic dS space-time and particularly coincide with the conventional results for dS and flat space-time.
de Sitter group as a symmetry for optical decoherence
International Nuclear Information System (INIS)
Baskal, S; Kim, Y S
2006-01-01
Stokes parameters form a Minkowskian 4-vector under various optical transformations. As a consequence, the resulting two-by-two density matrix constitutes a representation of the Lorentz group. The associated Poincare sphere is a geometric representation of the Lorentz group. Since the Lorentz group preserves the determinant of the density matrix, it cannot accommodate the decoherence process through the decaying off-diagonal elements of the density matrix, which yields to an increase in the value of the determinant. It is noted that the O(3, 2) de Sitter group contains two Lorentz subgroups. The change in the determinant in one Lorentz group can be compensated by the other. It is thus possible to describe the decoherence process as a symmetry transformation in the O(3, 2) space. It is shown also that these two coupled Lorentz groups can serve as a concrete example of Feynman's rest of the universe
Scheme dependence of quantum gravity on de Sitter background
Energy Technology Data Exchange (ETDEWEB)
Kitamoto, Hiroyuki, E-mail: kitamoto@post.kek.jp [KEK Theory Center, Tsukuba, Ibaraki 305-0801 (Japan); Kitazawa, Yoshihisa, E-mail: kitazawa@post.kek.jp [KEK Theory Center, Tsukuba, Ibaraki 305-0801 (Japan); The Graduate University for Advanced Studies (Sokendai), Department of Particle and Nuclear Physics, Tsukuba, Ibaraki 305-0801 (Japan)
2013-08-11
We extend our investigation of the IR effects on the local dynamics of matter fields in quantum gravity. Specifically we clarify how the IR effects depend on the change of the quantization scheme: different parametrization of the metric and the matter field redefinition. Conformal invariance implies effective Lorentz invariance of the matter system in de Sitter space. An arbitrary choice of the parametrization of the metric and the matter field redefinition does not preserve the effective Lorentz invariance of the local dynamics. As for the effect of different parametrization of the metric alone, the effective Lorentz symmetry breaking term can be eliminated by shifting the background metric. In contrast, we cannot compensate the matter field redefinition dependence by such a way. The effective Lorentz invariance can be retained only when we adopt the specific matter field redefinitions where all dimensionless couplings become scale invariant at the classical level. This scheme is also singled out by unitarity as the kinetic terms are canonically normalized.
Magnetohydrodynamics near a black hole
International Nuclear Information System (INIS)
Wilson, J.R.
1975-01-01
A numerical computer study of hydromagnetic flow near a black hole is presented. First, the equations of motion are developed to a form suitable for numerical computations. Second, the results of calculations describing the magnetic torques exerted by a rotating black hole on a surrounding magnetic plasma and the electric charge that is induced on the surface of the black hole are presented. (auth)
Surviving in a metastable de Sitter space-time
International Nuclear Information System (INIS)
Kashyap, Sitender Pratap; Mondal, Swapnamay; Sen, Ashoke; Verma, Mritunjay
2015-01-01
In a metastable de Sitter space any object has a finite life expectancy beyond which it undergoes vacuum decay. However, by spreading into different parts of the universe which will fall out of causal contact of each other in future, a civilization can increase its collective life expectancy, defined as the average time after which the last settlement disappears due to vacuum decay. We study in detail the collective life expectancy of two comoving objects in de Sitter space as a function of the initial separation, the horizon radius and the vacuum decay rate. We find that even with a modest initial separation, the collective life expectancy can reach a value close to the maximum possible value of 1.5 times that of the individual object if the decay rate is less than 1% of the expansion rate. Our analysis can be generalized to any number of objects, general trajectories not necessarily at rest in the comoving coordinates and general FRW space-time. As part of our analysis we find that in the current state of the universe dominated by matter and cosmological constant, the vacuum decay rate is increasing as a function of time due to accelerated expansion of the volume of the past light cone. Present decay rate is about 3.7 times larger than the average decay rate in the past and the final decay rate in the cosmological constant dominated epoch will be about 56 times larger than the average decay rate in the past. This considerably weakens the lower bound on the half-life of our universe based on its current age.
Surviving in a metastable de Sitter space-time
Energy Technology Data Exchange (ETDEWEB)
Kashyap, Sitender Pratap; Mondal, Swapnamay [Harish-Chandra Research Institute,Chhatnag Road, Jhusi, Allahabad 211019 (India); Sen, Ashoke [Harish-Chandra Research Institute,Chhatnag Road, Jhusi, Allahabad 211019 (India); School of Physics, Korea Institute for Advanced Study,Seoul 130-722 (Korea, Republic of); Verma, Mritunjay [Harish-Chandra Research Institute,Chhatnag Road, Jhusi, Allahabad 211019 (India); International Centre for Theoretical Sciences,Malleshwaram, Bengaluru 560 012 (India)
2015-09-21
In a metastable de Sitter space any object has a finite life expectancy beyond which it undergoes vacuum decay. However, by spreading into different parts of the universe which will fall out of causal contact of each other in future, a civilization can increase its collective life expectancy, defined as the average time after which the last settlement disappears due to vacuum decay. We study in detail the collective life expectancy of two comoving objects in de Sitter space as a function of the initial separation, the horizon radius and the vacuum decay rate. We find that even with a modest initial separation, the collective life expectancy can reach a value close to the maximum possible value of 1.5 times that of the individual object if the decay rate is less than 1% of the expansion rate. Our analysis can be generalized to any number of objects, general trajectories not necessarily at rest in the comoving coordinates and general FRW space-time. As part of our analysis we find that in the current state of the universe dominated by matter and cosmological constant, the vacuum decay rate is increasing as a function of time due to accelerated expansion of the volume of the past light cone. Present decay rate is about 3.7 times larger than the average decay rate in the past and the final decay rate in the cosmological constant dominated epoch will be about 56 times larger than the average decay rate in the past. This considerably weakens the lower bound on the half-life of our universe based on its current age.
Infinitesimal conformal closed transformations of de Sitter and Robertson-Walker cosmological spaces
International Nuclear Information System (INIS)
Sakoto, Moussa
1976-01-01
The infinitesimal conformal closed transfromations of de Sitter and Robertson-Walker cosmological spaces are determined and an interesting property of the current lines for Robertson-Walker spaces is given [fr
Black holes and quantum processes in them
International Nuclear Information System (INIS)
Frolov, V.P.
1976-01-01
The latest achievements in the physics of black holes are reviewed. The problem of quantum production in a strong gravitational field of black holes is considered. Another parallel discovered during investigation of interactions between black holes and between black holes and surrounding media, is also drawn with thermodynamics. A gravitational field of rotating black holes is considered. Some cosmological aspects of evaporation of small black holes are discussed as well as possibilities to observe them
DEFF Research Database (Denmark)
Langkjær, Michael Alexander
2012-01-01
Pop musicians performing in black stage costume take advantage of cultural traditions relating to matters black. Stylistically, black is a paradoxical color: although a symbol of melancholy, pessimism, and renunciation, black also expresses minimalist modernity and signifies exclusivity (as is hi...
Quantum criticality and black holes
International Nuclear Information System (INIS)
Sachdev, Subir; Mueller, Markus
2009-01-01
Many condensed matter experiments explore the finite temperature dynamics of systems near quantum critical points. Often, there are no well-defined quasiparticle excitations, and so quantum kinetic equations do not describe the transport properties completely. The theory shows that the transport coefficients are not proportional to a mean free scattering time (as is the case in the Boltzmann theory of quasiparticles), but are completely determined by the absolute temperature and by equilibrium thermodynamic observables. Recently, explicit solutions of this quantum critical dynamics have become possible via the anti-de Sitter/conformal field theory duality discovered in string theory. This shows that the quantum critical theory provides a holographic description of the quantum theory of black holes in a negatively curved anti-de Sitter space, and relates its transport coefficients to properties of the Hawking radiation from the black hole. We review how insights from this connection have led to new results for experimental systems: (i) the vicinity of the superfluid-insulator transition in the presence of an applied magnetic field, and its possible application to measurements of the Nernst effect in the cuprates, (ii) the magnetohydrodynamics of the plasma of Dirac electrons in graphene and the prediction of a hydrodynamic cyclotron resonance.
Instanton tunneling for de Sitter space with real projective spatial sections
Energy Technology Data Exchange (ETDEWEB)
Ong, Yen Chin [Center for Astronomy and Astrophysics, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Yeom, Dong-han, E-mail: ongyenchin@sjtu.edu.cn, E-mail: innocent.yeom@gmail.com [Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, Taipei 10617, Taiwan (China)
2017-04-01
The physics of tunneling from one spacetime to another is often understood in terms of instantons. For some instantons, it was recently shown in the literature that there are two complementary ''interpretations'' for their analytic continuations. Dubbed ''something-to-something'' and ''nothing-to-something'' interpretations, respectively, the former involves situation in which the initial and final hypersurfaces are connected by a Euclidean manifold, whereas the initial and final hypersurfaces in the latter case are not connected in such a way. We consider a de Sitter space with real projective space RP{sup 3} spatial sections, as was originally understood by de Sitter himself. This original version of de Sitter space has several advantages over the usual de Sitter space with S{sup 3} spatial sections. In particular, the interpretation of the de Sitter entropy as entanglement entropy is much more natural. We discuss the subtleties involved in the tunneling of such a de Sitter space.
Dynamics of quantum entanglement in de Sitter spacetime and thermal Minkowski spacetime
Directory of Open Access Journals (Sweden)
Zhiming Huang
2017-10-01
Full Text Available We investigate the dynamics of entanglement between two atoms in de Sitter spacetime and in thermal Minkowski spacetime. We treat the two-atom system as an open quantum system which is coupled to a conformally coupled massless scalar field in the de Sitter invariant vacuum or to a thermal bath in the Minkowski spacetime, and derive the master equation that governs its evolution. We compare the phenomena of entanglement creation, degradation, revival and enhancement for the de Sitter spacetime case with that for the thermal Minkowski spacetime case. We find that the entanglement dynamics of two atoms for these two spacetime cases behave quite differently. In particular, the two atoms interacting with the field in the thermal Minkowski spacetime (with the field in the de Sitter-invariant vacuum, under certain conditions, could be entangled, while they would not become entangled in the corresponding de Sitter case (in the corresponding thermal Minkowski case. Thus, although a single static atom in the de Sitter-invariant vacuum responds as if it were bathed in thermal radiation in a Minkowski universe, with the help of the different dynamic evolution behaviors of entanglement for two atoms one can in principle distinguish these two universes.
Black hole enthalpy and an entropy inequality for the thermodynamic volume
International Nuclear Information System (INIS)
Cvetic, M.; Gibbons, G. W.; Kubiznak, D.; Pope, C. N.
2011-01-01
In a theory where the cosmological constant Λ or the gauge coupling constant g arises as the vacuum expectation value, its variation should be included in the first law of thermodynamics for black holes. This becomes dE=TdS+Ω i dJ i +Φ α dQ α +ΘdΛ, where E is now the enthalpy of the spacetime, and Θ, the thermodynamic conjugate of Λ, is proportional to an effective volume V=-(16πΘ/D-2)''inside the event horizon.'' Here we calculate Θ and V for a wide variety of D-dimensional charged rotating asymptotically anti-de Sitter (AdS) black hole spacetimes, using the first law or the Smarr relation. We compare our expressions with those obtained by implementing a suggestion of Kastor, Ray, and Traschen, involving Komar integrals and Killing potentials, which we construct from conformal Killing-Yano tensors. We conjecture that the volume V and the horizon area A satisfy the inequality R≡ ((D-1)V/A D-2 ) 1/(D-1) (A D-2 /A) 1/(D-2) ≥1, where A D-2 is the volume of the unit (D-2) sphere, and we show that this is obeyed for a wide variety of black holes, and saturated for Schwarzschild-AdS. Intriguingly, this inequality is the ''inverse'' of the isoperimetric inequality for a volume V in Euclidean (D-1) space bounded by a surface of area A, for which R≤1. Our conjectured reverse isoperimetric inequality can be interpreted as the statement that the entropy inside a horizon of a given ''volume''V is maximized for Schwarzschild-AdS. The thermodynamic definition of V requires a cosmological constant (or gauge coupling constant). However, except in seven dimensions, a smooth limit exists where Λ or g goes to zero, providing a definition of V even for asymptotically flat black holes.
International Nuclear Information System (INIS)
Punsly, B.M.
1988-01-01
This dissertation is a study of the physical mechanism that allows a large scale magnetic field to torque a rapidly rotating, supermassive black hole. This is an interesting problem as it has been conjectured that rapidly rotating black holes are the central engines that power the observed extragalactic double radio sources. Axisymmetric solutions of the curved space-time version of Maxwell's equations in the vacuum do not torque black holes. Plasma must be introduced for the hole to mechanically couple to the field. The dynamical aspect of rotating black holes that couples the magnetic field to the hole is the following. A rotating black hole forces the external geometry of space-time to rotate (the dragging of inertial frames). Inside of the stationary limit surface, the ergosphere, all physical particle trajectories must appear to rotate in the same direction as the black hole as viewed by the stationary observers at asymptotic infinity. In the text, it is demonstrated how plasma that is created on field lines that thread both the ergosphere and the equatorial plane will be pulled by gravity toward the equator. By the aforementioned properties of the ergosphere, the disk must rotate. Consequently, the disk acts like a unipolar generator. It drives a global current system that supports the toroidal magnetic field in an outgoing, magnetically dominated wind. This wind carries energy (mainly in the form of Poynting flux) and angular momentum towards infinity. The spin down of the black hole is the ultimate source of this energy and angular momentum flux
Black holes in ω-deformed gauged N=8 supergravity
International Nuclear Information System (INIS)
Anabalón, Andrés; Astefanesei, Dumitru
2014-01-01
Motivated by the recently found 4-dimensional ω-deformed gauged supergravity, we investigate the black hole solutions within the single scalar field consistent truncations of this theory. We construct black hole solutions that have spherical, toroidal, and hyperbolic horizon topologies. The scalar field is regular everywhere outside the curvature singularity and the stress–energy tensor satisfies the null energy condition. When the parameter ω does not vanish, there is a degeneracy in the spectrum of black hole solutions for boundary conditions that preserve the asymptotic Anti-de Sitter symmetries. These boundary conditions correspond to multi-trace deformations in the dual field theory.
Small black holes in global AdS spacetime
Jokela, Niko; Pönni, Arttu; Vuorinen, Aleksi
2016-04-01
We study the properties of two-point functions and quasinormal modes in a strongly coupled field theory holographically dual to a small black hole in global anti-de Sitter spacetime. Our results are seen to smoothly interpolate between known limits corresponding to large black holes and thermal AdS space, demonstrating that the Son-Starinets prescription works even when there is no black hole in the spacetime. Omitting issues related to the internal space, the results can be given a field theory interpretation in terms of the microcanonical ensemble, which provides access to energy densities forbidden in the canonical description.
Black holes in ω-deformed gauged N=8 supergravity
Energy Technology Data Exchange (ETDEWEB)
Anabalón, Andrés, E-mail: andres.anabalon@uai.cl [Departamento de Ciencias, Facultad de Artes Liberales y Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Av. Padre Hurtado 750, Viña del Mar (Chile); Université de Lyon, Laboratoire de Physique, UMR 5672, CNRS, École Normale Supérieure de Lyon, 46 allé d' Italie, F-69364 Lyon Cedex 07 (France); Astefanesei, Dumitru, E-mail: dumitru.astefanesei@ucv.cl [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile)
2014-05-01
Motivated by the recently found 4-dimensional ω-deformed gauged supergravity, we investigate the black hole solutions within the single scalar field consistent truncations of this theory. We construct black hole solutions that have spherical, toroidal, and hyperbolic horizon topologies. The scalar field is regular everywhere outside the curvature singularity and the stress–energy tensor satisfies the null energy condition. When the parameter ω does not vanish, there is a degeneracy in the spectrum of black hole solutions for boundary conditions that preserve the asymptotic Anti-de Sitter symmetries. These boundary conditions correspond to multi-trace deformations in the dual field theory.
Thermodynamics of Higher Spin Black Holes in AdS3
de Boer, J.; Jottar, J.I.
2014-01-01
We discuss the thermodynamics of recently constructed three-dimensional higher spin black holes in SL(N, R) × SL(N, R) Chern-Simons theory with generalized asymptotically-anti-de Sitter boundary conditions. From a holographic perspective, these bulk theories are dual to two-dimensional CFTs with WN
Remarks on the necessity and implications of state-dependence in the black hole interior
Papadodimas, Kyriakos; Raju, Suvrat
2016-01-01
We revisit the "state-dependence" of the map that we proposed recently between bulk operators in the interior of a large anti-de Sitter black hole and operators in the boundary CFT. By refining recent versions of the information paradox, we show that this feature is necessary for the CFT to
Mobile app for human-interaction with sitter robots
Das, Sumit Kumar; Sahu, Ankita; Popa, Dan O.
2017-05-01
Human environments are often unstructured and unpredictable, thus making the autonomous operation of robots in such environments is very difficult. Despite many remaining challenges in perception, learning, and manipulation, more and more studies involving assistive robots have been carried out in recent years. In hospital environments, and in particular in patient rooms, there are well-established practices with respect to the type of furniture, patient services, and schedule of interventions. As a result, adding a robot into semi-structured hospital environments is an easier problem to tackle, with results that could have positive benefits to the quality of patient care and the help that robots can offer to nursing staff. When working in a healthcare facility, robots need to interact with patients and nurses through Human-Machine Interfaces (HMIs) that are intuitive to use, they should maintain awareness of surroundings, and offer safety guarantees for humans. While fully autonomous operation for robots is not yet technically feasible, direct teleoperation control of the robot would also be extremely cumbersome, as it requires expert user skills, and levels of concentration not available to many patients. Therefore, in our current study we present a traded control scheme, in which the robot and human both perform expert tasks. The human-robot communication and control scheme is realized through a mobile tablet app that can be customized for robot sitters in hospital environments. The role of the mobile app is to augment the verbal commands given to a robot through natural speech, camera and other native interfaces, while providing failure mode recovery options for users. Our app can access video feed and sensor data from robots, assist the user with decision making during pick and place operations, monitor the user health over time, and provides conversational dialogue during sitting sessions. In this paper, we present the software and hardware framework that
Bosonic instability of charged black holes
International Nuclear Information System (INIS)
Gaina, A.B.; Ternov, I.M.
1986-01-01
The processes of spontaneous and induced production and accumulation of charged bosons on quasibound superradiant levels in the field of Kerr-Newman black hole is analysed. It is shown that bosonic instability may be caused exclusively by the rotation of the black hole. Particulary, the Reissner-Nordstrom configuration is stable. In the case of rotating and charged black hole the bosonic instability may cause an increase of charge of the black hole
Effective long wavelength scalar dynamics in de Sitter
Energy Technology Data Exchange (ETDEWEB)
Moss, Ian; Rigopoulos, Gerasimos, E-mail: ian.moss@newcastle.ac.uk, E-mail: gerasimos.rigopoulos@ncl.ac.uk [School of Mathematics and Statistics, Newcastle University, Herschel Building, Newcastle upon Tyne, NE1 7RU U.K. (United Kingdom)
2017-05-01
We discuss the effective infrared theory governing a light scalar's long wavelength dynamics in de Sitter spacetime. We show how the separation of scales around the physical curvature radius k / a ∼ H can be performed consistently with a window function and how short wavelengths can be integrated out in the Schwinger-Keldysh path integral formalism. At leading order, and for time scales Δ t >> H {sup −1}, this results in the well-known Starobinsky stochastic evolution. However, our approach allows for the computation of quantum UV corrections, generating an effective potential on which the stochastic dynamics takes place. The long wavelength stochastic dynamical equations are now second order in time, incorporating temporal scales Δ t ∼ H {sup −1} and resulting in a Kramers equation for the probability distribution—more precisely the Wigner function—in contrast to the more usual Fokker-Planck equation. This feature allows us to non-perturbatively evaluate, within the stochastic formalism, not only expectation values of field correlators, but also the stress-energy tensor of φ.
Holography and quantum states in elliptic de Sitter space
Energy Technology Data Exchange (ETDEWEB)
Halpern, Illan F. [Department of Physics, University of California,Berkeley, CA, 94720 (United States); Neiman, Yasha [Perimeter Institute for Theoretical Physics,31 Caroline Street N, Waterloo, ON, N2L 2Y5 (Canada)
2015-12-10
We outline a program for interpreting the higher-spin dS/CFT model in terms of physics in the causal patch of a dS observer. The proposal is formulated in “elliptic” de Sitter space dS{sub 4}/ℤ{sub 2}, obtained by identifying antipodal points in dS{sub 4}. We discuss recent evidence that the higher-spin model is especially well-suited for this, since the antipodal symmetry of bulk solutions has a simple encoding on the boundary. For context, we test some other (free and interacting) theories for the same property. Next, we analyze the notion of quantum field states in the non-time-orientable dS{sub 4}/ℤ{sub 2}. We compare the physics seen by different observers, with the outcome depending on whether they share an arrow of time. Finally, we implement the marriage between higher-spin holography and observers in dS{sub 4}/ℤ{sub 2}, in the limit of free bulk fields. We succeed in deriving an observer’s operator algebra and Hamiltonian from the CFT, but not her S-matrix. We speculate on the extension of this to interacting higher-spin theory.
Black hole gravitohydromagnetics
Punsly, Brian
2008-01-01
Black hole gravitohydromagnetics (GHM) is developed from the rudiments to the frontiers of research in this book. GHM describes plasma interactions that combine the effects of gravity and a strong magnetic field, in the vicinity (ergosphere) of a rapidly rotating black hole. This topic was created in response to the astrophysical quest to understand the central engines of radio loud extragalactic radio sources. The theory describes a "torsional tug of war" between rotating ergospheric plasma and the distant asymptotic plasma that extracts the rotational inertia of the black hole. The recoil from the struggle between electromagnetic and gravitational forces near the event horizon is manifested as a powerful pair of magnetized particle beams (jets) that are ejected at nearly the speed of light. These bipolar jets feed large-scale magnetized plasmoids on scales as large as millions of light years (the radio lobes of extragalactic radio sources). This interaction can initiate jets that transport energy fluxes exc...
Exact gravitational quasinormal frequencies of topological black holes
International Nuclear Information System (INIS)
Birmingham, Danny; Mokhtari, Susan
2006-01-01
We compute the exact gravitational quasinormal frequencies for massless topological black holes in d-dimensional anti-de Sitter space. Using the gauge invariant formalism for gravitational perturbations derived by Kodama and Ishibashi, we show that in all cases the scalar, vector, and tensor modes can be reduced to a simple scalar field equation. This equation is exactly solvable in terms of hypergeometric functions, thus allowing an exact analytic determination of the gravitational quasinormal frequencies
Constant curvature black holes in Einstein AdS gravity: Euclidean action and thermodynamics
Guilleminot, Pablo; Olea, Rodrigo; Petrov, Alexander N.
2018-03-01
We compute the Euclidean action for constant curvature black holes (CCBHs), as an attempt to associate thermodynamic quantities to these solutions of Einstein anti-de Sitter (AdS) gravity. CCBHs are gravitational configurations obtained by identifications along isometries of a D -dimensional globally AdS space, such that the Riemann tensor remains constant. Here, these solutions are interpreted as extended objects, which contain a (D -2 )-dimensional de-Sitter brane as a subspace. Nevertheless, the computation of the free energy for these solutions shows that they do not obey standard thermodynamic relations.
Connecting horizon pixels and interior voxels of a black hole
International Nuclear Information System (INIS)
Nicolini, Piero; Singleton, Douglas
2014-01-01
In this paper we discuss to what extent one can infer details of the interior structure of a black hole based on its horizon. Recalling that black hole thermal properties are connected to the non-classical nature of gravity, we circumvent the restrictions of the no-hair theorem by postulating that the black hole interior is singularity free due to violations of the usual energy conditions. Further these conditions allow one to establish a one-to-one, holographic projection between Planckian areal “bits” on the horizon and “voxels”, representing the gravitational degrees of freedom in the black hole interior. We illustrate the repercussions of this idea by discussing an example of the black hole interior consisting of a de Sitter core postulated to arise from the local graviton quantum vacuum energy. It is shown that the black hole entropy can emerge as the statistical entropy of a gas of voxels
Black hole solution in the framework of arctan-electrodynamics
Kruglov, S. I.
An arctan-electrodynamics coupled with the gravitational field is investigated. We obtain the regular black hole solution that at r →∞ gives corrections to the Reissner-Nordström solution. The corrections to Coulomb’s law at r →∞ are found. We evaluate the mass of the black hole that is a function of the dimensional parameter β introduced in the model. The magnetically charged black hole was investigated and we have obtained the magnetic mass of the black hole and the metric function at r →∞. The regular black hole solution is obtained at r → 0 with the de Sitter core. We show that there is no singularity of the Ricci scalar for electrically and magnetically charged black holes. Restrictions on the electric and magnetic fields are found that follow from the requirement of the absence of superluminal sound speed and the requirement of a classical stability.
'That proves my point': How mediums reconstrue disconfirmation in medium-sitter interactions.
Enoksen, Anette Einan; Dickerson, Paul
2018-04-01
Previous research has examined how the talk of mediums attends to the epistemological status of their readings. Such work has identified that mediums frequently use question-framed propositions that are typically confirmed by the sitter, thereby conferring epistemological status on the medium. This study seeks to investigate what happens when the sitter disconfirms the propositions of the medium. The study focuses on the ways in which such disconfirmation can be responded to such that it is reconstrued as evidence of the psychic nature of the medium's reading. Televised demonstrations of psychic readings involving British and US mediums and their sitters are analysed. The results suggest that mediums rework disconfirmation as proof in several ways: first, by emphasizing the different access that sitter and medium have to knowledge (e.g., about the future); second, as evidence that the medium has access to the actual voice of the deceased (and may therefore mishear what the deceased has said to them); and third, as revealing an important truth that has hitherto been concealed from the sitter. The implications of these findings are considered for cases where speakers bring different and potentially competing, epistemological resources to an interaction. © 2018 The British Psychological Society.
Perturbative S-matrix for massive scalar fields in global de Sitter space
International Nuclear Information System (INIS)
Marolf, Donald; Srednicki, Mark; Morrison, Ian A
2013-01-01
We construct a perturbative S-matrix for interacting massive scalar fields in global de Sitter space. Our S-matrix is formulated in terms of asymptotic particle states in the far past and future, taking appropriate care for light fields whose wavefunctions decay only very slowly near the de Sitter conformal boundaries. An alternative formulation expresses this S-matrix in terms of residues of poles in analytically-continued Euclidean correlators (computed in perturbation theory), making it clear that the standard Minkowski-space result is obtained in the flat-space limit. Our S-matrix transforms properly under CPT, is invariant under the de Sitter isometries and perturbative field redefinitions, and is unitary. This unitarity implies a de Sitter version of the optical theorem. We explicitly verify these properties to second order in the coupling for a general cubic interaction, including both tree- and loop-level contributions. Contrary to other statements in the literature, we find that a particle of any positive mass may decay at tree level to any number of particles, each of arbitrary positive masses. In particular, even very light fields (in the complementary series of de Sitter representations) are not protected from tree-level decays. (paper)
Emparan, Roberto; Figueras, Pau; Martinez, Marina
2014-01-01
We study six-dimensional rotating black holes with bumpy horizons: these are topologically spherical, but the sizes of symmetric cycles on the horizon vary non-monotonically with the polar angle. We construct them numerically for the first three bumpy families, and follow them in solution space until they approach critical solutions with localized singularities on the horizon. We find strong evidence of the conical structures that have been conjectured to mediate the transitions to black ring...
Euclidean action for vacuum decay in a de Sitter universe
International Nuclear Information System (INIS)
Balek, V.; Demetrian, M.
2005-01-01
The behavior of the action of the instantons describing vacuum decay in a de Sitter is investigated. For a near-to-limit instanton (a Coleman-de Luccia instanton close to some Hawking-Moss instanton) we find approximate formulas for the Euclidean action by expanding the scalar field and the metric of the instanton in the powers of the scalar field amplitude. The order of the magnitude of the correction to the Hawking-Moss action depends on the order of the instanton (the number of crossings of the barrier by the scalar field): for instantons of odd and even orders the correction is of the fourth and third order in the scalar field amplitude, respectively. If a near-to-limit instanton of the first order exists in a potential with the curvature at the top of the barrier greater than 4x(Hubble constant) 2 , which is the case if the fourth derivative of the potential at the top of the barrier is greater than some negative limit value, the action of the instanton is less than the Hawking-Moss action and, consequently, the instanton determines the outcome of the vacuum decay if no other Coleman-de Luccia instanton is admitted by the potential. A numerical study shows that for the quartic potential the physical mode of the vacuum decay is given by the Coleman-de Luccia instanton of the first order also in the region of parameters in which the potential admits two instantons of the second order
Childs, Peter R N
2010-01-01
Rotating flow is critically important across a wide range of scientific, engineering and product applications, providing design and modeling capability for diverse products such as jet engines, pumps and vacuum cleaners, as well as geophysical flows. Developed over the course of 20 years' research into rotating fluids and associated heat transfer at the University of Sussex Thermo-Fluid Mechanics Research Centre (TFMRC), Rotating Flow is an indispensable reference and resource for all those working within the gas turbine and rotating machinery industries. Traditional fluid and flow dynamics titles offer the essential background but generally include very sparse coverage of rotating flows-which is where this book comes in. Beginning with an accessible introduction to rotating flow, recognized expert Peter Childs takes you through fundamental equations, vorticity and vortices, rotating disc flow, flow around rotating cylinders and flow in rotating cavities, with an introduction to atmospheric and oceanic circul...
Lee, William H K.
2016-01-01
Rotational seismology is an emerging study of all aspects of rotational motions induced by earthquakes, explosions, and ambient vibrations. It is of interest to several disciplines, including seismology, earthquake engineering, geodesy, and earth-based detection of Einstein’s gravitation waves.Rotational effects of seismic waves, together with rotations caused by soil–structure interaction, have been observed for centuries (e.g., rotated chimneys, monuments, and tombstones). Figure 1a shows the rotated monument to George Inglis observed after the 1897 Great Shillong earthquake. This monument had the form of an obelisk rising over 19 metres high from a 4 metre base. During the earthquake, the top part broke off and the remnant of some 6 metres rotated about 15° relative to the base. The study of rotational seismology began only recently when sensitive rotational sensors became available due to advances in aeronautical and astronomical instrumentations.
Kaluza–Klein-type models of de Sitter and Poincaré gauge theories of gravity
International Nuclear Information System (INIS)
Lu Jiaan; Huang Chaoguang
2013-01-01
We construct Kaluza–Klein-type models with a de Sitter or Minkowski bundle in the de Sitter or Poincaré gauge theory of gravity, respectively. A manifestly gauge-invariant formalism has been given. The gravitational dynamics is constructed by the geometry of the de Sitter or Minkowski bundle and a global section which plays an important role in the gauge-invariant formalism. Unlike the old Kaluza–Klein-type models of gauge theory of gravity, a suitable cosmological term can be obtained in the Lagrangian of our models and the models in the spin-current-free and torsion-free limit will come back to general relativity with a corresponding cosmological term. We also generalize the results to the case with a variable cosmological term. (paper)
Large-Scale Corrections to the CMB Anisotropy from Asymptotic de Sitter Mode
Sojasi, A.
2018-01-01
In this study, large-scale effects from asymptotic de Sitter mode on the CMB anisotropy are investigated. Besides the slow variation of the Hubble parameter onset of the last stage of inflation, the recent observational constraints from Planck and WMAP on spectral index confirm that the geometry of the universe can not be pure de Sitter in this era. Motivated by these evidences, we use this mode to calculate the power spectrum of the CMB anisotropy on the large scale. It is found that the CMB spectrum is dependent on the index of Hankel function ν which in the de Sitter limit ν → 3/2, the power spectrum reduces to the scale invariant result. Also, the result shows that the spectrum of anisotropy is dependent on angular scale and slow-roll parameter and these additional corrections are swept away by a cutoff scale parameter H ≪ M ∗ < M P .
Temperature and entropy of Schwarzschild-de Sitter space-time
International Nuclear Information System (INIS)
Shankaranarayanan, S.
2003-01-01
In the light of recent interest in quantum gravity in de Sitter space, we investigate semiclassical aspects of four-dimensional Schwarzschild-de Sitter space-time using the method of complex paths. The standard semiclassical techniques (such as Bogoliubov coefficients and Euclidean field theory) have been useful to study quantum effects in space-times with single horizons; however, none of these approaches seem to work for Schwarzschild-de Sitter space-time or, in general, for space-times with multiple horizons. We extend the method of complex paths to space-times with multiple horizons and obtain the spectrum of particles produced in these space-times. We show that the temperature of radiation in these space-times is proportional to the effective surface gravity--the inverse harmonic sum of surface gravity of each horizon. For the Schwarzschild-de Sitter space-time, we apply the method of complex paths to three different coordinate systems--spherically symmetric, Painleve, and Lemaitre. We show that the equilibrium temperature in Schwarzschild-de Sitter space-time is the harmonic mean of cosmological and event horizon temperatures. We obtain Bogoliubov coefficients for space-times with multiple horizons by analyzing the mode functions of the quantum fields near the horizons. We propose a new definition of entropy for space-times with multiple horizons, analogous to the entropic definition for space-times with a single horizon. We define entropy for these space-times to be inversely proportional to the square of the effective surface gravity. We show that this definition of entropy for Schwarzschild-de Sitter space-time satisfies the D-bound conjecture
Geodesics of black holes with dark energy
Ghaderi, K.
2017-12-01
Dark energy is the most popular hypothesis to explain recent observations suggesting that the world will increasingly expand. One of the models of dark energy is quintessence which is highly plausible. In this paper, we investigate the effect of dark energy on the null geodesics of Schwarzschild, Reissner-Nordström, Schwarzschild-de Sitter and Bardeen black holes. Using the definition of effective potential, the radius of the circular orbits, the period, the instability of the circular orbits, the force exerted on the photons and the deviation angle of light in quintessence field are calculated and the results are analyzed and discussed.
Bounded excursion stable gravastars and black holes
Energy Technology Data Exchange (ETDEWEB)
Rocha, P [Instituto de Fisica, Universidade Federal Fluminense, Avenida Litoranea, s/n, Boa Viagem 24210-340, Niteroi, RJ (Brazil); Miguelote, A Y; Chan, R [Coordenacao de Astronomia e Astrofisica, Observatorio Nacional, Rua General Jose Cristino, 77, Sao Cristovao 20921-400, Rio de Janeiro, RJ (Brazil); Da Silva, M F; Wang, Anzhong [Departamento de Fisica Teorica, Instituto de Fisica, Universidade do Estado do Rio de Janeiro, Rua Sao Francisco Xavier 524, Maracana 20550-900, Rio de Janeiro-RJ (Brazil); Santos, N O, E-mail: pedrosennarocha@gmail.com, E-mail: yasuda@on.br, E-mail: chan@on.br, E-mail: mfasnic@gmail.com, E-mail: N.O.Santos@qmul.ac.uk, E-mail: anzhong_wang@baylor.edu [LERMA/CNRS-FRE 2460, Universite Pierre et Marie Curie, ERGA, Boite 142, 4 Place Jussieu, 75005 Paris Cedex 05 (France)
2008-06-15
Dynamical models of prototype gravastars were constructed in order to study their stability. The models are the Visser-Wiltshire three-layer gravastars, in which an infinitely thin spherical shell of stiff fluid divides the whole spacetime into two regions, where the internal region is de Sitter, and the external one is Schwarzschild. It is found that in some cases the models represent the 'bounded excursion' stable gravastars, where the thin shell is oscillating between two finite radii, while in other cases they collapse until the formation of black holes occurs. In the phase space, the region for the 'bounded excursion' gravastars is very small in comparison to that of black holes, but not empty. Therefore, although the possibility of the existence of gravastars cannot be excluded from such dynamical models, our results indicate that, even if gravastars do indeed exist, that does not exclude the possibility of the existence of black holes.
On Born approximation in black hole scattering
Batic, D.; Kelkar, N. G.; Nowakowski, M.
2011-12-01
A massless field propagating on spherically symmetric black hole metrics such as the Schwarzschild, Reissner-Nordström and Reissner-Nordström-de Sitter backgrounds is considered. In particular, explicit formulae in terms of transcendental functions for the scattering of massless scalar particles off black holes are derived within a Born approximation. It is shown that the conditions on the existence of the Born integral forbid a straightforward extraction of the quasi normal modes using the Born approximation for the scattering amplitude. Such a method has been used in literature. We suggest a novel, well defined method, to extract the large imaginary part of quasinormal modes via the Coulomb-like phase shift. Furthermore, we compare the numerically evaluated exact scattering amplitude with the Born one to find that the approximation is not very useful for the scattering of massless scalar, electromagnetic as well as gravitational waves from black holes.
One-loop effective action for non-local modified Gauss-Bonnet gravity in de Sitter space
Energy Technology Data Exchange (ETDEWEB)
Cognola, Guido; Zerbini, Sergio [Universita di Trento (Italy); Istituto Nazionale di Fisica Nucleare Gruppo Collegato di Trento, Dipartimento di Fisica, Trento (Italy); Elizalde, Emilio [Consejo Superior de Investigaciones Cientificas (ICE/CSIC) and Institut d' Estudis Espacials de Catalunya (IEEC), Facultat Ciencies, Bellaterra (Barcelona) (Spain); Nojiri, Shin' ichi [Nagoya University, Department of Physics, Nagoya (Japan); Odintsov, Sergei D. [Consejo Superior de Investigaciones Cientificas (ICE/CSIC) and Institut d' Estudis Espacials de Catalunya (IEEC), Facultat Ciencies, Bellaterra (Barcelona) (Spain); ICREA, Barcelona (Spain); TSPU, Center of Theor. Phys., Tomsk (Russian Federation)
2009-12-15
We discuss the classical and quantum properties of non-local modified Gauss-Bonnet gravity in de Sitter space, using its equivalent representation via string-inspired local scalar-Gauss-Bonnet gravity with a scalar potential. A classical, multiple de Sitter universe solution is found where one of the de Sitter phases corresponds to the primordial inflationary epoch, while the other de Sitter space solution - the one with the smallest Hubble rate - describes the late-time acceleration of our universe. A Chameleon scenario for the theory under investigation is developed, and it is successfully used to show that the theory complies with gravitational tests. An explicit expression for the one-loop effective action for this non-local modified Gauss-Bonnet gravity in the de Sitter space is obtained. It is argued that this effective action might be an important step towards the solution of the cosmological constant problem. (orig.)
On inflation and de Sitter in non-geometric string backgrounds
Energy Technology Data Exchange (ETDEWEB)
Hassler, Falk; Massai, Stefano [Arnold-Sommerfeld-Center for Theoretical Physics, Fakultaet fuer Physik, Ludwig-Maximilians-Universitaet Muenchen (Germany); Luest, Dieter [Arnold-Sommerfeld-Center for Theoretical Physics, Fakultaet fuer Physik, Ludwig-Maximilians-Universitaet Muenchen (Germany); Max-Planck-Institut fuer Physik, Muenchen (Germany)
2017-10-15
We study the problem of obtaining de Sitter and inflationary vacua from dimensional reduction of double field theory (DFT) on nongeometric string backgrounds. In this context, we consider a new class of effective potentials that admit Minkowski and de Sitter minima. We then construct a simple model of chaotic inflation arising from T-fold backgrounds and we discuss the possibility of trans-Planckian field range from nongeometric monodromies as well as the conditions required to get slow roll. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Dirac equation in a de Sitter expansion for massive neutrinos from modern Kaluza-Klein theory
International Nuclear Information System (INIS)
Sánchez, Pablo Alejandro; Anabitarte, Mariano; Bellini, Mauricio
2012-01-01
Using the modern Kaluza-Klein theory of gravity (or the Induced Matter theory), we study the Dirac equation for massive neutrinos on a de Sitter background metric from a 5D Riemann-flat (and hence Ricci-flat) extended de Sitter metric, on which is defined the vacuum for test massless 1/2-spin neutral fields minimally coupled to gravity and free of any other interactions. We obtain that the effective 4D masses of the neutrinos can only take three possible values, which are related to the (static) foliation of the fifth and noncompact extra dimension.
Representation of SO(4,1) group and Hawking effect in the de-Sitter space
International Nuclear Information System (INIS)
Bogush, A.A.; Otchik, V.S.
1983-01-01
Expression relating the solution of the equation for particles with spin 1/2 to matrix elements of group SO(4, 1), is obtained. When using the relation of the Dirac equation solutions in the de Sitter space with matrix elements of representations of group SO(4, 1) the presence of the Hawking effect in the space is established. The de Sitter space is considered as 4-dimensional hyperboloid, inserted into 5-dimensional pseudo-Euclidean space. It is established, that the average number of emitted spinor particles obeys the Fermi-Dirac distribution
Gravitationally induced adiabatic particle production: from big bang to de Sitter
de Haro, Jaume; Pan, Supriya
2016-08-01
In the background of a flat homogeneous and isotropic space-time, we consider a scenario of the Universe driven by the gravitationally induced ‘adiabatic’ particle production with constant creation rate. We have shown that this Universe attains a big bang singularity in the past and at late-time it asymptotically becomes de Sitter. To clarify this model Universe, we performed a dynamical analysis and found that the Universe attains a thermodynamic equilibrium in this late de Sitter phase. Finally, for the first time, we have discussed the possible effects of ‘adiabatic’ particle creations in the context of loop quantum cosmology.
Gravitationally induced adiabatic particle production: from big bang to de Sitter
International Nuclear Information System (INIS)
Haro, Jaume de; Pan, Supriya
2016-01-01
In the background of a flat homogeneous and isotropic space–time, we consider a scenario of the Universe driven by the gravitationally induced ‘adiabatic’ particle production with constant creation rate. We have shown that this Universe attains a big bang singularity in the past and at late-time it asymptotically becomes de Sitter. To clarify this model Universe, we performed a dynamical analysis and found that the Universe attains a thermodynamic equilibrium in this late de Sitter phase. Finally, for the first time, we have discussed the possible effects of ‘adiabatic’ particle creations in the context of loop quantum cosmology. (paper)
Production of spinning black holes at colliders
International Nuclear Information System (INIS)
Park, S. C.; Song, H. S.
2003-01-01
When the Planck scale is as low as TeV, there will be chances to produce Black holes at future colliders. Generally, black holes produced via particle collisions can have non-zero angular momenta. We estimate the production cross-section of rotating Black holes in the context of low energy gravitation theories by taking the effects of rotation into account. The production cross section is shown to be enhanced by a factor of 2 - 3 over the naive estimate σ = π ∼ R S 2 , where R S denotes the Schwarzschild radius of black hole for a given energy. We also point out that the decay spectrum may have a distinguishable angular dependence through the grey-body factor of a rotating black hole. The angular dependence of decaying particles may give a clear signature for the effect of rotating black holes.
Energy Technology Data Exchange (ETDEWEB)
Hirotani, Kouichi; Pu, Hung-Yi; Lin, Lupin Chun-Che; Inoue, Makoto; Matsushita, Satoki [Academia Sinica, Institute of Astronomy and Astrophysics (ASIAA), P.O. Box 23-141, Taipei, Taiwan 10617, R.O.C. (China); Chang, Hsiang-Kuang; Kong, Albert K. H. [Department of Physics, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan 30013, R.O.C. (China); Tam, Pak-Hin T., E-mail: hirotani@tiara.sinica.edu.tw [School of Physics and Astronomy, Sun Yat-Sen University, Zhuhai 519082 (China)
2016-12-20
We investigate the electrostatic acceleration of electrons and positrons in the vicinity of the event horizon, applying the pulsar outer-gap model to black hole (BH) magnetospheres. During a low accretion phase, the radiatively inefficient accretion flow (RIAF) cannot emit enough MeV photons that are needed to sustain the force-free magnetosphere via two-photon collisions. In such a charge-starved region (or a gap), an electric field arises along the magnetic field lines to accelerate electrons and positrons into ultra-relativistic energies. These relativistic leptons emit copious gamma rays via curvature and inverse-Compton (IC) processes. Some of such gamma rays collide with the submillimeter-IR photons emitted from the RIAF to materialize as pairs, which polarize to partially screen the original acceleration electric field. It is found that the gap gamma-ray luminosity increases with decreasing accretion rate. However, if the accretion rate decreases too much, the diminished RIAF soft photon field can no longer sustain a stationary pair production within the gap. As long as a stationary gap is formed, the magnetosphere becomes force-free outside the gap by the cascaded pairs, irrespective of the BH mass. If a nearby stellar-mass BH is in quiescence, or if a galactic intermediate-mass BH is in a very low accretion state, its curvature and IC emissions are found to be detectable with Fermi /LAT and imaging atmospheric Cherenkov telescopes (IACT). If a low-luminosity active galactic nucleus is located within about 30 Mpc, the IC emission from its supermassive BH is marginally detectable with IACT.
Black hole and cosmos with multiple horizons and multiple singularities in vector-tensor theories
Gao, Changjun; Lu, Youjun; Yu, Shuang; Shen, You-Gen
2018-05-01
A stationary and spherically symmetric black hole (e.g., Reissner-Nordström black hole or Kerr-Newman black hole) has, at most, one singularity and two horizons. One horizon is the outer event horizon and the other is the inner Cauchy horizon. Can we construct static and spherically symmetric black hole solutions with N horizons and M singularities? The de Sitter cosmos has only one apparent horizon. Can we construct cosmos solutions with N horizons? In this article, we present the static and spherically symmetric black hole and cosmos solutions with N horizons and M singularities in the vector-tensor theories. Following these motivations, we also construct the black hole solutions with a firewall. The deviation of these black hole solutions from the usual ones can be potentially tested by future measurements of gravitational waves or the black hole continuum spectrum.
International Nuclear Information System (INIS)
Rosquist, K.
1980-01-01
Global rotation in cosmological models is defined on an observational basis. A theorem is proved saying that, for rigid motion, the global rotation is equal to the ordinary local vorticity. The global rotation is calculated in the space-time homogeneous class III models, with Godel's model as a special case. It is shown that, with the exception of Godel's model, the rotation in these models becomes infinite for finite affine parameter values. In some directions the rotation changes sign and becomes infinite in a direction opposite to the local vorticity. The points of infinite rotation are identified as conjugate points along the null geodesics. The physical interpretation of the infinite rotation is discussed, and a comparison with the behaviour of the area distance at conjugate points is given. (author)
Phases of global AdS black holes
International Nuclear Information System (INIS)
Basu, Pallab; Krishnan, Chethan; Subramanian, P.N. Bala
2016-01-01
We study the phases of gravity coupled to a charged scalar and gauge field in an asymptotically Anti-de Sitter spacetime (AdS_4) in the grand canonical ensemble. For the conformally coupled scalar, an intricate phase diagram is charted out between the four relevant solutions: global AdS, boson star, Reissner-Nordstrom black hole and the hairy black hole. The nature of the phase diagram undergoes qualitative changes as the charge of the scalar is changed, which we discuss. We also discuss the new features that arise in the extremal limit.
Geometrothermodynamics of phantom AdS black holes
Energy Technology Data Exchange (ETDEWEB)
Quevedo, Hernando [Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Nucleares, Mexico (Mexico); Universita di Roma ' ' La Sapienza' ' , Dipartimento di Fisica ed ICRANet, Rome (Italy); Quevedo, Maria N. [Facultad de Ciencias Basicas, Universidad Militar Nueva Granada, Departamento de Matematicas, Bogota (Colombia); Sanchez, Alberto [CIIDET, Departamento de Posgrado, Queretaro (Mexico)
2016-03-15
We show that to investigate the thermodynamic properties of charged phantom spherically symmetric anti-de Sitter black holes, it is necessary to consider the cosmological constant as a thermodynamic variable so that the corresponding fundamental equation is a homogeneous function defined on an extended equilibrium space. We explore all the thermodynamic properties of this class of black holes by using the classical physical approach, based upon the analysis of the fundamental equation, and the alternative mathematical approach as proposed in geometrothermodynamics. We show that both approaches are compatible and lead to equivalent results. (orig.)
Black p-branes versus black holes in non-asymptotically flat Einstein-Yang-Mills theory
Habib Mazharimousavi, S.; Halilsoy, M.
2016-09-01
We present a class of non-asymptotically flat (NAF) charged black p-branes (BpB) with p-compact dimensions in higher-dimensional Einstein-Yang-Mills theory. Asymptotically the NAF structure manifests itself as an anti-de sitter spacetime. We determine the total mass/energy enclosed in a thin shell located outside the event horizon. By comparing the entropies of BpB with those of black holes in the same dimensions we derive transition criteria between the two types of black objects. Given certain conditions satisfied, our analysis shows that BpB can be considered excited states of black holes. An event horizon r+ versus charge square Q2 plot for the BpB reveals such a transition where r+ is related to the horizon radius rh of the black hole (BH) both with the common charge Q.
Conformal symmetry for rotating D-branes
International Nuclear Information System (INIS)
Cao Liming; Matsuo, Yoshinori; Tsukioka, Takuya; Yoo, Chul-Moon
2009-01-01
We apply the Kerr/CFT correspondence to the rotating black p-brane solutions. These solutions give the simplest examples from string theory point of view. Their near horizon geometries have structures of AdS, even though black p-brane solutions do not have AdS-like structures in the non-rotating case. The microscopic entropy which can be calculated via the Cardy formula exactly agrees with Bekenstein-Hawking entropy.
Continuous Planetary Polar Observation from Hybrid Pole-Sitters at Venus, Earth, and Mars
Heiligers, M.J.; van den Oever (student TUDelft), Tom; Ceriotti, M.; Mulligan, P.; McInnes, CR
2017-01-01
A pole-sitter is a satellite that is stationed along the polar axis of the Earth, or any other planet, to generate a continuous, hemispherical view of the planet’s polar regions. In order to maintain such a vantage point, a low-thrust propulsion system is required to counterbalance the gravitational
Quantum Scalar Corrections to the Gravitational Potentials on de Sitter Background
Park, Sohyun; Prokopec, Tomislav; Woodard, R. P.
We employ the graviton self-energy induced by a massless, minimally coupled (MMC) scalar on de Sitter background to compute the quantum corrections to the gravitational potentials of a static point particle with a mass $M$. The Schwinger-Keldysh formalism is used to derive real and causal effective
Gauge-invariant metric fluctuations from NKK theory of gravity: de Sitter expansion
International Nuclear Information System (INIS)
Aguilar, Jose Edgar Madriz; Anabitarte, Mariano; Bellini, Mauricio
2006-01-01
In this Letter we study gauge-invariant metric fluctuations from a noncompact Kaluza-Klein (NKK) theory of gravity in de Sitter expansion. We recover the well-known result δρ/ρ∼2Φ, obtained from the standard 4D semiclassical approach to inflation. The spectrum for these fluctuations should be dependent of the fifth (spatial-like) coordinate
Semiclassical relations and IR effects in de Sitter and slow-roll space-times
DEFF Research Database (Denmark)
B. Giddings, Steven; Sloth, Martin Snoager
2010-01-01
We calculate IR divergent graviton one-loop corrections to scalar correlators in de Sitter space, and show that the leading IR contribution may be reproduced via simple semiclassical consistency relations. One can likewise use such semiclassical relations to calculate leading IR corrections to co...... with a sharp perturbative calculation of "missing information" in Hawking radiation....