WorldWideScience

Sample records for site characterization advanced

  1. Advances in characterizing ubiquitylation sites by mass spectrometry

    DEFF Research Database (Denmark)

    Sylvestersen, K.B.; Young, C.; Nielsen, M.L.

    2013-01-01

    The attachment of one or more ubiquitin moieties to proteins plays a central regulatory mechanism in eukaryotic cells. Protein ubiquitylation regulates numerous cellular processes, including protein degradation, signal transduction, DNA repair and cell division. The characterization...... of ubiquitylation is a two-fold challenge that involves the mapping of ubiquitylation sites and the determination of ubiquitin chain topology. This review focuses on the technical advances in the mass spectrometry-based characterization of ubiquitylation sites, which have recently involved the large...

  2. Wetlands Assessment for site characterization, Advanced Neutron Source (ANS)

    Energy Technology Data Exchange (ETDEWEB)

    Wade, M.C.; Socolof, M.L. [Oak Ridge National Lab., TN (United States). Energy Div.; Rosensteel, B.; Awl, D. [JAYCOR, Vienna, VA (United States)

    1994-10-01

    This Wetlands Assessment has been prepared in accordance with the Department of Energy`s (DOE) Code of Federal Regulations (CFR) 10 CFR 1022, Compliance with Floodplain/Wetlands Environmental Review Requirements, which established the policy and procedure for implementing Executive Order 11990, Protection of Wetlands. The proposed action is to conduct characterization activities in or near wetlands at the ANS site. The proposed action will covered under a Categorical Exclusion, therefore this assessment is being prepared as a separate document [10 CFR 1022.12(c)]. The purpose of this Wetlands Assessment is to fulfill the requirements of 10 CFR 1022.12(a) by describing the project, discussing the effects of the proposed action upon the wetlands, and considering alternatives to the proposed action.

  3. Advanced airborne geophysics for site and watershed characterization and remediation

    Energy Technology Data Exchange (ETDEWEB)

    Brown, B.; Hodges, G. [Fugro Airborne Surveys, Mississauga, ON (Canada)

    2007-04-01

    Airborne geophysics systems now have the ability to make accurately map the conductivity of the earth's subsurface. This article provided details of various site characterization surveys conducted using helicopter electromagnetic (HEM) surveys. Recent improvements in computer software, the use of global positioning systems (GPS), lasers, and fiber optics have increased the ability of HEM systems to accurately map ground conditions. Airborne electromagnetic survey techniques were used to characterize the geological features and lithology of the Sulphur Bank Mercury Mine (SBMM) on the eastern shore of Clear Lake in California. Natural conduits for the movement of groundwater were identified. Data showed that acidic water and mercury from the mine were contaminating the lake. The data showed good agreement with results obtained from previous conventional geologic and hydrologic investigations. HEM surveys were also used to characterize conductive mine pools and groundwater plumes at areas in the eastern United States that contained abandoned surface and underground coal mines. HEM was used to delineate source areas and flow paths for acidic, metal-containing groundwater, and data obtained from the surveys were used to plan mitigation activities. The survey identified 11 mine pools, as well as flooded workings that had previously not been mapped. HEM surveys were also used to map water-bearing fractures in areas of crystalline bedrock in drought-ridden regions in Brazil. Information from the surveys was used to locate drill targets for water wells. A test survey was used to identify wellheads leaking methane in a privately-owned gas field in Wyoming. Five methane leakage plumes were detected as a result of the survey. HEM geophysical surveys have also been used to map conductivity variations due to changes in water salinity at the Biscayne aquifer in the Florida everglades. It was concluded that airborne and HEM surveys provide significant cost savings when

  4. CCS Acceptability: Social Site Characterization and Advancing Awareness at Prospective Storage Sites in Poland and Scotland

    Directory of Open Access Journals (Sweden)

    Brunsting Suzanne

    2015-04-01

    Full Text Available This paper summarizes the work on the social dimension conducted within the EU FP7 SiteChar project. The most important aim of the research was to advance public awareness and draw lessons for successful public engagement activities when developing a CO2 storage permit application. To this end, social site characterization (e.g. representative surveys and public participation activities (focus conference were conducted at two prospective Carbon Capture and Storage (CCS sites: an onshore site in Poland and an offshore site in Scotland. The research consisted of four steps over a time period of 1.5 year, from early 2011 to mid-2012. The first step consisted of four related qualitative and quantitative research activities to provide a social characterization of the areas: desk research, stakeholder interviews, media analyses, and a survey among representative samples of the local community. The aim was to identify: stakeholders or interested parties; factors that may drive their perceptions of and attitudes towards CCS. Results were used to as input for the second step, in which a new format for public engagement named ‘focus conferences’ was tested at both sites involving a small sample of the local community. The third step consisted of making available generic as well as site-specific information to the general and local public, by: setting up a bilingual set of information pages on the project website suitable for a lay audience; organizing information meetings at both sites that were open to all who took interest. The fourth step consisted of a second survey among a new representative sample of the local community. The survey was largely identical to the survey in step 1 to enable the monitoring of changes in awareness, knowledge and opinions over time. Results provide insight in the way local CCS plans may be perceived by the local stakeholders, how this can be reliably assessed at early stage without raising unnecessary concerns, and how

  5. Seismic site-response characterization of high-velocity sites using advanced geophysical techniques: application to the NAGRA-Net

    Science.gov (United States)

    Poggi, V.; Burjanek, J.; Michel, C.; Fäh, D.

    2017-08-01

    The Swiss Seismological Service (SED) has recently finalised the installation of ten new seismological broadband stations in northern Switzerland. The project was led in cooperation with the National Cooperative for the Disposal of Radioactive Waste (Nagra) and Swissnuclear to monitor micro seismicity at potential locations of nuclear-waste repositories. To further improve the quality and usability of the seismic recordings, an extensive characterization of the sites surrounding the installation area was performed following a standardised investigation protocol. State-of-the-art geophysical techniques have been used, including advanced active and passive seismic methods. The results of all analyses converged to the definition of a set of best-representative 1-D velocity profiles for each site, which are the input for the computation of engineering soil proxies (traveltime averaged velocity and quarter-wavelength parameters) and numerical amplification models. Computed site response is then validated through comparison with empirical site amplification, which is currently available for any station connected to the Swiss seismic networks. With the goal of a high-sensitivity network, most of the NAGRA stations have been installed on stiff-soil sites of rather high seismic velocity. Seismic characterization of such sites has always been considered challenging, due to lack of relevant velocity contrast and the large wavelengths required to investigate the frequency range of engineering interest. We describe how ambient vibration techniques can successfully be applied in these particular conditions, providing practical recommendations for best practice in seismic site characterization of high-velocity sites.

  6. Seismic site-response characterization of high-velocity sites using advanced geophysical techniques: application to the NAGRA-Net

    Czech Academy of Sciences Publication Activity Database

    Poggi, V.; Burjánek, Jan; Michel, C.; Fäh, D.

    2017-01-01

    Roč. 210, č. 2 (2017), s. 645-659 ISSN 0956-540X Institutional support: RVO:67985530 Keywords : joint inversion * earthquake ground motions * seismic noise * site effects Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.414, year: 2016

  7. Site characterization handbook

    Energy Technology Data Exchange (ETDEWEB)

    1988-06-01

    This Handbook discusses both management and technical elements that should be considered in developing a comprehensive site characterization program. Management elements typical of any project of a comparable magnitude and complexity are combined with a discussion of strategies specific to site characterization. Information specific to the technical elements involved in site characterization is based on guidance published by the Nuclear Regulatory Commission (NRC) with respect to licensing requirements for LLW disposal facilities. The objective of this Handbook is to provide a reference for both NRC Agreement States and non-Agreement States for use in developing a comprehensive site characterization program that meets the specific objectives of the State and/or site developer/licensee. Each site characterization program will vary depending on the objectives, licensing requirements, schedules/budgets, physical characteristics of the site, proposed facility design, and the specific concerns raised by government agencies and the public. Therefore, the Handbook is not a prescriptive guide to site characterization. 18 refs., 6 figs.

  8. Site characterization techniques

    Science.gov (United States)

    ,

    1995-01-01

    Geoelectrical methods have been used since the 1920's to search for metallic ore deposits. During the last decade, traditional mining geophysical techniques have been adapted for environmental site characterization. Geoelectrical geophysics is now a well developed engineering specialty, with different methods to focus both on a range of targets and on depths below the surface. Most methods have also been adapted to borehole measurements.

  9. SNF Site Characterization Data: C.Jarvis

    Data.gov (United States)

    National Aeronautics and Space Administration — Site characterization parameters (canopy density, litter components, soil characterization: color, moisture, components) for selected sites within the Superior...

  10. Preliminary Site Characterization Report, Rulsion Site, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    This report is a summary of environmental information gathered during a review of the documents pertaining to Project Rulison and interviews with personnel who worked on the project. Project Rulison was part of Operation Plowshare (a program designed to explore peaceful uses for nuclear devices). The project consisted of detonating a 43-kiloton nuclear device on September 10, 1969, in western Colorado to stimulate natural gas production. Following the detonation, a reentry well was drilled and several gas production tests were conducted. The reentry well was shut-in after the last gas production test and was held in standby condition until the general cleanup was undertaken in 1972. A final cleanup was conducted after the emplacement and testing wells were plugged in 1976. However, some surface radiologic contamination resulted from decontamination of the drilling equipment and fallout from the gas flaring during drilling operations. With the exception of the drilling effluent pond, all surface contamination at the Rulison Site was removed during the cleanup operations. All mudpits and other excavations were backfilled, and both upper and lower drilling pads were leveled and dressed. This report provides information regarding known or suspected areas of contamination, previous cleanup activities, analytical results, a review of the regulatory status, the site`s physical environment, and future recommendations for Project Ruhson. Based on this research, several potential areas of contamination have been identified. These include the drilling effluent pond and mudpits used during drilling operations. In addition, contamination could migrate in the gas horizon.

  11. Advanced and Integrated Petrophysical Characterization for CO2 Storage: Application to the Ketzin Site Caractérisation pétrophysique intégrée pour le stockage de CO2 : application au site de Ketzin

    Directory of Open Access Journals (Sweden)

    Fleury M.

    2013-06-01

    Full Text Available Advanced and Integrated Petrophysical Characterization for CO2 Storage: Application to the Ketzin Site — Reservoir simulations and monitoring of CO2 storage require specific petrophysical data. We show a workflow that can be applied to saline aquifers and caprocks in order to provide the minimum data set for realistic estimations of storage potential and perform pertinent simulations of CO2 injection. The presented series of experiments are fully integrated with quantitative log data analysis to estimate porosity, irreducible saturation, drainage capillary pressure and water relative permeability, residual gas saturation, resistivity-saturation relationships and caprock transport properties (permeability and diffusivity. The case considered is a saline aquifer of the Triassic Stuttgart formation studied in the framework of the CO2SINK onshore research storage, the first in situ testing site of CO2 injection in Germany located near the city of Ketzin. We used petrophysical methods that can provide the required data in a reasonable amount of time while still being representative of the in situ injection process. For two phase transport properties, we used the centrifuge technique. For resistivity measurements, we used the Fast Resistivity Index Measurement (FRIM method in drainage and imbibition, at ambient and storage conditions. For caprock characterization, we used a fast NMR (Nuclear Magnetic Resonance deuterium tracer technique to measure diffusivity and a modified steady state innovative technique to determine permeability. Entry pressure has also been evaluated using several methods. Resistivity and NMR logs were analyzed to provide a continuous estimation of irreducible saturation for the entire storage zone and to judge on the representativity of the samples analyzed in the laboratory. For the Ketzin site, the storage zone is a clayey sandstone of fluvial origin locally highly cemented, with porosity around 30% and permeability ranging

  12. Advanced Fine Particulate Characterization Methods

    Energy Technology Data Exchange (ETDEWEB)

    Steven Benson; Lingbu Kong; Alexander Azenkeng; Jason Laumb; Robert Jensen; Edwin Olson; Jill MacKenzie; A.M. Rokanuzzaman

    2007-01-31

    The characterization and control of emissions from combustion sources are of significant importance in improving local and regional air quality. Such emissions include fine particulate matter, organic carbon compounds, and NO{sub x} and SO{sub 2} gases, along with mercury and other toxic metals. This project involved four activities including Further Development of Analytical Techniques for PM{sub 10} and PM{sub 2.5} Characterization and Source Apportionment and Management, Organic Carbonaceous Particulate and Metal Speciation for Source Apportionment Studies, Quantum Modeling, and High-Potassium Carbon Production with Biomass-Coal Blending. The key accomplishments included the development of improved automated methods to characterize the inorganic and organic components particulate matter. The methods involved the use of scanning electron microscopy and x-ray microanalysis for the inorganic fraction and a combination of extractive methods combined with near-edge x-ray absorption fine structure to characterize the organic fraction. These methods have direction application for source apportionment studies of PM because they provide detailed inorganic analysis along with total organic and elemental carbon (OC/EC) quantification. Quantum modeling using density functional theory (DFT) calculations was used to further elucidate a recently developed mechanistic model for mercury speciation in coal combustion systems and interactions on activated carbon. Reaction energies, enthalpies, free energies and binding energies of Hg species to the prototype molecules were derived from the data obtained in these calculations. Bimolecular rate constants for the various elementary steps in the mechanism have been estimated using the hard-sphere collision theory approximation, and the results seem to indicate that extremely fast kinetics could be involved in these surface reactions. Activated carbon was produced from a blend of lignite coal from the Center Mine in North Dakota and

  13. Natural phenomena hazards site characterization criteria

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The criteria and recommendations in this standard shall apply to site characterization for the purpose of mitigating Natural Phenomena Hazards (wind, floods, landslide, earthquake, volcano, etc.) in all DOE facilities covered by DOE Order 5480.28. Criteria for site characterization not related to NPH are not included unless necessary for clarification. General and detailed site characterization requirements are provided in areas of meteorology, hydrology, geology, seismology, and geotechnical studies.

  14. Double tracks test site characterization report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    This report presents the results of site characterization activities performed at the Double Tracks Test Site, located on Range 71 North, of the Nellis Air Force Range (NAFR) in southern Nevada. Site characterization activities included reviewing historical data from the Double Tracks experiment, previous site investigation efforts, and recent site characterization data. The most recent site characterization activities were conducted in support of an interim corrective action to remediate the Double Tracks Test Site to an acceptable risk to human health and the environment. Site characterization was performed using a phased approach. First, previously collected data and historical records sere compiled and reviewed. Generalized scopes of work were then prepared to fill known data gaps. Field activities were conducted and the collected data were then reviewed to determine whether data gaps were filled and whether other areas needed to be investigated. Additional field efforts were then conducted, as required, to adequately characterize the site. Characterization of the Double Tracks Test Site was conducted in accordance with the US Department of Energy`s (DOE) Streamlined Approach for Environmental Restoration (SAFER).

  15. Preliminary site characterization - final report

    Energy Technology Data Exchange (ETDEWEB)

    Clark, D.; Smith, L.B.

    1993-12-01

    This report summarizes the ecological unit reconnaissance conducted at the F-Area Burning/Rubble Pit(s) RCRA/CERCLA Unit (F-Area BRP) on August 30 and 31, 1993 as part of the RFI/RI baseline risk assessment for the waste unit The baseline risk assessment will assess the potential endangerment to human health and the environment associated with the unit and will be used to evaluate remediation criteria, if needed. The information presented in this report will be used in subsequent stages of the ecological risk assessment to refine the conceptual site model, assist in the selection of contaminants of concern, identify potential ecological receptors, and evaluate trophic relationships and other exposure pathways. The unit reconnaissance survey was conducted in accordance with Specification No. E-18272, Rev. 1 dated August 5, 1993, and the Draft {open_quotes}Ecological Risk Assessment Program Plan for Evaluation of Waste Sites on the Savannah River Site{close_quotes}. The objectives of the site reconnaissance were to: Assess the general characteristics of on-unit biological communities including mammals, birds, reptiles, amphibians, and any aquatic communities present. Determine the location, extent, and characteristics of on-unit ecological resources, such as forested areas and wetlands, that could serve as important wildlife habitat or provide other ecological functions. Identify any overt effects of contamination on biological communities. The field investigations included mapping and describing all wetland and terrestrial habitats; recording wildlife observations of birds, mammals, and reptiles; and investigating ecological resources in nearby downgradient and downstream areas which could be affected by mobile contaminants or future remedial actions. In preparation for the field investigation, existing unit information including aerial photographs and reports were reviewed to help identify and describe ecological resources at the waste unit.

  16. International Symposium on Site Characterization for CO2Geological Storage

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, Chin-Fu

    2006-02-23

    Several technological options have been proposed to stabilize atmospheric concentrations of CO{sub 2}. One proposed remedy is to separate and capture CO{sub 2} from fossil-fuel power plants and other stationary industrial sources and to inject the CO{sub 2} into deep subsurface formations for long-term storage and sequestration. Characterization of geologic formations for sequestration of large quantities of CO{sub 2} needs to be carefully considered to ensure that sites are suitable for long-term storage and that there will be no adverse impacts to human health or the environment. The Intergovernmental Panel on Climate Change (IPCC) Special Report on Carbon Dioxide Capture and Storage (Final Draft, October 2005) states that ''Site characterization, selection and performance prediction are crucial for successful geological storage. Before selecting a site, the geological setting must be characterized to determine if the overlying cap rock will provide an effective seal, if there is a sufficiently voluminous and permeable storage formation, and whether any abandoned or active wells will compromise the integrity of the seal. Moreover, the availability of good site characterization data is critical for the reliability of models''. This International Symposium on Site Characterization for CO{sub 2} Geological Storage (CO2SC) addresses the particular issue of site characterization and site selection related to the geologic storage of carbon dioxide. Presentations and discussions cover the various aspects associated with characterization and selection of potential CO{sub 2} storage sites, with emphasis on advances in process understanding, development of measurement methods, identification of key site features and parameters, site characterization strategies, and case studies.

  17. Stochastic Indicators for Waste Site Characterization

    Science.gov (United States)

    Christakos, George; Hristopulos, Dionissios T.

    1996-08-01

    Site characterization is an important prerequisite of risk assessment and remediation strategies. Evaluation of the health effects of groundwater and soil contamination depends on the adequate analysis of spatial heterogeneity, exceedance levels, and uncertainties. In this work we formulate and calculate stochastic indicators that provide a rigorous characterization of exposure levels in sites with heterogeneous contaminant distributions and offer valuable information for a cost-effective cleanup analysis. These site indicators are general and can be used for different types and distributions of groundwater and soil contaminants. Important properties of the stochastic indicators are examined which can evaluate the potential for contamination at large scales, and improve understanding of threatened and damaged ecosystems. Analytically tractable formulas are derived that allow the practical estimation of site indicators on the basis of experimental data. Scale and modeling effects on contaminant level analysis are examined in terms of the stochastic indicators. Site cleanup costs depend directly on inferred characteristics of the stochastic indicators, which thus can play an important role in waste site management. Applications are discussed that offer insight regarding certain aspects of stochastic site characterization. Analytical methods of site characterization are compared to numerical simulations. It is shown that the latter can provide a practical alternative to the former, but they could lead to inaccurate results if they are not interpreted carefully.

  18. Site characterization and petroleum hydrocarbon plume mapping

    Energy Technology Data Exchange (ETDEWEB)

    Ravishankar, K. [Harding Lawson Associates, Houston, TX (United States)

    1996-12-31

    This paper presents a case study of site characterization and hydrocarbon contamination plume mapping/delineation in a gas processing plant in southern Mexico. The paper describes innovative and cost-effective use of passive (non-intrusive) and active (intrusive) techniques, including the use of compound-specific analytical methods for site characterization. The techniques used, on a demonstrative basis, include geophysical, geochemical, and borehole drilling. Geochemical techniques used to delineate the horizontal extent of hydrocarbon contamination at the site include soil gas surveys. The borehole drilling technique used to assess the vertical extent of contamination and confirm geophysical and geochemical data combines conventional hollow-stem auguring with direct push-probe using Geoprobe. Compound-specific analytical methods, such as hydrocarbon fingerprinting and a modified method for gasoline range organics, demonstrate the inherent merit and need for such analyses to properly characterize a site, while revealing the limitations of noncompound-specific total petroleum hydrocarbon analysis. The results indicate that the techniques used in tandem can properly delineate the nature and extent of contamination at a site; often supplement or complement data, while reducing the risk of errors and omissions during the assessment phase; and provide data constructively to focus site-specific remediation efforts. 7 figs.

  19. Characterization of the Source Physics Experiment Site

    Science.gov (United States)

    Sussman, A. J.; Schultz-Fellenz, E. S.; Broome, S. T.; Townsend, M.; Abbott, R. E.; Snelson, C. M.; Cogbill, A. H.; Conklin, G.; Mitra, G.; Sabbeth, L.

    2012-12-01

    Designed to improve long-range treaty monitoring capabilities, the Source Physics Experiments, conducted at the Nevada National Security Site, also provide an opportunity to advance near-field monitoring and field-based investigations of suspected underground test locations. In particular, features associated with underground testing can be evaluated using Source Physics Experiment activities as analogs, linking on-site inspections with remote sensing technologies. Following a calibration shot (SPE 1), SPE 2 (10/2011) and SPE 3 (07/2012) were performed in the same emplacement hole with 1.0 ton of explosives at 150 ft depth. Because one of the goals of the Source Physics Experiments is to determine damage effects on seismic wave propagation and improve modeling capabilities, a key component in the predictive component and ultimate validation of the models is a full understanding of the intervening geology between the source and instrumented bore holes. Ground-based LIDAR and fracture mapping, mechanical properties determined via laboratory testing of rock core, discontinuity analysis and optical microscopy of the core rocks were performed prior to and following each experiment. In addition, gravity and magnetic data were collected between SPE 2 and 3. The source region of the explosions was also characterized using cross-borehole seismic tomography and vertical seismic profiling utilizing two sets of two boreholes within 40 meters of ground zero. The two sets of boreholes are co-linear with the explosives hole in two directions. Results of the LIDAR collects from both SPE 2 and 3 indicate a permanent ground displacement of up to several centimeters aligning along the projected surface traces of two faults observed in the core and fractures mapped at the surface. Laboratory testing and optical work show a difference in the characteristics of the rocks below and above 40 feet and within the fault zones.The estimated near-surface densities from the gravity survey show

  20. Advanced separations at Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, M.; McCabe, D.

    1996-10-01

    The Savannah River Site (SRS) has many waste streams that are contaminated with radionuclides and/or hazardous materials that must be treated to remove the radioactivity (cesium, strontium, tritium, actinides) and hazardous components (polychlorinated biphenyls (PCBs), cyanide, metal ions).

  1. Tomographic Site Characterization Using CPT, ERT, and GPR

    Energy Technology Data Exchange (ETDEWEB)

    Rexford M. Morey

    1997-05-23

    The U.S. Department of Energy (DOE) is responsible for the cleanup of inactive DOE sites and for bringing DOE sites and facilities into compliance with federal, state and local laws and regulations. The DOE's Office of Environmental Management (EM) needs advanced technologies that can make environmental restoration and waste management operations more efficient and less costly. These techniques are required to better characterize the physical, hydrogeological, and chemical properties of the subsurface while minimizing and optimizing the use of boreholes and monitoring wells. Today the cone penetrometer technique (CPT) is demonstrating the value of a minimally invasive deployment system fix site characterization. Applied Research Associates is developing two new sensor packages for site characterization and monitoring. The two new methods are: . Electrical Resistivity Tomography (ERT) and . Ground Penetrating Radar (GPR) Tomography. These sensor systems are now integrated with the Cone Penetrometer Technique (CPT). The results of this program now make it possible to install ERT and GPR units by CPT methods and thereby reduce installation costs and total costs for ERT and GPR surveys. These two techniques can complement each other in regions of low resistivity where ERT is more effective and regions of high resistivity where GPR is more effective. The results show that CPT-installed GeoWells can be used in both ERT and GPR borehole tomographic subsurface imaging. These two imaging techniques can be used for environmental site characterization and environmental remediation monitoring. Technologies used for site characterization and monitoring have numerous and diverse applications within site clean-up and waste management operations.

  2. Yucca Mountain Site Characterization Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    Gertz, C.P.; Bartlett, J.

    1992-01-01

    The purpose of this document is to describe the Yucca Mountain Site Characterization Project (YMP) and establish an approved YMP baseline against which overall YMP progress and management effectiveness shall be measured. For the sake of brevity, this document will be referred to as the Project Plan throughout this document. This Project Plan only addresses activities up to the submittal of the repository license application (LA) to the Nuclear Regulatory Commission (NRC). A new Project Plan will be submitted to establish the technical, cost, and schedule baselines for the final design and construction phase of development extending through the start of repository operations, assuming that the site is determined to be suitable.

  3. Site Characterization Progress Report No.20

    Energy Technology Data Exchange (ETDEWEB)

    DOE

    1999-10-01

    This is the 20th progress report issued by the U.S. Department of Energy. This report provides a summary-level discussion of Yucca Mountain Site Characterization Project progress. Accomplishments this period are presented in a format that identifies important progress achieved and conveys how that progress supports the near-term objectives in the U.S. Department of Energy's schedule. Greater detail is documented in the cited references and in deliverables listed in Appendix A to this report. Readers may request specific U.S. Department of Energy-approved program documents that are listed in Section 7, References, and Appendix A by contacting the Office of Civilian Radioactive Waste Management Information Line at 1-800-225-6972. This document provides a discussion of recently completed and ongoing activities conducted by the Yucca Mountain Site Characterization Project during the six-month reporting period from October 1, 1998, through March 31, 1999. Some information presented herein is by necessity preliminary, because some deliverables and reports that support the discussions have not been finalized. Projected future deliverables and reports are listed in Appendix B and are noted in the text as works in progress. Appendix C lists the status of milestone reports referenced in previous progress reports. A glossary of Yucca Mountain Site Characterization Project-specific terms used in this report is given in Appendix D.

  4. Recent advances in vapor intrusion site investigations.

    Science.gov (United States)

    McHugh, Thomas; Loll, Per; Eklund, Bart

    2017-12-15

    Our understanding of vapor intrusion has evolved rapidly since the discovery of the first high profile vapor intrusion sites in the late 1990s and early 2000s. Research efforts and field investigations have improved our understanding of vapor intrusion processes including the role of preferential pathways and natural barriers to vapor intrusion. This review paper addresses recent developments in the regulatory framework and conceptual model for vapor intrusion. In addition, a number of innovative investigation methods are discussed. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. SWiFT site atmospheric characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, Christopher Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ennis, Brandon Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    Historical meteorological tall tower data are analyzed from the Texas Tech University 200 m tower to characterize the atmospheric trends of the Scaled Wind Farm Technologies (SWiFT) site. In this report the data are analyzed to reveal bulk atmospheric trends, temporal trends and correlations of atmospheric variables. Through this analysis for the SWiFT turbines the site International Electrotechnical Commission (IEC) classification is determined to be class III-C. Averages and distributions of atmospheric variables are shown, revealing large fluctuations and the importance of understanding the actual site trends as opposed to simply using averages. The site is significantly directional with the average wind speed from the south, and particularly so in summer and fall. Site temporal trends are analyzed from both seasonal (time of the year) to daily (hour of the day) perspectives. Atmospheric stability is seen to vary most with time of day and less with time of year. Turbulence intensity is highly correlated with stability, and typical daytime unstable conditions see double the level of turbulence intensity versus that experienced during the average stable night. Shear, veer and atmospheric stability correlations are shown, where shear and veer are both highest for stable atmospheric conditions. An analysis of the Texas Tech University tower anemometer measurements is performed which reveals the extent of the tower shadow effects and sonic tilt misalignment.

  6. Advanced separations at Savannah River site

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, M.C. [Savannah River Technology Center, Aiken, SC (United States)

    1997-10-01

    The Savannah River Site (SRS) has many waste streams that are contaminated with radionuclides and/or hazardous materials that must be treated to remove the radioactivity (Cs, Sr, tritium, actinides) and hazardous components (poly-chlorinated biphenyls [PCBs], cyanide, metal ions). This task provides testbeds for ESP-developed materials and technology using actual SRS waste streams. The work includes different SRS waste streams: high-level waste (HLW) solutions currently stored in underground tanks onsite, water recycled from the waste vitrification plant, groundwater and other aqueous streams contaminated with metal ions and radionuclides, and reactor basin water in excess facilities. Another part of this task is to provide a report on materials for Cs removal from aqueous solutions for use as a reference.

  7. Preliminary siting characterization Salt Disposition Facility - Site B

    Energy Technology Data Exchange (ETDEWEB)

    Wyatt, D.

    2000-01-04

    A siting and reconnaissance geotechnical program has been completed in S-Area at the Savannah River Site in South Carolina. This program investigated the subsurface conditions for the area known as ``Salt Disposition Facility (SDF), Site B'' located northeast of H-Area and within the S-Area. Data acquired from the Site B investigation includes both field exploration and laboratory test data.

  8. NRC staff site characterization analysis of the Department of Energy`s Site Characterization Plan, Yucca Mountain Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-08-01

    This Site Characterization Analysis (SCA) documents the NRC staff`s concerns resulting from its review of the US Department of Energy`s (DOE`s) Site Characterization Plan (SCP) for the Yucca Mountain site in southern Nevada, which is the candidate site selected for characterization as the nation`s first geologic repository for high-level radioactive waste. DOE`s SCP explains how DOE plans to obtain the information necessary to determine the suitability of the Yucca Mountain site for a repository. NRC`s specific objections related to the SCP, and major comments and recommendations on the various parts of DOE`s program, are presented in SCA Section 2, Director`s Comments and Recommendations. Section 3 contains summaries of the NRC staff`s concerns for each specific program, and Section 4 contains NRC staff point papers which set forth in greater detail particular staff concerns regarding DOE`s program. Appendix A presents NRC staff evaluations of those NRC staff Consultation Draft SCP concerns that NRC considers resolved on the basis of the SCP. This SCA fulfills NRC`s responsibilities with respect to DOE`s SCP as specified by the Nuclear Waste Policy Act (NWPA) and 10 CFR 60.18. 192 refs., 2 tabs.

  9. Site characterization plan thermal goals reevaluation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-09-08

    The Site Characterization Plan (SCP) (DOE, 1988) attempted to define surrogate criteria that could be used to establish potential repository performance. These criteria or SCP thermal goals were developed from knowledge existing at the time and, as a reference case, emphasized performance for waste emplacement in a vertical borehole. Since that time, new knowledge has become available and some additional analyses of thermal loading have been performed. Additionally, other emplacement modes such as in-drift emplacement are being considered to accommodate larger waste packages. New concepts such as ``extended hot`` are also being considered as possible methods to achieve improved waste isolation. Thus it became clear that the thermal goals established in the SCP should be reevaluated. A Working Group was formed to reassess the SCP thermal goals to determine whether each goal was still valid, if there were goals that needed to be added, and what if any effort was needed to reduce the uncertainty associated with a particular goal. The objectives of the effort were to: (1) provide thermal goals that would support the FY 1993 Thermal Loading Systems Study; (2) help focus the planned testing and analysis efforts; and (3) acquire data that potentially could be used to initiate a change to the project technical baseline. Sixteen thermal goals were evaluated; fifteen were from various sections of the SCP; one goal was added, and another was split into two to include in-drift emplacement. The group`s findings and recommendations are presented.

  10. GEOTECHNICAL/GEOCHEMICAL CHARACTERIZATION OF ADVANCED COAL PROCESS WASTE STREAMS

    Energy Technology Data Exchange (ETDEWEB)

    Edwin S. Olson; Charles J. Moretti

    1999-11-01

    Thirteen solid wastes, six coals and one unreacted sorbent produced from seven advanced coal utilization processes were characterized for task three of this project. The advanced processes from which samples were obtained included a gas-reburning sorbent injection process, a pressurized fluidized-bed coal combustion process, a coal-reburning process, a SO{sub x}, NO{sub x}, RO{sub x}, BOX process, an advanced flue desulfurization process, and an advanced coal cleaning process. The waste samples ranged from coarse materials, such as bottom ashes and spent bed materials, to fine materials such as fly ashes and cyclone ashes. Based on the results of the waste characterizations, an analysis of appropriate waste management practices for the advanced process wastes was done. The analysis indicated that using conventional waste management technology should be possible for disposal of all the advanced process wastes studied for task three. However, some wastes did possess properties that could present special problems for conventional waste management systems. Several task three wastes were self-hardening materials and one was self-heating. Self-hardening is caused by cementitious and pozzolanic reactions that occur when water is added to the waste. All of the self-hardening wastes setup slowly (in a matter of hours or days rather than minutes). Thus these wastes can still be handled with conventional management systems if care is taken not to allow them to setup in storage bins or transport vehicles. Waste self-heating is caused by the exothermic hydration of lime when the waste is mixed with conditioning water. If enough lime is present, the temperature of the waste will rise until steam is produced. It is recommended that self-heating wastes be conditioned in a controlled manner so that the heat will be safely dissipated before the material is transported to an ultimate disposal site. Waste utilization is important because an advanced process waste will not require

  11. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    GREAGER, T.M.

    1999-09-09

    The Transuranic Waste Characterization Quality Assurance Program Plan required each US Department of Energy (DOE) site that characterizes transuranic waste to be sent the Waste Isolation Pilot Plan that addresses applicable requirements specified in the QAPP.

  12. Technological advances in site-directed spin labeling of proteins.

    Science.gov (United States)

    Hubbell, Wayne L; López, Carlos J; Altenbach, Christian; Yang, Zhongyu

    2013-10-01

    Molecular flexibility over a wide time range is of central importance to the function of many proteins, both soluble and membrane. Revealing the modes of flexibility, their amplitudes, and time scales under physiological conditions is the challenge for spectroscopic methods, one of which is site-directed spin labeling EPR (SDSL-EPR). Here we provide an overview of some recent technological advances in SDSL-EPR related to investigation of structure, structural heterogeneity, and dynamics of proteins. These include new classes of spin labels, advances in measurement of long range distances and distance distributions, methods for identifying backbone and conformational fluctuations, and new strategies for determining the kinetics of protein motion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Site characterization and site response in Port-au-Prince, Haiti

    Science.gov (United States)

    Hough, Susan E.; Yong, Alan K.; Altidor, Jean Robert; Anglade, Dieuseul; Given, Douglas D.; Mildor, Saint-Louis

    2011-01-01

    Waveform analysis of aftershocks of the Mw7.0 Haiti earthquake of 12 January 2010 reveals amplification of ground motions at sites within the Cul de Sac valley in which Port-au-Prince is situated. Relative to ground motions recorded at a hard-rock reference site, peak acceleration values are amplified by a factor of approximately 1.8 at sites on low-lying Mio-Pliocene deposits in central Port-au-Prince and by a factor of approximately 2.5–3 on a steep foothill ridge in the southern Port-au-Prince metropolitan region. The observed amplitude, predominant periods, variability, and polarization of amplification are consistent with predicted topographic amplification by a steep, narrow ridge. A swath of unusually high damage in this region corresponds with the extent of the ridge where high weak-motion amplifications are observed. We use ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) imagery to map local geomorphology, including characterization of both near-surface and of small-scale topographic structures that correspond to zones of inferred amplification.

  14. Measurement Sets and Sites Commonly Used for Characterization

    Science.gov (United States)

    Pagnutti, Mary; Holekamp, Kara; Ryan, Robert; Sellers, Richard; Davis, Bruce; Zanoni, Vicki

    2002-01-01

    Scientists at NASA's Earth Science Applications Directorate are creating a well-characterized Verification & Validation (V&V) site at the Stennis Space Center. This site enables the in-flight characterization of remote sensing systems and the data they acquire. The data are predominantly acquired by commercial, high spatial resolution satellite systems, such as IKONOS and QuickBird 2, and airborne systems. The smaller scale of these newer high resolution remote sensing systems allows scientists to characterize the geometric, spatial, and radiometric data properties using a single V&V site. The targets and techniques used to characterize data from these newer systems can differ significantly from the techniques used to characterize data from the earlier, coarser spatial resolution systems. Scientists are also using the SSC V&V site to characterize thermal infrared systems and active LIDAR systems. SSC employs geodetic targets, edge targets, radiometric tarps, and thermal calibration ponds to characterize remote sensing data products. This paper presents a proposed set of required measurements for visible through long-wave infrared remote sensing systems and a description of the Stennis characterization. Other topics discussed include: 1) The use of ancillary atmospheric and solar measurements taken at SSC that support various characterizations; 2) Additional sites used for radiometric, geometric, and spatial characterization in the continental United States; 3) The need for a standardized technique to be adopted by CEOS and other organizations.

  15. Measurement Sets and Sites Commonly used for Characterizations

    Science.gov (United States)

    Pagnutti, Mary; Holekamp, Kara; Ryan, Robert; Blonski, Slawomir; Sellers, Richard; Davis, Bruce; Zanoni, Vicki

    2002-01-01

    Scientists with NASA's Earth Science Applications Directorate are creating a well-characterized Verification & Validation (V&V) site at the Stennis Space Center (SSC). This site enables the in-flight characterization of remote sensing systems and the data that they require. The data are predominantly acquired by commercial, high-spatial resolution satellite systems, such as IKONOS and QuickBird 2, and airborne systems. The smaller scale of these newer high-resolution remote sensing systems allows scientists to characterize the geometric, spatial, and radiometric data properties using a single V&V site. The targets and techniques used to characterize data from these newer systems can differ significantly from the earlier, coarser spatial resolution systems. Scientists are also using the SSC V&V site to characterize thermal infrared systems and active Light Detection and Ranging (LIDAR) systems. SSC employs geodetic targets, edge targets, radiometric tarps, and thermal calibration ponds to characterize remote sensing data products. This paper presents a proposed set of required measurements for visible-through-longwave infrared remote sensing systems, and a description of the Stennis characterization. Other topics discussed inslude: 1) use of ancillary atmospheric and solar measurements taken at SSC that support various characterizations, 2) other sites used for radiometric, geometric, and spatial characterization in the continental United States,a nd 3) the need for a standardized technique to be adopted by the Committee on Earth Observation Satellites (CEOS) and other organizations.

  16. Advanced Structural Characterization of Organic Thin Films

    DEFF Research Database (Denmark)

    Gu, Yun

    In this thesis, the structural characterizations of three organic film systems are described. Several X-ray based techniques have been utilized for the characterizations for different research goals. The structures of N,N',N-trioctyltriazatriangulenium (Oct3-TATA+) salts have been investigated...... of small molecule and polymer layers is indicated by Flory- Huggins theory for the triisopropylsilylethynl pentacene (TIPS-PEN) and polystyrene blend films. In order to investigate the phase separated layers in the ink-jet printed films, we propose a method to measure diraction Bragg peaks by X...

  17. Laser characterization with advanced digital signal processing

    DEFF Research Database (Denmark)

    Piels, Molly; Tafur Monroy, Idelfonso; Zibar, Darko

    2015-01-01

    The use of machine learning techniques to characterize lasers with low output power is reviewed. Optimized phase tracking algorithms that can produce accurate noise spectra are discussed, and a method for inferring the amplitude noise spectrum and rate equation model of the laser under test is pr...

  18. Characterization of the Hanford Site and environs

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E. (ed.)

    1991-03-01

    The US Department of Energy (DOE) proposes to site, construct, and operate a new production reactor (NPR) intended to produce materials for the US nuclear weapons program. The DOE has determined that this proposed action constitutes an action that may significantly affect the quality of the human environment; therefore, the DOE is preparing an environmental impact statement (EIS) to assess the potential impacts of the proposed action and reasonable alternatives on the human and natural environment. The NPR-EIS is being prepared in accordance with Section 102(2)(C) of the National Environmental Policy Act of 1969 (NEPA), as implemented in regulations (40 CFR 1500--1508) promulgated by the Council on Environmental Quality (CEQ). Information on the potentially affected environment at the Hanford Site and its environs was provided to ANL by PNL in various submissions during CY-1989, and some of that information was consolidated into this report, which is considered to be supporting documentation for the NPR-EIS. 93 refs., 35 figs., 46 tabs.

  19. Report of early site suitability evaluation of the potential repository site at Yucca Mountain, Nevada; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Younker, J.L.; Andrews, W.B.; Fasano, G.A.; Herrington, C.C.; Mattson, S.R.; Murray, R.C. [Science Applications International Corp., Las Vegas, NV (United States); Ballou, L.B.; Revelli, M.A. [Lawrence Livermore National Lab., CA (United States); Ducharme, A.R.; Shephard, L.E. [Sandia National Labs., Albuquerque, NM (United States); Dudley, W.W.; Hoxie, D.T. [Geological Survey, Denver, CO (United States); Herbst, R.J.; Patera, E.A. [Los Alamos National Lab., NM (United States); Judd, B.R. [Decision Analysis Co., Portola Valley, CA (United States); Docka, J.A.; Rickertsen, L.D. [Weston Technical Associates, Washington, DC (United States)

    1992-01-01

    This study evaluated the technical suitability of Yucca Mountain, Nevada, as a potential site for a mined geologic repository for the permanent disposal of radioactive waste. The evaluation was conducted primarily to determine early in the site characterization program if there are any features or conditions at the site that indicate it is unsuitable for repository development. A secondary purpose was to determine the status of knowledge in the major technical areas that affect the suitability of the site. This early site suitability evaluation (ESSE) was conducted by a team of technical personnel at the request of the Associate Director of the US Department of Energy (DOE) Office of Geologic Disposal, a unit within the DOE`s Office of Civilian Radioactive Waste Management. The Yucca Mountain site has been the subject of such evaluations for over a decade. In 1983, the site was evaluated as part of a screening process to identify potentially acceptable sites. The site was evaluated in greater detail and found suitable for site characterization as part of the Environmental Assessment (EA) (DOE, 1986) required by the Nuclear Waste Policy Act of 1982 (NWPA). Additional site data were compiled during the preparation of the Site Characterization Plan (SCP) (DOE, 1988a). This early site suitability evaluation has considered information that was used in preparing both-documents, along with recent information obtained since the EA and SCP were published. This body of information is referred to in this report as ``current information`` or ``available evidence.``

  20. Leachate characterization of active and closed dump sites in Port ...

    African Journals Online (AJOL)

    ... such as air, soil, surface and ground water. The knowledge of the composition of leachates is important to determine the dump sites that require immediate remediation attention and their effective treatment approach. This study characterizes the leachate quality of both active and closed dump sites in Port Harcourt City.

  1. 2015 Advanced Site Investigation and Monitoring Report Riverton, Wyoming, Processing Site September 2016

    Energy Technology Data Exchange (ETDEWEB)

    Frazier, William [U.S. Dept. of Energy, Washington, DC (United States). Office of Legacy Management (LM); Campbell, Sam [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2016-09-01

    The U.S. Department of Energy conducted initial groundwater characterization of the Riverton, Wyoming, Processing Site in the 1990s. The characterization culminated in a Site Observational Work Plan in 1998 that recommended a natural flushing compliance strategy. Results of verification monitoring indicated that natural flushing was generally progressing as expected until June 2010, when significant increases in contaminant concentrations were measured in several monitoring wells downgradient of the site after the area flooded. In response to the unexpected results following the flood, an enhanced characterization of the surficial aquifer was conducted in 2012, which included installation of 103 boreholes along nine transects with a Geoprobe, collection of 103 water samples and 65 soil samples, laboratory tests on the soil samples, and additional groundwater modeling. This advanced site investigation report summarizes additional investigation in 2015 through the use of backhoe trenching, sonic drilling, multilevel monitoring wells, direct-push drilling, and temporary well points to collect soil and groundwater samples. Additional surface water measurements were made included the installation of a stilling well and the measurement of stream elevation along the Wind River to approximate upgradient groundwater heads. Groundwater sampling included the addition of geochemical constituents and isotopes that have not been sampled in the past to better understand post-flood conditions and the possibility of additional or ongoing contaminant sources. This sampling was performed to (1) better define the contaminant plumes, (2) verify the occurrence of persistent secondary contaminant sources, (3) better understand the reason for the contaminant spikes after a 2010 flood, and (4) assess contaminant plume stagnation near the Little Wind River. This report provides data analyses and interpretations for the 2015 site investigation that addresses these issues and provides

  2. Protecting subcontractor personnel during hazardous waste site characterization

    Energy Technology Data Exchange (ETDEWEB)

    Lankford, B.R.

    1987-01-01

    This paper covers Industrial Hygiene involvement in the Site Characterization Program, focusing on the field oversight responsibilities. It discusses the different types and levels of protective equipment, gives an example of the type of situation that can arise from field characterization efforts, and gives a brief summary of health protection program elements. 3 figs., 3 tabs.

  3. Measurement techniques for radiological characterization of contaminated sites

    Energy Technology Data Exchange (ETDEWEB)

    Loos, M.

    1996-09-18

    Once the decision is taken to characterize a contaminated site, appropriate measurement techniques must be selected. The choice will depend on the available information, on the nature and extent of the contamination, as well as on available resources (staff and budget). Some techniques are described on the basis of examples of characterization projects (e.g. Olen area in Belgium).

  4. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    GREAGER, T.M.

    1999-12-14

    The Transuranic Waste Characterization Quality Assurance Program Plan required each U.S. Department of Energy (DOE) site that characterizes transuranic waste to be sent the Waste Isolation Pilot Plan that addresses applicable requirements specified in the quality assurance project plan (QAPP).

  5. Site characterization for hybrid system construction

    Energy Technology Data Exchange (ETDEWEB)

    Saldana, R.; Miranda, U.; Medrano, M. C. [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1997-12-31

    The basic reason to use alternative systems for electricity generation, in most cases, is the lack of electricity services, such as isolated rural communities which are located far away from the electric distribution line, and the cost of its extension is too expensive, while decentralized power systems can be an economic and appropriate solution to providing these services. Up to now there are several technological options for rural electrification using PV modules, wind plants, water-power plants, anaerobic digesters, or a combination of some of them, according to the availability of energetic resources. The applications include centralized or decentralized systems, autonomous or hybrid systems, isolated or interconnected to the electric line, etc. A particular hybrid system design can be done considering two general aspects, first it is necessary to know the electric consumption that will be supplied, taking into account present and future necessities and how local energetic resources are present in a selected site. Finally, also it is necessary to carry out an economic analysis to determine the cost of kilowatt-hour generated using local energetic resources and compare it with the cost of electricity produced by conventional power systems. [Espanol] La razon principal para el uso de sistemas alternativos de generacion de electricidad, en la mayoria de los casos, es la falta de servicios de electricidad, tal como en las comunidades rurales aisladas localizadas lejos de linea de distribucion electrica, donde el costo de su extension es demasiado caro, mientras que los sistemas descentralizados de energia pueden ser una solucion economica y adecuada para proporcionar estos servicios. Hasta ahora existen varias opciones tecnologicas para la electrificacion rural usando modulos fotovoltaicos, aerogeneradores, plantas hidroelectricas, digestores anaerobicos o una combinacion de algunos de ellos, de acuerdo con la disponibilidad de los recursos energeticos. Las

  6. Ames expedited site characterization demonstration at the former manufactured gas plant site, Marshalltown, Iowa

    Energy Technology Data Exchange (ETDEWEB)

    Bevolo, A.J.; Kjartanson, B.H.; Wonder, J.D.

    1996-03-01

    The goal of the Ames Expedited Site Characterization (ESC) project is to evaluate and promote both innovative technologies (IT) and state-of-the-practice technologies (SOPT) for site characterization and monitoring. In April and May 1994, the ESC project conducted site characterization, technology comparison, and stakeholder demonstration activities at a former manufactured gas plant (FMGP) owned by Iowa Electric Services (IES) Utilities, Inc., in Marshalltown, Iowa. Three areas of technology were fielded at the Marshalltown FMGP site: geophysical, analytical and data integration. The geophysical technologies are designed to assess the subsurface geological conditions so that the location, fate and transport of the target contaminants may be assessed and forecasted. The analytical technologies/methods are designed to detect and quantify the target contaminants. The data integration technology area consists of hardware and software systems designed to integrate all the site information compiled and collected into a conceptual site model on a daily basis at the site; this conceptual model then becomes the decision-support tool. Simultaneous fielding of different methods within each of the three areas of technology provided data for direct comparison of the technologies fielded, both SOPT and IT. This document reports the results of the site characterization, technology comparison, and ESC demonstration activities associated with the Marshalltown FMGP site. 124 figs., 27 tabs.

  7. Characterization recommendations for waste sites at the Savannah River Plant

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, W.H.; Gordon, D.E.; Johnson, W.F.; Kaback, D.S.; Looney, B.B.; Nichols, R.L.; Shedrow, C.B.

    1987-11-01

    One hundred and sixty six disposal facilities that received or may have received waste materials resulting from operations at the Savannah River Plant (SRP) have been identified. These waste range from innocuous solid and liquid materials (e.g., wood piles) to process effluents that contain hazardous and/or radioactive constituents. The waste sites have been grouped into 45 categories according the the type of waste materials they received. Waste sites are located with SRP coordinates, a local Department of Energy (DOE) grid system whose grid north is 36 degrees 22 minutes west of true north. DOE policy is to close all waste sites at SRP in a manner consistent with protecting human health and environment and complying with applicable environmental regulations (DOE 1984). A uniform, explicit characterization program for SRP waste sites will provide a sound technical basis for developing closure plans. Several elements are summarized in the following individual sections including (1) a review of the history, geohydrology, and available characterization data for each waste site and (2) recommendations for additional characterization necessary to prepare a reasonable closure plan. Many waste sites have been fully characterized, while others have not been investigated at all. The approach used in this report is to evaluate available groundwater quality and site history data. For example, groundwater data are compared to review criteria to help determine what additional information is required. The review criteria are based on regulatory and DOE guidelines for acceptable concentrations of constituents in groundwater and soil.

  8. Advanced mass spectrometric characterization of DNA

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, X.; Hofstadler, S.A.; Gale, D.C. [Pacific Northwest Laboratory, Richland, WA (United States)] [and others

    1994-12-31

    Mass spectrometric characterization of DNA has progressed rapidly due to the development in electrospray ionization (ESI) and MALDI methods. ESI is especially gentle, producing multiply charged ions with high efficiency. The authors have applied ESI-MS to different aspects of DNA research. Precise molecular weight determination aids in confirming the sequence and the structure of oligonucleotides. Non-covalent associations involving DNA are essential for cellular and genomic processes. The advantages of MS in such studies include speed, sensitivity and the ability to obtain structural detail. The authors have studied interactions between duplex-DNA and minor grove binding drugs and observed distamycin-A/oligonucleotide duplex complexes with stoichiometry consistent with NMR results. A number of guanine-rich DNA sequences assemble into quadruplex structures in vitro and have been localized in several key regions in chromosomal DNA. The authors have prepared oligonucleotides designed to test the specificity of cation inclusion and observed ions with quadruplex stoichiometry. The nature and extent of cation association were determined using high resolution MS. With ESI, the high efficiency and the use of liquid samples holds significant promises for rapid DNA sequencing. In developing a method for MS sizing of sequencing mixtures, the authors have attempted to address the problem of multiple-charging by charge-state reduction of oligonucleotide ions. The authors are also investigating a more ambitious approach based on the ability to follow the reactions of individual ions. In progress to date the authors have shown that very large DNA molecules can be ionized intact and measured, potentially opening the door to rapid sequencing by gas-phase DNA degradation.

  9. Probabilistic approaches for geotechnical site characterization and slope stability analysis

    CERN Document Server

    Cao, Zijun; Li, Dianqing

    2017-01-01

    This is the first book to revisit geotechnical site characterization from a probabilistic point of view and provide rational tools to probabilistically characterize geotechnical properties and underground stratigraphy using limited information obtained from a specific site. This book not only provides new probabilistic approaches for geotechnical site characterization and slope stability analysis, but also tackles the difficulties in practical implementation of these approaches. In addition, this book also develops efficient Monte Carlo simulation approaches for slope stability analysis and implements these approaches in a commonly available spreadsheet environment. These approaches and the software package are readily available to geotechnical practitioners and alleviate them from reliability computational algorithms. The readers will find useful information for a non-specialist to determine project-specific statistics of geotechnical properties and to perform probabilistic analysis of slope stability.

  10. Site characterization data from the Area 5 science boreholes, Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Blout, D.O.; Hammermeister, P.; Zukosky, K.A.

    1995-02-01

    The Science Borehole Project consists of eight boreholes that were drilled (from 45.7 m [150 ft] to 83.8 m [275 ft] depth) in Area 5 of the Nevada Test Site, Nye County, Nevada, on behalf of the US Department of Energy. These boreholes are part of the Area 5 Site Characterization Program developed to meet data needs associated with regulatory requirements applicable to the disposal of low-level and mixed waste at this site. This series of boreholes was specifically designed to characterize parameters controlling near-surface gas transport and to monitor changes in these and liquid flow-related parameters over time. These boreholes are located along the four sides of the approximately 2.6-km{sup 2} (1-mi{sup 2}) Area 5 Radioactive Waste Management Site to provide reasonable spatial coverage for sampling and characterization. Laboratory testing results of samples taken from core and drill cuttings are reported.

  11. Site Characterization of Italian Strong Motion Recording Stations

    Science.gov (United States)

    Scasserra, Giuseppe; Stewart, Jonathan P.; Kayen, Robert E.; Lanzo, Giuseppe

    2008-07-01

    A dataset of site conditions at 101 Italian ground motion stations with recorded motions has been compiled that includes geologic characteristics and seismic velocities. Geologic characterization is derived principally from local geologic investigations by ENEL that include detailed mapping and cross sections. For sites lacking such detailed geologic characterization, the geology maps of the by Servizio Geologico d'Italia are used. Seismic velocities are extracted from the literature and the files of consulting engineers, geologists and public agencies for 33 sites. Data sources utilized include post earthquake site investigations (Friuli and Irpinia events), microzonation studies, and miscellaneous investigations performed by researchers or consulting engineers/geologists. Additional seismic velocities are measured by the authors using the controlled source spectral analysis of surface waves (SASW) method for 18 sites that recorded the 1997-1998 Umbria Marche earthquake sequence. The compiled velocity measurements provide data for 51 of the 101 sites. For the remaining sites, the average seismic velocity in the upper 30 m (Vs30) is estimated using a hybrid approach. For young Quaternary alluvium, Vs30 an existing empirical relationship for California sites by Wills and Clahan (2006) is used, which we justify by validating this relationship against Italian data. For Tertiary Limestone and Italian Mesozoic rocks, empirical estimates of Vs30 are developed using the available data. This work is also presented in Scasserra et al. (2008: JEE, in review).

  12. Site Characterization for a Deep Borehole Field Test

    Science.gov (United States)

    Kuhlman, K. L.; Hardin, E. L.; Freeze, G. A.; Sassani, D.; Brady, P. V.

    2015-12-01

    The US Department of Energy Office of Nuclear Energy is at the beginning of 5-year Deep Borehole Field Test (DBFT) to investigate the feasibility of constructing and characterizing two boreholes in crystalline basement rock to a depth of 5 km (16,400 ft). The concept of deep borehole disposal for radioactive waste has some advantages over mined repositories, including incremental construction and loading, the enhanced natural barriers provided by deep continental crystalline basement, and reduced site characterization. Site characterization efforts need to determine an eligible site that does not have the following disqualifying characteristics: greater than 2 km to crystalline basement, upward vertical fluid potential gradients, presence of economically exploitable natural resources, presence of high permeability connection to the shallow subsurface, and significant probability of future seismic or volcanic activity. Site characterization activities for the DBFT will include geomechanical (i.e., rock in situ stress state, and fluid pressure), geological (i.e., rock and fracture infill lithology), hydrological (i.e., quantity of fluid, fluid convection properties, and solute transport mechanisms), and geochemical (i.e., rock-water interaction and natural tracers) aspects. Both direct (i.e., sampling and in situ testing) and indirect (i.e., borehole geophysical) methods are planned for efficient and effective characterization of these site aspects and physical processes. Borehole-based characterization will be used to determine the variability of system state (i.e., stress, pressure, temperature, and chemistry) with depth, and interpretation of material and system parameters relevant to numerical site simulation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE

  13. Site Characterization Work Plan for Gasbuggy, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    DOE/NV

    2000-12-14

    Project Gasbuggy was the first of three joint government-industry experiments conducted to test the effectiveness of nuclear explosives to fracture deeply buried, low-permeability natural gas reservoirs to stimulate production. The scope of this work plan is to document the environmental objectives and the proposed technical site investigation strategies that will be utilized for the site characterization of the Project Gasbuggy Site. Its goal is the collection of data in sufficient quantity and quality to determine current site conditions, support a risk assessment for the site surfaces, and evaluate if further remedial action is required to achieve permanent closure of the site that is both protective of human health and the environment. The Gasbuggy Site is located approximately 55 air miles east of Farmington, New Mexico, in Rio Arriba County within the Carson National Forest in the northeast portion of the San Juan Basin. Historically, Project Gasbuggy consisted of the joint government-industry detonation of a nuclear device on December 10, 1967, followed by reentry drilling and gas production testing and project evaluation activities in post-detonation operations from 1967 to 1976. Based on historical documentation, no chemical release sites other than the mud pits were identified; additionally, there was no material buried at the Gasbuggy Site other than drilling fluids and construction debris. Although previous characterization and restoration activities including sensitive species surveys, cultural resources surveys, surface geophysical surveys, and limited soil sampling and analysis were performed in 1978 and again in 2000, no formal closure of the site was achieved. Also, these efforts did not adequately address the site's potential for chemical contamination at the surface/shallow subsurface ground levels or the subsurface hazards for potential migration outside of the current site subsurface intrusion restrictions. Additional investigation

  14. Determining the Performance of an Arid Zone Radioactive Waste Site Through Site Characterization, Modeling, and Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    B. L. Dozier; D. G. Levitt; M. J. Sully; and C. F. Lohrstorfer

    1999-03-09

    A strategy of site characterization, modeling, and monitoring are used to evaluate the performance of an interim cover at a low-level radioactive waste management site. The soil water migration papthway must be evaluated to assure the long-term isolation of low-level radioactive waste. Water balance studies using precision weighing lysimeters have been conducted for five years near the radioactive waste site ath the Nevada Test Site. The numerical flow models UNSAT-H and HYDRUS-2D were tested using the weighing lysimeter data and then used to evaluate various cover design issues including cover thickness, presence of vegetation, and monitoring system design.

  15. Advanced electron microscopy characterization of nanomaterials for catalysis

    Directory of Open Access Journals (Sweden)

    Dong Su

    2017-04-01

    Full Text Available Transmission electron microscopy (TEM has become one of the most powerful techniques in the fields of material science, inorganic chemistry and nanotechnology. In terms of resolutions, advanced TEM may reach a high spatial resolution of 0.05 nm, a high energy-resolution of 7 meV. In addition, in situ TEM can help researchers to image the process happened within 1 ms. This paper reviews the recent technical progresses of applying advanced TEM characterization on nanomaterials for catalysis. The text is organized based on the perspective of application: for example, size, composition, phase, strain, and morphology. The electron beam induced effect and in situ TEM are also introduced. I hope this review can help the scientists in related fields to take advantage of advanced TEM to their own researches. Keywords: Advanced TEM, Nanomaterials, Catalysts, In situ

  16. Hanford Site National Environmental Policy Act (NEPA) Characterization. Revision 5

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E. [ed.

    1992-12-01

    This fifth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. Information is presented on climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels, prepared by Pacific Northwest Laboratory (PNL) staff. Models are described that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclide transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions. Federal and state regulations, DOE orders and permits, and environmental standards directly applicable for the NEPA documents at the Hanford Site, are provided.

  17. Hanford Site National Environmental Policy Act (NEPA) Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E. (ed.)

    1992-12-01

    This fifth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. Information is presented on climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels, prepared by Pacific Northwest Laboratory (PNL) staff. Models are described that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclide transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions. Federal and state regulations, DOE orders and permits, and environmental standards directly applicable for the NEPA documents at the Hanford Site, are provided.

  18. Site characterization of the national seismic network of Italy

    Science.gov (United States)

    Bordoni, Paola; Pacor, Francesca; Cultrera, Giovanna; Casale, Paolo; Cara, Fabrizio; Di Giulio, Giuseppe; Famiani, Daniela; Ladina, Chiara; PIschiutta, Marta; Quintiliani, Matteo

    2017-04-01

    The national seismic network of Italy (Rete Sismica Nazionale, RSN) run by Istituto Nazionale di Geofisica e Vulcanologia (INGV) consists of more than 400 seismic stations connected in real time to the institute data center in order to locate earthquakes for civil defense purposes. A critical issue in the performance of a network is the characterization of site condition at the recording stations. Recently INGV has started addressing this subject through the revision of all available geological and geophysical data, the acquisition of new information by means of ad-hoc field measurements and the analysis of seismic waveforms. The main effort is towards building a database, integrated with the other INGV infrastructures, designed to archive homogeneous parameters through the seismic network useful for a complete site characterization, including housing, geological, seismological and geotechnical features as well as the site class according to the European and Italian building codes. Here we present the ongoing INGV activities.

  19. Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 9, Index

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-12-01

    This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules.

  20. SITE CHARACTERIZATION AND SELECTION GUIDELINES FOR GEOLOGICAL CARBON SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Friedmann, S J

    2007-08-31

    Carbon capture and sequestration (CCS) is a key technology pathway to substantial reduction of greenhouse gas emissions for the state of California and the western region. Current estimates suggest that the sequestration resource of the state is large, and could safely and effectively accept all of the emissions from large CO2 point sources for many decades and store them indefinitely. This process requires suitable sites to sequester large volumes of CO2 for long periods of time. Site characterization is the first step in this process, and the state will ultimately face regulatory, legal, and technical questions as commercial CCS projects develop and commence operations. The most important aspects of site characterizations are injectivity, capacity, and effectiveness. A site can accept at a high rate a large volume of CO2 and store it for a long time is likely to serve as a good site for geological carbon sequestration. At present, there are many conventional technologies and approaches that can be used to estimate, quantify, calculate, and assess the viability of a sequestration site. Any regulatory framework would need to rely on conventional, easily executed, repeatable methods to inform the site selection and permitting process. The most important targets for long-term storage are deep saline formations and depleted oil and gas fields. The primary CO2 storage mechanisms for these targets are well understood enough to plan operations and simulate injection and long-term fate of CO2. There is also a strong understanding of potential geological and engineering hazards for CCS. These hazards are potential pathway to CO2 leakage, which could conceivably result in negative consequences to health and the environmental. The risks of these effects are difficult to quantify; however, the hazards themselves are sufficiently well understood to identify, delineate, and manage those risks effectively. The primary hazard elements are wells and faults, but may include other

  1. [Environmental characterization of the National Contaminated Sites in SENTIERI project].

    Science.gov (United States)

    Musmeci, L; Bellino, M; Falleni, F; Piccardi, A

    2011-01-01

    The concept of "polluted site" was firstly introduced in Italy with the definition of "environmental high risk areas" (Rule 349/86). Later, the decree 471/99 stated that a site is considered polluted if the concentration of even just one index pollutant in anyone of the matrices (soil or subsoil, surface or ground waters) exceeds the allowable threshold limit concentration. The boundaries of Italian polluted sites (IPS) were defined (Decree 152/06) on the basis of health, environmental and social criteria. SENTIERI Project includes 44 out of the 57 sites comprised in the "National environmental remediation program"; they correspond to the largest national industrial agglomerates. For each site, characterization data were collected, classified and arranged in tables. A great part of collected data came also from the environmental remediation programmes planned for the sites. These plans show that characterization and risk assessment activities were mainly undertaken for private industrial areas, as they were considered source of pollution. On the other hand, municipal and/or green and agricultural areas included in IPSs were poorly studied. Therefore, it is difficult to assess the exposure of the populations living inside and/or near the IPSs. The most probable population exposure come from the contamination of ground waters utilized for irrigation, or industrial emissions. For a description of SENTIERI, refer to the 2010 Supplement of Epidemiology & Prevention devoted to SENTIERI Project.

  2. Characterization of biogas bibliography measures on sites; Caracterisation des Biogaz bibliographie mesures sur sites

    Energy Technology Data Exchange (ETDEWEB)

    Poulleau, J.

    2002-10-15

    The aim of this study is to define the pollutants emissions related to the combustion of biogas of different sources: motors, furnaces, flares...The project is presented in three parts: a bibliographic study on the chemical characterization of the biogas, a first series of measures on production sites and a second series of measures on a site of valorization and destruction of biogas. (A.L.B.)

  3. Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 6

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E. [ed.; Baker, D.A.; Chamness, M.A. [and others

    1994-08-01

    This sixth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. Chapter 4.0 summarizes up-to-date information on climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels prepared by Pacific Northwest Laboratory (PNL) staff. More detailed data are available from reference sources cited or from the authors; Chapter 5.0 has been significantly updated from the fifth revision. It describes models, including their principal underlying assumptions, that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclide transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions; The updated Chapter 6.0 provides the preparer with the federal and state regulations, DOE orders and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site, following the structure of Chapter 4.0. No conclusions or recommendations are given in this report. Rather, it is a compilation of information on the Hanford Site environment that can be utilized directly by Site contractors. This information can also be used by any interested individual seeking baseline data on the Hanford Site and its past activities by which to evaluate projected activities and their impacts.

  4. Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 7

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E. [ed.; Baker, D.A.; Chamness, M.A. [and others

    1995-09-01

    This seventh revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. Chapter 4.0 summarizes up-to-date information on climate and meteorology, geology, hydrology, environmental monitoring, ecology, history and archaeology, socioeconomics, land use, and noise levels prepared by Pacific Northwest Laboratory (PNL) staff. More detailed data are available from reference sources cited or from the authors. Chapter 5.0 was not updated from the sixth revision (1994). It describes models, including their principal underlying assumptions, that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclide transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions. The updated Chapter 6.0 provides the preparer with the federal and state regulations, DOE Orders and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site, following the structure of Chapter 4.0. No conclusions or recommendations are given in this report. Rather, it is a compilation of information on the Hanford Site environment that can be used directly by Site contractors. This information can also be used by any interested individual seeking baseline data on the Hanford Site and its past activities by which to evaluate projected activities and their impacts.

  5. Advanced Metering Installations – A Perspective from Federal Sites

    Energy Technology Data Exchange (ETDEWEB)

    Earni, Shankar [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area

    2016-05-02

    This report is intended to provide guidance to the United States Department of Energy (DOE) and other federal agencies to highlight some of the existing practices related to advanced building metering systems. This study identified some of the existing actions related to advanced meter data and proposes how advanced metered data can be employed to develop robust cost effective measurement and verification (M&V) strategies. This report proposes an integrated framework on how advanced meter data can be used to identify energy conservation opportunities and to develop proactive M&V strategies to ensure that the savings for energy projects are being realized. This information will help improve metering, feedback, and dashboard implementations for reducing energy use at DOE facilities, based on lessons learned from various advanced metering implementations.

  6. CHARACTERIZATION OF GLOVEBOX GLOVES FOR THE SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Korinko, P.

    2013-01-24

    A task was undertaken to characterize glovebox gloves that are currently used in the facilities at Savannah River Site (SRS) as well as some experimental and advanced compound gloves that have been proposed for use. Gloves from four manufacturers were tested for permeation in hydrogen and air, thermal stability, tensile properties, puncture resistance and dynamic mechanical response. The gloves were compared to each other within the type and also to the butyl rubber glove that is widely used at the SRS. The permeation testing demonstrated that the butyl compounds from three of the vendors behaved similarly and exhibited hydrogen permeabilities of .52‐.84 x10{sup ‐7} cc H{sub 2}*cm / (cm{sup 2}*atm). The Viton glove performed at the lower edge of this bound, while the more advanced composite gloves exhibited permeabilities greater than a factor of two compared to butyl. Thermogravimetric analysis was used to determine the amount of material lost under slightly aggressive conditions. Glove losses are important since they can affect the life of glovebox stripper systems. During testing at 90, 120, and 150°C, the samples lost most of the mass in the initial 60 minutes of thermal exposure and as expected increasing the temperature increased the mass loss and shortened the time to achieve a steady state loss. The ranking from worst to best was Jung butyl‐Hypalon with 12.9 %, Piercan Hypalon with 11.4 %, and Jung butyl‐Viton with 5.2% mass loss all at approximately 140°C. The smallest mass losses were experienced by the Jung Viton and the Piercan polyurethane. Tensile properties were measured using a standard dog bone style test. The butyl rubber exhibited tensile strengths of 11‐15 MPa and elongations or 660‐843%. Gloves made from other compounds exhibited lower tensile strengths (5 MPa Viton) to much higher tensile strengths (49 MPa Urethane) with a comparable range of elongation. The puncture resistance of the gloves was measured

  7. Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 9

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, D.A. [ed.; Bjornstad, B.N.; Fosmire, C.J. [and others

    1997-08-01

    This ninth revision of the Hanford Site National Environmental Policy Act (NEPA) Characterization presents current environmental data regarding the hanford Site and its immediate environs. This information is intended for use in preparing Chapters 4 and 6 in Hanford Site-related NEPA documents. Chapter 4.0 (Affected Environment) includes information on climate and meteorology, geology, hydrology, ecology, cultural, archaeological and historical resources, socioeconomics, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) provides the preparer with the federal and state regulations, DOE directives and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site. Not all of the sections have been updated for this revision. The following lists the updated sections: climate and meteorology; ecology (threatened and endangered species section only); culture, archaeological, and historical resources; socioeconomics; all of Chapter 6.

  8. Incorporating advanced EMI technologies in operational munitions characterization surveys

    Science.gov (United States)

    Miller, Jonathan S.; Shubiditze, Fridon; Pasion, Leonard; Schultz, Gregory; Chung, Heesoo

    2011-06-01

    The presence of unexploded ordnance (UXO), discarded military munitions (DMM), and munitions constituents (MC) at both active and formerly used defense sites (FUDS) has created a necessity for production-level efforts to remove these munitions and explosives of concern (MEC). Ordnance and explosives (OE) and UXO removal operations typically employ electromagnetic induction (EMI) or magnetometer surveys to identify potential MEC hazards in previously determined areas of interest. A major cost factor in these operations is the significant allocation of resources for the excavation of harmless objects associated with fragmentation, scrap, or geological clutter. Recent advances in classification and discrimination methodologies, as well as the development of sensor technologies that fully exploit physics-based analysis, have demonstrated promise for significantly reducing the false alarm rate due to MEC related clutter. This paper identifies some of the considerations for and the challenges associated with implementing these discrimination methodologies and advanced sensor technologies in production-level surveys. Specifically, we evaluate the implications of deploying an advanced multi-axis EMI sensor at a variety of MEC sites, the discrimination methodologies that leverage the data produced by this sensor, and the potential for productivity increase that could be realized by incorporating this advanced technology as part of production protocol.

  9. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    GREAGER, T.M.

    2000-12-06

    The Quality Assurance Project Plan (QAPjP) has been prepared for waste characterization activities to be conducted by the Transuranic (TRU) Project at the Hanford Site to meet requirements set forth in the Waste Isolation Pilot Plan (WIPP) Hazardous Waste Facility Permit, 4890139088-TSDF, Attachment B, including Attachments B1 through B6 (WAP) (DOE, 1999a). The QAPjP describes the waste characterization requirements and includes test methods, details of planned waste sampling and analysis, and a description of the waste characterization and verification process. In addition, the QAPjP includes a description of the quality assurance/quality control (QA/QC) requirements for the waste characterization program. Before TRU waste is shipped to the WIPP site by the TRU Project, all applicable requirements of the QAPjP shall be implemented. Additional requirements necessary for transportation to waste disposal at WIPP can be found in the ''Quality Assurance Program Document'' (DOE 1999b) and HNF-2600, ''Hanford Site Transuranic Waste Certification Plan.'' TRU mixed waste contains both TRU radioactive and hazardous components, as defined in the WLPP-WAP. The waste is designated and separately packaged as either contact-handled (CH) or remote-handled (RH), based on the radiological dose rate at the surface of the waste container. RH TRU wastes are not currently shipped to the WIPP facility.

  10. Modeling and mapping oak advance reproduction density using soil and site variables

    Science.gov (United States)

    John M. Kabrick; Jason L. Villwock; Daniel C. Dey; Tara L. Keyser; David R. Larsen

    2014-01-01

    Regenerating oaks (Quercus spp.) has remained a widespread and persistent problem throughout their natural range. Research shows that abundant oak advance reproduction is crucial for success. Although it is recognized that oak advance reproduction accumulation is inversely related to site quality, there has been little effort to model oak advance...

  11. Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 8

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, D.A. [ed.; Bjornstad, B.N.; Fosmire, C.J.; Fowler, R.A. [and others

    1996-08-01

    This eighth revision of the Hanford Site National Environmental Policy Act (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Chapters 4 and 6 in Hanford Site-related NEPA documents. Chapter 4 (Affected Environment) includes information on climate and meteorology, geology, hydrology, ecology, historical, archaeological and cultural resources, socioeconomics, and noise. Chapter 6 (Statutory and Regulatory Requirements) provides the preparer with the federal and state regulations, DOE directives and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site. The following sections were updated in this revision: climate and meteorology; ecology (threatened and endangered species section only); historical; archaeological and cultural resources; and all of chapter 6. No conclusions or recommendations are given in this report. Rather, it is a compilation of information on the Hanford Site environment that can be used directly by Site contractors. This information can also be used by any interested individual seeking baseline data on the hanford Site and its past activities by which to evaluate projected activities and their impacts.

  12. Analog site for fractured rock characterization. Annual report FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    Long, J.C.S.; Loughty, C.; Faybishenko, B. [and others

    1995-10-01

    This report describes the accomplishments of the Analog Site for Fracture Rock Characterization Project during fiscal year 1995. This project is designed to address the problem of characterizing contaminated fractured rock. In order to locate contaminant plumes, develop monitoring schemes, and predict future fate and transport, the project will address the following questions: What parts of the system control flow-geometry of a fracture network? What physical processes control flow and transport? What are the limits on measurements to determine the above? What instrumentation should be used? How should it be designed and implemented? How can field tests be designed to provide information for predicting behavior? What numerical models are good predictors of the behavior of the system? The answers to these question can be used to help plan drilling programs that are likely to intersect plumes and provide effective monitoring of plume movement. The work is done at an {open_quotes}analogue{close_quotes} site, i.e., a site that is not contaminated, but has similar geology to sites that are contaminated, in order to develop tools and techniques without the financial, time and legal burdens of a contaminated site. The idea is to develop conceptual models and investigations tools and methodology that will apply to the contaminated sites in the same geologic regimes. The Box Canyon site, chosen for most of this work represents a unique opportunity because the Canyon walls allow us to see a vertical plane through the rock. The work represents a collaboration between the Lawrence Berkeley National Laboratory (LBL), Stanford University (Stanford), Idaho National Engineering Laboratory (INEL) and Parsons Environmental Engineering (Parsons). LBL and Stanford bring extensive experience in research in fractured rock systems. INEL and Parsons bring significant experience with the contamination problem at INEL.

  13. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-01-01

    Chapter six describes the basis for facility design, the completed facility conceptual design, the completed analytical work relating to the resolution of design issues, and future design-related work. The basis for design and the conceptual design information presented in this chapter meet the requirements of the Nuclear Waste Policy Act of 1982, for a conceptual repository design that takes into account site-specific requirements. This information is presented to permit a critical evaluation of planned site characterization activities. Chapter seven describes waste package components, emplacement environment, design, and status of research and development that support the Nevada Nuclear Waste Storage Investigation (NNWSI) Project. The site characterization plan (SCP) discussion of waste package components is contained entirely within this chapter. The discussion of emplacement environment in this chapter is limited to considerations of the environment that influence, or which may influence, if perturbed, the waste packages and their performance (particularly hydrogeology, geochemistry, and borehole stability). The basis for conceptual waste package design as well as a description of the design is included in this chapter. The complete design will be reported in the advanced conceptual design (ACD) report and is not duplicated in the SCP. 367 refs., 173 figs., 68 tabs.

  14. Geological characterization of contaminated sites in urban areas (Denmark)

    DEFF Research Database (Denmark)

    Andersen, Theis Raaschou; Nissen, Randi Warncke; Poulsen, Søren Erbs

    In Denmark, contaminations from industry and farming represent a significant threat to groundwater resources. Hence there is a focus on identifying and locating these contaminated places. Once located, contaminations are mapped and monitored and remediation efforts are undertaken. Remediation is ......, can minimize the uncertainties on predictions of the fate of the contaminant. Based on the work, we were able to pinpoint the best strategies and solutions for future remediation efforts at the two sites....... in the projections on the fate of the contaminant. From two contaminated sites located around the city of Horsens, Denmark we carry out a geological characterization. The two sites are situated in urban areas. Existing data from the two field sites includes only lithological profiles from boreholes. In order...... geological models of the two sites were constructed. The 3D geological models will serve as a basis for simulating groundwater flow and contaminant transport at the field sites. The study demonstrates how detailed information about the geological setting in conjunction with contaminant transport modelling...

  15. Expedited Site Characterization geophysics: Geophysical methods and tools for site characterization

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, N.E.

    1994-03-01

    This report covers five classes of geophysical technologies: Magnetics; Electrical/electromagnetic; Seismic reflection; Gamma-ray spectrometry; and Metal-specific spectrometry. Except for radiometry, no other classes of geophysical tedmologies are specific for direct detection of the types of contaminants present at the selected sites. For each of the five classes covered, the report gives a general description of the methodology, its field use, and its general applicability to the ESC Project. In addition, the report gives a sample of the most promising instruments available for each class, including the following information: Hardware/software attributes; Purchase and rental costs; Survey rate and operating costs; and Other applicable information based on case history and field evaluations.

  16. Yucca Mountain Site Characterization Project: Technical Data Catalog quarterly supplement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-31

    The March 21, 1993, Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where it may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and published in the month following the end of each quarter. A complete revision to the Catalog is published at the end of each fiscal year. Supplements to the end-of-year edition are published each quarter. These supplements provide information related to new data items not included in previous quarterly updates and data items affected by changes to previously published reference information. The Technical Data Catalog, dated September 30, 1993, should be retained as the baseline document for the supplements until the end-of-year revision is published and distributed in October 1994.

  17. Yucca Mountain Site Characterization Project technical data catalog: Quarterly supplement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where the data may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed-in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and distributed in the month following the end of each quarter. A complete revision to the catalog is published at the end of each fiscal year. Supplements to the end-of-year edition are published each quarter. These supplements provide information related to new data items not included in previous quarterly updates and data items affected by changes to previously published reference information. The Technical Data Catalog, dated September 30, 1994, should be retained as the baseline document for the supplements until the end-of-year revision is published and distributed in October 1995.

  18. Yucca Mountain Site Characterization Project technical data catalog quarterly supplement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-31

    The Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where the data may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with t requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and distributed in the month following the end of each quarter. A complete revision to the catalog is published at the end of each fiscal year. Supplements to the end-of-year edition are published each quarter. These supplements provide information related to new data items not included in previous quarterly updates and data items affected by changes to@ previously published reference information. The Technical Data Catalog, dated September 30, 1994, should be retained as the baseline document for the supplements until the end-of-year revision is published and distributed in October 1995.

  19. Yucca Mountain Site Characterization Project Technical Data Catalog (Quarterly supplement)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    The March 21, 1993, Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where it may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and published in the month following the end of each quarter. A complete revision to the Catalog is published at the end of each fiscal year. Supplements to the end-of-year edition are published each quarter. These supplements provide information related to new data items not included in previous quarterly updates and data items affected by changes to previously published reference information. The Technical Data Catalog, dated September 30, 1993, should be retained as the baseline document for the supplements until the end-of-year revision is published and distributed in October 1994.

  20. Site Characterization Work Plan for Gnome-Coach Site, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    DOE/NV

    2001-02-13

    Project Gnome was the first nuclear experiment conducted under the U.S. Atomic Energy Commission (AEC), predecessor to the U.S. Department of Energy (DOE), Plowshare Program. Gnome was part of a joint government-industry experiment focused on developing nuclear devices exclusively for peaceful purposes. The intent of the Gnome experiment was to evaluate the effects of a nuclear detonation in a salt medium. Historically, Project Gnome consisted of a single detonation of a nuclear device on December 10, 1961. Since the Gnome detonation, the AEC/DOE has conducted surface restoration, site reconnaissance, and decontamination and decommissioning activities at the site. In addition, annual groundwater sampling is performed under a long-term hydrological monitoring program begun in 1980. Coach, an experiment to be located near the Gnome project, was initially scheduled for 1963. Although construction and rehabilitation were completed for Coach, the experiment was canceled and never executed. Known collectively as Project Gnome-Coach, the site is situated within the Salado Formation approximately 25 miles east of Carlsbad, New Mexico, in Eddy County, and is comprised of nearly 680 acres, of which 60 acres are disturbed from the combined AEC/DOE operations. The scope of this work plan is to document the environmental objectives and the proposed technical site investigation strategies that will be utilized for the site characterization of the project. The subsurface at the Gnome-Coach site has two contaminant sources that are fundamentally different in terms of both their stratigraphic location and release mechanism. The goal of this characterization is to collect data of sufficient quantity and quality to establish current site conditions and to use the data to identify and evaluate if further action is required to protect human health and the environment and achieve permanent closure of the site. The results of these activities will be presented in a subsequent corrective

  1. Site Characterization Work Plan for the Gnome-Coach Site, New Mexico (Rev. 1, January 2002)

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office (NNSA/NV)

    2002-01-14

    Project Gnome was the first nuclear experiment conducted under the U.S. Atomic Energy Commission (AEC), predecessor to the U.S. Department of Energy (DOE), Plowshare Program. The Plowshare Program focused on developing nuclear devices exclusively for peaceful purposes. The intent of the Gnome experiment was to evaluate the effects of a nuclear detonation in a salt medium. Historically, Project Gnome consisted of a single detonation of a nuclear device on December 10, 1961 with the Salado Formation. Since the Gnome detonation, the AEC/DOE has conducted surface restoration, site reconnaissance, and decontamination and decommissioning activities at the site. In addition, annual groundwater sampling is performed under a long-term hydrological monitoring program begun in 1972. Coach, an experiment to be located near the Gnome project, was initially scheduled for 1963. Although construction and rehabilitation were completed for Coach, the experiment was canceled and never executed. Known collectively as Project Gnome-Coach, the site is located approximately 25 miles east of Carlsbad, New Mexico, in Eddy County, and is comprised of nearly 680 acres, of which approximately 60 acres are disturbed from the combined AEC/DOE operations. The scope of this work plan is to document the environmental objectives and the proposed technical site investigation strategies that will be utilized for the site characterization of the project. The subsurface at the Gnome-Coach site has two contaminant sources that are fundamentally different in terms of both their stratigraphic location and release mechanism. The goal of this characterization is to collect data of sufficient quantity and quality to establish current site conditions and to use the data to identify and evaluate if further action is required to protect human health and the environment and achieve permanent closure of the site. The results of these activities will be presented in a subsequent corrective action decision document.

  2. Site characterization and monitoring data from Area 5 Pilot Wells, Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-02-01

    The Special Projects Section (SPS) of Reynolds Electrical & Engineering Co., Inc. (REECO) is responsible for characterizing the subsurface geology and hydrology of the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) for the US Department of Energy, Nevada Operations Office (DOE/NV), Environmental Restoration and Waste Management Division, Waste Operations Branch. The three Pilot Wells that comprise the Pilot Well Project are an important part of the Area 5 Site Characterization Program designed to determine the suitability of the Area 5 RWMS for disposal of low-level waste (LLW), mixed waste (MW), and transuranic waste (TRU). The primary purpose of the Pilot Well Project is two-fold: first, to characterize important water quality and hydrologic properties of the uppermost aquifer; and second, to characterize the lithologic, stratigraphic, and hydrologic conditions which influence infiltration, redistribution, and percolation, and chemical transport through the thick vadose zone in the vicinity of the Area 5 RWMS. This report describes Pilot Well drilling and coring, geophysical logging, instrumentation and stemming, laboratory testing, and in situ testing and monitoring activities.

  3. FY 93 site characterization status report and data package for the carbon tetrachloride site

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, V.J. [Westinghouse Hanford Co., Richland, WA (United States)

    1993-09-28

    This report provides the status and accomplishments from fiscal year site characterization activities conducted as part of the 200 West Area Carbon Tetrachloride Expedited Response Action and the Volatile Organic Compounds - Arid Integrated Demonstration. The report includes or references all available raw data collected as part of these tasks. During fiscal year 1993, the 200 West Area Carbon Tetrachloride Expedited Response Action and the Volatile Organic Compounds - Arid Integrated Demonstration programs focused on the carbon tetrachloride plume in the unsaturated zone underlying the 200 West Area at the Hanford Site in southeast Washington.

  4. Hanford Site National Evnironmental Policy Act (NEPA) characterization

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E. (ed.)

    1991-12-01

    This fourth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. In Chapter 4.0 are presented summations of up-to-date information about climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels. Chapter 5.0 describes models, including their principal assumptions, that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclides transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions. Chapter 6.0 provides the preparer with the federal and state regulations, DOE orders and permits, and environmental standards directly applicable for environmental impact statements for the Hanford Site, following the structure Chapter 4.0. NO conclusions or recommendations are given in this report.

  5. Hanford Site National Evnironmental Policy Act (NEPA) characterization. Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E. [ed.

    1991-12-01

    This fourth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. In Chapter 4.0 are presented summations of up-to-date information about climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels. Chapter 5.0 describes models, including their principal assumptions, that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclides transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions. Chapter 6.0 provides the preparer with the federal and state regulations, DOE orders and permits, and environmental standards directly applicable for environmental impact statements for the Hanford Site, following the structure Chapter 4.0. NO conclusions or recommendations are given in this report.

  6. Recent Advances in the Molecular Characterization of Circulating Tumor Cells

    Energy Technology Data Exchange (ETDEWEB)

    Lowes, Lori E. [London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 4L6 (Canada); Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1 (Canada); Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 4L6 (Canada); Allan, Alison L., E-mail: alison.allan@lhsc.on.ca [London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 4L6 (Canada); Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1 (Canada); Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 4L6 (Canada); Lawson Health Research Institute, London, ON N6C 2R5 (Canada)

    2014-03-13

    Although circulating tumor cells (CTCs) were first observed over a century ago, lack of sensitive methodology precluded detailed study of these cells until recently. However, technological advances have now facilitated the identification, enumeration, and characterization of CTCs using a variety of methods. The majority of evidence supporting the use of CTCs in clinical decision-making has been related to enumeration using the CellSearch{sup ®} system and correlation with prognosis. Growing evidence also suggests that CTC monitoring can provide an early indication of patient treatment response based on comparison of CTC levels before and after therapy. However, perhaps the greatest potential that CTCs hold for oncology lies at the level of molecular characterization. Clinical treatment decisions may be more effective if they are based on molecular characteristics of metastatic cells rather than on those of the primary tumor alone. Molecular characterization of CTCs (which can be repeatedly isolated in a minimally invasive fashion) provides the opportunity for a “real-time liquid biopsy” that allows assessment of genetic drift, investigation of molecular disease evolution, and identification of actionable genomic characteristics. This review focuses on recent advances in this area, including approaches involving immunophenotyping, fluorescence in situ hybridization (FISH), multiplex RT-PCR, microarray, and genomic sequencing.

  7. Multiecho scheme advances surface NMR for aquifer characterization

    Science.gov (United States)

    Grunewald, Elliot; Walsh, David

    2013-12-01

    nuclear magnetic resonance (NMR) is increasingly used as a method to noninvasively characterize aquifers. This technology follows a successful history of NMR logging, applied over decades to estimate hydrocarbon reservoir properties. In contrast to logging, however, surface methods have utilized relatively simple acquisition sequences, from which pore-scale properties may not be reliably and efficiently estimated. We demonstrate for the first time the capability of sophisticated multiecho measurements to rapidly record a surface NMR response that more directly reflects aquifer characteristics. Specifically, we develop an adaptation of the multipulse Carr-Purcell-Meiboom-Gill (CPMG) sequence, widely used in logging, to measure the T2 relaxation response in a single scan. We validate this approach in a field surface NMR data set and by direct comparison with an NMR log. Adoption of the CPMG marked a landmark advancement in the history of logging NMR; we have now realized this same advancement in the surface NMR method.

  8. Advanced on-site power plant development technology program

    Science.gov (United States)

    Kemp, F. S.

    1985-01-01

    A 30-cell stack was tested for 7200 hours. At 6000 hours the stack was successfully refilled with acid with no loss of performance. A second stack containing the advanced Configuration B cell package was fabricated and assembled for testing in 1985. A 200-kW brassboard inverter was successfully evaluated, verifying the design of the two-bridge ASCR circuit design. A fuel processing catalyst train was tested for 2000 hours verifying the catalyst for use in a 200-kW development reformer. The development reformer was fabricated for evaluation in 1985. The initial test plan was prepared for a 200-kW verification test article.

  9. Advanced on-site power plant development technology program

    Science.gov (United States)

    Kemp, F. S.

    1985-02-01

    A 30-cell stack was tested for 7200 hours. At 6000 hours the stack was successfully refilled with acid with no loss of performance. A second stack containing the advanced Configuration B cell package was fabricated and assembled for testing in 1985. A 200-kW brassboard inverter was successfully evaluated, verifying the design of the two-bridge ASCR circuit design. A fuel processing catalyst train was tested for 2000 hours verifying the catalyst for use in a 200-kW development reformer. The development reformer was fabricated for evaluation in 1985. The initial test plan was prepared for a 200-kW verification test article.

  10. A radiological characterization of remediated tank battery sites.

    Science.gov (United States)

    Hebert, M B; Scott, L M; Zrake, S J

    1995-03-01

    Tank battery sites have historically been used for the initial processing of crude oil which separates water and sediment from the produced oil. Typically, one or more producing wells is connected to a tank battery site consisting of storage and separation tanks. Historical operating practices also included a production holding pit for increased separation of oil, water, and sediment. The sediment remaining in the pit is composed of an oily, viscous material called sludge. Under certain circumstances, this sludge may contain naturally occurring radioactive material. The methodology required for reclamation of the production holding pits consisted of removal of soil and sludge from the pits with controlled land-spreading to achieve biodegradation of the hydrocarbons. The purpose of this study was to perform a radiological characterization on representative tank battery sites that had been reclaimed in the above fashion. The average gamma radiation exposure rates encountered ranged from 2.1-7.2 pC kg-1 s-1. The average concentration of 226Ra for the tank battery sites ranged from 0.5-2.3, 0.5-2.8, and 0.3-3.2 Bq g-1 for soil depths of 0-15, 15-30, and 30-51 cm, respectively. Average radon flux measurements ranged from 29.7-211.8 mBq m-2 s-1. Measurements of the radon emanation coefficient of NORM ranged from 3-7%.

  11. Site characterization data for Solid Waste Storage Area 6

    Energy Technology Data Exchange (ETDEWEB)

    Boegly, W.J. Jr.

    1984-12-01

    Currently, the only operating shallow land burial site for low-level radioactive waste at the Oak Ridge National Laboratory (ORNL) is Solid Waste Storage Area No. 6 (SWSA-6). In 1984, the US Department of Energy (DOE) issued Order 5820.2, Radioactive Waste Management, which establishes policies and guidelines by which DOE manages its radioactive waste, waste by-products, and radioactively contaminated surplus facilities. The ORNL Operations Division has given high priority to characterization of SWSA-6 because of the need for continued operation under DOE 5820.2. The purpose of this report is to compile existing information on the geologic and hydrologic cond

  12. Bioremediation demonstration on Kwajalein Island: Site characterization and on-site biotreatability studies

    Energy Technology Data Exchange (ETDEWEB)

    Siegrist, R.L.; Korte, N.E.; Pickering, D.A. (Oak Ridge National Lab., TN (United States)); Phelps, T.J. (Tennessee Univ., Knoxville, TN (United States))

    1991-09-01

    An environmental study was conducted during February 1991 on Kwajalein Island, a US Army Kwajalein Atoll (USAKA) Base in the Republic of the Marshall Islands (RMI). This study was undertaken for the US Department of Energy (DOE) Hazardous Waste Remedial Actions Program (HAZWRAP) acting in behalf of USAKA. The purpose of the study was to determine if selected locations for new construction on Kwajalein Island were contaminated by petroleum hydrocarbons as suspected and, if so, whether bioremediation appeared to be a feasible technology for environmental restoration. Two different sites were evaluated: (1) the site planned freshwater production facility and (2) a site adjacent to an aboveground diesel fuel storage tank. Within the proposed construction zone for the freshwater production facility (a.k.a desalination plant), total petroleum hydrocarbons (TPH) where either absent or at low levels. Characterization data for another potential construction site adjacent to an aboveground diesel fuel storage tank southeast of the old diesel power plant revealed high concentrations of diesel fuel in the soil and groundwater beneath the site. Results of this investigation indicate that there are petroleum-contaminated soils on Kwajalein Island and bioremediation appears to be a viable environmental restoration technique. Further experimentation and field demonstration are required to determine the design and operating conditions that provide for optimum biodegradation and restoration of the petroleum-contaminated soils. 17 refs., 7 figs., 26 figs.

  13. Site Characterization Plan: Uranium Stabilization through Polyphosphate Injection

    Energy Technology Data Exchange (ETDEWEB)

    Vermeul, Vince R.; Fruchter, Jonathan S.; Wellman, Dawn M.; Williams, Bruce A.; Williams, Mark D.

    2006-12-01

    An initial feasibility study of options to treat the uranium plume at the 300-FF-5 Operable Unit considered hydraulic containment, slurry wall containment, and groundwater extraction as potential remedial action technologies. None were selected for interim action, and reduction of contamination levels by natural processes was considered a viable alternative while source removal actions continued. Subsequent planning for a Phase III feasibility study focused on methods that would reduce the concentration of uranium in the aquifer, including multiple methods to immobilize uranium using chemical-based technologies. Based on an initial technology screening, the polyphosphate technology was identified as the best candidate to treat the for further evaluation and selected for treatability testing. The overall objective of the polyphosphate treatability test is to evaluate the efficacy of using polyphosphate injections to treat uranium contaminated groundwater in situ. The objective of the work elements included in this site characterization plan is to collect site-specific characterization data that will be needed to design and implement a field-scale demonstration of the technology.

  14. ELT Site Characterization for AO, the Tools and the Results

    Science.gov (United States)

    Sarazin, M.

    2011-09-01

    With the choice of the sites of the three main ELT projects worldwide, an unprecedentedly large site characterization effort is coming to an end. During the past decade more than 20 summits have been studied by the site survey teams of E-ELT, GMT and TMT projects. Other institutions have provided support or funding (NOAO, EU-FP6) so that close to one hundred scientists, engineers and students have been involved in this search for top quality observing conditions. For the first time also, the various project have deployed a very uniform instrumentation suite, often using similar measurement methods (DIMM) and even in some cases identical instruments (MASS). The consequence is that the core of the collected database is directly usable and could be made available to the community in its original state. The various teams have also maintained close contact during the whole process and new instruments were developed on the fly to solve the remaining unknowns. After sharing the tools and ideas, the time of sharing data has come and a review is proposed of what has been achieved and what is now available.

  15. Hydrogeologic characterization of an arid zone Radioactive Waste Management Site

    Energy Technology Data Exchange (ETDEWEB)

    Ginanni, J.M.; O`Neill, L.J. [USDOE Nevada Operations Office, Las Vegas, NV (United States); Hammermeister, D.P.; Blout, D.O.; Dozier, B.L.; Sully, M.J.; Johnejack, K.R.; Emer, D.F. [Reynolds Electrical and Engineering Co., Inc., Las Vegas, NV (United States); Tyler, S.W. [Nevada Univ., Reno, NV (United States). Desert Research Inst.

    1994-06-01

    An in-depth subsurface site characterization and monitoring program for the soil water migration pathway has been planned, implemented, and completed to satisfy data requirements for a waiver from groundwater monitoring, for an exemption from liner leachate collections systems, and for different regulatory driven performance assessments. A traditional scientific approach has been taken to focus characterization and monitoring efforts. This involved developing a conceptual model of the hydrogeologic system and defining and testing hypotheses about this model. Specific hypotheses tested included: that the system was hydrologically heterogenous and anisotropic, and that recharge was very low or negligible. Mineralogical, physical, and hydrologic data collected to test hypotheses has shown the hydrologic system to be remarkably homogenous and isotropic rather than heterogenous and anisotropic. Both hydrodynamic and environmental tracer approaches for estimating recharge have led to the conclusion that recharge from the Area 5 RWMS is not occurring in the upper region of the vadose zone, and that recharge at depth is extremely small or negligible. This demonstration of ``no migration of hazardous constituents to the water table satisfies a key requirement for both the groundwater monitoring waiver and the exemption from liner leachate collection systems. Data obtained from testing hypotheses concerning the soil water migration pathway have been used to refine the conceptual model of the hydrogeologic system of the site. These data suggest that the soil gas and atmospheric air pathways may be more important for transporting contaminants to the accessible environment than the soil water pathway. New hypotheses have been developed about these pathways, and characterization and monitoring activities designed to collect data to test these hypotheses.

  16. Site characterization progress report: Yucca Mountain, Nevada. Number 15, April 1--September 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    During the second half of fiscal year 1996, activities at the Yucca Mountain Site Characterization Project (Project) supported the objectives of the revised Program Plan released this period by the Office of Civilian Radioactive Waste Management of the US Department of Energy (Department). Outlined in the revised plan is a focused, integrated program of site characterization, design, engineering, environmental, and performance assessment activities that will achieve key Program and statutory objectives. The plan will result in the development of a license application for repository construction at Yucca Mountain, if the site is found suitable. Activities this period focused on two of the three near-term objectives of the revised plan: updating in 1997 the regulatory framework for determining the suitability of the site for the proposed repository concept and providing information for a 1998 viability assessment of continuing toward the licensing of a repository. The Project has also developed a new design approach that uses the advanced conceptual design published during the last reporting period as a base for developing a design that will support the viability assessment. The initial construction phase of the Thermal Testing Facility was completed and the first phase of the in situ heater tests began on schedule. In addition, phase-one construction was completed for the first of two alcoves that will provide access to the Ghost Dance fault.

  17. Geotechnical/geochemical characterization of advanced coal process waste streams: Task 2

    Energy Technology Data Exchange (ETDEWEB)

    Moretti, C.J.; Olson, E.S.

    1992-09-01

    Successful disposal practices for solid wastes produced from advanced coal combustion and coal conversion processes must provide for efficient management of relatively large volumes of wastes in a cost-effective and environmentally safe manner. At present, most coal-utilization solid wastes are disposed of using various types of land-based systems, and it is probable that this disposal mode will continue to be widely used in the future for advanced process wastes. Proper design and operation of land-based disposal systems for coal combustion wastes normally require appropriate waste transfer, storage, and conditioning subsystems at the plant to prepare the waste for transport to an ultimate disposal site. Further, the overall waste management plan should include a by-product marketing program to minimize the amount of waste that will require disposal. In order to properly design and operate waste management systems for advanced coal-utilization processes, a fundamental understanding of the physical properties, chemical and mineral compositions, and leaching behaviors of the wastes is required. In order to gain information about the wastes produced by advanced coal-utilization processes, 55 waste samples from 16 different coal gasification, fluidized-bed coal combustion (FBC), and advanced flue gas scrubbing processes were collected. Thirty-four of these wastes were analyzed for their bulk chemical and mineral compositions and tested for a detailed set of disposal-related physical properties. The results of these waste characterizations are presented in this report. In addition to the waste characterization data, this report contains a discussion of potentially useful waste management practices for advanced coal utilization processes.

  18. Mars Atmospheric Characterization Using Advanced 2-Micron Orbiting Lidar

    Science.gov (United States)

    Singh, U.; Engelund, W.; Refaat, T.; Kavaya, M.; Yu, J.; Petros, M.

    2015-01-01

    Mars atmospheric characterization is critical for exploring the planet. Future Mars missions require landing massive payloads to the surface with high accuracy. The accuracy of entry, descent and landing (EDL) of a payload is a major technical challenge for future Mars missions. Mars EDL depends on atmospheric conditions such as density, wind and dust as well as surface topography. A Mars orbiting 2-micron lidar system is presented in this paper. This advanced lidar is capable of measuring atmospheric pressure and temperature profiles using the most abundant atmospheric carbon dioxide (CO2) on Mars. In addition Martian winds and surface altimetry can be mapped, independent of background radiation or geographical location. This orbiting lidar is a valuable tool for developing EDL models for future Mars missions.

  19. Characterization of advanced polymethylmethacrylate (PMMA) targets for TNSA laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Torrisi, L., E-mail: Lorenzo.Torrisi@unime.it [Department of Physics and Earth Science, Messina University, V.le F.S. d’Alcontres 31, 98166 S. Agata, Messina (Italy); Cutroneo, M.; Semian, V. [Nuclear Physics Institute, ASCR, 250 68 Rez (Czech Republic); Ceccio, G. [Department of Physics and Earth Science, Messina University, V.le F.S. d’Alcontres 31, 98166 S. Agata, Messina (Italy)

    2015-10-01

    Highlights: • The manuscript presents the procedure to prepare thin advanced targets based on PMMA polymer in order to obtain high ion acceleration in laser-generated plasma. • The manuscript is original for the procedures of polymer preparation and preliminary techniques used. - Abstract: Characterization of advanced micrometric foils suitable for TNSA regime were performed using optical spectroscopy, microscopy and Nd:YAG low laser intensity. Micrometric acrylic beads were produced in polymethylmethacrylate foils through complex physical and technical procedures in order to enhance the absorption coefficient in the IR region. Moreover, Au nanoparticles were embedded in the polymer in order to induce surface plasmon resonance absorption and plasma electron density enhancement. The suitably prepared polymers were investigated at low laser intensity to have evidence of their capability to absorb IR wavelength radiations and promote enhancement of the plasma temperature and density. Results indicate that the high transparence of PMMA foils can be strongly reduced by the presences of the micrometric acrylic beads and that the obtainable laser-generated plasma improves the ion acceleration when high beads density and high Au nanoparticles concentrations are employed.

  20. [Paleoclimatology studies for Yucca Mountain site characterization]. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-03

    This report consists of two separate papers: Fernley Basin studies; and Influence of sediment supply and climate change on late Quaternary eolian accumulation patterns in the Mojave Desert. The first study involved geologic mapping of late Quaternary sediments and lacustrine features combined with precise control of elevations and descriptions of sediments for each of the major sedimentary units. The second paper documents the response of a major eolian sediment transport system in the east-central Mojave Desert: that which feeds the Kelso Dune field. Information from geomorphic, stratigraphic, and sedimentologic studies of eolian deposits and landforms is combined with luminescence dating of these deposits to develop a chronology of periods of eolian deposition. Both studies are related to site characterization studies of Yucca Mountain and the forecasting of rainfall patterns possible for the high-level radioactive waste repository lifetime.

  1. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site; to describe the conceptual designs for the repository and the waste package and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. Chapter 3 summarizes present knowledge of the regional and site hydrologic systems. The purpose of the information presented is to (1) describe the hydrology based on available literature and preliminary site-exploration activities that have been or are being performed and (2) provide information to be used to develop the hydrologic aspects of the planned site characterization program. Chapter 4 contains geochemical information about the Yucca Mountain site. The chapter references plan for continued collection of geochemical data as a part of the site characterization program. Chapter 4 describes and evaluates data on the existing climate and site meterology, and outlines the suggested procedures to be used in developing and validating methods to predict future climatic variation. 534 refs., 100 figs., 72 tabs.

  2. The Advanced Integration Matrix Project and Analog Sites: Difference or Duplication?

    Science.gov (United States)

    Wells, Kevin M.

    2004-01-01

    Several project teams have conducted Mars and Lunar mission simulations at analog sites and facilities over the past decade. These projects have a range of scope, participants, and objectives. NASA has provided many of these projects with funding, equipment, and personnel. Despite their variety, a consistent aim of these sites is advancing our capability to return to the Moon or to go to Mars. The Advanced Integration Matrix (AIM) Project was begun in 2002 with a corollary aim: that of advancing the technology needed for long duration human exploration of space. As a new project, it is prudent to ask and answer the question: "What does AIM offer to NASA that is distinct from what current and past analog sites offer?" The price tag for human spaceflight is high enough without needless duplication of efforts. The AIM Project concept is distinct from currently operating terrestrial analogs in three important ways. First, AIM is not strictly an analog site or facility; second, AIM is primarily focused on systems and integration issues; and finally, AIM is organizationally related to NASA s advanced development groups and subject to the rigors of the JSC Engineering Directorate s development process. The successful development of destination-independent, cost-effective, safe, and reliable long duration human exploration systems requires that NASA use both the analog sites and ground-based systems integration efforts. The Advanced Integration Matrix Project will not simply duplicate the former, but will give the agency the capability for the latter.

  3. Atmospheric emission characterization of Marcellus shale natural gas development sites.

    Science.gov (United States)

    Goetz, J Douglas; Floerchinger, Cody; Fortner, Edward C; Wormhoudt, Joda; Massoli, Paola; Knighton, W Berk; Herndon, Scott C; Kolb, Charles E; Knipping, Eladio; Shaw, Stephanie L; DeCarlo, Peter F

    2015-06-02

    Limited direct measurements of criteria pollutants emissions and precursors, as well as natural gas constituents, from Marcellus shale gas development activities contribute to uncertainty about their atmospheric impact. Real-time measurements were made with the Aerodyne Research Inc. Mobile Laboratory to characterize emission rates of atmospheric pollutants. Sites investigated include production well pads, a well pad with a drill rig, a well completion, and compressor stations. Tracer release ratio methods were used to estimate emission rates. A first-order correction factor was developed to account for errors introduced by fenceline tracer release. In contrast to observations from other shale plays, elevated volatile organic compounds, other than CH4 and C2H6, were generally not observed at the investigated sites. Elevated submicrometer particle mass concentrations were also generally not observed. Emission rates from compressor stations ranged from 0.006 to 0.162 tons per day (tpd) for NOx, 0.029 to 0.426 tpd for CO, and 67.9 to 371 tpd for CO2. CH4 and C2H6 emission rates from compressor stations ranged from 0.411 to 4.936 tpd and 0.023 to 0.062 tpd, respectively. Although limited in sample size, this study provides emission rate estimates for some processes in a newly developed natural gas resource and contributes valuable comparisons to other shale gas studies.

  4. Experimental and computing strategies in advanced material characterization problems

    Energy Technology Data Exchange (ETDEWEB)

    Bolzon, G. [Department of Civil and Environmental Engineering, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milano, Italy gabriella.bolzon@polimi.it (Italy)

    2015-10-28

    The mechanical characterization of materials relies more and more often on sophisticated experimental methods that permit to acquire a large amount of data and, contemporarily, to reduce the invasiveness of the tests. This evolution accompanies the growing demand of non-destructive diagnostic tools that assess the safety level of components in use in structures and infrastructures, for instance in the strategic energy sector. Advanced material systems and properties that are not amenable to traditional techniques, for instance thin layered structures and their adhesion on the relevant substrates, can be also characterized by means of combined experimental-numerical tools elaborating data acquired by full-field measurement techniques. In this context, parameter identification procedures involve the repeated simulation of the laboratory or in situ tests by sophisticated and usually expensive non-linear analyses while, in some situation, reliable and accurate results would be required in real time. The effectiveness and the filtering capabilities of reduced models based on decomposition and interpolation techniques can be profitably used to meet these conflicting requirements. This communication intends to summarize some results recently achieved in this field by the author and her co-workers. The aim is to foster further interaction between engineering and mathematical communities.

  5. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in acordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and eveloping a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing prinicples, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed. 880 refs., 130 figs., 25 tabs.

  6. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 6

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package;and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed.

  7. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended by the Secretary of Energy and approved by the President for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared by the US Department of Energy (DOE) in accordance with the requirements of the Nulcear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package;and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of the site characterization plan are oulined, and compliance with applicable regulations is discussed.

  8. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended and approved by the President for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site; to describe the conceptual designs for the repository and the waste package; and to present the plans for obtaining the geologic information necessary to demonstate the suitability of the site for a repository, to desin the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next; it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed.

  9. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 7

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-01-01

    The Yucca Mountain site in Neavada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended and approved for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package;and to present the plans for obtaining hte geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare and environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed.

  10. Gulf of Mexico miocene CO₂ site characterization mega transect

    Energy Technology Data Exchange (ETDEWEB)

    Meckel, Timothy [Univ. of Austin, Austin, TX (United Staes); Trevino, Ramon [Univ. of Austin, Austin, TX (United Staes)

    2014-12-01

    This project characterized the Miocene-age sub-seafloor stratigraphy in the near-offshore portion of the Gulf of Mexico adjacent to the Texas coast. The large number of industrial sources of carbon dioxide (CO₂) in coastal counties and the high density of onshore urbanization and environmentally sensitive areas make this offshore region extremely attractive for long-term storage of carbon dioxide emissions from industrial sources (CCS). The study leverages dense existing geologic data from decades of hydrocarbon exploration in and around the study area to characterize the regional geology for suitability and storage capacity. Primary products of the study include: regional static storage capacity estimates, sequestration “leads” and prospects with associated dynamic capacity estimates, experimental studies of CO₂-brine-rock interaction, best practices for site characterization, a large-format ‘Atlas’ of sequestration for the study area, and characterization of potential fluid migration pathways for reducing storage risks utilizing novel high-resolution 3D (HR3D) seismic surveys. In addition, three subcontracted studies address source-to-sink matching optimization, offshore well bore management and environmental aspects. The various geologic data and interpretations are integrated and summarized in a series of cross-sections and maps, which represent a primary resource for any near-term commercial deployment of CCS in the area. The regional study characterized and mapped important geologic features (e.g., Clemente-Tomas fault zone, the regionally extensive Marginulina A and Amphistegina B confining systems, etc.) that provided an important context for regional static capacity estimates and specific sequestration prospects of the study. A static capacity estimate of the majority of the Study area (14,467 mi2) was estimated at 86 metric Gigatonnes. While local capacity estimates are likely to be lower due to reservoir-scale characteristics, the

  11. Hydrogeological-Geophysical Methods for Subsurface Site Characterization - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, Yoram

    2001-01-01

    The goal of this research project is to increase water savings and show better ecological control of natural vegetation by developing hydrogeological-geophysical methods for characterizing the permeability and content of water in soil. The ground penetrating radar (GPR) tool was developed and used as the surface geophysical method for monitoring water content. Initial results using the tool suggest that surface GPR is a viable technique for obtaining precision volumetric water content profile estimates, and that laboratory-derived petrophysical relationships could be applied to field-scale GPR data. A field-scale bacterial transport study was conducted within an uncontaminated sandy Pleistocene aquifer to evaluate the importance of heterogeneity in controlling the transport of bacteria. Geochemical, hydrological, geological, and geophysical data were collected to characterize the site prior to and after chemical and bacterial injection experiments. Study results shows that, even within the fairly uniform shallow marine deposits of the narrow channel focus area, heterogeneity existed that influenced the chemical tracer transport over lateral distances of a few meters and vertical distances of less than a half meter. The interpretation of data suggest that the incorporation of geophysical data with limited hydrological data may provide valuable information about the stratigraphy, log conductivity values, and the spatial correlation structure of log conductivity, which have traditionally been obtainable only by performing extensive and intrusive hydrological sampling.

  12. Developing Hydrogeological Site Characterization Strategies based on Human Health Risk

    Science.gov (United States)

    de Barros, F.; Rubin, Y.; Maxwell, R. M.

    2013-12-01

    In order to provide better sustainable groundwater quality management and minimize the impact of contamination in humans, improved understanding and quantification of the interaction between hydrogeological models, geological site information and human health are needed. Considering the joint influence of these components in the overall human health risk assessment and the corresponding sources of uncertainty aid decision makers to better allocate resources in data acquisition campaigns. This is important to (1) achieve remediation goals in a cost-effective manner, (2) protect human health and (3) keep water supplies clean in order to keep with quality standards. Such task is challenging since a full characterization of the subsurface is unfeasible due to financial and technological constraints. In addition, human exposure and physiological response to contamination are subject to uncertainty and variability. Normally, sampling strategies are developed with the goal of reducing uncertainty, but less often they are developed in the context of their impacts on the overall system uncertainty. Therefore, quantifying the impact from each of these components (hydrogeological, behavioral and physiological) in final human health risk prediction can provide guidance for decision makers to best allocate resources towards minimal prediction uncertainty. In this presentation, a multi-component human health risk-based framework is presented which allows decision makers to set priorities through an information entropy-based visualization tool. Results highlight the role of characteristic length-scales characterizing flow and transport in determining data needs within an integrated hydrogeological-health framework. Conditions where uncertainty reduction in human health risk predictions may benefit from better understanding of the health component, as opposed to a more detailed hydrogeological characterization, are also discussed. Finally, results illustrate how different dose

  13. Advanced optical measurements for characterizing photophysical properties of single nanoparticles.

    Energy Technology Data Exchange (ETDEWEB)

    Polsky, Ronen; Davis, Ryan W.; Arango, Dulce C.; Brozik, Susan Marie; Wheeler, David Roger

    2009-09-01

    Formation of complex nanomaterials would ideally involve single-pot reaction conditions with one reactive site per nanoparticle, resulting in a high yield of incrementally modified or oriented structures. Many studies in nanoparticle functionalization have sought to generate highly uniform nanoparticles with tailorable surface chemistry necessary to produce such conjugates, with limited success. In order to overcome these limitations, we have modified commercially available nanoparticles with multiple potential reaction sites for conjugation with single ssDNAs, proteins, and small unilamellar vesicles. These approaches combined heterobifunctional and biochemical template chemistries with single molecule optical methods for improved control of nanomaterial functionalization. Several interesting analytical results have been achieved by leveraging techniques unique to SNL, and provide multiple paths for future improvements for multiplex nanoparticle synthesis and characterization. Hyperspectral imaging has proven especially useful for assaying substrate immobilized fluorescent particles. In dynamic environments, temporal correlation spectroscopies have been employed for tracking changes in diffusion/hydrodynamic radii, particle size distributions, and identifying mobile versus immobile sample fractions at unbounded dilution. Finally, Raman fingerprinting of biological conjugates has been enabled by resonant signal enhancement provided by intimate interactions with nanoparticles and composite nanoshells.

  14. Neighborhood geographical factors and the presence of advanced community pharmacy practice sites in Greater Chicago.

    Science.gov (United States)

    Johnson, Charisse L; Crawford, Stephanie Y; Lin, Swu-Jane; Salmon, J Warren; Smith, Miriam Mobley

    2009-02-19

    To determine the availability of experiential learning opportunities in culturally diverse areas and to identify opportunities and barriers to attract and sustain sites for the University of Illinois at Chicago College of Pharmacy. Utilizing variables of census tract income, racial/ethnicity composition and crime index, data analyses included descriptive statistics and multivariate logistic regression. Faculty members involved in experiential education were interviewed to identify other factors influencing site placement and selection for community-based advanced pharmacy practice experiences (APPEs). Median family income and Asian population were significantly higher and black population was significantly lower in census tracts with community APPE sites than in census tracts without APPE sites (p pharmacy staffing issues, goodwill, influence of district and corporate managers, and strategic initiatives were critical considerations in site establishment and overall sustainability. Advanced community pharmacy practice sites were fairly well distributed across metropolitan Chicago, indicating that exposure to diverse populations during the advanced community practice experiences parallels with strategic College objectives of expanding and diversifying experiential sites to enhance pharmacy students' abilities to meet emerging patient care challenges and opportunities.

  15. Characterization of novel epitaxial materials for advanced tunneling devices

    Science.gov (United States)

    Gu, Lin

    Novel tunneling structures, such as ferromagnet/ barrier/ ferromagnet and superconductor/ barrier/ superconductor, have stimulated tremendous interest because of potential applications for spin tunneling and Josephson junction devices. Cr-doped AlN/GaN has been proposed as the basis for spintronic devices, while MgB2 as well as TiNbN and yttrium-barium-copper oxide (YBCO) have been suggested as key components for superconducting tunneling devices. The research of this dissertation involved characterization of these materials using advanced electron microscopy methods, and correlation of the microstructure with electrical, magnetic and superconducting properties. Cr-doped Al(Ga)N thin films grown on 6H-SiC and sapphire substrates by molecular beam epitaxy (MBE) have been characterized. Magnetic measurements showed ferromagnetic response from 4K up to 900K. Observations showed that the ferromagnetism was determined by several factors including growth temperature, Cr concentration, film quality and fraction of Cr substitution. Cr segregated to form one-dimensional columns for Al(Cr)N thin films, whereas more uniform Cr distribution was obtained for Ga(Cr)N thin films. Small clustering of CrN ranging from 2nm to 10nm was observed for Cr-doped GaN films grown at elevated temperature. There was no significant amount of oxygen present in these films. Any known magnetic impurity phase was considered unlikely to be responsible for the measured ferromagnetism. Thin films of MgB2 grown on various substrates with different techniques have been characterized. Electrical measurements indicated that MgB2 thin films grown by MBE had lower superconducting transition temperatures and higher resistivity compared with those grown by in situ reactive evaporation. Cubic MgO phase was detected for specific substrates and growth circumstances with reactive evaporation growth. Both deposition temperature and substrate type were critical factors for MgB 2 thin film epitaxial growth. Further

  16. Nanocrystalline materials: recent advances in crystallographic characterization techniques

    Directory of Open Access Journals (Sweden)

    Emilie Ringe

    2014-11-01

    Full Text Available Most properties of nanocrystalline materials are shape-dependent, providing their exquisite tunability in optical, mechanical, electronic and catalytic properties. An example of the former is localized surface plasmon resonance (LSPR, the coherent oscillation of conduction electrons in metals that can be excited by the electric field of light; this resonance frequency is highly dependent on both the size and shape of a nanocrystal. An example of the latter is the marked difference in catalytic activity observed for different Pd nanoparticles. Such examples highlight the importance of particle shape in nanocrystalline materials and their practical applications. However, one may ask `how are nanoshapes created?', `how does the shape relate to the atomic packing and crystallography of the material?', `how can we control and characterize the external shape and crystal structure of such small nanocrystals?'. This feature article aims to give the reader an overview of important techniques, concepts and recent advances related to these questions. Nucleation, growth and how seed crystallography influences the final synthesis product are discussed, followed by shape prediction models based on seed crystallography and thermodynamic or kinetic parameters. The crystallographic implications of epitaxy and orientation in multilayered, core-shell nanoparticles are overviewed, and, finally, the development and implications of novel, spatially resolved analysis tools are discussed.

  17. High temperature material characterization and advanced materials development

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Woo Seog; Kim, D. H.; Kim, S. H. and others

    2005-03-15

    The study is to characterize the structural materials under the high temperature, one of the most significant environmental factors in nuclear systems. And advanced materials are developed for high temperature and/or low activation in neutron irradiation. Tensile, fatigue and creep properties have been carried out at high temperature to evaluate the mechanical degradation. Irradiation tests were performed using the HANARO. The optimum chemical composition and heat treatment condition were determined for nuclear grade 316NG stainless steel. Nitrogen, aluminum, and tungsten were added for increasing the creep rupture strength of FMS steel. The new heat treatment method was developed to form more stable precipitates. By applying the novel whiskering process, high density SiC/SiC composites with relative density above 90% could be obtained even in a shorter processing time than the conventional CVI process. Material integrated databases are established using data sheets. The databases of 6 kinds of material properties are accessible through the home page of KAERI material division.

  18. Advanced targets preparation for TNSA laser irradiation and their characterization

    Science.gov (United States)

    Ceccio, G.; Torrisi, L.; Cutroneo, M.

    2016-04-01

    Thin targets have been investigated at low laser intensity in order to prepare foils for TNSA (Target Normal Sheath Acceleration) laser irradiation at high intensity. Foils were prepared with different techniques, such as deposition of metallic nanoparticles on polymeric substrates. Polymer films were covered by solutions containing nanoparticles or embedded inside or covered by nanostructures. Such advanced targets permit to enhance the laser wavelength absorbance. Thick and thin targets were irradiated using laser radiation at 1010 W/cm2 intensity and prepared to be submitted to laser irradiation at higher intensity. The foils were characterized by optical measurements of absorbance and transmittance as a function of wavelength in the regions UV, VIS and IR. Laser irradiation measurements using a Nd:YAG laser simulate the prepulse of high laser intensity. Accelerated ions were measured with ion collectors using time of flight techniques. The protons and ions acceleration and their yields were measured as a function of the equivalent atomic number of the foils and of other characteristics, as it will be presented and discussed.

  19. Comprehensive characterization of atmospheric organic carbon at a forested site

    Science.gov (United States)

    Hunter, James F.; Day, Douglas A.; Palm, Brett B.; Yatavelli, Reddy L. N.; Chan, Arthur W. H.; Kaser, Lisa; Cappellin, Luca; Hayes, Patrick L.; Cross, Eben S.; Carrasquillo, Anthony J.; Campuzano-Jost, Pedro; Stark, Harald; Zhao, Yunliang; Hohaus, Thorsten; Smith, James N.; Hansel, Armin; Karl, Thomas; Goldstein, Allen H.; Guenther, Alex; Worsnop, Douglas R.; Thornton, Joel A.; Heald, Colette L.; Jimenez, Jose L.; Kroll, Jesse H.

    2017-10-01

    Atmospheric organic compounds are central to key chemical processes that influence air quality, ecological health, and climate. However, longstanding difficulties in predicting important quantities such as organic aerosol formation and oxidant lifetimes indicate that our understanding of atmospheric organic chemistry is fundamentally incomplete, probably due in part to the presence of organic species that are unmeasured using standard analytical techniques. Here we present measurements of a wide range of atmospheric organic compounds--including previously unmeasured species--taken concurrently at a single site (a ponderosa pine forest during summertime) by five state-of-the-art mass spectrometric instruments. The combined data set provides a comprehensive characterization of atmospheric organic carbon, covering a wide range in chemical properties (volatility, oxidation state, and molecular size), and exhibiting no obvious measurement gaps. This enables the first construction of a measurement-based local organic budget, highlighting the high emission, deposition, and oxidation fluxes in this environment. Moreover, previously unmeasured species, including semivolatile and intermediate-volatility organic species (S/IVOCs), account for one-third of the total organic carbon, and (within error) provide closure on both OH reactivity and potential secondary organic aerosol formation.

  20. MECHANICAL CHARACTERIZATION OF ADVANCED CERAMIC MATERIALS USING NANOINDENTATION

    OpenAIRE

    COSTEA Traian-Octavian; MOLDOVAN Ovidiu Gheorghe

    2016-01-01

    The paper aims to present the result obtained during mechanical characterization of ceramic materials. The characterization of the materials was realized using the G200 nanoindenter with the goal of fully characterizing the mechanical proprieties (hardness, and modulus).

  1. Recent advances in covalent, site-specific protein immobilization [version 1; referees

    DEFF Research Database (Denmark)

    Meldal, Morten Peter; Schoffelen, Sanne

    2016-01-01

    that is desired in this kind of application. Recent advances include the use of enzymes, such as sortase A, to couple proteins in a site-specific manner to materials such as microbeads, glass, and hydrogels. Also, self-labeling tags such as the SNAP-tag can be employed. Last but not least, chemical approaches...

  2. A potential Italian CCS site: site characterization and monitoring of Sulcis Basin (Sardinia).

    Science.gov (United States)

    Chiara Tartarello, Maria; Bigi, Sabina; Beaubien, Stanley Eugene; De Angelis, Davide; Graziani, Stefano; Lombardi, Salvatore; Sacco, Pietro; Ruggiero, Livio

    2017-04-01

    The Sulcis Basin is an area situated in SW Sardinia (Italy) and is a potential site for the implementation of CCS in Italy. In fact, in the last years many studies were conducted to characterize the area and to define the baseline. The "Miliolitico" has been identified as the potential reservoir and is composed by fractured carbonate, while the "Produttivo Fm.", a sequence of clay, coal and marl, is the caprock. Above the "Produttivo Fm." there is a thick volcanic sequence (more than 800 m) that could be considered also a secondary caprock. In the area of Matzaccara, the "Miliolitico" is below an alluvial plain and it is estimates that could reach a depth of more than 800 m. To characterize the reservoir-caprock system there were conducted an extensive structural-geological survey, and more in detail a fracture analysis on all the Formation at the outcrop. With regard to the faults, it has been examined their architecture, and in particular the conduit-barrier behaviors. Moreover, to evaluate the theoretical capacity of the potential reservoir, we built a Discrete Fracture Model, using the fracture data collected at outcrop. So, we estimate a secondary porosity of about 3%. As regards to the definition of geochemical baseline, it has been conducted both discontinuous and continuous monitoring of CO2 and other gases. More in details, there were carried out a regional and a detailed survey, measuring the concentration and the flux of CO2. in that manner, it has been possible to identify potential migration pathways along faults and to define the position of continuous monitoring station. We developed small, low-power consuming, low-cost pCO2 "GasPro", to measure the CO2 both in soil and water. In the next months, it is planned to extend the monitoring network and to inject a little quantity of CO2 along a fault in the Matzaccara plain.

  3. Quantification of uncertain outcomes from site characterization: Insights from the ESF-AS

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, W.J.; Parrish, D.K. [RE/SPEC, Inc., Rapid City, SD (United States); Beccue, P.C. [Applied Decision Analysis, Inc., Menlo Park, CA (United States)

    1992-01-01

    As part of the Exploratory Studies Facility Alternatives Study (ESF-AS) the uncertain outcomes from site characterization were quantified using a probabilistic tree known as ``Nature`s Tree.`` Nature`s Tree distinguished the true characteristics of the Yucca Mountain site from the perceived characteristics deduced from testing. Bayesian probabilistic calculations converted probabilities in Nature`s Tree to the probabilistic estimates required for the comparative analysis of Exploratory Studies Facility-repository options. Experts on characterization testing explicitly addressed several site characterization issues that are considered implicitly in many site characterization programs.

  4. Characterization Report for the 92-Acre Area of the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel Nevada; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2006-06-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office manages two low-level Radioactive Waste Management Sites at the Nevada Test Site. The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste. This report summarizes characterization and monitoring work pertinent to the 92-Acre Area in the southeast part of the Area 5 Radioactive Waste Management Sites. The decades of characterization and assessment work at the Area 5 RWMS indicate that the access controls, waste operation practices, site design, final cover design, site setting, and arid natural environment contribute to a containment system that meets regulatory requirements and performance objectives for the short- and long-term protection of the environment and public. The available characterization and Performance Assessment information is adequate to support design of the final cover and development of closure plans. No further characterization is warranted to demonstrate regulatory compliance. U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office is proceeding with the development of closure plans for the six closure units of the 92-Acre Area.

  5. Advanced Characterization of Rare Earth Elements in Coal Utilization Byproducts

    Science.gov (United States)

    Verba, C.; Scott, M.; Dieterich, M.; Poston, J.; Collins, K.

    2016-12-01

    Rare earth elements (REE) in various forms (e.g., crystalline mineral phases; adsorbed/absorbed state on and into organic macerals, neoformed glass from flyash or bottom ash) from domestic feedstocks such as coal deposits to coal utilization byproducts (CUB) have the potential to reduce foreign REE dependence and increase domestic resource security. Characterization is critical for understanding environmental risks related to their fate and transport as well as determining the most practical and economical techniques for concentrating the REE and converting them into chemical stocks for manufacturing. Several complementary electron microscopy (SEM-EDS, EPMA-WDS, FIB-SEM, cathodoluminescence, and XRD) and post image processing techniques were used to understand REE transition from coal to CUB. Sites of interest were identified and imaged and respective elemental x-ray maps acquired and montaged. Pixel classification of SEM imagers was completed using image analysis techniques to quantify the distribution of REE associated features. Quantitative elemental analysis of phases were completed using EMPA-WDS followed by FIB-SEM. The FIB-SEM results were reconstructed into 3D volumes and features of interest (e.g. monazite) were analyzed to determine the structure and volumetric estimation of REEs and thus predict detrital REE phases to ICP-MS results. Trace minerals were identified as pyrite, zircon, REE-phosphates' (monazite, xenotime), and barite within the coal tailings. In CUB, amorphous aluminosilicates, iron oxide cenospheres, and calcium oxides were present; monazite appear to be unaltered and unaffected by the combustion process in these samples. Thermal decomposition may have occurred due to presence of detrital zircon and xenotime and subsequent thin Ca-oxide coating enriched in trace REEs.

  6. Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 10

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, D.A. [ed.; Fosmire, C.J.; Fowler, R.A. [and others

    1998-09-01

    This document describes the US Department of Energy`s (DOE) Hanford Site environment and is numbered to correspond to the chapters where such information is presented in Hanford Site NEPA related documents. The document is intended to provide a consistent description of the Hanford Site environment for the many NEPA documents that are being prepared by contractors. The two chapters in this document (Chapters 4 and 6) are numbered this way to correspond to the chapters where such information is presented in environmental impact statements (EISs) and other Site-related NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes the Hanford Site environment, and includes information on climate and meteorology, geology, hydrology, ecology, cultural, archaeological and historical resources, socioeconomics, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes applicable federal and state laws and regulations, DOE directives and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site.

  7. How to Characterize a Potential Site for CO2 Storage with Sparse Data Coverage – a Danish Onshore Site Case

    Directory of Open Access Journals (Sweden)

    Nielsen Carsten Møller

    2015-04-01

    Full Text Available The paper demonstrates how a potential site for CO2 storage can be evaluated up to a sufficient level of characterization for compiling a storage permit application, even if the site is only sparsely explored. The focus of the paper is on a risk driven characterization procedure. In the initial state of a site characterization process with sparse data coverage, the regional geological and stratigraphic understanding of the area of interest can help strengthen a first model construction for predictive modeling. Static and dynamic modeling in combination with a comprehensive risk assessment can guide the different elements needed to be evaluated for fulfilling a permit application. Several essential parameters must be evaluated; the storage capacity for the site must be acceptable for the project life of the operation, the trap configuration must be efficient to secure long term containment, the injectivity must be sufficient to secure a longstanding stable operation and finally a satisfactory and operational measuring strategy must be designed. The characterization procedure is demonstrated for a deep onshore aquifer in the northern part of Denmark, the Vedsted site. The site is an anticlinal structural closure in an Upper Triassic – Lower Jurassic sandstone formation at 1 800-1 900 m depth.

  8. High Temperature Materials Characterization and Advanced Materials Development

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Woo Seog; Kim, D. H.; Kim, S. H. (and others)

    2007-06-15

    The project has been carried out for 2 years in stage III in order to achieve the final goals of performance verification of the developed materials, after successful development of the advanced high temperature material technologies for 3 years in Stage II. The mechanical and thermal properties of the advanced materials, which were developed during Stage II, were evaluated at high temperatures, and the modification of the advanced materials were performed. Moreover, a database management system was established using user-friendly knowledge-base scheme to complete the integrated-information material database in KAERI material division.

  9. Site characterization progress report: Yucca Mountain, Nevada, April 1, 1992--September 30, 1992, Number 7

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-12-01

    In accordance with section 113(b)(3) of the Nuclear Waste Policy Act of 1982, as amended (NWPA), the Department has prepared the seventh in a series of reports on the progress of site characterization at the Yucca Mountain candidate site. The Civilian Radioactive Waste Management Program made significant progress during the reporting period at the Yucca Mountain Site Characterization Project. Several important advances were made in the surface-based testing program including: initiation of borehole drilling utilizing the new, state-of-the-art LM-300 drill rig which employs dry drilling and coring techniques; neutron access borehole drilling to evaluate infiltration processes; excavations to aid geologic mapping; and trenching in Midway Valley to study Quaternary faulting. A Floodplain Assessment and Statement of Findings was published in the Federal Register which concluded there would be no significant impact nor cumulative impacts on floodplains resulting from Exploratory Studies Facility activities. The National Academy of Sciences` National Research Council released its report entitled ``Ground Water at Yucca Mountain: How High Can It Rise?`` which concluded that none of the evidence cited as proof of groundwater upwelling in and around Yucca Mountain could be reasonably attributed to that process and that significant water table excursions to the repository design level are not shown by the geologic record. The June 29, 1992, earthquake near Yucca Mountain provided scientists with a wealth of information relevant to understanding the neotectonics of the area and the geometry of faults at depth. Early findings suggest that accelerations recorded were well within proposed design limits for the surface waste handling facilities.

  10. Advances in acrylic-alkyd hybrid synthesis and characterization

    Science.gov (United States)

    Dziczkowski, Jamie

    2008-10-01

    In situ graft acrylic-alkyd hybrid resins were formed by polymerizing acrylic and acrylic-mixed monomers in the presence of alkyds by introduction of a free radical initiator to promote graft formation. Two-dimensional NMR, specifically gradient heteronuclear multiple quantum coherence (gHMQC), was used to clarify specific graft sites of the hybrid materials. Both individual and mixed-monomer systems were produced to determine any individual monomer preferences and to model current acrylic-alkyd systems. Different classes of initiators were used to determine any initiator effects on graft location. The 2D-NMR results confirm grafting at doubly allylic hydrogens located on the fatty acid chains and the polyol segment of the alkyd backbone. The gHMQC spectra show no evidence of grafting across double bonds on either pendant fatty acid groups or THPA unsaturation sites for any of the monomer or mixed monomer systems. It was also determined that choice of initiator has no effect on graft location. In addition, a design of experiments using response surface methodology was utilized to obtain a better understanding of this commercially available class of materials and relate both the chemical and physical properties to one another. A Box-Behnkin design was used, varying the oil length of the alkyd phase, the degree of unsaturation in the polyester backbone, and acrylic to alkyd ratio. Acrylic-alkyd hybrid resins were reduced with an amine/water mixture. Hydrolytic stability was tested and viscoelastic properties were obtained to determine crosslink density. Cured films were prepared and basic coatings properties were evaluated. It was found that the oil length of the alkyd is the most dominant factor for final coatings properties of the resins. Acrylic to alkyd ratio mainly influences the resin properties such as acid number, average molecular weight, and hydrolytic stability. The degree of unsaturation in the alkyd backbone has minimal effects on resin and film

  11. Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 1, Part A: Chapters 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-12-01

    This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules. 750 refs., 123 figs., 42 tabs.

  12. Site Characterization Plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 3, Part A: Chapters 6 and 7

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-12-01

    This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules. 218 figs., 50 tabs.

  13. Hanford Site National Environmental Policy Act (NEPA) characterization

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E. (ed.)

    1988-09-01

    This document describes the Hanford Site environment (Chapter 4) and contains data in Chapter 5 and 6 which will guide users in the preparation of National Environmental Policy Act (NEPA)-related documents. Many NEPA compliance documents have been prepared and are being prepared by site contractors for the US Department of Energy, and examination of these documents reveals inconsistencies in the amount of detail presented and the method of presentation. Thus, it seemed necessary to prepare a consistent description of the Hanford environment to be used in preparing Chapter 4 of environmental impact statements and other site-related NEPA documentation. The material in Chapter 5 is a guide to the models used, including critical assumptions incorporated in these models, in previous Hanford NEPA documents. The users will have to select those models appropriate for the proposed action. Chapter 6 is essentially a definitive NEPA Chapter 6, which describes the applicable laws, regulations, and DOE and state orders. In this document, a complete description of the environment is presented in Chapter 4 without excessive tabular data. For these data, sources are provided. Most subjects are divided into a general description of the characteristics of the Hanford Site, followed by site-specific information where it is available on the 100, 200, 300, and other Areas. This division will allow a person requiring information to go immediately to those sections of particular interest. However, site-specific information on each of these separate areas is not always complete or available. In this case, the general Hanford Site description should be used. 131 refs., 19 figs., 32 tabs.

  14. Determination of types and binding sites of advanced glycation end products for substance P.

    Science.gov (United States)

    Lopez-Clavijo, Andrea F; Barrow, Mark P; Rabbani, Naila; Thornalley, Paul J; O'Connor, Peter B

    2012-12-18

    Glycation by endogenous dicarbonyl metabolites such as glyoxal is an important spontaneous post-translational (PTM) modification of peptides and proteins associated with structural and functional impairment. The aim of this study was to investigate types and site of PTM of glyoxal-derived advanced glycation end-products-in the neuropeptide substance P by ultrahigh-resolution Fourier transform ion cyclotron resonance (FTICR), mass spectrometry, and tandem mass spectrometry (MS/MS) experiments. The main site of PTM by glyoxal was the side chain guanidine moiety of the arginine residue. Binding site identification has been achieved by electron capture dissociation, double-resonance electron capture dissociation, and collision-activated dissociation, with assignment of the modified amino acid residue with mass error <1 ppm.

  15. Hanford Site National Environmental Policy Act (NEPA) Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, A.C.; Fosmire, C.J.; Neitzel, D.A.; Hoitink, D.J.; Harvey, D.W.; Antonio, E.J.; Wright, M.K.; Thorne, P.D.; Hendrickson, P.L.; Fowler, R.A.; Goodwin, S.M.; Poston, T.M.

    1999-09-28

    This document describes the US Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many NEPA documents being prepared by DOE contractors. No conclusions or recommendations are provided. This year's report is the eleventh revision of the original document published in 1988 and is (until replaced by the 12th revision) the only version that is relevant for use in the preparation of Hanford NEPA; SEPA and CERCLA documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is presented in environmental impact statements (EISs) and other Site-related NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological and historical resources, socioeconomic; occupational safety, and noise. Sources for extensive tabular data related to these topics are provided in the chapter. Most subjects are divided into a general description of the characteristics of the Hanford Site, followed by site-specific information, where available, of the 100,200,300, and other Areas. This division allows the reader to go directly to those sections of particular interest. When specific information on each of these separate areas is not complete or available, the general Hanford Site description should be used. Chapter 6.0 (Statutory and Regulatory Requirements) is essentially a definitive NEPA Chapter 6.0, which describes applicable federal and state laws and regulations, DOE directives and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site. People preparing environmental assessments and EISs should also be cognizant of the document entitled ''Recommendations for the Preparation of Environmental Assessments and Environmental Impact

  16. Hanford Site National Environmental Policy Act (NEPA) Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, Duane A.; Antonio, Ernest J.; Eschbach, Tara O.; Fowler, Richard A.; Goodwin, Shannon M.; Harvey, David W.; Hendrickson, Paul L.; Hoitink, Dana J.; Horton, Duane G.; Last, George V.; Poston, Ted M.; Prendergast, Ellen L.; Rohay, Alan C.; Thorne, Paul D.

    2001-09-01

    This document describes the U.S. Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many National Environmental Policy Act (NEPA) documents being prepared by DOE contractors. No statements of significance or environmental consequences are provided. This year's report is the thirteenth revision of the original document published in 1988 and is (until replaced by the fourteenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is typically presented in environmental impact statements (Weiss) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological, and historical resources, socioeconomics, occupational safety, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to the NEPA documents prepared for Hanford Site activities.

  17. Hanford Site National Environmental Policy Act (NEPA) Characterization Report

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, Duane A.; Bunn, Amoret L.; Cannon, Sandra D.; Duncan, Joanne P.; Fowler, Richard A.; Fritz, Brad G.; Harvey, David W.; Hendrickson, Paul L.; Hoitink, Dana J.; Horton, Duane G.; Last, George V.; Poston, Ted M.; Prendergast-Kennedy, Ellen L.; Reidel, Steve P.; Rohay, Alan C.; Scott, Michael J.; Thorne, Paul D.

    2004-09-22

    This document describes the U.S. Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many National Environmental Policy Act (NEPA) documents being prepared by DOE contractors. No statements of significance or environmental consequences are provided. This year's report is the sixteenth revision of the original document published in 1988 and is (until replaced by the seventeenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is typically presented in environmental impact statements (Weiss) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological, and historical resources, socioeconomics, occupational safety and health, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to the NEPA documents prepared for Hanford Site activities.

  18. Hanford Site National Environmental Policy Act (NEPA) Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, Duane A.; Bunn, Amoret L.; Duncan, Joanne P.; Eschbach, Tara O.; Fowler, Richard A.; Fritz, Brad G.; Goodwin, Shannon M.; Harvey, David W.; Hendrickson, Paul L.; Hoitink, Dana J.; Horton, Duane G.; Last, George V.; Poston, Ted M.; Prendergast-Kennedy, Ellen L.; Rohay, Alan C.; Scott, Michael J.; Thorne, Paul D.

    2002-09-01

    This document describes the U.S. Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many National Environmental Policy Act (NEPA) documents being prepared by DOE contractors. No statements of significance or environmental consequences are provided. This year's report is the thirteenth revision of the original document published in 1988 and is (until replaced by the fourteenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is typically presented in environmental impact statements (Weiss) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological, and historical resources, socioeconomics, occupational safety, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to the NEPA documents prepared for Hanford Site activities.

  19. Hanford Site National Environmental Policy Act (NEPA) Characterization, Revision 15

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, Duane A.; Bunn, Amoret L.; Burk, Kenneth W.; Cannon, Sandra D.; Duncan, Joanne P.; Fowler, Richard A.; Fritz, Brad G.; Harvey, David W.; Hendrickson, Paul L.; Horton, Duane G.; Last, George V.; Poston, Ted M.; Prendergast-Kennedy, Ellen L.; Reidel, Steve P.; Scott, Michael J.; Thorne, Paul D.; Woody, Dave M.

    2003-09-01

    This document describes the U.S. Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many National Environmental Policy Act (NEPA) documents being prepared by DOE contractors. No statements of significance or environmental consequences are provided. This year's report is the thirteenth revision of the original document published in 1988 and is (until replaced by the fourteenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is typically presented in environmental impact statements (Weiss) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological, and historical resources, socioeconomics, occupational safety, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to the NEPA documents prepared for Hanford Site activities.

  20. Advanced reservoir characterization for improved oil recovery in a New Mexico Delaware basin project

    Energy Technology Data Exchange (ETDEWEB)

    Martin, F.D.; Kendall, R.P.; Whitney, E.M. [Dave Martin and Associates, Inc., Socorro, NM (United States)] [and others

    1997-08-01

    The Nash Draw Brushy Canyon Pool in Eddy County, New Mexico is a field demonstration site in the Department of Energy Class III program. The basic problem at the Nash Draw Pool is the low recovery typically observed in similar Delaware fields. By comparing a control area using standard infill drilling techniques to a pilot area developed using advanced reservoir characterization methods, the goal of the project is to demonstrate that advanced technology can significantly improve oil recovery. During the first year of the project, four new producing wells were drilled, serving as data acquisition wells. Vertical seismic profiles and a 3-D seismic survey were acquired to assist in interwell correlations and facies prediction. Limited surface access at the Nash Draw Pool, caused by proximity of underground potash mining and surface playa lakes, limits development with conventional drilling. Combinations of vertical and horizontal wells combined with selective completions are being evaluated to optimize production performance. Based on the production response of similar Delaware fields, pressure maintenance is a likely requirement at the Nash Draw Pool. A detailed reservoir model of pilot area was developed, and enhanced recovery options, including waterflooding, lean gas, and carbon dioxide injection, are being evaluated.

  1. Hanford Site National Environmental Policy Act (NEPA) Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, Joanne P.; Burk, Kenneth W.; Chamness, Mickie A.; Fowler, Richard A.; Fritz, Brad G.; Hendrickson, Paul L.; Kennedy, Ellen P.; Last, George V.; Poston, Ted M.; Sackschewsky, Michael R.; Scott, Michael J.; Snyder, Sandra F.; Sweeney, Mark D.; Thorne, Paul D.

    2007-09-27

    This document describes the U.S. Department of Energy’s (DOE) Hanford Site environment. It is intended to provide a consistent description of the Hanford Site for the many environmental documents being prepared by DOE contractors concerning the National Environmental Policy Act (NEPA). No statements regarding significance or environmental consequences are provided. This year’s report is the eighteen revision of the original document published in 1988 and is (until replaced by the nineteenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) documents. Two chapters are included in this document (Chapters 4 and 6), numbered to correspond to chapters typically presented in environmental impact statements (EISs) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology; air quality; geology; hydrology; ecology; cultural, archaeological, and historical resources; socioeconomics; noise; and occupational health and safety. Sources for extensive tabular data related to these topics are provided in the chapter. When possible, subjects are divided into a general description of the characteristics of the Hanford Site, followed by site-specific information, where available, for the 100, 200, 300 and other areas. This division allows the reader to go directly to those sections of particular interest. When specific information on each of these separate areas is not complete or available, the general Hanford Site description should be used. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to NEPA documents prepared for Hanford Site activities. Information in Chapter 6 can be adapted and supplemented with

  2. Site characterization report for the basalt waste isolation project. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-11-01

    The reference location for a repository in basalt for the terminal storage of nuclear wastes on the Hanford Site and the candidate horizons within this reference repository location have been identified and the preliminary characterization work in support of the site screening process has been completed. Fifteen technical questions regarding the qualification of the site were identified to be addressed during the detailed site characterization phase of the US Department of Energy-National Waste Terminal Storage Program site selection process. Resolution of these questions will be provided in the final site characterization progress report, currently planned to be issued in 1987, and in the safety analysis report to be submitted with the License Application. The additional information needed to resolve these questions and the plans for obtaining the information have been identified. This Site Characterization Report documents the results of the site screening process, the preliminary site characterization data, the technical issues that need to be addressed, and the plans for resolving these issues. Volume 2 contains chapters 6 through 12: geochemistry; surface hydrology; climatology, meteorology, and air quality; environmental, land-use, and socioeconomic characteristics; repository design; waste package; and performance assessment.

  3. Summary of 1990 eolian characterization studies, Hanford Site, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Gaylord, D.R.; Stetler, L.D.; Smith, G.D. [Washington State Univ., Pullman, WA (United States); Mars, R.W. [Wyoming Univ., Laramie, WY (United States)

    1993-12-01

    A study of eolian activity was initiated to improve understanding of past climate change and the likely effect of wind on engineered protective barriers at the Hanford Site. Eolian features from a Holocene sand dune field located in the southeastern portion of the Hanford Site were investigated using a variety of field and laboratory techniques including stratigraphic examinations of hand-dug pits, textural and compositional analyses of dune sand and potential source detritus, and air photo interpretations. These investigations were undertaken to evaluate the provenance and eolian dynamics of the sand dunes. Interpretations of sand dune migration using archival air photo stereopairs document a 20% reduction in the volume of active sand dunes (measured from an approximate 15-km{sup 2} test area) between 1948 and 1987. Changes in annual precipitation appear to have influenced active dune migration strongly.

  4. Technical Data Catalog: Yucca Mountain Site Characterization Project. Quarterly supplement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-30

    This report presents reference information contained in the Yucca Mountain Project Automated Technical Data Tracking System. The Department of Energy is seeking to design and maintain a geologic repository for the disposal of high-level radioactive wastes. However, before this repository can be built, the DOE must first do a comprehensive site evaluation. This evaluation is subject to many regulations. This report fulfills the reporting requirements of the Site-Specific Procedural Agreement for Geologic Repository to develop and maintain a catalog of data which will be updated and provided to the Nuclear Regulatory Commission on a quarterly basis. This catalog contains: description of data; time, place, and method of acquisition; and where data may be examined.

  5. Interpreting and Responding to Intensified Site Characterization Results

    Science.gov (United States)

    2011-11-01

    Phase 1 7 , 0 0 0 u g T C E / L 1 0 0 u g T C E / L transmissive pore fraction static pore fraction 2005 Aquifer conditions Alluvial fan Groundwater... dynamic groundwater monitoring) Questions and Discussion Beaver Island, Michigan Impacts and Opportunities • Contaminant mass transport is often...mappings to be successful, however: Low-K zones cannot be treated to compliance. Dynamic groundwater monitoring is a potential solution: Separate site

  6. Resource Conservation and Recovery Act industrial site environmental restoration site characterization plan. Area 6 Steam Cleaning Effluent Ponds

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    This plan presents the strategy for the characterization of the Area 6 South and North Steam Cleaning Effluent Ponds (SCEPs) at the Nevada Test Site (NTS) to be conducted for the US Department of Energy, Nevada Operations Office (DOE/NV), Environmental Restoration Division (ERD). The purposes of the planned activities are to: obtain sufficient, sample analytical data from which further assessment, remediation, and/or closure strategies may be developed for the site; obtain sufficient, sample analytical data for management of investigation-derived waste (IDW). The scope of the characterization may include excavation, drilling, and sampling of soil in and around both ponds; sampling of the excavated material; in situ sampling of the soil at the bottom and on the sides of the excavations as well as within subsurface borings; and conducting sample analysis for both characterization and waste management purposes. Contaminants of concern include RCRA-regulated VOCs and metals.

  7. Functional Characterization of APOBEC-1 Complementation Factor Phosphorylation Sites

    Science.gov (United States)

    Lehmann, David M.; Galloway, Chad A.; MacElrevey, Celeste; Sowden, Mark P.; Wedekind, Joseph E.; Smith, Harold C.

    2007-01-01

    ApoB mRNA editing involves site-specific deamination of cytidine 6666 producing an in-frame translation stop codon. Editing minimally requires APOBEC-1 and APOBEC-1 complementation factor (ACF). Metabolic stimulation of apoB mRNA editing in hepatocytes is associated with serine phosphorylation of ACF localized to editing competent, nuclear 27S editosomes. We demonstrate that activation of protein kinase C (PKC) stimulated editing and enhanced ACF phosphorylation in rat primary hepatocytes. Conversely, activation of protein kinase A (PKA) had no effect on editing. Recombinant PKC efficiently phosphorylated purified ACF64 protein in vitro, whereas PKA did not. Mutagenesis of predicted PKC phosphorylation sites S154 and S368 to alanine inhibited ethanol-stimulated induction of editing suggesting that these sites function in the metabolic regulation of editing. Consistent with this interpretation, substitution of S154 and S368 with aspartic acid stimulated editing to levels comparable to ethanol treatment in control McArdle RH7777 cells. These data suggest that phosphorylation of ACF by PKC may be a key regulatory mechanism of apoB mRNA editing in rat hepatocytes. PMID:17229474

  8. Characterization of atmospheric bioaerosols at 9 sites in Tijuana, Mexico

    Science.gov (United States)

    Hurtado, Lilia; Rodríguez, Guillermo; López, Jonathan; Castillo, J. E.; Molina, Luisa; Zavala, Miguel; Quintana, Penelope J. E.

    2014-10-01

    The atmosphere is not considered a habitat for microorganisms, but can exist in the atmosphere as bioaerosols. These microorganisms in the atmosphere have great environmental importance through their influence on physical processes such as ice nucleation and cloud droplet formation. Pathogenic airborne microorganisms may also have public health consequences. In this paper we analyze the microbial concentration in the air at three sites in Tijuana, Mexico border during the Cal-Mex 2010 air quality campaign and from nine sites over the following year. Samples were collected by impaction with the air analyzer Millipore M Air T, followed by incubation and counting as colony forming units (CFU) of viable colonies. Airborne microbial contamination average levels ranged from a low of 230 ± 130 CFU/m³ in the coastal reference site to an average of 40,100 ± 21,689 CFU/m³ in the Tijuana river valley. We found the highest microbial load in the summer and the lowest values in the winter. Potentially pathogenic bacteria were isolated from the samples, with Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Enterococcus faecalis being most common. This work is the first evaluation of bioaerosols in Tijuana, Mexico.

  9. Site characterization progress report: Yucca Mountain, Nevada, October 1, 1990--March 31, 1991; Number 4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-10-01

    In accordance with the requirements of Section 113 (b) (3) of the Nuclear Waste Policy Act of 1982, as amended (NWPA), the US Department of Energy (DOE) has prepared this report on the progress of site characterization activities at Yucca Mountain, Nevada, for the period October 1, 1990, through March 31, 1991. This report is the fourth in a series of reports that are issued at intervals of approximately six months during site characterization. The report covers a number of initiatives to improve the effectiveness of the site characterization program, and covers continued efforts related to preparatory activities, Study Plans, and performance assessment.

  10. Seismic Site Characterizations and Earthquake Loss Estimation Analyses for K-12 Schools in Washington State

    Science.gov (United States)

    Cakir, R.; Walsh, T. J.; Hayashi, K.; Norman, D. K.; Lau, T.; Scott, S.

    2016-12-01

    Washington State has the second-highest earthquake risk in the U.S. after only California, and major earthquakes in western Washington in 1946, 1949, 1965, and 2001 killed 15 people and caused billions of dollars' worth of property damage. Washington State has not been exempt from earthquake damage to school buildings. The mission of The Washington Department of Natural Resources-Division of Geology and Earth Resources is to "reduce or eliminate risks to life and property from natural hazards." We conducted active and passive seismic surveys, and estimated shear-wave velocity (Vs) profiles, then determined NEHRP soil classifications using calculated Vs30m values at public schools in Thurston, Grays Harbor, Walla Walla, Chelan and Okanogan counties, Washington. We used active and passive seismic surveys: 1D and 2D MASW and MAM, P- and S-wave refraction, horizontal-to-vertical spectral ratio (H/V), and 2-Station SPAC (2ST-SPAC) surveys to measure Vs and Vp at shallow (0-70m) and Vs at greater (10 to 500 or 10 -3000 meters) depths at the sites, respectively. We then ran Ground Penetrating Radar (GPR) surveys along each seismic line to check possible horizontal subsurface variations between the survey line and the actual location of the school buildings. These survey results were then used for calculations of Vs30m to determine the NEHRP site classifications at school sites. These site classes were also used for determining soil amplification effects on the ground motions affecting structural damage estimations of the school buildings. These seismic site characterization results associated with structural engineering evaluations were then used as inputs in FEMA Hazus-Advanced Engineering Building Module (AEBM) analysis to provide estimated casualties, nonstructural, and structural losses. The final AEBM loss estimation along with the more detailed structural evaluations will help school districts assess the earthquake performance of school buildings in order to

  11. New MRI Biomarkers Advance the Characterization of Parkinson Disease

    OpenAIRE

    Ziegler, David A.; Corkin, Suzanne

    2013-01-01

    The pathophysiology of idiopathic Parkinson disease (PD) is traditionally characterized as substantia nigra degeneration, but careful examination of the widespread neuropathological changes suggests individual differences in neuronal vulnerability. A major limitation to studies of disease progression in PD has been that conventional MRI techniques provide relatively poor contrast for the structures that are affected by the disease, and thus are not typically used in experimental or clinical s...

  12. An overview of geophysical technologies appropriate for characterization and monitoring at fractured-rock sites

    Science.gov (United States)

    Geophysical methods are used increasingly for characterization and monitoring at remediation sites in fractured-rock aquifers. The complex heterogeneity of fractured rock poses enormous challenges to groundwater remediation professionals, and new methods are needed to cost-effect...

  13. Advances in Molecular Characterization and Targeted Therapy in Dermatofibrosarcoma Protuberans

    Directory of Open Access Journals (Sweden)

    Piotr Rutkowski

    2011-01-01

    Full Text Available The molecular pathogenesis of dermatofibrosarcoma protuberans (DFSP involves distinctive rearrangement of chromosomes 17 and 22 leading to formation of the COL1A1-PDGFB fusion gene. The knowledge of molecular events underlying development of DFSP resulted in the implementation of targeted therapy with imatinib—a tyrosine kinase inhibitor (TKI, to the clinical practice. The striking efficacy of imatinib in advanced cases of DFSP has been demonstrated in a few clinical trials. Thus, imatinib is currently considered the gold standard in the treatment of inoperable and/or metastatic and/or recurrent cases of DFSP. Therapy with imatinib may potentially facilitate resection or decrease possible disfigurement related to radical surgical procedure. Following partial response on imatinib significant percentage of patients may be rendered free of the disease by surgery of the residual tumor.

  14. Characterization of UMT2013 Performance on Advanced Architectures

    Energy Technology Data Exchange (ETDEWEB)

    Howell, Louis [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-12-31

    This paper presents part of a larger effort to make detailed assessments of several proxy applications on various advanced architectures, with the eventual goal of extending these assessments to codes of programmatic interest running more realistic simulations. The focus here is on UMT2013, a proxy implementation of deterministic transport for unstructured meshes. I present weak and strong MPI scaling results and studies of OpenMP efficiency on the Sequoia BG/Q system at LLNL, with comparison against similar tests on an Intel Sandy Bridge TLCC2 system. The hardware counters on BG/Q provide detailed information on many aspects of on-node performance, while information from the mpiP tool gives insight into the reasons for the differing scaling behavior on these two different architectures. Preliminary tests that exploit NVRAM as extended memory on an Ivy Bridge machine designed for “Big Data” applications are also included.

  15. Photonic crystals advances in design, fabrication, and characterization

    CERN Document Server

    Busch, Kurt; Wehrspohn, Ralf B; Föll, Helmut

    2006-01-01

    The majority of the contributions in this topically edited book stems from the priority program SPP 1113 ""Photonische Kristalle"" run by the Deutsche Forschungsgemeinschaft (DFG), resulting in a survey of the current state of photonic crystal research in Germany. The first part of the book describes methods for the theoretical analysis of their optical properties as well as the results. The main part is dedicated to the fabrication, characterization and modeling of two- and three-dimensional photonic crystals, while the final section presents a wide spectrum of applications: gas sensors, micr

  16. Advanced characterization of microscopic kidney biopsies utilizing image analysis techniques.

    Science.gov (United States)

    Goudas, Theodosios; Doukas, Charalampos; Chatziioannou, Aristotle; Maglogiannis, Ilias

    2012-01-01

    Correct annotation and identification of salient regions in Kidney biopsy images can provide an estimation of pathogenesis in obstructive nephropathy. This paper presents a tool for the automatic or manual segmentation of such regions along with methodology for their characterization in terms of the exhibited pathology. The proposed implementation is based on custom code written in Java and the utilization of open source tools (i.e. RapidMiner, ImageJ). The corresponding implementation details along with the initial evaluation of the proposed integrated system are also presented in the paper.

  17. Third-generation site characterization: Cryogenic core collection, nuclear magnetic resonance, and electrical resistivity

    Science.gov (United States)

    Kiaalhosseini, Saeed

    In modern contaminant hydrology, management of contaminated sites requires a holistic characterization of subsurface conditions. Delineation of contaminant distribution in all phases (i.e., aqueous, non-aqueous liquid, sorbed, and gas), as well as associated biogeochemical processes in a complex heterogeneous subsurface, is central to selecting effective remedies. Arguably, a factor contributing to the lack of success of managing contaminated sites effectively has been the limitations of site characterization methods that rely on monitoring wells and grab sediment samples. The overarching objective of this research is to advance a set of third-generation (3G) site characterization methods to overcome shortcomings of current site characterization techniques. 3G methods include 1) cryogenic core collection (C3) from unconsolidated geological subsurface to improve recovery of sediments and preserving key attributes, 2) high-throughput analysis (HTA) of frozen core in the laboratory to provide high-resolution, depth discrete data of subsurface conditions and processes, 3) resolution of non-aqueous phase liquid (NAPL) distribution within the porous media using a nuclear magnetic resonance (NMR) method, and 4) application of a complex resistivity method to track NAPL depletion in shallow geological formation over time. A series of controlled experiments were conducted to develop the C 3 tools and methods. The critical aspects of C3 are downhole circulation of liquid nitrogen via a cooling system, the strategic use of thermal insulation to focus cooling into the core, and the use of back pressure to optimize cooling. The C3 methods were applied at two contaminated sites: 1) F.E. Warren (FEW) Air Force Base near Cheyenne, WY and 2) a former refinery in the western U.S. The results indicated that the rate of core collection using the C3 methods is on the order of 30 foot/day. The C3 methods also improve core recovery and limits potential biases associated with flowing sands

  18. Characterizing the Mineralogy of Potential Lunar Landing Sites

    Science.gov (United States)

    Pieters, Carle; Head, James W., III; Mustard, Jack; Boardman, Joe; Buratti, Bonnie; Clark, Roger; Green, Rob; Head, James W, III; McCord, Thomas B.; Mustard, Jack; hide

    2006-01-01

    Many processes active on the early Moon are common to most terrestrial planets, including the record of early and late impact bombardment. The Moon's surface provides a record of the earliest era of terrestrial planet evolution, and the type and composition of minerals that comprise a planetary surface are a direct result of the initial composition and subsequent thermal and physical processing. Lunar mineralogy seen today is thus a direct record of the early evolution of the lunar crust and subsequent geologic processes. Specifically, the distribution and concentration of specific minerals is closely tied to magma ocean products, lenses of intruded or remelted plutons, basaltic volcanism and fire-fountaining, and any process (e.g. cratering) that might redistribute or transform primary and secondary lunar crustal materials. The association of several lunar minerals with key geologic processes is illustrated in Figure 1. The geologic history of potential landing sites on the Moon can be read from the character and context of local mineralogy.

  19. Waste site characterization and remediation: Problems in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Kalavapudi, M. [ENVIROSYS, Gaithersburg, MD (United States); Iyengar, V. [Biomineral Sciences International Inc., Bethesda, MD (United States)

    1996-12-31

    Increased industrial activities in developing countries have degraded the environment, and the impact on the environment is further magnified because of an ever-increasing population, the prime receptors. Independent of the geographical location, it is possible to adopt effective strategies to solve environmental problems. In the United States, waste characterization and remediation practices are commonly used for quantifying toxic contaminants in air, water, and soil. Previously, such procedures were extraneous, ineffective, and cost-intensive. Reconciliation between the government and stakeholders, reinforced by valid data analysis and environmental exposure assessments, has allowed the {open_quotes}Brownfields{close_quotes} to be a successful approach. Certified reference materials and standard reference materials from the National Institute of Standards (NIST) are indispensable tools for solving environmental problems and help to validate data quality and the demands of legal metrology. Certified reference materials are commonly available, essential tools for developing good quality secondary and in-house reference materials that also enhance analytical quality. This paper cites examples of environmental conditions in developing countries, i.e., industrial pollution problems in India, polluted beaches in Brazil, and deteriorating air quality in countries, such as Korea, China, and Japan. The paper also highlights practical and effective approaches for remediating these problems. 23 refs., 7 figs., 1 tab.

  20. White Oak Creek Embayment site characterization and contaminant screening analysis

    Energy Technology Data Exchange (ETDEWEB)

    Blaylock, B.G.; Ford, C.J.; Frank, M.L.; Hoffman, F.O.; Hook, L.A.

    1993-01-01

    Analyses of sediment samples collected near the mouth of White Oak Creek during the summer of 1990 revealed [sup 137]Cs concentrations [> 10[sup 6] Bq/kg dry wt (> 10[sup 4] pCi/g dry wt)] near the sediment surface. Available evidence indicates that these relatively high concentrations of [sup 137]Cs now at the sediment surface were released from White Oak Dam in the mid-1950s and had accumulated at depositionalsites in the embayment. These accumulated sediments are being eroded and transported downstream primarily during winter low-water levels by flood events and by a combination of normal downstream flow and the water turbulence created by the release of water from Melton Hill Dam during hydropower generation cycles. This report provides a more thorough characterization of the extent of contamination in WOCE than was previously available. Environmental samples collected from WOCE were analyzed for organic, inorganic, and radiological contaminants in fish, water, and sediment. These results were used to conduct a human health effects screening analysis. Walkover radiation surveys conducted inside the fenced area surrounding the WOCE at summer-pool (741 ft MSL) and at winter-pool (733 ft MSL) level, indicated a maximum exposure rate of 3 mR h[sup 1] 1 m above the soil surface.

  1. Recent advancements in the geotechnical characterization of oil sands tailings

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, J. [Conetec, Richmond, BC (Canada)

    2010-07-01

    The technical aspects of soft oil sands tailings in-situ geotechnical site investigations were discussed. Geotechnical studies are conducted to determine containment structure stability as well as to determine volumetric and mass balances. The results of the studies are used in tailings management plans and construction activities. Flow penetrometers, field vane shear tests, and Gamma-CPTu tests are used in in-situ oil sands tailings geotechnical studies in order to determine pore pressure dissipation, and measure shear strength. Ball penetration tests are conducted to determine tailings strength. Methods of interpreting data from the tests were presented, and data from the tests were also compared and evaluated. Recommended procedures for strength screening were presented. Statistical methods for determining tailings behaviour types were outlined. The study showed that Gamma-CPTu data can be used to obtain reasonable preliminary estimates of solids and fines when combined with tailings behaviour type analyses. tabs., figs.

  2. Use of Electrical Conductivity Logging to Characterize the Geological Context of Releases at UST Sites

    Science.gov (United States)

    Risk is the combination of hazard and exposure. Risk characterization at UST release sites has traditionally emphasized hazard (presence of residual fuel) with little attention to exposure. Exposure characterization often limited to a one-dimensional model such as the RBCA equa...

  3. Microstructural and mechanical characterization of laser deposited advanced materials

    Science.gov (United States)

    Sistla, Harihar Rakshit

    Additive manufacturing in the form of laser deposition is a unique way to manufacture near net shape metallic components from advanced materials. Rapid solidification facilitates the extension of solid solubility, compositional flexibility and decrease in micro-segregation in the melt among other advantages. The current work investigates the employment of laser deposition to fabricate the following: 1. Functionally gradient materials: This allows grading dissimilar materials compositionally to tailor specific properties of both these materials into a single component. Specific compositions of the candidate materials (SS 316, Inconel 625 and Ti64) were blended and deposited to study the brittle intermetallics reported in these systems. 2. High entropy alloys: These are multi- component alloys with equiatomic compositions of 5 or more elements. The ratio of Al to Ni was decreased to observe the transition of solid solution from a BCC to an FCC crystal structure in the AlFeCoCrNi system. 3. Structurally amorphous alloys: Zr-based metallic glasses have been reported to have high glass forming ability. These alloys have been laser deposited so as to rapidly cool them from the melt into an amorphous state. Microstructural analysis and X-ray diffraction were used to study the phase formation, and hardness was measured to estimate the mechanical properties.

  4. Advanced Branching Control and Characterization of Inorganic Semiconducting Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Steven Michael [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    The ability to finely tune the size and shape of inorganic semiconducting nanocrystals is an area of great interest, as the more control one has, the more applications will be possible for their use. The first two basic shapes develped in nanocrystals were the sphere and the anistropic nanorod. the II_VI materials being used such as Cadmium Selenide (CdSe) and Cadmium Telluride (CdTe), exhibit polytypism, which allows them to form in either the hexagonally packed wurtzite or cubically packed zinc blende crystalline phase. The nanorods are wurtzite with the length of the rod growing along the c-axis. As this grows, stacking faults may form, which are layers of zinc blende in the otherwise wurtzite crystal. Using this polytypism, though, the first generation of branched crystals were developed in the form of the CdTe tetrapod. This is a nanocrystal that nucleates in the zincblend form, creating a tetrahedral core, on which four wurtzite arms are grown. This structure opened up the possibility of even more complex shapes and applications. This disseration investigates the advancement of branching control and further understanding the materials polytypism in the form of the stacking faults in nanorods.

  5. Advanced Metrology for Characterization of Magnetic Tunnel Junctions

    DEFF Research Database (Denmark)

    Kjær, Daniel

    -plane tunneling (CIPT) for characterization of magnetic tunnel junctions (MTJs), which constitutes the key component not only in MRAM but also the read-heads of modern hard disk drives. MTJs are described by their tunnel magnetoresistance (TMR), which is the relative difference of the resistance area products (RA......) at two characteristic resistance levels (high and low) of the MTJ device. In the final memory application these resistance states correspond to a digital “1” or “0” stored. During CIPT measurements the tool will alter the state of the MTJ by application of an external magnetic field. With the CIPTech...... sources of error in single configuration micro four-point probe resistance measurements are in-line probe geometry errors and in-line static position errors. These errors were shown to be eliminated very effectively using dual-configuration measurements and position error correction algorithms...

  6. Site characterization techniques used at a low-level waste shallow land burial field demonstration facility

    Energy Technology Data Exchange (ETDEWEB)

    Davis, E.C.; Boegly, W.J. Jr.; Rothschild, E.R.; Spalding, B.P.; Vaughan, N.D.; Haase, C.S.; Huff, D.D.; Lee, S.Y.; Walls, E.C.; Newbold, J.D.

    1984-07-01

    The Environmental Sciences Division of the Oak Ridge National Laboratory has been investigating improved shallow land burial technology for application in the humd eastern United States. As part of this effort, a field demonstration facility (Engineered Test Facility, or ETF) has been established in Solid Waste Storage Area 6 for purposes of investigatig the ability of two trench treatments (waste grouting prior to cover emplacement and waste isolation with trench liners) to prevent water-waste contact and thus minimize waste leaching. As part of the experimental plan, the ETF site has been characterized for purposes of constructing a hydrologic model. Site characterization is an extremely important component of the waste disposal site selection process; during these activities, potential problems, which might obviate the site from further consideration, may be found. This report describes the ETF site characterization program and identifies and, where appropriate, evaluates those tests that are of most value in model development. Specific areas covered include site geology, soils, and hydrology. Each of these areas is further divided into numerous subsections, making it easy for the reader to examine a single area of interest. Site characterization is a multidiscipliary endeavor with voluminous data, only portions of which are presented and analyzed here. The information in this report is similar to that which will be required of a low-level waste site developer in preparing a license application for a potential site in the humid East, (a discussion of licensing requirements is beyond its scope). Only data relevant to hydrologic model development are included, anticipating that many of these same characterization methods will be used at future disposal sites with similar water-related problems.

  7. Characterization of aerosol particles at the forested site in Lithuania

    Science.gov (United States)

    Rimselyte, I.; Garbaras, A.; Kvietkus, K.; Remeikis, V.

    2009-04-01

    Atmospheric particulate matter (PM), especially fine particles (particles with aerodynamic diameter less than 1 m, PM1), has been found to play an important role in global climate change, air quality, and human health. The continuous study of aerosol parameters is therefore imperative for better understanding the environmental effects of the atmospheric particles, as well as their sources, formation and transformation processes. The particle size distribution is particularly important, since this physical parameter determines the mass and number density, lifetime and atmospheric transport, or optical scattering behavior of the particles in the atmosphere (Jaenicke, 1998). Over the years several efforts have been made to improve the knowledge about the chemical composition of atmospheric particles as a function of size (Samara and Voutsa, 2005) and to characterize the relative contribution of different components to the fine particulate matter. It is well established that organic materials constitute a highly variable fraction of the atmospheric aerosol. This fraction is predominantly found in the fine size mode in concentrations ranging from 10 to 70% of the total dry fine particle mass (Middlebrook et al., 1998). Although organic compounds are major components of the fine particles, the composition, formation mechanism of organic aerosols are not well understood. This is because particulate organic matter is part of a complex atmospheric system with hundreds of different compounds, both natural and anthropogenic, covering a wide range of chemical properties. The aim of this study was to characterize the forest PM1, and investigate effects of air mass transport on the aerosol size distribution and chemical composition, estimate and provide insights into the sources and characteristics of carbonaceous aerosols through analysis ^13C/12C isotopic ratio as a function of the aerosol particles size. The measurements were performed at the Rugšteliškis integrated

  8. Molecular characterization of the microsomal tamoxifen binding site.

    Science.gov (United States)

    Kedjouar, Blandine; de Médina, Philippe; Oulad-Abdelghani, Mustapha; Payré, Bruno; Silvente-Poirot, Sandrine; Favre, Gilles; Faye, Jean-Charles; Poirot, Marc

    2004-08-06

    Tamoxifen is a selective estrogen receptor modulator widely used for the prophylactic treatment of breast cancer. In addition to the estrogen receptor (ER), tamoxifen binds with high affinity to the microsomal antiestrogen binding site (AEBS), which is involved in ER-independent effects of tamoxifen. In the present study, we investigate the modulation of the biosynthesis of cholesterol in tumor cell lines by AEBS ligands. As a consequence of the treatment with the antitumoral drugs tamoxifen or PBPE, a selective AEBS ligand, we show that tumor cells produced a significant concentration- and time-dependent accumulation of cholesterol precursors. Sterols have been purified by HPLC and gas chromatography, and their chemical structures determined by mass spectrometric analysis. The major metabolites identified were 5alpha-cholest-8-en-3beta-ol for tamoxifen treatment and 5alpha-cholest-8-en-3beta-ol and cholesta-5,7-dien-3beta-ol, for PBPE treatment, suggesting that these AEBS ligands affect at least two enzymatic steps: the 3beta-hydroxysterol-Delta8-Delta7-isomerase and the 3beta-hydroxysterol-Delta7-reductase. Steroidal antiestrogens such as ICI 182,780 and RU 58,668 did not affect these enzymatic steps, because they do not bind to the AEBS. Transient co-expression of human 3beta-hydroxysterol-Delta8-Delta7-isomerase and 3beta-hydroxysterol-Delta7-reductase and immunoprecipitation experiments showed that both enzymes were required to reconstitute the AEBS in mammalian cells. Altogether, these data provide strong evidence that the AEBS is a hetero-oligomeric complex including 3beta-hydroxysterol-Delta8-Delta7-isomerase and the 3beta-hydroxysterol-Delta7-reductase as subunits that are necessary and sufficient for tamoxifen binding in mammary cells. Furthermore, because selective AEBS ligands are antitumoral compounds, these data suggest a link between cholesterol metabolism at a post-lanosterol step and tumor growth control. These data afford both the identification

  9. Site characterization progress report: Yucca Mountain, Nevada, April 1, 1993--September 30, 1993, No. 9

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-02-01

    In accordance with requirements of Section 113(b)(3) of the Nuclear Waste Policy Act of 1982, as amended, and 10 CFR 60.18(g), the U.S. Department of Energy has prepared this report on the progress of site characterization activities at Yucca Mountain, Nevada, for the period April 1, 1993, through September 30, 1993. This report is the ninth in a series issued at intervals of approximately six months during site characterization of Yucca Mountain as a possible site for a geologic repository for the permanent disposal of high-level radioactive waste. Also included in this report are activities such as public outreach and international programs that are not formally part of the site characterization process. Information on these activities is provided to report on all aspects of the Yucca Mountain studies.

  10. Site characterization progress report: Yucca Mountain, Nevada, October 1, 1992--March 31, 1993, No. 8

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-08-01

    In accordance with requirements of Section 113(b)(3) of the Nuclear Waste Policy Act of 1982, as amended, and 10 CFR 60.18(g), the US Department of Energy has prepared this report on the progress of site characterization activities at Yucca Mountain, Nevada, for the period October 1, 1992, through March 31, 1993. This report is the eighth in a series issued at intervals of approximately six months during site characterization of Yucca Mountain as a possible site for a geologic repository for the permanent disposal of high-level radioactive waste. Also included in this report are activities such as public outreach and international programs that are not formally part of the site characterization process. Information on these activities is provided to report on all aspects of the Yucca Mountain studies.

  11. Fabrication and characterization of advanced neutron multipliers for DEMO blanket

    Directory of Open Access Journals (Sweden)

    Masaru Nakamichi

    2016-12-01

    Full Text Available Prototypic pebbles with Be12V composition, which do not undergo a peritectic reaction during cooling, were fabricated and characterized, because this composition is not only unnecessary for the homogenization treatment, but also able to prevent increase of specific surface area. The results of granulation experiments indicated that the prototypic pebbles of single-phase Be12V were successfully fabricated without a homogenization treatment. The results of hydrogen generation reaction experiments showed that the prototypic pebbles with Be12V composition exhibited superior oxidation properties compared to pure Be pebbles and similar to those of as-granulated Be–Ti beryllide pebbles: as-granulated Be12V pebbles exhibited good resistance to water vapor. The results of deuterium retention experiments indicated that beryllides exhibit lower deuterium-trapping efficiency than other tested materials. Because of a small desorption from beryllides, the total retention of deuterium in Be12V was evaluated to be approximately 20% of that in pure Be.

  12. Advanced method for the characterization of polishing suspensions

    Science.gov (United States)

    Trum, Christian J.; Sitzberger, Sebastian; Rascher, Rolf

    2017-06-01

    The industrial production of components for applications in the area of precision optics has a long-standing tradition in Germany. As in almost all branches of industry, the external circumstances, processes and products have changed over time. Large lots are becoming less frequent and the demand for special components is growing. In order to meet these requirements, it is necessary to adapt the production processes quickly and flexibly. In the field of chemo-mechanical polishing (CMP), this means that in addition to the process parameters such as speed, pressure and feed, the task-specific adaptation of suspension and polishing pad carriers gain in importance. Along with these changes, it is becoming increasingly important to compare and evaluate the properties of the various polishing suspensions. The procedures according to DIN 58750-3 and DIN 58750-4 are suitable for this purpose. Due to the clearly defined procedures and the constant boundary conditions, different suspensions can be compared and evaluated. The study presented here shows that this method can also lead to misinterpretations. Known relationships, such as the influence of the polishing pad, the concentration of the suspension and the influence of the processed materials play an important role. An extension of the procedure of DIN 58750-3 for the test of a polishing agent can help in a task-specific characterization of polishing slurries.

  13. Drift design methodology and preliminary application for the Yucca Mountain Site Characterization Project; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, M.P. [Agapito (J.F.T.) and Associates, Inc., Grand Junction, CO (United States); Bauer, S.J. [Sandia National Labs., Albuquerque, NM (United States)

    1991-12-01

    Excavation stability in an underground nuclear waste repository is required during construction, emplacement, retrieval (if required), and closure phases to ensure worker health and safety, and to prevent development of potential pathways for radionuclide migration in the post-closure period. Stable excavations are developed by appropriate excavation procedures, design of the room shape, design and installation of rock support reinforcement systems, and implementation of appropriate monitoring and maintenance programs. In addition to the loads imposed by the in situ stress field, the repository drifts will be impacted by thermal loads developed after waste emplacement and, periodically, by seismic loads from naturally occurring earthquakes and underground nuclear events. A priori evaluation of stability is required for design of the ground support system, to confirm that the thermal loads are reasonable, and to support the license application process. In this report, a design methodology for assessing drift stability is presented. This is based on site conditions, together with empirical and analytical methods. Analytical numerical methods are emphasized at this time because empirical data are unavailable for excavations in welded tuff either at elevated temperatures or under seismic loads. The analytical methodology incorporates analysis of rock masses that are systematically jointed, randomly jointed, and sparsely jointed. In situ thermal and seismic loads are considered. Methods of evaluating the analytical results and estimating ground support requirements for all the full range of expected ground conditions are outlines. The results of a preliminary application of the methodology using the limited available data are presented. 26 figs., 55 tabs.

  14. Proceedings of the symposium on advanced characterization techniques applied to minerals, metals and materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    The proceedings of the 2008 conference of metallurgists of CIM includes a collection 7 separate symposia, namely (1) aerospace materials and manufacturing, (2) water, air and land sustainability issues in mineral and metal extraction (WALSIM), (3) current status and future trends of functional nanometers, (4) recent developments in advanced high strength steels processing, (5) corrosion and wear of materials, (6) advanced characterization techniques applied to mineral, metals and materials, and (7) management in metallurgy. The symposium on advanced characterization techniques applied to minerals, metals and materials provided a forum to review the latest methods for identifying compositions and textures of materials. The application of automated imaging techniques for fabric analysis and microstructure characterization was also reviewed along with issues regarding electrokinetics and powder coatings. The symposium featured 8 presentations, of which 2 have been catalogued separately for inclusion in this database. refs., tabs., figs.

  15. Structural level characterization of base oils using advanced analytical techniques

    KAUST Repository

    Hourani, Nadim

    2015-05-21

    Base oils, blended for finished lubricant formulations, are classified by the American Petroleum Institute into five groups, viz., groups I-V. Groups I-III consist of petroleum based hydrocarbons whereas groups IV and V are made of synthetic polymers. In the present study, five base oil samples belonging to groups I and III were extensively characterized using high performance liquid chromatography (HPLC), comprehensive two-dimensional gas chromatography (GC×GC), and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) equipped with atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) sources. First, the capabilities and limitations of each analytical technique were evaluated, and then the availed information was combined to reveal compositional details on the base oil samples studied. HPLC showed the overwhelming presence of saturated over aromatic compounds in all five base oils. A similar trend was further corroborated using GC×GC, which yielded semiquantitative information on the compound classes present in the samples and provided further details on the carbon number distributions within these classes. In addition to chromatography methods, FT-ICR MS supplemented the compositional information on the base oil samples by resolving the aromatics compounds into alkyl- and naphtheno-subtituted families. APCI proved more effective for the ionization of the highly saturated base oil components compared to APPI. Furthermore, for the detailed information on hydrocarbon molecules FT-ICR MS revealed the presence of saturated and aromatic sulfur species in all base oil samples. The results presented herein offer a unique perspective into the detailed molecular structure of base oils typically used to formulate lubricants. © 2015 American Chemical Society.

  16. Characterization of the geology, geochemistry, and microbiology of the radio frequency heating demonstration site at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Eddy Dilek, C.A.; Jarosch, T.R.; Fliermans, C.B.; Looney, B.B.; Parker, W.H.

    1993-08-01

    The overall objective of the Integrated Demonstration Project for the Remediation of Organics at Nonarid Sites at the Savannah River Site (SRS) is to evaluate innovative remediation, characterization, and monitoring systems to facilitate restoration of contaminated sites. The first phase of the demonstration focused on the application and development of in situ air stripping technologies to remediate sediments and groundwater contaminated with volatile organic compounds (VOCs). The second phase focused on the enhancement of the in situ air stripping process by adding selected nutrients to stimulate naturally occurring microorganisms that degrade VOCs. The purpose of the third phase was to evaluate the use of heating technologies [radio frequency (rf) and ohmic heating] to enhance the removal of contamination from clay layers where mass transfer is limited. The objective of this report is to document pretest and post-test data collected in support of the rf heating demonstration. The following data are discussed in this report: (1) a general description of the site including piezometers and sensors installed to monitor the remedial process; (2) stratigraphy, lithology, and a detailed geologic cross section of the study site; (3) tabulations of pretest and post-test moisture and VOC content of the sediments; (4) sampling and analysis procedures for sediment samples; (5) microbial abundance and diversity; (6) three-dimensional images of pretest and post-test contaminant distribution; (7) volumetric calculations.

  17. Characterization ReportOperational Closure Covers for the Area 5 Radioactive Waste Management Site at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel Nevada Geotechnical Sciences

    2005-06-01

    Bechtel Nevada (BN) manages two low-level Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS) for the U.S. Department of Energy (DOE) National Nuclear Security Administration Nevada Site Office (NNSA/NSO). The Area 3 RWMS is located in south-central Yucca Flat and the Area 5 RWMS is located about 15 miles south, in north-central Frenchman Flat. Though located in two separate topographically closed basins, they are similar in climate and hydrogeologic setting. The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste, while the Area 3 RWMS uses subsidence craters formed from underground testing of nuclear weapons for the disposal of packaged and unpackaged bulk waste. Over the next several decades, most waste disposal units at both the Area 3 and Area 5 RWMSs are anticipated to be closed. Closure of the Area 3 and Area 5 RWMSs will proceed through three phases: operational closure, final closure, and institutional control. Many waste disposal units at the Area 5RWMS are operationally closed and final closure has been placed on one unit at the Area 3 RWMS (U-3ax/bl). Because of the similarities between the two sites (e.g., type of wastes, environmental factors, operational closure cover designs, etc.), many characterization studies and data collected at the Area 3 RWMS are relevant and applicable to the Area 5 RWMS. For this reason, data and closure strategies from the Area 3 RWMS are referred to as applicable. This document is an interim Characterization Report – Operational Closure Covers, for the Area 5 RWMS. The report briefly describes the Area 5 RWMS and the physical environment where it is located, identifies the regulatory requirements, reviews the approach and schedule for closing, summarizes the monitoring programs, summarizes characterization studies and results, and then presents conclusions and recommendations.

  18. Advancing Site-Based Data Curation for Geobiology: The Yellowstone Exemplar (Invited)

    Science.gov (United States)

    Palmer, C. L.; Fouke, B. W.; Rodman, A.; Choudhury, G. S.

    2013-12-01

    While advances in the management and archiving of scientific digital data are proceeding apace, there is an urgent need for data curation services to collect and provide access to high-value data fit for reuse. The Site-Based Data Curation (SBDC) project is establishing a framework of guidelines and processes for the curation of research data generated at scientifically significant sites. The project is a collaboration among information scientists, geobiologists, data archiving experts, and resource managers at Yellowstone National Park (YNP). Based on our previous work with the Data Conservancy on indicators of value for research data, several factors made YNP an optimal site for developing the SBDC framework, including unique environmental conditions, a permitting process for data collection, and opportunities for geo-located longitudinal data and multiple data sources for triangulation and context. Stakeholder analysis is informing the SBDC requirements, through engagement with geologists, geochemists, and microbiologists conducting research at YNP and personnel from the Yellowstone Center for Resources and other YNP units. To date, results include data value indicators specific to site-based research, minimum and optimal parameters for data description and metadata, and a strategy for organizing data around sampling events. New value indicators identified by the scientists include ease of access to park locations for verification and correction of data, and stable environmental conditions important for controlling variables. Researchers see high potential for data aggregated from the many individual investigators conducting permitted research at YNP, however reuse is clearly contingent on detailed and consistent sampling records. Major applications of SBDC include identifying connections in dynamic systems, spatial temporal synthesis, analyzing variability within and across geological features, tracking site evolution, assessing anomalies, and greater awareness

  19. Threatened and endangered wildlife species of the Hanford Site related to CERCLA characterization activities

    Energy Technology Data Exchange (ETDEWEB)

    Fitzner, R.E. [Pacific Northwest Lab., Richland, WA (United States); Weiss, S.G.; Stegen, J.A. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-06-01

    The US Department of Energy`s (DOE) Hanford Site has been placed on the National Priorities List, which requires that it be remediated under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) or Superfund. Potentially contaminated areas of the Hanford Site were grouped into operable units, and detailed characterization and investigation plans were formulated. The DOE Richland Operations Office requested Westinghouse Hanford Company (WHC) to conduct a biological assessment of the potential impact of these characterization activities on the threatened, endangered, and sensitive wildlife species of the Hanford Site. Additional direction for WHC compliances with wildlife protection can be found in the Environmental Compliance Manual. This document is intended to meet these requirements, in part, for the CERCLA characterization activities, as well as for other work comparable in scope. This report documents the biological assessment and describes the pertinent components of the Hanford Site as well as the planned characterization activities. Also provided are accounts of endangered, threatened, and federal candidate wildlife species on the Hanford Site and information as to how human disturbances can affect these species. Potential effects of the characterization activities are described with recommendations for mitigation measures.

  20. Characterization of Pu-contaminated soils from Nuclear Site 201 at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.Y.; Tamura, T.; Larsen, I.L.

    1983-01-01

    Distribution and characteristics of Pu-bearing radioactive particles throughout five soil profiles from Nuclear Site (NS) 201 were investigated. Concentrations of /sup 239/ /sup 240/Pu and /sup 241/Am decreased with depth and most of the contamination was contained in the top 5 cm except in profile 4 where it extended to 10 cm. The mean activity ratio of /sup 239/ /sup 240/Pu to /sup 241/Am and its standard error were 5.8 +- 0.3 (N=42). Most of the total radioactivity of the soils was contributed by 0.25 to 2 mm sand size fraction which comprised 20 to 50% by weight of the soils. The radioactive particles in the 0.25 to 2 mm size fraction occurred as spherical glass particles or as glass coatings on sand particles. The glass coatings had gas voids in the matrix but were not as porous as the radioactive particles from NS 219. After impact grinding the >0.25-mm size fractions for one hour, 85% of the initial activity in a NS 201 sample remained with the particles on the 0.25 mm sieve, whereas in the NS 219 sample only 10% remained. The results show that the radioactive particles from NS 201 were much more stable against the impact grinding force than those from NS 219. Therefore, the NS 201 soils would be expected to have a lower probability of producing respirable-size radioactive particles by saltation during wind erosion. 19 references, 3 figures, 3 tables.

  1. Barriers to expanding advanced pharmacy practice experience site availability in an experiential education consortium.

    Science.gov (United States)

    Brackett, P David; Byrd, Debbie C; Duke, Lori J; Fetterman, James W; Unterwagner, Whitney L; Staton, April G; Miller, Mindi S; Sheffield, Melody C; Kennedy, William K; McDuffie, Charles H; Stevenson, T Lynn; Thompson, Paula A; McCullough, Elizabeth S

    2009-08-28

    To compare 2006-2007 and projected 2010-2011 advanced pharmacy practice experience (APPE) availability and needs for 4 colleges and schools of pharmacy in Georgia and Alabama and to examine barriers and offer potential solutions to increase APPE site and preceptor availability. Data on APPE needs and availability were gathered prospectively and evaluated relative to current and projected enrollment and planned programmatic changes. Combined 2006-2007 non-community APPE needs and availabilities were 3,590 and 4,427, respectively, with a surplus availability of 837. Combined projected 2010-2011 non-community APPEs were estimated at 4,309. Assuming 2006-2007 non-community availability remained unchanged, the surplus availability declined to 118. The need for quality experiential education represents a significant barrier and rate-limiting step to the matriculation of the increased numbers of pharmacists. Barriers to expanding APPE availability include: introductory pharmacy practice experience (IPPE) and APPE expansion, growth of new and existing pharmacy programs, financial instability of acute care facilities, and lack of preceptor development resources. Regional experiential education consortiums can provide a constructive approach to improve access to quality sites and preceptors through standardizing processes and leveraging resources.

  2. Report of the Peer Review Panel on the early site suitability evaluation of the Potential Repository Site at Yucca Mountain, Nevada; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-01-01

    The US Department of Energy (DOE) Yucca mountain Site Characterization Project Office (YMPO) assigned Science Applications International Corporation (SAIC), the Technical and Management Support Services (T&MSS) contractor to the YmPo, the task of conducting an Early Site Suitability Evaluation (ESSE) of the Yucca mountain site as a potential site for a high-level radioactive waste repository. First, the assignment called for the development of a method to evaluate a single site against the DOE General Guidelines for Recommendation of Sites for Nuclear Waste Repositories, 10 CFR Part 960. Then, using this method, an evaluation team, the ESSE Core Team, of senior YMP scientists, engineers, and technical experts, evaluated new information obtained about the site since publication of the final Environmental Assessment (DOE, 1986) to determine if new suitability/unsuitability findings could be recommended. Finally, the Core Team identified further information and analyses needed to make final determinations for each of the guidelines. As part of the task, an independent peer review of the ESSE report has been conducted. Expertise was solicited that covered the entire spectrum of siting guidelines in 10 CFR Part 960 in order to provide a complete, in-depth critical review of the data evaluated and cited in the ESSE report, the methods used to evaluate the data, and the conclusions and recommendations offered by the report. Fourteen nationally recognized technical experts (Table 2) served on the Peer Review Panel. The comments from the Panel and the responses prepared by the ESSE Core Team, documented on formal Comment Response Forms, constitute the body of this document.

  3. Site characterization

    Energy Technology Data Exchange (ETDEWEB)

    Brown, W.S.; Green, S.J.; Hustrulid, W.A. (comps.)

    1976-01-01

    The papers presented at the Conference discussed the topics of modelling and analysis, coal recovery, oil and gas applications, surface structures and slope stability, underground opening design, geothermal energy recovery, in-situ methods, near surface underground opening design, blasting design, rock mechanics, and ground support. Abstracts were prepared for selected papers. (JSR)

  4. Site characterization progress report, Yucca Mountain, Nevada: Number 19, April 1, 1998--September 30, 1998

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-06-01

    The nineteenth semiannual report of the Yucca Mountain Site Characterization Project (YMP) summarizes activities during the period from April 1, 1998, through September 30, 1998. Project activities are aimed at evaluating Yucca Mountain as a potential location for permanent geologic disposal of nuclear materials, as directed by the Nuclear Waste Policy Act of 1982, as amended (NWPA). The progress report documents activities this period that contribute to completing the Project`s near-term programmatic and statutory objectives. These objectives include completing the Viability Assessment, the Environmental Impact Statement (EIS), a possible US Department of Energy (DOE) Secretarial Site Recommendation to the President, and, if the site is suitable, submittal of a license application to the US Nuclear Regulatory Commission (NRC). Project work this period continued to be concentrated in three integrated activities: site characterization, engineering design and construction, and performance assessment. Accomplishments this period and their relation to near-term objectives are briefly summarized.

  5. Waves and Wine: Advanced approaches for characterizing and exploiting micro-terroir

    Science.gov (United States)

    Hubbard, S. S.; Grote, K. R.; Freese, P.; Peterson, J. E.; Rubin, Y.

    2012-12-01

    Development of viticultural strategies that are focused on promoting uniformly high quality wine grapes requires an understanding of the properties that influence wine grape development. Our objective is to explore the spatial and temporal variability of above and below ground factors that can influence grape variability at the block scale (or micro-terroir) using a combination of conventional point measurements and non-invasive geophysical approaches, and to use that information to guide the development of new vineyards or the management of existing vineyards. Climate clearly plays a dominant role in determining the success of certain viticultural regions or vintages. However, wine grapes of the same variety, which are grown in the same microclimate region and cultivated and made into wine using identical practices, can lead to remarkably different wines when the grapes are grown on different types of soils. The soil texture controls soil water availability, which greatly influences grapevine physiological status, vegetative and reproductive growth, and ultimately red wine grape quality. One aspect of our research has focused on developing surface geophysical methods, particularly ground penetrating radar (GPR), to characterize soil texture variability and to monitor vineyard water content. Through testing the approaches in three California wineries, we find that analysis of GPR groundwave and reflected waves enable mapping of shallow soil water content in high resolution, with acceptable accuracy, and in a non-invasive manner, and that use of multiple GPR methods and frequencies offer the potential to characterize the soil in 3-D space. We use the dense data to explore spatial and temporal correlations in soil water content, soil texture, and vegetation vigor and the associated implications for vineyard management. We also describe a new zonal-based vineyard development strategy that honors the natural variability of the site, or the micro-terrior. The approach

  6. Site Characterization Work Plan for Gasbuggy, New Mexico (Rev.1, Jan. 2002)

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office (NNSA/NV)

    2002-01-25

    Project Gasbuggy was the first of three joint government-industry experiments conducted to test the effectiveness of nuclear explosives to fracture deeply buried, low-permeability natural gas reservoirs to stimulate production. The scope of this work plan is to document the environmental objectives and the proposed technical site investigation strategies that will be utilized for the site characterization of the Project Gasbuggy Site. Its goal is the collection of data in sufficient quantity and quality to determine current site conditions, support a risk assessment for the site surfaces, and evaluate if further remedial action is required to achieve permanent closure of the site that is both protective of human health and the environment. The Gasbuggy Site is located approximately 55 air miles east of Farmington, New Mexico, in Rio Arriba County within the Carson National Forest in the northeast portion of the San Juan Basin. Historically, Project Gasbuggy consisted of the joint government-industry detonation of a nuclear device on December 10, 1967, followed by reentry drilling and gas production testing and project evaluation activities in post-detonation operations from 1967 to 1976. Based on historical documentation, no chemical release sites other than the mud pits were identified; additionally, there was no material buried at the Gasbuggy Site other than drilling fluids and construction debris. Although previous characterization and restoration activities including sensitive species surveys, cultural resources surveys, surface geophysical surveys, and limited soil sampling and analysis were performed in 1978 and again in 2000, no formal closure of the site was achieved. Also, these efforts did not adequately address the site's potential for chemical contamination at the surface/shallow subsurface ground levels or the subsurface hazards for potential migration outside of the current site subsurface intrusion restrictions. Additional investigation

  7. Site characterization progress report: Yucca Mountain, Nevada. October 1, 1996--March 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The report is the sixteenth in a series issued approximately every six months to report progress and results of site characterization activities being conducted to evaluate Yucca Mountain as a possible geologic repository for the disposal of spent nuclear fuel and high-level radioactive waste. This report highlights work started, in progress, and completed during the reporting period. In addition, this report documents and discusses changes to the Office of Civilian Radioactive Waste Management (OCRWM) Site Characterization Program (Program) resulting from the ongoing collection and evaluation of site information, systems analyses, development of repository and waste package designs, and results of performance assessment activities. Details on the activities summarized can be found in the numerous technical reports cited throughout the progress report. Yucca Mountain Site Characterization Project (Project) activities this period focused on implementing the near-term objectives of the revised Program Plan issued last period. Near-term objectives of the revised Program Plan include updating the US Department of Energy`s (DOE) repository siting guidelines to be consistent with a more focused performance-driven program; supporting an assessment in 1998 of the viability of continuing with actions leading to the licensing of a repository; and if the site is suitable, submittal of a Secretarial site recommendation to the President in 2001 and license application the US Nuclear Regulatory Commission (NRC) in 2002. During this reporting period, the Project developed and baselined its long-range plan in December 1996. That revision reflected the detailed fiscal year (FY) 1997 work scope and funding plan previously baselined at the end of FY 1996. Site characterization activities have been focused to answer the major open technical issues and to support the viability assessment.

  8. Stereoselectivity of supported alkene metathesis catalysts: a goal and a tool to characterize active sites

    Directory of Open Access Journals (Sweden)

    Christophe Copéret

    2011-01-01

    Full Text Available Stereoselectivity in alkene metathesis is a challenge and can be used as a tool to study active sites under working conditions. This review describes the stereochemical relevance and problems in alkene metathesis (kinetic vs. thermodynamic issues, the use of (E/Z ratio at low conversions as a tool to characterize active sites of heterogeneous catalysts and finally to propose strategies to improve catalysts based on the current state of the art.

  9. Site characterization progress report: Yucca Mountain, Nevada, October 1, 1993--March 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    This report is the tenth in a series issued at intervals of approximately six months during site characterization of Yucca Mountain as a possible site for a geologic repository for the permanent disposal of spent nuclear fuel and high-level radioactive waste. Also included in this report are descriptions of activities such as public outreach and international programs that are not formally part of the site characterization process. Information on these activities is provided to report on all aspects of the Yucca Mountain studies. The Executive Summary is intended to provide a summary of major decisions, activities, accomplishments, and issues of interest during the reporting period. Chapter 1, Introduction, provides background information to assist the reader in understanding the current status of the program. Chapter 2 provides specific detailed discussions of activities conducted during the current reporting period and has two major divisions. Section 2.1, Preparatory Activities, provides information on select preparatory activities necessary to conduct site characterization and design activities. Sections 2.2 through 2.8 provide specific details on studies and activities conducted during the reporting period and follow the original structure of the Department`s 1988 Site Characterization Plan. Chapter 3 contains the current summary schedule, while Chapter 4 provides a description of the program outreach, including activities during the reporting period, in both the international program and public outreach. Chapter 5 presents an epilogue of significant events that occurred after the end of the reporting period.

  10. Area 5 Site Characterization Project: Report of hydraulic property analysis through August 1993

    Energy Technology Data Exchange (ETDEWEB)

    Estrella, R.; Tyler, S.; Chapman, J.; Miller, M.

    1993-12-01

    The Area 5 Site Characterization Project is designed to determine the suitability of the Radioactive Waste Management Site (RWMS) for disposal of low-level waste (LLW), mixed waste (MW) and transuranic waste (TRU). The Desert Research Institute (DRI) has supported the Area 5 Site Characterization Project for the US Department of Energy, Nevada Operations Office (DOE/NV), Environmental Restoration and Waste Management Division (ERWM), Waste Operations Branch (WOB). The purpose of DRI`s Area 5 Site Characterization project is to characterize important properties of the upper vadose zone which influence infiltration and redistribution of water and transport of solutes as well as to characterize the water quality and hydrologic conditions of the uppermost aquifer. This report describes methods and presents a summary of all data and results from laboratory physical and chemical testing from Pilot Wells and Science Trench borehole samples through August 1993. DRI laboratories performed soil water content, soil water potential, soil bulk density, soil water extract isotope analyses and soil water chemistry analyses.

  11. Geotechnical characterization of the North Ramp of the Exploratory Studies Facility: Yucca Mountain Site Characterization Project. Volume 1, Data summary

    Energy Technology Data Exchange (ETDEWEB)

    Brechtel, C.E.; Lin, Ming; Martin, E. [Agapito Associates, Inc., Grand Junction, CO (United States); Kessel, D.S. [Sandia National Labs., Albuquerque, NM (United States)

    1995-05-01

    This report presents the results of geological and geotechnical characterization of the Miocene volcanic tuff rocks of the Timber Mountain and Paintbrush groups that the tunnel boring machine will encounter during excavation of the Exploratory Studies Facility (ESF) North Ramp. The is being constructed by the DOE as part of the Yucca Mountain Project site characterization activities. The purpose of these activities is to evaluate the feasibility of locating a potential high-level nuclear waste repository on lands adjacent to the Nevada Test Site, Nye County, Nevada. This report was prepared as part of the Soil and Rock Properties Studies in accordance with the 8.3.1.14.2 Study Plan. This report is volume 1 of the data summary.

  12. Advanced 3D Characterization and Reconstruction of Reactor Materials FY16 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Fromm, Bradley [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hauch, Benjamin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sridharan, Kumar [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-12-01

    A coordinated effort to link advanced materials characterization methods and computational modeling approaches is critical to future success for understanding and predicting the behavior of reactor materials that operate at extreme conditions. The difficulty and expense of working with nuclear materials have inhibited the use of modern characterization techniques on this class of materials. Likewise, mesoscale simulation efforts have been impeded due to insufficient experimental data necessary for initialization and validation of the computer models. The objective of this research is to develop methods to integrate advanced materials characterization techniques developed for reactor materials with state-of-the-art mesoscale modeling and simulation tools. Research to develop broad-ion beam sample preparation, high-resolution electron backscatter diffraction, and digital microstructure reconstruction techniques; and methods for integration of these techniques into mesoscale modeling tools are detailed. Results for both irradiated and un-irradiated reactor materials are presented for FY14 - FY16 and final remarks are provided.

  13. Geological characterization of contaminated sites near the city of Horsens, Denmark

    DEFF Research Database (Denmark)

    Andersen, Theis Raaschou; Poulsen, Søren Erbs; Thomsen, Peter

    Keywords: geological modelling, urban area, contaminant transport In Denmark, contaminations from industry, farming and households represent a significant threat to groundwater resources since water treatment in Denmark relies solely on two simple steps: 1) oxygenation of the source water and 2) ...... were able to pinpoint the best strategies and solutions for future remediation efforts at the three sites.......) filtration by means of water saturated, rapid biofilters. Consequently, there is a focus on identifying and locating contaminated sites on a national level. Insufficient knowledge about the geology and hydrology at the sites poses a significant challenge for remediation efforts. The lack of information about...... characterization of three contaminated sites situated in urban and semi-urban areas around the city of Horsens in corporation with authorities. The existing data from the three field sites include lithological profiles from boreholes. In order to increase the data density, Electrical Resistivity Tomography (ERT...

  14. Los Alamos National Laboratory Yucca Mountain Site Characterization Project 1995 quality program status report

    Energy Technology Data Exchange (ETDEWEB)

    Bolivar, S.L.

    1996-07-01

    This status report summarizes the activities and accomplishments of the Los Alamos National Laboratory Yucca Mountain Site Characterization Project`s (YMP`s) quality assurance program for January 1 to September 30, 1995. The report includes major sections on program activities and trend analysis.

  15. Distance learning and its application to the Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, J.; Sizemore, J. [SAIC, Las Vegas, NV (United States)

    1995-12-01

    This paper discusses the concept of distance learning, which is used to exchange information via electronic media with real time interaction. Issues concerning policy, funding, legislation, accessibility, and programming are outlined. Possible applications for education, business, and federal projects, with a focus on the Yucca Mountain Site Characterization Project, are also discussed.

  16. Chemical Synthesis of Peptides Containing Site-Specific Advanced Glycation Endproducts.

    Science.gov (United States)

    Kaur, Harveen; Kamalov, Meder; Brimble, Margaret A

    2016-10-18

    In nature, proteins, lipids, and nucleic acids can nonenzymatically react with sugars and sugar degradation products to give rise to a diverse range of modifications, known as advanced glycation endproducts (AGEs). These AGEs typically occur at lysine and arginine residues of long-lived proteins, such as collagen, and can modify the structure and function of the native protein. AGEs accumulate during the normal aging process, and AGE formation is dramatically accelerated with diabetes. AGEs have also been implicated in a wide range of debilitating conditions including cardiovascular, renal failure, and neurodegenerative diseases. Thus, there is an ongoing interest in studying the role of AGEs in different aspects of these disorders. Typically, glycated proteins are prepared using nonspecific in vitro incubation techniques. However, this method results in a complex mixture of products which is then employed without further purification. In order to determine the effect of individual AGEs in a peptide sequence, in this Account, we highlight our synthetic methods for site-specifically introducing five frequently occurring AGEs, namely, N(ε)-(carboxymethyl)lysine (CML), N(ε)-(carboxyethyl)lysine (CEL), pyrraline, glyoxal-lysine dimer (GOLD), and methylglyoxal-lysine dimer (MOLD) into collagen peptides. Both a collagen model peptide (CMP) and the telopeptide region of human type I α1 collagen (CTP) were chosen due to being prone to glycation and cross-linking in vivo. For the preparation of the AGE-modified collagen peptides, we investigated both the initial preparation of AGE building blocks in solution followed by incorporation into Fmoc-SPPS, as well as an on-resin method whereby AGEs were selectively introduced by modification of the side-chain of an unprotected resin-bound lysine. Both of our synthetic methods enabled the site-specifically modified AGE-containing collagen peptides to be obtained in high purity and yield. In addition, the on-resin method had the

  17. Site-controlled and advanced epitaxial Ge/Si quantum dots: fabrication, properties, and applications

    Science.gov (United States)

    Brehm, Moritz; Grydlik, Martyna

    2017-09-01

    In this review, we report on fabrication paths, challenges, and emerging solutions to integrate group-IV epitaxial quantum dots (QDs) as active light emitters into the existing standard Si technology. Their potential as laser gain material for the use of optical intra- and inter-chip interconnects as well as possibilities to combine a single-photon-source-based quantum cryptographic means with Si technology will be discussed. We propose that the mandatory addressability of the light emitters can be achieved by a combination of organized QD growth assisted by templated self-assembly, and advanced inter-QD defect engineering to boost the optical emissivity of group-IV QDs at room-temperature. Those two main parts, the site-controlled growth and the light emission enhancement in QDs through the introduction of single defects build the main body of the review. This leads us to a roadmap for the necessary further development of this emerging field of CMOS-compatible group-IV QD light emitters for on-chip applications.

  18. Site-controlled and advanced epitaxial Ge/Si quantum dots: fabrication, properties, and applications.

    Science.gov (United States)

    Brehm, Moritz; Grydlik, Martyna

    2017-09-29

    In this review, we report on fabrication paths, challenges, and emerging solutions to integrate group-IV epitaxial quantum dots (QDs) as active light emitters into the existing standard Si technology. Their potential as laser gain material for the use of optical intra- and inter-chip interconnects as well as possibilities to combine a single-photon-source-based quantum cryptographic means with Si technology will be discussed. We propose that the mandatory addressability of the light emitters can be achieved by a combination of organized QD growth assisted by templated self-assembly, and advanced inter-QD defect engineering to boost the optical emissivity of group-IV QDs at room-temperature. Those two main parts, the site-controlled growth and the light emission enhancement in QDs through the introduction of single defects build the main body of the review. This leads us to a roadmap for the necessary further development of this emerging field of CMOS-compatible group-IV QD light emitters for on-chip applications.

  19. Advances in ion mobility-mass spectrometry instrumentation and techniques for characterizing structural heterogeneity.

    Science.gov (United States)

    Maurer, Megan M; Donohoe, Gregory C; Valentine, Stephen J

    2015-10-21

    Over the last decade, the field of ion mobility-mass spectrometry (IM-MS) has experienced dramatic growth in its application toward ion structure characterization. Enabling advances in instrumentation during this time period include improved conformation resolution and ion sensitivity. Such advances have rendered IM-MS a powerful approach for characterizing samples presenting a diverse array of ion structures. The structural heterogeneity that can be interrogated by IM-MS techniques now ranges from samples containing mixtures of small molecules exhibiting a variety of structural types to those containing very large protein complexes and subcomplexes. In addition to this diversity, IM-MS techniques have been used to probe spontaneous and induced structural transformations occurring in solution or the gas phase. To support these measurement efforts, significant advances have been made in theoretical methods aimed at translating IM-MS data into structural information. These efforts have ranged from providing more reliable trial structures for comparison to the experimental measurements to dramatically reducing the time required to calculate collision cross sections for such structures. In this short review, recent advances in developments in IM-MS instrumentation, techniques, and theory are discussed with regard to their implications for characterization of gas- and solution-phase structural heterogeneity.

  20. Seismic Hazard Characterization at the DOE Savannah River Site (SRS): Status report

    Energy Technology Data Exchange (ETDEWEB)

    Savy, J.B.

    1994-06-24

    The purpose of the Seismic Hazard Characterization project for the Savannah River Site (SRS-SHC) is to develop estimates of the seismic hazard for several locations within the SRS. Given the differences in the geology and geotechnical characteristics at each location, the estimates of the seismic hazard are to allow for the specific local conditions at each site. Characterization of seismic hazard is a critical factor for the design of new facilities as well as for the review and potential retrofit of existing facilities at SRS. The scope of the SRS seismic hazard characterization reported in this document is limited to the Probabilistic Seismic Hazard Analysis (PSHA). The goal of the project is to provide seismic hazard estimates based on a state-of-the-art method which is consistent with developments and findings of several ongoing studies which are deemed to bring improvements in the state of the seismic hazard analyses.

  1. Strategic Petroleum Reserve (SPR) geological site characterization report, Big Hill Salt Dome

    Energy Technology Data Exchange (ETDEWEB)

    Hart, R.J.; Ortiz, T.S.; Magorian, T.R.

    1981-09-01

    Geological and geophysical analyses of the Big Hill Salt Dome were performed to determine the suitability of this site for use in the Strategic Petroleum Reserve (SPR). Development of 140 million barrels (MMB) of storage capacity in the Big Hill Salt Dome is planned as part of the SPR expansion to achieve 750 MMB of storage capacity. Objectives of the study were to: (1) Acquire, evaluate, and interpret existing data pertinent to geological characterization of the Big Hill Dome; (2) Characterize the surface and near-surface geology and hydrology; (3) Characterize the geology and hydrology of the overlying cap rock; (4) Define the geometry and geology of the dome; (5) Determine the feasibility of locating and constructing 14 10-MMB storage caverns in the south portion of the dome; and (6) Assess the effects of natural hazards on the SPR site. Recommendations are included. (DMC)

  2. Report on expedited site characterization of the Central Nevada Test Area, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Yuhr, L. [Technos Inc., Miami, FL (United States); Wonder, J.D.; Bevolo, A.J. [Ames Lab., IA (United States)

    1997-09-01

    This report documents data collection, results, and interpretation of the expedited site characterization (ESC) pilot project conducted from September 1996 to June 1997 at the Central Nevada Test Area (CNTA), Nye County, Nevada. Characterization activities were limited to surface sites associated with deep well drilling and ancillary operations at or near three emplacement well areas. Environmental issues related to the underground nuclear detonation (Project Faultless) and hydrologic monitoring wells were not addressed as a part of this project. The CNTA was divided into four functional areas for the purpose of this investigation and report. These areas include the vicinity of three emplacement wells (UC-1, UC-3, and UC-4) and one mud waste drilling mud collection location (Central Mud Pit; CMP). Each of these areas contain multiple, potentially contaminated features, identified either from historic information, on-site inspections, or existing data. These individual features are referred to hereafter as ``sites.`` The project scope of work involved site reconnaissance, establishment of local grid systems, site mapping and surveying, geophysical measurements, and collection and chemical analysis of soil and drilling mud samples. Section 2.0 through Section 4.0 of this report provide essential background information about the site, project, and details of how the ESC method was applied at CNTA. Detailed discussion of the scope of work is provided in Section 5.0, including procedures used and locations and quantities of measurements obtained. Results and interpretations for each of the four functional areas are discussed separately in Sections 6.0, 7.0, 8.0, and 9.0. These sections provide a chronological presentation of data collected and results obtained, followed by interpretation on a site-by-site basis. Key data is presented in the individual sections. The comprehensive set of data is contained in appendices.

  3. Conversion of the Bayou Choctaw geological site characterization report to a three-dimensional model.

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Joshua S. (Sandia National Laboratories, Carlsbad, NM); Rautman, Christopher Arthur

    2004-02-01

    The geologic model implicit in the original site characterization report for the Bayou Choctaw Strategic Petroleum Reserve Site near Baton Rouge, Louisiana, has been converted to a numerical, computer-based three-dimensional model. The original site characterization model was successfully converted with minimal modifications and use of new information. The geometries of the salt diapir, selected adjacent sedimentary horizons, and a number of faults have been modeled. Models of a partial set of the several storage caverns that have been solution-mined within the salt mass are also included. Collectively, the converted model appears to be a relatively realistic representation of the geology of the Bayou Choctaw site as known from existing data. A small number of geometric inconsistencies and other problems inherent in 2-D vs. 3-D modeling have been noted. Most of the major inconsistencies involve faults inferred from drill hole data only. Modem computer software allows visualization of the resulting site model and its component submodels with a degree of detail and flexibility that was not possible with conventional, two-dimensional and paper-based geologic maps and cross sections. The enhanced visualizations may be of particular value in conveying geologic concepts involved in the Bayou Choctaw Strategic Petroleum Reserve site to a lay audience. A Microsoft WindowsTM PC-based viewer and user-manipulable model files illustrating selected features of the converted model are included in this report.

  4. Site Characterization Data from the U3ax/bl Exploratory Boreholes at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel Nevada; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2005-08-01

    This report provides qualitative analyses and preliminary interpretations of hydrogeologic data obtained from two 45-degree, slanted exploratory boreholes drilled within the Area 3 Radioactive Waste Management Site (RWMS) at the Nevada Test Site. Borehole UE-3bl-D1 was drilled beneath the U3ax/bl mixed waste disposal unit, and Borehole UE-3bl-U1 was drilled in undisturbed alluvium adjacent to the disposal unit. The U3ax/bl disposal unit is located within two conjoined subsidence craters, U3ax and U3bl, which were created by underground nuclear testing. Data from these boreholes were collected to support site characterization activities for the U3ax/bl disposal unit and the entire Area 3 RWMS. Site characterization at disposal units within the Area 3 RWMS must address the possibility that subsidence craters and associated disturbed alluvium of the chimneys beneath the craters might serve as pathways for contaminant migration. The two boreholes were drilled and sampled to compare hydrogeologic properties of alluvium below the waste disposal unit with those of adjacent undisturbed alluvium. Whether Borehole UE-3bl-D1 actually penetrated the chimney of the U3bl crater is uncertain. Analyses of core samples showed little difference in hydrogeologic properties between the two boreholes. Important findings of this study include the following: No hazardous or radioactive constituents of waste disposal concern were found in the samples obtained from either borehole. No significant differences in physical and hydrogeologic properties between boreholes is evident, and no evidence of significant trends with depth for any of these properties was observed. The values observed are typical of sandy materials. The alluvium is dry, with volumetric water content ranging from 5.6 to 16.2 percent. Both boreholes exhibit a slight increase in water content with depth, the only such trend observed. Water potential measurements on core samples from both boreholes show a large positive

  5. SITE-94. Geochemical characterization of Simpevarp ground waters near the Aespoe Hard Rock Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Glynn, P.D.; Voss, C.I. [US Geological Survey, Reston, VA (United States)

    1999-09-01

    possible range of values that need to be considered. Tritium measurements confirm that the recent ground water type, originally identified on the basis of deuterium and chloride measurements, contains a significant proportion of recent, post-1950, water. Better tritium analyses, together with a greater number of carbon-13 analyses on dissolved inorganic carbon, would have helped interpret the carbon-14 analyses that were obtained primarily from relatively shallow ground waters (< 500 m depth). The SITE-94 Central Scenario climate model suggests that three glaciations may occur in the Northern Hemisphere during the next 120,000 years. If such glaciations do occur, possible climate-driven changes in ground-water geochemistry, particularly in redox conditions, could occur in the Fennoscandian shield. During two of these glaciations, 2- to3-km high ice sheets are predicted to form over the Fennoscandian shield, extending over Aespoe island and further south. Modeling of ground-water flow and transport suggests the possibility of deep and fast penetration of glacial melt waters during periods of glacial advance. The intruding melt waters have a median travel time of less than 100 years to 500 m depth. Ice composition data from the base of the Greenland ice sheet suggests that the melt waters will be highly enriched in dissolved oxygen, with concentrations at least 3 to 5 times higher than would be obtained at atmospheric equilibrium. The relative scarcity of fast-reacting pyrite in hydraulically conductive fractures, and the expected scarcity of organic carbon that would be exposed to the intruding melt waters, implies that Fe(II)-rich silicate minerals would be the primary reductants for the intruding dissolved oxygen. Current information suggests that the reaction rates would not be sufficiently fast to prevent penetration of oxygenated melt waters to a depth of at least 500 m. Despite clear evidence of past, deep, glacial meltwater penetration, convincing geochemical

  6. Interim site characterization report and ground-water monitoring program for the Hanford site solid waste landfill

    Energy Technology Data Exchange (ETDEWEB)

    Fruland, R.M.; Hagan, R.A.; Cline, C.S.; Bates, D.J.; Evans, J.C.; Aaberg, R.L.

    1989-07-01

    Federal and state regulations governing the operation of landfills require utilization of ground-water monitoring systems to determine whether or not landfill operations impact ground water at the point of compliance (ground water beneath the perimeter of the facility). A detection-level ground-water monitoring system was designed, installed, and initiated at the Hanford Site Solid Waste Landfill (SWL). Chlorinated hydrocarbons were detected at the beginning of the ground-water monitoring program and continue to be detected more than 1 year later. The most probable source of the chlorinated hydrocarbons is washwater discharged to the SWL between 1985 and 1987. This is an interim report and includes data from the characterization work that was performed during well installation in 1987, such as field observations, sediment studies, and geophysical logging results, and data from analyses of ground-water samples collected in 1987 and 1988, such as field parameter measurements and chemical analyses. 38 refs., 27 figs., 8 tabs.

  7. Engineered materials characterization report for the Yucca Mountain Site Characterization Project. Volume 2, Design data

    Energy Technology Data Exchange (ETDEWEB)

    Konynenburg, R.A.; McCright, R.D. [Lawrence Livermore National Lab., CA (United States); Roy, A.K. [B and W Fuel Co., Lynchburg, VA (United States); Jones, D.A. [Nevada Univ., Reno, NV (United States)

    1995-08-01

    This is Volume 2 of the Engineered Materials Characterization Report which presents the design data for candidate materials needed in fabricating different components for both large and medium multi-purpose canister (MPC) disposal containers, waste packages for containing uncanistered spent fuel (UCF), and defense high-level waste (HLW) glass disposal containers. The UCF waste package consists of a disposal container with a basket therein. It is assumed that the waste packages will incorporate all-metallic multibarrier disposal containers to accommodate medium and large MPCs, ULCF, and HLW glass canisters. Unless otherwise specified, the disposal container designs incorporate an outer corrosion-allowance metal barrier over an inner corrosion-resistant metal barrier. The corrosion-allowance barrier, which will be thicker than the inner corrosion-resistant barrier, is designed to undergo corrosion-induced degradation at a very low rate, thus providing the inner barrier protection from the near-field environment for a prolonged service period.

  8. DEVELOPMENT OF AN ADVANCED APPROACH FOR NEXT-GENERATION INTEGRATED RESERVOIR CHARACTERIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Scott R. Reeves

    2005-04-01

    Accurate, high-resolution, three-dimensional (3D) reservoir characterization can provide substantial benefits for effective oilfield management. By doing so, the predictive reliability of reservoir flow models, which are routinely used as the basis for investment decisions involving hundreds of millions of dollars and designed to recover millions of barrels of oil, can be significantly improved. Even a small improvement in incremental recovery for high-value assets can result in important contributions to bottom-line profitability. Today's standard practice for developing a 3D reservoir description is to use seismic inversion techniques. These techniques make use of geostatistics and other stochastic methods to solve the inverse problem, i.e., to iteratively construct a likely geologic model and then upscale and compare its acoustic response to that actually observed in the field. This method has several inherent flaws, such as: (1) The resulting models are highly non-unique; multiple equiprobable realizations are produced, meaning (2) The results define a distribution of possible outcomes; the best they can do is quantify the uncertainty inherent in the modeling process, and (3) Each realization must be run through a flow simulator and history matched to assess it's appropriateness, and therefore (4) The method is labor intensive and requires significant time to complete a field study; thus it is applied to only a small percentage of oil and gas producing assets. A new approach to achieve this objective was first examined in a Department of Energy (DOE) study performed by Advanced Resources International (ARI) in 2000/2001. The goal of that study was to evaluate whether robust relationships between data at vastly different scales of measurement could be established using virtual intelligence (VI) methods. The proposed workflow required that three specific relationships be established through use of artificial neural networks (ANN's): core

  9. Geological characterization and solute transport model investigations of contaminated sites in urban areas (Denmark)

    DEFF Research Database (Denmark)

    Andersen, Theis Raaschou; Poulsen, Søren Erbs; Thomsen, Peter

    In Denmark, contaminations from industry and farming represent a significant threat to groundwater resources. On a national level, there is a focus on identifying and locating these contaminated sites. Once located, contaminations are mapped and monitored and remediation efforts are undertaken. R...... the uncertainties of projections on the fate of the contaminant. Based on the work, we were able to pinpoint the best strategies and solutions for future remediation efforts at the two sites.......In Denmark, contaminations from industry and farming represent a significant threat to groundwater resources. On a national level, there is a focus on identifying and locating these contaminated sites. Once located, contaminations are mapped and monitored and remediation efforts are undertaken...... efforts are often challenged by logistics. The general lack of knowledge about theses contaminations introduces significant uncertainties in the projections on the fate of the contaminant. We carry out a geological characterization of two contaminated sites situated in urban areas. The existing data from...

  10. Monitoring of infrastructural sites by means of advanced multi-temporal DInSAR methods

    Science.gov (United States)

    Vollrath, Andreas; Zucca, Francesco; Stramondo, Salvatore

    2013-10-01

    With the launch of Sentinel-1, advanced interferometric measurements will become more applicable then ever. The foreseen standard Wide Area Product (WAP), with its higher spatial and temporal resolution than comparable SAR missions, will provide the basement for the use of new wide scale and multitemporal analysis. By now the use of SAR interferometry methods with respect to risk assessment are mainly conducted for active tectonic zones, plate boundaries, volcanoes as well as urban areas, where local surface movement rates exceed the expected error and enough pixels per area contain a relatively stable phase. This study, in contrast, aims to focus on infrastructural sites that are located outside cities and are therefore surrounded by rural landscapes. The stumbling bock was given by the communication letter by the European Commission with regard to the stress tests of nuclear power plants in Europe in 2012. It is mentioned that continuously re-evaluated risk and safety assessments are necessary to guarantee highest possible security to the European citizens and environment. This is also true for other infrastructural sites, that are prone to diverse geophysical hazards. In combination with GPS and broadband seismology, multitemporal Differential Interferometric SAR approaches demonstrated great potential in contributing valuable information to surface movement phenomenas. At this stage of the project, first results of the Stamps-MTI approach (combined PSInSAR and SBAS) will be presented for the industrial area around Priolo Gargallo in South East Sicily by using ENVISAT ASAR IM mode data from 2003-2010. This area is located between the Malta Escarpment fault system and the Hyblean plateau and is prone to earthquake and tsunami risk. It features a high density of oil refineries that are directly located at the coast. The general potential of these techniques with respect to the SENTINEL-1 mission will be shown for this area and a road-map for further improvements

  11. Assessment of multiple geophysical techniques for the characterization of municipal waste deposit sites

    Science.gov (United States)

    Gaël, Dumont; Tanguy, Robert; Nicolas, Marck; Frédéric, Nguyen

    2017-10-01

    In this study, we tested the ability of geophysical methods to characterize a large technical landfill installed in a former sand quarry. The geophysical surveys specifically aimed at delimitating the deposit site horizontal extension, at estimating its thickness and at characterizing the waste material composition (the moisture content in the present case). The site delimitation was conducted with electromagnetic (in-phase and out-of-phase) and magnetic (vertical gradient and total field) methods that clearly showed the transition between the waste deposit and the host formation. Regarding waste deposit thickness evaluation, electrical resistivity tomography appeared inefficient on this particularly thick deposit site. Thus, we propose a combination of horizontal to vertical noise spectral ratio (HVNSR) and multichannel analysis of the surface waves (MASW), which successfully determined the approximate waste deposit thickness in our test landfill. However, ERT appeared to be an appropriate tool to characterize the moisture content of the waste, which is of prior information for the organic waste biodegradation process. The global multi-scale and multi-method geophysical survey offers precious information for site rehabilitation studies, water content mitigation processes for enhanced biodegradation or landfill mining operation planning.

  12. Characterization and design of the FutureGen 2.0 carbon storage site

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, Tyler; Bonneville, Alain; Sullivan, Charlotte; Kelley, Mark; Appriou, Delphine; Vermeul, Vince; White, Signe; Zhang, Fred; Bjornstad, Bruce; Cornet, Francois; Gerst, Jacqueline; Gupta, Neeraj; Hund, Gretchen; Horner, Jake; Last, George; Lanigan, Dave; Oostrom, Mart; McNeil, Caitlin; Moody, Mark; Rockhold, Mark; Elliott, Mike; Spane, Frank; Strickland, Chris; Swartz, Lucy; Thorne, Paul; Brown, Christopher; Hoffmann, Jeffrey; Humphreys, Kenneth

    2016-10-01

    The objective of the FutureGen 2.0 Project was to demonstrate, at the commercial scale, the technical feasibility of implementing carbon capture and storage (CCS) in a deep saline formation in Illinois, USA. Over approximately 5 years, the FutureGen Alliance conducted a detailed site-selection process and identified a site for carbon sequestration storage in Morgan County, Illinois. The storage site was fully characterized, including the collection of seismic data and the drilling and characterization of a stratigraphic borehole. The characterization data provided critical input for developing a site-specific conceptual model and subsequent numerical modeling simulations. The modeling simulations, coupled with the upstream designs of the pipeline and power plant supported the development of a detailed 90 percent design that included the injection wells and associated control and monitoring infrastructure. Collectively, all these data were used by the FutureGen Alliance to develop the required documentation to support the applications for four underground injection control (UIC) permits (one for each proposed well). In August 2014, the U.S. Environmental Protection Agency issued four, first-of-their-kind, Class VI UIC permits for carbon sequestration in the United States to the FutureGen Alliance. The information and data generated under this project have been made publically available through reports and publications, including this journal and others.

  13. Recent Advances in the Synthesis, Characterization and Application of Zn+-containing Heterogeneous Catalysts.

    Science.gov (United States)

    Chen, Guangbo; Zhao, Yufei; Shang, Lu; Waterhouse, Geoffrey I N; Kang, Xiaofeng; Wu, Li-Zhu; Tung, Chen-Ho; Zhang, Tierui

    2016-07-01

    Monovalent Zn+ (3d104s1) systems possess a special electronic structure that can be exploited in heterogeneous catalysis and photocatalysis, though it remains challenge to synthesize Zn+-containing materials. By careful design, Zn+-related species can be synthesized in zeolite and layered double hydroxide systems, which in turn exhibit excellent catalytic potential in methane, CO and CO2 activation. Furthermore, by utilizing advanced characterization tools, including electron spin resonance, X-ray absorption fine structure and density functional theory calculations, the formation mechanism of the Zn+ species and their structure-performance relationships can be understood. Such advanced characterization tools guide the rational design of high-performance Zn+-containing catalysts for efficient energy conversion.

  14. Recent Advances in the Synthesis, Characterization and Application of Zn+‐containing Heterogeneous Catalysts

    Science.gov (United States)

    Chen, Guangbo; Zhao, Yufei; Shang, Lu; Waterhouse, Geoffrey I. N.; Kang, Xiaofeng; Wu, Li‐Zhu; Tung, Chen‐Ho

    2016-01-01

    Monovalent Zn+ (3d104s1) systems possess a special electronic structure that can be exploited in heterogeneous catalysis and photocatalysis, though it remains challenge to synthesize Zn+‐containing materials. By careful design, Zn+‐related species can be synthesized in zeolite and layered double hydroxide systems, which in turn exhibit excellent catalytic potential in methane, CO and CO2 activation. Furthermore, by utilizing advanced characterization tools, including electron spin resonance, X‐ray absorption fine structure and density functional theory calculations, the formation mechanism of the Zn+ species and their structure‐performance relationships can be understood. Such advanced characterization tools guide the rational design of high‐performance Zn+‐containing catalysts for efficient energy conversion. PMID:27818902

  15. Characterization of the Adeno-Associated Virus 1 and 6 Sialic Acid Binding Site

    OpenAIRE

    Huang, Lin-Ya; Patel, Ami; Ng, Robert; Miller, Edward Blake; Halder, Sujata; McKenna, Robert; Asokan, Aravind; Agbandje-McKenna, Mavis

    2016-01-01

    The adeno-associated viruses (AAVs), which are being developed as gene delivery vectors, display differential cell surface glycan binding and subsequent tissue tropisms. For AAV serotype 1 (AAV1), the first viral vector approved as a gene therapy treatment, and its closely related AAV6, sialic acid (SIA) serves as their primary cellular surface receptor. Toward characterizing the SIA binding site(s), the structure of the AAV1-SIA complex was determined by X-ray crystallography to 3.0 Å. Densi...

  16. Yucca Mountain Site Characterization Project bibliography, January--June 1995. Supplement 4, Add.3: An update

    Energy Technology Data Exchange (ETDEWEB)

    Stephan, P.M. [ed.

    1996-01-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy`s Energy Science and Technology Database from January 1, 1995, through June 30, 1995. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization`s list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it.

  17. Yucca Mountain Site Characterization Project Bibliography, January--June 1993. An update: Supplement 4, Addendum 1

    Energy Technology Data Exchange (ETDEWEB)

    Stephan, P.M. [ed.

    1995-01-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy`s Energy Science and Technology Database from January 1, 1994 through June 30, 1994. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers,and articles are included in the sponsoring organization`s list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it.

  18. Los Alamos National Laboratory Yucca Mountain Site Characterization Project 1994 quality program status report

    Energy Technology Data Exchange (ETDEWEB)

    Bolivar, S.L.

    1996-03-01

    This status report is for calendar year 1994. It summarizes the annual activities and accomplishments of the Los Alamos National Laboratory Yucca Mountain Site Characterization Project (YMP or Project) quality assurance program. By identifying the accomplishments of the quality program, a baseline is established that will assist in decision making, improve administrative controls and predictability, and allow us to annually identify adverse trends and to evaluate improvements. This is the fourth annual status report.

  19. Site Characterization for AAH/HELLFIRE Battlefield Obscuration Validation Tests at Redstone Arsenal, Alabama.

    Science.gov (United States)

    1981-12-01

    Link, Chief, Environmental Constraints Group. The work was performed by Messrs. James Mason and Carlos Lebron , EL. This report was prepared by the...PERFORMING ORG. REPORT NUMBER 7. AU THOR(.) 9. CONTRACT OR" GRANT NUMBER(e.) James B. Mason, Katherine S. Long Intra-Army order No. SOXl 9. PERFORMING...reproduced below. Mason. James B. Site characterization for AAII/IELLFIRE Battlefield Obscuration Validation Tests at Redstone Arsenal / t. by James B. Mason

  20. Topographical survey and soil characterization of a candidate site for Radioactive Waste Repository

    Energy Technology Data Exchange (ETDEWEB)

    Peconick, Diva Godoi de O.; Mourao, Rogerio P., E-mail: godiva@cdtn.br, E-mail: mouraor@cdtn.br [Centro de Desenvolvimento da Tecnologia Nucelar (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    Brazil has already initiated the establishment of a national near-surface repository for the low- and intermediate short-lived radioactive wastes generated within its territory. With two nuclear power plants in operation and a third one under construction, five active nuclear research institutes and another one planned for the intermediate future, operational constraints and social pressure built up for a disposal solution for such a waste category. The Brazilian Nuclear Commission CNEN was tasked at designing, building and commissioning this repository, which implies, among other activities, finding a suitable place for the facility. After an initial technical desk job, a federal land, not far from the NPPs, was appointed and in situ studies for the site characterization were started. This paper describes the topographical survey and soil drilling campaign carried out for the initial evaluation of the feasibility of the site vis-a-vis the applicable national regulations for site selection and disposal facilities licensing. (author)

  1. Tunable mechanical monolithic sensors for large band low frequency monitoring and characterization of sites and structures

    Science.gov (United States)

    Barone, F.; Giordano, G.; Acernese, F.; Romano, R.

    2016-10-01

    Among the different mechanical architectures present in literature, the Watts linkage is one of the most promising ones for the implementation of a new class of mechanical accelerometers (horizontal, vertical and angular). In this paper, we present monolithic implementations of uniaxial and triaxial mechanical seismometers and accelerometers based on the UNISA Folded Pendulum mechanical configuration, optimized for low frequency characterization of sites (including underground sites) and structures as inertial sensor (seismometer). This mechanical architecture allows the design and implementation of very large band monolithic sensors (10-7Hz 102 Hz), whose sensitivities for the most common applications are defined by the noise introduced by their readouts (e.g. ¡ 10-12 m/sqrt(Hz) with classical LVDT readouts). These unique features, coupled other relevant properties like scalability, compactness, lightness, high directivity, frequency tunability (typical resonance frequencies in the band 10-1 Hz 102 Hz), very high immunity to environmental noises and low cost make this class of sensors very effective for the implementation of uniaxial (horizontal and/or vertical) and triaxial seismometers and accelerometers for ground, space and underwater applications, including UHV and cryogenics ones. Typical applications of this class of monolithic sensors are in the field of earthquake engineering, seismology, geophysics, civil engineering, characterization of sites (including underground sites), structures (e.g. buildings, bridges, historical monuments), and, in general, in all applications requiring large band-low frequency performances coupled with high sensitivities and compactness.

  2. MRIQC: Advancing the automatic prediction of image quality in MRI from unseen sites.

    Directory of Open Access Journals (Sweden)

    Oscar Esteban

    Full Text Available Quality control of MRI is essential for excluding problematic acquisitions and avoiding bias in subsequent image processing and analysis. Visual inspection is subjective and impractical for large scale datasets. Although automated quality assessments have been demonstrated on single-site datasets, it is unclear that solutions can generalize to unseen data acquired at new sites. Here, we introduce the MRI Quality Control tool (MRIQC, a tool for extracting quality measures and fitting a binary (accept/exclude classifier. Our tool can be run both locally and as a free online service via the OpenNeuro.org portal. The classifier is trained on a publicly available, multi-site dataset (17 sites, N = 1102. We perform model selection evaluating different normalization and feature exclusion approaches aimed at maximizing across-site generalization and estimate an accuracy of 76%±13% on new sites, using leave-one-site-out cross-validation. We confirm that result on a held-out dataset (2 sites, N = 265 also obtaining a 76% accuracy. Even though the performance of the trained classifier is statistically above chance, we show that it is susceptible to site effects and unable to account for artifacts specific to new sites. MRIQC performs with high accuracy in intra-site prediction, but performance on unseen sites leaves space for improvement which might require more labeled data and new approaches to the between-site variability. Overcoming these limitations is crucial for a more objective quality assessment of neuroimaging data, and to enable the analysis of extremely large and multi-site samples.

  3. Information needs for characterization of high-level waste repository sites in six geologic media. Volume 2. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-05-01

    Volume II contains appendices for the following: (1) remote sensing and surface mapping techniques; (2) subsurface mapping methods for site characterization; (3) gravity technique; (4) audio-frequency magnetotelluric technique; (5) seismic refraction technique; (6) direct-current electrical resistivity method; (7) magnetic technique; (8) seismic reflection technique; (9) seismic crosshole method; (10) mechanical downhole seismic velocity survey method; (11) borehole geophysical logging techniques; (12) drilling and coring methods for precharacterization studies; (13) subsurface drilling methods for site characterization; (14) geomechanical/thermomechanical techniques for precharacterization studies; (15)geomechanical/thermal techniques for site characterization studies; (16) exploratory geochemical techniques for precharacterization studies; (17) geochemical techniques for site characterization; (18) hydrologic techniques for precharacterization studies; (19) hydrologic techniques for site characterization; and (20) seismological techniques.

  4. A Ten Step Protocol and Plan for CCS Site Characterization, Based on an Analysis of the Rocky Mountain Region, USA

    Energy Technology Data Exchange (ETDEWEB)

    McPherson, Brian; Matthews, Vince

    2013-09-15

    This report expresses a Ten-Step Protocol for CO2 Storage Site Characterization, the final outcome of an extensive Site Characterization analysis of the Rocky Mountain region, USA. These ten steps include: (1) regional assessment and data gathering; (2) identification and analysis of appropriate local sites for characterization; (3) public engagement; (4) geologic and geophysical analysis of local site(s); (5) stratigraphic well drilling and coring; (6) core analysis and interpretation with other data; (7) database assembly and static model development; (8) storage capacity assessment; (9) simulation and uncertainty assessment; (10) risk assessment. While the results detailed here are primarily germane to the Rocky Mountain region, the intent of this protocol is to be portable or generally applicable for CO2 storage site characterization.

  5. Characterization of candidate DOE sites for fabricating MOX fuel for lead assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Holdaway, R.F.; Miller, J.W.; Sease, J.D.; Moses, R.J.; O`Connor, D.G. [Oak Ridge National Lab., TN (United States); Carrell, R.D. [Technical Resources International, Inc., Richland, WA (United States); Jaeger, C.D. [Sandia National Labs., Albuquerque, NM (United States); Thompson, M.L.; Strasser, A.A. [Delta-21 Resources, Inc., Oak Ridge, TN (United States)

    1998-03-01

    The Office of Fissile Materials Disposition (MD) of the Department of Energy (DOE) is directing the program to disposition US surplus weapons-usable plutonium. For the reactor option for disposition of this surplus plutonium, MD is seeking to contract with a consortium, which would include a mixed-oxide (MOX) fuel fabricator and a commercial US reactor operator, to fabricate and burn MOX fuel in existing commercial nuclear reactors. This option would entail establishing a MOX fuel fabrication facility under the direction of the consortium on an existing DOE site. Because of the lead time required to establish a MOX fuel fabrication facility and the need to qualify the MOX fuel for use in a commercial reactor, MD is considering the early fabrication of lead assemblies (LAs) in existing DOE facilities under the technical direction of the consortium. The LA facility would be expected to produce a minimum of 1 metric ton heavy metal per year and must be operational by June 2003. DOE operations offices were asked to identify candidate sites and facilities to be evaluated for suitability to fabricate MOX fuel LAs. Savannah River Site, Argonne National Laboratory-West, Hanford, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory were identified as final candidates to host the LA project. A Site Evaluation Team (SET) worked with each site to develop viable plans for the LA project. SET then characterized the suitability of each of the five plans for fabricating MOX LAs using 28 attributes and documented the characterization to aid DOE and the consortium in selecting the site for the LA project. SET concluded that each option has relative advantages and disadvantages in comparison with other options; however, each could meet the requirements of the LA project as outlined by MD and SET.

  6. Application of new technologies for characterization of Hanford Site high-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Winters, W.I.

    1998-02-03

    To support remediation of Hanford Site high-level radioactive waste tanks, new chemical and physical measurement technologies must be developed and deployed. This is a major task of the Chemistry Analysis Technology Support (CATS) group of the Hanford Corporation. New measurement methods are required for efficient and economical resolution of tank waste safety, waste retrieval, and disposal issues. These development and deployment activities are performed in cooperation with Waste Management Federal Services of Hanford, Inc. This paper provides an overview of current analytical technologies in progress. The high-level waste at the Hanford Site is chemically complex because of the numerous processes used in past nuclear fuel reprocessing there, and a variety of technologies is required for effective characterization. Programmatic and laboratory operational needs drive the selection of new technologies for characterizing Hanford Site high-level waste, and these technologies are developed for deployment in laboratories, hot cells or in the field. New physical methods, such as the propagating reactive systems screening tool (PRSST) to measure the potential for self-propagating reactions in stored wastes, are being implemented. Technology for sampling and measuring gases trapped within the waste matrix is being used to evaluate flammability hazards associated with gas releases from stored wastes. Application of new inductively coupled plasma and laser ablation mass spectrometry systems at the Hanford Site`s 222-S Laboratory will be described. A Raman spectroscopy probe mounted in a cone penetrometer to measure oxyanions in wastes or soils will be described. The Hanford Site has used large volumes of organic complexants and acids in processing waste, and capillary zone electrophoresis (CZE) methods have been developed for determining several of the major organic components in complex waste tank matrices. The principles involved, system installation, and results from

  7. p53 binding sites in normal and cancer cells are characterized by distinct chromatin context.

    Science.gov (United States)

    Bao, Feifei; LoVerso, Peter R; Fisk, Jeffrey N; Zhurkin, Victor B; Cui, Feng

    2017-08-18

    The tumor suppressor protein p53 interacts with DNA in a sequence-dependent manner. Thousands of p53 binding sites have been mapped genome-wide in normal and cancer cells. However, the way p53 selectively binds its cognate sites in different types of cells is not fully understood. Here, we performed a comprehensive analysis of 25 published p53 cistromes and identified 3,551 and 6,039 'high-confidence' binding sites in normal and cancer cells, respectively. Our analysis revealed 2 distinct epigenetic features underlying p53-DNA interactions in vivo. First, p53 binding sites are associated with transcriptionally active histone marks (H3K4me3 and H3K36me3) in normal-cell chromatin, but with repressive histone marks (H3K27me3) in cancer-cell chromatin. Second, p53 binding sites in cancer cells are characterized by a lower level of DNA methylation than their counterparts in normal cells, probably related to global hypomethylation in cancers. Intriguingly, regardless of the cell type, p53 sites are highly enriched in the endogenous retroviral elements of the ERV1 family, highlighting the importance of this repeat family in shaping the transcriptional network of p53. Moreover, the p53 sites exhibit an unusual combination of chromatin patterns: high nucleosome occupancy and, at the same time, high sensitivity to DNase I. Our results suggest that p53 can access its target sites in a chromatin environment that is non-permissive to most DNA-binding transcription factors, which may allow p53 to act as a pioneer transcription factor in the context of chromatin.

  8. U.S. Department of Energy's site screening, site selection, and initial characterization for storage of CO2 in deep geological formations

    Science.gov (United States)

    Rodosta, T.D.; Litynski, J.T.; Plasynski, S.I.; Hickman, S.; Frailey, S.; Myer, L.

    2011-01-01

    The U.S. Department of Energy (DOE) is the lead Federal agency for the development and deployment of carbon sequestration technologies. As part of its mission to facilitate technology transfer and develop guidelines from lessons learned, DOE is developing a series of best practice manuals (BPMs) for carbon capture and storage (CCS). The "Site Screening, Site Selection, and Initial Characterization for Storage of CO2 in Deep Geological Formations" BPM is a compilation of best practices and includes flowchart diagrams illustrating the general decision making process for Site Screening, Site Selection, and Initial Characterization. The BPM integrates the knowledge gained from various programmatic efforts, with particular emphasis on the Characterization Phase through pilot-scale CO2 injection testing of the Validation Phase of the Regional Carbon Sequestration Partnership (RCSP) Initiative. Key geologic and surface elements that suitable candidate storage sites should possess are identified, along with example Site Screening, Site Selection, and Initial Characterization protocols for large-scale geologic storage projects located across diverse geologic and regional settings. This manual has been written as a working document, establishing a framework and methodology for proper site selection for CO2 geologic storage. This will be useful for future CO2 emitters, transporters, and storage providers. It will also be of use in informing local, regional, state, and national governmental agencies of best practices in proper sequestration site selection. Furthermore, it will educate the inquisitive general public on options and processes for geologic CO2 storage. In addition to providing best practices, the manual presents a geologic storage resource and capacity classification system. The system provides a "standard" to communicate storage and capacity estimates, uncertainty and project development risk, data guidelines and analyses for adequate site characterization, and

  9. Site characterization investigations at Oak Ridge National Laboratory. [Shallow land burial

    Energy Technology Data Exchange (ETDEWEB)

    Ketelle, R.H.

    1985-01-01

    The geologic and geohydrologic characterization and assessment techniques currently used at ORNL are integrated into a systematic approach. The investigations are multi-faceted, and involve investigators with a variety of expertise. Characterization studies are designed to obtain the data requirements of pathways analysis and facility design in addition to the detailed site description. The approach effectively minimizes the redundancy and lack of coordination which often arise when the study is broken down into totally independent tasks. The geologic environment of the Oak Ridge Reservation is one of structural and stratigraphic complexity which requires a comprehensive and systematic approach to characterize. Recent characterization studies have included state-of-the-science techniques in the areas of unsaturated zone testing, geochemical tests to determine attenuation properties of soils, and numerical analyses of site performance. The results of these studies and analyses are changing the technology of shallow land burial by indicating that chemically stable waste forms are required to limit radionuclide migration to acceptable levels. 11 refs., 1 tab.

  10. Accurate Characterization of Winter Precipitation Using Multi-Angle Snowflake Camera, Visual Hull, Advanced Scattering Methods and Polarimetric Radar

    Directory of Open Access Journals (Sweden)

    Branislav M. Notaroš

    2016-06-01

    Full Text Available This article proposes and presents a novel approach to the characterization of winter precipitation and modeling of radar observables through a synergistic use of advanced optical disdrometers for microphysical and geometrical measurements of ice and snow particles (in particular, a multi-angle snowflake camera—MASC, image processing methodology, advanced method-of-moments scattering computations, and state-of-the-art polarimetric radars. The article also describes the newly built and established MASCRAD (MASC + Radar in-situ measurement site, under the umbrella of CSU-CHILL Radar, as well as the MASCRAD project and 2014/2015 winter campaign. We apply a visual hull method to reconstruct 3D shapes of ice particles based on high-resolution MASC images, and perform “particle-by-particle” scattering computations to obtain polarimetric radar observables. The article also presents and discusses selected illustrative observation data, results, and analyses for three cases with widely-differing meteorological settings that involve contrasting hydrometeor forms. Illustrative results of scattering calculations based on MASC images captured during these events, in comparison with radar data, as well as selected comparative studies of snow habits from MASC, 2D video-disdrometer, and CHILL radar data, are presented, along with the analysis of microphysical characteristics of particles. In the longer term, this work has potential to significantly improve the radar-based quantitative winter-precipitation estimation.

  11. Numerical characterization of landing gear aeroacoustics using advanced simulation and analysis techniques

    Science.gov (United States)

    Redonnet, S.; Ben Khelil, S.; Bulté, J.; Cunha, G.

    2017-09-01

    With the objective of aircraft noise mitigation, we here address the numerical characterization of the aeroacoustics by a simplified nose landing gear (NLG), through the use of advanced simulation and signal processing techniques. To this end, the NLG noise physics is first simulated through an advanced hybrid approach, which relies on Computational Fluid Dynamics (CFD) and Computational AeroAcoustics (CAA) calculations. Compared to more traditional hybrid methods (e.g. those relying on the use of an Acoustic Analogy), and although it is used here with some approximations made (e.g. design of the CFD-CAA interface), the present approach does not rely on restrictive assumptions (e.g. equivalent noise source, homogeneous propagation medium), which allows to incorporate more realism into the prediction. In a second step, the outputs coming from such CFD-CAA hybrid calculations are processed through both traditional and advanced post-processing techniques, thus offering to further investigate the NLG's noise source mechanisms. Among other things, this work highlights how advanced computational methodologies are now mature enough to not only simulate realistic problems of airframe noise emission, but also to investigate their underlying physics.

  12. Geomorphological and geophysical investigations for the characterization of the Roman Carsulae site (Tiber basin, Central Italy)

    Science.gov (United States)

    Bottari, C.; Aringoli, D.; Carluccio, R.; Castellano, C.; D'Ajello Caracciolo, F.; Gasperini, M.; Materazzi, M.; Nicolosi, I.; Pambianchi, G.; Pieruccini, P.; Sepe, V.; Urbini, S.; Varazi, F.

    2017-08-01

    This paper aims to bring to light the possible linkage between karstic phenomena and the human occupation of the Roman site of Carsulae (Tiber basin, Central Italy). Dolines are a typical morphological expression of karst rocks' dissolution and collapse and, usually, they represent a potential hazard for human activities and, in particular, in the care and maintenance of cultural heritage sites. In this study, we observed that the development of a subsidence doline caused severe damage to some archaeological structures at the Carsulae monumental site. According to the results obtained in our investigation, three sites at least with karst dissolution phenomena in the shallow calcareous tufa layer have been identified. One of them subsided probably in Roman times and produced a sharp deformation of the decumanus. In order to understand the evolution of this territory an integrated geomorphological and geophysical survey was carried out. The combination between the information derived from different geophysical techniques, such as: Electrical Resistivity Tomography (ERT), Frequency-Domain Electromagnetism (FDEM), and Ground Penetrating Radar (GPR) clearly pointed out that the calcareous tufa layer is characterized by an irregular geometry and this resulted in the investigated area being affected by karst dissolution in several parts. Four boreholes opportunely located, provided direct information about the depth and the alteration of the calcareous tufa basement and precious calibration data for the geophysical methods. This study contributes to improving our knowledge on the evolution of the Carsulae archaeological site providing a new insight into the adaptation of ancient human societies in this problematic territory.

  13. Cloning and characterization of a variant surface glycoprotein expression site from Trypanosoma equiperdum.

    Science.gov (United States)

    Raibaud, A; Buck, G; Baltz, T; Eisen, H

    1986-08-01

    Variant surface glycoprotein (VSG) genes of African trypanosomes are expressed when they are inserted into one of several telomere-linked expression sites. We cloned and characterized an 11-kilobase (kb) DNA fragment located upstream of an expressed VSG gene. A DNA sequence of 1.8 kb that is located immediately upstream of the inserted VSG gene contains sequences homologous to the 76-base-pair repeats described as being upstream of VSG genes in Trypanosoma brucei (D. A. Campbell, M. P. Van Bree, and J. C. Boothroyd, Nucleic Acids Res. 12:2759-2774). There are no such sequences elsewhere in the 11-kb cloned region. Southern blot analysis using probes from the cloned region revealed multiple unlinked copies of the same or very similar regions. At least three of these are located near telomeres, and two have been shown to be used for the expression of known Trypanosoma equiperdum VSG genes. Like VSG genes, the upstream sequences themselves can be duplicated and deleted. The choice of expression site to be used by a duplicated VSG gene is nonrandom; the site used for expression of the parental VSG gene is strongly favored for use in the daughter variant. Furthermore, even when the parental expression site is not used, the VSG gene occupying it is replaced. Thus, an active expression site is a preferential target for gene conversion in the next variation event.

  14. State-of-the-art characterization techniques for advanced lithium-ion batteries

    Science.gov (United States)

    Lu, Jun; Wu, Tianpin; Amine, Khalil

    2017-03-01

    To meet future needs for industries from personal devices to automobiles, state-of-the-art rechargeable lithium-ion batteries will require both improved durability and lowered costs. To enhance battery performance and lifetime, understanding electrode degradation mechanisms is of critical importance. Various advanced in situ and operando characterization tools developed during the past few years have proven indispensable for optimizing battery materials, understanding cell degradation mechanisms, and ultimately improving the overall battery performance. Here we review recent progress in the development and application of advanced characterization techniques such as in situ transmission electron microscopy for high-performance lithium-ion batteries. Using three representative electrode systems—layered metal oxides, Li-rich layered oxides and Si-based or Sn-based alloys—we discuss how these tools help researchers understand the battery process and design better battery systems. We also summarize the application of the characterization techniques to lithium-sulfur and lithium-air batteries and highlight the importance of those techniques in the development of next-generation batteries.

  15. Advances in magnetic resonance relaxometry for heavy oil and bitumen characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kantzas, A. [Calgary Univ., AB (Canada). Tomographic Imaging and Porous Media Laboratory

    2009-03-15

    This article discussed the feasibility of using low field nuclear magnetic resonance (NMR) relaxometry to characterize heavy oil and bitumens. It reviewed advances that have been made in the past decade and was presented as a quick reference guide for future development in this area. Low field NMR relaxometry can be used to obtain spectra of the hydrogen bearing molecules in the oil and bitumen. Water content and oil content values can then be derived through interpretations of the spectra. Solids content can then be determined by changes in the spectra. The mobility of hydrogen-bearing molecules can also be measured through low field NMR. For reservoir characterization applications, hydrogen-bearing molecules translate into gas, water or oil present within a formation. Correlations of viscosity predictions from NMR data are simple for low viscosity fluids, but as viscosity increases, more complex relationships occur. It was concluded that low field NMR developments in the past year allowed for several breakthroughs in heavy oil and bitumen characterization, including reservoir characterization through logging for porosity, bitumen and water saturation; insitu fluid viscosity determination; monitoring of oil sands extraction processes; bitumen solvent interactions; emulsion measurement and characterization; coalescence and sedimentation of emulsions and suspensions; and, fluid content measurements at the wellhead of thermal operations. Future research will focus on new techniques such as diffusion editing and fluid profiling. 33 refs., 18 figs.

  16. High Resolution Site Characterization as key element for proper design and cost estimation of groundwater remediation

    Directory of Open Access Journals (Sweden)

    Pieter Dijkshoorn

    2014-12-01

    Full Text Available Substantial amounts of money are spent each year on cleaning up ground water contaminations that were caused by historical industrial site activities. Too often, however, remedial objectives are not achieved within the anticipated time frame. Moreover, remedial budgets which were estimated prior to the start of remediation turn out to be largely insufficient to meet the remedial objectives. This situation, very common, creates significant troubles for all the stakeholders involved in the remediation project. The reason for not meeting remedial regulatory closure criteria or exceeding remedial budgets is often due to an incomplete conceptual site model. Having conducted high resolution site characterization programs at numerous sites where remediation was previously conducted, ERM has found several recurring themes: • Missed source areas and plumes; • Inadequate understanding of source area and plume architectures (i.e., three-dimensional contaminant distribution; • Inadequate understanding of the effects of site (hydrogeologic conditions on the ability to access contamination (i.e., via remedial additive injections of groundwater/soil gas extraction. This paper explains why remediations often fail and what the alternatives to prevent these failures (and exceeding remedial budgets are. More specifically, it focuses on alternative investigation methods and approaches that help to get to a more complete (high resolution conceptual site model. This more complete conceptual site model in return helps a more focused remedial design with a higher remedial efficiency. As a minimum, it will take away a lot of (financial uncertainty during the decision making when selecting a remedial alternative. Contaminants that have a greater density then water are known to have a greater complexity in terms of both investigation as well as remediation. Therefore, they will be the main focus of this paper.

  17. Simultaneous Ka-Band Site Characterization: Goldstone, CA, White Sands, NM, and Guam, USA

    Science.gov (United States)

    Acosta, Roberto; Morse, Jacquelynne; Zemba, Michael; Nessel, James; Morabito, David; Caroglanian, Armen

    2011-01-01

    To statistically characterize atmospheric effects on Ka-band links at NASA operational sites, NASA has constructed site test interferometers (STI s) which directly measure the tropospheric phase stability and rain attenuation. These instruments observe an unmodulated beacon signal broadcast from a geostationary satellite (e.g., Anik F2) and measure the phase difference between the signals received by the two antennas and its signal attenuation. Three STI s have been deployed so far: the first one at the NASA Deep Space Network Tracking Complex in Goldstone, California (May 2007); the second at the NASA White Sands Complex, in Las Cruses, New Mexico (February 2009); and the third at the NASA Tracking and Data Relay Satellite (TDRS) Remote Ground Terminal (GRGT) complex in Guam (May 2010). Two station-years of simultaneous atmospheric phase fluctuation data have been collected at Goldstone and White Sands, while one year of data has been collected in Guam. With identical instruments operating simultaneously, we can directly compare the phase stability and rain attenuation at the three sites. Phase stability is analyzed statistically in terms of the root-mean-square (rms) of the tropospheric induced time delay fluctuations over 10 minute blocks. For two years, the time delay fluctuations at the DSN site in Goldstone, CA, have been better than 2.5 picoseconds (ps) for 90% of the time (with reference to zenith), meanwhile at the White Sands, New Mexico site, the time delay fluctuations have been better than 2.2 ps with reference to zenith) for 90% of time. For Guam, the time delay fluctuations have been better than 12 ps (reference to zenith) at 90% of the time, the higher fluctuations are as expected from a high humidity tropical rain zone. This type of data analysis, as well as many other site quality characteristics (e.g., rain attenuation, infrastructure, etc.) will be used to determine the suitability of all the sites for NASA s future communication services at Ka-band.

  18. Characterization of the Copper(II) Binding Sites in Human Carbonic Anhydrase II

    Science.gov (United States)

    Nettles, Whitnee L.; Song, He; Farquhar, Erik R.; Fitzkee, Nicholas C.; Emerson, Joseph P.

    2015-01-01

    Human carbonic anhydrase (CA) is a well-studied, robust, mononuclear Zn-containing metalloprotein that serves as an excellent biological ligand system to study the thermodynamics associated with metal ion coordination chemistry in aqueous solution. The apo-form of human carbonic anhydrase II (CA) binds two equivalents of copper(II) with high affinity. The Cu2+ ions bind independently forming two non-coupled type-II copper centers in CA (CuA and CuB). However, the location and coordination mode of the CuA site in solution is unclear, compared to the CuB site that has been well characterized. Using paramagnetic NMR techniques and X-ray absorption spectroscopy we have identified an N-terminal Cu2+ binding location and collected information on the coordination mode of the CuA site in CA, which is consistent with a four to five coordinate N-terminal Cu2+ binding site reminiscent to a number of N-terminal copper(II) binding sites including the copper(II)-ATCUN and copper(II)-beta-amyloid complexes. Additionally, we report a more detailed analysis of the thermodynamics associated with copper(II) binding to CA. Although we are still unable to fully deconvolute Cu2+ binding data to the high-affinity CuA site, we have derived pH- and buffer-independent values for the thermodynamics parameters K and ΔH associated with Cu2+ binding to the CuB site of CA to be 2 × 109 and −17.4 kcal/mol, respectively. PMID:26010488

  19. Nondestructive Characterization for Remanent Life of Advanced Ferritic Steel by Reversible Permeability

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chung Seok; Hong, Seung Pyo [Dept. of Metallurgical Material Engineering, Chosun University, Gwangju, (Korea, Republic of); Ryu, Kwon Sang [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2013-04-15

    We present nondestructive characterization for remanent life of advanced ferritic steels, next-gen energy facility materials by reversible permeability. The reversible permeability is based on the theory that the value of reversible permeability is the same differential of the hysteresis loop. The measurement principle is based on the foundation of harmonics voltage induced in a sensing coil using a lock-in amplifier tuned to the frequency of the exciting one. The peak interval of reversible permeability(PIRP), Vickers hardness, and tensile strength(TS) of the aged samples decreased with aging time. We could estimate the remanent life of advanced ferritic steel by using the relationship between the peak interval of reversible permeability and Larson-Miller parameter(LMP), non-destructively.

  20. Battery Separator Characterization and Evaluation Procedures for NASA's Advanced Lithium-Ion Batteries

    Science.gov (United States)

    Baldwin, Richard S.; Bennet, William R.; Wong, Eunice K.; Lewton, MaryBeth R.; Harris, Megan K.

    2010-01-01

    To address the future performance and safety requirements for the electrical energy storage technologies that will enhance and enable future NASA manned aerospace missions, advanced rechargeable, lithium-ion battery technology development is being pursued within the scope of the NASA Exploration Technology Development Program s (ETDP's) Energy Storage Project. A critical cell-level component of a lithium-ion battery which significantly impacts both overall electrochemical performance and safety is the porous separator that is sandwiched between the two active cell electrodes. To support the selection of the optimal cell separator material(s) for the advanced battery technology and chemistries under development, laboratory characterization and screening procedures were established to assess and compare separator material-level attributes and associated separator performance characteristics.

  1. Characterization and identification of ubiquitin conjugation sites with E3 ligase recognition specificities.

    Science.gov (United States)

    Nguyen, Van-Nui; Huang, Kai-Yao; Huang, Chien-Hsun; Chang, Tzu-Hao; Bretaña, Neil; Lai, K; Weng, Julia; Lee, Tzong-Yi

    2015-01-01

    In eukaryotes, ubiquitin-conjugation is an important mechanism underlying proteasome-mediated degradation of proteins, and as such, plays an essential role in the regulation of many cellular processes. In the ubiquitin-proteasome pathway, E3 ligases play important roles by recognizing a specific protein substrate and catalyzing the attachment of ubiquitin to a lysine (K) residue. As more and more experimental data on ubiquitin conjugation sites become available, it becomes possible to develop prediction models that can be scaled to big data. However, no development that focuses on the investigation of ubiquitinated substrate specificities has existed. Herein, we present an approach that exploits an iteratively statistical method to identify ubiquitin conjugation sites with substrate site specificities. In this investigation, totally 6259 experimentally validated ubiquitinated proteins were obtained from dbPTM. After having filtered out homologous fragments with 40% sequence identity, the training data set contained 2658 ubiquitination sites (positive data) and 5532 non-ubiquitinated sites (negative data). Due to the difficulty in characterizing the substrate site specificities of E3 ligases by conventional sequence logo analysis, a recursively statistical method has been applied to obtain significant conserved motifs. The profile hidden Markov model (profile HMM) was adopted to construct the predictive models learned from the identified substrate motifs. A five-fold cross validation was then used to evaluate the predictive model, achieving sensitivity, specificity, and accuracy of 73.07%, 65.46%, and 67.93%, respectively. Additionally, an independent testing set, completely blind to the training data of the predictive model, was used to demonstrate that the proposed method could provide a promising accuracy (76.13%) and outperform other ubiquitination site prediction tool. A case study demonstrated the effectiveness of the characterized substrate motifs for

  2. Wafer hot spot identification through advanced photomask characterization techniques: part 2

    Science.gov (United States)

    Choi, Yohan; Green, Michael; Cho, Young; Ham, Young; Lin, Howard; Lan, Andy; Yang, Richer; Lung, Mike

    2017-03-01

    Historically, 1D metrics such as Mean to Target (MTT) and CD Uniformity (CDU) have been adequate for mask end users to evaluate and predict the mask impact on the wafer process. However, the wafer lithographer's process margin is shrinking at advanced nodes to a point that classical mask CD metrics are no longer adequate to gauge the mask contribution to wafer process error. For example, wafer CDU error at advanced nodes is impacted by mask factors such as 3-dimensional (3D) effects and mask pattern fidelity on sub-resolution assist features (SRAFs) used in Optical Proximity Correction (OPC) models of ever-increasing complexity. To overcome the limitation of 1D metrics, there are numerous on-going industry efforts to better define wafer-predictive metrics through both standard mask metrology and aerial CD methods. Even with these improvements, the industry continues to struggle to define useful correlative metrics that link the mask to final device performance. In part 1 of this work, we utilized advanced mask pattern characterization techniques to extract potential hot spots on the mask and link them, theoretically, to issues with final wafer performance. In this paper, part 2, we complete the work by verifying these techniques at wafer level. The test vehicle (TV) that was used for hot spot detection on the mask in part 1 will be used to expose wafers. The results will be used to verify the mask-level predictions. Finally, wafer performance with predicted and verified mask/wafer condition will be shown as the result of advanced mask characterization. The goal is to maximize mask end user yield through mask-wafer technology harmonization. This harmonization will provide the necessary feedback to determine optimum design, mask specifications, and mask-making conditions for optimal wafer process margin.

  3. Accurate Characterization of Winter Precipitation Using In-Situ Instrumentation, CSU-CHILL Radar, and Advanced Scattering Methods

    Science.gov (United States)

    Newman, A. J.; Notaros, B. M.; Bringi, V. N.; Kleinkort, C.; Huang, G. J.; Kennedy, P.; Thurai, M.

    2015-12-01

    We present a novel approach to remote sensing and characterization of winter precipitation and modeling of radar observables through a synergistic use of advanced in-situ instrumentation for microphysical and geometrical measurements of ice and snow particles, image processing methodology to reconstruct complex particle three-dimensional (3D) shapes, computational electromagnetics to analyze realistic precipitation scattering, and state-of-the-art polarimetric radar. Our in-situ measurement site at the Easton Valley View Airport, La Salle, Colorado, shown in the figure, consists of two advanced optical imaging disdrometers within a 2/3-scaled double fence intercomparison reference wind shield, and also includes PLUVIO snow measuring gauge, VAISALA weather station, and collocated NCAR GPS advanced upper-air system sounding system. Our primary radar is the CSU-CHILL radar, with a dual-offset Gregorian antenna featuring very high polarization purity and excellent side-lobe performance in any plane, and the in-situ instrumentation site being very conveniently located at a range of 12.92 km from the radar. A multi-angle snowflake camera (MASC) is used to capture multiple different high-resolution views of an ice particle in free-fall, along with its fall speed. We apply a visual hull geometrical method for reconstruction of 3D shapes of particles based on the images collected by the MASC, and convert these shapes into models for computational electromagnetic scattering analysis, using a higher order method of moments. A two-dimensional video disdrometer (2DVD), collocated with the MASC, provides 2D contours of a hydrometeor, along with the fall speed and other important parameters. We use the fall speed from the MASC and the 2DVD, along with state parameters measured at the Easton site, to estimate the particle mass (Böhm's method), and then the dielectric constant of particles, based on a Maxwell-Garnet formula. By calculation of the "particle-by-particle" scattering

  4. Innovations in Site Characterization: Streamlining Cleanup at Vapor Intrusion and Product Removal Sites Using the Triad Approach: Hartford Plume Site, Hartford, Illinois

    Science.gov (United States)

    The Hartford Plume Site case study provides a detailed example of the strategies and technologies used at the site that are available to environmental practitioners to use at large and small hydrocarbon sites.

  5. Quantitative ultrasound characterization of locally advanced breast cancer by estimation of its scatterer properties

    Energy Technology Data Exchange (ETDEWEB)

    Tadayyon, Hadi [Physical Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5 (Canada); Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 2M9 (Canada); Sadeghi-Naini, Ali; Czarnota, Gregory, E-mail: Gregory.Czarnota@sunnybrook.ca [Physical Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5 (Canada); Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 2M9 (Canada); Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5 (Canada); Department of Radiation Oncology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5T 1P5 (Canada); Wirtzfeld, Lauren [Department of Physics, Ryerson University, Toronto, Ontario M5B 2K3 (Canada); Wright, Frances C. [Division of Surgical Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5 (Canada)

    2014-01-15

    Purpose: Tumor grading is an important part of breast cancer diagnosis and currently requires biopsy as its standard. Here, the authors investigate quantitative ultrasound parameters in locally advanced breast cancers that can potentially separate tumors from normal breast tissue and differentiate tumor grades. Methods: Ultrasound images and radiofrequency data from 42 locally advanced breast cancer patients were acquired and analyzed. Parameters related to the linear regression of the power spectrum—midband fit, slope, and 0-MHz-intercept—were determined from breast tumors and normal breast tissues. Mean scatterer spacing was estimated from the spectral autocorrelation, and the effective scatterer diameter and effective acoustic concentration were estimated from the Gaussian form factor. Parametric maps of each quantitative ultrasound parameter were constructed from the gated radiofrequency segments in tumor and normal tissue regions of interest. In addition to the mean values of the parametric maps, higher order statistical features, computed from gray-level co-occurrence matrices were also determined and used for characterization. Finally, linear and quadratic discriminant analyses were performed using combinations of quantitative ultrasound parameters to classify breast tissues. Results: Quantitative ultrasound parameters were found to be statistically different between tumor and normal tissue (p < 0.05). The combination of effective acoustic concentration and mean scatterer spacing could separate tumor from normal tissue with 82% accuracy, while the addition of effective scatterer diameter to the combination did not provide significant improvement (83% accuracy). Furthermore, the two advanced parameters, including effective scatterer diameter and mean scatterer spacing, were found to be statistically differentiating among grade I, II, and III tumors (p = 0.014 for scatterer spacing, p = 0.035 for effective scatterer diameter). The separation of the tumor

  6. Site characterization report for the Old Hydrofracture Facility at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-01

    Several Old Hydrofracture Facility (OHF) structures (i.e., Building 7852, the bulk storage bins, the pump house, water tank T-5, and pump P-3) are surplus facilities at Oak Ridge National Laboratory (ORNL) slated for decontamination and decommissioning (D and D). OHF was constructed in 1963 to allow experimentation and operations with an integrated solids storage, handling, mixing, and grout injection facility. It was shut down in 1980 and transferred to ORNL`s Surveillance and Maintenance Program. The hydrofracture process was a unique disposal method that involved injecting waste materials mixed with grout and additives under pumping pressures of 2,000 psi or greater into a deep, low-permeability shale formation. The injected slurry spread along fractures and bedding planes for hundreds of feet from the injection points, forming thin grout sheets (often less than 1/8 in. thick). The grout ostensibly immobilized and solidified the liquid wastes. Site characterization activities were conducted in the winter and spring of 1994 to collect information necessary to plan the D and D of OHF structures. This site characterization report documents the results of the investigation of OHF D and D structures, presenting data from the field investigation and laboratory analyses in the form of a site description, as-built drawings, summary tables of radiological and chemical contaminant concentrations, and a waste volume estimate. 25 refs., 54 figs., 17 tabs.

  7. Characterization of a novel phosphorylation site in the sodium-chloride cotransporter, NCC

    DEFF Research Database (Denmark)

    Rosenbaek, L L; Assentoft, Mette; Pedersen, Nis Borbye

    2012-01-01

    The sodium-chloride cotransporter, NCC, is essential for renal electrolyte balance. NCC function can be modulated by protein phosphorylation. In this study, we characterized the role and physiological regulation of a novel phosphorylation site in NCC at Ser124 (S124). Novel phospho-specific antib......The sodium-chloride cotransporter, NCC, is essential for renal electrolyte balance. NCC function can be modulated by protein phosphorylation. In this study, we characterized the role and physiological regulation of a novel phosphorylation site in NCC at Ser124 (S124). Novel phospho......DAVP significantly increased pS124-NCC abundance, with no changes in total NCC plasma membrane abundance. pS124-NCC levels also increased in abundance in rats after stimulation of the renin-angiotensin-aldosterone system by dietary low sodium intake. In contrast to other NCC phosphorylation sites, the STE20/SPS1......-related proline-alanine-rich kinase and oxidative stress-response kinases (SPAK and OSR1) were not able to phosphorylate NCC at S124. Protein kinase arrays identified multiple kinases that were able to bind to the region surrounding S124. Four of these kinases (IRAK2, CDK6/Cyclin D1, NLK and m...

  8. Advanced Characterization of Fractured Reservoirs in Carbonate Rocks: The Michigan Basin

    Energy Technology Data Exchange (ETDEWEB)

    Wood, James R.; Harrison, William B.

    2000-10-24

    The main objective of this project is for a university-industry consortium to develop a comprehensive model for fracture carbonate reservoirs based on the ''data cube'' concept using the Michigan Basin as a prototype. This project combined traditional historical data with 2D and 3D seismic data as well as data from modern logging tools in a novel way to produce a new methodology for characterizing fractured reservoirs in carbonate rocks. Advanced visualization software was used to fuse the data and to image it on a variety of scales, ranging from basin-scale to well-scales.

  9. Sandia National Laboratories site-wide hydrogeologic characterization project calendar year 1992 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Crowson, D.; Gibson, J.D.; Haase, C.S.; Holt, R.; Hyndman, D.; Krumhansl, J.; Lauffer, F.; McCord, J.P.; McCord, J.T.; Neel, D. [and others

    1993-10-01

    The Sandia National Laboratories, New Mexico (SNL/NM) Site-Wide Hydrogeologic Characterization (SWHC) project has been implemented as part of the SNL/NM Environmental Restoration (ER) Program to develop the regional hydrogeologic framework and baseline for the approximately 100 mi of Kirtland Air Force Base (KAFB) and adjacent withdrawn public lands upon which SNL/NM has performed research and development activities. Additionally, the SWHC project will investigate and characterize generic hydrogeologic issues associated with the 172 ER sites owned by SNL/NM across its facilities on KAFB. As called for in the Hazardous and Solid Waste Amendments (HSWA) to the Resource Conservation and Recovery Act (RCRA) Part B permit agreement between the U.S. Environmental Protection Agency (EPA) as the permitter and the U.S. Department of Energy (DOE) and SNL/NM as the permittees, an annual report is to be prepared by the SWHC project team. This document serves two primary purposes: (1) to identify and describe the conceptual framework for the hydrogeologic system underlying SNL/NM and (2) to describe characterization activities undertaken in the preceding year that add to our understanding (reduce our uncertainties) regarding the conceptual and quantitative hydrogeologic framework. This SWHC project annual report focuses primarily on purpose 1, providing a summary description of the current {open_quotes}state of knowledge{close_quotes} of the Sandia National Laboratories/Kirtland Air Force Base (SNL/KAFB) hydrogeologic setting.

  10. A multidisciplinary fractured rock characterization study at Raymond field site, Raymond, CA

    Science.gov (United States)

    Karasaki, K.; Freifeld, B.; Cohen, A.; Grossenbacher, K.; Cook, P.; Vasco, D.

    2000-09-01

    A dedicated field site was developed and a suite of experiments were conducted in the Sierra Nevada foothills, near the town of Raymond, CA to develop and test a multi-disciplinary approach to the characterization of groundwater flow and transport in fractured rocks. A wealth of geologic, hydrologic and geophysical data was collected at the site using a variety of unique tools. A cluster of nine approximately 90 m deep boreholes were drilled at the site in a V-shaped pattern with an angle of 60°. The boreholes are spaced 7.5, 15, 30 and 60 m from the central borehole. Various geophysical and hydrologic tests were conducted in and between these boreholes. Integration of cross-hole radar and seismic tomography, borehole flow surveys and images from a new digital borehole scanner indicated that groundwater flow is mainly confined to a few sub-horizontal fracture zones. A unique suite of hydraulic tests were conducted, in which three to four intervals in each of the nine boreholes were isolated using pneumatic packers. Some 130 injection tests were conducted, and more than 4100 cross-hole transient pressure measurements were obtained. A computer algorithm was developed to analyze such massive interference data systematically. As a result of the analysis, an image of the fracture connections emerged, which is consistent with the geophysical data. High precision tiltmeters were effective in remotely characterizing the preferential flow path. Several radial convergent tracer tests were conducted by injecting a mixture of several conservative tracers and one sorbing tracer: deuterium, fluorescein, lithium bromide and polystyrene micro-spheres. Some differences between the breakthrough curves are observed, which may be due to possible differences among so-called "conservative" tracers. Some characterization tools were found to be more effective than others in locating flowing fractures. However, no single tool was almighty. Characterization of fractured rock is extremely

  11. Characterization of Halogen Bonded Adducts in Solution by Advanced NMR Techniques

    Directory of Open Access Journals (Sweden)

    Gianluca Ciancaleoni

    2017-09-01

    Full Text Available In the last 20 years, a huge volume of experimental work into halogen bonding (XB has been produced. Most of the systems have been characterized by solid state X-ray crystallography, whereas in solution the only routine technique is titration (by using 1H and 19F nuclear magnetic resonance (NMR, infrared (IR, ultraviolet–visible (UV–Vis or Raman spectroscopies, depending on the nature of the system, with the aim of characterizing the strength of the XB interaction. Unfortunately, titration techniques have many intrinsic limitations and they should be coupled with other, more sophisticated techniques to provide an accurate and detailed description of the geometry and stoichiometry of the XB adduct in solution. This review will show how crucial information about XB adducts can be obtained by advanced NMR techniques, nuclear Overhauser effect-based spectroscopies (NOESY, ROESY, HOESY… and diffusion NMR techniques (PGSE or DOSY.

  12. Advanced Cardiac MR Imaging for Myocardial Characterization and Quantification: T1 Mapping.

    Science.gov (United States)

    Hwang, Sung Ho; Choi, Byoung Wook

    2013-01-01

    Magnetic resonance as an imaging modality provides an excellent soft tissue differentiation, which is an ideal choice for cardiac imaging. Cardiac magnetic resonance (CMR) allows myocardial tissue characterization, as well as comprehensive evaluation of the structures. Although late gadolinium enhancement after injection of the gadolinium extracellular contrast agent has further extended our ability to characterize the myocardial tissue, it also has limitations in the quantification of enhanced myocardial tissue pathology, and the detection of diffuse myocardial disease, which is not easily recognized by enhancement contrast. Recently, the remarkable advances in CMR technique, such as T1 mapping, which can quantitatively evaluate myocardial status, showed potentials to overcome limitations of existing CMR sequences and to expand the application of CMR. This article will review the technical and clinical points to be considered in the practical use of pre- and post-contrast T1 mapping.

  13. Scenarios constructed for basaltic igneous activity at Yucca Mountain and vicinity; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Barr, G.E.; Dunn, E.; Dockery, H.; Barnard, R. [Sandia National Labs., Albuquerque, NM (United States); Valentine, G.; Crowe, B. [Los Alamos National Lab., NM (United States)

    1993-08-01

    Basaltic volcanism has been identified as a possible future event initiating a release of radionuclides from a potential repository at the proposed Yucca Mountain high-level waste repository site. The performance assessment method set forth in the Site Characterization Plan (DOE, 1988) requires that a set of scenarios encompassing all significant radionuclide release paths to the accessible environment be described. This report attempts to catalogue the details of the interactions between the features and processes produced by basaltic volcanism in the presence of the presumed groundwater flow system and a repository structure, the engineered barrier system (EBS), and waste. This catalogue is developed in the form of scenarios. We define a scenario as a well-posed problem, starting from an initiating event or process and proceeding through a logically connected and physically possible combination or sequence of features, events, and processes (FEPs) to the release of contaminants.

  14. Yucca Mountain Site Characterization Project Bibliography, July--December 1994: An update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Charactrization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy`s Science and Technology Database from July 1, 1994 through December 31, 1994. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization`s list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it.

  15. Initial source and site characterization studies for the U.C. Santa Barbara campus

    Energy Technology Data Exchange (ETDEWEB)

    Archuleta, R.; Nicholson, C.; Steidl, J.; Gurrola, L.; Alex, C.; Cochran, E.; Ely, G.; Tyler, T. [University of California, Santa Barbara (United States)

    1997-12-01

    The University of California Campus-Laboratory Collaboration (CLC) project is an integrated 3 year effort involving Lawrence Livermore National Laboratory (LLNL) and four UC campuses - Los Angeles (UCLA), Riverside (UCR), Santa Barbara (UCSB), and San Diego (UCSD) - plus additional collaborators at San Diego State University (SDSU), at Los Alamos National Laboratory and in industry. The primary purpose of the project is to estimate potential ground motions from large earthquakes and to predict site-specific ground motions for one critical structure on each campus. This project thus combines the disciplines of geology, seismology, geodesy, soil dynamics, and earthquake engineering into a fully integrated approach. Once completed, the CLC project will provide a template to evaluate other buildings at each of the four UC campuses, as well as provide a methodology for evaluating seismic hazards at other critical sites in California, including other UC locations at risk from large earthquakes. Another important objective of the CLC project is the education of students and other professional in the application of this integrated, multidisciplinary, state-of-the-art approach to the assessment of earthquake hazard. For each campus targeted by the CLC project, the seismic hazard study will consist of four phases: Phase I - Initial source and site characterization, Phase II - Drilling, logging, seismic monitoring, and laboratory dynamic soil testing, Phase III - Modeling of predicted site-specific earthquake ground motions, and Phase IV - Calculations of 3D building response. This report cover Phase I for the UCSB campus and incudes results up through March 1997.

  16. Environmental assessment for the Groundwater Characterization Project, Nevada Test Site, Nye County, Nevada; Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-08-01

    The US Department of Energy (DOE) proposes to conduct a program to characterize groundwater at the Nevada Test Site (NTS), Nye County, Nevada, in accordance with a 1987 DOE memorandum stating that all past, present, and future nuclear test sites would be treated as Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites (Memorandum from Bruce Green, Weapons Design and Testing Division, June 6, 1987). DOE has prepared an environmental assessment (DOE/EA-0532) to evaluate the environmental consequences associated with the proposed action, referred to as the Groundwater Characterization Project (GCP). This proposed action includes constructing access roads and drill pads, drilling and testing wells, and monitoring these wells for the purpose of characterizing groundwater at the NTS. Long-term monitoring and possible use of these wells in support of CERCLA, as amended by the Superfund Amendments and Reauthorization Act, is also proposed. The GCP includes measures to mitigate potential impacts on sensitive biological, cultural and historical resources, and to protect workers and the environment from exposure to any radioactive or mixed waste materials that may be encountered. DOE considers those mitigation measures related to sensitive biological, cultural and historic resources as essential to render the impacts of the proposed action not significant, and DOE has prepared a Mitigation Action Plan (MAP) that explains how such mitigations will be planned and implemented. Based on the analyses presented in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, preparation of an environmental impact statement is not required and the Department is issuing this FONSI.

  17. Radiologic characterization of the Mexican Hat, Utah, uranium mill tailings remedial action site: Addendum D1

    Energy Technology Data Exchange (ETDEWEB)

    Ludlam, J.R.

    1985-01-01

    This radiologic characterization of the inactive uranium millsite at Mexican Hat, Utah, was conducted by Bendix Field Engineering Corporation for the US Department of Energy (DOE), Grand Junctions Project Office in response to and in accord with a Statement of Work prepared by the DOE Uranium Mill Tailings Remedial Action Project (UMTRAP) Technical Assistance Contractor, Jacobs Engineering Group, Inc. The objective of this project was to determine the horizontal and vertical extent of contamination that exceeds the US Environmental Protection Agency (EPA) standards at the Mexican Hat site. The data presented in this report are required for characterization of the areas adjacent to the Mexican Hat tailings piles and for the subsequent design of cleanup activities. Some on- pile sampling was required to determine the depth of the 15-pCi/g Ra- 226 interface in an area where wind and water erosion has taken place.

  18. Site Characterization for the MBCE/DIRT II Battlefield Environment Tests

    Science.gov (United States)

    1981-09-01

    study was performed by Messrs. Carlos Lebron , Billy Helmuth, and Douglas Rockett under the tech- nical supervision of Mr. James B. Mason, Project...LEVEL;!;v *-" MISCELLANEOUS PAPER EL-81-B SITE CHARACTERIZATION FOR THE 00 MBCE/DIRT I! BATTLEFIELD ENVIRONMENT TESTS n by n James B. Mason and...GRANT NUMBER(e) James B./Mason Katherine S.gLong / 4S 1.a- -0 9. PERFORMING ORGANIZATION NAME AND ADDRESS ,0. PROGRAM ELEMENT. PROJECT. TASK U. S. Army

  19. The Employment Retention and Advancement Project: Results from the South Carolina ERA Site

    Science.gov (United States)

    Scrivener, Susan; Azurdia, Gilda; Page, Jocelyn

    2005-01-01

    Although much is known about how to help welfare recipients find jobs, little is known about how to help them and other low-wage workers keep jobs or advance in the labor market. This report presents information on the effectiveness of a program in South Carolina that aimed to help former welfare recipients obtain jobs, work more steadily, and…

  20. Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 2, Part A: Chapters 3, 4, and 5

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-12-01

    This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1--5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules. 575 refs., 84 figs., 68 tabs.

  1. Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 4, Part B: Chapter 8, Sections 8.0 through 8.3.1.4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-12-01

    This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules. 74 figs., 32 tabs.

  2. Exploratory shaft facility: It`s role in the characterization of the Yucca Mountain site for a potential nuclear repository

    Energy Technology Data Exchange (ETDEWEB)

    Kalia, H.N.; Merson, T.J.

    1990-03-01

    The US Department of Energy is characterizing Yucca Mountain, Nevada, to assess its suitability as a potential site for the permanent disposal of high-level radioactive waste from nuclear power plants and defense related activities. The assessment activities include surface investigations, drill holes from the surface, and an underground facility for in situ characterization tests. This underground exploratory shaft facility is being designed to meet the criteria for characterizing the mountain as described in the Site Characterization Plan. 9 refs., 9 figs., 1 tab.

  3. Scales in Geoarchaeology beyond "a site": The advance of a (Archaeo-)geomorphological perspective

    Science.gov (United States)

    Henselowsky, Felix; Kindermann, Karin; Bubenzer, Olaf

    2017-04-01

    The importance and discussion about scales in Geoarchaeology is as old as its subject itself. Gladfelter (1977) was one of the first, who described the Micro-, Meso- and Macroscale context of archaeological features in a given environment related to a site. More recently, Butzer (2008) continues these tripartite approach, as he defines the Microscale environment to an "On-site Geoarchaeology" with focus on sediments, syn- and postdepositional processes and micro-stratigraphy. The mesoscale environment deals with the context of a proven site and the macroscale is the landscape in total, where the given site is located (Butzer 2008). Where the applications of scale in Geoarchaeology always refer to a site as initial point, a great range of features beyond gets neglected. This is particulary important for Late Pleistocene Archaeology and in arid regions, where the meaning of space and information in between of archaeological records gets more and more important, as data density falls substantial. Therefore, also "non-site areas" and regions beyond a site and its site-catchment are crucial to investigate, still under a collaborated perspective of archaeology and geoscience. This is, where Archaeogeomorphology, the study of the landscape without any direct archaeological evidence, but still under an archaeological point of view respectively under the view of past human behaviour (Thornbush 2012), follows up. Archaeogeomorphology, in contrast to (most) geoarchaeological studies, is associated with the study of the landscape without any direct archaeological evidence, but still under an archaeological point of view, respectively under the view of past human behaviour. Questions about mobility and migration of hunter-gatherer during the late Pleistocene, e.g. when anatomically modern human spread out of Africa, cannot be answered without the context of the "off-site areas". Therefore, the previous existed, site orientated scales in geoarchaeology are insufficient to these

  4. Advanced glycation end product ligands for the receptor for advanced glycation end products: Biochemical characterization and formation kinetics

    NARCIS (Netherlands)

    Valencia, J.V.; Weldon, S.C.; Quinn, D.; Kiers, G.H.; Groot, J. de; TeKoppele, J.M.; Hughes, T.E.

    2004-01-01

    Advanced glycation end products (AGEs) accumulate with age and at an accelerated rate in diabetes. AGEs bind cell-surface receptors including the receptor for advanced glycation end products (RAGE). The dependence of RAGE binding on specific biochemical characteristics of AGEs is currently unknown.

  5. Site characterization report for Building 3515 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    Building 3515 at Oak Ridge National Laboratory (ORNL), also known as the Fission Product Pilot Plant, is a surplus facility in the main plant area to the east of the South Tank Farm slated for decontamination and decommissioning (D&D). The building consists of two concrete cells (north and south) on a concrete pad and was used to extract radioisotopes of ruthenium, strontium, cesium, cerium, rhenium and other elements from aqueous fission product waste. Site characterization activities of the building were initiated. The objective of the site characterization was to provide information necessary for engineering evaluation and planning of D&D approaches, planning for personal protection of D&D workers, and estimating waste volumes from D&D activities. This site characterization report documents the investigation with a site description, a summary of characterization methods, chemical and radiological sample analysis results, field measurement results, and waste volume estimates.

  6. Yucca Mountain Site Characterization Project bibliography, 1992--1994. Supplement 4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-06-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy`s Energy Science and Technology Database from January 1, 1992, through December 31, 1993. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization`s list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it. Earlier information on this project can be found in the first bibliography DOE/TIC-3406, which covers 1977--1985, and its three supplements DOE/OSTI-3406(Suppl.1), DOE/OSTI-3406(Suppl.2), and DOE/OSTI-3406(Suppl.3), which cover information obtained during 1986--1987, 1988--1989, and 1990--1991, respectively. All entries in the bibliographies are searchable online on the NNW database file. This file can be accessed through the Integrated Technical Information System (ITIS) of the US Department of Energy (DOE).

  7. Structural characterization of nonactive site, TrkA-selective kinase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Su, Hua-Poo; Rickert, Keith; Burlein, Christine; Narayan, Kartik; Bukhtiyarova, Marina; Hurzy, Danielle M.; Stump, Craig A.; Zhang, Xufang; Reid, John; Krasowska-Zoladek, Alicja; Tummala, Srivanya; Shipman, Jennifer M.; Kornienko, Maria; Lemaire, Peter A.; Krosky, Daniel; Heller, Amanda; Achab, Abdelghani; Chamberlin, Chad; Saradjian, Peter; Sauvagnat, Berengere; Yang, Xianshu; Ziebell, Michael R.; Nickbarg, Elliott; Sanders, John M.; Bilodeau, Mark T.; Carroll, Steven S.; Lumb, Kevin J.; Soisson, Stephen M.; Henze, Darrell A.; Cooke, Andrew J. (Merck)

    2016-12-30

    Current therapies for chronic pain can have insufficient efficacy and lead to side effects, necessitating research of novel targets against pain. Although originally identified as an oncogene, Tropomyosin-related kinase A (TrkA) is linked to pain and elevated levels of NGF (the ligand for TrkA) are associated with chronic pain. Antibodies that block TrkA interaction with its ligand, NGF, are in clinical trials for pain relief. Here, we describe the identification of TrkA-specific inhibitors and the structural basis for their selectivity over other Trk family kinases. The X-ray structures reveal a binding site outside the kinase active site that uses residues from the kinase domain and the juxtamembrane region. Three modes of binding with the juxtamembrane region are characterized through a series of ligand-bound complexes. The structures indicate a critical pharmacophore on the compounds that leads to the distinct binding modes. The mode of interaction can allow TrkA selectivity over TrkB and TrkC or promiscuous, pan-Trk inhibition. This finding highlights the difficulty in characterizing the structure-activity relationship of a chemical series in the absence of structural information because of substantial differences in the interacting residues. These structures illustrate the flexibility of binding to sequences outside of—but adjacent to—the kinase domain of TrkA. This knowledge allows development of compounds with specificity for TrkA or the family of Trk proteins.

  8. Site characterization progress report: Yucca Mountain, Nevada, October 1, 1994--March 31, 1995, Number 12. Nuclear Waste Policy Act (Section 113)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    During the first half of fiscal year 1995, most activities at the Yucca Mountain Site Characterization Project were directed at implementing the Program Plan developed by the Office of Civilian Radioactive Waste Management. The Plan is designed to enable the Office to make measurable and significant progress toward key objectives over the next five years within the financial resources that can be realistically expected. Activities this period focused on the immediate goal of determining by 1998 whether Yucca Mountain, Nevada, is technically suitable as a possible site for a geologic repository for the permanent disposal of spent nuclear fuel and high-level radioactive waste. Work on the Project advanced in several critical areas, including programmatic activities such as issuing the Program Plan, completing the first technical basis report to support the assessment of three 10 CFR 960 guidelines, developing the Notice of Intent for the Environmental Impact Statement, submitting the License Application Annotated Outline, and beginning a rebaselining effort to conform with the goals of the Program Plan. Scientific investigation and analysis of the site and design and construction activities to support the evaluation of the technical suitability of the site also advanced. Specific details relating to all Project activities and reports generated are presented in this report.

  9. Site characterization of the Romanian Seismic Network stations: a national initiative and its first preliminary results

    Science.gov (United States)

    Grecu, Bogdan; Zahria, Bogdan; Manea, Elena; Neagoe, Cristian; Borleanu, Felix; Diaconescu, Mihai; Constantinescu, Eduard; Bala, Andrei

    2017-04-01

    The seismic activity in Romania is dominated by the intermediate-depth earthquakes occurring in Vrancea region, although weak to moderate crustal earthquakes are produced regularly in different areas of the country. The National Institute for Earth Physics (NIEP) built in the last years an impressive infrastructure for monitoring this activity, known as the Romanian Seismic Network (RSN). At present, RSN consists of 122 seismic stations, of which 70 have broadband velocity sensors and 42 short period sensors. One hundred and eleven stations out of 122 have accelerometer sensors collocated with velocity sensors and only 10 stations have only accelerometers. All the stations record continuously the ground motion and the data are transmitted in real-time to the Romanian National Data Center (RoNDC), in Magurele. Last year, NIEP has started a national project that addresses the characterization of all real-time seismic stations that constitute the RSN. We present here the steps that were undertaken and the preliminary results obtained since the beginning the project. The first two activities consisted of collecting all the existent technical and geological data, with emphasize on the latter. Then, we performed station noise investigations and analyses in order to characterize the noise level and estimate the resonances of the sites. The computed H/V ratios showed clear resonant peaks at different frequencies which correlate relatively well with the thickness of the sedimentary package beneath the stations. The polarization analysis of the H/V ratios indicates for some stations a strong directivity of the resonance peak which suggests possible topographic effects at the stations. At the same time, special attention was given to the estimation of the site amplification from earthquake data. The spectral ratios obtained from the analysis of more than 50 earthquakes with magnitudes (Mw) larger than 4.1 are characterized by similar resonance peaks as those obtained from

  10. Pharmacological characterization of intracellular, membrane, and plasma binding sites for corticosterone in house sparrows.

    Science.gov (United States)

    Breuner, Creagh W; Orchinik, Miles

    2009-09-01

    The diversity and specificity of glucocorticoid effects are dependent on cell-specific receptor mechanisms. Three known corticosteroid receptors mediate tissue effects of glucocorticoids in vertebrates: two intracellular receptors that act primarily as ligand-activated transcription factors, and a membrane-associated receptor. The intracellular receptor sub-types have been well characterized in mammals, however relatively little is known about them across non-mammalian vertebrates. The membrane-associated receptors are poorly characterized in most vertebrate taxa. To explore the basis for glucocorticoid action in birds, we pharmacologically characterized the three putative corticosteroid receptors in the brain, as well as a plasma corticosterone binding globulin, in the house sparrow (Passer domesticus). We found that house sparrow brain cytosol contained two distinguishable binding sites for corticosterone. A high affinity, mineralocorticoid-like receptor had subnanomolar affinity for corticosterone (K(d) approximately 0.2 nM). However, this 'MR-like' high-affinity receptor did not bind RU28318 or canrenoic acid, two compounds that bind mammalian MR with high affinity. A lower-affinity, glucocorticoid-like receptor in brain cytosol bound corticosterone with an average K(d)=5.61 nM. This GR-like receptor showed subnanomolar affinity for RU 486. MR- and GR-like receptors were found in equal numbers in whole brain assays (average B(max)=69 and 62 fmol/mg protein, respectively). House sparrow brain membranes contain a single binding site specific for glucocorticoids, with characteristics consistent with a steroid/receptor interaction. Corticosterone affinity for this putative membrane receptor was approximately 24 nM, with apparent B(max)=177 fmol/mg protein. House sparrow plasma contained a single binding site for [(3)H]corticosterone. Specific binding to plasma sites was inhibited by glucocorticoids, progesterone, and testosterone. Testosterone binding to this

  11. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for the National Park Service: Fort Vancouver National Historic Site

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Schey; Jim Francfort

    2014-03-01

    Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s Idaho National Laboratory, is the lead laboratory for the U.S. Department of Energy’s Advanced Vehicle Testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America (ITSNA) to collect data on federal fleet operations as part of the Advanced Vehicle Testing Activity’s Federal Fleet Vehicle Data Logging and Characterization study. The Advanced Vehicle Testing Activity study seeks to collect data to validate the use of advanced electric drive vehicle transportation. This report focuses on the Fort Vancouver National Historic Site (FVNHS) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of electric vehicles (EVs) into the agencies’ fleet. Individual observations of the selected vehicles provided the basis for recommendations related to EV adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles) could fulfill the mission requirements. FVNHS identified three vehicles in its fleet for consideration. While the FVNHS vehicles conduct many different missions, only two (i.e., support and pool missions) were selected by agency management to be part of this fleet evaluation. The logged vehicles included a pickup truck and a minivan. This report will show that BEVs and PHEVs are capable of performing the required missions and providing an alternative vehicle for both mission categories, because each has sufficient range for individual trips and time available each day for charging to accommodate multiple trips per day. These charging events could occur at the vehicle’s home base, high-use work areas, or in intermediate areas along routes that the vehicles frequently travel. Replacement of vehicles in the current fleet would result in

  12. Advanced geospatial techniques and archaeological methods to investigate historical rice cultivation at Wormsloe Historic Site

    Science.gov (United States)

    Alessandro Pasqua

    2016-01-01

    Despite much of the environmental history of Wormsloe State Historic Site on the Isle of Hope, Georgia having previously been documented and described, there are still some aspects that require deeper investigation. For example, whether rice cultivation was ever performed at Wormsloe is a question which does not have a definitive answer.

  13. Advancing environmental stewardship in New York state parks and historic sites

    Science.gov (United States)

    Thomas L. Cobb

    1995-01-01

    Ninety state park and historic site managers were engaged in a cooperative problem-solving training exercise to identify what they suggest needs to be done to more effectively manage and protect the natural and cultural resources of the New York State Park System. The QtP (Quality-through-Participation) management process was used for this purpose, and proved effective...

  14. Advanced source apportionment of size-resolved trace elements at multiple sites in London during winter

    National Research Council Canada - National Science Library

    S Visser; J G Slowik; M Furger; P Zotter; N Bukowiecki; F Canonaco; U Flechsig; K Appel; D C Green; A H Tremper; D E Young; P I Williams; J D Allan; H Coe; L R Williams; C Mohr; L Xu; N L Ng; E Nemitz; J F Barlow; C H Halios; Z L Fleming; U Baltensperger; A S H Prévôt

    2015-01-01

      Trace element measurements in PM10-2.5, PM2.5-1.0 and PM1.0-0.3 aerosol were performed with 2 h time resolution at kerbside, urban background and rural sites during the ClearfLo winter 2012 campaign in London...

  15. Immunological techniques as tools to characterize the subsurface microbial community at a trichloroethylene contaminated site

    Energy Technology Data Exchange (ETDEWEB)

    Fliermans, C.B.; Dougherty, J.M.; Franck, M.M.; McKinzey, P.C.; Hazen, T.C.

    1992-12-31

    Effective in situ bioremediation strategies require an understanding of the effects pollutants and remediation techniques have on subsurface microbial communities. Therefore, detailed characterization of a site`s microbial communities is important. Subsurface sediment borings and water samples were collected from a trichloroethylene (TCE) contaminated site, before and after horizontal well in situ air stripping and bioventing, as well as during methane injection for stimulation of methane-utilizing microorganisms. Subsamples were processed for heterotrophic plate counts, acridine orange direct counts (AODC), community diversity, direct fluorescent antibodies (DFA) enumeration for several nitrogen-transforming bacteria, and Biolog {reg_sign} evaluation of enzyme activity in collected water samples. Plate counts were higher in near-surface depths than in the vadose zone sediment samples. During the in situ air stripping and bioventing, counts increased at or near the saturated zone, remained elevated throughout the aquifer, but did not change significantly after the air stripping. Sporadic increases in plate counts at different depths as well as increased diversity appeared to be linked to differing lithologies. AODCs were orders of magnitude higher than plate counts and remained relatively constant with depth except for slight increases near the surface depths and the capillary fringe. Nitrogen-transforming bacteria, as measured by serospecific DFA, were greatly affected both by the in situ air stripping and the methane injection. Biolog{reg_sign} activity appeared to increase with subsurface stimulation both by air and methane. The complexity of subsurface systems makes the use of selective monitoring tools imperative.

  16. Technical data base quarterly report, April--June 1992; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-09-01

    The acquisition and development of technical data are activities that provide the information base from which the Yucca mountain Site will be characterized and may P-ventually be licensed as a high-level waste repository. The Project Technical Data Base (TDB) is the repository for the regional and site-specific technical data required in intermediate and license application analyses and models. The TDB Quarterly Report provides the mechanism for identifying technical data currently available from the Project TDB. Due to the variety of scientific information generated by YMP activities, the Project TDB consists of three components, each designed to store specific types of data. The Site and Engineering Properties Data Base (SEPDB) maintains technical data best stored in a tabular format. The Geographic Nodal Information Study and Evaluation System (GENISES), which is the Geographic Information System (GIS) component of the Project TDB, maintains spatial or map-like data. The Geologic and Engineering Materials Bibliography of Chemical Species (GEMBOCHS) data base maintains thermodynamic/geochemical data needed to support geochemical reaction models involving the waste package and repository geochemical environment. Each of these data bases are addressed independently within the TDB Quarterly Report.

  17. Absolute gravity measurements at three sites characterized by different environmental conditions using two portable ballistic gravimeters

    Science.gov (United States)

    Greco, Filippo; Biolcati, Emanuele; Pistorio, Antonio; D'Agostino, Giancarlo; Germak, Alessandro; Origlia, Claudio; Del Negro, Ciro

    2015-03-01

    The performances of two absolute gravimeters at three different sites in Italy between 2009 and 2011 is presented. The measurements of the gravity acceleration g were performed using the absolute gravimeters Micro-g LaCoste FG5#238 and the INRiM prototype IMGC-02, which represent the state of the art in ballistic gravimeter technology (relative uncertainty of a few parts in 109). For the comparison, the measured g values were reported at the same height by means of the vertical gravity gradient estimated at each site with relative gravimeters. The consistency and reliability of the gravity observations, as well as the performance and efficiency of the instruments, were assessed by measurements made in sites characterized by different logistics and environmental conditions. Furthermore, the various factors affecting the measurements and their uncertainty were thoroughly investigated. The measurements showed good agreement, with the minimum and maximum differences being 4.0 and 8.3 μGal. The normalized errors are very much lower than 1, ranging between 0.06 and 0.45, confirming the compatibility between the results. This excellent agreement can be attributed to several factors, including the good working order of gravimeters and the correct setup and use of the instruments in different conditions. These results can contribute to the standardization of absolute gravity surveys largely for applications in geophysics, volcanology and other branches of geosciences, allowing achieving a good trade-off between uncertainty and efficiency of gravity measurements.

  18. Combining geoelectrical and advanced lysimeter methods to characterize heterogeneous flow and transport under unsaturated transient conditions

    Science.gov (United States)

    Wehrer, M.; Skowronski, J.; Binley, A. M.; Slater, L. D.

    2013-12-01

    Our ability to predict flow and transport processes in the unsaturated critical zone is considerably limited by two characteristics: heterogeneity of flow and transience of boundary conditions. The causes of heterogeneous - or preferential - flow and transport are fairly well understood, yet the characterization and quantification of such processes in natural profiles remains challenging. This is due to current methods of observation, such as staining and isotope tracers, being unable to observe multiple events on the same profile and offering limited spatial information. In our study we demonstrate an approach to characterize preferential flow and transport processes applying a combination of geoelectrical methods and advanced lysimeter techniques. On an agricultural soil profile, which was transferred undisturbed into a lysimeter container, we applied systematically varied input flow boundary conditions, resembling natural precipitation events. We simultaneously measured the breakthrough of a conservative tracer. Flow and transport in the soil column were observed using electrical resistivity tomography (ERT), tensiometers, water content probes and a multicompartment suction plate (MSP). These techniques allowed a direct ground-truthing of soil moisture and pore fluid resistivity changes estimated noninvasively using ERT. We were able to image both the advancing infiltration front and the advancing tracer front using time lapse ERT. Water content changes associated with the advancing infiltration front dominated over pore fluid conductivity changes during short term precipitation events. Conversely, long term displacement of the solute front was monitored during periods of constant water content in between infiltration events. We observed preferential flow phenomena through ERT and through the MSP, which agreed in general terms. The preferential flow fraction was observed to be independent of precipitation rate. This suggests the presence of a fingering process

  19. Recent advances in unveiling active sites in molybdenum sulfide-based electrocatalysts for the hydrogen evolution reaction

    Science.gov (United States)

    Seo, Bora; Joo, Sang Hoon

    2017-07-01

    Hydrogen has received significant attention as a promising future energy carrier due to its high energy density and environmentally friendly nature. In particular, the electrocatalytic generation of hydrogen fuel is highly desirable to replace current fossil fuel-dependent hydrogen production methods. However, to achieve widespread implementation of electrocatalytic hydrogen production technology, the development of highly active and durable electrocatalysts based on Earth-abundant elements is of prime importance. In this context, nanostructured molybdenum sulfides (MoS x ) have received a great deal of attention as promising alternatives to precious metal-based catalysts. In this focus review, we summarize recent efforts towards identification of the active sites in MoS x -based electrocatalysts for the hydrogen evolution reaction (HER). We also discuss recent synthetic strategies for the engineering of catalyst structures to achieve high active site densities. Finally, we suggest ongoing and future research challenges in the design of advanced MoS x -based HER electrocatalysts.

  20. Epigenomic Characterization of Locally Advanced Anal Cancer: An RTOG 98-11 Specimen Study

    Science.gov (United States)

    Siegel, Erin M; Eschrich, Steven; Winter, Kathryn; Riggs, Bridget; Berglund, Anders; Ajidahun, Abidemi; Simko, Jeff; Moughan, Jennifer; Ajani, Jaffer; Magliocco, Anthony; Elahi, Abul; Hoffe, Sarah; Shibata, David

    2014-01-01

    Background The Radiation Therapy Oncology Group 98-11 clinical trial demonstrated the superiority of standard 5FU/mitomycin-C over 5FU/cisplatin in combination with radiation in the treatment of anal squamous cell cancer. Tumor size (>5cm) and lymph node metastases are associated with disease progression. There may be key molecular differences (e.g. DNA methylation changes) in tumors at high-risk for progression. Objectives The objectives of this study were to determine if there are differences in DNA methylation at individual CpG sites and within genes among locally advanced anal cancers, with large tumor size and/or nodal involvement, compared to those that are less advanced. Design Case-case study among 121 patients defined as high-risk (tumor size>5cm and/or nodal involvement; n=59) or low-risk (≤5cm, node negative; n=62) within the mitomycin-C arm of RTOG98-11 trial. DNA methylation was measured using the Illumina HumanMethylation450 Array. Settings Tertiary care cancer center in collaboration with a national clinical trials cooperative group. Patients The patients consisted of 74 women and 47 men with a median age of 54 years (minmax 25-79). Main Outcome Measures DNA methylation differences at individual CpG sites and within genes between low and high-risk patients were compared using Mann-Whitney test (p-valueEpigenetic events likely play a significant role in the progression of anal cancer and may serve as potential biomarkers. PMID:25003289

  1. Site characterization in central Italy: the case of the Amatrice (IT.AMT) accelerometric station

    Science.gov (United States)

    Gaudiosi, Iolanda; Vignaroli, Gianluca; Pacor, Francesca; Bordoni, Paola; Mancini, Marco; Moscatelli, Massimiliano; Milana, Giuliano; GeoRAN-INGV working Group

    2017-04-01

    GeoRAN - INGV working group: G. P. Cavinato, G. Cosentino, S. Giallini, F. Polpetta, R. Razzano, M. Simionato, P. Sirianni (1); S. Amoroso, A. Bucci, E. D'Alema, M. D'Amico, F. Cara, S. Carannante, R. Cogliano, G. Cultrera, G. Di Giulio, D. Di Naccio, D. Famiani, C. Felicetta, A. Fodarella, G. Franceschina, G. Lanzano, S. Lovati, L. Luzi, C. Mascandola, M. Massa, A. Mercuri, D. Picaredda, M. Pischiutta, S. Pucillo, R. Puglia, G. Riccio, M. Vassallo (2) During the Mw 6.0 Amatrice earthquake, which struck Central Italy on the 24th August 2016, the accelerometric station AMT, located at about 10km from the epicentre recorded the highest values of the ground motion (Peak Ground Acceleration of the east component reached 0.87 g). To understand the role played by the site effects in the ground motion observed at AMT, we performed a detailed geological - geotechnical characterization of the site. First, geological field investigations were carried out and used to define a detailed geological cross-section intercepting AMT station. Then, aiming at constraining the Vs model, a continuous coring borehole was drilled close to the AMT site and a down-hole test was consequently executed in order to define the shear-wave velocity profile. In addition, MASW and several noise measurements were realized for better constraining the model and evaluating any eventual geological variability along the cross-section. Finally, numerical analyses of seismic site response were carried out using both 1D and 2D approaches including linear equivalent models. In parallel, several analysis were also performed on seismic records, to infer empirical amplification functions, used to compare the results of the numerical simulations This study was partially supported by the Italian Department of Civil Protection (DPC) of the Presidency of Council of Ministers. The INGV-CNR IGAG collaboration made possible the realization of this multidisciplinary study, which includes detailed seismological

  2. Geological site characterization for the proposed Mixed Waste Disposal Facility, Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Reneau, S.L.; Raymond, R. Jr. [eds.

    1995-12-01

    This report presents the results of geological site characterization studies conducted from 1992 to 1994 on Pajarito Mesa for a proposed Los Alamos National Laboratory Mixed Waste Disposal Facility (MWDF). The MWDF is being designed to receive mixed waste (waste containing both hazardous and radioactive components) generated during Environmental Restoration Project cleanup activities at Los Alamos. As of 1995, there is no Resource Conservation and Recovery Act (RCRA) permitted disposal site for mixed waste at the Laboratory, and construction of the MWDF would provide an alternative to transport of this material to an off-site location. A 2.5 km long part of Pajarito Mesa was originally considered for the MWDF, extending from an elevation of about 2150 to 2225 m (7060 to 7300 ft) in Technical Areas (TAs) 15, 36, and 67 in the central part of the Laboratory, and planning was later concentrated on the western area in TA-67. The mesa top lies about 60 to 75 m (200 to 250 ft) above the floor of Pajarito Canyon on the north, and about 30 m (100 ft) above the floor of Threemile Canyon on the south. The main aquifer used as a water supply for the Laboratory and for Los Alamos County lies at an estimated depth of about 335 m (1100 ft) below the mesa. The chapters of this report focus on surface and near-surface geological studies that provide a basic framework for siting of the MWDF and for conducting future performance assessments, including fulfillment of specific regulatory requirements. This work includes detailed studies of the stratigraphy, mineralogy, and chemistry of the bedrock at Pajarito Mesa by Broxton and others, studies of the geological structure and of mesa-top soils and surficial deposits by Reneau and others, geologic mapping and studies of fracture characteristics by Vaniman and Chipera, and studies of potential landsliding and rockfall along the mesa-edge by Reneau.

  3. Characterization of joining sites of a viral histone H4 on host insect chromosomes.

    Directory of Open Access Journals (Sweden)

    Sunil Kumar

    Full Text Available A viral histone H4 (CpBV-H4 is encoded in a polydnavirus, Cotesia plutellae bracovirus (CpBV. It plays a crucial role in parasitism of an endoparasitoid wasp, C. plutellae, against diamondback moth, Plutella xylostella, by altering host gene expression in an epigenetic mode by its N-terminal tail after joining host nucleosomes. Comparative transcriptomic analysis between parasitized and nonparasitized P. xylostella by RNA-Seq indicated that 1,858 genes were altered at more than two folds in expression levels at late parasitic stage, including 877 up-regulated genes and 981 down-regulated genes. Among parasitic factors altering host gene expression, CpBV-H4 alone explained 16.3% of these expressional changes. To characterize the joining sites of CpBV-H4 on host chromosomes, ChIP-Seq (chromatin immunoprecipitation followed by deep sequencing was applied to chromatins extracted from parasitized larvae. It identified specific 538 ChIP targets. Joining sites were rich (60.2% in AT sequence. Almost 40% of ChIP targets included short nucleotide repeat sequences presumably recognizable by transcriptional factors and chromatin remodeling factors. To further validate these CpBV-H4 targets, CpBV-H4 was transiently expressed in nonparasitized host at late larval stage and subjected to ChIP-Seq. Two kinds of ChIP-Seqs shared 51 core joining sites. Common targets were close (within 1 kb to genes regulated at expression levels by CpBV-H4. However, other host genes not close to CpBV-H4 joining sites were also regulated by CpBV-H4. These results indicate that CpBV-H4 joins specific chromatin regions of P. xylostella and controls about one sixth of the total host genes that were regulated by C. plutellae parasitism in an epigenetic mode.

  4. Preliminary site characterization summary and engineering evaluation/cost analysis for Site 2, New Fuel Farm, Naval Air Station Fallon, Fallon, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Cronk, T.A.; Smuin, D.R. (Oak Ridge National Lab., TN (United States)); Schlosser, R.M. (Oak Ridge Associated Universities, Inc., TN (United States))

    1991-09-01

    This report addresses subsurface contamination associated with Site 2, the New Fuel Farm at Naval Air Station Fallon (NAS Fallon), Nevada and is an integral part of Phase 2 of the Installation Restoration Program (IR Program) currently underway at the facility. This report: (1) reviews and assesses environmental information characterizing Site 2; (2) determine if site-characterization information is sufficient to design and evaluate removal actions; and, (3) investigates, develops, and describes any removal actions deemed feasible. Previous environmental investigations at Site 2 indicate the presence of floating product (primarily JP-5, jet fuel) on the water table underlying the facility. While the extent of floating-produce plumes has been characterized, the degree of associated soil and groundwater contamination remains uncertain. A comprehensive characterization of soil and groundwater contamination will be completed as the Remedial Investigation/Feasibility Study progresses. Corrective actions are recommended at this time to remove free-phase floating product. Implementing these removal actions will also provide additional information which will be used to direct further investigations of the extent, mobility, and potential environmental threat from soil and groundwater contaminants at this side.

  5. Characterization of Microbial Communities in Subsurface Nuclear Blast Cavities of the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Moser, Duane; Russell, Chuck; Marshall, Matthew; Czerwinski, Ken; Daly, Michael J; Zavarin, Mavrik

    2008-02-08

    This exploratory research project is designed to test fundamental hypotheses concerning the possible existence and nature of indigenous microbial populations in Nevada Test Site (NTS) subsurface nuclear blast cavities. Although subsurface microbiological studies have been performed at the NTS in the past, radioactive zones have yet to be addressed. Nuclear blast zone microbiology is a completely new field and our team is well-positioned to collect and analyze samples that have never before been available to microbiologists. Relevant samples are now being obtained by incorporating microbiological collections into an ongoing annual hot well sampling program being conducted by other agencies. A combination of cultivation-based and molecular microbial detection protocols is being utilized at multiple locations to survey for uncultivable microorganisms and to develop a culture collection which will be characterized for radionuclide- and metal-reduction capabilities. Given that redox manipulations mediated by microorganisms can impact the mobility of DOE contaminants, a positive outcome from this work would have significant implications for management strategies at this and other DOE sites. A primary objective of the project has been the establishment of the regulatory and technical framework necessary to enable our acquisition of samples. Thus, much of our activity in the first phase of this work has involved the development an approved Field Area Work Plan (FAWP), Radiological Work Permit (RWP), and other documentation required for radiological work at the NTS. We have also invested significant time into ensuring that all personnel possess the required training (e.g. Radworker II and 40 hr. HAZWOPER) for access to the hot well sampling sites. Laboratory facilities, required for field processing of radioactive samples as well as DNA extraction and other manipulations, have been secured both the NTS (Mercury, NV) and UNLV. Although our year-1 field work was delayed due

  6. Seismic Site Characterization through Joint Modeling of Complementary Data Functionals, with Applications to Santo Domingo, Dominican Republic

    Science.gov (United States)

    Schwed, M.; Pulliam, J.; Sen, M. K.; Willemann, R. J.; Huerta-Lopez, C.; Moschetti, M. P.; Schmitz, M.; Louie, J. N.; Polanco, E.; Huerfano Moreno, V.; Pasyanos, M.

    2013-12-01

    New approaches suggest that it may be possible to determine ground shaking during earthquakes through low-cost, non-invasive seismic surveys that make use of ambient noise, and that the results can be used for 'shake-casting' to produce scenarios for the purposes of urban planning, improving community resilience, and emergency response. We will present a strategy for determining seismic 'site characterization' through joint modeling of and horizontal to vertical spectral ratios (HVSR) and surface wave dispersion, determined via spatial autocorrelation (SPAC), refraction microtremor (ReMi), and/or multi-channel analysis of surface waves (MASW). Fitting of data functionals by synthetics is driven by global optimization and the models are assessed quantitatively. The products of this approach are shear wave velocity profiles for the shallow subsurface, accompanied by posterior probability distributions and parameter correlation matrices that allow for the assessment of model reliability. Optimization strategies for solving nonlinear problems in geophysics have several advantages over linearized inversions. Jointly fitting dispersion curves and HVSR functionals via global optimization allows us to characterize the space of possible models, assess model reliability, identify parts of the 'best-fit' model that are poorly constrained, and guide us toward new data that might improve constraints on the model. Tools such as the posterior probability distribution and the parameter correlation matrix allow us to assess the relative contribution of both types of data to model constraints and how to choose the optimal weights between data types. The joint modeling technique is applied to data acquired in an NSF-funded Pan-American Advanced Studies Institute in Santo Domingo, Dominican Republic, entitled 'New Frontiers in Geophysical Research: Bringing New Tools and Techniques to Bear on Earthquake Hazard Analysis and Mitigation', as a proof-of-concept survey in a highly built

  7. Characterization of the transverse phase space at the photo-injector test facility in DESY, Zeuthen site

    Energy Technology Data Exchange (ETDEWEB)

    Staykov, Lazar

    2012-10-15

    High brightness electron beams with charge of 1 nC and low transverse emittance are necessary for the functioning of advanced light sources such as the Free-electron Laser in Hamburg (FLASH) and the European X-ray FEL (XFEL). The photo-injector test facility at DESY, Zeuthen site (PITZ) is dedicated to the optimization of such electron beams. At PITZ the electrons are produced using an RF gun cavity operated at accelerating gradients of up to 60 MV/m. The gun is equipped with a pair of solenoids for the compensation of the emittance growth due to linear space charge forces. This solenoid compensation scheme is enhanced with a properly matched TESLA type normal conducting booster cavity. The main tool for the characterization of the transverse phase space of the electron beam at PITZ is the emittance measurement system (EMSY). It employs the single slit method for the measurement of the transverse phase space distribution of the electron beam. In this thesis, the performance of the EMSY was optimized for measurement of low emittances in a wide range of photo-injector parameters including such that result in electron beams close to the XFEL specifications. First results on the characterization of the PITZ photo-injector with a gun operated at maximum accelerating gradient of 60 MV/m are presented. This includes scans of the solenoid focusing strength, the initial beam size and the booster gradient. A comparison between results obtained at lower accelerating gradients is made with emphasize on the benefit of higher accelerating gradient.

  8. Advanced Characterization of Molecular Interactions in TALSPEAK-like Separations Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Kenneth [Washington State Univ., Pullman, WA (United States); Guelis, Artem [Argonne National Lab. (ANL), Argonne, IL (United States); Lumetta, Gregg J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sinkov, Sergey [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-10-21

    Combining unit operations in advanced aqueous reprocessing schemes brings obvious process compactness advantages, but at the same time greater complexity in process design and operation. Unraveling these interactions requires increasingly sophisticated analytical tools and unique approaches for adequate analysis and characterization that probe molecular scale interactions. Conventional slope analysis methods of solvent extraction are too indirect to provide much insight into such interactions. This project proposed the development and verification of several analytical tools based on studies of TALSPEAK-like aqueous processes. As such, the chemistry of trivalent fission product lanthanides, americium, curium, plutonium, neptunium and uranium figure prominently in these studies. As the project was executed, the primary focus fell upon the chemistry or trivalent lanthanides and actinides. The intent of the investigation was to compare and contrast the results from these various complementary techniques/studies to provide a stronger basis for predicting the performance of extractant/diluent mixtures as media for metal ion separations. As many/most of these techniques require the presence of metal ions at elevated concentrations, it was expected that these studies would take this investigation into the realm of patterns of supramolecular organization of metal complexes and extractants in concentrated aqueous/organic media. We expected to advance knowledge of the processes that enable and limit solvent extraction reactions as a result of the application of fundamental chemical principles to explaining interactions in complex media.

  9. Recent Advances in Characterization of Lignin Polymer by Solution-State Nuclear Magnetic Resonance (NMR Methodology

    Directory of Open Access Journals (Sweden)

    Run-Cang Sun

    2013-01-01

    Full Text Available The demand for efficient utilization of biomass induces a detailed analysis of the fundamental chemical structures of biomass, especially the complex structures of lignin polymers, which have long been recognized for their negative impact on biorefinery. Traditionally, it has been attempted to reveal the complicated and heterogeneous structure of lignin by a series of chemical analyses, such as thioacidolysis (TA, nitrobenzene oxidation (NBO, and derivatization followed by reductive cleavage (DFRC. Recent advances in nuclear magnetic resonance (NMR technology undoubtedly have made solution-state NMR become the most widely used technique in structural characterization of lignin due to its versatility in illustrating structural features and structural transformations of lignin polymers. As one of the most promising diagnostic tools, NMR provides unambiguous evidence for specific structures as well as quantitative structural information. The recent advances in two-dimensional solution-state NMR techniques for structural analysis of lignin in isolated and whole cell wall states (in situ, as well as their applications are reviewed.

  10. Advanced imaging approaches for characterizing nanoparticle delivery and dispersion in skin (Conference Presentation)

    Science.gov (United States)

    Prow, Tarl W.; Yamada, Miko; Dang, Nhung; Evans, Conor L.

    2017-02-01

    The purpose of this research was to develop advanced imaging approaches to characterise the combination of elongated silica microparticles (EMP) and nanoparticles to control topical delivery of drugs and peptides. The microparticles penetrate through the epidermis and stop at the dermal-epidermal junction (DEJ). In this study we incorporated a fluorescent lipophilic dye, DiI, as a hydrophobic drug surrogate into the nanoparticle for visualization with microscopy. In another nanoparticle-based approach we utilized a chemically functionalized melanin nanoparticle for peptide delivery. These nanoparticles were imaged by coherent anti-Stoke Raman scattering (CARS) microscopy to characterize the delivery of these nanoparticles into freshly excised human skin. We compared four different coating approaches to combine EMP and nanoparticles. These data showed that a freeze-dried formulation with cross-linked alginate resulted in 100% of the detectable nanoparticle retained on the EMP. When this dry form of EMP-nanoparticle was applied to excised, living human abdominal skin, the EMP penetrated to the DEJ followed by controlled release of the nanoparticles. This formulation resulted in a sustained release profile, whereas a freeze-dried formulation without crosslinking showed an immediate burst-type release profile. These data show that advanced imaging techniques can give unique, label free data that shows promise for clinical investigations.

  11. A Fiber-Optic Borehole Seismic Vector Sensor System for Geothermal Site Characterization and Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Paulsson, Bjorn N.P. [Paulsson, Inc., Van Nuys, CA (United States); Thornburg, Jon A. [Paulsson, Inc., Van Nuys, CA (United States); He, Ruiqing [Paulsson, Inc., Van Nuys, CA (United States)

    2015-04-21

    Seismic techniques are the dominant geophysical techniques for the characterization of subsurface structures and stratigraphy. The seismic techniques also dominate the monitoring and mapping of reservoir injection and production processes. Borehole seismology, of all the seismic techniques, despite its current shortcomings, has been shown to provide the highest resolution characterization and most precise monitoring results because it generates higher signal to noise ratio and higher frequency data than surface seismic techniques. The operational environments for borehole seismic instruments are however much more demanding than for surface seismic instruments making both the instruments and the installation much more expensive. The current state-of-the-art borehole seismic instruments have not been robust enough for long term monitoring compounding the problems with expensive instruments and installations. Furthermore, they have also not been able to record the large bandwidth data available in boreholes or having the sensitivity allowing them to record small high frequency micro seismic events with high vector fidelity. To reliably achieve high resolution characterization and long term monitoring of Enhanced Geothermal Systems (EGS) sites a new generation of borehole seismic instruments must therefore be developed and deployed. To address the critical site characterization and monitoring needs for EGS programs, US Department of Energy (DOE) funded Paulsson, Inc. in 2010 to develop a fiber optic based ultra-large bandwidth clamped borehole seismic vector array capable of deploying up to one thousand 3C sensor pods suitable for deployment into ultra-high temperature and high pressure boreholes. Tests of the fiber optic seismic vector sensors developed on the DOE funding have shown that the new borehole seismic sensor technology is capable of generating outstanding high vector fidelity data with extremely large bandwidth: 0.01 – 6,000 Hz. Field tests have shown

  12. Site characterization plan for groundwater in Waste Area Grouping 1 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Lee, R.R.; Curtis, A.H.; Houlberg, L.M.; Purucker, S.T.; Singer, M.L.; Tardiff, M.F.; Wolf, D.A.

    1994-07-01

    The Waste Area Grouping (WAG) 1 Groundwater Operable Unit (OU) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, is undergoing a site characterization to identify environmental contamination that may be present. This document, Site Characterization Report for Groundwater in Waste Area Grouping I at Oak Ridge National Laboratory, Oak Ridge, Tennessee, identifies areas of concern with respect to WAG 1 groundwater and presents the rationale, justification, and objectives for conducting this continuing site characterization. This report summarizes the operations that have taken place at each of the areas of concern in WAG 1, summarizes previous characterization studies that have been performed, presents interpretations of previously collected data and information, identifies contaminants of concern, and presents an action plan for further site investigations and early actions that will lead to identification of contaminant sources, their major groundwater pathways, and reduced off-site migration of contaminated groundwater to surface water. Site characterization Activities performed to date at WAG I have indicated that groundwater contamination, principally radiological contamination, is widespread. An extensive network of underground pipelines and utilities have contributed to the dispersal of contaminants to an unknown extent. The general absence of radiological contamination in surface water at the perimeter of WAG 1 is attributed to the presence of pipelines and underground waste storage tank sumps and dry wells distributed throughout WAG 1 which remove more than about 40 million gal of contaminated groundwater per year.

  13. Site-Specific Direct Labeling of Neurotrophins and Their Receptors: From Biochemistry to Advanced Imaging Applications.

    Science.gov (United States)

    Gobbo, Francesco; Bonsignore, Fulvio; Amodeo, Rosy; Cattaneo, Antonino; Marchetti, Laura

    2018-01-01

    We describe here a versatile methodological platform to achieve site-directed and stoichiometry-controlled labeling of neurotrophins and their receptors with various probes, ranging from biotin to small organic dyes. This labeling method works in vitro on purified neurotrophins as well as in a living cell context, where it achieves selective labeling of surface-exposed neurotrophin receptors. Here, we list all experimental details of our labeling protocols, along with examples of the wide range of applications in which these can be used.

  14. Information needs for characterization of high-level waste repository sites in six geologic media. Volume 1. Main report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-05-01

    Evaluation of the geologic isolation of radioactive materials from the biosphere requires an intimate knowledge of site geologic conditions, which is gained through precharacterization and site characterization studies. This report presents the results of an intensive literature review, analysis and compilation to delineate the information needs, applicable techniques and evaluation criteria for programs to adequately characterize a site in six geologic media. These media, in order of presentation, are: granite, shale, basalt, tuff, bedded salt and dome salt. Guidelines are presented to assess the efficacy (application, effectiveness, and resolution) of currently used exploratory and testing techniques for precharacterization or characterization of a site. These guidelines include the reliability, accuracy and resolution of techniques deemed acceptable, as well as cost estimates of various field and laboratory techniques used to obtain the necessary information. Guidelines presented do not assess the relative suitability of media. 351 refs., 10 figs., 31 tabs.

  15. Atomistic characterization of the active-site solvation dynamics of a model photocatalyst

    Science.gov (United States)

    van Driel, Tim B.; Kjær, Kasper S.; Hartsock, Robert W.; Dohn, Asmus O.; Harlang, Tobias; Chollet, Matthieu; Christensen, Morten; Gawelda, Wojciech; Henriksen, Niels E.; Kim, Jong Goo; Haldrup, Kristoffer; Kim, Kyung Hwan; Ihee, Hyotcherl; Kim, Jeongho; Lemke, Henrik; Sun, Zheng; Sundström, Villy; Zhang, Wenkai; Zhu, Diling; Møller, Klaus B.; Nielsen, Martin M.; Gaffney, Kelly J.

    2016-11-01

    The interactions between the reactive excited state of molecular photocatalysts and surrounding solvent dictate reaction mechanisms and pathways, but are not readily accessible to conventional optical spectroscopic techniques. Here we report an investigation of the structural and solvation dynamics following excitation of a model photocatalytic molecular system [Ir2(dimen)4]2+, where dimen is para-diisocyanomenthane. The time-dependent structural changes in this model photocatalyst, as well as the changes in the solvation shell structure, have been measured with ultrafast diffuse X-ray scattering and simulated with Born-Oppenheimer Molecular Dynamics. Both methods provide direct access to the solute-solvent pair distribution function, enabling the solvation dynamics around the catalytically active iridium sites to be robustly characterized. Our results provide evidence for the coordination of the iridium atoms by the acetonitrile solvent and demonstrate the viability of using diffuse X-ray scattering at free-electron laser sources for studying the dynamics of photocatalysis.

  16. Integrated Methods for Site Characterization and Conceptual Model Development for a Contaminated Fractured-Bedrock Aquifer

    Science.gov (United States)

    Johnson, C. D.; Kastrinos, J. R.; Haeni, F. P.

    2005-12-01

    A multi-disciplined and team-based approach was used to integrate geophysical, hydrologic, and chemical data to characterize lithology, fractures, and hydraulic properties of fractured crystalline bedrock and to determine the nature and extent of ground-water contamination from a landfill and former chemical-waste disposal pits at the University of Connecticut. Detection of volatile organic compounds (VOCs) in domestic bedrock wells in the mid-1980s led to this investigation, in which a team comprised of hydrologists, engineers, geophysicists, geologists, chemists, toxicologists, and community-involvement personnel collected, analyzed, and evaluated data; developed and refined a conceptual model of the ground-water flow and contaminant distribution at the site; and evaluated alternatives and implemented a final remediation plan. The characterization phase began in 1999 and the remediation phase is currently ongoing. An integrated and iterative approach of using multiple methods in phases was important for corroborating the interpretation of individual methods and essential for guiding the design and implementation of additional testing at the site. The use of geophysical data early in the investigation allowed the study team to obtain detailed subsurface information using a minimum of boreholes. Surface geophysical methods were used to target potential discharge of contaminants from the landfill for further investigation. Borehole geophysical methods were used to investigate the anomalies identified by surface geophysical methods, the location and orientation of fractures that intersect and surround each well, the direction and magnitude of ambient flow in the wells, and the transmissive fractures that could provide pathways for contaminant migration. Borehole geophysical and hydraulic data were used to design discrete-zone monitoring systems for the collection of hydraulic head and chemical data and to prevent cross contamination through the boreholes. The results

  17. Walker Branch Throughfall Displacement Experiment Data Report: Site Characterization, System Performance, Weather, Species Composition, and Growth

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, P.J.

    2001-09-04

    This numeric data package provides data sets, and accompanying documentation, on site characterization, system performance, weather, species composition, and growth for the Throughfall Displacement Experiment, which was established in the Walker Branch Watershed of East Tennessee to provide data on the responses of forests to altered precipitation regimes. The specific data sets include soil water content and potential, coarse fraction of the soil profile, litter layer temperature, soil temperature, monthly weather, daily weather, hourly weather, species composition of trees and saplings, mature tree and sapling annual growth, and relative leaf area index. Fortran and SAS{trademark} access codes are provided to read the ASCII data files. The data files and this documentation are available without charge on a variety of media and via the Internet from the Carbon Dioxide Information Analysis Center (CDIAC).

  18. Characterization of ventilation ductwork in Building K-33 at the Oak Ridge K-25 Site

    Energy Technology Data Exchange (ETDEWEB)

    Mrochek, J.E.

    1992-05-01

    An extensive sampling and analysis program was initiated in September 1991 to characterize the ductwork of Building K-33, which is located at the Oak Ridge K-25 Site. This building, 32.4 acres under roof, contains nearly 3 miles of main plenums without considering the side laterals, which are extensive. A large number (i.e., 131) of hexane-moistened wipe samples were taken from within randomly selected locations in the 16 main plenums and the side lateral network. Samples were analyzed for polychlorinated biphenyls (PCBs), uranium, and technetium. These samples were augmented by 5 bulk material and 13 metal coupon samples that were subjected to TCLP (Toxicity Characteristic Leaching Procedure) analyses for arsenic, barium, cadmium, chromium, lead, nickel, selenium, silver, and mercury.

  19. Status of volcanism studies for the Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, B.; Perry, F.; Murrell, M.; Poths, J.; Valentine, G.A. [Los Alamos National Lab., NM (United States); Wells, S. [Univ. of California, Riverside, CA (United States); Bowker, L.; Finnegan, K. [Univ. of Nevada, Las Vegas, NV (United States); Geissman, J.; McFadden, L.

    1995-02-01

    Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. The long time of activity and characteristic small volume of the Postcaldera basalt of the YMR result in one of the lowest eruptive rates in a volcanic field in the southwest United States. Chapter 5 summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 summarizes the history of volcanism studies (1979 through early 1994), including work for the Yucca Mountain Site Characterization Project and overview studies by the state of Nevada and the Nuclear Regulatory Commission. Chapter 7 summarizes probabilistic volcanic hazard assessment using a three-part conditional probability model. Chapter 8 describes remaining volcanism work judged to be needed to complete characterization studies for the YMR. Chapter 9 summarizes the conclusions of this volcanism status report.

  20. Characterization of the Inner Knot of the Crab: the Site of the Gamma-ray Flares?

    Science.gov (United States)

    Weisskopf, Martin C.

    2015-01-01

    One of the most intriguing recent discoveries has been the detection of powerful gamma-ray flares from the Crab Nebula. Such events, with a recurrence time of about once per year, can be so dramatic to make the system the brightest source in the gamma-ray sky as occurred, e.g. in April 2011. These flares challenge our understanding of how pulsar wind nebulae work and defy current astrophysical models for particle acceleration. We present here our study of the inner knot located within a fraction of an arcsecond from the pulsar with the aim of characterizing the feature and asking if this might be the site of the origin of the gamma-ray flares. We took data using Keck, HST, and Chandra obtained as part of our multi-wavelength campaign to identify the source of the enigmatic flares. We set an upper limit as to the gamma-ray flux from the knot. We also find that the dimensions, surface brightness, flux, etc. of the optical and infrared knot are all correlated with distance from the pulsar. This distance, in turn, varies with time. In addition to this most thorough characterization of the inner knot's properties, we examine the hypothesis that the knot may be the site of the flares by examining the knot separation versus the Fermi/LAT gamma-ray flux. Finally, as part of this research, we make use of a new approach employing singular value decomposition (SVD) for analyzing time series of images and compare the approach to more traditional methods. Our conclusions are only refined but not impacted by using the new approach.

  1. Remote sensing supported surveillance and characterization of tailings behavior at a gold mine site, Finland.

    Science.gov (United States)

    Rauhala, Anssi; Tuomela, Anne; Rossi, Pekka M.; Davids, Corine

    2017-04-01

    The management of vast amounts of tailings produced is one of the key issues in mining operations. The effective and economic disposal of the waste requires knowledge concerning both basic physical properties of the tailings as well as more complex aspects such as consolidation behavior. The behavior of tailings in itself is a very complex issue that can be affected by flocculation, sedimentation, consolidation, segregation, deposition, freeze-thaw, and desiccation phenomena. The utilization of remote sensing in an impoundment-scale monitoring of tailings could benefit the management of tailings, and improve our knowledge on tailings behavior. In order to gain better knowledge of tailings behavior in cold climate, we have utilized both modern remote sensing techniques and more traditional in situ and laboratory measurements in characterizing thickened gold tailings behavior at a Finnish gold mine site, where the production has been halted due to low gold prices. The remote sensing measurements consisted of elevation datasets collected from unmanned aerial vehicles during summers 2015 and 2016, and a further campaign is planned for the summer 2017. The ongoing traditional measurements include for example particle-size distribution, frost heave, frost depth, water retention, temperature profile, and rheological measurements. Initial results from the remote sensing indicated larger than expected settlements on parts of the tailings impoundment, and also highlighted some of the complexities related to data processing. The interpretation of the results and characterization of the behavior is in this case complicated by possible freeze-thaw effects and potential settlement of the impoundment bottom structure consisting of natural peat. Experiments with remote sensing and unmanned aerial vehicles indicate that they could offer potential benefits in frequent mine site monitoring, but there is a need towards more robust and streamlined data acquisition and processing. The

  2. Mobile laboratories: An innovative and efficient solution for radiological characterization of sites under or after decommissioning.

    Science.gov (United States)

    Goudeau, V; Daniel, B; Dubot, D

    2017-04-21

    During the operation and the decommissioning of a nuclear site the operator must assure the protection of the workers and the environment. It must furthermore identify and classify the various wastes, while optimizing the associated costs. At all stages of the decommissioning radiological measurements are performed to determine the initial situation, to monitor the demolition and clean-up, and to verify the final situation. Radiochemical analysis is crucial for the radiological evaluation process to optimize the clean-up operations and to the respect limits defined with the authorities. Even though these types of analysis are omnipresent in activities such as the exploitation, the monitoring, and the cleaning up of nuclear plants, some nuclear sites do not have their own radiochemical analysis laboratory. Mobile facilities can overcome this lack when nuclear facilities are dismantled, when contaminated sites are cleaned-up, or in a post-accident situation. The current operations for the characterization of radiological soils of CEA nuclear facilities, lead to a large increase of radiochemical analysis. To manage this high throughput of samples in a timely manner, the CEA has developed a new mobile laboratory for the clean-up of its soils, called SMaRT (Shelter for Monitoring and nucleAR chemisTry). This laboratory is dedicated to the preparation and the radiochemical analysis (alpha, beta, and gamma) of potentially contaminated samples. In this framework, CEA and Eichrom laboratories has signed a partnership agreement to extend the analytical capacities and bring on site optimized and validated methods for different problematic. Gamma-emitting radionuclides can usually be measured in situ as little or no sample preparation is required. Alpha and beta-emitting radionuclides are a different matter. Analytical chemistry laboratory facilities are required. Mobile and transportable laboratories equipped with the necessary tools can provide all that is needed. The main

  3. Characterization of the Adeno-Associated Virus 1 and 6 Sialic Acid Binding Site.

    Science.gov (United States)

    Huang, Lin-Ya; Patel, Ami; Ng, Robert; Miller, Edward Blake; Halder, Sujata; McKenna, Robert; Asokan, Aravind; Agbandje-McKenna, Mavis

    2016-06-01

    The adeno-associated viruses (AAVs), which are being developed as gene delivery vectors, display differential cell surface glycan binding and subsequent tissue tropisms. For AAV serotype 1 (AAV1), the first viral vector approved as a gene therapy treatment, and its closely related AAV6, sialic acid (SIA) serves as their primary cellular surface receptor. Toward characterizing the SIA binding site(s), the structure of the AAV1-SIA complex was determined by X-ray crystallography to 3.0 Å. Density consistent with SIA was observed in a pocket located at the base of capsid protrusions surrounding icosahedral 3-fold axes. Site-directed mutagenesis substitution of the amino acids forming this pocket with structurally equivalent residues from AAV2, a heparan sulfate binding serotype, followed by cell binding and transduction assays, further mapped the critical residues conferring SIA binding to AAV1 and AAV6. For both viruses five of the six binding pocket residues mutated (N447S, V473D, N500E, T502S, and W503A) abolished SIA binding, whereas S472R increased binding. All six mutations abolished or decreased transduction by at least 50% in AAV1. Surprisingly, the T502S substitution did not affect transduction efficiency of wild-type AAV6. Furthermore, three of the AAV1 SIA binding site mutants-S472R, V473D, and N500E-escaped recognition by the anti-AAV1 capsid antibody ADK1a. These observations demonstrate that common key capsid surface residues dictate both virus binding and entry processes, as well as antigenic reactivity. This study identifies an important functional capsid surface "hot spot" dictating receptor attachment, transduction efficiency, and antigenicity which could prove useful for vector engineering. The adeno-associated virus (AAV) vector gene delivery system has shown promise in several clinical trials and an AAV1-based vector has been approved as the first gene therapy treatment. However, limitations still exist with respect to transduction efficiency and

  4. Detailed Geophysical Fault Characterization in Yucca Flat, Nevada Test Site, Nevada

    Science.gov (United States)

    Asch, Theodore H.; Sweetkind, Donald S.; Burton, Bethany L.; Wallin, Erin L.

    2009-01-01

    Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site (NTS) in Nye County, Nevada. Between the years 1951 and 1992, 659 underground nuclear tests took place in Yucca Flat; most were conducted in large, vertical excavations that penetrated alluvium and the underlying Cenozoic volcanic rocks. Radioactive and other potential chemical contaminants at the NTS are the subject of a long-term program of investigation and remediation by the U.S. Department of Energy (DOE), National Nuclear Security Administration, Nevada Site Office, under its Environmental Restoration Program. As part of the program, the DOE seeks to assess the extent of contamination and to evaluate the potential risks to humans and the environment from byproducts of weapons testing. To accomplish this objective, the DOE Environmental Restoration Program is constructing and calibrating a ground-water flow model to predict hydrologic flow in Yucca Flat as part of an effort to quantify the subsurface hydrology of the Nevada Test Site. A necessary part of calibrating and evaluating a model of the flow system is an understanding of the location and characteristics of faults that may influence ground-water flow. In addition, knowledge of fault-zone architecture and physical properties is a fundamental component of the containment of the contamination from underground nuclear tests, should such testing ever resume at the Nevada Test Site. The goal of the present investigation is to develop a detailed understanding of the geometry and physical properties of fault zones in Yucca Flat. This study was designed to investigate faults in greater detail and to characterize fault geometry, the presence of fault splays, and the fault-zone width. Integrated geological and geophysical studies have been designed and implemented to work toward this goal. This report describes the geophysical surveys conducted near two drill holes in Yucca Flat, the data analyses performed, and the

  5. The sweet spot for biologics: recent advances in characterization of biotherapeutic glycoproteins.

    Science.gov (United States)

    O'Flaherty, Róisín; Trbojević-Akmačić, Irena; Greville, Gordon; Rudd, Pauline M; Lauc, Gordan

    2018-01-01

    Glycosylation is recognized as a Critical Quality Attribute for therapeutic glycoproteins such as monoclonal antibodies, fusion proteins and therapeutic replacement enzymes. Hence, efficient and quantitative glycan analysis techniques have been increasingly important for their discovery, development and quality control. The aim of this review is to highlight relevant and recent advances in analytical technologies for characterization of biotherapeutic glycoproteins. Areas covered: The review gives an overview of the glycosylation trends of biotherapeutics approved in 2016 and 2017 by FDA. It describes current and novel analytical technologies for characterization of therapeutic glycoproteins and is explored in the context of released glycan, glycopeptide or intact glycoprotein analysis. Ultra performance liquid chromatography, mass spectrometry and capillary electrophoresis technologies are explored in this context. Expert commentary: There is a need for the biopharmaceutical industry to incorporate novel state of the art analytical technologies into existing and new therapeutic glycoprotein workflows for safer and more efficient biotherapeutics and for the improvement of future biotherapeutic design. Additionally, at present, there is no 'gold-standard' approach to address all the regulatory requirements and as such this will involve the use of orthogonal glycoanalytical technologies with a view to gain diagnostic information about the therapeutic glycoprotein.

  6. Advances in the Growth and Characterization of Relaxor-PT-Based Ferroelectric Single Crystals

    Directory of Open Access Journals (Sweden)

    Jun Luo

    2014-07-01

    Full Text Available Compared to Pb(Zr1−xTixO3 (PZT polycrystalline ceramics, relaxor-PT single crystals offer significantly improved performance with extremely high electromechanical coupling and piezoelectric coefficients, making them promising materials for piezoelectric transducers, sensors and actuators. The recent advances in crystal growth and characterization of relaxor-PT-based ferroelectric single crystals are reviewed in this paper with emphases on the following topics: (1 the large crystal growth of binary and ternary relaxor-PT-based ferroelectric crystals for commercialization; (2 the composition segregation in the crystals grown from such a solid-solution system and possible solutions to reduce it; (3 the crystal growth from new binary and ternary compositions to expand the operating temperature and electric field; (4 the crystallographic orientation dependence and anisotropic behaviors of relaxor-PT-based ferroelectriccrystals; and (5 the characterization of the dielectric, elastic and piezoelectric properties of the relaxor-PT-based ferroelectriccrystals under small and large electric fields.

  7. Immunological techniques as tools to characterize the subsurface microbial community at a trichloroethylene contaminated site

    Energy Technology Data Exchange (ETDEWEB)

    Fliermans, C.B.; Dougherty, J.M.; Franck, M.M.; McKinzey, P.C.; Hazen, T.C.

    1992-01-01

    Effective in situ bioremediation strategies require an understanding of the effects pollutants and remediation techniques have on subsurface microbial communities. Therefore, detailed characterization of a site's microbial communities is important. Subsurface sediment borings and water samples were collected from a trichloroethylene (TCE) contaminated site, before and after horizontal well in situ air stripping and bioventing, as well as during methane injection for stimulation of methane-utilizing microorganisms. Subsamples were processed for heterotrophic plate counts, acridine orange direct counts (AODC), community diversity, direct fluorescent antibodies (DFA) enumeration for several nitrogen-transforming bacteria, and Biolog [reg sign] evaluation of enzyme activity in collected water samples. Plate counts were higher in near-surface depths than in the vadose zone sediment samples. During the in situ air stripping and bioventing, counts increased at or near the saturated zone, remained elevated throughout the aquifer, but did not change significantly after the air stripping. Sporadic increases in plate counts at different depths as well as increased diversity appeared to be linked to differing lithologies. AODCs were orders of magnitude higher than plate counts and remained relatively constant with depth except for slight increases near the surface depths and the capillary fringe. Nitrogen-transforming bacteria, as measured by serospecific DFA, were greatly affected both by the in situ air stripping and the methane injection. Biolog[reg sign] activity appeared to increase with subsurface stimulation both by air and methane. The complexity of subsurface systems makes the use of selective monitoring tools imperative.

  8. Statistical analysis of hydrologic data for Yucca Mountain; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, B.M.; Hall, I.J.; Peters, R.R.; Easterling, R.G.; Klavetter, E.A.

    1992-02-01

    The geologic formations in the unsaturated zone at Yucca Mountain are currently being studied as the host rock for a potential radioactive waste repository. Data from several drill holes have been collected to provide the preliminary information needed for planning site characterization for the Yucca Mountain Project. Hydrologic properties have been measured on the core samples and the variables analyzed here are thought to be important in the determination of groundwater travel times. This report presents a statistical analysis of four hydrologic variables: saturated-matrix hydraulic conductivity, maximum moisture content, suction head, and calculated groundwater travel time. It is important to modelers to have as much information about the distribution of values of these variables as can be obtained from the data. The approach taken in this investigation is to (1) identify regions at the Yucca Mountain site that, according to the data, are distinctly different; (2) estimate the means and variances within these regions; (3) examine the relationships among the variables; and (4) investigate alternative statistical methods that might be applicable when more data become available. The five different functional stratigraphic units at three different locations are compared and grouped into relatively homogeneous regions. Within these regions, the expected values and variances associated with core samples of different sizes are estimated. The results provide a rough estimate of the distribution of hydrologic variables for small core sections within each region.

  9. Characterization of DNA binding sites of the ComE response regulator from Streptococcus mutans.

    Science.gov (United States)

    Hung, David C I; Downey, Jennifer S; Ayala, Eduardo A; Kreth, Jens; Mair, Richard; Senadheera, Dilani B; Qi, Fengxia; Cvitkovitch, Dennis G; Shi, Wenyuan; Goodman, Steven D

    2011-07-01

    In Streptococcus mutans, both competence and bacteriocin production are controlled by ComC and the ComED two-component signal transduction system. Recent studies of S. mutans suggested that purified ComE binds to two 11-bp direct repeats in the nlmC-comC promoter region, where ComE activates nlmC and represses comC. In this work, quantitative binding studies and DNase I footprinting analysis were performed to calculate the equilibrium dissociation constant and further characterize the binding site of ComE. We found that ComE protects sequences inclusive of both direct repeats, has an equilibrium dissociation constant in the nanomolar range, and binds to these two direct repeats cooperatively. Furthermore, similar direct repeats were found upstream of cslAB, comED, comX, ftf, vicRKX, gtfD, gtfB, gtfC, and gbpB. Quantitative binding studies were performed on each of these sequences and showed that only cslAB has a similar specificity and high affinity for ComE as that seen with the upstream region of comC. A mutational analysis of the binding sequences showed that ComE does not require both repeats to bind DNA with high affinity, suggesting that single site sequences in the genome may be targets for ComE-mediated regulation. Based on the mutational analysis and DNase I footprinting analysis, we propose a consensus ComE binding site, TCBTAAAYSGT.

  10. Strategic Petroleum Reserve (SPR) additional geologic site characterization studies, Bayou Choctaw salt dome, Louisiana

    Energy Technology Data Exchange (ETDEWEB)

    Neal, J.T. [Sandia National Labs., Albuquerque, NM (United States); Magorian, T.R. [Magorian (Thomas R.), Amherst, NY (United States); Byrne, K.O.; Denzler, S. [Acres International Corp., Amherst, NY (United States)

    1993-09-01

    This report revises and updates the geologic site characterization report that was published in 1980. Revised structure maps and sections show interpretative differences in the dome shape and caprock structural contours, especially a major east-west trending shear zone, not mapped in the 1980 report. Excessive gas influx in Caverns 18 and 20 may be associated with this shear zone. Subsidence values at Bayou Choctaw are among the lowest in the SPR system, averaging only about 10 mm/yr but measurement and interpretation issues persist, as observed values often approximate measurement accuracy. Periodic, temporary flooding is a continuing concern because of the low site elevation (less than 10 ft), and this may intensify as future subsidence lowers the surface even further. Cavern 4 was re-sonared in 1992 and the profiles suggest that significant change has not occurred since 1980, thereby reducing the uncertainty of possible overburden collapse -- as occurred at Cavern 7 in 1954. Other potential integrity issues persist, such as the proximity of Cavern 20 to the dome edge, and the narrow web separating Caverns 15 and 17. Injection wells have been used for the disposal of brine but have been only marginally effective thus far; recompletions into more permeable lower Pleistocene gravels may be a practical way of increasing injection capacity and brinefield efficiency. Cavern storage space is limited on this already crowded dome, but 15 MMBBL could be gained by enlarging Cavern 19 and by constructing a new cavern beneath and slightly north of abandoned Cavern 13. Environmental issues center on the low site elevation: the backswamp environment combined with the potential for periodic flooding create conditions that will require continuing surveillance.

  11. Subsurface soil characterization using geoelectrical and geotechnical investigations at a bridge site in Uttarakhand Himalayan region

    Science.gov (United States)

    Devi, Anita; Israil, M.; Anbalagan, R.; Gupta, Pravin K.

    2017-09-01

    Geoelectrical characterization of subsurface soil has been done at a bridge foundation site on the banks of Bhagirathi River at Tehri reservoir site, Uttarakhand, India. For this purpose, the Electrical Resistivity Tomography (ERT) and the Standard Penetration Test (SPT) data, recorded at both banks of Bhagirathi River are analyzed. A total of six ERT profiles, recorded on both the West and East banks, were interpreted to determine an electrical resistivity image showing the resistivity variations with depth. The borehole data and geological inputs were used for lithological correlation and calibration of the resistivity values to the subsurface formation. Subsequently the electrical parameter (resistivity) for different subsurface lithological units has been inferred. Further, at selected points, the electrical resistivity sounding data, derived from the ERT, have been correlated with the Standard Penetration Test (SPT) data. This correlation results from the fact that in the subsurface soil both the electrical resistivity variations and the soil strength measured by SPT are controlled by the soil properties: grain size distribution, compactness, porosity and water saturation. It has been observed that the N-values smaller than 16 are unreliable and inconsistent. In the River Borne Material (RBM) on the West Bank it is due to the presence of coarse gravels while on the East Bank it is due to the boulders. The N-values greater than 16 mainly correspond to the weathered rock formation. For these values, there exists a linear relationship between N-values and resistivity with a correlation coefficient greater than 0.80. The coefficients of linear relationship at the two banks vary due to varying amount of clay content. Such a relationship is important for any site in tough Himalayan terrain because it can be used as an alternative to the SPT for determining soil strength parameters from ERT.

  12. Dynamic characterization of fractured carbonates at the Hontomín CO2 storage site

    Science.gov (United States)

    Le Gallo, yann; de Dios, José Carlos; Salvador, Ignacio; Acosta Carballo, Taimara

    2017-04-01

    The geological storage of CO2 is investigated at the Technology Development Plant (TDP) at Hontomín (Burgos, Spain) into a deep saline aquifer, formed by fractured carbonates with poor matrix porosity. During the hydraulic characterization tests, 2,300 tons of liquid CO2 and 14,000 m3 synthetic brine were co-injected on site in various sequences to determine the pressure and temperature responses of the facture network. The results of the pressure tests were analyzed using an analytical approach to determine the overall petrophysical characteristics of the storage formation. Later on, these characteristics were implemented in a 3-D numerical model. The model is a compositional dual medium (fracture + matrix) which accounts for temperature effects, as CO2 is liquid at the well bottom-hole, and multiphase flow hysteresis as alternating water and CO2 injection tests were performed. The pressure and temperature responses of the storage formation were history-matched mainly through the petrophysical and geometrical characteristics of the facture network. This dynamic characterization of the fracture network controls the CO2 migration while the matrix does not appear to significantly contribute to the storage capacity. Consequently, the hydrodynamic behavior of the aquifer is one of the main challenge of the modeling workflow.

  13. Near-surface test facility. Phase I. Geologic site characterization report

    Energy Technology Data Exchange (ETDEWEB)

    Moak, D.J.; Wintczak, T.M.

    1980-08-01

    The report is a description of the geology and characterization of the rock mass of the area in which the Phase I qualification tests at the Near-Surface Test Facility (NSTF) are being performed. The NSTF is located on Gable Mountain within the Hanford Site near Richland, Washington. It is located in the entablature of the Pomona Member, an upper flow in the Columbia River Basalt Group, and is approximately 150 feet (47.5 meters) below the surface. Core logging from the instrument boreholes coupled with joint mapping, statistics, and other test data provided the basis for a detailed characterization of the 16-foot x 20-foot x 28-foot (5-meter x 6-meter x 9-meter) rock masses surrounding Full-Scale Heater Tests No. 1 and No. 2. The Pomona entablature contains three joint sets delineated by their degree of dip, each with apertures averaging 0.25 millimeter and having no preferred strike orientation. Although joint frequencies in the study area exceed 4 joints per foot (13 per meter), the rock-mass classification rating is good.

  14. Radioecological characterization of a uranium mining site located in a semi-arid region in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Horst M. [Instituto de Radioprotecao e Dosimetria, Environmental Impact Assessment, Av. Salvador Allende s/n - Recreio, 22780-160, Rio de Janeiro (Brazil) and University of Central Florida (United States)]. E-mail: monkenhorst@yahoo.com.br; Lamego Simoes Filho, F. Fernando [Instituto de Radioprotecao e Dosimetria, Environmental Impact Assessment, Av. Salvador Allende s/n - Recreio, 22780-160, Rio de Janeiro (Brazil); Perez, Valeska [Instituto de Engenharia Nuclear (Brazil); Franklin, Mariza Ramalho [Instituto de Radioprotecao e Dosimetria, Environmental Impact Assessment, Av. Salvador Allende s/n - Recreio, 22780-160, Rio de Janeiro (Brazil); Gomiero, Luiz Alberto [Industrias Nucleares do Brasil (Brazil)

    2006-07-01

    The work presents the radioecological characterization of the new Brazilian uranium mining and milling site located in a semi-arid region of the country. The process characterization demonstrated that in heap leach plants most of the {sup 226}Ra remains in the leached ore. Despite the potential higher availability of radium isotopes in the soils of the studied region the lack of precipitation in that area reduces the leaching/mobilization of the radionuclides. High {sup 226}Ra and {sup 228}Ra concentrations were found in manioc while {sup 21}Pb was significant in pasture. It was suggested that a range from 10{sup -3} to 10{sup -1} may conveniently encompass most of the transfer factors (TF) values for soil/plant systems (i.e. involving different cultures, different soils and natural radionuclides). Impacts due to aerial transportation of aerosols and radon generated in the mining were proved to be minimal and restricted to an area not greater than 15 km{sup 2}. Finally, uranium complexation by carbonates was shown to be the main mechanism responding for the elevated radionuclide concentration in groundwater.

  15. Characterization of change in the Harike wetland, a Ramsar site in India, using landsat satellite data.

    Science.gov (United States)

    Mabwoga, Samson Okongo; Thukral, Ashwani Kumar

    2014-01-01

    The increasing population in the developing countries has rendered wetlands vulnerable to land use changes. Remote sensing offers a rapid and efficient means of data acquisition of ecosystems in time and space. The present study was undertaken to identify changes in the Harike wetland, a Ramsar site in the state of Punjab, India; and identify causal factors, as well as vulnerable areas threatened from the land cover changes. Unsupervised classification and post-classification change detection techniques were applied to Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) data of 16-10-1989, 22-10-2000 and 26-10-2010. Images were classified into five land cover classes (1) Waterbody, (2) Wetland I, (3) Wetland II, (4) Barren land and (5) Agricultural land. Land cover change is characterized mainly by a decrease in the wetland area, as indicated by decrease in wetland vegetation and an increase in non-wetland areas, characterized by increasing agricultural and barren land areas. Overall, the wetland shrunk by 13% from 1989 to 2010, with the north-eastern side experiencing maximum shrinkage. The wetland needs immediate reclamation to check it from further shrinkage so as to save its biodiversity.

  16. Characterizing the Catalytic Potential of Deinococcus, Arthrobacter and other Robust Bacteria in Contaminated Subsurface Environments of the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Daly, Michael J.

    2005-06-01

    Natural selection in highly radioactive waste sites may yield bacteria with favorable bioremediating characteristics. However, until recently the microbial ecology of such environments has remained unexplored because of the high costs and technical complexities associated with extracting and characterizing samples from such sites. We have examined the bacterial ecology within radioactive sediments from a high-level nuclear waste plume in the vadose zone on the DOE?s Hanford Site in south-central Washington state (Fredrickson et al, 2004). Manganese-dependent, radiation resistant bacteria have been isolated from this contaminated site including the highly Mn-dependent Deinococcus and Arthrobacter spp.

  17. Remediating radium contaminated legacy sites: Advances made through machine learning in routine monitoring of "hot" particles.

    Science.gov (United States)

    Varley, Adam; Tyler, Andrew; Smith, Leslie; Dale, Paul; Davies, Mike

    2015-07-15

    The extensive use of radium during the 20th century for industrial, military and pharmaceutical purposes has led to a large number of contaminated legacy sites across Europe and North America. Sites that pose a high risk to the general public can present expensive and long-term remediation projects. Often the most pragmatic remediation approach is through routine monitoring operating gamma-ray detectors to identify, in real-time, the signal from the most hazardous heterogeneous contamination (hot particles); thus facilitating their removal and safe disposal. However, current detection systems do not fully utilise all spectral information resulting in low detection rates and ultimately an increased risk to the human health. The aim of this study was to establish an optimised detector-algorithm combination. To achieve this, field data was collected using two handheld detectors (sodium iodide and lanthanum bromide) and a number of Monte Carlo simulated hot particles were randomly injected into the field data. This allowed for the detection rate of conventional deterministic (gross counts) and machine learning (neural networks and support vector machines) algorithms to be assessed. The results demonstrated that a Neural Network operated on a sodium iodide detector provided the best detection capability. Compared to deterministic approaches, this optimised detection system could detect a hot particle on average 10cm deeper into the soil column or with half of the activity at the same depth. It was also found that noise presented by internal contamination restricted lanthanum bromide for this application. Copyright © 2015. Published by Elsevier B.V.

  18. Geoelectrical characterization of a site with hydrocarbon contamination caused by pipeline leakage

    Energy Technology Data Exchange (ETDEWEB)

    Delgado-Rodriguez, Omar; Shevnin, Vladimir; Ochoa-Valdes, Jesus [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico); Ryjov, Albert [Moscow State Geological Prospecting Academy, Moscow (Russian Federation)

    2006-01-15

    Vertical Electrical Sounding (VES) method is used extensively in environmental impact studies including hydrocarbon contamination. In this work, the results of the geoelectrical characterization of a contaminated site caused by pipeline leakage are presented. Geoelectrical study was performed with multi-electrode technology and 2D profile data interpretation. VES results from six parallel profiles were presented in resistivity sections and maps. Layered model of the site was found including aquifer and aquitard layers. Although the contamination grade of the site is low, we found two contaminated zones into sandy aquifer. Aquifer and aquitard were characterized by its resistivity, clay content, porosity and cation exchange capacity values. Recalculation of resistivity data into petrophysical sections and maps was performed by an inversion algorithm taking into account pore water salinity. Petrophysical parameters for uncontaminated areas estimated from resistivity are close to real values; meanwhile, in contaminated zones petrophysical parameters have anomalous values. Similar effects of contamination influence on petrophysical parameters were found in laboratory by resistivity measurements made at clean and contaminated sand samplers. [Spanish] El metodo Sondeo Electrico Vertical (SEV) es ampliamente utilizado en estudios de impacto ambiental incluyendo el caso de contaminacion por hidrocarburos. En este trabajo se presentan los resultados de la caracterizacion geoelectrica de un sitio contaminado por hidrocarburos relacionado con una fuga en linea de ducto. El estudio geoelectrico fue realizado utilizando el metodo SEV en la variante de tomografia, realizandose una interpretacion 2D de los datos observados. Seis perfiles paralelos de SEV fueron medidos y presentados sus resultados en secciones y mapas. Se determino un modelo estratificado que incluye acuitardo y acuifero. Aunque el grado de contaminacion en este sitio es bajo fue posible localizar dos zonas

  19. SITE CHARACTERIZATION AND MONITORING DATA FROM THE AREA 5 PILOT WELLS

    Energy Technology Data Exchange (ETDEWEB)

    BECHTEL NEVADA; U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION NEVADA SITE OFFICE

    2005-09-01

    Three exploratory boreholes were drilled and completed to the uppermost alluvial aquifer in Area 5 of the Nevada Test Site, Nye County, Nevada, in 1992. The boreholes and associated investigations were part of the Area 5 Site Characterization Program developed to meet data needs associated with regulatory requirements applicable to the disposal of low-level, mixed, and high-specific-activity waste at this site. This series of boreholes was specifically designed to characterize the hydrogeology of the thick vadose zone and to help define the water quality and hydraulic properties of the uppermost aquifer. Wells UE5PW-1, UE5PW-2, and UE5PW-3 are located in a triangular array near the southeast, northeast, and northwest corners, respectively, of the approximately 2.6-square-kilometer Area 5 Radioactive Waste Management Site to give reasonable spatial coverage for sampling and characterization, and to help define the nearly horizontal water table. Two of the wells, UE5PW-1 and UE5PW-2, penetrated only unconsolidated alluvial materials. The third well, located closer to the margin of the basin, penetrated both alluvium and underlying ash-flow and bedded tuff units. The watertable was encountered at the elevation of approximately 734 meters. The results of laboratory testing of core and drill cuttings samples indicate that the mineralogical, material, and hydrologic properties of the alluvium are very similar within and between boreholes. Additional tests on the same core and drill cuttings samples indicate that hydrologic conditions within the alluvium are also similar between pilot wells. Both core and drill cuttings samples are dry (less than 10 percent water content by weight) throughout the entire unsaturated section of alluvium, and water content increases slightly with depth in each borehole. Water potential measurements on core samples show a large positive potential gradient (water tends to move upward, rather than downward) to a depth of approximately 30

  20. Characterization of materials for a reactive transport model validation experiment: Interim report on the caisson experiment. Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, M.D.; Cheng, W.C. [Sandia National Labs., Albuquerque, NM (United States); Ward, D.B.; Bryan, C.R. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Earth and Planetary Sciences

    1995-08-01

    Models used in performance assessment and site characterization activities related to nuclear waste disposal rely on simplified representations of solute/rock interactions, hydrologic flow field and the material properties of the rock layers surrounding the repository. A crucial element in the design of these models is the validity of these simplifying assumptions. An intermediate-scale experiment is being carried out at the Experimental Engineered Test Facility at Los Alamos Laboratory by the Los Alamos and Sandia National Laboratories to develop a strategy to validate key geochemical and hydrological assumptions in performance assessment models used by the Yucca Mountain Site Characterization Project.

  1. Conductance based characterization of structure and hopping site density in 2D molecule-nanoparticle arrays

    Science.gov (United States)

    McCold, Cliff E.; Fu, Qiang; Howe, Jane Y.; Hihath, Joshua

    2015-09-01

    Composite molecule-nanoparticle hybrid systems have recently emerged as important materials for applications ranging from chemical sensing to nanoscale electronics. However, creating reproducible and repeatable composite materials with precise properties has remained one of the primary challenges to the implementation of these technologies. Understanding the sources of variation that dominate the assembly and transport behavior is essential for the advancement of nanoparticle-array based devices. In this work, we use a combination of charge-transport measurements, electron microscopy, and optical characterization techniques to determine the role of morphology and structure on the charge transport properties of 2-dimensional monolayer arrays of molecularly-interlinked Au nanoparticles. Using these techniques we are able to determine the role of both assembly-dependent and particle-dependent defects on the conductivities of the films. These results demonstrate that assembly processes dominate the dispersion of conductance values, while nanoparticle and ligand features dictate the mean value of the conductance. By performing a systematic study of the conductance of these arrays as a function of nanoparticle size we are able to extract the carrier mobility for specific molecular ligands. We show that nanoparticle polydispersity correlates with the void density in the array, and that because of this correlation it is possible to accurately determine the void density within the array directly from conductance measurements. These results demonstrate that conductance-based measurements can be used to accurately and non-destructively determine the morphological and structural properties of these hybrid arrays, and thus provide a characterization platform that helps move 2-dimensional nanoparticle arrays toward robust and reproducible electronic systems.Composite molecule-nanoparticle hybrid systems have recently emerged as important materials for applications ranging from

  2. Advanced Seismic Imaging Techniques Characterize the Alpine Fault at Whataroa (New Zealand)

    Science.gov (United States)

    Lay, V.; Buske, S.; Lukács, A.; Gorman, A. R.; Bannister, S. C.

    2015-12-01

    The plate-bounding Alpine Fault in New Zealand is a large transpressive continental fault zone that is late in its earthquake cycle. The Deep Fault Drilling Project (DFDP) aims to deliver insight into the geological structure of this fault zone and its evolution by drilling and sampling the Alpine Fault at depth. We have acquired and processed reflection seismic data to image the subsurface around the drill site. The resulting velocity models and seismic images of the upper 5 km show complex subsurface structures around the Alpine Fault zone. The most prominent feature is a strong reflector at depths of 1.2-2.2 km with a dip of ~40° to the southeast below the DFDP-2 borehole, which we assume to be the main trace of the Alpine Fault. The reflector exhibits varying lateral reflectivity along its extent. Additionally, subparallel reflectors are imaged that we interpret as secondary branches of the main fault zone. The derived P-wave velocity models reveal a 400-600 m thick sedimentary layer with velocities of ~2.3 km/s above a schist basement with velocities of 4.5-5.5 km/s. A pronounced low-velocity layer with velocities of approximately 3.5 km/s can be observed within the basement at 0.8-2 km depth. Small-scale low-velocity anomalies appear at the top of the basement and can be correlated to the fault zone. The results provide a reliable basis for a seismic site characterization at the DFDP-2 drill site that can be used for further structural and geological investigations of the architecture of the Alpine Fault in this area.

  3. Characterization of lithium coordination sites with magic-angle spinning NMR

    Science.gov (United States)

    Haimovich, A.; Goldbourt, A.

    2015-05-01

    Lithium, in the form of lithium carbonate, is one of the most common drugs for bipolar disorder. Lithium is also considered to have an effect on many other cellular processes hence it possesses additional therapeutic as well as side effects. In order to quantitatively characterize the binding mode of lithium, it is required to identify the interacting species and measure their distances from the metal center. Here we use magic-angle spinning (MAS) solid-state NMR to study the binding site of lithium in complex with glycine and water (LiGlyW). Such a compound is a good enzyme mimetic since lithium is four-coordinated to one water molecule and three carboxylic groups. Distance measurements to carbons are performed using a 2D transferred echo double resonance (TEDOR) MAS solid-state NMR experiment, and water binding is probed by heteronuclear high-resolution proton-lithium and proton-carbon correlation (wPMLG-HETCOR) experiments. Both HETCOR experiments separate the main complex from impurities and non-specifically bound lithium species, demonstrating the sensitivity of the method to probe the species in the binding site. Optimizations of the TEDOR pulse scheme in the case of a quadrupolar nucleus with a small quadrupole coupling constant show that it is most efficient when pulses are positioned on the spin-1/2 (carbon-13) nucleus. Since the intensity of the TEDOR signal is not normalized, careful data analysis that considers both intensity and dipolar oscillations has to be performed. Nevertheless we show that accurate distances can be extracted for both carbons of the bound glycine and that these distances are consistent with the X-ray data and with lithium in a tetrahedral environment. The lithium environment in the complex is very similar to the binding site in inositol monophosphatase, an enzyme associated with bipolar disorder and the putative target for lithium therapy. A 2D TEDOR experiment applied to the bacterial SuhB gene product of this enzyme was designed

  4. SNL-NUMO collaborative : development of a deterministic site characterization tool using multi-model ranking and inference.

    Energy Technology Data Exchange (ETDEWEB)

    Grace, Matthew; Lowry, Thomas Stephen; Arnold, Bill Walter; James, Scott Carlton; Gray, Genetha Anne; Ahlmann, Michael

    2008-08-01

    Uncertainty in site characterization arises from a lack of data and knowledge about a site and includes uncertainty in the boundary conditions, uncertainty in the characteristics, location, and behavior of major features within an investigation area (e.g., major faults as barriers or conduits), uncertainty in the geologic structure, as well as differences in numerical implementation (e.g., 2-D versus 3-D, finite difference versus finite element, grid resolution, deterministic versus stochastic, etc.). Since the true condition at a site can never be known, selection of the best conceptual model is very difficult. In addition, limiting the understanding to a single conceptualization too early in the process, or before data can support that conceptualization, may lead to confidence in a characterization that is unwarranted as well as to data collection efforts and field investigations that are misdirected and/or redundant. Using a series of numerical modeling experiments, this project examined the application and use of information criteria within the site characterization process. The numerical experiments are based on models of varying complexity that were developed to represent one of two synthetically developed groundwater sites; (1) a fully hypothetical site that represented a complex, multi-layer, multi-faulted site, and (2) a site that was based on the Horonobe site in northern Japan. Each of the synthetic sites were modeled in detail to provide increasingly informative 'field' data over successive iterations to the representing numerical models. The representing numerical models were calibrated to the synthetic site data and then ranked and compared using several different information criteria approaches. Results show, that for the early phases of site characterization, low-parameterized models ranked highest while more complex models generally ranked lowest. In addition, predictive capabilities were also better with the low-parameterized models. For

  5. PREFACE: Symposium 1: Advanced Structure Analysis and Characterization of Ceramic Materials

    Science.gov (United States)

    Yashima, Masatomo

    2011-05-01

    Preface to Symposium 1 (Advanced Structure Analysis and Characterization of Ceramic Materials) of the International Congress of Ceramics III, held 14-18 November 2010 in Osaka, Japan Remarkable developments have been made recently in the structural analysis and characterization of inorganic crystalline and amorphous materials, such as x-ray, neutron, synchrotron and electron diffraction, x-ray/neutron scattering, IR/Raman scattering, NMR, XAFS, first-principle calculations, computer simulations, Rietveld analysis, the maximum-entropy method, in situ measurements at high temperatures/pressures and electron/nuclear density analysis. These techniques enable scientists to study not only static and long-range periodic structures but also dynamic and short-/intermediate-range structures. Multi-scale characterization from the electron to micrometer levels is becoming increasingly important as a means of understanding phenomena at the interfaces, grain boundaries and surfaces of ceramic materials. This symposium has discussed the structures and structure/property relationships of various ceramic materials (electro, magnetic and optical ceramics; energy and environment related ceramics; bio-ceramics; ceramics for reliability secure society; traditional ceramics) through 38 oral presentations including 8 invited lectures and 49 posters. Best poster awards were given to six excellent poster presentations (Y-C Chen, Tokyo Institute of Technology; C-Y Chung, Tohoku University; T Stawski, University of Twente; Y Hirano, Nagoya Institute of Technology; B Bittova, Charles University Prague; Y Onodera, Kyoto University). I have enjoyed working with my friends in the ICC3 conference. I would like to express special thanks to other organizers: Professor Scott T Misture, Alfred University, USA, Professor Xiaolong Chen, Institute of Physics, CAS, China, Professor Takashi Ida, Nagoya Institute of Technology, Japan, Professor Isao Tanaka, Kyoto University, Japan. I also acknowledge the

  6. Innovations in Site Characterization Case Study: Site Cleanup of the Wenatchee Tree Fruit Test Plot Site Using a Dynamic Work Plan

    Science.gov (United States)

    The Wenatchee Tree Fruit Research and Extension Center site contained soils contaminated with organochlorine pesticides, organophosphorus pesticides, and other pesticides due to agriculture-related research activities conducted from 1966 until...

  7. Characterization and monitoring of contaminated sites by multi-geophysical approach (IP, ERT and GPR).

    Science.gov (United States)

    Giampaolo, Valeria; Capozzoli, Luigi; Votta, Mario; Rizzo, Enzo

    2014-05-01

    The contamination of soils and groundwater by hydrocarbons, due to blow out, leakage from tank or pipe and oil spill, is a heavy environmental problem because infiltrated oil can persist in the ground for a long time leading to important changes on soils and physical and biogeochemical properties, which impact on ecosystems and shallow aquifers. The existing methods used for the characterization of hydrocarbon contaminated sites are invasive, time consuming and expensive. Therefore, in the last years, there was a growing interest in the use of geophysical methods for environmental monitoring (Börner et al., 1993; Vanhala, 1997; Atekwana et al., 2000; Chambers et al., 2004; Song et al., 2005; French et al., 2009). The goal of this work is to characterize underground contaminant distributions and monitoring a remediation activity using a multi-geophysical approach (cross-hole IP and ERT, GPR). The experiments consist in geophysical measurements both in surface and boreholes, to monitor a simulated hydrocarbon leachate into a ~1 m3 box. The tank is filled with quartz-rich sand (k = 1.16 x 10-12 m2) and it is equipped with six boreholes and 72 stainless steel ring electrodes, at 5 cm spacing, for cross-hole electrical resistivity and time-domain IP measurements. 25 additional stainless steel electrodes were installed at the surface of the tank. Two measurement phases were realized: first, we monitored electrical resistivity, IP, and dielectric conductivity of the uncontaminated soil; the second experimental phase consists in the geophysical monitoring of a crude oil controlled spill. Results showed significant changes in the responses of geoelectrical measurements in presence of a crude oil contamination. Instead IP results give a phase angle distribution related to the presence of hydrocarbon in the system but not so clear in the location of plume. Therefore, to clearly delineate the areas interested by contamination, we estimate the imaginary component of electrical

  8. Geologic Site Characterization of the North Korean Nuclear Test Site at Punggye-Ri: A Reconnaissance Mapping Redux

    Science.gov (United States)

    2013-11-30

    clandestine nuclear test (e.g., the evaluation of seismic wave propagation, the prediction of gas releases, and evaluation of tunnel layouts). An...produce a high-resolution (5-meter) geologic map of the site. This map helps refine the USGS reconnaissance geology map (which was based on the...test locations, the relationship between fracture rock and containment, and possible motivation for continued tunneling at the â\\”South Portalâ

  9. Structural and biochemical characterization of two heme binding sites on α1-microglobulin using site directed mutagenesis and molecular simulation.

    Science.gov (United States)

    Rutardottir, Sigurbjörg; Karnaukhova, Elena; Nantasenamat, Chanin; Songtawee, Napat; Prachayasittikul, Virapong; Rajabi, Mohsen; Rosenlöf, Lena Wester; Alayash, Abdu I; Åkerström, Bo

    2016-01-01

    α1-Microglobulin (A1M) is a reductase and radical scavenger involved in physiological protection against oxidative damage. These functions were previously shown to be dependent upon cysteinyl-, C34, and lysyl side-chains, K(92, 118,130). A1M binds heme and the crystal structure suggests that C34 and H123 participate in a heme binding site. We have investigated the involvement of these five residues in the interactions with heme. Four A1M-variants were expressed: with cysteine to serine substitution in position 34, lysine to threonine substitutions in positions (92, 118, 130), histidine to serine substitution in position 123 and a wt without mutations. Heme binding was investigated by tryptophan fluorescence quenching, UV-Vis spectrophotometry, circular dichroism, SPR, electrophoretic migration shift, gel filtration, catalase-like activity and molecular simulation. All A1M-variants bound to heme. Mutations in C34, H123 or K(92, 118, 130) resulted in significant absorbance changes, CD spectral changes, and catalase-like activity, suggesting involvement of these side-groups in coordination of the heme-iron. Molecular simulation support a model with two heme-binding sites in A1M involving the mutated residues. Binding of the first heme induces allosteric stabilization of the structure predisposing for a better fit of the second heme. The results suggest that one heme-binding site is located in the lipocalin pocket and a second binding site between loops 1 and 4. Reactions with the hemes involve the side-groups of C34, K(92, 118, 130) and H123. The model provides a structural basis for the functional activities of A1M: heme binding activity of A1M. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Aespoe HRL - Geoscientific evaluation 1997/2. Results from pre-investigation and detailed site characterization. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Rhen, I. [VBB Viak, Goeteborg (Sweden); Baeckbom, G. [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)] [eds.; Gustafsson, Gunnar [VBB Viak, Goeteborg (Sweden) and Chalmers Univ. of Technology, Goeteborg (Sweden); Stanfors, R. [RS Consulting, Lund (Sweden); Wikberg, P. [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    1997-05-01

    The work at Aespoe Hard rock laboratory provides an important scientific and technical basis for implementing and operating a future deep repository in Sweden. A milestone has now been reached with the completion of the pre investigation and construction phases at Aespoe HRL. The present data base at Aespoe HRL is one of the most comprehensive data bases in the world for crystalline rock properties, containing data from a large number of investigation methods from the surface down to 1700 m below ground level. Site characterization in conjunction with construction work has basically confirmed the pre-construction models. The site characterization has been a realistic `dress rehearsal` that is invaluable for planning and execution of surface and underground characterization of sites for the deep repository for spent nuclear fuel in Sweden. 502 refs, 114 figs, 30 tabs.

  11. Design, Fabrication, and Characterization of Carbon Nanotube Field Emission Devices for Advanced Applications

    Science.gov (United States)

    Radauscher, Erich Justin

    Carbon nanotubes (CNTs) have recently emerged as promising candidates for electron field emission (FE) cathodes in integrated FE devices. These nanostructured carbon materials possess exceptional properties and their synthesis can be thoroughly controlled. Their integration into advanced electronic devices, including not only FE cathodes, but sensors, energy storage devices, and circuit components, has seen rapid growth in recent years. The results of the studies presented here demonstrate that the CNT field emitter is an excellent candidate for next generation vacuum microelectronics and related electron emission devices in several advanced applications. The work presented in this study addresses determining factors that currently confine the performance and application of CNT-FE devices. Characterization studies and improvements to the FE properties of CNTs, along with Micro-Electro-Mechanical Systems (MEMS) design and fabrication, were utilized in achieving these goals. Important performance limiting parameters, including emitter lifetime and failure from poor substrate adhesion, are examined. The compatibility and integration of CNT emitters with the governing MEMS substrate (i.e., polycrystalline silicon), and its impact on these performance limiting parameters, are reported. CNT growth mechanisms and kinetics were investigated and compared to silicon (100) to improve the design of CNT emitter integrated MEMS based electronic devices, specifically in vacuum microelectronic device (VMD) applications. Improved growth allowed for design and development of novel cold-cathode FE devices utilizing CNT field emitters. A chemical ionization (CI) source based on a CNT-FE electron source was developed and evaluated in a commercial desktop mass spectrometer for explosives trace detection. This work demonstrated the first reported use of a CNT-based ion source capable of collecting CI mass spectra. The CNT-FE source demonstrated low power requirements, pulsing

  12. Further characterization of the combining sites of Bandeiraea (Griffonia) simplicifolia lectin-I, isolectin A(4).

    Science.gov (United States)

    Wu, A M; Wu, J H; Chen, Y Y; Song, S C; Kabat, E A

    1999-11-01

    Bandeiraea (Griffonia) simplicifolia lectin-I, isolectin A(4)(GS I-A(4)), which is cytotoxic to the human colon cancer cell lines, is one of two lectin families derived from its seed extract. It contains only a homo-oligomer of subunit A, and is most specific for GalNAcalpha1-->. In order to elucidate the GS I-A(4)-glycoconjugate interactions in greater detail, the combining site of this lectin was further characterized by enzyme linked lectino-sorbent assay (ELLSA) and by inhibition of lectin-glycoprotein interactions. This study has demonstrated that the Tn-containing glycoproteins tested, consisting of mammalian salivary glycoproteins (armadillo, asialo-hamster sublingual, asialo-ovine, -bovine, and -porcine submandibular), are bound strongly by GS I-A(4.)Among monovalent inhibitors so far tested, p-NO2-phenylalphaGalNAc is the most potent, suggesting that hydrophobic forces are important in the interaction of this lectin. GS I-A(4)is able to accommodate the monosaccharide GalNAc at the nonreducing end of oligosaccharides. This suggests that the combining site of the lectin is a shallow cavity. Among oligosaccharides and monosaccharides tested as inhibitors of the binding of GS I-A(4), the hierarchy of potencies are: GalNAcalpha1-->3GalNAcbeta1-->3Galalpha1-->4Galbeta 1-->4Glc (Forssman pentasaccharide) > GalNAcalpha1-->3(LFucalpha1-->2)Gal (blood group A)()> GalNAc > Galalpha1-->4Gal > Galalpha1-->3Gal (blood group B-like)> Gal.

  13. Enhanced air dispersion modelling at a typical Chinese nuclear power plant site: Coupling RIMPUFF with two advanced diagnostic wind models.

    Science.gov (United States)

    Liu, Yun; Li, Hong; Sun, Sida; Fang, Sheng

    2017-09-01

    An enhanced air dispersion modelling scheme is proposed to cope with the building layout and complex terrain of a typical Chinese nuclear power plant (NPP) site. In this modelling, the California Meteorological Model (CALMET) and the Stationary Wind Fit and Turbulence (SWIFT) are coupled with the Risø Mesoscale PUFF model (RIMPUFF) for refined wind field calculation. The near-field diffusion coefficient correction scheme of the Atmospheric Relative Concentrations in the Building Wakes Computer Code (ARCON96) is adopted to characterize dispersion in building arrays. The proposed method is evaluated by a wind tunnel experiment that replicates the typical Chinese NPP site. For both wind speed/direction and air concentration, the enhanced modelling predictions agree well with the observations. The fraction of the predictions within a factor of 2 and 5 of observations exceeds 55% and 82% respectively in the building area and the complex terrain area. This demonstrates the feasibility of the new enhanced modelling for typical Chinese NPP sites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Molecular characterization and patient outcome of melanoma nodal metastases and an unknown primary site.

    Science.gov (United States)

    Gos, Aleksandra; Jurkowska, Monika; van Akkooi, Alexander; Robert, Caroline; Kosela-Paterczyk, Hanna; Koljenović, Senada; Kamsukom, Nyam; Michej, Wanda; Jeziorski, Arkadiusz; Pluta, Piotr; Verhoef, Cornelis; Siedlecki, Janusz A; Eggermont, Alexander M M; Rutkowski, Piotr

    2014-12-01

    Melanoma of unknown primary site (MUP) is not a completely understood entity with nodal metastases as the most common first clinical manifestation. The aim of this multicentric study was to assess frequency and type of oncogenic BRAF/NRAS/KIT mutations in MUP with clinically detected nodal metastases in relation to clinicopathologic features and outcome. We analyzed series of 103 MUP patients (period: 1992-2010) after therapeutic lymphadenectomy (LND): 40 axillary, 47 groin, 16 cervical, none treated with BRAF inhibitors. We performed molecular characterization of BRAF/NRAS/KIT mutational status in nodal metastases using direct sequencing of respective coding sequences. Median follow-up time was 53 months. BRAF mutations were detected in 55 cases (53 %) (51 V600E, 93 %; 4 others, 7 %), and mutually exclusive NRAS mutations were found in 14 cases (14 %) (7 p.Q61R, 4 p.Q61K, 2 p.Q61H, 1 p.Q13R). We have not detected any mutations in KIT. The 5-year overall survival (OS) was 34 %; median was 24 months. We have not found significant correlation between mutational status (BRAF/NRAS) and OS; however, for BRAF or NRAS mutated melanomas we observed significantly shorter disease-free survival (DFS) when compared with wild-type melanoma patients (p = .04; 5-year DFS, 18 vs 19 vs 31 %, respectively). The most important factor influencing OS was number of metastatic lymph nodes >1 (p = .03). Our large study on molecular characterization of MUP with nodal metastases showed that MUPs had molecular features similar to sporadic non-chronic-sun-damaged melanomas. BRAF/NRAS mutational status had negative impact on DFS in this group of patients. These observations might have potential implication for molecular-targeted therapy in MUPs.

  15. Radioactive waste isolation in salt: rationale and methodology for Argonne-conducted reviews of site characterization programs

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, W.; Ditmars, J.D.; Tisue, M.W.; Hambley, D.F.; Fenster, D.F.; Rote, D.M.

    1985-07-01

    Both regulatory and technical concerns must be addressed in Argonne-conducted peer reviews of site characterization programs for individual sites for a high-level radioactive waste repository in salt. This report describes the regulatory framework within which reviews must be conducted and presents background information on the structure and purpose of site characterization programs as found in US Nuclear Regulatory Commission (NRC) Regulatory Guide 4.17 and Title 10, Part 60, of the Code of Federal Regulations. It also presents a methodology to assist reviewers in addressing technical concerns relating to their respective areas of expertise. The methodology concentrates on elements of prime importance to the US Department of Energy's advocacy of a given salt repository system during the NRC licensing process. Instructions are given for reviewing 12 site characterization program elements, starting with performance objectives, performance issues, and levels of performance of repository subsystem components; progressing through performance assessment; and ending with plans for data acquisition and evaluation. The success of a site characterization program in resolving repository performance issues will be determined by judging the likelihood that the proposed data acquisition activities will reduce uncertainties in the performance predictions. 8 refs., 3 figs., 5 tabs.

  16. Utility of Characterizing and Monitoring Suspected Underground Nuclear Sites with VideoSAR

    Science.gov (United States)

    Dauphin, S. M.; Yocky, D. A.; Riley, R.; Calloway, T. M.; Wahl, D. E.

    2016-12-01

    Sandia National Laboratories proposed using airborne synthetic aperture RADAR (SAR) collected in VideoSAR mode to characterize the Underground Nuclear Explosion Signature Experiment (UNESE) test bed site at the Nevada National Security Site (NNSS). The SNL SAR collected airborne, Ku-band (16.8 GHz center frequency), 0.2032 meter ground resolution over NNSS in August 2014 and X-band (9.6 GHz), 0.1016 meter ground resolution fully-polarimetric SAR in April 2015. This paper reports the findings of processing and exploiting VideoSAR for creating digital elevation maps, detecting cultural artifacts and exploiting full-circle polarimetric signatures. VideoSAR collects a continuous circle of phase history data, therefore, imagery can be formed over the 360-degrees of the site. Since the Ku-band VideoSAR had two antennas suitable for interferometric digital elevation mapping (DEM), DEMs could be generated over numerous aspect angles, filling in holes created by targets with height by imaging from all sides. Also, since the X-band VideoSAR was fully-polarimetric, scattering signatures could be gleaned from all angles also. Both of these collections can be used to find man-made objects and changes in elevation that might indicate testing activities. VideoSAR provides a unique, coherent measure of ground objects allowing one to create accurate DEMS, locate man-made objects, and identify scattering signatures via polarimetric exploitation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The authors would like to thank the National Nuclear Security Administration, Defense Nuclear Nonproliferation Research and Development, for sponsoring this work. We would also like to thank the Underground Nuclear Explosion Signatures Experiment team, a multi

  17. Recent advances in endophytic exopolysaccharides: Production, structural characterization, physiological role and biological activity.

    Science.gov (United States)

    Liu, Jun; Wang, Xingchi; Pu, Huimin; Liu, Shuang; Kan, Juan; Jin, Changhai

    2017-02-10

    Endophytes are microorganisms that colonize living, internal tissues of plants without causing any immediate, overt negative effects. In recent years, both endophytic bacteria and fungi have been demonstrated to be excellent exopolysaccharides (EPS) producers. This review focuses on the recent advances in EPS produced by endophytes, including its production, isolation and purification, structural characterization, physiological role and biological activity. In general, EPS production is influenced by media components and cultivation conditions. The structures of purified EPS range from linear homopolysaccharides to highly branched heteropolysaccharides. These structurally novel EPS not only play important roles in plant-endophyte interactions; but also exhibit several biological functions, such as antioxidant, antitumor, anti-inflammatory, anti-allergic and prebiotic activities. In order to utilize endophytic EPS on an industrial scale, both yield and productivity enhancement strategies are required at several levels. Besides, the exact mechanisms on the physiological roles and biological functions of EPS should be elucidated in future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Mechanistic Study of the Validity of Using Hydroxyl Radical Probes To Characterize Electrochemical Advanced Oxidation Processes.

    Science.gov (United States)

    Jing, Yin; Chaplin, Brian P

    2017-02-21

    The detection of hydroxyl radicals (OH(•)) is typically accomplished by using reactive probe molecules, but prior studies have not thoroughly investigated the suitability of these probes for use in electrochemical advanced oxidation processes (EAOPs), due to the neglect of alternative reaction mechanisms. In this study, we investigated the suitability of four OH(•) probes (coumarin, p-chlorobenzoic acid, terephthalic acid, and p-benzoquinone) for use in EAOPs. Experimental results indicated that both coumarin and p-chlorobenzoic acid are oxidized via direct electron transfer reactions, while p-benzoquinone and terephthalic acid are not. Coumarin oxidation to form the OH(•) adduct product 7-hydroxycoumarin was found at anodic potentials lower than that necessary for OH(•) formation. Density functional theory (DFT) simulations found a thermodynamically favorable and non-OH(•) mediated pathway for 7-hydroxycoumarin formation, which is activationless at anodic potentials > 2.10 V/SHE. DFT simulations also provided estimates of E° values for a series of OH(•) probe compounds, which agreed with voltammetry results. Results from this study indicated that terephthalic acid is the most appropriate OH(•) probe compound for the characterization of electrochemical and catalytic systems.

  19. Advanced Launch System Multi-Path Redundant Avionics Architecture Analysis and Characterization

    Science.gov (United States)

    Baker, Robert L.

    1993-01-01

    The objective of the Multi-Path Redundant Avionics Suite (MPRAS) program is the development of a set of avionic architectural modules which will be applicable to the family of launch vehicles required to support the Advanced Launch System (ALS). To enable ALS cost/performance requirements to be met, the MPRAS must support autonomy, maintenance, and testability capabilities which exceed those present in conventional launch vehicles. The multi-path redundant or fault tolerance characteristics of the MPRAS are necessary to offset a reduction in avionics reliability due to the increased complexity needed to support these new cost reduction and performance capabilities and to meet avionics reliability requirements which will provide cost-effective reductions in overall ALS recurring costs. A complex, real-time distributed computing system is needed to meet the ALS avionics system requirements. General Dynamics, Boeing Aerospace, and C.S. Draper Laboratory have proposed system architectures as candidates for the ALS MPRAS. The purpose of this document is to report the results of independent performance and reliability characterization and assessment analyses of each proposed candidate architecture and qualitative assessments of testability, maintainability, and fault tolerance mechanisms. These independent analyses were conducted as part of the MPRAS Part 2 program and were carried under NASA Langley Research Contract NAS1-17964, Task Assignment 28.

  20. Characterization of the in vivo sites of serine phosphorylation on Lck identifying serine 59 as a site of mitotic phosphorylation.

    Science.gov (United States)

    Kesavan, Kamala P; Isaacson, Christina C; Ashendel, Curtis L; Geahlen, Robert L; Harrison, Marietta L

    2002-04-26

    The lymphocyte-specific protein-tyrosine kinase Lck plays a critical role in T cell activation. In response to T cell antigen receptor binding Lck undergoes phosphorylation on serine residues that include serines 59 and 194. Serine 59 is phosphorylated by ERK mitogen-activated protein kinase. Recently, we showed that in mitotic T cells Lck becomes hyper-phosphorylated on serine residues. In this report, using one-dimensional phosphopeptide mapping analysis, we identify serine 59 as a site of in vivo mitotic phosphorylation in Lck. The mitotic phosphorylation of serine 59 did not require either the catalytic activity or functional SH2 or SH3 domains of Lck. In addition, the presence of ZAP-70 also was dispensable for the phosphorylation of serine 59. Although previous studies demonstrated that serine 59 is a substrate for the ERK MAPK pathway, inhibitors of this pathway did not block the mitotic phosphorylation of serine 59. These results identify serine 59 as a site of mitotic phosphorylation in Lck and suggest that a pathway distinct from that induced by antigen receptor signaling is responsible for its phosphorylation. Thus, the phosphorylation of serine 59 is the result of two distinct signaling pathways, differentially activated in response to the physiological state of the T cell.

  1. Postclosure performance assessment of the SCP (Site Characterization Plan) conceptual design for horizontal emplacement: Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1987-08-01

    This report is a preliminary postclosure performance assessment of the repository design specified in the Site Characterization Plan Conceptual Design Report (SCP-CDR) for horizontal emplacement of high-level nuclear waste. At the time that these analyses were done, horizontal emplacement was the preferred orientation for the waste packages but vertical emplacement is now the reference design. This assessment consists of (1) a review of the regulatory requirements and strategy to demonstrate compliance with these requirements, (2) an analysis of the performance of the total repository system, (3) an analysis of the thermomechanical behavior of the repository, (4) an analysis of brine mobility in the repository, (5) an analysis of the waste package performance, (6) an analysis of the performance of seals, and (7) comments on the sensitivity of the various performance measures to uncertainties in the data and models. These are preliminary analyses and, in most cases, involve bounding calculations of the repository behavior. They have several purposes including (1) assessing how well this conceptual design ''measures up'' against requirements, (2) gaining experience in implementing the performance assessment strategy and tools and thereby learning where improvements are needed, (3) helping to identify needed data, and (4) helping to indicate required design modifications. 26 refs., 40 figs., 20 tabs.

  2. CHARACTERIZING DOE HANFORD SITE WASTE ENCAPSULATION STORAGE FACILITY CELLS USING RADBALL

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, E.; Coleman, R.

    2011-03-31

    RadBall{trademark} is a novel technology that can locate and quantify unknown radioactive hazards within contaminated areas, hot cells, and gloveboxes. The device consists of a colander-like outer tungsten collimator that houses a radiation-sensitive polymer semi-sphere. The collimator has a number of small holes with tungsten inserts; as a result, specific areas of the polymer are exposed to radiation becoming increasingly more opaque in proportion to the absorbed dose. The polymer semi-sphere is imaged in an optical computed tomography scanner that produces a high resolution 3D map of optical attenuation coefficients. A subsequent analysis of the optical attenuation data using a reverse ray tracing or backprojection technique provides information on the spatial distribution of gamma-ray sources in a given area forming a 3D characterization of the area of interest. RadBall{trademark} was originally designed for dry deployments and several tests, completed at Savannah River National Laboratory and Oak Ridge National Laboratory, substantiate its modeled capabilities. This study involves the investigation of the RadBall{trademark} technology during four submerged deployments in two water filled cells at the DOE Hanford Site's Waste Encapsulation Storage Facility.

  3. Magnetic resonance spectral characterization of the heme active site of Coprinus cinereus peroxidase

    Energy Technology Data Exchange (ETDEWEB)

    Lukat, G.S.; Rodgers, K.R.; Jabro, M.N.; Goff, H.M. (Univ. of Iowa, Iowa City (USA))

    1989-04-18

    Examination of the peroxidase isolated from the inkcap Basidiomycete Coprinus cinereus shows that the 42,000-dalton enzyme contains a protoheme IX prosthetic group. Reactivity assays and the electronic absorption spectra of native Coprinus peroxidase and several of its ligand complexes indicate that this enzyme has characteristics similar to those reported for horseradish peroxidase. In this paper, the authors characterize the H{sub 2}O{sub 2}-oxidized forms of Coprinus peroxidase compounds I, II, and III by electronic absorption and magnetic resonance spectroscopies. Electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) studies of this Coprinus peroxidase indicate the presence of high-spin Fe(III) in the native protein and a number of differences between the heme site of Coprinus peroxidase and horseradish peroxidase. Carbon-13 (of the ferrous CO adduct) and nitrogen-15 (of the cyanide complex) NMR studies together with proton NMR studies of the native and cyanide-complexed Caprinus peroxidase are consistent with coordination of a proximal histidine ligand. The EPR spectrum of the ferrous NO complex is also reported. Protein reconstitution with deuterated hemin has facilitated the assignment of the heme methyl resonances in the proton NMR spectrum.

  4. Assessment of Laser-Driven Pulsed Neutron Sources for Poolside Neutron-based Advanced NDE – A Pathway to LANSCE-like Characterization at INL

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Markus [Technische Univ. Darmstadt (Germany); Vogel, Sven C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bourke, Mark Andrew M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fernandez, Juan Carlos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mocko, Michael Jeffrey [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Glenzer, Siegfried [Stanford Univ., CA (United States); Leemans, Wim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Siders, Craig [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Haefner, Constantin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-04-19

    A variety of opportunities for characterization of fresh nuclear fuels using thermal (~25meV) and epithermal (~10eV) neutrons have been documented at Los Alamos National Laboratory. They include spatially resolved non-destructive characterization of features, isotopic enrichment, chemical heterogeneity and stoichiometry. The LANSCE spallation neutron source is well suited in neutron fluence and temporal characteristics for studies of fuels. However, recent advances in high power short pulse lasers suggest that compact neutron sources might, over the next decade, become viable at a price point that would permit their consideration for poolside characterization on site at irradiation facilities. In a laser-driven neutron source the laser is used to accelerate deuterium ions into a beryllium target where neutrons are produced. At this time, the technology is new and their total neutron production is approximately four orders of magnitude less than a facility like LANSCE. However, recent measurements on a sub-optimized system demonstrated >1010 neutrons in sub-nanosecond pulses in predominantly forward direction. The compactness of the target system compared to a spallation target may allow exchanging the target during a measurement to e.g. characterize a highly radioactive sample with thermal, epithermal, and fast neutrons as well as hard X-rays, thus avoiding sample handling. At this time several groups are working on laser-driven neutron production and are advancing concepts for lasers, laser targets, and optimized neutron target/moderator systems. Advances in performance sufficient to enable poolside fuels characterization with LANSCE-like fluence on sample within a decade may be possible. This report describes the underlying physics and state-of-the-art of the laser-driven neutron production process from the perspective of the DOE/NE mission. It also discusses the development and understanding that will be necessary to provide customized capability for

  5. Characterization of αX I-Domain Binding to Receptors for Advanced Glycation End Products (RAGE).

    Science.gov (United States)

    Buyannemekh, Dolgorsuren; Nham, Sang-Uk

    2017-05-31

    The β2 integrins are cell surface transmembrane proteins regulating leukocyte functions, such as adhesion and migration. Two members of β2 integrin, αMβ2 and αXβ2, share the leukocyte distribution profile and integrin αXβ2 is involved in antigen presentation in dendritic cells and transendothelial migration of monocytes and macrophages to atherosclerotic lesions. Receptor for advanced glycation end products (RAGE), a member of cell adhesion molecules, plays an important role in chronic inflammation and atherosclerosis. Although RAGE and αXβ2 play an important role in inflammatory response and the pathogenesis of atherosclerosis, the nature of their interaction and structure involved in the binding remain poorly defined. In this study, using I-domain as a ligand binding motif of αXβ2, we characterize the binding nature and the interacting moieties of αX I-domain and RAGE. Their binding requires divalent cations (Mg 2+ and Mn 2+ ) and shows an affinity on the sub-micro molar level: the dissociation constant of αX I-domains binding to RAGE being 0.49 μM. Furthermore, the αX I-domains recognize the V-domain, but not the C1 and C2-domains of RAGE. The acidic amino acid substitutions on the ligand binding site of αX I-domain significantly reduce the I-domain binding activity to soluble RAGE and the alanine substitutions of basic amino acids on the flat surface of the V-domain prevent the V-domain binding to αX I-domain. In conclusion, the main mechanism of αX I-domain binding to RAGE is a charge interaction, in which the acidic moieties of αX I-domains, including E244, and D249, recognize the basic residues on the RAGE V-domain encompassing K39, K43, K44, R104, and K107.

  6. Discovery and information-theoretic characterization of transcription factor binding sites that act cooperatively

    CERN Document Server

    Clifford, Jacob

    2015-01-01

    Transcription factor binding to the surface of DNA regulatory regions is one of the primary causes of regulating gene expression levels. A probabilistic approach to model protein-DNA interactions at the sequence level is through Position Weight Matrices (PWMs) that estimate the joint probability of a DNA binding site sequence by assuming positional independence within the DNA sequence. Here we construct conditional PWMs that depend on the motif signatures in the flanking DNA sequence, by conditioning known binding site loci on the presence or absence of additional binding sites in the flanking sequence of each site's locus. Pooling known sites with similar flanking sequence patterns allows for the estimation of the conditional distribution function over the binding site sequences. We apply our model to the Dorsal transcription factor binding sites active in patterning the Dorsal-Ventral axis of Drosophila development. We find that those binding sites that cooperate with nearby Twist sites on average contain a...

  7. Cross validation of geotechnical and geophysical site characterization methods: near surface data from selected accelerometric stations in Crete (Greece)

    Science.gov (United States)

    Loupasakis, C.; Tsangaratos, P.; Rozos, D.; Rondoyianni, Th.; Vafidis, A.; Kritikakis, G.; Steiakakis, M.; Agioutantis, Z.; Savvaidis, A.; Soupios, P.; Papadopoulos, I.; Papadopoulos, N.; Sarris, A.; Mangriotis, M.-D.; Dikmen, U.

    2015-06-01

    The specification of the near surface ground conditions is highly important for the design of civil constructions. These conditions determine primarily the ability of the foundation formations to bear loads, the stress - strain relations and the corresponding settlements, as well as the soil amplification and corresponding peak ground motion in case of dynamic loading. The static and dynamic geotechnical parameters as well as the ground-type/soil-category can be determined by combining geotechnical and geophysical methods, such as engineering geological surface mapping, geotechnical drilling, in situ and laboratory testing and geophysical investigations. The above mentioned methods were combined, through the Thalis ″Geo-Characterization″ project, for the site characterization in selected sites of the Hellenic Accelerometric Network (HAN) in the area of Crete Island. The combination of the geotechnical and geophysical methods in thirteen (13) sites provided sufficient information about their limitations, setting up the minimum tests requirements in relation to the type of the geological formations. The reduced accuracy of the surface mapping in urban sites, the uncertainties introduced by the geophysical survey in sites with complex geology and the 1D data provided by the geotechnical drills are some of the causes affecting the right order and the quantity of the necessary investigation methods. Through this study the gradual improvement on the accuracy of site characterization data is going to be presented by providing characteristic examples from a total number of thirteen sites. Selected examples present sufficiently the ability, the limitations and the right order of the investigation methods.

  8. Characterization of U.S. Wave Energy Converter (WEC) Test Sites: A Catalogue of Met-Ocean Data.

    Energy Technology Data Exchange (ETDEWEB)

    Dallman, Ann Renee; Neary, Vincent Sinclair

    2014-10-01

    This report presents met - ocean data and wave energy characteristics at three U.S. wave energy converter (WEC) test and potential deployment sites . Its purpose is to enable the compari son of wave resource characteristics among sites as well as the select io n of test sites that are most suitable for a developer's device and that best meet their testing needs and objectives . It also provides essential inputs for the design of WEC test devices and planning WEC tests, including the planning of deployment and op eration s and maintenance. For each site, this report catalogues wave statistics recommended in the (draft) International Electrotechnical Commission Technical Specification (IEC 62600 - 101 TS) on Wave Energy Characterization, as well as the frequency of oc currence of weather windows and extreme sea states, and statistics on wind and ocean currents. It also provides useful information on test site infrastructure and services .

  9. Advanced characterization of MIMAS MOX fuel microstructure to quantify the HBS formation

    Energy Technology Data Exchange (ETDEWEB)

    Bouloré, Antoine, E-mail: antoine.boulore@cea.fr [CEA, DEN, DEC Fuel Research Department, Cadarache, F13108 Saint-Paul-lez-Durance (France); Aufore, Laurence; Federici, Eric [CEA, DEN, DEC Fuel Research Department, Cadarache, F13108 Saint-Paul-lez-Durance (France); Blanpain, Patrick [AREVA NP SAS, 10 rue Juliette Récamier, F-69456 Lyon (France); Blachier, Rémi [EDF, SEPTEN, 12-14 Av. Dutrievoz, F-69628 Villeurbanne (France)

    2015-01-15

    Highlights: • An advanced characterization of MIMAS MOX fuel based only on fresh fuel pellet characterization. • A probabilistic approach to model the High Burnup Structure formation in oxide fuels. • Validation of the method by comparing to experimental data obtained on fuel irradiated in the Halden reactor. - Abstract: Fission gas behaviour in accidental situations is closely related to the location of fission gas before the accident. More precisely, most of the fission gas in intergranular position is released during the accident and HBS zones contribute a lot to this intergranular quantity. So a methodology to characterize the HBS zones a priori from examination of unirradiated pellet has been developed at CEA. Characterization of plutonium distribution in MIMAS MOX fresh fuel pellets can be performed by image analysis on 1 mm{sup 2} X-ray mappings of plutonium acquired using Electron Probe Micro Analysis (EPMA). The specific software developed to describe the fuel using Pu X-ray mapping (ANACONDA) has been improved in order to simulate the fission products (FP) production and recoil during a given irradiation of the fuel, taking into account the evolution of the plutonium due to neutron irradiation. This simulation results from calculations with our fuel performance code ALCYONE combined with image processing. The final result is a mapping of local burn-up, but also the distribution of the relative FP concentration as a function of the local burn-up. A validation of this simulation process has been done by comparing the simulated mapping of neodymium to one measured on the same fuel batch after irradiation. Using previous studies of mechanisms for HBS formation, a probabilistic criterion for HBS formation has been proposed, based on the EPMA measurements of the decrease of the xenon signal as a function of the local burn-up. Combining the simulated FP cartography with this probabilistic HBS formation criterion, it is possible to calculate the surface

  10. 10 CFR Appendix IV to Part 960 - Types of Information for the Nomination of Sites as Suitable for Characterization

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Types of Information for the Nomination of Sites as Suitable for Characterization IV Appendix IV to Part 960 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR... hydraulic properties of aquifers, confining units, and aquitards. • Potential areas and modes of recharge...

  11. Structural characterization of Mg substituted on A/B sites in NiFe2O4 ...

    Indian Academy of Sciences (India)

    2017-06-19

    Jun 19, 2017 ... Home; Journals; Pramana – Journal of Physics; Volume 89; Issue 1. Structural characterization of Mg substituted on A/B sites in N i F e 2 O 4 nanoparticles .... Author Affiliations. MANOJIT DE1 H S TEWARI1. Department of Pure and Applied Physics, Guru Ghasidas Vishwavidyalaya, Bilaspur 495 009, India ...

  12. TECHNICAL APPROACHES TO CHARACTERIZING AND CLEANING UP BROWNFIELDS SITES: PULP AND PAPER MILLS

    Science.gov (United States)

    This guidance document gives assistance to communities, decision-makers, states and municipalities, academia, and the private sector to address issues related to the redevelopment of Brownfields sites, specifically pulp and paper mills sites. The document helps users to understan...

  13. Characterization of Tubing from Advanced ODS alloy (FCRD-NFA1)

    Energy Technology Data Exchange (ETDEWEB)

    Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Aydogan, Eda [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Anderoglu, Osman [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lavender, Curt [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Anderson, Iver [Ames Lab., Ames, IA (United States); Rieken, Joel [Ames Lab., Ames, IA (United States); Lewandowski, John [Case Western Reserve Univ., Cleveland, OH (United States); Hoelzer, Dave [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Odette, George R. [Univ. of California, Santa Barbara, CA (United States)

    2016-09-20

    Fabrication methods are being developed and tested for producing fuel clad tubing of the advanced ODS 14YWT and FCRD-NFA1 ferritic alloys. Three fabrication methods were based on plastically deforming a machined thick-wall tube sample of the ODS alloys by pilgering, hydrostatic extrusion or drawing to decrease the outer diameter and wall thickness and increase the length of the final tube. The fourth fabrication method consisted of the additive manufacturing approach involving solid-state spray deposition (SSSD) of ball milled and annealed powder of 14YWT for producing thin-wall tubes. Of the four fabrication methods, two methods were successful at producing tubing for further characterization: production of tubing by high-velocity oxy-fuel spray forming and production of tubing using high-temperature hydrostatic extrusion. The characterization described shows through neutron diffraction the texture produced during extrusion while maintaining the beneficial oxide dispersion. In this research, the parameters for innovative thermal spray deposition and hot extrusion processing methods have been developed to produce the final nanostructured ferritic alloy (NFA) tubes having approximately 0.5 mm wall thickness. Effect of different processing routes on texture and grain boundary characteristics has been investigated. It was found that hydrostatic extrusion results in combination of plane strain and shear deformations which generate rolling textures of α- and γ-fibers on {001}<110> and {111}<110> together with a shear texture of ζ-fiber on {011}<211> and {011}<011>. On the other hand, multi-step plane strain deformation in cross directions leads to a strong rolling textures of θ- and ε-fiber on {001}<110> together with weak γ-fiber on {111}<112>. Even though the amount of the equivalent strain is similar, shear deformation leads to much lower texture indexes compared to the plane strain deformations. Moreover, while 50% of hot rolling brings about a large number of

  14. Gravity Spy: integrating advanced LIGO detector characterization, machine learning, and citizen science

    Science.gov (United States)

    Zevin, M.; Coughlin, S.; Bahaadini, S.; Besler, E.; Rohani, N.; Allen, S.; Cabero, M.; Crowston, K.; Katsaggelos, A. K.; Larson, S. L.; Lee, T. K.; Lintott, C.; Littenberg, T. B.; Lundgren, A.; Østerlund, C.; Smith, J. R.; Trouille, L.; Kalogera, V.

    2017-03-01

    With the first direct detection of gravitational waves, the advanced laser interferometer gravitational-wave observatory (LIGO) has initiated a new field of astronomy by providing an alternative means of sensing the universe. The extreme sensitivity required to make such detections is achieved through exquisite isolation of all sensitive components of LIGO from non-gravitational-wave disturbances. Nonetheless, LIGO is still susceptible to a variety of instrumental and environmental sources of noise that contaminate the data. Of particular concern are noise features known as glitches, which are transient and non-Gaussian in their nature, and occur at a high enough rate so that accidental coincidence between the two LIGO detectors is non-negligible. Glitches come in a wide range of time-frequency-amplitude morphologies, with new morphologies appearing as the detector evolves. Since they can obscure or mimic true gravitational-wave signals, a robust characterization of glitches is paramount in the effort to achieve the gravitational-wave detection rates that are predicted by the design sensitivity of LIGO. This proves a daunting task for members of the LIGO Scientific Collaboration alone due to the sheer amount of data. In this paper we describe an innovative project that combines crowdsourcing with machine learning to aid in the challenging task of categorizing all of the glitches recorded by the LIGO detectors. Through the Zooniverse platform, we engage and recruit volunteers from the public to categorize images of time-frequency representations of glitches into pre-identified morphological classes and to discover new classes that appear as the detectors evolve. In addition, machine learning algorithms are used to categorize images after being trained on human-classified examples of the morphological classes. Leveraging the strengths of both classification methods, we create a combined method with the aim of improving the efficiency and accuracy of each individual

  15. GOES-R Advanced Baseline Imager: spectral response functions and radiometric biases with the NPP Visible Infrared Imaging Radiometer Suite evaluated for desert calibration sites.

    Science.gov (United States)

    Pearlman, Aaron; Pogorzala, David; Cao, Changyong

    2013-11-01

    The Advanced Baseline Imager (ABI), which will be launched in late 2015 on the National Oceanic and Atmospheric Administration's Geostationary Operational Environmental Satellite R-series satellite, will be evaluated in terms of its data quality postlaunch through comparisons with other satellite sensors such as the recently launched Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership satellite. The ABI has completed much of its prelaunch characterization and its developers have generated and released its channel spectral response functions (response versus wavelength). Using these responses and constraining a radiative transfer model with ground reflectance, aerosol, and water vapor measurements, we simulate observed top of atmosphere (TOA) reflectances for analogous visible and near infrared channels of the VIIRS and ABI sensors at the Sonoran Desert and White Sands National Monument sites and calculate the radiometric biases and their uncertainties. We also calculate sensor TOA reflectances using aircraft hyperspectral data from the Airborne Visible/Infrared Imaging Spectrometer to validate the uncertainties in several of the ABI and VIIRS channels and discuss the potential for validating the others. Once on-orbit, calibration scientists can use these biases to ensure ABI data quality and consistency to support the numerical weather prediction community and other data users. They can also use the results for ABI or VIIRS anomaly detection and resolution.

  16. Comparative Characterization of Atmospheric particles at an urban site and a roadside site in the City of Gaborone, Botswana

    Science.gov (United States)

    Mmereki, B. T.; Khumoetsile, T.

    2016-12-01

    Characterization of individual atmospheric particles in the urban atmosphere is key to addressing a number of air quality issues ranging from pollution source apportionment, understanding their global biogeochemical cycling and environmental fate to the correlation of the particle morphology and chemical make-up to health related issues. Airborne particles were collected in the city of Gaborone Botswana using a High Volume air-sampler. Samples were collected in the summer and winter months at a location bordering a busy highway and a low income high-human population density locality where un-controlled fossil fuel burning provides for the requisite energy requirements of the population in this locality. Morphologies and elemental compositions of particles were obtained using Scanning Electron Microscopy (SEM) coupled with energy-dispersive (X-ray) spectrometry (EDS). Preliminary results suggest a complex mix of aggregates of carbonaceous-diesel particles, complex carbonaceous matter, and inorganic nano-crystals. Ambient air morphology and concentrations of particles (PM10), carbon monoxide (CO), nitrogen oxides (NOx), and ozone (O3) will be discussed. There is a notable influence of high traffic volumes to particle chemistry.

  17. Discovery and information-theoretic characterization of transcription factor binding sites that act cooperatively

    Science.gov (United States)

    Clifford, Jacob; Adami, Christoph

    2015-10-01

    Transcription factor binding to the surface of DNA regulatory regions is one of the primary causes of regulating gene expression levels. A probabilistic approach to model protein-DNA interactions at the sequence level is through position weight matrices (PWMs) that estimate the joint probability of a DNA binding site sequence by assuming positional independence within the DNA sequence. Here we construct conditional PWMs that depend on the motif signatures in the flanking DNA sequence, by conditioning known binding site loci on the presence or absence of additional binding sites in the flanking sequence of each site's locus. Pooling known sites with similar flanking sequence patterns allows for the estimation of the conditional distribution function over the binding site sequences. We apply our model to the Dorsal transcription factor binding sites active in patterning the Dorsal-Ventral axis of Drosophila development. We find that those binding sites that cooperate with nearby Twist sites on average contain about 0.5 bits of information about the presence of Twist transcription factor binding sites in the flanking sequence. We also find that Dorsal binding site detectors conditioned on flanking sequence information make better predictions about what is a Dorsal site relative to background DNA than detection without information about flanking sequence features.

  18. Molecular and Histopathological Characterization of the Tumor Immune Microenvironment in Advanced Stage of Malignant Pleural Mesothelioma.

    Science.gov (United States)

    Patil, Namrata S; Righi, Luisella; Koeppen, Hartmut; Zou, Wei; Izzo, Stefania; Grosso, Federica; Libener, Roberta; Loiacono, Marco; Monica, Valentina; Buttigliero, Consuelo; Novello, Silvia; Hegde, Priti S; Papotti, Mauro; Kowanetz, Marcin; Scagliotti, Giorgio V

    2018-01-01

    Malignant pleural mesothelioma (MPM) is a rare, highly aggressive, and relatively chemoresistant and radioresistant malignancy with limited therapeutic options. Our objective was to investigate the prevalence of programmed death ligand 1 (PD-L1) and the characteristics of the immune environment in this disease. A total of 99 archival tumors from advanced-stage MPM were immunohistochemically tested in parallel for PD-L1 in two different laboratories, and 87 of them were profiled for immune gene expression by NanoString analysis for 800 genes. A prior study on the same samples indicated a low mutational load with a complex mutational landscape of genetic variations more frequently associated with the p53/DNA repair and phosphoinisitide-3-kinase pathways. PD-L1 expression was found in 16% of the MPM tumor samples, either in the tumor cells or the infiltrating immune cells. Gene expression analysis suggested that MPM is an inflamed tumor type and can be classified into three different subgroups on the basis of the different expression profiles of immune-related genes, of which two groups showed varying degrees of expression of immune-related genes. Overall, these molecular findings suggest that these subgroups of MPM associated with PD-L1 positivity and expression of immune-related genes accounting for 60% of MPMs represent a candidate subtype that may respond to cancer immunotherapy. These data suggest that 60% of patients with MPM characterized by either PD-L1 expression or an inflamed status are attractive candidates for cancer immunotherapeutic options. Copyright © 2017 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  19. Characterization of a linear device developed for research on advanced plasma imaging and dynamicsa)

    Science.gov (United States)

    Chung, J.; Lee, K. D.; Seo, D. C.; Nam, Y. U.; Choi, M. C.

    2010-10-01

    Within the scope of long term research on imaging diagnostics for steady-state plasmas and understanding of edge plasma physics through diagnostics with conventional spectroscopic methods, we have constructed a linear electron cyclotron resonance (ECR) plasma device named Research on Advanced Plasma Imaging and Dynamics (RAPID). It has a variety of axial magnetic field profiles provided by eight water-cooled magnetic coils and two dc power supplies. The positions of the magnetic coils are freely adjustable along the axial direction and the power supplies can be operated with many combinations of electrical wiring to the coils. Here, a 6 kW 2.45 GHz magnetron is used to produce steady-state hydrogen, helium, and argon plasmas with central magnetic fields of 875 and/or 437.5 G (second harmonic). In order to achieve the highest possible plasma performance within the limited input parameters, wall conditioning experiments were carried out. Chamber bake-out was achieved with heating coils that were wound covering the vessel, and long-pulse electron cyclotron heating discharge cleaning was also followed after 4 days of bake-out. A uniform bake-out temperature (150 °C) was achieved by wrapping the vessel in high temperature thermal insulation textile and by controlling the heating coil current using a digital control system. The partial pressure changes were observed using a residual gas analyzer, and a total system pressure of 5×10-8 Torr was finally reached. Diagnostic systems including a millimeter-wave interferometer, a high resolution survey spectrometer, a Langmuir probe, and an ultrasoft x-ray detector were used to provide the evidence that the plasma performance was improved as we desired. In this work, we present characterization of the RAPID device for various system conditions and configurations.

  20. Characterization of a linear device developed for research on advanced plasma imaging and dynamics.

    Science.gov (United States)

    Chung, J; Lee, K D; Seo, D C; Nam, Y U; Choi, M C

    2010-10-01

    Within the scope of long term research on imaging diagnostics for steady-state plasmas and understanding of edge plasma physics through diagnostics with conventional spectroscopic methods, we have constructed a linear electron cyclotron resonance (ECR) plasma device named Research on Advanced Plasma Imaging and Dynamics (RAPID). It has a variety of axial magnetic field profiles provided by eight water-cooled magnetic coils and two dc power supplies. The positions of the magnetic coils are freely adjustable along the axial direction and the power supplies can be operated with many combinations of electrical wiring to the coils. Here, a 6 kW 2.45 GHz magnetron is used to produce steady-state hydrogen, helium, and argon plasmas with central magnetic fields of 875 and/or 437.5 G (second harmonic). In order to achieve the highest possible plasma performance within the limited input parameters, wall conditioning experiments were carried out. Chamber bake-out was achieved with heating coils that were wound covering the vessel, and long-pulse electron cyclotron heating discharge cleaning was also followed after 4 days of bake-out. A uniform bake-out temperature (150 °C) was achieved by wrapping the vessel in high temperature thermal insulation textile and by controlling the heating coil current using a digital control system. The partial pressure changes were observed using a residual gas analyzer, and a total system pressure of 5×10(-8) Torr was finally reached. Diagnostic systems including a millimeter-wave interferometer, a high resolution survey spectrometer, a Langmuir probe, and an ultrasoft x-ray detector were used to provide the evidence that the plasma performance was improved as we desired. In this work, we present characterization of the RAPID device for various system conditions and configurations.

  1. Site Characterization of the Source Physics Experiment Phase II Location Using Seismic Reflection Data

    Science.gov (United States)

    Sexton, E. A.; Snelson, C. M.; Chipman, V.; Emer, D. F.; White, R. L.; Emmitt, R.; Wright, A. A.; Drellack, S.; Huckins-Gang, H.; Mercadante, J.; Floyd, M.; McGowin, C.; Cothrun, C.; Bonal, N.

    2013-12-01

    An objective of the Source Physics Experiment (SPE) is to identify low-yield nuclear explosions from a regional distance. Low-yield nuclear explosions can often be difficult to discriminate among the clutter of natural and man-made explosive events (e.g., earthquakes and mine blasts). The SPE is broken into three phases. Phase I has provided the first of the physics-based data to test the empirical models that have been used to discriminate nuclear events. The Phase I series of tests were placed within a highly fractured granite body. The evolution of the project has led to development of Phase II, to be placed within the opposite end member of geology, an alluvium environment, thereby increasing the database of waveforms to build upon in the discrimination models. Both the granite and alluvium sites have hosted nearby nuclear tests, which provide comparisons for the chemical test data. Phase III of the SPE is yet to be determined. For Phase II of the experiment, characterization of the location is required to develop the geologic/geophysical models for the execution of the experiment. Criteria for the location are alluvium thickness of approximately 170 m and a water table below 170 m; minimal fracturing would be ideal. A P-wave mini-vibroseis survey was conducted at a potential site in alluvium to map out the subsurface geology. The seismic reflection profile consisted of 168 geophone stations, spaced 5 m apart. The mini-vibe was a 7,000-lb peak-force source, starting 57.5 m off the north end of the profile and ending 57.5 m past the southern-most geophone. The length of the profile was 835 m. The source points were placed every 5 m, equally spaced between geophones to reduce clipping. The vibroseis sweep was from 20 Hz down to 180 Hz over 8 seconds, and four sweeps were stacked at each shot location. The shot gathers show high signal-to-noise ratios with clear first arrivals across the entire spread and the suggestion of some shallow reflectors. The data were

  2. CO2 Field Laboratory at Svelvik Ridge: Site characterization after the first injection experiment

    Science.gov (United States)

    Buddensiek, M. L.; Lindeberg, E.; Mørk, A.; Jones, D.; Girard, J. F.; Kuras, O.; Barrio, M.; Royse, K.; Gal, F.; Meldrum, P.; Pezard, P.; Levannier, A.; Desroches, J.; Neyens, D.; Paris, J.; Henry, G.; Bakk, A.; Wertz, F.; Aker, E.; Børresen, M.

    2012-04-01

    The safety and acceptance of CO2 storage will depend on the ability to detect and quantify CO2 within and outside the storage complex. To determine sensitivity of CO2 monitoring systems with respect to CO2 distribution and leakage detection, the CO2 Field Lab project comprises two controlled CO2 injection tests in the shallow (100-300 m) and very shallow (20 m) subsurface of the glacial deposit that forms Svelvik ridge, 50 km south of Oslo. The CO2 displacement in the subsurface and at the surface has and will be monitored with an exhaustive set of techniques. Iteratively, observations and flow modeling will provide frequent updates of the CO2 distribution. The results will be upscaled to assess monitoring systems and requirements with the ultimate objective to provide guidelines to regulators, operators and technology providers for monitoring systems. The formation that comprises the laboratory is a glaciofluvial-glaciomarine terminal deposit formed during the Ski stage of the Holocene deglaciation. Nearby outcrops show that the formation is channeled and variably laminated with a significant variation in grain size and structure. Prior to the injection experiments, the site was characterized including 2D seismic and electric surveys, the drilling, logging and sampling of a 330 m deep appraisal well, core and flow line sample analyses, ground penetrating radar (GPR), a hydrodynamic appraisal, and geochemical and soil gas baseline surveys. These data were used to populate a geomodel. Flow modeling of the plume development included some variability in permeability and anisotropy, and various injection scenarios. Accordingly, the 20 m injection experiment was conducted in fall 2011 with a monitoring plan designed to spatially and temporally monitor the expected plume development. The monitoring equipment was thus distributed around the 20 m deep injection point of an inclined well. It included seven 6 m deep monitoring wells equipped with resistivity, sonic and

  3. Los Alamos National Laboratory Yucca Mountain Site Characterization Project 1992 quality program status report

    Energy Technology Data Exchange (ETDEWEB)

    Bolivar, S.L.; Burningham, A.; Chavez, P. [and others

    1994-03-01

    This status report summarizes the activities and accomplishments of the Los Alamos Yucca Mountain Site Characterization Project`s quality assurance program for calendar year 1992. The report includes major sections on Program Activities and Trend Analysis. Program Activities are discussed periodically at quality meetings. The most significant issue addressed in 1992 has been the timely revision of quality administrative procedures. The procedure revision process was streamlined from 55 steps to 7. The number of forms in procedures was reduced by 38%, and the text reduced by 29%. This allowed revision in 1992 of almost half of all implementing procedures. The time necessary to complete the revision process (for a procedure) was reduced from 11 months to 3 months. Other accomplishments include the relaxation of unnecessarily strict training requirements, requiring quality assurance reviews only from affected organizations, and in general simplifying work processes. All members of the YMP received training to the new Orientation class Eleven other training classed were held. Investigators submitted 971 records to the Project and only 37 were rejected. The software program has 115 programs approved for quality-affecting work. The Project Office conducted 3 audits and 1 survey of Los Alamos activities. We conducted 14 audits and 4 surveys. Eight corrective action reports were closed, leaving only one open. Internally, 22 deficiencies were recognized. This is a decrease from 65 in 1991. Since each deficiency requires about 2 man weeks to resolve, the savings are significant. Problems with writing acceptable deficiency reports have essentially disappeared. Trend reports for 1992 were examined and are summarized herein. Three adverse trends have been closed; one remaining adverse trend will be closed when the affected procedures are revised. The number of deficiencies issued to Los Alamos compared to other participants is minimal.

  4. A strategy to seal exploratory boreholes in unsaturated tuff; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, J.A. [Sandia National Labs., Albuquerque, NM (United States); Case, J.B.; Givens, C.A.; Carney, B.C. [IT Corp., Albuquerque, NM (United States)

    1994-04-01

    This report presents a strategy for sealing exploratory boreholes associated with the Yucca Mountain Site Characterization Project. Over 500 existing and proposed boreholes have been considered in the development of this strategy, ranging from shallow (penetrating into alluvium only) to deep (penetrating into the groundwater table). Among the comprehensive list of recommendations are the following: Those boreholes within the potential repository boundary and penetrating through the potential repository horizon are the most significant boreholes from a performance standpoint and should be sealed. Shallow boreholes are comparatively insignificant and require only nominal sealing. The primary areas in which to place seals are away from high-temperature zones at a distance from the potential repository horizon in the Paintbrush nonwelded tuff and the upper portion of the Topopah Spring Member and in the tuffaceous beds of the Calico Hills Unit. Seals should be placed prior to waste emplacement. Performance goals for borehole seals both above and below the potential repository are proposed. Detailed construction information on the boreholes that could be used for future design specifications is provided along with a description of the environmental setting, i.e., the geology, hydrology, and the in situ and thermal stress states. A borehole classification scheme based on the condition of the borehole wall in different tuffaceous units is also proposed. In addition, calculations are presented to assess the significance of the boreholes acting as preferential pathways for the release of radionuclides. Design calculations are presented to answer the concerns of when, where, and how to seal. As part of the strategy development, available technologies to seal exploratory boreholes (including casing removal, borehole wall reconditioning, and seal emplacement) are reviewed.

  5. Characterization of dFOXO binding sites upstream of the Insulin Receptor P2 promoter across the Drosophila phylogeny.

    Directory of Open Access Journals (Sweden)

    Dorcas J Orengo

    Full Text Available The insulin/TOR signal transduction pathway plays a critical role in determining such important traits as body and organ size, metabolic homeostasis and life span. Although this pathway is highly conserved across the animal kingdom, the affected traits can exhibit important differences even between closely related species. Evolutionary studies of regulatory regions require the reliable identification of transcription factor binding sites. Here we have focused on the Insulin Receptor (InR expression from its P2 promoter in the Drosophila genus, which in D. melanogaster is up-regulated by hypophosphorylated Drosophila FOXO (dFOXO. We have finely characterized this transcription factor binding sites in vitro along the 1.3 kb region upstream of the InR P2 promoter in five Drosophila species. Moreover, we have tested the effect of mutations in the characterized dFOXO sites of D. melanogaster in transgenic flies. The number of experimentally established binding sites varies across the 1.3 kb region of any particular species, and their distribution also differs among species. In D. melanogaster, InR expression from P2 is differentially affected by dFOXO binding sites at the proximal and distal halves of the species 1.3 kb fragment. The observed uneven distribution of binding sites across this fragment might underlie their differential contribution to regulate InR transcription.

  6. Validation of EO-1 Hyperion and Advanced Land Imager Using the Radiometric Calibration Test Site at Railroad Valley, Nevada

    Science.gov (United States)

    Czapla-Myers, Jeffrey; Ong, Lawrence; Thome, Kurtis; McCorkel, Joel

    2015-01-01

    The Earth-Observing One (EO-1) satellite was launched in 2000. Radiometric calibration of Hyperion and the Advanced Land Imager (ALI) has been performed throughout the mission lifetime using various techniques that include ground-based vicarious calibration, pseudo-invariant calibration sites, and also the moon. The EO-1 mission is nearing its useful lifetime, and this work seeks to validate the radiometric calibration of Hyperion and ALI from 2013 until the satellite is decommissioned. Hyperion and ALI have been routinely collecting data at the automated Radiometric Calibration Test Site [RadCaTS/Railroad Valley (RRV)] since launch. In support of this study, the frequency of the acquisitions at RadCaTS has been significantly increased since 2013, which provides an opportunity to analyze the radiometric stability and accuracy during the final stages of the EO-1 mission. The analysis of Hyperion and ALI is performed using a suite of ground instrumentation that measures the atmosphere and surface throughout the day. The final product is an estimate of the top-of-atmosphere (TOA) spectral radiance, which is compared to Hyperion and ALI radiances. The results show that Hyperion agrees with the RadCaTS predictions to within 5% in the visible and near-infrared (VNIR) and to within 10% in the shortwave infrared (SWIR). The 2013-2014 ALI results show agreement to within 6% in the VNIR and 7.5% in the SWIR bands. A cross comparison between ALI and the Operational Land Imager (OLI) using RadCaTS as a transfer source shows agreement of 3%-6% during the period of 2013-2014.

  7. Electrical characterization of dislocations in gallium nitride using advanced scanning probe techniques

    Science.gov (United States)

    Simpkins, Blake Shelley Ginsberg

    GaN-based materials are promising for high speed and power applications such as amplifier and communications circuits. Ga, In, and AIN-based alloys span a wide optical range (2--6.1 eV) and exhibit strong polarizations making them useful in many devices; however, films are highly defective (˜10 8 dislocations cm-2) due to lack of suitable substrates. Thus, nanoscale electronic characterization of these dislocations is critical for device and growth optimization. Scanning probe techniques enable characterization at length-scales unattainable by conventional techniques. First, scanning Kelvin probe microscopy (SKPM) was used to image surface potential variations due to charged dislocations in HVPE-grown GaN. The film's structural evolution "with thickness was monitored showing a decrease in dislocation density, likely through dislocation reaction. Numerical simulations were used to investigate tip-size effects when imaging highly localized (tens of nm) potential variations indicating that measured dislocation induced potential features in GaN can be much smaller (˜80%) than true variations. Next, capacitance variations in MBE-grown HFETs, due to dislocations-induced carrier depletion, were imaged with scanning capacitance microscopy (SCM). The distribution of these charged centers was correlated with buffer schemes showing that an AIN buffer leads to pseudomorphic (2D) nucleation and randomly distributed misfit dislocations while deposition directly on SiC results in island (3D) nucleation and a domain structure with dislocations grouped at domain boundaries. Hall measurements and numerical simulations were also carried out to further study the implications of these microstructures. Numerical results indicated that randomly distributed dislocations deplete a larger fraction of free carriers than the same density of grouped dislocations and correlated favorably with Hall results. Correlated SKPM and conductive AFM (C-AFM) measurements were then used to study

  8. Initial characterization of mudstone nanoporosity with small angle neutron scattering using caprocks from carbon sequestration sites.

    Energy Technology Data Exchange (ETDEWEB)

    McCray, John (Colorado School of Mines); Navarre-Sitchler, Alexis (Colorado School of Mines); Mouzakis, Katherine (Colorado School of Mines); Heath, Jason E.; Dewers, Thomas A.; Rother, Gernot (Oak Ridge National Laboratory)

    2010-11-01

    Geological carbon sequestration relies on the principle that CO{sub 2} injected deep into the subsurface is unable to leak to the atmosphere. Structural trapping by a relatively impermeable caprock (often mudstone such as a shale) is the main trapping mechanism that is currently relied on for the first hundreds of years. Many of the pores of the caprock are of micrometer to nanometer scale. However, the distribution, geometry and volume of porosity at these scales are poorly characterized. Differences in pore shape and size can cause variation in capillary properties and fluid transport resulting in fluid pathways with different capillary entry pressures in the same sample. Prediction of pore network properties for distinct geologic environments would result in significant advancement in our ability to model subsurface fluid flow. Specifically, prediction of fluid flow through caprocks of geologic CO{sub 2} sequestration reservoirs is a critical step in evaluating the risk of leakage to overlying aquifers. The micro- and nanoporosity was analyzed in four mudstones using small angle neutron scattering (SANS). These mudstones are caprocks of formations that are currently under study or being used for carbon sequestration projects and include the Marine Tuscaloosa Group, the Lower Tuscaloosa Group, the upper and lower shale members of the Kirtland Formation, and the Pennsylvanian Gothic shale. Total organic carbon varies from <0.3% to 4% by weight. Expandable clay contents range from 10% to {approx}40% in the Gothic shale and Kirtland Formation, respectively. Neutrons effectively scatter from interfaces between materials with differing scattering length density (i.e. minerals and pores). The intensity of scattered neutrons, I(Q), where Q is the scattering vector, gives information about the volume of pores and their arrangement in the sample. The slope of the scattering data when plotted as log I(Q) vs. log Q provides information about the fractality or geometry of

  9. Maxillomandibular advancement surgery in a site-specific treatment approach for obstructive sleep apnea in 50 consecutive patients.

    Science.gov (United States)

    Prinsell, J R

    1999-12-01

    To report the efficacy of maxillomandibular advancement (MMA) surgery, with a description of several innovations, as a site-specific treatment of obstructive sleep apnea syndrome (OSAS) in selected cases with disproportionate velo-orohypopharyngeal anatomy. Clinical series of 50 consecutive cases. Surgery was performed in a hospital operating room, and perioperative management was provided in an intensive care environment. Except for polysomnography (PSG), which was performed and interpreted by independent sleep facilities/physicians, all pre- and postoperative evaluations were accomplished in a solo office private practice setting. Patients were referred for MMA evaluation when applicable conservative therapies such as nasal continuous positive airway pressure (nCPAP) were not tolerated, refused, or unsuccessful. Case selection was based primarily on the sites of disproportionate upper airway anatomy. MMA consisted of a Lefort I osteotomy, bilateral sagittal split ramus osteotomies, and a new modified procedure called an anterior inferior mandibular osteotomy with indirect hyoid suspension. Some patients also received concomitant adjunctive nonpharyngeal procedures. Obtained at a mean of 5.2 months postoperatively, revealed significant improvement in all cases. Mean BPs (n = 50) were lowered, subjective symptoms were ameliorated, and mean body mass index (n = 50) was reduced. Cephalometric analysis (n = 50), with several new modifications including standardization for phases of respiration, quantified structural changes in soft-tissue and bony landmarks. Postoperative PSG results (n = 50) showed dramatic improvement over preoperative data (n = 50), with therapeutic values similar to nCPAP (n = 42). Mean values improved from preoperative to postoperative vs nCPAP for apnea index (34.5 to 1.0 vs 2.0, respectively), apnea-hypopnea index (59.2 to 4.7 vs 5.4, respectively), lowest arterial oxyhemoglobin desaturations (72.7% to 88.6% vs 88.6%, respectively), and number

  10. Geotechnical characterization of the North Ramp of the Exploratory Studies Facility: Yucca Mountain Site Characterization Project. Volume 2, NRG corehole data appendices

    Energy Technology Data Exchange (ETDEWEB)

    Brechtel, C.E.; Lin, Ming; Martin, E. [Agapito Associates, Inc., Grand Junction, CO (United States); Kessel, D.S. [Sandia National Labs., Albuquerque, NM (United States)

    1995-05-01

    This report presents the results of the geological and geotechnical characterization of the Miocene volcanic tuff rocks of the Timber Mountain and Paintbrush groups that the tunnel boring machine will encounter during excavations of the Exploratory Studies Facility (ESF) North Ramp. The information in this report was developed to support the design of the ESF North Ramp. The ESF is being constructed by the DOE as part of the Yucca Mountain Project site characterization activities. The purpose of these activities is to evaluate the potential to locate the national high-level nuclear waste repository on land within and adjacent to the Nevada Test Site (NTS), Nye County, Nevada. This report was prepared as part of the Soil and Rock Properties Studies in accordance with the 8.3.1.14.2 Study Plan to Provide Soil and Rock Properties. This is volume 2 which contains NRG Corehole Data for each of the NRG Holes.

  11. Evaluation of the effects of underground water usage and spillage in the Exploratory Studies Facility; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, E.; Sobolik, S.R.

    1993-12-01

    The Yucca Mountain Site Characterization Project is studying Yucca Mountain in southwestern Nevada as a potential site for a high-level radioactive waste repository. Analyses reported herein were performed to support the design of site characterization activities so that these activities will have a minimal impact on the ability of the site to isolate waste and a minimal impact on underground tests performed as part of the characterization process. These analyses examine the effect of water to be used in the underground construction and testing activities for the Exploratory Studies Facility on in situ conditions. Underground activities and events where water will be used include construction, expected but unplanned spills, and fire protection. The models used predict that, if the current requirements in the Exploratory Studies Facility Design Requirements are observed, water that is imbibed into the tunnel wall rock in the Topopah Springs welded tuff can be removed over the preclosure time period by routine or corrective ventilation, and also that water imbibed into the Paintbrush Tuff nonwelded tuff will not reach the potential waste storage area.

  12. Methods to characterize environmental settings of stream and groundwater sampling sites for National Water-Quality Assessment

    Science.gov (United States)

    Nakagaki, Naomi; Hitt, Kerie J.; Price, Curtis V.; Falcone, James A.

    2012-01-01

    Characterization of natural and anthropogenic features that define the environmental settings of sampling sites for streams and groundwater, including drainage basins and groundwater study areas, is an essential component of water-quality and ecological investigations being conducted as part of the U.S. Geological Survey's National Water-Quality Assessment program. Quantitative characterization of environmental settings, combined with physical, chemical, and biological data collected at sampling sites, contributes to understanding the status of, and influences on, water-quality and ecological conditions. To support studies for the National Water-Quality Assessment program, a geographic information system (GIS) was used to develop a standard set of methods to consistently characterize the sites, drainage basins, and groundwater study areas across the nation. This report describes three methods used for characterization-simple overlay, area-weighted areal interpolation, and land-cover-weighted areal interpolation-and their appropriate applications to geographic analyses that have different objectives and data constraints. In addition, this document records the GIS thematic datasets that are used for the Program's national design and data analyses.

  13. Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites

    DEFF Research Database (Denmark)

    Julenius, Karin; Mølgaard, Anne; Gupta, Ramneek

    2004-01-01

    than a nonglycosylated one. The Protein Data Bank was analyzed for structural information, and 12 glycosylated structures were obtained. All positive sites were found in coil or turn regions. A method for predicting the location for mucin-type glycosylation sites was trained using a neural network...... approach. The best overall network used as input amino acid composition, averaged surface accessibility predictions together with substitution matrix profile encoding of the sequence. To improve prediction on isolated (single) sites, networks were trained on isolated sites only. The final method combines...

  14. Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites

    DEFF Research Database (Denmark)

    Julenius, Karin; Mølgaard, Anne; Gupta, Ramneek

    2005-01-01

    than a nonglycosylated one. The Protein Data Bank was analyzed for structural information, and 12 glycosylated structures were obtained. All positive sites were found in coil or turn regions. A method for predicting the location for mucin-type glycosylation sites was trained using a neural network...... approach. The best overall network used as input amino acid composition, averaged surface accessibility predictions together with substitution matrix profile encoding of the sequence. To improve prediction on isolated (single) sites, networks were trained on isolated sites only. The final method combines...

  15. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    Energy Technology Data Exchange (ETDEWEB)

    City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

    2002-09-30

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies would result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs.

  16. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    Energy Technology Data Exchange (ETDEWEB)

    City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

    2002-09-30

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. It was hoped that the successful application of these technologies would result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs.

  17. Noninvasive characterization of the Trecate (Italy) crude-oil contaminated site: links between contamination and geophysical signals.

    Science.gov (United States)

    Cassiani, Giorgio; Binley, Andrew; Kemna, Andreas; Wehrer, Markus; Orozco, Adrian Flores; Deiana, Rita; Boaga, Jacopo; Rossi, Matteo; Dietrich, Peter; Werban, Ulrike; Zschornack, Ludwig; Godio, Alberto; JafarGandomi, Arash; Deidda, Gian Piero

    2014-01-01

    The characterization of contaminated sites can benefit from the supplementation of direct investigations with a set of less invasive and more extensive measurements. A combination of geophysical methods and direct push techniques for contaminated land characterization has been proposed within the EU FP7 project ModelPROBE and the affiliated project SoilCAM. In this paper, we present results of the investigations conducted at the Trecate field site (NW Italy), which was affected in 1994 by crude oil contamination. The less invasive investigations include ground-penetrating radar (GPR), electrical resistivity tomography (ERT), and electromagnetic induction (EMI) surveys, together with direct push sampling and soil electrical conductivity (EC) logs. Many of the geophysical measurements were conducted in time-lapse mode in order to separate static and dynamic signals, the latter being linked to strong seasonal changes in water table elevations. The main challenge was to extract significant geophysical signals linked to contamination from the mix of geological and hydrological signals present at the site. The most significant aspects of this characterization are: (a) the geometrical link between the distribution of contamination and the site's heterogeneity, with particular regard to the presence of less permeable layers, as evidenced by the extensive surface geophysical measurements; and (b) the link between contamination and specific geophysical signals, particularly evident from cross-hole measurements. The extensive work conducted at the Trecate site shows how a combination of direct (e.g., chemical) and indirect (e.g., geophysical) investigations can lead to a comprehensive and solid understanding of a contaminated site's mechanisms.

  18. Insights from native mass spectrometry approaches for top- and middle- level characterization of site-specific antibody-drug conjugates.

    Science.gov (United States)

    Botzanowski, Thomas; Erb, Stéphane; Hernandez-Alba, Oscar; Ehkirch, Anthony; Colas, Olivier; Wagner-Rousset, Elsa; Rabuka, David; Beck, Alain; Drake, Penelope M; Cianférani, Sarah

    2017-07-01

    Antibody-drug conjugates (ADCs) have emerged as a family of compounds with promise as efficient immunotherapies. First-generation ADCs were generated mostly via reactions on either lysine side-chain amines or cysteine thiol groups after reduction of the interchain disulfide bonds, resulting in heterogeneous populations with a variable number of drug loads per antibody. To control the position and the number of drug loads, new conjugation strategies aiming at the generation of more homogeneous site-specific conjugates have been developed. We report here the first multi-level characterization of a site-specific ADC by state-of-the-art mass spectrometry (MS) methods, including native MS and its hyphenation to ion mobility (IM-MS). We demonstrate the versatility of native MS methodologies for site-specific ADC analysis, with the unique ability to provide several critical quality attributes within one single run, along with a direct snapshot of ADC homogeneity/heterogeneity without extensive data interpretation. The capabilities of native IM-MS to directly access site-specific ADC conformational information are also highlighted. Finally, the potential of these techniques for assessing an ADC's heterogeneity/homogeneity is illustrated by comparing the analytical characterization of a site-specific DAR4 ADC to that of first-generation ADCs. Altogether, our results highlight the compatibility, versatility, and benefits of native MS approaches for the analytical characterization of all types of ADCs, including site-specific conjugates. Thus, we envision integrating native MS and IM-MS approaches, even in their latest state-of-the-art forms, into workflows that benchmark bioconjugation strategies.

  19. Development and characterization of advanced silicon based thermoplastic elastomers for PV encapsulation

    Energy Technology Data Exchange (ETDEWEB)

    Oreski, G. [Polymer Competence Center Leoben GmbH, Leoben (Austria); Randel, P. [Wacker Chemie AG, Burghausen (Germany)

    2010-07-01

    The identification and qualification of new materials for solar cell encapsulation is a major focus in PV research. Silicon-based thermoplastic elastomers (TPSE) are a promising candidate material for PV solar cell encapsulation. They combine thermoplastic processability with outstanding silicon properties, like low temperature flexibility or high UV resistance. Several TPSE formulations with different chemical composition, molar mass and UV absorber content were investigated and exposed to temperature and moisture (damp heat test). To describe chemical degradation and physical aging, reference and aged materials were characterized by infrared spectroscopy in attenuated total reflection mode (ATR), by UV/VIS/NIR spectroscopy, by dynamic mechanical analysis (DMA) and by tensile tests. All investigated TPSE films are highly transparent in the solar range, showing high transmittance values around 0.9. TPSE films are highly flexible with a ductile behavior and low elastic modulus values in a wide temperature range from -50 to 100 C. Chemical composition, molar mass and UV absorber content affected the mechanical properties and the softening temperature (70 to 100 C) as well as the aging behavior of the investigated TPSE films. The observed yellowing after aging was strongly dependent on polymerization parameters. Also the thermo-mechanical properties were significantly influenced by damp heat testing and physical aging was observed. Furthermore, a softening effect, which shifted the softening temperature seen with the DMA to lower temperatures, was induced by the high humidity level. Assumedly humidity is a more critical factor than temperature or UV radiation. Based on these findings, enhanced TPSE formulations with advanced weathering stability and better thermo-mechanical properties have been developed and investigated. After damp heat tests, the new materials exhibited less yellowing than comparable solar cell encapsulation materials. Also the thermo

  20. Advances in the characterization of InAs/GaSb superlattice infrared photodetectors

    Science.gov (United States)

    Wörl, A.; Daumer, V.; Hugger, T.; Kohn, N.; Luppold, W.; Müller, R.; Niemasz, J.; Rehm, R.; Rutz, F.; Schmidt, J.; Schmitz, J.; Stadelmann, T.; Wauro, M.

    2016-10-01

    This paper reports on advances in the electro-optical characterization of InAs/GaSb short-period superlattice infrared photodetectors with cut-off wavelengths in the mid-wavelength and long-wavelength infrared ranges. To facilitate in-line monitoring of the electro-optical device performance at different processing stages we have integrated a semi-automated cryogenic wafer prober in our process line. The prober is configured for measuring current-voltage characteristics of individual photodiodes at 77 K. We employ it to compile a spatial map of the dark current density of a superlattice sample with a cut-off wavelength around 5 μm patterned into a regular array of 1760 quadratic mesa diodes with a pitch of 370 μm and side lengths varying from 60 to 350 μm. The different perimeter-to-area ratios make it possible to separate bulk current from sidewall current contributions. We find a sidewall contribution to the dark current of 1.2×10-11 A/cm and a corrected bulk dark current density of 1.1×10-7 A/cm2, both at 200 mV reverse bias voltage. An automated data analysis framework can extract bulk and sidewall current contributions for various subsets of the test device grid. With a suitable periodic arrangement of test diode sizes, the spatial distribution of the individual contributions can thus be investigated. We found a relatively homogeneous distribution of both bulk dark current density and sidewall current contribution across the sample. With the help of an improved capacitance-voltage measurement setup developed to complement this technique a residual carrier concentration of 1.3×1015 cm-3 is obtained. The work is motivated by research into high performance superlattice array sensors with demanding processing requirements. A novel long-wavelength infrared imager based on a heterojunction concept is presented as an example for this work. It achieves a noise equivalent temperature difference below 30 mK for realistic operating conditions.

  1. Characterization report for Area 23, Building 650 Leachfield, Corrective Action Unit Number 94, Nevada Test Site. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-27

    Corrective Action Unit (CAU) Number 94, Building 650 Leachfield, is an historic laboratory disposal unit located in Area 23 at the Nevada Test Site (NTS) in Nye County, Nevada. The objectives of this project were twofold: characterize subsurface conditions at the CAU with respect to the on-site disposal unit, and provide sufficient information to develop a closure strategy for the leachfield. To this end, subsurface sampling was conducted in the vicinity of the piping above the distribution box, under and around the distribution box, and within the leachfield.

  2. Dynamic Site Characterization and Correlation of Shear Wave Velocity with Standard Penetration Test ` N' Values for the City of Agartala, Tripura State, India

    Science.gov (United States)

    Sil, Arjun; Sitharam, T. G.

    2014-08-01

    Seismic site characterization is the basic requirement for seismic microzonation and site response studies of an area. Site characterization helps to gauge the average dynamic properties of soil deposits and thus helps to evaluate the surface level response. This paper presents a seismic site characterization of Agartala city, the capital of Tripura state, in the northeast of India. Seismically, Agartala city is situated in the Bengal Basin zone which is classified as a highly active seismic zone, assigned by Indian seismic code BIS-1893, Indian Standard Criteria for Earthquake Resistant Design of Structures, Part-1 General Provisions and Buildings. According to the Bureau of Indian Standards, New Delhi (2002), it is the highest seismic level (zone-V) in the country. The city is very close to the Sylhet fault (Bangladesh) where two major earthquakes ( M w > 7) have occurred in the past and affected severely this city and the whole of northeast India. In order to perform site response evaluation, a series of geophysical tests at 27 locations were conducted using the multichannel analysis of surface waves (MASW) technique, which is an advanced method for obtaining shear wave velocity ( V s) profiles from in situ measurements. Similarly, standard penetration test (SPT-N) bore log data sets have been obtained from the Urban Development Department, Govt. of Tripura. In the collected data sets, out of 50 bore logs, 27 were selected which are close to the MASW test locations and used for further study. Both the data sets ( V s profiles with depth and SPT-N bore log profiles) have been used to calculate the average shear wave velocity ( V s30) and average SPT-N values for the upper 30 m depth of the subsurface soil profiles. These were used for site classification of the study area recommended by the National Earthquake Hazard Reduction Program (NEHRP) manual. The average V s30 and SPT-N classified the study area as seismic site class D and E categories, indicating that

  3. Topographic gradient based site characterization in India complemented by strong ground-motion spectral attributes

    KAUST Repository

    Nath, Sankar Kumar

    2013-12-01

    We appraise topographic-gradient approach for site classification that employs correlations between 30. m column averaged shear-wave velocity and topographic gradients. Assessments based on site classifications reported from cities across India indicate that the approach is reasonably viable at regional level. Additionally, we experiment three techniques for site classification based on strong ground-motion recordings, namely Horizontal-to-Vertical Spectral Ratio (HVSR), Response Spectra Shape (RSS), and Horizontal-to-Vertical Response Spectral Ratio (HVRSR) at the strong motion stations located across the Himalayas and northeast India. Statistical tests on the results indicate that these three techniques broadly differentiate soil and rock sites while RSS and HVRSR yield better signatures. The results also support the implemented site classification in the light of strong ground-motion spectral attributes observed in different parts of the globe. © 2013 Elsevier Ltd.

  4. Synthesis and Preliminary Characterization of a PPE-Type Polymer Containing Substituted Fullerenes and Transition Metal Ligation Sites

    Directory of Open Access Journals (Sweden)

    Corinne A. Basinger

    2015-01-01

    Full Text Available A substituted fullerene was incorporated into a PPE-conjugated polymer repeat unit. This subunit was then polymerized via Sonogashira coupling with other repeat units to create polymeric systems approaching 50 repeat units (based on GPC characterization. Bipyridine ligands were incorporated into some of these repeat units to provide sites for transition metal coordination. Photophysical characterization of the absorption and emission properties of these systems shows excited states located on both the fullerene and aromatic backbone of the polymers that exist in a thermally controlled equilibrium. Future work will explore other substituted polyaromatic systems using similar methodologies.

  5. Spatial characterization and prediction of Neanderthal sites based on environmental information and stochastic modelling

    Science.gov (United States)

    Maerker, Michael; Bolus, Michael

    2014-05-01

    We present a unique spatial dataset of Neanderthal sites in Europe that was used to train a set of stochastic models to reveal the correlations between the site locations and environmental indices. In order to assess the relations between the Neanderthal sites and environmental variables as described above we applied a boosted regression tree approach (TREENET) a statistical mechanics approach (MAXENT) and support vector machines. The stochastic models employ a learning algorithm to identify a model that best fits the relationship between the attribute set (predictor variables (environmental variables) and the classified response variable which is in this case the types of Neanderthal sites. A quantitative evaluation of model performance was done by determining the suitability of the model for the geo-archaeological applications and by helping to identify those aspects of the methodology that need improvements. The models' predictive performances were assessed by constructing the Receiver Operating Characteristics (ROC) curves for each Neanderthal class, both for training and test data. In a ROC curve the Sensitivity is plotted over the False Positive Rate (1-Specificity) for all possible cut-off points. The quality of a ROC curve is quantified by the measure of the parameter area under the ROC curve. The dependent variable or target variable in this study are the locations of Neanderthal sites described by latitude and longitude. The information on the site location was collected from literature and own research. All sites were checked for site accuracy using high resolution maps and google earth. The study illustrates that the models show a distinct ranking in model performance with TREENET outperforming the other approaches. Moreover Pre-Neanderthals, Early Neanderthals and Classic Neanderthals show a specific spatial distribution. However, all models show a wide correspondence in the selection of the most important predictor variables generally showing less

  6. Characterization of the geology, geochemistry, hydrology and microbiology of the in-situ air stripping demonstration site at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, C.A.; Looney, B.B.; Dougherty, J.M.; Hazen, T.C.; Kaback, D.S.

    1991-05-01

    The Savannah River Site is the location of an Integrated Demonstration Project designed to evaluate innovative remediation technologies for environmental restoration at sites contaminated with volatile organic contaminants. This demonstration utilizes directionally drilled horizontal wells to deliver gases and extract contaminants from the subsurface. Phase I of the Integrated Demonstration focused on the application and development of in-situ air stripping technologies to remediate soils and sediments above and below the water table as well as groundwater contaminated with volatile organic contaminants. The objective of this report is to provide baseline information on the geology, geochemistry, hydrology, and microbiology of the demonstration site prior to the test. The distribution of contaminants in soils and sediments in the saturated zone and groundwater is emphasized. These data will be combined with data collected after the demonstration in order to evaluate the effectiveness of in-situ air stripping. New technologies for environmental characterization that were evaluated include depth discrete groundwater sampling (HydroPunch) and three-dimensional modeling of contaminant data.

  7. Preliminary recommendations on the design of the characterization program for the Hanford Site single-shell tanks: A system analysis

    Energy Technology Data Exchange (ETDEWEB)

    Buck, J.W.; Peffers, M.S.; Hwang, S.T.

    1991-11-01

    The work described in this volume was conducted by Pacific Northwest Laboratory to provide preliminary recommendations on data quality objectives (DQOs) to support the Waste Characterization Plan (WCP) and closure decisions for the Hanford Site single-shell tanks (SSTs). The WCP describes the first of a two-phase characterization program that will obtain information to assess and implement disposal options for SSTs. This work was performed for the Westinghouse Hanford Company (WHC), the current operating contractor on the Hanford Site. The preliminary DQOs contained in this volume deal with the analysis of SST wastes in support of the WCP and final closure decisions. These DQOs include information on significant contributors and detection limit goals (DLGs) for SST analytes based on public health risk.

  8. Characterization of volatile sulphur compounds production at individual gingival crevicular sites in humans.

    Science.gov (United States)

    Coli, J M; Tonzetich, J

    1992-01-01

    The present investigation describes a method for collection and analysis of volatile sulphur compounds (VSC) from gingival crevicular sites in humans. Tenax-GC trapping devices were used to adsorb and concentrate VSC from crevicular air at -55 degrees C, which were then thermally desorbed at 120 degrees C. Gas chromatographic (GC) analyses were performed using a Tracor 550 GC equipped with a flame-photometric detector and a Teflon column packed with 5% polyphenyl ether and 0.05% phosphoric acid on 30-40 mesh Teflon. Sulfides identified from crevicular sites include hydrogen sulfide [H2S], methyl mercaptan [CH3SH], dimethyl sulfide [(CH3)2S], and dimethyl disulfide [(CH3S)2]. Of the seventeen patients studied, crevicular sites that were either deep (P.D. > or = 4 mm) or inflamed (BoP = 1) exhibited significantly larger CH3SH to H2S ratios than corresponding crevicular shallow (P.D. < or = 3 mm) sites (p < .10) or noninflamed (BoP = 0) sites (p < .05). Similarly, total sulphur in deep and inflamed sites was significantly higher than in corresponding shallow (p < .01) and noninflamed (p < .05) sites. This is the first known in vivo study to quantitate VSC directly from individual gingival crevices.

  9. Characterization and evaluation of sites for deep geological disposal of radioactive waste in fractured rocks. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    The third Aespoe International Seminar was organised by SKB to assess the state of the art in characterisation and evaluation of sites for deep geological disposal of radioactive waste in fractured rocks. Site characterisation and evaluation are important elements for determining the site suitability and long-term safety of a geological repository for radioactive waste disposal. Characterisation work also provides vital information for the design of the underground facility and the engineered barrier system that will contain the waste. The aim of the seminar was to provide a comprehensive assessment of the current know-how on this topic based on world-wide experience from more than 20 years of characterisation and evaluation work. The seminar, which was held at the Aespoe Hard Rock Laboratory was attended by 72 scientists from 10 different countries. The program was divided into four sessions of which two were run in parallel. A total of 38 oral and 5 poster presentations were given at the seminar. The presentations gave a comprehensive summary of recently completed and current work on site characterisation, modelling and application in performance assessments. The results presented at the seminar generally show that significant progress has been made in this field during the last decade. New characterisation techniques have become available, strategies for site investigations have developed further, and model concepts and codes have reached new levels of refinement. Data obtained from site characterisation have also successfully been applied in several site specific performance assessments. The seminar clearly showed that there is a solid scientific basis for assessing the suitability of sites for actual repositories based on currently available site characterisation technology and modelling capabilities. Separate abstracts have been prepared for 38 of the presentations

  10. Characterization of a novel /sup 3/H-5-hydroxytryptamine binding site subtype in bovine brain membranes

    Energy Technology Data Exchange (ETDEWEB)

    Heuring, R.E.; Peroutka, S.J.

    1987-03-01

    /sup 3/H-5-Hydroxytryptamine (5-HT) binding sites were analyzed in bovine brain membranes. The addition of either the 5-HT1A-selective drug 8-OH-DPAT (100 nM) or the 5-HT1C-selective drug mesulergine (100 nM) to the assay resulted in a 5-10% decrease in specific /sup 3/H-5-HT binding. Scatchard analysis revealed that the simultaneous addition of both drugs decreased the Bmax of /sup 3/H-5-HT binding by 10-15% without affecting the KD value (1.8 +/- 0.3 nM). Competition studies using a series of pharmacologic agents revealed that the sites labeled by /sup 3/H-5-HT in bovine caudate in the presence of 100 nM 8-OH-DPAT and 100 nM mesulergine appear to be homogeneous. 5-HT1A selective agents such as 8-OH-DPAT, ipsapirone, and buspirone display micromolar affinities for these sites. RU 24969 and (-)pindolol are approximately 2 orders of magnitude less potent at these sites than at 5-HT1B sites which have been identified in rat brain. Agents displaying nanomolar potencies for 5-HT1C sites such as mianserin and mesulergine are 2-3 orders of magnitude less potent at the /sup 3/H-5-HT binding sites in bovine caudate. In addition, both 5-HT2- and 5-HT3-selective agents are essentially inactive at these binding sites. These /sup 3/H-5-HT sites display nanomolar affinity for 5-carboxyamidotryptamine, 5-methoxytryptamine, metergoline, and 5-HT. Apparent Ki values of 10-100 nM are obtained for d-LSD, RU 24969, methiothepin, tryptamine, methysergide, and yohimbine, whereas I-LSD and corynanthine are significantly less potent. In addition, these /sup 3/H-5-HT labeled sites are regulated by guanine nucleotides and calcium. Regional studies indicate that this class of sites is most dense in the basal ganglia but exists in all regions of bovine brain. These data therefore demonstrate the presence of a homogeneous class of 5-HT1 binding sites in bovine caudate that is pharmacologically distinct from previously defined 5-HT1A, 5-HT1B, 5-HT1C, 5-HT2, and 5-HT3 receptor subtypes

  11. Application of PIXE to the characterization of vitreous dacites from archaeolgical sites in the Atacama region in northern Chile

    Energy Technology Data Exchange (ETDEWEB)

    Morales, J.R.; Cancino, S. [Departamento de Fisica, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Nunoa, Santiago 1 (Chile); Miranda, P. [Departamento de Fisica, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Nunoa, Santiago 1 (Chile)], E-mail: pjmirand@gmail.com; Dinator, M.I. [Departamento de Fisica, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Nunoa, Santiago 1 (Chile); Seelenfreund, A. [Universidad Academia de Humanismo Cristiano, Condell 343, Providencia, Santiago (Chile)

    2007-11-15

    Geochemical characterization studies using PIXE were carried out on 21 vitreous dacite artifacts from early formative archaeological sites in the Atacama region, in northern Chile, and on 13 samples taken from two potential volcanic sources located within the region. Performing statistical analyses it was possible to obtain elemental concentration patterns for the archaeological samples of this material and match some of these artifacts with the geological source samples.

  12. Characterization and reclamation assessment for the Central Shops Diesel Storage Facility, Savannah River Site, Aiken, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Fliermans, C.B.; Hazen, T.C.; Bledsoe, H.

    1993-10-01

    The contamination of subsurface terrestrial environments by organic contaminants is a global phenomenon. The remediation of such environments requires innovative assessment techniques and strategies for successful clean-ups. Central Shops Diesel Storage Facility at Savannah River Site was characterized to determine the extent of subsurface diesel fuel contamination using innovative approaches and effective bioremediation techniques for clean-up of the contaminant plume have been established.

  13. Characterization of chlorophyll-a over CAL-VAL site at Kavaratti in the Lakshadweep Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Babu, K.N; Shukla, A; Matondkar, S.G.P.; Singh, S.K.; Sawant, S.S.

    Under the Meteorology and Oceanography Programme (MOP) of the Indian Space Research Organization (ISRO), a Calibration-Validation site is planned at Kavaratti in the Lakshadweep Sea with a pair of moored data buoys consisting of fully programmed...

  14. CHARACTERIZING POPULATIONS OF THE ESTUARINE FISH FUNDULUS HETEROCLITUS INDIGENOUS TO SITES WITH DIFFERING ENVIRONMENTAL QUALITY

    Science.gov (United States)

    Populations of the non-migratory estuarine fish Fundulus heteroclitus were collected from New Bedford Harbor and distant clean sites to investigate whether indigenous populations have adapted genetically to the harbor's contamination. New Bedford Harbor, a major port in southe...

  15. Site characterization using noninvasive single- and multi-station methods at southern California seismic stations

    Science.gov (United States)

    Yong, A.; Martin, A. J.; Pfau, J.; McPhillips, D.; Alvarez, M.; Lydeen, S.; Clerc, F.; Leue, N.

    2016-12-01

    In-situ measurements of shear-wave velocity (Vs) are used commonly to evaluate seismic response at earthquake monitoring station and project sites. Vs30, the time-averaged Vs in the upper 30 m, is a common parameter used to capture seismic site response and is used in almost all modern ground motion prediction equations. Traditional invasive downhole methods directly measure Vs; however, these methods are often cost- and/or environmentally-prohibitive and their results do not always reflect the lateral variability of seismic conditions beyond the immediate vicinity of the test site. In comparison, noninvasive methods record active- or passive-source data consisting of surface or body waves and are less prohibitive to use. Moreover, these methods use multiple horizontally-spaced surface receivers (multi-station array), thus, lateral variability beneath the array is accounted for in their results. Most noninvasive methods, however, indirectly measure Vs, and thus have inherent uncertainties. We have used a suite of noninvasive methods at ten stations in southern California. We record microseisms using standalone single-stations, located at the end- and mid-points of the measurement array, and over the same period, we also collect records from the seismic station. Using both single- and seismic-station records, we calculate the horizontal-to-vertical-spectra-ratios (HVSR), resonance frequency, and power spectral density to study site characteristics, including noise levels. For soil sites, we generally find insignificant lateral variability in subsurface conditions beneath our multi-station arrays by matching similar spectral peaks and frequencies in the three HVSR records; for rock sites, the magnitudes of the HVSR values are not as discernible. While we find general agreement in Vs30 computed using a variety of methods at each site, preliminary results for low-noise sites using standalone passive methods have large uncertainty in their computed Vs30 values.

  16. Activity-Based Probes for Isoenzyme- and Site-Specific Functional Characterization of Glutathione S -Transferases

    Energy Technology Data Exchange (ETDEWEB)

    Stoddard, Ethan G. [Chemical Biology and Exposure; Killinger, Bryan J. [Chemical Biology and Exposure; Nair, Reji N. [Chemical Biology and Exposure; Sadler, Natalie C. [Chemical Biology and Exposure; Volk, Regan F. [Chemical Biology and Exposure; Purvine, Samuel O. [Chemical Biology and Exposure; Shukla, Anil K. [Chemical Biology and Exposure; Smith, Jordan N. [Chemical Biology and Exposure; Wright, Aaron T. [Chemical Biology and Exposure

    2017-11-01

    Glutathione S-transferases (GSTs) comprise a highly diverse family of phase II drug metabolizing enzymes whose shared function is the conjugation of reduced glutathione to various endo- and xenobiotics. Although the conglomerate activity of these enzymes can be measured by colorimetric assays, measurement of the individual contribution from specific isoforms and their contribution to the detoxification of xenobiotics in complex biological samples has not been possible. For this reason, we have developed two activity-based probes that characterize active glutathione transferases in mammalian tissues. The GST active site is comprised of a glutathione binding “G site” and a distinct substrate binding “H site”. Therefore, we developed (1) a glutathione-based photoaffinity probe (GSH-ABP) to target the “G site”, and (2) a probe designed to mimic a substrate molecule and show “H site” activity (GST-ABP). The GSH-ABP features a photoreactive moiety for UV-induced covalent binding to GSTs and glutathione-binding enzymes. The GST-ABP is a derivative of a known mechanism-based GST inhibitor that binds within the active site and inhibits GST activity. Validation of probe targets and “G” and “H” site specificity was carried out using a series of competitors in liver homogenates. Herein, we present robust tools for the novel characterization of enzyme- and active site-specific GST activity in mammalian model systems.

  17. Site characterization progress report: Yucca Mountain, Nevada. Progress report number 17, April 1, 1997--September 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    The US Department of Energy`s (DOE) Office of Civilian Radioactive Waste Management (OCRWM), created with the enactment of the Nuclear Waste Policy Act of 1982 (NWPA), is tasked to accept and dispose of the nation`s high-level radioactive waste and spent nuclear fuel in a deep geologic repository (high-level radioactive waste program). The report summarizes significant site characterization activities during the period from April 1, 1997 through September 30, 1997, in the evaluation of Yucca Mountain as a potential site for the geologic disposal of spent nuclear fuel and high-level radioactive wastes. The progress report also cites technical reports and research products that provide the detailed information on these activities. Chapter 2 outlines technical and regulatory issues that must be addressed by the Project and planned work toward achieving future objectives concerning the viability assessment, the environmental impact statement, the site recommendation, and the license application. Chapter 3 describes technical progress in preclosure radiological safety analysis, postclosure performance assessment, and performance confirmation activities. Chapter 4 describes various aspects of repository and waste package design and construction. It also discusses the Exploration Studies Facility cross drift. Chapter 5 describes site characterization activities, and Chapter 6 contains a complete list of references.

  18. Characterization and provenance of the building stones from Pompeii's archaeological site (southern Italy)

    Science.gov (United States)

    Balassone, G.; Kastenmeier, P.; di Maio, G.; Mormone, A.; Joachimski, M.

    2009-04-01

    Pompeii is one of the most famous and complex areas of archaeological investigation in the world and with a uniquely favorable state of preservation. Even if many studies have been devoted in time to many archaeological aspects of this ancient city, large-scale and detailed studies aimed at characterizing mineralogy, petrography and isotope geochemistry of the building stones are still lacking. The scope of the present research is to fill this gap, pointing to the definition of the provenance of the stony materials used for ancient constructions of the city of Pompeii and to the possible trade routes. This work is part of a large-scale survey carried out by the Deutsches Archäologisches Institut of Berlin, with the purposes of reconstructing the sources of raw materials of various archaeological sites of the Sarno Plain (e.g. Longola-Poggiomarino settlement, Nuceria, Stabiae, etc.) and consequently also the paleo-environments of this area during the Olocene (Seiler, 2006, 2008; Kastemeier and Seiler, 2007). We sampled all the litotypes with different macroscopic characteristics from various buildings according to location, age (time span VI century B.C. - I century A.D.) and utilization; the architectural buildings considered for this study are mainly represented public and religious buildings, houses and funerary monuments. As possible source areas, representative litotypes have been sampled from ancient pits and outcrops surrounding Pompeii as well. A set of 80 samples have been sampled by means of micro-drillings for mineralogical, petrographic and geochemical analyses, comprising optical microscopy, X-ray diffraction, inductively coupled plasma mass, X-ray fluorescence and C-O isotope geochemistry. Minero-petrographic and XRD studies of Pompeii rock samples have shown that at least ten different litologies occur as building stones, belonging to basaltic to tephritic lavas, pyroclasts (tuffs, scoriae, etc.) and sedimentary rocks (limestone, travertines

  19. Functional characterization of the major and minor phosphorylation sites of the P protein of Borna disease virus.

    Science.gov (United States)

    Schmid, Sonja; Mayer, Daniel; Schneider, Urs; Schwemmle, Martin

    2007-06-01

    The phosphoprotein P of Borna disease virus (BDV) is an essential cofactor of the viral RNA-dependent RNA polymerase. It is preferentially phosphorylated at serine residues 26 and 28 by protein kinase C epsilon (PKCepsilon) and, to a lesser extent, at serine residues 70 and 86 by casein kinase II (CKII). To determine whether P phosphorylation is required for viral polymerase activity, we generated P mutants lacking either the PKCepsilon or the CKII phosphate acceptor sites by replacing the corresponding serine residues with alanine (A). Alternatively, these sites were replaced by aspartic acid (D) to mimic phosphorylation. Functional characterization of the various mutants in the BDV minireplicon assay revealed that D substitutions at the CKII sites inhibited the polymerase-supporting activity of P, while A substitutions maintained wild-type activity. Likewise, D substitutions at the PKC sites did not impair the cofactor function of BDV-P, whereas A substitutions at these sites led to increased activity. Interestingly, recombinant viruses could be rescued only when P mutants with modified PKCepsilon sites were used but not when both CKII sites were altered. PKCepsilon mutant viruses showed a reduced capacity to spread in cell culture, while viral RNA and protein expression levels in persistently infected cells were almost normal. Further mutational analyses revealed that substitutions at individual CKII sites were, with the exception of a substitution of A for S86, detrimental for viral rescue. These data demonstrate that, in contrast to other viral P proteins, the cofactor activity of BDV-P is negatively regulated by phosphorylation.

  20. Functional Characterization of the Major and Minor Phosphorylation Sites of the P Protein of Borna Disease Virus▿

    Science.gov (United States)

    Schmid, Sonja; Mayer, Daniel; Schneider, Urs; Schwemmle, Martin

    2007-01-01

    The phosphoprotein P of Borna disease virus (BDV) is an essential cofactor of the viral RNA-dependent RNA polymerase. It is preferentially phosphorylated at serine residues 26 and 28 by protein kinase C ɛ (PKCɛ) and, to a lesser extent, at serine residues 70 and 86 by casein kinase II (CKII). To determine whether P phosphorylation is required for viral polymerase activity, we generated P mutants lacking either the PKCɛ or the CKII phosphate acceptor sites by replacing the corresponding serine residues with alanine (A). Alternatively, these sites were replaced by aspartic acid (D) to mimic phosphorylation. Functional characterization of the various mutants in the BDV minireplicon assay revealed that D substitutions at the CKII sites inhibited the polymerase-supporting activity of P, while A substitutions maintained wild-type activity. Likewise, D substitutions at the PKC sites did not impair the cofactor function of BDV-P, whereas A substitutions at these sites led to increased activity. Interestingly, recombinant viruses could be rescued only when P mutants with modified PKCɛ sites were used but not when both CKII sites were altered. PKCɛ mutant viruses showed a reduced capacity to spread in cell culture, while viral RNA and protein expression levels in persistently infected cells were almost normal. Further mutational analyses revealed that substitutions at individual CKII sites were, with the exception of a substitution of A for S86, detrimental for viral rescue. These data demonstrate that, in contrast to other viral P proteins, the cofactor activity of BDV-P is negatively regulated by phosphorylation. PMID:17376920

  1. Assessing landslide potential on coastal bluffs near Mukilteo, Washington—Geologic site characterization for hydrologic monitoring

    Science.gov (United States)

    Mirus, Benjamin B.; Smith, Joel B.; Benjamin Stark,; York Lewis,; Abigail Michel,; Baum, Rex L.

    2016-07-01

    During the summer 2015, the U.S. Geological Survey collected geologic and geotechnical data for two sites on coastal bluffs along the eastern shore of Puget Sound, Washington. The U.S. Geological Survey also installed hydrologic instrumentation at the sites and collected specimens for laboratory testing. The two sites are located on City of Mukilteo open-space land and are about 0.6 kilometers apart. The bluffs at each site are approximately 42 meters high, and rise steeply from the shoreline with 32–35° slopes. The more northerly of the two sites occupies an active landslide and is mostly unvegetated. The other site is forested, and although stable during the preparation of this report, shows evidence of historical and potential landslide activity. The slopes of the bluffs at both sites are mantled by a thin, nonuniform colluvium underlain by clay-rich glacial deposits and tills of the Whidbey Formation or Double Bluff Drift. Till consisting of sand, gravel, and cobbles caps the bluffs and rests on finer grained glacial deposits of sand, silt, and clay. These types of different glacial deposits are dense, vertically fractured, and generally have low permeability, but field observations indicate that locally the deposits are sufficiently permeable to allow lateral flow of water along fractures and subhorizontal boundaries between deposits of different texture. Laboratory tests indicate that many of the deposits are highly plastic, with low hydraulic conductivity, and moderate shear strength. Steep slopes combined with the strength and hydraulic characteristics of the deposits leave the bluffs prone to slope instability, particularly during the wet season when infiltrating rainfall changes moisture content, pore-water pressure, and effective stress within the hillslope. The instrumentation was designed to primarily observe rainfall variability and hydrologic changes in the subsurface that can affect stability of the bluffs, and also to compare the hydrologic

  2. Hydrologic characterization of the Fry Canyon, Utah site prior to field demonstration of reactive chemical barriers to control radionuclide and trace-element contamination in ground water

    Energy Technology Data Exchange (ETDEWEB)

    Naftz, D.L.; Freethey, G.W. [Geological Survey, Salt Lake City, UT (United States); Davis, J.A. [Geological Survey, Menlo Park, CA (United States)] [and others

    1997-12-31

    The Fry Canyon Site in southeastern Utah has been selected as a long term demonstration site to assess the performance of selected reaction barrier technologies for the removal of uranium and other trace elements from ground water. Objectives include site characterization and evaluation of barrier technologies.

  3. Heterogeneous reactive transport under unsaturated transient conditions characterized by 3D electrical resistivity tomography and advanced lysimeter methods

    Science.gov (United States)

    Wehrer, Markus; Slater, Lee

    2015-04-01

    Our ability to predict flow and transport processes in the unsaturated critical zone is considerably limited by two characteristics: heterogeneity of flow and transience of boundary conditions. The causes of heterogeneous flow and transport are fairly well understood, yet the characterization and quantification of such processes in natural profiles remains challenging. This is due to current methods of observation, such as staining and isotope tracers, being unable to observe multiple events on the same profile and offering limited spatial information. In our study we demonstrate an approach to characterize preferential flow and transport processes applying a combination of geoelectrical methods and advanced lysimeter techniques. On an agricultural soil profile, which was transferred undisturbed into a lysimeter container, we systematically applied a variety of input flow boundary conditions, resembling natural precipitation events. We measured breakthroughs of a conservative tracer and of nitrate, originating from the application of a slow release fertilizer and serving as a reactive tracer. Flow and transport in the soil column were observed using electrical resistivity tomography (ERT), tensiometers, water content probes and a multicompartment suction plate (MSP). These techniques allowed a direct validation of water content dynamics and tracer breakthrough under transient boundary conditions characterized noninvasively by ERT. We were able to image the advancing infiltration front and the advancing front of tracer and nitrate using time lapse ERT. Water content changes associated with the advancing infiltration front dominated over pore fluid conductivity changes during short term precipitation events. Conversely, long-term displacement of the solute fronts was monitored during periods of constant water content in between infiltration events. We observed preferential flow phenomena through ERT and through the MSP, which agreed in general terms. The preferential

  4. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Scott Hara

    2001-06-27

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies will result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs.

  5. Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914

    NARCIS (Netherlands)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adamo, M.; Adams, C.; Phythian-Adams, A.T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.T.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, R.D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, M.J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackburn, L.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, A.L.S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, J.G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, T.C; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, A.D.; Brown, D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderon Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglia, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, D. S.; Charlton, P.; Charlton, P.; Chassande-Mottin, E.; Chatterji, S.; Chen, H. Y.; Chen, Y; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Qian; Chua, S. E.; Chung, E.S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, A.C.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, A.L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Debra, D.; Debreczeni, G.; Degallaix, J.; De laurentis, M.; Deleglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.A.; DeRosa, R. T.; Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Diaz, M. C.; Di Fiore, L.; Giovanni, M.G.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, T. M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.M.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M; Fournier, J. -D.; Franco, S; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Ghosh, V. Germain Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.P.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; Gonzlez, G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Lee-Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.M.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Buffoni-Hall, R.; Hall, E. D.; Hammond, G.L.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, P.J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, D.H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jimenez-Forteza, F.; Johnson, W.; Jones, I.D.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.H.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kefelian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.E.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan., S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Krolak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C.H.; Lee, K.H.; Lee, M.H.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lueck, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Marka, S.; Marka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R.M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B.C.; Moore, J.C.; Moraru, D.; Gutierrez Moreno, M.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, S.D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P.G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Gutierrez-Neri, M.; Neunzert, A.; Newton-Howes, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J.; Oh, S. H.; Ohme, F.; Oliver, M. B.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.S; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Puerrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosinska, D.; Rowan, S.; Ruediger, A.; Ruggi, P.; Ryan, K.A.; Sachdev, P.S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J; Schmidt, P.; Schnabel, R.B.; Schofield, R. M. S.; Schoenbeck, A.; Schreiber, K.E.C.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, M.S.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, António Dias da; Simakov, D.; Singer, A; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith, R. J. E.; Smith, N.D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, J.R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.D.; Talukder, D.; Tanner, D. B.; Tapai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, W.R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Toyra, D.; Travasso, F.; Traylor, G.; Trifiro, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; Van Beuzekom, Martin; van den Brand, J. F. J.; Van Den Broeck, C.F.F.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasuth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P.J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Vicere, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, MT; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.M.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Williams, D.R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J.L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; Zadrozny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zotov, N.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.

    2016-01-01

    On 14 September 2015, a gravitational wave signal from a coalescing black hole binary system was observed by the Advanced LIGO detectors. This paper describes the transient noise backgrounds used to determine the significance of the event (designated GW150914) and presents the results of

  6. Women with inoperable or locally advanced breast cancer -- what characterizes them?

    DEFF Research Database (Denmark)

    El-Charnoubi, Waseem Asim Ghulam; Svendsen, Jesper Brink; Tange, Ulla Brix

    2012-01-01

    Breast cancer is the most common cancer among Danish women. Locally advanced breast cancer occurs in a relatively large proportion of all new primary breast cancer diagnoses and for unexplained reasons 20-30% of women with breast cancer wait more than eight weeks from the initial breast cancer...

  7. A Comprehensive Microfluidics Device Construction and Characterization Module for the Advanced Undergraduate Analytical Chemistry Laboratory

    Science.gov (United States)

    Piunno, Paul A. E.; Zetina, Adrian; Chu, Norman; Tavares, Anthony J.; Noor, M. Omair; Petryayeva, Eleonora; Uddayasankar, Uvaraj; Veglio, Andrew

    2014-01-01

    An advanced analytical chemistry undergraduate laboratory module on microfluidics that spans 4 weeks (4 h per week) is presented. The laboratory module focuses on comprehensive experiential learning of microfluidic device fabrication and the core characteristics of microfluidic devices as they pertain to fluid flow and the manipulation of samples.…

  8. Recent advances in chromatographic separation and spectroscopic characterization of the higher fullerenes C76 and C84.

    Science.gov (United States)

    Jovanovic, T; Koruga, Dj

    2014-01-01

    The basic and the higher fullerenes were chromatographically isolated from the obtained series of carbon soot extracts, in increased yields, by the new, advanced methods, on Al2O3 columns. The elution was performed continuously, in one phase of each process, at ambient conditions, with the several different original hexane-toluene gradients. Various separation systems were used previously. The unique and the main, dominant absorption maxima of the purified higher fullerenes were registered in the spectral regions where they intensively absorb, applying the IR and UV/VIS techniques. All the observed absorption bands are in excellent agreement with theoretical calculations, indicating the achieved advancement in chromatographic separation and spectroscopic characterization. The isolated fullerenes are important for investigation of their remarkable optical and electronic properties, as well as for the numerous possible applications in chemistry, physics, biomedicine, diagnostic and therapeutic agents, sensors, polymers, nanophotonic materials, special lenses, optical limiting, organic field effect transistors, solar cells etc.

  9. Coronally Advanced Flap with Site-Specific Application of Connective Tissue Graft for the Treatment of Multiple Adjacent Gingival Recessions: A 3-Year Follow-Up Case Series.

    Science.gov (United States)

    Stefanini, Martina; Zucchelli, Giovanni; Marzadori, Matteo; de Sanctis, Massimo

    The aim of this study was to evaluate the short- (1 year) and longer-term (3 years) effectiveness of a surgical procedure combining coronally advanced flap (CAF) with site-specific application of connective tissue graft (CTG) in the treatment of multiple gingival recessions (MGR). A total of 60 periodontally healthy subjects with esthetic complaints due to excessive tooth length presenting multiple (at least three) Miller Class I and II gingival recession defects (≥ 1 mm) affecting adjacent teeth in the maxilla and mandible were enrolled in the study. All recessions were treated with CAF. The CTG was applied in gingival defects with a baseline keratinized tissue height (KTH) graft exposure. The present study demonstrated that the proposed surgical technique combining CAF with site-specific application of CTG was an effective treatment modality for the management of MGR, obtaining 93% CRC in the CAF-treated sites and 100% CRC in the sites treated with CAF + CTG at 3 years.

  10. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Scott Hara

    1998-03-03

    The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and

  11. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Scott Hara

    1997-08-08

    The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and

  12. Lithological characterization of a contaminated site using Direct current resistivity and time domain Induced Polarization

    DEFF Research Database (Denmark)

    Maurya, Pradip Kumar; Fiandaca, Gianluca; Auken, Esben

    study a large contaminated site in Denmark was investigated using direct current resistivity and time domain induced polarization (DCIP). For this purpose 14 profiles were collected alongside a stream in order to investigate the contamination and delineate the lithological units. 2D inversion using...

  13. Characterization of uranium contaminated soils from DOE Fernald Environmental Management Project Site: Results of Phase 1 characterization

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.Y.; Marsh, J.D. Jr.

    1992-01-01

    The Integrated Demonstration (ID) for remediation of uranium- contaminated soils has been established by the DOE Office of Technology Development. The Fernald (Feed Materials Production Center) site was selected as the DOE facility for the field demonstration. The principle objective of this ID is to evaluate and compare the versatility, efficiency, and economics of various technologies that may be combined into systems for the removal of uranium from contaminated soils. Several leaching solutions were employed to determine their effectiveness in extracting uranium from the soil. The extractants and their means of preparation were: 0.1 N nitric acid (HNO{sub 3}): 6.25 mL of concentrated nitric acid was diluted to 1 L with distilled water; 2% ammonium carbonate ((NH{sub 4}){sub 2}CO{sub 3}): 20 g of (NH{sub 4}){sub 2}CO{sub 3} was dissolved in distilled water and diluted to 1 L; 5% sodium hypochlorite (NaOCl): 50 mL of NaOCl reagent (Cl < 6%) was diluted to 1 L with distilled water; 0.1 M ethylenediaminetetraacetric acid, disodium salt (EDTA): 37.224 g EDTA was dissolved in distilled water and diluted to 1 L; 2% citric acid monohydrate solution (H{sub 3}C{sub 6}H{sub 5}O{sub 7}{center dot}H{sub 2}O): 20 g of critic acid was diluted to 1 L with distilled water; 0.1 M hydroxylamine-hydrochloride (NH{sub 2}OH{center dot}HCl) in 0.01 N nitric acid: 6.95 g (NH{sub 2}OH{center dot}HCl) was dissolved and diluted to 1 L with 0.01 N HNO{sub 3}. The 0.01 N nitric acid was prepared by diluting 3 mL concentrated nitric acid to 5 L with distilled water; and the sodium citrate-bicarbonate-dithionite (CBD) method: 0.3 M sodium citrate (88 g tribasic sodium citrate, Na{sub 3}C{sub 6}H{sub 5}O{sub 7}{center dot}2H{sub 2}O, per liter); 1 M sodium bicarbonate (84 g NaHCO{sub 3} per liter); and 5 g sodium dithionite, Na{sub 2}S{sub 2}O{sub 4}.

  14. Advanced Computational Approaches for Characterizing Stochastic Cellular Responses to Low Dose, Low Dose Rate Exposures

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Bobby, R., Ph.D.

    2003-06-27

    OAK - B135 This project final report summarizes modeling research conducted in the U.S. Department of Energy (DOE), Low Dose Radiation Research Program at the Lovelace Respiratory Research Institute from October 1998 through June 2003. The modeling research described involves critically evaluating the validity of the linear nonthreshold (LNT) risk model as it relates to stochastic effects induced in cells by low doses of ionizing radiation and genotoxic chemicals. The LNT model plays a central role in low-dose risk assessment for humans. With the LNT model, any radiation (or genotoxic chemical) exposure is assumed to increase one¡¯s risk of cancer. Based on the LNT model, others have predicted tens of thousands of cancer deaths related to environmental exposure to radioactive material from nuclear accidents (e.g., Chernobyl) and fallout from nuclear weapons testing. Our research has focused on developing biologically based models that explain the shape of dose-response curves for low-dose radiation and genotoxic chemical-induced stochastic effects in cells. Understanding the shape of the dose-response curve for radiation and genotoxic chemical-induced stochastic effects in cells helps to better understand the shape of the dose-response curve for cancer induction in humans. We have used a modeling approach that facilitated model revisions over time, allowing for timely incorporation of new knowledge gained related to the biological basis for low-dose-induced stochastic effects in cells. Both deleterious (e.g., genomic instability, mutations, and neoplastic transformation) and protective (e.g., DNA repair and apoptosis) effects have been included in our modeling. Our most advanced model, NEOTRANS2, involves differing levels of genomic instability. Persistent genomic instability is presumed to be associated with nonspecific, nonlethal mutations and to increase both the risk for neoplastic transformation and for cancer occurrence. Our research results, based on

  15. Site characterization of the highest-priority geologic formations for CO2 storage in Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Surdam, Ronald C. [Univ. of Wyoming, Laramie, WY (United States); Bentley, Ramsey [Univ. of Wyoming, Laramie, WY (United States); Campbell-Stone, Erin [Univ. of Wyoming, Laramie, WY (United States); Dahl, Shanna [Univ. of Wyoming, Laramie, WY (United States); Deiss, Allory [Univ. of Wyoming, Laramie, WY (United States); Ganshin, Yuri [Univ. of Wyoming, Laramie, WY (United States); Jiao, Zunsheng [Univ. of Wyoming, Laramie, WY (United States); Kaszuba, John [Univ. of Wyoming, Laramie, WY (United States); Mallick, Subhashis [Univ. of Wyoming, Laramie, WY (United States); McLaughlin, Fred [Univ. of Wyoming, Laramie, WY (United States); Myers, James [Univ. of Wyoming, Laramie, WY (United States); Quillinan, Scott [Univ. of Wyoming, Laramie, WY (United States)

    2013-12-07

    This study, funded by U.S. Department of Energy National Energy Technology Laboratory award DE-FE0002142 along with the state of Wyoming, uses outcrop and core observations, a diverse electric log suite, a VSP survey, in-bore testing (DST, injection tests, and fluid sampling), a variety of rock/fluid analyses, and a wide range of seismic attributes derived from a 3-D seismic survey to thoroughly characterize the highest-potential storage reservoirs and confining layers at the premier CO2 geological storage site in Wyoming. An accurate site characterization was essential to assessing the following critical aspects of the storage site: (1) more accurately estimate the CO2 reservoir storage capacity (Madison Limestone and Weber Sandstone at the Rock Springs Uplift (RSU)), (2) evaluate the distribution, long-term integrity, and permanence of the confining layers, (3) manage CO2 injection pressures by removing formation fluids (brine production/treatment), and (4) evaluate potential utilization of the stored CO2

  16. Characterization of stored defense production spent nulcear fuel and associated materials at Hanford Site, Richland Washington: Environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    There are about 2,100 tonnes (2,300 tons) of defense production spent nuclear fuel stored in the 100-K Area Basins located along the south shore of the Columbia River in the northern part of the Hanford Site. Some of the fuel which has been in storage for a number of years is in poor condition and continues to deteriorate. The basins also contain fuel fragments and radioactively contaminated sludge. The DOE needs to characterize defense production spent nuclear fuel and associated materials stored on the Hanford Site. In order to satisfy that need, the Department of Energy (DOE) proposes to select, collect and transport samples of spent nuclear fuel and associated materials to the 327 Building for characterization. As a result of that characterization, modes of interim storage can be determined that would be compatible with the material in its present state and alternative treatment processes could be developed to permit a broader selection of storage modes. Environmental impacts of the proposed action were determined to be limited principally to radiation exposure of workers, which, however, were found to be small. No health effects among workers or the general public would be expected under routine operations. Implementation of the proposed action would not result in any impacts on cultural resources, threatened, endangered and candidate species, air or water quality, socioeconomic conditions, or waste management.

  17. Hanford Site National Environmental Policy Act (NEPA) Characterization Report, Revision 17

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, Duane A.; Bunn, Amoret L.; Cannon, Sandra D.; Duncan, Joanne P.; Fowler, Richard A.; Fritz, Brad G.; Harvey, David W.; Hendrickson, Paul L.; Hoitink, Dana J.; Horton, Duane G.; Last, George V.; Poston, Ted M.; Prendergast-Kennedy, Ellen L.; Reidel, Steve P.; Rohay, Alan C.; Sackschewsky, Michael R.; Scott, Michael J.; Thorne, Paul D.

    2005-09-30

    This document describes the U.S. Department of Energy’s (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many environmental documents being prepared by DOE contractors concerning the National Environmental Policy Act (NEPA). No statements about significance or environmental consequences are provided. This year’s report is the seventeenth revision of the original document published in 1988 and is (until replaced by the eighteenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is typically presented in environmental impact statements (EISs) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology; air quality; geology; hydrology; ecology; cultural, archaeological, and historical resources; socioeconomics; noise; and occupational health and safety. Sources for extensive tabular data related to these topics are provided in the chapter. Most subjects are divided into a general description of the characteristics of the Hanford Site, followed by site-specific information, where available, of the 100, 200, 300, and other areas. This division allows the reader to go directly to those sections of particular interest. When specific information on each of these separate areas is not complete or available, the general Hanford Site description should be used. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to the NEPA documents prepared for Hanford Site activities

  18. Collaborative Research: Hydrogeological-Geophysical Methods for Subsurface Site Characterization - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mavko, G.

    2000-01-01

    This research contributes three newly-developed relationships that significantly improve aquifer characterization: (1) a general relationship between total and channel porosities, (2) a general relationship between electrical resistivity and channel porosity, and (3) bounds on the electrical resistivity - seismic velocity relationship.

  19. Characterization of lysine 56 of histone H3 as an acetylation site in Saccharomyces cerevisiae.

    NARCIS (Netherlands)

    Ozdemir, A.; Spicuglia, S.; Lasonder, E.; Vermeulen, M.; Campsteijn, C.G.; Stunnenberg, H.G.; Logie, C.

    2005-01-01

    Post-translational histone modifications abound and regulate multiple nuclear processes. Most modifications are targeted to the amino-terminal domains of histones. Here we report the identification and characterization of acetylation of lysine 56 within the core domain of histone H3. In the crystal

  20. 76 FR 51391 - Commercial Wind Lease Issuance and Site Characterization Activities on the Atlantic Outer...

    Science.gov (United States)

    2011-08-18

    ... Characterization Activities on the Atlantic Outer Continental Shelf (OCS) Offshore Rhode Island and Massachusetts... wind energy developers, and the public in the Department of the Interior's (DOI) ``Smart from the Start'' wind energy initiative. The purpose of the ``Smart from the Start'' wind energy initiative is to...

  1. 76 FR 40925 - Commercial Wind Lease Issuance and Site Characterization Activities on the Atlantic Outer...

    Science.gov (United States)

    2011-07-12

    ... Characterization Activities on the Atlantic Outer Continental Shelf (OCS) Offshore New Jersey, Delaware, Maryland... online at: http://www.boemre.gov/offshore/RenewableEnergy/SmartFromTheStart.htm . Authority: This Notice... November 23, 2010, Secretary of the Interior Ken Salazar announced the ``Smart from the Start'' renewable...

  2. 76 FR 7226 - Commercial Wind Lease Issuance and Site Characterization Activities; Atlantic Outer Continental...

    Science.gov (United States)

    2011-02-09

    ... Characterization Activities; Atlantic Outer Continental Shelf Offshore NJ, DE, MD, and VA AGENCY: Bureau of Ocean... developers, and the public in the Department of the Interior's (DOI) ``Smart from the Start'' wind energy... Salazar announced the ``Smart from the Start'' renewable energy initiative to accelerate responsible...

  3. Estimation of the limitations for surficial water addition above a potential high level radioactive waste repository at Yucca Mountain, Nevada; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Fewell, M.E.; Sobolik, S.R.; Gauthier, J.H.

    1992-01-01

    The Yucca Mountain Site Characterization Project is studying Yucca Mountain in southwestern Nevada as a potential site for a high-level nuclear waste repository. Site characterization includes surface-based and underground testing. Analyses have been performed to design site characterization activities with minimal impact on the ability of the site to isolate waste, and on tests performed as part of the characterization process. One activity of site characterization is the construction of an Exploratory Studies Facility, consisting of underground shafts, drifts, and ramps, and the accompanying surface pad facility and roads. The information in this report addresses the following topics: (1) a discussion of the potential effects of surface construction water on repository-performance, and on surface and underground experiments; (2) one-dimensional numerical calculations predicting the maximum allowable amount of water that may infiltrate the surface of the mountain without affecting repository performance; and (3) two-dimensional numerical calculations of the movement of that amount of surface water and how the water may affect repository performance and experiments. The results contained herein should be used with other site data and scientific/engineering judgement in determining controls on water usage at Yucca Mountain. This document contains information that has been used in preparing Appendix I of the Exploratory Studies Facility Design Requirements document for the Yucca Mountain Site Characterization Project.

  4. Characterization of Italian strong-motion recording sites for a new soil classification

    Science.gov (United States)

    Pacor, F.; Luzi, L.; Bindi, D.; Parolai, S.; Picozzi, M.; Pilz, M.; Mucciarelli, M.; Gallipoli, M.; Paolucci, R.

    2009-12-01

    This works is carried out in the framework of the project S4 “Italian strong-motion database” funded by the Italian Civil Protection, whose aims include the evaluation of the seismic response of accelerometric stations and explore new soil parameters to be used for site classification scheme. Actually, the site classification of the national accelerometric network is mainly based on geological information, since only for few stations detailed geophysical/geotechnical information are available. From the Italian strong motion data set, we developed ground motion prediction equations (GrMPEs) in which the sites are subdivided into three classes based on geology and deposit thickness. We found that the dominant component of variance is related to the inter-station component, suggesting that alternative classification criteria should be adopted in order to reduce the inter-station variability. To evaluate the effectiveness of the average shear wave velocity of the topmost 30m as parameter to classify the soils, we collected about 50 Italian sites, where measures of Vs30 were available, together with a relevant number of seismic recordings. Furthermore, we planned to determinate shear wave velocity profiles at about other 50 accelerometer stations through the active and passive surface wave methods. In this analysis we also considered data from stations in the area of the recently occurred Mw 6.3 Abruzzo earthquake. In particular, the S-wave velocity profile for the village of Onna, that was severely damaged during the earthquake, was included to the data set. We calculated the site response using empirical techniques and simplified theoretical models. Moreover we compared the observed strong motion parameters to those from seismic provisions or from GrMPEs and evaluated the residuals. In many cases the inefficiency of the Vs30 classification was evident, especially for those sites located on deep sedimentary basins. The results confirm that additional parameters

  5. Characterization of Three Indica Rice Multiparent Advanced Generation Intercross (MAGIC) Populations for Quantitative Trait Loci Identification

    OpenAIRE

    Lijun Meng; Longbiao Guo; Kimberly Ponce; Xiangqian Zhao; Guoyou Ye

    2016-01-01

    Three new rice ( L.) multiparent advanced generation intercross (MAGIC) populations were developed using eight elite rice varieties from different breeding programs. These three populations were two recombinant inbred line (RIL) populations derived from two 4-way crosses, DC1 and DC2, and one RIL population derived from an 8-way cross. These populations were genotyped using an Illumina Infinium rice 6K SNP chip. The potential of the three MAGIC populations in identifying marker–trait associa...

  6. NATO Advanced Study Institute on Scanning Probe Microscopy : Characterization, Nanofabrication and Device Application of Functional Materials

    CERN Document Server

    Vilarinho, Paula Maria; Kingon, Angus; Scanning Probe Microscopy : Characterization, Nanofabrication and Device Application of Functional Materials

    2005-01-01

    As the characteristic dimensions of electronic devices continue to shrink, the ability to characterize their electronic properties at the nanometer scale has come to be of outstanding importance. In this sense, Scanning Probe Microscopy (SPM) is becoming an indispensable tool, playing a key role in nanoscience and nanotechnology. SPM is opening new opportunities to measure semiconductor electronic properties with unprecedented spatial resolution. SPM is being successfully applied for nanoscale characterization of ferroelectric thin films. In the area of functional molecular materials it is being used as a probe to contact molecular structures in order to characterize their electrical properties, as a manipulator to assemble nanoparticles and nanotubes into simple devices, and as a tool to pattern molecular nanostructures. This book provides in-depth information on new and emerging applications of SPM to the field of materials science, namely in the areas of characterisation, device application and nanofabrica...

  7. Discovery and characterization of surface binding sites in polysaccharide converting enzymes

    DEFF Research Database (Denmark)

    Wilkens, Casper

    Enzymes that act on various polysaccharides are widespread in any domain of life and they play a role in degradation, modification, and synthesis of carbohydrates. These carbohydrate active enzymes interact with their substrate (the polysaccharide) at the active site and often at so called subsites...... polysaccharide binding interactions to also occur at a distance from the active site. AnAbf62A-m2,3’s preferred substrate is wheat arabinoxylan having kcat and KM of 178 ± 26 s-1 and 4.90 ± 0.91 mg ml-1, respectively. While AnAbf62A-m2,3 from singly substituted xylose releases 1,2-linked at threefold higher rate...

  8. CHARACTERIZATION OF BENTONITE FOR ENGINEERED BARRIER SYSTEMS IN RADIOACTIVE WASTE DISPOSAL SITES

    Directory of Open Access Journals (Sweden)

    Dubravko Domitrović

    2012-07-01

    Full Text Available Engineered barrier systems are used in radioactive waste disposal sites in order to provide better protection of humans and the environment from the potential hazards associated with the radioactive waste disposal. The engineered barrier systems usually contain cement or clay (bentonite because of their isolation properties and long term performance. Quality control tests of clays are the same for all engineering barrier systems. Differences may arise in the required criteria to be met due for different application. Prescribed clay properties depend also on the type of host rocks. This article presents radioactive waste management based on best international practice. Standard quality control procedures for bentonite used as a sealing barrier in radioactive waste disposal sites are described as some personal experiences and results of the index tests (free swelling index, water adsorption capacity, plasticity limits and hydraulic permeability of bentonite (the paper is published in Croatian.

  9. Characterization and Quantification of Pneumatic Fracturing Effects at a Clay Till Site

    DEFF Research Database (Denmark)

    Christiansen, Camilla Maymann; Riis, Charlotte; Christensen, Stine Brok

    2008-01-01

    for the distribution of the injected tracers in the subsurface. They reveal that tracer was distributed within 2 m of the fracturing well, mainly in existing fractures above the redox boundary (2 to 4 m.b.s.; 5 to 10 cm spacing). Spacing of observed tracer-filled fractures was large (>1 m) at greater depths...... on direct documentation of fracture propagation patterns and spacing, was performed at a typical basal clay till site. The study applied a novel package of documentation methods, including injection of five tracers with different characteristics (bromide, uvitex, fluorescein, rhodamine WT, and brilliant......Environmental fracturing offers assistance to remediation efforts at contaminated, low-permeability sites via creation of active fracture networks, and hence, reduction of mass transport limitations set by diffusion in low-permeability matrices. A pilot study of pneumatic fracturing, focusing...

  10. Hydrogeological characterization of a bank filtration experiment site at the Rio Grande, El Paso, Texas, USA

    Science.gov (United States)

    Langford, R.; Schulze-Makuch, D.; Pillai, S.; Abdel-Fattah, A.; Widmer, K.

    2003-04-01

    An experiment site was constructed along an artificial channel of the Rio Grande in El Paso, Texas. The experiment was funded by the EPA and is designed to measure the effectiveness of bank filtration in an arid environment. Regionally, the experiment is important because of the hundreds of thousands of people drinking water from shallow wells drilled in close proximity to septic systems. A pumping well was drilled 17 meters from the stream bank and screened from 3.5 to 8 m depth. A cruciform array of observation wells with several multilevel completions allows detection of downstream and vertical movement of water as well as flow from the stream to the well. All of the wells were continuously cored during drilling. Analysis of the cores reveals that the site consists of two stacked channels filled with sand deposited from the meandering Rio Grande. A grid of ground-penetrating radar lines provided three-dimensional coverage between wells and showed bedding to 6.5 m depth. Constant head hydraulic conductivities show that the aquifer consists of two more permeable units separated by the less permeable upper fill of the lower channel complex, with vertical hydraulic conductivities of (1x10-6 to 2x10-6 m/s?). The intervals above and below this interval have the highest vertical conductivities (up to 3.5x10-5 m/s). A multiple pumping and tracer test was conducted using the cruciform array of the field site that consisted of a pumping well, 16 observation wells, and a stream sampling point. The average hydraulic conductivity of the geological media at the field site was about 2 x 10-3 m/s based on pumping test analysis. However, the type curve responses revealed significant heterogeneity of hydraulic conductivity throughout the field site. For the tracer test, bromide and microspheres were used as tracers. Microspheres were used to mimic the behavior of Giardia and Cryptosporidium. The tracers (bromide and microspheres of different sizes and colors) were injected in one

  11. Preface Special issue: Monitoring and Seismic Characterization of Archaeological Sites and Structures

    Directory of Open Access Journals (Sweden)

    Paolo Clemente

    2017-07-01

    In this perspective a team composed by researchers of ENEA, INGV and Sapienza University of Rome has recently carried out geophysical and structural investigations on the Amphiteatrum Flavium in Rome, better known as Colosseum, which is the symbol of monumental heritage in Italy and well-known all over the world. The experimental campaign was only a preliminary analysis of the very famous archaeological site that allowed outlining the state of knowledge about the characteristics of the site and the structure and should be considered as a starting point for an in-depth investigation of the monument vulnerability. In our opinion, the benefits of such an integrated approach can steer the political and social choices related with the preservation of the cultural heritage at National or European level.

  12. CHARACTERIZATION OF BENTONITE FOR ENGINEERED BARRIER SYSTEMS IN RADIOACTIVE WASTE DISPOSAL SITES

    OpenAIRE

    Dubravko Domitrović; Helena Vučenović; Biljana Kovačević Zelić

    2012-01-01

    Engineered barrier systems are used in radioactive waste disposal sites in order to provide better protection of humans and the environment from the potential hazards associated with the radioactive waste disposal. The engineered barrier systems usually contain cement or clay (bentonite) because of their isolation properties and long term performance. Quality control tests of clays are the same for all engineering barrier systems. Differences may arise in the required criteria to be met due f...

  13. Molecular characterization of senescence marker protein-30 gene promoter: Identification of repressor elements and functional nuclear factor binding sites

    Directory of Open Access Journals (Sweden)

    Maruyama Naoki

    2008-04-01

    Full Text Available Abstract Background Senescence marker protein-30 (SMP30, whose expression declines during aging in rat liver, has been proposed as an important aging marker. Besides apoptosis, SMP30 also protects cells against various other injuries by enhancement of membrane calcium-pump activity. The mechanism of this differential gene expression mechanism is not known. DNA-protein interactions, mutation analysis and luciferase reporter assay studies have been performed to elucidate the mechanism of transcriptional regulation of SMP30 gene. Results We have characterized up to -2750 bp of the promoter by DNA-protein interactions studies. Twenty eight transcription factor binding sites have been identified by DNase I footprinting and electrophoretic mobility shift assay (EMSA. Transient transfection of 5' and 3' -deleted promoter-reporter constructs and luciferase assay illustrated the region between -128/+157 bp is sufficient to drive promoter activity. We have mapped an essential regulatory region between -513 to -352 bp which causes a drastic decline of reporter activity. This region contains CdxA, GATA2 and SRY transcription factor binding sites. Individual mutation of these three sites showed increase in reporter activity. Mutation in SRY site (-403/-368 showed maximum increase in reporter activity among these three sites. Therefore, we suggest that SRY like protein may be acting as a strong repressor of SMP30 gene along with CdxA and GATA-2. We also report that mutation of both Sp1 (172/-148 bp and a C/EBPβ (-190/-177 bp transcription binding site located adjacent to each other on SMP30 gene promoter, causes a significant enhancement in reporter activity than individual mutation, thus may be causing the repression of SMP30 promoter activity. Conclusion These studies provide novel insights into the mechanism that regulate SMP30 gene expression.

  14. Characterization of powellite-based solid solutions by site-selective time resolved laser fluorescence spectroscopy.

    Science.gov (United States)

    Schmidt, Moritz; Heck, Stephanie; Bosbach, Dirk; Ganschow, Steffen; Walther, Clemens; Stumpf, Thorsten

    2013-06-21

    We present a comprehensive study of the solid solution system Ca2(MoO4)2-NaGd(MoO4)2 on the molecular scale, by means of site-selective time resolved laser fluorescence spectroscopy (TRLFS). Eu(3+) is used as a trace fluorescent probe, homogeneously substituting for Gd(3+) in the solid solution crystal structure. Site-selective TRLFS of a series of polycrystalline samples covering the whole composition range of the solid solution series from 10% substitution of Ca(2+) to the NaGd end-member reveals it to be homogeneous throughout the whole range. The trivalent ions are incorporated into the powellite structure in only one coordination environment, which exhibits a very strong ligand-metal interaction. Polarization-dependent measurements of a single crystal of NaGd(Eu)(MoO4)2 identify the coordination geometry to be of C2v point symmetry. The S4 symmetry of the Ca site within the powellite lattice can be transformed into C2v assuming minor motion in the first coordination sphere.

  15. Characterization of transcription site-associated mRNP retention in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Jensen, Torben Heick

    In a variety of S. cerevisiae mutants with defective mRNP maturation and/or export, heat shock (hs) mRNPs are retained at or near their sites of transcription. For example, mutants of the THO complex display an intense hs-mRNA FISH signal, which co-localizes with the hs-gene after transcriptional...... induction. The THO complex is implicated in co-transcriptional mRNP assembly, but its precise role is still unclear. Transcriptional run-on analysis as well as genetic interaction data suggest that the function of the THO complex is linked to 3’-end processing. Chromatin immunoprecipitation (ChIP) assays...... underrepresented in recovered fractions from mutant cells. This bias is abolished when a THO mutation is combined with a second site mutation alleviating the mRNA export block. Thus, the bias parallels transcription-site retention of the mRNP and suggests the existence of a complex specifically formed at the 3...

  16. Characterization of Microbial Communities in Subsurface Nuclear Blast Cavities of the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Moser, Duane P.; Bruckner, Jim; Fisher, Jen; Czerwinski, Ken; Russell, Charles E.; Zavarin, Mavrik

    2010-09-01

    This U.S. Department of Energy (DOE) Environmental Remediation Sciences Project (ERSP) was designed to test fundamental hypotheses concerning the existence and nature of indigenous microbial populations of Nevada Test Site subsurface nuclear test/detonation cavities. Now called Subsurface Biogeochemical Research (SBR), this program’s Exploratory Research (ER) element, which funded this research, is designed to support high risk, high potential reward projects. Here, five cavities (GASCON, CHANCELLOR, NASH, ALEMAN, and ALMENDRO) and one tunnel (U12N) were sampled using bailers or pumps. Molecular and cultivation-based techniques revealed bacterial signatures at five sites (CHANCELLOR may be lifeless). SSU rRNA gene libraries contained diverse and divergent microbial sequences affiliated with known metal- and sulfur-cycling microorganisms, organic compound degraders, microorganisms from deep mines, and bacteria involved in selenate reduction and arsenite oxidation. Close relatives of Desulforudis audaxviator, a microorganism thought to subsist in the terrestrial deep subsurface on H2 and SO42- produced by radiochemical reactions, was detected in the tunnel waters. NTS-specific media formulations were used to culture and quantify nitrate-, sulfate-, iron-reducing, fermentative, and methanogenic microorganisms. Given that redox manipulations mediated by microorganisms can impact the mobility of DOE contaminants, our results should have implications for management strategies at this and other DOE sites.

  17. Characterization of microbial communities in subsurface nuclear blast cavities of the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Moser, Duane P; Czerwinski, Ken; Russell, Charles E; Zavarin, Mavrik

    2010-07-13

    This US Department of Energy (DOE) Environmental Remediation Sciences Project (ERSP) was designed to test fundamental hypotheses concerning the existence and nature of indigenous microbial populations of Nevada Test Site subsurface nuclear test/detonation cavities. Now called Subsurface Biogeochemical Research (SBR), this program's Exploratory Research (ER) element, which funded this research, is designed to support high risk, high potential reward projects. Here, five cavities (GASCON, CHANCELLOR, NASH, ALEMAN, and ALMENDRO) and one tunnel (U12N) were sampled using bailers or pumps. Molecular and cultivation-based techniques revealed bacterial signatures at five sites (CHANCELLOR may be lifeless). SSU rRNA gene libraries contained diverse and divergent microbial sequences affiliated with known metal- and sulfur-cycling microorganisms, organic compound degraders, microorganisms from deep mines, and bacteria involved in selenate reduction and arsenite oxidation. Close relatives of Desulforudis audaxviator, a microorganism thought to subsist in the terrestrial deep subsurface on H2 and SO42- produced by radiochemical reactions, was detected in the tunnel waters. NTS-specific media formulations were used to culture and quantify nitrate-, sulfate-, iron-reducing, fermentative, and methanogenic microorganisms. Given that redox manipulations mediated by microorganisms can impact the mobility of DOE contaminants, our results should have implications for management strategies at this and other DOE sites.

  18. Synthesis and characterization of 18F-labeled active site inhibited factor VII (ASIS)

    DEFF Research Database (Denmark)

    Erlandsson, Maria; Nielsen, Carsten Haagen; Jeppesen, Troels Elmer

    2015-01-01

    Activated factor VII blocked in the active site with Phe-Phe-Arg-chloromethyl ketone (active site inhibited factor VII (ASIS)) is a 50-kDa protein that binds with high affinity to its receptor, tissue factor (TF). TF is a transmembrane glycoprotein that plays an important role in, for example......, thrombosis, metastasis, tumor growth, and tumor angiogenesis. The aim of this study was to develop an 18F-labeled ASIS derivative to assess TF expression in tumors. Active site inhibited factor VII was labeled using N-succinimidyl-4-[18F]fluorobenzoate, and the [18F]ASIS was purified on a PD-10 desalting...... column. The radiochemical yield was 25 ± 6%, the radiochemical purity was >97%, and the pseudospecific radioactivity was 35 ± 9 GBq/µmol. The binding efficacy was evaluated in pull-down experiments, which monitored the binding of unlabeled ASIS and [18F]ASIS to TF and to a specific anti-factor VII...

  19. Characterization of two heparan sulphate-binding sites in the mycobacterial adhesin Hlp

    Directory of Open Access Journals (Sweden)

    Previato Jose O

    2008-05-01

    Full Text Available Abstract Background The histone-like Hlp protein is emerging as a key component in mycobacterial pathogenesis, being involved in the initial events of host colonization by interacting with laminin and glycosaminoglycans (GAGs. In the present study, nuclear magnetic resonance (NMR was used to map the binding site(s of Hlp to heparan sulfate and identify the nature of the amino acid residues directly involved in this interaction. Results The capacity of a panel of 30 mer synthetic peptides covering the full length of Hlp to bind to heparin/heparan sulfate was analyzed by solid phase assays, NMR, and affinity chromatography. An additional active region between the residues Gly46 and Ala60 was defined at the N-terminal domain of Hlp, expanding the previously defined heparin-binding site between Thr31 and Phe50. Additionally, the C-terminus, rich in Lys residues, was confirmed as another heparan sulfate binding region. The amino acids in Hlp identified as mediators in the interaction with heparan sulfate were Arg, Val, Ile, Lys, Phe, and Thr. Conclusion Our data indicate that Hlp interacts with heparan sulfate through two distinct regions of the protein. Both heparan sulfate-binding regions here defined are preserved in all mycobacterial Hlp homologues that have been sequenced, suggesting important but possibly divergent roles for this surface-exposed protein in both pathogenic and saprophic species.

  20. Oak Ridge K-25 Site Technology Logic Diagram. Volume 3, Technology evaluation data sheets; Part A, Characterization, decontamination, dismantlement

    Energy Technology Data Exchange (ETDEWEB)

    Fellows, R.L. [ed.

    1993-02-26

    The Oak Ridge K-25 Technology Logic Diagram (TLD), a decision support tool for the K-25 Site, was developed to provide a planning document that relates environmental restoration and waste management problems at the Oak Ridge K-25 Site to potential technologies that can remediate these problems. The TLD technique identifies the research necessary to develop these technologies to a state that allows for technology transfer and application to waste management, remedial action, and decontamination and decommissioning activities. The TLD consists of four separate volumes-Vol. 1, Vol. 2, Vol. 3A, and Vol. 3B. Volume 1 provides introductory and overview information about the TLD. Volume 2 contains logic diagrams. Volume 3 has been divided into two separate volumes to facilitate handling and use. This report is part A of Volume 3 concerning characterization, decontamination, and dismantlement.

  1. Site characterization progress report: Yucca Mountain, Nevada, April 1, 1990--September 30, 1990, Number 3; Nuclear Waste Policy Act (Section 113)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-03-01

    In accordance with the requirements of Section 113(b)(3) of the Nuclear Waste Policy Act of 1982 (NWPA), as amended, the US Department of Energy has prepared this report on the progress of site characterization activities at Yucca Mountain, Nevada, for the period April 1 through September 30, 1990. This report is the third of a series of reports that are issued at intervals of approximately six months during site characterization. The report covers a number of new initiatives to improve the effectiveness of the site characterization program and covers continued efforts related to preparatory activities, study plans, and performance assessment. 85 refs., 2 figs., 3 tabs.

  2. Combining active and passive seismic methods for the characterization of urban sites in Cairo, Egypt

    Science.gov (United States)

    Adly, Ashraf; Poggi, Valerio; Fäh, Donat; Hassoup, Awad; Omran, Awad

    2017-07-01

    The geology at Kottamiya, Rehab City and Zahraa-Madinat-Nasr to the East of Cairo (Egypt) is composed of low-velocity sediments on top of a rigid rock basement. Such sediments include the loose sands of the Gebel Ahmar formation, marl and shales of Maadi formation, in addition to sparse quaternary soil covers. Due to the contrast of the seismic impedance with the underlying bedrock, these soft sediments have the potential of considerably amplifying the ground motion during an earthquake. For the evaluation of site-specific seismic hazard, we computed the seismic site response in these areas by developing 1-D velocity models and derived average seismic velocities, including Vs30. To do that, we applied different active and passive source techniques, including the horizontal to vertical Fourier spectral ratio of ambient vibration recordings and multichannel analysis of artificially generated surface waves. A set of models representing the velocity structure of the site is then obtained by combined inversion of Rayleigh wave dispersion curves and ellipticity functions. While dispersion curves are used to constrain the uppermost low-velocity part of the soil profile, ellipticity helps in resolving the structure at the depth of the sediment-bedrock interface. From the retrieved velocity models, numerical ground-motion amplification is finally derived using 1-D SH-wave transfer function. We account for uncertainty in amplification by using a statistical model that accounts for the misfit of all the inverted velocity profiles. The study reveals that the different sites experience an important frequency-dependent amplification, with largest amplification occurring at the resonance frequencies of the sites. Amplification up to a factor of 5 is found, with some variability depending on the soil type (Vs30 ranges between 340 and 415 m s-2). Moreover, amplification is expected in the frequency range that is important for buildings (0.8-10 Hz), which is additional confirmation

  3. The Effects of Site Characterization Activities on the Abundance of Ravens (Corvus corax) in the Yucca Mountain Area

    Energy Technology Data Exchange (ETDEWEB)

    P.E. Lederle

    1998-05-08

    In response to the Nuclear Waste Policy Act of 1982 and the Nuclear Waste Policy Amendments Act of 1987, the U.S. Department of Energy (DOE) developed and is implementing the Yucca Mountain Site Characterization Project. Raven abundance was measured from August 1991 through August 1995 along treatment and control routes to evaluate whether site characterization activities resulted in increased raven abundance at Yucca Mountain. This study fulfills the requirement set forth in the incidental take provisions of the Biological Opinion that DOE monitor the abundance of ravens at Yucca Mountain. Ravens were more abundant at Yucca Mountain than in the control area, and raven abundance in both areas increased over time. However, the magnitude of differences between Yucca Mountain and control surveys did not change over time, indicating that the increase in raven abundance observed during this study was not related to site characterization activities. Increases over time on both Yucca Mountain and control routes are consistent with increases in raven abundance in the Mojave Desert reported by the annual Breeding Bird Survey of the US. Fish and Wildlife Service. Evidence from the Desert Tortoise Monitoring Program at Yucca Mountain suggests that ravens are not a significant predator of small tortoises in this locale. Carcasses of small tortoises (less than 110 mm in length) collected during the study showed little evidence of raven predation, and 59 radiomarked hatchlings that were monitored on a regular basis were not preyed upon by ravens. Overall, no direct evidence of raven predation on tortoises was observed during this study. Small tortoises are probably encountered so infrequently by ravens that they are rarely exploited as a food source. This is likely due to the relatively low abundance of both desert tortoises and ravens in the Yucca Mountain area.

  4. Molecular cytogenetic characterization of chromosome site-specific repetitive sequences in the Arctic lamprey (Lethenteron camtschaticum, Petromyzontidae)

    Science.gov (United States)

    Ishijima, Junko; Uno, Yoshinobu; Nunome, Mitsuo; Nishida, Chizuko; Kuraku, Shigehiro

    2017-01-01

    Abstract All extant lamprey karyotypes are characterized by almost all dot-shaped microchromosomes. To understand the molecular basis of chromosome structure in lampreys, we performed chromosome C-banding and silver staining and chromosome mapping of the 18S–28S and 5S ribosomal RNA (rRNA) genes and telomeric TTAGGG repeats in the Arctic lamprey (Lethenteron camtschaticum). In addition, we cloned chromosome site-specific repetitive DNA sequences and characterized them by nucleotide sequencing, chromosome in situ hybridization, and filter hybridization. Three types of repetitive sequences were detected; a 200-bp AT-rich repetitive sequence, LCA-EcoRIa that co-localized with the 18S–28S rRNA gene clusters of 3 chromosomal pairs; a 364-bp AT-rich LCA-EcoRIb sequence that showed homology to the EcoRI sequence family from the sea lamprey (Petromyzon marinus), which contains short repeats as centromeric motifs; and a GC-rich 702-bp LCA-ApaI sequence that was distributed on nearly all chromosomes and showed significant homology with the integrase-coding region of a Ty3/Gypsy family long terminal repeat (LTR) retrotransposon. All three repetitive sequences are highly conserved within the Petromyzontidae or within Petromyzontidae and Mordaciidae. Molecular cytogenetic characterization of these site-specific repeats showed that they may be correlated with programed genome rearrangement (LCA-EcoRIa), centromere structure and function (LCA-EcoRIb), and site-specific amplification of LTR retroelements through homogenization between non-homologous chromosomes (LCA-ApaI). PMID:28025319

  5. Characterization of HSP27 phosphorylation sites in human atherosclerotic plaque secretome

    DEFF Research Database (Denmark)

    Durán, Mari-Carmen; Boeri-Erba, Elisabetta; Mohammed, Shabaz

    2007-01-01

    Atherosclerosis is one of the main causes of death in developed countries. Atheroma plaque formation is promoted by the interaction between the cells conforming the arterial wall, smooth muscle cells, and endothelial cells, together with lipoproteins and inflammatory cells (mainly macrophages and T......-lymphocytes). These interactions can be mediated by proteins secreted from these cells, which therefore exert an important role in the atherosclerotic process. We recently described a novel strategy for the characterization of the human atherosclerotic plaque secretome, combining two-dimensional gel electrophoresis and mass......, the role that phosphorylated HSP27 could play in the atherosclerotic process is actually under study. The present work shows the strategies employed to characterize the phosphorylation in the HSP27 secreted by atheroma plaque samples. The application of liquid chromatography tandem mass spectrometry (MS...

  6. Geophysical and Geochemical Characterization of Subsurface Drip Irrigation Sites, Powder River Basin, Wyoming

    Science.gov (United States)

    Burton, B. L.; Bern, C. R.; Sams, J. I., III; Veloski, G.; Minsley, B. J.; Smith, B. D.

    2010-12-01

    Coalbed natural gas (CBNG) production in the Powder River Basin (PRB) in northeastern Wyoming has increased rapidly since 1997. CBNG production involves the extraction of large amounts of water containing >2000 mg/L total dissolved solids, dominantly sodium bicarbonate. Subsurface drip irrigation (SDI) is a beneficial disposal method of produced waters, provided that waters and associated salts are managed properly. We are studying how water and solute distributions change in soils with progressive irrigation at two PRB sites using a combination of geophysical, geochemical, and mineralogical analyses. Perennial crops are grown at both sites, drip tapes are located at 92 cm depth, and water is applied year-round. The first SDI site is located at the confluence of Crazy Woman Creek and the Powder River. Baseline ground-based and helicopter-borne frequency domain electromagnetic induction (EMI) surveys were completed in 2007 and 2008, respectively, prior to the installation of the SDI system. Since installation, additional ground-based EMI, resistivity, and downhole geophysical log surveys have been completed along with soil geochemical and mineralogical analyses. Determining baseline physical, chemical, and electrical soil characteristics at this study site is an important step in linking the EMI measurements to the soil characteristics they are intended to assess. EMI surveys indicate that soil conductivity has generally increased with irrigation, but lateral migration of water away from the irrigated blocks is minimal. Median downhole electrical conductivity was positively correlated with soil mass wetness but not correlated with soil mineralogy. Soil-water extract results indicate existing salts are chemically heterogeneous throughout the site and in depth. The observed EMI conductivity variations are therefore primarily attributed to water content changes and secondarily to soil texture. The second SDI site, located northeast of Sheridan, WY, has been operating

  7. Geomechanical characterization of the CO2CRC Otway Project site, Australia

    OpenAIRE

    Aruffo, Chiara Maria

    2015-01-01

    Storage of CO2 in the subsurface is one of the options available to lower the amount of CO2 in the atmosphere, a general priority in mitigating effects of climate change. In this frame, a number of challenges need to be solved to ensure a safe storage containment by avoiding wellbore failure, fault reactivation, leakage of CO2 along faults, caprock failure and microseismicity. Risks related to those issues can be successfully addressed with an accurate geomechanical characterization prior to ...

  8. Characterization of polluted sites. Assessment of pollutant behaviour and transfer in mediums; Caracterisation des sites pollues. L`evaluation du comportement et du transfert des polluants dans les milieux

    Energy Technology Data Exchange (ETDEWEB)

    Goubier, R. [Agence de l`Environnement et de la Maitrise de l`Energie, 75 - Paris (France); Chassagnac, T. [CSD Azur (France); Schlegel, T. [ATE, (France); Coste, B. [ANTEA, (France)

    1996-12-31

    After a presentation of methods and tools for the basic and extensive characterization of polluted sites and the study of evolution and transfer of current organic pollutants in the ground, the example of the rehabilitation of an old Rhone-Poulenc site (at Chauny, France) polluted with metals and arsenic, is described: soil and aquifer diagnosis, risk analysis and determination of migration schemes

  9. Advances on the constitutive characterization of composites via multiaxial robotic testing and design optimization

    Science.gov (United States)

    John G. Michopoulos; John Hermanson; Athanasios Iliopoulos

    2014-01-01

    The research areas of mutiaxial robotic testing and design optimization have been recently utilized for the purpose of data-driven constitutive characterization of anisotropic material systems. This effort has been enabled by both the progress in the areas of computers and information in engineering as well as the progress in computational automation. Although our...

  10. GeLCMS for in-depth protein characterization and advanced analysis of proteomes

    DEFF Research Database (Denmark)

    Lundby, Alicia; Olsen, Jesper V

    2011-01-01

    In recent years the array of mass spectrometry (MS) applications to address questions in molecular and cellular biology has greatly expanded and continues to grow. Modern mass spectrometers allow for identification, characterization, as well as quantification of protein compositions and their mod...

  11. What Characterizes the Algebraic Competence of Norwegian Upper Secondary School Students? Evidence from TIMSS Advanced

    Science.gov (United States)

    Pedersen, Ida Friestad

    2015-01-01

    Algebra is the fundamental language of mathematics, and a profound understanding of school algebra is an important prerequisite for further studies in mathematical sciences. The aim of this study is to characterize the algebraic competence of the Norwegian upper secondary school students participating in Trends in International Mathematics and…

  12. Advanced testing and characterization of shear modulus and deformation characteristics of oil sand materials

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph

    2014-09-01

    Full Text Available the need to characterize the stress dependent, visco-elastic and plastic behavior of oil sand materials under dynamic loading of off-road construction and mining equipment. This paper introduces a new cyclic triaxial test procedure for determining shear...

  13. Radiologic characterization of the Mexican Hat, Utah, uranium mill tailings remedial action site: Appendix D, Addenda D1--D7

    Energy Technology Data Exchange (ETDEWEB)

    Ludlam, J.R.