WorldWideScience

Sample records for sites spent longer

  1. Site selection - siting of the final repository for spent nuclear fuel

    International Nuclear Information System (INIS)

    2011-03-01

    SKB has selected Forsmark as the site for the final repository for spent nuclear fuel. The site selection is the end result of an extensive siting process that began in the early 1990s. The strategy and plan for the work was based on experience from investigations and development work over a period of more than ten years prior to then. This document describes the siting work and SKB's choice of site for the final repository. It also presents the information on which the choice was based and the reasons for the decisions made along the way. The document comprises Appendix PV to applications under the Nuclear Activities Act and the Environmental Code for licences to build and operate an encapsulation plant adjacent to the central interim storage facility for spent nuclear fuel in Oskarshamn, and to build and operate a final repository for spent nuclear fuel in Forsmark in Oesthammar Municipality

  2. Site selection - siting of the final repository for spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    2011-03-15

    SKB has selected Forsmark as the site for the final repository for spent nuclear fuel. The site selection is the end result of an extensive siting process that began in the early 1990s. The strategy and plan for the work was based on experience from investigations and development work over a period of more than ten years prior to then. This document describes the siting work and SKB's choice of site for the final repository. It also presents the information on which the choice was based and the reasons for the decisions made along the way. The document comprises Appendix PV to applications under the Nuclear Activities Act and the Environmental Code for licences to build and operate an encapsulation plant adjacent to the central interim storage facility for spent nuclear fuel in Oskarshamn, and to build and operate a final repository for spent nuclear fuel in Forsmark in Oesthammar Municipality

  3. Spent-fuel storage - MRS and/or on-site?

    International Nuclear Information System (INIS)

    Fuierer, A.A.

    1991-01-01

    The US government through the Office of Civilian Radioactive Waste Management (OCRWM) is seeking by the use of an authorized negotiator a site for a monitored retrievable storage (MRS) facility. Based on a public information document provided by the office of the negotiator, the MRS will be an integral part of the federal system for safe and permanent disposal of the nation's high-level radioactive wastes. It is planned that the MRS will accept and store spent fuel above ground until a repository opens and spent fuel that has been stored is shipped from the MRS to the repository. Additional spent fuel stored at reactor sites will be shipped to the MRS, which will be used as a staging area to assemble dedicated trains for shipment to the repository. The intent of the MRS is to reduce utilities' needs to expand on-site storage of spent fuel. A utility viewpoint may emphasize an alternate set of priorities. The waste management system must be considered as an overall system involving both the utility and DOE that begins with the first discharge of spent nuclear fuel from a commercial reactor and ends with high-level waste in a final repository. Many studies have been made on individual components of a waste system. This study, with the benefit of past hands-on experience as a guide, looks at costs and reliability for a total system concept with particular emphasis on the interface between the utility and Department of Energy

  4. Dry spent fuel storage licensing

    International Nuclear Information System (INIS)

    Sturz, F.C.

    1995-01-01

    In the US, at-reactor-site dry spent fuel storage in independent spent fuel storage installations (ISFSI) has become the principal option for utilities needing storage capacity outside of the reactor spent fuel pools. Delays in the geologic repository operational date at or beyond 2010, and the increasing uncertainty of the US Department of Energy's (DOE) being able to site and license a Monitored Retrievable Storage (MRS) facility by 1998 make at-reactor-site dry storage of spent nuclear fuel increasingly desirable to utilities and DOE to meet the need for additional spent fuel storage capacity until disposal, in a repository, is available. The past year has been another busy year for dry spent fuel storage licensing. The licensing staff has been reviewing 7 applications and 12 amendment requests, as well as participating in inspection-related activities. The authors have licensed, on a site-specific basis, a variety of dry technologies (cask, module, and vault). By using certified designs, site-specific licensing is no longer required. Another new cask has been certified. They have received one new application for cask certification and two amendments to a certified cask design. As they stand on the brink of receiving multiple applications from DOE for the MPC, they are preparing to meet the needs of this national program. With the range of technical and licensing options available to utilities, the authors believe that utilities can meet their need for additional spent fuel storage capacity for essentially all reactor sites through the next decade

  5. Time Spent on Social Network Sites and Psychological Well-Being: A Meta-Analysis.

    Science.gov (United States)

    Huang, Chiungjung

    2017-06-01

    This meta-analysis examines the relationship between time spent on social networking sites and psychological well-being factors, namely self-esteem, life satisfaction, loneliness, and depression. Sixty-one studies consisting of 67 independent samples involving 19,652 participants were identified. The mean correlation between time spent on social networking sites and psychological well-being was low at r = -0.07. The correlations between time spent on social networking sites and positive indicators (self-esteem and life satisfaction) were close to 0, whereas those between time spent on social networking sites and negative indicators (depression and loneliness) were weak. The effects of publication outlet, site on which users spent time, scale of time spent, and participant age and gender were not significant. As most included studies used student samples, future research should be conducted to examine this relationship for adults.

  6. Finding a site to store spent fuel in the Pacific Basin

    International Nuclear Information System (INIS)

    Selvaduray, G.S.; Goldstein, M.K.; Anderson, R.N.

    1979-01-01

    How can one decide on a site to store spent LWR fuel, after the Presidential embargo on reprocessing. Palmyra Island is identified as the best site for the nations bordering the Pacific to store spent fuel. The quantitative methods used to reach this decision are outlined. (author)

  7. On-site concrete cask storage system for spent nuclear fuel

    International Nuclear Information System (INIS)

    Craig, P.A.; Haelsig, R.T.; Kent, J.D.; Schmoker, D.S.

    1989-01-01

    A method is described of storing spent nuclear fuel assemblies including the steps of: transferring the fuel assemblies from a spent-fuel pool to a moveable concrete storage cask located outside the spent-fuel pool; maintaining a barrier between the fuel and the concrete in the cask to prevent contamination of the concrete by the fuel; maintaining the concrete storage cask containing the spent-fuel on site at the reactor complex for some predetermined period; transferring the fuel assemblies from the concrete storage cask to a shipping container; and, recycling the concrete storage cask

  8. Remote technology in RBMK-1000 spent fuel management at NPP site

    International Nuclear Information System (INIS)

    Makarchuk, T.F.; Kozlov, Y.V.; Tikhonov, N.S.; Tokarenko, A.I.; Spichev, V.V.; Kaljazin, N.N.

    1999-01-01

    The report describes the remote technologies employed in the nuclear power plant with RBMK-1000 type. Spent fuel transfer and handling operations at reactor (AR) and away from reactor (AFR) on reactor site (RS) facilities are illustrated by the example of the Leningradskaya NPP and are typical for all NPPs with RBMK-1000. The current approach to spent fuel management at NPP sites is also presented. (author)

  9. Postulated accident scenarios for the on-site transport of spent nuclear fuel

    International Nuclear Information System (INIS)

    Morandin, G.; Sauve, R.

    2004-01-01

    Once a spent fuel container is loaded with spent fuel it typically travels on-site to a processing building for permanent lid attachment. During on-site transport a lid clamp is utilized to ensure the container lid remains in place. The safe on-site transport of spent nuclear fuel must rely on the structural integrity of the transport container and system of transport. Regard for on-site traffic and safe, efficient travel routes are important and manageable with well thought-out planning. Non-manageable incidences, such as flying debris from tornado force winds or postulated blasts in proximity to the transport container, that may result in high velocity impact and shock loading on the transport system must be considered. This paper consists of simulations that consider these types of postulated accident scenarios using detailed nonlinear finite element techniques

  10. Potential sites for a spent unreprocessed fuel facility (SURFF), southwesten part of the Nevada Test Site

    International Nuclear Information System (INIS)

    Hoover, D.L.; Eckel, E.B.; Ohl, J.P.

    1978-01-01

    In the absence of specific criteria, the topography, geomorphology, and geology of Jackass Flats and vicinity in the southwestern part of the Nevada Test Site are evaluated by arbitrary guidelines for a Spent Unreprocessed Fuel Facility. The guidelines include requirements for surface slopes of less than 5%, 61 m of alluvium beneath the site, an area free of active erosion or deposition, lack of faults, a minimum area of 5 km 2 , no potential for flooding, and as many logistical support facilities as possible. The geology of the Jackass Flats area is similar to the rest of the Nevada Test Site in topographic relief (305-1,200 m), stratigraphy (complexly folded and faulted Paleozoic sediments overlain by Tertiary ash-flow tuffs and lavas overlain in turn by younger alluvium), and structure (Paleozoic thrust faults and folds, strike-slip faults, proximity to volcanic centers, and Basin and Range normal faults). Of the stratigraphic units at the potential Spent Unreprocessed Fuel Facility site in Jackass Flats, only the thickness and stability of the alluvium are of immediate importance. Basin and Range faults and a possible extension of the Mine Mountain fault need further investigation. The combination of a slope map and a simplified geologic and physiographic map into one map shows several potential sites for a Spent Unreprocessed Fuel Facility in Jackass Flats. The potential areas have slopes of less than 5% and contain only desert pavement or segmented pavement--the two physiographic categories having the greatest geomorphic and hydraulic stability. Before further work can be done, specific criteria for a Spent Unreprocessed Fuel Facility site must be defined. Following criteria definition, potential sites will require detailed topographic and geologic studies, subsurface investigations (including geophysical methods, trenching, and perhaps shallow drilling for faults in alluvium), detailed surface hydrologic studies, and possibly subsurface hydrologic studies

  11. On-site interim storage of spent nuclear fuel: Emerging public issues

    International Nuclear Information System (INIS)

    Feldman, D.L.; Tennessee Univ., Knoxville, TN

    1992-01-01

    Failure to consummate plans for a permanent repository or above- ground interim Monitored Retrievable Storage (MRS) facility for spent nuclear fuel has spurred innovative efforts to ensure at-reactor storage in an environmentally safe and secure manner. This article examines the institutional and socioeconomic impacts of Dry Cask Storage Technology (DCST)-an approach to spent fuel management that is emerging as the preferred method of on-site interim spent fuel storage by utilities that exhaust existing storage capacity

  12. Design considerations for on-site spent-fuel transfer systems

    International Nuclear Information System (INIS)

    Jones, R.H.; Jones, C.R.

    1989-06-01

    Studies on spent fuel shipping logistics and operation make it clear that the use of large casks, i.e., 100--125 tons, is superior to smaller casks of similar construction. This superiority manifests itself in both transportation and/or shipping economics and safety as well as reduced personnel exposure in the processing of the casks. An on-site system for the transfer of spent fuel from the storage pool to a large shipping or storage cask, as well as the transfer of spent fuel directly from a storage cask to a shipping cask, could bring the large cask benefits to those restricted reactors. Sensing the need to look more closely at this opportunity, EPRI contracted with S. Levy, Incorporated of Campbell, CA to develop a set of design considerations for such transfer systems. Rather then embark on another design study, EPRI decided to first identify the system considerations that must be factored into any design. The format for this effort presents both the Consideration and the Rationale for the consideration. The resulting work identified thirty-six General Considerations and two Special Considerations. The Considerations are in the form of mandatory requirements and desirable but nonmandatory requirements. Additionally, a brief economic study was performed to get a feel for the cost considerations of on-site transfers. The study results suggest a relatively narrow set of scenarios where on-site transfers are economically superior to alternatives. These scenarios generally involve the use of concrete casks as on-site storage devices

  13. Storage of Spent Nuclear Fuel. Specific Safety Guide

    International Nuclear Information System (INIS)

    2012-01-01

    This Safety Guide provides recommendations and guidance on the storage of spent nuclear fuel. It covers all types of storage facilities and all types of spent fuel from nuclear power plants and research reactors. It takes into consideration the longer storage periods that have become necessary owing to delays in the development of disposal facilities and the decrease in reprocessing activities. It also considers developments associated with nuclear fuel, such as higher enrichment, mixed oxide fuels and higher burnup. The Safety Guide is not intended to cover the storage of spent fuel if this is part of the operation of a nuclear power plant or spent fuel reprocessing facility. Guidance is provided on all stages for spent fuel storage facilities, from planning through siting and design to operation and decommissioning, and in particular retrieval of spent fuel. Contents: 1. Introduction; 2. Protection of human health and the environment; 3. Roles and responsibilities; 4. Management system; 5. Safety case and safety assessment; 6. General safety considerations for storage of spent fuel. Appendix I: Specific safety considerations for wet or dry storage of spent fuel; Appendix II: Conditions for specific types of fuel and additional considerations; Annex: I: Short term and long term storage; Annex II: Operational and safety considerations for wet and dry spent fuel storage facilities; Annex III: Examples of sections of operating procedures for a spent fuel storage facility; Annex IV: Site conditions, processes and events for consideration in a safety assessment (external human induced phenomena); Annex V: Site conditions, processes and events for consideration in a safety assessment (external natural phenomena); Annex VI: Site conditions, processes and events for consideration in a safety assessment (external human induced phenomena); Annex VII: Postulated initiating events for consideration in a safety assessment (internal phenomena).

  14. Resource Conservation and Recovery Act (RCRA) Characterization of Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Nichols, D.M.

    1998-01-01

    As a result of the end of the Cold War and the Nonproliferation treaty, the United States is left with quantifies of spent nuclear fuel. The final disposition of the spent nuclear fuel is yet to be determined. However, one issue that plagues the holders of this material is 'if this material is no longer required and must be disposed, how will it be classified under current U.S. environmental laws and regulations?' This paper provides one site's position on the characterization of the spent nuclear fuel as a non-hazardous solid waste

  15. Safeguards for final disposal of spent nuclear fuel. Methods and technologies for the Olkiluoto site

    International Nuclear Information System (INIS)

    Okko, O.

    2003-05-01

    The final disposal of the nuclear material shall introduce new safeguards concerns which have not been addressed previously in IAEA safeguards approaches for spent fuel. The encapsulation plant to be built at the site will be the final opportunity for verification of spent fuel assemblies prior to their transfer to the geological repository. Moreover, additional safety and safeguards measures are considered for the underground repository. Integrated safeguards verification systems will also concentrate on environmental monitoring to observe unannounced activities related to possible diversion schemes at the repository site. The final disposal of spent nuclear fuel in geological formation will begin in Finland within 10 years. After the geological site investigations and according to legal decision made in 2001, the final repository of the spent nuclear fuel shall be located at the Olkiluoto site in Eurajoki. The next phase of site investigations contains the construction of an underground facility, called ONKALO, for rock characterisation purposes. The excavation of the ONKALO is scheduled to start in 2004. Later on, the ONKALO may form a part of the final repository. The plans to construct the underground facility for nuclear material signify that the first safeguards measures, e.g. baseline mapping of the site area, need to take prior to the excavation phase. In order to support the development and implementation of the regulatory control of the final disposal programme, STUK established an independent expert group, LOSKA. The group should support the STUK in the development of the technical safeguards requirements, in the implementation of the safeguards and in the evaluation of the plans of the facility operator. This publication includes four background reports produced by this group. The first of these 'NDA verification of spent fuel, monitoring of disposal canisters, interaction of the safeguards and safety issues in the final disposal' describes the new

  16. 10 CFR 72.96 - Siting limitations.

    Science.gov (United States)

    2010-01-01

    ... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL... site within which there is a candidate site for a HLW repository. This limitation shall apply until such time as DOE decides that such candidate site is no longer a candidate site under consideration for...

  17. Site Specific Analyses of a Spent Nuclear Fuel Transportation Accident

    International Nuclear Information System (INIS)

    Biwer, B. M.; Chen, S. Y.

    2003-01-01

    The number of spent nuclear fuel (SNF) shipments is expected to increase significantly during the time period that the United States' inventory of SNF is sent to a final disposal site. Prior work estimated that the highest accident risks of a SNF shipping campaign to the proposed geologic repository at Yucca Mountain were in the corridor states, such as Illinois. The largest potential human health impacts would be expected to occur in areas with high population densities such as urban settings. Thus, our current study examined the human health impacts from the most plausible severe SNF transportation accidents in the Chicago metropolitan area. The RISKIND 2.0 program was used to model site-specific data for an area where the largest impacts might occur. The results have shown that the radiological human health consequences of a severe SNF rail transportation accident on average might be similar to one year of exposure to natural background radiation for those persons living a nd working in the most affected areas downwind of the actual accident location. For maximally exposed individuals, an exposure similar to about two years of exposure to natural background radiation was estimated. In addition to the accident probabilities being very low (approximately 1 chance in 10,000 or less during the entire shipping campaign), the actual human health impacts are expected to be lower if any of the accidents considered did occur, because the results are dependent on the specific location and weather conditions, such as wind speed and direction, that were selected to maximize the results. Also, comparison of the results of longer duration accident scenarios against U.S. Environmental Protection Agency guidelines was made to demonstrate the usefulness of this site-specific analysis for emergency planning purposes

  18. It takes longer than you think: librarian time spent on systematic review tasks*

    Science.gov (United States)

    Bullers, Krystal; Howard, Allison M.; Hanson, Ardis; Kearns, William D.; Orriola, John J.; Polo, Randall L.; Sakmar, Kristen A.

    2018-01-01

    Introduction The authors examined the time that medical librarians spent on specific tasks for systematic reviews (SRs): interview process, search strategy development, search strategy translation, documentation, deliverables, search methodology writing, and instruction. We also investigated relationships among the time spent on SR tasks, years of experience, and number of completed SRs to gain a better understanding of the time spent on SR tasks from time, staffing, and project management perspectives. Methods A confidential survey and study description were sent to medical library directors who were members of the Association of Academic Health Sciences Libraries as well as librarians serving members of the Association of American Medical Colleges or American Osteopathic Association. Results Of the 185 participants, 143 (77%) had worked on an SR within the last 5 years. The number of SRs conducted by participants during their careers ranged from 1 to 500, with a median of 5. The major component of time spent was on search strategy development and translation. Average aggregated time for standard tasks was 26.9 hours, with a median of 18.5 hours. Task time was unrelated to the number of SRs but was positively correlated with years of SR experience. Conclusion The time required to conduct the librarian’s discrete tasks in an SR varies substantially, and there are no standard time frames. Librarians with more SR experience spent more time on instruction and interviews; time spent on all other tasks varied widely. Librarians also can expect to spend a significant amount of their time on search strategy development, translation, and writing. PMID:29632442

  19. Spent fuel handling system for a geologic storage test at the Nevada Test Site

    International Nuclear Information System (INIS)

    Duncan, J.E.; House, P.A.; Wright, G.W.

    1980-01-01

    The Lawrence Livermore Laboratory is conducting a test of the geologic storage of encapsulated spent commercial reactor fuel assemblies in a granitic rock at the Nevada Test Site. The test, known as the Spent Fuel Test-Climax (SFT-C), is sponsored by the US Department of Energy, Nevada Operations Office. Eleven pressurized-water-reactor spent fuel assemblies are stored retrievably for three to five years in a linear array in the Climax stock at a depth of 420 m

  20. Corrosion surveillance program of aluminum spent fuel elements in wet storage sites

    International Nuclear Information System (INIS)

    Linardi, E; Haddad, R

    2012-01-01

    Due to different degradation issues observed in aluminum-clad spent fuel during long term storage in water, the IAEA implemented in 1996 a Coordinated Research Project (CRP) and a Regional Project for Latin America, on Corrosion of Research Reactor Aluminum Clad Spent Fuel in Water. Argentine has been among the participant countries of these projects, carrying out spent fuel corrosion surveillance activities in its storage facilities. As a result of the research a large database on corrosion of aluminum-clad fuel has been generated. It was determined that the main types of corrosion affecting the spent fuel are pitting and galvanic corrosion due to contact with stainless steel. It was concluded that the quality of the water is the critical factor to control in a spent fuel storage facility. Another phase of the program is being conducted currently, which began in 2011 with the immersion of test racks in the RA1 reactor pool, and in the Research Reactor Spent Fuel Storage Facility (FACIRI), located in Ezeiza Atomic Center. This paper presents the results of the chemical analysis of the water performed so far, and its relationship with the examination of the coupons extracted from the sites (author)

  1. Dealing with the current permissibility application for constructing a spent fuel DGR in Sweden. SKB's license applications for a spent fuel repository

    International Nuclear Information System (INIS)

    Olsson, Olle

    2014-01-01

    The nuclear power utilities in Sweden were in 1976 obliged to demonstrate a safe method for final disposal of spent fuel in order to start operation of new reactors. This initiated a comprehensive research, development and demonstration programme and the development of the KBS-method for final disposal. A new Nuclear Activities Act in 1984 gave the reactor owners full technical and financial responsibility for the waste. They gave in turn SKB the responsibility for all nuclear waste management. Reprocessing was no longer required and direct disposal of the spent fuel has, since then, been the main alternative. Alternative methods for final disposal have been evaluated and compared to the KBS-3-method but it has remained the preferred alternative. A comprehensive research, development and demonstration programme to strengthen the scientific basis and to refine the KBS-3-method has been operated by SKB since then. The site selection process for the final repository for spent nuclear fuel was initiated in 1992. The work included general siting studies at the national and the municipal level and in 2002, SKB initiated site investigations for siting of a final repository on two sites: the Simpevarp and Laxemar areas and the Forsmark area. At the same time, the work on preparing license applications to construct and operate an encapsulation plant and a final repository for spent fuel was started. In June 2009, SKB announced Forsmark as the selected site for the final repository. This paper reviews the applicable legislation and describes the license application, the licensing review and the preparations for implementation

  2. Overview of the spent nuclear fuel storage facilities at the Savannah River Site

    International Nuclear Information System (INIS)

    Conatser, E.R.; Thomas, J.E.

    2000-01-01

    The May 1996 Record of Decision on a Proposed Nuclear Weapons Nonproliferation Policy concerning Foreign Research Reactor Spent Nuclear Fuel initiated a 13 year campaign renewing a policy to support the return of spent nuclear fuel containing uranium of U.S. origin from foreign research reactors to the United States. As of December 1999, over 22% of the approximately 13,000 spent nuclear fuel assemblies from participating countries have been returned to the Savannah River Site (SRS). These ∼2650 assemblies are currently stored in two dedicated SRS wet storage facilities. One is the Receiving Basin for Off-site Fuels (RBOF) and the other as L-Basin. RBOF, built in the early 60's to support the 'Atoms for Peace' program, has been receiving off-site fuel for over 35 years. RBOF has received approximately 1950 casks since startup and has the capability of handling all of the casks currently used in the FRR program. However, RBOF is 90% filled to capacity and is not capable of storing all of the fuel to be received in the program. L-Basin was originally used as temporary storage for materials irradiated in SRS's L-Reactor. New storage racks and other modifications were completed in 1996 that improved water quality and allowed the L-Basin to receive, handle and store spent nuclear fuel assemblies and components from off-site. The first foreign cask was received into the L-Area in April 1997 and approximately 105 foreign and domestic casks have been received since that time. This paper provides an overview of activities related to fuel receipt and storage in both the Receiving Basin for Off-site Fuels (RBOF) and L-Basin facilities. It will illustrate each step of the fuel receipt program from arrival of casks at SRS through cask unloading and decontamination. It will follow the fuel handling process, from fuel unloading, through the cropping and bundling stages, and final placement in the wet storage rack. Decontamination methods and equipment will be explained to show

  3. Overview of the spent nuclear fuel storage facilities at the Savannah River Site

    International Nuclear Information System (INIS)

    Thomas, Jay

    1999-01-01

    The May 1996 Record of Decision on a Proposed Nuclear Weapons Nonproliferation Policy concerning Foreign Research Reactor Spent Nuclear Fuel initiated a 13 year campaign renewing a policy to support the return of spent nuclear fuel containing uranium of U.S.-origin from foreign research reactors to the United States. As of July 1999, over 18% of the approximately 13,000 spent nuclear fuel assemblies from participating countries have been returned to the Savannah River Site (SRS). These 2400 assemblies are currently stored in two dedicated SRS wet storage facilities. One is the Receiving Basin for Off-site Fuels (RBOF) and the other as L-Basin. RBOF, built in the early 60's to support the 'Atoms for Peace' program, has been receiving off-site fuel for over 35 years. RBOF has received approximately 1950 casks since startup and has the capability of handling all of the casks currently used in the FRR program. However, RBOF is 90% filled to capacity and is not capable of storing all of the fuel to be received in the program. L-Basin was originally used as temporary storage for materials irradiated in SRS's L-Reactor. New storage racks and other modifications were completed in 1996 that improved water quality and allowed L-Basin to receive, handle and store spent nuclear fuel assemblies and components from off-site. The first foreign cask was received into L-Area in April 1997 and approximately 86 foreign and domestic casks have been received since that time. This paper provides an overview of activities related to fuel receipt and storage in both the Receiving Basin for Off-site Fuels (RBOF) and L-Basin facilities. It will illustrate each step of the fuel receipt program from arrival of casks at SRS through cask unloading and decontamination. It will follow the fuel handling process, from fuel unloading, through the cropping and bundling stages, and final placement in the wet storage rack. Decontamination methods and equipment will be explained to show how the empty

  4. Overview of the spent nuclear fuel storage facilities at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Conatser, E.R.; Thomas, J.E. [Westinghouse Savannah River Company, Aiken, SC 29808 (United States)

    2000-07-01

    The May 1996 Record of Decision on a Proposed Nuclear Weapons Nonproliferation Policy concerning Foreign Research Reactor Spent Nuclear Fuel initiated a 13 year campaign renewing a policy to support the return of spent nuclear fuel containing uranium of U.S. origin from foreign research reactors to the United States. As of December 1999, over 22% of the approximately 13,000 spent nuclear fuel assemblies from participating countries have been returned to the Savannah River Site (SRS). These {approx}2650 assemblies are currently stored in two dedicated SRS wet storage facilities. One is the Receiving Basin for Off-site Fuels (RBOF) and the other as L-Basin. RBOF, built in the early 60's to support the 'Atoms for Peace' program, has been receiving off-site fuel for over 35 years. RBOF has received approximately 1950 casks since startup and has the capability of handling all of the casks currently used in the FRR program. However, RBOF is 90% filled to capacity and is not capable of storing all of the fuel to be received in the program. L-Basin was originally used as temporary storage for materials irradiated in SRS's L-Reactor. New storage racks and other modifications were completed in 1996 that improved water quality and allowed the L-Basin to receive, handle and store spent nuclear fuel assemblies and components from off-site. The first foreign cask was received into the L-Area in April 1997 and approximately 105 foreign and domestic casks have been received since that time. This paper provides an overview of activities related to fuel receipt and storage in both the Receiving Basin for Off-site Fuels (RBOF) and L-Basin facilities. It will illustrate each step of the fuel receipt program from arrival of casks at SRS through cask unloading and decontamination. It will follow the fuel handling process, from fuel unloading, through the cropping and bundling stages, and final placement in the wet storage rack. Decontamination methods and equipment

  5. Nonproliferation impacts assessment for the management of the Savannah River Site aluminum-based spent nuclear fuel

    International Nuclear Information System (INIS)

    1998-12-01

    On May 13, 1996, the US established a new, 10-year policy to accept and manage foreign research reactor spent nuclear fuel containing uranium enriched in the US. The goal of this policy is to reduce civilian commerce in weapons-usable highly enriched uranium (HEU), thereby reducing the risk of nuclear weapons proliferation. Two key disposition options under consideration for managing this fuel include conventional reprocessing and new treatment and packaging technologies. The Record of Decision specified that, while evaluating the reprocessing option, ''DOE will commission or conduct an independent study of the nonproliferation and other (e.g., cost and timing) implications of chemical separation of spent nuclear fuel from foreign research reactors.'' DOE's Office of Arms Control and Nonproliferation conducted this study consistent with the aforementioned Record of Decision. This report addresses the nonproliferation implications of the technologies under consideration for managing aluminum-based spent nuclear fuel at the Savannah River Site. Because the same technology options are being considered for the foreign research reactor and the other aluminum-based spent nuclear fuels discussed in Section ES.1, this report addresses the nonproliferation implications of managing all the Savannah River Site aluminum-based spent nuclear fuel, not just the foreign research reactor spent nuclear fuel. The combination of the environmental impact information contained in the draft EIS, public comment in response to the draft EIS, and the nonproliferation information contained in this report will enable the Department to make a sound decision regarding how to manage all aluminum-based spent nuclear fuel at the Savannah River Site

  6. The site selection process for a spent fuel repository in Finland. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    McEwen, T. [EnvirosQuantiSci (United Kingdom); Aeikaes, T. [Posiva Oy, Helsinki (Finland)

    2000-12-01

    This Summary Report describes the Finnish programme for the selection and characterisation of potential sites for the deep disposal of spent nuclear fuel and explains the process by which Olkiluoto has been selected as the single site proposed for the development of a spent fuel disposal facility. Its aim is to provide an overview of this process, initiated almost twenty years ago, which has entered its final phase. It provides information in three areas: a review of the early site selection criteria, a description of the site selection process, including all the associated site characterisation work, up to the point at which a single site was selected and an outline of the proposed work, in particular that proposed underground, to characterise further the Olkiluoto site. In 1983 the Finnish Government made a policy decision on the management of nuclear waste in which the main goals and milestones for the site selection programme for the deep disposal of spent fuel were presented. According to this decision several site candidates, whose selection was to be based on careful studies of the whole country, should be characterised and the site for the repository selected by the end of the year 2000. This report describes the process by which this policy decision has been achieved. The report begins with a discussion of the definition of the geological and environmental site selection criteria and how they were applied in order to select a small number of sites, five in all, that were to be the subject of the preliminary investigations. The methods used to investigate these sites and the results of these investigations are described, as is the evaluation of the results of these investigations and the process used to discard two of the sites and continue more detailed investigations at the remaining three. The detailed site investigations that commenced in 1993 are described with respect to the overall strategy followed and the investigation techniques applied. The

  7. Savannah River Site Spent Nuclear Fuel Management Final Environmental Impact Statement

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2000-04-14

    The proposed DOE action considered in this environmental impact statement (EIS) is to implement appropriate processes for the safe and efficient management of spent nuclear fuel and targets at the Savannah River Site (SRS) in Aiken County, South Carolina, including placing these materials in forms suitable for ultimate disposition. Options to treat, package, and store this material are discussed. The material included in this EIS consists of approximately 68 metric tons heavy metal (MTHM) of spent nuclear fuel 20 MTHM of aluminum-based spent nuclear fuel at SRS, as much as 28 MTHM of aluminum-clad spent nuclear fuel from foreign and domestic research reactors to be shipped to SRS through 2035, and 20 MTHM of stainless-steel or zirconium-clad spent nuclear fuel and some Americium/Curium Targets stored at SRS. Alternatives considered in this EIS encompass a range of new packaging, new processing, and conventional processing technologies, as well as the No Action Alternative. A preferred alternative is identified in which DOE would prepare about 97% by volume (about 60% by mass) of the aluminum-based fuel for disposition using a melt and dilute treatment process. The remaining 3% by volume (about 40% by mass) would be managed using chemical separation. Impacts are assessed primarily in the areas of water resources, air resources, public and worker health, waste management, socioeconomic, and cumulative impacts.

  8. Optimum MRS site location to minimize spent fuel transportation impacts

    International Nuclear Information System (INIS)

    Hoskins, R.E.

    1987-01-01

    A range of spent fuel transportation system parameters are examined in terms of attributes important to minimizing transportation impacts as a basis for identifying geographic regions best suited for siting a monitored retrievable storage (MRS) facility. Transportation system parameters within existing transport cask design and transportation mode capabilities were systematically analyzed. The optimum MRS location was found to be very sensitive to transportation system assumptions particularly with regard to the relative efficiencies of the reactor-to-MRS and MRS-to-repository components of the system. Moreover, dramatic improvements in the reactor-to-MRS component can be made through use of multiple cask shipment of the largest practical casks by dedicated train compared to the traditional single cask rail (70%) and truck (30%) shipments assumed the Department of Energy in their studies that defined the optimum MRS location in the vicinity of Tennessee. It is important to develop and utilize an efficient transportation system irrespective of whether or not an MRS is in the system. Assuming reasonably achievable efficiency in reactor-to-MRS spent fuel transportation and assigning equal probabilities to the three western sites selected for characterization of being the repository site, the optimum MRS location would be in the far-mid-western states. Based on various geographic criteria including barge access and location in a nuclear service area, the State of Tennessee ranks any place from 12th to the 25th at a penalty of about 30% over the minimum achievable impacts. While minimizing transportation impacts is an important factor, other criteria should also be considered in selecting an MRS site

  9. Technical concept for test of geologic storage of spent reactor fuel in the Climax granite, Nevada Test Site

    International Nuclear Information System (INIS)

    Ramspott, L.D.; Ballou, L.B.; Carlson, R.C.; Montan, D.N.; Butkovich, T.R.; Duncan, J.E.; Patrick, W.C.; Wilder, D.G.; Brough, W.G.; Mayr, M.C.

    1979-01-01

    The Spent Fuel Test in the Climax granite at the Nevada Test Site is a generic test in which spent fuel assemblies from an operating commercial nuclear reactor are emplaced at, and retrieved from, a plausible waste repository depth in a typical granite. Eleven canisters of spent fuel are emplaced in a storage drift 420 m below the surface along with six electrical simulator canisters. Two adjacent drifts contain electrical heaters which are operated so as to simulate the initial five years of the temperature-stress-displacement fields of a large repository. The site is described, and the pre-operational measurement program and characteristics of the spent fuel are given. Both thermal and mechanical response calculations are summarized. The field instrumentation and data acquisition systems are described, as well as the system for handling the spent fuel

  10. Site-selection studies for final disposal of spent fuel in Finland

    International Nuclear Information System (INIS)

    Vuorela, P.; Aeikaes, T.

    1984-02-01

    In the management of waste by the Industrial Power Company Ltd. (TVO) preparations are being made for the final disposal of unprocessed spent fuel into the Finnish bedrock. The site selection program will advance in three phases. The final disposal site must be made at the latest by the end of the year 2000, in accordance with a decision laid down by the Finnish Government. In the first phase, 1983-85, the main object is to find homogeneous stable bedrock blocks surrounded by fracture zones located at a safe distance from the planned disposal area. The work usually starts with a regional structural analysis of mosaics of Landsat-1 winter and summer imagery. Next an assortment of different maps, which cover the whole country, is used. Technical methods for geological and hydrogeological site investigations are being developed during the very first phase of the studies, and a borehole 1000 meters deep will be made in southwestern Finland. Studies for the final disposal of spent fuel or high-level reprocessing waste have been made since 1974 in Finland. General suitability studies of the bedrock have been going on since 1977. The present results indicate that suitable investigation areas for the final disposal of highly active waste can be found in Finland

  11. The independent relationship between trouble controlling Facebook use, time spent on the site and distress.

    Science.gov (United States)

    Muench, Fredrick; Hayes, Marie; Kuerbis, Alexis; Shao, Sijing

    2015-09-01

    There is an emerging literature base on the relationship between maladaptive traits and "addiction" to social networking sites. These studies have operationalized addiction as either spending excessive amounts of time on social networking sites (SNS) or trouble controlling SNS use, but have not assessed the unique contribution of each of these constructs on outcomes in the same models. Moreover, these studies have exclusively been conducted with younger people rather than a heterogeneous sample. This study examined the independent relationship of a brief Facebook addiction scale, time spent on Facebook, and Facebook checking on positive and negative social domains, while controlling for self-esteem and social desirability. Participants were recruited using e-mail, SNS posts and through Amazon's MTurk system. The sample included 489 respondents ages from 18 to approximately 70, who completed a 10-15 minute survey. Results indicate that neither time spent on Facebook nor Facebook checking was significantly associated with either self-esteem, fear of negative social evaluation or social comparison, while SNS addiction symptoms were each independently associated with Facebook usage. Neither time spent on Facebook nor SNS addiction symptoms were associated with positive social relationships. Overall results suggest that time on SNS and trouble controlling use should be considered independent constructs and that interventions should target underlying loss of control as the primary intervention target above ego syntonic time spent on the site.

  12. On-site storage of spent nuclear fuel assemblies in German nuclear power plants

    International Nuclear Information System (INIS)

    Banck, J.

    1999-01-01

    The selection of back-end strategies for spent fuel assemblies is influenced by a number of different factors depending on the given situation in any specific country. In Germany, the back-end strategy implemented in the past was almost exclusively reprocessing. This strategy was required by the German Atomic Energy Act. Since 1994, when the Atomic Energy Act was amended, the option of direct final disposal has been granted the equivalent status by law to that afforded to reprocessing (and reuse of valuable materials). As a result, German utilities may now choose between these two alternatives. Another important condition for optimizing the back-end policy is the fact that fuel cycle costs in Germany are directly dependent on spent fuel volumes (in contrast to the US, for example, such costs are related to the amount of power generated). Another boundary condition for German utilities with respect to spent fuel management is posed by the problems with militant opponents of nuclear energy during transportation of spent fuel to interim storage sites. These facts have given rise to a reconsideration of the fuel cycle back-end, which has resulted in a change in strategy by most German utilities in favour of the following: Preference for long-term storage and maximized use of on-site storage capacity; Reduction in the amount of spent fuel by increasing burnup as much as possible. These decisions have also been driven by the deregulation of energy markets in Europe, where utilities are now permitted to sell electric power to consumers beyond their original supply network and must therefore offer electric power on a very cost competitive basis. (author)

  13. Shipment of gas generating spent fuel on the U.S. Department of Energy Hanford Site

    International Nuclear Information System (INIS)

    Edwards, W.S.

    1998-01-01

    Approximately 2,100 metric tons of unprocessed, irradiated nuclear fuel elements are stored in the two K Basins at the US Department of Energy (DOE) Hanford Site near Richland, Washington. The basin water contains significant quantities of dissolved nuclear isotopes and radioactive fuel corrosion particles. The condition of the spent fuel elements varies from intact to severely damaged, where the cladding is badly split or has peeled, with substantial fuel missing. The K Basins are located within a few hundred meters of the Columbia River and have leaked twice in the past. One of the highest priorities of the DOE is to remove the spent fuel from the K Basins, stabilize it, and move it to a Canister Storage Building (CSB), built well away from the Columbia River, for long-term storage prior to final disposition at a repository. Transportation of the K Basin spent fuel will occur entirely within the confines of the Hanford Site, which does not have routine public access. Consequently, the transport is onsite, and does not fall under the Federal Hazardous Materials Regulations (DOT 1997). DOE Order 460.1 (DOE 1995) enables DOE facilities to develop onsite transportation programs that provide equivalent safety to the Federal Hazardous Materials Regulations (DOT 1997). The basis for the Hanford Site onsite transportation program is detailed in HNF-PRO-1 54 (FDH 1998). The Hanford Site onsite transportation program was developed to meet the equivalent safety requirement, be consistent with analogous commercial operations, interface appropriately with facility safety analysis requirements, and utilize a risk-based management approach to ensure effort is applied consistent with the risk. The program focus is on the establishment of defendable safety bases. Authorization to use an onsite transportation system is granted by the approval of the applicable Safety Analysis Report for Packaging (Onsite). The K Basin spent fuel transportation activity is similar, in some respects

  14. Electrometallurgical treatment of metallic spent nuclear fuel stored at the Hanford Site

    International Nuclear Information System (INIS)

    Laidler, J.J.; Gay, E.C.

    1996-01-01

    The major component of the DOE spent nuclear fuel inventory is the metallic fuel stored at the Hanford site in the southeastern part of the state of Washington. Most of this fuel was discharged from the N-Reactor; a small part of the inventory is fuel from the early Hanford production reactors. The U.S. Department of Energy (DOE) plans to remove these fuels from the spent fuel storage pools in which they are presently stored, dry them, and place them in interim storage at a location at the Hanford site that is far removed from the Columbia River. It is not yet certain that these fuels will be acceptable for disposal in a mined geologic repository without further treatment, due to their potential pyrophoric character. A practical method for treatment of the Hanford metallic spent fuel, based on an electrorefining process, has been developed and has been demonstrated with unirradiated N-Reactor fuel and with simulated single-pass reactor (SPR) spent fuel. The process can be operated with any desired throughput rates; being a batch process, it is simply a matter of setting the size of the electrorefiner modules and the number of such modules. A single module, prototypic of a production-scale module, has been fabricated and testing is in progress at a throughput rate of 150 kg (heavy metal) per day. The envisioned production version would incorporate additional anode baskets and cathode tubes and provide a throughput rate of 333 kgHM/day. A system with four of these modules would permit treatment of Hanford metallic fuels at a rate of at least 250 metric tons per year

  15. Spent fuel storage and isolation

    International Nuclear Information System (INIS)

    Bensky, M.S.; Kurzeka, W.J.; Bauer, A.A.; Carr, J.A.; Matthews, S.C.

    1979-02-01

    The principal spent fuel activities conducted within the commercial waste and spent fuel within the Commercial Waste and Spent Fuel Packaging Program are: simulated near-surface (drywell) storage demonstrations at Hanford and the Nevada Test Site; surface (sealed storage cask) and drywell demonstrations at the Nevada Test Site; and spent fuel receiving and packaging facility conceptual design. These investigations are described

  16. Technical concept for a test of geologic storage of spent reactor fuel in the climax granite, Nevada Test Site

    International Nuclear Information System (INIS)

    Ramspott, L.D.; Ballou, L.B.; Carlson, R.C.; Montan, D.N.; Butkovich, T.R.; Duncan, J.E.; Patrick, W.C.; Wilder, D.G.; Brough, W.G.; Mayr, M.C.

    1979-01-01

    We plan to emplace spent fuel assemblies from an operating commercial nuclear reactor in the Climax granite at the US Department of Energy's Nevada Test Site. In this generic test, 11 canisters of spent fuel will be emplaced with 6 electrical simulator canisters in a storage drift 420 m below in surface and their effects compared. Two adjacent drifts will contain electrical heaters, operated to simulate the temperature-stress-displacement fields of a large repository. We describe the test objectives, the technical issues, the site, the preoperational measurement program, thermal and mechanical response calculations, the characteristics of the spent fuel, the field instrumentation and data-acquisition systems, and the system for handling the spent fuel

  17. The independent relationship between trouble controlling Facebook use, time spent on the site and distress

    Science.gov (United States)

    Muench, Fredrick; Hayes, Marie; Kuerbis, Alexis; Shao, Sijing

    2015-01-01

    Background and Aims There is an emerging literature base on the relationship between maladaptive traits and “addiction” to social networking sites. These studies have operationalized addiction as either spending excessive amounts of time on social networking sites (SNS) or trouble controlling SNS use, but have not assessed the unique contribution of each of these constructs on outcomes in the same models. Moreover, these studies have exclusively been conducted with younger people rather than a heterogeneous sample. This study examined the independent relationship of a brief Facebook addiction scale, time spent on Facebook, and Facebook checking on positive and negative social domains, while controlling for self-esteem and social desirability. Methods Participants were recruited using e-mail, SNS posts and through Amazon’s MTurk system. The sample included 489 respondents ages from 18 to approximately 70, who completed a 10–15 minute survey. Results Results indicate that neither time spent on Facebook nor Facebook checking was significantly associated with either self-esteem, fear of negative social evaluation or social comparison, while SNS addiction symptoms were each independently associated with Facebook usage. Neither time spent on Facebook nor SNS addiction symptoms were associated with positive social relationships. Discussion Overall results suggest that time on SNS and trouble controlling use should be considered independent constructs and that interventions should target underlying loss of control as the primary intervention target above ego syntonic time spent on the site. PMID:26551906

  18. Corrosion surveillance in spent fuel storage pools

    International Nuclear Information System (INIS)

    Howell, J.P.

    1996-01-01

    In mid-1991, corrosion of aluminum-clad spent nuclear fuel was observed in the light-water filled basins at the Savannah River site. A corrosion surveillance program was initiated in the P, K, L-Reactor basins and in the Receiving Basin for Offsite Fuels (RBOF). This program verified the aggressive nature of the pitting corrosion and provided recommendations for changes in basin operations to permit extended longer term interim storage. The changes were implemented during 1994--1996 and have resulted in significantly improved basin water quality with conductivity in the 1--3 microS/cm range. Under these improved conditions, no new pitting has been observed over the last three years. This paper describes the corrosion surveillance program at SRS and what has been learned about the corrosion of aluminum-clad in spent fuel storage pools

  19. Seismic hazard analysis for the NTS spent reactor fuel test site

    International Nuclear Information System (INIS)

    Campbell, K.W.

    1980-01-01

    An experiment is being directed at the Nevada Test Site to test the feasibility for storage of spent fuel from nuclear reactors in geologic media. As part of this project, an analysis of the earthquake hazard was prepared. This report presents the results of this seismic hazard assessment. Two distinct components of the seismic hazard were addressed: vibratory ground motion and surface displacement

  20. Local negotiation on compensation siting of the spent nuclear fuel repository in Finland

    International Nuclear Information System (INIS)

    Kojo, Matti

    2007-01-01

    The aim of the paper is to analyse the local negotiation process between the Municipality of Eurajoki and the nuclear power company Teollisuuden Voima (TVO) and the nuclear waste management company Posiva Oy. The aim of the negotiations was to find an acceptable form of compensation for siting a spent nuclear fuel repository in Olkiluoto, Finland. The paper includes background information on the siting process in Finland, the local political setting in the Municipality of Eurajoki and a description of the negotiation process. The analysis of the negotiations on compensation is important for better understanding the progress of the Finnish siting process. The paper describes the picture of the contest to host the spent nuclear fuel repository. It also provides more information on the relationship between the Municipality of Eurajoki and the power company TVO. The negotiations on compensation and the roles of various players in the negotiations have not been studied in detail because the minutes of the Vuojoki liaison group were not available before the decision of the Supreme Administrative Court in May 2006. (author)

  1. Site-specific issues related to structural/seismic design of an underground independent spent fuel storage installation (ISFSI)

    International Nuclear Information System (INIS)

    Tripathi, B.P.

    2005-01-01

    Utilities owning and operating commercial nuclear power plants (NPP) in USA may choose to build an underground Independent Spent Fuel Storage Installation (ISFSI) to store the spent nuclear fuels. The regulatory requirements and other guidance are based on 10 CFR Part 72, Regulatory Guide RG 3.73, Standard Review Plans NUREG-1536 and NUREG-1567, and Interim staff Guidance (ISG) documents as applicable. Structures, Systems, and Components (SSCs) classified as important to safety are designed to withstand the effects of site-specific environmental conditions and natural phenomena such as earthquake, tornado, flood, etc. An underground ISFSI for storage of spent nuclear fuel, presents some unique analysis and design challenges. This paper will briefly address some of these challenges and discuss site-specific loads, including seismic for the ISFSI design. (authors)

  2. Savannah River Site FY 1998 Spent Nuclear Fuel Interim Management Plan

    International Nuclear Information System (INIS)

    Dupont, M.E.

    1998-01-01

    This document has been prepared to present in one place the near and long-term plans for safe management of Savannah River Site (SRS) spent nuclear fuel inventories until final disposition has been identified and implemented. The activities described are consistent with FY 1998 Annual Operational Plan guidance and with the December 1997 SRS Accelerated Cleanup Plan update. Summarized are highlights, key decision dates, and baseline assumptions of this plan

  3. Site safety progress review of spent fuel central interim storage facility. Final report

    International Nuclear Information System (INIS)

    Gurpinar, A.; Serva, L.; Giuliani

    1995-01-01

    Following the request of the Czech Power Board (CEZ) and within the scope of the Technical Cooperation Project CZR/9/003, a progress review of the site safety of the Spent Fuel Central Interim Storage Facility (SFCISF) was performed. The review involved the first two stages of the works comprising the regional survey and identification of candidate sites for the underground and surface storage options. Five sites have been identified as a result of the previous works. The following two stages will involved the identification of the preferred candidate sites for the two options and the final site qualification. The present review had the purpose of assessing the work already performed and making recommendations for the next two stages of works

  4. Achieving increased spent fuel storage capacity at the High Flux Isotope Reactor (HFIR)

    International Nuclear Information System (INIS)

    Cook, D.H.; Chang, S.J.; Dabs, R.D.; Freels, J.D.; Morgan, K.A.; Rothrock, R.B.; Griess, J.C.

    1994-01-01

    The HFIR facility was originally designed to store approximately 25 spent cores, sufficient to allow for operational contingencies and for cooling prior to off-site shipment for reprocessing. The original capacity has now been increased to 60 positions, of which 53 are currently filled (September 1994). Additional spent cores are produced at a rate of about 10 or 11 per year. Continued HFIR operation, therefore, depends on a significant near-term expansion of the pool storage capacity, as well as on a future capability of reprocessing or other storage alternatives once the practical capacity of the pool is reached. To store the much larger inventory of spent fuel that may remain on-site under various future scenarios, the pool capacity is being increased in a phased manner through installation of a new multi-tier spent fuel rack design for higher density storage. A total of 143 positions was used for this paper as the maximum practical pool capacity without impacting operations; however, greater ultimate capacities were addressed in the supporting analyses and approval documents. This paper addresses issues related to the pool storage expansion including (1) seismic effects on the three-tier storage arrays, (2) thermal performance of the new arrays, (3) spent fuel cladding corrosion concerns related to the longer period of pool storage, and (4) impacts of increased spent fuel inventory on the pool water quality, water treatment systems, and LLLW volume

  5. Final disposal of spent nuclear fuel - basis for site selection

    International Nuclear Information System (INIS)

    Anttila, P.

    1995-05-01

    International organizations, e.g. IAEA, have published several recommendations and guides for the safe disposal of radioactive waste. There are three major groups of issues affecting the site selection process, i.e. geological, environmental and socioeconomic. The first step of the site selection process is an inventory of potential host rock formations. After that, potential study areas are screened to identify sites for detailed investigations, prior to geological conditions and overall suitability for the safe disposal. This kind of stepwise site selection procedure has been used in Finland and in Sweden. A similar approach has been proposed in Canada, too. In accordance with the amendment to the Nuclear Energy Act, that entered into force in the beginning of 1995, Imatran Voima Oy has to make preparations for the final disposal of spent fuel in the Finnish bedrock. Relating to the possible site selection, the following geological factors, as internationally recommended and used in the Nordic countries, should be taken into account: topography, stability of bedrock, brokenness and fracturing of bedrock, size of bedrock block, rock type, predictability and natural resources. The bedrock of the Loviisa NPP site is a part of the Vyborg rapakivi massif. As a whole the rapakivi granite area forms a potential target area, although other rock types or areas cannot be excluded from possible site selection studies. (25 refs., 7 figs.)

  6. Development of SKI's Regulatory Approach to the Siting of a Spent Nuclear Fuel Repository

    International Nuclear Information System (INIS)

    Westerlind, Magnus

    2003-01-01

    Since the beginning of the 1990s the Swedish Nuclear Fuel and Waste Management Co., SKB, is actively working with the siting of a spent nuclear fuel repository. Feasibility studies have been completed in a total of eight municipalities, and in December 2000 three municipalities (Oskarshamn, Tierp and Oesthammar) were proposed for further investigations. These site investigations include surface based site characterisation from deep bore holes but also further studies of infrastructure, land use, transportation etc. SKB's proposal was reviewed by SKI and about 60 other organisations, including municipalities, NGOs, government agencies etc. during the winter/spring 2000/2001. In June 2001 SKI reported the review findings to the Government. In parallel with SKI also the Swedish Council for Nuclear Waste (KASAM) reviewed SKB's proposal and reported to the Government. In its decision in November 2001 the Government supported SKB's proposal to continue with site investigations. Based on SKB's material, the reviews and the Government's decision the municipalities of Oesthammar and Oskarshamn have agreed to site investigations while Tierp have decided no to continue. The site investigations in Oesthammar and Oskarshamn started during 2002. The siting process has meant that several new actors have been engaged in nuclear waste management in general and disposal of spent nuclear fuel in particular. This has meant that 'old' actors, particularly SKB, the regulators (the Swedish Nuclear Power Inspectorate, SKI, and the Swedish Radiation Protection Authority, SSI) have had to evaluate, develop and clarify their roles and strategies for dialogue. This paper presents reflections on the impacts on some of SKI's regulatory activities

  7. Development of on-site spent fuel transfer system designs

    International Nuclear Information System (INIS)

    Lambert, R.W.; Pennington, C.W.; Guerra, G.V.

    1993-01-01

    The Electric Power Research Institute (EPRI) of the United States has sponsored development of conceptual designs for accomplishing spent fuel transfer from spent fuel pools to casks and from one cask to another. Under an EPRI research contract, transnuclear has developed several concepts for spent fuel transfer systems. (J.P.N.)

  8. Study on increasing spent fuel storage capacity at Juragua NPP

    International Nuclear Information System (INIS)

    Guerra Valdes, R.; Lopez Aldama, D.; Rodriguez Gual, M.; Garcia Yip, F.

    1999-01-01

    The delay in decision about the final disposal of the spent fuel, led to longer interim storage. The reracking og the storage pools was an economical and feasible option to increase the storage capacity on the site. Reracking of the storage facility led to the analysis of the new conditions for criticality, shielding, residual heat removal and mechanical loads over the structures. This paper includes a summary of the studies on criticality and dose rate changes in the vicinity of the storage pool of Juragua NPP

  9. Safety Assessment Document for the Spent Reactor Fuel Geologic Storage Test in the Climax Granite Stock at the Nevada Test site

    International Nuclear Information System (INIS)

    1980-01-01

    The objective of the Spent Fuel Geologic Storage Test in the Climax Granite Stock is to evaluate the response of a granitic rock mass to the underground storage of encapsulated spent reactor fuel in a geometry that simulates a module of a large-scale geologic repository. This document reports an assessment of the safety of conducting this test. Descriptions are provided of the geography, meteorology, hydrology, geology, and seismology of the Climax Site; the effects of postulated natural phenomena and other activities at the nevada Test Site on the safety of the test; and the design and operation of the test facility and associated equipment. Evaluations are made of both the radiological and nonradiological impacts of normal operations, abnormal operations, and postulated accidents. It is concluded that conduct of the spent fuel test at the Climax Site will not result in any undue risk to the public, property, environment, or site employees

  10. Risk assessment in spent fuel storage and transportation

    International Nuclear Information System (INIS)

    Pandimani, S.

    1989-01-01

    Risk assessment in various stages of nuclear fuel cycle is still an active area of Nuclear safety studies. From the results of risk assessment available in literature, it can be determined that the risk resulting from shipments of plutonium and spent-fuel are much greater than that resulting from the transport of other materials within the nuclear fuel cycle. In India spent fuels are kept in Spent Fuel Storage Pool (SFSP) for about 240-400 days, which is relatively a longer period compared to the usual 120 days as recommended by regulatory authorities. After cooling spent fuels are transported to the reprocessing sites which are mostly situated close to the plants. India has two high level waste treatment facilities, one PREFRE (Plutonium Reprocessing and Fuel Recycling) at Tarapur and the other one, a unit of Nuclear Fuel Complex at Hyderabad. This paper presents the risk associated with spent fuel storage and transportation for the Indian conditions. All calculations are based on a typical CANDU reactor system. Simple fault tree models are evolved for SFSP and for Transportation Accident Mode (TAM) for both road and rail. Fault tree quantification and risk assessment are done to each of these models. All necessary data for SFSP are taken mostly from Reactor Safety Study, (1975). Similarly, the data for rail TAM are taken from Annual Statistical Statements, (1987-8) and that for road TAM from Special Issue on Motor Vehicle Accident Statistics in India, (1986). Simulation method is used wherever necessary. Risk is also estimated for normal/accident free transport

  11. Spent Nuclear Fuel (SNF) Project Execution Plan

    International Nuclear Information System (INIS)

    LEROY, P.G.

    2000-01-01

    The Spent Nuclear Fuel (SNF) Project supports the Hanford Site Mission to cleanup the Site by providing safe, economic, environmentally sound management of Site spent nuclear fuel in a manner that reduces hazards by staging it to interim onsite storage and deactivates the 100 K Area facilities

  12. Spent Nuclear Fuel (SNF) Project Execution Plan

    Energy Technology Data Exchange (ETDEWEB)

    LEROY, P.G.

    2000-11-03

    The Spent Nuclear Fuel (SNF) Project supports the Hanford Site Mission to cleanup the Site by providing safe, economic, environmentally sound management of Site spent nuclear fuel in a manner that reduces hazards by staging it to interim onsite storage and deactivates the 100 K Area facilities.

  13. Pacific Northwest Laboratory (PNL) spent fuel transportation and handling facility models

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, W.B.; Bower, J.C.; Burnett, R.A.; Engel, R.L.; Rolland, C.W.

    1979-09-01

    A spent fuel logistics study was conducted in support of the US DOE program to develop facilities for preparing spent unreprocessed fuel from commercial LWRs for geological storage. Two computerized logistics models were developed. The first one was the site evaluation model. Two studies of spent fuel handling facility and spent fuel disposal facility siting were completed; the first postulates a single spent fuel handling facility located at any of six DOE laboratory sites, while the second study examined siting strategies with the spent fuel repository relative to the spent fuel handling facility. A second model to conduct storage/handling facility simulations was developed. (DLC)

  14. Pacific Northwest Laboratory (PNL) spent fuel transportation and handling facility models

    International Nuclear Information System (INIS)

    Andrews, W.B.; Bower, J.C.; Burnett, R.A.; Engel, R.L.; Rolland, C.W.

    1979-09-01

    A spent fuel logistics study was conducted in support of the US DOE program to develop facilities for preparing spent unreprocessed fuel from commercial LWRs for geological storage. Two computerized logistics models were developed. The first one was the site evaluation model. Two studies of spent fuel handling facility and spent fuel disposal facility siting were completed; the first postulates a single spent fuel handling facility located at any of six DOE laboratory sites, while the second study examined siting strategies with the spent fuel repository relative to the spent fuel handling facility. A second model to conduct storage/handling facility simulations was developed

  15. Spent fuel management in Japan

    International Nuclear Information System (INIS)

    Mineo, H.; Nomura, Y.; Sakamoto, K.

    1998-01-01

    In Japan 52 commercial nuclear power units are now operated, and the total power generation capacity is about 45 GWe. The cumulative amount of spent fuel arising is about 13,500 tU as of March 1997. Spent fuel is reprocessed, and recovered nuclear materials are to be recycled in LWRs and FBRs. In February 1997 short-term policy measures were announced by the Atomic Energy Commission, which addressed promotion of reprocessing programme in Rokkasho, plutonium utilization in LWRs, spent fuel management, backend measures and FBR development. With regard to the spent fuel management, the policy measures included expansion of spent fuel storage capacity at reactor sites and a study on spent fuel storage away from reactor sites, considering the increasing amount of spent fuel arising. Research and development on spent fuel storage has been carried out, particularly on dry storage technology. Fundamental studies are also conducted to implement the burnup credit into the criticality safety design of storage and transportation casks. Rokkasho reprocessing plant is being constructed towards its commencement in 2003, and Pu utilization in LWRs will be started in 1999. Research and development of future recycling technology are also continued for the establishment of nuclear fuel cycle based on FBRs and LWRs. (author)

  16. BWR Spent Nuclear Fuel Integrity Research and Development Survey for UKABWR Spent Fuel Interim Storage

    Energy Technology Data Exchange (ETDEWEB)

    Bevard, Bruce Balkcom [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mertyurek, Ugur [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Belles, Randy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Scaglione, John M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    The objective of this report is to identify issues and support documentation and identify and detail existing research on spent fuel dry storage; provide information to support potential R&D for the UKABWR (United Kingdom Advanced Boiling Water Reactor) Spent Fuel Interim Storage (SFIS) Pre-Construction Safety Report; and support development of answers to questions developed by the regulator. Where there are gaps or insufficient data, Oak Ridge National Laboratory (ORNL) has summarized the research planned to provide the necessary data along with the schedule for the research, if known. Spent nuclear fuel (SNF) from nuclear power plants has historically been stored on site (wet) in spent fuel pools pending ultimate disposition. Nuclear power users (countries, utilities, vendors) are developing a suite of options and set of supporting analyses that will enable future informed choices about how best to manage these materials. As part of that effort, they are beginning to lay the groundwork for implementing longer-term interim storage of the SNF and the Greater Than Class C (CTCC) waste (dry). Deploying dry storage will require a number of technical issues to be addressed. For the past 4-5 years, ORNL has been supporting the U.S. Department of Energy (DOE) in identifying these key technical issues, managing the collection of data to be used in issue resolution, and identifying gaps in the needed data. During this effort, ORNL subject matter experts (SMEs) have become expert in understanding what information is publicly available and what gaps in data remain. To ensure the safety of the spent fuel under normal and frequent conditions of wet and subsequent dry storage, intact fuel must be shown to: 1.Maintain fuel cladding integrity; 2.Maintain its geometry for cooling, shielding, and subcriticality; 3.Maintain retrievability, and damaged fuel with pinhole or hairline cracks must be shown not to degrade further. Where PWR (pressurized water reactor) information is

  17. Spent fuel management in South Africa

    International Nuclear Information System (INIS)

    Bredell, P.J.; Stott, A.K.

    1998-01-01

    Eskom, the South African utility, operates one of the largest electricity networks in the world. However, only 6% of the South African generating capacity is nuclear; the remainder is coal fired and hydroelectric. The nuclear component consists of the Koeberg Nuclear Power Plant, comprising two French supplied PWRs of 920 MWe each, situated approximately 45 kilometres from cape Town. Construction started in 1976 and the two reactors reached criticality in 1984 and 1985 respectively. South Africa also has an Oak Ridge type research reactor, called SAFARI, operated by the South African Atomic Energy Corporation (AEC) at their Pelindaba site near Pretoria. This research reactor was commissioned in 1965, and has been in operation ever since. South Africa has a National Radioactive Waste Disposal facility called Vaalputs, some 600 km north of Cape Town. The facility, operated by AEC, is presently licensed only for the disposal of low and intermediate radioactive level wastes. Vaalputs offers unique features as a potential interim spent fuel storage and final disposal site, such as favorable geology (granite), low seismicity, low population density, remoteness from industrial centres and and conditions. Therefore, this site has been investigated by the AEC as a potential interim spent fuel storage site, but has not yet been licensed for this purpose. Hence, all spent fuel is currently stored on the two sites at Koeberg and Pelindaba respectively. The spent fuel storage pools at Koeberg have recently been enlarged to accommodate the lifetime spent fuel arisings of the plant. Since late 1997, the Safari spent fuel is stored in a pipe storage facility, constructed away from the reactor on the Pelindaba site. (author)

  18. Site selection - location of the repository for spent nuclear fuel; Platsval - lokalisering av slutfoervaret foer anvaent kaernbraensle

    Energy Technology Data Exchange (ETDEWEB)

    2010-12-15

    This document describes the localization work and SKB's choice of site for the repository. Furthermore, SKB's basis and rationale for the decisions taken during the work are reported. The document is Appendix PV of applications under the Nuclear Activities Act and the Environmental Code to both build and operate an encapsulation plant adjacent to the central interim storage facility for spent nuclear fuel in Oskarshamn, and to construct and operate a disposal facility for spent nuclear fuel at Forsmark in Oesthammar municipality

  19. Application of ultra-sons to on-site spent fuel assemblies metrology

    International Nuclear Information System (INIS)

    Gondard, C.; Saglio, R.; Vouillot, M.; Delaroche, P.; Vaubert, Y.; Van Craeynest, J.C.

    1983-12-01

    Fuel assemblies inspection on the site of a power reactor, between two irradiation campaigns, allows to estimate the behaviour of prototype fuel assemblies and to permit their refueling for the continuation of the irradiation; the utilization of non-destructive, reliable and high-performance techniques, is of a great interest in the application. For, this reason, the C.E.A. has been led to carry out new techniques allowing the visual examination and the dimensional inspection of spent fuel assemblies of 900 MWe French pressurized water reactors, with a transportable Fuel Examination Module (MEC) on every reactor site. This module includes a television camera, and uses for the first time as ''position sensor'' the properties offered by a set of ultrasonic transducers. The main principle of the design, of the operation way of the module, of the measuring methods, and, of the data acquisition and processing, are presented [fr

  20. Fuel Assemblies Thermal Analysis in the New Spent Fuel Storage Facility at Inshass Site

    International Nuclear Information System (INIS)

    Khattab, M.; Mariy, Ahmed

    1999-01-01

    New Wet Storage Facility (NSF) is constructed at Inshass site to solve the problem of spent fuel storage capacity of ETRR-1 reactor . The Engineering Safety Heat Transfer Features t hat characterize the new facility are presented. Thermal analysis including different scenarios of pool heat load and safety limits are discussed . Cladding temperature limit during handling and storage process are specified for safe transfer of fuel

  1. Spent fuel interim management: 1995 update

    International Nuclear Information System (INIS)

    Anderson, C.K.

    1995-01-01

    The problems of interim away-from-reactor spent fuel storage and storage in spent fuel pools at the reactor site are discussed. An overview of the state-of-the-art in the USA, Europe, and Japan is presented. The technical facilities for away-from-reactor storage are briefly described, including wet storage pools, interactive concrete systems, metallic containers, and passive concrete systems. Reprocessing technologies are mostly at the design stage only. It is predicted that during the 20 years to come, about 50 000 tonnes of spent fuel will be stored at reactor sites regardless of the advance of spent fuel reprocessing or interim storage projects. (J.B.). 4 tabs., 2 figs

  2. Site investigations for the disposal of spent fuel - investigation program

    International Nuclear Information System (INIS)

    Aeikaes, Timo

    1985-11-01

    The Industrial Power Company Ltd (TVO) is making preparations for the final disposal of spent nuclear fuel into the Finnish bedrock. The revised site investigation program for the years 1986-2010 is presented in this report. The objectives and activities in the near future are described in more detail. The main objectives and frame programs for the investigations in the more distant future are described. The program planning of these investigations are being developed in the preceding site investigations. The investigations for the site selection are divided into four phases: 1983-1985 selection of the investigation areas, preparations for the field investigations, drilling and investigations in a deep test borehole; 1986-1992 preliminary site investigations in 5-10 investigation areas; 1993-2000 detailed site investigations in 2-3 investigation areas. Site selection in the year 2000; 2001-2010 complementary investigations on the selected site. The first investigation phase will be carried out as planned. In this phase a 1001 m deep test borehole was drilled at Lavia in western Finland. With the investigations in the borehole and related development work, preparations were made for the future field investigations. The equipment and investigation methods are being developed during the site investigations. The equipment for taking groundwater samples and the unit for hydraulic testing have been developed. In the future the emphasis in the work will be in developing equipment for monitoring of the hydraulic head and measuring the volumetric flow. In groundwater sampling the present procedure can be improved by adding the test for the in-situ measurements. The results of the field investigations will be stored and processed in a centralized data base. The data base will transmit the results for the interpretation and then the interpreted results transmitted for model calculations and reporting. The cost estimate for the investigations in 1986-2010 is 110-125 million

  3. Rock cavern storage of spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Won Jin; Kim, Kyung Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kwon, Sang Ki [Inha University, Incheon (Korea, Republic of)

    2015-12-15

    The rock cavern storage for spent fuel has been assessed to apply in Korea with reviewing the state of the art of the technologies for surface storage and rock cavern storage of spent fuel. The technical feasibility and economic aspects of the rock cavern storage of spent fuel were also analyzed. A considerable area of flat land isolated from the exterior are needed to meet the requirement for the site of the surface storage facilities. It may, however, not be easy to secure such areas in the mountainous region of Korea. Instead, the spent fuel storage facilities constructed in the rock cavern moderate their demands for the suitable site. As a result, the rock cavern storage is a promising alternative for the storage of spent fuel in the aspect of natural and social environments. The rock cavern storage of spent fuel has several advantages compared with the surface storage, and there is no significant difference on the viewpoint of economy between the two alternatives. In addition, no great technical difficulties are present to apply the rock cavern storage technologies to the storage of domestic spent fuel.

  4. Spent fuel treatment in Japan

    International Nuclear Information System (INIS)

    Takahashi, K.

    1999-01-01

    In Japan, 52 nuclear power reactors are operating with a total power generation capacity of 45 GWe. The cumulative amount of spent fuel arising, as of March 1998, is about 14,700 W. Spent fuel is reprocessed and recovered nuclear materials are to be recycled in LWRs and FBRs. Pu utilization in LWRs will commence in 1999. In January 1997, short-term policy measures were announced by the Atomic Energy Commission, which addressed promotion of the reprocessing programme in Rokkasho, plutonium utilization in LWRs, spent fuel management, back-end measures and FBR development. With regard to the spent fuel management, the policy measures included expansion of spent fuel storage capacity at reactor sites and a study on spent fuel storage away-from-reactor sites, considering the increasing amount of spent fuel arising. Valuable experience was been accumulated at the Tokai Reprocessing Plant (TRP), from the start of hot operation in 1977 up to now. The role of the TRP will be changed from an operation-oriented to a more R and D oriented facility, when PNC is reorganized into the new organization JNC. The Rokkasho reprocessing plant is under construction and is expected to commence operation in 2003. R and D of future recycling technologies is also continued for the establishment of a nuclear fuel cycle based on FBRs and LWRs. (author)

  5. Presentation of safety after closure of the repository for spent nuclear fuel. Main report of the project SR-Site. Part III

    International Nuclear Information System (INIS)

    2011-01-01

    The purpose of the safety assessment SR-Site is to investigate whether a safe repository for spent nuclear fuel by KBS-3 type can be constructed at Forsmark in Oesthammar in Sweden. The location of the Forsmark has been selected based on results of several surveys from surface conditions at depth in Forsmark and in Laxemar in Oskarshamn. The choice of location is not justified in SR-Site Report, but in other attachments to SKB's permit applications. SR-Site Report is an important part of SKB's permit applications to construct and operate a repository for spent nuclear fuel at Forsmark in Oesthammar. The purpose of the report in the applications is to show that a repository at Forsmark is safe after closure

  6. Presentation of safety after closure of the repository for spent nuclear fuel. Main report of the project SR-Site. Part I

    International Nuclear Information System (INIS)

    2011-01-01

    The purpose of the safety assessment SR-Site is to investigate whether a safe repository for spent nuclear fuel by KBS-3 type can be constructed at Forsmark in Oesthammar in Sweden. The location of the Forsmark has been selected based on results of several surveys from surface conditions at depth in Forsmark and in Laxemar in Oskarshamn. The choice of location is not justified in SR-Site Report, but in other attachments to SKB's permit applications. SR-Site Report is an important part of SKB's permit applications to construct and operate a repository for spent nuclear fuel at Forsmark in Oesthammar. The purpose of the report in the applications is to show that a repository at Forsmark is safe after closure

  7. Spent Nuclear Fuel project, project management plan

    International Nuclear Information System (INIS)

    Fuquay, B.J.

    1995-01-01

    The Hanford Spent Nuclear Fuel Project has been established to safely store spent nuclear fuel at the Hanford Site. This Project Management Plan sets forth the management basis for the Spent Nuclear Fuel Project. The plan applies to all fabrication and construction projects, operation of the Spent Nuclear Fuel Project facilities, and necessary engineering and management functions within the scope of the project

  8. Spent nuclear fuel in Bulgaria

    International Nuclear Information System (INIS)

    Peev, P.; Kalimanov, N.

    1999-01-01

    The development of the nuclear energy sector in Bulgaria is characterized by two major stages. The first stage consisted of providing a scientific basis for the programme for development of the nuclear energy sector in the country and was completed with the construction of an experimental water-water reactor. At present, spent nuclear fuel from this reactor is placed in a water filled storage facility and will be transported back to Russia. The second stage consisted of the construction of the 6 NPP units at the Kozloduy site. The spent nuclear fuel from the six units is stored in at reactor pools and in an additional on-site storage facility which is nearly full. In order to engage the government of the country with the on-site storage problems, the new management of the National Electric Company elaborated a policy on nuclear fuel cycle and radioactive waste management. The underlying policy is de facto the selection of the 'deferred decision' option for its spent fuel management. (author)

  9. Optimization of time and location dependent spent nuclear fuel storage capacity

    International Nuclear Information System (INIS)

    Macek, V.

    1977-01-01

    A linear spent fuel storage model is developed to identify cost-effective spent nuclear fuel storage strategies. The purpose of this model is to provide guidelines for the implementation of the optimal time-dependent spent fuel storage capacity expansion in view of the current economic and regulatory environment which has resulted in phase-out of the closed nuclear fuel cycle. Management alternatives of the spent fuel storage backlog, which is created by mismatch between spent fuel generation rate and spent fuel disposition capability, are represented by aggregate decision variables which describe the time dependent on-reactor-site and off-site spent fuel storage capacity additions, and the amount of spent fuel transferred to off-site storage facilities. Principal constraints of the model assure determination of cost optimal spent fuel storage expansion strategies, while spent fuel storage requirements are met at all times. A detailed physical and economic analysis of the essential components of the spent fuel storage problem, which precedes the model development, assures its realism. The effects of technological limitations on the on-site spent fuel storage expansion and timing of reinitiation of the spent fuel reprocessing on optimal spent fuel storage capacity expansion are investigated. The principal results of the study indicate that (a) expansion of storage capacity beyond that of currently planned facilities is necessary, and (b) economics of the post-reactor fuel cycle is extremely sensitive to the timing of reinitiation of spent fuel reprocessing. Postponement of reprocessing beyond mid-1982 may result in net negative economic liability of the back end of the nuclear fuel cycle

  10. Final disposal of spent nuclear fuel in Finnish bedrock - Romuvaara site report

    Energy Technology Data Exchange (ETDEWEB)

    Anttila, P. [Fortum Engineering Oy (Finland); Ahokas, H. [Fintact Oy (Finland); Front, K. [VTT Communities and Infrastructure, Espoo (Finland)] [and others

    1999-06-01

    Posiva Oy is studying the Finnish bedrock for the geological disposal of spent nuclear fuel. The study is based on the site selection research programme started originally in 1983. The programme is in accordance with the decision in principle by the Council of State in 1983 and aims at the selection of one site in 2000. Four sites, Haestholmen in Loviisa, Kivetty in Aeaenekoski, Olkiluoto in Eurajoki and Romuvaara in Kuhmo, have been studied in detail. This report summarises the results of the site investigations carried out at Romuvaara. The bedrock of Romuvaara belongs to the Archean basement complex, whose oldest parts date back over 2800 million years. The bedrock consists mainly of migmatitic banded gneisses (tonalite, leucotonalite and mica gneiss), which are cut by granodiorite and metadiabase dykes. The rocks, excluding the metadiabase, have undergone a polyphase Archaean deformation. Altogether 31 bedrock structures (R-structures) have been modelled at the investigation site, most of them representing steeply dipping fracture zones. The rock mass between the fracture zones represents what is termed `intact rock`, which is typically hard, unweathered and sparsely fractured. The R-structures are generally hydraulically more conductive than the intact rock and their mean transmissivity is 1.6 x 10{sup -7} m{sup 2}/s. The corresponding mean of the hydraulic conductivity values for the intact rock measured using a 2 m packer interval is 8 x 10{sup -12} m/s, if a lognormal distribution for all measured values is assumed. A clear decrease in hydraulic conductivity with depth has been found, for both the R-structures and the intact rock. In addition, the hydraulically conductive fractures seem to be more frequent and their transmissivities higher in the uppermost 100 - 200 m of the bedrock than at greater depths. The groundwater of Romuvaara is classified as fresh water and the Total Dissolved Solids (TDS) and chloride contents increase with depth. The chemically

  11. Final disposal of spent nuclear fuel in Finnish bedrock - Kivetty site report

    International Nuclear Information System (INIS)

    Anttila, P.; Ahokas, H.; Front, K.

    1999-06-01

    Posiva Oy is studying the Finnish bedrock for the geological disposal of spent nuclear fuel. The study is based on the site selection research programme started originally in 1983. The programme is in accordance with the decision in principle by the Council of State in 1983 and aims at the selection of one site in 2000. Four sites, Haestholmen in Loviisa, Kivetty in Aeaenekoski, Olkiluoto in Eurajoki and Romuvaara in Kuhmo, have been studied in detail. This report summarises the results of the site investigations carried out at Kivetty. The bedrock of Kivetty belongs to the large Svecofennian granitoid complex of central Finland, about 1880 million years in age. The most common rock type is porphyritic granodiorite, which is cut by younger medium-grained granodiorite and porphyritic or even-grained granite. Minor bodies of gabbro, older than the porphyritic granodiorite, are also present. The granitoids show evidence of two deformation phases. Altogether 29 bedrock 'structures' (R-structures) have been modelled at the investigation site, most of them representing steeply dipping fracture zones. The rock mass between the fracture zones represents what is termed 'intact rock', which is typically hard, unweathered and sparsely fractured. The R-structures are generally hydraulically more conductive than the intact rock and their mean transmissivity is 1.3-10 -6 m 2 /s. The corresponding mean of the hydraulic conductivity values for the intact rock, measured using a 2 m packer interval is 4*10 -11 m 2 /s, if a lognormal distribution for all measured values is assumed. A clear decrease in hydraulic conductivity with depth has been found for the intact rock, and there seems to be a parallel decrease in the transmissivity of structures. In addition, the hydraulically conductive fractures seem to be more frequent and their transmissivities higher in the uppermost 100 - 200 m of the bedrock than at greater depths. The groundwater of Kivetty is classified as fresh water and

  12. Final disposal of spent nuclear fuel in Finnish bedrock - Romuvaara site report

    International Nuclear Information System (INIS)

    Anttila, P.; Ahokas, H.; Front, K.

    1999-06-01

    Posiva Oy is studying the Finnish bedrock for the geological disposal of spent nuclear fuel. The study is based on the site selection research programme started originally in 1983. The programme is in accordance with the decision in principle by the Council of State in 1983 and aims at the selection of one site in 2000. Four sites, Haestholmen in Loviisa, Kivetty in Aeaenekoski, Olkiluoto in Eurajoki and Romuvaara in Kuhmo, have been studied in detail. This report summarises the results of the site investigations carried out at Romuvaara. The bedrock of Romuvaara belongs to the Archean basement complex, whose oldest parts date back over 2800 million years. The bedrock consists mainly of migmatitic banded gneisses (tonalite, leucotonalite and mica gneiss), which are cut by granodiorite and metadiabase dykes. The rocks, excluding the metadiabase, have undergone a polyphase Archaean deformation. Altogether 31 bedrock structures (R-structures) have been modelled at the investigation site, most of them representing steeply dipping fracture zones. The rock mass between the fracture zones represents what is termed 'intact rock', which is typically hard, unweathered and sparsely fractured. The R-structures are generally hydraulically more conductive than the intact rock and their mean transmissivity is 1.6 x 10 -7 m 2 /s. The corresponding mean of the hydraulic conductivity values for the intact rock measured using a 2 m packer interval is 8 x 10 -12 m/s, if a lognormal distribution for all measured values is assumed. A clear decrease in hydraulic conductivity with depth has been found, for both the R-structures and the intact rock. In addition, the hydraulically conductive fractures seem to be more frequent and their transmissivities higher in the uppermost 100 - 200 m of the bedrock than at greater depths. The groundwater of Romuvaara is classified as fresh water and the Total Dissolved Solids (TDS) and chloride contents increase with depth. The chemically most evolved

  13. The dry spent RBMK fuel cask storage site at the Ignalina NPP in Lithuania

    International Nuclear Information System (INIS)

    Penkov, V.V.; Diersch, R.

    1999-01-01

    At present, there are about 15,000 spent RBMK fuel assemblies stored in the water pools near the reactors at the Ignalina Nuclear Power Plant (INPP). Part of them are cut in two bundles and stored in standardized baskets in the pools. Each basket is loaded with 102 bundles. For long-term interim storage of this fuel, it was decided to use dry storage in casks. For this reason, the total activity to be stored is split into individual units (casks). Each cask represents a closed and independent safety system, fulfilling all safety-relevant requirements for both normal operational and hypothetical accidental conditions. The main safety relevant features of the storage cask system are: (1) Inherent safety system; (2) Double barrier system; (3) Passive cooling by natural convection; (4) Safety against accidents. The cask dry storage system is a cost effective and multi-functional system for storage, transport after the operation time and final disposal under consideration of additional protective elements. From an economical point of view, cask storage has a number of advantages. Two cask types have been intended for the INPP storage site: (1) The CASTOR RBMK cask made of ductile cast iron; (2) The CONSTOR RBMK sandwich cask made of an inner and outer steel shell and reinforced heavy concrete. The CASTOR RBMK and the CONSTOR RBMK casks are designed to withstand severe storage site accidents and with help of impact limiters - to fulfil the IAEA test criteria for type B(U)F packages. The INPP spent RBMK fuel storage site is designed as an open air storage for an operational time of 50 years. The casks are arranged on the concrete storage pad. The site is equipped with a crane for cask handling and technological buildings and security systems. The safety analyses for fuel and cask handling and for cask handling and for cask technology at the site have been made and accepted by the Lithuanian Competent Authority. (author)

  14. Thermal calculations for the design, construction, operation, and evaluation of the Spent Fuel Test - Climax, Nevada Test Site

    International Nuclear Information System (INIS)

    Montan, D.N.; Patrick, W.C.

    1981-01-01

    The Spent Fuel Test-Climax (SFT-C) is a test of retrievable deep geologic storage of commercially generated spent nuclear reactor fuel in granitic rock. Eleven spent fuel assemblies, together with six electrical simulators and 20 guard heaters, are emplaced 420 m below the surface in the Climax granite at the US Department of Energy Nevada Test Site. On June 2, 1978 LLNL secured funding for the SFT-C, and completed spent fuel emplacement May 28, 1980. This report documents a series of thermal calculations that were performed in support of the SFT-C. Early calculations employed analytical solutions to address such design and construction issues as drift layout and emplacement hole spacings. Operational aspects of the test required more detailed numerical solutions dealing with ventilation and guard-heater power levels. The final set of calculations presented here provides temperature histories throughout the test facility for evaluation of the response of the SFT-C and for comparison of calculations with acquired data. This final set of calculations employs the as-built test geometry and best-available material properties

  15. Management of Hanford Site non-defense production reactor spent nuclear fuel, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1997-03-01

    The US Department of Energy (DOE) needs to provide radiologically, and industrially safe and cost-effective management of the non-defense production reactor spent nuclear fuel (SNF) at the Hanford Site. The proposed action would place the Hanford Site's non-defense production reactor SNF in a radiologically- and industrially-safe, and passive storage condition pending final disposition. The proposed action would also reduce operational costs associated with storage of the non-defense production reactor SNF through consolidation of the SNF and through use of passive rather than active storage systems. Environmental, safety and health vulnerabilities associated with existing non-defense production reactor SNF storage facilities have been identified. DOE has determined that additional activities are required to consolidate non-defense production reactor SNF management activities at the Hanford Site, including cost-effective and safe interim storage, prior to final disposition, to enable deactivation of facilities where the SNF is now stored. Cost-effectiveness would be realized: through reduced operational costs associated with passive rather than active storage systems; removal of SNF from areas undergoing deactivation as part of the Hanford Site remediation effort; and eliminating the need to duplicate future transloading facilities at the 200 and 400 Areas. Radiologically- and industrially-safe storage would be enhanced through: (1) removal from aging facilities requiring substantial upgrades to continue safe storage; (2) utilization of passive rather than active storage systems for SNF; and (3) removal of SNF from some storage containers which have a limited remaining design life. No substantial increase in Hanford Site environmental impacts would be expected from the proposed action. Environmental impacts from postulated accident scenarios also were evaluated, and indicated that the risks associated with the proposed action would be small

  16. Standardized, utility-DOE compatible, spent fuel storage-transport systems

    International Nuclear Information System (INIS)

    Smith, M.L.

    1991-01-01

    Virginia Power has developed and licensed a facility for dry storage of spent nuclear fuel in metal spent fuel storage casks. The modifications to the design of these casks necessary for licensing for both storage and transport of spent fuel are discussed along with the operational advantages of dual purpose storage-transport casks. Dual purpose casks can be used for storage at utility and DOE sites (MRS or repository) and for shipment between these sites with minimal spent fuel handling. The cost for a standardized system of casks that are compatible for use at both DOE and utility sites is discussed along with possible arrangements for sharing both the cost and benefits of dual purpose storage-transport casks

  17. Modular dry storage of spent fuel

    International Nuclear Information System (INIS)

    Baxter, J.W.

    1982-01-01

    Long term uncertainties in US spent fuel reprocessing and storage policies and programs are forcing the electric utilities to consider means of storing spent fuel at the reactor site in increasing quantitities and for protracted periods. Utilities have taken initial steps in increasing storage capacity. Existing wet storage pools have in many cases been reracked to optimize their capacity for storing spent fuel assemblies

  18. Safety aspects of dry spent fuel storage and spent fuel management

    International Nuclear Information System (INIS)

    Botsch, W.; Smalian, S.; Hinterding, P.; Voelzke, H.; Wolff, D.; Kasparek, E.

    2014-01-01

    The storage of spent nuclear fuel (SF) and high-level radioactive waste (HLW) must conform to safety requirements. Safety aspects like safe enclosure of radioactive materials, safe removal of decay heat, nuclear criticality safety and avoidance of unnecessary radiation exposure must be achieved throughout the storage period. The implementation of these safety requirements can be achieved by dry storage of SF and HLW in casks as well as in other systems such as dry vault storage systems or spent fuel pools, where the latter is neither a dry nor a passive system. In Germany dual purpose casks for SF or HLW are used for safe transportation and interim storage. TUV and BAM, who work as independent experts for the competent authorities, present the storage licensing process including sites and casks and inform about spent nuclear fuel management and issues concerning dry storage of spent nuclear fuel, based on their long experience in these fields (authors)

  19. Final disposal of spent nuclear fuel in Finnish bedrock - Kivetty site report

    Energy Technology Data Exchange (ETDEWEB)

    Anttila, P. [Fortum Engineering Oy, Vantaa (Finland); Ahokas, H.; Front, K. [Fintact Oy (Finland)] [and others

    1999-06-01

    Posiva Oy is studying the Finnish bedrock for the geological disposal of spent nuclear fuel. The study is based on the site selection research programme started originally in 1983. The programme is in accordance with the decision in principle by the Council of State in 1983 and aims at the selection of one site in 2000. Four sites, Haestholmen in Loviisa, Kivetty in Aeaenekoski, Olkiluoto in Eurajoki and Romuvaara in Kuhmo, have been studied in detail. This report summarises the results of the site investigations carried out at Kivetty. The bedrock of Kivetty belongs to the large Svecofennian granitoid complex of central Finland, about 1880 million years in age. The most common rock type is porphyritic granodiorite, which is cut by younger medium-grained granodiorite and porphyritic or even-grained granite. Minor bodies of gabbro, older than the porphyritic granodiorite, are also present. The granitoids show evidence of two deformation phases. Altogether 29 bedrock 'structures' (R-structures) have been modelled at the investigation site, most of them representing steeply dipping fracture zones. The rock mass between the fracture zones represents what is termed 'intact rock', which is typically hard, unweathered and sparsely fractured. The R-structures are generally hydraulically more conductive than the intact rock and their mean transmissivity is 1.3-10{sup -6} m{sup 2}/s. The corresponding mean of the hydraulic conductivity values for the intact rock, measured using a 2 m packer interval is 4*10{sup -11} m{sup 2}/s, if a lognormal distribution for all measured values is assumed. A clear decrease in hydraulic conductivity with depth has been found for the intact rock, and there seems to be a parallel decrease in the transmissivity of structures. In addition, the hydraulically conductive fractures seem to be more frequent and their transmissivities higher in the uppermost 100 - 200 m of the bedrock than at greater depths. The groundwater of

  20. Regulatory supervision of sites for spent fuel and radioactive waste storage in the Russian northwest.

    Science.gov (United States)

    Shandala, N K; Sneve, M K; Smith, G M; Kiselev, M F; Kochetkov, O A; Savkin, M N; Simakov, A V; Novikova, N Ya; Titov, A V; Romanov, V V; Seregin, V A; Filonova, A V; Semenova, M P

    2008-12-01

    In the 1960s two technical bases for the Northern Fleet were created in the Russian northwest at Andreeva Bay in the Kola Peninsula and Gremikha village on the coast of the Barents Sea. They maintained nuclear submarines, receiving and storing radioactive waste and spent nuclear fuel. No further waste was received after 1985, and the technical bases have since been re-categorised as temporary storage sites. The handling of these materials to put them into a safe condition is especially hazardous because of their degraded state. This paper describes regulatory activities which have been carried out to support the supervision of radiological protection during recovery of waste and spent fuel, and to support regulatory decisions on overall site remediation. The work described includes: an assessment of the radiation situation on-site; the development of necessary additional regulatory rules and standards for radiation protection assurance for workers and the public during remediation; and the completion of an initial threat assessment to identify regulatory priorities. Detailed consideration of measures for the control of radiation exposure of workers and radiation exposure of the public during and after operations and emergency preparedness and response are complete and provided in sister papers. The continuing requirements for regulatory activities relevant to the development and implementation of on-going and future remediation activities are also outlined. The Norwegian Radiation Protection Authority supports the work, as part of the Norwegian Government's plan of action to promote improvements in radiation protection and nuclear safety in northwest Russia.

  1. Regulatory supervision of sites for spent fuel and radioactive waste storage in the Russian Northwest

    Energy Technology Data Exchange (ETDEWEB)

    Shandala, N K; Kochetkov, O A; Savkin, M N; Simakov, A V; Novikova, N Ya; Titov, A V; Seregin, V A; Filonova, A V; Semenova, M P [Burnasyan Federal Medical Biophysical Centre, Moscow (Russian Federation); Sneve, M K [Norwegian Radiation Protection Authority, Oslo (Norway); Smith, G M [GMS Abingdon Ltd (United Kingdom); Kiselev, M F; Romanov, V V [Federal Medical-Biological Agency, Moscow (Russian Federation)], E-mail: shandala@srcibph.ru

    2008-12-15

    In the 1960s two technical bases for the Northern Fleet were created in the Russian northwest at Andreeva Bay in the Kola Peninsula and Gremikha village on the coast of the Barents Sea. They maintained nuclear submarines, receiving and storing radioactive waste and spent nuclear fuel. No further waste was received after 1985, and the technical bases have since been re-categorised as temporary storage sites. The handling of these materials to put them into a safe condition is especially hazardous because of their degraded state. This paper describes regulatory activities which have been carried out to support the supervision of radiological protection during recovery of waste and spent fuel, and to support regulatory decisions on overall site remediation. The work described includes: an assessment of the radiation situation on-site; the development of necessary additional regulatory rules and standards for radiation protection assurance for workers and the public during remediation; and the completion of an initial threat assessment to identify regulatory priorities. Detailed consideration of measures for the control of radiation exposure of workers and radiation exposure of the public during and after operations and emergency preparedness and response are complete and provided in sister papers. The continuing requirements for regulatory activities relevant to the development and implementation of on-going and future remediation activities are also outlined. The Norwegian Radiation Protection Authority supports the work, as part of the Norwegian Government's plan of action to promote improvements in radiation protection and nuclear safety in northwest Russia.

  2. Characterization of stored defense production spent nulcear fuel and associated materials at Hanford Site, Richland Washington: Environmental assessment

    International Nuclear Information System (INIS)

    1995-03-01

    There are about 2,100 tonnes (2,300 tons) of defense production spent nuclear fuel stored in the 100-K Area Basins located along the south shore of the Columbia River in the northern part of the Hanford Site. Some of the fuel which has been in storage for a number of years is in poor condition and continues to deteriorate. The basins also contain fuel fragments and radioactively contaminated sludge. The DOE needs to characterize defense production spent nuclear fuel and associated materials stored on the Hanford Site. In order to satisfy that need, the Department of Energy (DOE) proposes to select, collect and transport samples of spent nuclear fuel and associated materials to the 327 Building for characterization. As a result of that characterization, modes of interim storage can be determined that would be compatible with the material in its present state and alternative treatment processes could be developed to permit a broader selection of storage modes. Environmental impacts of the proposed action were determined to be limited principally to radiation exposure of workers, which, however, were found to be small. No health effects among workers or the general public would be expected under routine operations. Implementation of the proposed action would not result in any impacts on cultural resources, threatened, endangered and candidate species, air or water quality, socioeconomic conditions, or waste management

  3. Evolution of spent fuel dry storage

    Energy Technology Data Exchange (ETDEWEB)

    Standring, Paul Nicholas [International Atomic Energy Agency, Vienna (Austria). Div. of Nuclear Fuel Cycle and Waste Technology; Takats, Ferenc [TS ENERCON KFT, Budapest (Hungary)

    2016-11-15

    Around 10,000 tHM of spent fuel is discharged per year from the nuclear power plants in operation. Whilst the bulk of spent fuel is still held in at reactor pools, 24 countries have developed storage facilities; either on the reactor site or away from the reactor site. Of the 146 operational AFR storage facilities about 80 % employ dry storage; the majority being deployed over the last 20 years. This reflects both the development of dry storage technology as well as changes in politics and trading relationships that have affected spent fuel management policies. The paper describes the various approaches to the back-end of the nuclear fuel cycle for power reactor fuels and provides data on deployed storage technologies.

  4. Storage of non-defense production reactor spent nuclear fuel at the Department of Energy's Hanford Site

    International Nuclear Information System (INIS)

    Carlson, A.B.

    1998-01-01

    In 1992, the US Department of Energy (DOE) established a program at the Hanford Site for management of DOE-owned spent nuclear fuel (SNF) until final disposition. Currently, the DOE-owned SNF Program is developing and implementing plans to assure existing storage, achieve interim storage, and prepare DOE-owned SNF for final disposition. Program requirements for management of the SNF are delineated in the DOE-owned SNF Program Plan.(DOE 1995a) and the DOE Spent Fuel Program's Requirements Document (DOE 1994a). Major program requirements are driven by the following: commitments established in the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-1 Implementation Plan (DOE 1995b); corrective action plans for resolving vulnerabilities identified in the DOE Spent Fuel Working Group's Report on Health, Safety, and Environmental Vulnerabilities for Reactor Irradiated Nuclear Materials (DOE 1993); the settlement agreement between the US Department of Navy, the US Department of Energy, and the State of Idaho on the record of decision (ROD) from the DOE Programmatic SNF Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Environmental Impact Statement (DOE Programmatic SNF EIS) (Idaho, 1995)

  5. The Site Selected. The Local Decision-Making Regarding the Siting of the Spent Nuclear Fuel Repository in Olkiluoto

    International Nuclear Information System (INIS)

    Kojo, Matti

    2006-01-01

    In May 1999 Posiva, the company responsible for the final disposal of spent nuclear fuel in Finland, suggested that the Finnish Government considers only Olkiluoto in Eurajoki in its application of a decision in principle to be a final disposal site. In January 2000 the municipal council of Eurajoki made a positive statement on the decision in principle. The Government made the decision in principle in Dec 2000, and the Parliament ratified the decision in May 2001. The paper is focused on the decision making of Eurajoki municipality regarding the siting of the spent nuclear fuel repository. The paper shows how the interaction between the representatives of the candidate municipality and the nuclear energy industry was the crucial factor in the decision-making. Eurajoki serves as an example, in where the parties reached an agreement of the compensations for the final disposal repository. The negotiations between the Eurajoki municipality and the nuclear energy industry in reaching a positive decision are analysed from the beginning of the 1980s. The main emphasis is however on the years 1996-99, when the nuclear energy industry negotiated with the municipality on the compensation for the final disposal repository. The loss of income was an important reason why some of the councillors of Eurajoki were interested in having the final disposal repository in Olkiluoto. The industry's problem on the other hand was to safeguard the final disposal site. From the TVO's angle Olkiluoto was a potential final disposal site for example for its limited need for transport and for the existing infrastructure. The company used the financial benefits of the project as its trump card. The attitude of Eurajoki municipality to the final disposal of spent nuclear fuel turned positive with the Olkiluoto vision in December 1998, when still five years earlier the municipal council was prepared to act and prevent the final disposal. The future image presented by the municipality now matched

  6. The Site Selected. The Local Decision-Making Regarding the Siting of the Spent Nuclear Fuel Repository in Olkiluoto

    Energy Technology Data Exchange (ETDEWEB)

    Kojo, Matti [Univ. of Tampere (Finland). Dept. of Political Science and International Relations

    2006-09-15

    In May 1999 Posiva, the company responsible for the final disposal of spent nuclear fuel in Finland, suggested that the Finnish Government considers only Olkiluoto in Eurajoki in its application of a decision in principle to be a final disposal site. In January 2000 the municipal council of Eurajoki made a positive statement on the decision in principle. The Government made the decision in principle in Dec 2000, and the Parliament ratified the decision in May 2001. The paper is focused on the decision making of Eurajoki municipality regarding the siting of the spent nuclear fuel repository. The paper shows how the interaction between the representatives of the candidate municipality and the nuclear energy industry was the crucial factor in the decision-making. Eurajoki serves as an example, in where the parties reached an agreement of the compensations for the final disposal repository. The negotiations between the Eurajoki municipality and the nuclear energy industry in reaching a positive decision are analysed from the beginning of the 1980s. The main emphasis is however on the years 1996-99, when the nuclear energy industry negotiated with the municipality on the compensation for the final disposal repository. The loss of income was an important reason why some of the councillors of Eurajoki were interested in having the final disposal repository in Olkiluoto. The industry's problem on the other hand was to safeguard the final disposal site. From the TVO's angle Olkiluoto was a potential final disposal site for example for its limited need for transport and for the existing infrastructure. The company used the financial benefits of the project as its trump card. The attitude of Eurajoki municipality to the final disposal of spent nuclear fuel turned positive with the Olkiluoto vision in December 1998, when still five years earlier the municipal council was prepared to act and prevent the final disposal. The future image presented by the municipality

  7. Final disposal of spent nuclear fuel-equipment for site characterization

    International Nuclear Information System (INIS)

    Almen, K.; Hansson, K.; Johansson, B.E.; Nilsson, G.; Andersson, O.; Wikberg, P.; Aahagen, H.

    1983-05-01

    The suitability of a certain geological formation as a repository for the final disposal of spent nuclear fuel can be determined only after detailed investigation and analysis. The purpose of the investigations is to provide information on the geology and the hydrology and chemistry of the site concerned. The value of these data largely depends on the way in which they have been collected. The report of the findings should enable the investigating party to evaluate the function and the accuracy of the equipment with which field data have been collected for KBS 3. This report describes the geophysical equipment, the hydraulic testing equipment, the water chemistry sample extracting equipment and the core-logging equipment used. The objectives of the instrument development have been: - to obtain a high data quality. - to collect data automatically in logs and tape recorders for direct transfer to a central processing unit. - to provide back-up in order to counteract loss of data. - to make instrument more efficient. (author)

  8. Storage of spent fuel from power reactors. 2003 conference proceedings

    International Nuclear Information System (INIS)

    2003-01-01

    An International Conference on Storage of Spent Fuel from Power Reactors was organized by the IAEA in co-operation with the OECD Nuclear Energy Agency. The conference gave an opportunity to exchange information on the state of the art and prospects of spent fuel storage, to discuss the worldwide situation and the major factors influencing the national policies in this field and to identify the most important directions that national efforts and international co-operation in this area should take. The conference confirmed that the primary spent fuel management solution for the next decades will be interim storage. While the next step can be reprocessing or disposal, all spent fuel or high level waste from reprocessing must sooner or later be disposed of. The duration of interim storage is now expected to be much longer than earlier projections (up to 100 years and beyond). The storage facilities will have to be designed for these longer storage times and also for receiving spent fuel from advanced fuel cycle practices (i.e. high burnup and MOX spent fuel). It was noted that the handling and storage of spent fuel is a mature technology and meets the stringent safety requirements applicable in the different countries. The changes in nuclear policy and philosophy across the world, and practical considerations, have made storage a real necessity in the nuclear power industry. Utilities, vendors and regulators alike are addressing this adequately. The IAEA wishes to express appreciation to all chairs and co-chairs as well as all authors for their presentations to the conference and papers included in these proceedings

  9. Storage of spent fuel from power reactors. 2003 conference proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-10-01

    An International Conference on Storage of Spent Fuel from Power Reactors was organized by the IAEA in co-operation with the OECD Nuclear Energy Agency. The conference gave an opportunity to exchange information on the state of the art and prospects of spent fuel storage, to discuss the worldwide situation and the major factors influencing the national policies in this field and to identify the most important directions that national efforts and international co-operation in this area should take. The conference confirmed that the primary spent fuel management solution for the next decades will be interim storage. While the next step can be reprocessing or disposal, all spent fuel or high level waste from reprocessing must sooner or later be disposed of. The duration of interim storage is now expected to be much longer than earlier projections (up to 100 years and beyond). The storage facilities will have to be designed for these longer storage times and also for receiving spent fuel from advanced fuel cycle practices (i.e. high burnup and MOX spent fuel). It was noted that the handling and storage of spent fuel is a mature technology and meets the stringent safety requirements applicable in the different countries. The changes in nuclear policy and philosophy across the world, and practical considerations, have made storage a real necessity in the nuclear power industry. Utilities, vendors and regulators alike are addressing this adequately. The IAEA wishes to express appreciation to all chairs and co-chairs as well as all authors for their presentations to the conference and papers included in these proceedings.

  10. Final disposal of spent fuel in the Finnish bedrock

    International Nuclear Information System (INIS)

    1992-12-01

    Teollisuuden Voima Oy (TVO) is preparing for the final disposal of spent nuclear fuel from the Olkiluoto nuclear power plant (TVO-I and TVO-II reactors). According to present estimates, a total of 1840 tU of spent fuel will be accumulated during the 40-year lifetime of the power plant. An interim storage facility for spent fuel (TVO-KPA Store) has operated at Olkiluoto since 1987. The spent fuel will be held in storage for several decades before it is shipped to the repository site. Both train and road transportation are possible. The spent fuel will be encapsulated in composite copper and steel canisters (ACP Canister) in a facility that will be build above the ground on the site where the repository is located. The repository will be constructed at the depth of several hundreds of meters in the bedrock. In 1987 five areas were selected for preliminary site investigations. The safety analysis (TVO-92) that was carried out shows that the proposed safety criteria would be met at each of the candidate sites. In future expected conditions there would never be significant releases of radioactive substances to the biosphere. The site investigations will be continued in the period 1993 to 2000. In parallel, a R and D programme will be devoted to the safety and technology of final disposal. The site for final disposal will be selected in the year 2000 with the aim of having the capability to start the disposal operations in 2020

  11. Safety assessment document for spent fuel handling, packaging, and storage demonstrations at the E-MAD facility on the Nevada Test Site

    International Nuclear Information System (INIS)

    1985-04-01

    The objectives for spent fuel handling and packaging demonstration are to develop the capability to satisfactorily encapsulate typical commercial nuclear reactor spent fuel assemblies and to establish the suitability of interim dry surface and near surface storage concepts. To accomplish these objectives, spent fuel assemblies from a pressurized water reactor have been received, encapsulated in steel canisters, and emplaced in on-site storage facilities and subjected to other tests. As an essential element of these demonstrations, a thorough safety assessment of the demonstration activities conducted at the E-MAD facility has been completed. This document describes the site location and characteristics, the existing E-MAD facility, and the facility modifications and equipment additions made specifically for the demonstrations. The document also summarizes the Quality Assurance Program utilized, and specifies the principal design criteria applicable to the facility modifications, equipment additions, and process operations. Evaluations have been made of the radiological impacts of normal operations, abnormal operations, and postulated accidents. Analyses have been performed to determine the affects on nuclear criticality safety of postulated accidents and credible natural phenomena. The consequences of postulated accidents resulting in fission product gas release have also been estimated. This document identifies the engineered safety features, procedures, and site characteristics that (1) prevent the occurrence of potential accidents or (2) assure that the consequences of postulated accidents are either insignificant or adequately mitigated

  12. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1, Appendix C, Savannah River Site Spent Nuclear Fuel Mangement Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The US Department of Energy (DOE) is engaged in two related decision making processes concerning: (1) the transportation, receipt, processing, and storage of spent nuclear fuel (SNF) at the DOE Idaho National Engineering Laboratory (INEL) which will focus on the next 10 years; and (2) programmatic decisions on future spent nuclear fuel management which will emphasize the next 40 years. DOE is analyzing the environmental consequences of these spent nuclear fuel management actions in this two-volume Environmental Impact Statement (EIS). Volume 1 supports broad programmatic decisions that will have applicability across the DOE complex and describes in detail the purpose and need for this DOE action. Volume 2 is specific to actions at the INEL. This document, which limits its discussion to the Savannah River Site (SRS) spent nuclear fuel management program, supports Volume 1 of the EIS. Following the introduction, Chapter 2 contains background information related to the SRS and the framework of environmental regulations pertinent to spent nuclear fuel management. Chapter 3 identifies spent nuclear fuel management alternatives that DOE could implement at the SRS, and summarizes their potential environmental consequences. Chapter 4 describes the existing environmental resources of the SRS that spent nuclear fuel activities could affect. Chapter 5 analyzes in detail the environmental consequences of each spent nuclear fuel management alternative and describes cumulative impacts. The chapter also contains information on unavoidable adverse impacts, commitment of resources, short-term use of the environment and mitigation measures.

  13. Swedish plans and experience regarding management of spent fuel and core components

    International Nuclear Information System (INIS)

    Grahn, P.H.; Hedin, G.

    2005-01-01

    In Sweden, the duties and responsibilities involved in handling radioactive waste were defined in the seventies. The 1976 Stipulation Law provides for the originator of the waste to be fully responsible for te waste arising in the course of plant operation. SKB, Swedish Nuclear Fuel and Waste Management Co., was founded by the Swedish operators of nuclear power plants in 1972 to take care of nuclear power plant waste management and radioactive waste treatment. In the eighties, the Finance Act was adopted which provides for the establishment of a fund to finance complete disposal of nuclear power plant waste, including radioactive waste and spent fuel. Over the past few years, there have been various developments in nuclear power plant waste management: - Reprocessing of spent fuel is no longer part of the waste management strategy. The fuel elements are stored in a central interim store, CLAB, which has been in operation since 1985 and now holds approx. 4 000 t of fuel elements. - A transport system for radioactive waste and spent fuel has been in operation successfully since 1985. - A repository for low- and medium-level waste has been in operation since 1985. - Work has been underway for the past twenty years in research, development, and construction of an underground repository for spent fuel. Development has now reached a stage which will allow a decision to be taken within the next five or ten years about the sites of the conditioning plant and the repository. (orig.)

  14. Disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    1979-12-01

    This report addresses the topic of the mined geologic disposal of spent nuclear fuel from Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR). Although some fuel processing options are identified, most of the information in this report relates to the isolation of spent fuel in the form it is removed from the reactor. The characteristics of the waste management system and research which relate to spent fuel isolation are discussed. The differences between spent fuel and processed HLW which impact the waste isolation system are defined and evaluated for the nature and extent of that impact. What is known and what needs to be determined about spent fuel as a waste form to design a viable waste isolation system is presented. Other waste forms and programs such as geologic exploration, site characterization and licensing which are generic to all waste forms are also discussed. R and D is being carried out to establish the technical information to develop the methods used for disposal of spent fuel. All evidence to date indicates that there is no reason, based on safety considerations, that spent fuel should not be disposed of as a waste

  15. Final disposal of spent nuclear fuel in Finnish bedrock. Olkiluoto site report

    Energy Technology Data Exchange (ETDEWEB)

    Anttila, P. [Fortum Engineering Oy, Vantaa (Finland); Ahokas, H. [Fintact Oy, Helsinki (Finland); Front, K. [VTT Communication and Infrastructure, Espoo (Finland)] [and others

    1999-06-01

    Posiva Oy is studying the Finnish bedrock for the geological disposal of spent nuclear fuel. The study is based on the site selection research programme started originally in 1983. The programme is in accordance with the decision in principle by the Council of State in 1983 and aims at the selection of one site in 2000. Four sites, Haestholmen in Loviisa, Kivetty in Aeaenekoski, Olkiluoto in Eurajoki and Romuvaara in Kuhmo, have been studied in detail. This report summarises the results of the site investigations carried out at Olkiluoto. The bedrock of the Olkiluoto site consists of Svecofennian metasediments and platonic rocks, 1800-1900 million years in age. Migmatitic mica gneiss is the most abundant rock type, and is intruded by foliated tonalites and granodiorites and massive coarse-grained granites and pegmatites. Five successive plastic deformation phases have been defined. In total, 30 bedrock structures (R-structures) have been modelled at the site. Most of these represent steeply dipping fracture zones, but several sub-horizontal zones, gently dipping to the SE, have also been identified. The rock mass between the fracture zones represents what is termed `intact rock`, which is typically hard, unweathered and sparsely fractured. The R-structures are generally hydraulically more conductive than the intact rock and their mean transmissivity is 3 x 10{sup -7} m{sup 2}/s. The corresponding mean of the hydraulic conductivity values for the intact rock measured using a 2 m packer interval, is 8 x 10{sup -13} m/s, if a lognormal distribution for all measured values is assumed. A clear decrease in hydraulic conductivity with depth has been found for the intact rock, and there seems to be a parallel decrease in the transmissivity of structures. In addition, the hydraulically conductive fractures seem to be more frequent and their transmissivities higher in the uppermost 100 - 200 m of the bedrock than at greater depths. The groundwater chemistry reflects the

  16. Final disposal of spent nuclear fuel in Finnish bedrock. Olkiluoto site report

    International Nuclear Information System (INIS)

    Anttila, P.; Ahokas, H.; Front, K.

    1999-06-01

    Posiva Oy is studying the Finnish bedrock for the geological disposal of spent nuclear fuel. The study is based on the site selection research programme started originally in 1983. The programme is in accordance with the decision in principle by the Council of State in 1983 and aims at the selection of one site in 2000. Four sites, Haestholmen in Loviisa, Kivetty in Aeaenekoski, Olkiluoto in Eurajoki and Romuvaara in Kuhmo, have been studied in detail. This report summarises the results of the site investigations carried out at Olkiluoto. The bedrock of the Olkiluoto site consists of Svecofennian metasediments and platonic rocks, 1800-1900 million years in age. Migmatitic mica gneiss is the most abundant rock type, and is intruded by foliated tonalites and granodiorites and massive coarse-grained granites and pegmatites. Five successive plastic deformation phases have been defined. In total, 30 bedrock structures (R-structures) have been modelled at the site. Most of these represent steeply dipping fracture zones, but several sub-horizontal zones, gently dipping to the SE, have also been identified. The rock mass between the fracture zones represents what is termed 'intact rock', which is typically hard, unweathered and sparsely fractured. The R-structures are generally hydraulically more conductive than the intact rock and their mean transmissivity is 3 x 10 -7 m 2 /s. The corresponding mean of the hydraulic conductivity values for the intact rock measured using a 2 m packer interval, is 8 x 10 -13 m/s, if a lognormal distribution for all measured values is assumed. A clear decrease in hydraulic conductivity with depth has been found for the intact rock, and there seems to be a parallel decrease in the transmissivity of structures. In addition, the hydraulically conductive fractures seem to be more frequent and their transmissivities higher in the uppermost 100 - 200 m of the bedrock than at greater depths. The groundwater chemistry reflects the postglacial

  17. HFIR spent fuel management alternatives

    International Nuclear Information System (INIS)

    Begovich, J.M.; Green, V.M.; Shappert, L.B.; Lotts, A.L.

    1992-01-01

    The High Flux Isotope Reactor (HFIR) at Martin Marietta Energy Systems' Oak Ridge National Laboratory (ORNL) has been unable to ship its spent fuel to Savannah River Site (SRS) for reprocessing since 1985. The HFIR storage pools are expected to fill up in the February 1994 to February 1995 time frame. If a management altemative to existing HFIR pool storage is not identified and implemented before the HFIR pools are full, the HFIR will be forced to shut down. This study investigated several alternatives for managing the HFIR spent fuel, attempting to identify options that could be implemented before the HFIR pools are full. The options investigated were: installing a dedicated dry cask storage facility at ORNL, increasing HFIR pool storage capacity by clearing the HFIR pools of debris and either close-packing or stacking the spent fuel elements, storing the spent fuel at another ORNL pool, storing the spent fuel in one or more hot cells at ORNL, and shipping the spent fuel offsite for reprocessing or storage elsewhere

  18. Intermodal transportation of spent fuel

    International Nuclear Information System (INIS)

    Elder, H.K.

    1983-09-01

    Concepts for transportation of spent fuel in rail casks from nuclear power plant sites with no rail service are under consideration by the US Department of Energy in the Commercial Spent Fuel Management program at the Pacific Northwest Laboratory. This report identifies and evaluates three alternative systems for intermodal transfer of spent fuel: heavy-haul truck to rail, barge to rail, and barge to heavy-haul truck. This report concludes that, with some modifications and provisions for new equipment, existing rail and marine systems can provide a transportation base for the intermodal transfer of spent fuel to federal interim storage facilities. Some needed land transportation support and loading and unloading equipment does not currently exist. There are insufficient shipping casks available at this time, but the industrial capability to meet projected needs appears adequate

  19. Normal evolution of a spent fuel repository at the candidate sites in Finland

    International Nuclear Information System (INIS)

    Grawford, M.B.; Wilmot, R.D.

    1998-12-01

    The Finnish disposal concept for spent nuclear fuel envisages burial of the fuel in a repository excavated at a depth of around 500 m in crystalline bedrock. Since 1983, a programme has been underway in Finland to select a potential site for such a repository. The programme is now in the final stages of selecting one site for further detailed characterisation from a list of four candidate sites at Kivetty, Romuvaara, Olkiluoto, and Haestholmen. Each stage of the site selection process has been supported by a major performance assessment (PA) exercise. The aim of this report is to describe the normal evolution of a repository system at the four candidate Finnish sites as input to development of the next PA, known as TILA-99. The report summarises the disposal concept and the present-day characteristics of each candidate site, and considers the most likely future changes in both the natural environment and the engineered components of the disposal system. The description concentrates on the key features, events and processes (FEPs) controlling behaviour and evolution of the disposal system. It is assumed that all the canisters are intact following emplacement and repository closure. FEPs that occur but which do not significantly affect system behaviour and evolution are only briefly described. FEPs with a low probability of occurrence are mentioned as appropriate. The report provides a map to the key Finnish reports and other work that underlies and supports the description of normal evolution. Differences between the four candidate sites in terms of their expected normal evolution are summarised. None of the differences are sufficient to prevent each site from behaving as a 'normal' site, the evolution of which is summarised over time in the final section of the report. (author)

  20. Normal evolution of a spent fuel repository at the candidate sites in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Grawford, M.B.; Wilmot, R.D. [Galson Sciences Limited, Rutland (United Kingdom)

    1998-12-01

    The Finnish disposal concept for spent nuclear fuel envisages burial of the fuel in a repository excavated at a depth of around 500 m in crystalline bedrock. Since 1983, a programme has been underway in Finland to select a potential site for such a repository. The programme is now in the final stages of selecting one site for further detailed characterisation from a list of four candidate sites at Kivetty, Romuvaara, Olkiluoto, and Haestholmen. Each stage of the site selection process has been supported by a major performance assessment (PA) exercise. The aim of this report is to describe the normal evolution of a repository system at the four candidate Finnish sites as input to development of the next PA, known as TILA-99. The report summarises the disposal concept and the present-day characteristics of each candidate site, and considers the most likely future changes in both the natural environment and the engineered components of the disposal system. The description concentrates on the key features, events and processes (FEPs) controlling behaviour and evolution of the disposal system. It is assumed that all the canisters are intact following emplacement and repository closure. FEPs that occur but which do not significantly affect system behaviour and evolution are only briefly described. FEPs with a low probability of occurrence are mentioned as appropriate. The report provides a map to the key Finnish reports and other work that underlies and supports the description of normal evolution. Differences between the four candidate sites in terms of their expected normal evolution are summarised. None of the differences are sufficient to prevent each site from behaving as a `normal` site, the evolution of which is summarised over time in the final section of the report. (author) 155 refs.

  1. SKI's engagement in the process for siting a spent nuclear fuel repository

    Energy Technology Data Exchange (ETDEWEB)

    Paeivioe Jonsson, Josefin; Westerlind, Magnus [Swedish Nuclear Power Inspectorate, Stockholm (Sweden)

    2006-09-15

    In Sweden, issues concerning the disposal of nuclear waste historically required co-operation among primarily two main actors: The nuclear industry and the state. Municipalities involved in SKB's feasibility studies objected to the fact that they lacked resources to keep the people in the municipality informed about the ongoing work. As a result the Parliament decided that municipalities involved in SKB's siting process should receive money from the nuclear waste fund for their engagement. Since 2005 resources also have been made available for NGO's participating in SKB's ongoing EIA-process. In total they can yearly receive up to 2.5 million Swedish kronor. The fact that new actors continuously have been engaged in disposal of spent nuclear fuel has meant that 'old' actors, particularly SKB, the regulators (the Swedish Nuclear Power Inspectorate, SKI, and the Swedish Radiation Protection Authority, SSI) have had to evaluate, develop and clarify their roles and strategies for dialogue and regulatory oversight. This paper presents the effects the increased engagement has had on SKI's regulatory activities. Looking back it is possible to identify two well-defined break points in SKI's views on communication and active participation in the siting process. The first was the so-called DIALOGUE-project, which was initiated by SKI in the early 1990s. In this research project there were participants from e.g. SKI and SSI, municipalities and environmental organisations. The two most important conclusions for SKI were firstly that regulators can and should participate already in the early stages of a siting process, and that this can be done without loosing credibility as an independent reviewer of a licence application and secondly that actors (in the siting process) with conflicting interests and views can reach agreement on the basis for decisions. The second break point occurred in the mid 1990s when SKB announced that the

  2. Inter-modal Transportation of Spent Nuclear Fuel from Office of Civilian Radioactive Waste Management Sites

    International Nuclear Information System (INIS)

    Schmid, St.; Thrower, A.; Best, R.E.

    2009-01-01

    U.S. Department of Energy (DOE) plans to ship most commercial spent nuclear fuel (SNF) by rail in sealed transportation, aging and disposal (TAD) canisters. Based on current and projected dry SNF storage programs, DOE believes the majority of commercial nuclear sites would have the capacity to load and prepare large-capacity, canister-based dry storage canisters such as the proposed TAD systems. Thus, only a small fraction of SNF, such as odd lots and SNF not meeting TAD criteria, is projected for truck (highway) shipment. However, at some commercial facilities rail tracks do not extend to the site, or on-site rail does not extend to the site's proposed loading spot, and inter-modal transfers will be required. Advance coordination between DOE and commercial site operators, commercial carriers, specialized carriers and riggers, and state, tribal and local routing officials will be necessary to establish inter-modal transfer areas and obtain necessary permits to move heavy loads over highways. Although inter-modal transfers can involve a number of steps and several different entities acting in close coordination, such moves are commonly performed by industry and the system requirements are well-understood. (authors)

  3. Government--utility interaction on spent fuel disposition

    International Nuclear Information System (INIS)

    Mills, L.E.

    1978-01-01

    The question of the needs of the electrical power industry for spent fuel storage in light of the moratorium on fuel reprocessing is addressed. The author feels that since the Federal government has assumed the responsibility for spent fuel storage, it is imperative that a firm plan, program, legislation, and funding be forthcoming immediately. Designation of an existing government site with existing nuclear activities in order to expedite the establishment of a storage facility is recommended. It is felt that the timing for such a site should be ''at the earliest possible date.'' Without storage facilities being provided by the government, utilities will be forced to build storage facilities at the reactor sites. This course of action is not considered cost effective but certainly preferable to shutting down the reactors. It is emphasized that spent fuel storage must be an interim solution and certainly not a final solution to the fuel reprocessing and waste disposal aspects of nuclear technology

  4. Transport and storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Lung, M.; Lenail, B.

    1987-01-01

    From a safety standpoint, spent fuel is clearly not ideal for permanent disposal and reprocessing is the best method of preparing wastes for long-term storage in a repository. Furthermore, the future may demonstrate that some fission products recovered in reprocessing have economic applications. Many countries have in fact reached the point at which the recycling of plutonium and uranium from spent fuel is economical in LWR's. Even in countries where this is not yet evident, (i.e., the United States), the French example shows that the day will come when spent fuel will be retrieved for reprocessing and recycle. It is highly questionable whether spent fuel will ever be considered and treated as waste in the same sense as fission products and processed as such, i.e., packaged in a waste form for permanent disposal. Even when recycled fuel material can no longer be reused in LWR's because of poor reactivity, it will be usable in FBR's. Based on the considerable experience gained by SGN and Cogema, this paper has provided practical discussion and illustrations of spent fuel transport and storage of a very important step in the nuclear fuel management process. The best of spent fuel storage depends on technical, economic and policy considerations. Each design has a role to play and we hope that the above discussion will help clarify certain issues

  5. Spent fuel and waste inventories and projections

    International Nuclear Information System (INIS)

    Carter, W.L.; Finney, B.C.; Alexander, C.W.; Blomeke, J.O.; McNair, J.M.

    1980-08-01

    Current inventories of commercial spent fuels and both commercial and US Department of Energy radioactive wastes were compiled, based on judgments of the most reliable information available from Government sources and the open literature. Future waste generation rates and quantities to be accumulated over the remainder of this century are also presented, based on a present projection of US commercial nuclear power growth and expected defense-related activities. Spent fuel projections are based on the current DOE/EIA estimate of nuclear growth, which projects 180 GW(e) in the year 2000. It is recognized that the calculated spent fuel discharges are probably high in view of recent reactor cancellations; hence adjustments will be made in future updates of this report. Wastes considered, on a chapter-by-chapter basis, are: spent fuel, high-level wastes, transuranic wastes, low-level wastes, mill tailings (active sites), and remedial action wastes. The latter category includes mill tailings (inactive sites), surplus facilities, formerly utilized sites, and the Grand Junction Project. For each category, waste volume inventories and projections are given through the year 2000. The land usage requirements are given for storage/disposal of low-level and transuranic wastes, and for present inventories of mill tailings

  6. Final environmental statement: US Spent Fuel Policy. Storage of foreign spent power reactor fuel

    International Nuclear Information System (INIS)

    1980-05-01

    In October 1977, the Department of Energy (DOE) announced a Spent Fuel Storage Policy for nuclear power reactors. Under this policy, as approved by the President, US utilities will be given the opportunity to deliver spent fuel to US Government custody in exchange for payment of a fee. The US Government will also be prepared to accept a limited amount of spent fuel from foreign sources when such action would contribute to meeting nonproliferation goals. Under the new policy, spent fuel transferred to the US Government will be delivered - at user expense - to a US Government-approved site. Foreign spent fuel would be stored in Interim Spent Fuel Storage (ISFS) facilities with domestic fuel. This volume of the environmental impact statement includes effects associated with implementing or not implementing the Spent Fuel Storage Policy for the foreign fuels. The analyses show that there are no substantial radiological health impacts whether the policy is implemented or not. In no case considered does the population dose commitment exceed 0.000006% of the world population dose commitment from natural radiation sources over the period analyzed. Full implementation of the US offer to accept a limited amount of foreign spent fuel for storage provides the greatest benefits for US nonproliferation policy. Acceptance of lesser quantities of foreign spent fuel in the US or less US support of foreign spent fuel storage abroad provides some nonproliferation benefits, but at a significantly lower level than full implementation of the offer. Not implementing the policy in regard to foreign spent fuel will be least productive in the context of US nonproliferation objectives. The remainder of the summary provides a brief description of the options that are evaluated, the facilities involved in these options, and the environmental impacts, including nonproliferation considerations, associated with each option

  7. SKI's and SSI's experiences from their participation in the siting of a final repository for spent nuclear fuel

    International Nuclear Information System (INIS)

    Westerlind, M.; Hedberg, B.

    2000-01-01

    This paper summarises some experiences gained by the SKI and SSI during the ongoing process for siting a final repository for spent nuclear fuel. The focus is on activities in the municipalities involved in the siting process. In order to give the proper context some basic elements in the legislation, which are important for public participation and confidence in the siting process, are outlined. The importance of clearly defined responsibilities and early participation of the regulators in the siting process are emphasised. It should be pointed out that this paper is not a comprehensive review of the Swedish situation but only contains a few selected issues and personal remarks from the authors. Thus, the views and opinions do not necessarily coincide with those of SKI and SSI. (authors)

  8. Detailed site characterization for final disposal of spent fuel in Finland - Case study Loviisa

    International Nuclear Information System (INIS)

    Anttila, P.; Ahokas, H.; Ruotsalainen, P.; Cosma, C.; Keskinen, J.; Hinkkanen, H.; Rouhiainen, P.; Oehberg, A.

    1998-01-01

    The spent fuel from the Finnish nuclear power plants will be disposed of in the Finnish bedrock. Pos iva Oy is responsible for the site selection programme carried out in accordance with the governmental decisions. Preliminary site investigations were made in five areas in 1987-1992. Based on the results, three areas, Romuvaara in Kuhmo, Kivetty in Aeaenekoski and Olkiluoto in Eurajoki, were selected for the detailed site characterization in 1993-2000. The final site will be selected by the end of the year 2000. The interim reporting of the detailed studies of the three areas was made in 1996. In 1997, the island of Haestholmen, as the host to the Loviisa NPP, was included as a fourth candidate site in the programme for the detailed site investigations. The goal is to characterize this site also in detail by the end of 2000 to attain the same level of knowledge as available from the three other sites. The background information existing from the studies made for the construction of the repository for the low-and intermediate-level wastes will create a good basis to reach the target. The research programme for the detailed site characterization has mainly been focused on groundwater flow and geochemistry due to their importance in terms of long-term safety of the repository. Equipment and methodology development by Posiva has introduced new tools that provide more accurate data on relevant parameters than the ones used in previous stages of site characterization. The programme also contains studies for additional information of the structural and geological properties of the bedrock towards the depth. Also predictive modelling has been made for evaluating the relevance of the assumptions made. The methods applied in the site characterization have comprised, e.g., geological mapping, deep core drilling, groundwater sampling and analyzing, hydraulic testing and geophysical measurements

  9. Detailed site characterization for final disposal of spent fuel in Finland - Case study Loviisa

    Energy Technology Data Exchange (ETDEWEB)

    Anttila, P. [IVO Power Engineering Ltd. (Finland); Ahokas, H.; Ruotsalainen, P. [Fintact Oy (Finland); Cosma, C.; Keskinen, J. [Vibrometric Oy (Finland); Hinkkanen, H. [Posiva Oy (Finland); Rouhiainen, P. [PRG-Tec Oy (Finland); Oehberg, A. [Saanio and Riekkola Consulting Engineers (Finland)

    1998-09-01

    The spent fuel from the Finnish nuclear power plants will be disposed of in the Finnish bedrock. Pos iva Oy is responsible for the site selection programme carried out in accordance with the governmental decisions. Preliminary site investigations were made in five areas in 1987-1992. Based on the results, three areas, Romuvaara in Kuhmo, Kivetty in Aeaenekoski and Olkiluoto in Eurajoki, were selected for the detailed site characterization in 1993-2000. The final site will be selected by the end of the year 2000. The interim reporting of the detailed studies of the three areas was made in 1996. In 1997, the island of Haestholmen, as the host to the Loviisa NPP, was included as a fourth candidate site in the programme for the detailed site investigations. The goal is to characterize this site also in detail by the end of 2000 to attain the same level of knowledge as available from the three other sites. The background information existing from the studies made for the construction of the repository for the low-and intermediate-level wastes will create a good basis to reach the target. The research programme for the detailed site characterization has mainly been focused on groundwater flow and geochemistry due to their importance in terms of long-term safety of the repository. Equipment and methodology development by Posiva has introduced new tools that provide more accurate data on relevant parameters than the ones used in previous stages of site characterization. The programme also contains studies for additional information of the structural and geological properties of the bedrock towards the depth. Also predictive modelling has been made for evaluating the relevance of the assumptions made. The methods applied in the site characterization have comprised, e.g., geological mapping, deep core drilling, groundwater sampling and analyzing, hydraulic testing and geophysical measurements 23 refs, 4 figs

  10. Spent LWR fuel encapsulation and dry storage demonstration

    International Nuclear Information System (INIS)

    Bahorich, R.J.; Durrill, D.C.; Cross, T.E.; Unterzuber, R.

    1980-01-01

    In 1977 the Spent Fuel Handling and Packaging Program (SFHPP) was initiated by the Department of Energy to develop and test the capability to satisfactorily encapsulate typical spent fuel assemblies from commercial light-water nuclear power plants and to establish the suitability of one or more surface and near surface concepts for the interim dry storage of the encapsulated spent fuel assemblies. The E-MAD Facility at the Nevada Test Site, which is operated for the Department of Energy by the Advanced Energy Systems Division (AESD) of the Westinghouse Electric Corporation, was chosen as the location for this demonstration because of its extensive existing capabilities for handling highly radioactive components and because of the desirable site characteristics for the proposed storage concepts. This paper describes the remote operations related to the process steps of handling, encapsulating and subsequent dry storage of spent fuel in support of the Demonstration Program

  11. Interim spent-fuel storage options at commercial nuclear power plants

    International Nuclear Information System (INIS)

    Thakkar, A.R.; Hylko, J.M.

    1991-01-01

    Although spent fuel can be stored safely in waterfilled pools at reactor sites, some utilities may not possess sufficient space for life-of-plant storage capability. In-pool storage capability may be increased by reracking assemblies, rod consolidation, double tiering spent-fuel racks, and by shipping spent fuel to other utility-owned facilities. Long-term on-site storage capability for spent fuel may be provided by installing (dry-type) metal casks, storage and transportation casks, concrete casks, horizontal concrete modules, modular concrete vaults, or by constructing additional (pool-type) storage installations. Experience to date has provided valuable information regarding dry-type or pool-type installations, cask handling and staffing requirements, security features, decommissioning activities, and radiological issues

  12. Status of spent nuclear fuel management in the United States of America

    International Nuclear Information System (INIS)

    Williams, J.R.

    1998-01-01

    The United States produces approximately 20% of its electricity in nuclear power reactors, currently generating, approximately 2,000 metric tons of uranium (tU) of spent nuclear fuel annually. Over the past half century, the country has amassed 33,000 tU of commercial spent nuclear fuel that is being stored at 119 operating and shutdown reactors located on 73 sites around the nation. The cumulative discharge of the spent fuel from reactors is estimated to total approximately 87,000 tU by 2035. Many sites have reracked the spent fuel in their storage pool to maximize pool capacity, and a number of reactor sites have been forced to add dry storage to accommodate the growing inventory of fuel in storage. In addition, research and defense programme reactors have produced spent fuel that is being stored in pools at Federal sites. Much of this fuel will be transferred to dry storage in the coming years. Under current plans, the commercial and federally owned fuel will remain in storage at the existing sites until the United States Department of Energy (DOE) begins receipt at a federal receiving facility. (author)

  13. Modeling the highway transportation of spent fuel

    International Nuclear Information System (INIS)

    Harrison, I.G.

    1986-01-01

    There will be a substantial increase in the number of spent fuel shipments on the nation's highway system in the next thirty years. Most of the spent fuel will be moving from reactors to a spent fuel repository. This study develops two models that evaluate the risk and cost of moving the spent fuel. The Minimum Total Transport Risk Model (MTTRM) seeks an efficient solution for this problem by finding the minimum risk path through the network and sending all the spent fuel shipments over this one path. The Equilibrium Transport Risk Model (ETRM) finds an equitable solution by distributing the shipments over a number of paths in the network. This model decreases the risk along individual paths, but increases society's risk because the spent fuel shipments are traveling over more links in the network. The study finds that there is a trade off between path risk and societal risk. As path risk declines, societal risk rises. The cost of shipping also increases as the number of paths expand. The cost and risk of shipping spent fuel from ten reactors to four potential repository sites are evaluated using the MTTRM. The temporary monitored retrievable storage (MRS) facility in Tennessee is found to be the minimum cost and minimum risk solution. When direct shipment to the permanent sites is considered, Deaf Smith, Texas is the least cost and least incident free transport risk location. Yucca Mountain, Nevada is the least risk location when the focus is placed on the potential consequences of an accident

  14. Existing and near future practices of spent fuel storage in Slovak Republic

    International Nuclear Information System (INIS)

    Mizov, J.

    1999-01-01

    In this paper existing and near future practices of spent fuel storage in Slovak Republic are discussed: (1) Reactor operation and spent fuel production; (2) Past policy in spent fuel storage; (3) Away-from-reactor (AFR) storage facility at Bohunice NPP site; (4) Present policy in spent fuel storage; (5) Final disposal of spent fuel

  15. Structural geology report: Spent Fuel Test - Climax Nevada Test Site

    International Nuclear Information System (INIS)

    Wilder, D.G.; Yow, J.L. Jr.

    1984-10-01

    We performed underground mapping and core logging in the Climax Stock, a granitic intrusive at the Nevada Test Site, as part of a major field test to determine the feasibility of using granitic or crystalline rock for the underground storage of spent fuel from a nuclear reactor. This mapping and logging identified more than 2500 fractures, over 1500 of which were described in enough detail to allow statistical analyses and orientation studies to be performed. We identified eight joint sets, three major shear sets, and a fault zone within the Spent Fuel Test - Climax (SFT-C) portion of the Stock. Joint sets identified within the SFT-C and elsewhere in the Stock correlated well. The orientations of joint sets identified by other investigators were consistent with our findings, indicating that the joint sets are persistent and have a relatively uniform orientation throughout a major portion of the Stock. The one joint set not seen elsewhere in the Stock is healed and the wall rock is altered, implying that healed joints were not included in the mapping criteria used by other investigators. The shear sets were distinguished from the joint sets by virtue of crushed minerals, continuous clay infilling, and other evidences of shearing, and from faults by the lack of offsetting. Previous investigators working mainly in the Pile Driver Drifts identified two of the shear sets. The third set, being nearly parallel to these Drifts had not been identified previously. The fault zone identified at the far (Receiving Room) end of the project is oriented approximately N45 0 E-75 0 SE, similar to both the Boundary and Shaft Station Faults. We have, therefore, concluded that the Receiving Room Fault is one of a series of normal faults that occur within the Climax Stock and that are possibly related, in both age and genesis, to the Boundary Fault. 52 refs., 26 figs., 11 tabs

  16. Geological evaluation of spent fuel storage and low-intermediate level radwaste disposal in the site of NPP candidate

    International Nuclear Information System (INIS)

    Sucipta; Yatim, S.; Martono, H.; Pudyo, A.

    1997-01-01

    Based on the consideration of techno-economy and environmental safety, the radioactive waste treatment installation (RWI), interim storage of spen fuel (ISSF) and low-intermediate level disposal shall be sited in the surrounding of NPP area. The land suitability of NPP's site candidate at Muria Peninsula as spent fuel storage and low-intermediate level radwaste disposal need to be studied. Site selection was conducted by overlay method and scoring method, and based on safety criteria which include geological and environmental aspects. Land evaluation by overlay method has given result a potential site which have highest suitable land at surrounding of borehole L-15 about 17.5 hectares. Land evaluation by scoring method has given result two land suitability classes, i.e. moderate suitability class (includes 14 borehole) and high suitability class, include borehole L-2, L-14 and L-15 (author)

  17. Cooperation in the Implementation of Safeguards at Fukushima Dai-ichi Site

    International Nuclear Information System (INIS)

    Kumekawa, H.; Usui, A.; Sano, K.; Ishii, T.; Ninagawa, J.; Namekawa, M.; Iso, S.; Nakamura, N.; Hirato, Y.; Murajiri, M.; Hori, K.; Oyama, K.; Takagi, A.; Hirabayashi, N.

    2015-01-01

    The accident at Fukushima Dai-ichi Nuclear Power Station caused by the Great East Japan Earthquake and tsunami in March 2011 had a major impact on the safeguards situation at the site. JSGO, NMCC, TEPCO and JAEA are tackling the challenges posed by the accident jointly with the IAEA and in cooperation with the US Department of Energy (DOE). From the day of the earthquake, JSGO and the IAEA have shared information on decommissioning activities and discussed how to deal with this difficult issue. In May 2012, the Fukushima Task Force was established. Its objective is to develop a holistic approach to safeguards implementation measures for the site, to monitor the re-establishment of safeguards, to facilitate discussion of relevant issues, and to consider possible approaches to longer-term safeguards challenges. All the fuels in spent fuel ponds in Units 5 and 6 and Common Spent Fuel Storage have been successfully re-verified. Re-verification of fuels kept in spent fuel pond in Unit 4 is underway. A special arrangement called SNOS (Short Notice Operational Support Activities) has been introduced to confirm non-diversion of declared material at Fukushima Dai-ichi site. Based on extensive information exchange, proactive discussions on safeguards approaches are being held for near-term issues. The damaged core material in Units 1-3 will pose extreme difficulties in longer-term. A special sub-group has been established under the task force to address the issues. Although lessons learned from past nuclear accidents resulting in damage of core material have some relevance, none of them can be directly applicable for Fukushima. Thus a foresighted and creative approach is needed. Close coordination with the IAEA and support from technically competent institutions in Japan and from abroad, such as DOE, are also essential to tackle the issues. (author)

  18. Spent nuclear fuel storage - Basic concept

    International Nuclear Information System (INIS)

    Krempel, Ascanio; Santos, Cicero D. Pacifici dos; Sato, Heitor Hitoshi; Magalhaes, Leonardo de

    2009-01-01

    According to the procedures adopted in others countries in the world, the spent nuclear fuel elements burned to produce electrical energy in the Brazilian Nuclear Power Plant of Angra do Reis, Central Nuclear Almirante Alvaro Alberto - CNAAA will be stored for a long time. Such procedure will allow the next generation to decide how they will handle those materials. In the future, the reprocessing of the nuclear fuel assemblies could be a good solution in order to have additional energy resource and also to decrease the volume of discarded materials. This decision will be done in the future according to the new studies and investigations that are being studied around the world. The present proposal to handle the nuclear spent fuel is to storage it for a long period of time, under institutional control. Therefore, the aim of this paper is to introduce a proposal of a basic concept of spent fuel storage, which involves the construction of a new storage building at site, in order to increase the present storage capacity of spent fuel assemblies in CNAAA installation; the concept of the spent fuel transportation casks that will transfer the spent fuel assemblies from the power plants to the Spent Fuel Complementary Storage Building and later on from this building to the Long Term Intermediate Storage of Spent Fuel; the concept of the spent fuel canister and finally the basic concept of the spent fuel long term storage. (author)

  19. Current status of IAEA activities in spent fuel management

    International Nuclear Information System (INIS)

    Danker, W.J.

    2003-01-01

    Spent fuel storage is a common issue in all IAEA Member States with nuclear reactors. Whatever strategy is selected for the back-end of the nuclear fuel cycle, the storage of spent fuel will be an increasingly significant consideration. Notwithstanding considerable efforts to increase the efficient use of nuclear fuel and to optimize storage capacity, delays in plans for geological repositories or in implementing reprocessing result in increased spent fuel storage capacity needs in combination with longer storage durations over the foreseeable future. As storage inventories and durations increase, issues associated with long term storage compel more attention...monitoring for potential degradation mechanisms, records retention, maintenance, efficiencies through burnup credit. Since the IAEA contribution to ICNC'99 focused exclusively on IAEA burnup credit activities including requirements and methods, this paper provides a broader perspective on IAEA activities in response to the above trends in spent fuel management, while also describing efforts to disseminate information regarding burnup credit applications. (author)

  20. Siting of a deep repository for spent fuel - how are we communicating the risks?

    International Nuclear Information System (INIS)

    Hammarstroem, Monika

    2000-01-01

    During 1998 the strategy of the Swedish Nuclear Waste Management Company for the siting process was refined in order to strengthen the possibilities for implementing deep geological disposal of spent nuclear fuel. Our new organisation was formed to meet the demands of the strategy. The strategy implies focused activities in municipalities where we are performing so called feasibility studies. An important milestone for us is to be able to choose two sites for site investigations in 2001. The problem of waste exists and has to be taken care of in Sweden. The work is performed in steps to ensure dialogue and changes and modifications if needed. The method for solution is robust, a repository can be constructed in a reasonable time and ensure safety in a long-term perspective Our attitude shall be characterised by high quality and competence in all aspects.Honesty and openness are key words. The fear that people feels regarding radioactive waste shall be taken seriously. We are proud to be able to show one already existing waste management system and of our knowledge and experiences. The results so far from the various communication activities show that we are going in the right direction. The support we are gaining from various sectors in society together with our own motivation and clear objectives will, I'm sure, lead us to at least two sites for site investigations for a deep repository in Sweden by the end of 2001

  1. Rethinking the economics of centralized spent fuel storage

    International Nuclear Information System (INIS)

    Wood, T.W.; Short, S.M.; Dippold, D.G.; Rod, S.R.; Williams, J.W.

    1991-01-01

    The technology for extended storage of spent nuclear fuel (SNF), either at-reactor or in a centralized facility such as a monitored retrievable storage (MRS) facility, is well-developed and proven from an engineering and safety perspective. The question of whether spent fuel should await its final geologic disposal while at a reactor site or in an MRS facility is essentially an economic one. While intuition and previous results suggest that centralized storage will be more economical than at-reactor storage beyond some break-even quantity of SNF, the incremental costs of pool storage at-reactor are close to zero as long as pool capacity is generally available. Thus, if economics is the prime motivator, the quantity of spent fuel required to warrant centralized storage could be quite large. The economics of centralizing the storage of spent fuel at a single site, as opposed to continued storage at over 100 reactor sites, has been the subject of several recent analyses. Most of these analyses involved calculating the benefits of an MRS facility (in terms of avoided utility costs) with a pre-defined MRS operating scenario (e.g., spent fuel acceptance schedule, storage capacity, and typical storage cycle). While these analyses provided some insight into the economic justification for an MRS facility, even the most favorable scenarios resulted in net costs of hundreds of millions of dollars when evaluated on a discounted cash flow basis

  2. WHite paper on the proposed design, development, and implementation of a monitored retrievable storage module and the siting criteria for spent nuclear fuel

    International Nuclear Information System (INIS)

    Villarreal, B.; Knobeloch, D.

    1996-01-01

    Congress enacted the Nuclear Waste Policy (NWP) Act in 1982 as comprehensive legislation for the DOE to locate, build, and operate repositories to permanently dispose of spent nuclear fuel and other high-level wastes. In 1987, Congress amended the NWP Act and authorized the DOE to site, construct, and operate one Monitored Retrievable Storage (MRS) facility. The MRS facility was planned as a means to enhance the flexibility and reliability of the overall waste management system. This white paper presents a broad prospectus of the scientific and regulatory capabilities at Los Alamos National Laboratory and outlines the methodology to design and implement an MRS test module. This proposed module will incorporate the flexibility to store all types of spent nuclear fuel above or below ground level and will be fully monitored for the residence time of the spent fuel in the MRS module. The purpose of this test module is to define the parameters necessary to build a simple and economical MRS system. Demonstration of the proposed MRS test module will be important because it will form the basis for an integrated MRS site model

  3. Information handbook on independent spent fuel storage installations

    International Nuclear Information System (INIS)

    Raddatz, M.G.; Waters, M.D.

    1996-12-01

    In this information handbook, the staff of the U.S. Nuclear Regulatory Commission describes (1) background information regarding the licensing and history of independent spent fuel storage installations (ISFSIs), (2) a discussion of the licensing process, (3) a description of all currently approved or certified models of dry cask storage systems (DCSSs), and (4) a description of sites currently storing spent fuel in an ISFSI. Storage of spent fuel at ISFSIs must be in accordance with the provisions of 10 CFR Part 72. The staff has provided this handbook for information purposes only. The accuracy of any information herein is not guaranteed. For verification or for more details, the reader should refer to the respective docket files for each DCSS and ISFSI site. The information in this handbook is current as of September 1, 1996

  4. Presentation of safety after closure of the repository for spent nuclear fuel. Main report of the project SR-Site. Part I; Redovisning av saekerhet efter foerslutning av slutfoervaret foer anvaent kaernbraensle. Huvudrapport fraan projekt SR-Site. Del I

    Energy Technology Data Exchange (ETDEWEB)

    2011-07-01

    The purpose of the safety assessment SR-Site is to investigate whether a safe repository for spent nuclear fuel by KBS-3 type can be constructed at Forsmark in Oesthammar in Sweden. The location of the Forsmark has been selected based on results of several surveys from surface conditions at depth in Forsmark and in Laxemar in Oskarshamn. The choice of location is not justified in SR-Site Report, but in other attachments to SKB's permit applications. SR-Site Report is an important part of SKB's permit applications to construct and operate a repository for spent nuclear fuel at Forsmark in Oesthammar. The purpose of the report in the applications is to show that a repository at Forsmark is safe after closure

  5. Presentation of safety after closure of the repository for spent nuclear fuel. Main report of the project SR-Site. Part II; Redovisning av saekerhet efter foerslutning av slutfoervaret foer anvaent kaernbraensle. Huvudrapport fraan projekt SR-Site. Del II

    Energy Technology Data Exchange (ETDEWEB)

    2011-07-01

    The purpose of the safety assessment SR-Site is to investigate whether a safe repository for spent nuclear fuel by KBS-3 type can be constructed at Forsmark in Oesthammar in Sweden. The location of the Forsmark has been selected based on results of several surveys from surface conditions at depth in Forsmark and in Laxemar in Oskarshamn. The choice of location is not justified in SR-Site Report, but in other attachments to SKB's permit applications. SR-Site Report is an important part of SKB's permit applications to construct and operate a repository for spent nuclear fuel at Forsmark in Oesthammar. The purpose of the report in the applications is to show that a repository at Forsmark is safe after closure

  6. Presentation of safety after closure of the repository for spent nuclear fuel. Main report of the project SR-Site. Part III; Redovisning av saekerhet efter foerslutning av slutfoervaret foer anvaent kaernbraensle. Huvudrapport fraan projekt SR-Site. Del III

    Energy Technology Data Exchange (ETDEWEB)

    2011-07-01

    The purpose of the safety assessment SR-Site is to investigate whether a safe repository for spent nuclear fuel by KBS-3 type can be constructed at Forsmark in Oesthammar in Sweden. The location of the Forsmark has been selected based on results of several surveys from surface conditions at depth in Forsmark and in Laxemar in Oskarshamn. The choice of location is not justified in SR-Site Report, but in other attachments to SKB's permit applications. SR-Site Report is an important part of SKB's permit applications to construct and operate a repository for spent nuclear fuel at Forsmark in Oesthammar. The purpose of the report in the applications is to show that a repository at Forsmark is safe after closure

  7. At-reactor storage of spent fuel for life-of-plant

    International Nuclear Information System (INIS)

    Fuierer, A.A.

    1990-01-01

    The management of commercial spent fuel is a fairly broad topic beginning with the discharge from a reactor, its storage on-site, its transport from the reactor site to a U.S. Department of Energy (DOE) facility, and its ultimate disposal in a geologic repository. This paper discusses spent-fuel management in the at-reactor phase. There are two basic methods for at-reactor storage of spent fuel. The first is wet storage in a pool, and the second is dry storage external to the plant in some form of cask or vault. Spent-fuel consolidation will impact the utility and the DOE waste system. Some of these impacts have a positive effect and some have a negative effect, and each will vary somewhat for each utility. Spent-fuel consolidation and life-of-plant storage will be an increased burden to utilities but will likely result in significant cost savings to the overall waste management system and by proper integration can result in significant institutional benefits

  8. Strategies and solutions in the temporary management of spent fuel in Spain

    International Nuclear Information System (INIS)

    Martinez Abad, J. E.; Rivera, M. I.

    2009-01-01

    The basic strategy for the spent fuel and HLW management contemplated in the Sixth General Radioactive Waste Plan focused on the centralised interim storage of spent fuel, based on proved dry storage system technologies, over the time periods required until their definitive or very long term management. Specially, the solution proposed as the most suitable for the Spanish case is the construction of a centralised interim spent fuel and HLW storage facility (ATC) for which as site is being searched. Until it becomes in operation, the interim spent fuel storage will be safety performed in the NPP reracked spent fuel pools or individual ISFSI constructed in the NPP site, in those cases additional storage capacity is required. (Author) 22 refs

  9. A summary of INSITE activities in tracking SKB's spent fuel repository site investigations from 2002-2009 and of advice provided to the regulatory authorities on the status of site understanding at the end of the surface-based investigations

    International Nuclear Information System (INIS)

    Chapman, Neil; Bath, Adrian; Geier, Joel; Ove Stephansson; Tiren, Sven; Tsang, Chin-Fu

    2010-11-01

    SSM and its predecessor SKI employed a team of earth scientists who followed and reviewed SKB's investigations of the potential spent nuclear fuel repository sites at Forsmark and Laxemar. This group was named INSITE (INdependent Site Investigation Tracking and Evaluation) and began its work in 2002 and completed its task with the review of the final versions SKB's site descriptive models, SDM-Site, in 2009. This report is a summary of INSITE's work over the eight-and-a-half year period of the site investigations and the lead-in and the wind-down to the work. It is intended to provide an outline and a record of how INSITE has worked and how its advice was generated and provided to SKI and, latterly, to SSM. Together with all the other documentation generated by INSITE, this report is intended to support the regulatory review of SKB's licence application for a spent nuclear fuel repository

  10. Integrated risk assessment for spent fuel transportation using developed software

    International Nuclear Information System (INIS)

    Yun, Mi Rae; Christian, Robby; Kim, Bo Gyung; Almomani, Belal; Ham, Jae Hyun; Kang, Gook Hyun; Lee, Sang hoon

    2016-01-01

    As on-site spent fuel storage meets limitation of their capacity, spent fuel need to be transported to other place. In this research, risk of two ways of transportation method, maritime transportation and on-site transportation, and interim storage facility were analyzed. Easier and integrated risk assessment for spent fuel transportation will be possible by applying this software. Risk assessment for spent fuel transportation has not been researched and this work showed a case for analysis. By using this analysis method and developed software, regulators can get some insights for spent fuel transportation. For example, they can restrict specific region for preventing ocean accident and also they can arrange spend fuel in interim storage facility avoiding most risky region which have high risk from aircraft engine shaft. Finally, they can apply soft material on the floor for specific stage for on-site transportation. In this software, because we targeted Korea, we need to use Korean reference data. However, there were few Korean reference data. Especially, there was no food chain data for Korean ocean. In MARINRAD, they used steady state food chain model, but it is far from reality. Therefore, to get Korean realistic reference data, dynamic food chain model for Korean ocean need to be developed

  11. Integrated risk assessment for spent fuel transportation using developed software

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Mi Rae; Christian, Robby; Kim, Bo Gyung; Almomani, Belal; Ham, Jae Hyun; Kang, Gook Hyun [KAIST, Daejeon (Korea, Republic of); Lee, Sang hoon [Keimyung University, Daegu (Korea, Republic of)

    2016-05-15

    As on-site spent fuel storage meets limitation of their capacity, spent fuel need to be transported to other place. In this research, risk of two ways of transportation method, maritime transportation and on-site transportation, and interim storage facility were analyzed. Easier and integrated risk assessment for spent fuel transportation will be possible by applying this software. Risk assessment for spent fuel transportation has not been researched and this work showed a case for analysis. By using this analysis method and developed software, regulators can get some insights for spent fuel transportation. For example, they can restrict specific region for preventing ocean accident and also they can arrange spend fuel in interim storage facility avoiding most risky region which have high risk from aircraft engine shaft. Finally, they can apply soft material on the floor for specific stage for on-site transportation. In this software, because we targeted Korea, we need to use Korean reference data. However, there were few Korean reference data. Especially, there was no food chain data for Korean ocean. In MARINRAD, they used steady state food chain model, but it is far from reality. Therefore, to get Korean realistic reference data, dynamic food chain model for Korean ocean need to be developed.

  12. An overview on the nuclear spent fuel management in Romania

    International Nuclear Information System (INIS)

    Radu, M.

    2001-01-01

    The sources of radioactive waste in Romania are users of radiation and radioactive materials in industry (including nuclear electricity generation), medicine, agriculture and research and also the processing of materials that are naturally radioactive, such as uranium ores. The different types of radioactive waste are classified into four categories of waste: excepted waste, low level waste, medium level waste and high level waste. A spent fuel management sub-programme as a part of the Radioactive Waste Management programme was initiated by the former Romanian Electricity Company (RENEL) in 1992. Within the frame of R and D of the Radioactive Waste and Spent Fuel Management Programme, the topics cover investigations, studies and research to identify the sites and the conceptual designs for a Spent Fuel Interim Storage Facility (SFISF) and also a Spent Fuel Disposal Facility (SFDF). Changes in the organization of the nuclear activities of RENEL, involving both responsibilities and financing aspects, led to interruption of the programme. The programme includes study of the main methods and the existing technologies for the design, operation and safety of an interim storage facility (including transport aspects). It also includes analysis of details on the site selection for this facility and for a spent fuel final disposal facility. The achievement of the spent fuel interim storage facility is proceeding. The results from the studies performed in the last years will permit us to prepare the feasibility study next year and the documentation required by our regulatory body for starting the process to obtain a license for a SFISF at Cernavoda. A second phase is the assessment of a long term strategy to select and adopt a proven disposal technology for spent fuel, corresponding with a selected site. The status of the work performed in the frame of this programme and also the situation of the spent fuel from research reactors are presented. (author)

  13. Determination of prerequisites for the estimation of transportation cost of spent fuels

    International Nuclear Information System (INIS)

    Choi, Heui Joo; Lee, Jong Youl; Kim, Seong Ki; Cha, Jeong Hoon; Choi, Jong Won

    2007-10-01

    The cost for the spent fuel management includes the costs for the interim storage, the transportation, and the permanent disposal of the spent fuels. The scope of this report is limited to the cost for the spent fuel transportation. KAERI is developing a cost estimation method for the spent fuel transportation through a joint study with the French AREVA TN. Several prerequisites should be fixed in order to estimate the cost for the spent fuel transportation properly. In this report we produced them considering the Korean current status on the management of spent fuels. The representative characteristics of a spent fuel generated from the six nuclear reactors at the YG site were determined. Total 7,200 tons of spent fuels are projected with the lifespan of 60 years. As the transportation mode, sea transportation and road transportation is recommended considering the location of the YG site and the hypothetical Centralized Interim Storage Facility (CISF) and Final Repository (FR). The sea route and transportation time were analyzed by using a sea distance analysis program which the NORI (National Oceanographic Research Institute) supplies on a web. Based on the results of the analysis, the shipping rates were determined. The regulations related to the spent fuel transportation were reviewed. The characteristics of the transportation vessel and a trailer were suggested. The handling and transportation systems at the YG site, Centralized Interim Storage Facility, and the Final Repository were described in detail for the purpose of the cost estimation of the spent fuel transportation. From the detail description the major components of the transportation system were determined for the conceptual design. It is believed that the conceptual design of the transportation system developed in this report will be used for the analysis of transportation logistics and the cost estimation of spent fuels

  14. Spent nuclear fuel storage. (Latest citations from the NTIS bibliographic database). Published Search

    International Nuclear Information System (INIS)

    1997-07-01

    The bibliography contains citations concerning spent nuclear fuel storage technologies, facilities, sites, and assessment. References review wet and dry storage, spent fuel casks and pools, underground storage, monitored and retrievable storage systems, and aluminum-clad spent fuels. Environmental impact, siting criteria, regulations, and risk assessment are also discussed. Computer codes and models for storage safety are covered. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  15. Final disposal of spent fuel in the Finnish bedrock. Scope and requirements for site-specific safety analysis

    International Nuclear Information System (INIS)

    1996-12-01

    The report is a summary of the research conducted in the period 1993 to 1996 into safety of spent fuel final disposal. The principal goal of the research in this period, as set in 1993, was to develop a strategy for site-specific safety analysis. At the same time efforts were to be continued to gather data and validate the technical approach for the analysis. The work aimed at having the data needed for the analysis available at the end of year 1998. A safety assessment update, TILA-96, prepared by VTT Energy, is published as a separate report. The assessment is based on the TVO-92 safety analysis, but takes into account the knowledge acquired after 1992 on safety aspects of the disposal system and the data gathered from the site investigations made by TVO and from the beginning of 1996, by Posiva. Since the site investigations are still ongoing and much of the data gathered still pending interpretation, only limited amount of new site-specific information has been available for the present assessment. (172 refs.)

  16. Integrated account of method, site selection and programme prior to the site investigation phase[Planning for a Swedish repository for spent nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-12-01

    In order to dispose of the spent nuclear fuel in a safe manner, SKB plans to site a deep repository and an encapsulation plant with associated canister fabrication and transportation system. After an integrated evaluation of feasibility studies and other material, SKB will proceed with investigations of the rock and studies regarding establishment of the deep disposal system in the municipality of Oskarshamn or in Northern Uppland. The plans also include further study of the prospects for a deep repository in the municipality of Nykoeping. In the municipality of Oskarshamn, SKB plans further studies of a siting of the deep repository at Simpevarp. There SKB wants to initiate site investigations with test drilling. For the encapsulation plant, SKB wants to continue studying a siting at CLAB. In Northern Uppland, SKB plans to study two siting alternatives for the deep repository. One is Forsmark in the municipality of Oesthammar, where SKB wants to initiate a site investigation with test drilling. The other is Tierp north of Skutskaer, where SKB intends to start test drilling in an area north of Tierp. First, however, a suitable drilling area with possible transport solutions needs to be defined. This alternative requires the participation of the municipalities of both Tierp and Aelvkarleby. A siting of the encapsulation plant in Northern Uppland will also be studied. For the municipality of Nykoeping, SKB plans to conduct a new safety assessment for the Fjaellveden area, based on data from previous investigations as well as additional studies of how a deep repository could be arranged. SKB will thereby gather data from yet another geographic and geological region beyond those that are prioritized. No test drilling is planned in Nykoeping. The goal of the site investigation phase is to obtain all permits needed to build the planned facilities. It will take an estimated 7 - 8 years to assemble the requisite supporting material, carry out consultations, compile siting

  17. Management of spent fuel in Republic of Korea

    International Nuclear Information System (INIS)

    Pak, Hyun-Soo; Seo, In-Seok; Pak, Sang-Ki.

    1989-01-01

    At present in Republic of Korea, 8 PWR and 1 CANDU power plants are in operation or under construction, and the total capacity of power generation facilities has become 7.6 GWe. In addition, two PWRs of more than 900 MWe each are expected to be constructed by mid 1990s. More than 50 % of the electric power demand was supplied by nuclear power generation since 1987, but the spent fuel generated in nuclear power plants is stored in storage water tanks in respective reactor sites. The total capacity of spent fuel to be stored in the AR facilities of 9 nuclear power plants is about 2730 MTU, and the spent fuel released from these reactors since 1980 is about 810 MTU. The present capacity of AR storage pools seems to be used up by mid 1990s. According to the revised Atomic Energy Acts in May, 1986, the government is to take the responsibility of spent fuel management, and the policy of constructing the storage facilities outside reactor sites by the end of 1997 was established by the Atomic Energy Commission. The responsibility of the management of spent fuel that exceeds the present capacity of AR pools is to be taken by KEPCO, therefore the preliminary analysis of the feasible option on the extension of AR facilities and the comprehensive management plan for spent fuel placing emphasis on the research and development of away-from-reactor storage were decided. (Kako, I.)

  18. Risk analysis methodology for spent fuel repositories in bedded salt: methodlogy summary and differences between spent fuel and high level wastes

    International Nuclear Information System (INIS)

    Pepping, R.E.; Chu, M.S.

    1981-06-01

    In the absence of spent fuel reprocessing plans, unreprocessed spent fuel has become a candidate waste form for geologic disposal. In order to understand the public health risks from such disposal and to gain insights into the factors that influence them, a methodology is needed to combine the effects of site geology and hydrology, physical and chemical properties of the waste form, and the details of the engineering design. This report outlines such a methodology which the authors currently are applying to the analysis of unreprocessed spent fuel disposal. The methodology is the same methodology as was developed to describe the risks from geologic disposal of wastes from reprocessed spent fuel. The difference between spent fuel wastes and wastes from reprocessing that may affect the applicability of the methodology are highlighted

  19. Radiological criteria for the remediation of sites for spent fuel and radioactive waste storage in the Russian Northwest.

    Science.gov (United States)

    Shandala, N K; Sneve, M K; Titov, A V; Smith, G M; Novikova, N Ya; Romanov, V V; Seregin, V A

    2008-12-01

    In the 1960s, two technical bases of the Northern Fleet were created in Northwest Russia, at Andreeva Bay in the Kola Peninsula and Gremikha village on the coast of the Barents Sea. They maintained nuclear submarines, performing receipt and storage of radioactive waste and spent nuclear fuel, and are now designated sites of temporary storage (STSs). An analysis of the radiation situation at these sites demonstrates that substantial long-term remediation work will be required after the removal of the waste and spent nuclear fuel. Regulatory guidance is under development to support this work. Having in mind modern approaches to guaranteeing radiation safety, the primary regulatory focus is on a justification of dose constraints for determining acceptable residual contamination which might lead to exposure to workers and the public. For these sites, four principal options for remediation have been considered-renovation, conversion, conservation and liquidation. This paper describes a system of recommended dose constraints and derived control levels formulated for each option. The unconditional guarantee of long-term radioecological protection provides the basis for criteria development. Non-exceedance of these dose constraints and control levels implies compliance with radiological protection objectives related to the residual contamination. Dose reduction below proposed dose constraint values must also be carried out according to the optimisation principle. The developed criteria relate to the condition of the facilities and the STS areas after the termination of remediation activities. The proposed criteria for renovation, conversion, conservation and liquidation are entirely within the dose limits adopted in Russia for the management of man-made radiation sources, and are consistent with ICRP recommendations and national practice in other countries. The proposed criteria for STS remediation and new industrial (non-radiation-hazardous) facilities and buildings on

  20. Preliminary concepts: safeguards for spent light-water reactor fuels

    International Nuclear Information System (INIS)

    Cobb, D.D.; Dayem, H.A.; Dietz, R.J.

    1979-06-01

    The technology available for safeguarding spent nuclear fuels from light-water power reactors is reviewed, and preliminary concepts for a spent-fuel safeguards system are presented. Essential elements of a spent-fuel safeguards system are infrequent on-site inspections, containment and surveillance systems to assure the integrity of stored fuel between inspections, and nondestructive measurements of the fuel assemblies. Key safeguards research and development activities necessary to implement such a system are identified. These activities include the development of tamper-indicating fuel-assembly identification systems and the design and development of nondestructive spent-fuel measurement systems

  1. Dry spent fuel storage in the 1990's

    International Nuclear Information System (INIS)

    Roberts, J.P.

    1991-01-01

    In the US, for the decade of the 1990's, at-reactor-site dry spent fuel storage has become the predominant option outside of reactor spent fuel pools. This development has resulted from failure, in the 1980's, of a viable reprocessing option for commercial power reactors, and delay in geologic repository development to an operational date at or beyond the year 2010. Concurrently, throughout the 1980's, aggressive technical and regulatory efforts by the Federal Government, coordinated with nuclear industry, have led to successful evolution of dry spent fuel storage as a utility option

  2. Simplified risk assessment for transporting ATR spent fuel within the INEL

    International Nuclear Information System (INIS)

    Franklin, E.M.; Courtney, J.C.

    1994-01-01

    Interest in characterizing the condition of stored spent fuels has generated the need to move spent fuels to hot cell facilities within the Idaho National Engineering Laboratory (INEL). A simplified probabilistic risk assessment (SPRA) and an evaluation of the radiological consequences in the event of an accident are discussed and applied to on-site Advanced Test Reactor (AYR) spent fuel shipments. Reported accident probabilities between 10 -4 and 10 -6 and low radiological consequences, affords this, and other spent fuel characterization efforts, an additional option to move spent fuels within the INEL

  3. Multi-purpose container technologies for spent fuel management

    International Nuclear Information System (INIS)

    2000-12-01

    The management of spent nuclear fuel is an integral part of the nuclear fuel cycle. Spent fuel management resides in the back end of the fuel cycle, and is not revenue producing as electric power generation is. It instead results in a cost associated power generation. It is a major consideration in the nuclear power industry today. Because technologies, needs and circumstances vary from country to country, there is no single, standardized approach to spent fuel management. The projected cumulative amount of spent fuel generated worldwide by 2010 will be 330 000 t HM. When reprocessing is accounted for, that amount is likely to be reduced to 215 000 t HM, which is still more than twice as much as the amount now in storage. Considering the limited capacity of at-reactor (AR) storage, various technologies are being developed for increasing storage capacities. At present, many countries are developing away-from-reactor (AFR) storage in the form of pool storage or as dry storage. Further these AFR storage systems may be at-reactor sites or away-from-reactor sites (e.g. centrally located interim storage facilities, serving several reactors). The dry storage technologies being developed are varied and include vaults, horizontal concrete modules, concrete casks, and metal casks. The review of the interim storage plans of several countries indicates that the newest approaches being pursued for spent fuel management use dual-purpose and multi-purpose containers. These containers are envisaged to hold several spent fuel assemblies, and be part of the transport, storage, and possibly geological disposal systems of an integrated spent fuel management system

  4. Research reactor spent fuel management in Argentina

    International Nuclear Information System (INIS)

    Audero, M.A.; Bevilacqua, A.M.; Mehlich, A.M.; Novara, O.

    2002-01-01

    The research reactor spent fuel (RRSF) management strategy will be presented as well as the interim storage experience. Currently, low-enriched uranium RRSF is in wet interim storage either at reactor site or away from reactor site in a centralized storage facility. High-enriched uranium RRSF from the centralized storage facility has been sent to the USA in the framework of the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program. The strategy for the management of the RRSF could implement the encapsulation for interim dry storage. As an alternative to encapsulation for dry storage some conditioning processes are being studied which include decladding, isotopic dilution, oxidation and immobilization. The immobilized material will be suitable for final disposal. (author)

  5. Preliminary assessment of costs and risks of transporting spent fuel by barge

    International Nuclear Information System (INIS)

    Tobin, R.L.; Meshkov, N.K.; Jones, R.H.

    1985-12-01

    The purpose of this study is to analyze the costs and risks associated with transporting spent fuel by barge. The barge movements would be made in combination with rail movements to transport spent fuel from plants to a repository. For the purpose of this analysis, three candidate repository sites are analyzed: Yucca Mountain, Nevada, Deaf Smith, Texas, and Hanford, Washington. This report complements a report prepared by Sandia National Laboratories in 1984 that analyzes the costs and risks of transporting spent fuel by rail and by truck to nine candidate repository sites

  6. Deployment evaluation methodology for the electrometallurgical treatment of DOE-EM spent nuclear fuel

    International Nuclear Information System (INIS)

    Dahl, C.A.; Adams, J.P.; Ramer, R.J.

    1998-07-01

    Part of the Department of Energy (DOE) spent nuclear fuel (SNF) inventory may require some type of treatment to meet acceptance criteria at various disposition sites. The current focus for much of this spent nuclear fuel is the electrometallurgical treatment process under development at Argonne National Laboratory. Potential flowsheets for this treatment process are presented. Deployment of the process for the treatment of the spent nuclear fuel requires evaluation to determine the spent nuclear fuel program need for treatment and compatibility of the spent nuclear fuel with the process. The evaluation of need includes considerations of cost, technical feasibility, process material disposition, and schedule to treat a proposed fuel. A siting evaluation methodology has been developed to account for these variables. A work breakdown structure is proposed to gather life-cycle cost information to allow evaluation of alternative siting strategies on a similar basis. The evaluation methodology, while created specifically for the electrometallurgical evaluation, has been written such that it could be applied to any potential treatment process that is a disposition option for spent nuclear fuel. Future work to complete the evaluation of the process for electrometallurgical treatment is discussed

  7. The risks of the Taiwan research reactor spent fuel project

    International Nuclear Information System (INIS)

    1991-06-01

    The proposed action is to transport up to 118 spent fuel rods, to include canned spent fuel rod particulates immobilized on filters, from a research reactor in Taiwan by sea to Hampton Roads, Virginia, and then overland by truck to the Receiving Basin for Offsite Fuels at the Savannah River Site (SRS). At SRS, the spent fuel will be reprocessed to recover uranium and plutonium. 55 refs., 8 tabs

  8. A summary of INSITE activities in tracking SKB's spent fuel repository site investigations from 2002-2009 and of advice provided to the regulatory authorities on the status of site understanding at the end of the surface-based investigations

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Neil (Chapman Consulting (Switzerland)); Bath, Adrian (Intellisci Ltd, (United Kingdom)); Geier, Joel (Clearwater Hardrock Consulting (United States)); Ove Stephansson (Steph Rock Consulting AB (Sweden)); Tiren, Sven (Geosigma (Sweden)); Tsang, Chin-Fu (Berkeley Geohydrophysics SP (United States))

    2010-11-15

    SSM and its predecessor SKI employed a team of earth scientists who followed and reviewed SKB's investigations of the potential spent nuclear fuel repository sites at Forsmark and Laxemar. This group was named INSITE (INdependent Site Investigation Tracking and Evaluation) and began its work in 2002 and completed its task with the review of the final versions SKB's site descriptive models, SDM-Site, in 2009. This report is a summary of INSITE's work over the eight-and-a-half year period of the site investigations and the lead-in and the wind-down to the work. It is intended to provide an outline and a record of how INSITE has worked and how its advice was generated and provided to SKI and, latterly, to SSM. Together with all the other documentation generated by INSITE, this report is intended to support the regulatory review of SKB's licence application for a spent nuclear fuel repository

  9. Storage of spent fuel from power reactors. Proceedings of a symposium

    International Nuclear Information System (INIS)

    1999-07-01

    The symposium gave an opportunity to exchange information on the state of the art and prospects of spent fuel storage, to discuss the worldwide situation and the major factors influencing the national policies in this field and to identify the most important directions that national efforts an international cooperation in this area should take. Dominant message retrieved from the symposium are that the primary spent fuel management solution for the next decades will be interim storage, the duration of time of interim storage becomes longer than earlier anticipated and the storage facilities will have to be designed for receiving also spent fuel from advanced fuel cycle practices (i.e. high burnup and MOX spent fuel). It was noted that the handling and storage of spent fuel is a mature technology and meets the stringent safety requirements applicable in different countries. The changes in nuclear policy and philosophy across the world, and practical considerations, have made interim storage a real necessity in the nuclear power industry. This is being addressed adequately by utilities, vendors and regulators alike

  10. Storage of spent fuel from power reactors. Proceedings of a symposium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The symposium gave an opportunity to exchange information on the state of the art and prospects of spent fuel storage, to discuss the worldwide situation and the major factors influencing the national policies in this field and to identify the most important directions that national efforts an international cooperation in this area should take. Dominant message retrieved from the symposium are that the primary spent fuel management solution for the next decades will be interim storage, the duration of time of interim storage becomes longer than earlier anticipated and the storage facilities will have to be designed for receiving also spent fuel from advanced fuel cycle practices (i.e. high burnup and MOX spent fuel). It was noted that the handling and storage of spent fuel is a mature technology and meets the stringent safety requirements applicable in different countries. The changes in nuclear policy and philosophy across the world, and practical considerations, have made interim storage a real necessity in the nuclear power industry. This is being addressed adequately by utilities, vendors and regulators alike Refs, figs, tabs

  11. Savannah River Site, spent nuclear fuel management, draft environmental impact statement

    International Nuclear Information System (INIS)

    1998-12-01

    The management of spent nuclear fuel (SNF) has been an integral part of the mission of the Savannah River Site (SRS) for more than 40 years. Until the early 1990s, SNF management consisted primarily of short-term onsite storage and reprocessing in the SRS chemical separation facilities to produce strategic nuclear materials. With the end of the Cold War, the US Department of Energy (DOE) decided to phase out reprocessing of SNF for the production of nuclear weapons materials. Therefore, the management strategy for this fuel has shifted from short-term storage and reprocessing for the recovery of highly-enriched uranium and transuranic isotopes to stabilization, when necessary, and interim storage pending final disposition that includes preparing aluminum-based SNF for placement in a geologic repository. In addition to the fuel already onsite, the SRS will receive SNF from foreign research reactors until 2009 and from domestic research reactors until, potentially, 2035. As a result, the safe and efficient management of SNF will continue to be an important SRS mission. This EIS evaluates the potential environmental impacts of DOE's proposed plans for management SNF assigned to SRS

  12. Spent fuel heatup following loss of water during storage

    International Nuclear Information System (INIS)

    Benjamin, A.S.; McCloskey, D.J.

    1978-01-01

    Spent fuel assemblies from light water reactors are typically stored for one year or more in the reactor spent fuel pool and then transported for long-term storage at an off-site location. Because of the design, construction, and operation features of spent fuel storage pools, an accident that might drain most of the water from a pool is assessed as being extremely improbable. As a limiting case, however, a hypothetical incident involving instantaneous draining of all the water from a storage pool has been postulated, and the subsequent heatup of the spent fuel elements has been evaluated. The model is analyzed, and results are summarized

  13. Rethinking the economics of centralized spent fuel storage

    International Nuclear Information System (INIS)

    Wood, T.W.; Short, S.M.; Dippold, D.G.; Rod, S.R.; Williams, J.W.

    1991-04-01

    The technology for extended storage of spent nuclear fuel (SNF), either at-reactor or in a centralized facility such as a monitored retrievable storage (MRS) facility, is well-developed and proven from an engineering and safety perspective. The question of whether spent fuel should await its final geologic disposal while at a reactor site or in an MRS facility is essentially an economic one. While intuition and previous results suggest that centralized storage will be more economical than at-reactor storage beyond some break-even quantity of SNF, the incremental costs of pool storage at-reactor are close to zero as long as pool capacity is generally available. Thus, if economics is the prime motivator, the quantity of spent fuel required to warrant centralized storage could be quite large. The economics of centralizing the storage of spent fuel at a single site, as opposed to continued storage at over 100 reactor sites, has been the subject of several recent analyses. Most of these analyses involved calculating the benefits of an MRS facility with a pre-defined MRS operating scenario. This paper reverses this approach to economic analysis of the MRS by seeking the optimal MRS operating scenario (in terms of the parameters listed above) implied by the economic incentives arising from the relative costs of at-reactor storage and centralized storage. This approach treats an MRS as a possible storage location that will be used according to its economic value in system operation. 5 refs., 5 figs

  14. Spent fuel management in Hungary: Current status and prospects

    International Nuclear Information System (INIS)

    Ferenczi, G.

    1996-01-01

    The Paks Nuclear Power Plant Ltd. operates the only NPP of Hungary, consisting of a 4 WWER-440 type units. Since 1989, approximately 40-50 % of the total yearly electricity generation of the country has been supplied by this plant. The fresh fuel is imported from Russia (previously from the Soviet Union) and the spent fuel assemblies are shipped back to Russia for later reprocessing after 5 years of decay storage in the spent fuel pools of the plant. Seeing the political and economical changes that started in Russia, the Paks NPP's management made a decision in 1990 to study the implementation of an independent spent fuel storage facility (ISFSF) at the Paks site and in 1992 to choose the GEC-ALSTHOM's MVDS. On the basis of the Construction License issued by the HAEC, the construction of the ISFSF was started in March 1995. The paper gives general information on the spent fuel arisings, the storage at the site, the shipment to Russia and on the implementation of the ISFSF. (author). 3 refs

  15. Spent fuel dry storage experience at Gentilly 2 NGS

    International Nuclear Information System (INIS)

    Macici, N.

    1997-01-01

    In order to provide the needed interim storage facility for the spent fuel, Hydro-Quebec chose the dry storage CANSTOR module developed by the Atomic Energy of Canada Ltd (AECL). The decision was made based upon the technical feasibility, public and environmental protection criteria, operational flexibility, economic and space saving advantages. Before the commissioning of the spent fuel dry storage facility, the project received all the required approvals. A joint provincial - federal public hearings was held in summer of 1994 in order to assess the project in term of its impact on the environment. In September 1995 took place the first transfer of spent fuel from the station bay to the dry storage facility and since then 21000 bundles of spent fuel were transferred in the two CANSTOR modules built on the station site located within the protected area of the Gentilly-2 station. To date, the expected performance of the dry storage units and equipment have been met. A third CANSTOR module is to be built in summer of 1997 on the station site. (author)

  16. A present status for dry storage of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bang, K. S.; Lee, J. C.; Park, H. Y.; Seo, K. S

    2003-04-01

    National policy for management of a spent nuclear fuel does not establish in Korea yet. A storage capacity of a storage pool that is to store the spent nuclear fuel will be exceeded an amount of accumulation from the first Woljin nuclear power plant in 2007. Therefore it is necessary that dry storage facility is secured to store safely the spent nuclear fuel on site of the nuclear power plant until national policy for a back-end spent nuclear fuel cycle is established. In order to store safely spent nuclear fuel, it is important that the present status and technology on dry storage of spent nuclear fuel is looked over. Therefore, the present status on dry storage of spent nuclear fuel was analyzed so as to develop dry storage system and choose a proper dry storage method domestic.

  17. Overview of the spent nuclear fuel project at Hanford

    International Nuclear Information System (INIS)

    Daily, J.L.

    1995-02-01

    The Spent Nuclear Fuel Project's mission at Hanford is to open-quotes Provide safe, economic and environmentally sound management of Hanford spent nuclear fuel in a manner which stages it to final disposition.close quotes The inventory of spent nuclear fuel (SNF) at the Hanford Site covers a wide variety of fuel types (production reactor to space reactor) in many facilities (reactor fuel basins to hot cells) at locations all over the Site. The 2,129 metric tons of Hanford SNF represents about 80% of the total US Department of Energy (DOE) inventory. About 98.5% of the Hanford SNF is 2,100 metric tons of metallic uranium production reactor fuel currently stored in the 1950s vintage K Basins in the 100 Area. This fuel has been slowly corroding, generating sludge and contaminating the basin water. This condition, coupled with aging facilities with seismic vulnerabilities, has been identified by several groups, including stakeholders, as being one of the most urgent safety and environmental concerns at the Hanford Site. As a direct result of these concerns, the Spent Nuclear Fuel Project was recently formed to address spent fuel issues at Hanford. The Project has developed the K Basins Path Forward to remove fuel from the basins and place it in dry interim storage. Alternatives that addressed the requirements were developed and analyzed. The result is a two-phased approach allowing the early removal of fuel from the K Basins followed by its stabilization and interim storage consistent with the national program

  18. Overview of the US spent nuclear fuel program

    International Nuclear Information System (INIS)

    Hurt, W.L.

    1999-01-01

    This report, Overview of the United States Spent Nuclear Fuel Program, December, 1997, summarizes the U.S. strategy for interim management and ultimate disposition of spent nuclear fuel from research and test reactors. The key elements of this strategy include consolidation of this spent nuclear fuel at three sites, preparation of the fuel for geologic disposal in road-ready packages, and low-cost dry interim storage until the planned geologic repository is opened. The U.S. has a number of research programs in place that are intended to Provide data and technologies to support both characterization and disposition of the fuel. (author)

  19. DOE not planning to accept spent nuclear fuel

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Samuel K. Skinner, president of Commonwealth Edison Co. (ComEd), said open-quotes The federal government has a clear responsibility to begin accepting spent nuclear fuel in 1988,close quotes citing the Nuclear Waste Policy Act of 1982 before the Senate Energy and Natural Resources Committee. Based in Chicago, ComEd operates 12 nuclear units, making it the nation's largest nuclear utility. open-quotes Since 1983, the consumers who use electricity produced at all nuclear power plants have been paying to fund federal management of spent nuclear fuel. Consumer payments and obligations, with interest, now total more than $10 billion. Electricity consumers have held up their side of the deal. The federal government must do the same,close quotes Skinner added. Skinner represented the Nuclear Energy Institute (NEI) before the committee. NEI is the Washington-based trade association of the nuclear energy industries. For more than 12 years, utility customers have been paying one-tenth of a cent per kWhr to fund a federal spent fuel management program under the Nuclear Waste Policy Act of 1982. Under this act, the federal government assumed responsibility for management of spent fuel from the nation's nuclear power plants. The U.S. Department of Energy (DOE) was assigned to manage the storage and disposal program. DOE committed to begin accepting spent fuel from nuclear power plants by January 31, 1988. DOE has spent almost $5 million studying a site in Nevada, but is about 12 years behind schedule and does not plan to accept spent fuel beginning in 1998. DOE has said a permanent storage site will not be ready until 2010. This poses a major problem for many of the nation's nuclear power plants which supply about 20% of the electricity in the US

  20. Spent Nuclear Fuel Alternative Technology Decision Analysis

    International Nuclear Information System (INIS)

    Shedrow, C.B.

    1999-01-01

    The Westinghouse Savannah River Company (WSRC) made a FY98 commitment to the Department of Energy (DOE) to recommend a technology for the disposal of aluminum-based spent nuclear fuel (SNF) at the Savannah River Site (SRS). The two technologies being considered, direct co-disposal and melt and dilute, had been previously selected from a group of eleven potential SNF management technologies by the Research Reactor Spent Nuclear Fuel Task Team chartered by the DOE''s Office of Spent Fuel Management. To meet this commitment, WSRC organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and ultimately provide a WSRC recommendation to DOE on a preferred SNF alternative management technology

  1. Remote technology applications in spent fuel management

    International Nuclear Information System (INIS)

    2005-03-01

    packaging for disposal, depending on the options chosen for spent fuel management. Because of the predominant amount of work required for spent fuel storage in the current and foreseeable future requirements for spent fuel management, more details are described on remote technology associated with storage of spent fuel. Some information on the application methodology of remote systems technology is provided with discussions on the basic principles that seem to be applicable in the development and application of remote technologies for all aspects of spent fuel handling. In addition, some practical guidance is provided on the selection of appropriate technology for implementation of a system. Finally, presented are some advanced technologies that would find applications in the longer term including the innovative fuel cycle concepts now in early stage of developments by some international initiatives like Gen IV of the USA and INPRO of the IAEA

  2. Current status of the first interim spent fuel storage facility in Japan

    International Nuclear Information System (INIS)

    Shinbo, Hitoshi; Kondo, Mitsuru

    2008-01-01

    In Japan, storage of spent fuels outside nuclear power plants was enabled as a result of partial amendments to the Nuclear Reactor Regulation Law in June 2000. Five months later, Mutsu City in Aomori Prefecture asked the Tokyo Electric Power Company (TEPCO) to conduct technical surveys on siting of the interim spent fuel storage facility (we call it 'Recyclable-Fuel Storage Center'). In April 2003, TEPCO submitted the report on siting feasibility examination, concluded that no improper engineering data for siting, construction of the facility will be possible from engineering viewpoint. Siting Activities for publicity and public acceptance have been continued since then. After these activities, Aomori Prefecture and Mutsu City approved siting of the Recyclable Fuel Storage Center in October 2005. Aomori Prefecture, Mutsu City, TEPCO and Japan Atomic Power Company (JAPC) signed an agreement on the interim spent fuel storage Facility. A month later, TEPCO and JAPC established Recyclable-Fuel Storage Company (RFS) in Mutsu City through joint capital investment, specialized in the first interim spent fuel storage Facility in Japan. In May 2007, we made an application for establishment permit, following safety review by regulatory authorities. In March 2008, we started the preparatory construction. RFS will safely store of spent fuels of TEPCO and JAPC until they will be reprocessed. Final storage capacity will be 5,000 ton-U. First we will construct the storage building of 3,000 ton-U to be followed by second building. We aim to start operation by 2010. (author)

  3. Disposal of defense spent fuel and HLW from the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Ermold, L.F.; Loo, H.H.; Klingler, R.D.; Herzog, J.D.; Knecht, D.A.

    1992-12-01

    Acid high-level radioactive waste (HLW) resulting from fuel reprocessing at the Idaho Chemical Processing Plant (ICPP) for the US Department of Energy (DOE) has been solidified to a calcine since 1963 and stored in stainless steel bins enclosed by concrete vaults. Several different types of unprocessed irradiated DOE-owned fuels are also in storage ate the ICPP. In April, 1992, DOE announced that spent fuel would no longer be reprocessed to recover enriched uranium and called for a shutdown of the reprocessing facilities at the ICPP. A new Spent Fuel and HLW Technology Development program was subsequently initiated to develop technologies for immobilizing ICPP spent fuels and HLW for disposal, in accordance with the Nuclear Waste Policy Act. The Program elements include Systems Analysis, Graphite Fuel Disposal, Other Spent Fuel Disposal, Sodium-Bearing Liquid Waste Processing, Calcine Immobilization, and Metal Recycle/Waste Minimization. This paper presents an overview of the ICPP radioactive wastes and current spent fuels, with an emphasis on the description of HLW and spent fuels requiring repository disposal

  4. Assessment of spent WWER-440 fuel performance under long-term storage conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kupca, L [VUJE Inc. (Slovakia)

    2012-07-01

    In the Slovak Republic are under operation 6 units (4 in the Jaslovske Bohunice site, and 2 in the Mochovce), 2 units are under construction in Mochovce site. All units are WWER-440 type. The fresh fuel is imported from the Russian Federation. The spent fuel assemblies are stored in wet conditions in Bohunice Interim Storage Spent Fuel Facility (SFIS). By 15 July 2008, there were 8413 assemblies in SFIS. The objectives are: 1) Wet AR storage of spent fuel from the NPP Bohunice and Mochovce: Surveillance of conditions for spent fuel storage in the at-reactor (AR) storage pools of both NPP's (characteristics of pool water, corrosion product data); Visual control of storage pool components; Evaluation of storage conditions with respect to long-term stability (corrosion of fuel cladding, structural materials); 2) Wet SFIS storage at Bohunice: Measurement of spent fuel conditions during the long-term wet storage, activity data in the storage casks and amount of crud; Surveillance program for SFIS structural materials.

  5. Compact approach to long-term monitored retrievable storage of spent fuel

    International Nuclear Information System (INIS)

    Muir, D.W.

    1986-01-01

    We examine a new approach to monitored retrievable storage (MRS) that is extremely compact in terms of total land use and may offer increased security and reduced environmental impact, relative to current designs. This approach involves embedding the spent fuel assemblies in monolithic blocks of metallic aluminum. While this would clearly require increased effort in the spent-fuel packaging phase, it would offer in return the above-mentioned environmental advantages, plus the option of easily extending the surface-storage time scale from several years to several decades if a need for longer storage times should arise in the future

  6. A geographic information system and multi criteria analysis method for site selection of spent nuclear fuel disposal

    International Nuclear Information System (INIS)

    Martins, Vivian Borges

    2009-01-01

    This thesis aims to develop a site selection methodology for the construction of final repository for the spent nuclear fuel disposal, by using geographic information systems (GIS) and multi-criteria decision analysis. Decision making processes of this kind are often complex, given the great number of space parameters to consider and also the typically conflicting opinions of the diverse stake holders. By using GIS, data from different space parameters can be quickly and reliably stored, treated and analyzed. Multi-criteria techniques allow for the incorporation of different stake holders' opinions. These tools, when jointly used, allow for the decision process to be more transparent, quick and reliable. The method developed was applied to the particular case of the state of Rio de Janeiro. Weights obtained from an expert panel and also by using the Hierarchical Analysis Method and cartographic data were combined in the GIS. The application showed that it is possible not only to select and classify areas as to their aptness for the proposed objective, but also to exclude those clearly inadequate areas, thus optimizing the selection process by reducing the search space and consequently minimizing costs and the time spent in the search. (author)

  7. Status of the spent fuel dry storage programme for Cernavoda NPP

    International Nuclear Information System (INIS)

    Radu, M.

    1999-01-01

    The Cernavoda NPP Unit 1 (600 MWe Standard type) is in operation since December 1996. Within the framework of the R and D Radioactive Waste and Spent Fuel Management Programme, investigations, studies and research are carried out on site identification and conceptual designs for both a Spent Fuel Interim Storage Facility and a Spent Fuel Disposal Facility. The status of the work performed in the framework of this programme as well as the situation of the spent fuel resulting from the Research Institutes will be presented in the paper. (author)

  8. Spent Nuclear Fuel Alternative Technology Decision Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shedrow, C.B.

    1999-11-29

    The Westinghouse Savannah River Company (WSRC) made a FY98 commitment to the Department of Energy (DOE) to recommend a technology for the disposal of aluminum-based spent nuclear fuel (SNF) at the Savannah River Site (SRS). The two technologies being considered, direct co-disposal and melt and dilute, had been previously selected from a group of eleven potential SNF management technologies by the Research Reactor Spent Nuclear Fuel Task Team chartered by the DOE''s Office of Spent Fuel Management. To meet this commitment, WSRC organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and ultimately provide a WSRC recommendation to DOE on a preferred SNF alternative management technology.

  9. Expedited action recommended for spent nuclear fuel at Hanford

    International Nuclear Information System (INIS)

    Illman, D.

    1994-01-01

    After six months of study, Westinghouse Hanford Co. has proposed an expedited strategy to deal with spent nuclear fuel stored in rapidly deteriorating basins at the Hanford site in southeastern Washington. The two-phase approach calls for radioactive fuel to be removed from the basins and placed in special canisters, transported by rail to a new vault to be constructed at Hanford,and held there until a processing facility is built. Then the fuel would be stabilized and returned to the vault for interim storage of up to 40 years. The plan calls for waste fuel and sludge to be removed by 2000. More than 2,100 metric tons of spent fuel--nearly 80% of DOE's total spent-fuel inventory nationwide--is housed at the Hanford site in the two obsolete concrete water basins, called K East and K West. A specific location for the storage and processing facilities has not yet been identified, and rounds of environmental impact statements remain to be completed. While a recommended path seems to have been identified, there are miles to go before this spent fuel finally sleeps

  10. An Indian perspective for transportation and storage of spent fuel

    International Nuclear Information System (INIS)

    Dey, P.K.

    2005-01-01

    The spent fuel discharged from the reactors are temporarily stored at the reactor pool. After a certain cooling time, the spent fuel is moved to the storage locations either on or off reactor site depending on the spent fuel management strategy. As India has opted for a closed fuel cycle for its nuclear energy development, reprocessing of the spent fuel, recycling of the reprocessed plutonium and uranium and disposal of the wastes from the reprocessing operations forms the spent fuel management strategy. Since the reprocessing operations are planned to match the nuclear energy programme, storage of the spent fuel in ponds are adopted prior to reprocessing. Transport of the spent fuel to the storage locations are carried out adhering to international and national guide lines. India is having 14 operating power reactors and three research reactors. The spent fuel from the two safeguarded BWRs are stored at-reactor (AR) storage pond. A separate wet storage facility away-from-reactor (AFR) has been designed, constructed and made operational since 1991 for additional fuel storage. Storage facilities are provided in ARs at other reactor locations to cater to 10 reactor-years of operation. A much lower capacity spent fuel storage is provided in reprocessing plants on the same lines of AR fuel storage design. Since the reprocessing operations are carried out on a need basis, to cater to the increased storage needs two new spent fuel storage facilities (SFSF) are being designed and constructed near the existing nuclear plant sites. India has mastered the technology for design, construction and operation of wet spent fuel storage facility meeting all the international standards Wet storage of the spent fuel is the most commonly adopted mode all over the world. Recently an alternate mode viz. dry storage has also been considered. India has designed, constructed and operated lead shielded dry storage casks and is operational at one site. A dry storage cask made of concrete

  11. Spent Fuel Working Group Report

    International Nuclear Information System (INIS)

    O'Toole, T.

    1993-11-01

    The Department of Energy is storing large amounts of spent nuclear fuel and other reactor irradiated nuclear materials (herein referred to as RINM). In the past, the Department reprocessed RINM to recover plutonium, tritium, and other isotopes. However, the Department has ceased or is phasing out reprocessing operations. As a consequence, Department facilities designed, constructed, and operated to store RINM for relatively short periods of time now store RINM, pending decisions on the disposition of these materials. The extended use of the facilities, combined with their known degradation and that of their stored materials, has led to uncertainties about safety. To ensure that extended storage is safe (i.e., that protection exists for workers, the public, and the environment), the conditions of these storage facilities had to be assessed. The compelling need for such an assessment led to the Secretary's initiative on spent fuel, which is the subject of this report. This report comprises three volumes: Volume I; Summary Results of the Spent Fuel Working Group Evaluation; Volume II, Working Group Assessment Team Reports and Protocol; Volume III; Operating Contractor Site Team Reports. This volume presents the overall results of the Working Group's Evaluation. The group assessed 66 facilities spread across 11 sites. It identified: (1) facilities that should be considered for priority attention. (2) programmatic issues to be considered in decision making about interim storage plans and (3) specific vulnerabilities for some of these facilities

  12. Conceptual development of a test facility for spent fuel management

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.W.; Lee, H.H.; Lee, J.Y.; Lee, J.S.; Ro, S.G. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    Spent fuel management is an important issue for nuclear power program, requiring careful planning and implementation. With the wait-and-see policy on spent fuel management in Korea, research efforts are directed at KAERI to develop advanced technologies for safer and more efficient management of the accumulating spent fuels. In support of these research perspectives, a test facility of pilot scale is being developed with provisions for integral demonstration of a multitude of technical functions required for spent fuel management. The facility, baptized SMART (Spent fuel MAnagement technology Research and Test facility), is to be capable of handling full size assembly of spent PWR fuel (as well as CANDU fuel) with a maximum capacity of 10 MTU/y (about 24 assemblies of PWR type). Major functions of the facility are consolidation of spent PWR fuel assembly into a half-volume package and optionally transformation of the fuel rod into a fuel of CANDU type (called DUPIC). Objectives of these functions are to demonstrate volume reduction of spent fuel (for either longer-term dry storage or direct disposal ) in the former case and direct refabrication of the spent PWR fuel into CANDU-type DUPIC fuel for reuse in CANDU reactors in the latter case, respectively. In addition to these major functions, there are other associated technologies to be demonstrated : such as waste treatment, remote maintenance, safeguards, etc. As the facility is to demonstrate not only the functional processes but also the safety and efficiency of the test operations, engineering criteria equivalent to industrial standards are incorporated in the design concept. The hot cell structure enclosing the radioactive materials is configured in such way to maximize costs within the given functional and operational requirements. (author). 3 tabs., 4 figs.

  13. Conceptual development of a test facility for spent fuel management

    International Nuclear Information System (INIS)

    Park, S.W.; Lee, H.H.; Lee, J.Y.; Lee, J.S.; Ro, S.G.

    1997-01-01

    Spent fuel management is an important issue for nuclear power program, requiring careful planning and implementation. With the wait-and-see policy on spent fuel management in Korea, research efforts are directed at KAERI to develop advanced technologies for safer and more efficient management of the accumulating spent fuels. In support of these research perspectives, a test facility of pilot scale is being developed with provisions for integral demonstration of a multitude of technical functions required for spent fuel management. The facility, baptized SMART (Spent fuel MAnagement technology Research and Test facility), is to be capable of handling full size assembly of spent PWR fuel (as well as CANDU fuel) with a maximum capacity of 10 MTU/y (about 24 assemblies of PWR type). Major functions of the facility are consolidation of spent PWR fuel assembly into a half-volume package and optionally transformation of the fuel rod into a fuel of CANDU type (called DUPIC). Objectives of these functions are to demonstrate volume reduction of spent fuel (for either longer-term dry storage or direct disposal ) in the former case and direct refabrication of the spent PWR fuel into CANDU-type DUPIC fuel for reuse in CANDU reactors in the latter case, respectively. In addition to these major functions, there are other associated technologies to be demonstrated : such as waste treatment, remote maintenance, safeguards, etc. As the facility is to demonstrate not only the functional processes but also the safety and efficiency of the test operations, engineering criteria equivalent to industrial standards are incorporated in the design concept. The hot cell structure enclosing the radioactive materials is configured in such way to maximize costs within the given functional and operational requirements. (author). 3 tabs., 4 figs

  14. Paper summary inventory assessment of DOE spent nuclear fuels

    International Nuclear Information System (INIS)

    Abbott, D.G.; Bringhurst, A.R.; Fillmore, D.L.

    1994-01-01

    The U.S. Department of Energy (DOE) has determined that it will not longer reprocess its spent nuclear fuel. This decision made it necessary to manage this fuel for long-term interim storage and ultimate disposal. DOE is developing a computerized database of its spent nuclear fuel inventory. This database contains information about the fuels and the fuel storage locations. There is approximately 2,618 metric tons initial heavy metal of fuel, stored at 12 locations. For analysis in an environmental impact statement, the fuel has been divided into six categories: naval, aluminum-based, Hanford defense, graphite, commercial-type, and test and experimental. This paper provides a discussion of the development of the database, and includes summary inventory information and a brief description of the fuels

  15. Mobile Melt-Dilute Treatment for Russian Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Peacock, H.

    2002-01-01

    Treatment of spent Russian fuel using a Melt-Dilute (MD) process is proposed to consolidate fuel assemblies into a form that is proliferation resistant and provides critically safety under storage and disposal configurations. Russian fuel elements contain a variety of fuel meat and cladding materials. The Melt-Dilute treatment process was initially developed for aluminum-based fuels so additional development is needed for several cladding and fuel meat combinations in the Russian fuel inventory (e.g. zirconium-clad, uranium-zirconium alloy fuel). A Mobile Melt-Dilute facility (MMD) is being proposed for treatment of spent fuels at reactor site storage locations in Russia; thereby, avoiding the costs of building separate treatment facilities at each site and avoiding shipment of enriched fuel assemblies over the road. The MMD facility concept is based on laboratory tests conducted at the Savannah River Technology Center (SRTC), and modular pilot-scale facilities constructed at the Savannah River Site for treatment of US spent fuel. SRTC laboratory tests have shown the feasibility of operating a Melt-Dilute treatment process with either a closed system or a filtered off-gas system. The proposed Mobile Melt-Dilute process is presented in this paper

  16. A Non-Proliferating Fuel Cycle: No Enrichment, Reprocessing or Accessible Spent Fuel - 12375

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Frank L. [Vanderbilt University (United States)

    2012-07-01

    Current fuel cycles offer a number of opportunities for access to plutonium, opportunities to create highly enriched uranium and access highly radioactive wastes to create nuclear weapons and 'dirty' bombs. The non-proliferating fuel cycle however eliminates or reduces such opportunities and access by eliminating the mining, milling and enrichment of uranium. The non-proliferating fuel cycle also reduces the production of plutonium per unit of energy created, eliminates reprocessing and the separation of plutonium from the spent fuel and the creation of a stream of high-level waste. It further simplifies the search for land based deep geologic repositories and interim storage sites for spent fuel in the USA by disposing of the spent fuel in deep sub-seabed sediments after storing the spent fuel at U.S. Navy Nuclear Shipyards that have the space and all of the necessary equipment and security already in place. The non-proliferating fuel cycle also reduces transportation risks by utilizing barges for the collection of spent fuel and transport to the Navy shipyards and specially designed ships to take the spent fuel to designated disposal sites at sea and to dispose of them there in deep sub-seabed sediments. Disposal in the sub-seabed sediments practically eliminates human intrusion. Potential disposal sites include Great Meteor East and Southern Nares Abyssal Plain. Such sites then could easily become international disposal sites since they occur in the open ocean. It also reduces the level of human exposure in case of failure because of the large physical and chemical dilution and the elimination of a major pathway to man-seawater is not potable. Of course, the recovery of uranium from sea water and the disposal of spent fuel in sub-seabed sediments must be proven on an industrial scale. All other technologies are already operating on an industrial scale. If externalities, such as reduced terrorist threats, environmental damage (including embedded

  17. Storage of spent fuel from power reactors in India management and experience

    International Nuclear Information System (INIS)

    Changrani, R.D.; Bajpai, D.D.; Kodilkar, S.S.

    1999-01-01

    The spent fuel management programme in India is based on closing the nuclear fuel cycle with reprocessing option. This will enable the country to enhance energy security through maximizing utilization of available limited uranium resources while pursuing its Three Stage Nuclear Power Programme. Storage of spent fuel in water pools remains as prevailing mode in the near term. In view of inventory build up of spent fuel, an Away-From-Reactor (AFR) On-Site (OS) spent fuel storage facility has been made operational at Tarapur. Dry storage casks also have been developed as 'add on' system for additional storage of spent fuels. The paper describes the status and experience pertaining to spent fuel storage practices in India. (author)

  18. TVO-92 safety analysis of spent fuel disposal

    International Nuclear Information System (INIS)

    Vieno, T.; Hautojaervi, A.; Koskinen, L.; Nordman, H.

    1993-08-01

    The spent fuel from the TVO I and TVO II reactors at the Olkiluoto nuclear power plant is planned to be disposed in a repository constructed at a depth of about 500 meters in crystalline bedrock. Teollisuuden Voima Oy (TVO) has carried out preliminary site investigations for spent fuel disposal between 1987 and 1992 at five areas in Finland (Olkiluoto, Kivetty, Romuvaara, Syyry and Veitsivaara). The Safety analysis of the disposal system is presented in the report. Spent fuel will be encapsulated in composite copper-steel canisters. The canister design (ACP canister) consists of an inner container of steel as a load-bearing element and an outer container of oxygen-free copper to provide a shield against corrosion. In the repository the canisters will be emplaced in vertical holes drilled in the floors of horizontal deposition tunnels. The annulus between the canister and the rock is filled with compacted bentonite. The results of the safety analysis attest that the planned disposal system fulfils the safety requirements. Suitable places for the repository can be found at each of the five investigation sites

  19. Effects of AFR storage location on spent fuel transportation

    International Nuclear Information System (INIS)

    Joy, D.S.; Shappert, L.B.

    1979-01-01

    In order to assess the impact of Away-From-Reactor (AFR) siting on the spent fuel transportation system, five different sites were studied: Argonne, Oak Ridge, Savannah River, Idaho Falls, and Richland. Transportation costs, cask fleet sizes, and radiation exposures received by transportation workers and the general public were calculated for each site. Results show that the eastern three sites are best. 5 figures, 5 tables

  20. Management and disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    1987-05-01

    The National Board for Spent Nuclear Fuel, in submitting its statement of comment to the Government on the Swedish Nuclear Fuel and Waste Management Company's (Svensk Kaernbraenslehantering AB, SKB) research programme, R and D Programme 86, has also put forward recommendations on the decision-making procedure and on the question of public information during the site selection process. In summary the Board proposes: * that the Government instruct the National Board for Spent Nuclear Fuel to issue certain directives concerning additions to and changes in R and D Programme 86, * that the Board's views on the decision-making procedure in the site selection process be taken into account in the Government's review of the so-called municipal veto in accordance with Chapter 4, Section 3 of the Act (1987:12) on the conservation of natural resources etc., NRL, * that the Board's views on the decision-making procedure and information questions during the site selection process serve as a basis for the continued work. Three appendices are added to the report: 1. Swedish review statements (SV), 2. International Reviews, 3. Report from the site selection group (SV)

  1. Spent nuclear fuel management. Moving toward a century of spent fuel management: A view from the halfway mark

    International Nuclear Information System (INIS)

    Shephard, L.

    2004-01-01

    Full text: A half-century ago, President Eisenhower in his 1953 'Atoms for Peace' speech, offered nuclear technology to other nations as part of a broad nuclear arms control initiative. In the years that followed, the nuclear power generation capabilities of many nations has helped economic development and contributed to the prosperity of the modern world. The growth of nuclear power, while providing many benefits, has also contributed to an increasing global challenge over safe and secure spent fuel management. Over 40 countries have invested in nuclear energy, developing over 400 nuclear power reactors. Nuclear power supplies approximately 16% of the global electricity needs. With the finite resources and challenges of fossil fuels, nuclear power will undoubtedly become more prevalent in the future, both in the U.S. and abroad. We must address this inevitability with new paradigms for managing a global nuclear future. Over the past fifty years, the world has come to better understand the strong interplay between all elements of the nuclear fuel cycle, global economics, and global security. In the modern world, the nuclear fuel cycle can no longer be managed as a simple sequence of technological, economic and political challenges. Rather it must be seen, and managed, as a system of strongly interrelated challenges. Spent fuel management, as one element of the nuclear fuel system, cannot be relegated to the back-end of the fuel cycle as only a disposal or storage issue. There exists a wealth of success and experience with spent fuel management over the past fifty years. We must forge this experience with a global systems perspective, to reshape the governing of all aspects of the nuclear fuel cycle, including spent fuel management. This session will examine the collective experience of spent fuel management enterprises, seeking to shape the development of new management paradigms for the next fifty years. (author)

  2. Status of spent fuel shipping cask development

    International Nuclear Information System (INIS)

    Hall, I.K.; Hinschberger, S.T.

    1989-01-01

    This paper discusses how several new-generation shopping cask systems are being developed for safe and economical transport of commercial spent nuclear fuel and other radioactive wastes for the generating sites to a federal geologic repository or monitored retrievable storage (MRS) facility. Primary objectives of the from-reactor spent fuel cask development work are: to increase cask payloads by taking advantage of the increased at-reactor storage time under the current spent fuel management scenario, to facilitate more efficient cask handling operations with reduced occupational radiation exposure, and to promote standardization of the physical interfaces between casks and the shipping and receiving facilities. Increased cask payloads will significantly reduce the numbers of shipments, with corresponding reductions in transportation costs and risks to transportation workers, cask handling personnel, and the general public

  3. LSDS Development for Isotopic Fissile Assay in Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Deok; Park, Chang Je; Park, Geun Il; Lee, Jung Won; Song, Kee Chan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-07-01

    As an option to reduce a spent fuel and reuse an existing fissile material in spent fuel, sodium fast reactor SFR program linked with pyro-processing is under development in KAERI. A uranium-TRU mixture through a pyro-process is used to fabricate SFR fuel. An assay of isotopic fissile content plays an important role in an optimum design of storage site and reuse of fissile materials of spent fuel. Lead slowing down spectrometer LSDS is being developed in KAERI to analyze isotopic fissile material content. LSDS has several features: direct fissile assay, near real time fissile assay, no influence from radiation background, fissile isotopic assay and applicable to spent fuel and recycled fuel. Based on the designed geometry, neutron energy resolution was investigated. The neutron energy spectrum was analyzed as well. Spent fuel emits large number of neutrons by spontaneous fission. Neutron generator must overcome the neutron background to get the pure fission signals from fissile materials. Neutron generator is planned to have compact system with one section electron linac which is easy maintenance, less cost and high neutron yield. The LSD has the power to resolve the fission characteristics from each fissile material. This feature can analyze the content of isotopic fissile. From 1keV to 0.1eV energy range, the energy resolution is enough to get the individual fissile fission signatures. The dominant fission signature is shown below 1eV for each fissile isotope. The neutron generation system with target was designed to get fission signals by fissile materials. The system was decided to overcome neutron backgrounds and to get good counting statistics. Finally, an accurate fissile material content will contribute to safety of spent fuel reuse in future nuclear energy system and optimum design of spent fuel storage site. Additionally, an accurate fissile material content will increase international transparence and credibility for the reuse of PWR spent fuel.

  4. LSDS Development for Isotopic Fissile Assay in Spent Fuel

    International Nuclear Information System (INIS)

    Lee, Yong Deok; Park, Chang Je; Park, Geun Il; Lee, Jung Won; Song, Kee Chan

    2011-01-01

    As an option to reduce a spent fuel and reuse an existing fissile material in spent fuel, sodium fast reactor SFR program linked with pyro-processing is under development in KAERI. A uranium-TRU mixture through a pyro-process is used to fabricate SFR fuel. An assay of isotopic fissile content plays an important role in an optimum design of storage site and reuse of fissile materials of spent fuel. Lead slowing down spectrometer LSDS is being developed in KAERI to analyze isotopic fissile material content. LSDS has several features: direct fissile assay, near real time fissile assay, no influence from radiation background, fissile isotopic assay and applicable to spent fuel and recycled fuel. Based on the designed geometry, neutron energy resolution was investigated. The neutron energy spectrum was analyzed as well. Spent fuel emits large number of neutrons by spontaneous fission. Neutron generator must overcome the neutron background to get the pure fission signals from fissile materials. Neutron generator is planned to have compact system with one section electron linac which is easy maintenance, less cost and high neutron yield. The LSD has the power to resolve the fission characteristics from each fissile material. This feature can analyze the content of isotopic fissile. From 1keV to 0.1eV energy range, the energy resolution is enough to get the individual fissile fission signatures. The dominant fission signature is shown below 1eV for each fissile isotope. The neutron generation system with target was designed to get fission signals by fissile materials. The system was decided to overcome neutron backgrounds and to get good counting statistics. Finally, an accurate fissile material content will contribute to safety of spent fuel reuse in future nuclear energy system and optimum design of spent fuel storage site. Additionally, an accurate fissile material content will increase international transparence and credibility for the reuse of PWR spent fuel

  5. Current state and perspectives of spent fuel storage in Russia

    International Nuclear Information System (INIS)

    Kurnosov, V.A.; Tichonov, N.S.; Makarchuk, T.F.

    1999-01-01

    Twenty-nine power units at nine nuclear power plants, having a total installed capacity of 22 GW(e), are now in operation in the Russian Federation. They produce approximately 12% of the generated electricity in the country. The annual spent fuel arising is approximately 790 tU. The concept of the closed fuel cycle was adopted as the basis for nuclear power development in the Russian Federation, but until now this concept is only implemented for the fuel cycles of WWER-440 and BN-600 reactors. The WWER-1000 spent fuel is planned to be reprocessed at the reprocessing plant RT-2 which is under construction near Krasnoyarsk. The RBMK-1000 spent fuel is not reprocessed. It is meant to be stored in intermediate storage facilities at the NPP sites. The status of the spent fuel (SF) stored in the storage facilities is given in the paper. The principal characteristics of the fuel cycles of the Russian NPPs in the period up to 2015 is also given in the report. The key variant of the current spent fuel management at RBMK-1000 NPPs is storage in at-reactor and in away-from-reactor wet storage facilities at the power plant site with a capacity of 2,000 W. The storage capacity at the operating RBMKs (including the increase due to denser fuel assembly arrangement) will provide SF reception from the NPPs only up to 2005. For RBMK spent fuel, intermediate dry storage is foreseen at power plant sites in metallic concrete casks and thereafter transportation to the central storage facility at the RT-2 plant for long-term storage. The SF will be reprocessing after completion of the reprocessing plant at RT-2. In the Programme of Nuclear Power Development in the Russian Federation for the period 1998 to 2005 and for the period until 2010 year, provisions are made for the construction of a central dry storage facility before 2010. The facility will have a design capacity of 30,000 tU for WWER-1000 and RBMK-1000 spent fuel and is part of the reprocessing plant RT-2. The paper considers

  6. NEPA implementation: The Department of Energy's program to manage spent nuclear fuel

    International Nuclear Information System (INIS)

    Shipler, D.B.

    1994-05-01

    The Department of Energy (DOE) is implementing the National Environmental Protection Act (NEPA) in its management of spent nuclear fuel. The DOE strategy is to address the short-term safety concerns about existing spent nuclear fuel, to study alternatives for interim storage, and to develop a long-range program to manage spent nuclear fuel. This paper discusses the NEPA process, the environmental impact statements for specific sites as well as the overall program, the inventory of DOE spent nuclear fuel, the alternatives for managing the fuel, and the schedule for implementing the program

  7. Spent-fuel transportation - a success story

    International Nuclear Information System (INIS)

    Gertz, C.P.; Schoonen, D.H.; Wakeman, B.H.

    1986-01-01

    Spent nuclear fuel research and development (R and D) demonstrations and associated transportation activities are being performed as a part of the storage cask performance testing programs at the Idaho National Engineering Laboratory (INEL). These spent-fuel programs support the Nuclear Waste Policy Act (NWPA) and US Department of Energy (DOE) objectives for cooperative demonstrations with the utilities, testing at federal sites, and alternatives for viable transportation systems. A cooperative demonstration program with the private sector to develop dry storage technologies that the US Nuclear Regulatory Commission (NRC) can generically approve is in place as well as cost-shared dry storage R and D program at a federal facility to collect the necessary licensing data. In addition to the accomplishments in the cask performance and testing demonstrations, the long-distance transportation of a large number of spent-fuel assemblies is considered a success story. The evaluation and implementation of applicable requirements, industry perspective, and extensive planning all contributed to this achievement

  8. A design concept of underground facilities for the deep geologic disposal of spent fuel

    International Nuclear Information System (INIS)

    Lee, Jong Youl; Choi, Heui Joo; Choi, Jong Won; Hahn, Pil Soo

    2005-01-01

    Spent nuclear fuel from nuclear power plants can be disposed in the underground repository. In this paper, a concept of Korean Reference HLW disposal System (KRS-1) design is presented. Though no site for the underground repository has been specified in Korea, but a generic site with granitic rock is considered for reference spent fuel repository design. To implement the concept, design requirements such as spent fuel characteristics and capacity of the repository and design principles were established. Then, based on these requirements and principles, a concept of the disposal process, the facilities and the layout of the repository was developed

  9. Commercial spent nuclear fuel shipments in the United States, 1964--1987

    International Nuclear Information System (INIS)

    1990-12-01

    This report provides an overview of US commercial light-water reactor spent-fuel shipments that have occurred from January, 1964 through December, 1987. A summary analysis was performed on these historical shipments, showing the amount of fuel that has been shipped to research facilities, reprocessing plants, away-from-reactor (AFR) storage sites, and other reactors. Also presented in this report is a listing of potential spent-fuel shipments to and/or from commercial nuclear plants. Table 1 provides the detailed listing of historical spent-fuel shipments. Table 2 is a summary of these shipments grouped by destination. Section IV discusses utility plans for future spent-fuel shipments. 2 tabs

  10. Spent fuel storage requirements for nuclear utilities and OCRWM [Office of Civilian Radioactive Waste Management

    International Nuclear Information System (INIS)

    Wood, T.W.

    1990-03-01

    Projected spent fuel generation at US power reactors exceeds estimated aggregate pool storage capacity by approximately 30,000 metric tons of uranium (MTU). Based on the current repository schedule, little of the spent fuel inventory will be disposed of prior to shutdown of existing reactors, and a large additional capacity for surface storage of spent fuel will be required, either at reactors or at a centralized DOE storage site. Allocation of this storage requirement across the utility-DOE interface, and the resulting implications for reactor sites and the performance of the federal waste management system, were studied during the DOE MRS System Study and again subsequent to the reassessment of the repository schedule. Spent fuel logistics and cost results from these analyses will be used in definition of spent fuel storage capacity requirements for the federal system. 9 refs., 8 figs., 1 tab

  11. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs, Draft Environmental Impact Statement. Volume 1, Appendix D: Part A, Naval Spent Nuclear Fuel Management

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    Volume 1 to the Department of Energy`s Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Management Programs Environmental Impact Statement evaluates a range of alternatives for managing naval spent nuclear fuel expected to be removed from US Navy nuclear-powered vessels and prototype reactors through the year 2035. The Environmental Impact Statement (EIS) considers a range of alternatives for examining and storing naval spent nuclear fuel, including alternatives that terminate examination and involve storage close to the refueling or defueling site. The EIS covers the potential environmental impacts of each alternative, as well as cost impacts and impacts to the Naval Nuclear Propulsion Program mission. This Appendix covers aspects of the alternatives that involve managing naval spent nuclear fuel at four naval shipyards and the Naval Nuclear Propulsion Program Kesselring Site in West Milton, New York. This Appendix also covers the impacts of alternatives that involve examining naval spent nuclear fuel at the Expended Core Facility in Idaho and the potential impacts of constructing and operating an inspection facility at any of the Department of Energy (DOE) facilities considered in the EIS. This Appendix also considers the impacts of the alternative involving limited spent nuclear fuel examinations at Puget Sound Naval Shipyard. This Appendix does not address the impacts associated with storing naval spent nuclear fuel after it has been inspected and transferred to DOE facilities. These impacts are addressed in separate appendices for each DOE site.

  12. Spent fuel storage at the Rancho Seco Nuclear Generation Station

    International Nuclear Information System (INIS)

    Miller, K.R.; Field, J.J.

    1995-01-01

    The Sacramento Municipal Utility District (SMUD) has developed a strategy for the storage and transport of spent nuclear fuel and is now in the process of licensing and manufacturing a Transportable Storage System (TSS). Staff has also engaged in impact limiter testing, non-fuel bearing component reinsertion, storage and disposal of GTCC waste, and site specific upgrades in support of spent fuel dry storage

  13. Working Less and Living Longer: Long-Term Trends in Working Time and Time Budgets

    OpenAIRE

    Ausubel, J.H.; Grubler, A.

    1994-01-01

    Analyses of time series data beginning in the mid-nineteenth century in the industrialized nations, especially in the United Kingdom, show that on average people are working significantly less while living longer. Although the average career length has remained around 40 years, the total lifetime hours worked shrank for an average British worker from 124,000 hours in 1856 to 69,000 in 1981. The fraction of disposable lifetime hours spent working declined from 50% to 20%. The female share of c...

  14. Situation of test and research reactors' spent fuels

    International Nuclear Information System (INIS)

    Shimizu, Kenichi; Uchiyama, Junzo; Sato, Hiroshi

    1996-01-01

    The U.S. DOE decided a renewal Off-Site Fuel Policy for stopping to spread a highly enriched uranium which was originally enriched at the U.S., the policy declared that to receive all HEU spent fuels from Test and Research reactors in all the world. In Japan, under bilateral agreement of cooperation between the government of the United States and the government of Japan concerning peaceful uses of nuclear energy, the highly enriched uranium of Test and Research Reactors' fuels was purchased from the U.S. and the fuels had been manufactured in Japan, America, Germany and France. On the other hand, a former president of the U.S. J. Carter proposed that to convert the fuels from HEU to LEU concerning a nonproliferation of nuclear materials in 1978, and Japan absolutely supported this policy. Under this condition, the U.S. stopped to receive the spent fuels from the other countries concerning legal action to the Off-Site Fuels Policy. As a result, the spent fuels are increasing, and to cross to each reactor's storage capacity, and if this policy start, a faced crisis of Test and Research Reactors will be avoided. (author)

  15. Development of a Computer Program for the Analysis Logistics of PWR Spent Fuels

    International Nuclear Information System (INIS)

    Choi, Heui Joo; Choi, Jong Won; Cha, Jeong Hun

    2008-01-01

    It is expected that the temporary storage facilities at the nuclear power plants will be full of the spent fuels within 10 years. Provided that a centralized interim storage facility is constructed along the coast of the Korean peninsula to solve this problem, a substantial amount of spent fuels should be transported by sea or by land every year. In this paper we developed a computer program for the analysis of transportation logistics of the spent fuels from 4 different nuclear power plant sites to the hypothetical centralized interim storage facility and the final repository. Mass balance equations were used to analyze the logistics between the nuclear power plants and the interim storage facility. To this end a computer program, CASK, was developed by using the VISUAL BASIC language. The annual transportation rates of spent fuels from the four nuclear power plant sites were determined by using the CASK program. The parameter study with the program illustrated the easiness of logistics analysis. The program could be used for the cost analysis of the spent fuel transportation as well.

  16. Towards a Swedish repository for spent fuel

    International Nuclear Information System (INIS)

    Ahlstroem, P.-E.

    1997-01-01

    Nuclear power is producing electricity for the benefit of society but is also leaving radioactive residues behind. It is our responsibility to handle these residues in a safe and proper manner. The development of a system for handling spent fuel from nuclear power plants has proceeded in steps. The same is true for the actual construction of facilities and will continue to be the case for the final repository for spent fuel and other types of long-lived wastes. The primary objective in constructing the repository will be to isolate and contain the radioactive waste. In case the isolation fails for some reason the multibarrier system should retain and retard the radionuclides that might come into contact with the groundwater. A repository is now planned to be built in two steps where the first step will include deposition of about 400 canisters with spent fuel. This first step should be finished in about 20 years from now and be followed by an extensive evaluation of the results from not only this particular step but also from the development of alternative routes before deciding on how to proceed. A special facility to encapsulate the spent fuel is also required. Such an encapsulation plant is proposed to be constructed as an extension of the existing interim storage CLAB. Finding a site for the repository is a critical issue in the implementation of any repository. The siting process started a few years ago and made some progress but is by no means yet completed. It will go on at least into the early part of the next decade. When the present nuclear power plants begin to be due for retirement there should also be some facilities in place to take permanent care of the long-lived radioactive residues. Progress in siting will be a prerequisite for success in our responsibility to make progress towards a safe permanent solution of the waste issue. (orig.)

  17. Partial Defect Verification of Spent Fuel Assemblies by PDET: Principle and Field Testing in Interim Spent Fuel Storage Facility (CLAB) in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Y.S.; Kerr, P.; Sitaraman, S.; Swan, R. [Global Security Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Rossa, R. [SCK-CEN, Mol (Belgium); Liljenfeldt, H. [SKB in Oskarshamn (Sweden)

    2015-07-01

    The need for the development of a credible method and instrument for partial defect verification of spent fuel has been emphasized over a few decades in the safeguards communities as the diverted spent fuel pins can be the source of nuclear terrorism or devices. The need is increasingly more important and even urgent as many countries have started to transfer spent fuel to so called 'difficult-to-access' areas such as dry storage casks, reprocessing or geological repositories. Partial defect verification is required by IAEA before spent fuel is placed into 'difficult-to-access' areas. Earlier, Lawrence Livermore National Laboratory (LLNL) has reported the successful development of a new, credible partial defect verification method for pressurized water reactor (PWR) spent fuel assemblies without use of operator data, and further reported the validation experiments using commercial spent fuel assemblies with some missing fuel pins. The method was found to be robust as the method is relatively invariant to the characteristic variations of spent fuel assemblies such as initial fuel enrichment, cooling time, and burn-up. Since then, the PDET system has been designed and prototyped for 17x17 PWR spent fuel assemblies, complete with data acquisition software and acquisition electronics. In this paper, a summary description of the PDET development followed by results of the first successful field testing using the integrated PDET system and actual spent fuel assemblies performed in a commercial spent fuel storage site, known as Central Interim Spent fuel Storage Facility (CLAB) in Sweden will be presented. In addition to partial defect detection initial studies have determined that the tool can be used to verify the operator declared average burnup of the assembly as well as intra-assembly burnup levels. (authors)

  18. Management and disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    1987-05-01

    The programme consists of the long-term and short-term programme, the continued bedrock investigations, the underground research laboratory, the decision-making procedure in the site selection process and information questions during the site selection process. The National Board for Spent Nuclear Fuel hereby subunits both the SKB's R and D Programme 86 and the Board's statement concerning the programme. Decisions in the matter have been made by the Board's executive committee. (DG)

  19. Assessment of the requirements for placing and maintaining Savannah River Site spent fuel storage basins under International Atomic Energy Agency safeguards

    International Nuclear Information System (INIS)

    Amacker, O.P. Jr.; Curtis, M.M.; Delegard, C.H.; Hsue, S.T.; Whitesel, R.N.

    1997-03-01

    The United States is considering the offer of irradiated research reactor spent fuel (RRSF) for international safeguards applied by the International Atomic Energy Agency (IAEA). The offer would be to add one or more spent fuel storage basins to the list of facilities eligible for IAEA safeguards. The fuel to be safeguarded would be stored in basins on the Savannah River Site (SRS). This RRSF potentially can include returns of Material Test Reactor (MTR) VAX fuel from Argentina, Brazil, and Chile (ABC); returns from other foreign research reactors; and fuel from domestic research reactors. Basins on the SRS being considered for this fuel storage are the Receiving Basin for Offsite Fuel (RBOF) and the L-Area Disassembly Basin (L-Basin). A working group of SRS, U.S. Department of Energy International Safeguards Division (NN-44), and National Laboratory personnel with experience in IAEA safeguards was convened to consider the requirements for applying the safeguards to this material. The working group projected the safeguards requirements and described alternatives

  20. Storage of water reactor spent fuel in water pools. Survey of world experience

    International Nuclear Information System (INIS)

    1982-01-01

    Following discharge from a nuclear reactor, spent fuel has to be stored in water pools at the reactor site to allow for radioactive decay and cooling. After this initial storage period, the future treatment of spent fuel depends on the fuel cycle concept chosen. Spent fuel can either be treated by chemical processing or conditioning for final disposal at the relevant fuel cycle facilities, or be held in interim storage - at the reactor site or at a central storage facility. Recent forecasts predict that, by the year 2000, more than 150,000 tonnes of heavy metal from spent LWR fuel will have been accumulated. Because of postponed commitments regarding spent fuel treatment, a significant amount of spent fuel will still be held in storage at that time. Although very positive experience with wet storage has been gained over the past 40 years, making wet storage a proven technology, it appears desirable to summarize all available data for the benefit of designers, storage pool operators, licensing agenices and the general public. Such data will be essential for assessing the viability of extended water pool storage of spent nuclear fuel. In 1979, the International Atomic Energy Agency and the Nuclear Energy Agency of the OECD jointly issued a questionnaire dealing with all aspects of water pool storage. This report summarizes the information received from storage pool operators

  1. Implementation of hearings in the Swedish process for siting a spent nuclear fuel repository

    International Nuclear Information System (INIS)

    Westerlind, Magnus; Wiklund, Aasa

    2001-01-01

    The problem of bringing all stakeholders on the scene to penetrate an issue of great complexity is not unique for nuclear waste management. There are an increasing number of site selection processes for disposal of nuclear waste around the world. During the 90's many of these siting processes have gone into a more decisive phase where public participation and transparency get more and more attention. Municipalities, NGOs and the public do no longer accept ready-made solutions but have legitimate claims to be part of the decision making and siting processes at an early stage. The attempts to increase the level of transparency and public involvement differ from country to country and depend e.g. on culture, history and societal conditions as well as on the precise phase in the siting process. However, many processes include public hearings as one tool to enhance transparency. In general, Sweden has not a long history of using hearings in decision making. In the area of nuclear waste management and disposal hearings have so far been rarely used. In 1997 and 1998 two public hearings were arranged by the Swedish Nuclear Power Inspectorate, SKI, in conjunction with the licensing of the enlargement of the Central Interim Storage for Spent Nuclear Fuel, CLAB. These hearings showed that hearings could improve the decision making process. SKI and SSI strongly believe the effort was worthwhile and that hearings will continue to be used in the nuclear waste programme. The hearings provided a forum for local stakeholders to pose questions and stretch both the implementer and to some extent also the authorities. The hearings managed to focus on relevant issues at this stage of the siting process and gave the audience a chance to evaluate and challenge the trustworthiness of the implementer and authorities. In this respect the hearings contributed to transparent and democratic decision making. Some of the keys to the success were: Unbiased and skilled moderators with capacity to

  2. Spent nuclear fuel discharges from US reactors 1993

    International Nuclear Information System (INIS)

    1995-02-01

    The Energy Information Administration (EIA) of the U.S. Department of Energy (DOE) administers the Nuclear Fuel Data Survey, Form RW-859. This form is used to collect data on fuel assemblies irradiated at commercial nuclear reactors operating in the United States, and the current inventories and storage capacities of those reactors. These data are important to the design and operation of the equipment and facilities that DOE will use for the future acceptance, transportation, and disposal of spent fuels. The data collected and presented identifies trends in burnup, enrichment, and spent nuclear fuel discharged form commercial light-water reactor as of December 31, 1993. The document covers not only spent nuclear fuel discharges; but also site capacities and inventories; canisters and nonfuel components; and assembly type characteristics

  3. Spent nuclear fuel characterization for a bounding reference assembly for the receiving basin for off-site fuel

    International Nuclear Information System (INIS)

    Kahook, S.D.; Garrett, R.L.; Canas, L.R.

    1995-01-01

    A basis for interim operation 1 (BIO) for the receiving basin for off-site fuel (RBOF) facility at the U.S. Department of Energy's (DOE) Savannah River site nuclear materials production complex has been developed in accordance to draft DOE-STD-0019-93 (Ref. 2). The latter document requires a hazard categorization per DOE-STD-1027-92 (Ref. 3) for the safety analysis portion of the BIO. This classification places the facility in one of three categories as defined in DOE 5480.23 (Ref. 4) per the total radioactivity, which can be released during an accident. The diversity of spent nuclear fuels stored in the RBOF made an exacting assessment of the total radioactive inventory virtually impossible. This restriction led to a conservative calculation based on the concept of a hypothetical bounding reference fuel assembly (RFA) integrated over the total capacity of the facility. The RFA is derived from a systematic ranking of the real assemblies (current and expected) according to a maximum burnup criterion. The indicated scheme is not only simple but precluded a potential delay in the completion of the BIO

  4. Extended storage of spent fuel

    International Nuclear Information System (INIS)

    1992-10-01

    This document is the final report on the IAEA Co-ordinated Research Programme on the Behaviour of Spent Fuel and Storage Facility Components during Long Term Storage (BEFAST-II, 1986-1991). It contains the results on wet and dry spent fuel storage technologies obtained from 16 organizations representing 13 countries who participated in the co-ordinated research programme. Considerable quantities of spent fuel continue to arise and accumulate. Many countries are investigating the option of extended spent fuel storage prior to reprocessing or fuel disposal. Wet storage continues to predominate as an established technology with the construction of additional away-from-reactor storage pools. However, dry storage is increasingly used with most participants considering dry storage concepts for the longer term. Depending on the cladding type options of dry storage in air or inert gas are proposed. Dry storage is becoming widely used as a supplement to wet storage for zirconium alloy clad oxide fuels. Storage periods as long as under wet conditions appear to be feasible. Dry storage will also continue to be used for Al clad and Magnox type fuel. Enhancement of wet storage capacity will remain an important activity. Rod consolidation to increase wet storage capacity will continue in the UK and is being evaluated for LWR fuel in the USA, and may start in some other countries. High density storage racks have been successfully introduced in many existing pools and are planned for future facilities. For extremely long wet storage (≥50 years), there is a need to continue work on fuel integrity investigations and LWR fuel performance modelling. it might be that pool component performance in some cases could be more limiting than the FA storage performance. It is desirable to make concerted efforts in the field of corrosion monitoring and prediction of fuel cladding and poll component behaviour in order to maintain good experience of wet storage. Refs, figs and tabs

  5. Current state of spent fuel management in the Russian Federation

    International Nuclear Information System (INIS)

    Makarchuk, T.F.; Spichev, V.V.; Tikhonov, N.S.; Simanovsky, V.M.; Tokarenko, A.I.; Bespalov, V.N.

    1998-01-01

    Twenty nine power units of nine nuclear power plants of total installed capacity 22 GW(e) are now in operation in the Russian Federation. They produce approximately 12% of electric power in the country. The annual spent fuel arising is about 790 tU. The spent fuel from VVER-440 and BN-600 is reprocessed at the RT-1 plant near Chelyabinsk. The VVER-1000 spent fuel is planned to be reprocessed at the reprocessing plant RT-2 which is under construction near Krasnoyarsk. The RBMK-1000 spent fuel is not reprocessed because of its low fissile content. It is meant to be stored in intermediate storage facilities at the NPP sites and in a centralized storage facility during a period not less than 50 years and then to be disposed of in geological formations. State of the art of spent fuel reprocessing, storage and transportation is considered in the paper. Problems of nuclear fuel cycle back-end in Russia are taken into account. (author)

  6. Development of the nuclear ship MUTSU spent fuel shipping cask

    International Nuclear Information System (INIS)

    Ishizuka, M.; Umeda, M.; Nawata, Y.; Sato, H.; Honami, M.; Nomura, T.; Ohashi, M.; Higashino, A.

    1989-01-01

    After the planned trial voyage (4700 MWD/MTU) of the nuclear ship MUTSU in 1990, her spent fuel assemblies, initially made of two types of enriched UO 2 (3.2wt% and 4.4wt%), will be transferred to the reprocessing plant soon after cooling down in the ship reactor for more than one year. For transportation, the MUTSU spent fuel shipping casks will be used. Prior to transportation to the reprocessing plant, the cooled spent fuel assemblies will be removed from the reactor to the shipping casks and housed at the spent fuel storage facility on site. In designing the MUTSU spent fuel shipping cask, considerations were given to make the leak-tightness and integrity of the cask confirmable during storage. The development of the cask and the storage function demonstration test were performed by Japan Atomic Energy Research Institute (JAERI) and Mitsubishi Heavy Industries, Ltd. (MHI). One prototype cask for the storage demonstration test and licensed thirty-five casks were manufactured between 1987 and 1988

  7. Dissolution rates of aluminum-based spent fuels relevant to geological disposal

    International Nuclear Information System (INIS)

    Mickalonis, J.I.

    2000-01-01

    The Department of Energy is pursuing the option of direct disposal of a wide variety of spent nuclear fuels under its jurisdiction. Characterization of the various types of spent fuel is required prior to licensing by the Nuclear Regulatory Commission and acceptance of the fuel at a repository site. One category of required data is the expected rate of radionuclide and fissile release to the environment as a result of exposure to groundwater after closure of the repository. To provide this type of data for four different aluminum-based spent fuels, tests were conducted using a flow through method that allows the dissolution rate of the spent fuel matrix to be measured without interference by secondary precipitation reactions that would muddle interpretation of the results. Similar tests had been conducted earlier with light water reactor spent fuel, thereby allowing direct comparisons

  8. Further analysis of extended storage of spent fuel. Final report of a co-ordinated research programme on the behaviour of spent fuel assemblies during extended storage (BEFAST-III) 1991-1996

    International Nuclear Information System (INIS)

    1997-05-01

    Considerable quantities of spent fuel continue to be produced and to accumulate in a number of countries. Although some new reprocessing facilities have been constructed, many countries are investigating the option of extended spent fuel storage prior to reprocessing or fuel disposal. Wet storage continues to predominate as an established technology. However, dry storage is becoming increasingly used with many countries considering dry storage for the longer term. This Technical Document is the final report of the IAEA Co-ordinated Research Programme on the Behaviour of Spent Fuel Assemblies During Extended Storage (BEFAST-III, 1991-1996). It contains analyses of wet and dry spent fuel storage technologies obtained from 16 organizations representing 13 countries (Canada, Finland, France, Germany, Hungary, the Republic of Korea, Japan, the Russian Federation, Slovakia, Spain, Sweden, the United Kingdom and the USA) which participated in the co-ordinated research programme as participants or observers. The report contains information presented during the three Research Co-ordination meetings and also data which were submitted by the participants in response to request by the Scientific Secretary. 48 refs, 4 tabs

  9. Experiences and history of the spent fuel disposal programme in Finland

    International Nuclear Information System (INIS)

    Wang Ju

    2004-01-01

    This paper briefly introduces the Finnish geological disposal programme for spent fuel, including the management structure, technical strategy for R and D, history of R and D, technical considerations, siting process, site characterization, underground research laboratory development and its successful experiences. (author)

  10. Final disposal of spent nuclear fuel in Finnish bedrock. Haestholmen site report

    Energy Technology Data Exchange (ETDEWEB)

    Anttila, P. [Fortum Engineering Oy, Vantaa (Finland); Ahokas, H. [Fintact Oy, Helsinki (Finland); Front, K. [VTT Communities and Infrastructure, Espoo (Finland)

    1999-06-01

    Posiva Oy is studying the Finnish bedrock for the geological disposal of spent nuclear fuel. The study is based on the site selection research programme started originally in 1983. The programme is in accordance with the decision in principle by the Council of State in 1983 and aims at the selection of one site in 2000. Four sites, Haestholmen in Loviisa, Kivetty in Aeaenekoski, Olkiluoto in Eurajoki and Romuvaara in Kuhmo, have been studied in detail. This report summarises the results of the site investigations carried out at Haestholmen. The Haestholmen area is located within the anorogenic Wiborg rapakivi granite batholith, about 1630 million years in age, representing one of the youngest rock formations in Finland. Wiborgite, pyterlite, porphyritic rapakivi granite and even-grained rapakivi granite are the rock types present. 25 bedrock structures have been modelled at the site. Most of them are steeply-dipping fracture zones trending NW-SE and NE-SW, but several sub-horizontal zones, mainly dipping to the N-NE and the SW, are also present. The rock mass between the fracture zones represents what is termed `intact rock`, which is typically hard, unweathered and sparsely fractured. The bedrock structures are generally hydraulically more conductive than the intact rock and their mean transmissivity is 8 x 10{sup -6} m{sup 2}/s or 1.3 x 10{sup -6} m{sup 2}/s, depending on how structures are defined. The corresponding mean of the hydraulic conductivity values measured for the intact rock using a 2 m packer interval is 1 x 10{sup -12} m/s, if a lognormal distribution for all measured values is assumed. A clear decrease in hydraulic conductivity with depth has been found in the intact rock. In addition, the hydraulically conductive fractures seem to be more frequent and their transmissivities higher in the uppermost 100-200 m of the bedrock than at greater depths. The groundwater chemistry reflects the post-glacial history of the island of Haestholmen, which rose

  11. Final disposal of spent nuclear fuel in Finnish bedrock. Haestholmen site report

    International Nuclear Information System (INIS)

    Anttila, P.; Ahokas, H.; Front, K.

    1999-06-01

    Posiva Oy is studying the Finnish bedrock for the geological disposal of spent nuclear fuel. The study is based on the site selection research programme started originally in 1983. The programme is in accordance with the decision in principle by the Council of State in 1983 and aims at the selection of one site in 2000. Four sites, Haestholmen in Loviisa, Kivetty in Aeaenekoski, Olkiluoto in Eurajoki and Romuvaara in Kuhmo, have been studied in detail. This report summarises the results of the site investigations carried out at Haestholmen. The Haestholmen area is located within the anorogenic Wiborg rapakivi granite batholith, about 1630 million years in age, representing one of the youngest rock formations in Finland. Wiborgite, pyterlite, porphyritic rapakivi granite and even-grained rapakivi granite are the rock types present. 25 bedrock structures have been modelled at the site. Most of them are steeply-dipping fracture zones trending NW-SE and NE-SW, but several sub-horizontal zones, mainly dipping to the N-NE and the SW, are also present. The rock mass between the fracture zones represents what is termed 'intact rock', which is typically hard, unweathered and sparsely fractured. The bedrock structures are generally hydraulically more conductive than the intact rock and their mean transmissivity is 8 x 10 -6 m 2 /s or 1.3 x 10 -6 m 2 /s, depending on how structures are defined. The corresponding mean of the hydraulic conductivity values measured for the intact rock using a 2 m packer interval is 1 x 10 -12 m/s, if a lognormal distribution for all measured values is assumed. A clear decrease in hydraulic conductivity with depth has been found in the intact rock. In addition, the hydraulically conductive fractures seem to be more frequent and their transmissivities higher in the uppermost 100-200 m of the bedrock than at greater depths. The groundwater chemistry reflects the post-glacial history of the island of Haestholmen, which rose from the Baltic Sea some

  12. Available Reprocessing and Recycling Services for Research Reactor Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    2017-01-01

    The high enriched uranium (HEU) take back programmes will soon have achieved their goals. When there are no longer HEU inventories at research reactors and no commerce in HEU for research reactors, the primary driver for the take back programmes will cease. However, research reactors will continue to operate in order to meet their various mission objectives. As a result, inventories of low enriched uranium spent nuclear fuel will continue to be created during the research reactors' lifetime and, therefore, there is a need to develop national final disposition routes. This publication is designed to address the issues of available reprocessing and recycling services for research reactor spent fuel and discusses the various back end management aspects of the research reactor fuel cycle.

  13. Assessment of LMFBR spent fuel shipping cask concepts for the CRBRP and the US conceptual design study

    International Nuclear Information System (INIS)

    Pope, R.B.; Ortman, J.M.; Eakes, R.G.; Leisher, W.B.; Dupree, S.A.

    1980-01-01

    Study of conceptual shipping systems for CRBRP and CDS spent fuel has shown that systems significantly different from those used for LWR spent fuel will be required. In the conceptual design, liquid sodium was assumed to be the coolant in canisters containing the spent fuel assemblies, and multiple levels of containment were provided by canisters, an inner cask lid and an outer cask lid. Cask cooling at the reactor site during loading, and cooldown at the receiving site prior to unloading are significant but tractable problems

  14. Studies on recycling and utilization of spent catalysts. Preparation of active hydrodemetallization catalyst compositions from spent residue hydroprocessing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Marafi, Meena; Stanislaus, Antony [Petroleum Refining Department, Petroleum Research and Studies Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat (Kuwait)

    2007-02-15

    Spent catalysts form a major source of solid wastes in the petroleum refining industries. Due to environmental concerns, increasing emphasis has been placed on the development of recycling processes for the waste catalyst materials as much as possible. In the present study the potential reuse of spent catalysts in the preparation of active new catalysts for residual oil hydrotreating was examined. A series of catalysts were prepared by mixing and extruding spent residue hydroprocessing catalysts that contained C, V, Mo, Ni and Al{sub 2}O{sub 3} with boehmite in different proportions. All prepared catalysts were characterized by chemical analysis and by surface area, pore volume, pore size and crushing strength measurements. The hydrodesulfurization (HDS) and hydrodemetallization (HDM) activities of the catalysts were evaluated by testing in a high pressure fixed-bed microreactor unit using Kuwait atmospheric residue as feed. A commercial HDM catalyst was also tested under similar operating conditions and their HDS and HDM activities were compared with that of the prepared catalysts. The results revealed that catalyst prepared with addition of up to 40 wt% spent catalyst to boehmite had fairly high surface area and pore volume together with large pores. The catalyst prepared by mixing and extruding about 40 wt% spent catalyst with boehmite was relatively more active for promoting HDM and HDS reactions than a reference commercial HDM catalyst. The formation of some kind of new active sites from the metals (V, Mo and Ni) present in the spent catalyst is suggested to be responsible for the high HDM activity of the prepared catalyst. (author)

  15. Spent-Fuel Test - Climax: An evaluation of the technical feasibility of geologic storage of spent nuclear fuel in granite: Executive summary of final results

    International Nuclear Information System (INIS)

    Patrick, W.C.

    1986-01-01

    This summary volume outlines results that are covered in more detail in the final report of the Spent-Fuel Test - Climate project. The project was conducted between 1978 and 1983 in the granitic Climax stock at the Nevada Test Site. Results indicate that spent fuel can be safely stored for periods of years in this host medium and that nuclear waste so emplaced can be safely retrieved. We also evaluated the effects of heat and radiation (alone and in combination) on emplacement canisters and the surrounding rock mass. Storage of the spent-fuel affected the surrounding rock mass in measurable ways, but did not threaten the stability or safety of the facility at any time

  16. Nuclear Spent Fuel Management in Spain

    International Nuclear Information System (INIS)

    Zuloaga, P.

    2015-01-01

    The radioactive waste management policy is established by the Spanish Government through the Ministry of Industry, Tourism and Commerce. This policy is described in the Cabinet-approved General Radioactive Waste Plan. ENRESA is the Spanish organization in charge of radioactive waste and nuclear SFM and nuclear installations decommissioning. The priority goal in SFM is the construction of the centralized storage facility named Almacén Temporal Centralizado (ATC), whose generic design was approved by the safety authority, Consejo de Seguridad Nuclear. This facility is planned for some 6.700 tons of heavy metal. The ATC site selection process, based on a volunteer community’s scheme, has been launched by the Government in December 2009. After the selection of a site in a participative and transparent process, the site characterization and licensing activities will support the construction of the facility. Meanwhile, extension of the on-site storage capacity has been implemented at the seven nuclear power plants sites, including past reracking at all sites. More recent activities are: reracking performed at Cofrentes NPP; dual purpose casks re-licensing for higher burnup at Trillo NPP; transfer of the spent fuel inventory at Jose Cabrera NPP to a dry-storage system, to allow decommissioning operations; and licence application of a dry-storage installation at Ascó NPP, to provide the needed capacity until the ATC facility operation. For financing planning purposes, the long-term management of spent fuel is based on direct disposal. A final decision about major fuel management options is not made yet. To assist the decision makers a number of activities are under way, including basic designs of a geological disposal facility for clay and granite host rocks, together with associated performance assessment, and supported by a R&D programme, which also includes research projects in other options like advanced separation and transmutation. (author)

  17. A study on radiation shielding design in MACSTOR-400(CANDU spent fuel storage facility)

    International Nuclear Information System (INIS)

    Lee, Yoon Hee

    2006-02-01

    Since the spent fuel pool will be saturated in the near future, spent fuel storage facilities are urgently needed. Because of high radiation and decay heat, spent fuel management is difficult and important. In this study, the shielding thickness of MACSTOR-400 that satisfies the general surface dose rate limit has been investigated. And the radiation shielding safety at site boundary has also been evaluated. IAEA recommends the safety series as a guideline and the U.S. follows the NUREG guide for spent fuel storage facility design. In Japan, the regulation for internal transfer is applied to the spent fuel storage. In Korea, the ACT notification for radiation protection is considered. As a shielding design requirement, it is stated that the occupational exposure dose rate must not exceed 1 mSv/week. From this value, it is assumed that the surface dose rate limit is 25 μSv/hr. And for multi unit operation in same site, the dose rate limit at the controlled area boundary is 0.25 mSv/yr. MCNP code and Microshield program were used for calculating the surface dose rate and the dose rate at site boundary respectively. The shielding should be at least 90 cm thick except the air inlet to follow the surface dose rate limit. Additional shielding is needed on air inlet because the dose rate on air inlet is higher than the dose rate on concrete surface. Without the shielding structure, the shielding thickness should be at least 127 cm. In order to satisfy the surface dose rate limit with maintaining the same concrete thickness on air inlet, shielding structure is required on air inlet. The optimum shielding structure has been proposed in this study. The allowable number of MACSTORs with considering other nuclear facilities in Wolsung site is calculated at 60. It is expected that the required number of MACSTORs are 28 in order to store the total amount of spent fuel generated during NPP operation in Wolsung. Therefore, it seems to be safe in radiation point at site boundary

  18. A study on radiation shielding design in MACSTOR-400(CANDU spent fuel storage facility)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yoon Hee

    2006-02-15

    Since the spent fuel pool will be saturated in the near future, spent fuel storage facilities are urgently needed. Because of high radiation and decay heat, spent fuel management is difficult and important. In this study, the shielding thickness of MACSTOR-400 that satisfies the general surface dose rate limit has been investigated. And the radiation shielding safety at site boundary has also been evaluated. IAEA recommends the safety series as a guideline and the U.S. follows the NUREG guide for spent fuel storage facility design. In Japan, the regulation for internal transfer is applied to the spent fuel storage. In Korea, the ACT notification for radiation protection is considered. As a shielding design requirement, it is stated that the occupational exposure dose rate must not exceed 1 mSv/week. From this value, it is assumed that the surface dose rate limit is 25 μSv/hr. And for multi unit operation in same site, the dose rate limit at the controlled area boundary is 0.25 mSv/yr. MCNP code and Microshield program were used for calculating the surface dose rate and the dose rate at site boundary respectively. The shielding should be at least 90 cm thick except the air inlet to follow the surface dose rate limit. Additional shielding is needed on air inlet because the dose rate on air inlet is higher than the dose rate on concrete surface. Without the shielding structure, the shielding thickness should be at least 127 cm. In order to satisfy the surface dose rate limit with maintaining the same concrete thickness on air inlet, shielding structure is required on air inlet. The optimum shielding structure has been proposed in this study. The allowable number of MACSTORs with considering other nuclear facilities in Wolsung site is calculated at 60. It is expected that the required number of MACSTORs are 28 in order to store the total amount of spent fuel generated during NPP operation in Wolsung. Therefore, it seems to be safe in radiation point at site boundary

  19. Interim licensing criteria for physical protection of certain storage of spent fuel

    International Nuclear Information System (INIS)

    Dwyer, P.A.

    1994-11-01

    This document presents interim criteria to be used in the physical protection licensing of certain spent fuel storage installations. Installations that will be reviewed under this criteria are those that store power reactor spent fuel at decommissioned power reactor sites; independent spent fuel storage installations located outside of the owner controlled area of operating nuclear power reactors; monitored retrievable storage installations owned by the Department of Energy, designed and constructed specifically for the storage, of spent fuel; the proposed geologic repository operations area; or permanently shutdown power reactors still holding a Part 50 license. This criteria applies to both dry cask and pool storage. However, the criteria in this document does not apply to the storage of spent fuel within the owner-controlled area of operating nuclear power reactors

  20. Operation and maintenance of spent fuel storage and transportation casks/containers

    International Nuclear Information System (INIS)

    2007-01-01

    Member States have a growing need for casks for spent fuel storage and transportation. A variety of casks has been developed and is in use at an increasing number of sites. This has resulted in an accumulation of experience that will provide valuable information for other projects in spent fuel management. This publication provides a comprehensive review of information on the cask operation and maintenance associated with spent fuel storage. It draws upon generic knowledge from industrial experience and applications and is intended to serve as a basis for better planning and implementation in future projects

  1. Radiation situation dynamics at the Andreeva Bay site for temporary storage of spent nuclear fuel and radioactive waste over the period 2002-2016.

    Science.gov (United States)

    Chizhov, K; Sneve, M K; Shandala, N; Siegien-Iwaniuk, K; Smith, G M; Krasnoschekov, A; Kosnikov, A; Grigoriev, A; Simakov, A; Kemsky, I; Kryuchkov, V

    2018-02-01

    The Coastal Technical Base (CTB) №569 at Andreeva Bay was established in the early 1960s and intended for the refueling of nuclear submarine reactors and temporary storage of spent nuclear fuel (SNF) and radioactive waste (RW). In 2001, the base was transferred to the Russian Ministry for Atomic Energy and the site remediation began. The paper describes in detail the radiation situation change at the technical site in Andreeva Bay from 2002-2016, the period of preparation for the most critical phase of remedial work: removal of spent fuel assemblies. The analysis of aggregated indicators and data mining were used. The article suggests the best number and location of checkpoints needed to ensure sufficient accuracy of the radiation situation description. The fractal properties of the radiation field are studied using the Hurst index. The relationship between checkpoints was assessed using the method of searching for checkpoint communities. The decrease in the integral of the ambient dose equivalent rate (ADER) at the technical site was evaluated by the method of time series decomposition. Three components of time series were identified: trend, seasonal and residual. The trend of the ADER integral over the technical site is a monotonic decreasing function, where the initial and final values differ tenfold. Taking into account that 137 Cs dominates the radiation situation on-site, it is clear that the ADER due to the radionuclide decay will have decreased by 1.4 times. It is estimated that only a small proportion of 137 Cs has migrated off-site. Therefore, approximately a sevenfold decrease in dose rate is mainly due to remediation activities of personnel. During the year, the seasonal component varies the ADER integral by a factor of two, due to snowfall. The residual component reflects the uncertainty of the ADER integral calculation and phases of active SNF and RW management. The methods developed are used to support the optimization of remediation work as well

  2. Spent fuel and high-level radioactive waste storage

    International Nuclear Information System (INIS)

    Trigerman, S.

    1988-06-01

    The subject of spent fuel and high-level radioactive waste storage, is bibliographically reviewed. The review shows that in the majority of the countries, spent fuels and high-level radioactive wastes are planned to be stored for tens of years. Sites for final disposal of high-level radioactive wastes have not yet been found. A first final disposal facility is expected to come into operation in the United States of America by the year 2010. Other final disposal facilities are expected to come into operation in Germany, Sweden, Switzerland and Japan by the year 2020. Meanwhile , stress is placed upon the 'dry storage' method which is carried out successfully in a number of countries (Britain and France). In the United States of America spent fuels are stored in water pools while the 'dry storage' method is still being investigated. (Author)

  3. Swedish spent fuel management systems, facilities and operating experiences

    International Nuclear Information System (INIS)

    Vogt, J.

    1998-01-01

    About 50% of the electricity in Sweden is generated by means of nuclear power from 12 LWR reactors located at four sites and with a total capacity of 10,000 MW. The four utilities have jointly created SKB, the Swedish Nuclear Fuel and Waste Management Company, which has been given the mandate to manage the spent fuel and radioactive waste from its origin at the reactors to the final disposal. SKB has developed a system for the safe handling of all kinds of radioactive waste from the Swedish nuclear power plants. The keystones now in operation of this system are a transport system, a central interim storage facility for spent nuclear fuel (CLAB), a final repository for short-lived, low and intermediate level waste (SFR). The remaining, system components being planned are an encapsulation plant for spent nuclear fuel and a deep repository for encapsulated spent fuel and other long-lived radioactive wastes. (author)

  4. Spent fuel management in China: Current status and prospects

    International Nuclear Information System (INIS)

    Zhu, J.L.

    1998-01-01

    In this paper, the development of nuclear power in China, its status of operating nuclear power plants and progress of on-going NPP projects are described. With the arising of spent fuel from NPPs, a national policy of a closed nuclear fuel cycle has been determined. Following storage at reactor sites for at least 5 years (generally maximum 10 years), spent fuel will be transferred to an away-from-reactor pool type centralized storage facility. Adjacent to the storage facility, a multi-purpose reprocessing pilot plant will be set up by the end of this century. An industrial scale reprocessing plant would be succeeded around the year 2020. China's spent fuel management activities include at-reactor storage, transportation, away-from-reactor storage and reprocessing. Relatively detailed description of the work done up to now on spent fuel management and plans for the future are described. It should be noted that activities related to the management of high level radioactive waste are not included here. (author)

  5. Spent nuclear fuels project: FY 1995 multi-year program plan, WBS {number_sign}1.4

    Energy Technology Data Exchange (ETDEWEB)

    Denning, J.L.

    1994-09-01

    The mission of the Spent Nuclear Fuel (SNF) program is to safely, reliably, and efficiently manage, condition, transport, and store Department of Energy (DOE)-owned SNF, so that it meets acceptance criteria for disposal in a permanent repository. The Hanford Site Spent Nuclear Fuel strategic plan for accomplishing the project mission is: Establish near-term safe storage in the 105-K Basins; Complete national Environmental Policy Act (NEPA) process to obtain a decision on how and where spent nuclear fuel will be managed on the site; Define and establish alternative interim storage on site or transport off site to support implementation of the NEPA decision; and Define and establish a waste package qualified for final disposition. This report contains descriptions of the following: Work Breakdown Structure; WBS Dictionary; Responsibility Assignment Matrix; Program Logic Diagrams; Program Master Baseline Schedule; Program Performance Baseline Schedule; Milestone List; Milestone Description Sheets; Cost Baseline Summary by Year; Basis of Estimate; Waste Type Data; Planned Staffing; and Fiscal Year Work Plan.

  6. Spent nuclear fuels project: FY 1995 multi-year program plan, WBS number-sign 1.4

    International Nuclear Information System (INIS)

    Denning, J.L.

    1994-09-01

    The mission of the Spent Nuclear Fuel (SNF) program is to safely, reliably, and efficiently manage, condition, transport, and store Department of Energy (DOE)-owned SNF, so that it meets acceptance criteria for disposal in a permanent repository. The Hanford Site Spent Nuclear Fuel strategic plan for accomplishing the project mission is: Establish near-term safe storage in the 105-K Basins; Complete national Environmental Policy Act (NEPA) process to obtain a decision on how and where spent nuclear fuel will be managed on the site; Define and establish alternative interim storage on site or transport off site to support implementation of the NEPA decision; and Define and establish a waste package qualified for final disposition. This report contains descriptions of the following: Work Breakdown Structure; WBS Dictionary; Responsibility Assignment Matrix; Program Logic Diagrams; Program Master Baseline Schedule; Program Performance Baseline Schedule; Milestone List; Milestone Description Sheets; Cost Baseline Summary by Year; Basis of Estimate; Waste Type Data; Planned Staffing; and Fiscal Year Work Plan

  7. Current status on the spent fuel dry storage management in Taiwan

    International Nuclear Information System (INIS)

    Chen, H.T.; Liu, C.H.

    2006-01-01

    Full text: Full text: One of the high priority issues for the continuous operation of nuclear power plants is how to manage and store spent fuel. In recent years, interim dry storage of spent fuel has become a significant solution in extending the storage capacity at a nuclear reactor site that lacks sufficient spent fuel pool storage capacity as in the world, and also in Taiwan. Although the re-racking project for the spent fuel pools has been undertaken, the Taiwan Power Company (TPC) Chinshan nuclear power plant still will lose its full core reserve by the year 2010. TPC has declared to build an on-site interim dry storage facility, this followed by geological disposal represents the most suitable option at this time. TPC is expected to submit the application for construction permit in 2006; preoperational test and storage should be put into operation by the end of 2008. Interim dry storage is a passive system. Materials used play a crucial role in the safety function of cask. The competent authority of spent fuel management in Taiwan, FCMA/AEC, will carry out a confirmatory evaluation regarding heat dissipation, structural seismic analysis, and radiation shielding to assure available safety function for casks after reviewing safety analysis report submitted by TPC. Third party inspection has been required to enhance quality assurance program and foreign technical consultation will be arranged. Although the security level for such facility will be kept to the same level as an NPP, a comprehensive analysis against a commercial airplane attack on cask should be made and addressed in the supplement of SAR. Licensing hearing is also required before issuing the construction permit. The paper presents the review plan and regulatory requirements for the licensing of an interim dry storage of spent fuel, the licensing procedure, and the development of dry storage cask for spent fuel in Taiwan

  8. 78 FR 20625 - Spent Nuclear Fuel Management at the Savannah River Site

    Science.gov (United States)

    2013-04-05

    ... Engineering Laboratory Environmental Restoration and Waste Management Programs Final Environmental Impact... generated at the Oak Ridge National Laboratory and approximately 1,000 bundles of aluminum-clad SNF... processing is a chemical separations process that involves dissolving spent fuel in nitric acid and...

  9. Dry spent fuel storage experience at overseas nuclear stations focus USA

    International Nuclear Information System (INIS)

    Bradley, T. L.; Kumar, S.; Marcelli, D. G.

    1997-01-01

    This paper provides a summary of US dry spent fuel storage experience, including application of this experience outside the United States. Background information on the US nuclear and spent fuel storage industry is provided as a basis for discussing the various types of options and systems available. An overview of technology options is presented, including systems being used and/or considered by the US government and private sector, as well as a discussion of overall system design, licensing and operation. Factors involved in selecting the best available technology option for a specific site or group of sites are presented, along with a typical timeline for project implementation. Cross-geographical use of technologies under different regulatory and technological regimes is also discussed. The paper concludes that dry storage is safe and reliable based on a successful ten year period. The information presented may be considered for use in the development of dry spent fuel storage in Korea and other countries. (author)

  10. SKB 91. Final disposal of spent nuclear fuel. Importance of the bedrock for safety

    International Nuclear Information System (INIS)

    1992-05-01

    The safety of a deep repository for spent nuclear fuel has been assessed in this report. The spent fuel is assumed to be encapsulated in a copper canister and deposited at a depth of 600 m in the bedrock. The primary purpose has been to shed light on the importance of the geological features of the site for the safety of a final repository. The assessment shows that the encapsulated fuel will, in all likelihood, be kept isolated from the groundwater for millions of years. This is considerably longer than the more than 100 000 years that are required in order for the toxicity of the waste to have declined to a level equivalent to that of rich uranium ores. However, in order to be able to study the role of the rock as a barrier to the dispersal of radioactive materials, calculations have been carried out under the assumption that waste canisters leak. The results show that the safety of a carefully designed repository is only affected to a small extent by the ability of the rock to retain the escaping radionuclides. The primary role of the rock is to provide stable mechanical and chemical conditions in the repository over a long period of time so that the function of the engineered barriers is not jeopardized. (187 refs.) (au)

  11. Containing method for spent fuel and spent fuel containing vessel

    International Nuclear Information System (INIS)

    Maekawa, Hiromichi; Hanada, Yoshine.

    1996-01-01

    Upon containing spent fuels, a metal vessel main body and a support spacer having fuel containing holes are provided. The support spacer is disposed in the inside of the metal vessel main body, and spent fuel assemblies are loaded in the fuel containing holes. Then, a lid is welded at the opening of the metal vessel main body to provide a sealing state. In this state, heat released from the spent fuel assemblies is transferred to the wall of the metal vessel main body via the support spacer. Since the support spacer has a greater heat conductivity than gases, heat of the spent fuel assemblies tends to be released to the outside, thereby capable of removing heat of the spent fuel assemblies effectively. In addition, since the surfaces of the spent fuel assemblies are in contact with the inner surface of the fuel containing holes of the support spacer, impact-resistance and earthquake-resistance are ensured, and radiation from the spent fuel assemblies is decayed by passing through the layer of the support spacer. (T.M.)

  12. Hydrocarbon degradation potentials of bacteria isolated from spent ...

    African Journals Online (AJOL)

    Hydrocarbon degradation potentials of bacteria isolated from spent lubricating oil contaminated soil. ... This study has shown that resident bacteria strains in lubricating oil contaminated soils have potential application in the bioremediation of oil polluted sites and enhance the possibility of developing models and strategies ...

  13. Study for the selection of a supplementary spent fuel storage facility for KANUPP

    International Nuclear Information System (INIS)

    Ahmed, W.; Iqbal, M.J.; Arshad, M.

    1999-01-01

    Steps taken for construction of the spent fuel facility of Karachi Nuclear Power Plant (KANUPP) are the following: choice of conceptual design and site selection; preliminary design and preparation of Preliminary Safety Analysis Report (PSAR); Construction of the facility and preparation of PSAR; testing/commissioning and loading of the storage facility. Characterisation of the spent fuel is essential for design of the storage facility. After comparison of various storage types, it seems that construction of dry storage facility based on concrete canisters at KANUPP site is a suitable option to enhance the storage capacity

  14. International symposium on storage of spent fuel from power reactors. Book of extended synopses

    International Nuclear Information System (INIS)

    1998-11-01

    This book of extended synopses includes papers presented at the International Symposium on Storage of Spent Fuel from Power Reactors organized by IAEA and held in Vienna from 9 to 13 November 1998. It deals with the problems of spent fuel management being an outstanding stage in the nuclear fuel cycle, strategy of interim spent fuel storage, transportation and encapsulation of spent fuel elements from power reactors. Spent fuel storage facilities at reactor sites are always wet while spent fuel storage facilities away from reactor are either wet or dry including casks and vaults. Different design solutions and constructions of storage or transportation casks as well as storing facilities are presented, as well as status of spent fuel storage together with experiences achieved in a number of member states, in the frame of safety, licensing and regulating procedures

  15. International symposium on storage of spent fuel from power reactors. Book of extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    This book of extended synopses includes papers presented at the International Symposium on Storage of Spent Fuel from Power Reactors organized by IAEA and held in Vienna from 9 to 13 November 1998. It deals with the problems of spent fuel management being an outstanding stage in the nuclear fuel cycle, strategy of interim spent fuel storage, transportation and encapsulation of spent fuel elements from power reactors. Spent fuel storage facilities at reactor sites are always wet while spent fuel storage facilities away from reactor are either wet or dry including casks and vaults. Different design solutions and constructions of storage or transportation casks as well as storing facilities are presented, as well as status of spent fuel storage together with experiences achieved in a number of member states, in the frame of safety, licensing and regulating procedures Refs, figs, tabs

  16. Overview of symposium on storage of spent fuel from power reactors

    International Nuclear Information System (INIS)

    Bonne, A.; Crijns, M.J.; Dyck, H.P.

    2001-01-01

    An International Symposium on Storage of Spent Fuel from Power Reactors was held in Vienna from 9-13 November 1998. The Symposium was organized by the International Atomic Energy Agency in co-operation with the OECD Nuclear Energy Agency. Of the one hundred sixty participants registered, one hundred twenty-five (including 3 observers) representing 35 countries and 4 international organizations, attended the Symposium. 20 participants from developing countries received Agency's grants. During 4 main Sessions, 44 oral presentations of papers were made and subsequent discussions held. At a poster session 13 papers were presented. This paper will give an overview of the Symposium. The Symposium gave an opportunity to exchange information on the state of art and prospects of spent fuel storage, to discuss the worldwide situation and the major factors influencing the national policies in this field and to identify the most important directions that national efforts and international co-operation in this area should take. It was obvious from the papers presented and the discussions that the handling and storage of spent fuel is continuously taking place safely. Dominant messages retrieved from the Symposium are that the primary spent fuel management solution for the next decades will be interim storage, the duration time of interim storage becomes longer than earlier anticipated and the storage facilities will have to be designed for receiving also spent fuel from advanced fuel cycle practices (i.e. high burnup and MOX spent fuel). It was noted that the handling and storage of spent fuel is a mature technology and meets the stringent safety requirements applicable in the different countries. The changes in nuclear policy and philosophy across the world, and practical considerations, have made interim storage a real necessity in the nuclear power industry. (author)

  17. Role of transportation in the utilities' management of spent fuel storage

    International Nuclear Information System (INIS)

    Newman, D.F.

    1985-01-01

    Additional spent fuel storage can be provided by using a combination of wet and dry storage technologies, with the technology or technologies used in any specific instance being determined by the particular circumstances involved. The capability for spent fuel storage at a reactor site can be enhanced using any one or a combination of the following: expansion of existing pool storage capacity; more efficient use of available capacity; and addition of an independent spent fuel storage installation (ISFSI). Each of these methods, which are described more fully below, have characteristics that may make them more or less suitable for use, depending on the nuclear power plant where they will be deployed, the magnitude of the need for additional storage, the utility's overall spent fuel management strategy, and other factors. 15 refs., 2 figs., 2 tabs

  18. Plan for spent fuel waste form testing for NNWSI [Nevada Nuclear Waste Storage Investigations

    International Nuclear Information System (INIS)

    Shaw, H.F.

    1987-11-01

    The purpose of spent fuel waste form testing is to determine the rate of release of radionuclides from failed disposal containers holding spent fuel, under conditions appropriate to the Nevada Nuclear Waste Storage Investigations (NNWSI) Project tuff repository. The information gathered in the activities discussed in this document will be used: to assess the performance of the waste package and engineered barrier system (EBS) with respect to the containment and release rate requirements of the Nuclear Regulatory Commission, as the basis for the spent fuel waste form source term in repository-scale performance assessment modeling to calculate the cumulative releases to the accessible environment over 10,000 years to determine compliance with the Environmental Protection Agency, and as the basis for the spent fuel waste form source term in repository-scale performance assessment modeling to calculate cumulative releases over 100,000 years as required by the site evaluation process specified in the DOE siting guidelines. 34 refs

  19. Total quality in spent fuel pool reracking

    International Nuclear Information System (INIS)

    Cranston, J.S.; Bradbury, R.B.; Cacciapouti, R.J.

    1993-01-01

    The nuclear utility environment is one of strict cost control under prescriptive regulations and increasing public scrutiny. This paper presents the results of A Total Quality approach, by a dedicated team, that addresses the need for increased on-site spent fuel storage in this environment. Innovations to spent fuel pool reracking, driven by utilities' specific technical needs and shrinking budgets, have resulted in both product improvements and lower prices. A Total Quality approach to the entire turnkey project is taken, thereby creating synergism and process efficiency in each of the major phases of the project: design and analysis, licensing, fabrication, installation and disposal. Specific technical advances and the proven quality of the team members minimizes risk to the utility and its shareholders and provides a complete, cost effective service. Proper evaluation of spent fuel storage methods and vendors requires a full understanding of currently available customer driven initiatives that reduce cost while improving quality. In all phases of a spent fuel reracking project, from new rack design and analysis through old rack disposal, the integration of diverse experts, at all levels and throughout all phases of a reracking project, better serves utility needs. This Total Quality environment in conjunction with many technical improvements results in a higher quality product at a lower cost

  20. The united kingdom's changing requirements for spent fuel storage

    International Nuclear Information System (INIS)

    Hodgson, Z.; Hambley, D.I.; Gregg, R.; Ross, D.N.

    2013-01-01

    The UK is adopting an open fuel cycle, and is necessarily moving to a regime of long term storage of spent fuel, followed by geological disposal once a geological disposal facility (GDF) is available. The earliest GDF receipt date for legacy spent fuel is assumed to be 2075. The UK is set to embark on a programme of new nuclear build to maintain a nuclear energy contribution of 16 GW. Additionally, the UK are considering a significant expansion of nuclear energy in order to meet carbon reduction targets and it is plausible to foresee a scenario where up to 75 GW from nuclear power production could be deployed in the UK by the mid 21. century. Such an expansion, could lead to spent fuel storage and its disposal being a dominant issue for the UK Government, the utilities and the public. If the UK were to transition a closed fuel cycle, then spent fuel storage should become less onerous depending on the timescales. The UK has demonstrated a preference for wet storage of spent fuel on an interim basis. The UK has adopted an approach of centralised storage, but a 16 GW new build programme and any significant expansion of this may push the UK towards distributed spent fuel storage at a number of reactors station sites across the UK

  1. Status of spent fuel storage facilities in Switzerland

    International Nuclear Information System (INIS)

    Beyeler, P.C.; Lutz, H.R.; Heesen, W. von

    1999-01-01

    Planning of a dry spent fuel storage facility in Switzerland started already 15 years ago. The first site considered for a central interim storage facility was the cavern of the decommissioned pilot nuclear plant at Lucens in the French-speaking part of Switzerland. This project was terminated in the late eighties because of lack of public acceptance. The necessary acceptance was found in the small town of Wuerenlingen which has hosted for many years the Swiss Reactor Research Centre. The new project consists of centralised interim storage facilities for all types of radioactive waste plus a hot cell and a conditioning and incinerating facility. It represents a so-called integrated storage solution. In 1990, the new company 'ZWILAG Zwischenlager Wuerenlingen AG' (ZWILAG) was founded and the licensing procedures according to the Swiss Atomic law were initiated. On August 26, 1996 ZWILAG got the permit for construction of the whole facility including the operating permit for the storage facilities. End of construction and commissioning are scheduled for autumn 1999. The nuclear power station Beznau started planning a low level waste and spent fuel storage facility on its own, because in 1990 its management thought that by 1997 the first high active waste from the reprocessing facilities in France would have to be taken back. This facility at the Beznau site, called ZWIBEZ, was licensed according to a shorter procedure so its construction was finished by 1997. The two facilities for high level waste and spent fuel provide space for a total of 278 casks, which is sufficient for the waste and spent fuel of the four Swiss nuclear power stations including their life extension programme. (author)

  2. Project management for the Virginia power spent fuel storage project

    International Nuclear Information System (INIS)

    Smith, M.

    1992-01-01

    Like Duke Power, Virginia Power has been involved in spent fuel storage expansion studies for a long time - possibly a little longer than Duke Power. Virginia Power's initial studies date back to the late 70s and into the early 80s. Large variety of storage techniques are reviewed including reracking and transshipment. Virginia Power also considered construction a new spent fuel pool. This was one of the options that was considered early on since Virginia Power started this process before any dry storage techniques had been proven. Consolidation of spent fuel is something that was also studied. Finally, construction of dry storage facility was determined to be the technology of choice. They looked a large variety of dry storage technologies and eventually selected dry storage in metal casks at Surry. There are many of reasons why a utility may choose one technology over another. In Virginia Power's situation, additional storage was needed at Surry much earlier than at other utilities. Virginia Power was confronted with selecting a storage technique and having to be a leader in that it was the first U.S. utility to implement a dry storage system

  3. Bombs grade 'spent' nuclear material removed from Uzbekistan

    International Nuclear Information System (INIS)

    2006-01-01

    Full text: Spent nuclear fuel containing enough uranium to produce 2.5 nuclear weapons has been safely returned to Russia from Uzbekistan in a classified mission completed on 19 April 2006. It is the first time that fuel used in a nuclear research reactor - referred to as 'spent' - has been repatriated to Russia since the break-up of the Soviet Union. Under tight security, 63 kilograms of spent highly enriched uranium (HEU) was transported to Mayak in Russia, in four separate shipments. IAEA safeguards inspectors monitored and verified the packing of the fuel for transport over the course of 16 days. The secret operation, six years in the planning, was a joint undertaking of the IAEA, the United States, Uzbekistan, Russia and Kazakhstan as part of the Global Threat Reduction Initiative (GTRI). The aim of the GTRI is to identify, secure and recover high-risk vulnerable nuclear and radiological materials around the world. 'There was particular concern about the Uzbek spent fuel given its significant quantity and that it was no longer 'self protecting', 'the IAEA's Crosscutting Co-ordinator for Research Reactors, Mr. Pablo Adelfang, said. 'This means that the fuel has lost its high radioactivity. In other words, it would no longer injure anyone who handled it and would not deter potential thieves,' Mr. Adelfang said. 'The shipment is an important step to reduce stockpiles of high-risk, vulnerable nuclear materials. Russia, the US, Uzbekistan and Kazakhstan should be applauded for their successful cooperation. It will contribute to the security of both Uzbekistan and the international community,' he added. In Russia, the fuel will be processed so that it can not be used for atomic bombs. Russia originally supplied the nuclear fuel to Uzbekistan for use in its 10 megawatt research reactor. Located at the Institute of Nuclear Physics of Uzbekistan, 30 km from Tashkent, the reactor is currently used for research and to produce isotopes for medical purposes. The IAEA is

  4. Spent Fuel Working Group report on inventory and storage of the Department's spent nuclear fuel and other reactor irradiated nuclear materials and their environmental, safety and health vulnerabilities

    International Nuclear Information System (INIS)

    1993-11-01

    The Secretary of Energy's memorandum of August 19, 1993, established an initiative for a Department-wide assessment of the vulnerabilities of stored spent nuclear fuel and other reactor irradiated nuclear materials. A Project Plan to accomplish this study was issued on September 20, 1993 by US Department of Energy, Office of Environment, Health and Safety (EH) which established responsibilities for personnel essential to the study. The DOE Spent Fuel Working Group, which was formed for this purpose and produced the Project Plan, will manage the assessment and produce a report for the Secretary by November 20, 1993. This report was prepared by the Working Group Assessment Team assigned to the Hanford Site facilities. Results contained in this report will be reviewed, along with similar reports from all other selected DOE storage sites, by a working group review panel which will assemble the final summary report to the Secretary on spent nuclear fuel storage inventory and vulnerability

  5. Safety analysis of spent fuel transport and storage casks under extreme impact conditions

    International Nuclear Information System (INIS)

    Wolff, D.; Wieser, G.; Ballheimer, V.; Voelzke, H.; Droste, B.

    2005-01-01

    Full text: Worldwide the security of transport and storage of spent fuel with respect to terrorism threats is a matter of concern. In Germany a spent nuclear fuel management program was developed by the government including a new concept of dry on-site interim storage instead of centralized interim storage. In order to minimize transports of spent fuel casks between nuclear power plants, reprocessing plants and central storage facilities, the operators of NPPs have to erect and to use interim storage facilities for spent nuclear fuel on the site or in the vicinity of nuclear power plants. Up to now, 11 on-site interim storage buildings, one storage tunnel and 4 on-site interim storage areas (preliminary cask storage till the on-site interim storage building is completed) have been licensed at 12 nuclear power plant sites. Inside the interim storage buildings the casks are kept in upright position, whereas at the preliminary interim storage areas horizontal storage of the casks on concrete slabs is used and each cask is covered by concrete elements. Storage buildings and concrete elements are designed only for gamma and neutron radiation shielding reasons and as weather protection. Therefore the security of spent fuel inside a dual purpose transport and storage cask depends on the inherent safety of the cask itself. For nearly three decades BAM has been investigating cask safety under severe accident conditions like drop tests from more than 9 m onto different targets and without impact limiters as well as artificially damaged prototype casks. Since the terror attacks of 11 September 2001 the determination of casks' inherent safety also under extreme impact conditions due to terrorist attacks has been of our increasing interest. With respect to spent fuel storage one of the most critical scenarios of a terrorist attack for a cask is the centric impact of a dynamic load onto the lid-seal-system caused e.g. by direct aircraft crash or its engine as well as by a

  6. Spent Fuel Transfer to Dry Storage Using Unattended Monitoring System

    International Nuclear Information System (INIS)

    Park, Jae Hwan; Park, Soo Jin

    2009-01-01

    There are 4 CANDU reactors at Wolsung site together with a spent fuel dry storage associated with unit 1. These CANDU reactors, classified as On-Load Reactor (OLR) for Safeguards application, change 16- 24 fuel bundles with fresh fuel in everyday. Especially, the spent fuel bundles are transferred from spent fuel bays to dry storage throughout a year because of the insufficient capacity of spent fuel pond. Safeguards inspectors verify the spent fuel transfer to meet safeguards purposes according to the safeguards criteria by means of inspector's presence during the transfer campaign. For the verification, 60-80 person-days of inspection (PDIs) are needed during approximately 3 months for each unit. In order to reduce the inspection effort and operators' burden, an Unattended Monitoring System (UMS) was designed and developed by the IAEA for the verification of spent fuel bundles transfers from wet storage to dry storage. Based on the enhanced cooperation of CANDU reactors between the ROK and the IAEA, the IAEA installed the UMS at Wolsung unit 2 in January 2005 at first. After some field trials during the transfer campaign, this system is being replaced the traditional human inspection since September 1, 2006 combined with a Short Notice Inspection (SNI) and a near-real time Mailbox Declaration

  7. Spent fuel test. Climax data acquisition system integration report

    International Nuclear Information System (INIS)

    Nyholm, R.A.; Brough, W.G.; Rector, N.L.

    1982-06-01

    The Spent Fuel Test - Climax (SFT-C) is a test of the retrievable, deep geologic storage of commercially generated, spent nuclear reactor fuel in granitic rock. Eleven spent fuel assemblies, together with 6 electrical simulators and 20 guard heaters, are emplaced 420 m below the surface in the Climax granite at the Nevada Test Site. On June 2, 1978, Lawrence Livermore National Laboratory (LLNL) secured funding for the SFT-C, and completed spent fuel emplacement May 28, 1980. This multi-year duration test is located in a remote area and is unattended much of the time. An extensive array of radiological safety and geotechnical instrumentation is deployed to monitor the test performance. A dual minicomputer-based data acquisition system collects and processes data from more than 900 analog instruments. This report documents the design and functions of the hardware and software elements of the Data Acquisition System and describes the supporting facilities which include environmental enclosures, heating/air-conditioning/humidity systems, power distribution systems, fire suppression systems, remote terminal stations, telephone/modem communications, and workshop areas. 9 figures

  8. Spent Fuel Test - Climax data acquisition system operations manual

    International Nuclear Information System (INIS)

    Nyholm, R.A.

    1983-01-01

    The Spent Fuel Test-Climax (SFT-C) is a test of the retrievable, deep geologic storage of commercially generated, spent nuclear reactor fuel in granite rock. Eleven spent fuel assemblies, together with 6 electrical simulators and 20 guard heaters, are emplaced 420 m below the surface in the Climax granite at the US Department of Energy Nevada Test Site. On June 2, 1978, Lawrence Livermore National Laboratory (LLNL) secured funding for the SFT-C, and completed spent fuel emplacement May 28, 1980. The multi-year duration test is located in a remote area and is unattended much of the time. An extensive array of radiological safety and geotechnical instrumentation is deployed to monitor the test performance. A dual minicomputer-based data acquisition system (DAS) collects and processes data from more than 900 analog instruments. This report documents the software element of the LLNL developed SFT-C Data Acquisition System. It defines the operating system and hardware interface configurations, the special applications software and data structures, and support software

  9. Spent Fuel Test-Climax: An evaluation of the technical feasibility of geologic storage of spent nuclear fuel in granite: Final report

    International Nuclear Information System (INIS)

    Patrick, W.C.

    1986-01-01

    In the Climax stock granite on the Nevada Test Site, eleven canisters of spent nuclear reactor fuel were emplaced, and six electrical simulators were energized. When test data indicated that the test objectives were met during the 3-year storage phase, the spent-fuel canisters were retrieved and the thermal sources were de-energized. The project demonstrated the feasibility of packaging, transporting, storing, and retrieving highly radioactive fuel assemblies in a safe and reliable manner. In addition to emplacement and retrieval operations, three exchanges of spent-fuel assemblies between the SFT-C and a surface storage facility, conducted during the storage phase, furthered this demonstration. The test led to development of a technical measurements program. To meet these objectives, nearly 1000 instruments and a computer-based data acquisition system were deployed. Geotechnical, seismological, and test status data were recorded on a continuing basis for the three-year storage phase and six-month monitored cool-down of the test. This report summarizes the engineering and scientific endeavors which led to successful design and execution of the test. The design, fabrication, and construction of all facilities and handling systems are discussed, in the context of test objectives and a safety assessment. The discussion progresses from site characterization and experiment design through data acquisition and analysis of test data in the context of design calculations. 117 refs., 52 figs., 81 tabs

  10. Spent Fuel Test-Climax: An evaluation of the technical feasibility of geologic storage of spent nuclear fuel in granite: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Patrick, W.C. (comp.)

    1986-03-30

    In the Climax stock granite on the Nevada Test Site, eleven canisters of spent nuclear reactor fuel were emplaced, and six electrical simulators were energized. When test data indicated that the test objectives were met during the 3-year storage phase, the spent-fuel canisters were retrieved and the thermal sources were de-energized. The project demonstrated the feasibility of packaging, transporting, storing, and retrieving highly radioactive fuel assemblies in a safe and reliable manner. In addition to emplacement and retrieval operations, three exchanges of spent-fuel assemblies between the SFT-C and a surface storage facility, conducted during the storage phase, furthered this demonstration. The test led to development of a technical measurements program. To meet these objectives, nearly 1000 instruments and a computer-based data acquisition system were deployed. Geotechnical, seismological, and test status data were recorded on a continuing basis for the three-year storage phase and six-month monitored cool-down of the test. This report summarizes the engineering and scientific endeavors which led to successful design and execution of the test. The design, fabrication, and construction of all facilities and handling systems are discussed, in the context of test objectives and a safety assessment. The discussion progresses from site characterization and experiment design through data acquisition and analysis of test data in the context of design calculations. 117 refs., 52 figs., 81 tabs.

  11. Shipment of spent research reactor fuel to US-operators experience

    International Nuclear Information System (INIS)

    Krull, W.

    1999-01-01

    To ship 1500 spent fuel elements over more than 30 years to different reprocessing or storage sites a large amount of experience has been gotten. The most important partners for these activities have been US organizations. The development of the US policy for the receipt of foreign spent fuel elements of US origin is described briefly. The experience being made and lessons learned with the on May 13, 1996 renewed receipt program is described in detail, including US organizations, shipment and formal steps. (author)

  12. Onsite dry spent-fuel storage: Becoming more of a reality

    International Nuclear Information System (INIS)

    1994-01-01

    An overview is presented of dry spent-fuel storage facilities operated at nuclear power plant sites in the USA. The experience of the utilities Virginia Power, Carolina Power and Light Company, Duke Power, Public Service Company of Colorado a Baltimore Gas and Electric is outlined. The spent fuel storage procedure using the Sierra Nuclear container system is described. Plans for the construction of additional storage facilities are mentioned. Dry stores are also operated at nuclear power plants that have been shut down. (J.B.). 1 fig

  13. Achieving the timely receipt of foreign research reactor spent nuclear fuel at the Savannah River site

    International Nuclear Information System (INIS)

    Brizes, C.M.; Clark, W.D; Thomas, J.; Andes, T.

    1998-01-01

    The May 1996 Record of Decision on a Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel states that the United States will accept spent nuclear fuel containing uranium of U.S.-origin from foreign research reactors through the year 2009. The best information available indicates that approximately 13,000 assemblies of Material Test Reactor (MTR) spent nuclear fuel from 29 countries are expected to be shipped to the Savannah River Site during the 13 years of the program. As of July 1998, 1,371 spent nuclear fuel assemblies from 12 foreign research reactors have been received at the SRS. That is, after more than two years of the FRR program (approximately 15 percent of the program time), 11 percent of the total assemblies have been received at SRS. Current projections show that most of the assemblies can be received by 2009, however if some of the eligible, non-participating countries decide to rejoin the program, a bottleneck would occur at the end of the program. Also adding to the potential for the bottleneck is a trend of shipments being moved out in the timeline. The Savannah River Site is working to be proactive in avoiding a bottleneck at the end of the program, but cooperation is required from all program participants to be successful. Activities currently in progress include inventory/information questionnaires, verifying fuel against cask(s) certificate of compliance (C. of C.), and collecting Appendix A information well in advance of shipping the SNF. The inventory/information sheets have been distributed to a select number of reactor facilities in the past, but work is in progress to refine the process. Information requested in the questionnaire includes inventory numbers, preferred shipping dates, and cask preferences. This information allows for improved shipment planning and helps to ensure that we are working to meet the needs of the reactor facilities. Current plans are to send the questionnaires to

  14. Estimated time spent on preventive services by primary care physicians

    Directory of Open Access Journals (Sweden)

    Gradison Margaret

    2008-12-01

    Full Text Available Abstract Background Delivery of preventive health services in primary care is lacking. One of the main barriers is lack of time. We estimated the amount of time primary care physicians spend on important preventive health services. Methods We analyzed a large dataset of primary care (family and internal medicine visits using the National Ambulatory Medical Care Survey (2001–4; analyses were conducted 2007–8. Multiple linear regression was used to estimate the amount of time spent delivering each preventive service, controlling for demographic covariates. Results Preventive visits were longer than chronic care visits (M = 22.4, SD = 11.8, M = 18.9, SD = 9.2, respectively. New patients required more time from physicians. Services on which physicians spent relatively more time were prostate specific antigen (PSA, cholesterol, Papanicolaou (Pap smear, mammography, exercise counseling, and blood pressure. Physicians spent less time than recommended on two "A" rated ("good evidence" services, tobacco cessation and Pap smear (in preventive visits, and one "B" rated ("at least fair evidence" service, nutrition counseling. Physicians spent substantial time on two services that have an "I" rating ("inconclusive evidence of effectiveness", PSA and exercise counseling. Conclusion Even with limited time, physicians address many of the "A" rated services adequately. However, they may be spending less time than recommended for important services, especially smoking cessation, Pap smear, and nutrition counseling. Future research is needed to understand how physicians decide how to allocate their time to address preventive health.

  15. The comparison of alternatives for nuclear spent fuel management using multi-attribute utility function

    International Nuclear Information System (INIS)

    Yang, J. W.; Kang, C. S.

    1999-01-01

    It is necessary to find a solution immediately to nuclear spent fuel management that is temporarily stored in on-site spent fuel storage before the saturation of the storage. However the choice of alternative for nuclear spent fuel management consists of complex process that are affected by economic, technical and social factors. And it is not easy to quantify these factors; public opinion, probability of diplomatic problem and contribution to development of nuclear technology. Therefore the analysis of the affecting factors and assessment of alternatives are required. This study performed the comparison of the alternatives for nuclear spent fuel management using MAU (Multi-Attribute Utility Function) and AHP(Analytic Hierarchy Process)

  16. MTR spent fuel back-end - Cogema's long-term commitment

    International Nuclear Information System (INIS)

    Thomasson, J.

    1998-01-01

    MTR spent fuel back end has been subject to many reversal and uncertainties in the past 10 years. Until the end of 1988, US obligated materials were subject to the Off site Fuels Policy (OFP). Under this policy, spent fuels were returned to USA, and were reprocessed there. This OFP took end the 31th of December 1988, and Research Reactor's operators had to implement others solutions: On site storage or Reprocessing in Europe. Meanwhile the RERTR Program was leading to a new LEU fuel to replace HEU aluminide. This new silicide fuel has one main drawback: it cannot be reprocessed in working plants without some process main line modifications. Fortunately, a new Research Reactors spent fuels return policy has been set up by the US in the early 1996. This new policy applies to all reactors converted or that have agreed to convert to LEU, and reactors operating with HEU for which no suitable LEU is available. It covers all the spent fuels discharged until 2006/05/12. But after that period of time, each reactor will be fully responsible for its spent fuels. Since the end of 1996, COGEMA is proposing reprocessing services for Aluminides spent fuels, based on the La Hague capability. This COGEMA answer is for the long term, as the La Hague plant has a good load for the coming years, including the first decade of the next century. Further, this activity benefits from a strong R and D support, that allowed fulfilling the evolutive needs of our customers, and gives us the ability to adapt the plant to the future market. Taking advantage of this flexibility, COGEMA offers Research Reactors' operators a long-term commitment. Already two reactors' operators have chosen to contract with COGEMA for the whole life of their reactors. The contracts execution is under progress and the first transportation will take place soon. Beside today's services, COGEMA is involved in R and D activities to support new fuels development enhancing present LEU performances and having the ability to

  17. Expanded spent fuel storage project at Yankee Atomic Electric Plant

    International Nuclear Information System (INIS)

    Chin, S.L.

    1980-01-01

    A detailed discussion on the project at the Yankee Rowe power reactor for expanding the capacity of the at-reactor storage pool by building double-tier storage racks. Various alternatives for providing additional capacity were examined by the operators. Away-from-reactor alternatives included shipment to existing privately owned facilities, a regional independent storage facility, and transshipments to other New England nuclear power plant pools. At-reactor alternatives evaluated included a new pool modification of the existing structure and finally, modification of the spent fuel pit. The establishment of a federal policy precluding transshipment of spent fuel prohibited the use of off-site alternatives. The addition of another pool was too expensive. The possibility of modifying an existing on-site structure required a new safety evaluation by the regulatory group with significant cost and time delays. Therefore, the final alternative - utilizing the existing spent fuel pool with some modification - was chosen due to cost, licensing possibility, no transport requirements, and the fact that the factors involved were mainly under the control of the operator. Modification of the pool was accomplished in phases. In the first phase, a dam was installed in the center of the pool (after the spent fuel was moved to one end). In the second phase, the empty end of the pool was drained and lined with stainless steel and the double-tier rack supports were added. In the third phase, the pool was refilled and the dam was removed. Then the spent fuel was moved into the completed end. In the fourth phase, the dam was replaced and the empty part of the pool was drained. The liner and double-tier rack supports were installed, the pool was refilled, and the dam was removed.The project demonstrated that the modification of existing spent fuel fuel pools for handling double-tier fuel racks is a viable solution for increasing the storage capacity at the reactor

  18. A safeguards approach for a closed geological repository for spent fuel

    International Nuclear Information System (INIS)

    Meer, K. van der; Carchon, R.

    1999-01-01

    After closure of a geological repository a diversion of fissile material can only take place by excavating spent fuel containers and bringing them to the surface. Therefore mining activities are required, either by reopening the original shaft, by creating a new shaft or by approaching the containers underground via a neighbouring mine The recovery time of the stored spent fuel plays an important role in the determination of the timeliness criterion and, therefore, the inspection frequency of the site. Obviously, this frequency can create a financial constraint due to the infinite character of the spent fuel storage in a geological repository. Anomalies for detection of a possible diversion are undeclared mining activities. The safeguards approach has to assure Continuity Of Knowledge (COK) of the fissile material. By consequence, a safeguards approach that is developed for a closed repository, is influenced by the safeguards approach applied to an open. repository and a conditioning facility. A closed repository is verified by DIV. To perform the DIV satellite monitoring could be performed for surface verification and e.g. seismic techniques could be used for verification that no undeclared mining activities underground take place. Visual inspections of the site by inspectors have to reveal concealment methods used by a potential diverter. These measures should guarantee that the disposed spent fuel remains untouched. (author)

  19. Spent Nuclear Fuel Project FY 1996 Multi-Year Program Plan WBS No. 1.4.1, Revision 1

    International Nuclear Information System (INIS)

    1995-09-01

    This document describes the Spent Nuclear Fuel (SNF) Project portion of the Hanford Strategic Plan for the Hanford Reservation in Richland, Washington. The SNF Project was established to evaluate and integrate the urgent risks associated with N-reactor fuel currently stored at the Hanford site in the K Basins, and to manage the transfer and disposition of other spent nuclear fuels currently stored on the Hanford site. An evaluation of alternatives for the expedited removal of spent fuels from the K Basin area was performed. Based on this study, a Recommended Path Forward for the K Basins was developed and proposed to the U.S. DOE

  20. Spent Nuclear Fuel Project FY 1996 Multi-Year Program Plan WBS No. 1.4.1, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This document describes the Spent Nuclear Fuel (SNF) Project portion of the Hanford Strategic Plan for the Hanford Reservation in Richland, Washington. The SNF Project was established to evaluate and integrate the urgent risks associated with N-reactor fuel currently stored at the Hanford site in the K Basins, and to manage the transfer and disposition of other spent nuclear fuels currently stored on the Hanford site. An evaluation of alternatives for the expedited removal of spent fuels from the K Basin area was performed. Based on this study, a Recommended Path Forward for the K Basins was developed and proposed to the U.S. DOE.

  1. MANAGEMENT OF RESEARCH AND TEST REACTOR ALUMINUM SPENT NUCLEAR FUEL - A TECHNOLOGY ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Vinson, D.

    2010-07-11

    The Department of Energy's Environmental Management (DOE-EM) Program is responsible for the receipt and storage of aluminum research reactor spent nuclear fuel or used fuel until ultimate disposition. Aluminum research reactor used fuel is currently being stored or is anticipated to be returned to the U.S. and stored at DOE-EM storage facilities at the Savannah River Site and the Idaho Nuclear Technology and Engineering Center. This paper assesses the technologies and the options for safe transportation/receipt and interim storage of aluminum research reactor spent fuel and reviews the comprehensive strategy for its management. The U.S. Department of Energy uses the Appendix A, Spent Nuclear Fuel Acceptance Criteria, to identify the physical, chemical, and isotopic characteristics of spent nuclear fuel to be returned to the United States under the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program. The fuel is further evaluated for acceptance through assessments of the fuel at the foreign sites that include corrosion damage and handleability. Transport involves use of commercial shipping casks with defined leakage rates that can provide containment of the fuel, some of which are breached. Options for safe storage include wet storage and dry storage. Both options must fully address potential degradation of the aluminum during the storage period. This paper focuses on the various options for safe transport and storage with respect to technology maturity and application.

  2. Spent fuel characterization for the commercial waste and spent fuel packaging program

    International Nuclear Information System (INIS)

    Fish, R.L.; Davis, R.B.; Pasupathi, V.; Klingensmith, R.W.

    1980-03-01

    This document presents the rationale for spent fuel characterization and provides a detailed description of the characterization examinations. Pretest characterization examinations provide quantitative and qualitative descriptions of spent fuel assemblies and rods in their irradiated conditions prior to disposal testing. This information is essential in evaluating any subsequent changes that occur during disposal demonstration and laboratory tests. Interim examinations and post-test characterization will be used to identify fuel rod degradation mechanisms and quantify degradation kinetics. The nature and behavior of the spent fuel degradation will be defined in terms of mathematical rate equations from these and laboratory tests and incorporated into a spent fuel performance prediction model. Thus, spent fuel characterization is an essential activity in the development of a performance model to be used in evaluating the ability of spent fuel to meet specific waste acceptance criteria and in evaluating incentives for modification of the spent fuel assemblies for long-term disposal purposes

  3. Loads imposed on dual purpose casks in German on-site-storage facilities for long term intermediate storage of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Wetzel, N.; Rabe, O. [TUeV NORD EnSys Hannover GmbH und Co. KG, Hanover (Germany)

    2004-07-01

    In accordance with recent changes of the atomic energy act and in order to secure reliable removal of spent fuel from the nuclear power plants' fuel storage ponds the German utilities filed license applications for a total of 12 onsite- storage facilities for spent fuel assemblies. By the end of 2003 the last of these storage facilities were licensed and are currently under construction. The first on-site-storage facility of that line became operational in late 2002. There are several design lines of storage facilities with different handling procedures or possible accident conditions. Short term interim storage facilities for a few casks are characterized by individual concrete hoods shielding the casks in horizontal position whereas long term intermediate storage facilities currently erected for large numbers of casks typically feature a condensed pattern of casks stored in upright position and massive structures of reinforced concrete. TUeV Hannover/Sachsen-Anhalt e. V. (now TUeV NORD EnSys Hannover GmbH and Co. KG) has been contracted as a body of independent experts for the assessment of all related safety requirements on behalf of the national licensing authority, the federal office for radiation protection (BfS).

  4. Loads imposed on dual purpose casks in German on-site-storage facilities for long term intermediate storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Wetzel, N.; Rabe, O.

    2004-01-01

    In accordance with recent changes of the atomic energy act and in order to secure reliable removal of spent fuel from the nuclear power plants' fuel storage ponds the German utilities filed license applications for a total of 12 onsite- storage facilities for spent fuel assemblies. By the end of 2003 the last of these storage facilities were licensed and are currently under construction. The first on-site-storage facility of that line became operational in late 2002. There are several design lines of storage facilities with different handling procedures or possible accident conditions. Short term interim storage facilities for a few casks are characterized by individual concrete hoods shielding the casks in horizontal position whereas long term intermediate storage facilities currently erected for large numbers of casks typically feature a condensed pattern of casks stored in upright position and massive structures of reinforced concrete. TUeV Hannover/Sachsen-Anhalt e. V. (now TUeV NORD EnSys Hannover GmbH and Co. KG) has been contracted as a body of independent experts for the assessment of all related safety requirements on behalf of the national licensing authority, the federal office for radiation protection (BfS)

  5. Spent fuel dissolution studies FY 1991 to 1994

    International Nuclear Information System (INIS)

    Gray, W.J.; Wilson, C.N.

    1995-12-01

    Dissolution and transport as a result of groundwater flow are generally accepted as the primary mechanisms by which radionuclides from spent fuel placed in a geologic repository could be released to the biosphere. To help provide a source term for performance assessment calculations, dissolution studies on spent fuel and unirradiated uranium oxides have been conducted over the past few years at Pacific Northwest National Laboratory (PNNL) in support of the Yucca Mountain Site Characterization Project. This report describes work for fiscal years 1991 through 1994. The objectives of these studies and the associated conclusions, which were based on the limited number of tests conducted so far, are described in the following subsections

  6. Decision nearing on final disposal of spent fuel in Finland

    International Nuclear Information System (INIS)

    Vira, J.

    2000-01-01

    The programme for final disposal of spent fuel from Finnish nuclear power plants is entering into important phase: in the year 2000 the Finnish Government is expected to decide whether the proposal made by Posiva Oy on the spent fuel disposal is in line with the overall good of society. Associated with the decision is also Posiva's proposal on siting the disposal facility at Olkiluoto in Eurajoki municipality on the western coast of Finland. An important document underlying Posiva's application for this principle decision is the report of the environmental impact assessment, which was completed in 1999. Safety considerations play an important role in the application. New assessments have, therefore, been made on both the operational and long-term safety as well as on safety of spent fuel transportation. (author)

  7. Use of a commercial heat transfer code to predict horizontally oriented spent fuel rod temperatures

    International Nuclear Information System (INIS)

    Wix, S.D.; Koski, J.A.

    1992-01-01

    Radioactive spent fuel assemblies are a source of hazardous waste that will have to be dealt with in the near future. It is anticipated that the spent fuel assemblies will be transported to disposal sites in spent fuel transportation casks. In order to design a reliable and safe transportation cask, the maximum cladding temperature of the spent fuel rod arrays must be calculated. The maximum rod temperature is a limiting factor in the amount of spent fuel that can be loaded in a transportation cask. The scope of this work is to demonstrate that reasonable and conservative spent fuel rod temperature predictions can be made using commercially available thermal analysis codes. The demonstration is accomplished by a comparison between numerical temperature predictions, with a commercially available thermal analysis code, and experimental temperature data for electrical rod heaters simulating a horizontally oriented spent fuel rod bundle

  8. Verification of criticality safety in on-site spent fuel storage systems

    International Nuclear Information System (INIS)

    Rasmussen, R.W.

    1989-01-01

    On February 15, 1984, Duke Power Company received approval for a two-region, burnup credit, spent fuel storage rack design at both Units 1 and 2 of the McGuire Nuclear Station. Duke also hopes to obtain approval by January of 1990 for a dry spent fuel storage system at the Oconee Nuclear Station, which will incorporate the use of burnup credit in the criticality analysis governing the design of the individual storage units. While experiences in burnup verification for criticality safety for their dry storage system at Oconee are in the future, the methods proposed for burnup verification will be similar to those currently used at the McGuire Nuclear Station in the two-region storage racks installed in both pools. In conclusion, the primary benefit of the McGuire rerack effort has obviously been the amount of storage expansion it provided. A total increase of about 2,000 storage cells was realized, 1,000 of which were the result of pursuing the two-region rather than the conventional poison rack design. Less impacting, but equally as important, however, has been the experience gained during the planning, installation, and operation of these storage racks. This experience should prove useful for future rerack efforts likely to occur at Duke's Catawba Nuclear Station as well as for the current dry storage effort underway for the Oconee Nuclear Station

  9. Spent fuel generated by the Kozloduy nuclear power plant within the period 1974 - 1994

    International Nuclear Information System (INIS)

    Peev, P.

    1994-01-01

    The spent fuel management during the 20-year operation of Kozloduy NPP is described. Formally this period is divided into two stages. The first one covers 1977 - 1988 when the spent fuel after short-term (3 years) storage in the reactor building was dispatched to the former Soviet Union. Within this period 21 shipments of spent fuel (about 3086 fuel assemblies) with various level of enrichment and burnup were performed. The second stage covers the period 1988 - 1994. In that period the authorities responsible for the safe operation of Kozloduy NPP faced a number of problems related to necessity of on-site spent-fuel storage commissioning. A reassessment of the seismic risk after Vrancha earthquake and the Russia's attitude towards the former Soviet Union policy of spent fuel storage was discussed

  10. Spent fuel generated by the Kozloduy nuclear power plant within the period 1974 - 1994

    Energy Technology Data Exchange (ETDEWEB)

    Peev, P [National Electricity Company, Sofia (Bulgaria)

    1994-12-31

    The spent fuel management during the 20-year operation of Kozloduy NPP is described. Formally this period is divided into two stages. The first one covers 1977 - 1988 when the spent fuel after short-term (3 years) storage in the reactor building was dispatched to the former Soviet Union. Within this period 21 shipments of spent fuel (about 3086 fuel assemblies) with various level of enrichment and burnup were performed. The second stage covers the period 1988 - 1994. In that period the authorities responsible for the safe operation of Kozloduy NPP faced a number of problems related to necessity of on-site spent-fuel storage commissioning. A reassessment of the seismic risk after Vrancha earthquake and the Russia`s attitude towards the former Soviet Union policy of spent fuel storage was discussed.

  11. MTR radiological database for SRS spent nuclear fuel facilities

    International Nuclear Information System (INIS)

    Blanchard, A.

    2000-01-01

    A database for radiological characterization of incoming Material Test Reactor (MTR) fuel has been developed for application to the Receiving Basin for Offsite Fuels (RBOF) and L-Basin spent fuel storage facilities at the Savannah River Site (SRS). This database provides a quick quantitative check to determine if SRS bound spent fuel is radiologically bounded by the Reference Fuel Assembly used in the L-Basin and RBOF authorization bases. The developed database considers pertinent characteristics of domestic and foreign research reactor fuel including exposure, fuel enrichment, irradiation time, cooling time, and fuel-to-moderator ratio. The supplied tables replace the time-consuming studies associated with authorization of SRS bound spent fuel with simple hand calculations. Additionally, the comprehensive database provides the means to overcome resource limitations, since a series of simple, yet conservative, hand calculations can now be performed in a timely manner and replace computational and technical staff requirements

  12. West Valley facility spent fuel handling, storage, and shipping experience

    International Nuclear Information System (INIS)

    Bailey, W.J.

    1990-11-01

    The result of a study on handling and shipping experience with spent fuel are described in this report. The study was performed by Pacific Northwest Laboratory (PNL) and was jointly sponsored by the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI). The purpose of the study was to document the experience with handling and shipping of relatively old light-water reactor (LWR) fuel that has been in pool storage at the West Valley facility, which is at the Western New York Nuclear Service Center at West Valley, New York and operated by DOE. A subject of particular interest in the study was the behavior of corrosion product deposits (i.e., crud) deposits on spent LWR fuel after long-term pool storage; some evidence of crud loosening has been observed with fuel that was stored for extended periods at the West Valley facility and at other sites. Conclusions associated with the experience to date with old spent fuel that has been stored at the West Valley facility are presented. The conclusions are drawn from these subject areas: a general overview of the West Valley experience, handling of spent fuel, storing of spent fuel, rod consolidation, shipping of spent fuel, crud loosening, and visual inspection. A list of recommendations is provided. 61 refs., 4 figs., 5 tabs

  13. Synthesis on the spent fuel long term evolution

    Energy Technology Data Exchange (ETDEWEB)

    Ferry, C.; Poinssot, Ch.; Lovera, P.; Poulesquen, A. [CEA Saclay, Dept. de Physico-Chimie (DEN/DPC), 91 - Gif sur Yvette (France); Broudic, V. [CEA Cadarache, Direction des Reacteurs Nucleaires (DRN), 13 - Saint Paul lez Durance (France); Cappelaere, Ch. [CEA Saclay, Dept. des Materiaux pour le Nucleaire(DMN), 91 - Gif-sur-Yvette (France); Desgranges, L. [CEA Cadarache, Direction des Reacteurs Nucleaires (DRN), 13 - Saint-Paul-lez-Durance (France); Garcia, Ph. [CEA Cadarache, Dept. d' Etudes des Combustibles (DEC), 13 - Saint Paul lez Durance (France); Jegou, Ch.; Roudil, D. [CEA Valrho, Dir. de l' Energie Nucleaire (DEN), 30 - Marcoule (France); Lovera, P.; Poulesquen, A. [CEA Saclay, Dept. de Physico-Chimie (DPC), 91 - Gif sur Yvette (France); Marimbeau, P. [CEA Cadarache, Dir. de l' Energie Nucleaire (DEN), 13 - Saint-Paul-lez-Durance (France); Gras, J.M.; Bouffioux, P. [Electricite de France (EDF), 75 - Paris (France)

    2005-07-01

    The French research on spent fuel long term evolution has been performed by CEA (Commissariat a l'Energie Atomique) since 1999 in the PRECCI project with the support of EDF (Electricite de France). These studies focused on the spent fuel behaviour under various conditions encountered in dry storage or in deep geological disposal. Three main types of conditions were discerned: - The evolution in a closed system which corresponds to the normal scenario in storage and to the first confinement phase in disposal; - The evolution in air which corresponds to an incidental loss of confinement during storage or to a rupture of the canister before the site re-saturation in geological disposal; - The evolution in water which corresponds to the normal scenario after the breaching of the canister in repository conditions. This document produced in the frame of the PRECCI project is an overview of the state of knowledge in 2004 concerning the long-term behavior of spent fuel under these various conditions. The state of the art was derived from the results obtained under the PRECCI project as well as from a review of the literature and of data acquired under the European project on Spent Fuel Stability under Repository Conditions. The main results issued from the French research are underlined. (authors)

  14. Synthesis on the spent fuel long term evolution

    International Nuclear Information System (INIS)

    Ferry, C.; Poinssot, Ch.; Lovera, P.; Poulesquen, A.; Broudic, V.; Cappelaere, Ch.; Desgranges, L.; Garcia, Ph.; Jegou, Ch.; Roudil, D.; Lovera, P.; Poulesquen, A.; Marimbeau, P.; Gras, J.M.; Bouffioux, P.

    2005-01-01

    The French research on spent fuel long term evolution has been performed by CEA (Commissariat a l'Energie Atomique) since 1999 in the PRECCI project with the support of EDF (Electricite de France). These studies focused on the spent fuel behaviour under various conditions encountered in dry storage or in deep geological disposal. Three main types of conditions were discerned: - The evolution in a closed system which corresponds to the normal scenario in storage and to the first confinement phase in disposal; - The evolution in air which corresponds to an incidental loss of confinement during storage or to a rupture of the canister before the site re-saturation in geological disposal; - The evolution in water which corresponds to the normal scenario after the breaching of the canister in repository conditions. This document produced in the frame of the PRECCI project is an overview of the state of knowledge in 2004 concerning the long-term behavior of spent fuel under these various conditions. The state of the art was derived from the results obtained under the PRECCI project as well as from a review of the literature and of data acquired under the European project on Spent Fuel Stability under Repository Conditions. The main results issued from the French research are underlined. (authors)

  15. Seismic stability of the survey areas of potential sites for the deep geological repository of the spent nuclear fuel

    Directory of Open Access Journals (Sweden)

    Kaláb Zdeněk

    2017-07-01

    Full Text Available This paper deals with the seismic stability of the survey areas of potential sites for the deep geological repository of the spent nuclear fuel in the Czech Republic. The basic source of data for historical earthquakes up to 1990 was the seismic website [10]. The most intense earthquake described occurred on September 15, 1590 in the Niederroesterreich region (Austria in the historical period; its reported intensity is Io = 8-9. The source of the contemporary seismic data for the period since 1991 to the end of 2014 was the website [11]. It may be stated based on the databases and literature review that in the period from 1900, no earthquake exceeding magnitude 5.1 originated in the territory of the Czech Republic.

  16. Nuclear nonproliferation: Concerns with US delays in accepting foregin research reactors' spent fuel

    International Nuclear Information System (INIS)

    1994-01-01

    One key US nonproliferation goal is to discourage use of highly enriched uranium fuel (HEU), which can be used to make nuclear bombs, in civilian nuclear programs worldwide. DOE's Off-Site Fuels Policy for taking back spent HEU from foreign research reactors was allowed to expire due to environmental reasons. This report provides information on the effects of delays in renewing the Off-Site Fuels Policy on US nonproliferation goals and programs (specifically the reduced enrichment program), DOE's efforts to renew the fuels policy, and the price to be charged to the operators of foreign reactors for DOE's activities in taking back spent fuel

  17. Cost and risk tradeoff for routing nuclear spent fuel movements

    International Nuclear Information System (INIS)

    Chin, S.M.

    1988-01-01

    In the transportation industry, much effort has been devoted to finding the least cost routes for shipping goods from their production sites to the market areas. In addition to cost, the decision maker must take the risk of an incident into consideration for transportation routing involving hazardous materials. The transportation of spent nuclear fuel from reactor sites to repositories is an example. Given suitable network information, existing routing methods can readily determine least cost or least risk routes for any shipment. These two solutions, however, represent the extremes of a large number of alternatives with different combinations of risk and cost. In the selection of routes and also in the evaluation of alternative storage sites it is not enough to know which is the lease cost or lowest risk. Intelligent decision-marking requires knowledge of how much it will cost to lower risk by a certain amount. The objective of this study is to develop an automated system to evaluate the tradeoff between transportation cost and potential population at risk under different nuclear spent fuel transportation strategies

  18. Handling encapsulated spent fuel in a geologic repository environment

    International Nuclear Information System (INIS)

    Ballou, L.B.

    1983-02-01

    In support of the Spent Fuel Test-Climate at the U.S. Department of Energy's Nevada Test Site, a spent-fuel canister handling system has been designed, deployed, and operated successfully during the past five years. This system transports encapsulated commercial spent-fuel assemblies between the packaging facility and the test site (approx. 100 km), transfers the canisters 420 m vertically to and from a geologic storage drift, and emplaces or retrieves the canisters from the storage holes in the floor of the drift. The spent-fuel canisters are maintained in a fully shielded configuration at all times during the handling cycle, permitting manned access at any time for response to any abnormal conditions. All normal operations are conducted by remote control, thus assuring as low as reasonably achievable exposures to operators; specifically, we have had no measurable exposure during 30 canister transfer operations. While not intended to be prototypical of repository handling operations, the system embodies a number of concepts, now demonstrated to be safe, reliable, and economical, which may be very useful in evaluating full-scale repository handling alternatives in the future. Among the potentially significant concepts are: Use of an integral shielding plug to minimize radiation streaming at all transfer interfaces. Hydraulically actuated transfer cask jacking and rotation features to reduce excavation headroom requirements. Use of a dedicated small diameter (0.5 m) drilled shaft for transfer between the surface and repository workings. A wire-line hoisting system with positive emergency braking device which travels with the load. Remotely activated grapples - three used in the system - which are insensitive to load orientation. Rail-mounted underground transfer vehicle operated with no personnel underground

  19. International long-term interim storage for spent fuel. An independent storage service investor model

    International Nuclear Information System (INIS)

    Leister, P.

    1999-01-01

    Thinking globally the obvious world-wide demands for large storage capacities for spent fuel within the next decades and the newly arising demands for long-term interim storage of spent fuel urges to respond by international interim storage facilities of high capacity. Low cost storage can be achieved only by arranging the storage facility underground in a suitable host rock formation and by selecting the geographical are by an international competition under those countries, who are willing to offer their land. The investor and operator of an international storage facility selected and realised by a competition on the free market as well as the country where the storage is built are both bound by two different kinds of contacts. The main contract is between the offering country/region and the independent operator. The independent operator has in addition a series of contracts with various utilities, which are interested to have their spent fuel stored for a longer period

  20. Spent nuclear fuel project integrated schedule plan

    International Nuclear Information System (INIS)

    Squires, K.G.

    1995-01-01

    The Spent Nuclear Fuel Integrated Schedule Plan establishes the organizational responsibilities, rules for developing, maintain and status of the SNF integrated schedule, and an implementation plan for the integrated schedule. The mission of the SNFP on the Hanford site is to provide safe, economic, environmentally sound management of Hanford SNF in a manner which stages it to final disposition. This particularly involves K Basin fuel

  1. Spent nuclear fuel project integrated schedule plan

    Energy Technology Data Exchange (ETDEWEB)

    Squires, K.G.

    1995-03-06

    The Spent Nuclear Fuel Integrated Schedule Plan establishes the organizational responsibilities, rules for developing, maintain and status of the SNF integrated schedule, and an implementation plan for the integrated schedule. The mission of the SNFP on the Hanford site is to provide safe, economic, environmentally sound management of Hanford SNF in a manner which stages it to final disposition. This particularly involves K Basin fuel.

  2. Predicting Time Spent in Treatment in a Sample of Danish Survivors of Child Sexual Abuse.

    Science.gov (United States)

    Fletcher, Shelley; Elklit, Ask; Shevlin, Mark; Armour, Cherie

    2017-07-01

    The aim of this study was to identify significant predictors of length of time spent in treatment. In a convenience sample of 439 Danish survivors of child sexual abuse, predictors of time spent in treatment were examined. Assessments were conducted on a 6-month basis over a period of 18 months. A multinomial logistic regression analysis revealed that the experience of neglect in childhood and having experienced rape at any life stage were associated with less time in treatment. Higher educational attainment and being male were associated with staying in treatment for longer periods of time. These factors may be important for identifying those at risk of terminating treatment prematurely. It is hoped that a better understanding of the factors that predict time spent in treatment will help to improve treatment outcomes for individuals who are at risk of dropping out of treatment at an early stage.

  3. Near-Site Transportation Infrastructure Project

    International Nuclear Information System (INIS)

    Viebrock, J.M.; Mote, N.

    1992-02-01

    There are 122 commercial nuclear facilities from which spent nuclear fuel will be accepted by the Federal Waste Management System (FWMS). Since some facilities share common sites and some facilities are on adjacent sites, 76 sites were identified for the Near-Site Transportation Infrastructure (NSTI) project. The objective of the NSTI project was to identify the options available for transportation of spent-fuel casks from each of these commercial nuclear facility sites to the main transportation routes -- interstate highways, commercial rail lines and navigable waterways available for commercial use. The near-site transportation infrastructure from each site was assessed, based on observation of technical features identified during a survey of the routes and facilities plus data collected from referenced information sources. The potential for refurbishment of transportation facilities which are not currently operational was also assessed, as was the potential for establishing new transportation facilities

  4. The Versatility of an Online Database for Spent Nuclear Fuel Management

    International Nuclear Information System (INIS)

    Canas, L.R.

    1997-12-01

    A vast and diverse database on spent nuclear fuel (SNF) supports the mission of the Westinghouse Savannah River Company's (WSRC) Spent Fuel Storage Division (SFSD) at the Department of Energy's (DOE) Savannah River Site (SRS) chemical-nuclear complex. Prior to 1994, this documentation resided in multiple files maintained by various organizations across SRS. Since that time, in an attempt to improve the efficiency of SNF data retrieval upon demand, the files have been substantially rearranged and consolidated. Moreover, selected data have been captured electronically in a web-style, online Spent Nuclear Fuel Database (SNFD) for quick and easy access from any personal computer on the SRS intranet. Originally released in August 1996, the SNFD has continued to expand at regular intervals commensurate with the SFSD mission

  5. Considerations for a national program on spent fuel management

    International Nuclear Information System (INIS)

    Lopez-Perez, B.; Melches-Serrano, C.

    1980-01-01

    The spent fuel discharged from the two LWR's that are in operation (Zorita, 160 MW PWR, and Santa Maria de Garona, 460 MW BWR) is being reprocessed under contracts with BNFL; these contracts will expire in the next few years. The fuel discharged from Vandelos (50 MW GCR) is being reprocessed by Cogema under a long-term contract. No new reprocessing contracts for LWR's in operation, under construction, or planned have been signed or are being considered for the near future. The plutonium and the residual uranium contained in LWR spent fuel are considered important potential energy resources. They are especially valuable for countries such as Spain, which is short of energy resources, and they might be used in the future in fast breeder or thermal reactors. This is the reason that, until reprocessing is justified and appropriate solutions to make reprocessing available are developed, Spain has decided to build the appropriate capacity for the temporary storage of spent fuel. The capacity is being achieved, on short term, by the extension of AR storage capacity. It is being achieved, at medium or longer term, by the construction of centralized AFR facilities to serve all Spanish nuclear power plants. Spanish utilities are undertaking the expansion of reactor storage capacities, using densified racks, to increment capacity to at least 8 to 10 reloads, in addition to full core discharge capacity. Spain has the time and the financial and technical resources to implement a national solution for spent fuel storage. Financial strategy, technology choice, and licensing considerations are under examination in order to make a decision for medium- and long-term storage alternatives

  6. Spent fuel management

    International Nuclear Information System (INIS)

    2005-01-01

    The production of nuclear electricity results in the generation of spent fuel that requires safe, secure and efficient management. Appropriate management of the resulting spent fuel is a key issue for the steady and sustainable growth of nuclear energy. Currently about 10,000 tonnes heavy metal (HM) of spent fuel are unloaded every year from nuclear power reactors worldwide, of which 8,500 t HM need to be stored (after accounting for reprocessed fuel). This is the largest continuous source of civil radioactive material generated, and needs to be managed appropriately. Member States have referred to storage periods of 100 years and even beyond, and as storage quantities and durations extend, new challenges arise in the institutional as well as in the technical area. The IAEA gives high priority to safe and effective spent fuel management. As an example of continuing efforts, the 2003 International Conference on Storage of Spent Fuel from Power Reactors gathered 125 participants from 35 member states to exchange information on this important subject. With its large number of Member States, the IAEA is well-positioned to gather and share information useful in addressing Member State priorities. IAEA activities on this topic include plans to produce technical documents as resources for a range of priority topics: spent fuel performance assessment and research, burnup credit applications, cask maintenance, cask loading optimization, long term storage requirements including records maintenance, economics, spent fuel treatment, remote technology, and influence of fuel design on spent fuel storage. In addition to broader topics, the IAEA supports coordinated research projects and technical cooperation projects focused on specific needs

  7. Photoprotection by sunscreen depends on time spent on application.

    Science.gov (United States)

    Heerfordt, Ida M; Torsnes, Linnea R; Philipsen, Peter A; Wulf, Hans Christian

    2018-03-01

    To be effective, sunscreens must be applied in a sufficient quantity and reapplication is recommended. No previous study has investigated whether time spent on sunscreen application is important for the achieved photoprotection. To determine whether time spent on sunscreen application is related to the amount of sunscreen used during a first and second application. Thirty-one volunteers wearing swimwear applied sunscreen twice in a laboratory environment. Time spent and the amount of sunscreen used during each application was measured. Subjects' body surface area accessible for sunscreen application (BSA) was estimated from their height, weight and swimwear worn. The average applied quantity of sunscreen after each application was calculated. Subjects spent on average 4 minutes and 15 seconds on the first application and approximately 85% of that time on the second application. There was a linear relationship between time spent on application and amount of sunscreen used during both the first and the second application (P applications. After the first application, subjects had applied a mean quantity of sunscreen of 0.71 mg/cm 2 on the BSA, and after the second application, a mean total quantity of 1.27 mg/cm 2 had been applied. We found that participants applied a constant amount of sunscreen per minute during both a first and a second application. Measurement of time spent on application of sunscreen on different body sites may be useful in investigating the distribution of sunscreen in real-life settings. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Mechanical and thermomechanical calculations related to the storage of spent nuclear-fuel assemblies in granite

    International Nuclear Information System (INIS)

    Butkovich, T.R.

    1980-05-01

    A generic test of the geologic storage of spent-fuel assemblies is being made at Nevada Test Site. The spent-fuel assemblies were emplaced at a depth of 420 m (1370 ft) below the surface in a typical granite and will be retrieved at a later time. The early time, close-in thermal history of this type of repository is being simulated with spent-fuel and electrically heated canisters in a central drift, with auxiliary heaters in two parallel side drifts. Prior to emplacement of the spent-fuel canisters, preliminary calculations were made using a pair of existing finite-element codes, ADINA and ADINAT

  9. Dry storage of spent fuel

    International Nuclear Information System (INIS)

    Jeffrey, R.

    1993-01-01

    Scottish Nuclear's plans to build and operate dry storage facilities at each of its two nuclear power station sites in Scotland are explained. An outline of where waste materials arise as part of the operation and decommissioning of nuclear power stations, the volumes for each category of high-, intermediate-and low-level wastes and the costs involved are given. The present procedure for the spent fuels from Hunterston-B and Torness stations is described and Scottish Nuclear's aims of driving output up and costs down are studied. (UK)

  10. Development of Accident Scenario for Interim Spent Fuel Storage Facility Based on Fukushima Accident

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dongjin; Choi, Kwangsoon; Yoon, Hyungjoon; Park, Jungsu [KEPCO-E and C, Yongin (Korea, Republic of)

    2014-05-15

    700 MTU of spent nuclear fuel is discharged from nuclear fleet every year and spent fuel storage is currently 70.9% full. The on-site wet type spent fuel storage pool of each NPP(nuclear power plants) in Korea will shortly exceed its storage limit. Backdrop, the Korean government has rolled out a plan to construct an interim spent fuel storage facility by 2024. However, the type of interim spent fuel storage facility has not been decided yet in detail. The Fukushima accident has resulted in more stringent requirements for nuclear facilities in case of beyond design basis accidents. Therefore, there has been growing demand for developing scenario on interim storage facility to prepare for beyond design basis accidents and conducting dose assessment based on the scenario to verify the safety of each type of storage.

  11. Proposal of guidelines for selecting optimum options in packagings and transportation systems of spent fuel

    International Nuclear Information System (INIS)

    Saegusa, T.; Abe, H.; Fukuda, S.

    1983-01-01

    Type and size of spent fuel shipping packagings and packaging transport ships in spent fuel transport system would have been determined separately in response to technical requirements etc. of reactor sites and reprocessing plants. However, since more and more spent fuel will be generated from world's nuclear power plants and will be transported much frequently to reprocessing plants or storage facilities, the current spent fuel transport system will have to be necessarily reexamined from the operational and economical aspects or an optimum transport system may have to be newly determined in the near future. In the literature, a variety of options are found, particularly of spent fuel packagings. This paper listed and classified options of spent fuel packagings and packaging transport ships in the transportation systems of spent fuel on the basis of literature surveys. These options were discussed from viewpoints of designers and users and compared in terms of transport efficiency. Finally, one way to determine an optimum transport system of spent fuel was indicated considering the total transport system in the light of safety, operational efficiency and economy

  12. Spent fuel workshop'2002

    International Nuclear Information System (INIS)

    Poinssot, Ch.

    2002-01-01

    This document gathers the transparencies of the presentations given at the 2002 spent fuel workshop: Session 1 - Research Projects: Overview on the IN CAN PROCESSES European project (M. Cowper), Overview on the SPENT FUEL STABILITY European project (C. Poinssot), Overview on the French R and D project on spent fuel long term evolution, PRECCI (C. Poinssot); Session 2 - Spent Fuel Oxidation: Oxidation of uranium dioxide single crystals (F. Garrido), Experimental results on SF oxidation and new modeling approach (L. Desgranges), LWR spent fuel oxidation - effects of burn-up and humidity (B. Hanson), An approach to modeling CANDU fuel oxidation under dry storage conditions (P. Taylor); Session 3 - Spent Fuel Dissolution Experiments: Overview on high burnup spent fuel dissolution studies at FZK/INE (A. Loida), Results on the influence of hydrogen on spent fuel leaching (K. Spahiu), Leaching of spent UO 2 fuel under inert and reducing conditions (Y. Albinsson), Fuel corrosion investigation by electrochemical techniques (D. Wegen), A reanalysis of LWR spent fuel flow through dissolution tests (B. Hanson), U-bearing secondary phases formed during fuel corrosion (R. Finch), The near-field chemical conditions and spent fuel leaching (D. Cui), The release of radionuclides from spent fuel in bentonite block (S.S. Kim), Trace actinide behavior in altered spent fuel (E. Buck, B. Hanson); Session 4 - Radiolysis Issues: The effect of radiolysis on UO 2 dissolution determined from electrochemical experiments with 238 Pu doped UO 2 M. Stroess-Gascoyne (F. King, J.S. Betteridge, F. Garisto), doped UO 2 studies (V. Rondinella), Preliminary results of static and dynamic dissolution tests with α doped UO 2 in Boom clay conditions (K. Lemmens), Studies of the behavior of UO 2 / water interfaces under He 2+ beam (C. Corbel), Alpha and gamma radiolysis effects on UO 2 alteration in water (C. Jegou), Behavior of Pu-doped pellets in brines (M. Kelm), On the potential catalytic behavior of

  13. General siting study 95. Siting of a deep repository for spent nuclear fuel

    International Nuclear Information System (INIS)

    1995-10-01

    General Siting Study 95 is a detailed description of the work carried out to put the siting of a deep repository in a national and regional context. The report is based on SKB's siting factors, which have been applied on a national scale. Different factors of importance or of possible importance for the long-term radiological safety, technology, land and environment as well as society are described and evaluated. This report is the overall description on general siting studies which the government considered that SKB should report in connection with the RD and D Programme 95. 121 refs, 40 figs

  14. General siting study 95. Siting of a deep repository for spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    General Siting Study 95 is a detailed description of the work carried out to put the siting of a deep repository in a national and regional context. The report is based on SKB`s siting factors, which have been applied on a national scale. Different factors of importance or of possible importance for the long-term radiological safety, technology, land and environment as well as society are described and evaluated. This report is the overall description on general siting studies which the government considered that SKB should report in connection with the RD and D Programme 95. 121 refs, 40 figs.

  15. 1. The application of PIE techniques to the study of the corrosion of spent oxide fuel in deep-rock groundwaters. 2. Spent fuel degradation

    International Nuclear Information System (INIS)

    Forsyth, R.S.

    1991-01-01

    During the autumn of 1990, papers summarizing work performed at Studsvik as part of the SKB research programme designed to study the corrosion behaviour of spent nuclear fuel in deep-rock groundwater were presented at two scientific meetings: The first paper presents results and observations of the study of the corrosion of spent oxide fuel in deep-rock ground-waters. The PIE techniques were applied to the detailed study of spent fuel both before and after water contact. The second paper represents an up-dated reporting of results obtained in the Swedish programme relevant to preferential dissolution effects, including interim results from recently stored experiments specifically designed to study possible correlations between corrosion behaviour and fuel properties conditioned by burnup and/or local power variations. Recent observations during the search for corrosion sites in fuel exposed to corrosion for about 4 years are also presented. (KAE)

  16. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1994-06-01

    The US Department of Energy (DOE) is currently deciding the direction of its environmental restoration and waste management programs at the Idaho National Engineering Laboratory (INEL) for the next 10 years. Pertinent to this decision is establishing policies for the environmentally sensitive and safe transport, storage, and management of spent nuclear fuels. To develop these policies, it is necessary to revisit or examine the available options. As a part of the DOE complex, the Hanford Site not only has a large portion of the nationwide DOE-owned inventory of spent nuclear fuel, but also is a participant in the DOE decision for management and ultimate disposition of spent nuclear fuel. Efforts in this process at Hanford include assessment of several options for stabilizing, transporting, and storing all or portions of DOE-owned spent nuclear fuel at the Hanford Site. Such storage and management of spent nuclear fuel will be in a safe and suitable manner until a final decision is made for ultimate disposition of spent nuclear fuel. Five alternatives involving the Hanford Site are being considered for management of the spent nuclear fuel inventory: (1) the No Action Alternative, (2) the Decentralization Alternative, (3) the 1992/1993 Planning Basis Alternative, (4) the Regionalization Alternative, and (5) the Centralization Alternative. AU alternatives will be carefully designed to avoid environmental degradation and to provide protection to human health and safety at the Hanford Site and surrounding region

  17. Spent Fuel Performance Assessment and Research. Final Report of a Coordinated Research Project on Spent Fuel Performance Assessment and Research (SPAR-III) 2009–2014

    International Nuclear Information System (INIS)

    2015-10-01

    At the beginning of 2014, there were 437 nuclear power reactors in operation and 72 reactors under construction. To date, around 370 500 t (HM) (tonnes of heavy metal) of spent fuel have been discharged from reactors, and approximately 253 700 t (HM) are stored at various storage facilities. Although wet storage at reactor sites still dominates, the amount of spent fuel being transferred to dry storage technologies has increased significantly since 2005. For example, around 28% of the total fuel inventory in the United States of America is now in dry storage. Although the licensing for the construction of geological disposal facilities is under way in Finland, France and Sweden, the first facility is not expected to be available until 2025 and for most States with major nuclear programmes not for several decades afterwards. Spent fuel is currently accumulating at around 7000 t (HM) per year worldwide. The net result is that the duration of spent fuel storage has increased beyond what was originally foreseen. In order to demonstrate the safety of both spent fuel and the storage system, a good understanding of the processes that might cause deterioration is required. To address this, the IAEA continued the Coordinated Research Project (CRP) on Spent Fuel Performance Assessment and Research (SPAR-III) in 2009 to evaluate fuel and materials performance under wet and dry storage and to assess the impact of interim storage on associated spent fuel management activities (such as handling and transport). This has been achieved through: evaluating surveillance and monitoring programmes of spent fuel and storage facilities; collecting and exchanging relevant experience of spent fuel storage and the impact on associated spent fuel management activities; facilitating the transfer of knowledge by documenting the technical basis for spent fuel storage; creating synergy among research projects of the participating Member States; and developing the capability to assess the impact

  18. Licensing of spent fuel storage facility including its physical protection in the Czech Republic

    International Nuclear Information System (INIS)

    Fajman, V.; Sedlacek, J.

    1992-01-01

    The current spent fuel management policies as practised in the Czech Republic are described, and the conception of the fuel cycle back end is outlined. The general principles and the legislative framework are explained of the licensing process concerning spent fuel interim storage facilities, including the environmental impact assessment component. The history is outlined of the licensing process for the spent fuel storage facility at the Dukovany NPP site, including the licensing of the transport and storage cask. The basic requirements placed on the physical safeguarding of the facility and on the licensing process are given. (J.B.). 13 refs

  19. AP1000{sup R} nuclear power plant safety overview for spent fuel cooling

    Energy Technology Data Exchange (ETDEWEB)

    Gorgemans, J.; Mulhollem, L.; Glavin, J.; Pfister, A.; Conway, L.; Schulz, T.; Oriani, L.; Cummins, E.; Winters, J. [Westinghouse Electric Company LLC, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

    2012-07-01

    The AP1000{sup R} plant is an 1100-MWe class pressurized water reactor with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance, safety and costs. The AP1000 design uses passive features to mitigate design basis accidents. The passive safety systems are designed to function without safety-grade support systems such as AC power, component cooling water, service water or HVAC. Furthermore, these passive features 'fail safe' during a non-LOCA event such that DC power and instrumentation are not required. The AP1000 also has simple, active, defense-in-depth systems to support normal plant operations. These active systems provide the first level of defense against more probable events and they provide investment protection, reduce the demands on the passive features and support the probabilistic risk assessment. The AP1000 passive safety approach allows the plant to achieve and maintain safe shutdown in case of an accident for 72 hours without operator action, meeting the expectations provided in the U.S. Utility Requirement Document and the European Utility Requirements for passive plants. Limited operator actions are required to maintain safe conditions in the spent fuel pool via passive means. In line with the AP1000 approach to safety described above, the AP1000 plant design features multiple, diverse lines of defense to ensure spent fuel cooling can be maintained for design-basis events and beyond design-basis accidents. During normal and abnormal conditions, defense-in-depth and other systems provide highly reliable spent fuel pool cooling. They rely on off-site AC power or the on-site standby diesel generators. For unlikely design basis events with an extended loss of AC power (i.e., station blackout) or loss of heat sink or both, spent fuel cooling can still be provided indefinitely: - Passive systems, requiring minimal or no operator actions, are sufficient for at least 72 hours under all

  20. Development of a computer program for the cost analysis of spent fuel management

    International Nuclear Information System (INIS)

    Choi, Heui Joo; Lee, Jong Youl; Choi, Jong Won; Cha, Jeong Hun; Whang, Joo Ho

    2009-01-01

    So far, a substantial amount of spent fuels have been generated from the PWR and CANDU reactors. They are being temporarily stored at the nuclear power plant sites. It is expected that the temporary storage facility will be full of spent fuels by around 2016. The government plans to solve the problem by constructing an interim storage facility soon. The radioactive management act was enacted in 2008 to manage the spent fuels safety in Korea. According to the act, the radioactive waste management fund which will be used for the transportation, interim storage, and the final disposal of spent fuels has been established. The cost for the management of spent fuels is surprisingly high and could include a lot of uncertainty. KAERI and Kyunghee University have developed cost estimation tools to evaluate the cost for a spent fuel management based on an engineering design and calculation. It is not easy to develop a tool for a cost estimation under the situation that the national policy on a spent fuel management has not yet been fixed at all. Thus, the current version of the computer program is based on the current conceptual design of each management system. The main purpose of this paper is to introduce the computer program developed for the cost analysis of a spent fuel management. In order to show the application of the program, a spent fuel management scenario is prepared, and the cost for the scenario is estimated

  1. Methods for expanding the capacity of spent fuel storage facilities

    International Nuclear Information System (INIS)

    1990-06-01

    At the beginning of 1989 more than 55,000 metric tonnes of heavy metal (MTHM) of spent Light Water Reactor (LWR) and Heavy Water Reactor (HWR) fuel had been discharged worldwide from nuclear power plants. Only a small fraction of this fuel has been reprocessed. The majority of the spent fuel assemblies are currently held at-reactor (AR) or away-from-reactor (AFR) in storage awaiting either chemical processing or final disposal depending on the fuel concept chosen by individual countries. Studies made by NEA and IAEA have projected that annual spent fuel arising will reach about 10,000 t HM in the year 2000 and cumulative arising will be more than 200,000 t HM. Taking into account the large quantity of spent fuel discharged from NPP and that the first demonstrations of the direct disposal of spent fuel or HLW are expected only after the year 2020, long-term storage will be the primary option for management of spent fuel until well into the next century. There are several options to expand storage capacity: (1) to construct new away-from-reactor storage facilities, (2) to transport spent fuel from a full at-reactor pool to another site for storage in a pool that has sufficient space to accommodate it, (3) to expand the capacity of existing AR pools by using compact racks, double-tierce, rod consolidation and by increasing the dimensions of existing pools. The purpose of the meeting was: to exchange new information on the international level on the subject connected with the expansion of storage capacities for spent fuel; to elaborate the state-of-the-art of this problem; to define the most important areas for future activity; on the basis of the above information to give recommendations to potential users for selection and application of the most suitable methods for expanding spent fuel facilities taking into account the relevant country's conditions. Refs, figs and tabs

  2. Review of decommissioning, spent fuel and radwaste management in Slovakia

    International Nuclear Information System (INIS)

    Jamrich, J.

    2000-01-01

    Two nuclear power plants with two WWER reactors are currently under operation in Jaslovske Bohunice and NPP A-1 is under decommissioning on the same site. At the second nuclear site in the Slovak Republic in Mochovce third nuclear power plant with two units is in operation. In accordance with the basic Slovak legislation (Act on Peaceful Utilisation of Nuclear Energy) defining the responsibilities, roles and authorities for all organisations involved in the decommissioning of nuclear installations Nuclear Regulatory Authority requires submission of conceptual decommissioning plans by the licensee. The term 'decommissioning' is used to describe the set of actions to be taken at the end of the useful life of a facility, in order to retire the facility from service while, simultaneously, ensuring proper protection of the workers, the general public and the environment. This set of activities is in principle comprised of planning and organisation of decommissioning inclusive strategy development, post-operational activities, implementation of decommissioning (physical and radiological characterisation, decontamination, dismantling and demolition, waste and spent fuel management), radiological, aspects, completion of decommissioning as well as ensuring of funding for these activities. Responsibility for nuclear installations decommissioning, radwaste and spent fuel, management in Slovakia is with a subsidiary of Slovak Electric called Nuclear Installations Decommissioning Radwaste and Spent Fuel Management (acronym SE VYZ), established on January 1, 1996. This paper provides description of an approach to planning of the NPP A-1 and NPPs with WWER reactors decommissioning, realisation of treatment, conditioning and disposal of radwaste, as well as spent fuel management in Slovakia. It takes into account that detail papers on all these issues will follow later during this meeting. (author)

  3. Assessment of spent WWER-440 fuel performance under long-term storage conditions

    Energy Technology Data Exchange (ETDEWEB)

    Takats, F [TS Enercon Kft. (Hungary)

    2012-07-01

    Paks Nuclear Power Plant is the only NPP in Hungary. It has four WWER-440 type reactor units. The fresh fuel is imported from Russia so far. The spent fuel assemblies were shipped back to Russia until 1997 after about 6 years cooling at the plant. A dry storage facility (MVDS type) has been constructed and is operational since then. By 1 January 2008, there were 5107 assemblies in dry storage. The objectives are: 1) Wet AR storage of spent fuel from the NPP Paks: Measurements of conditions for spent fuel storage in the at-reactor (AR) storage pools of Paks NPP (physical and chemical characteristics of pool water, corrosion product data); Measurements and visual control of storage pool component characteristics; Evaluation of storage characteristics and conditions with respect to long-term stability (corrosion of fuel cladding, construction materials); 2) Dry AFR storage at Paks NPP: Calculation and measurement of spent fuel conditions during the transfer from the storage pool to the modular vault dry storage (MVDS) on the site; Calculation and measurement of spent fuel conditions during the preparation of fuel for dry storage (drying process), such as crud release, activity build-up; Measurement of spent fuel conditions during the long-term dry storage, activity data in the storage tubes and amount of crud.

  4. USA: energy policy and spent fuel and waste management

    International Nuclear Information System (INIS)

    Petroll, M.R.

    2001-01-01

    The new US administration under President Bush has shifted political weights in the country's energy policy. The policy pursued by the Clinton administration, which had been focused strongly on energy efficiency and environmental protection, will be revoked in a number of points, and the focus instead will now be on economics and continuity of supply, also against the backdrop of the current power supply crisis in California. However, it is more likely that fossil-fired generating capacity will be expanded or added than new nuclear generating capacity. As far as the policy of managing radioactive waste is concerned, no fast and fundamental changes are expected. Low-level waste arising in medicine, research, industry, and nuclear power plants will be stored in a number of shallow ground burial facilities also involving more than one federal state. The Yucca Mountain repository project will be advanced with a higher budget, and WIPP (Waste Isolation Plant) in the state of New Mexico has been in operation since 1998. Plans for the management of spent fuel elements include interim stores called ISFSIs (Independent Spent Fuel Storage Installations) both near and independent of nuclear power sites. Nineteen sites have been licensed, another eighteen are ready to be licensed. In addition, also international spent fuel and nuclear waste management approaches are being discussed in the United States which, inter alia, are meant to offer comprehensive solutions to countries running only a small number of nuclear power plants. (orig.) [de

  5. Transport and storage of spent fuel in Germany - possibilities for more safety

    International Nuclear Information System (INIS)

    Brennecke, P.; Fasten, Ch.; Nitsche, F.

    2004-01-01

    The safe transport of spent fuel from nuclear power plants in Germany is ensured by compliance with the dangerous goods transport regulations of class 7 which are fully consistent with the IAEA Transport Regulations and in parallel with the regulations of the German Atomic Energy Act. The purpose of this paper is to give an overview of this legal basis and the appropriate regulations applicable to spent fuel transport in Germany. Some aspects of the status and the future development of spent fuel shipments are described including experiences since resumption of those shipments in 2001. Furthermore, the status of licensing of on-site interim storage, assessments of an terrorist attack as well as consequences resulting from changes in energy policy are given

  6. Spent Fuel Long Term Interim Storage: The Spanish Policy

    International Nuclear Information System (INIS)

    Fernandez-Lopez, Javier

    2014-01-01

    ENRESA is the Spanish organization responsible for long-term management of all categories of radioactive waste and nuclear spent fuel and for decommissioning nuclear installations. It is also in charge of the management of the funds collected from waste producers and electricity consumers. The national policy about radioactive waste management is established at the General Radioactive Waste Plan by the Government upon proposal of the Ministry of Industry, Energy and Tourism. Now the Plan in force is the Sixth Plan approved in 2006. The policy on spent nuclear fuel, after description of the current available options, is set up as a long term interim storage at a Centralized Temporary Storage facility (CTS, or ATC in Spanish acronym) followed by geologic disposal, pending technological development on other options being eligible in the future. After a site selection process launched in 2009, the site for the ATC has been chosen at the end of 2011. The first steps for the implementation of the facility are described in the present paper. (authors)

  7. Estimated risk contribution for dry spent fuel storage cask

    International Nuclear Information System (INIS)

    Santos, C.; Kirk, M.T.; Abramson, L.; Guttmann, J.; Hackett, E.; Simonen, F.A.

    2001-01-01

    The U.S. Nuclear Regulatory Commission (NRC) is pursuing means to risk-inform its regulations and programs for dry storage of spent nuclear fuel. In pursuit of this objective, the NRC will develop safety goals and probabilistic risk assessments for implementing risk-informed programs. This paper provides one example method for calculating the risk of a dry spent fuel storage cask under normal and accident conditions. The example is on the HI-STORM 100 cask at a proposed site containing four thousand such casks. The paper evaluates the risk to the public by determining the likelihood a welded stainless steel container will leak. In addition, the study addresses the risk at a site where 4,000 casks may be stored until the U.S. Department of Energy accepts the casks for placement in a repository. The methods used employ the PRODIGAL computer code to assess the probability of a faulty weld on a stainless steel-welded canister. These analyses are only the initial stages of a comprehensive risk study that the NRC is performing in support of its regulatory initiatives. (author)

  8. Guidebook on spent fuel storage

    International Nuclear Information System (INIS)

    1984-01-01

    The Guidebook summarizes the experience and information in various areas related to spent fuel storage: technological aspects, the transport of spent fuel, economical, regulatory and institutional aspects, international safeguards, evaluation criteria for the selection of a specific spent fuel storage concept, international cooperation on spent fuel storage. The last part of the Guidebook presents specific problems on the spent fuel storage in the United Kingdom, Sweden, USSR, USA, Federal Republic of Germany and Switzerland

  9. Survey of economics of spent nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Valvoda, Z.

    1976-01-01

    Literature data are surveyed on the economic problems of reprocessing spent fuel from light-water reactors in the period 1970 to 1975 and on the capacity of some reprocessing plants, such as NFS, Windscale, Marcoule, etc. The sharp increase in capital and production costs is analyzed and the future trend is estimated. The question is discussed of the use of plutonium and the cost thereof. The economic advantageousness previously considered to be the primary factor is no longer decisive due to new circumstances. The main objective today is to safeguard uninterrupted operation of nuclear power plants and the separation of radioactive wastes from the fuel cycle and the safe disposal thereof. (Oy)

  10. Safety analysis of disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    Vieno, T.

    1994-04-01

    The spent fuel from the Olkiluoto NPP (TVO I and II) is planned to be disposed of in a repository to be constructed at a depth of about 500 meters in the crystalline bedrock. The thesis is dealing with the safety analysis of the disposal. The main topics presented in the thesis are: (1) The amount of radioactive properties of the spent fuel, (2) The canister design and the planned disposal concept, (3) The results of the preliminary site investigations, (4) Discussion of the multi-barrier principle, (5) The general principles and methodology of the TVO-92 safety analysis, (6) Groundwater flow analysis, (7) Durability and behaviour of the canister, (8) Biosphere analysis and reference scenario, and (9) The sensitivity and uncertainty analyses. (246 refs., 75 figs., 44 tabs.)

  11. Development of a Computer Program for an Analysis of the Logistics and Transportation Costs of the PWR Spent Fuels in Korea

    International Nuclear Information System (INIS)

    Cha, Jeong Hun; Choi, Heui Joo; Lee, Jong Youl; Choi, Jong Won

    2009-01-01

    It is expected that a substantial amount of spent fuels will be transported from the four nuclear power plant (NPP) sites in Korea to a hypothetical centralized interim storage facility or a final repository in the near future. The cost for the transportation is proportional to the amount of spent fuels. In this paper, a cost estimation program is developed based on the conceptual design of a transportation system and a logistics analysis. Using the developed computer program, named as CASK, the minimum capacity of a centralized interim storage facility (CISF) and the transportation cost for PWR spent fuels are calculated. The PWR spent fuels are transported from 4 NPP sites to a final repository (FR) via the CISF. Since NPP sites and the CISF are located along the coast, a sea-transportation is considered and a road-transportation is considered between the CISF and the FR. The result shows that the minimum capacity of the interim storage facility is 15,000 MTU

  12. Spent fuels program

    International Nuclear Information System (INIS)

    Shappert, L.B.

    1983-01-01

    The goal of this task is to support the Domestic Spent Fuel Storage Program through studies involving the transport of spent fuel. A catalog was developed to provide authoritative, timely, and accessible transportation information for persons involved in the transport of irradiated reactor fuel. The catalog, drafted and submitted to the Transportation Technology Center, Sandia National Laboratories, for their review and approval, covers such topics as federal, state, and local regulations, spent fuel characteristics, cask characteristics, transportation costs, and emergency response information

  13. Reevaluation of time spent indoors used for exposure dose assessment

    International Nuclear Information System (INIS)

    Hirose, Katsumi; Fujimoto, Kenzo

    2016-01-01

    A time spent indoors of sixteen hours per day (indoor occupancy factor: 0.67) has been used to assess the radiation dose of residents who spend daily life in the area contaminated due to the nuclear accident in Japan. However, much longer time is considered to be spent indoors for recent modern life. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) has been used an indoor occupancy factor of 0.8 since 1977 and a few reports suggested much higher indoor occupancy factors. Therefore it is important to reevaluate the indoor occupancy factor using current available survey data in Japan, such as 'NHK 2010 National Time Use Survey' and 'Survey on Time Use and Leisure Activities' of Statistics Bureau with certain assumption of time spent indoors in each daily activity. The total time spent indoors in a day is calculated to be 20.2 hours and its indoor occupancy factor is 0.84. Much lower indoor occupancy factors were derived from the survey data by Statistics Bureau for 10 to 14 and 15 to 19 years old groups and farmers who spend most of their time outdoors although present estimated indoor occupancy factor of 0.84 is still lower than those found in some of the relevant reports. A rounded indoor occupancy factor of 0.80 might be the appropriate conservative reference value to be used for the dose estimation of people who live in radioactively contaminated areas and for other relevant purposes of exposure assessment, taken into consideration the present results and values reported in United States Environmental Protection Agency (US EPA) and UNSCEAR. (author)

  14. SITE-94. Modelling of near-field chemistry for SITE-94

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, R.; Apted, M. [QuantiSci, Denver, CO (United States)

    1996-12-01

    This report evaluates methods for the incorporation of site data into models simulating the long-term chemical evolution of the near field. The models are based on limiting conditions at equilibrium, or steady state, in three closed systems representing fully saturated bentonite, Fe{sup o} corrosion products of the canister and spent fuel. A l kg reference mass of site groundwater is assumed to equilibrate first with bentonite and then with the canister`s corrosion products. A third closed system representing spent fuel is modeled in terms of spent-fuel dissolution in 1 kg of water evolved from the canister, coupled with steady-state constraints on the rate of oxidant production by {alpha} radiolysis of H{sub 2}O(l). Precipitation of secondary minerals controlling the solubilities of radioelements dissolved from spent fuel is also simulated in this model. Version 7.2 of the EQ3/6 geochemical software package and its supporting composite thermodynamic database, dataO.com.R22, are used to carry out these calculations. It is concluded that chemical models of near-field evolution combined with thermodynamic models of radionuclide speciation-solubility behavior can assist efforts to assimilate site characterization data into the performance assessment process, and to deal with uncertainties that are inherent in both site properties and in concepts of near field chemistry. It is essential, however, that expert judgement and prudence should be exercised such that model results are conservative with respect to acknowledged and documented uncertainties. Most importantly, it must be recognized that it is probably not possible to model with a high-level of accuracy the complex chemical environments and long timescales involved in disposal technologies for nuclear wastes. For performance assessment, however, only bounding values are needed, and modeling approaches such as described in this report are useful for this purpose. Technical peer review and cross-comparisons of near

  15. Spent nuclear fuel storage

    International Nuclear Information System (INIS)

    Romanato, Luiz Sergio

    2005-01-01

    When a country becomes self-sufficient in part of the nuclear cycle, as production of fuel that will be used in nuclear power plants for energy generation, it is necessary to pay attention for the best method of storing the spent fuel. Temporary storage of spent nuclear fuel is a necessary practice and is applied nowadays all over the world, so much in countries that have not been defined their plan for a definitive repository, as well for those that already put in practice such storage form. There are two main aspects that involve the spent fuels: one regarding the spent nuclear fuel storage intended to reprocessing and the other in which the spent fuel will be sent for final deposition when the definitive place is defined, correctly located, appropriately characterized as to several technical aspects, and licentiate. This last aspect can involve decades of studies because of the technical and normative definitions at a given country. In Brazil, the interest is linked with the storage of spent fuels that will not be reprocessed. This work analyses possible types of storage, the international panorama and a proposal for future construction of a spent nuclear fuel temporary storage place in the country. (author)

  16. Feasibility study on utilization of radiation from spent fuel in storage facility

    International Nuclear Information System (INIS)

    Wataru, Masumi; Sakamoto, Kazuaki; Saegusa, Toshiari; Sakaya, Tadatsugu; Fujiwara, Hiroaki.

    1997-01-01

    Spent fuels of nuclear power plant are stored safely until reprocessing because they are radioactive in addition to energy resources. It is foreseen that the amount of the stored spent fuel increases in the long term. Therefore, in the government, discussion on the storage away from reactor is in progress as well as one at reactor. Spent fuel emits a radioactive ray for a long time. In the storage facility, radiation is shielded not to have a detrimental influence upon the health and environment. If radioactive ray is incorrectly handled, it is hazardous for the health and the environment. But, it is very useful if it is properly utilized under a careful management. In the industry, radioactive ray by isotopes (e.g. Co-60) is used widely. In a view of the effective utilization of energy, the promotion of the siting, the regional development and the creation of employment opportunities of local inhabitants, it is preferable to make use of radiation from the spent fuel. In this study, feasibility of utilization of radiation energy from the spent fuel in a storage facility was evaluated. (author)

  17. Sellafield - a nuclear licensed site

    International Nuclear Information System (INIS)

    Bloom, Phillipa.

    1987-01-01

    The report is based on the experience gained when visiting the Exhibition Centre at the BNFL Sellafield site and joining the hour-long coach trip round the site. The sights are recorded and a description given of the processes undertaken at Sellafield to reprocess the Magnox fuel and store the spent fuel from AGR reactors. The purpose of the main plant building, and the passage of the spent fuel through the various processes is described. Criticism is made of the safety record at Sellafield and a full and open debate on nuclear power is called for. (UK)

  18. Technical, economic and institutional aspects of regional spent fuel storage facilities

    International Nuclear Information System (INIS)

    2005-11-01

    A particular challenge facing countries with small nuclear programmes is the preparation for extended interim storage and then disposal of their spent nuclear fuel. The costs and complications of providing for away-from-reactor storage facilities and/or geological repositories for relatively small amounts of spent fuel may be prohibitively high, motivating interest in regional solutions. This publication addresses the technical, economic and institutional aspects of regional spent fuel storage facilities (RSFSF) and is based on the results of a series of meetings on this topic with participants from IAEA Member States. Topics discussed include safety criteria and standards, safeguards and physical protection, fuel acceptance criteria, long term stability of systems and stored fuel, selection of site, infrastructure aspects, storage technology, licensing, operations, transport, decommissioning, as well as research and development. Furthermore the publication comprises economic, financial and institutional considerations including organizations and legal aspects followed by political and public acceptance and ethical considerations. Approaches and processes for implementation are discussed, as well as the overall benefits and risks of implementing a regional facility. It is illustrated that implementing a RSFSF facility would involve simultaneously addressing a wide range of diverse challenges. The appendix to this report tabulates the numerous issues that have been touched upon in the study. It appears, however, from the discussions that the challenges can in principle be met; the RSFSF concept is technically feasible and potentially economically viable. The technical committees producing this report did not identify any obvious institutional deficiencies that would prevent completion of such a project. Storing spent fuel in a few safe, reliable, secure facilities could enhance safeguards, physical protection and non-proliferation benefits. The committee also

  19. Technical framework to facilitate foreign spent fuel storage and geologic disposal in Russia

    International Nuclear Information System (INIS)

    Jardine, L.J.; Halsey, W.G.; Cmith, C.F.

    2000-01-01

    The option of storage and eventual geologic disposal in Russia of spent fuel of US origin used in Taiwan provides a unique opportunity that can benefit many parties. Taiwan has a near term need for a spent fuel storage and geologic disposal solution, available financial resources, but limited prospect for a timely domestic solution. Russia has significant spent fuel storage and transportation management experience, candidate storage and repository sites, but limited financial resources available for their development. The US has interest in Taiwan energy security, national security and nonproliferation interests in Russian spent fuel storage and disposal and interest in the US origin fuel. While it is understood that such a project includes complex policy and international political issues as well as technical issues, the goal of this paper is to begin the discussion by presenting a technical path forward to establish the feasibility of this concept for Russia

  20. Experimental program to determine maximum temperatures for dry storage of spent fuel

    International Nuclear Information System (INIS)

    Knox, C.A.; Gilbert, E.R.; White, G.D.

    1985-02-01

    Although air is used as a cover gas in some dry storage facilities, other facilities use inert cover gases which must be monitored to assure inertness of the atmosphere. Thus qualifying air as a cover gas is attractive for the dry storage of spent fuels. At sufficiently high temperatures, air can react with spent fuel (UO 2 ) at the site of cladding breaches that formed during reactor irradiation or during dry storage. The reaction rate is temperature dependent; hence the rates can be maintained at acceptable levels if temperatures are low. Tests with spent fuel are being conducted at Pacific Northwest Laboratory (PNL) to determine the allowable temperatures for storage of spent fuel in air. Tests performed with nonirradiated UO 2 pellets indicated that moisture, surface condition, gamma radiation, gadolinia content of the fuel pellet, and temperature are important variables. Tests were then initiated on spent fuel to develop design data under simulated dry storage conditions. Tests have been conducted at 200 and 230 0 C on spent fuel in air and 275 0 C in moist nitrogen. The results for nonirradiated UO 2 and published data for irradiated fuel indicate that above 230 0 C, oxidation rates are unacceptably high for extended storage in air. The tests with spent fuel will be continued for approximately three years to enable reliable extrapolations to be made for extended storage in air and inert gases with oxidizing constituents. 6 refs., 6 figs., 3 tabs

  1. Live Longer, Work Longer: Making It Happen in the Labor Market

    Directory of Open Access Journals (Sweden)

    Milan Vodopivec

    2008-03-01

    Full Text Available An aging population and the corresponding shrinkage of the labor force will create a significant drag on economic growth and may jeopardize the economic well-being of some of the elderly. Thus working longer is an imperative – but extending working lives has proven difficult, both because workers do not want to work longer and because employers are lukewarm about employing older workers. As measures that can be taken to motivate workers to work longer, the paper proposes providing retirement incentives and attractive, flexible working arrangements. To induce employers to hire old workers, it suggests removing the obstacles imposed by restrictive labor market institutions, an increase in the human capital of workers via life-long learning, and addressing age-discrimination. Chances for extending working lives will also increase as the health of elderly workers is improved.

  2. Cosmic ray muons for spent nuclear fuel monitoring

    Science.gov (United States)

    Chatzidakis, Stylianos

    There is a steady increase in the volume of spent nuclear fuel stored on-site (at reactor) as currently there is no permanent disposal option. No alternative disposal path is available and storage of spent nuclear fuel in dry storage containers is anticipated for the near future. In this dissertation, a capability to monitor spent nuclear fuel stored within dry casks using cosmic ray muons is developed. The motivation stems from the need to investigate whether the stored content agrees with facility declarations to allow proliferation detection and international treaty verification. Cosmic ray muons are charged particles generated naturally in the atmosphere from high energy cosmic rays. Using muons for proliferation detection and international treaty verification of spent nuclear fuel is a novel approach to nuclear security that presents significant advantages. Among others, muons have the ability to penetrate high density materials, are freely available, no radiological sources are required and consequently there is a total absence of any artificial radiological dose. A methodology is developed to demonstrate the applicability of muons for nuclear nonproliferation monitoring of spent nuclear fuel dry casks. Purpose is to use muons to differentiate between spent nuclear fuel dry casks with different amount of loading, not feasible with any other technique. Muon scattering and transmission are used to perform monitoring and imaging of the stored contents of dry casks loaded with spent nuclear fuel. It is shown that one missing fuel assembly can be distinguished from a fully loaded cask with a small overlapping between the scattering distributions with 300,000 muons or more. A Bayesian monitoring algorithm was derived to allow differentiation of a fully loaded dry cask from one with a fuel assembly missing in the order of minutes and negligible error rate. Muon scattering and transmission simulations are used to reconstruct the stored contents of sealed dry casks

  3. Safe disposal of research reactor RA spent fuel-activities, problems and prospects

    International Nuclear Information System (INIS)

    Matausek, M.V.; Vukadin, Z.; Plecas, I.; Pavlovic, R.; Sotic, O.; Bulkin, S.; Sokolov, A.; Morduhai, A.

    2001-01-01

    In order to improve conditions in the existing temporary spent fuel storage pool, technology was elaborated and equipment was produced and applied for removal of sludge and other debris from the bottom of the pool, filtration of the pool water, sludge conditioning in cement matrix and disposal at the low and medium waste repository at Vinca site. Safety measures and precautions were determined. Subcriticality was proved under normal and/or possible abnormal conditions. In the frame of the joint Yugoslav-Russian project, the technology has been developed and the equipment has been manufactured, tested and applied for underwater inspection the state of spent fuel inside the aluminum barrels. Based on the results of this inspection, a procedure will be proposed for transferring spent fuel to a more reliable storage facility. (author)

  4. Siting factors for the Swedish deep repository for spent fuel

    International Nuclear Information System (INIS)

    Stroem, A.; Ericsson, Lars O.; Svemar, C.; Almen, K.E.; Andersson, Johan

    1998-01-01

    A project entitled Siting factors and criteria for site evaluation was initiated at the SKB in 1997. The project comprises an important part of the work of siting and site selection that is being pursued within SKB. The purpose of the project is to create a logical structure for the continued siting work, and its results should also be able to be used to assist in evaluating sites. The project will thereby also provide a means - in accordance with the Government's decision regarding Research Programme 95 - to obtain more detailed and quantified siting factors and criteria than those previously presented in the supplement to Research Programme 92. The overall goals of the project are to identify and quantify requirements and preferences regarding the properties of the rock and the soil from the perspectives of long-term safety, performance and planning and design of the rock works, and to identify siting factors and criteria. The latter should be able to be used to determine whether requirements and preferences are satisfied, both when screening sites for site investigation and after completed site investigation. Presented requirements, preferences, factors and criteria must be acceptable to national and municipal authorities or others with influence over the siting work. To start with, requirements and preferences regarding the performance of the rock in a deep repository have been clarified. These requirements and preferences are based on many years of experience of safety assessments and construction analyses within SKB. What is new here is the structuring that has been done, where a classification is made into different geoscientific disciplines, and the formalism that has been developed for the concepts requirements, preferences and performance. This is a prerequisite for a consistent and hopefully comprehensive set of requirements from a functional perspective. Work has continued on siting factors with reference to a coming site investigation programme. A

  5. Local decision-making facing issues of national interest experiences from the swedish siting process for a spent nuclear fuel repository

    International Nuclear Information System (INIS)

    Soderberg, O.

    1998-01-01

    It is common knowledge that there are difficulties in convincing the general public and their democratically elected representatives that final disposal of spent nuclear fuel can be made in safe way. Special problems for the decision-makers are created by the demands put on today's generations to make a responsible risk assessment in a area with genuine uncertainties and characterised by any expressions of lack of confidence in social institutions. The current Swedish process for siting a deep repository for spent nuclear fuel has evolved during a period of many years, through inputs by the industry, Government, regulatory authorities and concerned municipalities. It is clear that the nuclear industry, represented by the Swedish Nuclear Fuel and Waste Management CO (SKB), has the full responsibility to find a solution to the waste management problem and to implement the solution - and to for this under the supervision of Government and regulating authorities. But, given the strong tradition of local self-government, the concerned municipalities, the local population in this process. this is simply the following fact: For people who have engaged themselves in local politics - and are prepared to take their responsibility for the well-being and development of their local community - the issue of a possible nuclear repository in the neighbourhood is difficult to handle. A relevant question is: Why should the nation as a whole expect these locally elected representatives to feel a responsibility for an issue of national importance? (author)

  6. Spent fuel storage facility, Kalpakkam

    International Nuclear Information System (INIS)

    Shreekumar, B.; Anthony, S.

    2017-01-01

    Spent Fuel Storage Facility (SFSF), Kalpakkam is designed to store spent fuel arising from PHWRs. Spent fuel is transported in AERB qualified/authorized shipping cask by NPCIL to SFSF by road or rail route. The spent fuel storage facility at Kalpakkam was hot commissioned in December 2006. All systems, structures and components (SSCs) related to safety are designed to meet the operational requirements

  7. Learning and education on environmental radioactivity by residents of Rokkasho Site for the spent fuel recycling facilities

    International Nuclear Information System (INIS)

    Kawauchi, Kiye; Itoh, Natsuko; Ishikawa, Tomiye; Nihonyanagi, Haruko; Aratani, Michi

    2005-01-01

    The neutron criticality accident at the JCO, a private company for nuclear fuel processing facilities in Tokai has drastically changed minds and attitudes of residents toward environmental radioactivity. The accident happened on September 30, 1999. Before the accident the residents of the Rokkasho Site were not anxious about environmental radioactivity, because they thought the facilities were safe enough concerning containment policy of the radioactivity inside the facilities. Residents, however, had not been taught on a neutron. It is an unfamiliar radiation for them. So, they promptly learnt on neutrons, and some of them began the fixed point measurement of neutrons at the nearest site of the Spent Fuel Recycling Facilities of Rokkasho by the help of Prof. Kazuhisa. Komura, Kanazawa University. Members of the Reading Cicle, Rokkasho Culture Society, mainly women, learnt measurements of environmental radioactivity using simplified counters for alpha-, beta-, and gamma-ray from natural radioactive elements and prepared various kinds of environmental samples. After learning of environmental radioactivity, they began educational activities on the environmental radioactivity for boys and girls in the region. Monitoring of environmental radioactivity is performed by different institutions and with their purposes. Here is reported learning of environmental radioactivity by the residents and education of environmental radioactivity toward the young. Even with the simplest counters, we think that the monitoring of environmental radioactivity by the residents themselves is the royal road to the safety of the regional society. (author)

  8. Site specific information in site selection

    International Nuclear Information System (INIS)

    Aeikaes, T.; Hautojaervi, A.

    1998-01-01

    The programme for the siting of a deep repository for final disposal of spent nuclear fuel was started already in 1983 and is carried out today by Posiva Oy which continues the work started by Teollisuuden Voima Oy. The programme aims at site selection by the end of the year 2000. The programme has progressed in successive interim stages with defined goals. After an early phase for site identification, five sites were selected in 1987 for preliminary site characterisation. Three of these were selected and judged to be best suited for the more detailed characterisation in 1992. An additional new site was included into the programme based on a separate feasibility study in the beginning of 1997. Since the year 1983 several safety assessments together with technical plans of the facility have been completed. When approaching the site selection the needs for more detailed consideration of the site specific properties in the safety assessment have been increased. The Finnish regulator STUK has published a proposal for general safety requirements for the final disposal of spent nuclear fuel in Finland. This set of requirements has been projected to be used in conjunction of the decision making by the end 2000. Based on the site evaluation all sites can provide a stable environment and there is evidence that the requirements for the longevity of the canister can be fulfilled at each site. In this manner the four candidate sites do not differ too much from each other. The main difference between the sites is in the salinity of the deep groundwater. The significance of differences in the salinity for the long-term safety cannot be defined yet. The differences may contribute to the discussion of the longevity of the bentonite buffer and also to the modelling of the groundwater flow and transport. The use of the geosphere as a transport barrier is basically culminated on the questions about sparse but fast flow routes and 'how bad channeling can be'. To answer these questions

  9. Inspection and Characterization of Spent Nuclear Fuel in Wet Basin Storage

    International Nuclear Information System (INIS)

    Howell, J.P.; Sindelar, R.L.

    1998-01-01

    About 200 metric tons of aluminum-clad spent nuclear fuel and targets have been stored at the Savannah River Site (SRS) in the L, K-Reactor basins, and the Receiving Basin for Off-Site Fuels (RBOF) since 1988. Processing ceased at SRS in the early 90's for facility improvements. This was followed by a re-evaluation of the Department of Energy's processing policies in light of the end of the cold war

  10. Ecosystem description of a drainage area - a strategy in biosphere descriptions during site investigations for a repository of spent nuclear fuel

    International Nuclear Information System (INIS)

    Lindborg, T.; Lofgren, A.

    2004-01-01

    During the next few years the Swedish Nuclear Fuel and Waste Management Co. (SKB) performs site investigations at two sites in Sweden for a future repository of spent nuclear fuel. Novel methods based on systems and landscape ecology are developed to understand and model the radionuclide flow in the biosphere using site specific data for a safety assessment. This work describes the strategy for development of a descriptive ecosystem model for the surface ecosystem. The site description is needed to: a) perform a safety assessment that describes and analyzes different scenarios for radionuclide releases into the ecosystem and possible pathways for dispersal or accumulation radionuclides in the ecosystem, b) detect changes caused by the construction of a repository, c) establish a baseline for detecting long-term effects of the repository. The description adopts a site-specific approach focusing on the quantification of the properties that will constitute the descriptive model. The aim is also to present the methodology for determining the properties, to describe the development of the framework for the descriptive ecosystem models by integrating use of different properties, and finally, to present vital data from other site descriptive models such as those for geology or hydrogeology. The safety assessment will use an approach, among other methods, where transport and accumulation of radionuclides will be modelled by quantifying biogeochemical pathways of matter. The descriptive ecosystem model applied to the site was therefore built to describe and quantify processes affecting i.e. turnover of matter in a drainage area. The conclusions from applying this approach was that by have estimating the flow of matter the ecological and physical constrains on the system reduces the potential variations in outcome of future states of the ecosystem and thus also reduces the uncertainties in estimating radionuclide flow and consequences to humans and the environment. (author)

  11. Radiological pathways analysis for spent solvents from the boiler chemical cleaning at the Pickering Nuclear Site

    International Nuclear Information System (INIS)

    Garisto, N.C.; Eslami, Z.; Hodgins, S.; Beaman, T.; Von Svoboda, S.; Marczak, J.

    2006-01-01

    Spent solvents are generated as a result of Boiler Chemical Cleanings (BCC) at CANDU reactor sites. These solutions contain small amount of radioactivity from a number of different sources including: Cut tubes - short sections of boiler tubes are infrequently removed from the boilers for a detailed characterization. These tubes are typically only plugged at the tubesheet allowing the primary side deposits to be exposed to BCC solvents. Tube leaks - primary to secondary side leaks also occur infrequently as a result of tube degradation. Radioactivity from the leaking fluid can consequently be deposited in the sludge on the secondary side of the tubes. Diffusion of tritium - during normal operation of the reactor units, tritium slowly diffuses from the heavy water in the primary heat-transfer system to the light-water coolant on the secondary side. Some of this tritium is retained in the secondary side deposits. The Pickering Nuclear Generating Station (PNGS) would like the flexibility to have several options for handling the spent solvent waste and associated rinse water from BCC. To this end, a radiological pathways analysis was undertaken to determine dose consequences associated with each option. Sample results from this study are included in this paper. The pathways analysis is used in this study to calculate dose to hypothetical receptors including individuals such as truck drivers, incinerator workers, residue (ash) handlers, residents who live near the landfill, inadvertent intruders into the landfill after closure and residents who live near the outfall. This dose is compared to a de minimis dose. A de minimis dose or dose rate represents a level of risk, which is generally accepted as being of no significance. Shipments of spent solvents and rinse water with corresponding doses below de minimis can be sent to conventional (i.e., non-radioactive) landfills for incineration and disposal as the radioactive dose associated with them is much less than natural

  12. Test plan for reactions between spent fuel and J-13 well water under unsaturated conditions

    International Nuclear Information System (INIS)

    Finn, P.A.; Wronkiewicz, D.J.; Hoh, J.C.; Emery, J.W.; Hafenrichter, L.D.; Bates, J.K.

    1993-01-01

    The Yucca Mountain Site Characterization Project is evaluating the long-term performance of a high-level nuclear waste form, spent fuel from commercial reactors. Permanent disposal of the spent fuel is possible in a potential repository to be located in the volcanic tuff beds near Yucca Mountain, Nevada. During the post-containment period the spent fuel could be exposed to water condensation since of the cladding is assumed to fail during this time. Spent fuel leach (SFL) tests are designed to simulate and monitor the release of radionuclides from the spent fuel under this condition. This Test Plan addresses the anticipated conditions whereby spent fuel is contacted by small amounts of water that trickle through the spent fuel container. Two complentary test plans are presented, one to examine the reaction of spent fuel and J-13 well water under unsaturated conditions and the second to examine the reaction of unirradiated UO 2 pellets and J-13 well water under unsaturated conditions. The former test plan examines the importance of the water content, the oxygen content as affected by radiolysis, the fuel burnup, fuel surface area, and temperature. The latter test plant examines the effect of the non-presence of Teflon in the test vessel

  13. Plan for safety case of spent fuel repository at Olkiluoto

    International Nuclear Information System (INIS)

    Vieno, T.; Ikonen, A.T.K.

    2005-02-01

    Posiva aims to present the Safety Case supporting the construction license application of the spent fuel repository at Olkiluoto by 2012. An outline and preliminary assessments will be presented in 2009. Interim reporting and an update of the Safety Case plan will be presented in 2006, as required by the authorities. The KBS-3 disposal concept aims at long-term isolation and containment of spent fuel assemblies in durable copper-iron canisters emplaced in a repository to be constructed at a depth between 400 and 600 metres in crystalline bedrock. By 2012, studies on the KBS-3 disposal concept and site investigations at Olkiluoto will have been continued over about thirty years. The construction of an underground rock characterisation facility (called ONKALO) was started in June 2004. The investigations are carried out in close cooperation with the Swedish SKB developing and assessing the same disposal concept at candidate sites, resembling Olkiluoto, at the other side of the Baltic Sea. A safety case is the synthesis of evidence, analyses and arguments that quantify and substantiate the safety, and the level of expert confidence in the safety, of a planned repository. Posiva's Safety Case will be organised in a portfolio including ten main reports, which will be periodically updated according the overall schedule presented in the plan. The Site report describing the present state and past evolution of the Olkiluoto site, as well as the disturbances caused by the construction of ONKALO and the first stage of the repository, forms the geoscientific basis of the Safety Case. The engineering basis is provided by the reports on the Characteristics of spent fuel, Canister design, and Repository design. The Process report containing descriptions and analyses of features, events and processes potentially affecting the disposal system, and the report on the Evolution of site and repository form the scientific basis of the Safety Case. The latter report will describe and

  14. Spent fuel transportation in the United States: commercial spent fuel shipments through December 1984

    International Nuclear Information System (INIS)

    1986-04-01

    This report has been prepared to provide updated transportation information on light water reactor (LWR) spent fuel in the United States. Historical data are presented on the quantities of spent fuel shipped from individual reactors on an annual basis and their shipping destinations. Specifically, a tabulation is provided for each present-fuel shipment that lists utility and plant of origin, destination and number of spent-fuel assemblies shipped. For all annual shipping campaigns between 1980 and 1984, the actual numbers of spent-fuel shipments are defined. The shipments are tabulated by year, and the mode of shipment and the casks utilized in shipment are included. The data consist of the current spent-fuel inventories at each of the operating reactors as of December 31, 1984. This report presents historical data on all commercial spent-fuel transportation shipments have occurred in the United States through December 31, 1984

  15. Long Term Management of Spent Fuel from NEK

    International Nuclear Information System (INIS)

    Kegel, L.; Zeleznik, N.; Lokner, V.

    2012-01-01

    In 2008 Slovenian national agency for radioactive waste management ARAO started together with Croatian sister organization APO elaboration of a new revision of Decommissioning, Radioactive waste and Spent fuel management program for NPP Krsko. In scope of this work also new studies for spent fuel storage and disposal were prepared in which technical solutions were analyzed and proposed for specific spent fuel (SF) from NPP Krsko. Time schedules for main activities of SF disposal development were elaborated for two alternative scenarios which correspond to normal NPP Krsko operation and 20 - year lifetime extension. All technical activities were financially assessed and costs estimates of SF storage and geological disposal development provided. The prepared studies were verified by international experts in order to confirm the correctness of technical inputs, proposed solutions, time schedules of activities and costs evaluations. The calculated nominal and discounted costs of spent fuel management served for the recalculation of annuities in the integral scenarios of interrelated activities on NPP Krsko decommissioning, LILW and SF management. Besides new first proposal of long-term management of spent fuel from NPP Krsko the joint work also opened additional questions. One of this is time schedule of proposed activities for long term SF management - what were the criteria used in the determination of actions and are they optimal for both countries. How the process of site selection for SF storage or disposal should be prepared having in mind that it will bring many questions in both countries? Is direct disposal of SF still the best solution in current development of nuclear prospects? The paper will present the current development and solutions for SF management from NPP Krsko and will try to answer questions which need to be solved and future development in the SF management.(author).

  16. Design and analysis of free-standing spent fuel racks in nuclear power plants

    International Nuclear Information System (INIS)

    Ashar, H.; DeGrassi, G.

    1989-01-01

    With the prohibition on reprocessing of spent fuel in the late 1970's the pools which were supposed to be short term storage became quasi-permanent storage spaces for spent fuel. Recognizing a need to provide permanent storage facilities for such nuclear wastes, the US Congress enacted a law cited as the Nuclear Waste Policy Act of 1982. The Act, in essence, required the Department of Energy to find ways for long term storage of high level waste. However, it also is required the owners of nuclear power plants to provide for interim storage of their spent fuel. The permanent government owned repositories are not scheduled to be operational until the year 2005. In order to accommodate the increasing inventory of spent fuel, the US utilities started looking for various means to store spent fuel at the reactor sites. One of the most economical ways to accommodate more spent fuel is to arrange storage locations as closely as possible at the same time making sure that the fuel remains subcritical and that there are adequate means to cope with the heat load. The free standing high density rack configuration is an outcome of efforts to accommodate to more fuel in the limited space. 3 refs., 3 figs

  17. International auspices for the storage of spent nuclear fuel as a nonproliferation measure

    International Nuclear Information System (INIS)

    O'Brien, J.N.

    1981-01-01

    The maintenance of spent nuclear fuel from power reactors will pose problems regardless of how or when the debate over reprocessing is resolved. At present, many reactor sites contain significant buildups of spent fuel stored in holding pools, and no measure short of shutting down reactors with no remaining storage capacity will alleviate the need for away-from-reactor storage. Although the federal government has committed itself to dealing with the spent fuel problem, no solution has been reached, largely because of a debate over differing projections of storage capacity requirements. Proliferation of weapons grade nuclear material in many nations presents another pressing issue. If nations with small nuclear programs are forced to deal with their own spent fuel accumulations, they will either have to reprocess it indigenously or contract to have it reprocessed in a foreign reprocessing plant. In either case, these nations may eventually possess sufficient resources to assemble a nuclear weapon. The problem of spent fuel management demands real global solutions, and further delay in solving the problem of spent nuclear fuel accumulation, both nationally and globally, can benefit only a small class of elected officials in the short term and may inflict substantial costs on the American public, and possibly the world

  18. A new framework to assess risk for a spent fuel dry storage facility

    International Nuclear Information System (INIS)

    Ryu, J. H.; Jae, M. S.; Jung, C. W.

    2004-01-01

    A spent fuel dry storage facility is a dry cooling storage facility for storing irradiated nuclear fuel and associated radioactive materials. It has very small possibilities to release radiation materials. It means a safety analysis for a spent fuel dry storage facility is required before construction. In this study, a new framework for assessing risk associated with a spent fuel dry storage facility is represented. A safety assessment framework includes 3 modules such as assessment of basket/cylinder failure rates, that of overall storage system, and site modeling. A reliability physics model for failure rates, event tree analysis(ETA)/fault tree analysis for system analysis, Bayesian analysis for initial events data, and MACCS code for consequence analysis have been used in this study

  19. 10 CFR 72.108 - Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Spent fuel, high-level radioactive waste, or reactor... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Siting Evaluation Factors § 72.108 Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste transportation. The...

  20. Spent fuel workshop'2002

    Energy Technology Data Exchange (ETDEWEB)

    Poinssot, Ch

    2002-07-01

    This document gathers the transparencies of the presentations given at the 2002 spent fuel workshop: Session 1 - Research Projects: Overview on the IN CAN PROCESSES European project (M. Cowper), Overview on the SPENT FUEL STABILITY European project (C. Poinssot), Overview on the French R and D project on spent fuel long term evolution, PRECCI (C. Poinssot); Session 2 - Spent Fuel Oxidation: Oxidation of uranium dioxide single crystals (F. Garrido), Experimental results on SF oxidation and new modeling approach (L. Desgranges), LWR spent fuel oxidation - effects of burn-up and humidity (B. Hanson), An approach to modeling CANDU fuel oxidation under dry storage conditions (P. Taylor); Session 3 - Spent Fuel Dissolution Experiments: Overview on high burnup spent fuel dissolution studies at FZK/INE (A. Loida), Results on the influence of hydrogen on spent fuel leaching (K. Spahiu), Leaching of spent UO{sub 2} fuel under inert and reducing conditions (Y. Albinsson), Fuel corrosion investigation by electrochemical techniques (D. Wegen), A reanalysis of LWR spent fuel flow through dissolution tests (B. Hanson), U-bearing secondary phases formed during fuel corrosion (R. Finch), The near-field chemical conditions and spent fuel leaching (D. Cui), The release of radionuclides from spent fuel in bentonite block (S.S. Kim), Trace actinide behavior in altered spent fuel (E. Buck, B. Hanson); Session 4 - Radiolysis Issues: The effect of radiolysis on UO{sub 2} dissolution determined from electrochemical experiments with {sup 238}Pu doped UO{sub 2} M. Stroess-Gascoyne (F. King, J.S. Betteridge, F. Garisto), doped UO{sub 2} studies (V. Rondinella), Preliminary results of static and dynamic dissolution tests with {alpha} doped UO{sub 2} in Boom clay conditions (K. Lemmens), Studies of the behavior of UO{sub 2} / water interfaces under He{sup 2+} beam (C. Corbel), Alpha and gamma radiolysis effects on UO{sub 2} alteration in water (C. Jegou), Behavior of Pu-doped pellets in brines

  1. Removal of spent fuel from the TVR reactor for reprocessing and proposals for the RA reactor spent fuel handling

    International Nuclear Information System (INIS)

    Volkov, E.B.; Konev, V.N.; Shvedov, O.V.; Bulkin, S.Yu; Sokolov, A.V.

    2002-01-01

    The 2,5 MW heavy-water moderated and cooled research reactor TVR was located at the Moscow Institute for Theoretical and Experimental Physics site. In 1990 the final batch of spent nuclear fuel (SNF) from the TVR reactor was transported for reprocessing to Production Association (PA) 'Mayak'. This transportation of the SNF was a part of TVR reactor decommissioning. The special technology and equipment was developed in order to fulfill the preparation of TVR SNF for transportation. The design of the TVR reactor and the fuel elements used are similar to the design and fuel elements of the RA reactor. Two different ways of RA spent fuel elements for transportation to reprocessing plant are considered: in aluminum barrels, and in additional cans. The experience and equipment used for the preparing TVR fuel elements for transportation can help the staff of RA reactor to find the optimal way for these technical operations. (author)

  2. The Spent Fuel Management in Finland and Modifications of Spent Fuel Storages

    International Nuclear Information System (INIS)

    Maaranen, Paeivi

    2014-01-01

    The objective of this presentation is to share the Finnish regulator's (STUK) experiences on regulatory oversight of the enlargement of a spent fuel interim storage. An overview of the current situation of spent fuel management in Finland will also be given. In addition, the planned modifications and requirements set for spent fuel storages due to the Fukushima accident are discussed. In Finland, there are four operating reactors, one under construction and two reactors that have a Council of State's Decision-in-Principle to proceed with the planning and licensing of a new reactor. In Olkiluoto, the two operating ASEA-Atom BWR units and the Areva EPR under construction have a shared interim storage for the spent fuel. The storage was designed and constructed in 1980's. The option for enlarging the storage was foreseen in the original design. Considering three operating units to produce their spent fuel and the final disposal to begin in 2022, extra space in the spent fuel storage is estimated to be needed in around 2014. The operator decided to double the number of the spent fuel pools of the storage and the construction began in 2010. The capacity of the enlarged spent fuel storage is considered to be sufficient for the three Olkiluoto units. The enlargement of the interim storage was included in Olkiluoto NPP 1 and 2 operating license. The licensing of the enlargement was conducted as a major plant modification. The operator needed the approval from STUK to conduct the enlargement. Prior to the construction of this modification, the operator was required to submit the similar documentation as needed for applying for the construction license of a nuclear facility. When conducting changes in an old nuclear facility, the new safety requirements have to be followed. The major challenge in the designing the enlargement of the spent fuel storage was to modify it to withstand a large airplane crash. The operator chose to cover the pools with protecting slabs and also to

  3. Studies and research concerning BNFP. Nuclear spent fuel transportation studies

    International Nuclear Information System (INIS)

    Anderson, R.T.; Maier, J.B.

    1979-11-01

    Currently, there are a number of institutional problems associated with the shipment of spent fuel assemblies from commercial nuclear power plants: new and conflicting regulations, embargoing of certain routes, imposition of transport safeguards, physical security in-transit, and a lack of definition of when and where the fuel will be moved. This report presents a summary of these types and kinds of problems. It represents the results of evaluations performed relative to fuel receipt at the Barnwell Nuclear Fuel Plant. Case studies were made which address existing reactor sites with near-term spent fuel transportation needs. Shipment by either highway, rail, water, or intermodal water-rail was considered. The report identifies the impact of new regulations and uncertainty caused by indeterminate regulatory policy and lack of action on spent fuel acceptance and storage. This stagnant situation has made it impossible for industry to determine realistic transportation scenarios for business planning and financial risk analysis. A current lack of private investment in nuclear transportation equipment is expected to further prolong the problems associated with nuclear spent fuel and waste disposition. These problems are expected to intensify in the 1980's and in certain cases will make continuing reactor plant operation difficult or impossible

  4. Evaluation of alternative spent fuel waste package concepts for a repository in Basalt

    International Nuclear Information System (INIS)

    Hall, G.V.B.; Nair, B.R.

    1986-01-01

    The United States government has established a program for the disposal of spent nuclear fuel and high-level radioactive waste. The Nuclear Waste Policy Act (NWPA) of 1982 requires the first nuclear waste repository to begin receiving high-level radioactive waste in 1998. One of the potentially acceptable sites currently being evaluated is the Hanford Site in the Pasco Basin in the state of Washington where the host rock is basalt. Under the direction of the United States Department of Energy (DOE), Rockwell International's Rockwell Hanford Operations (RHO) has initiated the Basalt Waste Isolation Project (BWIP). The BWIP must design waste packages for emplacement in the repository. As part of the BWIP waste package development program, several alternative designs were considered for the disposal of spent nuclear fuel. This paper describes the concepts that were evaluated, the criteria that was developed for judging their relative merits, and the methodology that was employed. The results of the evaluation show that a Pipe-In-Tunnel design, which uses a long carbon steel pipe for the containment barrier for multiple packages of consolidated spent fuel, has the highest rating. Other designs which had high ratings are also discussed

  5. Spent fuel and HLW transportation the French experience

    International Nuclear Information System (INIS)

    Giraud, J.P.; Charles, J.L.

    1995-01-01

    With 53 nuclear power plants in operation at EDF and a fuel cycle with recycling policy of the valuable materials, COGEMA is faced with the transport of a wide range of radioactive materials. In this framework, the transport activity is a key link in closing the fuel cycle. COGEMA has developed a comprehensive Transport Organization System dealing with all the sectors of the fuel cycle. The paper will describe the status of transportation of spent fuel and HLW in France and the experience gathered. The Transport Organization System clearly defines the role of all actors where COGEMA, acting as the general coordinator, specifies the tasks to be performed and brings technical and commercial support to its various subcontractors: TRANSNUCLEAIRE, specialized in casks engineering and transport operations, supplies packaging and performs transport operations, LEMARECHAL and CELESTIN operate transport by truck in the Vicinity of the nuclear sites while French Railways are in charge of spent fuel transport by train. HLW issued from the French nuclear program is stored for 30 years in an intermediate storage installation located at the La Hague reprocessing plant. Ultimately, these canisters will be transported to the disposal site. COGEMA has set up a comprehensive transport organization covering all operational aspects including adapted procedures, maintenance programs and personnel qualification

  6. Developing Spent Fuel Assembly for Advanced NDA Instrument Calibration - NGSI Spent Fuel Project

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jianwei [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gauld, Ian C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Banfield, James [GE Hitachi Nuclear Energy, Wilmington, NC (United States); Skutnik, Steven [Univ. of Tennessee, Knoxville, TN (United States)

    2014-02-01

    This report summarizes the work by Oak Ridge National Laboratory to investigate the application of modeling and simulation to support the performance assessment and calibration of the advanced nondestructive assay (NDA) instruments developed under the Next Generation Safeguards Initiative Spent Fuel (NGSI-SF) Project. Advanced NDA instrument calibration will likely require reference spent fuel assemblies with well-characterized nuclide compositions that can serve as working standards. Because no reference spent fuel standard currently exists, and the practical ability to obtain direct measurement of nuclide compositions using destructive assay (DA) measurements of an entire fuel assembly is prohibitive in the near term due to the complexity and cost of spent fuel experiments, modeling and simulation will be required to construct such reference fuel assemblies. These calculations will be used to support instrument field tests at the Swedish Interim Storage Facility (Clab) for Spent Nuclear Fuel.

  7. Field testing at the Climax Stock on the Nevada Test Site: spent fuel test and radionuclide migration experiments

    International Nuclear Information System (INIS)

    Ballou, L.B.; Isherwood, D.J.; Patrick, W.C.

    1982-01-01

    Two field tests in the Climax Stock are being conducted. The Climax Stock, a granitic instrusive, has been administratively excluded from consideration as a full-scale repository site. However, it provides a readily available facility for field testing with high-level radioactive materials at a depth (420 m) approaching that of a repository. The major test activity in the 1980 fiscal year has been initiation of the Spent Fuel Test-Climax (SFT-C). This test, which was authorized in June 1978, is designed to evaluate the generic feasibility of geologic storage and retrievability of commercial power reactor spent fuel assemblies in a granitic medium. In addition, the test is configured and instrumented to provide thermal and thermomechanical response data that will be relevant to the design of a repository in hard crystalline rock. The other field activity in the Climax Stock is a radionuclide migration test. It combines a series of field and laboratory migration experiments with the use of existing hydrologic models for pretest predictions and data interpretation. Goals of this project are to develop: (1) field measurement techniques for radionuclide migration studies in a hydrologic regime where the controlling mechanism is fracture permeability; (2) field test data on radionuclide migration; and (3) a comparison of laboratory- and field-measured retardation factors. This radionuclide migration test, which was authorized in the middle of the 1980 fiscal year, is in the preliminary design phase. The detailed program plan was prepared and subjected to formal peer review in August. In September/October researchers conducted preliminary flow tests with water in selected near-vertical fractures intersected by small horizontal boreholes. These tests were needed to establish the range of pressures, flow rates, and other operating parameters to be used in conducting the nuclide migration tests. 21 references, 14 figures, 1 table

  8. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs, Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1994-06-01

    Volume 1 to the Department of Energy's Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Management Programs Environmental Impact Statement evaluates a range of alternatives for managing naval spent nuclear fuel expected to be removed from US Navy nuclear-powered vessels and prototype reactors through the year 2035. The Environmental Impact Statement (EIS) considers a range of alternatives for examining and storing naval spent nuclear fuel, including alternatives that terminate examination and involve storage close to the refueling or defueling site. The EIS covers the potential environmental impacts of each alternative, as well as cost impacts and impacts to the Naval Nuclear Propulsion Program mission. This Appendix covers aspects of the alternatives that involve managing naval spent nuclear fuel at four naval shipyards and the Naval Nuclear Propulsion Program Kesselring Site in West Milton, New York. This Appendix also covers the impacts of alternatives that involve examining naval spent nuclear fuel at the Expended Core Facility in Idaho and the potential impacts of constructing and operating an inspection facility at any of the Department of Energy (DOE) facilities considered in the EIS. This Appendix also considers the impacts of the alternative involving limited spent nuclear fuel examinations at Puget Sound Naval Shipyard. This Appendix does not address the impacts associated with storing naval spent nuclear fuel after it has been inspected and transferred to DOE facilities. These impacts are addressed in separate appendices for each DOE site

  9. A kinetic model for the stability of spent fuel matrix under oxic conditions

    International Nuclear Information System (INIS)

    Bruno, J.; Cera, E.; Duro, L.; Eriksen, T.E.

    1996-01-01

    A kinetic model for the UO 2 -spent fuel dissolution has been developed by integrating all the fundamental and experimental evidence about the redox buffer capacity of the UO 2 matrix itself within the methodological framework of heterogeneous redox reactions and dissolution kinetics. The purpose of the model is to define the geochemical stability of the spent fuel matrix and its resistance to internal and external disturbances. The model has been built in basis the reductive capacity (RDC) of the spent fuel/water system. A sensitivity analysis has been performed in order to identify the main parameters that affect the RDC of the system, the oxidant consumption and the radionuclide release. The number of surface co-ordination sites, the surface area to volume ratio, the kinetics of oxidants generation by radiolysis and the kinetics of oxidative dissolution of UO 2 , have been found to be the main parameters that can affect the reductive capacity of the spent fuel matrix. The model has been checked against some selected UO 2 and spent fuel dissolution data, performed under oxidizing conditions. The results are quite encouraging. (orig.)

  10. Tourism and visiting activities in Tierp. Threats and possibilities with a repository for spent nuclear fuel

    International Nuclear Information System (INIS)

    Bjoerne, S.; Sandberg, M.; Sahlberg, B.

    1999-10-01

    Consequences for tourism and visiting at Tierp from siting a spent fuel repository in the community are studied. Tierp has little tourism as of today, and siting of the repository will probably lead to increased visiting of Tierp professionally and as a leisure activity

  11. The spent fuel safety experiment

    International Nuclear Information System (INIS)

    Harmms, G.A.; Davis, F.J.; Ford, J.T.

    1995-01-01

    The Department of Energy is conducting an ongoing investigation of the consequences of taking fuel burnup into account in the design of spent fuel transportation packages. A series of experiments, collectively called the Spent Fuel Safety Experiment (SFSX), has been devised to provide integral benchmarks for testing computer-generated predictions of spent fuel behavior. A set of experiments is planned in which sections of unirradiated fuel rods are interchanged with similar sections of spent PWR fuel rods in a critical assembly. By determining the critical size of the arrays, one can obtain benchmark data for comparison with criticality safety calculations. The integral reactivity worth of the spent fuel can be assessed by comparing the measured delayed critical fuel loading with and without spent fuel. An analytical effort to model the experiments and anticipate the core loadings required to yield the delayed critical conditions runs in parallel with the experimental effort

  12. Radioecological condition assessment and remediation criteria for sites of spent fuel and radioactive waste storage in the russian northwest

    International Nuclear Information System (INIS)

    Shandala, Nataliya; Titov, Alex; Novikova, Natalia; Kiselev, Mikhail; Romanov, Vladimir; Sneve, Malgorzata; Smith, Graham

    2008-01-01

    The Norwegian Radiation Protection Authority and the Federal Medical-Biological Agency of the Russian Federation have a regulatory cooperation programme which is concerned with management of the nuclear legacy in northwest Russia, and, in particular, the remediation of facilities for spent fuel and radioactive waste management at the former Shore Technical Bases at Andreeva Bay and Gremikha Village. New regulatory guidance documents have been developed, necessary because of the special abnormal situation at these sites, now designated as Sites of Temporary Storage, but also because of the transition from military to civilian regulatory supervision and the evolving regulatory system in the Russian Federation. This paper presents the progress made and on-going projects in 2008 which involve development of the radio-ecological basis for identifying radiation supervision area boundaries and a system of recommended dose constraints and derived control levels for protection of workers and the public. Unconditional guarantee of long-term radioecological protection serves as the basis for criteria development. Non-exceedance of these dose constraints and control levels implies compliance with radiological protection objectives related to the residual contamination. Dose reduction below proposed dose constraint values must also be carried out according to the optimization principle. A number of remediation strategies are considered, corresponding to different future land use assumptions, including interim continued use in a nuclear context. The developed criteria relate to conditions of facilities and surrounding areas at the sites of temporary storage after completion of their remediation, and during the interim stages of remediation, depending upon the remediation strategy adopted. (author)

  13. Redesign of the spent fuel storage racks at the Trojan Nuclear Plant

    International Nuclear Information System (INIS)

    Stump, K.

    1987-01-01

    The spent fuel pool (SFP) at the Trojan Nuclear Plant located near Prescott, Oregon, was originally designed to hold 1.33 cores worth of spent fuel assemblies. Due to the delay in the site selection and preparation process for the spent fuel repository, the SFP storage capacity was increased in 1978 from 260 assemblies to 651 assemblies and in 1983 was increased again from 651 to 1408 assemblies to allow Trojan to continue operations through the year 2003 with a full core reserve in the SFP. Now it appears unlikely that a high level waste repository will be in operation before 2010. This indicates that a further capacity increase in the SFP is required to allow commercial operation until 2010, at which time the repository should be open to receive spent fuel. To accomplish this, an increase of seven times the original SFP capacity of 260 assemblies is needed. This paper presents a spent fuel assembly rack design that enables the required capacity increase in the SFP to be met. By the use of a boron carbide - silicon polymer inside a titanium/vanadium honeycomb as a neutron absorber between the fuel assemblies and by increasing the metal to water ratio of the spent fuel pool to harden the neutron energy spectrum the capacity of the SFP is increased to 1880 assemblies for an increase of 7.23 times the original spent fuel pool capacity. The multiplication factor for the pool with every fuel assembly slot filled in the new rack system is 0.62; well below the NRC regulatory limit of keff < 0.95. The capacity increase with allow the commercial operation of the Trojan Nuclear Plant through 2010 with a full core reserve in the spent fuel pool

  14. Collective processing device for spent fuel

    International Nuclear Information System (INIS)

    Irie, Hiroaki; Taniguchi, Noboru.

    1996-01-01

    The device of the present invention comprises a sealing vessel, a transporting device for transporting spent fuels to the sealing vessel, a laser beam cutting device for cutting the transported spent fuels, a dissolving device for dissolving the cut spent fuels, and a recovering device for recovering radioactive materials from the spent fuels during processing. Reprocessing treatments comprising each processing of dismantling, shearing and dissolving are conducted in the sealing vessel can ensure a sealing barrier for the radioactive materials (fissionable products and heavy nuclides). Then, since spent fuels can be processed in a state of assemblies, and the spent fuels are easily placed in the sealing vessel, operation efficiency is improved, as well as operation cost is saved. Further, since the spent fuels can be cut by a remote laser beam operation, there can be prevented operator's exposure due to radioactive materials released from the spent fuels during cutting operation. (T.M.)

  15. Specification of requirements to get a license for an Independent Spent Fuel Dry Storage Installation (ISFSI) at the site of the NPP-LV

    International Nuclear Information System (INIS)

    Serrano R, M. L.

    2015-09-01

    This article describes some of the work done in the Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS) to define specifically the requirements that the Federal Electricity Commission (CFE) shall meet to submit for consideration of CNSNS an operation request of an Independent Spent Fuel Dry Storage Installation (ISFSI). The project of a facility of this type arose from the need to provide storage capacity for spent nuclear fuel in the nuclear power plant of Laguna Verde (NPP-LV) and to continue the operation at the same facility in a safe manner. The licensing of these facilities in the United States of America has two modes: specific license or general license. The characteristics of these licenses are described in this article. However, in Mexico the existing national legislation is not designed for such license types, in fact there is a lack of standards or regulations in this regard. The regulatory law of Article 27 of the Constitution in the nuclear matter, only generally establishes that this type of facility requires an authorization from the Ministry of Energy. For this reason and because there is not a national legislation, was necessary to use the legislation that provides the Nuclear Regulatory Commission of USA, the US NRC. However, it cannot be applied as is established, so was necessary that the CNSNS analyze one by one the requirements of both types of license and determine what would be required to NPP-LV to submit its operating license of ISFSI. The American regulatory applicable to an ISFSI, the 10-Cfr-72 of the US NRC, establishes the requirements for both types of licenses. Chapter 10-Cfr was analyzed in all its clauses and coupled to the laws, regulations and standards as well as to the requirements established by CNSNS, all associated with a store spent fuel on site; the respective certification of containers for spent fuel dry storage was not included in this article, even though the CNSNS also performed that activity under the

  16. Near-field heat transfer at the spent fuel test-climax: a comparison of measurements and calculations

    International Nuclear Information System (INIS)

    Patrick, W.C.; Montan, D.N.; Ballou, L.B.

    1981-01-01

    The Spent Fuel Test in the Climax granitic stock at the DOE Nevada Test Site is a test of the feasibility of storage and retrieval of spent nuclear reactor fuel in a deep geologic environment. Eleven spent fuel elements, together with six thermally identical electrical resistance heaters and 20 peripheral guard heaters, are emplaced 420 m below surface in a three-drift test array. This array was designed to simulate the near-field effects of thousands of canisters of nuclear waste and to evaluate the effects of heat alone, and heat plus ionizing radiation on the rock. Thermal calculations and measurements are conducted to determine thermal transport from the spent fuel and electrical resistance heaters. Calculations associated with the as-built Spent Fuel Test geometry and thermal source histories are presented and compared with thermocouple measurements made throughout the test array. Comparisons in space begin at the spent fuel canister and include the first few metres outside the test array. Comparisons in time begin at emplacement and progress through the first year of thermal loading in this multi-year test

  17. Dry spent fuel storage facility at Kozloduy Nuclear Power Plant

    International Nuclear Information System (INIS)

    Goehring, R.; Stoev, M.; Davis, N.; Thomas, E.

    2004-01-01

    The Dry Spent Fuel Storage Facility (DSF) is financed by the Kozloduy International Decommissioning Support Fund (KIDSF) which is managed by European Bank for Reconstruction and Development (EBRD). On behalf of the Employer, the Kozloduy Nuclear Power Plant, a Project Management Unit (KPMU) under lead of British Nuclear Group is managing the contract with a Joint Venture Consortium under lead of RWE NUKEM mbH. The scope of the contract includes design, manufacturing and construction, testing and commissioning of the new storage facility for 2800 VVER-440 spent fuel assemblies at the KNPP site (turn-key contract). The storage technology will be cask storage of CONSTOR type, a steel-concrete-steel container. The licensing process complies with the national Bulgarian regulations and international rules. (authors)

  18. Comparison of measured and calculated radiation doses in granite around emplacement holes in the spent-fuel test: Climax, Nevada Test Site

    International Nuclear Information System (INIS)

    van Konynenburg, R.A.

    1982-01-01

    Lawrence Livermore National Laboratory (LLNL) has emplaced eleven spent nuclear-reactor fuel assemblies in the Climax granite at the Nevada Test Site as part of the DOE Nevada Nuclear-Waste Storage Investigations. One of our objectives is to study radiation effects on the rock. The neutron and gamma-ray doses to the rock have been determined by MORSE-L Monte Carlo calculations and measurements using optical absorption and thermoluminescence dosimeters and metal foils. We compare the results to date. Generally, good agreement is found in the spatial and time dependence of the doses, but some of the absolute dose results appear to differ by more than the expected uncertainties. Although the agreement is judged to be adequate for radiation effects studies, suggestions for improving the precision of the calculations and measurements are made

  19. ASSESSMENT OF MICROBIAL LOAD OF SAUSAGES PREPARED FROM DIFFERENT COMBINATION OF SPENT DUCK AND SPENT HEN MEAT

    Directory of Open Access Journals (Sweden)

    Rajesh Kumar

    2016-12-01

    Full Text Available Aim of the present study was to assess the microbial load of sausages prepared from different combination of spent duck and spent hen meat. The combination are 100% spent duck (T1, 75%+ 25% spent duck and spent hen (T2, 50%+50% spent duck and spent hen (T3, 25%+75% spent duck and spent hen (T4 and 100% spent hen (T5. All the samples of different combination were subjected to total plate count (TPC, total psychrophilic count (TPSC and total Coliform count (TCC. Mean of TPC for T1, T2, T3, T4 and T5 were 4.69, 4.62, 4.60, 4.49 and 4.46 log 10 CFU/gm respectively, while mean TPSC were 4.46, 4.46, 4.43, 4.36 and 4.36 log CFU/gm respectively There were no significant (p<0.05 difference between the different group of combination of sausages for TPS as well as TPSC but varies significantly (p<0.05 from 14th day of storage in both cases. The coliform group of bacteria will not be detected in any combination of sausages. It is concluded that microbial load of sausage prepared from spent duck is high and it is decreases as the percentage of duck meat decreases but, the upper limit of bacteria in each group of sausages is within limit and hence it is safe for human consumption.

  20. Assessment of health risks brought about by transportation of spent fuel

    International Nuclear Information System (INIS)

    Suolanen, V.; Lautkaski, R.; Rossi, J.

    1999-03-01

    In the study health risks caused by transportation of spent fuel from Olkiluoto and from Loviisa NPP's to the planned disposal site have been evaluated. The Olkiluoto NPP is owned by Teollisuuden Voima Oy (TVO) and the Loviisa NPP, situated at Haestholmen, by Fortum Power and Heat Oy. According to the base scenario of 40 years use of the current NPP's the total amount of spent fuel will be 1840 tU (TVO) and 860 tU (Fortum). Annually, 110 tU on the average and at most 250 tU will be transported to the disposal site. The considered transportation routes are from Olkiluoto to Haestholmen, from Olkiluoto to Kivetty, from Olkiluoto to Romuvaara, from Haestholmen to Olkiluoto, from Haestholmen to Kivetty and from Haestholmen to Romuvaara. The considered transportation modes are truck, rail or ship, or combinations of these modes. Each transportation route has been divided into homogenised sequences with respect to population density and/or route type. Total amount of analysed route options were 40, some route sequences are overlapping. Radiation exposures to the population along the routes have been calculated in normal, incident and accident situations during transportation. Occupational radiation doses to the personnel have been estimated for normal transportation only. The consequences of normal transportation have been evaluated based on RADTRAN-model, developed by the Sandia National Laboratories. As incidents, stopping of spent fuel transportation for an exceptionally long period of time, and in another case contamination of outer surface of spent fuel cask have been considered. Expected collective doses and health risks of transportation accidents connected to the routes have been calculated with RADTRAN-model. Single hypothetical transport accidents with pessimistic release assumptions have been further analysed in more detail with the ARANO-model, developed by VTT (Technical Research Centre of Finland). (orig.)

  1. Probability of spent fuel transportation accidents

    International Nuclear Information System (INIS)

    McClure, J.D.

    1981-07-01

    The transported volume of spent fuel, incident/accident experience and accident environment probabilities were reviewed in order to provide an estimate of spent fuel accident probabilities. In particular, the accident review assessed the accident experience for large casks of the type that could transport spent (irradiated) nuclear fuel. This review determined that since 1971, the beginning of official US Department of Transportation record keeping for accidents/incidents, there has been one spent fuel transportation accident. This information, coupled with estimated annual shipping volumes for spent fuel, indicated an estimated annual probability of a spent fuel transport accident of 5 x 10 -7 spent fuel accidents per mile. This is consistent with ordinary truck accident rates. A comparison of accident environments and regulatory test environments suggests that the probability of truck accidents exceeding regulatory test for impact is approximately 10 -9 /mile

  2. Spent fuel shipping cask development status

    International Nuclear Information System (INIS)

    Henry, K.H.; Lattin, W.C.

    1989-01-01

    The Nuclear Waste Policy Act of 1982 (NWPA) authorized the US Department of Energy (DOE) to establish a national system for the disposal of spent nuclear fuel and high-level radioactive waste from commercial power generation, and established the Office of Civilian Radioactive Waste Management (OCRWM) within the DOE-Headquarters (DOE-HQ) to carry out these duties. A 1985 presidential decision added the disposal of high-level radioactive waste generated by defense programs to the national disposal system. A primary element of the disposal program is the development and operation of a transportation system to move the waste from its present locations to the facilities that will be included in the waste management system. The primary type of disposal facility to be established is a geologic repository; a Monitored Retrievable Storage (MRS) facility may also be included as an intermediate step in the nuclear waste disposal process. This paper focuses on the progress and status of one facet of the transportation program--the development of a family of shipping casks for transporting spent fuel from nuclear power reactor sites to the repository of MRS facility

  3. Safety Consideration for a Wet Interim Spent Fuel Store at Conceptual Design Stage

    International Nuclear Information System (INIS)

    Astoux, Marion

    2014-01-01

    EDF Energy plans to build and operate two UK EPRs at the Hinkley Point C (HPC) site in Somerset, England. Spent fuel from the UK EPRs will need to be managed from the time it is discharged from the reactor until it is ultimately disposed of and this will involve storing the spent fuel for a period in the fuel building and thereafter in a dedicated interim facility until it can be emplaced within the UK Geological Disposal Facility. EDF Energy has proposed that this interim store should be located on the Hinkley Point site which is consistent with UK policy. This Interim Spent Fuel Store (ISFS) will have the capability to store for at least one hundred years the spent fuel arising from the operation of the two EPR units (sixty years operation). Therefore, specificities regarding the lifetime of the facility have to be accounted for its design. The choice of interim storage technology was considered in some depth for the HPC project and wet storage (pool) was selected. The facility is currently at conceptual design stage, although its construction will be part of main site construction phase. Safety functions and safety requirements for this storage facility have been defined, in compliance with WENRA 'Waste and Spent Fuel Storage - Safety Reference Level Report' and IAEA Specific Safety Guide no. 15 'Storage of Spent Nuclear Fuel'. EDF technical know-how, operational feedback on existing storage pools, UK regulatory context and Fukushima experience feedback have also been accounted for. Achievement of the safety functions as passively as reasonably practicable is a key issue for the design, especially in accident situations. Regarding lifetime aspects, ageing management of equipments, optimisation of the refurbishment, climate change, passivity of the facility, and long-term achievement of the safety functions are among the subjects to consider. Adequate Operational Limits and Conditions will also have to be defined, to enable the long-term achievement of the safety

  4. Monitored Retrievable Storage (MRS) Facility and its impact on spent fuel transportation

    International Nuclear Information System (INIS)

    Joy, D.S.; Jolley, R.L.

    1986-01-01

    The Department of Energy has identified nine potential sites for a repository to permanently dispose of radioactive wastes. DOE has released several sets of maps and tables identifying expected transportation routes between nuclear reactors and repository sites. More recently, the DOE has announced three potential Monitored Retrievable Storage Facility (MRS) sites in the state of Tennessee. Obviously, if a large portion of the spent fuel is routed to Tennessee for consolidation and repackaging, there will be significant changes in the estimated routes. For typical scenarios, the number of shipments in the vicinity of the repository will be reduced. For example, with direct reactor to repository shipments, 995 highway and 262 rail shipments are expected to arrive at the repository annually. With a MRS these numbers are reduced to 201 and 30, respectively. The remaining consolidated fuel would be transported from the MRS in 22 dedicated trains (each train transporting five casks). Conversely, the MRS would result in an increase in the number of spent fuel shipments traveling through the eastern part of Tennessee. However, the operation of a MRS would significantly reduce the number of shipments through the central and western parts of the state

  5. Spent fuel management overview: a global perspective

    International Nuclear Information System (INIS)

    Bonne, A.; Crijns, M.J.; Dyck, P.H.; Fukuda, K.; Mourogov, V.M.

    1999-01-01

    The paper defines the main spent fuel management strategies and options, highlights the challenges for spent fuel storage and gives an overview of the regional balances of spent fuel storage capacity and spent fuel arising. The relevant IAEA activities in the area of spent fuel management are summarised. (author)

  6. Decay heat and gamma dose-rate prediction capability in spent LWR fuel

    International Nuclear Information System (INIS)

    Neely, G.J.; Schmittroth, F.

    1982-08-01

    The ORIGEN2 code was established as a valid means to predict decay heat from LWR spent fuel assemblies for decay times up to 10,000 year. Calculational uncertainties ranged from 8.6% to a maximum of 16% at 2.5 years and 300 years cooling time, respectively. The calculational uncertainties at 2.5 years cooling time are supported by experiment. Major sources of uncertainty at the 2.5 year cooling time were identifed as irradiation history (5.7%) and nuclear data together with calculational methods (6.3%). The QAD shielding code was established as a valid means to predict interior and exterior gamma dose rates of spent LWR fuel assemblies. A calculational/measurement comparison was done on two assemblies with different irradiation histories and supports a 35% calculational uncertainty at the 1.8 and 3.0 year decay times studied. Uncertainties at longer times are expected to increase, but not significantly, due to an increased contribution from the actinides whose inventories are assigned a higher uncertainty. The uncertainty in decay heat rises to a maximum of 16% due to actinide uncertainties. A previous study was made of the neutron emission rate from a typical Turkey Point Unit 3, Region 4 spent fuel assembly at 5 years decay time. A conservative estimate of the neutron dose rate at the assembly surface was less than 0.5 rem/hr

  7. Standard casks for the transport of LWR spent fuel. Storage/transport casks for long cooled spent fuel

    International Nuclear Information System (INIS)

    Blum, P.; Sert, G.; Gagnon, R.

    1983-01-01

    During the past decade, TRANSNUCLEAIRE has developed, licensed and marketed a family of standard casks for the transport of spent fuel from LWR reactors to reprocessing plants and the ancillary equipments necessary for their operation and transport. A large number of these casks are presently used for European and intercontinental transports and manufactured under TRANSNUCLEAIRE supervision in different countries. The main advantages of these casks are: - large payload for considered modes of transport, - moderate cost, - reliability due to the large experience gained by TRANSNUCLEAIRE as concerns fabrication and operation problems, - standardization faciliting fabrication, operation and spare part supply. Recently, TRANSNUCLEAIRE also developed a new generation of casks for the dry storage and occasional transport of LWR spent fuel which has been cooled for 5 years or 7 years in case of consolidated fuel rods. These casks have an optimum payload which takes into account the shielding requirements and the weight limitations at most sites. This paper deals more particularly with the TN 24 model which exists in 4 versions among which one for 24 PWR 900 fuel assemblies and another one for the consolidated fuel rods from 48 of same fuel assemblies

  8. SO{sub 2} Retention by CaO-Based Sorbent Spent in CO{sub 2} Looping Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Manovic, V.; Anthony, E.J.; Loncarevic, D.

    2009-07-15

    CaO-based looping cycles are promising processes for CO{sub 2} Capture from both syngas and flue gas. The technology is based on cyclical carbonation of CaO and regeneration of CaCO{sub 3} in a dual fluidized-bed reactor to produce a pure CO{sub 2} stream suitable for sequestration. Use of spent sorbent from CO{sub 2} looping cycles for SO{sub 2} capture is investigated. Three limestones were investigated: Kelly Rock (Canada), La Blanca (Spain), and Katowice (Poland, Upper Silesia). Carbonation/calcination cycles were performed in a tube furnace with both the original limestones and samples thermally pretreated for different times (i.e., sintered). The spent sorbent samples were sulfated in a thermogravimetric analyzer (TGA). The changes in the resulting sorbent pore structure were then investigated using mercury porosimetry. It has been shown that the sulfation rates of both thermally pretreated and spent sorbent samples are lower in comparison with those of the original samples. However, final conversions of both spent and pretreated sorbents after longer sulfation time were comparable or higher than those observed for the original sorbents under comparable conditions. Maximum sulfation levels strongly depend on sorbent porosity and pore surface area. The results showed that spent sorbent samples from CO{sub 2} looping cycles can be used as sorbents for SO{sub 2} retention in cases where significant porosity loss does not occur during CO{sub 2} reaction cycles. In the case of spent Kelly Rock and Katowice samples, sorbent particles are practically uniformly sulfated, achieving final conversions that are determined by the total pore volume available for the bulky CaSO{sub 4} product.

  9. Spent Fuel Test - Climax: technical measurements. Interim report, fiscal year 1982

    International Nuclear Information System (INIS)

    Patrick, W.C.; Ballou, L.B.; Butkovich, T.R.

    1983-02-01

    The Spent Fuel Test - Climax (SFT-C) is located 420 m below surface in the Climax stock granite on the Nevada Test Site. The test is being conducted for the US Department of Energy (DOE) under the technical direction of the Lawrence Livermore National Laboratory (LLNL). Eleven canisters of spent nuclear reactor fuel were emplaced, and six electrical simulators were energized April to May 1980, thus initiating a test with a planned 3- to 5-year fuel storage phase. The SFT-C operational objective of demonstrating the feasibility of packaging, transporting, storing, and retrieving highly radioactive fuel assemblies in a safe and reliable manner has been met. Three exchanges of spent fuel between the SFT-C and a surface storage facility furthered this demonstration. Technical objectives of the test led to development of a technical measurements program, which is the subject of this and two previous interim reports. Geotechnical, seismological, and test status data have been recorded on a continuing basis for the first 2-1/2 years of the test on more than 900 channels. Data continue to be acquired from the test. Some data are now available for analysis and are presented here. Highlights of activities this year include analysis of fracture data obtained during site characterization, laboratory studies of radiation effects and drilling damage in Climax granite, improved calculations of near-field heat transfer and thermomechanical response, a ventilation effects study, and further development of the data acquisition and management systems

  10. Industrial space heating and cooling from stored spent nuclear power plant fuel

    International Nuclear Information System (INIS)

    Shaver, B.O.; Doman, J.W.

    1980-01-01

    Projections by the Department of Energy indicate that some 5800 metric tons of spent fuel from nuclear power reactors are now in storage and that some 33000 metric tons are expected to be in storage in 1990. The bulk of the spent fuel is currently stored in water-filled basins at the reactor sites from which the material was discharged. The thermal energy in the fuel is dissipated to atmospheres via a pumped water-to-air heat exchanger system. This paper describes a feasibility study of potential methods for the use of the heat. Also, potential applications of heat recovery systems at larger AFR storage facilities were investigated

  11. Final disposal of spent fuel in the Finnish bedrock. Scope and requirements for site-specific safety analysis; Kaeytetyn polttoaineen loppusijoitus Suomen kallioperaeaen. Paikkakohtaisen turvallisuusanalyysin edellytykset ja mahdollisuudet

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    The report is a summary of the research conducted in the period 1993 to 1996 into safety of spent fuel final disposal. The principal goal of the research in this period, as set in 1993, was to develop a strategy for site-specific safety analysis. At the same time efforts were to be continued to gather data and validate the technical approach for the analysis. The work aimed at having the data needed for the analysis available at the end of year 1998. A safety assessment update, TILA-96, prepared by VTT Energy, is published as a separate report. The assessment is based on the TVO-92 safety analysis, but takes into account the knowledge acquired after 1992 on safety aspects of the disposal system and the data gathered from the site investigations made by TVO and from the beginning of 1996, by Posiva. Since the site investigations are still ongoing and much of the data gathered still pending interpretation, only limited amount of new site-specific information has been available for the present assessment. (172 refs.).

  12. Spent fuel test - Climax: technical measurements. Interim report, fiscal year 1981

    International Nuclear Information System (INIS)

    Patrick, W.C.; Ballou, L.B.; Butkovich, T.R.

    1982-01-01

    The Spent Fuel Test-Climax (SFT-C) is located 420 m below surface in the Climax granite stock on the Nevada Test Site. Eleven canisters of spent nuclear reactor fuel were emplaced, and six electrical simulators were energized from April to May 1980, initiating the 3- to 5-year-duration test. The SFT-C operational objective of demonstrating the feasibility of packaging, transporting, storing, and retrieving highly radioactive fuel assemblies in a safe and reliable manner has been met. Technical objectives of the test led to development of a technical measurements program, which is the subject of this report. Geotechnical, seismological, and test status data have been recorded on a continuing basis for the first 1-1/2 years of the test on more than 900 channels. Much of the acquired data are now available for analysis and are presented here. Highlights of activities this year include completion of site characterization field work, major modifications to the data acquisition and the management systems, and the addition of instrument evaluation as an explicit objective of the test

  13. Spent fuel test - Climax: technical measurements. Interim report, fiscal year 1981

    Energy Technology Data Exchange (ETDEWEB)

    Patrick, W.C.; Ballou, L.B.; Butkovich, T.R.

    1982-04-30

    The Spent Fuel Test-Climax (SFT-C) is located 420 m below surface in the Climax granite stock on the Nevada Test Site. Eleven canisters of spent nuclear reactor fuel were emplaced, and six electrical simulators were energized from April to May 1980, initiating the 3- to 5-year-duration test. The SFT-C operational objective of demonstrating the feasibility of packaging, transporting, storing, and retrieving highly radioactive fuel assemblies in a safe and reliable manner has been met. Technical objectives of the test led to development of a technical measurements program, which is the subject of this report. Geotechnical, seismological, and test status data have been recorded on a continuing basis for the first 1-1/2 years of the test on more than 900 channels. Much of the acquired data are now available for analysis and are presented here. Highlights of activities this year include completion of site characterization field work, major modifications to the data acquisition and the management systems, and the addition of instrument evaluation as an explicit objective of the test.

  14. Insights from a comprehensive evaluation of risk at spent fuel pools at decommissioning nuclear power plants in the U.S

    International Nuclear Information System (INIS)

    Kelly, G.; Palla, R.; Cheok, M.; Parry, G.

    2001-01-01

    Recently, the U.S. Nuclear Regulatory Commission (NRC) undertook the first comprehensive safety assessment (the study) of spent fuel pools at decommissioning nuclear power plants in the United States. Previous NRC studies of spent fuel pools applied only to commercial nuclear operating reactors. The NRC staff made site visits to four decommissioning sites, and determined that the configurations at the decommissioning plants were very different from that assumed in operating reactor spent fuel pool safety assessments previously performed. The safety assessment will help determine the technical basis for rule making for emergency preparedness, security, and indemnification for decommissioning reactors. The scenario investigated by the safety assessment is one where the pool inventory is lost, spent fuel is uncovered, the fuel heats up, rapid oxidation of the zirconium fuel cladding occurs, and a fuel clad zirconium fire commences, which results in significant off-site doses to the public. The assessment investigated a wide range of internal and external initiating events such as loss of pool cooling, seismic, fire, loss-of-offsite-power, heavy load drop, tornado missile, aircraft impact, and loss of inventory events. The assessment developed conditional recovery probabilities for extended recovery periods. Comparison to the U.S. NRC Safety Goals is made. (author)

  15. Human error prediction and countermeasures based on CREAM in spent nuclear fuel (SNF) transportation

    International Nuclear Information System (INIS)

    Kim, Jae San

    2007-02-01

    Since the 1980s, in order to secure the storage capacity of spent nuclear fuel (SNF) at NPPs, SNF assemblies have been transported on-site from one unit to another unit nearby. However in the future the amount of the spent fuel will approach capacity in the areas used, and some of these SNFs will have to be transported to an off-site spent fuel repository. Most SNF materials used at NPPs will be transported by general cargo ships from abroad, and these SNFs will be stored in an interim storage facility. In the process of transporting SNF, human interactions will involve inspecting and preparing the cask and spent fuel, loading the cask onto the vehicle or ship, transferring the cask as well as storage or monitoring the cask. The transportation of SNF involves a number of activities that depend on reliable human performance. In the case of the transport of a cask, human errors may include spent fuel bundle misidentification or cask transport accidents among others. Reviews of accident events when transporting the Radioactive Material (RAM) throughout the world indicate that human error is the major causes for more than 65% of significant events. For the safety of SNF transportation, it is very important to predict human error and to deduce a method that minimizes the human error. This study examines the human factor effects on the safety of transporting spent nuclear fuel (SNF). It predicts and identifies the possible human errors in the SNF transport process (loading, transfer and storage of the SNF). After evaluating the human error mode in each transport process, countermeasures to minimize the human error are deduced. The human errors in SNF transportation were analyzed using Hollnagel's Cognitive Reliability and Error Analysis Method (CREAM). After determining the important factors for each process, countermeasures to minimize human error are provided in three parts: System design, Operational environment, and Human ability

  16. Coordinated site characterization and performance assessment - an iterative approach for the site evaluation

    International Nuclear Information System (INIS)

    Papp, T.; Ericsson, L.O.; Thegerstroem, C.; Almen, K.E.

    1995-01-01

    SKB planning for siting a deep repository involves feasibility studies in 5-10 municipalities surface based characterization and drilling on two candidate sites and detailed characterization of one site including a shaft to proposed repository depth. The selection of a site or the detailed layout of the repository defines characteristics that might influence safety in a broad sense. There is a strong ling between the safety, technical (engineering) and functional aspects. The site selection will be based on general geoscientific information, i.e. mechanical stability, ground-water chemistry, slow ground-water movements and complicating factors like high potential for mineralization. The general layout of the repository in the actual geological structure of the site must be done with regard to a number of guidelines, e.g. to hydraulically separate the parts of the repository containing the spent nuclear fuel from those for other types of long lived waste and to separate the two stages of the spent fuel repository so they can be handled separately in the licensing process. When the various parts of the repository have been tentatively located the consequence of the multiple barrier principle is that the layout of the various parts should be made with the aim to utilize the available natural barrier system at the site as well as possible. (authors). 2 refs., 3 figs., 2 tabs

  17. Corrosion of aluminum-clad alloys in wet spent fuel storage

    International Nuclear Information System (INIS)

    Howell, J.P.

    1995-09-01

    Large quantities of Defense related spent nuclear fuels are being stored in water basins around the United States. Under the non-proliferation policy, there has been no processing since the late 1980's and these fuels are caught in the pipeline awaiting processing or other disposition. At the Savannah River Site, over 200 metric tons of aluminum clad fuel are being stored in four water filled basins. Some of this fuel has experienced significant pitting corrosion. An intensive effort is underway at SRS to understand the corrosion problems and to improve the basin storage conditions for extended storage requirements. Significant improvements have been accomplished during 1993-1995, but the ultimate solution is to remove the fuel from the basins and to process it to a more stable form using existing and proven technology. This report presents a discussion of the fundamentals of aluminum alloy corrosion as it pertains to the wet storage of spent nuclear fuel. It examines the effects of variables on corrosion in the storage environment and presents the results of corrosion surveillance testing activities at SRS, as well as other fuel storage basins within the Department of Energy production sites

  18. Hanford Patrol Academy Demolition Sites Closure Plan

    International Nuclear Information System (INIS)

    1992-11-01

    From 1975 to 1991 the Hanford Patrol Academy Demolition Sites (HPADS) were used for demolition events. These demolition events were a form of thermal treatment for spent or abandoned chemical waste. Because the HPADS will no longer be used for this thermal activity, the sites will be closed. Closure will be conducted pursuant to the requirements of the Washington State Department of Ecology (Ecology) Dangerous Waste Regulations, Washington Administrative Code (WAC) 173-303-610 and 40 CFR 270.1. Closure also will satisfy closure requirements of WAC 173-303-680 and for the thermal treatment closure requirements of 40 CFR 265.381. This closure plan presents a description of the HPADS, the history of the waste treated, and the approach that will be followed to close the HPADS. Because dangerous waste does not include the source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of WAC 173-303 or of this closure plan. The information on radionuclides is provided only for general knowledge where appropriate. Only dangerous constituents derived from HPADS operations will be addressed in this closure plan in accordance with WAC 173-303-610(2)(b)(i). The HPADS are actually two distinct soil closure areas within the Hanford Patrol Academy training area

  19. A complete NUHOMS {sup registered} solution for storage and transport of high burnup spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bondre, J. [Transnuclear, Inc. (AREVA Group), Fremont, CA (United States)

    2004-07-01

    The discharge burnups of spent fuel from nuclear power plants keep increasing with plants discharging or planning to discharge fuel with burnups in excess of 60,000 MWD/MTU. Due to limited capacity of spent fuel pools, transfer of older cooler spent fuel from fuel pool to dry storage, and very limited options for transport of spent fuel, there is a critical need for dry storage of high burnup, higher heat load spent fuel so that plants could maintain their full core offload reserve capability. A typical NUHOMS {sup registered} solution for dry spent fuel storage is shown in the Figure 1. Transnuclear, Inc. offers two advanced NUHOMS {sup registered} solutions for the storage and transportation of high burnup fuel. One includes the NUHOMS {sup registered} 24PTH system for plants with 90.7 Metric Ton (MT) crane capacity; the other offers the higher capacity NUHOMS {sup registered} 32PTH system for higher crane capacity. These systems include NUHOMS {sup registered} - 24PTH and -32PTH Transportable Canisters stored in a concrete storage overpack (HSM-H). These canisters are designed to meet all the requirements of both storage and transport regulations. They are designed to be transported off-site either directly from the spent fuel pool or from the storage overpack in a suitable transport cask.

  20. Centralized disassembly and packaging of spent fuel in the DOE spent fuel management system

    International Nuclear Information System (INIS)

    Johnson, E.R.

    1986-01-01

    In October 1984, E.R. Johnson Associates, Inc. (JAI) initiated a study of the prospective use of a centralized facility for the disassembly and packaging of spent fuel to support the various elements of the US Dept. of Energy (DOE) spent fuel management system, including facilities for monitored retrievable storage (MRS) and repositories. It was DOE's original plan to receive spent fuel at each repository where it would be disassembled and packaged (overpacked) for disposal purposes. Subsequently, DOE considered the prospective use of MRS of spent fuel as an option for providing safe and reliable management of spent fuel. This study was designed to consider possible advantages of the use of centralized facilities for disassembly and packaging of spent fuel at whose location storage facilities could be added as required. The study was divided into three principal technical tasks that covered: (a) development of requirements and criteria for the central disassembly and packaging facility and associated systems. (2) Development of conceptual designs for the central disassembly and packaging facility and associated systems. (3) Estimation of capital and operating costs involved for all system facilities and determination of life cycle costs for various scenarios of operation - for comparison with the reference system

  1. Final environmental impact statement: US Spent Fuel Policy. Charge for spent fuel storage

    International Nuclear Information System (INIS)

    1980-05-01

    The United States Government policy relating to nuclear fuel reprocessing, which was announced by President Carter on April 7, 1977, provides for an indefinite deferral of reprocessing, and thus commits light water reactor (LWR) plants to a once-through fuel cycle during that indefinite period. In a subsequent action implementing that policy, the Department of Energy (DOE) on October 18, 1977 announced a spent fuel policy which would enable domestic, and on a selective basis, foreign utilities to deliver spent fuel to the US Government for interim storage and final geologic disposal, and pay the Government a fee for such services. This volume addresses itself to whether the fee charged for these services, by its level or its structure, would have any effect on the environmental impacts of implementing the Spent Fuel Policy itself. This volume thus analyzes the fee and various alternatives to determine the interaction between the fee and the degree of participation by domestic utilities and foreign countries in the proposed spent fuel program for implementing the Spent Fuel Policy. It also analyzes the effect, if any, of the fee on the growth of nuclear power

  2. Development of a spent fuel management technology research and test facility

    Energy Technology Data Exchange (ETDEWEB)

    Park, S W; Noh, S K; Lee, J S. and others

    1997-12-01

    This study was intended to develop concept for a pilot-scale remote operation facility for longer term management of spent fuel and therefrom to provide technical requirement for later basic design of the facility. Main scope of work for the study was to revise the past (1990) conceptual design in functions, scale, hot cell layout, etc. based on user requirements. Technical reference was made to the PKA facility in Germany, through collaboration with appropriate partner, to elaborate the design and requirements. A simulator of the conceptual design was also developed by use of virtual reality technique by 3-D computer graphics for equipment and building. (author). 18 tabs., 39 figs

  3. Spent fuel reprocessing options

    International Nuclear Information System (INIS)

    2008-08-01

    The objective of this publication is to provide an update on the latest developments in nuclear reprocessing technologies in the light of new developments on the global nuclear scene. The background information on spent fuel reprocessing is provided in Section One. Substantial global growth of nuclear electricity generation is expected to occur during this century, in response to environmental issues and to assure the sustainability of the electrical energy supply in both industrial and less-developed countries. This growth carries with it an increasing responsibility to ensure that nuclear fuel cycle technologies are used only for peaceful purposes. In Section Two, an overview of the options for spent fuel reprocessing and their level of development are provided. A number of options exist for the treatment of spent fuel. Some, including those that avoid separation of a pure plutonium stream, are at an advanced level of technological maturity. These could be deployed in the next generation of industrial-scale reprocessing plants, while others (such as dry methods) are at a pilot scale, laboratory scale or conceptual stage of development. In Section Three, research and development in support of advanced reprocessing options is described. Next-generation spent fuel reprocessing plants are likely to be based on aqueous extraction processes that can be designed to a country specific set of spent fuel partitioning criteria for recycling of fissile materials to advanced light water reactors or fast spectrum reactors. The physical design of these plants must incorporate effective means for materials accountancy, safeguards and physical protection. Section four deals with issues and challenges related to spent fuel reprocessing. The spent fuel reprocessing options assessment of economics, proliferation resistance, and environmental impact are discussed. The importance of public acceptance for a reprocessing strategy is discussed. A review of modelling tools to support the

  4. Sublethal Toxic effects of spent Oil Based Drilling Mud and Cuttings ...

    African Journals Online (AJOL)

    Sublethal toxic effects of spent oil based drilling mud collected from an abandoned oil drilling site in Mpanak, Akwa Ibom State, Nigeria were assessed in the earthworm Aporrectodea longa. The test annelid was exposed to sub-lethal Concentration of 0ppm SPP; 62,500ppm SPP; 125, 000ppm SPP; 250,000ppm SPP and ...

  5. Advantages of dry hardened cask storage over wet storage for spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Romanato, Luiz Sergio, E-mail: romanato@ctmsp.mar.mil.b [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil). Dept. da Qualidade

    2011-07-01

    Pools are generally used to store and maintain spent nuclear fuel assemblies for cooling, after removed from reactors. After three to five years stored in the pools, spent fuel can be reprocessed or sent to a final disposition in a geological repository and handled as radioactive waste or sent to another site waiting for future solution. Spent fuel can be stored in dry or wet installations, depending on the method adopted by the nuclear plant. If this storage were exclusively wet, at the installation decommissioning in the future, another solution for storage will need to be found. Today, after a preliminary cooling, the spent fuel assemblies can be removed from the pool and sent to dry hardened storage installations. This kind of storage does not need complex radiation monitoring and it is safer than wet storage. Brazil has two nuclear reactors in operation, a third reactor is under construction and they use wet spent fuel storage . Dry hardened casks use metal or both metal and concrete for radiation shielding and they are safe, especially during an earthquake. An earthquake struck Japan on March 11, 2011 damaging Fukushima Daiichi nuclear power plant. The occurrence of earthquakes in Brazil is very small but dry casks can resist to other events, including terrorist acts, better than pools. This paper shows the advantages of dry hardened cask storage in comparison with the wet storage (water pools) for spent nuclear fuel. (author)

  6. Advantages of dry hardened cask storage over wet storage for spent nuclear fuel

    International Nuclear Information System (INIS)

    Romanato, Luiz Sergio

    2011-01-01

    Pools are generally used to store and maintain spent nuclear fuel assemblies for cooling, after removed from reactors. After three to five years stored in the pools, spent fuel can be reprocessed or sent to a final disposition in a geological repository and handled as radioactive waste or sent to another site waiting for future solution. Spent fuel can be stored in dry or wet installations, depending on the method adopted by the nuclear plant. If this storage were exclusively wet, at the installation decommissioning in the future, another solution for storage will need to be found. Today, after a preliminary cooling, the spent fuel assemblies can be removed from the pool and sent to dry hardened storage installations. This kind of storage does not need complex radiation monitoring and it is safer than wet storage. Brazil has two nuclear reactors in operation, a third reactor is under construction and they use wet spent fuel storage . Dry hardened casks use metal or both metal and concrete for radiation shielding and they are safe, especially during an earthquake. An earthquake struck Japan on March 11, 2011 damaging Fukushima Daiichi nuclear power plant. The occurrence of earthquakes in Brazil is very small but dry casks can resist to other events, including terrorist acts, better than pools. This paper shows the advantages of dry hardened cask storage in comparison with the wet storage (water pools) for spent nuclear fuel. (author)

  7. Some notes on the Timing of Geological Disposal of CANDU Spent Fuels

    International Nuclear Information System (INIS)

    Choi, Heui Joo; Kook, Dong Hak; Choi, Jong Won

    2010-01-01

    CANDU spent fuel is to be disposed of at repository finally rather than recycled because of its low fissile nuclide concentration. But the difficult situation of finding a repository site can not help introducing a interim storage in the short term. It is required to find an optimum timing of geological disposal of CANDU spent fuels related to the interim storage operation period. The major factors for determining the disposal starting time are considered as safety, economics, and public acceptance. Safety factor is compared in terms of the decay heat and non-proliferation. Economics factor is compared from the point of the operation cost, and public acceptance factor is reviewed from the point of retrievability and inter-generation ethics. This paper recommended the best solution for the disposal starting time by analyzing the above factors. It is concluded that the optimum timing for the CANDU spent fuel disposal is around 2041 and that the sooner disposal time, the better from the point of technical and safety aspects.

  8. Preliminary plan for decommissioning - repository for spent nuclear fuel

    International Nuclear Information System (INIS)

    Hallberg, Bengt; Tiberg, Liselotte

    2010-06-01

    The final disposal facility for spent nuclear fuel is part of the KBS-3 system, which also consists of a central facility for interim storage and encapsulation of the spent nuclear fuel and a transport system. The nuclear fuel repository will be a nuclear facility. Regulation SSMFS 2008:1 (Swedish Radiation Safety Authority's regulations on safety of nuclear facilities) requires that the licensee must have a current decommissioning plan throughout the facility lifecycle. Before the facility is constructed, a preliminary decommissioning plan should be reported to the Swedish Radiation Safety Authority. This document is a preliminary decommissioning plan, and submitted as an attachment to SKB's application for a license under the Nuclear Activities Act to construct, own and operate the facility. The final disposal facility for spent nuclear fuel consists of an above ground part and a below ground part and will be built near Forsmark and the final repository for radioactive operational waste, SFR. The parts above and below ground are connected by a ramp and several shafts, e.g. for ventilation. The below ground part consists of a central area, and several landfill sites. The latter form the repository area. The sealed below ground part constitutes the final repository. The decommissioning is taking place after the main operation has ended, that is, when all spent nuclear fuel has been deposited and the deposition tunnels have been backfilled and plugged. The decommissioning involves sealing of the remaining parts of the below ground part and demolition of above ground part. When decommissioning begins, there will be no contamination in the facility. The demolition is therefore performed as for a conventional plant. Demolition waste is sorted and recycled whenever possible or placed in landfill. Hazardous waste is managed in accordance with current regulations. A ground investigation is performed and is the basis for after-treatment of the site. The timetable for the

  9. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement; Volume 1, Appendix F, Nevada Test Site and Oak Ridge Reservation Spent Nuclear Fuel Management Programs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    This volume addresses the interim storage of spent nuclear fuel (SNF) at two US Department of Energy sites, the Nevada Test Site (NTS) and the Oak Ridge Reservation (ORR). These sites are being considered to provide a reasonable range of alternative settings at which future SNF management activities could be conducted. These locations are not currently involved in management of large quantities of SNF; NTS has none, and ORR has only small quantities. But NTS and ORR do offer experience and infrastructure for the handling, processing and storage of radioactive materials, and they do exemplify a broad spectrum of environmental parameters. This broad spectrum of environmental parameters will provide, a perspective on whether and how such location attributes may relate to potential environmental impacts. Consideration of these two sites will permit a programmatic decision to be based upon an assessment of the feasible options without bias, to the current storage sites. This volume is divided into four parts. Part One is the volume introduction. Part Two contains chapters one through five for the NTS, as well as references contained in chapter six. Part Three contains chapters one through five for the ORR, as well as references contained in chapter six. Part Four is summary information including the list of preparers, organizations contacted, acronyms, and abbreviations for both the NTS and the ORR. A Table of Contents, List of Figures, and List of Tables are included in parts Two, Three, and Four. This approach permitted the inclusion of both sites in one volume while maintaining consistent chapter numbering.

  10. Spent fuel receipt and lag storage facility for the spent fuel handling and packaging program

    International Nuclear Information System (INIS)

    Black, J.E.; King, F.D.

    1979-01-01

    Savannah River Laboratory (SRL) is participating in the Spent Fuel Handling and Packaging Program for retrievable, near-surface storage of spent light water reactor (LWR) fuel. One of SRL's responsibilities is to provide a technical description of the wet fuel receipt and lag storage part of the Spent Fuel Handling and Packaging (SFHP) facility. This document is the required technical description

  11. Exorcising spent fuel transportation using comparative hazard assessment methods

    International Nuclear Information System (INIS)

    Pennington, Charles W.

    2003-01-01

    Spent fuel transportation has achieved an exemplary safety record over more than three decades within both the United States (U.S.) and the global community at large. Today, many groups are attempting to precipitate fear of spent fuel transportation within the general public by 'demonizing' this proven technology and by creating a highly charged environment of radiation phobia. The actions of these groups within the U.S. result from the confluence of the terrorist acts of September 11, 2001, and the acceptance by the President and Congress of the U.S. Department of Energy's (DOE) recommendation of Yucca Mountain as the repository site for the disposal of the nation's spent fuel. This paper offers a comparative hazard assessment demonstrating the relative safety of spent fuel transportation in the context of currently accepted practices within society to show that there are no 'demons' associated with spent fuel transportation. The paper provides an assessment of potential population exposures based on more than 25 years of transport cask analysis and testing under beyond-design-basis (BDB) event conditions, including missile attacks, with those from current accepted activities within society that produce high dose exposures to the general public. Over the last quarter of a century, several spent fuel cask test programs have produced data that allow calculation of potential releases and population doses resulting from a terrorist attack. The DOE has used this information to develop projected worst-case population exposures as part of the Final Environmental Impact Statement (FEIS) for the Yucca Mountain repository. The paper discusses these potential releases and population exposures. Additionally, the paper identifies current unregulated activities and practices within societies yielding population exposures that exceed significantly those that would result from such highly hypothetical and improbable events as a terrorist missile attack on a spent fuel

  12. Exorcising spent fuel transportation using comparative hazard assessment methods

    Energy Technology Data Exchange (ETDEWEB)

    Pennington, Charles W. [NAC international, Norcross (United States)

    2003-07-01

    Spent fuel transportation has achieved an exemplary safety record over more than three decades within both the United States (U.S.) and the global community at large. Today, many groups are attempting to precipitate fear of spent fuel transportation within the general public by 'demonizing' this proven technology and by creating a highly charged environment of radiation phobia. The actions of these groups within the U.S. result from the confluence of the terrorist acts of September 11, 2001, and the acceptance by the President and Congress of the U.S. Department of Energy's (DOE) recommendation of Yucca Mountain as the repository site for the disposal of the nation's spent fuel. This paper offers a comparative hazard assessment demonstrating the relative safety of spent fuel transportation in the context of currently accepted practices within society to show that there are no 'demons' associated with spent fuel transportation. The paper provides an assessment of potential population exposures based on more than 25 years of transport cask analysis and testing under beyond-design-basis (BDB) event conditions, including missile attacks, with those from current accepted activities within society that produce high dose exposures to the general public. Over the last quarter of a century, several spent fuel cask test programs have produced data that allow calculation of potential releases and population doses resulting from a terrorist attack. The DOE has used this information to develop projected worst-case population exposures as part of the Final Environmental Impact Statement (FEIS) for the Yucca Mountain repository. The paper discusses these potential releases and population exposures. Additionally, the paper identifies current unregulated activities and practices within societies yielding population exposures that exceed significantly those that would result from such highly hypothetical and improbable events as a terrorist missile

  13. Preliminary site requirements and considerations for a monitored retrievable storage facility

    International Nuclear Information System (INIS)

    1991-08-01

    This report presents preliminary requirements and considerations for siting monitored retrievable storage (MRS) facility. It purpose is to provide guidance for assessing the technical suitability of potential sites for the facility. It has been reviewed by the NRC staff, which stated that this document is suitable for ''guidance in making preliminary determinations concerning MRS site suitability.'' The MRS facility will be licensed by the US Nuclear Regulatory Commission. It will receive spent fuel from commercial nuclear power plants and provide a limited amount of storage for this spent fuel. When a geologic repository starts operations, the MRS facility will also stage spent-fuel shipments to the repository. By law, storage at the MRS facility is to be temporary, with permanent disposal provided in a geologic repository to be developed by the DOE

  14. Costing of spent nuclear fuel storage

    International Nuclear Information System (INIS)

    2009-01-01

    This report deals with economic analysis and cost estimation, based on exploration of relevant issues, including a survey of analytical tools for assessment and updated information on the market and financial issues associated with spent fuel storage. The development of new storage technologies and changes in some of the circumstances affecting the costs of spent fuel storage are also incorporated. This report aims to provide comprehensive information on spent fuel storage costs to engineers and nuclear professionals as well as other stakeholders in the nuclear industry. This report is meant to provide informative guidance on economic aspects involved in selecting a spent fuel storage system, including basic methods of analysis and cost data for project evaluation and comparison of storage options, together with financial and business aspects associated with spent fuel storage. After the review of technical options for spent fuel storage in Section 2, cost categories and components involved in the lifecycle of a storage facility are identified in Section 3 and factors affecting costs of spent fuel storage are then reviewed in the Section 4. Methods for cost estimation and analysis are introduced in Section 5, and other financial and business aspects associated with spent fuel storage are discussed in Section 6.

  15. Disposal of spent fuel

    International Nuclear Information System (INIS)

    Blomeke, J.O.; Ferguson, D.E.; Croff, A.G.

    1978-01-01

    Based on preliminary analyses, spent fuel assemblies are an acceptable form for waste disposal. The following studies appear necessary to bring our knowledge of spent fuel as a final disposal form to a level comparable with that of the solidified wastes from reprocessing: 1. A complete systems analysis is needed of spent fuel disposition from reactor discharge to final isolation in a repository. 2. Since it appears desirable to encase the spent fuel assembly in a metal canister, candidate materials for this container need to be studied. 3. It is highly likely that some ''filler'' material will be needed between the fuel elements and the can. 4. Leachability, stability, and waste-rock interaction studies should be carried out on the fuels. The major disadvantages of spent fuel as a disposal form are the lower maximum heat loading, 60 kW/acre versus 150 kW/acre for high-level waste from a reprocessing plant; the greater long-term potential hazard due to the larger quantities of plutonium and uranium introduced into a repository; and the possibility of criticality in case the repository is breached. The major advantages are the lower cost and increased near-term safety resulting from eliminating reprocessing and the treatment and handling of the wastes therefrom

  16. Surveillance instrumentation for spent-fuel safeguards

    International Nuclear Information System (INIS)

    McKenzie, J.M.; Holmes, J.P.; Gillman, L.K.; Schmitz, J.A.; McDaniel, P.J.

    1978-01-01

    The movement, in a facility, of spent reactor fuel may be tracked using simple instrumentation together with a real time unfolding algorithm. Experimental measurements, from multiple radiation monitors and crane weight and position monitors, were obtained during spent fuel movements at the G.E. Morris Spent-Fuel Storage Facility. These data and a preliminary version of an unfolding algorithm were used to estimate the position of the centroid and the magnitude of the spent fuel radiation source. Spatial location was estimated to +-1.5 m and source magnitude to +-10% of their true values. Application of this surveillance instrumentation to spent-fuel safeguards is discussed

  17. Spent fuel storage requirements: the need for away-from-reactor storage

    International Nuclear Information System (INIS)

    1980-01-01

    The analyses of on-site storage capabilities of domestic utilities and estimates of timing and magnitude of away-from-reactor (AFR) storage requirements were presented in the report DOE/ET-0075 entitled Spent Fuel Storage Requirements: The Need For Away-From-Reactor Storage published in February 1979 by the US Department of Energy. Since utility plans and requirements continue to change with time, a need exists to update the AFR requirements estimates as appropriate. This short report updates the results presented in DOE/ET-0075 to reflect recent data on reactor operations and spent fuel storage. In addition to the updates of cases representing the range of AFR requirements in DOE/ET-0075, new cases of interest reflecting utility and regulatory trends are presented

  18. Proposed nuclear weapons nonproliferation policy concerning foreign research reactor spent nuclear fuel: Appendix A, environmental justice analysis. Volume 2

    International Nuclear Information System (INIS)

    1995-03-01

    This is Appendix A to a draft Environmental Impact Statement on a Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel. This appendix addresses environmental justice for the acceptance of foreign research reactor spent nuclear fuel containing uranium enriched in the United States. Analyses of environmental justice concerns are provided in three areas: (1) potential ports of entry, (2) potential transportation routes from candidate ports of entry to interim management sites, and (3) areas surrounding potential interim management sites. These analyses lead to the conclusion that the alternatives analyzed in this Environmental Impact Statement (EIS) would result in no disproportionate adverse effects on minority populations or low-income communities surrounding the candidate ports, transport routes, or interim management sites

  19. It's better to give than to receive: the role of social support, trust, and participation on health-related social networking sites.

    Science.gov (United States)

    Hether, Heather J; Murphy, Sheila T; Valente, Thomas W

    2014-12-01

    Nearly 60% of American adults and 80% of Internet users have sought health information online. Moreover, Internet users are no longer solely passive consumers of online health content; they are active producers as well. Social media, such as social networking sites, are increasingly being used as online venues for the exchange of health-related information and advice. However, little is known about how participation on health-related social networking sites affects users. Research has shown that women participate more on social networking sites and social networks are more influential among same-sex members. Therefore, this study examined how participation on a social networking site about pregnancy influenced members' health-related attitudes and behaviors. The authors surveyed 114 pregnant members of 8 popular pregnancy-related sites. Analyses revealed that time spent on the sites was less predictive of health-related outcomes than more qualitative assessments such as trust in the sites. Furthermore, providing support was associated with the most outcomes, including seeking more information from additional sources and following recommendations posted on the sites. The implications of these findings, as well as directions for future research, are discussed.

  20. Spent nuclear fuel integrity during dry storage - performance tests and demonstrations

    International Nuclear Information System (INIS)

    McKinnon, M.A.; Doherty, A.L.

    1997-06-01

    This report summarizes the results of fuel integrity surveillance determined from gas sampling during and after performance tests and demonstrations conducted from 1983 through 1996 by or in cooperation with the US DOE Office of Commercial Radioactive Waste Management (OCRWM). The cask performance tests were conducted at Idaho National Engineering Laboratory (INEL) between 1984 and 1991 and included visual observation and ultrasonic examination of the condition of the cladding, fuel rods, and fuel assembly hardware before dry storage and consolidation of fuel, and a qualitative determination of the effects of dry storage and fuel consolidation on fission gas release from the spent fuel rods. The performance tests consisted of 6 to 14 runs involving one or two loading, usually three backfill environments (helium, nitrogen, and vacuum backfills), and one or two storage system orientations. The nitrogen and helium backfills were sampled and analyzed to detect leaking spent fuel rods. At the end of each performance test, periodic gas sampling was conducted on each cask. A spent fuel behavior project (i.e., enhanced surveillance, monitoring, and gas sampling activities) was initiated by DOE in 1994 for intact fuel in a CASTOR V/21 cask and for consolidated fuel in a VSC-17 cask. The results of the gas sampling activities are included in this report. Information on spent fuel integrity is of interest in evaluating the impact of long-term dry storage on the behavior of spent fuel rods. Spent fuel used during cask performance tests at INEL offers significant opportunities for confirmation of the benign nature of long-term dry storage. Supporting cask demonstration included licensing and operation of an independent spent fuel storage installation (ISFSI) at the Virginia Power (VP) Surry reactor site. A CASTOR V/21, an MC-10, and a Nuclear Assurance NAC-I28 have been loaded and placed at the VP ISFSI as part of the demonstration program. 13 refs., 14 figs., 9 tabs

  1. Spent fuel storage options: a critical appraisal

    International Nuclear Information System (INIS)

    Singh, K.P.; Bale, M.G.

    1990-01-01

    The delayed decisions on nuclear fuel reprocessing strategies in the USA and other countries have forced the development of new long-term irradiated fuel storage techniques, to allow a larger volume of fuel to be held on the nuclear station site after removal from the reactor. The nuclear power industry has responded to the challenge by developing several viable options for long-term onsite storage, which can be employed individually or in tandem. They are: densification of storage in the existing spent fuel pool; building another fuel pool facility at the plant site; onsite cask park, and on site vault clusters. Desirable attributes of a storage option are: Safety: minimise the number of fuel handling steps; Economy: minimise total installed, and O and M cost; Security: protection from anti-nuclear protesters; Site adaptability: available site space, earthquake characteristics of the region and so on; Non-intrusiveness: minimise required modifications to existing plant systems; Modularisation: afford the option to adapt a modular approach for staged capital outlays; and Maturity: extent of industry experience with the technology. A critical appraisal is made of each of the four aforementioned storage options in the light of these criteria. (2 figures, 1 table, 4 references) (Author)

  2. Spent fuel: prediction model development

    International Nuclear Information System (INIS)

    Almassy, M.Y.; Bosi, D.M.; Cantley, D.A.

    1979-07-01

    The need for spent fuel disposal performance modeling stems from a requirement to assess the risks involved with deep geologic disposal of spent fuel, and to support licensing and public acceptance of spent fuel repositories. Through the balanced program of analysis, diagnostic testing, and disposal demonstration tests, highlighted in this presentation, the goal of defining risks and of quantifying fuel performance during long-term disposal can be attained

  3. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs draft environmental impact statement. Volume 1, Appendix B: Idaho National Engineering Laboratory Spent Nuclear Fuel Management Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The US Department of Energy (DOE) has prepared this report to assist its management in making two decisions. The first decision, which is programmatic, is to determine the management program for DOE spent nuclear fuel. The second decision is on the future direction of environmental restoration, waste management, and spent nuclear fuel management activities at the Idaho National Engineering Laboratory. Volume 1 of the EIS, which supports the programmatic decision, considers the effects of spent nuclear fuel management on the quality of the human and natural environment for planning years 1995 through 2035. DOE has derived the information and analysis results in Volume 1 from several site-specific appendixes. Volume 2 of the EIS, which supports the INEL-specific decision, describes environmental impacts for various environmental restoration, waste management, and spent nuclear fuel management alternatives for planning years 1995 through 2005. This Appendix B to Volume 1 considers the impacts on the INEL environment of the implementation of various DOE-wide spent nuclear fuel management alternatives. The Naval Nuclear Propulsion Program, which is a joint Navy/DOE program, is responsible for spent naval nuclear fuel examination at the INEL. For this appendix, naval fuel that has been examined at the Naval Reactors Facility and turned over to DOE for storage is termed naval-type fuel. This appendix evaluates the management of DOE spent nuclear fuel including naval-type fuel.

  4. Routine methods for post-transportation accident recovery of spent fuel casks

    International Nuclear Information System (INIS)

    Shappert, L.B.; Pope, R.B.; Best, R.E.; Jones, R.H.

    1991-01-01

    Spent fuel casks and other large radioactive material packages have been examined to determine whether the designs are adequate to allow the casks to be recovered using conventional recovery methods following a transportation accident. Casks and similar packages are typically designed with, and handled by, trunnions that support the package during transport. These trunnions are considered the best cask feature with which to grapple the cask once it is no longer in its usual shipping mode. Following a transport accident, the trunnions may be buried or entangled so that they are not readily accessible to initiate the recovery process. To evaluate the effectiveness of applying traditional recovery methods to spent fuel casks, a workshop was held in which a series of accidents involving casks were postulated; the modes of transportation considered included truck, rail, and barge. These participants knowledgeable in transport, handling, and, in some cases, recovery of large, heavy containers attended. Participants concluded that the physical recovery of a cask involved in an accident, irrespective of where the accident occurs, would be a straightforward rigging operation and that the addition of specific recovery features (e.g., additional trunnions) to the cask appears unnecessary

  5. Czech interim spent fuel storage facility: operation experience, inspections and future plans

    International Nuclear Information System (INIS)

    Fajman, V.; Bartak, L.; Coufal, J.; Brzobohaty, K.; Kuba, S.

    1999-01-01

    The paper describes the situation in the spent fuel management in the Czech Republic. The interim Spent Fuel Storage Facility (ISFSF) at Dukovany, which was commissioned in January 1997 and is using dual transport and storage CASTOR - 440/84 casks, is briefly described. The authors deal with their experience in operating and inspecting the ISFSF Dukovany. The structure of the basic safety document 'Limits and Conditions of Normal Operation' is also mentioned, including the experience of the performance. The inspection activities focused on permanent checking of the leak tightness of the CASTOR 440/84 casks, the maximum cask temperature and inspections monitoring both the neutron and gamma dose rate as well as the surface contamination. The results of the inspections are mentioned in the presentation as well. The operator's experience with re-opening partly loaded and already dried CASTOR-440/84 cask, after its transport from NPP Jaslovske Bohunice to the NPP Dukovany is also described. The paper introduces briefly the concept of future spent fuel storage both from the NPP Dukovany and the NPP Temelin, as prepared by the CEZ. The preparatory work for the Central Interim Spent Nuclear Fuel Storage Facility (CISFSF) in the Czech Republic and the information concerning the planned storage technology for this facility is discussed in the paper as well. The authors describe the site selection process and the preparatory steps concerning new spent fuel facility construction including the Environmental Impact Assessment studies. (author)

  6. Spent fuel storage for ISER plant

    International Nuclear Information System (INIS)

    Nakajima, Takasuke; Kimura, Yuzi

    1987-01-01

    ISER is an intrinsically safe reactor basing its safety only on physical laws, and uses a steel reactor vessel in order to be economical. For such a new type reactor, it is essentially important to be accepted by the society by showing that the reactor is more profitable than conventional reactors to the public in both technical and economic viewpoint. It is also important that the reactor raises no serious problem in the total fuel cycle. Reprocessing seems one of the major worldwide fuel cycle issues. Spent fuel storage is also one of the key technologies for fuel cycle back end. Various systems for ISER spent fuel storages are examined in the present report. Spent fuel specifications of ISER are similar to those of LWR and therefore, most of LWR spent fuel technologies are basically applicable to ISER spent fuel. Design requirements and examples of storage facilities are also discussed. Dry storage seems to be preferable for the relatively long cooling time spent fuel like ISER's one from economical viewpoint. Vault storage will possibly be the most advantageous for large storage capacity. Another point for discussion is the location and international collaboration for spent fuel storages: ISER expected to be a worldwide energy source and therefore, international spent fuel management seems to be fairly attractive way for an energy recipient country. (Nogami, K.)

  7. QUALITY AND SHELF LIFE EVALUATION OF NUGGETS PREPARED FROM SPENT DUCK AND SPENT HEN MEAT

    Directory of Open Access Journals (Sweden)

    Rajesh Kumar

    2015-12-01

    Full Text Available A study was conducted to compare the quality of nuggets prepared from spent hen and duck meat. The cooked nuggets were analyzed for pH, thiobarbituric acid (TBA, tyrosine value (TV, moisture, fat, protein, total plate count (TPC and sensory evaluations. Nuggets prepared from spent hen meat showed significantly higher (p<0.05 moisture content however pH, fat and protein content were significantly higher (p<0.05 in duck nuggets. TBA values, TVs and (TPC were highest in duck nuggets but were within the acceptable level up to 7th day of refrigerated storage (4±1°C in both types of nuggets. Both nuggets maintain their sensory quality up to 7th day of refrigeration storage but spent hen nuggets were preferred by consumers compared to nuggets prepared from spent duck meat. Result of the study indicated that, despite the comparative differences among these nuggets, spent duck and hen meat could be used for preparation of nutritionally rich and acceptable nuggets.

  8. The cost of spent fuel storage

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J. R.; Palacios H, J. C.; Badillo, V.; Alonso, G., E-mail: ramon.ramirez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-11-15

    Spent fuel is one of the most important issues in the nuclear industry, currently spent fuel management is been cause of great amount of research, investments, constructing repositories or constructing the necessary facilities to reprocess the fuel, and later to recycle the plutonium recovered in thermal reactors. What is the best solution?, or What is the best technology for an specific solution? Many countries have deferred the decision on selecting an option, while others works actively constructing repositories and others implementing the reprocessing facilities to recycle the plutonium obtained from nuclear spent fuel. In Mexico the nuclear power is limited to two reactors BWR type and medium size. So the nuclear spent fuel discharged has been accommodated at reactor's spent fuel pools. Originally these pools have enough capacity to accommodate spent fuel for the 40 years of designed plant operation. However currently, the plants are under a process for extended power up-rate to 20% of original power and also there are plans to extended operational life for 20 more years. Under these conditions there will not be enough room for spent fuel in the pools. (Author)

  9. Transportation of spent nuclear fuels

    International Nuclear Information System (INIS)

    Meguro, Toshiichi

    1976-01-01

    The spent nuclear fuel taken out of reactors is cooled in the cooling pool in each power station for a definite time, then transported to a reprocessing plant. At present, there is no reprocessing plant in Japan, therefore the spent nuclear fuel is shipped abroad. In this paper, the experiences and the present situation in Japan are described on the transport of the spent nuclear fuel from light water reactors, centering around the works in Tsuruga Power Station, Japan Atomic Power Co. The spent nuclear fuel in Tsuruga Power Station was first transported in Apr. 1973, and since then, about 36 tons were shipped to Britain by 5 times of transport. The reprocessing plant in Japan is expected to start operation in Apr. 1977, accordingly the spent nuclear fuel used for the trial will be transported in Japan in the latter half of this year. Among the permission and approval required for the transport of spent nuclear fuel, the acquisition of the certificate for transport casks and the approval of land and sea transports are main tasks. The relevant laws are the law concerning the regulations of nuclear raw material, nuclear fuel and reactors and the law concerning the safety of ships. The casks used in Tsuruga Power Station and EXL III type, and the charging of spent nuclear fuel, the decontamination of the casks, the leak test, land transport with a self-running vehicle, loading on board an exclusive carrier and sea transport are briefly explained. The casks and the ship for domestic transport are being prepared. (Kato, I.)

  10. Test plan for spent fuel cladding containment credit tests

    International Nuclear Information System (INIS)

    Wilson, C.N.

    1983-11-01

    Lawrence Livermore National Laboratory has chosen Westinghouse Hanford Company as a subcontractor to assist them in determining the requirements for successful disposal of spent fuel rods in the proposed Nevada Test Site repository. An initial scoping test, with the objective of determining whether or not the cladding of a breached fuel rod can be given any credit as an effective barrier to radionuclide release, is described in this test plan. 8 references, 2 figures, 4 tables

  11. Development of spent fuel remote handling technology

    International Nuclear Information System (INIS)

    Yoon, Ji Sup; Park, B. S.; Park, Y. S.; Oh, S. C.; Kim, S. H.; Cho, M. W.; Hong, D. H.

    1997-12-01

    Since the nation's policy on spent fuel management is not finalized, the technical items commonly required for safe management and recycling of spent fuel - remote technologies of transportation, inspection, maintenance, and disassembly of spent fuel - are selected and pursued. In this regards, the following R and D activities are carried out : collision free transportation of spent fuel assembly, mechanical disassembly of spent nuclear fuel and graphical simulation of fuel handling / disassembly process. (author). 36 refs., 16 tabs., 77 figs

  12. Spent Fuel Performance Assessment and Research. Final Report of a Coordinated Research Project (SPAR-II)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    As storage of spent fuel has become a key technology in spent fuel management, wet and dry storage have become mature technologies and continue to demonstrate good performance. Increased spent fuel storage capacity in combination with longer storage durations will be needed over the foreseeable future as many countries have delayed their decision on spent fuel disposal or reprocessing. Extended spent fuel storage is, and will remain, an important activity for all countries with nuclear power programmes. A number of countries are planning or have already initiated research programmes on spent fuel storage performance, and there is a continuing benefit in exchanging spent fuel storage experience of the Member States in order to build a comprehensive technology knowledge base. Potential degradation mechanisms that may affect cladding integrity during wet storage are uniform corrosion, pitting, galvanic, and microbiologically-influenced corrosion. Potential degradation mechanisms that may affect cladding integrity during dry storage and subsequent handling and transportation operations are air oxidation, thermal creep, stress corrosion cracking (SCC), delayed hydride cracking (DHC), hydride re-orientation, hydrogen migration and re-distribution. Investigations carried out so far indicate that from the degradation mechanisms that may affect the integrity of spent fuel assembly/bundle structure during interim storage, hydride re-orientation has the potential to impair the ability of the cladding to effectively withstand potentially adverse mechanical challenges resulting from handling or transportation accidents. Fuel integrity issues are related to the definition and criteria of fuel integrity, failure classification, packaging and retrieval of damaged fuel and transport of damaged fuel assemblies. Various monitoring technologies have been developed and used to confirm the continued spent fuel integrity during storage or to provide an early indication of developing

  13. Spent Fuel Performance Assessment and Research. Final Report of a Coordinated Research Project (SPAR-II)

    International Nuclear Information System (INIS)

    2012-01-01

    As storage of spent fuel has become a key technology in spent fuel management, wet and dry storage have become mature technologies and continue to demonstrate good performance. Increased spent fuel storage capacity in combination with longer storage durations will be needed over the foreseeable future as many countries have delayed their decision on spent fuel disposal or reprocessing. Extended spent fuel storage is, and will remain, an important activity for all countries with nuclear power programmes. A number of countries are planning or have already initiated research programmes on spent fuel storage performance, and there is a continuing benefit in exchanging spent fuel storage experience of the Member States in order to build a comprehensive technology knowledge base. Potential degradation mechanisms that may affect cladding integrity during wet storage are uniform corrosion, pitting, galvanic, and microbiologically-influenced corrosion. Potential degradation mechanisms that may affect cladding integrity during dry storage and subsequent handling and transportation operations are air oxidation, thermal creep, stress corrosion cracking (SCC), delayed hydride cracking (DHC), hydride re-orientation, hydrogen migration and re-distribution. Investigations carried out so far indicate that from the degradation mechanisms that may affect the integrity of spent fuel assembly/bundle structure during interim storage, hydride re-orientation has the potential to impair the ability of the cladding to effectively withstand potentially adverse mechanical challenges resulting from handling or transportation accidents. Fuel integrity issues are related to the definition and criteria of fuel integrity, failure classification, packaging and retrieval of damaged fuel and transport of damaged fuel assemblies. Various monitoring technologies have been developed and used to confirm the continued spent fuel integrity during storage or to provide an early indication of developing

  14. The Analytical Repository Source-Term (AREST) model: Analysis of spent fuel as a nuclear waste form

    International Nuclear Information System (INIS)

    Apted, M.J.; Liebetrau, A.M.; Engel, D.W.

    1989-02-01

    The purpose of this report is to assess the performance of spent fuel as a final waste form. The release of radionuclides from spent nuclear fuel has been simulated for the three repository sites that were nominated for site characterization in accordance with the Nuclear Waste Policy Act of 1982. The simulation is based on waste package designs that were presented in the environmental assessments prepared for each site. Five distinct distributions for containment failure have been considered, and the release for nuclides from the UO 2 matrix, gap (including grain boundary), crud/surface layer, and cladding has been calculated with the Analytic Repository Source-Term (AREST) code. Separate scenarios involving incongruent and congruent release from the UO 2 matrix have also been examined using the AREST code. Congruent release is defined here as the condition in which the relative mass release rates of a given nuclide and uranium from the UO 2 matrix are equal to their mass ratios in the matrix. Incongruent release refers to release of a given nuclide from the UO 2 matrix controlled by its own solubility-limiting solid phase. Release of nuclides from other sources within the spent fuel (e.g., cladding, fuel/cladding gap) is evaluated separately from either incongruent or congruent matrix release. 51 refs., 200 figs., 9 tabs

  15. Spent fuel pool spray cooling system for the AP1000 {sup registered}

    Energy Technology Data Exchange (ETDEWEB)

    Vujic, Zoran; Sassen, Felix; Tietsch, Wolfgang [Westinghouse Electric Germany GmbH, Mannheim (Germany)

    2013-07-01

    The AP1000 {sup registered} plant design features multiple, diverse lines of defense to ensure spent fuel cooling can be maintained for Design Basis Events and Beyond Design Basis Accidents (BDBA). The AP1000 {sup registered} plant lines of defense with respect to Spent Fuel Pool (SFP) cooling are as follows: 1. During normal and abnormal conditions, defense-in-depth and duty systems provide highly reliable SFP cooling, supplied by offsite AC power or the onsite Standby Diesel Generators. 2. For unlikely events with extended loss of AC power (i.e. station black-out) and/or loss of heat sink, spent fuel cooling can be still provided indefinitely by: 2a. Passive systems, requiring minimal or no operator actions, sufficient for at least 72 hours under all possible loading conditions. 2b. After 3 days, several different means are provided to continue SFP cooling using installed plant equipment as well as off-site equipment with built-in connections. 3. Even for BDBA with postulated SFP damage and multiple failures in the passive safety-related systems and in the defense-in-depth active systems, the AP1000 {sup registered} SFP Spray System provides an additional line of defense to prevent spent fuel damage. (orig.)

  16. A software tool integrated risk assessment of spent fuel transpotation and storage

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Mi Rae; Almomani, Belal; Ham, Jae Hyun; Kang, Hyun Gook [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Christian, Robby [Dept. of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy (Korea, Republic of); Kim, Bo Gyung [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Lee, Sang Hoon [Dept. of Mechanical and Automotive Engineering, Keimyung University, Daegu (Korea, Republic of)

    2017-06-15

    When temporary spent fuel storage pools at nuclear power plants reach their capacity limit, the spent fuel must be moved to an alternative storage facility. However, radioactive materials must be handled and stored carefully to avoid severe consequences to the environment. In this study, the risks of three potential accident scenarios (i.e., maritime transportation, an aircraft crashing into an interim storage facility, and on-site transportation) associated with the spent fuel transportation process were analyzed using a probabilistic approach. For each scenario, the probabilities and the consequences were calculated separately to assess the risks: the probabilities were calculated using existing data and statistical models, and the consequences were calculated using computation models. Risk assessment software was developed to conveniently integrate the three scenarios. The risks were analyzed using the developed software according to the shipment route, building characteristics, and spent fuel handling environment. As a result of the risk analysis with varying accident conditions, transportation and storage strategies with relatively low risk were developed for regulators and licensees. The focus of this study was the risk assessment methodology; however, the applied model and input data have some uncertainties. Further research to reduce these uncertainties will improve the accuracy of this mode.

  17. A software tool integrated risk assessment of spent fuel transpotation and storage

    International Nuclear Information System (INIS)

    Yun, Mi Rae; Almomani, Belal; Ham, Jae Hyun; Kang, Hyun Gook; Christian, Robby; Kim, Bo Gyung; Lee, Sang Hoon

    2017-01-01

    When temporary spent fuel storage pools at nuclear power plants reach their capacity limit, the spent fuel must be moved to an alternative storage facility. However, radioactive materials must be handled and stored carefully to avoid severe consequences to the environment. In this study, the risks of three potential accident scenarios (i.e., maritime transportation, an aircraft crashing into an interim storage facility, and on-site transportation) associated with the spent fuel transportation process were analyzed using a probabilistic approach. For each scenario, the probabilities and the consequences were calculated separately to assess the risks: the probabilities were calculated using existing data and statistical models, and the consequences were calculated using computation models. Risk assessment software was developed to conveniently integrate the three scenarios. The risks were analyzed using the developed software according to the shipment route, building characteristics, and spent fuel handling environment. As a result of the risk analysis with varying accident conditions, transportation and storage strategies with relatively low risk were developed for regulators and licensees. The focus of this study was the risk assessment methodology; however, the applied model and input data have some uncertainties. Further research to reduce these uncertainties will improve the accuracy of this mode

  18. FIELD-DEPLOYABLE SAMPLING TOOLS FOR SPENT NUCLEAR FUEL INTERROGATION IN LIQUID STORAGE

    Energy Technology Data Exchange (ETDEWEB)

    Berry, T.; Milliken, C.; Martinez-Rodriguez, M.; Hathcock, D.; Heitkamp, M.

    2012-09-12

    Methodology and field deployable tools (test kits) to analyze the chemical and microbiological condition of aqueous spent fuel storage basins and determine the oxide thickness on the spent fuel basin materials were developed to assess the corrosion potential of a basin. this assessment can then be used to determine the amount of time fuel has spent in a storage basin to ascertain if the operation of the reactor and storage basin is consistent with safeguard declarations or expectations and assist in evaluating general storage basin operations. The test kit was developed based on the identification of key physical, chemical and microbiological parameters identified using a review of the scientific and basin operations literature. The parameters were used to design bench scale test cells for additional corrosion analyses, and then tools were purchased to analyze the key parameters. The tools were used to characterize an active spent fuel basin, the Savannah River Site (SRS) L-Area basin. The sampling kit consisted of a total organic carbon analyzer, an YSI multiprobe, and a thickness probe. The tools were field tested to determine their ease of use, reliability, and determine the quality of data that each tool could provide. Characterization confirmed that the L Area basin is a well operated facility with low corrosion potential.

  19. Corrosion of research reactor aluminium clad spent fuel in water

    International Nuclear Information System (INIS)

    2009-12-01

    A large variety of research reactor spent fuel with different fuel meats, different geometries and different enrichments in 235 U are presently stored underwater in basins located around the world. More than 90% of these fuels are clad in aluminium or aluminium based alloys that are notoriously susceptible to corrosion in water of less than optimum quality. Some fuel is stored in the reactor pools themselves, some in auxiliary pools (or basins) close to the reactor and some stored at away-from-reactor pools. Since the early 1990s, when corrosion induced degradation of the fuel cladding was observed in many of the pools, corrosion of research reactor aluminium clad spent nuclear fuel stored in light water filled basins has become a major concern, and programmes were implemented at the sites to improve fuel storage conditions. The IAEA has since then established a number of programmatic activities to address corrosion of research reactor aluminium clad spent nuclear fuel in water. Of special relevance was the Coordinated Research Project (CRP) on Corrosion of Research Reactor Aluminium Clad Spent Fuel in Water (Phase I) initiated in 1996, whose results were published in IAEA Technical Reports Series No. 418. At the end of this CRP it was considered necessary that a continuation of the CRP should concentrate on fuel storage basins that had demonstrated significant corrosion problems and would therefore provide additional insight into the fundamentals of localized corrosion of aluminium. As a consequence, the IAEA started a new CRP entitled Corrosion of Research Reactor Aluminium Clad Spent Fuel in Water (Phase II), to carry out more comprehensive research in some specific areas of corrosion of aluminium clad spent nuclear fuel in water. In addition to this CRP, one of the activities under IAEA's Technical Cooperation Regional Project for Latin America Management of Spent Fuel from Research Reactors (2001-2006) was corrosion monitoring and surveillance of research

  20. Interface agreement for the management of 308 Building Spent Nuclear Fuel. Revision 1

    International Nuclear Information System (INIS)

    Danko, A.D.

    1995-01-01

    The Hanford Site Spent Nuclear Fuel (SNF) Project was formed to manage the SNF at Hanford. Specifically, the mission of the SNF Project on the Hanford Site is to ''provide safe, economic, environmentally sound management of Hanford SNF in a manner which stages it for final disposition.'' The current mission of the Fuel Fabrication Facilities Transition Project (FFFTP) is to transition the 308 Building for turn over to the Environmental Restoration Contractor for decontamination and decommissioning

  1. Development of the Melt-Dilute Treatment Technology for Al-Based DOE Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Peacock, H.B.; Adams, T.M.; Iyer, N.C.

    1998-09-01

    Spent foreign and domestic research reactor fuel assemblies will be sent to Savannah River Site and prepared for interim and eventual geologic storage. Many of the fuel plates have been made with high enriched uranium, and during long term storage, the integrity of the fuel maybe effected if the canister is breached. To reduce the potential for criticality, proliferation, and reduce storage volume, a new treatment technology called melt-dilute is being developed at SRS. The technique will melt the spent fuel assemblies and will dilute the isotopic content to below 20%. The process is simple and versatile

  2. The corrosion of aluminum-clad spent nuclear fuel in wet basin storage

    International Nuclear Information System (INIS)

    Howell, J.P.; Burke, S.D.

    1996-01-01

    Large quantities of Defense related spent nuclear fuels are being stored in water basins around the United States. Under the non-proliferation policy, there has been no processing since the late 1980's and these fuels are caught in the pipeline awaiting stabilization or other disposition. At the Savannah River Site, over 200 metric tons of aluminum clad fuel are being stored in four water filled basins. Some of this fuel has experienced visible pitting corrosion. An intensive effort is underway at SRS to understand the corrosion problems and to improve the basin storage conditions for extended storage requirements. Significant improvements have been accomplished during 1993-1996. This paper presents a discussion of the fundamentals of aluminum alloy corrosion as it pertains to the wet storage of spent nuclear fuel. It examines the effects of variables on corrosion in the storage environment and presents the results of corrosion surveillance testing activities at SRS, as well as discussions of fuel storage basins at other production sites of the Department of Energy

  3. The corrosion of aluminum-clad spent nuclear fuel in wet basin storage

    Energy Technology Data Exchange (ETDEWEB)

    Howell, J.P.; Burke, S.D.

    1996-02-20

    Large quantities of Defense related spent nuclear fuels are being stored in water basins around the United States. Under the non-proliferation policy, there has been no processing since the late 1980`s and these fuels are caught in the pipeline awaiting stabilization or other disposition. At the Savannah River Site, over 200 metric tons of aluminum clad fuel are being stored in four water filled basins. Some of this fuel has experienced visible pitting corrosion. An intensive effort is underway at SRS to understand the corrosion problems and to improve the basin storage conditions for extended storage requirements. Significant improvements have been accomplished during 1993-1996. This paper presents a discussion of the fundamentals of aluminum alloy corrosion as it pertains to the wet storage of spent nuclear fuel. It examines the effects of variables on corrosion in the storage environment and presents the results of corrosion surveillance testing activities at SRS, as well as discussions of fuel storage basins at other production sites of the Department of Energy.

  4. Development of spent fuel remote handling technology

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Ji Sup; Park, B S; Park, Y S; Oh, S C; Kim, S H; Cho, M W; Hong, D H

    1997-12-01

    Since the nation`s policy on spent fuel management is not finalized, the technical items commonly required for safe management and recycling of spent fuel - remote technologies of transportation, inspection, maintenance, and disassembly of spent fuel - are selected and pursued. In this regards, the following R and D activities are carried out : collision free transportation of spent fuel assembly, mechanical disassembly of spent nuclear fuel and graphical simulation of fuel handling / disassembly process. (author). 36 refs., 16 tabs., 77 figs

  5. Nuclear criticality safety studies applicable to spent fuel shipping cask designs and spent fuel storage

    International Nuclear Information System (INIS)

    Tang, J.S.

    1980-11-01

    Criticality analyses of water-moderated and reflected arrays of LWR fresh and spent fuel assemblies were carried out in this study. The calculated results indicate that using the assumption of fresh fuel loading in spent fuel shipping cask design leads to assembly spacings which are about twice the spacings of spent fuel loadings. Some shipping cask walls of composite lead and water are more effective neutron reflectors than water of 30.48 cm

  6. Simplifying anemia management in hemodialysis patients: ESAs administered at longer dosing intervals can enhance opportunities to provide patient-focused care.

    Science.gov (United States)

    Schiller, Brigitte; Besarab, Anatole

    2011-08-01

    To review issues and challenges in caring for hemodialysis patients with anemia of chronic kidney disease, specifically focusing on the effects of longer erythropoiesis-stimulating agent (ESA) dosing intervals on processes of care. PubMed searches were performed limited to the last 10 years to February 2011, focusing on articles in English that were 'clinical trials,' assessed processes of care, measured associations of hemoglobin (Hb) with outcomes, and explored/analyzed extended dosing intervals of ESAs in hemodialysis patients and recommendations for increasing the quality of care of these patients. Some limitations included the fact that a meta-analysis was not conducted; many studies were associative and therefore unable to prove causality; and none of the clinical trials directly compared the impact of more frequent or less frequent ESA dosing strategies on patient care and outcomes. Progress over the past several decades has been substantial; however, unmet needs remain and there is room for improvement in efficiencies of care. Many patients fail to meet Hb targets, and nephrology professionals' time is consumed with preparing, administering, and monitoring therapy. Direct interaction between patients and care providers has been lost as attention has shifted to 'cost-effective' (not necessarily patient-centered) ways to deliver care. Use of ESAs at longer dosage intervals represents one opportunity to improve efficiency of care. Newer ESAs have been developed for less frequent dosing. Once-monthly dosing decreases time spent administering/monitoring therapy and allows nephrology professionals to provide comprehensive renal care, wherein the patient rather than task-oriented processes becomes the primary focus. A fragmented, uncoordinated care-delivery model heightens the urgency to systematically address issues related to delivery of care and improve efficiencies in anemia management as part of the patient-centered approach. ESAs designed for administration

  7. Main attributes influencing spent nuclear fuel management

    International Nuclear Information System (INIS)

    Andreescu, N.; Ohai, D.

    1997-01-01

    All activities regarding nuclear fuel, following its discharge from the NPP, constitute the spent fuel management and are grouped in two possible back end variants, namely reprocessing (including HLW vitrification and geological disposal) and direct disposal of spent fuel. In order to select the appropriate variant it is necessary to analyse the aggregate fulfillment of the imposed requirements, particularly of the derived attributes, defined as distinguishing characteristics of the factors used in the decision making process. The main identified attributes are the following: - environmental impact, - availability of suitable sites, - non-proliferation degree, -strategy of energy, - technological complexity and technical maturity, -possible further technical improvements, - size of nuclear programme, - total costs, - public acceptance, - peculiarity of CANDU fuel. The significance of the attributes in the Romanian case, taking into consideration the present situation, as a low scenario and a high scenario corresponding to an important development of the nuclear power, after the year 2010, is presented. According to their importance the ranking of attributes is proposed . Subsequently, the ranking could be used for adequate weighing of attributes in order to realize a multi-criteria analysis and a relevant comparison of back end variants. (authors)

  8. Spent Fuel Working Group report on inventory and storage of the Department`s spent nuclear fuel and other reactor irradiated nuclear materials and their environmental, safety and health vulnerabilities. Volume 2, Working Group Assessment Team reports; Vulnerability development forms; Working group documents

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    The Secretary of Energy`s memorandum of August 19, 1993, established an initiative for a Department-wide assessment of the vulnerabilities of stored spent nuclear fuel and other reactor irradiated nuclear materials. A Project Plan to accomplish this study was issued on September 20, 1993 by US Department of Energy, Office of Environment, Health and Safety (EH) which established responsibilities for personnel essential to the study. The DOE Spent Fuel Working Group, which was formed for this purpose and produced the Project Plan, will manage the assessment and produce a report for the Secretary by November 20, 1993. This report was prepared by the Working Group Assessment Team assigned to the Hanford Site facilities. Results contained in this report will be reviewed, along with similar reports from all other selected DOE storage sites, by a working group review panel which will assemble the final summary report to the Secretary on spent nuclear fuel storage inventory and vulnerability.

  9. Effects of post-disposal gas generation in a repository for spent fuel, high-level waste and long-lived intermediate level waste sited in opalinus clay

    International Nuclear Information System (INIS)

    Johnson, L.; Marschall, P.; Zuidema, P.; Gribi, P.

    2004-07-01

    This comprehensive report issued by the Swiss National Cooperative for the Disposal of Radioactive Waste NAGRA takes a look at post-disposal gas generation in a repository for spent fuel and highly radioactive wastes in Opalinus clay strata. This study provides a comprehensive treatment of the issue of gas generation in a repository for spent fuel (SF), vitrified high-level waste (HLW) and long-lived intermediate-level waste (ILW), sited in the Opalinus clay of the Zuercher Weinland in northern Switzerland. The issue of how gas generation in and transport from waste repositories may influence disposal system performance has been under study for many years, both at Nagra and internationally. The report consists of three main parts: (i) A synthesis of basic information on the host rock and on details of repository construction; (ii) A discussion on gas transport characteristics of the engineered barrier system and the geosphere; (iii) A discussion on the effects of gas on system performance, based on the available information on gas generation, gas transport properties and gas pathways provided in the previous parts of the report. Simplified model calculations based on a mass balance approach for the gas generated within the repository are presented and discussed

  10. Spent fuel bundle counter sequence error manual - BRUCE NGS

    International Nuclear Information System (INIS)

    Nicholson, L.E.

    1992-01-01

    The Spent Fuel Bundle Counter (SFBC) is used to count the number and type of spent fuel transfers that occur into or out of controlled areas at CANDU reactor sites. However if the transfers are executed in a non-standard manner or the SFBC is malfunctioning, the transfers are recorded as sequence errors. Each sequence error message typically contains adequate information to determine the cause of the message. This manual provides a guide to interpret the various sequence error messages that can occur and suggests probable cause or causes of the sequence errors. Each likely sequence error is presented on a 'card' in Appendix A. Note that it would be impractical to generate a sequence error card file with entries for all possible combinations of faults. Therefore the card file contains sequences with only one fault at a time. Some exceptions have been included however where experience has indicated that several faults can occur simultaneously

  11. Spent fuel bundle counter sequence error manual - DARLINGTON NGS

    International Nuclear Information System (INIS)

    Nicholson, L.E.

    1992-01-01

    The Spent Fuel Bundle Counter (SFBC) is used to count the number and type of spent fuel transfers that occur into or out of controlled areas at CANDU reactor sites. However if the transfers are executed in a non-standard manner or the SFBC is malfunctioning, the transfers are recorded as sequence errors. Each sequence error message typically contains adequate information to determine the cause of the message. This manual provides a guide to interpret the various sequence error messages that can occur and suggests probable cause or causes of the sequence errors. Each likely sequence error is presented on a 'card' in Appendix A. Note that it would be impractical to generate a sequence error card file with entries for all possible combinations of faults. Therefore the card file contains sequences with only one fault at a time. Some exceptions have been included however where experience has indicated that several faults can occur simultaneously

  12. Probabilistic Risk Assessment on Maritime Spent Nuclear Fuel Transportation

    Energy Technology Data Exchange (ETDEWEB)

    Christian, Robby; Kang, Hyun Gook [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    Spent nuclear fuel (SNF) management has been an indispensable issue in South Korea. Before a long term SNF solution is implemented, there exists the need to distribute the spent fuel pool storage loads. Transportation of SNF assemblies from populated pools to vacant ones may preferably be done through the maritime mode since all nuclear power plants in South Korea are located at coastal sites. To determine its feasibility, it is necessary to assess risks of the maritime SNF transportation. This work proposes a methodology to assess the risk arising from ship collisions during the transportation of SNF by sea. Its scope is limited to the damage probability of SNF packages given a collision event. The effect of transport parameters' variation to the package damage probability was investigated to obtain insights into possible ways to minimize risks. A reference vessel and transport cask are given in a case study to illustrate the methodology's application.

  13. German Approach to Spent Fuel Management

    International Nuclear Information System (INIS)

    Jussofie, A.; Graf, R.; Filbert, W.

    2010-01-01

    The management of spent fuel was based on two powerful columns until 30 June 2005, i. e. reprocessing and direct disposal. After this date any delivery of spent fuel to reprocessing plants was prohibited so that the direct disposal of unreprocessed spent fuel is the only available option in Germany today. The main steps of the current concept are: (i) Intermediate storage of spent fuel, which is the only step in practice. After the first cooling period in spent fuel storage pools it continues into cask-receiving dry storage facilities. Identification of casks, 'freezing' of inventories in terms of continuity of knowledge, monitoring the access to spent fuel, verifying nuclear material movements in terms of cask transfers and ensurance against diversion of nuclear material belong to the fundamental safeguards goals which have been achieved in the intermediate storage facilities by containment and surveillance techniques in unattended mode. (ii) Conditioning of spent fuel assemblies by separating the fuel rods from structural elements. Since the pilot conditioning facility in Gorleben has not yet come into operation, the underlying safeguards approach which focuses on safeguarding the key measurement points - the spent fuel related way in and out of the facility - has not been applied yet. (iii) Disposal in deep geological formations, but no decision has been made so far neither regarding the location of a geological repository nor regarding the safeguards approach for the disposal concept of spent fuel. The situation was complicated by a moratorium which suspended the underground exploration of the Gorleben salt dome as potential geological repository for spent fuel. The moratorium expires in October 2010. Nevertheless, considerable progress has been made in the development of disposal concepts. According to the basic, so-called POLLUX (registered) -concept spent fuel assemblies are to be conditioned after dry storage and reloaded into the POLLUX (registered) -cask

  14. Conditioning and storage of spent sealed radium sources

    International Nuclear Information System (INIS)

    Cholerzynski, A.; Tomczak, W.

    2001-01-01

    In Poland sealed radioactive sources (SRS) are extensively used in medicine and in industry. There are mainly Co-60, Cs-137, lr-192 and also historical sources contain in Ra-226. The Radioactive Waste Management Department (ZDUOP) of the Institute of Atomic Energy at Swierk is the only organization licensed for the management, storage and disposal of radioactive waste in Poland. ZDUOP deals with all radioactive waste in the country. Storage and disposal of SRS is one of the most important part of its activity. Every year ZDUOP collects about 1000 spent SRS which total activity is near 600 GBq. Spent Ra-226 sources are a special case and therefore are required suitable procedures. Due to their production according to earlier standards and their undesirable characteristics, leakage of these sources is highly possible and practically observed. For this reason conditioning of radium sources needs strict requirements and quality assurance procedure to guarantee their safe storage for an extended period of time (e.g. 40-70 years). The National Radioactive Waste Repository is superficial type repository and considered as temporary storage site for long-lived waste. A storage facility for spent SRS has been properly prepared and licensed by the regulatory body. This facility consist of several concrete chambers which floor is lined stainless steel. The existing regulatory framework for sealed radioactive sources entered into force with issue of the Atomic Law in 1986

  15. A COMPARISON OF CHALLENGES ASSOCIATED WITH SLUDGE REMOVAL & TREATMENT & DISPOSAL AT SEVERAL SPENT FUEL STORAGE LOCATIONS

    Energy Technology Data Exchange (ETDEWEB)

    PERES, M.W.

    2007-01-09

    Challenges associated with the materials that remain in spent fuel storage pools are emerging as countries deal with issues related to storing and cleaning up nuclear fuel left over from weapons production. The K Basins at the Department of Energy's site at Hanford in southeastern Washington State are an example. Years of corrosion products and piles of discarded debris are intermingled in the bottom of these two pools that stored more 2,100 metric tons (2,300 tons) of spent fuel. Difficult, costly projects are underway to remove radioactive material from the K Basins. Similar challenges exist at other locations around the globe. This paper compares the challenges of handling and treating radioactive sludge at several locations storing spent nuclear fuel.

  16. Spent fuels transportation coming from Australia

    International Nuclear Information System (INIS)

    2002-01-01

    Maritime transportation of spent fuels from Australia to France fits into the contract between COGEMA and ANSTO, signed in 1999. This document proposes nine information cards in this domain: HIFAR a key tool of the nuclear, scientific and technological australian program; a presentation of the ANSTO Australian Nuclear Science and Technology Organization; the HIFAR spent fuel management problem; the COGEMA expertise in favor of the research reactor spent fuel; the spent fuel reprocessing at La Hague; the transports management; the transport safety (2 cards); the regulatory framework of the transports. (A.L.B.)

  17. Safety analysis of spent fuel packaging

    International Nuclear Information System (INIS)

    Akamatsu, Hiroshi; Taniuchi, Hiroaki; Tai, Hideto

    1987-01-01

    Many types of spent fuel packagings have been manufactured and been used for transport of spent fuels discharged from nuclear power plant. These spent fuel packagings need to be assesed thoroughly about safety transportation because spent fuels loaded into the packaging have high radioactivity and generation of heat. This paper explains the outline of safety analysis of a packaging, Safety analysis is performed for structural, thermal, containment, shielding and criticality factors, and MARC-CDC, TRUMP, ORIGEN, QAD, ANISN, KENO, etc computer codes are used for such analysis. (author)

  18. Overview of the US program for developing a waste disposal system for spent nuclear fuel and high-level waste

    International Nuclear Information System (INIS)

    Kay, C.E.

    1988-01-01

    Safe disposal of spent nuclear fuel and radioactive high-level waste (HLW) has been a matter of national concern ever since the first US civilian nuclear reactor began generating electricity in 1957. Based on current projections of commercial generating capacity, by the turn of the century, there will be >40,000 tonne of spent fuel in the Untied States. In addition to commercial spent fuel, defense HLW is generated in the United States and currently stored at three US Department of Energy (DOE) sites: The Nuclear Waste Policy Amendments Act of 1987 provided for financial incentives to host a repository or a monitored retrievable storage (MRS) facility; mandated the areas in which DOE's siting efforts should concentrate (Yucca Mountain, Nevada); required termination of site-specific activities at other sites; required a resisting process for an MRS facility, which DOE had proposed as an integral part of the waste disposal system; terminated all activities for identifying candidates for a second repository; established an 11-member Nuclear Waste Technical Review Board; established a three-member MRS commission to be appointed by heads of the US Senate and House; directed the President to appoint a negotiator to seek a state or Indian tribe willing to host a repository or MRS facility at a suitable site and to negotiate terms and conditions under which the state or tribe would be willing to host such a facility; and amended, adjusted, or established other requirements contained in the 1982 law

  19. Thermal analysis model for the temperature distribution of the CANDU spent fuel assembly

    International Nuclear Information System (INIS)

    Choi, Hae Yun; Kwon, Jong Soo; Park, Seong Hoon; Kim, Seong Rea; Lee, Gi Won

    1996-01-01

    The purpose of this technical is to introduce the methodology and experimental process for the experimental research work with the mock-up test performed to verify and validate the MAXROT code which is a thermal analysis method for Wolsong (CANDU) spent fuel dry storage canister. The experiment was conducted simulating the heat transfer characteristics of combinations of equilateral triangular and square pitch arrays of heater rods, similar to a CANDU spent fuel bundle. After assembly of the heater rod bundle into the containment vessel, the experimental apparatus was operated under the same operating and boundary conditions as an interim dry storage condition at the nuclear power plant site. The reduced data from this experiment has been utilized to verity a model developed to predict the maximum fuel rod surface temperature in a fuel bundle. These test procedures and the experiment can be utilized to establish the fine thermal analysis method applicable to dry storage system for the spent fuel. 12 figs., 5 tabs., 36 refs. (Author) .new

  20. Thermal analysis model for the temperature distribution of the CANDU spent fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hae Yun; Kwon, Jong Soo; Park, Seong Hoon; Kim, Seong Rea; Lee, Gi Won [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-01-01

    The purpose of this technical is to introduce the methodology and experimental process for the experimental research work with the mock-up test performed to verify and validate the MAXROT code which is a thermal analysis method for Wolsong (CANDU) spent fuel dry storage canister. The experiment was conducted simulating the heat transfer characteristics of combinations of equilateral triangular and square pitch arrays of heater rods, similar to a CANDU spent fuel bundle. After assembly of the heater rod bundle into the containment vessel, the experimental apparatus was operated under the same operating and boundary conditions as an interim dry storage condition at the nuclear power plant site. The reduced data from this experiment has been utilized to verity a model developed to predict the maximum fuel rod surface temperature in a fuel bundle. These test procedures and the experiment can be utilized to establish the fine thermal analysis method applicable to dry storage system for the spent fuel. 12 figs., 5 tabs., 36 refs. (Author) .new.

  1. Spent nuclear fuel disposal liability insurance

    International Nuclear Information System (INIS)

    Martin, D.W.

    1984-01-01

    This thesis examines the social efficiency of nuclear power when the risks of accidental releases of spent fuel radionuclides from a spent fuel disposal facility are considered. The analysis consists of two major parts. First, a theoretical economic model of the use of nuclear power including the risks associated with releases of radionuclides from a disposal facility is developed. Second, the costs of nuclear power, including the risks associated with a radionuclide release, are empirically compared to the costs of fossil fuel-fired generation of electricity. Under the provisions of the Nuclear Waste Policy Act of 1982, the federally owned and operated spent nuclear fuel disposal facility is not required to maintain a reserve fund to cover damages from an accidental radionuclide release. Thus, the risks of a harmful radionuclide release are not included in the spent nuclear fuel disposal fee charged to the electric utilities. Since the electric utilities do not pay the full, social costs of spent fuel disposal, they use nuclear fuel in excess of the social optimum. An insurance mechanism is proposed to internalize the risks associated with spent fueled disposal. Under this proposal, the Federal government is required to insure the disposal facility against any liabilities arising from accidental releases of spent fuel radionuclides

  2. Review study 1995. Localization of the repository for spent nuclear fuel

    International Nuclear Information System (INIS)

    1995-10-01

    This report gives an overview of the studies performed by SKB pertinent to selection of a site for the Swedish repository for spent nuclear fuels, and is written for both experts in the various fields involved, decision-makers and the interested general public. The review can not comprise all detailed factors necessary for deciding the localization, but deals mainly with conditions on the land surface and can point out areas which are not well suited or less interesting as a site. It also treats several scientific, technical and social bases in different parts of the country. 120 refs, 53 figs

  3. Near surface spent fuel storage: environmental issues

    International Nuclear Information System (INIS)

    Nelson, I.C.; Shipler, D.B.; McKee, R.W.; Glenn, R.D.

    1979-01-01

    Interim storage of spent fuel appears inevitable because of the lack of reprocessing plants and spent fuel repositories. This paper examines the environmental issues potentially associated with management of spent fuel before disposal or reprocessing in a reference scenario. The radiological impacts of spent fuel storage are limited to low-level releases of noble gases and iodine. Water needed for water basin storage of spent fuel and transportation accidents are considered; the need to minimize the distance travelled is pointed out. Resource commitments for construction of the storage facilities are analyzed

  4. Comparison of national programs and regulations for the management of spent fuel and disposal of high-level waste in seven countries

    International Nuclear Information System (INIS)

    Numark, N.J.; Mattson, R.J.; Gaunt, J.

    1986-01-01

    This paper describes programs and regulatory requirements affecting the management of spent fuel and disposal of high-level radioactive waste in seven nations with large nuclear power programs. The comparison is intended to illustrate that the range of spent fuel management options is influenced by certain technical and political constraints. It begins by providing overall nuclear fuel cycle facts for each country, including nuclear generating capacities, rates of spent fuel discharge, and policies on spent fuel reprocessing. Spent fuel storage techniques and reprocessing activities are compared in light of constraints such as fuel type. Waste disposal investigations are described, including a summary of the status of regulatory developments affecting repository siting and disposal. A timeline is provided to illustrate the principle milestones in spent fuel management and waste disposal in each country. Finally, policies linking nuclear power licensing and development to nuclear waste management milestones and RandD progress are discussed

  5. Spent fuel storage and transport cask decontamination and modification. An overview of management requirements and applications based on practical experience

    International Nuclear Information System (INIS)

    1999-04-01

    A large increase in the number of casks required for transport and/or storage of spent fuel is forecast into the next century. The principal requirement will be for increased number of storage and dual purpose (transport/storage) casks for interim storage of spent fuel prior to reprocessing or permanent disposal in both on-site and off-site storage facilities. Through contact with radioactive materials spent fuel casks will be contaminated on both internal and external surfaces. In broad terms, cask contamination management can be defined by three components: minimisation, prevention and decontamination. This publication is a compilation of international experience with cask contamination problems and decontamination practices. The objective is to present current knowledge and experience as well as developments, trends and potential for new applications in this field. Furthermore, the report may assist in new design or modification of existing casks, cask handling systems and decontamination equipment

  6. Spent Fuel Management Newsletter. No. 1

    International Nuclear Information System (INIS)

    1990-03-01

    This Newsletter has been prepared in accordance with the recommendations of the International Regular Advisory Group on Spent Fuel Management and the Agency's programme (GC XXXII/837, Table 76, item 14). The main purpose of the Newsletter is to provide Member States with new information about the state-of-the-art in one of the most important parts of the nuclear fuel cycle - Spent Fuel Management. The contents of this publication consists of two parts: (1) IAEA Secretariat contribution -work and programme of the Nuclear Materials and Fuel Cycle Technology Section of the Division of Nuclear Fuel Cycle and Waste Management, recent and planned meetings and publications, Technical Co-operation projects, Co-ordinated Research programmes, etc. (2) Country reports - national programmes on spent fuel management: current and planned storage and reprocessing capacities, spent fuel arisings, safety, transportation, storage, treatment of spent fuel, some aspects of uranium and plutonium recycling, etc. The IAEA expects to publish the Newsletter once every two years between the publications of the Regular Advisory Group on Spent Fuel Management. Figs and tabs

  7. China's spent fuel treatment: The present status and prospects

    International Nuclear Information System (INIS)

    Jiang Yunqing

    1999-01-01

    In the mid 1980s, China launched the development of nuclear power dominated by PWRs and opted for the closed fuel cycle strategy. On the basis of irradiated fuel reprocessing for defence purpose, an R and D programme for civil reprocessing has been implemented. Currently, China's spent fuel arising is limited but its amount will sharply increase with nuclear power expansion early next century. Spent fuel stored at reactor site for at least 5 years will be transported either by a combination of sea and rail or by road directly to the Lanzhou Nuclear Fuel Complex. A wet centralized storage facility with a 550 tHM capacity has been built for interim storage of spent fuel. Also, a multi-purpose reprocessing pilot plant with a maximum throughput of 400 kg HM/d is now under construction and will be put into commissioning by the turn of the century. A large-scale commercial reprocessing plant, perhaps with a capacity of 800 tHM/a, will be set up around 2020. Recovered uranium and plutonium from reprocessing will go to a demonstration plant and be manufactured into MOX fuel for FBR and PWR. The defence radwaste from reprocessing is at present being conditioned into the proper forms and will be disposed in appropriate repositories. All expertise and experience gained from these practices will be utilized in the future civil radwaste management. (author)

  8. Thematic report on community development and siting

    International Nuclear Information System (INIS)

    Vari, A.

    2002-01-01

    The paper analyses the Finnish spent fuel disposal facility siting from the perspective of community development, issues of fairness, and general factors of success. We found that anticipated positive impacts on host community development were the most important factors of local support. Second, the willingness of main stakeholders to adopt and combine several competing and changing concepts of fairness helped making legitimate decisions. Finally, we can conclude that in addition to important cultural factors which are unique in Finland, a number of siting elements have contributed to the success that are of cross-cultural nature. The paper summarises the lessons learned about the Finnish spent fuel disposal facility siting process regarding the issues of community development, fairness, and the transferability of siting approaches across cultures. It is largely based on information presented within the framework of the OECD Forum of Stakeholder Confidence Workshop held in Turku, Finland, on 15-16 November 2001. (author)

  9. Fact sheet on spent fuel management

    International Nuclear Information System (INIS)

    2006-01-01

    The IAEA gives high priority to safe and effective spent fuel management. As an example of continuing efforts, the 2003 International Conference on Storage of Spent Fuel from Power Reactors gathered 125 participants from 35 member states to exchange information on this important subject. With its large number of Member States, the IAEA is well-positioned to gather and share information useful in addressing Member State priorities. IAEA activities on this topic include plans to produce technical documents as resources for a range of priority topics: spent fuel performance assessment and research, burnup credit applications, cask maintenance, cask loading optimization, long term storage requirements including records maintenance, economics, spent fuel treatment, remote technology, and influence of fuel design on spent fuel storage. In addition to broader topics, the IAEA supports coordinated research projects and technical cooperation projects focused on specific needs. The proceedings of the 2003 IAEA conference on storage of spent fuel from power reactors has been ranked in the top twenty most accessed IAEA publications. These proceedings are available for free downloads at http://www-pub.iaea.org/MTCD/publications/PubDetails.asp?pubId=6924]. The IAEA organized and held a 2004 meeting focused on long term spent fuel storage provisions in Central and Eastern Europe, using technical cooperation funds to support participation by these Member States. Over ninety percent of the participants in this meeting rated its value as good or excellent, with participants noting that the IAEA is having a positive effect in stimulating communication, cooperation, and information dissemination on this important topic. The IAEA was advised in 2004 that results from a recent coordinated research project (IAEA-TECDOC-1343) were used by one Member State to justify higher clad temperatures for spent fuel in dry storage, leading to more efficient storage and reduced costs. Long term

  10. Conceptual design study of a concrete canister spent-fuel storage facility

    International Nuclear Information System (INIS)

    Lidfors, E.D.; Tabe, T.; Johnson, H.M.

    1979-01-01

    This report presents a conceptual design study for the interim storage of CANDU spent fuel in concrete canisters. The canisters will be concrete flasks, which contain fuel prepackaged in double steel containment, and will be cooled by natural air convection. This is one of the methods proposed as a potential alternative to water pool storage. A preliminary study of this concept was done by CAFS (Committee Assessing Fuel Storage), and WNRE (Whiteshell Nuclear Research Establishment) is currently conducting a development and demonstration program. This study of a central facility for the storage of all Canadian spent fuel arisings to the year 2000 was completed in 1975. A brief description of the facilities required and the operations involved, a summary of costs, a survey of the monitoring requirements and a prediction of the personnel exposures associated with this method of storing spent fuel are reported here. The estimated total cost of interim storage in cylindrical canisters at a central site is $6.02/kg U (1975 dollars). Approximately half of this cost is incurred in the shipment of fuel from the reactors to the storage facility. (author)

  11. Spent nuclear fuel for disposal in the KBS-3 repository

    Energy Technology Data Exchange (ETDEWEB)

    Grahn, Per; Moren, Lena; Wiborgh, Maria

    2010-12-15

    The report is included in a set of Production reports, presenting how the KBS-3 repository is designed, produced and inspected. The set of reports is included in the safety report for the KBS-3 repository and repository facility. The report provides input to the assessment of the long-term safety, SR-Site as well as to the operational safety report, SR-Operation. The report presents the spent fuel to be deposited, and the requirements on the handling and selection of fuel assemblies for encapsulation that follows from that it shall be deposited in the KBS-3 repository. An overview of the handling and a simulation of the encapsulation and the resulting canisters to be deposited are presented. Finally, the initial state of the encapsulated spent nuclear fuel is given. The initial state comprises the radionuclide inventory and other data required for the assessment of the long-term safety

  12. Spent nuclear fuel for disposal in the KBS-3 repository

    International Nuclear Information System (INIS)

    Grahn, Per; Moren, Lena; Wiborgh, Maria

    2010-12-01

    The report is included in a set of Production reports, presenting how the KBS-3 repository is designed, produced and inspected. The set of reports is included in the safety report for the KBS-3 repository and repository facility. The report provides input to the assessment of the long-term safety, SR-Site as well as to the operational safety report, SR-Operation. The report presents the spent fuel to be deposited, and the requirements on the handling and selection of fuel assemblies for encapsulation that follows from that it shall be deposited in the KBS-3 repository. An overview of the handling and a simulation of the encapsulation and the resulting canisters to be deposited are presented. Finally, the initial state of the encapsulated spent nuclear fuel is given. The initial state comprises the radionuclide inventory and other data required for the assessment of the long-term safety

  13. Spent Fuel in Chile

    International Nuclear Information System (INIS)

    López Lizana, F.

    2015-01-01

    The government has made a complete and serious study of many different aspects and possible road maps for nuclear electric power with strong emphasis on safety and energy independence. In the study, the chapter of SFM has not been a relevant issue at this early stage due to the fact that it has been left for later implementation stage. This paper deals with the options Chile might consider in managing its Spent Fuel taking into account foreign experience and factors related to safety, economics, public acceptance and possible novel approaches in spent fuel treatment. The country’s distinctiveness and past experience in this area taking into account that Chile has two research reactors which will have an influence in the design of the Spent Fuel option. (author)

  14. Spent fuel and radioactive waste: an integrated data base of inventories, projections, and characteristics

    International Nuclear Information System (INIS)

    Notz, K.J.; Forsberg, C.W.; Mastal, E.F.

    1984-01-01

    The Integrated Data Base (IDB) Program provides official US Department of Energy (DOE) data on spent fuel and radioactive waste inventories, projections, and characteristics. This information is provided through the cooperative efforts of the IDB Program and DOE lead offices, lead sites, major programs, and generator sites. The program is entering its fifth year, and major accomplishments are summarized in three broad areas: (1) the annual inventory report, including ORIGEN2 applications and a Quality Assurance (QA) plan; (2) the summary data file and direct user access; and (3) data processing methodology and support to other programs. Plans for future work in these areas are outlined briefly, including increased utilization of personal computers. Some examples of spent fuel data are given in terms of projected quantities for two growth scenarios, burnup and age profile of the existing inventory, and the approximate specific thermal power relative to high-level waste (HLW) from various sources. 4 refs., 2 figs., 3 tabs

  15. Assessment of spent fuel cooling

    International Nuclear Information System (INIS)

    Ibarra, J.G.; Jones, W.R.; Lanik, G.F.

    1997-01-01

    The paper presents the methodology, the findings, and the conclusions of a study that was done by the Nuclear Regulatory Commission's Office for Analysis and Evaluation of Operational Data (AEOD) on loss of spent fuel pool cooling. The study involved an examination of spent fuel pool designs, operating experience, operating practices, and procedures. AEOD's work was augmented in the area of statistics and probabilistic risk assessment by experts from the Idaho Nuclear Engineering Laboratory. Operating experience was integrated into a probabilistic risk assessment to gain insight on the risks from spent fuel pools

  16. Spent fuel storage process equipment development

    International Nuclear Information System (INIS)

    Park, Hyun Soo; Lee, Jae Sol; Yoo, Jae Hyung

    1990-02-01

    Nuclear energy which is a major energy source of national energy supply entails spent fuels. Spent fuels which are high level radioactive meterials, are tricky to manage and need high technology. The objectives of this study are to establish and develop key elements of spent fuel management technologies: handling equipment and maintenance, process automation technology, colling system, and cleanup system. (author)

  17. Environmental Assessment of Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    1994-04-01

    The Department of Energy has completed the Environmental Assessment (EA) of Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel and issued a Finding of No Significant Impact (FONSI) for the proposed action. The EA and FONSI are enclosed for your information. The Department has decided to accept a limited number of spent nuclear fuel elements (409 elements) containing uranium that was enriched in the United States from eight research reactors in Austria, Denmark, Germany, Greece, the Netherlands, Sweden, and Switzerland. This action is necessary to maintain the viability of a major US nuclear weapons nonproliferation program to limit or eliminate the use of highly enriched uranium in civil programs. The purpose of the EA is to maintain the cooperation of the foreign research reactor operators with the nonproliferation program while a more extensive Environmental Impact Statement (EIS) is prepared on a proposed broader policy involving the acceptance of up to 15,000 foreign research reactor spent fuel elements over a 10 to 15 year period. Based on an evaluation of transport by commercial container liner or chartered vessel, five eastern seaboard ports, and truck and train modes of transporting the spent fuel overland to the Savannah River Sits, the Department has concluded that no significant impact would result from any combination of port and made of transport. In addition, no significant impacts were found from interim storage of spent fuel at the Savannah River Site

  18. Environmental Assessment of Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    The Department of Energy has completed the Environmental Assessment (EA) of Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel and issued a Finding of No Significant Impact (FONSI) for the proposed action. The EA and FONSI are enclosed for your information. The Department has decided to accept a limited number of spent nuclear fuel elements (409 elements) containing uranium that was enriched in the United States from eight research reactors in Austria, Denmark, Germany, Greece, the Netherlands, Sweden, and Switzerland. This action is necessary to maintain the viability of a major US nuclear weapons nonproliferation program to limit or eliminate the use of highly enriched uranium in civil programs. The purpose of the EA is to maintain the cooperation of the foreign research reactor operators with the nonproliferation program while a more extensive Environmental Impact Statement (EIS) is prepared on a proposed broader policy involving the acceptance of up to 15,000 foreign research reactor spent fuel elements over a 10 to 15 year period. Based on an evaluation of transport by commercial container liner or chartered vessel, five eastern seaboard ports, and truck and train modes of transporting the spent fuel overland to the Savannah River Sits, the Department has concluded that no significant impact would result from any combination of port and made of transport. In addition, no significant impacts were found from interim storage of spent fuel at the Savannah River Site.

  19. Conditions of Thermal Reclamation Process Realization on a Sample of Spent Moulding Sand from an Aluminum Alloy Foundry Plant

    Directory of Open Access Journals (Sweden)

    Łucarz M.

    2017-06-01

    Full Text Available The results of investigations of thermal reclamation of spent moulding sands originating from an aluminum alloy foundry plant are presented in this paper. Spent sands were crushed by using two methods. Mechanical fragmentation of spent sand chunks was realized in the vibratory reclaimer REGMAS. The crushing process in the mechanical device was performed either with or without additional crushing-grinding elements. The reclaimed material obtained in this way was subjected to thermal reclamations at two different temperatures. It was found that a significant binder gathering on grain surfaces favors its spontaneous burning, even in the case when a temperature lower than required for the efficient thermal reclamation of furan binders is applied in the thermal reclaimer. The burning process, initiated by gas burners in the reclaimer chamber, generates favorable conditions for self-burning (at a determined amount of organic binders on grain surfaces. This process is spontaneously sustained and decreases the demand for gas. However, due to the significant amount of binder, this process is longer than in the case of reclaiming moulding sand prepared with fresh components.

  20. Assessment of nitrogen as an atmosphere for dry storage of spent LWR fuel

    International Nuclear Information System (INIS)

    Gilbert, E.R.; Knox, C.A.; White, G.D.

    1985-09-01

    Interim dry storage of spent light-water reactor (LWR) fuel is being developed as a licensed technology in the United States. Because it is anticipated that license agreements will specify dry storage atmospheres, the behavior of spent LWR fuel in a nitrogen atmosphere during dry storage was investigated. In particular, the thermodynamics of reaction of nitrogen compounds (expected to form in the cover gas during dry storage) and residual impurities (such as moisture and oxygen) with Zircaloy cladding and with spent fuel at sites of cladding breaches were examined. The kinetics of reaction were not considered it was assumed that the 20 to 40 years of interim dry storage would be sufficient for reactions to proceed to completion. The primary thermodynamics reactants were found to be NO 2 , N 2 O, H 2 O 2 , and O 2 . The evaluation revealed that the limited inventories of these reactants produced by the source terms in hermetically sealed dry storage systems would be too low to cause significant spent fuel degradation. Furthermore, the oxidation of spent fuel to degrading O/U ratios is unlikely because the oxidation potential in moist nitrogen limits O/U ratios to values less than UO/sub 2.006/ (the equilibrium stoichiometric form in equilibrium with moist nitrogen). Tests were performed with bare spent UO 2 fuel and nonirradiated UO 2 pellets (with no Zircaloy cladding) in a nitrogen atmosphere containing moisture concentrations greater than encountered under dry storage conditions. These tests were performed for at least 1100 h at temperatures as high as 380 0 C, where oxidation reactions proceed in a matter of minutes. No visible degradation was detected, and weight changes were negligible

  1. Impact of axial burnup profile on criticality safety of ANPP spent fuel cask

    International Nuclear Information System (INIS)

    Bznuni, S.

    2006-01-01

    Criticality safety assessment for WWER-440 NUHOMS cask with spent nuclear fuel from Armenian NPP has been performed. The cask was designed in such way that the neutron multiplication factor k eff must be below 0,95 for all operational modes and accident conditions. Usually for criticality analysis, fresh fuel approach with the highest enrichment is taken as conservative assumption as it was done for ANPP. NRSC ANRA in order to improve future fuel storage efficiency initiated research with taking into account burn up credit in the criticality safety assessment. Axial burn up profile (end effect) has essential impact on criticality safety justification analysis. However this phenomenon was not taken into account in the Safety Analysis Report of NUHOMS spent fuel storage constructed on the site of ANPP. Although ANRA does not yet accept burn up credit approach for ANPP spent fuel storage, assessment of impact of axial burnup profile on criticality of spent fuel assemblies has important value for future activities of ANRA. This paper presents results of criticality calculations of spent fuel assemblies with axial burn up profile. Horizontal burn up profile isn't taken account since influence of the horizontal variation of the burn up is much less than the axial variation. The actinides and actinides + fission products approach are discussed. The calculations were carried out with STARBUCS module of SCALE 5.0 code package developed at Oak Ridge National laboratory. SCALE5.0 sequence CSAS26 (KENO-VI) was used for evaluation the k eff for 3-D problems. Obtained results showed that criticality of ANPP spent fuel cask is very sensitive to the end effect

  2. Proposed nuclear weapons nonproliferation policy concerning foreign research reactor spent nuclear fuel. Summary

    International Nuclear Information System (INIS)

    1995-03-01

    The United States Department of Energy and United States Department of State are jointly proposing to adopt a policy to manage spent nuclear fuel from foreign research reactors. Only spent nuclear fuel containing uranium enriched in the United States would be covered by the proposed policy. The purpose of the proposed policy is to promote U.S. nuclear weapons nonproliferation policy objectives, specifically by seeking to reduce highly-enriched uranium from civilian commerce. This is a summary of the Draft Environmental Impact Statement. Environmental effects and policy considerations of three Management Alternative approaches for implementation of the proposed policy are assessed. The three Management Alternatives analyzed are: (1) acceptance and management of the spent nuclear fuel by the Department of Energy in the United States, (2) management of the spent nuclear fuel at one or more foreign facilities (under conditions that satisfy United States nuclear weapons nonproliferation policy objectives), and (3) a combination of components of Management Alternatives 1 and 2 (Hybrid Alternative). A No Action Alternative is also analyzed. For each Management Alternative, there are a number of alternatives for its implementation. For Management Alternative 1, this document addresses the environmental effects of various implementation alternatives such as varied policy durations, management of various quantities of spent nuclear fuel, and differing financing arrangements. Environmental impacts at various potential ports of entry, along truck and rail transportation routes, at candidate management sites, and for alternate storage technologies are also examined. For Management Alternative 2, this document addresses two subalternatives: (1) assisting foreign nations with storage; and (2) assisting foreign nations with reprocessing of the spent nuclear fuel

  3. REGIONAL BINNING FOR CONTINUED STORAGE OF SPENT NUCLEAR FUEL AND HIGH-LEVEL WASTES

    Energy Technology Data Exchange (ETDEWEB)

    W. Lee Poe, Jr

    1998-10-01

    In the Continued Storage Analysis Report (CSAR) (Reference 1), DOE decided to analyze the environmental consequences of continuing to store the commercial spent nuclear fuel (SNF) at 72 commercial nuclear power sites and DOE-owned spent nuclear fuel and high-level waste at five Department of Energy sites by region rather than by individual site. This analysis assumes that three commercial facilities pairs--Salem and Hope Creek, Fitzpatrick and Nine-Mile Point, and Dresden and Moms--share common storage due to their proximity to each other. The five regions selected for this analysis are shown on Figure 1. Regions 1, 2, and 3 are the same as those used by the Nuclear Regulatory Commission in their regulatory oversight of commercial power reactors. NRC Region 4 was subdivided into two regions to more appropriately define the two different climates that exist in NRC Region 4. A single hypothetical site in each region was assumed to store all the SNF and HLW in that region. Such a site does not exist and has no geographic location but is a mathematical construct for analytical purposes. To ensure that the calculated results for the regional analyses reflect appropriate inventory, facility and material degradation, and radionuclide transport, the waste inventories, engineered barriers, and environmental conditions for the hypothetical sites were developed from data for each of the existing sites within the given region. Weighting criteria to account for the amount and types of SNF and HLW at each site were used in the development of the environmental data for the regional site, such that the results of the analyses for the hypothetical site were representative of the sum of the results of each actual site if they had been modeled independently. This report defines the actual site data used in development of this hypothetical site, shows how the individual site data was weighted to develop the regional site, and provides the weighted data used in the CSAR analysis. It is

  4. REGIONAL BINNING FOR CONTINUED STORAGE OF SPENT NUCLEAR FUEL AND HIGH-LEVEL WASTES

    International Nuclear Information System (INIS)

    W. Lee Poe, Jr.

    1998-01-01

    In the Continued Storage Analysis Report (CSAR) (Reference 1), DOE decided to analyze the environmental consequences of continuing to store the commercial spent nuclear fuel (SNF) at 72 commercial nuclear power sites and DOE-owned spent nuclear fuel and high-level waste at five Department of Energy sites by region rather than by individual site. This analysis assumes that three commercial facilities pairs--Salem and Hope Creek, Fitzpatrick and Nine-Mile Point, and Dresden and Moms--share common storage due to their proximity to each other. The five regions selected for this analysis are shown on Figure 1. Regions 1, 2, and 3 are the same as those used by the Nuclear Regulatory Commission in their regulatory oversight of commercial power reactors. NRC Region 4 was subdivided into two regions to more appropriately define the two different climates that exist in NRC Region 4. A single hypothetical site in each region was assumed to store all the SNF and HLW in that region. Such a site does not exist and has no geographic location but is a mathematical construct for analytical purposes. To ensure that the calculated results for the regional analyses reflect appropriate inventory, facility and material degradation, and radionuclide transport, the waste inventories, engineered barriers, and environmental conditions for the hypothetical sites were developed from data for each of the existing sites within the given region. Weighting criteria to account for the amount and types of SNF and HLW at each site were used in the development of the environmental data for the regional site, such that the results of the analyses for the hypothetical site were representative of the sum of the results of each actual site if they had been modeled independently. This report defines the actual site data used in development of this hypothetical site, shows how the individual site data was weighted to develop the regional site, and provides the weighted data used in the CSAR analysis. It is

  5. Subsurface storage of commercial spent nuclear fuel

    International Nuclear Information System (INIS)

    Richards, L.M.; Szulinski, M.J.

    1979-01-01

    The Atlantic Richfield Company has developed the concept of storing spent fuel in dry caissons. Cooling is passive; safety and safeguard features appear promising. The capacity of a caisson to dissipate heat depends on site-specific soil characteristics and on the diameter of the caisson. It is estimated that approx. 2 kW can be dissipated in the length of one fuel element. Fuel elements can be stacked with little effect on temperature. A spacing of approx. 7.5 m (25 ft) between caissons appears rasonable. Business planning indicates a cost of approx. 0.2 mill/kWh for a 15-yr storage period. 12 figures, 4 tables

  6. Site Restoration

    Energy Technology Data Exchange (ETDEWEB)

    Noynaert, L.; Bruggeman, A.; Cornelissen, R.; Massaut, V.; Rahier, A

    2002-04-01

    The objectives, the programme, and the achievements of SCK-CEN's Site Restoration Department for 2001 are described. Main activities include the decommissioning of the BR3 PWR-reactor as well as other clean-up activities, projects on waste minimisation and the management of spent fuel and the flow of dismantled materials and the recycling of materials from decommissioning activities based on the smelting of metallic materials in specialised foundries. The department provides consultancy and services to external organisations and performs R and D on new techniques including processes for the treatment of various waste components including the reprocessing of spent fuel, the treatment of tritium, the treatment of liquid alkali metals into cabonates through oxidation, the treatment of radioactive organic waste and the reconditioning of bituminised waste products.

  7. Encapsulation technology of MR6 spent fuel and quality analysis of the EK-10 and WWR-SM spent fuel stored more than 30 years in wet conditions

    Energy Technology Data Exchange (ETDEWEB)

    Borek-Kruszewska, E.; Bykowski, W.; Chwaszczewski, S.; Czajkowski, W.; Madry, M. [Institute of Atomic Energy, Otwock -Swierk (Poland)

    2002-07-01

    The research reactor MARIA has been in operation for more than twenty years and all the spent fuel assemblies used since the first commissioning of the reactor are stored in wet facility on site. The present paper deals with the spent fuel MR-6 encapsulation technology in MARIA reactor. The encapsulated spent MR-6 fuel will be stored under water in the same pool unless some other solution is available. The capsules made of stainless steel are capable to accommodate one MR-6 fuel assembly. The encapsulation process is performed in the hot cell by the MARIA reactor. The spent fuel having its leg cut off is loaded to the transport cylinder manually and next transferred to a trolley. The trolley is moving to a position directly below the entrance to the hot cell and the spent fuel is entering the hot cell. The spent fuel assembly is then put into the drying cell. Dried out spent fuel is moved into the capsule mounted on the grip of the machine. Next, the capsule lid is pressed in and welded. After the leak test and filling up with helium the capsule returns from the hot cell to the pool. The hermetic capsule is sunk back into the water and positioned in the separator . The results presented earlier show, that the limiting time of WWR-SM and Ek-10 type spent fuel residence in wet storage is about 40-45 years. Therefore, the systematic quality investigation of all Ek-10 fuel elements and WWR-SM fuel assemblies discharged from EWA reactor in the period of 1959-1969 was performed. Altogether, about 2500 Ek-10 fuel elements and 47 WWR-SM fuel assemblies were investigated. The results of these investigations are presented in the present work. The sipping test, visual investigation and ultrasonic techniques were used for that purpose. The radioactive isotope Cs-137 was used as the indicator of fission product release from the fuel assembly. Taking into account the value of Cs-137 release from damaged WWR-SM fuel assembly the criteria of damaged fuel assembly were proposed. It

  8. Spent fuel dry storage in Hungary

    International Nuclear Information System (INIS)

    Buday, G.; Szabo, B.; Oerdoegh, M.; Takats, F.

    1999-01-01

    Paks Nuclear Power Plant is the only NPP in Hungary. It has four WWER-440 type reactor units. Since 1989, approximately 40-50% of the total annual electricity generation of the country has been supplied by this plant. The fresh fuel is imported from Russia. Most of the spent fuel assemblies have been shipped back to Russia. Difficulties with spent fuel transportation to Russia have begun in 1992. Since that time, some of the shipments were delayed, some of them were completely cancelled, thus creating a backlog of spent fuel filling all storage positions of the plant. To provide assurance of the continued operation, Paks NPPs management decided to implement an independent spent fuel storage facility and chose GEC-Althom's MVDS design. The construction of the facility started in February 1995 and the first spent fuel assembly was placed in the store in September 1997. The paper gives an overview of the situation, describing the conditions leading to the construction of the dry storage facility at Paks and its implementation. Finally, some information is given about the new Public Agency for Radioactive Waste Management established this year and responsible for managing the issues related to spent fuel management. (author)

  9. Safety case for the disposal of spent nuclear fuel at Olkiluoto - Synthesis 2012

    International Nuclear Information System (INIS)

    2012-12-01

    TURVA-2012 is Posiva's safety case in support of the Preliminary Safety Analysis Report (PSAR 2012) and application for a construction licence for a spent nuclear fuel repository. Consistent with the Government Decisions-in- Principle, this foresees a repository developed in bedrock at the Olkiluoto site according to the KBS-3 method, designed to accept spent nuclear fuel from the lifetime operations of the Olkiluoto and Loviisa reactors. Synthesis 2012 presents a synthesis of Posiva Oy's Safety Case 'TURVA-2012' portfolio. It summarises the design basis for the repository at the Olkiluoto site, the assessment methodology and key results of performance and safety assessments. It brings together all the lines of argument for safety, evaluation of compliance with the regulatory requirements, and statement of confidence in long-term safety and Posiva's safety analyses. The TURVA-2012 safety case demonstrates that the proposed repository design provides a safe solution for the disposal of spent nuclear fuel, and that the performance and safety assessments are fully consistent with all the legal and regulatory requirements related to long-term safety as set out in Government Decree 736/2008 and in guidance from the nuclear regulator - the STUK. Moreover, Posiva considers that the level of confidence in the demonstration of safety is appropriate and sufficient to submit the construction licence application to the authorities. The assessment of long-term safety includes uncertainties, but these do not affect the basic conclusions on the long-term safety of the repository. (orig.)

  10. Overview of spent fuel management and problems

    International Nuclear Information System (INIS)

    Ritchie, I.G.; Ernst, P.C.

    1998-01-01

    Results compiled in the research reactor spent fuel database are used to assess the status of research reactor spent fuel worldwide. Fuel assemblies, their types, enrichment, origin of enrichment and geological distribution among the industrialized and developed countries of the world are discussed. Fuel management practices in wet and dry storage facilities and the concerns of reactor operators about long-term storage of their spent fuel are presented and some of the activities carried out by the International Atomic Energy Agency to address the issues associated with research reactor spent fuel are outlined. Some projections of spent fuel inventories to the year 2006 are presented and discussed. (author)

  11. Spent fuel element storage facility

    International Nuclear Information System (INIS)

    Ukaji, Hideo; Yamashita, Rikuo.

    1981-01-01

    Purpose: To always keep water level of a spent fuel cask pit equal with water level of spent fuel storage pool by means of syphon principle. Constitution: The pool water of a spent fuel storage pool is airtightly communicated through a pipe with the pool water of a spent fuel cask, and a gate is provided between the pool and the cask. Since cask is conveyed into the cask pit as the gate close while conveying, the pool water level is raised an amount corresponding to the volume of the cask, and water flow through scattering pipe and the communication pipe to the storage pool. When the fuel is conveyed out of the cask, the water level is lowered in the amount corresponding to the volume in the cask pit, and the water in the pool flow through the communication pipe to the cask pit. (Sekiya, K.)

  12. Vision and framework for technical and management support to facilitate foreign spent fuel storage and geologic disposal in Russia

    International Nuclear Information System (INIS)

    Halsey, W.G.; Jardine, L.J.; Smith, C.F.

    1999-01-01

    This 'Technical and Management Support' program would facilitate the transfer of spent fuel from commercial power plants in Taiwan to a storage and geologic repository site near Krasnoyarsk, Russia. This program resolves issues of disposition of Taiwan spent fuel (including US origin fuel) and provides revenue for Russia to develop an integrated spent fuel storage and radioactive waste management system including a geologic repository. LLNL has ongoing contracts and collaborations with all the principal parties and is uniquely positioned to facilitate the development of such a program. A three-phase approach over 20 years is proposed: namely, an initial feasibility investigation followed by an engineering development phase, and then implementation

  13. Securing of the spent nuclear fuel stored on Gremikha site - the former Soviet submarine base in north-west of Russia - 59371

    International Nuclear Information System (INIS)

    Gorbatchev, Alexandre; Pillette-Cousin, Lucien; Stepennov, Boris; Eremenko, Valery; Zakharchev, Anatoly

    2012-01-01

    Document available in abstract form only. Full text of publication follows: In the framework of the G8 Global Partnership the French Commission on Atomic Energy (CEA) is in charge of the French funded projects aimed to secure the materials susceptible to be a subject of the proliferation or a malicious use. The securing of the Spent Nuclear Fuel (SNF) from the former soviet submarines is of a special importance for CEA and the Russian Rosatom. Our main bilateral project has focused on two kinds of the SNF (alpha cores and VVR assemblies) stored at Gremikha, the former submarine base in the North-West of Russia. As of 2011 a significant results have been achieved: 2/3 of VVR type assemblies have been removed from Gremikha and reprocessed at PO Mayak. Nine alpha cores are unloaded and stored on at Gremikha. The main task now is to prepare the removal from Gremikha of all the remaining SNF and also to set up the needed infrastructure at the sites where this SNF will be moved. Substantial funding and technical assistance both from France and Russia will be required for that. Beyond the operator of the Gremikha site (SevRAO), the CEA and Rosatom involve many expert organizations from both countries such as AREVA, Kurchatov Institute and many others. Their contribution is one of the key elements of the success. (authors)

  14. A COMPARISON OF CHALLENGES ASSOCIATED WITH SLUDGE REMOVAL, TREATMENT and DISPOSAL AT SEVERAL SPENT FUEL STORAGE LOCATIONS

    International Nuclear Information System (INIS)

    PERES, M.W.

    2007-01-01

    Challenges associated with the materials that remain in spent fuel storage pools are emerging as countries deal with issues related to storing and cleaning up nuclear fuel left over from weapons production. The K Basins at the Department of Energy's site at Hanford in southeastern Washington State are an example. Years of corrosion products and piles of discarded debris are intermingled in the bottom of these two pools that stored more 2,100 metric tons (2,300 tons) of spent fuel. Difficult, costly projects are underway to remove radioactive material from the K Basins. Similar challenges exist at other locations around the globe. This paper compares the challenges of handling and treating radioactive sludge at several locations storing spent nuclear fuel

  15. Alternative concepts for spent fuel storage basin expansion at Morris Operation

    International Nuclear Information System (INIS)

    Graf, W.A. Jr.; King, C.E.; Miller, G.P.; Shadel, F.H.; Sloat, R.J.

    1980-08-01

    Alternative concepts for increasing basin capabilities for storage of spent fuel at the Morris Operation have been defined in a series of simplified flow diagrams and equipment schematics. Preliminary concepts have been outlined for (1) construction alternatives for an add-on basin, (2) high-density baskets for storage of fuel bundles or possible consolidated fuel rods in the existing or add-on basins, (3) modifications to the existing facility for increasing cask handling and fuel receiving capabilities and (4) accumulation, treatment and disposal of radwastes from storage operations. Preliminary capital and operating costs have been prepared and resource and schedule requirements for implementing the concepts have been estimated. The basin expansion alternatives would readily complement potential dry storage projects at the site in an integrated multi-stage program that could provide a total storage capacity of up to 7000 tonnes of spent fuel

  16. Long term integrity of spent fuel and construction materials for dry storage facilities

    Energy Technology Data Exchange (ETDEWEB)

    Saegusa, T [CRIEPI (Japan)

    2012-07-01

    In Japan, two dry storage facilities at reactor sites have already been operating since 1995 and 2002, respectively. Additionally, a large scale dry storage facility away from reactor sites is under safety examination for license near the coast and desired to start its operation in 2010. Its final storage capacity is 5,000tU. It is therefore necessary to obtain and evaluate the related data on integrity of spent fuels loaded into and construction materials of casks during long term dry storage. The objectives are: - Spent fuel rod: To evaluate hydrogen migration along axial fuel direction on irradiated claddings stored for twenty years in air; To evaluate pellet oxidation behaviour for high burn-up UO{sub 2} fuels; - Construction materials for dry storage facilities: To evaluate long term reliability of welded stainless steel canister under stress corrosion cracking (SCC) environment; To evaluate long term integrity of concrete cask under carbonation and salt attack environment; To evaluate integrity of sealability of metal gasket under long term storage and short term accidental impact force.

  17. Potential exposures and health effects from spent fuel transportation

    International Nuclear Information System (INIS)

    Sandquist, G.M.; Rogers, V.C.

    1986-01-01

    The radiation exposures and consequent health effects associated with normal operations and accidents during transportation of spent fuel have been analyzed and evaluated. This study was performed for the U.S. Department of Energy (DOE) as contributory data for response to specific public inquires regarding the Draft Environmental Assessments issued by DOE in 1984. Large quantities of spent fuel from power reactors will be shipped by truck and/or rail from the site of generation or temporary storage to nuclear waste repositories. This transportation activity has the potential for increasing radiation exposures and risks above normal background levels in the vicinity of the transportation route. For normal, accident-free transport of spent fuel, radiation exposures arise from both gamma and neutron sources within the spent fuel cask. U.S. regulations limit the radiation dose equivalent rate to 10 millirem per hour at any point 2 meters from the outer lateral surfaces of the transport vehicle. Computer program PATHRAE-T was developed and employed to determine the total, combined dose field. PATHRAE-T was used to estimate the maximum individual doses from rail cask accidents. The maximum individual exposure, primarily due to inhalation, is about 10 rem and occurs about 70 meters downwind. Ground deposited nuclides account for 99 percent of the population dose. The maximum population dose accident could result in about 22 latent health effects for the urban population. The same case rail cask accidents were also evaluated for a maximum water pathway contamination scenario. The nuclide contaminated plume was assumed to be transported over a large reservoir used for domestic and agricultural water. This accident could result in a 63,000 person-rem dose causing about 13 latent health effects in the absence of any natural and industrial processes for nuclide removal from the water

  18. Time Spent by Calliphora Spp. Blowflies on Standard Traps Baited with Liver and Ammonia

    Directory of Open Access Journals (Sweden)

    Florica Morariu

    2010-10-01

    Full Text Available The larvae of blowflies from the Calliphoridae family cause fly strikes in sheep and other species of economic importance. Impaired wool, decrease of ewe fertility, and even death can occur in heavy infestations. This paper describes the Calliphora spp. blowflies’ behavior on and around a trap baited with liver and ammonia before they entered in. More than half of Calliphora spp. blowflies (50.88% stayed a medium time (eight to fourteen seconds on the standard trap, while only 1.79% of them spent a longer time (26 to 30 seconds before entering the trap.

  19. Is Yucca Mountain a long-term solution for disposing of US spent nuclear fuel and high-level radioactive waste?

    Science.gov (United States)

    Thorne, M C

    2012-06-01

    On 26 January 2012, the Blue Ribbon Commission on America's Nuclear Future released a report addressing, amongst other matters, options for the managing and disposal of high-level waste and spent fuel. The Blue Ribbon Commission was not chartered as a siting commission. Accordingly, it did not evaluate Yucca Mountain or any other location as a potential site for the storage or disposal of spent nuclear fuel and high-level waste. Nevertheless, if the Commission's recommendations are followed, it is clear that any future proposals to develop a repository at Yucca Mountain would require an extended period of consultation with local communities, tribes and the State of Nevada. Furthermore, there would be a need to develop generally applicable regulations for disposal of spent fuel and high-level radioactive waste, so that the Yucca Mountain site could be properly compared with alternative sites that would be expected to be identified in the initial phase of the site-selection process. Based on what is now known of the conditions existing at Yucca Mountain and the large number of safety, environmental and legal issues that have been raised in relation to the DOE Licence Application, it is suggested that it would be imprudent to include Yucca Mountain in a list of candidate sites for future evaluation in a consent-based process for site selection. Even if there were a desire at the local, tribal and state levels to act as hosts for such a repository, there would be enormous difficulties in attempting to develop an adequate post-closure safety case for such a facility, and in showing why this unsaturated environment should be preferred over other geological contexts that exist in the USA and that are more akin to those being studied and developed in other countries.

  20. Characterization and risk assessment of spent pot lining at Valco’s landfill site at Tema, Ghana

    International Nuclear Information System (INIS)

    Arthur, E.

    2015-01-01

    Spent Pot Lining (SPL) is a waste material generated in the Primary Aluminium Smelting Industry. Globally, aluminium smelters produce in excess of about 500,000 tons of SPL annually, and safely disposing of this unavoidable but hazardous waste product is a challenge faced by the Aluminium Smelting Industry. In many cases, SPL is disposed of in a landfill. SPL contains toxic fluoride and cyanide compounds that are leachable in water. SPL is corrosive (exhibiting high pH due to alkali metals and oxides). In addition, SPL is reactive with water (producing inflammable, toxic and explosive gases). The toxic, corrosive and reactive nature of SPL means that utmost care must be taken in its handling, transportation and storage. SPL is becoming one of the aluminium industry’s major environmental concerns. The concerns stems from the environmental impact of dissolved fluorides and cyanide from SPL landfill leachate. SPL is known to have high energy value ranging from 4444 cal/g to about 5000 cal/g or more as determined in this study. It is therefore being used as a direct fuel in foundries. The high fluoride content in SPL is of immense benefit to the Cement Industry (speeds up the clinkering reaction thereby lowering operating temperatures). In view of the economic importance of SPL, there is intense mining of SPL at VALCO’s SPL landfill site at Tema. Considering the toxic nature of SPL, mining of SPL raises health concerns. In this Study, a conceptual model was developed to help understand the interrelationship between CN - and F - release mechanisms, exposure medium and pathways at the landfill site. In addition, human health risk assessment was conducted to assess possible human health risks posed to scavengers mining the waste. Also, characteristics such as the calorific value and sulphur content in the SPL which are important parameters to consider if the waste is to be used as alternate fuels were determined. Hazard Quotients of 0.73 and 0.72 for F - in soils

  1. Spent fuel cladding containment credit test

    International Nuclear Information System (INIS)

    Wilson, C.N.

    1983-01-01

    As an initial step in addressing the effectiveness of breached cladding as a barrier to radionuclide release from the repository during the post-containment period, preliminary scoping tests have been initiated which compare radionuclide releases from spent fuel specimens with artificially induced cladding defects of various severities. The artificially induced defects are all more severe than the typical in-reactor type breaches which are expected to be the principal type of breach entering the repository for terminal storage. These preliminary scoping tests being conducted by Westinghouse Hanford Company for the Lawrence Livermore National Laboratory Waste Package Development Program in support of the Tuff repository project at the Nevada Test Site are described. Also included in this presentation are selected initial results from these tests. 22 figures

  2. Department of Energy report on fee for spent nuclear fuel storage and disposal services

    International Nuclear Information System (INIS)

    1980-10-01

    Since the July 1978 publication of an estimated fee for storage and disposal, several changes have occurred in the parameters which impact the spent fuel fee. DOE has mounted a diversified program of geologic investigations that will include locating and characterizing a number of potential repository sites in a variety of different geologic environments with diverse rock types. As a result, the earliest operation date of a geologic repository is now forecast for 1997. Finally, expanded spent fuel storage capabilities at reactors have reduced the projected quantities of fuel to be stored and disposed of. The current estimates for storage and disposal are presented. This fee has been developed from DOE program information on spent fuel storage requirements, facility availability, facility cost estimates, and research and development programs. The discounted cash flow technique has used the most recent estimates of cost of borrowing by the Federal Government. This estimate has also been used in calculating the Federal charge for uranium enrichment services. A prepayment of a percentage of the storage portion of the fee is assumed to be required 5 years before spent fuel delivery. These funds and the anticipated $300 million in US Treasury borrowing authority should be sufficient to finance the acquisition of storage facilities. Similarly, a prepayment of a percentage of the disposal portion would be collected at the same time and would be used to offset disposal research and development expenditures. The balance of the storage and disposal fees will be collected upon spent fuel delivery. If disposal costs are different from what was estimated, there will be a final adjustment of the disposal portion of the fee when the spent fuel is shipped from the AFR for permanent disposal. Based on current spent fuel storage requirements, at least a 30 percent prepayment of the fee will be required

  3. Overview on spent fuel management strategies

    International Nuclear Information System (INIS)

    Dyck, P.

    2002-01-01

    This paper presents an overview on spent fuel management strategies which range from reprocessing to interim storage in a centralised facility followed by final disposal in a repository. In either case, more spent fuel storage capacity (wet or dry, at-reactor or away-from-reactor, national or regional) is required as spent fuel is continuously accumulated while most countries prefer to defer their decision to choose between these two strategies. (author)

  4. Probable leaching mechanisms for spent fuel

    International Nuclear Information System (INIS)

    Wang, R.; Katayama, Y.B.

    1981-01-01

    At the Pacific Northwest Laboratory, researchers in the Waste/Rock Interaction Technology Program are studying spent fuel as a possible waste form for the Office of Nuclear Waste Isolation. This paper presents probable leaching mechanisms for spent fuel and discusses current progress in identifying and understanding the leaching process. During the past year, experiments were begun to study the complex leaching mechanism of spent fuel. The initial work in this investigation was done with UO 2 , which provided the most information possible on the behavior of the spent-fuel matrix without encountering the very high radiation levels associated with spent fuel. Both single-crystal and polycrystalline UO 2 samples were used for this study, and techniques applicable to remote experimentation in a hot cell are being developed. The effects of radiation are being studied in terms of radiolysis of water and surface activation of the UO 2 . Dissolution behavior and kinetics of UO 2 were also investigated by electrochemical measurement techniques. These data will be correlated with those acquired when spent fuel is tested in a hot cell. Oxidation effects represent a major area of concern in evaluating the stability of spent fuel. Dissolution of UO 2 is greatly increased in an oxidizing solution because the dissolution is then controlled by the formation of hexavalent uranium. In solutions containing very low oxygen levels (i.e., reducing solutions), oxidation-induced dissolution may be possible via a previously oxidized surface, through exposure to air during storage, or by local oxidants such as O 2 and H 2 O 2 produced from radiolysis of water and radiation-activated UO 2 surfaces. The effects of oxidation not only increase the dissolution rate, but could lead to the disintegration of spent fuel into fine fragments

  5. Survey of wet and dry spent fuel storage

    International Nuclear Information System (INIS)

    1999-07-01

    Spent fuel storage is one of the important stages in the nuclear fuel cycle and stands among the most vital challenges for countries operating nuclear power plants. Continuous attention is being given by the IAEA to the collection, analysis and exchange of information on spent fuel management. Its role in this area is to provide a forum for exchanging information and for coordinating and encouraging closer co-operation among Member States. Spent fuel management is recognized as a high priority IAEA activity. In 1997, the annual spent fuel arising from all types of power reactors worldwide amounted to about 10,500 tonnes heavy metal (t HM). The total amount of spent fuel accumulated worldwide at the end of 1997 was about 200,000 t HM of which about 130,000 t HM of spent fuel is presently being stored in at-reactor (AR) or away-from-reactor (AFR) storage facilities awaiting either reprocessing or final disposal and 70,000 t HM has been reprocessed. Projections indicate that the cumulative amount generated by 2010 may surpass 340,000 t HM and by the year 2015 395,000 t HM. Part of the spent fuel will be reprocessed and some countries took the option to dispose their spent fuel in a repository. Most countries with nuclear programmes are using the deferral of a decision approach, a 'wait and see' strategy with interim storage, which provides the ability to monitor the storage continuously and to retrieve the spent fuel later for either direct disposal or reprocessing. Some countries use different approaches for different types of fuel. Today the worldwide reprocessing capacity is only a fraction of the total spent fuel arising and since no final repository has yet been constructed, there will be an increasing demand for interim storage. The present survey contains information on the basic storage technologies and facility types, experience with wet and dry storage of spent fuel and international experience in spent fuel transport. The main aim is to provide spent fuel

  6. Heat transfer analysis of consolidated dry storage system for CANDU spent fuel considering environmental conditions of Wolsong site

    International Nuclear Information System (INIS)

    Lee, K. H.; Yoon, J. H.; Choi, B. I.; Lee, H. Y.

    2004-01-01

    The purpose of the present paper is to perform heat transfer analysis of the MACSTOR/KN-400 dry storage system for CANDU spent fuel in order to predict maximum concrete temperatures and temperature gradients. This module has twice the capacity of the existing MACSTOR-200, which is in operation at Gentilly-2. In the thermal design of the MACSTOR/KN-400, Thermal Insulation Panels(TIP) were introduced to reduce concrete temperatures and temperature gradients in the module caused by the high fuel heat loads. Environmental factors such as solar heat, daily temperature variations and ambient temperatures in summer and winter at Wolsong site and the assumed presence of hot baskets were taken into consideration in the simulations. Two cases were performed for the MACSTOR/KN-400: Off-normal cases in summer and winter. The maximum local concrete temperatures were predicted to be 63 .deg. C for the off-normal case. The temperature gradients in the concrete walls and roof are predicted to be 28C and 25C for off-normal operation in summer, incorporating a 3C uncertainty. In conclusion, this paper shows that the maximum temperature for the module is expected to meet the temperature limitations of ACI 349

  7. DOE-owned spent nuclear fuel program plan

    International Nuclear Information System (INIS)

    1995-11-01

    The Department of Energy (DOE) has produced spent nuclear fuel (SNF) for many years as part of its various missions and programs. The historical process for managing this SNF was to reprocess it whereby valuable material such as uranium or plutonium was chemically separated from the wastes. These fuels were not intended for long-term storage. As the need for uranium and plutonium decreased, it became necessary to store the SNF for extended lengths of time. This necessity resulted from a 1992 DOE decision to discontinue reprocessing SNF to recover strategic materials (although limited processing of SNF to meet repository acceptance criteria remains under consideration, no plutonium or uranium extraction for other uses is planned). Both the facilities used for storage, and the fuel itself, began experiencing aging from this extended storage. New efforts are now necessary to assure suitable fuel and facility management until long-term decisions for spent fuel disposition are made and implemented. The Program Plan consists of 14 sections as follows: Sections 2--6 describe objectives, management, the work plan, the work breakdown structure, and the responsibility assignment matrix. Sections 7--9 describe the program summary schedules, site logic diagram, SNF Program resource and support requirements. Sections 10--14 present various supplemental management requirements and quality assurance guidelines

  8. DOE-owned spent nuclear fuel program plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The Department of Energy (DOE) has produced spent nuclear fuel (SNF) for many years as part of its various missions and programs. The historical process for managing this SNF was to reprocess it whereby valuable material such as uranium or plutonium was chemically separated from the wastes. These fuels were not intended for long-term storage. As the need for uranium and plutonium decreased, it became necessary to store the SNF for extended lengths of time. This necessity resulted from a 1992 DOE decision to discontinue reprocessing SNF to recover strategic materials (although limited processing of SNF to meet repository acceptance criteria remains under consideration, no plutonium or uranium extraction for other uses is planned). Both the facilities used for storage, and the fuel itself, began experiencing aging from this extended storage. New efforts are now necessary to assure suitable fuel and facility management until long-term decisions for spent fuel disposition are made and implemented. The Program Plan consists of 14 sections as follows: Sections 2--6 describe objectives, management, the work plan, the work breakdown structure, and the responsibility assignment matrix. Sections 7--9 describe the program summary schedules, site logic diagram, SNF Program resource and support requirements. Sections 10--14 present various supplemental management requirements and quality assurance guidelines.

  9. Spent fuel management in Canada

    International Nuclear Information System (INIS)

    Khan, A.; Pattantyus, P.

    1999-01-01

    The current status of the Canadian spent fuel storage is presented. This includes wet and dry interim storage. Extension of wet interim storage facilities is nor planned, as dry technologies have found wide acceptance. The Canadian nuclear program is sustained by commercial Ontario Hydro CANDU type reactors, since 1971, representing 13600 MW(e) of installed capacity, able to produce 9200 spent fuel bundles (1800 tU) every year, and Hydro Quebec and New Brunswick CANDU reactors each producing 685 MW(e) and about 100 tU of spent fuel annually. The implementation of various interim (wt and dry) storage technologies resulted in simple, dense and low cost systems. Economical factors determined that the open cycle option be adopted for the CANDU type reactors rather that recycling the spent fuel. Research and development activities for immobilization and final disposal of nuclear waste are being undertaken in the Canadian Nuclear Fuel Waste Management Program

  10. Feedback from performance assessment to site characterisation. The SITE-94 example

    International Nuclear Information System (INIS)

    Dverstorp, B.; Geier, J.

    1999-01-01

    Interaction and information exchange between site characterisation and performance assessment are key features of any successful radioactive waste management programme. Some examples are presented of the types of feedback that can be offered from performance assessment to site characterisation, based on SKI's most recent performance assessment project, SITE-94. SITE-94 in Sweden was an assessment of a hypothetical repository for spent nuclear fuel, based on real data gathered in the surface-based investigation of the Aespoe Hard Rock Laboratory site. Examples of feedback are given concerning quality control of data and site investigation procedures, identification of key parameters for the performance assessment, use of models for planning and evaluation of a site investigation, data sampling strategies, and guidance on future priorities for further development of site investigation methods. Because site characterisation serves multiple purposes, including provision of data for repository design and construction, it must account for and compromise among requirements from several lines of analyses in the performance assessment. (author)

  11. Development of advanced spent fuel management process. System analysis of advanced spent fuel management process

    International Nuclear Information System (INIS)

    Ro, S.G.; Kang, D.S.; Seo, C.S.; Lee, H.H.; Shin, Y.J.; Park, S.W.

    1999-03-01

    The system analysis of an advanced spent fuel management process to establish a non-proliferation model for the long-term spent fuel management is performed by comparing the several dry processes, such as a salt transport process, a lithium process, the IFR process developed in America, and DDP developed in Russia. In our system analysis, the non-proliferation concept is focused on the separation factor between uranium and plutonium and decontamination factors of products in each process, and the non-proliferation model for the long-term spent fuel management has finally been introduced. (Author). 29 refs., 17 tabs., 12 figs

  12. Conceptual aspects of the safety evaluation of a project of complementary spent nuclear fuel dry storage unit

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Rafaela da S. A.; Fontes, Gladson S., E-mail: rafaaelaandrade@hotmail.com, E-mail: gsfontes@hotmail.com [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil); Saldanha, Pedro L. C., E-mail: saldanha@cnen.gov.br [Comissão Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Based on the number of cycles and the amount of new fuel elements exchanged in the reactor cores at each cycle, the forecast for the exhaustion of the spent nuclear fuel pools of the Brazil plants has provision until 2021. As are still in the studies the availability of a long-term storage facility for spent fuel, the short-term solution will be the construction of the Complementary Storage Spent Nuclear Fuel Unit, it will build inside the site in Angra Plants. The dry cask is a method of storage in which the fuel elements of high-level radioactive waste are stored, such as spent nuclear fuel, which already cooled in the fuel pool for at least one year and up to ten years. The purpose of the present paper is to discuss a conceptual study of the safety analysis of a project of licensing of a Dry Storage Unit (DSU) with the objective of verifying the application of national and international criteria, requirements and standards. The safety analysis will make on the principles adopted by the US Nuclear USNRC and the standards adopted at CNEN for dry storage. The concept of installation, seismic, geological and other analysis will be approached for approval of the site to be installed at DSU, the approved permit for the construction and finally the external and internal events that may occur being incidents and / or accidents and which are The necessary mitigations if something occurs within a period of time. (author)

  13. Conceptual aspects of the safety evaluation of a project of complementary spent nuclear fuel dry storage unit

    International Nuclear Information System (INIS)

    Freitas, Rafaela da S. A.; Fontes, Gladson S.; Saldanha, Pedro L. C.

    2017-01-01

    Based on the number of cycles and the amount of new fuel elements exchanged in the reactor cores at each cycle, the forecast for the exhaustion of the spent nuclear fuel pools of the Brazil plants has provision until 2021. As are still in the studies the availability of a long-term storage facility for spent fuel, the short-term solution will be the construction of the Complementary Storage Spent Nuclear Fuel Unit, it will build inside the site in Angra Plants. The dry cask is a method of storage in which the fuel elements of high-level radioactive waste are stored, such as spent nuclear fuel, which already cooled in the fuel pool for at least one year and up to ten years. The purpose of the present paper is to discuss a conceptual study of the safety analysis of a project of licensing of a Dry Storage Unit (DSU) with the objective of verifying the application of national and international criteria, requirements and standards. The safety analysis will make on the principles adopted by the US Nuclear USNRC and the standards adopted at CNEN for dry storage. The concept of installation, seismic, geological and other analysis will be approached for approval of the site to be installed at DSU, the approved permit for the construction and finally the external and internal events that may occur being incidents and / or accidents and which are The necessary mitigations if something occurs within a period of time. (author)

  14. Automatic spent fuel ID number reader (I)

    International Nuclear Information System (INIS)

    Tanabe, S.; Kawamoto, H.; Fujimaki, K.; Kobe, A.

    1991-01-01

    An effective and efficient technique has been developed for facilitating identification works of LWR spent fuel stored in large scale spent fuel storage pools of such as processing plants. Experience shows that there are often difficulties in the implementation of operator's nuclear material accountancy and control works as well as safeguards inspections conducted on spent fuel assemblies stored in deep water pool. This paper reports that the technique is realized as an automatic spent fuel ID number reader system installed on fuel handling machine. The ID number reader system consists of an optical sub-system and an image processing sub-system. Thousands of spent fuel assemblies stored in under water open racks in each storage pool could be identified within relatively short time (e.g. within several hours) by using this combination. Various performance tests were carried out on image processing sub-system in 1990 using TV images obtained from different types of spent fuel assemblies stored in various storage pools of PWR and BWR power stations

  15. The Swedish approach to spent fuel disposal - stepwise implementation

    International Nuclear Information System (INIS)

    Gustaffson, B.

    1997-01-01

    This presentation describes the stepwise implementation of direct disposal of spent fuel in Sweden. The present status regarding the technical development of the Swedish concept will be discussed as well the local site work made in co-operation with the affected and concerned municipalities. In this respect it should be noted that the siting work in some cases has caused heavy opposition and negative opinions. A brief review will also be given regarding the Aspo Hard Rock Laboratory. The objectives of this laboratory as well as the ongoing demo-project will be discussed. In order to give the symposium organizer a more broad view of the Swedish programme a number of recent papers has been compiled. Theses papers will be summarized in the presentation. (author). 4 tabs., 22 figs

  16. Storage of LWR spent fuel in air: Volume 1: Design and operation of a spent fuel oxidation test facility

    International Nuclear Information System (INIS)

    Thornhill, C.K.; Campbell, T.K.; Thornhill, R.E.

    1988-12-01

    This report describes the design and operation and technical accomplishments of a spent-fuel oxidation test facility at the Pacific Northwest Laboratory. The objective of the experiments conducted in this facility was to develop a data base for determining spent-fuel dry storage temperature limits by characterizing the oxidation behavior of light-water reactor (LWR) spent fuels in air. These data are needed to support licensing of dry storage in air as an alternative to spent-fuel storage in water pools. They are to be used to develop and validate predictive models of spent-fuel behavior during dry air storage in an Independent Spent Fuel Storage Installation (ISFSI). The present licensed alternative to pool storage of spent fuel is dry storage in an inert gas environment, which is called inerted dry storage (IDS). Licensed air storage, however, would not require monitoring for maintenance of an inert-gas environment (which IDS requires) but does require the development of allowable temperature limits below which UO 2 oxidation in breached fuel rods would not become a problem. Scoping tests at PNL with nonirradiated UO 2 pellets and spent-fuel fragment specimens identified the need for a statistically designed test matrix with test temperatures bounding anticipated maximum acceptable air-storage temperatures. This facility was designed and operated to satisfy that need. 7 refs

  17. Analysis of spent fuel performance in a geologic repository

    International Nuclear Information System (INIS)

    Apted, M.J.; Liebetrau, A.M.; Engel, D.W.; Alexander, D.H.

    1986-04-01

    The Analytical REpository Source-Term (AREST) code developed for the US Department of Energy is being used to assess the time-dependent release rate of radionuclides from spent nuclear fuel disposed in geologic repositories. The Waste Package Release (WPR) submodule of AREST calculates the release from individual waste packages containing spent fuel based on site-specific design, solubility, corrosion, sorption, and mass transfer data. Under the open system conditions of a repository, there are two limiting release mechanisms: surface reaction control and transport control. In addition, a separate release case is defined for soluble radionuclides that are inventory limited. Mass transfer equations for each of these processes are incorporated into AREST. Four separate sources are identified in the AREST code based on inventory and release mechanism: UO 2 matrix (transport limited), gap (inventory limited), grain boundary (inventory limited, combined with gap), and cladding (transport limited). The calculated release of nuclides contained in the matrix (> 90% of the entire inventory) is controlled by UO 2 solubility or the solubility of a nuclide-bearing phase, whichever is lower

  18. Disposal of spent fuel from German nuclear power plants - paper work or technology?

    International Nuclear Information System (INIS)

    Graf, R.; Filbert, W.

    2006-01-01

    The reference concept 'direct disposal of spent fuel' was developed as an alternative to spent fuel reprocessing and vitrified HLW disposal. The technical facilities necessary for the implementation of this reference concept - the so called POLLUX-concept, e.g. interim storages for casks containing spent fuel, a pilot conditioning facility, and a special cask 'POLLUX' for final disposal have been built. With view to a geological salt formation all handling procedures for the repository were tested aboveground in a test facility at a 1:1 scale. To optimise the concept all operational steps are reviewed for possible improvement. Most promising are a concept using canisters (BSK 3) instead of POLLUX casks, and the direct disposal of transport and storage casks (DIREGT-concept) which is the most recent one and has been designed for the direct disposal of large transport and storage casks. The final exploration of the pre-selected repository site is still pending, from the industries point of view due to political reasons only. The present paper describes the main concepts and their status as of today. (author)

  19. CNAAA spent fuel complementary storage building (UFC) construction and licensing: an overview of current status

    International Nuclear Information System (INIS)

    Lima Neto, Bertino do Carmo; Pacifi, Cicero Durval

    2013-01-01

    The reprocessing of nuclear fuel assemblies could be a valuable solution in order to make available additional energy resources and also to decrease the volume of discarded materials. After the burning of nuclear fuel assemblies to produce electrical energy, these components have to be stored in the spent fuel pools of each unit, for at least 10 years, in order to decrease their residual heat. Even after this initial 10 year-period, these spent fuel assemblies still have a great amount of energy, which can be reused. Nowadays, the spent fuel materials can be reprocessed in order to produce electrical energy, or be stored to provide, in the future, an opportunity to decide how these materials will be treated. At the present moment, Brazil does not plan to reprocess these spent fuels assemblies, as performed by some other countries. Thus, Brazil intends to build a spent fuel long term intermediate storage facility to allow the chance to make a decision in the future, taking into account the available technology at that time. Considering the three CNAAA units (Angra 1, 2 and 3 of Central Nuclear Almirante Alvaro Alberto, the Brazilian nuclear power plant, located at Angra dos Reis county, Rio de Janeiro state) have a life time estimated in 60 years, and the intrinsical spent fuel pools storage capacity of these units, a Spent Fuel Complementary Storage Building - UFC has to be foreseen in order to increase the storage capacity of CNAAA. Therefore, the Spent Fuel Complementary Storage Building shall be in operation in 2018, capable to receive the first spent fuel assemblies from Angra 2 and, in the next year, from Angra 1. The same procedure will be applied for the spent fuel assemblies of Angra 3, currently in construction. The Spent Fuel Complementary Storage Building will be constructed and operated by Eletrobras Eletronuclear - the CNAAA owner - and will be located at the same site of the plant. Conceptually, the UFC will be built as a wet storage modality

  20. Constor steel concrete sandwich cask concept for transport and storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Diersch, R.; Dreier, G.; Gluschke, K.; Zubkov, A.; Danilin, B.; Fromzel, V.

    1998-01-01

    A spent nuclear fuel transport and storage sandwich cask concept has been developed together with the Russian company CKTI. Special consideration was given to an economical and effective way of manufacturing by using conventional mechanical engineering technologies and common materials. The main objective of this development was to fabricate these casks in countries not having highly specialized industries. Nevertheless, this sandwich cask concept fulfills both the internationally valid IAEA criteria for transportation and the German criteria for long-term intermediate storage. The basic cask concept has been designed for adaptation to different spent fuel specifications as well as handling conditions in the NPP. Recently, adaptations have been made for spent fuel from the RBMK and VVER reactors, and also for BWR spent fuel. The analyses of nuclear and thermal behaviour as well as of strength according to IAEA examination requirements (9-m-drop, 1-m-pin drop, 800 deg. C-fire test) and of the behaviour during accident scenarios at the storage site (drop, fire, gas cloud explosion, side impact) were carried out by means of recognized calculation methods and programmes. In a special experimental programme, the mechanical and thermodynamic properties of heavy concrete were examined and the reference values required for safety analyses were determined. The results of the safety analysis after drop tests according to IAEA-regulations as well as after 1 m-drops at the storage site were confirmed by means of a test programme using a scale model. The fabrication technology has been tested with help of a half scale cask model. The model has been prefabricated in Russia and completed in Germany. It has been shown that the CONSTOR cask can be fabricated in an effective and economic way. (authors)