WorldWideScience

Sample records for sintered surfaces based

  1. Master Sintering Surface: A practical approach to its construction and utilization for Spark Plasma Sintering prediction

    Directory of Open Access Journals (Sweden)

    Pouchly V.

    2012-01-01

    Full Text Available The sintering is a complex thermally activated process, thus any prediction of sintering behaviour is very welcome not only for industrial purposes. Presented paper shows the possibility of densification prediction based on concept of Master Sintering Surface (MSS for pressure assisted Spark Plasma Sintering (SPS. User friendly software for evaluation of the MSS is presented. The concept was used for densification prediction of alumina ceramics sintered by SPS.

  2. Research on Laser Micro Polishing of SLS Technology Sintered Iron-Based Powder Surface

    OpenAIRE

    Gerda Vaitkūnaitė; Vladislav Markovič; Olegas Černašėjus

    2015-01-01

    The article analyzes laser micro polishing of 1.2083 steel samples produced applying selective laser sintering (SLS) method. The study has evaluated the distribution of the shape, size and temperature of the laser beam treated area in the surface layer of sintered and laser polished samples. Experimental tests have shown the impact of the technical parameters of laser micro polishing on the width and hardness of the impact zone of the treated sample. The microstructure analysis of laser treat...

  3. Research on Laser Micro Polishing of SLS Technology Sintered Iron-Based Powder Surface

    Directory of Open Access Journals (Sweden)

    Gerda Vaitkūnaitė

    2015-03-01

    Full Text Available The article analyzes laser micro polishing of 1.2083 steel samples produced applying selective laser sintering (SLS method. The study has evaluated the distribution of the shape, size and temperature of the laser beam treated area in the surface layer of sintered and laser polished samples. Experimental tests have shown the impact of the technical parameters of laser micro polishing on the width and hardness of the impact zone of the treated sample. The microstructure analysis of laser treated and untreated areas of the material has been made.

  4. Inkjet printed paper based frequency selective surfaces and skin mounted RFID tags: The interrelation between silver nanoparticle ink, paper substrate and low temperature sintering technique

    NARCIS (Netherlands)

    Sanchez-Romaguera, V.; Wünscher, S.; Turki, B.M.; Abbel, R.; Barbosa, S.; Tate, D.J.; Oyeka, D.; Batchelor, J.C.; Parker, E.A.; Schubert, U.S.; Yeates, S.G.

    2015-01-01

    Inkjet printing of functional frequency selective surfaces (FSS) and radio frequency identification (RFID) tags on commercial paper substrates using silver nanoparticle inks sintered using low temperature thermal, plasma and photonic techniques is reported. Printed and sintered FSS devices

  5. Cell response to hydroxyapatite surface topography modulated by sintering temperature.

    Science.gov (United States)

    Mealy, Jacob; O'Kelly, Kevin

    2015-11-01

    Increased mesenchymal stem cell (MSC) activity on hydroxyapatite (HA) bone tissue engineering scaffolds will improve their viability in diffusion-based in vivo environments and is therefore highly desirable. This work focused on modulating the sintered HA surface topography with a view to increasing cell activity; this was achieved by varying the sintering temperature of the HA substrates. Cells were cultured on the substrates for periods of up to 19 days and displayed a huge variation in viability. MSC metabolic activity was measured using a resazurin sodium salt assay and revealed that surfaces sintered from 1250 to 1350°C significantly outperformed their lower temperature counterparts from day one (p ≤ 0.05). Surfaces sintered at 1300°C induced 57% more cell activity than the control at day 16. No significant activity was observed on surfaces sintered below 1200°C. It is suggested that this is due to the granular morphology produced at these temperatures providing insufficient contact area for cell attachment. In addition, we propose the average surface wavelength as a more quantitative surface descriptor than those readily found in the literature. The wavelengths of the substrates presented here were highly correlated with cell activity (R(2)  = 0.9019); with a wavelength of 2.675 µm on the 1300°C surface inducing the highest cell response. © 2015 Wiley Periodicals, Inc.

  6. Surface-selective laser sintering of thermolabile polymer particles using water as heating sensitizer

    Energy Technology Data Exchange (ETDEWEB)

    Antonov, E N; Krotova, L I; Minaev, N V; Minaeva, S A; Mironov, A V; Popov, V K [Institute on Laser and Information Technologies of the Russian Academy of Sciencies, Troitsk, Moscow (Russian Federation); Bagratashvili, V N [Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2015-11-30

    We report the implementation of a novel scheme for surface-selective laser sintering (SSLS) of polymer particles, based on using water as a sensitizer of laser heating and sintering of particles as well as laser radiation at a wavelength of 1.94 μm, corresponding to the strong absorption band of water. A method of sintering powders of poly(lactide-co-glycolide), a hydrophobic bioresorbable polymer, after modifying its surface with an aqueous solution of hyaluronic acid is developed. The sintering thresholds for wetted polymer are by 3 – 4 times lower than those for sintering in air. The presence of water restricts the temperature of the heated polymer, preventing its thermal destruction. Polymer matrices with a developed porous structure are obtained. The proposed SSLS method can be applied to produce bioresorbable polymer matrices for tissue engineering. (interaction of laser radiation with matter. laser plasma)

  7. Surface martensitization of Carbon steel using Arc Plasma Sintering

    Science.gov (United States)

    Wahyudi, Haris; Dimyati, Arbi; Sebayang, Darwin

    2018-03-01

    In this paper new technology of surface structure modification of steel by short plasma exposure in Arc Plasma Sintering (APS) device is presented. APS is an apparatus working based on plasma generated by DC pulsed current originally used for synthesizing materials via sintering and melting. Plasma exposure in APS was applied into the specimens for 1 and 3 seconds which generate temperature approximately about 1300-1500°C. The SUP9, pearlitic carbon steel samples were used. The hardness, hardening depth and microstructure of the specimens have been investigated by Vickers micro hardness test and Scanning Electron Microscopy (SEM) supported by Energy Dispersive X-Ray Spectroscopy (EDX). The results have showed that the mechanical property was significantly improved due to the formation of single martensitic structures as identified by SEM. The hardness of treated surface evaluated by Vickers hardness test showed significant improvement nearly three time from 190 VHN before to 524 VHN after treatment. Furthermore, EDX confirmed that the formation of martensite layer occurred without altering its composition. The APS also produced uniform hardened layer up to 250 μm. The experiment has demonstrated that arc plasma process was successfully improved the mechanical properties of steel in relatively very short time.

  8. New horizons in selective laser sintering surface roughness characterization

    Science.gov (United States)

    Vetterli, M.; Schmid, M.; Knapp, W.; Wegener, K.

    2017-12-01

    Powder-based additive manufacturing of polymers and metals has evolved from a prototyping technology to an industrial process for the fabrication of small to medium series of complex geometry parts. Unfortunately due to the processing of powder as a basis material and the successive addition of layers to produce components, a significant surface roughness inherent to the process has been observed since the first use of such technologies. A novel characterization method based on an elastomeric pad coated with a reflective layer, the Gelsight, was found to be reliable and fast to characterize surfaces processed by selective laser sintering (SLS) of polymers. With help of this method, a qualitative and quantitative investigation of SLS surfaces is feasible. Repeatability and reproducibility investigations are performed for both 2D and 3D areal roughness parameters. Based on the good results, the Gelsight is used for the optimization of vertical SLS surfaces. A model built on laser scanning parameters is proposed and after confirmation could achieve a roughness reduction of 10% based on the S q parameter. The Gelsight could be successfully identified as a fast, reliable and versatile surface topography characterization method as it applies to all kind of surfaces.

  9. Ice sintering timescales at the surface of Europa and implications for surface properties

    Science.gov (United States)

    Phillips, C. B.; Molaro, J.; Meirion-Griffith, G.

    2017-12-01

    The planned exploration of Europa by NASA's Europa Clipper Mission and the possibility of a future Europa lander have driven the need to characterize its surface strength, roughness, porosity, thermal conductivity, and regolith depth in order to accurately interpret remote sensing data and develop appropriate spacecraft landing systems. Many processes contribute to Europa's landscape evolution, such as sputtering, mass wasting, thermal segregation, and impact gardening, driving the creation and distribution of icy regolith across the surface. While the efficacy of these processes are not well constrained, any amount of regolith emplaced at the surface will undergo subsequent processing due to sintering. Ice sintering is a form of frost metamorphism whereby contacting ice grains experience the diffusion of material into their contact region, forming a "neck" between them and densifying over time. Over long enough timescales, ice aggregates will sinter into solid material, which may contribute to the incorporation of non-ice material into Europa's subsurface and help to drive subsurface chemistry. Sintering also interacts with other processes, adding to the complexity of icy surface evolution. For example, sputtering preferentially removes larger grains and may enhance sintering rates, and changes in ice porosity may affect the response of the surface to micrometeorite impacts. Quantifying the effects of ice sintering will allow us to predict the microstructural properties of Europa's surface at spacecraft scales. To this end, we have modeled pressure-less (no overburden) sintering of spherical water-ice grains and validated the results with a laboratory experiment. We also modeled ice at the surface of Europa to obtain a first-order approximation of the sintering timescale and surface properties. Preliminary results indicate that ice grains will experience neck growth but not significant densification over Europa's surface age, suggesting that loose surface ice

  10. The effects of surface finish and grain size on the strength of sintered silicon carbide

    Science.gov (United States)

    You, Y. H.; Kim, Y. W.; Lee, J. G.; Kim, C. H.

    1985-01-01

    The effects of surface treatment and microstructure, especially abnormal grain growth, on the strength of sintered SiC were studied. The surfaces of sintered SiC were treated with 400, 800 and 1200 grit diamond wheels. Grain growth was induced by increasing the sintering times at 2050 C. The beta to alpha transformation occurred during the sintering of beta-phase starting materials and was often accompanied by abnormal grain growth. The overall strength distributions were established using Weibull statistics. The strength of the sintered SiC is limited by extrinsic surface flaws in normal-sintered specimens. The finer the surface finish and grain size, the higher the strength. But the strength of abnormal sintering specimens is limited by the abnormally grown large tabular grains. The Weibull modulus increases with decreasing grain size and decreasing grit size for grinding.

  11. Evaluation of the Fatigue Strength of Sintered Steel Based on Fracture Mechanics

    OpenAIRE

    加藤, 正名; 井上, 克己; 鄧, 鋼; 佐藤, 寿樹; 亀子, 峰雄

    1996-01-01

    This paper deals with an evaluation of the fatigue strength of sintered steel based on linear fracture mechanics. The fatigue crack growth is measured with bend test specimens of Fe-Cu-Cr sintered steel of various densities. From this result, the fatigue strengths of the specimens with initial length of crack a at the life N are calculated, and they are shown as N-S-A curves. A model, which has an initial crack at the surface but is homogeneous and has no internal flaws, is introduced to anal...

  12. Selective Surface Sintering Using a Laser-Induced Breakdown Spectroscopy System

    Directory of Open Access Journals (Sweden)

    H. Jull

    2017-01-01

    Full Text Available Titanium metal injection molding allows creation of complex metal parts that are lightweight and biocompatible with reduced cost in comparison with machining titanium. Laser-induced breakdown spectroscopy (LIBS can be used to create plasma on the surface of a sample to analyze its elemental composition. Repetitive ablation on the same site has been shown to create differences from the original sample. This study investigates the potential of LIBS for selective surface sintering of injection-molded titanium metal. The temperature created throughout the LIBS process on the surface of the injection-molded titanium is high enough to fuse together the titanium particles. Using the ratio of the Ti II 282.81 nm and the C I 247.86 nm lines, the effectiveness of repetitive plasma formation to produce sintering can be monitored during the process. Energy-dispersive X-ray spectroscopy on the ablation craters confirms sintering through the reduction in carbon from 20.29 Wt.% to 2.13 Wt.%. Scanning electron microscope images confirm sintering. A conventional LIBS system, with a fixed distance, investigated laser parameters on injection-molded and injection-sintered titanium. To prove the feasibility of using this technique on a production line, a second LIBS system, with an autofocus and 3-axis translation stage, successfully sintered a sample with a nonplanar surface.

  13. Bonding Strength of Ceromer with Direct Laser Sintered, Ni-Cr-Based, and ZrO2 Metal Infrastructures After Er:YAG, Nd:YAG, and Ho:YAG Laser Surface Treatments-A Comparative In Vitro Study.

    Science.gov (United States)

    Gorler, Oguzhan; Ozdemir, Ali Kemal

    2016-08-01

    Laser modalities instead of conventional surface treatment techniques have been suggested to obtain an adequate micromechanical bonding between dental super- and infrastructures. The present study was undertaken to assess the effect of surface treatment with Ho:YAG, Er:YAG, and Nd:YAG laser modalities on the shear bond strength (SBS) of ceromer to different types of metal infrastructures in in vitro settings. The study specimens consisted of 40 direct laser sintered (DLS), 40 Ni-Cr-based, and 40 zirconium oxide (ZrO2) infrastructures. In each infrastructure group, the specimens were divided randomly into five treatment modalities (n = 8): no treatment (controls), sandblasting, Er:YAG, Nd:YAG, and Ho:YAG lasers. The DLS, Ni-Cr-based, and ZrO2 infrastructures were prepared in the final dimensions of 7 mm in diameter and 3 mm in thickness in line with the ISO 11405 standard. Ceromer as superstructure was applied to all the infrastructures after their surface treatments according to the selected treatment modality. SBS test was performed to test the effectiveness of surface treatments. A stereomicroscope was used to determine the changes in the surface morphology of specimens. Among the laser modalities and sandblasting, Ho:YAG laser caused the most important increase in the DLS and Ni-Cr-based infrastructures but sandblasting caused the most important increase in the ZrO2 infrastructure. In all the infrastructures, Nd:YAG laser has the least effectiveness, and Er:YAG laser makes an intermediate success. The stereomicroscopy images presented that the applications of laser surface treatments altered the surface in all the infrastructures. Overall, in current experimental settings, Ho:YAG, Nd:YAG, and Er:YAG lasers, in order of strength, are effective in improving the bonding of ceromer to all the infrastructures. Ho:YAG laser is more effective in the DLS and Ni-Cr-based infrastructures, but sandblasting is more effective in the ZrO2 infrastructure. The studied

  14. Monitoring of temperature profiles and surface morphologies during laser sintering of alumina ceramics

    Directory of Open Access Journals (Sweden)

    Bin Qian

    2014-06-01

    Full Text Available Additive manufacturing of alumina by laser is a delicate process and small changes of processing parameters might cause less controlled and understood consequences. The real-time monitoring of temperature profiles, spectrum profiles and surface morphologies were evaluated in off-axial set-up for controlling the laser sintering of alumina ceramics. The real-time spectrometer and pyrometer were used for rapid monitoring of the thermal stability during the laser sintering process. An active illumination imaging system successfully recorded the high temperature melt pool and surrounding area simultaneously. The captured images also showed how the defects form and progress during the laser sintering process. All of these real-time monitoring methods have shown a great potential for on-line quality control during laser sintering of ceramics.

  15. Effect of surface roughness on grain growth and sintering of alumina

    Indian Academy of Sciences (India)

    Administrator

    shows significant difference between fine and intermediate surfaces, hence predicts small difference in their microstructural features. As a general trend, average grain size increases with increase in sintering tempera- ture, but wide distribution of grains with enhanced non-uniform grain growth is observed when the surface ...

  16. Sinterable powders

    International Nuclear Information System (INIS)

    Zanghi, J.S.; Kasprzyk, M.R.

    1979-01-01

    A description is given of sinterable powders and methods of producing sintered products using such powders. The powders consist of (a) a particulate ceramic material, e.g. SiC, having specified particle size and surface area; (b) a carbon source material, e.g. sugar or a phenol-formaldehyde resin; and (c) a residue from a solution of H 3 BO 3 , B 2 O 3 , or mixtures of these as sintering aid. (U.K.)

  17. Tribological behaviour and statistical experimental design of sintered iron-copper based composites

    Science.gov (United States)

    Popescu, Ileana Nicoleta; Ghiţă, Constantin; Bratu, Vasile; Palacios Navarro, Guillermo

    2013-11-01

    The sintered iron-copper based composites for automotive brake pads have a complex composite composition and should have good physical, mechanical and tribological characteristics. In this paper, we obtained frictional composites by Powder Metallurgy (P/M) technique and we have characterized them by microstructural and tribological point of view. The morphology of raw powders was determined by SEM and the surfaces of obtained sintered friction materials were analyzed by ESEM, EDS elemental and compo-images analyses. One lot of samples were tested on a "pin-on-disc" type wear machine under dry sliding conditions, at applied load between 3.5 and 11.5 × 10-1 MPa and 12.5 and 16.9 m/s relative speed in braking point at constant temperature. The other lot of samples were tested on an inertial test stand according to a methodology simulating the real conditions of dry friction, at a contact pressure of 2.5-3 MPa, at 300-1200 rpm. The most important characteristics required for sintered friction materials are high and stable friction coefficient during breaking and also, for high durability in service, must have: low wear, high corrosion resistance, high thermal conductivity, mechanical resistance and thermal stability at elevated temperature. Because of the tribological characteristics importance (wear rate and friction coefficient) of sintered iron-copper based composites, we predicted the tribological behaviour through statistical analysis. For the first lot of samples, the response variables Yi (represented by the wear rate and friction coefficient) have been correlated with x1 and x2 (the code value of applied load and relative speed in braking points, respectively) using a linear factorial design approach. We obtained brake friction materials with improved wear resistance characteristics and high and stable friction coefficients. It has been shown, through experimental data and obtained linear regression equations, that the sintered composites wear rate increases

  18. Pressure-assisted low-temperature sintering for paper-based writing electronics.

    Science.gov (United States)

    Xu, L Y; Yang, G Y; Jing, H Y; Wei, J; Han, Y D

    2013-09-06

    With the aim of preparing paper-based writing electronics, a kind of conductive pen was made with nano-silver ink as the conductive component and a rollerball pen as the writing implement. This was used to direct-write conductive patterns on Epson photo paper. In order to decrease the sintering temperature, pressure was introduced to enhance the driving forces for sintering. Compared with hot sintering without pressure, hot-pressure can effectively improve the conductivity of silver coatings, reduce the sintering time and thus improve productivity. Importantly, pressure can achieve a more uniform and denser microstructure, which increases the connection strength of the silver coating. At the optimum hot-pressure condition (sintering temperature 120 ° C/sintering pressure 25 MPa/sintering time 15 min), a typical measured resistivity value was 1.43 × 10⁻⁷ Ω m, nine greater than that of bulk silver. This heat treatment process is compatible with paper and does not cause any damage to the paper substrates. Even after several thousand bending cycles, the resistivity values of writing tracks by hot-pressure sintering stay almost the same (from 1.43 × 10⁻⁷ to 1.57 × 10⁻⁷ Ω m). The stability and flexibility of the writing circuits are good, which demonstrates the promising future of writing electronics.

  19. Pressure-assisted low-temperature sintering for paper-based writing electronics

    International Nuclear Information System (INIS)

    Xu, L Y; Yang, G Y; Jing, H Y; Han, Y D; Wei, J

    2013-01-01

    With the aim of preparing paper-based writing electronics, a kind of conductive pen was made with nano-silver ink as the conductive component and a rollerball pen as the writing implement. This was used to direct-write conductive patterns on Epson photo paper. In order to decrease the sintering temperature, pressure was introduced to enhance the driving forces for sintering. Compared with hot sintering without pressure, hot-pressure can effectively improve the conductivity of silver coatings, reduce the sintering time and thus improve productivity. Importantly, pressure can achieve a more uniform and denser microstructure, which increases the connection strength of the silver coating. At the optimum hot-pressure condition (sintering temperature 120 ° C/sintering pressure 25 MPa/sintering time 15 min), a typical measured resistivity value was 1.43 × 10 −7 Ω m, nine greater than that of bulk silver. This heat treatment process is compatible with paper and does not cause any damage to the paper substrates. Even after several thousand bending cycles, the resistivity values of writing tracks by hot-pressure sintering stay almost the same (from 1.43 × 10 −7 to 1.57 × 10 −7 Ω m). The stability and flexibility of the writing circuits are good, which demonstrates the promising future of writing electronics. (paper)

  20. Surface Morphology and Corrosion Behavior of Hydroxyapatite-Coated Co-Cr Implant: Effect of Sintering Conditions

    Science.gov (United States)

    Shirdar, Mostafa Rezazadeh; Taheri, Mohammad Mahdi

    2017-12-01

    The surface morphology and corrosion behavior of a hydroxyapatite (HA)-coated cobalt-chromium (Co-Cr) implant after sintering posttreatment using different times and temperatures were investigated. The substrates were electrophoretically coated with calcium phosphate in solution of Ca(NO3)·4H2O and NH4H2PO4. Sintering at four different conditions was then performed on the as-deposited samples. Scanning electron microscopy, contact angle measurement, and potentiodynamic polarization studies were employed to investigate the surface morphology, porosity, wettability, and corrosion behavior of the coated samples. The results revealed that the HA-coated substrate sintered at temperature of 600°C for 20 min showed fairly uniform microstructure with the highest density and corrosion resistance compared with the other conditions. Moreover, the highest wettability was exhibited by the HA surface sintered at temperature of 500°C for 60 min.

  1. Sintering and microstructure evolution of columnar nickel-based superalloy sheets prepared by EB-PVD

    International Nuclear Information System (INIS)

    Chen, S.; Qu, S.J.; Liang, J.; Han, J.C.

    2010-01-01

    Research highlights: → EB-PVD technology is commonly used to deposit thermal barrier coatings (TBCs) and columnar structure is commonly seen in EB-PVD condensates. The unique columnar structure can provide outstanding resistance against thermal shock and mechanical strains for TBCs. However, a number of researchers have found that the columnar structure can affect the mechanical properties of EB-PVD alloy thin sheet significantly. As yet, works on how to reduce this kind of effects are seldom done. In the present article, we tried to reveal the sintering effects on microstructure evolution and mechanical properties of columnar Ni-based superalloy sheet. The results suggests that after sintering, the columnar structure degrades. Degradation depends on sintering temperature and time. Both the ultimate tensile strength and the elongation percentage are effectively improved after sintering. - Abstract: A ∼0.15 mm-thick columnar nickel-based superalloy sheet was obtained by electron beam physical vapor deposition (EB-PVD). The as-deposited alloy sheet was sintered at different conditions. The microstructure of the specimens before and after sintering was characterized by using scanning electron microscopy. An X'Pert texture facility was used to determine the crystallographic orientation of the as-deposited alloy sheet. The phase transformation was investigated by X-ray diffraction. Tensile tests were conducted at room temperature on as-deposited and sintered specimens. The results show that the as-deposited sheet is composed of typical columnar structures. After sintering, however, the columnar structure degrades. The degradation depends on sintering temperature and time. Both the ultimate tensile strength and the elongation percentage are effectively improved after sintering.

  2. Development of novel tricalcium silicate-based endodontic cements with sintered radiopacifier phase.

    Science.gov (United States)

    Xuereb, M; Sorrentino, F; Damidot, D; Camilleri, Josette

    2016-06-01

    All implants, bone and endodontic cements need to be sufficiently radiopaque to be able to be distinguished from neighbouring anatomical structures post-operatively. For this purpose, radiopacifying materials are added to the cements to render them sufficiently radiopaque. Bismuth oxide has been quite a popular choice of radiopacifier in endodontic materials. It has been shown to cause dental discoloration. The aim of this study was to develop, characterize and assess the properties of tricalcium silicate cement with alternative radiopacifiers, which are either inter-ground or sintered to the tricalcium silicate cement. Custom-made endodontic cements based on tricalcium silicate and 20 % barium, calcium or strontium zirconate, which were either inter-ground or sintered at high temperatures, were produced. The set materials stored for 28 days in Hank's balanced salt solution were characterized by scanning electron microscopy and X-ray diffraction analysis. Assessment of pH, leaching, interaction with physiological solution, radiopacity, setting time, compressive strength and material porosity were investigated. Mineral trioxide aggregate (MTA) Angelus was used as control. Addition of radiopacifying materials improved the radiopacity of the material. The sintered cements exhibited the formation of calcium zirconate together with the respective radiopacifier phase. All materials produced calcium hydroxide on hydration, which interacted with tissue fluids forming hydroxyapatite on the material surface. The physical properties of the tricalcium silicate-based cements were comparable to MTA Angelus. A novel method of producing radiopaque tricalcium silicate-based cements was demonstrated. The novel materials exhibited properties, which were either comparable or else improved over the control. The novel materials can be used to replace MTA for root-end filling, perforation repair and other clinical applications where MTA is indicated.

  3. Effect of surface finishing and heat treatments on the mechanical strength of sintered alumina

    International Nuclear Information System (INIS)

    Lino, U.R.A.

    1982-04-01

    The effect of surface finishing on the mechanical strength of two pure aluminas, one of self-production and another a commercial one, is studied. Three types of finishings: as-sintered, as machined and as-machined with thermal treatment were studied. It was verified that the as-machined alumina is about 50 percent stronger than the as-sintered one, and that a thermal treatment increases even more the mechanical strength of the sintered alumina. The effect of the volume and pressing direction on mechanical strength was studied. The kinetics of crack healing was determined from a series of systematically selected thermal treatments with annealing temperatures between 1200 0 C and 1600 0 C. It was verified that a recently developed theoretical model for crack healing can describe the experimental results; using this model a value for the activation energy of the process of 715 kJ/mcl was obtained, which suggests that crack healing is promoted by volume diffusion. The material behavior under subcritical crack growth action was also studied, and a value of about 40 for the subcritical crack growth exponent N from dynamic loading tests in water was found. A fractographic study intended to localize and measure the flaws that originated the fracture of the tested specimens was performed; the measured flaw sizes were compared with the flaw size calculated from the values of the measured mechanical strength; in this comparison an excellent agreement was observed. (Author) [pt

  4. Influence of edge radius of sintered-carbide tip on roughness of machined surface

    Directory of Open Access Journals (Sweden)

    Jiří Votava

    2013-01-01

    Full Text Available Increasing of cutting speed and thus increasing labour productivity is observed as a current trend in engineering production. This effort results to development of new cutting materials which are more capable to resist increased requirements on machined surface as well as operating life of the instrument. Nowadays, the most widely used materials used for cutting instruments are sintered carbides which are alloyed by other metals. The goal of this paper is to analyse change in quality of machined surface depending on the change of cutting conditions. For cutting operation, there were used a milling cutter high-speed steel 90 (HSS and removable sintered-carbide tips with different radius. Steel 12 050 hardened for 17 HRC was used as a machined material. Firstly, hardness of machined as well as machining materials was analysed. Further, metallographic analysis and measurement of microhardness of the individual structure phases was processed. Cutting conditions of both instruments were selected depending on the machined material. Surface roughness indicates the quality of machined surface.

  5. Selective Laser Sintering of PA2200: Effects of print parameters on density, accuracy, and surface roughness

    Energy Technology Data Exchange (ETDEWEB)

    Bajric, Sendin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-12

    Additive manufacturing needs a broader selection of materials for part production. In order for the Los Alamos National Laboratory (LANL) to investigate new materials for selective laser sintering (SLS), this paper reviews research on the effect of print parameters on part density, accuracy, and surface roughness of polyamide 12 (PA12, PA2200). The literature review serves to enhance the understanding of how changing the laser powder, scan speed, etc. will affect the mechanical properties of a commercial powder. By doing so, this understanding will help the investigation of new materials for SLS.

  6. Study of the mobility, surface area, and sintering behavior of agglomerates in the transition regime by tandem differential mobility analysis

    International Nuclear Information System (INIS)

    Cho, Kuk; Hogan, Christopher J.; Biswas, Pratim

    2007-01-01

    The surface area of nanosized agglomerates is of great importance as the reactivity and health effects of such particles are highly dependent on surface area. Changes in surface area through sintering during nanoparticle synthesis processes are also of interest for precision control of synthesised particles. Unfortunately, information on particle surface area and surface area dynamics is not readily obtainable through traditional particle mobility sizing techniques. In this study, we have experimentally determined the mobility diameter of transition regime agglomerates with 3, 4, and 5 primary particles. Agglomerates were produced by spray drying well-characterised polystyrene latex particles with diameters of 55, 67, 76, and 99 nm. Tandem differential mobility analysis was used to determine agglomerate mobility diameter by selecting monodisperse agglomerates with the same number of primary particles in the first DMA, and subsequently completely sintering the agglomerates in a furnace aerosol reactor. The size distribution of the completely sintered particles was measured by an SMPS system, which allowed for the determination of the number of primary particles in the agglomerates. A simple power law regression was used to express mobility diameter as a function of primary particle size and the number of primary particles, and had an excellent correlation (R 2 = 0.9971) with the experimental data. A scaling exponent was determined from the experimental data to relate measured mobility diameter to surface area for agglomerates. Using this relationship, the sintering characteristics of agglomerates were also examined for varying furnace temperatures and residence times. The sintering data agreed well with the geometric sintering model (GSM) model proposed by Cho and Biswas (2006a) as well as with the model proposed Koch and Friedlander (1990) for sintering by viscous flow

  7. Influence of high sintering pressure on the microhardness and wear resistance of diamond powder and silicon carbide-based composites

    Directory of Open Access Journals (Sweden)

    Osipov Oleksandr Sergueevitch

    2004-01-01

    Full Text Available The work reported on here involved the development of several samples of "diamond-SiC" composite produced under sintering pressures of up to 9.0 GPa at temperatures of up to 1973 7K. The average size of the diamond micropowder crystals used was 40/28 µm. The sintering process was carried out in a 2500-ton hydraulic press equipped with an anvil-type high-pressure device having a toroidal work surface and a central concavity diameter of 20 mm. The microhardness and wear resistance of the samples were found to be dependent on the sintering pressure. The experimental results indicated that the maximum microhardness and minimum wear resistance coefficients of each compact were attained when the pressure applied during sintering exceeded 6.5 GPa. Based on the established values of pressure, this study served to identify the types of devices applicable for the manufacture of composite material inserts for a variety of rock drilling applications.

  8. Fabrication and study of double sintered TiNi-based porous alloys

    Science.gov (United States)

    Sergey, Anikeev; Valentina, Hodorenko; Timofey, Chekalkin; Victor, Gunther; Ji-hoon, Kang; Ji-soon, Kim

    2017-05-01

    Double-sintered porous TiNi-based alloys were fabricated and their structural characteristics and physico-mechanical properties were investigated. A fabrication technology of powder mixtures is elaborated in this article. Sintering conditions were chosen experimentally to ensure good structure and properties. The porous alloys were synthesized by solid-state double diffusion sintering (DDS) of Ti-Ni powder and prepare to obtain dense, crack-free, and homogeneous samples. The Ti-Ni compound sintered at various temperatures was investigated by scanning electron microscopy. Phase composition of the sintered alloys was determined by x-ray diffraction. Analysis of the data confirmed the morphology and structural parameters. Mechanical and physical properties of the sintered alloys were evaluated. DDS at 1250 °C was found to be optimal to produce porous samples with a porosity of 56% and mean pore size of 90 μm. Pore size distribution was unimodal within the narrow range of values. The alloys present enhanced strength and ductility, owing to both the homogeneity of the macrostructure and relative elasticity of the bulk, which is hardened by the Ni-rich precipitates. These results suggest the possibility to manufacture porous TiNi-based alloys for application as a new class of dental implants.

  9. Fabrication And Properties Of Silver Based Multiwall Carbon Nanotube Composite Prepared By Spark Plasma Sintering Method

    Directory of Open Access Journals (Sweden)

    Lis M.

    2015-06-01

    Full Text Available The paper presents results of investigations of the obtained nanocomposite materials based on silver with addition of multiwall carbon nanotubes. The powder of carbon nanotubes content from 0.1 to 3 wt. % was produced by application of powder metallurgy methods, through mixing and high-energetic milling, and also chemical methods. Modification of carbon nanotubes included electroless deposition of silver particles on the carbon nanotube active surfaces and chemical reduction with strong reducing agent – sodium borohydride (NaBH4. The obtained powder mixtures were consolidated by SPS – Spark Plasma Sintering method. The formed composites were subjected to tests of relative density, electrical conductivity and electro-erosion properties. Detailed examinations of the structure with application of X-ray microanalysis, with consideration of carbon nanotubes distribution, were also carried out. The effect of manufacturing methods on properties of the obtained composites was observed.

  10. Processing of pure titanium containing titanium-based reinforcing ceramics additives using spark plasma sintering

    Directory of Open Access Journals (Sweden)

    Mondiu Olayinka DUROWOJU

    2017-06-01

    Full Text Available The densification behaviour, microstructural changes and hardness characteristics during spark plasma sintering of CP-Ti reinforced with TiC, TiN, TiCN and TiB2 were investigated. Commercially pure Ti powders were dry mixed with varied amounts (2.5 and 5 wt. % of the ceramic additives using a T2F Turbula mixer for 5 h and at a speed of 49 rpm. The blended composite powders were then sintered using spark plasma sintering system (model HHPD-25 from FCT Germany at a heating rate of 100oC min-1, dwell time of 5 min and sintering temperature of 950ºC. The sintering of CP-Ti was used as a base study to select the proper spark plasma sintering temperature for full density. Densification was monitored through analysis of the recorded punch displacement and the measured density of the sintered samples using Archimedes method. High densities ranging from 97.8% for 5% TiB2 addition to 99.6% for 5% TiCN addition were achieved at a relatively low temperature of 950°C. Microstructural analyses show a uniform distribution of the additives and finer structure showing their inhibitive effect on grain growth. An improved hardness was observed in all the cases with highest values obtained with TiCN as a result of the combined effect of TiC and TiN. A change in the fracture mode from trans granular to intergranular was also observed.

  11. Development of Al2O3 electrospun fibers prepared by conventional sintering method or plasma assisted surface calcination

    Science.gov (United States)

    Mudra, E.; Streckova, M.; Pavlinak, D.; Medvecka, V.; Kovacik, D.; Kovalcikova, A.; Zubko, P.; Girman, V.; Dankova, Z.; Koval, V.; Duzsa, J.

    2017-09-01

    In this paper, the electrospinning method was used for preparation of α-Al2O3 microfibers from PAN/Al(NO3)3 precursor solution. The precursor fibers were thermally treated by conventional method in furnace or low-temperature plasma induced surface sintering method in ambient air. The four different temperatures of PAN/Al(NO3)3 precursors were chosen for formation of α-Al2O3 phase by conventional sintering way according to the transition features observed in the TG/DSC analysis. In comparison, the low-temperature plasma treatment at atmospheric pressure was used as an alternative sintering method at the exposure times of 5, 10 and 30 min. FTIR analysis was used for evaluation of residual polymer after plasma induced calcination and for studying the mechanism of polymer degradation. The polycrystalline alumina fibers arranged with the nanoparticles was created continuously throughout the whole volume of the sample. On the other side the low temperature approach, high density of reactive species and high power density of plasma generated at atmospheric pressure by used plasma source allowed rapid removal of polymer in preference from the surface of fibers leading to the formation of composite ceramic/polymer fibers. This plasma induced sintering of PAN/Al(NO3)3 can have obvious importance in industrial applications where the ceramic character of surface with higher toughness of the fibers are required.

  12. Effect of surface treatments on the bond strength between resin cement and differently sintered zirconium-oxide ceramics.

    Science.gov (United States)

    Yenisey, Murat; Dede, Doğu Ömür; Rona, Nergiz

    2016-01-01

    This study investigated the effects of surface treatments on bond strength between resin cement and differently sintered zirconium-oxide ceramics. 220 zirconium-oxide ceramic (Ceramill ZI) specimens were prepared, sintered in two different period (Short=Ss, Long=Ls) and divided into ten treatment groups as: GC, no treatment; GSil, silanized (ESPE-Sil); GSilPen, silane flame treatment (Silano-Pen); GSb, sandblasted; GSbSil, sandblasted+silanized; GSbCoSil, sandblasted+silica coated (CoJet)+silanized; GSbRoSil, sandblasted+silica coated (Rocatech-Plus)+silanized; GSbDSil, sandblasted+diamond particle abraded (Micron MDA)+silanized; GSbSilPen, sandblasted+silane flame treatment+silanized; GSbLSil, sandblasted+Er:Yag (Asclepion-MCL30) laser treated+silanized. The composite resin (Filtek Z-250) cylinders were cemented to the treated ceramic surfaces with a resin cement (Panavia F2.0). Shear bond strength test was performed after specimens were stored in water for 24h and thermo-cycled for 6000 cycles (5-55 °C). Data were statistically analyzed with two-way analysis of variance (ANOVA) and Tamhane's multiple comparison test (α=0.05). According to the ANOVA, sintering time, surface treatments and their interaction were statistically significant (presin cement and differently sintered zirconium-oxide ceramics. Copyright © 2015 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  13. Pre-sintered Y-TZP sandblasting: effect on surface roughness, phase transformation, and Y-TZP/veneer bond strength

    Directory of Open Access Journals (Sweden)

    Carla Müller Ramos-Tonello

    Full Text Available Abstract Sandblasting is a common method to try to improve the Y-TZP/veneer bond strength of dental prostheses, however, it may put stress on zirconia surfaces and could accelerate the t→m phase transformation. Y-TZP sandblasting before sintering could be an alternative to improve surface roughness and bonding strength of veneering ceramic. Objectives. The aim of this study was to analyze the effect of Y-TZP pre-sintering sandblasting on surface roughness, phase transformation, and the Y-TZP/veneer shear bond strength. Material and Methods. The Y-TZP specimen surface underwent sandblasting with aluminum oxide (50 μm pre-sintering (Z-PRE and post-sintering (Z-POS. Z-CTR was not subjected to surface treatment. After ceramic veneer application, the specimens were subjected to shear bond testing. Surface roughness was analyzed by confocal microscopy. Y-TZP monoclinic and tetragonal phases were evaluated by micro-Raman spectroscopy. Shear bond strength and surface roughness data were analyzed by One-way ANOVA and Tukey tests (α=0.05. Differences in the wave numbers and the broadening bands of the Raman spectra were compared among groups. Results. Z-POS (9.73±5.36 MPa and Z-PRE (7.94±2.52 MPa showed the highest bond strength, significantly higher than that of Z-CTR (5.54±2.14 MPa. The Ra of Z-PRE (1.59±0.23 µm was much greater and significantly different from that of Z-CTR (0.29±0.05 µm and Z-POS (0.77±0.13 µm. All groups showed bands typical of the tetragonal (T and monoclinic (M phases. Y-TZP sandblasting before sintering resulted in rougher surfaces but did not increase the shear bond strength compared to post-sintering and increased surface defects. Conclusions. Surface treatment with Al3O2, regardless of the moment and application, improves the results of Y-TZP/veneer bonding and is not a specific cause of t→m transformation.

  14. Effect of surface roughness on grain growth and sintering of alumina

    Indian Academy of Sciences (India)

    Administrator

    quality of the final product. Ceramic material shrinks linearly around 20% during sintering. In general, sintered ceramic product having accurate ..... Marshall D B, Evans A G, Yakub B T K, Tien J W and Kino G. S 1983 Proc. R. Soc. London A385 461. Mendelson M I 1969 J. Am. Ceram. Soc. 52 443. Narayan P and Hancock ...

  15. SinterHab

    Science.gov (United States)

    Rousek, Tomáš; Eriksson, Katarina; Doule, Ondřej

    2012-05-01

    This project describes a design study for a core module on a Lunar South Pole outpost, constructed by 3D printing technology with the use of in-situ resources and equipped with a bio-regenerative life support system. The module would be a hybrid of deployable (CLASS II) and in-situ built (CLASS III) structures. It would combine deployable membrane structures and pre-integrated rigid elements with a sintered regolith shell for enhanced radiation and micrometeorite shielding. The closed loop ecological system would support a sustainable presence on the Moon with particular focus on research activities. The core module accommodates from four to eight people, and provides laboratories as a test bed for development of new lunar technologies directly in the environment where they will be used. SinterHab also includes an experimental garden for development of new bio-regenerative life support system elements. The project explores these various concepts from an architectural point-of-view particularly, as they constitute the building, construction and interior elements. The construction method for SinterHab is based on 3D printing by sintering of the lunar regolith. Sinterator robotics 3D printing technology proposed by NASA JPL enables construction of future generations of large lunar settlements with little imported material and the use of solar energy. The regolith is processed, placed and sintered by the Sinterator robotics system which combines the NASA ATHLETE and the Chariot remotely controlled rovers. Microwave sintering creates a rigid structure in the form of walls, vaults and other architectural elements. The interior is coated with a layer of inflatable membranes inspired by the TransHab project. The life-support system is mainly bio-regenerative and several parts of the system are intrinsically multifunctional and serve more than one purpose. The plants for food production are also an efficient part of atmosphere revitalization and water treatment. Moreover

  16. Sintered gahnite–cordierite glass-ceramic based on raw materials ...

    Indian Academy of Sciences (India)

    Sci., Vol. 38, No. 7, December 2015, pp. 1731–1736. c Indian Academy of Sciences. Sintered gahnite–cordierite glass-ceramic based on raw materials with different fluorine sources. ESMAT M A HAMZAWY1,∗ and MOHAMMED A BIN HUSSAIN2. 1National Research Centre, Glass Department, Dokki, Cairo 12622, Egypt.

  17. Development and sintering of alumina based mixed oxide ceramic products for sensor applications in petroleum industries

    Energy Technology Data Exchange (ETDEWEB)

    Yadava, Y.P.; Muniz, L.B.; Aguiar, L.A.R.; Sanguinetti Ferreira, R.A. [Departamento de Engenharia Mecanica, Universidade Federal de Pernambuco, CEP 50741-530, Recife-PE (Brazil); Albino Aguiar, J. [Departamento de Fisica, Universidade Federal de Pernambuco, CEP 50670-901 Recife-PE (Brazil)

    2005-07-01

    In petroleum production, different types of sensors are required to monitor temperature, pressure, leakage of inflammable gases, etc. These sensors work in very hostile environmental conditions and frequently suffer from abrasion and corrosion problems. Presently perovskite oxide based ceramic materials are increasingly being used for such purposes, due to their highly inert behavior in hostile environment. In the present work, we have developed and characterized alumina based complex perovskite oxide ceramics, Ba{sub 2}AlSnO{sub 5.5}. These ceramics were prepared by solid state reaction process and produced in the form of circular discs by uniaxial pressure compaction technique. Green ceramic bodies were sintered at different sintering temperatures (1200 to 1500 deg. C) in air atmosphere. Structural and microstructural characteristics of sintered Ba{sub 2}AlMO{sub 5.5} were studied by XRD and SEM techniques. Mechanical properties were tested by Vickers microhardness tests. Ceramics sintered in the temperature range 1300 deg. C 1400 deg. C presented best results in terms of microstructural characteristics and mechanical performance. (authors)

  18. Impact of Fe powder sintering and soldering in production of porous heating surface on flow boiling heat transfer in minichannels

    Science.gov (United States)

    Depczyński, Wojciech; Piasecki, Artur; Piasecka, Magdalena; Strąk, Kinga

    2017-10-01

    This paper focuses on identification of the impact of porous heated surface on flow boiling heat transfer in a rectangular minichannel. The heated element for Fluorinert FC-72 was a thin plate made of Haynes-230. Infrared thermography was used to determine changes in the temperature on its outer smooth side. The porous surface in contact with the fluid in the minichannel was produced in two processes: sintering or soldering of Fe powder to the plate. The results were presented as relationships between the heat transfer coefficient and the distance from the minichannel inlet and as boiling curves. Results obtained for using a smooth heated plate at the saturated boiling region were also presented to compare. In the subcooled boiling region, at a higher heat flux, the heat transfer coefficient was slightly higher for the surface prepared via soldering. In the saturated boiling region, the local heat transfer coefficients obtained for the smooth plate surface were slightly higher than those achieved from the sintered plate surface. The porous structures formed have low thermal conductivity. This may induce noticeable thermal resistance at the diffusion bridges of the sintered structures, in particular within the saturated boiling region.

  19. Sintering of fly ash based composites with zeolite and bentonite addition for application in construction materials

    Directory of Open Access Journals (Sweden)

    Terzić Anja

    2017-01-01

    Full Text Available Due to pozzolanic characteristics, fly ash is commonly used as a cement replacement in construction composites. Addition of natural clays with sorption ability (i.e. zeolite and bentonite in to the fly ash based construction materials is of both scientific and industrial interest. Namely, due to the application of sorptive clay minerals, it is possible to immobilize toxic heavy metals from the composite structure. The thermal compatibility of fly ash and zeolite, as well as fly ash and bentonite, within the composite was observed during sintering procedure. The starting components were used in 1:1 ratio and they were applied without additional mechanical treatment. The used compaction pressure for the tablets was 2 t•cm-2. The sintering process was conducted at 1000ºC and 1200ºC for two hours in the air atmosphere. The mineralogical phase composition of the non-treated and sintered samples was analyzed using X-ray diffraction method. Scanning electron microscopy was applied in the analysis of the microstructure of starting and sintered samples. The thermal behavior was observed via DTA method. The influence of temperature on the properties of fly ash-zeolite and fly ash-bentonite composites was investigated. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III 45008 and OI 172057

  20. Effects of Polishing Bur Application Force and Reuse on Sintered Zirconia Surface Topography.

    Science.gov (United States)

    Fischer, N G; Tsujimoto, A; Baruth, A G

    2018-03-16

    Limited information is available on how to polish and finish zirconia surfaces following computer-aided design/computer-aided manufacturing (CAD/CAM), specifically, how differing application forces and reuse of zirconia polishing systems affect zirconia topography. To determine the effect of differing, clinically relevant, polishing application forces and multiple usages of polishing burs on the surface topography of CAD/CAM zirconia. One hundred twenty 220-grit carbide finished zirconia disks were sintered according to manufacturer's directions and divided into two groups for the study of two coarse polishing bur types. Each group was divided into subgroups for polishing (15,000 rpm) at 15 seconds for 1.0 N, 4.5 N, or 11 N of force using a purpose-built fixture. Subgroups were further divided to study the effects of polishing for the first, fifth, 15th, and 30th bur use, simulating clinical procedures. Unpolished surfaces served as a control group. Surfaces were imaged with noncontact optical profilometry (OP) and atomic force microscopy (AFM) to measure average roughness values (Ra). Polishing burs were optically examined for wear. Scanning electron microscopy (SEM) was performed on burs and zirconia surfaces. One-way ANOVA with post hoc Tukey HSD (honest significant difference) tests (α=0.05) were used for statistical analyses. AFM and OP Ra values of all polished surfaces were significantly lower than those of the unpolished control. Different polishing forces and bur reuse showed no significant differences in AFM Ra. However, significant differences in OP Ra were found due to differing application forces and bur reuse between the first and subsequent uses. SEM and optical micrographs revealed notable bur wear, increasing with increasing reuse. SEM and AFM micrographs clearly showed polished, periodic zirconia surfaces. Nanoscale topography, as analyzed with kurtosis and average groove depth, was found dependent on the specific polishing bur type. These in

  1. The effect of surface grain reversal on the AC losses of sintered Nd–Fe–B permanent magnets

    International Nuclear Information System (INIS)

    Moore, Martina; Roth, Stefan; Gebert, Annett; Schultz, Ludwig; Gutfleisch, Oliver

    2015-01-01

    Sintered Nd–Fe–B magnets are exposed to AC magnetic fields in many applications, e.g. in permanent magnet electric motors. We have measured the AC losses of sintered Nd–Fe–B magnets in a closed circuit arrangement using AC fields with root mean square-values up to 80 mT (peak amplitude 113 mT) over the frequency range 50 to 1000 Hz. Two magnet grades with different dysprosium content were investigated. Around the remanence point the low grade material (1.7 wt% Dy) showed significant hysteresis losses; whereas the losses in the high grade material (8.9 wt% Dy) were dominated by classical eddy currents. Kerr microscopy images revealed that the hysteresis losses measured for the low grade magnet can be mainly ascribed to grains at the sample surface with multiple domains. This was further confirmed when the high grade material was subsequently exposed to DC and AC magnetic fields. Here a larger number of surface grains with multiple domains are also present once the step in the demagnetization curve attributed to the surface grain reversal is reached and a rise in the measured hysteresis losses is evident. If in the low grade material the operating point is slightly offset from the remanence point, such that zero field is not bypassed, its AC losses can also be fairly well described with classical eddy current theory. - Highlights: • The eddy current losses of sintered Nd–Fe–B magnets were measured. • Field amplitudes up to 113 mT over the frequency range 50 to 1000 Hz were applied. • The Nd–Fe–B magnets showed significant hysteresis losses at low amplitudes (∼100 mT). • The source of such hysteresis losses in sintered Nd–Fe–B magnets was identified. • Two magnet grades with different dysprosium content were investigated

  2. Microwave sintering of poly-ether-ether-ketone (PEEK) based coatings deposited on metallic substrate

    International Nuclear Information System (INIS)

    Zhang, G.; Leparoux, S.; Liao, H.; Coddet, C.

    2006-01-01

    In this paper, the feasibility of microwave (MW) sintering PEEK (poly-ether-ether-ketone) based coatings was investigated. Three coatings were studied: pure PEEK, micron-SiC and nano-SiC particles filled (wt.10%) PEEK coatings. The results indicate that, for the two composite coatings, the SiC particles distributed in the polymer matrix, as a good MW susceptor, could be heated preferentially by MW radiation. Consequently, the polymer matrix was heated by these particles

  3. Thermomechanical Modeling of Sintered Silver - A Fracture Mechanics-based Approach: Extended Abstract: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Paret, Paul P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); DeVoto, Douglas J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Narumanchi, Sreekant V [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-01

    Sintered silver has proven to be a promising candidate for use as a die-attach and substrate-attach material in automotive power electronics components. It holds promise of greater reliability than lead-based and lead-free solders, especially at higher temperatures (less than 200 degrees Celcius). Accurate predictive lifetime models of sintered silver need to be developed and its failure mechanisms thoroughly characterized before it can be deployed as a die-attach or substrate-attach material in wide-bandgap device-based packages. We present a finite element method (FEM) modeling methodology that can offer greater accuracy in predicting the failure of sintered silver under accelerated thermal cycling. A fracture mechanics-based approach is adopted in the FEM model, and J-integral/thermal cycle values are computed. In this paper, we outline the procedures for obtaining the J-integral/thermal cycle values in a computational model and report on the possible advantage of using these values as modeling parameters in a predictive lifetime model.

  4. Sintering of anorthite based ceramics prepared from kaolin DD2 and calcite

    Energy Technology Data Exchange (ETDEWEB)

    Zaiou, S.; Harabi, A.; Harabi, E.; Guechi, A.; Karboua, N.; Benhassine, M.-T.; Zouai, S.; Guerfa, F., E-mail: Zaiou_21@yahoo.fr, E-mail: harabi52@gmail.com, E-mail: semouni84@gmail.com, E-mail: guechia@yahoo.fr, E-mail: kanour17@yahoo.fr, E-mail: mtb25dz@gmail.com, E-mail: zouaisouheila@yahoo.fr, E-mail: guerfatiha@gmail.com [Ceramics Lab., Faculty of Exact Science, Physics Department, Mentouri University of Constantine (Algeria)

    2016-10-15

    In this work, the preparation of anorthite based ceramics using a modified milling system and 80 wt% kaolin (DD2 type) and 20 wt% calcium oxide extracted from CaCO{sub 3} is shown. The choice of these raw materials was dictated by their natural abundance. Previous studies have shown that a simple and vibratory multidirectional milling system using a bimodal distribution of highly resistant ceramics can be successfully used for obtaining fine powders. The prepared samples were sintered at different temperatures ranging between 800 and 1100 °C. It has been found that the relative density of samples sintered at 900 °C for 1 h with a heating rate of 5 °C/min was about 96% of the theoretical density of anorthite (2.75 g/cm{sup 3} ). Finally, the prepared samples were also characterized by scanning electron microscopy, X-ray diffraction and Raman spectroscopy. (author)

  5. In vitro cell-biological performance and structural characterization of selective laser sintered and plasma surface functionalized polycaprolactone scaffolds for bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Van Bael, Simon, E-mail: simon.vanbael@mech.kuleuven.be [Department of Mechanical Engineering, Division of Production Engineering, Machine Design and Automation, Katholieke Universiteit Leuven, Celestijnenlaan 300b, 3001 Leuven (Belgium); Department of Mechanical Engineering, Division of Biomechanics and Engineering Design, Katholieke Universiteit Leuven, Celestijnenlaan 300c, bus 2419, 3001 Heverlee (Belgium); Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, O and N 1, Herestraat 49, bus 813, 3000 Leuven (Belgium); Desmet, Tim [Polymer Chemistry and Biomaterials Research Group, Ghent University, Krijgslaan 281 S4 Bis, Ghent, 9000 (Belgium); Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering, Ghent University, Jozef Plateaustraat 22, 9000 Ghent (Belgium); Chai, Yoke Chin [Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, O and N 1, Herestraat 49, bus 813, 3000 Leuven (Belgium); Pyka, Gregory [Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, O and N 1, Herestraat 49, bus 813, 3000 Leuven (Belgium); Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 44, bus 2450, 3001 Leuven (Belgium); Dubruel, Peter [Polymer Chemistry and Biomaterials Research Group, Ghent University, Krijgslaan 281 S4 Bis, Ghent, 9000 (Belgium); Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering, Ghent University, Jozef Plateaustraat 22, 9000 Ghent (Belgium); Kruth, Jean-Pierre [Department of Mechanical Engineering, Division of Production Engineering, Machine Design and Automation, Katholieke Universiteit Leuven, Celestijnenlaan 300b, 3001 Leuven (Belgium); Schrooten, Jan [Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, O and N 1, Herestraat 49, bus 813, 3000 Leuven (Belgium)

    2013-08-01

    In the present study a structural characterization and in vitro cell-biological evaluation was performed on polycaprolactone (PCL) scaffolds that were produced by the additive manufacturing technique selective laser sintering (SLS), followed by a plasma-based surface modification technique, either non-thermal oxygen plasma or double protein coating, to functionalize the PCL scaffold surfaces. In the first part of this study pore morphology by means of 2D optical microscopy, surface chemistry by means of hydrophilicity measurement and X-ray photoelectron spectroscopy, strut surface roughness by means of 3D micro-computed tomography (CT) imaging and scaffold mechanical properties by means of compression testing were evaluated before and after the surface modifications. The results showed that both surface modifications increased the PCL scaffold hydrophilicity without altering the morphological and mechanical properties. In the second part of this study the in vitro cell proliferation and differentiation of human osteoprogenitor cells, over 14 days of culture in osteogenic and growth medium were investigated. The O{sub 2} plasma modification gave rise to a significant lower in vitro cell proliferation compared to the untreated and double protein coated scaffolds. Furthermore the double protein coating increased in vitro cell metabolic activity and cell differentiation compared to the untreated and O{sub 2} plasma PCL scaffolds when OM was used. - Highlights: • Polycaprolactone scaffolds are produced with selective laser sintering. • 2 types of plasma based surface functionalization were applied. • Plasma had no significant effect on strut roughness and pore morphology. • Plasma improved surface hydrophilicity. • In vitro cell differentiation increased with plasma protein coated functionalization.

  6. In vitro cell-biological performance and structural characterization of selective laser sintered and plasma surface functionalized polycaprolactone scaffolds for bone regeneration

    International Nuclear Information System (INIS)

    Van Bael, Simon; Desmet, Tim; Chai, Yoke Chin; Pyka, Gregory; Dubruel, Peter; Kruth, Jean-Pierre; Schrooten, Jan

    2013-01-01

    In the present study a structural characterization and in vitro cell-biological evaluation was performed on polycaprolactone (PCL) scaffolds that were produced by the additive manufacturing technique selective laser sintering (SLS), followed by a plasma-based surface modification technique, either non-thermal oxygen plasma or double protein coating, to functionalize the PCL scaffold surfaces. In the first part of this study pore morphology by means of 2D optical microscopy, surface chemistry by means of hydrophilicity measurement and X-ray photoelectron spectroscopy, strut surface roughness by means of 3D micro-computed tomography (CT) imaging and scaffold mechanical properties by means of compression testing were evaluated before and after the surface modifications. The results showed that both surface modifications increased the PCL scaffold hydrophilicity without altering the morphological and mechanical properties. In the second part of this study the in vitro cell proliferation and differentiation of human osteoprogenitor cells, over 14 days of culture in osteogenic and growth medium were investigated. The O 2 plasma modification gave rise to a significant lower in vitro cell proliferation compared to the untreated and double protein coated scaffolds. Furthermore the double protein coating increased in vitro cell metabolic activity and cell differentiation compared to the untreated and O 2 plasma PCL scaffolds when OM was used. - Highlights: • Polycaprolactone scaffolds are produced with selective laser sintering. • 2 types of plasma based surface functionalization were applied. • Plasma had no significant effect on strut roughness and pore morphology. • Plasma improved surface hydrophilicity. • In vitro cell differentiation increased with plasma protein coated functionalization

  7. Applying "Spark Plasma Sintering" Technology to Enhance the Resistance to Contact Fatigue of Sintered Steel Based on Astaloy CRL

    Science.gov (United States)

    Rodziňák, D.; Čerňan, J.; Puchý, V.

    2017-12-01

    The article deals with the effect of porosity on the contact fatigue of sintered material type Astaloy CrL with 0.3 and 0.4% C. Sets of samples were used with densities beginning from the value of 7000 kg.m-3 to the value of almost 7859 kg.m-3 which represents almost zero porosity (compact material). It has been found out that the increase of compacting pressure applied simultaneously with temperature results in the reduction of porosity from the value of 9.10% to 0.0005% and increase in hardness from 145 to 193 HV10, depending on the carbon content. Logically there is also an increase in the fatigue life by the contact fatigue tests for the value of 50×106 cycles from the value of 900 MPa to 1150 MPa for samples with 0.3% of C and from 900 MPa to 1300 MPa for samples with 0.4% C. These investigations were also carried out in the past, but to achieve the reduction of porosity, different technonologies were used at each level such as double pressing, hot pressing, saturation, hot forging, etc. In this case, the single technology of "spark plasma sintering" making use of compacting at high temperatures is capable to continuously reduce porosity to zero.

  8. Mechanical properties of molybdenum alloyed liquid phase-sintered tungsten-based composites

    International Nuclear Information System (INIS)

    Kemp, P.B.; German, R.M.

    1995-01-01

    Tungsten-based composites are fabricated from mixed elemental powders using liquid phase sintering, usually with a nickel-iron matrix. During sintering, the tungsten undergoes grain growth, leading to microstructure coarsening that lowers strength but increases ductility. Often the desire is to increase strength at the sacrifice of ductility, and historically, this has been performed by postsintering deformation. There has been considerable research on alloying to adjust the as-sintered mechanical properties to match those of swaged alloys. Prior reports cover many additions, seemingly including much of the periodic table. Unfortunately, many of the modified alloys proved disappointing, largely due to degraded strength at the tungsten-matrix interface. Of these modified alloys, the molybdenum-containing systems exhibit a promising combination of properties, cost, and processing ease. For example, the 82W-8Mo-7Ni-3Fe alloy gives a yield strength that is 34% higher than the equivalent 90W-7Ni-3Fe alloy (from 535 to 715 MPa) but with a 33% decrease in fracture elongation (from 30 to 20% elongation). This article reports on experiments geared to promoting improved properties in the W-Mo-Ni-Fe alloys. However, unlike the prior research which maintained a constant Ni + Fe content and varied the W:Mo ratio, this study considers the Mo:(Ni + Fe) ratio effect for 82, 90, and 93 wt pct W

  9. Novel low-temperature sintering ceramic substrate based on indialite/cordierite glass ceramics

    Science.gov (United States)

    Varghese, Jobin; Vahera, Timo; Ohsato, Hitoshi; Iwata, Makoto; Jantunen, Heli

    2017-10-01

    In this paper, a novel low-temperature sintering substrate for low temperature co-fired ceramic applications based on indialite/cordierite glass ceramics with Bi2O3 as a sintering aid showing low permittivity (εr) and ultralow dielectric loss (tan δ) is described. The fine powder of indialite was prepared by the crystallization of cordierite glass at 1000 °C/1 h. The optimized sintering temperature was 900 °C with 10 wt % Bi2O3 addition. The relative density achieved was 97%, and εr and tan δ were 6.10 and 0.0001 at 1 MHz, respectively. The composition also showed a moderately low temperature coefficient of relative permittivity of 118 ppm/°C at 1 MHz. The obtained linear coefficient of thermal expansion was 3.5 ppm/°C in the measured temperature range of 100 to 600 °C. The decreasing trend in dielectric loss, the low relative permittivity at 1 MHz, and the low thermal expansion of the newly developed composition make it an ideal choice for radio frequency applications.

  10. Dry Sliding Wear Behavior of Spark Plasma Sintered Fe-Based Bulk Metallic Glass/Graphite Composites

    Directory of Open Access Journals (Sweden)

    Xiulin Ji

    2016-09-01

    Full Text Available Bulk metallic glass (BMG and BMG-graphite composites were fabricated using spark plasma sintering at the sintering temperature of 575 °C and holding time of 15 min. The sintered composites exhibited partial crystallization and the presence of distributed porosity and graphite particles. The effect of graphite reinforcement on the tribological properties of the BMG/graphite composites was investigated using dry ball-on-disc sliding wear tests. The reinforcement of graphite resulted in a reduction in both the wear rate and the coefficient of friction as compared to monolithic BMG samples. The wear surfaces of BMG/graphite composites showed regions of localized wear loss due to microcracking and fracture, as was also the case with the regions covered with graphite-rich protective film due to smearing of pulled off graphite particles.

  11. Comparison of the bond strength of laser-sintered and cast base metal dental alloys to porcelain.

    Science.gov (United States)

    Akova, Tolga; Ucar, Yurdanur; Tukay, Alper; Balkaya, Mehmet Cudi; Brantley, William A

    2008-10-01

    The purpose of this study was to compare shear bond strengths of cast Ni-Cr and Co-Cr alloys and the laser-sintered Co-Cr alloy to dental porcelain. Dental porcelain was applied on two cast and one laser-sintered base metal alloy. Ten specimens were prepared for each group for bond strength comparison. ANOVA followed by Tukey HSD multiple comparison test (alpha=0.05) was used for statistical analysis. Fractured specimens were observed with a stereomicroscope to classify the type of failure after shear bond testing. While the mean shear bond strength was highest for the cast Ni-Cr metal-ceramic specimens (81.6+/-14.6 MPa), the bond strength was not significantly different (P>0.05) from that for the cast Co-Cr metal-ceramic specimens (72.9+/-14.3 MPa) and the laser-sintered Co-Cr metal-ceramic specimens (67.0+/-14.9 MPa). All metal-ceramic specimens prepared from cast Ni-Cr and Co-Cr alloys exhibit a mixed mode of cohesive and adhesive failure, whereas five of the metal-ceramic specimens prepared from the laser-sintered Co-Cr alloy exhibited the mixed failure mode and five specimens exhibited adhesive failure in the porcelain. The new laser-sintering technique for Co-Cr alloy appears promising for dental applications, but additional studies of properties of the laser-sintered alloy and fit of castings prepared by this new technique are needed before its acceptance into dental laboratory practice. Laser sintering of Co-Cr alloy seems to be an alternative technique to conventional casting of dental alloys for porcelain fused to metal restorations.

  12. EMF measurements across the front of combustion wave during layer by layer surface laser sintering of exothermal powder compositions

    Science.gov (United States)

    Shishkovskiy, I.; Sherbakov, V.; Morozov, Yu.

    2007-06-01

    Rapid prototyping (RP) and manufacturing (M) is a novel layer-by-layer fabrication technique which has become increasingly popular due to its inherent flexibility for the manufacture of simple and complex 3D parts. Early we had been shown opportunity of selective laser sintering (SLS) of different type powder systems (intermetallics, ceramics, ferrites, high-temperature superconductors), traditional use for self-propagated high-temperature synthesis (SHS). The non-thermal heating affect of an external electromagnetic field during SHS is related to the specific system under study due to differences in movement of defects and ions at the 'plasma-like' molten combustion wave front. We have developed and refined the testing scheme for electro-thermal phenomena studies which can directly influence on the SHS combustion wave front. This work studies electromotive force (EMF) measurements across the front of combustion wave during layer by layer surface laser sintering of exothermal powder compositions (Ni-Ti, Ni-Al). Analysis using an analog-digital-analog computer converter allowed some control of the laser movement and hence some control of the exothermal reaction - in so doing it provided near optimum conditions for forming layered 3D articles. Comparative results of structural-phase transformation during laser control SHS in reaction-capable compositions are presented.

  13. Effect of different sintering temperature on fly ash based geopolymer artificial aggregate

    Science.gov (United States)

    Abdullah, Alida; Abdullah, Mohd Mustafa Al Bakri; Hussin, Kamarudin; Tahir, Muhammad Faheem Mohd

    2017-04-01

    This research was conducted to study the mechanical and morphology of fly ash based geopolymer as artificial aggregate at different sintering temperature. The raw material that are used is fly ash, sodium hydroxide, sodium silicate, geopolymer artificial aggregate, Ordinary Portland Cement (OPC), coarse aggregate and fine aggregate. The research starts with the preparation of geopolymer artificial aggregate. Then, geopolymer artificial aggregate will be sintered at six difference temperature that is 400°C, 500°C, 600°C, 700°C, 800°C and 900°C to known at which temperature the geopolymer artificial aggregate will become a lightweight aggregate. In order to characterize the geopolymer artificial aggregate the X-ray Diffraction (XRD) and X-Ray Fluorescence (XRF) was done. The testing and analyses involve for the artificial aggregate is aggregate impact test, specific gravity test and Scanning Electron Microscopy (SEM). After that the process will proceed to produce concrete with two type of different aggregate that is course aggregate and geopolymer artificial aggregate. The testing for concrete is compressive strength test, water absorption test and density test. The result obtained will be compared and analyse.

  14. Electrical and microstructural properties of microwave sintered SnO{sub 2}-based varistors

    Energy Technology Data Exchange (ETDEWEB)

    Furtado, P.S.; Oliveira, M.M.; Vasconcelos, J.S.; Rangel, J.H.G., E-mail: periclesft@ifma.edu.br, E-mail: marcelo@ifma.edu.br, E-mail: jomar@ifma.edu.br, E-mail: hiltonrangel@ifma.edu.br [IFMA-DAQ- PPGEM, S. Luis, MA (Brazil); Longo, E., E-mail: elson@iq.unesp.br [CMDMC, LIEC, Instituto de Quimica, UNESP, Araraquara, SP (Brazil); Sousa, V.C. de, E-mail: vania.sousa@ufrgs.br [DEMAT, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS (Brazil)

    2012-04-15

    An investigation was made of the microstructural and electrical properties of SnO{sub 2} -based varistors microwave sintered at 1200 deg C, applying a heating rate of 120 deg C/min and treatment times of 10, 20, 30, 40, 50 and 60 min. The system used in this study was (98.95-X)%SnO{sub 2}.1.0%CoO.0.05%Cr{sub 2}O{sub 3}.X%Ta{sub 2}O{sub 5}, where X corresponds to 0.05 and 0.065 mol%. Sintering was carried out in a domestic microwave oven (2.45 GHz) fitted for lab use. Silicon carbide was placed in a refractory vessel to form a heating chamber surrounding the sample holder. The pellets were examined by scanning electron microscopy, X-ray diffractometry, direct current measurements and impedance spectroscopy. The parameters of density, medium grain size, coefficient of nonlinearity, breakdown electrical field, leakage current, and height and width of the potential barrier were analyzed. (author)

  15. Selective Laser Sintering of Conductive Inks for Inkjet Printing Based on Nanoparticle Compositions with Organic Silver Salts

    Science.gov (United States)

    Titkov, A. I.; Gadirov, R. M.; Nikonov, S. Yu.; Odod, A. V.; Solodova, T. A.; Kurtсevich, A. E.; Kopylova, T. N.; Yukhin, Yu. M.; Lyakhov, N. Z.

    2018-02-01

    Inkjet ink based on silver nanoparticles with sizes of 11.1 ± 2.4 nm has been developed. Test images are printed on a laboratory inkjet printer, followed by sintering the printed patterns with a diode laser having a wavelength of 453 nm. The structure and electrical properties of the resulting films are studied depending on the parameters of laser sintering. It is found that under optimal conditions, an electrically conductive film with a low resistivity of 12.2 μΩ· cm can be formed.

  16. Impedance spectroscopy evolution upon sintering of Al-rich anodising sludge-based extruded bodies

    Directory of Open Access Journals (Sweden)

    Ribeiro, M. J.

    2006-08-01

    Full Text Available Alumina based ceramic materials, containing Al-rich sludge as the major component, were processed by extrusion. The sludge derived from the wastewater treatment of aluminium anodising industrial process. Long rods were produced using a vacuum screw extruder, by a careful control of all relevant processing parameters. Then, thick discs were obtained by cutting dried selected rods, to be tested as probes for sintering-dependent electrical properties. The sintering process was followed by performing common dilatometric/thermal analyses but the evolution of electrical conductivity, estimated by impedance spectroscopy (IS, was also used for this purpose. Results show that sintering-dependent morphological evolution up to 1300ºC strongly affects the electrical behaviour of samples, and as a consequence IS seems to be a useful technique to follow the firing process.

    Los materiales cerámicos basados en alúmina, conteniendo barros ricos en Al como componente mayoritario fueron procesados por extrusión. Los barros empleados provienen de tratamientos de lavado de residuos de un proceso industrial de anodizado de aluminio. Se produjeron varillas empleando un extrusor de tornillo en vacío con control de todos los parámetros relevantes del proceso. A partir de varillas seleccionadas, se obtuvieron por corte en seco discos cerámicos para evaluar la dependencia de la sinterización y las propiedades eléctricas. El proceso de sinterización se siguió mediante ensayos dilatométricos y análisis térmicos, junto con la evolución de la conductividad eléctrica mediante espectroscopia de impedancia. Los resultados mostraron la evolución de la sinterización y la dependencia morfológica hasta 1300ºC, que afecta fuertemente a la respuesta eléctrica y como consecuencia la espectroscopia de impedancia parece ser una técnica útil en el seguimiento de los procesos de cocción.

  17. Formation of porous wollastonite-based ceramics after sintering with yeast as the pore-forming agent

    Directory of Open Access Journals (Sweden)

    Obradović Nina

    2017-01-01

    Full Text Available In this paper, synthesis of porous wollastonite-based ceramics was reported. Ceramic precursor, methylhydrocyclosiloxane, together with micro-sized CaCO3, was used as starting material. After 20 min of ultrasound treatment, and calcination at 250 oC for 30 min, yeast as a pore-forming agent was added to the as-obtained powders. Sintering regime was set up based on the results obtained by differential thermal analysis. Prepared mixture was pressed into pallets and sintered at 900 oC for 1 h. After the sintering regime, porous wollastonite-based ceramics was obtained. The phase composition of the sintered samples as well as microstructures was analyzed by X-ray diffraction method and SEM. In a batch test, the influence of pH, contact time and initial ion concentration on adsorption efficiency of As+5, Cr+6, and phosphate ions on synthesized wollastonite-based ceramics were studied. Time-dependent adsorption was best described by pseudo-second-order kinetic model and Weber-Morris model that predicted intra-particle diffusion as a rate-controlling step of overall process. High adsorption capacities 39.97, 21.87, and 15.29 mgg-1 were obtained for As+5, Cr+6, and phosphate ions, respectively.

  18. Microwave Sintering of Bi2Te3- and PbTe-Based Alloys: Structure and Thermoelectric Properties

    Science.gov (United States)

    Arreguin-Zavala, J.; Vasilevskiy, D.; Turenne, S.; Masut, R. A.

    2013-07-01

    Microwave sintering is well known as an expeditious process in applications involving ceramics and biomaterials. For powders in the nanometer range, rapid microwave heating could reduce material exposure to elevated temperatures, thus preserving nanostructures in the resulting materials. To investigate the potential of this technique for thermoelectric (TE) materials, we have prepared samples of bismuth-telluride- and lead-telluride-based alloys from powders, for both materials, having sizes of partially agglomerated particles distributed from 0.15 μm to 7 μm. Sintering of the cold-pressed powders was carried out in a microwave furnace for 900 s at temperatures in the range of 583 K to 623 K for bismuth telluride and 793 K to 813 K for lead telluride specimens. For optimized sintering times and temperatures, the samples obtained showed relative densities of almost 95%. Scanning electron microscopy shows some residual porosity and a reduction of grain size, up to a factor of 5 for PbTe, compared with optimized hot-extruded specimens. For bismuth telluride samples, the TE performance in the range of 300 K to 460 K is poor, which is attributed to the arbitrary texture obtained from cold pressing of a highly anisotropic alloy prior to its sintering. In contrast, PbTe exhibits isotropic properties, hence deficiency of texturing is not expected to have a negative impact on its TE properties. Harman measurements show a value of ZT = 0.42 at 617 K for PbTe p-type sintered samples, which is comparable to hot-extruded alloys from similar powders. The present work demonstrates that microwave sintering is a promising alternative to other powder consolidation techniques for polycrystalline materials exhibiting isotropic TE properties.

  19. Evaluation of Sintering Behaviors of Saprolitic Nickeliferous Laterite Based on Quaternary Basicity

    Science.gov (United States)

    Luo, Jun; Li, Guanghui; Rao, Mingjun; Zhang, Yuanbo; Peng, Zhiwei; Zhi, Qian; Jiang, Tao

    2015-09-01

    The sintering behaviors of saprolitic nickeliferous laterite with various quaternary basicities [(CaO + MgO)/(SiO2 + Al2O3) mass ratio] in a reductive atmosphere are investigated by simulative sintering and validated by sintering pot tests. The simulative sintering results show that the generation of diopside (CaMgSi2O6) with low melting point is the key reason for the decrease in characteristic fusion temperatures when the quaternary basicity increases from 0.5 to 0.8-1.0. Continuous increase of basicity leads to transformation of diopside (CaMgSi2O6) into akermanite (Ca2MgSi2O7), which adversely increases the characteristic fusion temperatures. These findings are confirmed by the sinter pot tests, which demonstrate that the sintering indexes including vertical sintering velocity (VSV), yield ( Y), and productivity ( P), can be improved by optimizing quaternary basicity. At basicity of 1.0, the VSV, Y, P, and ISO tumbling index reach 49.2 mm/min, 80.5%, 1.0 t/(h m2), and 66.5%, respectively.

  20. THE EFFECT OFCARBON NANOTUBES ON THE SINTERING BEHAVIOR OF ZIRCONIA BASED MATERIALS

    OpenAIRE

    A. M. Zahedi; H. R. Rezaie; J. Javadpour

    2015-01-01

    Different volume fractions (1.3, 2.6, and 7.6 Vol.%) of carbon nanotubes (CNTs) were dispersed within 8Y-TZP nanopowders. Mixed powder specimens were subsequently processed by spark plasma sintering (SPS) and effects of CNTs on the sintering process of 8Y-TZP/CNT composites was studied. Maintenance of CNTs through the SPS process was confirmed using TEM and Raman Spectroscopy. Studies on the sintering profile of zirconia-CNT composites (Z-xC composites) could, to some extent, clarify the effe...

  1. Sintering of B4C by pressureless liquid phase sintering

    International Nuclear Information System (INIS)

    Rocha, Rosa Maria da; Melo, Francisco Cristovao Lourenco de

    2009-01-01

    The effect of three different sintering additive systems on densification of boron carbide powder was investigated. The sintering additives were Al 2 O 3 :Y 2 O 3 , AlN:Y 2 O 3 and BN:Y 2 O 3 compositions. Powder mixtures were prepared with 10 vol% of sintering aids following conventional powder technology processes. Samples were sintered by pressureless sintering at 2050 deg C/30min in argon atmosphere. Sintered samples were compared to a sintered B 4 C without sintering additive. Samples were characterized by XRD to analyze the crystalline phases after sintering and SEM to observe the microstructure and the second phase distribution. YB 4 and YB 2 C 2 were identified in all samples, indicating a reaction between Y 2 O 3 , B 4 C and B 2 O 3 present at the B 4 C particle surface. The best densification result was achieved with Al 2 O 3 :Y 2 O 3 additive system, showing 92.0 % of theoretical density, low porosity and 15.2 % of linear shrinkage. But this sample showed the highest weight loss. (author)

  2. Emissions from a Diesel Engine using Fe-based Fuel Additives and a Sintered Metal Filtration System.

    Science.gov (United States)

    Bugarski, Aleksandar D; Hummer, Jon A; Stachulak, Jozef S; Miller, Arthur; Patts, Larry D; Cauda, Emanuele G

    2016-03-01

    A series of laboratory tests were conducted to assess the effects of Fe-containing fuel additives on aerosols emitted by a diesel engine retrofitted with a sintered metal filter (SMF) system. Emission measurements performed upstream and downstream of the SMF system were compared, for cases when the engine was fueled with neat ultralow sulfur diesel (ULSD) and with ULSD treated with two formulations of additives containing Fe-based catalysts. The effects were assessed for four steady-state engine operating conditions and one transient cycle. The results showed that the SMF system reduced the average total number and surface area concentrations of aerosols by more than 100-fold. The total mass and elemental carbon results confirmed that the SMF system was indeed very effective in the removal of diesel aerosols. When added at the recommended concentrations (30 p.p.m. of iron), the tested additives had minor adverse impacts on the number, surface area, and mass concentrations of filter-out (FOut) aerosols. For one of the test cases, the additives may have contributed to measurable concentrations of engine-out (EOut) nucleation mode aerosols. The additives had only a minor impact on the concentration and size distribution of volatile and semi-volatile FOut aerosols. Metal analysis showed that the introduction of Fe with the additives substantially increased Fe concentration in the EOut, but the SMF system was effective in removal of Fe-containing aerosols. The FOut Fe concentrations for all three tested fuels were found to be much lower than the corresponding EOut Fe concentrations for the case of untreated ULSD fuel. The results support recommendations that these additives should not be used in diesel engines unless they are equipped with exhaust filtration systems. Since the tested SMF system was found to be very efficient in removing Fe introduced by the additives, the use of these additives should not result in a measurable increase in emissions of de novo generated

  3. Influence of Sintering Temperature on Mechanical and Physical properties of Mill Scale based Bipolar Plates for PEMFC

    Science.gov (United States)

    Khaerudini, Deni S.; Berliana, Rina; Prakoso, Gatra B.; Insiyanda, Dita R.; Alva, Sagir

    2018-03-01

    This work concerns the utilization of mill scale, a by-product of iron and steel formed during the hot rolling of steel, as a potential material for use as bipolar plates in proton exchange membrane fuel cells (PEMFCs). On the other hand, mill scale is considered a very rich in iron source having characteristic required such as for current collector in bipolar plate and would significantly contribute to lower the overall cost of PEMFC based fuel cell systems. In this study, the iron reach source of mill scale powder, after sieving of 150 mesh, was mechanically alloyed with the aluminium source containing 30 wt.% using a shaker mill for 3 h. The mixed powders were then pressed at 300 MPa and sintered at various temperatures of 400, 450 and 500 °C for 1 h under inert gas atmosphere. The structural changes of powder particles during mechanical alloying and after sintering were studied by x-ray diffractometry, scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX), microhardness measurement, and density - porosity analysis. The details of the performance variation of three different sintering conditions can be preliminary explained by the metallographic and crystallographic structure and phase analysis as well as sufficient mechanical strength of the sintered materials was presented in this report.

  4. Development of AUC-based process at BARC for production of free-flowing and sinterable UO2 powder

    International Nuclear Information System (INIS)

    Keni, V.S.; Ghosh, S.K.; Ganguly, C.; Majumdar, S.

    1994-01-01

    Ammonium uranium carbonate (AUC) process has been developed and industrially used in Germany for preparation of free-flowing and sinterable UO 2 powder for fabrication of UO 2 fuel pellets for light water reactors (LWR). Efforts are underway at Bhabha Atomic Research Centre (BARC) for developing AUC-based process which would yield free-flowing UO 2 powder suitable for direct pelletisation and sintering to very high density (> 96% T.D.) UO 2 fuel pellets for pressurised heavy water reactors (PHWRs) in India. The first phase of this work has been completed jointly by Chemical Engineering Division (ChED) and Radiometallurgy Division (RMD) in batches of 1.5 kg. It was possible to fabricate UO 2 pellets of density 93-95% T.D. on a reproducible basis. At ChED, process parameters have been optimised for fabrication of AUC with suitable physical properties in batches of 1.5 kg (U), starting with nuclear pure uranyl nitrate solution. At RMD calcination parameters of AUC was optimised in batches of 500 g for obtaining free-flowing UO 2 powder, suitable for direct pelletisation and sintering. The pelletisation and sintering have been carried out at Radiometallurgy Division in batches of 1-1.5 kg. The maximum achievable density of UO 2 pellets has been in the range of 95.5-96% T.D. (author). 11 refs

  5. Consolidation & Factors Influencing Sintering Process in Polymer Powder Based Additive Manufacturing

    Science.gov (United States)

    Sagar, M. B.; Elangovan, K.

    2017-08-01

    Additive Manufacturing (AM) is two decade old technology; where parts are build layer manufacturing method directly from a CAD template. Over the years, AM techniques changes the future way of part fabrication with enhanced intricacy and custom-made features are aimed. Commercially polymers, metals, ceramic and metal-polymer composites are in practice where polymers enhanced the expectations in AM and are considered as a kind of next industrial revolution. Growing trend in polymer application motivated to study their feasibility and properties. Laser sintering, Heat sintering and Inhibition sintering are the most successful AM techniques for polymers but having least application. The presentation gives up selective sintering of powder polymers and listed commercially available polymer materials. Important significant factors for effective processing and analytical approaches to access them are discussed.

  6. Orientation distribution in Bi2Te3-based compound prepared by spark plasma sintering

    International Nuclear Information System (INIS)

    Kim, K.T.; Kim, Y.H.; Lim, C.H.; Cho, D.C.; Lee, Y.S.; Lee, C.H.

    2005-01-01

    P-type Bi 0.5 Sb 1.5 Te 3 compounds doped with 3wt.% Te were fabricated by spark plasma sintering after mixing large powders(P L ) and small powders(P S ). We could obtained the highest figure of merit(Z C ) of 2.89 x 10 -3 /K in sintered compound mixed to P L :P S =80:20. This resulted from the increase of orientation by large powders(P S ) and the reduce of pores by small powders. The figure of merit(Z C ) of the sintered compound using only small powders(P S ) showed lower value of 2.67 x 10 -3 /K compared with that of sintered compound mixed to P L :P S =80:20 due to the increase of electrical resistivity. (orig.)

  7. A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing

    Science.gov (United States)

    Farid Seyed Shirazi, Seyed; Gharehkhani, Samira; Mehrali, Mehdi; Yarmand, Hooman; Metselaar, Hendrik Simon Cornelis; Adib Kadri, Nahrizul; Azuan Abu Osman, Noor

    2015-06-01

    Since most starting materials for tissue engineering are in powder form, using powder-based additive manufacturing methods is attractive and practical. The principal point of employing additive manufacturing (AM) systems is to fabricate parts with arbitrary geometrical complexity with relatively minimal tooling cost and time. Selective laser sintering (SLS) and inkjet 3D printing (3DP) are two powerful and versatile AM techniques which are applicable to powder-based material systems. Hence, the latest state of knowledge available on the use of AM powder-based techniques in tissue engineering and their effect on mechanical and biological properties of fabricated tissues and scaffolds must be updated. Determining the effective setup of parameters, developing improved biocompatible/bioactive materials, and improving the mechanical/biological properties of laser sintered and 3D printed tissues are the three main concerns which have been investigated in this article.

  8. A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing.

    Science.gov (United States)

    Shirazi, Seyed Farid Seyed; Gharehkhani, Samira; Mehrali, Mehdi; Yarmand, Hooman; Metselaar, Hendrik Simon Cornelis; Adib Kadri, Nahrizul; Osman, Noor Azuan Abu

    2015-06-01

    Since most starting materials for tissue engineering are in powder form, using powder-based additive manufacturing methods is attractive and practical. The principal point of employing additive manufacturing (AM) systems is to fabricate parts with arbitrary geometrical complexity with relatively minimal tooling cost and time. Selective laser sintering (SLS) and inkjet 3D printing (3DP) are two powerful and versatile AM techniques which are applicable to powder-based material systems. Hence, the latest state of knowledge available on the use of AM powder-based techniques in tissue engineering and their effect on mechanical and biological properties of fabricated tissues and scaffolds must be updated. Determining the effective setup of parameters, developing improved biocompatible/bioactive materials, and improving the mechanical/biological properties of laser sintered and 3D printed tissues are the three main concerns which have been investigated in this article.

  9. Effect of post-sintering treatment on properties of Bi-based high Tc superconductors

    International Nuclear Information System (INIS)

    Nagai, Masayuki; Kozuka, Akira; Morishita, Ken; Nishino, Tadashi; Hattori, Takeo; Takata, Masasuke

    1989-01-01

    A new method to obtain the pure 110K phase in the system Bi-Sr-Ca-Cu-O was examined employing post-sintering treatment. The mixture of Bi 2 O 3 , SrCO 3 , CaCO 3 and CuO with the basic composition of Bi/Sr/Ca/Cu=2/2/1/2 was calcined. The resulting powder was soaked in ethanol containing copper acetate and calcium acetate, the amounts of which were determined to give the composition of Bi/Sr/Ca/Cu=2/2/2/3 after sintering. The resistivity was measured by the d.c. four probe method in a cryostat. The current level was maintained at 50 mA and the voltage drop was determined by averaging the values in the forward and reverse directions. The zero T c ranged from 65 to 69K for the samples after sintering, while that ranged from 69 to 71K for those with post-sintering treatment. The effect of the treatment was not drastic but significant. Modified post-sintering treatment is being examined and the results are reported in the symposium

  10. Sintering of solution-based nano-particles by a UV laser pulse train

    Science.gov (United States)

    Zhang, Jie; Li, Ming; Morimoto, Kiyoshi

    2011-03-01

    Sintering of palladium (Pd) and silicon (Si) nano-particles (NPs) by a 266nm laser pulse train on ink-printed films was investigated. Organic Pd-ink, and organic Si-ink were used as precursors. A high repetition rate DPSS laser (up to 300 kHz, 25ns, 266nm, Coherent AVIA series), which produces a ns pulse train with 3.3 μs -33.3 μs interval of pulse-topulse, was used as the heating source. Highly electrically conductive Pd (Resistivity=~150μΩ.cm) thin film on PET substrate and semi-conductive Si (Resistivity=~23kΩ.cm) thin film on glass substrate were successfully obtained with this laser pulse train sintering process. The sintered films were characterized by AFM, SEM, TEM and Raman spectroscopy, respectively. The pulse train heating process was also numerically simulated.

  11. Spark plasma sintering of ceramic matrix composite based on alumina, reinforced by carbon nanotubes

    Science.gov (United States)

    Leonov, A. A.; Khasanov, A. O.; Danchenko, V. A.; Khasanov, O. L.

    2017-12-01

    Alumina composites reinforced with 3 vol.% multi-walled carbon nanotubes (MWCNTs) were prepared by spark plasma sintering (SPS). The influence of sintering temperature (1400-1600 °C) on the composites microstructure and mechanical properties was investigated. Microstructure observations of the composite shows that some CNTs site along alumina grains boundary, while others embed into the alumina grains and shows that CNTs bonded strongly with the alumina matrix contributing to fracture toughness and microhardness increase. MWCNTs reinforcing mechanisms including CNT pull-out and crack deflection were directly observed by scanning electron microscope (SEM). For Al2O3/CNT composite sintered at 1600 °C, fracture toughness and microhardness are 4.93 MPa·m1/2 and 23.26 GPa respectively.

  12. Effect of TiO2 additive on the sintering of nuclear fuel (U,Pu)O2. Contribution of surface diffusion to plutonium distribution

    International Nuclear Information System (INIS)

    Bremier, Stephane

    1997-01-01

    This thesis has as objective the study of the effect of TiO 2 additive on the development of MOX fuel microstructure during sintering in reducing atmosphere. To understand better the mechanisms governing the evolution of microstructure, the behavior of UO 2 in the presence of TiO 2 has been established and the influence of the PuO 2 distribution in the initial state of the material was taken into account. The chapter II is devoted to the bibliographic study of the transport mechanisms responsible of the sintering in the ceramics UO 2 and UO 2 -PuO 2 . The results concerning the influence of TiO 2 upon density, grain size and homogenization are discussed. The following chapter describes the characteristics of initial powder, the procedures and installations of heat treatment, as well as the techniques of characterization used. Then the sintering features of UO 2 alone or in the presence of TiO 2 are presented. It appears that in the last case the surface diffusion becomes sufficient fast so that the distribution of the additive occurs naturally during a slow temperature increase. The fifth chapter treats the effect of UO 2 -PuO 2 preparation upon the initial microstructure of the materials and the role played by the PuO 2 grains in sintering. The potentiality of surface diffusion as a means of PuO 2 spreading in the UO 2 is evaluated and correlated with the reduced capacity of sintering the UO 2 ceramics containing PuO 2 . The last chapter deals with the influence of TiO 2 on the development of microstructure in UO 2 -PuO 2 ceramics. While at temperatures below 1500 deg.C the TiO 2 additive affects the surface diffusion and so the plutonium distribution, at values T≥ 1600 deg.C the additive gives rise to a dissolution-reprecipitation process taking place in a intergranular liquid phase appeared between UO 2 , PuO 2 and titanium oxide. Thus the objective is the optimizing the temperature conditions, the oxygen potential as sintering gas and the additive

  13. 3D interconnect technology based on low temperature copper nanoparticle sintering

    NARCIS (Netherlands)

    Zhang, B.; Carisey, Y.C.P.; Damian, A.; Poelma, R.H.; Zhang, G.Q.; van Zeijl, H.W.; Bi, Keyun; Liu, Sheng; Zhou, Shengjun

    2016-01-01

    We explore a methodology for patterned copper nanoparticle paste for 3D interconnect applications in wafer to wafer (W2W) bonding. A novel fine pitch thermal compression bonding process (sintering) with coated copper nanoparticle paste was developed. Most of the particle size is between 10-30 nm.

  14. Spark plasma-sintered Sn-based intermetallic alloys and their Li-storage studies

    CSIR Research Space (South Africa)

    Nithyadharseni, P

    2016-06-01

    Full Text Available In the present study, SnSb, SnSb/Fe, SnSb/Co, and SnSb/Ni alloy powders processed by co-precipitation were subjected to spark plasma-sintering (SPS) at 400 °C for 5 min. The compacts were structurally and morphologically characterized by X...

  15. High Temperature Oxidation of Spark Plasma Sintered and Thermally Sprayed FeAl-Based Iron Aluminides

    Czech Academy of Sciences Publication Activity Database

    Haušild, P.; Karlík, M.; Skiba, T.; Sajdl, P.; Dubský, Jiří; Palm, M.

    2012-01-01

    Roč. 122, č. 3 (2012), s. 465-468 ISSN 0587-4246. [International Symposium on Physics of Materials (ISPMA)/12./. Prague, 04.09.2011-08.09.2011] Institutional support: RVO:61389021 Keywords : thermal spraying * plasma sintering Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.531, year: 2012

  16. Spark plasma sintered bismuth telluride-based thermoelectric materials incorporating dispersed boron carbide

    Energy Technology Data Exchange (ETDEWEB)

    Williams, H.R., E-mail: hugo.williams@leicester.ac.uk [Department of Engineering, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Ambrosi, R.M. [Space Research Centre, Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Chen, K. [School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom); Friedman, U. [Department of Engineering, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Ning, H.; Reece, M.J. [School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom); Robbins, M.C.; Simpson, K. [European Thermodynamics Ltd., 8 Priory Business Park, Wistow Road, Kibworth LE8 0R (United Kingdom); Stephenson, K. [European Space Agency, ESTEC TEC-EP, Keplerlaan 1, 2201AZ Noordwijk (Netherlands)

    2015-03-25

    Highlights: • Nano-B{sub 4}C reinforced Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} p-type thermoelectric produced by SPS. • Addition of B{sub 4}C up to 0.2 vol% to SPS’d material has little effect on zT. • Vickers hardness improved by 27% by adding 0.2 vol% B{sub 4}C. • Fracture toughness of SPS material: K{sub IC} = 0.80 MPa m{sup 1/2} by SEVNB. • Mechanical properties much better than commercial directionally solidified material. - Abstract: The mechanical properties of bismuth telluride based thermoelectric materials have received much less attention in the literature than their thermoelectric properties. Polycrystalline p-type Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} materials were produced from powder using spark plasma sintering (SPS). The effects of nano-B{sub 4}C addition on the thermoelectric performance, Vickers hardness and fracture toughness were measured. Addition of 0.2 vol% B{sub 4}C was found to have little effect on zT but increased hardness by approximately 27% when compared to polycrystalline material without B{sub 4}C. The K{sub IC} fracture toughness of these compositions was measured as 0.80 MPa m{sup 1/2} by Single-Edge V-Notched Beam (SEVNB). The machinability of polycrystalline materials produced by SPS was significantly better than commercially available directionally solidified materials because the latter is limited by cleavage along the crystallographic plane parallel to the direction of solidification.

  17. Effect of Bottom Ash and Fly Ash as a Susceptor Material on The Properties of Aluminium Based Composites Prepared by Microwave Sintering

    Directory of Open Access Journals (Sweden)

    Wan Muhammad Wan Nur Azrina Binti

    2017-01-01

    Full Text Available The use of aluminium as a single material in automotive applications is not suitable without a mixture with reinforcement materials that can support the properties at high temperature. In this study, aluminium based composite were prepared with weight percentage of SiC reinforcement, varying from 5 to 20 wt%. Aluminium powder and reinforcement materials were mixed using ball milling machine with speed of 100 rpm for 2 hours. The powder mixture were then compressed at pressure 4 tonnes with 5 minutes holding time. The compact samples were sintered using microwave sintering technique. Microwave sintering techniques in this study using two different types of susceptor materials that are bottom ash and fly ash. Sintered aluminium based composites using bottom ash susceptor material involving the sintering temperature of 526 °C for 30 minutes whereas for the samples sintered using fly ash susceptor material, involving a temperature of 523 °C for 15 minutes. From the result, the sintered samples using fly ash susceptor material, showed higher density with a value of 2.1933 g/cm3 compared to bottom ash 2.0002 g/cm3 and having the higher hardness value 72.1315 HV compared to bottom ash 50.0511HV. The using of fly ash could affect the heating rate during the sintering process which could influence the properties of aluminium based composites. In conclusion, the type of susceptor could affect the physical and mechanical properties of aluminum-based composite reinforced with silicon carbide.

  18. Laser sintering of copper nanoparticles

    International Nuclear Information System (INIS)

    Zenou, Michael; Saar, Amir; Ermak, Oleg; Kotler, Zvi

    2014-01-01

    Copper nanoparticle (NP) inks serve as an attractive potential replacement to silver NP inks in functional printing applications. However their tendency to rapidly oxidize has so far limited their wider use. In this work we have studied the conditions for laser sintering of Cu-NP inks in ambient conditions while avoiding oxidation. We have determined the regime for stable, low-resistivity copper (< ×3 bulk resistivity value) generation in terms of laser irradiance and exposure duration and have indicated the limits on fast processing. The role of pre-drying conditions on sintering outcome has also been studied. A method, based on spectral reflectivity measurements, was used for non-contact monitoring of the sintering process evolution. It also indicates preferred spectral regions for sintering. Finally, we illustrated how selective laser sintering can generate high-quality, fine line (<5 µm wide) and dense copper circuits. (paper)

  19. Cordierite obtaining by reactive sintering of kaolin, tal and transition alumina; Obtencao de ceramicas a base de mulita-cordieta via sinterizacao reativa de caulim, talco e alumina

    Energy Technology Data Exchange (ETDEWEB)

    Almeida Filho, Humberto Dias de; Sales, Lindemberg Felismino; Goncalves, Joao de Freitas; Macedo, Daniel Araujo de [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Departamento de Engenharia de Materiais

    2016-07-01

    Cordierite and mullite are important applications in the manufacture of ceramic products with high resistance to thermal shock. The present work aimed to obtaining ceramics based on cordierite (2MgO.2Al2O3.5SiO2) and mullite (3Al2O3.2SiO2) via reactive sintering of one formulation containing kaolin ceramics, talc and alumina. Uniaxially pressed tablet to 125 MPa were sintered between 1100 and 1400 ° C for 1 h. The sintering temperature effect in the phase composition was evaluated by X-ray diffraction. The morphological characterization was performed by scanning electron microscopy. Samples sintered at 1300 ° C had 10 wt% of spinel (MgAl2O4) as secondary and apparent phase density 2.56 g / cm3. (author)

  20. Fabrication of Meso-Porous Sintered Metal Thin Films by Selective Etching of Silica Based Sacrificial Template

    Directory of Open Access Journals (Sweden)

    Ludovic F. Dumee

    2014-08-01

    Full Text Available Meso-porous metal materials have enhanced surface energies offering unique surface properties with potential applications in chemical catalysis, molecular sensing and selective separation. In this paper, commercial 20 nm diameter metal nano-particles, including silver and copper were blended with 7 nm silica nano-particles by shear mixing. The resulted powders were cold-sintered to form dense, hybrid thin films. The sacrificial silica template was then removed by selective etching in 12 wt% hydrofluoric acid solutions for 15 min to reveal a purely metallic meso-porous thin film material. The impact of the initial silica nano-particle diameter (7–20 nm as well as the sintering pressure (5–20 ton·m−2 and etching conditions on the morphology and properties of the final nano-porous thin films were investigated by porometry, pyknometery, gas and liquid permeation and electron microscopy. Furthermore, the morphology of the pores and particle aggregation during shear mixing were assessed through cross-sectioning by focus ion beam milling. It is demonstrated that meso-pores ranging between 50 and 320 nm in average diameter and porosities up to 47% can be successfully formed for the range of materials tested.

  1. Development of sensing systems printed with conductive ink on gear surfaces: manufacturing of meander line antenna by laser-sintered silver nano-particles

    Science.gov (United States)

    Iba, D.; Futagawa, S.; Kamimoto, T.; Nakamura, M.; Miura, N.; Iizuka, T.; Masuda, A.; Sone, A.; Moriwaki, I.

    2017-04-01

    Health monitoring methods for machines have been the subject of considerable efforts to maintain it at an appropriate timing. Failures of rotating machine elements can cause severe accidents, thus, to detect such failures is an important issue. However, health monitoring of rotating machine elements, such as gears, is challenging because of rotation at high speed in gearboxes, geometric complexity, space limitation for measurements, or another operation conditions. The long-term objective of the present research is to develop smart sensor systems for detecting gear failure signs. As the very first step, this paper proposes a new method to manufacture electrical circuits, such as sensors or antennas, on gears. We print these circuits directly on the gear surface using a laser sintering technique of conductive ink. For this purpose, we have begun to develop a 4-axis laser printing system. This paper shows the laser sintering conditions of the conductive ink splayed on steel plates insulated by polyimide layers. The conductivity of the printed lines was evaluated through observation with a miniature scanning electron microscope. Finally, according to the obtained laser sintering conditions, a meander line antenna was printed as a part of smart sensor systems.

  2. Development of a dielectric ceramic based on diatomite-titania. Part one: powder preparation and sintering study

    Directory of Open Access Journals (Sweden)

    Tavares Elcio Correia de Souza

    1997-01-01

    Full Text Available This work presents powder preparation and sintering experiments of a mixture diatomite-titania. X-ray diffraction, DTA, TGA as well as chemical and microstructural analyses were made. The sintering process was investigated as a function of sintering temperature and time, mass variation, linear shrinkage and activation energy. The results show that sintering of diatomite-titania could be described by a viscous flow mechanism.

  3. Up-cycling waste glass to minimal water adsorption/absorption lightweight aggregate by rapid low temperature sintering: optimization by dual process-mixture response surface methodology.

    Science.gov (United States)

    Velis, Costas A; Franco-Salinas, Claudia; O'Sullivan, Catherine; Najorka, Jens; Boccaccini, Aldo R; Cheeseman, Christopher R

    2014-07-01

    Mixed color waste glass extracted from municipal solid waste is either not recycled, in which case it is an environmental and financial liability, or it is used in relatively low value applications such as normal weight aggregate. Here, we report on converting it into a novel glass-ceramic lightweight aggregate (LWA), potentially suitable for high added value applications in structural concrete (upcycling). The artificial LWA particles were formed by rapidly sintering (waste glass powder with clay mixes using sodium silicate as binder and borate salt as flux. Composition and processing were optimized using response surface methodology (RSM) modeling, and specifically (i) a combined process-mixture dual RSM, and (ii) multiobjective optimization functions. The optimization considered raw materials and energy costs. Mineralogical and physical transformations occur during sintering and a cellular vesicular glass-ceramic composite microstructure is formed, with strong correlations existing between bloating/shrinkage during sintering, density and water adsorption/absorption. The diametrical expansion could be effectively modeled via the RSM and controlled to meet a wide range of specifications; here we optimized for LWA structural concrete. The optimally designed LWA is sintered in comparatively low temperatures (825-835 °C), thus potentially saving costs and lowering emissions; it had exceptionally low water adsorption/absorption (6.1-7.2% w/wd; optimization target: 1.5-7.5% w/wd); while remaining substantially lightweight (density: 1.24-1.28 g.cm(-3); target: 0.9-1.3 g.cm(-3)). This is a considerable advancement for designing effective environmentally friendly lightweight concrete constructions, and boosting resource efficiency of waste glass flows.

  4. Comparative analysis on surface property in anodic oxidation polishing of reaction-sintered silicon carbide and single-crystal 4H silicon carbide

    Science.gov (United States)

    Shen, Xinmin; Tu, Qunzhang; Deng, Hui; Jiang, Guoliang; He, Xiaohui; Liu, Bin; Yamamura, Kazuya

    2016-04-01

    For effective machining of difficult-to-machine materials, such as reaction-sintered silicon carbide (RS-SiC) and single-crystal 4H silicon carbide (4H-SiC), a novel polishing technique named anodic oxidation polishing was proposed, which combined with the anodic oxidation of substrate and slurry polishing of oxide. By scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM-EDX) observation and atomic force microscopy analysis, both the anodic oxidation behaviors of RS-SiC and 4H-SiC were investigated. Through comparison of the surfaces before and after hydrofluoric acid etching of the oxidized samples by the scanning white light interferometry (SWLI) measurement, the relationships between oxidation depth and oxidation time were obtained, and the calculated oxidation rate for RS-SiC was 5.3 nm/s and that for 4H-SiC was 5.8 nm/s based on the linear Deal-Grove model. Through anodic oxidation polishing of RS-SiC substrate and 4H-SiC substrate, respectively, the surface roughness rms obtained by SWLI was improved to 2.103 nm for RS-SiC and to 0.892 nm for 4H-SiC. Experimental results indicate that anodic oxidation polishing is an effective method for the machining of RS-SiC and 4H-SiC samples, which would improve the process level of SiC substrates and promote the application of SiC products in the fields of optics, ceramics, semiconductors, electronics, and so on.

  5. Crack and wear behavior of SiC particulate reinforced aluminium based metal matrix composite fabricated by direct metal laser sintering process

    International Nuclear Information System (INIS)

    Ghosh, Subrata Kumar; Saha, Partha

    2011-01-01

    In this investigation, crack density and wear performance of SiC particulate (SiCp) reinforced Al-based metal matrix composite (Al-MMC) fabricated by direct metal laser sintering (DMLS) process have been studied. Mainly, size and volume fraction of SiCp have been varied to analyze the crack and wear behavior of the composite. The study has suggested that crack density increases significantly after 15 volume percentage (vol.%) of SiCp. The paper has also suggested that when size (mesh) of reinforcement increases, wear resistance of the composite drops. Three hundred mesh of SiCp offers better wear resistance; above 300 mesh the specific wear rate increases significantly. Similarly, there has been no improvement of wear resistance after 20 vol.% of reinforcement. The scanning electron micrographs of the worn surfaces have revealed that during the wear test SiCp fragments into small pieces which act as abrasives to result in abrasive wear in the specimen.

  6. Effect of sintering temperature on physical, structural and optical properties of wollastonite based glass-ceramic derived from waste soda lime silica glasses

    Directory of Open Access Journals (Sweden)

    Karima Amer Almasri

    Full Text Available The impact of different sintering temperatures on physical, optical and structural properties of wollastonite (CaSiO3 based glass-ceramics were investigated for its potential application as a building material. Wollastonite based glass-ceramics was provided by a conventional melt-quenching method and followed by a controlled sintering process. In this work, soda lime silica glass waste was utilized as a source of silicon. The chemical composition and physical properties of glass were characterized by using Energy Dispersive X-ray Fluorescence (EDXRF and Archimedes principle. The Archimedes measurement results show that the density increased with the increasing of sintering temperature. The generation of CaSiO3, morphology, size and crystal phase with increasing the heat-treatment temperature were examined by field emission scanning electron microscopy (FESEM, Fourier transforms infrared reflection spectroscopy (FTIR, and X-ray diffraction (XRD. The average calculated crystal size gained from XRD was found to be in the range 60 nm. The FESEM results show a uniform distribution of particles and the morphology of the wollastonite crystal is in relict shapes. The appearance of CaO, SiO2, and Ca-O-Si bands disclosed from FTIR which showed the formation of CaSiO3 crystal phase. In addition to the calculation of the energy band gap which found to be increased with increasing sintering temperature. Keywords: Soda lime silica glass, Wollastonite, Sintering, Structural properties, Optical properties

  7. Isotropic and anisotropic nanocrystalline NdFeB-based magnets prepared by spark plasma sintering and hot deformation

    International Nuclear Information System (INIS)

    Liu, Z.W.; Huang, Y.L.; Huang, H.Y.; Zhong, X.C.; Yu, Y.H.; Zeng, D.C.

    2011-01-01

    Isotropic and anisotropic NdFeB permanent magnets were prepared by Spark Plasma Sintering (SPS) and SPS followed hot deformation (HD), respectively, using melt spun NdFeB ribbons with various compositions as starting materials. It is found that, based on RE-rich composition, SPSed magnets sintered at low temperatures (<700 C) almost maintained the uniform fine grain structure inherited from rapid quenching. At higher temperatures, a distinct two-zone (coarse grain and fine grain zones) structure was formed in the SPSed magnets. The SPS temperature and pressure have important effects on the grain structure, which led to the variations in the magnetic properties. By employing low SPS temperature and high pressure, high-density magnets with negligible coarse grain zone and an excellent combination of magnetic properties can be obtained. For single phase NdFeB alloy, because of the deficiency of Nd-rich phases, it is relatively difficult to consolidate micro-sized melt spun powders into high density bulk magnet, but generally a larger particle size is beneficial to achieve better magnetic properties. Anisotropic magnets with a maximum energy product of approx. equal to 38 MGOe were produced by the SPS+HD process. HD did not lead to obvious grain growth and the two-zone structure still existed in the hot deformed magnets. The results indicated that nanocrystalline NdFeB magnets without significant grain growth and with excellent properties could be obtained by SPS and HD processes. (author)

  8. Sintering and densification; new techniques: sinter forging

    International Nuclear Information System (INIS)

    Winnubst, A.J.A.

    1998-01-01

    In this chapter pressure assisted sintering methods will be described. Attention will mainly be paid to sinter forging as a die-wall free uniaxial pressure sintering technique, where large creep strains are possible. Sinter forging is an effective tool to reduce sintering temperature and time and to obtain a nearly theoretically dense ceramic. In this way grain size in tetragonal zirconia ceramics can be reduced down to 100 nm. Another important phenomenon is the reduction of the number density and size of cracks and flaws resulting in higher strength and improved reliability, which is of utmost importance for engineering ceramics. The creep deformation during sinter forging causes a rearrangement of the grains resulting in a reduction of interatomic spaces between grains, while grain boundary (glassy) phases can be removed. The toughness and in some cases the wear resistance is enhanced after sinter forging as a result of the grain-boundary-morphology improvement. (orig.)

  9. An easily sintered, chemically stable, barium zirconate-based proton conductor for high-performance proton-conducting solid oxide fuel cells

    KAUST Repository

    Sun, Wenping

    2014-07-25

    Yttrium and indium co-doped barium zirconate is investigated to develop a chemically stable and sintering active proton conductor for solid oxide fuel cells (SOFCs). BaZr0.8Y0.2-xInxO3- δ possesses a pure cubic perovskite structure. The sintering activity of BaZr0.8Y0.2-xInxO3- δ increases significantly with In concentration. BaZr0.8Y0.15In0.05O3- δ (BZYI5) exhibits the highest total electrical conductivity among the sintered oxides. BZYI5 also retains high chemical stability against CO2, vapor, and reduction of H2. The good sintering activity, high conductivity, and chemical stability of BZYI5 facilitate the fabrication of durable SOFCs based on a highly conductive BZYI5 electrolyte film by cost-effective ceramic processes. Fully dense BZYI5 electrolyte film is successfully prepared on the anode substrate by a facile drop-coating technique followed by co-firing at 1400 °C for 5 h in air. The BZYI5 film exhibits one of the highest conductivity among the BaZrO3-based electrolyte films with various sintering aids. BZYI5-based single cells output very encouraging and by far the highest peak power density for BaZrO3-based proton-conducting SOFCs, reaching as high as 379 mW cm-2 at 700 °C. The results demonstrate that Y and In co-doping is an effective strategy for exploring sintering active and chemically stable BaZrO3-based proton conductors for high performance proton-conducting SOFCs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Theory-based design of sintered granular composites triples three-phase boundary in fuel cells

    Science.gov (United States)

    Amitai, Shahar; Bertei, Antonio; Blumenfeld, Raphael

    2017-11-01

    Solid-oxide fuel cells produce electric current from energy released by a spontaneous electrochemical reaction. The efficiency of these devices depends crucially on the microstructure of their electrodes and in particular on the three-phase boundary (TPB) length, along which the energy-producing reaction occurs. We present a systematic maximization of the TPB length as a function of four readily controllable microstructural parameters, for any given mean hydraulic radius, which is a conventional measure of the permeability to gas flow. We identify the maximizing parameters and show that the TPB length can be increased by a factor of over 300% compared to current common practices. We support this result by calculating the TPB of several numerically simulated structures. We also compare four models for a single intergranular contact in the sintered electrode and show that the model commonly used in the literature is oversimplified and unphysical. We then propose two alternatives.

  11. Structure and properties of porous TiNi(Co, Mo)-based alloy produced by the reaction sintering

    Science.gov (United States)

    Artyukhova, Nadezda; Yasenchuk, Yuriy; Chekalkin, Timofey; Gunther, Victor; Kim, Ji-Soon; Kang, Ji-Hoon

    2016-10-01

    Modern medical technologies have developed many new devices that can be implanted into humans to repair, assist or take the place of diseased or defective bones, arteries and even organs. The materials, especially porous ones, used for these devices have evolved steadily over the past twenty years with TiNi-based alloys replacing stainless steels and titanium. The aim of the paper is to presents results for examination of porous TiNi(Co,Mo)-based alloys intended further to be used in clinical practice. The structure and properties of porous TiNi-based alloys obtained by reaction sintering of Ti and Ni powders with additions of Co and Mo have been studied. It has been shown that alloying additions both Co and Mo inhibit the compaction of nickel powders in the initial stage of sintering. The maximum irreversible strain of porous samples under loading in the austenitic state is fixed with the Co addition, and the minimum one is fixed with the Mo addition. The Co addition leads to the fact that the martensite transformation in the TiNi phase becomes close to a one-step, and the Mo addition leads to the fact that the martensite transformation becomes more uniform. Both Co and Mo lead to an increase in the maximum accumulated strain as a result of the formation of temperature martensite. The additional increase in the maximum accumulated strain of the Ti50Ni49Co1 alloy is caused by decreased resistance of the porous Ni γ -based mass during the load.

  12. Initial stage sintering of polymer particles – Experiments and modelling of size-, temperature- and time-dependent contacts

    Directory of Open Access Journals (Sweden)

    Fuchs Regina

    2017-01-01

    Full Text Available The early-stage sintering of thin layers of micron-sized polystyrene (PS particles, at sintering temperatures near and above the glass transition temperature Tg (~ 100°C, is studied utilizing 3D tomography, nanoindentation and confocal microscopy. Our experimental results confirm the existence of a critical particle radius (rcrit ~ 1 μm below which surface forces need to be considered as additional driving force, on top of the usual surfacetension driven viscous flow sintering mechanism. Both sintering kinetics and mechanical properties of particles smaller than rcrit are dominated by contact deformation due to surface forces, so that sintering of larger particles is generally characterized by viscous flow. Consequently, smaller particles require shorter sintering. These experimental observations are supported by discrete particle simulations that are based on analytical models: for small particles, if only viscous sintering is considered, the model under-predicts the neck radius during early stage sintering, which confirms the need for an additional driving mechanism like elastic-plastic repulsion and surface forces that are both added to the DEM model.

  13. The Influence of Sintering Method on Kaolin-Based Geopolymer Ceramics with Addition of Ultra High Molecular Weight Polyethylene as Binder

    Science.gov (United States)

    Romisuhani, A.; AlBakri, M. M.; Kamarudin, H.; Andrei, S. V.

    2017-11-01

    The influence of sintering method on kaolin-based geopolymer ceramics with addition of Ultra High Molecular Weight Polyethylene as binder were studied. Geopolymer were formed at room temperature from kaolin and sodium silicate in a highly alkaline medium, followed by curing and drying at 80 °C. 12 M of sodium hydroxide solution were mixed with sodium silicate at a ratio of 0.24 to form alkaline activator. Powder metallurgy technique were used in order to produce kaolin geopolymer ceramics with addition of Ultra High Molecular Weight Polyethylene. The samples were heated at temperature of 1200 °C with two different sintering method which are conventional method and two-step sintering method. The strength and density were tested.

  14. Titanium Powder Sintering in a Graphite Furnace and Mechanical Properties of Sintered Parts

    Directory of Open Access Journals (Sweden)

    Changzhou Yu

    2017-02-01

    Full Text Available Recent accreditation of titanium powder products for commercial aircraft applications marks a milestone in titanium powder metallurgy. Currently, powder metallurgical titanium production primarily relies on vacuum sintering. This work reported on the feasibility of powder sintering in a non-vacuum furnace and the tensile properties of the as-sintered Ti. Specifically, we investigated atmospheric sintering of commercially pure (C.P. titanium in a graphite furnace backfilled with argon and studied the effects of common contaminants (C, O, N on sintering densification of titanium. It is found that on the surface of the as-sintered titanium, a severely contaminated porous scale was formed and identified as titanium oxycarbonitride. Despite the porous surface, the sintered density in the sample interiors increased with increasing sintering temperature and holding time. Tensile specimens cut from different positions within a large sintered cylinder reveal different tensile properties, strongly dependent on the impurity level mainly carbon and oxygen. Depending on where the specimen is taken from the sintered compact, ultimate tensile strength varied from 300 to 580 MPa. An average tensile elongation of 5% to 7% was observed. Largely depending on the interstitial contents, the fracture modes from typical brittle intergranular fracture to typical ductile fracture.

  15. Cinética de sinterização para sistemas à base de SnO2 por taxa de aquecimento constante Sintering kinetics for SnO2-based systems by constant heating rate

    Directory of Open Access Journals (Sweden)

    S. M. Tebcheran

    2003-04-01

    in small concentrations as densifying aids for this oxide. In the present study the sintering kinetics of tin oxide was studied considering the effect of sintering atmosphere and of the MnO2 concentration. SnO2-MnO2 systems were prepared from the polymeric precursors method and the obtained powders were characterized by surface area by the BET method. SnO2 powders with varied MnO2 concentrations were pressed in cylindrical shape, and sintered in a dilatometer furnace with constant heating rate and controlled atmospheres. Sintered samples were characterized by scanning electron microscopy. The influence of atmosphere (argon, air or CO2 as well as of the MnO2 concentrations on the sintering kinetics was determined. The kinetics data of linear shrinkage were analyzed in terms of kinetic models for the initial stage of sintering (Woolfrey and Bannister as well as for the global sintering (Su e Johnson allowing the determination of the apparent activation energy. Following the determination of the master sintering curve the apparent activation energy of all sintering process were determined as well as its dependence with the atmosphere and manganese concentrations. Based on these values and on the n exponent, determined by the classical grain growth equation, it was concluded that the most probable sintering mechanism is grain boundary diffusion with surface redistribution controlling the kinetics.

  16. Thermoelectric generator based on composites obtained by sintering of detonation nanodiamonds

    Science.gov (United States)

    Eidelman, E. D.; Meilakhs, A. P.; Semak, B. V.; Shakhov, F. M.

    2017-11-01

    A model of a thermoelectric generator is proposed, in which composite materials obtained by sintering diamond nanoparticles are used as the main component. To increase the useful conversion of heat into electric current, it is proposed to use the effect of electron drag by ballistic phonons. To reduce the ineffective heat spread, it is proposed to use the effect of thermal resistance of the boundaries between the graphite-like and diamond-like phases of the composite. An experimental confirmation of the existence of an optimal volume ratio between graphite-like and diamond-like phases of the composite is predicted and obtained. The highest achieved value of thermoelectric coefficient in the actual structure is 80 µV K-1 (which means 20 times increase compared to that of composites not of the optimal structure), with a thermal conductivity of 50 W m-1 K-1. These results were obtained with constant electrical conductivity. The combined influence of these two effects in case of the ideal composite structure should result in an increase of the thermoelectric efficiency parameter by three orders of magnitude.

  17. Effect of sintering temperature on physical, structural and optical properties of wollastonite based glass-ceramic derived from waste soda lime silica glasses

    Science.gov (United States)

    Almasri, Karima Amer; Sidek, Hj. Ab Aziz; Matori, Khamirul Amin; Zaid, Mohd Hafiz Mohd

    The impact of different sintering temperatures on physical, optical and structural properties of wollastonite (CaSiO3) based glass-ceramics were investigated for its potential application as a building material. Wollastonite based glass-ceramics was provided by a conventional melt-quenching method and followed by a controlled sintering process. In this work, soda lime silica glass waste was utilized as a source of silicon. The chemical composition and physical properties of glass were characterized by using Energy Dispersive X-ray Fluorescence (EDXRF) and Archimedes principle. The Archimedes measurement results show that the density increased with the increasing of sintering temperature. The generation of CaSiO3, morphology, size and crystal phase with increasing the heat-treatment temperature were examined by field emission scanning electron microscopy (FESEM), Fourier transforms infrared reflection spectroscopy (FTIR), and X-ray diffraction (XRD). The average calculated crystal size gained from XRD was found to be in the range 60 nm. The FESEM results show a uniform distribution of particles and the morphology of the wollastonite crystal is in relict shapes. The appearance of CaO, SiO2, and Ca-O-Si bands disclosed from FTIR which showed the formation of CaSiO3 crystal phase. In addition to the calculation of the energy band gap which found to be increased with increasing sintering temperature.

  18. Effect of sintering temperature on the morphology and mechanical properties of PTFE membranes as a base substrate for proton exchange membrane

    Directory of Open Access Journals (Sweden)

    Nor Aida Zubir

    2002-11-01

    Full Text Available This paper reports the development of PTFE membranes as the base substrates for producing proton exchange membrane by using radiation-grafting technique. An aqueous dispersion of PTFE, which includes sodium benzoate, is cast in order to form suitable membranes. The casting was done by usinga pneumatically controlled flat sheet membrane-casting machine. The membrane is then sintered to fuse the polymer particles and cooled. After cooling process, the salt crystals are leached from the membrane by dissolution in hot bath to leave a microporous structure, which is suitable for such uses as a filtration membrane or as a base substrate for radiation grafted membrane in PEMFC. The effects of sintering temperature on the membrane morphology and tensile strength were investigated at 350oC and 385oC by using scanning electron microscopy (SEM and EX 20, respectively. The pore size and total void space are significantly smaller at higher sintering temperature employed with an average pore diameter of 11.78 nm. The tensile strength and tensile strain of sintered PTFE membrane at 385oC are approximately 19.02 + 1.46 MPa and 351.04 + 23.13 %, respectively. These results were indicated at 385oC, which represents significant improvements in tensile strength and tensile strain, which are nearly twice those at 350oC.

  19. Effects of sintering process on wear and mechanical behavior properties of titanium carbide/hexagonal boron nitrid/steel 316L base nanocomposites

    Science.gov (United States)

    Sadooghi, Ali; Payganeh, Gholamhassan

    2018-02-01

    Powder metallurgy process is one of the approaches to manufacture nanocomposite samples, in which the product quality depends upon the pressure, temperature, and sintering time. In this manuscript, steel is selected as the base material together with 2% carbon-based reinforcing TiC particles, and 2% hBN particles as the self-lubricant material. The powders were mixed for 5 h in high ball milling, and compacted with two pressures of 350 and 450 MPa, sintered in the furnace for 2 and 4 h, and sintering temperatures of 1350 and 1450 °C were utilized. SEM, XRD, and EDX tests are performed to identify the nanocomposite structure, and DTA tests are carried out to specify the temperature graph of the material. Finally, hardness, wear, and bending tests are done to find the corresponding mechanical properties of the samples. As a result, the optimum process parameters, including pressure, temperature and sintering duration is achieved. Results show that adding the reinforcing particles into a steel matrix increase the hardness, as well as flexural strength of the nanocomposite product. Also, coefficient of friction shows a decreases.

  20. Effect of Immersion in Simulated Body Fluid on the Mechanical Properties and Biocompatibility of Sintered Fe–Mn-Based Alloys

    Directory of Open Access Journals (Sweden)

    Zhigang Xu

    2016-12-01

    Full Text Available Fe–Mn-based degradable biomaterials (DBMs are promising candidates for temporary implants such as cardiovascular stents and bone fixation devices. Identifying their mechanical properties and biocompatibility is essential to determine the feasibility of Fe–Mn-based alloys as DBMs. This study presents the tensile properties of two powder metallurgical processed Fe–Mn-based alloys (Fe–28Mn and Fe–28Mn-3Si, in mass percent as a function of immersion time in simulated body fluid (SBF. In addition, short-term cytotoxicity testing was performed to evaluate the in vitro biocompatibility of the sintered Fe–Mn-based alloys. The results reveal that an increase in immersion duration deteriorated the tensile properties of both the binary and ternary alloys. The tensile properties of the immersed alloys were severely degraded after being soaked in SBF for ≥45 days. The ion concentration in SBF released from the Fe–28Mn-3Si samples was higher than their Fe–28Mn counterparts after 7 days immersion. The preliminary cytotoxicity testing based on the immersed SBF medium after 7 days immersion suggested that both the Fe–28Mn-3Si and Fe–28Mn alloys presented a good biocompatibility in Murine fibroblast cells.

  1. Sintered wire cesium dispenser photocathode

    Science.gov (United States)

    Montgomery, Eric J; Ives, R. Lawrence; Falce, Louis R

    2014-03-04

    A photoelectric cathode has a work function lowering material such as cesium placed into an enclosure which couples a thermal energy from a heater to the work function lowering material. The enclosure directs the work function lowering material in vapor form through a low diffusion layer, through a free space layer, and through a uniform porosity layer, one side of which also forms a photoelectric cathode surface. The low diffusion layer may be formed from sintered powdered metal, such as tungsten, and the uniform porosity layer may be formed from wires which are sintered together to form pores between the wires which are continuous from the a back surface to a front surface which is also the photoelectric surface.

  2. Electro sinter forging of titanium disks

    DEFF Research Database (Denmark)

    Cannella, Emanuele; Nielsen, Chris Valentin; Bay, Niels Oluf

    Electro sinter forging (ESF) is a new sintering process based on the principle of electrical Joule heating. In the present work, middle frequency direct current (MFDC) was flowing through the powder compact, which was under mechanical pressure. The main parameters are the high electrical current,...

  3. Evaluation of Uniformity and Glare Improvement with Low Energy Efficiency Losses in Street Lighting LED Luminaires Using Laser-Sintered Polyamide-Based Diffuse Covers

    Directory of Open Access Journals (Sweden)

    Alfonso Gago-Calderón

    2018-04-01

    Full Text Available Energy saving in street lighting is garnering more interest and has become a priority in municipal management. Therefore, LED luminaires are gradually becoming prevalent in our cities. Beyond their energy/economic saving potential, quality in public lighting installations concerns aspects such as uniformity and glare which must be maintained if not improved in any installation renewal project using this technology. The high light intensity generated in a discrete point in LED packages and its directional nature result in significant deficiencies in these last two parameters. To soften these effects, translucent covers are being used as one of the most common solutions with the drawback of significant light intensity losses. The objective of this paper is to evaluate the behavior of LED luminaire’s polyamide-based optical covers manufactured with a laser-sintered process. These are designed to improve glare and uniformity output, to minimize light output reductions, and to be industrially manufactured with no increment of cost for their lighting equipment compared to conventional transparent polycarbonate solutions. A laboratory and field lighting test study has been applied to different covers with the same LED lamp and luminaire to compare the performance of three different solutions built with different polymeric materials and with different light transmission surface textures. The photometric results have been observed and discussed to demonstrate the ability to significantly improve the lighting performance of LED luminaires—illuminance and uniformity levels and discomfort and disability glare indexes— using an improved optic cover.

  4. Kiln furniture for sintering electronic ceramics. Ceramics shosei jigu (doguzai) ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Fushimi, T.; Shibata, S. (Toshiba Ceramics Co. Ltd., Tokyo (Japan))

    1994-05-01

    This paper summarizes refractory jigs used in manufacturing electronic ceramics. Jigs used vary with types of sintering kilns. Sintering kilns include pusher kiln, trolley kiln, roller hearth kiln, batch kiln, and HIP. The paper describes jigs by electronic ceramics materials. Ferrites are sintered in a pusher kiln, where such jigs are used as a base plate, stanchions, shelf plates, saggers, and a setter. Jigs that contact with ferrite are demanded not to give such adverse effects to materials to be sintered as crystal growth. Soft ferrites of Mn/Zn and Ni/Zn systems use jigs of pure alumina and zirconia nature, while large-size soft ferrites use setters with rough surface. A barium titanate system as a ceramic dielectric uses a zirconia jig, and materials containing Pb and Bi such as for varistors use magnesia and spinel jigs. Alumina porcelain substrates use mullite or high-alumina pusher kilns and alumina jigs. 4 refs., 1 fig., 4 tabs.

  5. Nanostructured Al-ZrAl{sub 3} materials consolidated via spark plasma sintering: Evaluation of their mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, C.; Belzunce, F.J.; Betegon, C. [Escuela Politecnica de Ingenieria (University of Oviedo), Campus Universitario, 33203 Gijon (Spain); Goyos, L. [Centro de Investigacion en Nanomateriales y Nanotecnologia (CINN-CSIC-UNIOVI-PA), Consejo Superior de Investigaciones Cientificas-Universidad de Oviedo-Principado de Asturias, Parque Tecnologico de Asturias, Llanera (Spain); Diaz, L.A., E-mail: la.diaz@cinn.es [Centro de Investigacion en Nanomateriales y Nanotecnologia (CINN-CSIC-UNIOVI-PA), Consejo Superior de Investigaciones Cientificas-Universidad de Oviedo-Principado de Asturias, Parque Tecnologico de Asturias, Llanera (Spain); Torrecillas, R. [Centro de Investigacion en Nanomateriales y Nanotecnologia (CINN-CSIC-UNIOVI-PA), Consejo Superior de Investigaciones Cientificas-Universidad de Oviedo-Principado de Asturias, Parque Tecnologico de Asturias, Llanera (Spain)

    2013-02-15

    Highlights: Black-Right-Pointing-Pointer A surface modification of aluminium powders was carried out by means of a colloidal process. Black-Right-Pointing-Pointer These powders were consolidated and sintered by spark plasma sintering. Black-Right-Pointing-Pointer Regarding the dwell time at the sintering temperature (625 Degree-Sign C), ZrAl{sub 3} intermetallic crystallizes. Black-Right-Pointing-Pointer The mechanical behaviour of this reinforcement was evaluated by Small Punch Test. - Abstract: Aluminium based nanostructured materials with additions of 0.5, 1 and 1.5 wt.% of zirconium have been produced and sintered using the spark plasma sintering technique in order to promote the nucleation of ZrAl{sub 3} platelets. The mechanical behaviour of all these nanocomposites was determined by means of the Small Punch Test. Zirconium additions significantly decrease the mechanical properties of these products when sintering time at the sintering temperature (625 Degree-Sign C) is short (3 min). Nevertheless, when the sintering time increases to 1 h (intermetallic crystallization), the zirconium additions show the expected effect: the stiffness and the yield strength increase while ductility and toughness decrease. The maximum load increases until a 0.5 wt.% Zr is attained and suddenly drops when the Zr content surpasses 1 wt.%.

  6. A photonic sintering derived Ag flake/nanoparticle-based highly sensitive stretchable strain sensor for human motion monitoring.

    Science.gov (United States)

    Kim, Inhyuk; Woo, Kyoohee; Zhong, Zhaoyang; Ko, Pyungsam; Jang, Yunseok; Jung, Minhun; Jo, Jeongdai; Kwon, Sin; Lee, Seung-Hyun; Lee, Sungwon; Youn, Hongseok; Moon, Jooho

    2018-03-21

    Recently, the demand for stretchable strain sensors used for detecting human motion is rapidly increasing. This paper proposes high-performance strain sensors based on Ag flake/Ag nanocrystal (NC) hybrid materials incorporated into a polydimethylsiloxane (PDMS) elastomer. The addition of Ag NCs into an Ag flake network enhances the electrical conductivity and sensitivity of the strain sensors. The intense localized heating of Ag flakes/NCs is induced by intense pulsed light (IPL) irradiation, to achieve efficient sintering of the Ag NCs within a second, without damaging the PDMS matrix. This leads to significant improvement in the sensor sensitivity. Our strain sensors are highly stretchable (maximum strain = 80%) and sensitive (gauge factor = 7.1) with high mechanical stability over 10 000 stretching cycles under 50% strain. For practical demonstration, the fabrication of a smart glove for detecting the motions of fingers and a sports band for measuring the applied arm strength is also presented. This study provides an effective method for fabricating elastomer-based high-performance stretchable electronics.

  7. Extension of the master sintering curve for constant heating rate modeling

    Science.gov (United States)

    McCoy, Tammy Michelle

    The purpose of this work is to extend the functionality of the Master Sintering Curve (MSC) such that it can be used as a practical tool for predicting sintering schemes that combine both a constant heating rate and an isothermal hold. Rather than just being able to predict a final density for the object of interest, the extension to the MSC will actually be able to model a sintering run from start to finish. Because the Johnson model does not incorporate this capability, the work presented is an extension of what has already been shown in literature to be a valuable resource in many sintering situations. A predicted sintering curve that incorporates a combination of constant heating rate and an isothermal hold is more indicative of what is found in real-life sintering operations. This research offers the possibility of predicting the sintering schedule for a material, thereby having advanced information about the extent of sintering, the time schedule for sintering, and the sintering temperature with a high degree of accuracy and repeatability. The research conducted in this thesis focuses on the development of a working model for predicting the sintering schedules of several stabilized zirconia powders having the compositions YSZ (HSY8), 10Sc1CeSZ, 10Sc1YSZ, and 11ScSZ1A. The compositions of the four powders are first verified using x-ray diffraction (XRD) and the particle size and surface area are verified using a particle size analyzer and BET analysis, respectively. The sintering studies were conducted on powder compacts using a double pushrod dilatometer. Density measurements are obtained both geometrically and using the Archimedes method. Each of the four powders is pressed into ¼" diameter pellets using a manual press with no additives, such as a binder or lubricant. Using a double push-rod dilatometer, shrinkage data for the pellets is obtained over several different heating rates. The shrinkage data is then converted to reflect the change in relative

  8. Phase-Pure of BiFeO3 Ceramic Based on Citric Acid - Assisted Gel by Sintering Time Variation

    Science.gov (United States)

    Suastiyanti, Dwita; Ismojo

    2017-07-01

    Bismuth ferrite powder (BiFeO3/BFO) with high purity was synthesized by sol-gel process. It was used Bi5O(OH)9(NO3)4 and Fe(NO3)3.9H2O as main compound sources. Citric acid (C6H8O7) was used as fuell. As multiferroic material, BFO promises important technological applications in several devices like data strorage, spinotronics, sensor, actuator devices etc. This research would know the optimum process condition of sol-gel process to produce BFO powder by varying of sintering time. The novelty of this research is how to produce BFO in single phase by simple method. It was used calcination condition at 160°C for 4 hours and sintering condition at 600°C with varying of sintering time of 4, 6 and 8 hours. Thermogravimetric Analysis/Differential Thermal Analysis (TGA/DTA), X Ray Diffraction (XRD) and Scanning Electron Microscope (SEM) were used to characterize the powder. Loss of mass and heat flow were seen at TGA/DTA test at 160°C approximately (used as reference of calcination temperature). BFO powder sintered at for 8 hours has no secondary phase, meanwhile for another sintering time (4 and 6 hours) it has Bi2O3 as secondary phase. It is also show at SEM observation result that powder with sintering time of 8 hours has finer grain than of 4 and 6 hours sintering at the same temperature. The grains of BFO powder has heterogenous in size, shape and still agglomerated.

  9. Effects of sintering atmosphere and initial particle size on sintering of gadolinia-doped ceria

    International Nuclear Information System (INIS)

    Batista, Rafael Morgado

    2014-01-01

    The effects of the sintering atmosphere and initial particle size on the sintering of ceria containing 10 mol% gadolinia (GdO 1.5 ) were systematically investigated. The main physical parameter was the specific surface area of the initial powders. Nanometric powders with three different specific surface areas were utilized, 210 m 2 /g, 36,2 m 2 /g e 7,4 m 2 /g. The influence on the densification, and micro structural evolution were evaluated. The starting sintering temperature was verified to decrease with increasing on the specific surface area of raw powders. The densification was accelerated for the materials with smaller particle size. Sintering paths for crystallite growth were obtained. Master sintering curves for gadolinium-doped ceria were constructed for all initial powders. A computational program was developed for this purpose. The results for apparent activation energy showed noticeable dependence with specific surface area. In this work, the apparent activation energy for densification increased with the initial particle size of powders. The evolution of the particle size distributions on non isothermal sintering was investigated by WPPM method. It was verified that the grain growth controlling mechanism on gadolinia doped ceria is the pore drag for initial stage and beginning of intermediate stage. The effects of the sintering atmosphere on the stoichiometry deviation of ceria, densification, microstructure evolution, and electrical conductivity were analyzed. Inert, oxidizing, and reducing atmospheres were utilized on this work. Deviations on ceria stoichiometry were verified on the bulk materials. The deviation verified was dependent of the specific surface area and sintering atmosphere. Higher reduction potential atmospheres increase Ce 3+ bulk concentration after sintering. Accelerated grain growth and lower electrical conductivities were verified when reduction reactions are significantly present on sintering. (author)

  10. Optimization of Gas Composition Used in Plasma Chemical Vaporization Machining for Figuring of Reaction-Sintered Silicon Carbide with Low Surface Roughness.

    Science.gov (United States)

    Sun, Rongyan; Yang, Xu; Ohkubo, Yuji; Endo, Katsuyoshi; Yamamura, Kazuya

    2018-02-05

    In recent years, reaction-sintered silicon carbide (RS-SiC) has been of interest in many engineering fields because of its excellent properties, such as its light weight, high rigidity, high heat conductance and low coefficient of thermal expansion. However, RS-SiC is difficult to machine owing to its high hardness and chemical inertness and because it contains multiple components. To overcome the problem of the poor machinability of RS-SiC in conventional machining, the application of atmospheric-pressure plasma chemical vaporization machining (AP-PCVM) to RS-SiC was proposed. As a highly efficient and damage-free figuring technique, AP-PCVM has been widely applied for the figuring of single-component materials, such as Si, SiC, quartz crystal wafers, and so forth. However, it has not been applied to RS-SiC since it is composed of multiple components. In this study, we investigated the AP-PCVM etching characteristics for RS-SiC by optimizing the gas composition. It was found that the different etching rates of the different components led to a large surface roughness. A smooth surface was obtained by applying the optimum gas composition, for which the etching rate of the Si component was equal to that of the SiC component.

  11. High-performance direct conversion X-ray detectors based on sintered hybrid lead triiodide perovskite wafers

    Science.gov (United States)

    Shrestha, Shreetu; Fischer, René; Matt, Gebhard J.; Feldner, Patrick; Michel, Thilo; Osvet, Andres; Levchuk, Ievgen; Merle, Benoit; Golkar, Saeedeh; Chen, Haiwei; Tedde, Sandro F.; Schmidt, Oliver; Hock, Rainer; Rührig, Manfred; Göken, Mathias; Heiss, Wolfgang; Anton, Gisela; Brabec, Christoph J.

    2017-07-01

    Lead halide perovskite semiconductors are in general known to have an inherently high X-ray absorption cross-section and a significantly higher carrier mobility than any other low-temperature solution-processed semiconductor. So far, the processing of several-hundred-micrometres-thick high-quality crystalline perovskite films over a large area has been unresolved for efficient X-ray detection. In this Article, we present a mechanical sintering process to fabricate polycrystalline methyl ammonium lead triiodide perovskite (MAPbI3) wafers with millimetre thickness and well-defined crystallinity. Benchmarking of the MAPbI3 wafers against state-of-the-art CdTe detectors reveals competitive conversion efficiencies of 2,527 µC Gyair-1 cm-2 under 70 kVp X-ray exposure. The high ambipolar mobility-lifetime product of 2 × 10-4 cm2 V-1 is suggested to be responsible for this exceptionally high sensitivity. Our findings inform a new generation of highly efficient and low-cost X-ray detectors based on perovskite wafers.

  12. Yttrium oxide transparent ceramics by low-temperature microwave sintering

    International Nuclear Information System (INIS)

    Luo, Junming; Zhong, Zhenchen; Xu, Jilin

    2012-01-01

    Graphical abstract: The figure shows the SEM photos of the surfaces of the Y 2 O 3 transparent ceramic samples obtained by microwave sintering and vacuum sintering. It is clearly demonstrated that the grain distribution of the vacuum sintering sample is not uniform with the smallest and the largest particle size at about 2 μm and 15 μm respectively, while the grain distribution of microwave sintering sample is uniform with the average diameter at about 2–4 μm (the smallest reported so far) and with no abnormal growth-up or coarsening phenomenon. We have further found out that the smaller the grain size, the higher the mechanical and optical properties. Display Omitted Highlights: ► The microwave sintering temperature of the sample is lower compared with vacuum. ► The microwave sintering time of the sample is shorter compared with vacuum. ► The mechanical properties of the microwave sintering sample is improved greatly. ► The Y 2 O 3 grain of microwave sintering sample is the smallest reported so far. -- Abstract: Yttrium oxide (Y 2 O 3 ) transparent ceramics samples have been successfully fabricated by microwave sintering processing at relatively low temperatures. In comparison with the vacuum sintering processing, Y 2 O 3 transparent ceramics can be obtained by microwave sintering at lower sintering temperature and shorter sintering time, and they possess higher transmittances and mechanical properties. The technologies of low-temperature microwave sintering and the relationships of the microstructures and properties of the specified samples have been investigated in detail. We have found out that the low-temperature microwave sintering technique has its obvious advantages over the conventional methods in manufacturing yttrium oxide transparent ceramics.

  13. Densification and volumetric change during supersolidus liquid phase sintering of prealloyed brass Cu28Zn powder: Modeling and optimization

    Directory of Open Access Journals (Sweden)

    Mohammadzadeh A.

    2014-01-01

    Full Text Available An investigation has been made to use response surface methodology and central composite rotatable design for modeling and optimizing the effect of sintering variables on densification of prealloyed Cu28Zn brass powder during supersolidus liquid phase sintering. The mathematical equations were derived to predict sintered density, densification parameter, porosity percentage and volumetric change of samples using second order regression analysis. As well as the adequacy of models was evaluated by analysis of variance technique at 95% confidence level. Finally, the influence and interaction of sintering variables, on achieving any desired properties was demonstrated graphically in contour and three dimensional plots. In order to better analyze the samples, microstructure evaluation was carried out. It was concluded that response surface methodology based on central composite rotatable design, is an economical way to obtain arbitrary information with performing the fewest number of experiments in a short period of time.

  14. Fabrication and scintillation properties of highly transparent Pr:LuAG ceramics using Sc,La-based isovalent sintering aids

    Czech Academy of Sciences Publication Activity Database

    Shen, Y.; Feng, X.; Babin, Vladimir; Nikl, Martin; Vedda, A.; Moretti, F.; Dell'Orto, E.; Pan, Y.; Li, J.; Zeng, Y.

    2013-01-01

    Roč. 39, č. 5 (2013), s. 5985-5990 ISSN 0272-8842 R&D Projects: GA MŠk LH12185; GA AV ČR KAN300100802 Institutional support: RVO:68378271 Keywords : Pr:LuAG transparent ceramics * isovalent sintering aids * scintillation Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.086, year: 2013

  15. High-slope photoconductive cells based on screen-printed and sintered cadmium sulfide; the long-term stability properties

    Czech Academy of Sciences Publication Activity Database

    Franc, Jiří; Nešpůrek, Stanislav

    2007-01-01

    Roč. 9, č. 7 (2007), s. 2205-2210 ISSN 1454-4164 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z40500505 Keywords : photoconductive cell * cadmium sulfide * sintering Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.827, year: 2007

  16. Development of TiN particulates reinforced SS316 based metal matrix composite by direct metal laser sintering technique and its characterization

    Science.gov (United States)

    Hussain, Manowar; Mandal, Vijay; Kumar, Vikas; Das, A. K.; Ghosh, S. K.

    2017-12-01

    The present study describes the fabrication of TiN particulates reinforced SS316 based Metal Matrix Composites (MMCs) in nitrogen and argon atmosphere. The influence of sintering process parameters on microstructure, density, porosity, wear rate and microhardness of the fabricated samples has been analyzed. The input variable process parameters, such as, laser power density (range: 4.13-5.57 W/cm2 (× 104)), scanning speed (range: 3500-4500 mm/min) and the constant parameters, such as, laser beam diameter (0.4 mm), hatching distance (0.2 mm) and layer thickness (0.4 mm) have been considered in the process. It has been observed from Field Emission Scanning Electron Microscopy (FESEM) analysis that TiN and SS316 powder mixture can be sintered in which chromium acts as a binder. Fine gaps are not found at the interface between TiN and SS316 when the mixture is sintered in nitrogen atmosphere. With an increase in the percentage of TiN, the density and wear rate decreases. However, when the reinforcement is taken beyond 18% by weight, the wear rate starts increasing. The microhardness also increases with an increase in the percentage of TiN. The microstructure, elemental compositions and phase characterization of the developed sintered MMCs have been examined by FESEM, EDX (Energy-dispersive X-ray spectroscopy) and XRD (X-ray diffractometer) analysis, respectively. The results have demonstrated the suitability of the TiN reinforced SS316 MMCs for industrial applications.

  17. Oxidation Characterization of Hafnium-Based Ceramics Fabricated by Hot Pressing and Electric Field-Assisted Sintering

    Science.gov (United States)

    Gasch, Matt; Johnson, Sylvia; Marschall, Jochen

    2010-01-01

    Ceramic borides, such as hafnium diboride (HfB2) and zirconium diboride (ZrB2), are members of a family of materials with extremely high melting temperatures referred to as Ultra High Temperature Ceramics (UHTCs). UHTCs constitute a class of promising materials for use in high temperature applications, such as sharp leading edges on future-generation hypersonic flight vehicles, because of their high melting points. The controlled development of microstructure has become important to the processing of UHTCs, with the prospect of improving their mechanical and thermal properties. The improved oxidation resistance of HfB2 has also become important if this material is to be successfully used at temperatures above 2000 C. Furthermore, the use of UHTCs on the leading edges of vehicles traveling at hypersonic speeds will mean exposure to a mixed oxidation environment comprised of both molecular and atomic oxygen. The current study has investigated the high-temperature oxidation behavior of HfB2-based materials in a pure O2 environment, as well as in environments containing different levels of dissociated oxygen (O/O2). Materials were processed by two techniques: conventional hot pressing (HP) and electric field-assisted sintering (FAS). Their oxidation behavior was evaluated in both a tube furnace at 1250 C for 3 hours and in a simulated re-entry environment in the Advanced Heating Facility (AHF) arcjet at NASA Ames Research Center, during a 10-minute exposure to a cold wall heat flux of 250W/sq cm and stagnation pressure of 0.1-0.2 atm. The microstructure of the different materials was characterized before and after oxidation using scanning electron microscopy (SEM).

  18. Sintered silver joints via controlled topography of electronic packaging subcomponents

    Science.gov (United States)

    Wereszczak, Andrew A.

    2014-09-02

    Disclosed are sintered silver bonded electronic package subcomponents and methods for making the same. Embodiments of the sintered silver bonded EPSs include topography modification of one or more metal surfaces of semiconductor devices bonded together by the sintered silver joint. The sintered silver bonded EPSs include a first semiconductor device having a first metal surface, the first metal surface having a modified topography that has been chemically etched, grit blasted, uniaxial ground and/or grid sliced connected to a second semiconductor device which may also include a first metal surface with a modified topography, a silver plating layer on the first metal surface of the first semiconductor device and a silver plating layer on the first metal surface of the second semiconductor device and a sintered silver joint between the silver plating layers of the first and second semiconductor devices which bonds the first semiconductor device to the second semiconductor device.

  19. Sintered gahnite–cordierite glass-ceramic based on raw materials ...

    Indian Academy of Sciences (India)

    1732. Esmat M A Hamzawy and Mohammed A Bin Hussain. Table 1. Chemical composition of the base glass in wt% and the additives. Oxides from raw materials in wt%. Commercial additions. Oxides. SiO2. Al2O3. Fe2O3. CaO MgO Na2O K2O TiO2. ZnO. AlF3 a. MgF2 a. CaF2 a. SCb. 51.36. 34.86. —. —. 13.78. —. —. —.

  20. Sintering of nonstoichiometric UO2

    International Nuclear Information System (INIS)

    Susnik, D.; Holc, J.

    1983-01-01

    Activated sintering of UO 2 pellets at 1100 deg C is described. In CO 2 atmosphere is UO 2 is nonstoichiometric and pellets from active UO 2 powders sinter at 900 deg C to high density. At 1100 deg C the final sintered density is practically achieved at heating on sintering temperature. After reduction and cooling in H 2 atmosphere which is followed sintering in CO 2 the structure is identical to the structured UO 2 pellets sintered at high temperature in H 2 . Density of activated sintered UO 2 pellets is stable, even after additional sintering at 1800 deg C. (author)

  1. Laser Sintered Calcium Phosphate Bone

    National Research Council Canada - National Science Library

    Vail, Neil

    1999-01-01

    ...) technology selective laser sintering (SLS). BME has successfully implemented a pilot facility to fabricate calcium phosphate implants using anatomical data coupled with the selective laser sintering process...

  2. A method for sintering

    DEFF Research Database (Denmark)

    2012-01-01

    The present invention provides a method for sintering, comprising in the following order the steps of: providing a body in the green state or in the pre-sintered state on a support; providing a load on at least one spacer on the support such that the load is located above said body in the green...

  3. Surface quality and microstructure of low-vacuum sintered orthodontic bracket 17-4 PH stainless steel fabricated by MIM process

    Science.gov (United States)

    Suharno, Bambang; Suharno, Lingga Pradinda; Saputro, Hantoro Restucondro; Irawan, Bambang; Prasetyadi, Tjokro; Ferdian, Deni; Supriyadi, Sugeng

    2018-02-01

    Surface roughness and microstructure play important role on orthodontic bracket quality. Therefore, orthodontic brackets need to have smooth surface roughness to reduce the friction and bacterial adhesion. Microstructure of orthodontic brackets also determine the mechanical properties and corrosion resistance. There are two methods to produce orthodontic bracket, investment casting and metal injection molding. The purpose of this study is to observe the surface roughness and microstructure of orthodontic bracket which were made from two different fabrication methods. To produce orthodontic bracket with metal injection molding method, 17-4 PH stainless steel feedstock was injected to the orthodontic bracket mold using injection molding machine. After injection, the binder was eliminated with solvent and thermal debinding. Solvent debinding process was conducted with hexane at 50 °C on magnetic stirrer for 1.5 hours. Thermal debinding process was conducted at 510 °C with 0.5 °C/min heat rate and 120 min holding time. Hereafter, sintering process were performed with vacuum tube furnace at 1360 °C with heat rate 5 °C/min and 90 min holding time in low vacuum atmosphere. To produce orthodontic bracket with investment casting method, the wax was injected into the mold then the wax pattern was arranged into the tree form. The tree form was then dipped into ceramic slurry and allowed to harden, the ceramic slurry has a thickness in the region of 10 mm. The ceramic mold was then heated at a temperature of over than 1100°C to strengthen the ceramic mold and to remove the remaining wax. After that, the molten 17-4 PH stainless steel was poured into the ceramic mold at a temperature of over 1600°C. The natural cooling process was carried out at temperature of 25°C, after which the ceramic mold was broken away. Then, the orthodontic bracket was cut from the tree form. The results show that the orthodontic bracket which were made with investment casting fabrication

  4. Surface stress-based biosensors.

    Science.gov (United States)

    Sang, Shengbo; Zhao, Yuan; Zhang, Wendong; Li, Pengwei; Hu, Jie; Li, Gang

    2014-01-15

    Surface stress-based biosensors, as one kind of label-free biosensors, have attracted lots of attention in the process of information gathering and measurement for the biological, chemical and medical application with the development of technology and society. This kind of biosensors offers many advantages such as short response time (less than milliseconds) and a typical sensitivity at nanogram, picoliter, femtojoule and attomolar level. Furthermore, it simplifies sample preparation and testing procedures. In this work, progress made towards the use of surface stress-based biosensors for achieving better performance is critically reviewed, including our recent achievement, the optimally circular membrane-based biosensors and biosensor array. The further scientific and technological challenges in this field are also summarized. Critical remark and future steps towards the ultimate surface stress-based biosensors are addressed. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Effects of sintering temperature on the mechanical properties of sintered NdFeB permanent magnets prepared by spark plasma sintering

    International Nuclear Information System (INIS)

    Wang, G.P.; Liu, W.Q.; Huang, Y.L.; Ma, S.C.; Zhong, Z.C.

    2014-01-01

    Sintered NdFeB-based permanent magnets were fabricated by spark plasma sintering (SPS) and a conventional method to investigate the mechanical and magnetic properties. The experimental results showed that sintered NdFeB magnet prepared by the spark plasma sintering (SPS NdFeB) possesses a better mechanical properties compared to the conventionally sintered one, of which the maximum value of bending strength and Vickers hardness was 402.3 MPa and 778.1 MPa, respectively. The effects of sintering temperature on bending strength and Vickers hardness were investigated. It was shown that the bending strength firstly increases to the maximum value and then decreases with the increase of sintering temperature in a certain range. The investigations of microstructures and mechanical properties indicated that the unique sintering mechanism in the SPS process is responsible for the improvement of mechanical properties of SPS NdFeB. Furthermore, the relations between the mechanical properties and relevant microstructure have been analyzed based on the experimental fact. - Highlights: • Studied the sintering temperature effect on strengthening mechanism of NdFeB magnet firstly. • It showed that sintering temperature may effectively affect the mechanical properties. • The maximum bending strength and Vickers hardness was 402.3 MPa and 778.1 MPa, respectively

  6. Effects of sintering temperature on the mechanical properties of sintered NdFeB permanent magnets prepared by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G.P., E-mail: wgp@jxnu.edu.cn [College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022 (China); Liu, W.Q. [Key Laboratory of Advanced Functional Materials Science and Engineering, Ministry of Education, Beijing University of Technology, Beijing 100022 (China); Huang, Y.L.; Ma, S.C.; Zhong, Z.C. [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China)

    2014-01-15

    Sintered NdFeB-based permanent magnets were fabricated by spark plasma sintering (SPS) and a conventional method to investigate the mechanical and magnetic properties. The experimental results showed that sintered NdFeB magnet prepared by the spark plasma sintering (SPS NdFeB) possesses a better mechanical properties compared to the conventionally sintered one, of which the maximum value of bending strength and Vickers hardness was 402.3 MPa and 778.1 MPa, respectively. The effects of sintering temperature on bending strength and Vickers hardness were investigated. It was shown that the bending strength firstly increases to the maximum value and then decreases with the increase of sintering temperature in a certain range. The investigations of microstructures and mechanical properties indicated that the unique sintering mechanism in the SPS process is responsible for the improvement of mechanical properties of SPS NdFeB. Furthermore, the relations between the mechanical properties and relevant microstructure have been analyzed based on the experimental fact. - Highlights: • Studied the sintering temperature effect on strengthening mechanism of NdFeB magnet firstly. • It showed that sintering temperature may effectively affect the mechanical properties. • The maximum bending strength and Vickers hardness was 402.3 MPa and 778.1 MPa, respectively.

  7. Preparation of Ni-Ti shape memory alloy by spark plasma sintering method

    Czech Academy of Sciences Publication Activity Database

    Salvetr, P.; Kubatík, Tomáš František; Novák, P.

    2016-01-01

    Roč. 16, č. 4 (2016), s. 804-808 ISSN 1213-2489 Institutional support: RVO:61389021 Keywords : Ni-Ti alloy * Powder metallurgy * Reactive sintering * Spark plasma sintering Subject RIV: JK - Corrosion ; Surface Treatment of Materials

  8. Production of High-Purity Anhydrous Nickel(II Perrhenate for Tungsten-Based Sintered Heavy Alloys

    Directory of Open Access Journals (Sweden)

    Katarzyna Leszczyńska-Sejda

    2017-04-01

    Full Text Available This paper presents a method for the production of high-purity anhydrous nickel(II perrhenate. The method comprises sorption of nickel(II ions from aqueous nickel(II nitrate solutions, using strongly acidic C160 cation exchange resin, and subsequent elution of sorbed nickel(II ions using concentrated perrhenic acid solutions. After the neutralization of the resulting rhenium-nickel solutions, hydrated nickel(II perrhenate is then separated and then dried at 160 °C to obtain the anhydrous form. The resulting compound is reduced in an atmosphere of dissociated ammonia in order to produce a Re-Ni alloy powder. This study provides information on the selected properties of the resulting Re-Ni powder. This powder was used as a starting material for the production of 77W-20Re-3Ni heavy alloys. Microstructure examination results and selected properties of the produced sintered heavy alloys were compared to sintered alloys produced using elemental W, Re, and Ni powders. This study showed that the application of anhydrous nickel(II perrhenate in the production of 77W-20Re-3Ni results in better properties of the sintered alloys compared to those made from elemental powders.

  9. Sintering of beryllium oxide

    International Nuclear Information System (INIS)

    Caillat, R.; Pointud, R.

    1955-01-01

    This study had for origin to find a process permitting to manufacture bricks of beryllium oxide of pure nuclear grade, with a density as elevated as possible and with standardized shape. The sintering under load was the technique kept for the manufacture of the bricks. Because of the important toxicity of the beryllium oxide, the general features for the preliminary study of the sintering, have been determined while using alumina. The obtained results will be able to act as general indication for ulterior studies with sintering under load. (M.B.) [fr

  10. Glass-ceramic coating material for the CO2 laser based sintering of thin films as caries and erosion protection.

    Science.gov (United States)

    Bilandžić, Marin Dean; Wollgarten, Susanne; Stollenwerk, Jochen; Poprawe, Reinhart; Esteves-Oliveira, Marcella; Fischer, Horst

    2017-09-01

    The established method of fissure-sealing using polymeric coating materials exhibits limitations on the long-term. Here, we present a novel technique with the potential to protect susceptible teeth against caries and erosion. We hypothesized that a tailored glass-ceramic material could be sprayed onto enamel-like substrates to create superior adhesion properties after sintering by a CO 2 laser beam. A powdered dental glass-ceramic material from the system SiO 2 -Na 2 O-K 2 O-CaO-Al 2 O 3 -MgO was adjusted with individual properties suitable for a spray coating process. The material was characterized using X-ray fluorescence analysis (XRF), heating microscopy, dilatometry, scanning electron microscopy (SEM), grain size analysis, biaxial flexural strength measurements, fourier transform infrared spectroscopy (FTIR), and gas pycnometry. Three different groups of samples (each n=10) where prepared: Group A, powder pressed glass-ceramic coating material; Group B, sintered hydroxyapatite specimens; and Group C, enamel specimens (prepared from bovine teeth). Group B and C where spray coated with glass-ceramic powder. All specimens were heat treated using a CO 2 laser beam process. Cross-sections of the laser-sintered specimens were analyzed using laser scanning microscopy (LSM), energy dispersive X-ray analysis (EDX), and SEM. The developed glass-ceramic material (grain size d50=13.1mm, coefficient of thermal expansion (CTE)=13.310 -6 /K) could be spray coated on all tested substrates (mean thickness=160μm). FTIR analysis confirmed an absorption of the laser energy up to 95%. The powdered glass-ceramic material was successfully densely sintered in all sample groups. The coating interface investigation by SEM and EDX proved atomic diffusion and adhesion of the glass-ceramic material to hydroxyapatite and to dental enamel. A glass-ceramic material with suitable absorption properties was successfully sprayed and laser-sintered in thin films on hydroxyapatite as well as on

  11. Microwave sintering of ceramic materials

    Science.gov (United States)

    Karayannis, V. G.

    2016-11-01

    In the present study, the potential of microwave irradiation as an innovative energy- efficient alternative to conventional heating technologies in ceramic manufacturing is reviewed, addressing the advantages/disadvantages, while also commenting on future applications of possible commercial interest. Ceramic materials have been extensively studied and used due to several advantages they exhibit. Sintering ceramics using microwave radiation, a novel technology widely employed in various fields, can be an efficient, economic and environmentally-friendlier approach, to improve the consolidation efficiency and reduce the processing cycle-time, in order to attain substantial energy and cost savings. Microwave sintering provides efficient internal heating, as energy is supplied directly and penetrates the material. Since energy transfer occurs at a molecular level, heat is generated throughout the material, thus avoiding significant temperature gradients between the surface and the interior, which are frequently encountered at high heating rates upon conventional sintering. Thus, rapid, volumetric and uniform heating of various raw materials and secondary resources for ceramic production is possible, with limited grain coarsening, leading to accelerated densification, and uniform and fine-grained microstructures, with enhanced mechanical performance. This is particularly important for manufacturing large-size ceramic products of quality, and also for specialty ceramic materials such as bioceramics and electroceramics. Critical parameters for the process optimization, including the electromagnetic field distribution, microwave-material interaction, heat transfer mechanisms and material transformations, should be taken into consideration.

  12. The Functional Resonance Analysis Method for a systemic risk based environmental auditing in a sinter plant: A semi-quantitative approach

    International Nuclear Information System (INIS)

    Patriarca, Riccardo; Di Gravio, Giulio; Costantino, Francesco; Tronci, Massimo

    2017-01-01

    Environmental auditing is a main issue for any production plant and assessing environmental performance is crucial to identify risks factors. The complexity of current plants arises from interactions among technological, human and organizational system components, which are often transient and not easily detectable. The auditing thus requires a systemic perspective, rather than focusing on individual behaviors, as emerged in recent research in the safety domain for socio-technical systems. We explore the significance of modeling the interactions of system components in everyday work, by the application of a recent systemic method, i.e. the Functional Resonance Analysis Method (FRAM), in order to define dynamically the system structure. We present also an innovative evolution of traditional FRAM following a semi-quantitative approach based on Monte Carlo simulation. This paper represents the first contribution related to the application of FRAM in the environmental context, moreover considering a consistent evolution based on Monte Carlo simulation. The case study of an environmental risk auditing in a sinter plant validates the research, showing the benefits in terms of identifying potential critical activities, related mitigating actions and comprehensive environmental monitoring indicators. - Highlights: • We discuss the relevance of a systemic risk based environmental audit. • We present FRAM to represent functional interactions of the system. • We develop a semi-quantitative FRAM framework to assess environmental risks. • We apply the semi-quantitative FRAM framework to build a model for a sinter plant.

  13. Effect of sintering temperature on structural and electrical properties ...

    Indian Academy of Sciences (India)

    TECS

    vity measurement. The crystallinity and surface morphology of the samples improved with sintering tempera- ture. Further, the electrical conductivity measurement indicated that the conduction mechanism is mainly ionic. The conductivity of samples sintered at 1673 K and 1773 K at 800°C are of the order of 0⋅1 S-cm. –1.

  14. Sintering of nickel steam reforming catalysts

    DEFF Research Database (Denmark)

    Sehested, Jens; Larsen, Niels Wessel; Falsig, Hanne

    2014-01-01

    The lifetimes of heterogeneous catalysts in many widely used industrial processes are determined by the loss of active surface area. In this context, the underlying physical sintering mechanism and quantitative information about the rate of sintering at industrial conditions are relevant....... In this paper, particle migration and coalescence in nickel steam reforming catalysts is studied. Density functional theory calculations indicate that Ni-OH dominate nickel transport at nickel surfaces in the presence of steam and hydrogen as Ni-OH has the lowest combined energies of formation and diffusion...... compared to other potential nickel transport species. The relation between experimental catalyst sintering data and the effective mass diffusion constant for Ni-OH is established by numerical modelling of the particle migration and coalescence process. Using this relation, the effective mass diffusion...

  15. Preparation and characterization of reactively sintered Ni{sub 3}Al-hBN-Ag composite coating on Ni-based superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Shitang [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate School, Chinese Academy of Sciences, Beijing 100039 (China); Zhou Jiansong [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Guo Baogang [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate School, Chinese Academy of Sciences, Beijing 100039 (China); Zhou Huidi [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Pu Yuping [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Central Iron and Steel Research Institute, Beijing 100081 (China); Chen Jianmin [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)], E-mail: chenjm@lzb.ac.cn

    2009-04-03

    Ni{sub 3}Al-hBN-Ag intermetallic matrix composite coating was prepared on Ni-based superalloy by reactive sintering. The crystalline phase and microstructure of the coating were examined by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). The results showed that the hBN particles pretreated by electroless nickel plating and hot-dip aluminizing and Ag particles with a size of several micrometers were homogeneously dispersed in the Ni{sub 3}Al matrix, and the composite coating had strong interfacial bonding with a fine and dense microstructure. During the reactive sintering, an exothermic reaction between Ni and Al associated with a transient liquid phase occurred, leading to in situ synthesis of the densified Ni{sub 3}Al matrix in the coating with a high tensile strength of more than 70 MPa. The high-temperature tribological properties evaluated on a ball-on-disc test rig showed that the coating possessed self-lubricating properties from room temperature to 800 deg. C due to a synergetic lubricating action of Ag and hBN.

  16. Characterization and mechanical testing of alumina-based nanocomposites reinforced with niobium and/or carbon nanotubes fabricated by spark plasma sintering

    International Nuclear Information System (INIS)

    Thomson, K.E.; Jiang, D.; Yao, W.; Ritchie, R.O.; Mukherjee, A.K.

    2012-01-01

    Alumina-based nanocomposites reinforced with niobium and/or carbon nanotubes (CNT) were fabricated by advanced powder processing techniques and consolidated by spark plasma sintering. Raman spectroscopy revealed that single-walled carbon nanotubes (SWCNT) begin to break down at sintering temperatures >1150 °C. Nuclear magnetic resonance showed that, although thermodynamically unlikely, no Al 4 C 3 formed in the CNT–alumina nanocomposites, such that the nanocomposite can be considered as purely a physical mixture with no chemical bond formed between the nanotubes and ceramic matrix. In addition, in situ single-edge notched bend tests were conducted on niobium and/or CNT-reinforced alumina nanocomposites to assess their toughness. Despite the absence of subcritical crack growth, average fracture toughness values of 6.1 and 3.3 MPa m 1/2 were measured for 10 vol.% Nb and 10 vol.% Nb–5 vol.% SWCNT–alumina, respectively. Corresponding tests for the alumina nanocomposites containing 5 vol.% SWCNT, 10 vol.% SWCNT, 5 vol.% double-walled-CNT and 10 vol.% Nb yielded average fracture toughnesses of 3.0, 2.8, 3.3 and 4.0 MPa m 1/2 , respectively. It appears that the reason for not observing improvement in fracture toughness of CNT-reinforced samples is because of either damage to CNTs or possibly non-optimal interfacial bonding between CNT-alumina.

  17. Mechanical characteristics of hybrid multilayer Green Tape[sup TM] ceramics sintered in a 2. 45 GHz single mode microwave cavity. [A commercial alumina-based product

    Energy Technology Data Exchange (ETDEWEB)

    Bansky, J.; Engemann, J. (Univ. of Wuppertal (Germany)); Bartley, D.; Asmussen, J.; Case, E.; Connery, S. (Michigan State Univ., East Lansing (United States))

    1993-04-01

    Research indicates that microwave energy offers many advantages over conventional heating methods. These advantages generally can be divided into two categories. One of them is the reduction in processing time and temperature, and the second one is the fabrication of materials with unique and/or superior properties. Microwave energy appears to be especially advantageous for the processing of many types of ceramics requiring high thermal process temperatures. This is connected with the increased coupling efficiency of ceramics at high temperatures with the microwave energy, the more uniform volumetric heating, and increased densification rates at lower processing temperatures. This paper describes microwave sintering of a commercial alumina-based product, Green Tape[sup TM] Dielectric 851AT (DuPont), that is designed for use as a material for hybrid integrated multilayer structures in the production of hybrid integrated circuits, as well as for some unconventional applications (ion optics, sensors, etc) (4,5). This study compares mechanical properties of conventionally and microwave sintered Green Tape[sup TM] 851AT hybrid multilayer structures.

  18. Morphological analysis and modelling of sintering and of sintered materials

    International Nuclear Information System (INIS)

    Jernot, Jean-Paul

    1982-01-01

    This research thesis addresses the study of solid phase sintering of metallic powders, and aims at describing as precisely as possible the different involved matter transport mechanisms, first by using a thermodynamic approach to sintering. Sintering diagrams are also used to determine prevailing mechanisms. The microstructure of sintered materials has been studied by using image quantitative analysis, thus by using a morphological approach to sintering. Morphological parameters allow, on the one hand, the evolution of powders during sintering to be followed, and, on the other hand, sintered products to be correctly characterised. Moreover, the author reports the study of the evolution of some physical properties of sintered materials with respect to their microstructure parameters. This leads to the development of a modelling of the behaviour of these materials [fr

  19. Effect of liquid-phase sintering as a means of quality enhancement of pseudoalloys based on copper

    Science.gov (United States)

    Gordeev, Yu I.; Abkaryan, A. K.; Zeer, G. M.; Lepeshev, A. A.; Zelenkova, E. G.

    2017-01-01

    The effects of the liquid phase of a metal binder on the microstructure and properties of self-diffusion gradient composite (Cu - Al - ZnO) were investigated. For the compositions considered, it was revealed that at the temperature of about 550 °C, a liquid phase binder forms from nanoparticles Cu - Al. Applying a proper amount of a (Cu - Al) binder appeared to be beneficial for fabricating gradient composites with the desired self-diffusion process. It is also favorable for mass transfer of additives nanoparticles into the volume of a matrix during sintering and for the desired fine microstructure and mechanical properties. For the experimental conditions considered in this study, the best mechanical properties can be obtained when 6 mass % (Cu - Al) of ligature were used, which gave hardness HB at 120, electroerosion wear - 0.092 • 10-6 g / cycle, resistivity - 0.025 mcOm.

  20. Enhancing Low-Temperature and Pressureless Sintering of Micron Silver Paste Based on an Ether-Type Solvent

    Science.gov (United States)

    Zhang, Hao; Li, Wanli; Gao, Yue; Zhang, Hao; Jiu, Jinting; Suganuma, Katsuaki

    2017-08-01

    Micron silver paste enables a low-temperature and pressureless sintering process by using an ether-type solvent CELTOL-IA (C x H y O z , x > 10, boiling point of approximately 200°C) for the die attachment of high-powered devices. The conductive patterns formed by the silver paste had a low electrical resistivity of 8.45 μΩ cm at 180°C. The paste also achieved a high bonding strength above 30 MPa at 180°C without the assistance of pressures. These superior performance indicators result from the favorable removal of the solvent, its thermal behavior, and its good wetting on the silver layer. The results suggest that the micron silver paste with a suitable solvent can promote the further spreading of next-generation power devices owing to its marked cost advantage and excellent performance.

  1. Sintering of Synroc D

    International Nuclear Information System (INIS)

    Robinson, G.

    1982-01-01

    Sintering has been investigated as a method for the mineralization and densification of high-level nuclear defense waste powder. Studies have been conducted on Synroc D composite powder LS04. Optimal densification has been found to be highly dependent on the characteristics of the starting material. Powder subjected to milling, which was believed to reduce the level of agglomeration and possibly particle size, was found to densify better than powder not subjected to this milling. Densities of greater than 95% of theoretical could be achieved for samples sintered at 1150 to 1200 0 C. Mineralogy was found to be as expected for Synroc D for samples sintered in a CO 2 /CO atmosphere where the Fe +2 /Fe +3 ratio was maintained at 1.0 to 5.75. In a more oxidizing, pure CO 2 atmosphere a new phase, not previously identified in Synroc D, was found

  2. Hot deformed anisotropic nanocrystalline NdFeB based magnets prepared from spark plasma sintered melt spun powders

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Y.H.; Huang, Y.L. [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Liu, Z.W., E-mail: zwliu@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Zeng, D.C. [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Ma, S.C.; Zhong, Z.C. [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China)

    2013-09-01

    Highlights: • Microstructure evolution and its influence on the magnetic properties were investigated. • The increase of stray field and weakening of domain-wall pinning effects were the main reasons of the decrease of the coercivity with increasing the compression ratio. • The influences of non-uniform plastic deformation on the microstructure and magnetic properties were investigated. • Magnetic properties and temperature coefficient of coercivity are indeed very promising without heavy rare earth elements. -- Abstract: Anisotropic magnets were prepared by spark plasma sintering (SPS) followed by hot deformation (HD) using melt-spun powders as the starting material. Good magnetic properties with the remanence J{sub r} > 1.32 T and maximum of energy product (BH){sub max} > 303 kJ/m{sup 3} have been obtained. The microstructure evolution during HD and its influence on the magnetic properties were investigated. The fine grain zone and coarse grain zone formed in the SPS showed different deformation behaviors. The microstructure also had an important effect on the temperature coefficients of coercivity. A strong domain-wall pinning model was valid to interpret the coercivity mechanism of the HDed magnets. The increase of stray field and weakening of domain-wall pinning effects were the main reasons of the decrease of the coercivity with increasing the compression ratio. The influences of non-uniform plastic deformation on the microstructure and magnetic properties were investigated. The polarization characteristics of HDed magnets were demonstrated. It was found out that the HDed magnets had better corrosion resistance than the counterpart sintered magnet.

  3. Sintering of Lead-Free Piezoelectric Sodium Potassium Niobate Ceramics

    Directory of Open Access Journals (Sweden)

    Barbara Malič

    2015-12-01

    Full Text Available The potassium sodium niobate, K0.5Na0.5NbO3, solid solution (KNN is considered as one of the most promising, environment-friendly, lead-free candidates to replace highly efficient, lead-based piezoelectrics. Since the first reports of KNN, it has been recognized that obtaining phase-pure materials with a high density and a uniform, fine-grained microstructure is a major challenge. For this reason the present paper reviews the different methods for consolidating KNN ceramics. The difficulties involved in the solid-state synthesis of KNN powder, i.e., obtaining phase purity, the stoichiometry of the perovskite phase, and the chemical homogeneity, are discussed. The solid-state sintering of stoichiometric KNN is characterized by poor densification and an extremely narrow sintering-temperature range, which is close to the solidus temperature. A study of the initial sintering stage revealed that coarsening of the microstructure without densification contributes to a reduction of the driving force for sintering. The influences of the (K + Na/Nb molar ratio, the presence of a liquid phase, chemical modifications (doping, complex solid solutions and different atmospheres (i.e., defect chemistry on the sintering are discussed. Special sintering techniques, such as pressure-assisted sintering and spark-plasma sintering, can be effective methods for enhancing the density of KNN ceramics. The sintering behavior of KNN is compared to that of a representative piezoelectric lead zirconate titanate (PZT.

  4. Sintering of Lead-Free Piezoelectric Sodium Potassium Niobate Ceramics

    Science.gov (United States)

    Malič, Barbara; Koruza, Jurij; Hreščak, Jitka; Bernard, Janez; Wang, Ke; Fisher, John G.; Benčan, Andreja

    2015-01-01

    The potassium sodium niobate, K0.5Na0.5NbO3, solid solution (KNN) is considered as one of the most promising, environment-friendly, lead-free candidates to replace highly efficient, lead-based piezoelectrics. Since the first reports of KNN, it has been recognized that obtaining phase-pure materials with a high density and a uniform, fine-grained microstructure is a major challenge. For this reason the present paper reviews the different methods for consolidating KNN ceramics. The difficulties involved in the solid-state synthesis of KNN powder, i.e., obtaining phase purity, the stoichiometry of the perovskite phase, and the chemical homogeneity, are discussed. The solid-state sintering of stoichiometric KNN is characterized by poor densification and an extremely narrow sintering-temperature range, which is close to the solidus temperature. A study of the initial sintering stage revealed that coarsening of the microstructure without densification contributes to a reduction of the driving force for sintering. The influences of the (K + Na)/Nb molar ratio, the presence of a liquid phase, chemical modifications (doping, complex solid solutions) and different atmospheres (i.e., defect chemistry) on the sintering are discussed. Special sintering techniques, such as pressure-assisted sintering and spark-plasma sintering, can be effective methods for enhancing the density of KNN ceramics. The sintering behavior of KNN is compared to that of a representative piezoelectric lead zirconate titanate (PZT). PMID:28793702

  5. Development of ceramics based fuel, Phase I, Kinetics of UO2 sintering by vibration compacting of UO2 powder (Introductory report)

    International Nuclear Information System (INIS)

    Ristic, M.M.

    1962-10-01

    After completing the Phase I of the task related to development of ceramics nuclear fuel the following reports are presented: Kinetics of UO 2 sintering; Vibrational compacting and sintering of UO 2 ; Characterisation of of UO 2 powder by DDK and TGA methods; Separation of UO 2 powder

  6. Sintering of Multilayered Porous Structures: Part I-Constitutive Models

    DEFF Research Database (Denmark)

    Olevsky, Eugene; Tadesse Molla, Tesfaye; Frandsen, Henrik Lund

    2013-01-01

    Theoretical analyses of shrinkage and distortion kinetics during sintering of bilayered porous structures are carried out. The developed modeling framework is based on the continuum theory of sintering; it enables the direct assessment of the cofiring process outcomes and of the impact of process...

  7. Integrated analysis of oxide nuclear fuel sintering

    International Nuclear Information System (INIS)

    Baranov, V.; Kuzmin, R.; Tenishev, A.; Timoshin, I.; Khlunov, A.; Ivanov, A.; Petrov, I.

    2011-01-01

    Dilatometric and thermal-gravimetric investigations have been carried out for the sintering process of oxide nuclear fuel in gaseous Ar - 8% H 2 atmosphere at temperatures up to 1600 0 C. The pressed compacts were fabricated under real production conditions of the OAO MSZ with application of two different technologies, so called 'dry' and 'wet' technologies. Effects of the grain size growth after the heating to different temperatures were observed. In order to investigate the effects produced by rate of heating on properties of sintered fuel pellets, the heating rates were varied from 1 to 8 0 C per minute. Time of isothermal overexposure at maximal temperature (1600 0 C) was about 8 hours. Real production conditions were imitated. The results showed that the sintering process of the fuel pellets produced by two technologies differs. The samples sintered under different heating rates were studied with application of scanning electronic microscopy analysis for determination of mean grain size. A simulation of heating profile for industrial furnaces was performed to reduce the beam cycles and estimate the effects of variation of the isothermal overexposure temperatures. Based on this data, an optimization of the sintering conditions was performed in operations terms of OAO MSZ. (authors)

  8. Effect of sintering temperature on microstructure and compressive strength of B4C-AlSi eutectic alloy

    International Nuclear Information System (INIS)

    Liu Jinyun; Zha Wusheng; Liu Gaihua; Lan Jun; Feng Quanhe; Zou Congpei

    2008-01-01

    The block neutron absorber of B 4 C based on Al-Si eutectic alloy has been prepared by powder-metallurgy method. The effects of sinter temperature on microstructure, compressive strength, and ductility of sintered billets have been investigated. It has been shown that the sintering temperature decides sensitively the compressive strength and ductility of sintered billets. Sintered under 550, 555, 560, and 565 degree C, the billet shows different states, such as sub-sintered, best-sintered, over-sintered, and molten. Sintered under 550 degree C, the powder have not been metallurgically combined with each other. Beyond 560 degree C, the billets are molten. The 555 degree C is the best sintering temperature, under which the powder have been partly melted and the metallurgical combination has been occurred, then the billets have a better ductility. (authors)

  9. Low temperature sintering of hyperstoichiometric uranium dioxide

    International Nuclear Information System (INIS)

    Chevrel, H.

    1991-12-01

    In the lattice of uranium dioxide with hyperstoichiometric oxygen content (UO 2+x ), each additional oxygen atoms is introduced by shifting two anions from normal sites to interstitial ones, thereby creating two oxygen vacancies. The point defects then combine to form complex defects comprising several interstitials and vacancies. The group of anions (3x) in the interstitial position participate in equilibria promoting the creation of uranium vacancies thereby considerably increasing uranium self-diffusion. However, uranium grain boundaries diffusion governs densification during the first two stages of sintering of uranium dioxide with hyperstoichiometric oxygen content, i.e., up to 93% of the theoretical density. Surface diffusion and evaporation-condensation, which are considerably accentuated by the hyperstoichiometric deviation, play an active role during sintering by promoting crystalline growth during the second and third stages of sintering. U 8 O 8 can be added to adjust the stoichiometry and to form a finely porous structure and thus increase the pore area subjected to surface phenomena. The composition with an O/U ratio equal to 2.25 is found to densify the best, despite a linear growth in sintering activation energy with hyperstoichiometric oxygen content, increasing from 300 kj.mol -1 for UO 2.10 to 440 kJ.mol -1 for UO 2.25 . Seeds can be introduced to obtain original microstructures, for example the presence of large grains in small-grain matrix

  10. Monitoring Sintering Burn-Through Point Using Infrared Thermography

    Directory of Open Access Journals (Sweden)

    Francisco G. Bulnes

    2013-08-01

    Full Text Available Sintering is a complex industrial process that applies heat to fine particles of iron ore and other materials to produce sinter, a solidified porous material used in blast furnaces. The sintering process needs to be carefully adjusted, so that the combustion zone reaches the bottom of the material just before the discharge end. This is known as the burnthrough point. Many different parameters need to be finely tuned, including the speed and the quantities of the materials mixed. However, in order to achieve good results, sintering control requires precise feedback to adjust these parameters. This work presents a sensor to monitor the sintering burn-through point based on infrared thermography. The proposed procedure is based on the acquisition of infrared images at the end of the sintering process. At this position, infrared images contain the cross-section temperatures of the mixture. The objective of this work is to process this information to extract relevant features about the sintering process. The proposed procedure is based on four steps: key frame detection, region of interest detection, segmentation and feature extraction. The results indicate that the proposed procedure is very robust and reliable, providing features that can be used effectively to control the sintering process.

  11. Monitoring sintering burn-through point using infrared thermography.

    Science.gov (United States)

    Usamentiaga, Rubén; Molleda, Julio; Garcia, Daniel F; Bulnes, Francisco G

    2013-08-09

    Sintering is a complex industrial process that applies heat to fine particles of iron ore and other materials to produce sinter, a solidified porous material used in blast furnaces. The sintering process needs to be carefully adjusted, so that the combustion zone reaches the bottom of the material just before the discharge end. This is known as the burn-through point. Many different parameters need to be finely tuned, including the speed and the quantities of the materials mixed. However, in order to achieve good results, sintering control requires precise feedback to adjust these parameters. This work presents a sensor to monitor the sintering burn-through point based on infrared thermography. The proposed procedure is based on the acquisition of infrared images at the end of the sintering process. At this position, infrared images contain the cross-section temperatures of the mixture. The objective of this work is to process this information to extract relevant features about the sintering process. The proposed procedure is based on four steps: key frame detection, region of interest detection, segmentation and feature extraction. The results indicate that the proposed procedure is very robust and reliable, providing features that can be used effectively to control the sintering process.

  12. Monitoring Sintering Burn-Through Point Using Infrared Thermography

    Science.gov (United States)

    Usamentiaga, Rubén; Molleda, Julio; Garcia, Daniel F.; Bulnes, Francisco G.

    2013-01-01

    Sintering is a complex industrial process that applies heat to fine particles of iron ore and other materials to produce sinter, a solidified porous material used in blast furnaces. The sintering process needs to be carefully adjusted, so that the combustion zone reaches the bottom of the material just before the discharge end. This is known as the burn-through point. Many different parameters need to be finely tuned, including the speed and the quantities of the materials mixed. However, in order to achieve good results, sintering control requires precise feedback to adjust these parameters. This work presents a sensor to monitor the sintering burn-through point based on infrared thermography. The proposed procedure is based on the acquisition of infrared images at the end of the sintering process. At this position, infrared images contain the cross-section temperatures of the mixture. The objective of this work is to process this information to extract relevant features about the sintering process. The proposed procedure is based on four steps: key frame detection, region of interest detection, segmentation and feature extraction. The results indicate that the proposed procedure is very robust and reliable, providing features that can be used effectively to control the sintering process. PMID:23939585

  13. Carbon-based nanostructured surfaces for enhanced phase-change cooling

    Science.gov (United States)

    Selvaraj Kousalya, Arun

    To maintain acceptable device temperatures in the new generation of electronic devices under development for high-power applications, conventional liquid cooling schemes will likely be superseded by multi-phase cooling solutions to provide substantial enhancement to the cooling capability. The central theme of the current work is to investigate the two-phase thermal performance of carbon-based nanostructured coatings in passive and pumped liquid-vapor phase-change cooling schemes. Quantification of the critical parameters that influence thermal performance of the carbon nanostructured boiling surfaces presented herein will lead to improved understanding of the underlying evaporative and boiling mechanisms in such surfaces. A flow boiling experimental facility is developed to generate consistent and accurate heat transfer performance curves with degassed and deionized water as the working fluid. New means of boiling heat transfer enhancement by altering surface characteristics such as surface energy and wettability through light-surface interactions is explored in this work. In this regard, carbon nanotube (CNT) coatings are exposed to low-intensity irradiation emitted from a light emitting diode and the subcooled flow boiling performance is compared against a non-irradiated CNT-coated copper surface. A considerable reduction in surface superheat and enhancement in average heat transfer coefficient is observed. In another work involving CNTs, the thermal performance of CNT-integrated sintered wick structures is evaluated in a passively cooled vapor chamber. A physical vapor deposition process is used to coat the CNTs with varying thicknesses of copper to promote surface wetting with the working fluid, water. Thermal performance of the bare sintered copper powder sample and the copper-functionalized CNT-coated sintered copper powder wick samples is compared using an experimental facility that simulates the capillary fluid feeding conditions of a vapor chamber

  14. Design of sintering-stable heterogeneous catalysts

    DEFF Research Database (Denmark)

    Gallas-Hulin, Agata

    the crystalline framework of a zeolite creates a steric hindrance against agglomeration into larger clusters. In the present study, experimental protocols for encapsulation of metal nanoparticles inside zeolites were developed. Two different methodologies were proposed to encapsulate gold, palladium and platinum......One of the major issues in the use of metal nanoparticles in heterogeneous catalysis is sintering. Sintering occurs at elevated temperatures because of increased mobility of nanoparticles, leading to their agglomeration and, as a consequence, to the deactivation of the catalyst. It is an emerging...... problem especially for the noble metals-based catalysis. These metals being expensive and scarce, it is worth developing catalyst systems which preserve their activity over time. Encapsulation of nanoparticles inside zeolites is one of the ways to prevent sintering. Entrapment of nanoparticles inside...

  15. Improvement of mechanical strength of sintered Mo alloyed steel by optimization of sintering and cold-forging processes with densification

    Science.gov (United States)

    Kamakoshi, Y.; Shohji, I.; Inoue, Y.; Fukuda, S.

    2017-10-01

    Powder metallurgy (P/M) materials have been expected to be spread in automotive industry. Generally, since sintered materials using P/M ones contain many pores and voids, mechanical properties of them are inferior to those of conventional wrought materials. To improve mechanical properties of the sintered materials, densification is effective. The aim of this study is to improve mechanical strength of sintered Mo-alloyed steel by optimizing conditions in sintering and cold-forging processes. Mo-alloyed steel powder was compacted. Then, pre-sintering (PS) using a vacuum sintering furnace was conducted. Subsequently, coldforging (CF) by a backward extrusion method was conducted to the pre-sintered specimen. Moreover, the cold-forged specimen was heat treated by carburizing, tempering and quenching (CQT). Afterwards, mechanical properties were investigated. As a result, it was found that the density of the PS specimen is required to be more than 7.4 Mg/m3 to strengthen the specimen by heat treatment after CF. Furthermore, density and the microstructure of the PS specimen are most important factors to make the high density and strength material by CF. At the CF load of 1200 kN, the maximum density ratio reached approximately 99% by the use of the PS specimen with proper density and microstructure. At the CF load of 900 kN, although density ratio was high like more than 97.8%, transverse rupture strength decreased sharply. Since densification caused high shear stress and stress concentration in the surface layer, microcracks occurred by the damages of inter-particle sintered connection of the surface layer. On the contrary, in case of the CF load of 1200 kN, ultra-densification of the surface layer occurred by a sufficient plastic flow. Such sufficient compressed specimens regenerated the sintered connections by high temperature heat treatment and thus the high strength densified material was obtained. These processes can be applicable to near net shape manufacturing

  16. Near-surface microstructural modification of (Ti,W)(C,N)-based compacts with nitrogen

    International Nuclear Information System (INIS)

    Ucakar, V.; Kral, C.; Lengauer, W.

    2001-01-01

    For developing of functional-gradient hardmetals the interaction of nitrogen with (Ti,W)(C,N)-based compacts was investigated. Hot-pressed (Ti,W)(C,N) compacts as well as sintered compacts of (Ti,W)(C,N)+Co were subjected to sintering and heat treatment at 1200-1500 o C and up to 30 bar N 2 . In (Ti,W)(C,N) compacts four microstructure types were obtained upon reaction with nitrogen. A uniform single-phase (Ti,W)(C,N) forms in samples with a low WC and high TiN content. If medium WC and high TiN/TiC ratio is present a core-rim type structure forms during Ar annealing which remains the same when nitrogen in-diffusion occurs. The third type of microstructure shows sub-micron lamellae of nitrogen-rich fcc phase and WC. This structure forms at increased WC and/or TiC content. If the WC content is increased again a WC layer forms at the outermost surface. Compressive stresses introduced by phase formation/decomposition were obtained for the nitrogen in-diffusion. Sintered (Ti,W)(C,N)+Co compacts were heat treated above and below the eutectic temperature. Above the eutectic temperature compact Ti(C,N) top-layers independent an sample composition were observed. Below the eutectic temperature the microstructure formation is mainly influenced by the sample composition. A Ti(C,N) top-layer forms in materials with a high Ti(C,N) content. Contrary, interaction zones without a layer were obtained in compacts with high WC/Ti(C,N) ratio. Some of these surface modified compacts show surfaces and particle sizes favorable for a cutting tool. (author)

  17. Sintering and microstructure evolution in columnar thermal barrier coatings

    International Nuclear Information System (INIS)

    Krishnamurthy, Ramanathan; Srolovitz, David J.

    2009-01-01

    Sintering of thermal barrier coatings changes their key properties, such as thermal conductivity and thermal shock resistance, thus adversely impacting their reliability. We present a novel modeling approach to study the evolution of coating structure during sintering. We model the sintering of individual columns using a thermodynamic principle, and incorporate the center-to-center approach rates for the columns calculated using this principle in a larger scale discrete dynamics model for the evolution of a large number of columns. Surface energies, grain boundary energies and strain energies associated with the deformation of the columns are all included in this framework, while sintering is assumed to occur by the concerted action of surface and grain boundary diffusion. Two sets of initial conditions corresponding to different extents of pre-sintering among neighboring columns are considered. When the extent of pre-sintering is small, we observe that small clusters containing 5-20 columns are formed. In contrast, where a larger amount of pre-sintering exists, we observe, especially at large column densities, that clusters containing 50-100 columns separated by large inter-cluster pores/channels that appear to organize themselves into a network are formed. These observations are in good agreement with recently published experimental observations. We also explain how these results can explain the development of a 'mud-crack'-like pattern

  18. Thermodynamics and mechanisms of sintering

    International Nuclear Information System (INIS)

    Pask, J.A.

    1978-10-01

    A phenomenological overview and exploration of the thermodynamic and geometric factors play a role in the process of densification of model compact systems consisting of crystalline spheres of uniform size in regular and irregular packing that form grain boundaries at every contact point. A further assumption is the presence of isotropic surface and grain boundary energies. Although such systems are unrealistic in comparison with normal powder compacts, their potential sintering behavior can be analyzed and provided with a limiting set of behavior conditions which can be looked upon as one boundary condition. This approach is logically realistic since it is easier to understand and provide a basis for understanding the more complex real powder systems

  19. In situ Investigation of Titanium Powder Microwave Sintering by Synchrotron Radiation Computed Tomography

    Directory of Open Access Journals (Sweden)

    Yu Xiao

    2016-01-01

    Full Text Available In this study, synchrotron radiation computed tomography was applied to investigate the mechanisms of titanium powder microwave sintering in situ. On the basis of reconstructed images, we observed that the sintering described in this study differs from conventional sintering in terms of particle smoothing, rounding, and short-term growth. Contacted particles were also isolated. The kinetic curves of sintering neck growth and particle surface area were obtained and compared with those of other microwave-sintered metals to examine the interaction mechanisms between mass and microwave fields. Results show that sintering neck growth accelerated from the intermediate period; however, this finding is inconsistent with that of aluminum powder microwave sintering described in previous work. The free surface areas of the particles were also quantitatively analyzed. In addition to the eddy current loss in metal particles, other heating mechanisms, including dielectric loss, interfacial polarization effect, and local plasma-activated sintering, contributed to sintering neck growth. Thermal and non-thermal effects possibly accelerated the sintering neck growth of titanium. This study provides a useful reference of further research on interaction mechanisms between mass and microwave fields during microwave sintering.

  20. Preliminary investigation of liquid phase sintering in ferrous systems

    International Nuclear Information System (INIS)

    Klein, J.

    1975-04-01

    Liquid phase sintering was utilized to achieve, by a simple compaction and sintering procedure involving short times and moderate temperatures, a virtually full dense high carbon Fe:C alloy and high boron Fe:B alloy. Parameters such as powder characteristics and mixing, compacting pressure, heating program and the liquid phase fraction were found to influence the sintered density. The response of the Fe:C alloy to a heat treatment is reported along with preliminary experiments in the iron base ternary system Fe:W:C. Residual porosities observed in microstructures of certain liquid phase sintered compacts were accounted for by a proposed capillary flow of the liquid phase and a local densification competing against an overall densification. Some general recommendations are made for liquid phase sintering of powder aggregates. 15 fig., 7 tables

  1. Ash chemistry and sintering, verification of the mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M.; Skrifvars, B.J.; Backman, R.; Lauren, T.; Uusikartano, T.; Malm, H.; Stenstroem, P.; Vesterkvist, M. [Aabo Akademi, Turku (Finland). Combustion Chemistry Research Group

    1997-10-01

    In this project four sintering mechanisms have been studied, i.e., partial melting with a viscous liquid, partial melting with a non-viscous liquid, chemical reaction sintering and solid state sintering. The work has aimed at improving the understanding of ash sintering mechanisms and quantifying their role in combustion and gasification. The work has been oriented in particular on the understanding of biomass ash behavior. The work has not directly focused on any specific technical application. However, results can also be applied on other fuels such as brown coal, petroleum coke, black liquor and different types of wastes (PDF, RDF, MSW). During 1996 the work has focused on identifying bed agglomeration mechanisms and analysing bed agglomerates in both full scale and lab scale FB reactors, as well as comparing how well the compression strength based sintering test can predict bed agglomeration in an FB furnace. (orig.)

  2. Powder metallurgy: Solid and liquid phase sintering of copper

    Science.gov (United States)

    Sheldon, Rex; Weiser, Martin W.

    1993-01-01

    Basic powder metallurgy (P/M) principles and techniques are presented in this laboratory experiment. A copper based system is used since it is relatively easy to work with and is commercially important. In addition to standard solid state sintering, small quantities of low melting metals such as tin, zinc, lead, and aluminum can be added to demonstrate liquid phase sintering and alloy formation. The Taguchi Method of experimental design was used to study the effect of particle size, pressing force, sintering temperature, and sintering time. These parameters can be easily changed to incorporate liquid phase sintering effects and some guidelines for such substitutions are presented. The experiment is typically carried out over a period of three weeks.

  3. Low Energy Surface Activation of Zirconia Based Restorations.

    Science.gov (United States)

    Aboushelib, Moustafa N

    2016-03-01

    To evaluate the influence of low energy surface activation technique on the biaxial flexure strength of zirconia frameworks. Zirconia discs were prepared by cutting CAD/CAM zirconia blocks. Sintered discs were airborne particle abraded using one of the following particles: 30 μm alumina particles, 50 μm alumina particles, or modified round edges 30 μm alumina particles at low pressure. Scanning electron microscopy, x-ray diffraction analysis, surface roughness, and biaxial flexure strength tests were performed (n = 20). Fractured specimens were fractographically analyzed (α = 0.05). Low energy surface activation resulted in 7% monoclinic crystallographic transformation, increasing surface roughness from 0.05 to 0.3 μm and in significant increase in biaxial flexure strength (1718 MPa) compared 30 μm (1064 MPa), 50 μm (1210 MPa), and as-sintered specimens (1150 MPa). Low energy surface activation of zirconia specimens improved the biaxial flexure strength of zirconia frameworks without creation of surface damage. Clinical implications: by controlling particle size and shape of alumina, the flexure strength of zirconia restorations could be increased usinglow pressure particle abrasion.

  4. Effect of sandblasting on surface roughness of zirconia-based ceramics and shear bond strength of veneering porcelain.

    Science.gov (United States)

    He, Min; Zhang, Zutai; Zheng, Dongxiang; Ding, Ning; Liu, Yan

    2014-01-01

    This study aims to investigate the effect of sandblasting on the surface roughness of zirconia and the shear bond strength of the veneering porcelain. Pre-sintered zirconia plates were prepared and divided into four groups. Group A were not treated at all; group B were first sandblasted under 0.2 MPa pressure and then densely sintered; group C and D were sintered first, and then sandblasted under 0.2 MPa and 0.4 MPa pressures respectively. Surface roughness was measured and 3D roughness was reconstructed for the specimens, which were also analyzed with X-ray diffractometry. Finally after veneering porcelain sintering, shear bond tests were conducted. Sandblasting zirconia before sintering significantly increased surface roughness and the shear bond strength between zirconia and veneering porcelain (pveneering porcelain.

  5. Embrittling Components in Sintered Steels: Comparison of Phosphorus and Boron

    Science.gov (United States)

    Danninger, Herbert; Vassileva, Vassilka; Gierl-Mayer, Christian

    2017-12-01

    In ferrous powder metallurgy, both boron and phosphorus have been known to be sintering activators for a long time. However, the use has been widely different: while P is a standard additive to sintered iron and steels, boron has been frequently studied, but its use in practice is very limited. Both additives are also known to be potentially embrittling, though in a different way. In the present study the differences between the effects of both elements are shown: while P activates sintering up to a certain threshold, in part by stabilizing ferrite, in part by forming a transient liquid phase, boron is the classical additive enhancing persistent liquid phase, being virtually insoluble in the iron matrix. The consequence is that sintered steels can tolerate quite a proportion of phosphorus, depending on composition and sintering process; boron however is strongly embrittling in particular in combination with carbon, which requires establishing a precisely defined content that enhances sintering but is not yet embrittling. The fracture mode of embrittled materials is also different: while with Fe-P the classical intergranular fracture is observed, with boron a much more rugged fracture surface appears, indicating some failure through the eutectic interparticle network but mostly transgranular cleavage. If carbon is added, in both cases transgranular cleavage dominates even in the severely embrittled specimens, indicating that no more the grain boundaries and sintering necks are the weakest links in the systems.

  6. Fabrication of High Strength and Ductile Stainless Steel Fiber Felts by Sintering

    Science.gov (United States)

    Wang, J. Z.; Tang, H. P.; Qian, M.; Li, A. J.; Ma, J.; Xu, Z. G.; Li, C. L.; Liu, Y.; Wang, Y.

    2016-03-01

    Stainless steel fiber felts are important porous stainless steel products for a variety of industry applications. A systematic study of the sintering of 28- µm stainless steel fibers has been conducted for the first time, assisted with synchrotron radiation experiments to understand the evolution of the sintered joints. The critical sintering conditions for the formation of bamboo-like grain structures in the fiber ligaments were identified. The evolution of the number density of the sintered joints and the average sintered neck radius during sintering was assessed based on synchrotron radiation experiments. The optimum sintering condition for the fabrication of high strength and ductile 28- µm-diameter stainless steel fiber felts was determined to be sintering at 1000°C for 900 s. Sintering under this optimum condition increased the tensile strength of the as-sintered stainless steel fiber felts by 50% compared to conventional sintering (1200°C for 7200 s), in addition to much reduced sintering cycle and energy consumption.

  7. Sintering Behavior, Microstructure, and Mechanical Properties: A Comparison among Pressureless Sintered Ultra-Refractory Carbides

    Directory of Open Access Journals (Sweden)

    Laura Silvestroni

    2010-01-01

    Full Text Available Nearly fully dense carbides of zirconium, hafnium, and tantalum were obtained by pressureless sintering at 1950°C with the addition of 5–20 vol% of MoSi2. Increasing the amount of sintering aid, the final density increased too, thanks to the formation of small amounts of liquid phase constituted by M-Mo-Si-O-C, where M is either Zr, Hf, or Ta. The matrices of the composites obtained with the standard procedure showed faceted squared grains; when an ultrasonication step was introduced in the powder treatment, the grains were more rounded and no exaggerated grains growth occurred. Other secondary phases observed in the microstructure were SiC and mixed silicides of the transition metals. Among the three carbides prepared by pressurless sintering, TaC-based composites had the highest mechanical properties at room temperature (strength 590 MPa, Young's modulus 480 GPa, toughness 3.8 MPa·m1/2. HfC-based materials showed the highest sinterability (in terms of final density versus amount of sintering aid and the highest high-temperature strength (300 MPa at 1500  °C.

  8. Three-dimensional simulation of viscous-flow agglomerate sintering.

    Science.gov (United States)

    Kirchhof, M J; Schmid, H -J; Peukert, W

    2009-08-01

    The viscous-flow sintering of different agglomerate particle morphologies is studied by three-dimensional computer simulations based on the concept of fractional volume of fluid. For a fundamental understanding of particle sintering characteristics, the neck growth kinetics in agglomerate chains and in doublets consisting of differently sized primary particles is investigated. Results show that different sintering contacts in agglomerates even during the first stages are not completely independent from each other, even though differences are small. The neck growth kinetics of differently sized primary particles is determined by the smaller one up to a size difference by a factor of approximately 2, whereas for larger size differences, the kinetics becomes faster. In particular, the agglomerate sintering kinetics is investigated for particle chains of different lengths and for different particle morphologies each having ten primary particles and nine initial sintering contacts. For agglomerate chains, the kinetics approximately can be normalized by using the radius of the fully coalesced sphere. In general, different agglomerate morphologies show equal kinetics during the first sintering stages, whereas during advanced stages, compact morphologies show significantly faster sintering progress than more open morphologies. Hence, the overall kinetics cannot be described by simply using constant morphology correction factors such as fractal dimension or mean coordination number which are used in common sintering models. However, for the first stages of viscous-flow agglomerate sintering, which are the most important for many particle processes, a sintering equation is presented. Although we use agglomerates consisting of spherical primary particles, our methodology can be applied to other aggregate geometries as well.

  9. Boric oxide or boric acid sintering aid for sintering ceramics

    International Nuclear Information System (INIS)

    Lawler, H.A.

    1979-01-01

    The invention described relates to the use of liquid sintering aid in processes involving sintering of ceramic materials to produce dense, hard articles having industrial uses. Although the invention is specifically discussed in regard to compositions containing silicon carbide as the ceramic material, other sinterable carbides, for example, titanium carbide, may be utilized as the ceramic material. A liquid sintering aid for densifying ceramic material is selected from solutions of H 3 BO 3 , B 2 O 3 and mixtures of these solutions. In sintering ceramic articles, e.g. silicon carbide, a shaped green body is formed from a particulate ceramic material and a resin binder, and the green body is baked at a temperature of 500 to 1000 0 C to form a porous body. The liquid sintering aid of B 2 O 3 and/or H 3 BO 3 is then dispersed through the porous body and the treated body is sintered at a temperature of 1900 to 2200 0 C to produce the sintered ceramic article. (U.K.)

  10. Manufacturing of metal supported BSCF membranes by spark plasma sintering

    OpenAIRE

    Laptev, Alexander; Bram, Martin; Zivcec, Maria; Baumann, Stefan; Jarligo, Maria Ophelia; Sebold, Doris; Pfaff, Ewald; Broeckmann, Christoph

    2013-01-01

    Spark plasma sintering (SPS), also known as field assisted sintering technique (FAST), is a relatively new method for rapid consolidation of metallic or ceramic powders. In the present work, its suitability for the manufacturing of metal supported Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) based membrane by co-sintering of functional ceramic BSCF layer and porous metallic support has been investigated. The BSCF based membranes are highly attractive for oxygen separation from air due to mixed ionic and e...

  11. Sintering of magnesia: effect of additives

    Indian Academy of Sciences (India)

    % was studied on the sinter- ing and microstructural developments of the chemically pure magnesia using the pressureless sintering technique between 1500 and 1600◦C. Sintering was evaluated by per cent densification and microstructural ...

  12. Translucence in dental prosthesis based on zirconia ceramics: effect of the sintering parameters; Translucidez em proteses dentarias a base de zirconia estabilizada com itria: efeito dos parametros de sinterizacao

    Energy Technology Data Exchange (ETDEWEB)

    Santos, C., E-mail: claudinei@demar.eel.usp.br [Universidade de Sao Paulo (USP), Lorena, SP (Brazil). Escola de Engenharia; Costa, L.; Habibe, R.H.; Souza, J.V.C.; Habibe, C.H. [Centro Universitario de Volta Redonda (MeMAT/UNIFOA), RJ (Brazil). Pro-Reitoria de Pesquisa e Extensao; Silva, O.M.M. [Centro Tecnico Aeroespacial (CTA/IAE/AMR), Sao Jose dos Campos, SP (Brazil)

    2011-07-01

    In this work the translucence of Zirconia dental ceramics was evaluated as function of sintering conditions (temperature and isothermal holding time). Samples with 15x15x1mm, were sintered at 1450 to 1600 deg C, with holding of 2h or 4h. Sintered samples were characterized by relative density, crystalline phases and microstructural aspects. Full density was obtained in samples sintered at 1530 and 1600 deg C, which presented higher grain sizes. Na increasing of translucence was observed in samples sintered at 1530 and 1600, correlating these properties with increasing of density and grain size of the samples. (author)

  13. Laser Sintering Technology and Balling Phenomenon.

    Science.gov (United States)

    Oyar, Perihan

    2018-02-01

    The aim of this review was to evaluate the balling phenomenon which occurs typically in Selective Laser Sintering (SLS). The balling phenomenon is a typical SLS defect, and observed in laser sintered powder, significantly reduces the quality of SLS, and hinders the further development of SLS Technology. Electronic database searches were performed using Google Scholar. The keywords "laser sintering, selective laser sintering, direct metal laser melting, and balling phenomenon" were searched in title/abstract of publications, limited to December 31, 2016. The inclusion criteria were SLS, balling phenomenon, some alloys (such as Cr-Co, iron, stainless steel, and Cu-based alloys) mechanical properties, microstructure and bond strength between metal-ceramic crown, laboratory studies, full text, and in English language. A total of 100 articles were found the initial search and yielded a total of 50 studies, 30 of which did not fulfill the inclusion criteria and were therefore excluded. In addition, 20 studies were found by screening the reference list of all included publications. Finally, 40 studies were selected for this review. The method in question is regulated by powder material characteristics and the conditions of laser processing. The procedure of formation, affecting factors, and the mechanism of the balling effect are very complex.

  14. CaZn1/3Nb2/3O3-based dielectric ceramics for silver co-sintering applications

    Directory of Open Access Journals (Sweden)

    Chaouchi A.

    2012-01-01

    Full Text Available The Ca(Zn1/3Nb2/3O3 (CZN complex perovskite oxide has been studied for its attractive dielectric properties (εr=34, Qxf=15 890GHz, τf=-48 ppm.°C-1 for applications such as multilayer ceramics capacitors or hyperfrequency resonators. Nevertheless, high temperatures (>1250°C are required to obtain well dense CZN ceramic, prohibiting any silver co-sintering (Tf (Ag = 961°C. For that reason, the sintering temperature lowering of CZN by glass phase’s additions has been investigated. This material is finally sinterable at low temperature with combined glass phase -lithium salt additions, and exhibits, at 1MHz, very low dielectric losses, a relatively high dielectric constant with a good stability versus temperature. The 2%weight of ZnO-SiO2-B2O3 glass phase and 1%wt of LiF added CZN sample sintered at 920°C exhibits a relative density higher than 95% and attractive dielectric properties: a dielectric constant εr of 22, low dielectrics losses (tan (δ< 10-3, a temperature coefficient of the permittivity τε<100 ppm.°C-1, and an insulating resistivity higher than 1013Ω.cm. Its interesting properties and its co-sinterability with silver electrodes make this ceramic suitable for L.T.C.C applications.

  15. Pressureless sintering behavior of injection molded alumina ceramics

    Directory of Open Access Journals (Sweden)

    Liu W.

    2014-01-01

    Full Text Available The pressureless sintering behaviors of two widely used submicron alumina (MgOdoped and undoped with different solid loadings produced by injection molding have been studied systematically. Regardless of the sinterability of different powders depending on their inherent properties, solid loading plays a critical role on the sintering behavior of injection molded alumina, which greatly determines the densification and grain size, and leads to its full densification at low temperatures. As compared to the MgO-doped alumina powder, the undoped specimens exhibit a higher sinterability for its smaller particle size and larger surface area. While full densification could be achieved for MgO-doped powders with only a lower solid loading, due to the fact that MgO addition can reduce the detrimental effect of the large pore space on the pore-boundary separation.

  16. The production of sinterable uranium dioxide from ammonium diuranate

    International Nuclear Information System (INIS)

    Fane, A.G.; Le Page, A.H.

    1975-02-01

    The development of a 0.13 m diameter pulsed fluidised bed reactor for the continuous production of sinterable uranium dioxide from ammonium diuranate is described. Calcination-reduction at 670 to 680 0 C produced powders with surface areas of 4 to 6 m 2 g -1 giving pellet densities in excess of 10.6 g cm -3 . Sinterability was relatively insensitive to changes in operating conditions, provided the availability of hydrogen was adequate, for gas flow rates in the range 0.95 to 1.4 l S -1 , pulse frequencies of 0.5 and 0.75 Hz and mean residence times of the solids from 0.6 to 1.4 hours. Sinterability was shown to be improved either by use of higher input concentrations, or by use of a secondary flow of hydrogen (about 5 per cent of input) fed into the powder collection system and flowing countercurrent to the UO 2 product. The maximum throughput of 17 kg UO 2 h -1 (0.6 hours mean residence time) required only 120 per cent of the stoichiometric requirement at an input concentration of 50 vol.per cent with secondary hydrogen flow. Results are given for studies of the kinetics of reduction of calcined ammonia diuranate in hydrogen and the residence time distribution of solids in a pulsed fluidised bed. Estimates based on these data suggested that the overall conversion of ammonium diuranate to uranium dioxide in the continuously operated pulsed fluidised bed reactor was in excess of 99 per cent. Continuous stabilisation of the UO 2 product was demonstrated at 12 kg h -1 or UO 2 , in a 0.15 m diameter glass stabiliser, using 10 vol.per cent air in nitrogen and a temperature of about 50 0 C. (author)

  17. Fabrication of Sintered Annular Fuel Pellet

    International Nuclear Information System (INIS)

    Rhee, Young Woo; Kim, Dong Joo; Kim, Jong Hun; Yang, Jae Ho; Kim, Keon Sik; Kang, Ki Won; Song, Kun Woo

    2010-01-01

    A dual cooled annular fuel has been seriously considered as a favorable option for uprating the power density of a Pressurized Water Reactor fuel assembly. An annular fuel has a geometrically inherent advantage such as an increased heat transfer area and a thin pellet thickness. It results in a lot of advantages from the point of a fuel safety and its economy. In order to actualize the dual cooled fuel, an essential element is the annular pellet with precisely controlled diametric tolerance. However, the unique shape of annular fuel pellet causes challenging difficulties to satisfy a diametric tolerance specification. Because of an inhomogeneous green density distribution along the compact height, an hour-glassing usually occurred in a sintered cylindrical PWR fuel pellet fabricated by a conventional doubleacting press. Thus, a sintered pellet usually undergoes a centerless grinding process in order to secure a pellet's specifications. In the case of an annular pellet fabrication using a conventional double-acting press, the same hour-glass shape would probably occur. The outer diameter tolerance of an annular pellet can be controlled easily similar to that of a conventional cylindrical PWR pellet through a centerless grinding. However, it appears not to be simple in the case of an inner surface grinding. It would be the best way to satisfy the specifications for the inner diameter in an as-fabricated pellet. In the present study, we are trying to find a way to minimize the diametric tolerance of the sintered annular pellet without inner surface grinding. This paper deals with a new approach that we have tried to reduce the diametric tolerance of the sintered annular pellet

  18. Effect of Sintering on the Properties of γ-Brass (Cu5Zn8) Nanoparticles Produced by the Electric Arc Discharge Method and the Thermal Conductivity of γ-Brass Oil-Based Nanofluid

    Science.gov (United States)

    Farbod, Mansoor; Mohammadian, Alireza; Ranjbar, Khalil; Kouhpeymani Asl, Razieh

    2016-03-01

    Cu5Zn8 nanoparticles with a mean particle size of 21 nm were produced using the electric arc discharge method at 1 atm pressure Ar and 300 A arc current. The effect of sintering on the properties of Cu5Zn8 nanoparticle pellets prepared by pressing nanopowders under 750 MPa pressure was studied. Particles grew uniformly when sintered at 1013 K (740 °C), as opposed to those samples that were unsintered, resulting in a reduction of pores and an increase in density of about 21 pct. The electrical resistivity and hardness of the samples were also highly reduced. The results showed that the cooling rate can affect the properties of the sintered samples. The oil-based nanofluids with 0.2 to 3 wt pct of Cu5Zn8 nanoparticles were prepared, and it was found that the thermal conductivity of nanofluids increased with an increase in the weight percent of nanoparticles up to 1 pct and decreased afterward. The highest increase in thermal conductivity of 6 pct was measured compared to the base fluid.

  19. Models of current sintering

    Science.gov (United States)

    Angst, Sebastian; Engelke, Lukas; Winterer, Markus; Wolf, Dietrich E.

    2017-06-01

    Densification of (semi-)conducting particle agglomerates with the help of an electrical current is much faster and more energy efficient than traditional thermal sintering or powder compression. Therefore, this method becomes more and more common among experimentalists, engineers, and in industry. The mechanisms at work at the particle scale are highly complex because of the mutual feedback between current and pore structure. This paper extends previous modelling approaches in order to study mixtures of particles of two different materials. In addition to the delivery of Joule heat throughout the sample, especially in current bottlenecks, thermoelectric effects must be taken into account. They lead to segregation or spatial correlations in the particle arrangement. Various model extensions are possible and will be discussed.

  20. Production of pure sintered alumina

    International Nuclear Information System (INIS)

    Rocha, J.C. da; Huebner, H.W.

    1982-01-01

    With the aim of optimizing the sintering parameters, the strength of a large number of alumina samples was determined which were produced under widely varying sintering conditions and with different amounts of MgO content. The strength as a function of sintering time or temperature was found to go through a maximum. With increasing time, this maximum is shifted to lower temperatures, and with decreasing temperature to longer times. Data pairs of sintering times and temperatures which yeld the strength maximum were determined. The value of the strength at the maximum remains unchanged. The strength is high (= 400 MN/m 2 , at a grain size of 3 um and a porosity of 2 per cent) and comparable to foreign aluminas produced for commercial purposes, or even higher. The increase in the sintering time from 1 h to 16 h permits a reduction of the sintering temperature from 1600 to 1450 0 C without losing strength. The practical importance of this fact for a production of sintered alumina on a large scale is emphasized. (Author) [pt

  1. Microwave-assisted sintering of non-stoichiometric strontium bismuth niobate ceramic: Structural and dielectric properties

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Rajveer [Department of Physics and Astrophysics, University of Delhi, New Delhi 110007 (India); Department of Physics, Atmaram Sanatan Dharma College, University of Delhi, Dhaula Kuan, New Delhi 110021 (India); Luthra, Vandna [Department of Physics, Gargi College, University of Delhi, Siri Fort Road, New Delhi 110049 (India); Tandon, R.P., E-mail: ram_tandon@hotmail.com [Department of Physics and Astrophysics, University of Delhi, New Delhi 110007 (India)

    2016-11-01

    In recent years the microwave sintering has been utilized for the synthesis of materials in enhancement of the properties. In this paper strontium bismuth niobate (Sr{sub 0.8}Bi{sub 2.2}Nb{sub 2}O{sub 9}:SBN) bulk ceramic has been synthesized by microwave reactive sintering and conventional heating techniques. A relative density of 99.6% has been achieved for microwave sintered SBN, which is higher than that of (98.81%) conventionally sintered SBN. The phase formation of SBN synthesized by both processes has been confirmed by X-ray diffraction (XRD). The surface morphology of SBN was observed by scanning electron microscopy (SEM). The microstructure was found to be more uniform in case of SBN sintered by microwave sintering. The dielectric properties of SBN were studied as a function of frequency in the temperature range of 30–500 °C. Both the samples synthesized by two different processes were found to follow Curie–Weiss law above the transition temperature. The Curie temperature was found to be higher for microwave sintered SBN. The dielectric constant and the transition temperature were observed to be higher for SBN ceramic synthesized by microwave sintering technique. The ac and dc activation energy values were also found to be higher for microwave sintered SBN as compared to conventional sintering technique.

  2. O2 plasma sintering study of TiO2 photoelectrodes in dye solar cells

    Science.gov (United States)

    Moraes, R. S.; Gonçalves, A. D.; Stegemann, C.; da Silva Sobrinho, A. S.; Miyakawa, W.; Massi, M.

    2017-08-01

    The development of more efficient photoelectrochemical solar cells has been, over the years, the subject of many scientific researches. In this paper a methodology was established to carry out the sintering process of nanoporous TiO2 layer by using plasma, which was compared with sintered layers made by the conventional sintering process in a furnace. The TiO2 commercial paste was spread by doctor-blading technique and subjected to different sintering processes. Porous layer samples were subjected to structural and morphological analyses. Then photoelectrodes dye-loading was measured by optical spectrophotometry. The quality of the layers under plasma sintering process in terms of weight loss and removal of organic compounds was evaluated by thermogravimetric analysis, mass spectrometry and FT-IR. The results showed that the plasma sintering process favors the adsorption of dye on the layer surface due to the creation of active states caused by O2 reactive plasma. Furthermore the O2 plasma process provides enough energy for removing organic compounds arising from the TiO2 paste and for providing nanoparticle sintering. Solar cells assembled with the plasma-sintered layers had a power conversion efficiency 20.1% higher than the obtained in solar cells sintered in a conventional furnace, proving the efficiency of the plasma sintering process.

  3. Electrical discharge machining studies on reactive sintered FeAl

    Indian Academy of Sciences (India)

    Electrical discharge machining (EDM) studies on reactive sintered FeAl were carried out with different process parameters. The metal removal rate and tool removal rate were found to increase with the applied pulse on-time. The surface roughness of machined surface also changed with the applied pulse on-time.

  4. SiC/C composites prepared from wood-based carbons by pulse current sintering with SiO2 : Electrical and thermal properties

    NARCIS (Netherlands)

    Fujisawa, M; Hata, T; Bronsveld, P; Castro, [No Value; Tanaka, F; Kikuchi, H; Furuno, T; Imamura, Y

    2004-01-01

    A powder mix of wood charcoal and SiO2 was sintered into a SiC/C composite. The heat treatment temperatures were 1400-1800 degreesC, the SiO2 concentration 0, 10, 30 and 50 wt.% with respect to the dry weight of wood charcoal. The microstructure, electrical resistance and thermal conductivity were

  5. Compositional Design of Dielectric, Ferroelectric and Piezoelectric Properties of (K, Na)NbO3 and (Ba, Na)(Ti, Nb)O3 Based Ceramics Prepared by Different Sintering Routes

    Science.gov (United States)

    Eiras, José A.; Gerbasi, Rosimeire B. Z.; Rosso, Jaciele M.; Silva, Daniel M.; Cótica, Luiz F.; Santos, Ivair A.; Souza, Camila A.; Lente, Manuel H.

    2016-01-01

    Lead free piezoelectric materials are being intensively investigated in order to substitute lead based ones, commonly used in many different applications. Among the most promising lead-free materials are those with modified NaNbO3, such as (K, Na)NbO3 (KNN) and (Ba, Na)(Ti, Nb)O3 (BTNN) families. From a ceramic processing point of view, high density single phase KNN and BTNN ceramics are very difficult to sinter due to the volatility of the alkaline elements, the narrow sintering temperature range and the anomalous grain growth. In this work, Spark Plasma Sintering (SPS) and high-energy ball milling (HEBM), following heat treatments (calcining and sintering), in oxidative (O2) atmosphere have been used to prepare single phase highly densified KNN (“pure” and Cu2+ or Li1+ doped), with theoretical densities ρth > 97% and BTNN ceramics (ρth ~ 90%), respectively. Using BTTN ceramics with a P4mm perovskite-like structure, we showed that by increasing the NaNbO3 content, the ferroelectric properties change from having a relaxor effect to an almost “normal” ferroelectric character, while the tetragonality and grain size increase and the shear piezoelectric coefficients (k15, g15 and d15) improve. For KNN ceramics, the results reveal that the values for remanent polarization as well as for most of the coercive field are quite similar among all compositions. These facts evidenced that Cu2+ may be incorporated into the A and/or B sites of the perovskite structure, having both hardening and softening effects. PMID:28773304

  6. Effect of heating mode on sinterability of Fe-Ni steels.

    Science.gov (United States)

    Annamalai, A Raja; Kumar, Rajiv; Upadhyaya, Anish; Agrawal, Dinesh

    2011-01-01

    The present study examines the effect of heating mode on the densification, microstructure, and mechanical properties of iron-nickel steel with graphite and phosphorus addition. The compacts were sintered in conventional (radiatively-heated) and microwave (2.45 GHz, multimode) furnaces at 1120 degrees C for 1 hour in forming gas (dissociated ammonia atmosphere, 95% N2-5% H2). The experimental results show that microwave sintered alloy has better properties compared with the conventionally sintered counterparts. Detailed analyses by using optical microscopy and scanning electron microscopy (SEM) reveal that microwave sintered sample has finer microstructure. SEM examination of the fractured surfaces indicate that a mixed mode fracture containing both, ductile and brittle types, is present in microwave sintered alloy, in contrast with the brittle fracture only in conventional sintered counterpart.

  7. Nonlaser-based 3D surface imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Shin-yee; Johnson, R.K.; Sherwood, R.J. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    3D surface imaging refers to methods that generate a 3D surface representation of objects of a scene under viewing. Laser-based 3D surface imaging systems are commonly used in manufacturing, robotics and biomedical research. Although laser-based systems provide satisfactory solutions for most applications, there are situations where non laser-based approaches are preferred. The issues that make alternative methods sometimes more attractive are: (1) real-time data capturing, (2) eye-safety, (3) portability, and (4) work distance. The focus of this presentation is on generating a 3D surface from multiple 2D projected images using CCD cameras, without a laser light source. Two methods are presented: stereo vision and depth-from-focus. Their applications are described.

  8. Modeling constrained sintering of bi-layered tubular structures

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye; Kothanda Ramachandran, Dhavanesan; Ni, De Wei

    2015-01-01

    Constrained sintering of tubular bi-layered structures is being used in the development of various technologies. Densification mismatch between the layers making the tubular bi-layer can generate stresses, which may create processing defects. An analytical model is presented to describe...... the densification and stress developments during sintering of tubular bi-layered samples. The correspondence between linear elastic and linear viscous theories is used as a basis for derivation of the model. The developed model is first verified by finite element simulation for sintering of tubular bi-layer system....... Furthermore, the model is validated using densification results from sintering of bi-layered tubular ceramic oxygen membrane based on porous MgO and Ce0.9Gd0.1O1.95-d layers. Model input parameters, such as the shrinkage kinetics and viscous parameters are obtained experimentally using optical dilatometry...

  9. The sintering of nitrogen ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Hampshire, S.

    1986-01-01

    The mechanism of densification with oxide additives and the role of the ..cap alpha..-BETA phase transformation is investigated in a detailed kinetic study. Selected compositions in the Si-Al-O-N system are detailed, with and without additives. Although the work is mainly concerned with the identification of the mechanisms of sintering, some property measurements on a sintered BETA-sialon are reported and the feasibility of preparing pure ..cap alpha..-sialon phases is explored.

  10. Method of sintering ceramic materials

    Science.gov (United States)

    Holcombe, Cressie E.; Dykes, Norman L.

    1992-01-01

    A method for sintering ceramic materials is described. A ceramic article is coated with layers of protective coatings such as boron nitride, graphite foil, and niobium. The coated ceramic article is embedded in a container containing refractory metal oxide granules and placed within a microwave oven. The ceramic article is heated by microwave energy to a temperature sufficient to sinter the ceramic article to form a densified ceramic article having a density equal to or greater than 90% of theoretical density.

  11. Numerical simulation of electric field assisted sintering

    Science.gov (United States)

    McWilliams, Brandon A.

    A fully coupled thermal-electric-sintering finite element model was developed and implemented to explore electric field assisted sintering techniques (FAST). FAST is a single step processing operation for producing bulk materials from powders, in which the powder is heated by the application of electric current under pressure. This process differs from other powder processing techniques such as hot isostatic pressing (HIP) and traditional press and sinter operations where the powder or compact is heated externally, in that the powder is heated directly as a result of internal Joule heating (for conductive powders) and/or by direct conduction from the die and punches. The overall result is much more efficient heating which allows heating rates of >1000°C/min to be achieved which is desirable for sintering bulk nanocrystalline and other novel high performance materials. Previous modeling efforts on FAST have only considered the thermal-electric aspect of the problem and have neglected densification. In addition to the introduction of a sintering model, a detailed thermal-electric study of process parameters was carried out in order to identify key system variables and quantify their effect on the overall system response and subsequent thermal history of a consolidated sample. This analysis was compared to empirical data from a parallel experimental study and shown to satisfactorily predict the observed trends. This model was then integrated with a phenomenologically based sintering model to capture the densification of the sample. This fully coupled model was used to predict densification kinetics under FAST like conditions and examine the evolution of material properties as the sample transitions from a loose powder to a fully dense compact and the resulting effect on the electrical and thermal fields within the compact. This model was also used to explore the effect of non-uniform thermal, electrical, stress and density fields on the final geometry and local

  12. Ash chemistry and sintering, verification of the mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M.; Skrifvars, B.J. [Aabo Akademi, Turku (Finland)

    1996-12-01

    In this project four sintering mechanisms have been studied, i.e., partial melting with a viscous liquid, partial melting with a non-viscous liquid, chemical reaction sintering and solid state sintering. The work has aimed at improving the understanding of ash sintering mechanisms and quantifying their role in combustion and gasification. The work has been oriented in particular on the understanding of biomass ash behavior. The work has not directly focused on any specific technical application. However, results can also be applied on other fuels such as brown coal, petroleum coke, black liquor and different types of wastes (PDF, RDF, MSW). In one part of study the melting behavior was calculated for ten biomass ashes and compared with lab measurements of sintering tendencies. The comparison showed that the T{sub 15} temperatures, i.e. those temperatures at which the ashes contained 15 % molten phase, correlated fairly well with the temperature at which the sintering measurements detected sintering. This suggests that partial melting can be predicted fairly accurate for some ashes already with the today existing thermodynamic calculation routines. In some cases, however the melting calculations did not correlate with the detected sintering temperatures. In a second part detailed measurements on ash behavior was conducted both in a semi full scale CFB and a lab scale FBC. Ashes and deposits were collected and analyzed in several different ways. These analyses show that the ash chemistry shifts radically when the fuel is shifted. Fuels with silicate based ashes behaved totally different than those with an oxide or salt based ash. The chemistry was also affected by fuel blending. The ultimate goal has been to be able to predict the ash thermal behavior during biomass thermal conversion, using the fuel and ash elemental analyses and a few operational key parameters as the only input data. This goal has not yet today been achieved. (author)

  13. Bonding evolution with sintering temperature in low alloyed steels with chromium

    Directory of Open Access Journals (Sweden)

    Fuentes-Pacheco L.

    2009-01-01

    Full Text Available At present, high performance PM steels for automotive applications follow a processing route that comprises die compaction of water-atomized powder, followed by sintering and secondary treatments, and finishing operations. This study examines Cr-alloyed sintered steels with two level of alloying. In chromium-alloyed steels, the surface oxide on the powder is of critical importance for developing the bonding between the particles during sintering. Reduction of this oxide depends mainly on three factors: temperature, dew point of the atmosphere, and carbothermic reduction provided by the added graphite. The transformation of the initial surface oxide evolves sequence as temperature increases during sintering, depending on the oxide composition. Carbothermic reduction is supposed to be the controlling mechanism, even when sintering in hydrogen-containing atmospheres. The effect of carbothermic reduction can be monitored by investigating the behavior of the specimens under tensile testing, and studying the resultant fracture surfaces.

  14. Sintering of Spherical Particles of Equal and Different Size Arranged in a Body Centered Cubic Structure

    DEFF Research Database (Denmark)

    Redanz, Pia; McMeeking, R. M.

    2003-01-01

    Solid-state sintering of a bcc structure of spherical particles has been studied numerically by use of simple shape parameters to describe the state of the unit cell. Both free and pressure-assisted sintering of particles of equal and different sizes for various ratios of boundary and surface dif...

  15. Effect of boric acid sintering aid on densification of barium ferrite

    Indian Academy of Sciences (India)

    Sintering studies have been carried out at three different temperatures. Physical properties like density and porosity have been studied for all compositions. The phase identification and microstructural investigation on the fractured surface have been carried out to understand the effect of sintering aid on the densification ...

  16. Effect of boric acid sintering aid on densification of barium ferrite

    Indian Academy of Sciences (India)

    Unknown

    Physical properties like density and porosity have been studied for all compositions. The phase identification and microstructural investigation on the fractured surface have been carried out to understand the effect of sintering aid on the densification characteristics. Keywords. Barium ferrite; sintering aid; densification. 1.

  17. Low temperature sintering of fluorapatite glass-ceramics.

    Science.gov (United States)

    Denry, Isabelle; Holloway, Julie A

    2014-02-01

    Fluorapatite glass-ceramics have been shown to be excellent candidates as scaffold materials for bone grafts, however, scaffold production by sintering is hindered by concurrent crystallization of the glass. Objective, our goal was to investigate the effect of Ca/Al ratio on the sintering behavior of Nb-doped fluorapatite-based glasses in the SiO2-Al2O3-P2O5-MgO-Na2O-K2O-CaO-CaF2 system. Methods, glass compositions with Ca/Al ratio of 1 (A), 2 (B), 4 (C) and 19 (D) were prepared by twice melting at 1525°C for 3h. Glasses were either cast as cylindrical ingots or ground into powders. Disk-shaped specimens were prepared by either sectioning from the ingots or powder-compacting in a mold, followed by heat treatment at temperatures ranging between 700 and 1050°C for 1h. The density was measured on both sintered specimens and heat treated discs as controls. The degree of sintering was determined from these measurements. Results and Significance XRD showed that fluorapatite crystallized in all glass-ceramics. A high degree of sintering was achieved at 775°C for glass-ceramic D (98.99±0.04%), and 900°C for glass-ceramic C (91.31±0.10). Glass-ceramics A or B were only partially sintered at 1000°C (63.6±0.8% and 74.1±1.5%, respectively). SEM revealed a unique microstructure of micron-sized spherulitic fluorapatite crystals in glass-ceramics C and D. Increasing the Ca/Al ratio promoted low temperature sintering of fluorapatite glass-ceramics, which are traditionally difficult to sinter. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. Low temperature sintering of fluorapatite glass-ceramics

    Science.gov (United States)

    Denry, Isabelle; Holloway, Julie A.

    2014-01-01

    Fluorapatite glass-ceramics have been shown to be excellent candidates as scaffold materials for bone grafts, however, scaffold production by sintering is hindered by concurrent crystallization of the glass. Our goal was to investigate the effect of Ca/Al ratio on the sintering behavior of Nb-doped fluorapatite-based glasses in the SiO2-Al2O3-P2O5-MgO-Na2O-K2O-CaO-CaF2 system. Glass compositions with Ca/Al ratio of 1 (A), 2 (B), 4 (C) and 19 (D) were prepared by twice melting at 1525°C for 3h. Glasses were either cast as cylindrical ingots or ground into powders. Disc-shaped specimens were prepared by either sectioning from the ingots or powder-compacting in a mold, followed by heat treatment at temperatures ranging between 700 and 1050°C for 1h. The density was measured on both sintered specimens and heat treated discs as controls. The degree of sintering was determined from these measurements. XRD showed that fluorapatite crystallized in all glass-ceramics. A high degree of sintering was achieved at 775°C for glass-ceramic D (98.99±0.04%), and 900°C for glass-ceramic C (91.31±0.10). Glass-ceramics A or B were only partially sintered at 1000°C (63.6±0.8% and 74.1±1.5%, respectively). SEM revealed a unique microstructure of micron-sized spherulitic fluorapatite crystals in glass-ceramics C and D. Increasing the Ca/Al ratio promoted low temperature sintering of fluorapatite glass-ceramics, which are traditionally difficult to sinter. PMID:24252652

  19. Dosimetric and thermoluminescent characteristics of sintered samples based on Li{sub 2}OAl{sub 2}O{sub 3}nSiO{sub 2} systems

    Energy Technology Data Exchange (ETDEWEB)

    Cogollo P, R.; Salcedo Q, J. [Universidad de Cordoba, Materials and Applied Physics Group, Carrera 6 No. 76-103, Monteria, Cordoba (Colombia); Gutierrez F, O., E-mail: rafaelcogollo@correo.unicordoba.edu.co [Metropolitan Technological Institute, Alquimia Group, Calle 54 No. 30-01, Medellin (Colombia)

    2013-10-01

    This work describes the thermoluminescent (Tl) characteristics of lithium aluminosilicates, Li{sub 2}OAl{sub 2}O{sub 3}nSiO{sub 2}, for its possible use as Tl dosimeter for low doses. The sinterized tablets of Li{sub 2}OAl{sub 2}O{sub 3}nSiO{sub 2} were characterized by means of X-ray diffraction (XRD), and irradiated at different doses using a Theratron 780 C-{sup 60}Co unit in air at room temperature. The Rasheedy's technique was used for the kinetic trap parameters determination. The XRD results show a mixture of two phases of 64% {beta}-spodumene and 36% {beta}-eucryptite in the sinterized tablets. Tl analysis indicates that in these systems, recombination processes prevail, and that these systems can be used successfully as Tl dosimeters for therapeutic dose ranges. (Author)

  20. Manufacture of sintered bricks of high density from beryllium oxide

    International Nuclear Information System (INIS)

    Pointud, R.; Rispal, Ch.; Le Garec, M.

    1959-01-01

    Beryllium oxide bricks of nuclear purity 100 x 100 x 50 and 100 x 100 x 100 mm of very high density (between 2.85 and 3.00) are manufactured by sintering under pressure in graphite moulds at temperatures between 1,750 and 1,850 deg. C, and under a pressure of 150 kg/cm 2 . The physico-chemical state of the saw material is of considerable importance with regard to the success of the sintering operation. In addition, a study of the sintering of a BeO mixture with 3 to 5 per cent of boron introduced in the form of boric acid, boron carbide or elementary boron shows that high densities can only be obtained by sintering under pressure. For technical reasons of manufacture, only the mixture based on boron carbide is used. The sintering is carried out in graphite moulds at 1500 deg. C under 150 kg/cm 2 pressure, and bricks can be obtained with density between 2,85 and 2,90. Laboratory studies and the industrial manufacture of various sinters are described in detail. (author) [fr

  1. SEM hot stage sintering of UO2

    International Nuclear Information System (INIS)

    Miller, D.J.

    1976-06-01

    The sintering of hyperstoichiometric uranium dioxide powder compacts, in the hot stage of a scanning electron microscope, was continuously monitored using 16 mm time lapse movies. From alumina microspheres placed on the surface of the compacts, shrinkage measurements were obtained. Converting shrinkage measurements into densification profiles indicates that a maximum densification rate is reached at a critical density, independent of the constant heating rates. At temperatures above 1350 0 C, the movement of the reference microspheres made shrinkage measurements impossible. It is believed the evolution of UO 3 gas from hyperstoichiometric UO 2 is the cause of this limitation

  2. Design of Low-Melting Point Compositions Suitable for Transient Liquid Phase Sintering of PM Steels Based on a Thermodynamic and Kinetic Study

    Science.gov (United States)

    Bernardo, Elena; de Oro, Raquel; Campos, Mónica; Torralba, José Manuel

    2014-04-01

    The possibility of tailoring the characteristics of a liquid metal is an important asset in a wide number of processing techniques. For most of these processes, the nature and degree of the interaction between liquid and solid phases are usually a focus of interest since they determine liquid properties such as wettability and infiltration capacity. Particularly, within the powder metallurgy (PM) technology, it is considered one of the key aspects to obtain high performance steels through liquid phase sintering. In this work, it is proved how thermodynamic and kinetics software is a powerful tool to study the liquid/solid interactions. The assessment of different liquid phase promoters for transient liquid phase sintering is addressed through the use of ThermoCalc and DICTRA calculations. Besides melting temperatures, particular attention is given to the solubility phenomena between the phases and the kinetics of these processes. Experimental validation of thermodynamic results is carried out by wetting and infiltration experiments at high temperatures. Compositions presenting different liquid/solid solubility are evaluated and directly correlated to the behavior of the liquid during a real sintering process. Therefore, this work opens the possibility to optimize liquid phase compositions and predict the liquid behavior from the design step, which is considered of high technological value for the PM industry.

  3. Sintering and crystallization behavior of CaMgSi2O6-NaFeSi2O6 based glass-ceramics

    International Nuclear Information System (INIS)

    Goel, Ashutosh; Kansal, Ishu; Ferrari, Anna Maria; Pascual, Maria J.; Barbieri, Luisa; Bondioli, Federica; Lancellotti, Isabella; Ribeiro, Manuel J.; Ferreira, Jose M. F.

    2009-01-01

    We report on the synthesis, sintering, and crystallization behaviors of a glass with a composition corresponding to 90 mol % CaMgSi 2 O 6 -10 mol % NaFeSi 2 O 6 . The investigated glass composition crystallized superficially immediately after casting of the melt and needs a high cooling rate (rapid quenching) in order to produce an amorphous glass. Differential thermal analysis and hot-stage microscopy were employed to investigate the glass forming ability, sintering behavior, relative nucleation rate, and crystallization behavior of the glass composition. The crystalline phase assemblage in the glass-ceramics was studied under nonisothermal heating conditions in the temperature range of 850-950 deg. C in both air and N 2 atmosphere. X-ray diffraction studies adjoined with the Rietveld-reference intensity ratio method were employed to quantify the amount of crystalline phases, while electron microscopy was used to shed some light on the microstructure of the resultant glass-ceramics. Well sintered glass-ceramics with diopside as the primary crystalline phase were obtained where the amount of diopside varied with the heating conditions.

  4. Al2O3-TiC Composite Prepared by Spark Plasma Sintering Process: Evaluation of Mechanical and Tribological Properties

    Science.gov (United States)

    Kumar, Rohit; Chaubey, A. K.; Bathula, Sivaiah; Prashanth, K. G.; Dhar, Ajay

    2018-03-01

    Al2O3-10TiC composites were synthesized by spark plasma sintering (SPS) process. Microstructural and mechanical properties of the composite reveal homogeneous distribution of the fine TiC particles in the matrix. The samples were produced with different sintering temperature, and it shows that the hardness and density gradually increases with increasing sintering temperature. Abrasion wear test result reveals that the composite sintered at 1500 °C shows high abrasion resistance (wt. loss 0.016 g) and the lowest abrasion resistance was observed for the composite sample sintered at 1100 °C (wt. loss 1.459 g). The profilometry surface roughness study shows that sample sintered at 1100 °C shows maximum roughness ( R a = 6.53 µm) compared to the sample sintered at 1500 °C ( R a = 0.66 µm) corroborating the abrasion wear test results.

  5. Al2O3-TiC Composite Prepared by Spark Plasma Sintering Process: Evaluation of Mechanical and Tribological Properties

    Science.gov (United States)

    Kumar, Rohit; Chaubey, A. K.; Bathula, Sivaiah; Prashanth, K. G.; Dhar, Ajay

    2018-01-01

    Al2O3-10TiC composites were synthesized by spark plasma sintering (SPS) process. Microstructural and mechanical properties of the composite reveal homogeneous distribution of the fine TiC particles in the matrix. The samples were produced with different sintering temperature, and it shows that the hardness and density gradually increases with increasing sintering temperature. Abrasion wear test result reveals that the composite sintered at 1500 °C shows high abrasion resistance (wt. loss 0.016 g) and the lowest abrasion resistance was observed for the composite sample sintered at 1100 °C (wt. loss 1.459 g). The profilometry surface roughness study shows that sample sintered at 1100 °C shows maximum roughness (R a = 6.53 µm) compared to the sample sintered at 1500 °C (R a = 0.66 µm) corroborating the abrasion wear test results.

  6. Sintering and Electrical Characterization of La and Nb Co‐doped SrTiO3 Electrode Materials for Solid Oxide Cell Applications

    DEFF Research Database (Denmark)

    Sudireddy, Bhaskar Reddy; Agersted, Karsten

    2014-01-01

    Single‐phase lanthanum and niobium co‐doped strontium titanate (Sr1–3x/2LaxTi0.9Nb0.1O3; x = 0–0.02) ceramics were prepared. Dilatometry in reducing atmosphere showed an increase in the sintering rate and sintered density with an increase in La amount. Microscopy of fractured surfaces of sintered...

  7. A new method to fabricate Fe-TiC composite using conventional sintering and steam hammer

    OpenAIRE

    LAHOUEL, Ali; BOUDEBANE, Saïd; IOST, Alain; MONTAGNE, Alex

    2017-01-01

    International audience; The aim of this research paper is to fabricate a Fe-TiC composite by a novel and simple manufacturing method. The latter is based on two cumulative processes; a conventional sintering (transient liquid phase sintering) and a hot forging with steam hammer respectively. The blinder phase of the studied simples is varied from carbon steel to high alloy steel using alloying additive powders. The obtained outcomes showed that after the sintering process, the relative densit...

  8. Effects of sintering temperature on electrical properties of sheep enamel hydroxyapatite

    Science.gov (United States)

    Dumludag, F.; Gunduz, O.; Kılıc, O.; Kılıc, B.; Ekren, N.; Kalkandelen, C.; Oktar, F. N.

    2017-12-01

    Bioceramics, especially calcium phosphate based bioceramics, whose examples are hydroxyapatite, and calcium phosphate powders have been widely used in the biomedical engineering applications. Hydroxyapatite (HA) is one of the most promising biomaterials, which are derived from natural sources, chemical method, animal like dental enamel and corals. The influence of sintering temperature on the electrical properties (i.e. DC conductivity, AC conductivity) of samples of sintered sheep enamel (SSSE) was studied in air and in vacuum ambient at room temperature. The sheep enamel were sintered at varying temperatures between 1000°C and 1300°C. DC conductivity results revealed that while dc conductivity of the SSSE decreases with increasing the sintering temperature in air ambient the values increased with increasing the sintering temperature in vacuum ambient. AC conductivity measurements were performed in the frequency range of 40 Hz - 105 Hz. The results showed that ac conductivity values decrease with increasing the sintering temperature.

  9. Effect of sintering temperature and heating mode on consolidation of ...

    Indian Academy of Sciences (India)

    ventional vacuum furnace (10. −2 torr). The transverse rupture strength (TRS) samples (31·7 ... testing machine (model: 1195, INSTRON, UK) at a cross- head speed of 0·5 mm/min and SEM of fractured surfaces ... Photographs of 7775 alloy sintered under vacuum at. 590. ◦. C and 630. ◦. C in conventional furnace. where f is ...

  10. Sintering diagrams of UO2

    International Nuclear Information System (INIS)

    Mohan, A.; Soni, N.C.; Moorthy, V.K.

    1979-01-01

    Ashby's method (see Acta Met., vol. 22, p. 275, 1974) of constructing sintering diagrams has been modified to obtain contribution diagrams directly from the computer. The interplay of sintering variables and mechanisms are studied and the factors that affect the participation of mechanisms in UO 2 are determined. By studying the physical properties, it emerges that the order of inaccuracies is small in most cases and do not affect the diagrams. On the other hand, even a 10% error in activation energies, which is quite plausible, would make a significant difference to the diagram. The main criticism of Ashby's approach is that the numerous properties and equations used, communicate their inaccuracies to the diagrams and make them unreliable. The present study has considerably reduced the number of factors that need to be refined to make the sintering diagrams more meaningful. (Auth.)

  11. An Experimental Study of Sintered (Ni-Cr-xAl2O3 Composites

    Directory of Open Access Journals (Sweden)

    Alaa Abdulhasan Atiyah

    2016-09-01

    Full Text Available This paper deals with the (Ni-Cr- xAl2O3 metallic composites (MCCs. Restraining of of thermal expansion at adequate mechanical and corrosion properties is the main objective of this work. Composites are fabricated with four weight percentages of (x = 1, 2, 5 and 10% Al2O3. Compacting and sintering has accomplished at (636 MPa and 1250oC for 7 hrs. All sintered compacts were examined for phases and microstructure featuring. Results have indicated, the incorporation of Al2O3 with the matrix is due to the efficient sintering conditions, that diminishing the grain growth and increasing the softening temperature from 850°C to become 1350°C. Volume expansion appeared in the base sintered composites (NiCr-xAl2O3 due to pores evolution according to SEM observation. As, the Al2O3 has increased, the microhardness and corrosion resistance have improved. DSC results show a clear one exothermic and one endothermic reaction were occurred during the heating cycle. Corrosion behavior of fabricated composites was estimated by polarization curves using Potentiostat at scan rate 3 mV.sec-1. Potential-time measurements showed the formation of protective layer on surface composites compared with Ni-Cr base composite through an obtaining of the nobler open circuit potentials for composites. Corrosion parameters were estimated by the Tafel extrapolation method, these parameters indicated that the corrosion potential shifted toward a positive direction in addition to get lower corrosion current density especially for Ni-Cr/5%Alumina composite.

  12. Nano pores evolution in hydroxyapatite microsphere during spark plasma sintering

    Directory of Open Access Journals (Sweden)

    Lin C.

    2011-01-01

    Full Text Available Micron-spherical granules of hydroxyapatite (HAp nanoparticles were prepared by powder granulation methods. Through subsequent sintering, porous HAp microspheres with tailored pore and grain framework structures were obtained. Detailed microstructure investigation by SEM and TEM revealed the correlation of the pore structure and the necking strength with the sintering profiles that determine the coalescence features of the nanoparticles. The partially sintered porous HAp microspheres containing more than 50% porosity consisting of pores and grains both in nano-scale are active in inducing the precipitation of HAp in simulated body fluid. The nano-porous HAp microspheres with an extensive surface and interconnecting pores thus demonstrate the potential of stimulating the formation of collagen and bone and the integration with the newly formed bones during physiological bone remodeling.

  13. Recycling of mill scale in sintering process

    Directory of Open Access Journals (Sweden)

    El-Hussiny N.A.

    2011-01-01

    Full Text Available This investigation deals with the effect of replacing some amount of Baharia high barite iron ore concentrate by mill scale waste which was characterized by high iron oxide content on the parameters of the sintering process., and investigation the effect of different amount of coke breeze added on sintering process parameters when using 5% mill scale waste with 95% iron ore concentrate. The results of this work show that, replacement of iron ore concentrate with mill scale increases the amount of ready made sinter, sinter strength and productivity of the sinter machine and productivity at blast furnace yard. Also, the increase of coke breeze leads to an increase the ready made sinter and productivity of the sintering machine at blast furnace yard. The productivity of the sintering machine after 5% decreased slightly due to the decrease of vertical velocity.

  14. Surface electromyogram signals classification based on bispectrum.

    Science.gov (United States)

    Orosco, Eugenio; Lopez, Natalia; Soria, Carlos; di Sciascio, Fernando

    2010-01-01

    This paper bispectrum is used to classify human arm movements and control a robotic arm based on upper limb's surface electromyogram signals (sEMG). We use bispectrum based on third-order cumulant to parameterize sEMG signals and classify elbow flexion and extension, forearm pronation and supination, and rest states by an artificial neural network (ANN). Finally, a robotic manipulator is controlled based on classification and parameters extracted from the signals. All this process is made in real-time using QNX ® operative system.

  15. Phosphorus containing sintered alloys (review)

    International Nuclear Information System (INIS)

    Muchnik, S.V.

    1984-01-01

    Phosphorus additives are considered for their effect on the properties of sintered alloys of different applications: structural, antifriction, friction, magnetic, hard, superhard, heavy etc. Data are presented on compositions and properties of phosphorus-containing materials produced by the powder metallurgy method. Phosphorus is shown to be an effective activator of sintering in some cases. When its concentration in the material is optimal it imparts the material such properties as strength, viscosity, hardness, wear resistance. Problems concerning powder metallurgy of amorphous phosphorus-containing alloys are reported

  16. Structure and Properties of VT6 Alloy Obtained by Layered Selective Sintering of a Powder

    Science.gov (United States)

    Teresov, A. D.; Ivanov, Yu. F.; Petrikova, E. A.; Koval, N. N.

    2017-12-01

    This paper is focused on a clarification and analysis of the regularities of formation of the structure and properties of samples of the titanium-based alloy VT6, obtained by methods of conventional metallurgy and formed by layered selective electron-beam sintering in vacuum (using the Arcam A2X (3D printer) system (Arcam, Sweden)) of VT6 titanium powder with particle size 40-100 μm. Additional modification of the samples was realized by irradiating the surface with an intense pulsed electron beam (15 keV, 45 J/cm2, 200 μs, 10 pulses, 0.3 s-1, 3.5·10-2 Pa). It is shown that the action of a pulsed electron beam on the surface of samples formed by layered selective electron-beam sintering leads to a significant reduction in the porosity of the surface layer of the material and formation in the surface layer of a polycrystalline structure (grain size 15-60 μm) with a substructure in the form of crystallization cells (cell size 0.5-1.2 μm). Electron-beam processing of samples prepared by methods of conventional metallurgy for the indicated electron-beam parameters leads to the formation in the surface layer of a polycrystalline structure (grain size 50-800 μm) with a laminar intragrain substructure. Mechanical tests, performed by stretching flat samples, showed that the highest combination of mechanical strength and plasticity is possessed by samples obtained by layered selective electron-beam sintering with subsequent irradiation by an intense pulsed electron beam.

  17. Fracture toughness of yttria-stabilized zirconia sintered in conventional and microwave ovens.

    Science.gov (United States)

    Marinis, Aristotelis; Aquilino, Steven A; Lund, Peter S; Gratton, David G; Stanford, Clark M; Diaz-Arnold, Ana M; Qian, Fang

    2013-03-01

    The fabrication of zirconium dioxide (ZrO2) dental prosthetic substructures requires an extended sintering process (8 to 10 hours) in a conventional oven. Microwave sintering is a shorter process (2 hours) than conventional sintering. The purpose of this study was to compare the fracture toughness of 3 mol % Y2O3-stabilized ZrO2 sintered in a conventional or microwave oven. Partially sintered ZrO2 specimens from 3 manufacturers, KaVo, Lava 3M, and Crystal HS were milled (KaVo Everest engine) and randomly divided into 2 groups: conventional sintering and microwave sintering (n=16 per group). The specimens were sintered according to the manufacturers' recommendations and stored in artificial saliva for 10 days. Fracture toughness was determined by using a 4-point bend test, and load to fracture was recorded. Mean fracture toughness for each material was calculated. A 2-way ANOVA followed by the Tukey HDS post hoc test was used to assess the significance of sintering and material effects on fracture toughness, including an interaction between the 2 factors (α=.05). The 2-way ANOVA suggested a significant main effect for ZrO2 manufacturer (P.05). The main effect of the sintering process (Conventional [5.30 MPa·m(1/2) ±1.00] or Microwave [5.36 MPa·m(1/2) ±0.92]) was not significant (P=.76), and there was no interaction between sintering and ZrO2 manufacturer (P=.91). Based on the results of this study, no statistically significant difference was observed in the fracture toughness of ZrO2 sintered in microwave or conventional ovens. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  18. Sintering of ultra high molecular weight polyethylene

    Indian Academy of Sciences (India)

    ... involves compaction of polymeric powder under pressure and sintering of the preforms at temperature above its melting point. In this study, we report our results on compaction and sintering behaviour of two grades of UHMWPE with reference to the powder morphology, sintering temperatures and strength development.

  19. Surface properties of copper based cermet materials

    International Nuclear Information System (INIS)

    Voinea, M.; Vladuta, C.; Bogatu, C.; Duta, A.

    2008-01-01

    The paper presents the characterization of the surface properties of copper based cermets obtained by two different techniques: spray pyrolysis deposition (SPD) and electrodeposition. Copper acetate was used as precursor of Cu/CuO x cermet. The surface morphology was tailored by adding copolymers of maleic anhydride with controlled hydrophobia. The films morphology of Cu/CuO x was assessed using contact angle measurements and AFM analysis. The porous structures obtained via SPD lead to higher liquid adsorption rate than the electrodeposited films. A highly polar liquid - water is recommended as testing liquid in contact angle measurements, for estimating the porosity of copper based cermets, while glycerol can be used to distinguish among ionic and metal predominant structures. Thus, contact angle measurements can be used for a primary evaluation of the films morphology and, on the other hand, of the ratio between the cermet components

  20. Surface properties of copper based cermet materials

    Energy Technology Data Exchange (ETDEWEB)

    Voinea, M. [The Centre: Product Design for Sustainable Development, Transilvania University of Brasov, Eroilor 29, 500036 (Romania)], E-mail: m.voinea@unitbv.ro; Vladuta, C.; Bogatu, C.; Duta, A. [The Centre: Product Design for Sustainable Development, Transilvania University of Brasov, Eroilor 29, 500036 (Romania)

    2008-08-25

    The paper presents the characterization of the surface properties of copper based cermets obtained by two different techniques: spray pyrolysis deposition (SPD) and electrodeposition. Copper acetate was used as precursor of Cu/CuO{sub x} cermet. The surface morphology was tailored by adding copolymers of maleic anhydride with controlled hydrophobia. The films morphology of Cu/CuO{sub x} was assessed using contact angle measurements and AFM analysis. The porous structures obtained via SPD lead to higher liquid adsorption rate than the electrodeposited films. A highly polar liquid - water is recommended as testing liquid in contact angle measurements, for estimating the porosity of copper based cermets, while glycerol can be used to distinguish among ionic and metal predominant structures. Thus, contact angle measurements can be used for a primary evaluation of the films morphology and, on the other hand, of the ratio between the cermet components.

  1. Sintering additives for zirconia ceramics

    International Nuclear Information System (INIS)

    Wu, S.

    1986-01-01

    This book is an overview of sintering science and its application to zirconia materials including CaO, MgO, and Y/sub 2/O/sub 3/-CeO/sub 2/ doped materials. This book is a reference for first-time exposure to zirconia materials technology, particularly densification

  2. Sintering additives for zirconia ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Wu, S.

    1986-01-01

    This book is an overview of sintering science and its application to zirconia materials including CaO, MgO, and Y/sub 2/O/sub 3/-CeO/sub 2/ doped materials. This book is a reference for first-time exposure to zirconia materials technology, particularly densification.

  3. Phase and Microstructural Correlation of Spark Plasma Sintered HfB2-ZrB2 Based Ultra-High Temperature Ceramic Composites

    Directory of Open Access Journals (Sweden)

    Ambreen Nisar

    2017-07-01

    Full Text Available The refractory diborides (HfB2 and ZrB2 are considered as promising ultra-high temperature ceramic (UHTCs where low damage tolerance limits their application for the thermal protection system in re-entry vehicles. In this regard, SiC and CNT have been synergistically added as the sintering aids and toughening agents in the spark plasma sintered (SPS HfB2-ZrB2 system. Herein, a novel equimolar composition of HfB2 and ZrB2 has shown to form a solid-solution which then allows compositional tailoring of mechanical properties (such as hardness, elastic modulus, and fracture toughness. The hardness of the processed composite is higher than the individual phase hardness up to 1.5 times, insinuating the synergy of SiC and CNT reinforcement in HfB2-ZrB2 composites. The enhanced fracture toughness of CNT reinforced composite (up to a 196% increment surpassing that of the parent materials (ZrB2/HfB2-SiC is attributed to the synergy of solid solution formation and enhanced densification (~99.5%. In addition, the reduction in the analytically quantified interfacial residual tensile stress with SiC and CNT reinforcements contribute to the enhancement in the fracture toughness of HfB2-ZrB2-SiC-CNT composites, mandatory for aerospace applications.

  4. Crystal phase evolution, sintering, and strength of anorthite-based LTCC materials by substitution of M2+ (M=Mg, Sr, Ba) for Ca2+

    Science.gov (United States)

    Gu, Sin Il; Shin, Hyo Soon; Yeo, Dong Hun; Nahn, Sahn

    2013-05-01

    LTCC, composed of Ca-Al-Si-O, is well-known for its high strength and phase stability. However research on the correlation of LTCC substrate composition and phase change to strength characteristics has rarely been reported. In this study, an anorthite glass component, group 2 elements, Mg, Sr, and Ba were substituted for Ca, and the resulting changes in the physical properties of the glass were observed. Then, the effect of varying glass composition on the characteristics of LTCCs was investigated. An increase in the Mg content caused an increase in the T g of glass, sintering temperature of the glass/Al2O3 composite material and synthesis temperature of anorthite. The content of Sr and Ba had almost no correlation with T g . Synthesis of BaAlO4 and increased LTCC sintering temperature were observed with the addition of Ba, and high strength of over 320 MPa was demonstrated when glass, Al2O3 and a small amount of anorthite were formed.

  5. Characterization of Sintered and Sintered/Plasma-Nitrided Fe-1.5% Mo Alloy by SEM, X-Ray Diffraction and Electrochemical Techniques

    Directory of Open Access Journals (Sweden)

    Alves Neto José de Pinho

    2002-01-01

    Full Text Available Electrochemical experiments together with SEM and X-Ray techniques were carried out in order to evaluate the corrosion resistance, to analyze the surface condition and to characterize the nitride layer of the sintered and sintered/plasma-nitrided Fe-1.5% Mo alloy in Mg(NO32 0.5mol.L-1 solution (pH 7.0. The sintered/plasma-nitrided samples presented a higher corrosion resistance, indicating that the surface treatment improved the electrochemical properties of the sintered material. In addition, the nitride layer formed at 500 °C showed better corrosion resistance that the layers formed at higher temperatures. This difference can be ascribed to the nitrogen content in the nitride layer, which at 500°C is higher due to the formation of a phase rich in nitrogen (epsilon phase while at higher temperatures a phase poor in nitrogen (gamma' phase is formed.

  6. Two steps sintering alumina doped with niobia; Sinterizacao em duas etapas de alumina aditivada com niobia

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, L.B.; Hatzfeld, J.; Heck, M.; Pokorny, A.; Bergmann, C.P., E-mail: lucas.gomes@ufrgs.br [Universidade Federal do Rio Grande do Sul (LACER/UFRGS) Porto Alegre, RS (Brazil). Laboratorio de Materiais Ceramicos

    2014-07-01

    In this work, high surface area commercial alumina was doped with niobia and sintered in two steps in order to obtain dense materials with lower processing temperatures. The powders were milled and uniaxially pressed (200 MPa). The first step of sintering took place at 1100°C for 3, 6, 9 and 12 hours, followed by the second step at 1350°C for 3 hours. The relative density, porosity and water absorption of the samples were determined by the Archimedes method. The crystalline phases were analyzed by X-ray Diffraction (XRD) and the morphology of the samples after sintering, evaluated by Scanning Electron Microscopy (SEM). The results indicate that the use of niobia combined with the two steps sintering promotes an increase in the density of the material, even at lower sintering temperatures. (author)

  7. Finite element modeling of camber evolution during sintering of bi-layers

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye; Ni, De Wei; Bulatova, Regina

    2014-01-01

    The need for understanding the mechanisms and optimization of shape distortions during sintering of bilayers is necessary while producing structures with functionally graded architectures. A finite element model based on the continuum theory of sintering was developed to understand the camber dev...

  8. Improved Modeling Approaches for Constrained Sintering of Bi-Layered Porous Structures

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye; Frandsen, Henrik Lund; Esposito, Vincenzo

    2012-01-01

    Shape instabilities during constrained sintering experiment of bi-layer porous and dense cerium gadolinium oxide (CGO) structures have been analyzed. An analytical and a numerical model based on the continuum theory of sintering has been implemented to describe the evolution of bow and densificat...

  9. Nano or micro grained alumina powder? A choose before sintering

    Directory of Open Access Journals (Sweden)

    Román, R.

    2008-12-01

    Full Text Available Two different wet routes have been used to synthesize alumina powders in order to compare the characteristics of the final product and its behaviour during sintering. The Homogeneous Precipitation (HP gives rise to nanoparticulated powders of about 2 nm. However, such particles quickly aggregate and grow with calcination temperature. The Polymerized Organic-Inorganic Synthesis (POI produces homogeneous particle size powders (about 1 micron after resin charring. The characterization of the powder surface is the basis of an efficient process control. Particle characterization parameters (morphology, crystallinity and degree of aggregation are characterized by different techniques, such as DTA/TG, IR, XRD, SEM and TEM, and compared between these synthesis methods. The results show the evolution from the amorphous to the corundum alumina phase for both processes and their ability for sintering, as well discuses the beneficial of nanoparticles obtained by HP during sintering.

    Se han utilizado dos diferentes síntesis por vía húmeda para la preparación de polvos de alúmina con el fin de comparar las características de los productos finales y su comportamiento durante la sinterización. La Precipitación Homogénea (HP da lugar a polvos nanoparticulados de unos 2nm. Se observa sin embargo, como estas partículas se agregan rápidamente y crecen con la temperatura de calcinación. La Síntesis por Polimerización Orgánica-Inorgánica (POI produce polvos de tamaño de partícula homogéneo (en torno a 1 micra después de la descomposión de la resina. La caracterización de la superficie de los polvos es la base de un control eficiente del proceso. Los parámetros de caracterización de las partículas obtenidas (morfología, cristalinidad y grado de agregación se obtienen por diferentes técnicas como DTA/TG, IR, XRD, SEM y TEM, y se comparan entre estos métodos de síntesis. Los resultados muestran la evolución desde el amorfo a la fase

  10. Strain-enhanced sintering of iron powders

    Energy Technology Data Exchange (ETDEWEB)

    Amador, D.R.; Torralba, J.M. [Universidad Carlos III de Madrid, Departamento de Ciencias de Materiales e Ingenieria Metalurgica, Leganes, Madrid (Spain); Monge, M.A.; Pareja, R. [Universidad Carlos III de Madrid, Departamento de Fisica, Madrid (Spain)

    2005-02-01

    Sintering of ball-milled and un-milled Fe powders has been investigated using dilatometry, X-ray, density, and positron annihilation techniques. A considerable sintering enhancement is found in milled powders showing apparent activation energies that range between 0.44 and 0.80 eV/at. The positron annihilation results, combined with the evolution of the shrinkage rate with sintering temperature, indicate generation of lattice defects during the sintering process of milled and un-milled powders. The sintering enhancement is attributed to pipe diffusion along the core of moving dislocations in the presence of the vacancy excess produced by plastic deformation. Positron annihilation results do not reveal the presence of sintering-induced defects in un-milled powders sintered above 1200 K, the apparent activation energy being in good agreement with that for grain-boundary diffusion in {gamma}-Fe. (orig.)

  11. Characterization and in vivo evaluation of laser sintered dental endosseous implants in dogs.

    Science.gov (United States)

    Witek, Lukasz; Marin, Charles; Granato, Rodrigo; Bonfante, Estevam A; Campos, Felipe; Bisinotto, Julio; Suzuki, Marcelo; Coelho, Paulo G

    2012-08-01

    Laser metal sintering has shown promising results, but no comparison with other commercially available surface has been performed. This study sought to evaluate the biomechanical and histological early bone response to laser sintered implants relative to alumina-blasted/acid-etched (AB/AE). Surface topography was characterized by scanning electron microscopy and optical interferometry. Surface chemistry was assessed by x-ray photoelectron spectroscopy. Beagle dogs (n = 18) received 4 Ti-6Al-4V implants (one per surface) in each radius, remaining for 1, 3, and 6 weeks (n = 6 dogs per evaluation time) in vivo. Bone-to-implant contact (BIC) and bone area fraction occupancy (BAFO) were evaluated. Biomechanical evaluation comprised torque-to-interface failure. The laser sintered surface presented higher S(a) and S(q) than AB/AE. Chemistry assessment showed the alloy metallic components along with adsorbed carbon species. Significantly higher torque was observed at 1 (p laser sintered, whereas at 3 week no significant differences were observed. Significantly higher BIC and BAFO was observed for the Laser Sintered (p laser sintered implants presented biocompatible and osseoconductive properties and improved biomechanical response compared with the AB/AE surface only at 1 and 6 weeks in vivo. Copyright © 2012 Wiley Periodicals, Inc.

  12. Influence of spark plasma sintering conditions on the sintering and functional properties of an ultra-fine grained 316L stainless steel obtained from ball-milled powder

    Energy Technology Data Exchange (ETDEWEB)

    Keller, C., E-mail: clement.keller@insa-rouen.fr [Groupe de Physique des Matériaux, CNRS-UMR 6634, Université de Rouen, INSA de Rouen, Avenue de l' Université, 76800 Saint-Etienne du Rouvray (France); Tabalaiev, K.; Marnier, G. [Groupe de Physique des Matériaux, CNRS-UMR 6634, Université de Rouen, INSA de Rouen, Avenue de l' Université, 76800 Saint-Etienne du Rouvray (France); Noudem, J. [Laboratoire de Cristallographie des Matériaux, CNRS-UMR 6508, Université de Caen, ENSICAEN, 7 bd du Maréchal Juin, 14050 Caen (France); Sauvage, X. [Groupe de Physique des Matériaux, CNRS-UMR 6634, Université de Rouen, INSA de Rouen, Avenue de l' Université, 76800 Saint-Etienne du Rouvray (France); Hug, E. [Laboratoire de Cristallographie des Matériaux, CNRS-UMR 6508, Université de Caen, ENSICAEN, 7 bd du Maréchal Juin, 14050 Caen (France)

    2016-05-17

    In this work, 316L samples with submicrometric grain size were sintered by spark plasma sintering. To this aim, 316L powder was first ball-milled with different conditions to obtain nanostructured powder. The process control agent quantity and milling time were varied to check their influence on the crystallite size of milled powder. Samples were then sintered by spark plasma sintering using different sets of sintering parameters (temperature, dwell time and pressure). For each sample, grain size and density were systematically measured in order to investigate the influence of the sintering process on these two key microstructure parameters. Results show that suitable ball-milling and subsequent sintering can be employed to obtain austenitic stainless steel samples with grain sizes in the nanometer range with porosity lower than 3%. However, ball-milling and subsequent sintering enhance chromium carbides formation at the sample surface in addition to intragranular and intergranular oxides in the sample as revealed by X-ray diffraction and transmission electron microscopy. It has been shown that using Boron nitride together with graphite foils to protect the mold from powder welding prevent such carbide formation. For mechanical properties, results show that the grain size refinement strongly increases the hardness of the samples without deviation from Hall-Petch relationship despite the oxides formation. For corrosion resistance, grain sizes lower than a few micrometers involve a strong decrease in the pitting potential and a strong increase in passivation current. As a consequence, spark plasma sintering can be considered as a promising tool for ultra-fine grained austenitic stainless steel.

  13. Selective light sintering of Aerosol-Jet printed silver nanoparticle inks on polymer substrates

    Energy Technology Data Exchange (ETDEWEB)

    Schuetz, K., E-mail: klaus.schuetz1@gmx.de, E-mail: hoerber@faps.uni-erlangen.de, E-mail: franke@faps.uni-erlangen.de; Hoerber, J., E-mail: klaus.schuetz1@gmx.de, E-mail: hoerber@faps.uni-erlangen.de, E-mail: franke@faps.uni-erlangen.de; Franke, J., E-mail: klaus.schuetz1@gmx.de, E-mail: hoerber@faps.uni-erlangen.de, E-mail: franke@faps.uni-erlangen.de [Institute for Factory Automation and Production Systems, University of Erlangen-Nuremberg (Germany)

    2014-05-15

    Printing silver nanoparticle inks to generate conductive structures for electronics on polymer substrates has gained increasing relevance in recent years. In this context, the Aerosol-Jet Technology is well suited to print silver ink on 3D-Molded Interconnect Devices (MID). The deposited ink requires thermal post-treatment to obtain sufficient electrical conductivity and adhesion. However, commonly used oven sintering cannot be applied for many thermoplastic substrates due to low melting temperatures. In this study a new sintering technology, selective light sintering, is presented, based on the focused, continuous light beam of a xenon lamp. Sintering experiments were conducted with Aerosol-Jet printed structures on various polycarbonate (PC) substrates. Especially on neat, light transparent PC, silver tracks were evenly sintered with marginal impact to the substrate. Electrical conductivities significantly exceed the values obtained with conventional oven sintering. Adhesive strength is sufficient for conductive tracks. Experiments with non-transparent PC substrates led to substrate damage due to increased light absorption. Therefore a concept for a variation of light sintering was developed, using optical filters. First experiments showed significant reduction of substrate damage and good sintering qualities. The highly promising results of the conducted experiments provide a base for further investigations to increase adhesion and qualifying the technology for MID applications and a broad spectrum of thermoplastic substrates.

  14. Processing and Properties of Distaloy Sa Sintered Alloys with Boron and Carbon

    Directory of Open Access Journals (Sweden)

    Karwan-Baczewska J.

    2015-04-01

    Full Text Available Prealloyed iron-based powders, manufactured in Höganäs Company, are used in the automotive parts industry. The properties and life time of such sintered parts depend, first of all, on their chemical composition, the production method of the prealloyed powder as well as on the technology of their consolidation and sintering. One of simpler and conventional methods aimed at increasing the density in sintered products is the process of activated sintering, performed, for example, by adding boron as elementary boron powder. Under this research project obtained were novel sintered materials, based on prealloyed and diffusion bonded powder, type: Distaloy SA, with the following chemical composition: Fe-1.75% Ni-1.5%Cu- 0.5%Mo with carbon (0.55%; 0.75% and boron (0.2%, 0.4% and 0.6%. Distaloy SA samples alloyed with carbon and boron were manufactured by mixing powders in a Turbula mixer, then compressed using a hydraulic press under a pressure of 600 MPa and sintered in a tube furnace at 1473 K, for a 60 minute time, in the hydrogen atmosphere. After the sintering process, there were performed density and porosity measurements as well as hardness tests and mechanical properties were carried out, too. Eventually, analyzed was the effect of boron upon density, hardness and mechanical properties of novel sintered construction parts made from Distaloy SA powder.

  15. Selective light sintering of Aerosol-Jet printed silver nanoparticle inks on polymer substrates

    International Nuclear Information System (INIS)

    Schuetz, K.; Hoerber, J.; Franke, J.

    2014-01-01

    Printing silver nanoparticle inks to generate conductive structures for electronics on polymer substrates has gained increasing relevance in recent years. In this context, the Aerosol-Jet Technology is well suited to print silver ink on 3D-Molded Interconnect Devices (MID). The deposited ink requires thermal post-treatment to obtain sufficient electrical conductivity and adhesion. However, commonly used oven sintering cannot be applied for many thermoplastic substrates due to low melting temperatures. In this study a new sintering technology, selective light sintering, is presented, based on the focused, continuous light beam of a xenon lamp. Sintering experiments were conducted with Aerosol-Jet printed structures on various polycarbonate (PC) substrates. Especially on neat, light transparent PC, silver tracks were evenly sintered with marginal impact to the substrate. Electrical conductivities significantly exceed the values obtained with conventional oven sintering. Adhesive strength is sufficient for conductive tracks. Experiments with non-transparent PC substrates led to substrate damage due to increased light absorption. Therefore a concept for a variation of light sintering was developed, using optical filters. First experiments showed significant reduction of substrate damage and good sintering qualities. The highly promising results of the conducted experiments provide a base for further investigations to increase adhesion and qualifying the technology for MID applications and a broad spectrum of thermoplastic substrates

  16. An experimental study of factors affecting the selective inhibition of sintering process

    Science.gov (United States)

    Asiabanpour, Bahram

    Selective Inhibition of Sintering (SIS) is a new rapid prototyping method that builds parts in a layer-by-layer fabrication basis. SIS works by joining powder particles through sintering in the part's body, and by sintering inhibition of some selected powder areas. The objective of this research has been to improve the new SIS process, which has been invented at USC. The process improvement is based on statistical design of experiments. To conduct the needed experiments a working machine and related path generator software were needed. The machine and its control software were made available prior to this research. The path generator algorithms and software had to be created. This program should obtain model geometry data from a CAD file and generate an appropriate path file for the printer nozzle. Also, the program should generate a simulation file for path file inspection using virtual prototyping. The activities related to path generator constitute the first part of this research, which has resulted in an efficient path generator. In addition, to reach an acceptable level of accuracy, strength, and surface quality in the fabricated parts, all effective factors in the SIS process should be identified and controlled. Simultaneous analytical and experimental studies were conducted to recognize effective factors and to control the SIS process. Also, it was known that polystyrene was the most appropriate polymer powder and saturated potassium iodide was the most effective inhibitor among the available candidate materials. In addition, statistical tools were applied to improve the desirable properties of the parts fabricated by the SIS process. An investigation of part strength was conducted using the Response Surface Methodology (RSM) and a region of acceptable operating conditions for the part strength was found. Then, through analysis of the experimental results, the impact of the factors on the final part surface quality and dimensional accuracy was modeled. After

  17. Nuclear tracks in sinterized gemstones

    International Nuclear Information System (INIS)

    Espinosa, G.; Rodriguez, L.V.; Golzarri, J.I.; Castano, V.M.

    1993-01-01

    The responses of sinterized gemstones to alpha particles attempt analyzed with the objective of finding new materials for SSNTD, and also to understand their interaction with radiation and the formation of tracks. In this work we present the results of the characterization of these materials as SSNTD. The micro structural changes observed by electron microscopy. The preparation, etching solution concentration, etching time and effects of temperature are discussed. (Author)

  18. Sintering of oxide-supported Pt and Pd nanoparticles in air studied by in situ TEM

    DEFF Research Database (Denmark)

    Simonsen, Søren Bredmose

    of the sintering mechanisms of nanoparticles is important for making improvements to their long term catalytic activity. Diesel oxidation catalysts are usually composed of noble metal nanoparticles on a complex three-dimensional high surface area oxide. The complex support structure makes it difficult to directly...... observe dynamical processes such as particle sintering with the present state of the art microscope techniques, and consequently it is difficult to relate experimental observations and theoretical sintering models. To reduce the complexity, the present study uses planar model catalysts. These are composed...

  19. Effects of sintering temperature on the density and porosity

    African Journals Online (AJOL)

    2013-03-01

    Mar 1, 2013 ... used as a model system for the investigation of ce- ramic sintering behavior [1, 2]. However, the system ... cially available metal foams are based on aluminium, copper, nickel and metal alloys [4]. ... Zhao et al [9] reported that the porosity of the as- manufactured foam is determined by the density of.

  20. Effect of sintering temperature and heating mode on consolidation of ...

    Indian Academy of Sciences (India)

    sintering of various Al-based composites. Microwave heat- ing of metallic powders (Al–Cu–Fe) to single phase was first reported by Vauchera et al (2008). To the best of our know- ... insulation also consisted of graphite coated SiC rods. Tem- perature ... Figure 3 compares thermal profile for 7775 aluminum alloy compacts ...

  1. Binding Mechanisms in Selective Laser Sintering and Selective Laser Melting

    NARCIS (Netherlands)

    Kruth, J.P.; Mercelis, P.; Van Vaerenbergh, J.; van Vaerenbergh, J.; Froyen, L.; Rombouts, M.

    2005-01-01

    Purpose – This paper provides an overview of the different binding mechanisms in selective laser sintering (SLS) and selective laser melting (SLM), thus improving the understanding of these processes. Design/methodology/approach – A classification of SLS/SLM processes was developed, based on the

  2. New developments in laser sintering of diamond cutting disks

    NARCIS (Netherlands)

    Kovalenko, V.; Golovko, L.; Meijer, J.; Anyakin, M.

    2007-01-01

    The analysis of techniques and problems in the fabrication of cutting tools based on super hard composites results in a solution by the application of lasers. The results of systematic study of diamond composites sintering with laser radiation are discussed. A mathematical modeling of the heat

  3. Effect of sintering temperature on magnetization and Mössbauer parameters of cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Grish, E-mail: grishphysics@gmail.com [Department of Physics, DSB Campus Kumaun University, Nainital 263002, Uttarakhand (India); Srivastava, R.C. [Department of Physics, GB Pant University of Agriculture and Technology, Pantnagar, Uttarakhand (India); Reddy, V.R. [UGC-DAE CSR, Khandwa Road, DAVV Campus, Indore 452017, Madhya Pradesh (India); Agrawal, H.M. [Department of Physics, GB Pant University of Agriculture and Technology, Pantnagar, Uttarakhand (India)

    2017-04-01

    Nanoparticles of cobalt ferrite of different particle size were prepared using sol-gel method. Powder X-ray diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM) and Mössbauer spectroscopy techniques were employed for characterization of nanoparticles for structural and magnetic properties. The particle size and saturation magnetization increase with the increase of sintering temperature. The saturation magnetization increases from 53 to 85 emu/g as the sintering temperature increases from 300 to 900 °C. The remanence increases while the coercivity decreases slightly with the increase of sintering temperature. Mössbauer spectra show the ferrimagnetic nature of all the samples and the cation distribution strictly depends on the sintering temperature. The stoichiometry of the cobalt ferrite formed was estimated to be (Co{sup 2+}{sub x}Fe{sup 3+}{sub 1−x})[Co{sup 2+}{sub 1−x}Fe{sup 3+}{sub 1+x}]O{sub 4}, based on our Mössbauer analysis. The inverse spinel structure gradually transforms towards the normal spinel structure as the sintering temperature increases. - Highlights: • After 500 °C sintering the cobalt ferrite shows complete crystallization. • An inversion sintering temperature between 900 °C and 1200 °C is proposed where the Fe{sup +3} again starts migration from B site to A site. • Sintering temperature is one of the prime factors which effect the magnetization and cation distribution between two sites A and B.

  4. Ti-Nb-Sn-hydroxyapatite composites synthesized by mechanical alloying and high frequency induction heated sintering.

    Science.gov (United States)

    Wang, Xiaopeng; Chen, Yuyong; Xu, LiJuan; Xiao, Shulong; Kong, Fantao; Woo, Kee Do

    2011-11-01

    A β-type Ti-based composite, Ti-35Nb-2.5Sn-15-hydroxyapatite (HA), has been synthesized by mechanical alloying and powder metallurgy. The effects of milling time on microstructure, mechanical properties and biocompatibility of the sintered composites were investigated by scanning electronic microscopy (SEM), X-ray diffraction (XRD), microhardness tests, compression tests and cells culture. The results revealed when milling time increased, the homogeneity and relative density of the sintered composite increased, but the finished sintering temperature decreased. The compression Young's modulus of sintered composite from 12 h milled powders was about 22 GPa and its compression strength was 877 MPa. The cell culture results indicated cell viability for these sintered composites was very good. These results revealed the Ti-35Nb-2.5Sn-15HA composite could be useful for medical implants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Sintering analysis of 8YSZ electrolyte correlated to the electrical performance

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Cristiane Abrantes da; Furtado, Jose Geraldo de Melo [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil); Miranda, Paulo Emilio Valadao de, E-mail: pmiranda@labh2.coppe.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Departmento de Engenharia Metalurgica e de Materiais

    2010-07-01

    The understanding of the mechanisms associated with densification and sintering of yttria stabilized zirconia (YSZ), a main solid oxide fuel cell electrolyte, enables the improvement of its microstructure. The present work that has the objective to study the sintering and densification processes of polycrystalline nanostructured 8% mol YSZ (8YSZ), correlating the microstructural development with the electrical performance of the material. The sintering behaviors of nanocrystalline 8YSZ powders obtained by two different chemical synthesis techniques (glycine-nitrate combustion process and Pechini method) were studied based on sintering dilatometer method. X-ray diffraction and scanning electron microscopy were used in the microstructural characterization. Full-densified 8YSZ (98.8%) were obtained and it was found that the samples obtained by the Pechini's method showed a higher densification degree in the final stage of sintering and resulted in ceramics with higher final relative density and better electrical behavior. (author)

  6. [Influence of compaction pressure and pre-sintering temperature on the machinability of zirconia ceramic].

    Science.gov (United States)

    Huang, Huil; Li, Jing; Zhang, Fuqiang; Sun, Jing; Gao, Lian

    2011-10-01

    In order to make certain the compaction pressure as well as pre-sintering temperature on the machinability of the zirconia ceramic. 3 mol nano-size 3 mol yttria partially stabilized zirconia (3Y-TZP) powder were compacted at different isostatic pressure and sintered at different temperature. The cylindrical surface was traversed using a hard metal tool. Surface and edge quality were checked visually using light stereo microscopy. Pre-sintering temperature had the obviously influence on the machinability of 3Y-TZP. The cutting surface was smooth, and the integrality of edge was better when the pre-sintering temperature was chosen between 800 degrees C to 900 degrees C. Compaction pressure showed only a weak influence on machinability of 3Y-TZP blanks, but the higher compaction pressure result in the poor surface quality. The best machinability of pre-sintered zirconia body was found for 800-900 degrees C pre-sintering temperature, and 200-300 MPa compaction pressure.

  7. Investigation of the sintering kinetics of lead powders. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, P.K.; Munir, Z.A.

    1977-08-01

    An analysis of the parameters involved in the sintering of lead powders under vacuum has been made. Sintering was accomplished at temperatures between 250/sup 0/ and 280/sup 0/C. Evaluation of surface area reduction data results in values of the mechanism exponent N between 5.3 and 6.7. Lack of shrinkage and the low vapor pressure of lead at the experimental temperatures lead to the conclusion that surface diffusion is the rate-controlling sintering mechanism. However, comparison of the experimentally measured activation energy, 170 kJ/mol (40.7 Kcal/mol), to that reported in the literature for surface self-diffusion of lead showed a significant discrepancy. Effects of pore isolation and surface oxide layers are proposed as possible explanations for this discrepancy as well as the deviation in the N values from those obtained theoretically. An attempt to isolate the effect of the oxide layer was made by sintering lead in a hydrogen atmosphere. Under these conditions, sintering is accompanied by shrinkage, thus indicating the presence of bulk-transport process. A mechanism exponent corresponding to viscous flow sintering was obtained. Furthermore, the calculated activation energy for this process was in good agreement with that reported for creep in lead.

  8. The agglomeration, coalescence and sliding of nanoparticles, leading to the rapid sintering of zirconia nanoceramics.

    Science.gov (United States)

    Kocjan, Andraž; Logar, Manca; Shen, Zhijian

    2017-05-31

    Conventional sintering is a time- and energy-consuming process used for the densification of consolidated particles facilitated by atomic diffusion at high temperatures. Nanoparticles, with their increased surface free energy, can promote sintering; however, size reduction also promotes agglomeration, so hampering particle packing and complete densification. Here we show how the ordered agglomeration of zirconia primary crystallites into secondary particle assemblies ensures their homogeneous packing, while also preserving the high surface energy to higher temperatures, increasing the sintering activity. When exposed to intense electromagnetic radiation, providing rapid heating, the assembled crystallites are subjected to further agglomeration, coalescence and sliding, leading to rapid densification in the absence of extensive diffusional processes, cancelling out the grain growth during the initial sintering stages and providing a zirconia nanoceramic in only 2 minutes at 1300 °C.

  9. The role of the native oxide shell on the microwave sintering of copper metal powder compacts

    International Nuclear Information System (INIS)

    Mahmoud, Morsi M.; Link, Guido; Thumm, Manfred

    2015-01-01

    Highlights: • Thin oxide native layer had a critical role on microwave sintering of copper. • Explain why microwaves interact with copper powder differently than its bulk. • Abnormal expansion in copper is due to the plastic deformation and crack formation. • In-situ setup gives important insight about the microwave sintering of metals. • Microwave sintering is a promising candidate technology in powder metallurgy. - Abstract: Successful microwave sintering of several metal powders had been reported by many researchers with remarkable improvements in the materials properties and/or in the overall process. However, the concept behind microwave heating of metal powders has not been fully understood till now, as it is well known that bulk metals reflect microwaves. The progress of microwave sintering of copper metal powder compacts was investigated via combining both in-situ electrical resistivity and dilatometry measurements that give important information about microstructural changes with respect to the inter-particle electrical contacts during sintering. The sintering behavior of copper metal powders was depending on the type of the gas used, particle size, the initial green density, the soaking sintering time and the thin oxide layer on the particles surfaces. The thin copper oxide native layer (ceramics) that thermodynamically formed on the particles surfaces under normal handling and ambient environmental conditions had a very critical and important role in the microwave absorption and interaction, the sintering behavior and the microstructural changes. This finding could help to have a fundamental understanding of why MW’s interact with copper metal powder in a different way than its bulk at room temperature, i.e. why a given metal powder could be heated using microwaves while its bulk reflects it

  10. Effects of sintering atmosphere and initial particle size on sintering of gadolinia-doped ceria; Efeitos da atmosfera de sinterizacao e do tamanho de particula na sinterizacao da ceria-gadolinia

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Rafael Morgado

    2014-07-01

    The effects of the sintering atmosphere and initial particle size on the sintering of ceria containing 10 mol% gadolinia (GdO{sub 1.5}) were systematically investigated. The main physical parameter was the specific surface area of the initial powders. Nanometric powders with three different specific surface areas were utilized, 210 m{sup 2}/g, 36,2 m{sup 2}/g e 7,4 m{sup 2}/g. The influence on the densification, and micro structural evolution were evaluated. The starting sintering temperature was verified to decrease with increasing on the specific surface area of raw powders. The densification was accelerated for the materials with smaller particle size. Sintering paths for crystallite growth were obtained. Master sintering curves for gadolinium-doped ceria were constructed for all initial powders. A computational program was developed for this purpose. The results for apparent activation energy showed noticeable dependence with specific surface area. In this work, the apparent activation energy for densification increased with the initial particle size of powders. The evolution of the particle size distributions on non isothermal sintering was investigated by WPPM method. It was verified that the grain growth controlling mechanism on gadolinia doped ceria is the pore drag for initial stage and beginning of intermediate stage. The effects of the sintering atmosphere on the stoichiometry deviation of ceria, densification, microstructure evolution, and electrical conductivity were analyzed. Inert, oxidizing, and reducing atmospheres were utilized on this work. Deviations on ceria stoichiometry were verified on the bulk materials. The deviation verified was dependent of the specific surface area and sintering atmosphere. Higher reduction potential atmospheres increase Ce{sup 3+} bulk concentration after sintering. Accelerated grain growth and lower electrical conductivities were verified when reduction reactions are significantly present on sintering. (author)

  11. Fabrication mechanism of FeSe superconductors with high-energy ball milling aided sintering process

    International Nuclear Information System (INIS)

    Zhang, Shengnan; Liu, Jixing; Feng, Jianqing; Wang, Yao; Ma, Xiaobo; Li, Chengshan; Zhang, Pingxiang

    2015-01-01

    FeSe Superconducting bulks with high content of superconducting PbO-type β-FeSe phase were prepared with high-energy ball milling (HEBM) aided sintering process. During this process, precursor powders with certain Fe/Se ratio were ball milled first then sintered. The influences of HEBM process as well as initial Fe/Se ratio on the phase evolution process were systematically discussed. With HEBM process and proper initial Fe/Se ratio, the formation of non-superconducting hexagonal δ-FeSe phase were effectively avoided. FeSe bulk with the critical temperature of 9.0 K was obtained through a simple one-step sintering process with lower sintering temperature. Meanwhile, the phase evolution mechanism of the HEBM precursor powders during sintering was deduced based on both the thermodynamic analysis and step-by-step sintering results. The key function of the HEBM process was to provide a high uniformity of chemical composition distribution, thus to successfully avoide the formation of intermediate product during sintering, including FeSe 2 and Fe 7 Se 8 . Therefore, the fundamental principal for the synthesis of FeSe superconductors were concluded as: HEBM aided sintering process, with the sintering temperature of >635 °C and a slow cooling process. - Highlights: • A novel synthesis technique was developed for FeSe based superconductors. • FeSe bulks with high Tc and high β-FeSe phase content has been obtained. • Phase evolution process for the HEBM aided sintering process was proposed

  12. Influência das energias de superfícies e interfaces na densificação durante a sinterização: um modelo geométrico The influence of surface and interface energies during sintering: a geometric approach

    Directory of Open Access Journals (Sweden)

    D. Gouvêa

    2004-06-01

    Full Text Available Devido a grande importância dada aos processos difusionais na sinterização, ou seja, a fatores cinéticos, pouco tem evoluído o conhecimento da sinterização no estado sólido do ponto de vista da energia do sistema de partículas. Alguns pesquisadores têm se esforçado em compreender a importância das energias da superfície dos poros e da interface do contorno de grão no processo de densificação e sua relação com os processos difusionais e a termodinâmica da sinterização. Contudo, pouco avanço tem sido obtido nesse sentido. O presente trabalho foi desenvolvido sobre um modelo geométrico simples de empacotamento de esferas sobre o qual foram realizados cálculos para se avaliar as variações de densidade, área específica dos poros e dos contornos de grão durante três situações: densificação sem crescimento de grãos, crescimento de grãos sem densificação e crescimento de grãos e densificação. Os resultados sugerem existir uma relação entre a evolução da microestrutura para a densificação ou não de um sistema de partículas em função da razão entre as energias do contorno de grão e da superfície dos poros.Sintering is a diffusional process and the mechanism of mass transport is assumed to control the phenomenon. Minor attention has been paid on the influence of surface and interface energies during sintering. Even if some works have tried to understand the influence of the modifications of the pore and grain boundary surfaces in the densification during sintering and their relationships with the difusional process, modest progresses have been reached. This work was developed from a simple model of packing spheres, allowing for calculating simultaneously the variation of pore, grain boundary and density for three situations: densification without grain growth, grain growth without densification and grain growth with densification. The results suggest a relationship between the microestrutural evolution

  13. Titanium Powder Sintering in a Graphite Furnace and Mechanical Properties of Sintered Parts

    OpenAIRE

    Changzhou Yu; Peng Cao; Mark Ian Jones

    2017-01-01

    Recent accreditation of titanium powder products for commercial aircraft applications marks a milestone in titanium powder metallurgy. Currently, powder metallurgical titanium production primarily relies on vacuum sintering. This work reported on the feasibility of powder sintering in a non-vacuum furnace and the tensile properties of the as-sintered Ti. Specifically, we investigated atmospheric sintering of commercially pure (C.P.) titanium in a graphite furnace backfilled with argon and stu...

  14. Production of sintered alumina from powder; optimization of the sinterized parameters for the maximum mechanical resistence

    International Nuclear Information System (INIS)

    Rocha, J.C. da.

    1981-02-01

    Pure, sinterized alumina and the optimization of the parameters of sinterization in order to obtain the highest mechanical resistence are discussed. Test materials are sinterized from a fine powder of pure alumina (Al 2 O 3 ), α phase, at different temperatures and times, in air. The microstructures are analysed concerning porosity and grain size. Depending on the temperature or the time of sinterization, there is a maximum for the mechanical resistence. (A.R.H.) [pt

  15. Sintering of nanoscale silver coated textiles, a new approach to attain conductive fabrics for electromagnetic shielding

    International Nuclear Information System (INIS)

    Kardarian, Kasra; Busani, Tito; Osório, Inês; Domingos, Helena; Igreja, Rui; Franco, Ricardo; Cortez, João

    2014-01-01

    The demand for conductive textiles is increasing, owing to the need for lightweight and flexible conductive materials for a variety of applications, including electromagnetic shielding of electronic equipment. Herein we propose a process that combines the in situ synthesis of silver nanoparticles at the textile fibre surface followed by sintering of the nanoparticles to obtain highly conductive fabrics. The formation of silver particles at the nanoscale allowed for sintering to be performed efficiently, at reduced temperature and time, bestowing fabrics with high conductivity and capability of shielding electromagnetic radiation. The nanoparticle synthesis method entailed the precipitation of 2.0 g L −1 silver nitrate and further reduction with citrate, with the formation of a deposit of silver nanoparticles at the fabric surface. The amount of silver deposited (up to 195 mg of silver per g of fabric) resulted in moderate electrical conductivity with sheet resistance of 803 Ω/sq. Upon sintering, this value decreased dramatically to 5.2 Ω/sq. The sintering process was monitored by SEM, which showed that sintering at 200 °C for 30 min resulted in maximal electrical conductivity with the lowest amount of silver deposited, while forming a homogenous surface. Fabrics submitted to these sintering conditions maintained their sheet resistance and shielding effectiveness values, even after eight washing cycles. - Highlights: • Assembly of highly conductive textiles capable of shielding electromagnetic radiation. • Procedure combines in situ synthesis of AgNPs at the textile surface and sintering. • AgNPs formed by precipitation of AgNO 3 and reduction with citrate, as observed by SEM. • Sintering increased dramatically conductivity and shielding effectiveness. • Treated fabrics maintained conductivity and shielding effectiveness after 8 washes

  16. Sintering of nanoscale silver coated textiles, a new approach to attain conductive fabrics for electromagnetic shielding

    Energy Technology Data Exchange (ETDEWEB)

    Kardarian, Kasra [REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal); Busani, Tito [CENIMAT/I3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal); Osório, Inês [REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal); Domingos, Helena; Igreja, Rui [CENIMAT/I3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal); Franco, Ricardo [REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal); Cortez, João, E-mail: j.cortez@fct.unl.pt [REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal)

    2014-10-15

    The demand for conductive textiles is increasing, owing to the need for lightweight and flexible conductive materials for a variety of applications, including electromagnetic shielding of electronic equipment. Herein we propose a process that combines the in situ synthesis of silver nanoparticles at the textile fibre surface followed by sintering of the nanoparticles to obtain highly conductive fabrics. The formation of silver particles at the nanoscale allowed for sintering to be performed efficiently, at reduced temperature and time, bestowing fabrics with high conductivity and capability of shielding electromagnetic radiation. The nanoparticle synthesis method entailed the precipitation of 2.0 g L{sup −1} silver nitrate and further reduction with citrate, with the formation of a deposit of silver nanoparticles at the fabric surface. The amount of silver deposited (up to 195 mg of silver per g of fabric) resulted in moderate electrical conductivity with sheet resistance of 803 Ω/sq. Upon sintering, this value decreased dramatically to 5.2 Ω/sq. The sintering process was monitored by SEM, which showed that sintering at 200 °C for 30 min resulted in maximal electrical conductivity with the lowest amount of silver deposited, while forming a homogenous surface. Fabrics submitted to these sintering conditions maintained their sheet resistance and shielding effectiveness values, even after eight washing cycles. - Highlights: • Assembly of highly conductive textiles capable of shielding electromagnetic radiation. • Procedure combines in situ synthesis of AgNPs at the textile surface and sintering. • AgNPs formed by precipitation of AgNO{sub 3} and reduction with citrate, as observed by SEM. • Sintering increased dramatically conductivity and shielding effectiveness. • Treated fabrics maintained conductivity and shielding effectiveness after 8 washes.

  17. Report on in-situ studies of flash sintering of uranium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Raftery, Alicia Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-24

    fabricate nuclear fuel. First, the pure UO2-based system shows promising behavior with flash sintering, but composite systems are likely to show better sintering behavior with spark plasma sintering. Efforts to develop these methods should therefore be tailored towards the likelihood of success. Additionally, modeling is a rapidly developing aspect of current flash sintering research and should be used in parallel with experiments. Ultimately, ongoing flash sintering studies on various materials, like those summarized in this report, are rapidly contributing to the feasibility of controlling this method for use in the future.

  18. Alternative sintering methods compared to conventional thermal sintering for inkjet printed silver nanoparticle ink

    NARCIS (Netherlands)

    Niittynen, J.; Abbel, R.; Mäntysalo, M.; Perelaer, J.; Schubert, U.S.; Lupo, D.

    2014-01-01

    In this contribution several alternative sintering methods are compared to traditional thermal sintering as high temperature and long process time of thermal sintering are increasing the costs of inkjet-printing and preventing the use of this technology in large scale manufacturing. Alternative

  19. Protocol for Ultralow-Temperature Ceramic Sintering: An Integration of Nanotechnology and the Cold Sintering Process.

    Science.gov (United States)

    Guo, Hanzheng; Baker, Amanda; Guo, Jing; Randall, Clive A

    2016-11-22

    The sintering process is an essential step in taking particulate materials into dense ceramic materials. Although a number of sintering techniques have emerged over the past few years, the sintering process is still performed at high temperatures. Here we establish a protocol to achieve dense ceramic solids at extremely low temperatures (sustainable manufacturing practices.

  20. Robust Toponym Resolution Based on Surface Statistics

    Science.gov (United States)

    Sano, Tomohisa; Nobesawa, Shiho Hoshi; Okamoto, Hiroyuki; Susuki, Hiroya; Matsubara, Masaki; Saito, Hiroaki

    Toponyms and other named entities are main issues in unknown word processing problem. Our purpose is to salvage unknown toponyms, not only for avoiding noises but also providing them information of area candidates to where they may belong. Most of previous toponym resolution methods were targeting disambiguation among area candidates, which is caused by the multiple existence of a toponym. These approaches were mostly based on gazetteers and contexts. When it comes to the documents which may contain toponyms worldwide, like newspaper articles, toponym resolution is not just an ambiguity resolution, but an area candidate selection from all the areas on Earth. Thus we propose an automatic toponym resolution method which enables to identify its area candidates based only on their surface statistics, in place of dictionary-lookup approaches. Our method combines two modules, area candidate reduction and area candidate examination which uses block-unit data, to obtain high accuracy without reducing recall rate. Our empirical result showed 85.54% precision rate, 91.92% recall rate and .89 F-measure value on average. This method is a flexible and robust approach for toponym resolution targeting unrestricted number of areas.

  1. Sintered soft magnetic materials. Properties and applications

    Science.gov (United States)

    Bas, J. A.; Calero, J. A.; Dougan, M. J.

    2003-01-01

    A comparison is presented of the characteristics and production requirements of a variety of materials used to produce sintered soft magnetic parts. These include pure iron, phosphorous-iron, silicon-iron, nickel-iron, and cobalt-iron, together with new coated materials based on encapsulated iron powders. In these bonded materials an organic and/or inorganic insulator is used to coat the metallic powder particles giving a magnetic composite. The suitability of the different materials for use in both direct and alternating current applications is reviewed, and examples are provided of their application in both the automotive and other sectors. The results of a comparative study of motors using stators and rotors based on both conventional laminated materials and the insulated iron powders are presented, in which the new materials show advantages of reduced hysteresis losses at high frequencies, and isotropy of magnetic properties. Nevertheless, the applications of these materials in electrical motors requires the modification of existing designs.

  2. Effect of the sintering temperature and time on phase assemblage and electrical conductivity of zirconia-scandia-ceria

    International Nuclear Information System (INIS)

    Grosso, R.L.; Muccillo, E.N.S.

    2012-01-01

    ZrO 2 -based solid electrolytes have been extensively studied over the last decades for application in solid oxide fuel cells (SOFCs). Zirconia containing scandia and ceria solid electrolyte is a potential candidate in SOFCs operating at intermediate temperatures (600 - 800 deg C). In this work, commercial ZrO 2 containing 10 mol% Sc 2 O 3 and 1 mol% CeO 2 was sintered by the conventional and two-step methods. Several sintering conditions were evaluated by varying the temperature as well as the residence time. High values of sintered density (> 98%) were obtained. A careful selection of the sintering conditions is necessary in order to obtain a single cubic phase, as revealed by X-ray diffraction results. The grain growth can be controlled in specimens sintered by the two-step method. The electrical conductivity show similar behavior for the grain component independent on the sintering method. (author)

  3. Magnetic properties of sintered high energy sm-co and nd-fe-b magnets

    Directory of Open Access Journals (Sweden)

    Talijan Nadežda M.

    2006-01-01

    Full Text Available Magnetic properties of permanent magnetic materials based on intermetallic compounds of Sm-Co and Nd-Fe-B are in direct dependence on the microstructure. In the first part of this paper, having in mind the importance of the regime of sintering and heat treatment to obtain the optimal magnetic structure, yet another approach in defining the most adequate technological parameters of the sintering process for applied heat treatment conditions was made. The goal of these investigations was to use the correlation that exists between sintering conditions (temperature and time and intensity of the diffraction peak of the (111 plane of the SmCo5 phase to optimize. In the second part a brief overview of high energy magnetic materials based on Nd-Fe-B is presented with special emphasis to the current research and development of high remanent nanocomposite magnetic materials based on Nd-Fe-B alloys with a reduced Nd content. Part of experimental results gained during research of the sintering process of SmCo5 magnetic materials were realized and published earlier. The scientific meeting devoted to the 60th anniversary of Frankel’s theory of sintering was an opportunity to show once more the importance and role of sintering in optimization of the magnetic microstructure of sintered Sm Co5 magnetic materials.

  4. Liquid phase sintered SiC. Processing and transformation controlled microstructure tailoring

    Directory of Open Access Journals (Sweden)

    V.A. Izhevskyi

    2000-10-01

    Full Text Available Microstructure development and phase formation processes during sintering of silicon carbide based materials with AlN-Y2O3, AlN-Yb2O3, and AlN-La2O3 sintering additives were investigated. Densification of the materials occurred by liquid-phase sintering mechanism. Proportion of alpha- and beta-SiC powders in the initial mixtures was a variable parameter, while the molar ratio of AlN/RE2O3, and the total amount of additives (10 vol. % were kept constant. Shrinkage behavior during sintering in interrelation with the starting composition of the material and the sintering atmosphere was investigated by high temperature dilatometry. Kinetics of b-SiC to a-SiC phase transformation during post-sintering heat treatment at temperatures 1900-1950 °C was studied, the degree of phase transformation being determined by quantitative x-ray analysis using internal standard technique. Evolution of microstructure resulting from beta-SiC to alpha-SiC transformation was followed up by scanning electron microscopy on polished and chemically etched samples. Transformation-controlled grain growth mechanism similar to the one observed for silicon nitride based ceramics was established. Possibility of in-situ platelet reinforced dense SiC-based ceramics fabrication with improved mechanical properties by means of sintering was shown.

  5. Hydrophobic and Metallophobic Surfaces: Highly Stable Non-wetting Inorganic Surfaces Based on Lanthanum Phosphate Nanorods.

    Science.gov (United States)

    Sankar, Sasidharan; Nair, Balagopal N; Suzuki, Takehiro; Anilkumar, Gopinathan M; Padmanabhan, Moothetty; Hareesh, Unnikrishnan Nair S; Warrier, Krishna G

    2016-03-09

    Metal oxides, in general, are known to exhibit significant wettability towards water molecules because of the high feasibility of synergetic hydrogen-bonding interactions possible at the solid-water interface. Here we show that the nano sized phosphates of rare earth materials (Rare Earth Phosphates, REPs), LaPO4 in particular, exhibit without any chemical modification, unique combination of intrinsic properties including remarkable hydrophobicity that could be retained even after exposure to extreme temperatures and harsh hydrothermal conditions. Transparent nanocoatings of LaPO4 as well as mixture of other REPs on glass surfaces are shown to display notable hydrophobicity with water contact angle (WCA) value of 120° while sintered and polished monoliths manifested WCA greater than 105°. Significantly, these materials in the form of coatings and monoliths also exhibit complete non-wettability and inertness towards molten metals like Ag, Zn, and Al well above their melting points. These properties, coupled with their excellent chemical and thermal stability, ease of processing, machinability and their versatile photo-physical and emission properties, render LaPO4 and other REP ceramics utility in diverse applications.

  6. Studies on sintering kinetics of ThO2-UO2 pellets using master sintering curve approach

    Science.gov (United States)

    Banerjee, Joydipta; Ray, Aditi; Kumar, Arun; Banerjee, Srikumar

    2013-11-01

    Three different compositions of thoria-urania pellets, namely, ThO2-4%UO2, ThO2-10%UO2 and ThO2-20%UO2 (all compositions are in wt% containing natural uranium) were fabricated by Coated Agglomerate Pelletization (CAP) process. The compositions studied in the current paper are the proposed fuels for the forthcoming Indian Advanced Heavy water Reactor (AHWR) and its variant based on low enriched uranium. Sintering kinetics of ThO2-x%UO2 (x = 4, 10, 20) green pellets, thus fabricated, were evaluated using constant heating rate experiments in a vertical dilatometer. Activation energies of sintering (Q) were estimated using Arrhenius plot as proposed by Wang and Raj. Master Sintering Curves (MSC) for the above three compositions were constructed using shrinkage data. A FORTRAN program, employing optimization based numerical algorithm for fitting relative density vs. work of sintering data with sigmoid function, was used for this purpose. The apparent activation energies, evaluated using MSC principle, appear to be consistent with the values obtained by Arrhenius plot.

  7. Novel sintered ceramic materials incorporated with EAF carbon steel slag

    Science.gov (United States)

    Karayannis, V.; Ntampegliotis, K.; Lamprakopoulos, S.; Papapolymerou, G.; Spiliotis, X.

    2017-01-01

    In the present research, novel sintered clay-based ceramic materials containing electric arc furnace carbon steel slag (EAFC) as a useful admixture were developed and characterized. The environmentally safe management of steel industry waste by-products and their valorization as secondary resources into value-added materials towards circular economy have attracted much attention in the last years. EAF Carbon steel slag in particular, is generated during the manufacture of carbon steel. It is a solid residue mainly composed of rich-in- Fe, Ca and Si compounds. The experimental results show that the beneficial incorporation of lower percentages of EAFC up to 6%wt. into ceramics sintered at 950 °C is attained without significant variations in sintering behavior and physico-mechanical properties. Further heating up to 1100 °C strongly enhances the densification of the ceramic microstructures, thus reducing the porosity and strengthening their mechanical performance. On the other side, in terms of thermal insulation behavior as well as energy consumption savings and production cost alleviation, the optimum sintering temperature appears to be 950 °C.

  8. Preparation and Characterization of Sintered Microporous Polymeric Filters

    Directory of Open Access Journals (Sweden)

    Meysam Salari

    2017-09-01

    Full Text Available Nowadays filtration process is increasingly used in various areas such as water purification, food industries, filtering the air dust and other separation applications. In this work, the HDPE microporous filters have been fabricated at different pressure and time conditions via sintering process and then were characterized by different techniques. It can be expected that microstructure and mechanical properties of the samples could be controlled by changing the fabrication parameters like temperature, pressure, time of the process and also by changing the properties of the resin such as powder shape, particle size and rheological properties. In the first step, by using DSC, MFI, rheology test and optical microscope, the most suitable polymeric powder for sintering process was chosen. The sintering temperature was fixed in the vicinity of melting temperature of the used HDPE powder, based on DSC result. In order to evaluate mechanical properties and porosity of the samples, the results obtained from the shear punch test, acetone drop permeability, gas permeability, transition optical microscopy and SEM, have been used; then the effect of pressure and time parameters on the characteristics of the product has been studied. Finally, it was concluded that it is possible to make microporous filters with suitable mechanical properties, using sintering process at controlled pressure and temperature conditions.It can be seen that by increasing time and pressure, on the one hand the mechanical properties of the products increase, and on the other hand, their porosity and the gas permeability of the vents decrease.

  9. Master sintering curves of two different alumina powder compacts

    Directory of Open Access Journals (Sweden)

    Vaclav Pouchly

    2009-12-01

    Full Text Available Concept of Master Sintering Curve is a strong tool for optimizing sintering schedule. The sintering behaviour can be predicted, and sintering activation energy can be calculated with the help of few dilatometric measurements. In this paper an automatic procedure was used to calculate Master Sintering Curves of two different alumina compacts. The sintering activation energies were determined as 640 kJ/mol for alumina with particle size of 240 nm, respective 770 kJ/mol for alumina with particle size of 110 nm. The possibility to predict sintering behaviour with the help of Master Sintering Curve was verified.

  10. Sintering characteristics of nano-ceramic coatings

    NARCIS (Netherlands)

    de Hosson, J.T.M.; Popma, R.

    2003-01-01

    This paper concentrates on sintering characteristics of nano-sized ceramic SiO2 particles. The sintering process is studied as a function of temperature using a conventional furnace and using a laser beam. The underlying idea is to combine the nanoceramic sol-gel concept with inkjet technology and

  11. Mechanical characteristics of microwave sintered silicon carbide

    Indian Academy of Sciences (India)

    In firing of products by conventionally sintered process, SiC grain gets oxidized producing SiO2 (∼ 32 wt%) and deteriorates the quality of the product substantially. Partially sintered silicon carbide by such a method is a useful material for a varieties of applications ranging from kiln furniture to membrane material.

  12. Kinetic analysis of boron carbide sintering

    International Nuclear Information System (INIS)

    Borchert, W.; Kerler, A.R.

    1975-01-01

    The kinetics of the sintering of boron carbide were investigated by shrinkage measurements with a high-temperature dilatometer under argon atmosphere in dependence on temperature, grain size, and pressure. The activation energies and the reaction mechanisms of the different stages of sintering were determined. (orig.) [de

  13. Sintering of ultra high molecular weight polyethylene

    Indian Academy of Sciences (India)

    Abstract. Ultra high molecular weight polyethylene (UHMWPE) is a high performance polymer having low coefficient of friction, good abrasion resistance, good chemical ... In this study, we report our results on compaction and sintering behaviour of two grades of UHMWPE with reference to the powder morphology, sintering ...

  14. Sintered-to-size FBR fuel

    International Nuclear Information System (INIS)

    Rasmussen, D.E.; Schaus, P.S.

    1984-04-01

    Fabrication of sintered-to-size PuO 2 -UO 2 fuel pellets was completed for testing of proposed FBR product specifications. Approximately 6000 pellets were fabricated to two nominal diameters and two densities by cold pressing and sintering to size. Process control and correlation between test and production batches are discussed

  15. Sintering of zirconia in high-pressure

    International Nuclear Information System (INIS)

    Kunrath, A.O.; Strohaecker, T.R.; Pereira, A.S.; Jornada, J.A.H. da; Piermarini, G.J.

    1989-01-01

    A systematic study about the sintering of zirconia hyperfines powders in high-pressure is presented. The differents conditions effect of sintering in microstructure and in hardness and tenacity properties of zirconia samples with a very fine grain is also studied. (C.G.C.) [pt

  16. Modeling the microstructural evolution during constrained sintering

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Frandsen, Henrik Lund; Tikare, V.

    A numerical model able to simulate solid state constrained sintering of a powder compact is presented. The model couples an existing kinetic Monte Carlo (kMC) model for free sintering with a finite element (FE) method for calculating stresses on a microstructural level. The microstructural respon...

  17. Modeling the Microstructural Evolution During Constrained Sintering

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Frandsen, Henrik Lund; Pryds, Nini

    2015-01-01

    A numerical model able to simulate solid-state constrained sintering is presented. The model couples an existing kinetic Monte Carlo model for free sintering with a finite element model (FEM) for calculating stresses on a microstructural level. The microstructural response to the local stress as ...

  18. Mechanical characteristics of microwave sintered silicon carbide

    Indian Academy of Sciences (India)

    Unknown

    Central Glass and Ceramic Research Institute, Kolkata 700 032, India. Abstract. The present work deals with the sintering of ... recently become an attractive area of research and deve- lopment. The major advantages of ... without the usage of sintering aids (Lee and Case 1999;. Goldstein et al 1999). Several studies have ...

  19. THE POLARIZING EFFECTS IN SINTERED KAOLIN

    African Journals Online (AJOL)

    compacted and sintered density of the ceramic have been studied, and a density — pressure relationship for before- and after-sintering conditions obtained. INTRODUCTION. Ceramics have been known to mankind for thousands of years, and have been used in construction materials. In many applications, ceramics have.

  20. The Influence of Sintering Temperature of Reactive Sintered (Ti, MoC-Ni Cermets

    Directory of Open Access Journals (Sweden)

    Marek Jõeleht

    2015-09-01

    Full Text Available Titanium-molybdenum carbide nickel cermets ((Ti, MoC-Ni were produced using high energy milling and reactive sintering process. Compared to conventional TiC-NiMo cermet sintering the parameters for reactive sintered cermets vary since additional processes are present such as carbide synthesis. Therefore, it is essential to acquire information about the suitable sintering regime for reactive sintered cermets. One of the key parameters is the final sintering temperature when the liquid binder Ni forms the final matrix and vacancies inside the material are removed. The influence of the final sintering temperature is analyzed by scanning electron microscopy. Mechanical properties of the material are characterized by transverse rupture strength, hardness and fracture toughness.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7179

  1. Surface characterization based upon significant topographic features

    Energy Technology Data Exchange (ETDEWEB)

    Blanc, J; Grime, D; Blateyron, F, E-mail: fblateyron@digitalsurf.fr [Digital Surf, 16 rue Lavoisier, F-25000 Besancon (France)

    2011-08-19

    Watershed segmentation and Wolf pruning, as defined in ISO 25178-2, allow the detection of significant features on surfaces and their characterization in terms of dimension, area, volume, curvature, shape or morphology. These new tools provide a robust way to specify functional surfaces.

  2. Surface characterization based upon significant topographic features

    International Nuclear Information System (INIS)

    Blanc, J; Grime, D; Blateyron, F

    2011-01-01

    Watershed segmentation and Wolf pruning, as defined in ISO 25178-2, allow the detection of significant features on surfaces and their characterization in terms of dimension, area, volume, curvature, shape or morphology. These new tools provide a robust way to specify functional surfaces.

  3. Influence of the Conditioning Method for Pre-Sintered Zirconia on the Shear Bond Strength of Bilayered Porcelain/Zirconia

    Directory of Open Access Journals (Sweden)

    Sebastian Spintzyk

    2016-09-01

    Full Text Available This study evaluated the bond strength of veneering porcelain with an experimental conditioner-coated zirconia. Pre-sintered Y-TZP specimens (n = 44 were divided in two groups based on conditioning type. After sintering, all sample surfaces were sandblasted and layered with veneering porcelain. Additionally, half of the specimens in each group underwent thermal cycling (10,000 cycles, 5–55 °C, and all shear bond strengths were measured. After testing, the failure mode of each fractured specimen was determined. Differences were tested by parametric and Fisher’s exact tests (α = 0.05. The differences in bond strength were not statistically significant. Adhesive fractures were dominantly observed for the non-thermal cycled specimens. After thermal cycling, the conditioner-coated group showed cohesive and mixed fractures (p = 0.0021, whereas the uncoated group showed more adhesive fractures (p = 0.0021. Conditioning of the pre-sintered Y-TZP did not change the shear bond strength of the veneering porcelain, but did improve the failure mode after thermal cycling.

  4. Influence of the Conditioning Method for Pre-Sintered Zirconia on the Shear Bond Strength of Bilayered Porcelain/Zirconia

    Science.gov (United States)

    Spintzyk, Sebastian; Yamaguchi, Kikue; Sawada, Tomofumi; Schille, Christine; Schweizer, Ernst; Ozeki, Masahiko; Geis-Gerstorfer, Jürgen

    2016-01-01

    This study evaluated the bond strength of veneering porcelain with an experimental conditioner-coated zirconia. Pre-sintered Y-TZP specimens (n = 44) were divided in two groups based on conditioning type. After sintering, all sample surfaces were sandblasted and layered with veneering porcelain. Additionally, half of the specimens in each group underwent thermal cycling (10,000 cycles, 5–55 °C), and all shear bond strengths were measured. After testing, the failure mode of each fractured specimen was determined. Differences were tested by parametric and Fisher’s exact tests (α = 0.05). The differences in bond strength were not statistically significant. Adhesive fractures were dominantly observed for the non-thermal cycled specimens. After thermal cycling, the conditioner-coated group showed cohesive and mixed fractures (p = 0.0021), whereas the uncoated group showed more adhesive fractures (p = 0.0021). Conditioning of the pre-sintered Y-TZP did not change the shear bond strength of the veneering porcelain, but did improve the failure mode after thermal cycling. PMID:28773885

  5. Some aspects of barreling in sintered plain carbon steel powder metallurgy preforms during cold upsetting

    Directory of Open Access Journals (Sweden)

    Sumesh Narayan

    2012-04-01

    Full Text Available The present research establishes a relationship of bulged diameter with densification and hydrostatic stress in forming of sintered iron (Fe powder metallurgy preforms cold upset under two different frictional conditions, namely, nil/no and graphite lubricant condition. Sintered plain carbon steel cylindrical preforms with carbon (C contents of 0, 0.35, 0.75 and 1.1% with constant initial theoretical density of 84% and aspect ratio of 0.4 and 0.6 were prepared using a suitable die-set assembly on a 1 MN capacity hydraulic press and sintered for 90 minutes at 1200 °C. Each sintered preform was cold upset under two different frictional constraints. It is seen that the degree of bulging reduces with reducing frictional constraints at the die contact surface. Further, it is found that the bulging ratio changed as a function of relative density and hydrostatic stress, respectively, according to the power law equations.

  6. Sintered ceramics having controlled density and porosity

    International Nuclear Information System (INIS)

    Brassfield, H.C.; DeHollander, W.R.; Nivas, Y.

    1980-01-01

    A new method was developed for sintering ceramic uranium dioxide powders, in which ammonium oxalate is admixed with the powder prior to being pressed into a cylindrical green body, so that the end-point density of the final nuclear-reactor fuel product can be controlled. When the green body is heated, the ammonium oxalate decomposes and leaves discrete porosity in the sintered body, which corresponds to the ammonium oxalate regions in the green body. Thus the end-point density of the sintered body is a function of the amount of ammonium oxalate added. The final density of the sintered product is about 90-97% of the theoretical. The addition of ammonium oxalate also allows control of the pore size and distribution throughout the fuel. The process leaves substantially no impurities in the sintered strucuture. (DN)

  7. PRESSURELESS SINTERING OF B4C-NANOTiB2 NANOCOMPOSITE BY ADDITION OF Fe AND Ni AS SINTERING AIDS

    Directory of Open Access Journals (Sweden)

    M. M. Mohammadi Samani

    2014-12-01

    Full Text Available B4C and its composites with TiB2 as second phase continues to be extensively used as the preferred ceramic material in military applications as armor systems for absorbing and dissipating kinetic energy from high velocity projectiles. It also exhibits a high melting point (2427 °C, and high neutron absorption cross section. Pressureless sintering of the B 4C-nanoTiB2 nanocomposite using small amount of Fe and Ni (≤3 Wt% as sintering aids was investigated in order to clarify the role of Fe and Ni additions on the mechanical and microstructural properties of B4C-nanoTiB2 nanocomposites. Different amount of Fe and Ni, mainly 1 to 3 Wt% were added to the base material. Pressureless sintering was conducted at 2175, 2225 and 2300 °C. It was found that Addition of 3 Wt% Fe and 3 wt% Ni and sintering at 2300 °C resulted in improving the density of the samples to about 99% of theoretical density. The nanocomposite samples exhibited high density, hardness, and microstructural uniformity.

  8. Topography, microhardness, and precision of fit on ready-made zirconia abutment before/after sintering process.

    Science.gov (United States)

    Kanno, Taro; Milleding, Percy; Wennerberg, Ann

    2007-09-01

    Sintering porcelain on a ceramic abutment may change the microstructure and result in aging processes that influence the mechanical properties, internal strain, and the three-dimensional form of the abutment, thus causing a possible misfit between the abutment and the fixture. The aim was to investigate topography, microhardness, and precision of fit on yttrium-stabilized zirconia (Y-TZP) abutments before/after the sintering process. Ten Y-TZP abutment samples were ground to a shape used in the clinical situation and divided at random into two groups: before/after sintering. After the surface roughness was measured on all abutments, the abutments were connected to fixture replicas, embedded in resin, and cut in the longitudinal axis. Both sides of the cut samples were measured with respect to microhardness and minimum distance between fixture and abutment surface. t-Test, one-way analysis of variance, and Bonferroni multiple comparisons were used to investigate statistical significant differences. The surface roughness (S(a) and S(dr)) after sintering was significantly higher than before sintering. The total average values of microhardness after sintering were statistically lower than before sintering with a difference of 2%. The total distance between abutment/fixture before/after sintering demonstrated no statistically significant difference. Contact between abutment/fixture was most common at the top area of the fixture. A slight decrease of microhardness and contamination of porcelain particles immediately below the veneered part were found on the Y-TZP abutment after sintering. The sintering process did not affect the precision of fit.

  9. Small-angle neutron scattering study of high-pressure sintered detonation nanodiamonds

    International Nuclear Information System (INIS)

    Kidalov, S. V.; Shakhov, F. M.; Lebedev, V. T.; Orlova, D. N.; Grushko, Yu. S.

    2011-01-01

    The structure of detonation diamonds sintered at a high pressure (7 GPa) and temperatures of 1200–1700°C has been investigated by small-angle neutron scattering. It is shown that sintering leads to an increase in the particle size from 6 to 30 nm and established that this increase is due to the chainlike oriented attachment of particles. This study supplements the oriented-attachment model, which was suggested based on the X-ray diffraction spectra of detonation nanodiamonds (DNDs) sintered under the same conditions.

  10. Small-angle neutron scattering study of high-pressure sintered detonation nanodiamonds

    Energy Technology Data Exchange (ETDEWEB)

    Kidalov, S. V.; Shakhov, F. M., E-mail: fedor.shakhov@mail.ioffe.ru [Ioffe Physical-Technical Institute of the Russian Academy of Sciences (Russian Federation); Lebedev, V. T.; Orlova, D. N.; Grushko, Yu. S. [Russian Academy of Sciences, Konstantinov St. Petersburg Nuclear Physics Institute (Russian Federation)

    2011-12-15

    The structure of detonation diamonds sintered at a high pressure (7 GPa) and temperatures of 1200-1700 Degree-Sign C has been investigated by small-angle neutron scattering. It is shown that sintering leads to an increase in the particle size from 6 to 30 nm and established that this increase is due to the chainlike oriented attachment of particles. This study supplements the oriented-attachment model, which was suggested based on the X-ray diffraction spectra of detonation nanodiamonds (DNDs) sintered under the same conditions.

  11. Sintering of Multilayered Porous Structures: Part II – Experiments and Model Applications

    DEFF Research Database (Denmark)

    Ni, De Wei; Olevsky, Eugene; Esposito, Vincenzo

    2013-01-01

    for the determination of the shear viscosities ratio of the layer fully dense materials. This original technique enables the derivation of all the input parameters for the bilayer sintering modeling from one set of optical dilatometry measurements, including the conversion between real and specific times of sintering......, the layers’ relative sintering intensity, and the shear viscosities ratio of the layer fully dense materials. These optical dilatometry measurements are conducted simultaneously for each individual layer and for a symmetric trilayered porous structure based on the two layers utilized in the bilayered system...

  12. The effect of sintering temperature on the properties of metakaolin artificial lightweight aggregate

    Science.gov (United States)

    Risdanareni, Puput; Ekaputri, Januarti Jaya; Triwulan

    2017-09-01

    This paper describes the effect of sintering temperature on the properties of metakaolin artificial lightweight aggregate (ALWA). Three types of sintering temperature applied in this research are 900°C, 1000°C and 1100°C, whereas ALWA without sintering treatment is used as data control. Properties of metakaolin ALWA investigated in this research are specific gravity, water absorption, physical appearance, porosity and aggregate impact value. Standard test used in this research is ASTM, AFNOR and British Standart. Based on the research results, it can be concluded that sintering temperature is greatly affect on the properties of metakaolin ALWA. Increased sintering temperatures can lead to decreased values of specific gravity, increased pore amount, increased aggregate impact value, increased water absorption values and change aggregate color to be more bright. Referring to the test results, sintering temperature not exceeding 900°C is recommended, as it provides good physical and mechanical properties to ALWA metakaolin. Further research on applying different method of sintering temperature and investigating the microstructure of ALWA metakaolin should be accomplished in order to improve the characteristic of ALWA metakaolin.

  13. Sintering kinetics in (Th, 5%U)O2 in the initial stage

    International Nuclear Information System (INIS)

    Ferraz, W.B.; Cardoso, P.E.; Lameiras, F.S.

    1990-01-01

    The initial sintering kinetics of (Th,5%U)O 2 pellets, in air and Ar-4%H 2 atmosphere in the temperature range 950-1175 0 C, was examined by dilatometric analysis. It was observed that the sintering in air occurs at a lower temperature. Based on Johnson's model, the volume diffusion and the grain boundary diffusion were assumed to cause the linear shrinkage. From the general equation of this model Δl/l=kt n the values n approx. 0,49 and n≥ 0,33, for sintering in air and Ar-4%H 2 atmosphere respectively, were observed. These results revealed that the initial sintering kinetics in air is controlled by volume diffusion and in Ar-4%H 2 atmosphere is weakly predominated by the grain boundary diffusion. The estimated volumetric diffusion coefficient for the sintering in air is about three orders of magnitude greater than in Ar-4%H 2 atmosphere, indicating a strong influence of the stoichiometrie on the sintering kinetics. The grain boundary diffusion coefficient appears to be independent of the sintering atmosphere. (author) [pt

  14. On the Mechanism of Microwave Flash Sintering of Ceramics

    Directory of Open Access Journals (Sweden)

    Yury V. Bykov

    2016-08-01

    Full Text Available The results of a study of ultra-rapid (flash sintering of oxide ceramic materials under microwave heating with high absorbed power per unit volume of material (10–500 W/cm3 are presented. Ceramic samples of various compositions—Al2O3; Y2O3; MgAl2O4; and Yb(LaO2O3—were sintered using a 24 GHz gyrotron system to a density above 0.98–0.99 of the theoretical value in 0.5–5 min without isothermal hold. An analysis of the experimental data (microwave power; heating and cooling rates along with microstructure characterization provided an insight into the mechanism of flash sintering. Flash sintering occurs when the processing conditions—including the temperature of the sample; the properties of thermal insulation; and the intensity of microwave radiation—facilitate the development of thermal runaway due to an Arrhenius-type dependency of the material’s effective conductivity on temperature. The proper control over the thermal runaway effect is provided by fast regulation of the microwave power. The elevated concentration of defects and impurities in the boundary regions of the grains leads to localized preferential absorption of microwave radiation and results in grain boundary softening/pre-melting. The rapid densification of the granular medium with a reduced viscosity of the grain boundary phase occurs via rotation and sliding of the grains which accommodate their shape due to fast diffusion mass transport through the (quasi-liquid phase. The same mechanism based on a thermal runaway under volumetric heating can be relevant for the effect of flash sintering of various oxide ceramics under a dc/ac voltage applied to the sample.

  15. Casting of particle-based hollow shapes

    Science.gov (United States)

    Menchhofer, Paul

    1995-01-01

    A method for the production of hollow articles made of a particle-based material; e.g., ceramics and sintered metals. In accordance with one aspect of the invention, a thermally settable slurry containing a relatively high concentration of the particles is coated onto a prewarmed continuous surface in a relatively thin layer so that the slurry is substantially uniformly coated on the surface. The heat of the prewarmed surface conducts to the slurry to initiate a reaction which causes the slurry to set or harden in a shape conforming to the surface. The hardened configurations may then be sintered to consolidate the particles and provide a high density product.

  16. Characteristics of products generated by selective sintering and stereolithography rapid prototyping processes

    Science.gov (United States)

    Cariapa, Vikram

    1993-01-01

    The trend in the modern global economy towards free market policies has motivated companies to use rapid prototyping technologies to not only reduce product development cycle time but also to maintain their competitive edge. A rapid prototyping technology is one which combines computer aided design with computer controlled tracking of focussed high energy source (eg. lasers, heat) on modern ceramic powders, metallic powders, plastics or photosensitive liquid resins in order to produce prototypes or models. At present, except for the process of shape melting, most rapid prototyping processes generate products that are only dimensionally similar to those of the desired end product. There is an urgent need, therefore, to enhance the understanding of the characteristics of these processes in order to realize their potential for production. Currently, the commercial market is dominated by four rapid prototyping processes, namely selective laser sintering, stereolithography, fused deposition modelling and laminated object manufacturing. This phase of the research has focussed on the selective laser sintering and stereolithography rapid prototyping processes. A theoretical model for these processes is under development. Different rapid prototyping sites supplied test specimens (based on ASTM 638-84, Type I) that have been measured and tested to provide a data base on surface finish, dimensional variation and ultimate tensile strength. Further plans call for developing and verifying the theoretical models by carefully designed experiments. This will be a joint effort between NASA and other prototyping centers to generate a larger database, thus encouraging more widespread usage by product designers.

  17. Microstructural optimization of solid-state sintered silicon carbide

    Science.gov (United States)

    Vargas-Gonzalez, Lionel R.

    Silicon carbide armor, manufactured through solid-state sintering, liquid-phase sintering, and hot-pressing, is being used by the United States Armed Forces for personal and vehicle protection. There is a lack of consensus, however, on which process results in the best-performing ballistic armor. Previous studies have shown that hot-pressed ceramics processed with secondary oxide and/or rare earth oxides, which exhibit high fracture toughness, perform well in handling and under ballistic impact. This high toughness is due to the intergranular nature of the fracture, creating a tortuous path for cracks and facilitating crack deflection and bridging. However, it has also been shown that higher-hardness sintered SiC materials might perform similarly or better to hot-pressed armor, in spite of the large fracture toughness deficit, if the microstructure (density, grain size, purity) of these materials are improved. In this work, the development of theoretically-dense, clean grain boundary, high hardness solid-state sintered silicon carbide (SiC) armor was pursued. Boron carbide and graphite (added as phenolic resin to ensure the carbon is finely dispersed throughout the microstructure) were used as the sintering aids. SiC batches between 0.25--4.00 wt.% carbon were mixed and spray dried. Cylindrical pellets were pressed at 13.7 MPa, cold-isostatically pressed (CIP) at 344 MPa, sintered under varying sintering soaking temperatures and heating rates, and varying post hot-isostatic pressing (HIP) parameters. Carbon additive amounts between 2.0--2.5 wt.% (based on the resin source), a 0.36 wt.% B4C addition, and a 2050°C sintering soak yielded parts with high sintering densities (˜95.5--96.5%) and a fine, equiaxed microstructure (d50 = 2.525 mum). A slow ramp rate (10°C/min) prevented any occurrence of abnormal grain growth. Post-HIPing at 1900°C removed the remaining closed porosity to yield a theoretically-dense part (3.175 g/cm3, according to rule of mixtures). These

  18. Study of the sintering process and the formation of a (Th, U) O2 solid solution

    International Nuclear Information System (INIS)

    Tomasi, Roberto

    1979-01-01

    The effect of some variables in the (Th, U) O 2 sintering process and solid solution formation was studied. ThO 2 , U 3 O 8 and UO 2 powder were prepared. The ThO 2 powders were obtained by calcination of thorium at 500 and 750 deg C; the U 3 O 8 powders were derived from the calcination of ADU at 660 and 750 deg C; the UO 2 powder were prepared from ADU and from ATCU. The different characteristics of these materials were determined by measurements of surface area, by scanning electron microscopy, tap density tests, X-ray diffractometry and by measurements of the O/U ratios. The oxide mixtures were chosen in order to produce a final composition with 10 w/o of UO 2 . A mixture of thorium oxalate and ADU was also prepared by calcining these salts in air at 700 deg C, in order to obtain certain amount of solid solution prior to sintering. The sintering operations were developed in an argon atmosphere at temperatures between 1400 and 1700 deg C, during interval varying from 1 to 4 hours. The effect of the mixture characteristics on the sintering process and solid solution formation were studied considering the results of densification, microstructure development and X-ray diffractometry. The ThO 2 powder characteristics have a main effect on the mixtures compactability and sinterability, the higher calcining temperatures increasing the green density, but decreasing the final density of the sintered pellets. In the sintering of mixtures containing U 3 O 3 , this oxide is reduced to UO 2 and it is possible to obtain pellets with density and microstructures similar to those produced from mixtures containing UO 2 . But if oxygen in excess is present during sintering, the process is affected, occurring exaggerated grain growth. The densification results were related to the Coble's kinetics equation for second stage of sintering, valid for bulk diffusion, grain boundary acting as vacancy sinks. The sintering activation energy is independent from the powder starting

  19. THERMAL AND ELECTRIC FIELDS AT SPARK PLASMA SINTERING OF THERMOELECTRIC MATERIALS

    Directory of Open Access Journals (Sweden)

    L. P. Bulat

    2014-09-01

    Full Text Available Problem statement. Improvement of thermoelectric figure of merit is connected with the usage of nanostructured thermoelectric materials fabricated from powders by the spark plasma sintering (SPS method. Preservation of powder nanostructure during sintering is possible at optimum temperature modes of thermoelectrics fabrication. The choice of these modes becomes complicated because of anisotropic properties of semiconductor thermoelectric materials. The decision of the given problem by sintering process simulation demands the competent approach to the problem formulation, a correct specification of thermoelectric properties, the properties of materials forming working installation, and also corrects boundary conditions. The paper deals with the efficient model for sintering of thermoelectrics. Methods. Sintering process of the bismuth telluride thermoelectric material by means of SPS-511S installation is considered. Temperature dependences of electric and thermal conductivities of bismuth telluride, and also temperature dependences of installation elements materials are taken into account. It is shown that temperature distribution in the sample can be defined within the limits of a stationary problem. The simulation is carried out in the software product Comsol Multiphysics. Boundary conditions include convective heat exchange and also radiation under Stefan-Boltzmann law. Results. Computer simulation of electric and thermal processes at spark plasma sintering is carried out. Temperature and electric potential distributions in a sample are obtained at the sintering conditions. Determinative role of graphite compression mould in formation of the temperature field in samples is shown. The influence of geometrical sizes of a graphite compression mould on sintering conditions of nanostructured thermoelectrics is analyzed. Practical importance. The optimum sizes of a cylindrical compression mould for fabrication of volume homogeneous samples based on

  20. Melting and Sintering of Ashes

    DEFF Research Database (Denmark)

    Hansen, Lone Aslaug

    1997-01-01

    , the biggest deviations being found for salt rich (i.e. straw derived) ashes.A simple model assuming proportionality between fly ash fusion and deposit formation was found to be capable of ranking deposition rates for the different straw derived fly ashes, whereas for the fly ashes from coal/straw co......-firing, the model only had a qualitative agreement with the measured ash deposit formation rates.Sintering measurements were carried out by means of compression strength testing of ash pellets. This method showed to not be applicable for the salt rich fly ash derived from straw combustion. For the fly ashes...... have been employed in a simple model for prediction of ash deposit formation, the results of which have been compared to ash deposition formation rates measured at the respective boilers.The ash fusion results were found to directly reflect the ash compositional data:a) Fly ashes and deposits from...

  1. Reaction Sintering of Mexican Dolomite – Zircon Mixtures

    Directory of Open Access Journals (Sweden)

    Rodríguez-Galicia, J. L.

    2005-08-01

    Full Text Available The present work has been conducted aiming to develop additional phase [Ca3SiO5, Ca2SiO4 and/or Ca3Mg(SiO42]-bonded magnesia refractory materials via reaction sintering of dolomite-zircon mixtures, employing a Mexican dolomite containing an excess of 3 wt% of CaCO3. The study was based on phase equilibrium data extracted from the quaternary system CaO – MgO – SiO2 – ZrO2, to put it more precisely, base on the projection from the MgO-apex of the liquidus surface of the primary crystallization volume of MgO onto the opposite face of the above mentioned quaternary system. The refractory materials designed within this system were obtained by attrition milling, followed by cold isostatic pressing and high temperature reaction sintering. All initial and produced materials were characterized by ICP-AES, XRF, XRD, SEM-EDX, DTA and TG analyses. The results obtained indicated that reaction sintering of dolomite-zircon mixtures is an interesting route to produce MgO-CaZrO3-additional phase refractory materials.

    El propósito de este trabajo ha sido obtener materiales refractarios de magnesia, aglomerados con una fase adicional [Ca3SiO5, Ca2SiO4 y/o Ca3Mg(SiO42], mediante la sinterización reactiva de mezclas de dolomita-circón, empleando para ello una dolomita mexicana que contiene un exceso de 3% en peso de CaCO3. El estudio se basa en la información relativa al equilibrio de fases del sistema CaO – MgO – SiO2 – ZrO2. En concreto se usa la proyección, desde el vértice del MgO, de la superficie de liquidus del volumen de cristalización primaria de este, hacia la cara opuesta de sistema cuaternario. Los materiales refractarios diseñados se han obtenido por molienda de atrición, seguida de un prensado isostático en frío y sinterización reactiva a alta temperatura. Todos los materiales, iniciales y finales, han sido caracterizados mediante ICPAES, FRX, DRX, MEB-EDX, ATD y TG. Los resultados obtenidos indican que la sinterizaci

  2. Science of sintering and its future

    International Nuclear Information System (INIS)

    Ristic, M.M.

    1975-01-01

    Some new books published by M.Yu. Baljshin, V.A. Ivensen, V.V. Skorohod and others are characterized by the wish to give a complete approach to the problems of sintering theory. Bearing just this in mind while writing the book ''An Essay on the Generalization of Sintering Theory'' (G.V.Samsonov, M.M. Ristic with the collaborators) an idea was born: to ask the most eminent scientists in this field to present their own opinions on the theme ''The Science of Sintering and Modern Views on its Future''. There were formed 18 questions, given in the appendix to be answered. The received answers were presented in 10 chapters of this book. The fourth part of the book consists of papers of eminent scientists engaged in the field of sintering science (some of which were published here for the first time). This material is published in the book with the consent of the authors and these original contributions provide a more profound knowledge of sintering. The initial idea, that the book should have a monograph character and in which the answers would serve as some data on the latest notions of the science of sintering, was somewhat changed since the original opinions of individual scientists are given in the book and these, are sometimes very contradictory. This, in fact, gives the book a special charm because the unsolved problems in the science of sintering are most evidently stressed in this way

  3. [Study on friction and wear properties of dental zirconia ceramics processed by microwave and conventional sintering methods].

    Science.gov (United States)

    Guoxin, Hu; Ying, Yang; Yuemei, Jiang; Wenjing, Xia

    2017-04-01

    This study evaluated the wear of an antagonist and friction and wear properties of dental zirconia ceramic that was subjected to microwave and conventional sintering methods. Ten specimens were fabricated from Lava brand zirconia and randomly assigned to microwave and conventional sintering groups. A profile tester for surface roughness was used to measure roughness of the specimens. Wear test was performed, and steatite ceramic was used as antagonist. Friction coefficient curves were recorded, and wear volume were calculated. Finally, optical microscope was used to observe the surface morphology of zirconia and steatite ceramics. Field emission scanning electron microscopy was used to observe the microstructure of zirconia. Wear volumes of microwave and conventionally sintered zirconia were (6.940±1.382)×10⁻², (7.952±1.815) ×10⁻² mm³, respectively. Moreover, wear volumes of antagonist after sintering by the considered methods were (14.189±4.745)×10⁻², (15.813±3.481)×10⁻² mm³, correspondingly. Statistically significant difference was not observed in the wear resistance of zirconia and wear volume of steatite ceramic upon exposure to two kinds of sintering methods. Optical microscopy showed that ploughed surfaces were apparent in zirconia. The wear surface of steatite ceramic against had craze, accompanied by plough. Scanning electron microscopy showed that zirconia was sintered compactly when subjected to both conventional sintering and microwave methods, whereas grains of zirconia sintered by microwave alone were smaller and more uniform. Two kinds of sintering methods are successfully used to produce dental zirconia ceramics with similar friction and wear properties.
.

  4. Immobilization of Uranium Silicides in Sintered Glass

    International Nuclear Information System (INIS)

    Mateos, P.; Russo, D.O.; Heredia, A.D.; Sanfilippo, M.

    2003-01-01

    High activity nuclear spent fuels vitrification by fusion is a well known technology which has industrial scale in France, England, Japan, EEUU. Borosilicates glasses are used in this process.Sintered glasses are an alternative to the immobilization task in which there is also a wide experience around the world.The available technics are: cold pressing and sintering , hot-pressing and hot isostatic pressing.This work compares Borosilicates and Iron silicates sintered glasses behaviour when different ammounts of nuclear simulated waste is added

  5. Solidification of HLLW into sintered ceramics

    International Nuclear Information System (INIS)

    O-Oka, K.; Ohta, T.; Masuda, S.; Tsunoda, N.

    1979-01-01

    Simulated HLLW from the PNC reprocessing plant at Tokai was solidified into sintered ceramics by normal sintering or hot-pressing with addition of some oxides. Among various ceramic products obtained so far, the most preferable was nepheline-type sintered solids formed with addition of SiO 2 and Al 2 O 3 to the simulated waste calcine. The solid shows advantageous properties in leach rate and mechanical strength, which suggest that the ceramic solids were prepared with additions of ZrO 2 or MnO 2 , and some of them showed good characteristics

  6. Effect of sintering temperature and heating mode on consolidation of ...

    Indian Academy of Sciences (India)

    Microwave sintering was performed in 2.45 GHz multimode microwave furnace at temperatures ranging from 570–630 °C. Microwave sintering at a heating rate of as high as 22°C/min resulted in ∼55% reduction of processing time as compared to conventional sintering. A lower sintered density observed in the case of ...

  7. Sintering of nano crystalline o silicon carbide doping with

    Indian Academy of Sciences (India)

    Sinterable silicon carbide powders were prepared by attrition milling and chemical processing of an acheson type -SiC. Pressureless sintering of these powders was achieved by addition of aluminium nitride together with carbon. Nearly 99% sintered density was obtained. The mechanism of sintering was studied by ...

  8. Liquid Phase Sintering of Highly Alloyed Stainless Steel

    DEFF Research Database (Denmark)

    Mathiesen, Troels

    1996-01-01

    of boride to AISI 316L type steels have previously been studied, but were found to be sensitive to intergranular corrosion due to formation of intermetallic phases rich in chromium and molybdenum. In order to improve this system further, new investigations have focused on the use of higher alloyed stainless......Liquid phase sintering of stainless steel is usually applied to improve corrosion resistance by obtaining a material without an open pore system. The dense structure normally also give a higher strength when compared to conventional sintered steel. Liquid phase sintrering based on addition...... calculations, made by use of the computer programme Thermo-Calc, were also correlated with the observed microstructure. Corrosion measurements by electrochemical techniques show no signs of intergranular corrosion in contrast to the case of AISI 316L based steel. Furthermore most of the material showed...

  9. Sintering behavior of Y2O3 doped Bi2O3 ceramics

    Directory of Open Access Journals (Sweden)

    Alizadeh M.

    2007-01-01

    Full Text Available Influence of sintering temperature and soaking time on densification of Bi2O3 samples doped with 25%mol Y2O3 was investigated by shrinkage and relative density measurements. Samples were sintered in air at different temperatures in the range of 800 to 1000°C for 24 hr. The results showed that samples sintered at 950°C have the maximum relative density. Several samples were sintered at 950°C for duration of 0 to 36 hr in order to evaluate the effect of soaking time on densification of samples. It was found that the samples were sintered at 950°C for 36hr had higher relative density than others did for smaller time duration X-ray diffraction (XRD analyses detected δ -Bi2O3 as the sole stable phase in all samples. Scanning Electron Microscopy (SEM investigation of fractured surface of the samples showed that porosities decrease by increasing of sintering temperature and grow by further increasing of temperature.

  10. Thermal Stability of Silver Paste Sintering on Coated Copper and Aluminum Substrates

    Science.gov (United States)

    Pei, Chun; Chen, Chuantong; Suganuma, Katsuaki; Fu, Guicui

    2018-01-01

    The thermal stability of silver (Ag) paste sintering on coated copper (Cu) and aluminum (Al) substrates has been investigated. Instead of conventional zincating or nickel plating, magnetron sputtering was used to achieve coating with titanium (Ti) and Ag. Silicon (Si) chips were bonded to coated Cu and Al substrates using a mixture of submicron Ag flakes and particles under 250°C and 0.4 MPa for 30 min. The joints were then subject to aging testing at 250°C for duration of 200 h, 500 h, and 1000 h. Two types of joints exhibited satisfactory initial shear strength above 45 MPa. However, the shear strength of the joints on Al substrate decreased to 28 MPa after 1000 h of aging, while no shear strength decline was detected for the joints on Cu substrate. Fracture surface analysis revealed that the vulnerable points of the two types of joints were (1) the Ag layer and (2) the interface between the Ti layer and Cu substrate. Based on the results of scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDS), and simulations, cracks in the Ag layer were identified as the cause of the shear strength degradation in the joints on Al substrate. The interface evolution of the joints on Cu substrate was ascribed to Cu migration and discontinuity points that initialized in the Ti layer. This study reveals that Al exhibited superior thermal stability with sintered Ag paste.

  11. Ferroelectric based catalysis: Switchable surface chemistry

    Science.gov (United States)

    Kakekhani, Arvin; Ismail-Beigi, Sohrab

    2015-03-01

    We describe a new class of catalysts that uses an epitaxial monolayer of a transition metal oxide on a ferroelectric substrate. The ferroelectric polarization switches the surface chemistry between strongly adsorptive and strongly desorptive regimes, circumventing difficulties encountered on non-switchable catalytic surfaces where the Sabatier principle dictates a moderate surface-molecule interaction strength. This method is general and can, in principle, be applied to many reactions, and for each case the choice of the transition oxide monolayer can be optimized. Here, as a specific example, we show how simultaneous NOx direct decomposition (into N2 and O2) and CO oxidation can be achieved efficiently on CrO2 terminated PbTiO3, while circumventing oxygen (and sulfur) poisoning issues. One should note that NOx direct decomposition has been an open challenge in automotive emission control industry. Our method can expand the range of catalytically active elements to those which are not conventionally considered for catalysis and which are more economical, e.g., Cr (for NOx direct decomposition and CO oxidation) instead of canonical precious metal catalysts. Primary support from Toyota Motor Engineering and Manufacturing, North America, Inc.

  12. Conformal-Based Surface Morphing and Multi-Scale Representation

    Directory of Open Access Journals (Sweden)

    Ka Chun Lam

    2014-05-01

    Full Text Available This paper presents two algorithms, based on conformal geometry, for the multi-scale representations of geometric shapes and surface morphing. A multi-scale surface representation aims to describe a 3D shape at different levels of geometric detail, which allows analyzing or editing surfaces at the global or local scales effectively. Surface morphing refers to the process of interpolating between two geometric shapes, which has been widely applied to estimate or analyze deformations in computer graphics, computer vision and medical imaging. In this work, we propose two geometric models for surface morphing and multi-scale representation for 3D surfaces. The basic idea is to represent a 3D surface by its mean curvature function, H, and conformal factor function λ, which uniquely determine the geometry of the surface according to Riemann surface theory. Once we have the (λ, H parameterization of the surface, post-processing of the surface can be done directly on the conformal parameter domain. In particular, the problem of multi-scale representations of shapes can be reduced to the signal filtering on the λ and H parameters. On the other hand, the surface morphing problem can be transformed to an interpolation process of two sets of (λ, H parameters. We test the proposed algorithms on 3D human face data and MRI-derived brain surfaces. Experimental results show that our proposed methods can effectively obtain multi-scale surface representations and give natural surface morphing results.

  13. W/Cu composites produced by low temperature Pulse Plasma Sintering

    International Nuclear Information System (INIS)

    Rosinski, M.S.; Fortuna, E.; Michalski, A.J.; Kurzydlowski, K.J.

    2006-01-01

    The plasma facing components (PFCs) must withstand the thermal, mechanical and neutron loads under cyclic mode of operation and vacuum. Despite that PFCs of ITER and demonstration reactors must assure reliability and long in service lifetime. For that reason PFCs are designed to be made of beryllium, tungsten or carbon fibre composites armours and copper based heat sink material. Such design concepts can only be used if joining methods of these dissimilar materials are resolved. Several techniques have been developed for joining W and Cu e. g. casting of pure Cu onto W, high temperature brazing, direct diffusion bonding or CVDs of W onto Cu. The main problem in the development of such joints is the large difference in the coefficients of thermal expansion, CTE (alpha Cu > 4 alpha W) and elastic modula (ECu > 0.2 EW). These differences result in large stresses at the W/Cu interfaces during manufacturing and/or during operation, which may lead to cracking or delamination reducing lifetime of the components. Possible solution to this problem is the use of W-Cu composites (FGM). W-Cu composites are widely used for spark erosion electrodes, in heavy duty circuit breakers and as heat sinks of microelectronic devices. They are commonly produced by infiltration of a porous sintered tungsten by liquid copper. Other technological route is powder metallurgy. Coatings can be produced by low pressure plasma spraying. All these methods, however, are known to have some disadvantages. For infiltration there is a 30 wt.% limit of Cu content while for powder metallurgy and plasma spraying techniques porosity is of concern. In our work the W-Cu composites of different composition were produced by pulse plasma sintering (PPS). This new method utilizes pulsed high electric discharges to heat the powders under uniaxial load. The arc discharges clean surface of powder particles and intensify diffusion. The total sintering time is reduced to several minutes. In our investigations various

  14. Implementation Challenges for Sintered Silicon Carbide Fiber Bonded Ceramic Materials for High Temperature Applications

    Science.gov (United States)

    Singh, M.

    2011-01-01

    During the last decades, a number of fiber reinforced ceramic composites have been developed and tested for various aerospace and ground based applications. However, a number of challenges still remain slowing the wide scale implementation of these materials. In addition to continuous fiber reinforced composites, other innovative materials have been developed including the fibrous monoliths and sintered fiber bonded ceramics. The sintered silicon carbide fiber bonded ceramics have been fabricated by the hot pressing and sintering of silicon carbide fibers. However, in this system reliable property database as well as various issues related to thermomechanical performance, integration, and fabrication of large and complex shape components has yet to be addressed. In this presentation, thermomechanical properties of sintered silicon carbide fiber bonded ceramics (as fabricated and joined) will be presented. In addition, critical need for manufacturing and integration technologies in successful implementation of these materials will be discussed.

  15. Inkjet printable nanosilver suspensions for enhanced sintering quality in rapid manufacturing

    International Nuclear Information System (INIS)

    Bai, John G; Creehan, Kevin D; Kuhn, Howard A

    2007-01-01

    Inkjet printable nanosilver suspensions were prepared by dispersing 30 nm silver particles into a water-based binder system to enhance the sintering quality in rapid manufacturing. During three-dimensional printing (3DP), the nanosilver suspensions were inkjet printed onto repetitively spread microsilver powder for selective joining. Since the nanosilver particles in the suspensions can be sintered at relatively low temperatures to bond the neighbouring microsilver powder, they were used to provide the continuous bonding strength of the manufacturing parts during the heat-up procedure of the sintering operation. Comparative study shows that the silver parts printed using the nanosilver suspension were significantly enhanced in sintering quality than those printed using the binder system, especially when the silver parts had thin or small features with high aspect ratios

  16. Effect of sintering temperatures on titanium matrix composites reinforced by ceramic particles

    Energy Technology Data Exchange (ETDEWEB)

    Romero, F.; Amigo, V.; Busquets, D.; Klyatskina, E. [Mechanical and Materials Engineering Department. Polytechnical University of Valencia, Valencia (Spain)

    2005-07-01

    Titanium and titanium composites have a potential use in aerospace and biotechnology industries, and nowadays in others like sports and fashion ones. In this work composite materials, based on titanium matrix reinforced with ceramic particles, have been developed. PM route is used to obtain compact and sintered samples. TiN and TiAl powders, are milled with Ti powder in different volumetric percentages in a ball mill. These mixtures are pressed in a uniaxial press and sintered in a vacuum furnace at different temperatures between 1180 to 1220 deg. C. Porosity of samples is analysed, before and after the sintering process, by Archimedes technique and by image analysis. Mechanical properties and the reinforcement particles influence in the titanium matrix are studied by flexion test in green and sintered states, and by hardness and microhardness tests. Complimentarily, a microstructural analysis is carried out by optical and electron microscopy, and the reactivity between the reinforce particles and titanium matrix are studied. (authors)

  17. U3O8 microspheres sintering kinetics

    International Nuclear Information System (INIS)

    Godoy, A.L.E.

    1986-01-01

    U 3 O 8 microspheres sintering kinetics was determined using a hot-stage optical microscopy apparatus, able to reach temperature up to 1350 0 C in controlled atmospheres. The sintered material had its microstructure analysed by optical and electron microscopy. The microspheres were characterized initialy utilizing X-ray diffractometry and thermogravimetry. The equation which describes the microspheres shrinkage in function of the time was obtained using finite difference analysis X-ray diffractometry indicated hexagonal structure for the microspheres main starting material, ammonium diuranate thermogravimetric analysis showed reduction of this material to U 3 O 8 at 600 0 C. Ceramography results showed 5 hours sintered microspheres grain sizes G vary with the temperature. Sintered U 3 O 8 micrographs compared with published results for UO 2 , indicate similar homogeneity microstructural characteristics and suggest the processed micorspheres to be potentially useful as nuclear fuels. (Author) [pt

  18. Reduction of Injection Pressure for Thin Walled Molding using the Laser Metal Sintered Mold

    OpenAIRE

    米山, 猛; 内藤, 圭亮; 阿部, 諭; 宮丸, 充

    2010-01-01

    Using milling combined laser metal sintering, porous surface has been fabricated on the thin walled cavity closed by the surrounded thick cavity in the injection mold. Resin flows into the cavity of 2mm thick at first around the thin part and then flows into the thin cavity of 0.2mm thick with 11mm square by packing pressure. The packing pressure for filling the thin part was compared among laser metal sintered mold with or without porous surface, steel mold with or without porous block. The ...

  19. Thermal barrier coating resistant to sintering

    Science.gov (United States)

    Subramanian, Ramesh; Seth, Brij B.

    2004-06-29

    A device (10) is made, having a ceramic thermal barrier coating layer (16) characterized by a microstructure having gaps (18) with a sintering inhibiting material (22) disposed on the columns (20) within the gaps (18). The sintering resistant material (22) is stable over the range of operating temperatures of the device (10), is not soluble with the underlying ceramic layer (16) and is applied by a process that is not an electron beam physical vapor deposition process.

  20. Experimental sintering of ash at conduit conditions and implications for the longevity of tuffisites

    Science.gov (United States)

    Gardner, James E.; Wadsworth, Fabian B.; Llewellin, Edward W.; Watkins, James M.; Coumans, Jason P.

    2018-03-01

    Escape of gas from magma in the conduit plays a crucial role in mitigating explosivity. Tuffisite veins—ash-filled cracks that form in and around volcanic conduits—represent important gas escape pathways. Sintering of the ash infill decreases its porosity, eventually forming dense glass that is impermeable to gas. We present an experimental investigation of surface tension-driven sintering and associated densification of rhyolitic ash under shallow conduit conditions. Suites of isothermal (700-800 °C) and isobaric H2O pressure (20 and 40 MPa) experiments were run for durations of 5-90 min. Obsidian powders with two different size distributions were used: 1-1600 μm (mean size = 89 μm), and 63-400 μm (mean size = 185 μm). All samples evolved similarly through four textural phases: phase 1—loose and cohesion-less particles; phase 2—particles sintered at contacts and surrounded by fully connected tortuous pore space of up to 40% porosity; phase 3—continuous matrix of partially coalesced particles that contain both isolated spherical vesicles and connected networks of larger, contorted vesicles; phase 4—dense glass with 2-5% fully isolated vesicles that are mainly spherical. Textures evolve faster at higher temperature and higher H2O pressure. Coarse samples sinter more slowly and contain fewer, larger vesicles when fully sintered. We quantify the sintering progress by measuring porosity as a function of experimental run-time, and find an excellent collapse of data when run-time is normalized by the sintering timescale {λ}_s=η \\overline{R}/σ , where η is melt viscosity, \\overline{R} is mean particle radius, and σ is melt-gas surface tension. Because timescales of diffusive H2O equilibration are generally fast compared to those of sintering, the relevant melt viscosity is calculated from the solubility H2O content at experimental temperature and pressure. We use our results to develop a framework for estimating ash sintering rates under shallow

  1. Evaluation of retention of cemented laser-sintered crowns on unmodified straight narrow implant abutments.

    Science.gov (United States)

    Kilicarslan, Mehmet Ali; Ozkan, Pelin

    2013-01-01

    A common problem with cemented crowns is inadequate retention at the crown-abutment interface. The aim of this study was to compare the retention of new laser-sintered cobalt-chromium alloy crowns to the retention of cobalt-chromium alloy crowns fabricated with a traditional casting technique with and without an alloy primer. Twenty-four metallic crowns per casting technique were fabricated, and surface roughness values were recorded with a profilometer. Alloy primer was applied to half the specimens, and all crowns were luted with resin cement. After 24 hours, specimens were subjected to tensile force application with a universal testing machine. The effect of the cement amount was evaluated with an analytic balance. The results were compared using the Kruskal-Wallis multiple-comparison test. The Spearman correlation was used to determine correlations between crown retention and cement weight. The laser-sintered crowns (2.72 μm) were rougher than conventionally cast crowns. The mean load to failure values were as follows: 455.10 ± 192.69 Ncm for conventional crowns, 565.52 ± 112.87 Ncm for conventional crowns with alloy primer, 534.78 ± 130.15 Ncm for laser-sintered crowns, and 678.60 ± 212.83 Ncm for laser-sintered crowns with alloy primer. Laser-sintered crowns (10.10 ± 2.15 mg) showed a significant difference in terms of cement weight compared with cast crowns. In addition, negative correlations were found for retention and cement weight between all groups, except for the laser-sintered group without alloy primer. Retentive forces were significantly higher for laser-sintered crowns than for conventionally cast crowns. An increase in the surface roughness and the application of alloy primers led to an increase in the adhesive bonding of resin cements to metal alloys. It was concluded that a reduction in cement weight improved retention.

  2. Analysis of Laser Sintering Technology

    Directory of Open Access Journals (Sweden)

    Vladislav Markovič

    2014-02-01

    Full Text Available The new, high-tech development and customization is one ofthe most important factors in promoting the country‘s economicgrowth indicators. The economic downturn in the industryrequires technology and equipment using a minimumof raw materials and providing maximum performance. Thisstatement perfectly describes the innovative, forward-looking,cost-effective laser powder sintering (SLS technology. Here,thanks to the latest engineering achievements, product surfacesare modified and improved, they gain new characteristics. SLSis viable in automobile, engineering, construction, aerospace,aircraft, printing, medical and other areas.In order to create a product which meets the standards andtechnical documentation it is necessary to use and ensure highquality of raw materials, high-end equipment, qualified personnel,the working environment with proper climatic conditions, ergonomics,etc. But all of these, the quality of the product becomesthe decisive indicators meaningless if know how to properly selectthe laser processing operation. Scanning speed, beam power,pulse frequency, protective gases, powder layer thickness – allof them are the physical and mechanical characteristics of thechange in a small range changes the quality of the product of thefuture, the field of application and performance characteristics.

  3. Electric field-assisted sintering of nanocrystalline hydroxyapatite for biomedical applications

    Science.gov (United States)

    Tran, Tien Bich

    As the main inorganic component of bone, hydroxyapatite (HA, Ca 10(PO4)6(OH)2) should be an ideal candidate in biomaterials selection. When grain sizes are in the nanometric regime, protein adsorption and cell adhesion are enhanced, while strength, hardness, and wear resistance are improved. Unfortunately, low phase stability, poor sinterability, and a tendency towards exaggerated grain coarsening challenge full densification of nanocrystalline hydroxyapatite by conventional sintering methods. The field-assisted sintering technique (FAST) has successfully consolidated a variety of nanocrystalline metals and ceramics in dramatically reduced times. The sintering enhancements observed during FAST can be attributed to thermal and athermal effects. The rapid heating rates (up to ˜1000ºC/min) afforded by FAST contribute a significant thermal effect. Since fast heating rates reduce powder exposure to sub-sintering temperatures, non-densifying surface diffusion is limited. The athermal effects of FAST are less well understood and can include plasma generation, dielectric breakdown, particle surface cleaning, grain boundary pinning, and space charge effects. Applying the field-assisted sintering technique to nanocrystalline hydroxyapatite yielded surprising results. Deviations from conventional densification behavior were observed, with dehydroxylation identified as the most deleterious process to densification as well as mechanical and biological performance. Since hydroxyapatite is not a stable phase at high temperatures and low water partial pressure atmospheres, desintering due to dehydroxylation-related pore formation became apparent during Stage III sintering. In fact, the degree of desintering and pore formation increased with the extent of Stage III sintering and grain growth. The atomic rearrangements taking place during grain boundary migration are believed to favor the formation of more-stable oxyapatite through hydroxyapatite dehydroxylation. This behavior was

  4. Field assisted sintering of refractory carbide ceramics and fiber reinforced ceramic matrix composites

    Science.gov (United States)

    Gephart, Sean

    The sintering behaviors of silicon carbide (SiC) and boron carbide (B4C) based materials were investigated using an emerging sintering technology known as field assisted sintering technology (FAST), also known as spark plasma sintering (SPS) and pulse electric current sintering (PECS). Sintering by FAST utilizes high density electric current, uniaxial pressure, and relatively high heating rate compared to conventional sintering techniques. This effort investigated issues of scaling from laboratory FAST system (25 ton capacity) to industrial FAST system (250 ton capacity), as well as exploring the difference in sintering behavior of single phase B4C and SiC using FAST and conventional sintering techniques including hot-pressing (HP) and pressure-less sintering (PL). Materials were analyzed for mechanical and bulk properties, including characterization of density, hardness, fracture toughness, fracture (bend) strength, elastic modulus and microstructure. A parallel investigation was conducted in the development of ceramic matrix composites (CMC) using SiC powder impregnation of fiber compacts followed by FAST sintering. The FAST technique was used to sinter several B4C and SiC materials to near theoretical density. Preliminary efforts established optimized sintering temperatures using the smaller 25 ton laboratory unit, targeting a sample size of 40 mm diameter and 8 mm thickness. Then the same B4C and SiC materials were sintered by the larger 250 ton industrial FAST system, a HP system, and PL sintering system with a targeted dense material geometry of 4 x 4 x 0.315 inches3 (101.6 x 101.6 x 8 mm3). The resulting samples were studied to determine if the sintering dynamics and/or the resulting material properties were influenced by the sintering technique employed. This study determined that FAST sintered ceramic materials resulted in consistently higher averaged values for mechanical properties as well as smaller grain size when compared to conventionally sintered

  5. Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Lavrinenko, Andrei

    2013-01-01

    In this paper we present the efficient design of functional thin-film metamaterial devices with the effective surface conductivity approach. As an example, we demonstrate a graphene based perfect absorber. After formulating the requirements to the perfect absorber in terms of surface conductivity...... we investigate the properties of graphene wire medium and graphene fishnet metamaterials and demonstrate both narrowband and broadband tunable absorbers.......In this paper we present the efficient design of functional thin-film metamaterial devices with the effective surface conductivity approach. As an example, we demonstrate a graphene based perfect absorber. After formulating the requirements to the perfect absorber in terms of surface conductivity...

  6. Development of a Sinter/HIP process for the superalloy Udimet 700 with investigations of the influence of the sinteratmosphere

    International Nuclear Information System (INIS)

    Wenning, L.

    1991-03-01

    The oxidation free treatment of reactive metalpowders like the nickel base alloy Udimet 700 demands sufficient oxygen free sinteratmospheres in nowadays sinter-HIP plants are not reachable. The reported work deals with the development of a sinter-HIP process which enables a sufficient low partial pressure of oxygen by scavenging the Udimet 700 powder packings with argon during vacuum sintering. By this the sinter hindering oxidation is avoided. Intensive investigations of the sinteratmosphere with a mass spectrometer and a zirconium oxide probe verify the reduction of the oxygen content of the residual gas atmosphere reached with different processes. In a second part the applicability of the scavenging gas process during the capsule free sinter-HIP treatment of metall injection moulded (MIM) samples is shown. (orig.) [de

  7. Nickel and Copper-Free Sintered Structural Steels Containing Mn, Cr, Si, and Mo Developed for High Performance Applications

    Directory of Open Access Journals (Sweden)

    Cias A.

    2017-03-01

    Full Text Available In an attempt to study the sinterability of potential high-strength nickel-free sintered structural steels containing Mn, Cr, Si and Mo compacts were prepared based on sponge and water atomised iron powders and on Astaloy prealloyed powders. To these were admixed ferromanganese, ferroslicon, and graphite. The samples were sintered at temperatures 1120 and 1250°C in laboratory tube furnaces in hydrogen, hydrogen-nitrogen atmospheres with dew points better than -60°C or in nitrogen in a semiclosed container in a local microatmosphere. After sintering the samples were slowly cooled or sinterhardened. Generally resultant microstructures were inhomogeneous, consisted of pearlite/ bainite/martensite, but were characterised by an absence of oxide networks. Sintering studies performed over a range of compositions have shown that superior strength, ranging beyond 900 MPa, along with reasonable tensile elongation, can be achieved with these new steels.

  8. Misfit and microleakage of implant-supported crown copings obtained by laser sintering and casting techniques, luted with glass-ionomer, resin cements and acrylic/urethane-based agents.

    Science.gov (United States)

    Castillo-Oyagüe, Raquel; Lynch, Christopher D; Turrión, Andrés S; López-Lozano, José F; Torres-Lagares, Daniel; Suárez-García, María-Jesús

    2013-01-01

    This study evaluated the marginal misfit and microleakage of cement-retained implant-supported crown copings. Single crown structures were constructed with: (1) laser-sintered Co-Cr (LS); (2) vacuum-cast Co-Cr (CC) and (3) vacuum-cast Ni-Cr-Ti (CN). Samples of each alloy group were randomly luted in standard fashion onto machined titanium abutments using: (1) GC Fuji PLUS (FP); (2) Clearfil Esthetic Cement (CEC); (3) RelyX Unicem 2 Automix (RXU) and (4) DentoTemp (DT) (n=15 each). After 60 days of water ageing, vertical discrepancy was SEM-measured and cement microleakage was scored using a digital microscope. Misfit data were subjected to two-way ANOVA and Student-Newman-Keuls multiple comparisons tests. Kruskal-Wallis and Dunn's tests were run for microleakage analysis (α=0.05). Regardless of the cement type, LS samples exhibited the best fit, whilst CC and CN performed equally well. Despite the framework alloy and manufacturing technique, FP and DT provide comparably better fit and greater microleakage scores than did CEC and RXU, which showed no differences. DMLS of Co-Cr may be a reliable alternative to the casting of base metal alloys to obtain well-fitted implant-supported crowns, although all the groups tested were within the clinically acceptable range of vertical discrepancy. No strong correlations were found between misfit and microleakage. Notwithstanding the framework alloy, definitive resin-modified glass-ionomer (FP) and temporary acrylic/urethane-based (DT) cements demonstrated comparably better marginal fit and greater microleakage scores than did 10-methacryloxydecyl-dihydrogen phosphate-based (CEC) and self-adhesive (RXU) dual-cure resin agents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Microwave combustion and sintering without isostatic pressure

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1998-01-01

    In recent years interest has grown rapidly in the application of microwave energy to the processing of ceramics, composites, polymers, and other materials. Advances in the understanding of microwave/materials interactions will facilitate the production of new ceramic materials with superior mechanical properties. One application of particular interest is the use of microwave energy for the mobilization of uranium for subsequent redeposition. Phase III (FY98) will focus on the microwave assisted chemical vapor infiltration tests for mobilization and redeposition of radioactive species in the mixed sludge waste. Uranium hexachloride and uranium (IV) borohydride are volatile compounds for which the chemical vapor infiltration procedure might be developed for the separation of uranium. Microwave heating characterized by an inverse temperature profile within a preformed ceramic matrix will be utilized for CVI using a carrier gas. Matrix deposition is expected to commence from the inside of the sample where the highest temperature is present. The preform matrix materials, which include aluminosilicate based ceramics and silicon carbide based ceramics, are all amenable to extreme volume reduction, densification, and vitrification. Important parameters of microwave sintering such as frequency, power requirement, soaking temperature, and holding time will be investigated to optimize process conditions for the volatilization of uranyl species using a reactive carrier gas in a microwave chamber

  10. Pressureless sintering and mechanical properties of hydroxyapatite/functionalized multi-walled carbon nanotube composite.

    Science.gov (United States)

    Abden, M J; Afroze, J D; Alam, M S; Bahadur, N M

    2016-10-01

    This work aims to study the optimum sintering conditions of hydroxyapatite/functionalized multi-walled carbon nanotube (HA/f-MWCNT) composite with improved mechanical properties for bone implant applications using a pressureless sintering technique. The carboxyl functional group (COOH) introduced by the acid treatment on the MWCNT surface by which HA molecules are grafted onto the surface of functionalized MWCNT with strong interfacial bonding. The composite exhibits a lower hemolytic rate of 1.27%. The flexible nature of f-MWCNT makes them bend and attached to the HA grains, indicates that f-MWCNT bear significant stress by sharing a portion of the load and it leads to improve their mechanical properties. The maximum Vickers hardness of 3.6GPa is obtained for the HA/f-MWCNT composite sintered at 1100°C, whereas the highest compressive strength of 481.7MPa and fracture toughness of 2.38MPa.m(1/2) achieved after sintering at 1150°C. This study demonstrated that HA/f-MWCNT composite create suitable structures by vacuum pressureless sintering technique to satisfy the mechanical requirements for bone tissues. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Effect of Alloying Type and Lean Sintering Atmosphere on the Performance of PM Components

    Science.gov (United States)

    Sundaram, M. Vattur; Shvab, R.; Millot, S.; Hryha, E.; Nyborg, L.

    2017-12-01

    In order to be cost effective and to meet increasing performance demands, powder metallurgy steel components require continuous improvement in terms of materials and process development. This study demonstrates the feasibility of manufacturing structural components using two different alloys systems, i.e. lean Cr-prealloyed and diffusion bonded water atomised powders with different processing conditions. The components were sintered at two different temperatures, i.e. 1120 and 1250 °C for 30 minutes in three different atmospheres: vacuum, N2- 10%H2 atmosphere as well as lean N2-5%H2-0.5%CO-(0.1-0.4)%CH4 sintering atmosphere. Components after sintering were further processed by either low pressure carburizing, sinterhardening or case hardening. All trials were performed in the industrial furnaces to simulate the actual production of the components. Microstructure, fractography, apparent and micro hardness analyses were performed close to the surface and in the middle of the sample to characterize the degree of sintering (temperature and atmosphere) and the effect of heat treatment. In all cases, components possess mostly martensitic microstructure with a few bainitic regions. The fracture surface shows well developed sinter necks. Inter- and trans-granular ductile and cleavage fracture modes are dominant and their fraction is determined by the alloy and processing route.

  12. Understanding the Biocompatibility of Sintered Calcium Phosphate with Ratio of [Ca]/[P] = 1.50

    Directory of Open Access Journals (Sweden)

    Feng-Lin Yen

    2012-01-01

    Full Text Available Biocompatibility of sintered calcium phosphate pellets with [Ca]/[P] = 1.50 was determined in this study. Calcium pyrophosphate (CPP phase formed on the sintered pellets immersed in a normal saline solution for 14 d at 37∘C. The intensities of hydroxyapatite (HA reflections in the X-ray diffraction (XRD patterns of the pellets were retrieved to as-sintered state. The pellet surface morphology shows that CPP crystallites were clearly present and make an amorphous calcium phosphate (ACP to discriminate against become to the area of slice join together. In addition, the intensities of the CPP reflections in the XRD patterns were the highest when the pellets were immersed for 28 d. When the CPP powders were extracted from the pellets after immersion in the solution for 14 d, the viability of 3T3 cells remained above 90% for culture times from 1 to 4 d. The pellet surface morphology observed using optical microscopy showed that the cells did not adhere to the bottom of the sintered pellets when cultured for 4 d; however, some CPP phase precipitates were formed, as confirmed by XRD. In consequence, the results suggest that the sintered HA powders are good materials for use in biomedical applications because of their good biocompatibility.

  13. [Characterization of alumina adobe and sintered body of GI-infiltrated ceramic].

    Science.gov (United States)

    Wang, H; Chao, Y; Liao, Y; Liang, X; Zhu, Z; Gao, W

    2001-06-01

    This study was conducted to elucidate the mechanism of formation of porous structure by investigating the porosity of the alumina adobe and sintered body of GI-II Infiltrate Ceramic, and its role in strengthening and toughening this kind of ceramic composite. The alumina powder size-mass distribution was obtained by BI-XDC powder size analysis device; the open pore parameters of alumina adobe and sintered body were analyzed using the mercury pressure method. Their fracture surfaces were observed under scanning electronic microscope. Fine powder had two main size groups of 0.09-0.1 micron and 0.2-0.5 micron, respectively, and coarse powder, with size between 1.5 to 4.5 microns, occupied the majority of powder mass. Alumina adobe's pores became larger after sintering. The median pore radii of adobe and sintered body were 0.2531 micron and 0.3081 micron, respectively; the average pore radii changed from 0.0956 micron to 0.1102 micron. Under scanning electronic microscope, fine alumina powders were fused partially together and their surfaces were blunted, but coarse powders did not show such phenomena. The alumina size distribution contributes to the formation of porous structure of alumina sintered body. This porous structure is not only the shape skeleton but also the mechanical skeleton of GI-II Infiltrated Ceramic. It plays an important role in raising the mechanical properties of this kind of ceramic composite.

  14. Comparison of Dental Prostheses Cast and Sintered by SLM from Co-Cr-Mo-W Alloy

    Directory of Open Access Journals (Sweden)

    Myszka D.

    2016-12-01

    Full Text Available The article presents the results of a comparative analysis of the metal substructure for dental prosthesis made from a Co-Cr-Mo-W alloy by two techniques, i.e. precision investment casting and selective laser melting (SLM. It was found that the roughness of the raw surface of the SLM sinter is higher than the roughness of the cast surface, which is compensated by the process of blast cleaning during metal preparation for the application of a layer of porcelain. Castings have a dendritic structure, while SLM sinters are characterized by a compact, fine-grain microstructure of the hardness higher by about 100 HV units. High performance and high costs of implementation the SLM technology are the cause to use it for the purpose of many dental manufacturers under outsourcing rules. The result is a reduction in manufacturing costs of the product associated with dental work time necessary to scan, designing and treatment of sinter compared with the time needed to develop a substructure in wax, absorption in the refractory mass, casting, sand blasting and finishing. As a result of market competition and low cost of materials, sinter costs decrease which brings the total costs related to the construction unit making using the traditional method of casting, at far less commitment of time and greater predictability and consistent sinter quality.

  15. Characterization of an aluminum-filled polyamide powder for applications in selective laser sintering

    International Nuclear Information System (INIS)

    Mazzoli, Alida; Moriconi, Giacomo; Pauri, Marco Giuseppe

    2007-01-01

    Solid free-form fabrication (SFF) techniques use layer-based manufacturing to create physical objects directly from computer-generated models. Using an additive approach to manufacture shapes, SFF systems join liquid, powder or sheet materials. Selective laser sintering (SLS) is a SFF technique by which parts are built layer-by-layer offering the key advantage of the direct manufacturing of functional parts. In SLS, a laser beam is traced over the surface of a tightly compacted powder made of thermoplastic material. In this paper is characterized a new aluminum-filled polyamide powder developed for applications in SLS. This material is promising for many applications that require a metallic look of the part, good finishing properties, high stiffness and higher part quality

  16. Examining Mechanical Strength Characteristics of Selective Inhibition Sintered HDPE Specimens Using RSM and Desirability Approach

    Science.gov (United States)

    Rajamani, D.; Esakki, Balasubramanian

    2017-09-01

    Selective inhibition sintering (SIS) is a powder based additive manufacturing (AM) technique to produce functional parts with an inexpensive system compared with other AM processes. Mechanical properties of SIS fabricated parts are of high dependence on various process parameters importantly layer thickness, heat energy, heater feedrate, and printer feedrate. In this paper, examining the influence of these process parameters on evaluating mechanical properties such as tensile and flexural strength using Response Surface Methodology (RSM) is carried out. The test specimens are fabricated using high density polyethylene (HDPE) and mathematical models are developed to correlate the control factors to the respective experimental design response. Further, optimal SIS process parameters are determined using desirability approach to enhance the mechanical properties of HDPE specimens. Optimization studies reveal that, combination of high heat energy, low layer thickness, medium heater feedrate and printer feedrate yielded superior mechanical strength characteristics.

  17. Corrosion of Ti6Al4V pins produced by direct metal laser sintering

    Science.gov (United States)

    de Damborenea, J. J.; Arenas, M. A.; Larosa, Maria Aparecida; Jardini, André Luiz; de Carvalho Zavaglia, Cecília Amélia; Conde, A.

    2017-01-01

    Direct Metal Laser Sintering (DMLS) technique allows the manufacturing a wide variety of medical devices for any type of prosthetic surgery (HIP, dental, cranial, maxillofacial) as well as for internal fixation devices (K-Wires or Steinmann Pins). There are a large number of research studies on DMLS, including microstructural characterization, mechanical properties and those based on production quality assurance but the influence of porosity in the corrosion behavior of these materials not been sufficiently considered. In the present paper, surgical pins of Ti6Al4V have been produced by DMLS. After testing in a phosphate buffered saline solution, the surface of the titanium alloy appeared locally covered by a voluminous white oxide. This unexpected behavior was presumably due to the existence of internal defects in the pins as result of the manufacturing process. The importance of these defects-that might act as crevice nucleation sites- has been revealed by electrochemical techniques and confirmed by computed tomography.

  18. Effects of ball milling and sintering on alumina and alumina-boron compounds

    Science.gov (United States)

    Cross, Thomas

    Alumina has a wide variety of applications, but the processing of alumina based materials can be costly. Mechanically milling alumina has been shown to enhance the sintering properties while decreasing the sintering temperature. Additions of boron have also proven to increase sintering properties of alumina. These two processes, mechanical milling and boron additions, will be combined to test the sintering properties and determine if they are improved upon even further compared to the individual processes. Multiple samples of pure alumina, 0.2 weight percent boron, and 1.0 weight percent boron are batched and processed in a ball mill for different time intervals. These samples are then characterized to observe the structure and properties of the samples after milling but before sintering. Pellets are dry pressed from the milled powders, sintered at 1200°C for one to 10 hours, and characterized to determine the impact of processing. X-ray diffractometry (XRD) was used on each sample to determine crystallite size and lattice parameters at different stages throughout the experiment. XRD was also used to identify any samples with an aluminum borate phase. Scanning electron microscopy (SEM) was used to observe the powder and pellet morphology and to measure bulk chemical composition. Samples were sputter coated with an Au-Pd coating observed in the SEM to characterize the topography as a function of variables such as milling time, boron composition, and sintering time. Additionally, porosity and change in diameter were measured to track the sintering process. Milling sample for longer periods of time would be unnecessary due to the crystallite size leveling off between 10 and 12 hours of milling time. Samples of alumina with 0.2 weight percent boron prove to have very little effect on the sintering properties. At 1.0 weight percent boron, there are changes in diffraction patterns and topography after being sintered for one hour. The porosities of all of the sintered

  19. Discrimination symbol applying method for sintered nuclear fuel product

    International Nuclear Information System (INIS)

    Ishizaki, Jin

    1998-01-01

    The present invention provides a symbol applying method for applying discrimination information such as an enrichment degree on the end face of a sintered nuclear product. Namely, discrimination symbols of information of powders are applied by a sintering aid to the end face of a molded member formed by molding nuclear fuel powders under pressure. Then, the molded product is sintered. The sintering aid comprises aluminum oxide, a mixture of aluminum oxide and silicon dioxide, aluminum hydride or aluminum stearate alone or in admixture. As an applying means of the sintering aid, discrimination symbols of information of powders are drawn by an isostearic acid on the end face of the molded product, and the sintering aid is sprayed thereto, or the sintering aid is applied directly, or the sintering aid is suspended in isostearic acid, and the suspension is applied with a brush. As a result, visible discrimination information can be applied to the sintered member easily. (N.H.)

  20. Solid-state sintering of tungsten heavy alloys

    International Nuclear Information System (INIS)

    Gurwell, W.E.

    1994-10-01

    Solid-state sintering is a technologically important step in the fabrication of tungsten heavy alloys. This work addresses practical variables affecting the sinterability: powder particle size, powder mixing, and sintering temperature and time. Compositions containing 1 to 10 micrometer (μM) tungsten (W) powders can be fully densified at temperatures near the matrix solidus. Blending with an intensifier bar provided good dispersion of elemental powders and good as-sintered mechanical properties under adequate sintering conditions. Additional ball milling increases powder bulk density which primarily benefits mold and die filling. Although fine, 1 μm W powder blends have high sinterability, higher as-sintered ductilities are reached in shorter sintering times with coarser, 5 μm W powder blends; 10μm W powder blends promise the highest as-sintered ductilities due to their coarse microstructural W

  1. Effect of microstructure changes on magnetic properties of spark plasma sintered Nd-Fe-B powders

    Directory of Open Access Journals (Sweden)

    Michalski B.

    2013-01-01

    Full Text Available In this study the SPS method was applied for low RE content (8,5% at. and high RE content (13,5 % at. MQ powders. The powders were sintered in a wide range of temperature, for 5 min., under pressure of 35 MPa. The low RE content grade, densified reluctantly and gained the density close to the theoretical value only for 850 °C. The coercivity decreased gradually with increasing sintering temperature. On the other hand, the densification of the higher RE content grade powder occurred much easier and the coercivity, close to the theoretical value, was achieved already at 650 °C. The coercivity of this material also decreased with increasing sintering temperature. Microstructural studies revealed that the SPS sintering process leads to partial decomposition of the Nd2Fe14B phase. The proportion of the RE-rich and iron phases increases parallel to the increasing sintering temperature. On the basis of the current results one can conclude that fabrication of high density MQ powders based magnets by the SPS method is possible, however the powders having higher RE content should be used for this purpose and the sintering temperature as low as possible, related to density, should be kept.

  2. Preparation and properties of low cement castable sintered at different temperatures

    Directory of Open Access Journals (Sweden)

    Sanja Martinović

    2009-12-01

    Full Text Available The low cement high alumina castable (LCC studied in this paper was synthesised, cured and then treated at different sintering temperatures. Since any inhomogeneity introduced during the castable preparation can remain inside the material degrading its properties and therefore the quality during service life, particular attention was given to the processing procedure in order to produce the material with the optimum characteristics. Composition of the castable regarding particle size distribution was adjusted according to the Andreassen’s packing model. The samples were sintered at 1100, 1300 and 1600°C for three hours. Influence of the different sintering temperatures on the castable properties is discussed. Compressive and flexural strengths were determined by destructive testing method, while the water immersion method was used for determination of the bulk density and the water absorption. Changes of elastic properties and microstructure (porosity were observed by the non-destructive testing methods, ultrasonic measurements and image analysis. Based on the results, it can be concluded that sintering temperature has strong influence on the properties of the LCC. Exceptionally good properties were obtained for the sample sintered at 1600°C, but it should be highlighted that the samples treated at 1100 and 1300°C were provided with good properties, too. This should not be neglected because of the energy saving importance, in cases where the material sintered at lower temperature satisfies the application requirements.

  3. The evaluation of microstructure and mechanical properties of sintered sub-micron WC-Co powders

    International Nuclear Information System (INIS)

    Nor Izan Izura; Mohd Asri Selamat; Noraizham Mohamad Diah; Talib Ria Jaafar

    2007-01-01

    A cemented tungsten carbide (WC-Co) is widely used for a variety of machining, cutting, drilling and other applications. The properties of this tungsten heavy alloy are sensitive to processing and degraded by residual porosity. The sequence of high end powder metallurgy process include mixing, compacting and followed by multi-atmosphere sintering of green compact were analyzed. The sub micron (<1.0 μm) and less than 10.0 μm of WC powders are sintered with a metal binder 6% Co to provide pore-free part. The powder compacts were sintered at temperatures cycle in the range of 1200 degree Celsius-1550 degree Celsius in nitrogen-based sintering atmosphere. To date, however there have been few reported studies in the literature that the best sintering was carried out via liquid phase sintering in vacuum at approximately 1500 degree Celsius. from this study we found that in order to attain high mechanical properties, a fine grain size of powder is necessary. Therefore, the attention of this work is to develop and produce wear resistant component with better properties or comparable to the commercial ones. (author)

  4. Tribological and mechanical comparison of sintered and HIPped PM212 - High temperature self-lubricating composites

    Science.gov (United States)

    Dellacorte, Christopher; Sliney, Harold E.; Bogdanski, Michael S.

    1992-01-01

    Selected tribological, mechanical and thermophysical properties of two versions of PM212 (sintered and hot isostatically pressed, HIPped) are compared. PM212, a high temperature self-lubricating composite, contains 70 wt percent metal bonded chromium carbide, 15 wt percent CaF2/BaF2 eutectic and 15 wt percent silver. PM212 in the sintered form is about 80 percent dense and has previously been shown to have good tribological properties from room temperature to 850 C. Tribological results of a fully densified, HIPped version of PM212 are given. They are compared to sintered PM212. In addition, selected mechanical and thermophysical properties of both types of PM212 are discussed and related to the tribological similarities and differences between the two PM212 composites. In general, both composites display similar friction and wear properties. However, the fully dense PM212 HIPped composite exhibits slight lower friction and wear than sintered PM212. This may be attributed to its generally higher strength properties. The sintered version displays stable wear properties over a wide load range indicating its promise for use in a variety of applications. Based upon their properties, both the sintered and HIPped PM212 have potential as bearing and seal materials for advanced high temperature applications.

  5. Tribological and mechanical comparison of sintered and hipped PM212: High temperature self-lubricating composites

    Science.gov (United States)

    Dellacorte, Christopher; Sliney, Harold E.; Bogdanski, Michael S.

    1992-01-01

    Selected tribological, mechanical and thermophysical properties of two versions of PM212 (sintered and hot isostatically pressed, HIPped) are compared. PM212, a high temperature self-lubricating composite, contains 70 wt percent metal bonded chromium carbide, 15 wt percent CaF2/BaF2 eutectic and 15 wt percent silver. PM212 in the sintered form is about 80 percent dense and has previously been shown to have good tribological properties from room temperature to 850 C. Tribological results of a fully densified, HIPped version of PM212 are given. They are compared to sintered PM212. In addition, selected mechanical and thermophysical properties of both types of PM212 are discussed and related to the tribological similarities and differences between the two PM212 composites. In general, both composites display similar friction and wear properties. However, the fully dense PM212 HIPped composite exhibits slight lower friction and wear than sintered PM212. This may be attributed to its generally higher strength properties. The sintered version displays stable wear properties over a wide load range indicating its promise for use in a variety of applications. Based upon their properties, both the sintered and HIPped PM212 have potential as bearing and seal materials for advanced high temperature applications.

  6. Novel spirometry based on optical surface imaging

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guang, E-mail: lig2@mskcc.org; Huang, Hailiang; Li, Diana G.; Chen, Qing; Gaebler, Carl P.; Mechalakos, James [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York 10065 (United States); Wei, Jie [Department of Computer Science, City College of New York, New York, New York 10031 (United States); Sullivan, James [Pulmonary Laboratories, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065 (United States); Zatcky, Joan; Rimner, Andreas [Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York 10065 (United States)

    2015-04-15

    Purpose: To evaluate the feasibility of using optical surface imaging (OSI) to measure the dynamic tidal volume (TV) of the human torso during free breathing. Methods: We performed experiments to measure volume or volume change in geometric and deformable phantoms as well as human subjects using OSI. To assess the accuracy of OSI in volume determination, we performed experiments using five geometric phantoms and two deformable body phantoms and compared the values with those derived from geometric calculations and computed tomography (CT) measurements, respectively. To apply this technique to human subjects, an institutional review board protocol was established and three healthy volunteers were studied. In the human experiment, a high-speed image capture mode of OSI was applied to acquire torso images at 4–5 frames per second, which was synchronized with conventional spirometric measurements at 5 Hz. An in-house MATLAB program was developed to interactively define the volume of interest (VOI), separate the thorax and abdomen, and automatically calculate the thoracic and abdominal volumes within the VOIs. The torso volume change (TV C = ΔV{sub torso} = ΔV{sub thorax} + ΔV{sub abdomen}) was automatically calculated using full-exhalation phase as the reference. The volumetric breathing pattern (BP{sub v} = ΔV{sub thorax}/ΔV{sub torso}) quantifying thoracic and abdominal volume variations was also calculated. Under quiet breathing, TVC should equal the tidal volume measured concurrently by a spirometer with a conversion factor (1.08) accounting for internal and external differences of temperature and moisture. Another MATLAB program was implemented to control the conventional spirometer that was used as the standard. Results: The volumes measured from the OSI imaging of geometric phantoms agreed with the calculated volumes with a discrepancy of 0.0% ± 1.6% (range −1.9% to 2.5%). In measurements from the deformable torso/thorax phantoms, the volume

  7. Novel spirometry based on optical surface imaging

    International Nuclear Information System (INIS)

    Li, Guang; Huang, Hailiang; Li, Diana G.; Chen, Qing; Gaebler, Carl P.; Mechalakos, James; Wei, Jie; Sullivan, James; Zatcky, Joan; Rimner, Andreas

    2015-01-01

    Purpose: To evaluate the feasibility of using optical surface imaging (OSI) to measure the dynamic tidal volume (TV) of the human torso during free breathing. Methods: We performed experiments to measure volume or volume change in geometric and deformable phantoms as well as human subjects using OSI. To assess the accuracy of OSI in volume determination, we performed experiments using five geometric phantoms and two deformable body phantoms and compared the values with those derived from geometric calculations and computed tomography (CT) measurements, respectively. To apply this technique to human subjects, an institutional review board protocol was established and three healthy volunteers were studied. In the human experiment, a high-speed image capture mode of OSI was applied to acquire torso images at 4–5 frames per second, which was synchronized with conventional spirometric measurements at 5 Hz. An in-house MATLAB program was developed to interactively define the volume of interest (VOI), separate the thorax and abdomen, and automatically calculate the thoracic and abdominal volumes within the VOIs. The torso volume change (TV C = ΔV torso = ΔV thorax + ΔV abdomen ) was automatically calculated using full-exhalation phase as the reference. The volumetric breathing pattern (BP v = ΔV thorax /ΔV torso ) quantifying thoracic and abdominal volume variations was also calculated. Under quiet breathing, TVC should equal the tidal volume measured concurrently by a spirometer with a conversion factor (1.08) accounting for internal and external differences of temperature and moisture. Another MATLAB program was implemented to control the conventional spirometer that was used as the standard. Results: The volumes measured from the OSI imaging of geometric phantoms agreed with the calculated volumes with a discrepancy of 0.0% ± 1.6% (range −1.9% to 2.5%). In measurements from the deformable torso/thorax phantoms, the volume differences measured using OSI

  8. Plasma based Ar+ beam assisted poly(dimethylsiloxane) surface modification

    International Nuclear Information System (INIS)

    Vladkova, T.G.; Keranov, I.L.; Dineff, P.D.; Youroukov, S.Y.; Avramova, I.A.; Krasteva, N.; Altankov, G.P.

    2005-01-01

    Plasma based Ar + beam performed in RF (13.56 MHz) low-pressure (200 mTorr) glow discharge (at 100 W, 1200 W and 2500 W) with a serial capacitance was employed for surface modification of poly(dimethylsiloxane) (PDMS) aimed at improvement of its interactions with living cells. The presence of a serial capacitance ensures arise of an ion-flow inside the plasma volume directed toward the treated sample and the vary of the discharge power ensures varied density of the ion-flow. XPS analysis was performed to study the changes in the surface chemical composition of the modified samples and the corresponding changes in the surface energy were monitored by contact angle measurements. We found that plasma based Ar + beam transforms the initially hydrophobic PDMS surface into a hydrophilic one mainly due to a raising of the polar component of the surface tension, this effect being most probably due to an enrichment of the modified surface layer with permanent dipoles of a [SiO x ]-based network and elimination of the original methyl groups. The initial adhesion of human fibroblast cells was studied on the described above plasma based Ar + beam modified and acrylic acid (AA) grafted or not fibronectin (FN) pre-coated or bare surfaces. The cell response seems to be related with the peculiar structure and wettability of the modified PDMS surface layer after plasma based Ar + beam treatment followed or not by AA grafting

  9. Modeling the Acid-Base Properties of Montmorillonite Edge Surfaces.

    Science.gov (United States)

    Tournassat, Christophe; Davis, James A; Chiaberge, Christophe; Grangeon, Sylvain; Bourg, Ian C

    2016-12-20

    The surface reactivity of clay minerals remains challenging to characterize because of a duality of adsorption surfaces and mechanisms that does not exist in the case of simple oxide surfaces: edge surfaces of clay minerals have a variable proton surface charge arising from hydroxyl functional groups, whereas basal surfaces have a permanent negative charge arising from isomorphic substitutions. Hence, the relationship between surface charge and surface potential on edge surfaces cannot be described using the Gouy-Chapman relation, because of a spillover of negative electrostatic potential from the basal surface onto the edge surface. While surface complexation models can be modified to account for these features, a predictive fit of experimental data was not possible until recently, because of uncertainty regarding the densities and intrinsic pK a values of edge functional groups. Here, we reexamine this problem in light of new knowledge on intrinsic pK a values obtained over the past decade using ab initio molecular dynamics simulations, and we propose a new formalism to describe edge functional groups. Our simulation results yield reasonable predictions of the best available experimental acid-base titration data.

  10. Feature Surfaces in Symmetric Tensor Fields Based on Eigenvalue Manifold.

    Science.gov (United States)

    Palacios, Jonathan; Yeh, Harry; Wang, Wenping; Zhang, Yue; Laramee, Robert S; Sharma, Ritesh; Schultz, Thomas; Zhang, Eugene

    2016-03-01

    Three-dimensional symmetric tensor fields have a wide range of applications in solid and fluid mechanics. Recent advances in the (topological) analysis of 3D symmetric tensor fields focus on degenerate tensors which form curves. In this paper, we introduce a number of feature surfaces, such as neutral surfaces and traceless surfaces, into tensor field analysis, based on the notion of eigenvalue manifold. Neutral surfaces are the boundary between linear tensors and planar tensors, and the traceless surfaces are the boundary between tensors of positive traces and those of negative traces. Degenerate curves, neutral surfaces, and traceless surfaces together form a partition of the eigenvalue manifold, which provides a more complete tensor field analysis than degenerate curves alone. We also extract and visualize the isosurfaces of tensor modes, tensor isotropy, and tensor magnitude, which we have found useful for domain applications in fluid and solid mechanics. Extracting neutral and traceless surfaces using the Marching Tetrahedra method can cause the loss of geometric and topological details, which can lead to false physical interpretation. To robustly extract neutral surfaces and traceless surfaces, we develop a polynomial description of them which enables us to borrow techniques from algebraic surface extraction, a topic well-researched by the computer-aided design (CAD) community as well as the algebraic geometry community. In addition, we adapt the surface extraction technique, called A-patches, to improve the speed of finding degenerate curves. Finally, we apply our analysis to data from solid and fluid mechanics as well as scalar field analysis.

  11. Fabrication and Characteristics of Sintered Cutting Stainless Steel Fiber Felt with Internal Channels and an Al2O3 Coating

    Directory of Open Access Journals (Sweden)

    Shufeng Huang

    2018-03-01

    Full Text Available A novel sintered cutting stainless steel fiber felt with internal channels (SCSSFFC composed of a stainless-steel fiber skeleton, three-dimensional interconnected porous structure and multiple circular microchannels is developed. SCSSFFC has a jagged and rough surface morphology and possesses a high specific surface area, which is approximately 2.4 times larger than that of the sintered bundle-drawing stainless steel fiber felt with internal channels (SBDSSFFC and is expected to enhance adhesive strength. The sol-gel and wet impregnation methods are adopted to prepare SCSSFFC with an Al2O3 coating (SCSSFFC/Al2O3. The adhesive strength of SCSSFFC/Al2O3 is investigated using ultrasonic vibration and thermal shock tests. The experimental results indicate that the weight loss rate of the Al2O3 coating has a 4.2% and 8.42% reduction compared with those of SBDSSFFCs based on ultrasonic vibration and thermal shock tests. In addition, the permeability of SCSSFFC/Al2O3 is investigated based on forced liquid flow tests. The experimental results show that the permeability and inertial coefficients of SCSSFFC/Al2O3 are mainly affected by the coating rate, porosity and open ratio; however, the internal microchannel diameter has little influence. It is also found that SCSSFFC/Al2O3 yields superior permeability, as well as inertial coefficients compared with those of other porous materials reported in the literature.

  12. Reactive Spark Plasma Sintering: Successes and Challenges of Nanomaterial Synthesis

    Directory of Open Access Journals (Sweden)

    Dina V. Dudina

    2013-01-01

    Full Text Available Spark plasma sintering (SPS, initially developed as an advanced sintering technique for consolidating nanopowders into nanostructured bulk materials, has been recently looked at in much broader perspective and gained a strong reputation of a versatile method of solid state processing of metals, ceramics, and composites. The powders in the SPS-dies experience the action of pulsed electric current and uniaxial pressure; they are heated at very high rates unachievable in furnace heating and sintered within shorter times and at lower temperatures than in conventional methods. The principle of SPS and convenient design of the facilities make it attractive for conducting solid state synthesis. In this paper, based on our own results and the literature data, we analyze the microstructure formation of the products of chemical reactions occurring in the SPS in an attempt to formulate the requirements to the microstructure parameters of reactant mixtures and SPS conditions that should be fulfilled in order to produce a nanostructured material. We present successful syntheses of nanostructured ceramics and metal matrix composite with nanosized reinforcements in terms of microstructure stability and attractive properties of the materials and discuss the challenges of making a dense nanostructured material when reaction and densification do not coincide during the SPS. In the final part of the paper, we provide an outlook on the further uses of reactive SPS in the synthesis of nanostructured materials.

  13. Adjustment of Part Properties for an Elastomeric Laser Sintering Material

    Science.gov (United States)

    Wegner, A.; Ünlü, T.

    2018-03-01

    Laser sintering of polymers is gaining more and more importance within the field of small series productions. Polyamide 12 is predominantly used, although a variety of other materials are also available for the laser sintering process. For example, elastomeric, rubberlike materials offer very different part property profiles. Those make the production of flexible parts like, e.g., sealings, flexible tubes or shoe soles possible because they offer high part ductility and low hardness. At the chair for manufacturing technology, a new elastomeric laser sintering material has been developed and then commercialized by a spin-off from university. The aim of the presented study was the analysis of the new material's properties. Proof was found that Shore hardness can be modified by varying the parameter settings. Therefore, the correlation between process parameters, energy input, Shore hardness and other part properties like mechanical properties were analyzed. Based on these results, suitable parameter settings were established which lead to the possibility of producing parts with different Shore hardnesses.

  14. Mineralogy and microstructure of sintered lignite coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Marina Ilic; Christopher Cheeseman; Christopher Sollars; Jonathan Knight [Faculty of Technology and Metallurgy, Belgrade (Yugoslavia)

    2003-02-01

    Lignite coal fly ash from the 'Nikola Tesla' power plant in Yugoslavia has been characterised, milled, compacted and sintered to form monolithic ceramic materials. The effect of firing at temperatures between 1130 and 1190{sup o}C on the density, water accessible porosity, mineralogy and microstructure of sintered samples is reported. This class C fly ash has an initial average particle size of 82 {mu}m and contains siliceous glass together with the crystalline phases quartz, anorthite, gehlenite, hematite and mullite. Milling the ash to an average particle size of 5.6 m, compacting and firing at 1170{sup o}C for 1 h produces materials with densities similar to clay-based ceramics that exhibit low water absorption. Sintering reduces the amount of glass, quartz, gehlenite and anhydrite, but increases formation of anorthite, mullite, hematite and cristobalite. SEM confirms the formation of a dense ceramic at 1170{sup o}C and indicates that pyroplastic effects cause pore formation and bloating at 1190{sup o}C. 23 refs., 6 figs., 2 tabs.

  15. Transient Convection, Diffusion, and Adsorption in Surface-Based Biosensors

    DEFF Research Database (Denmark)

    Hansen, Rasmus; Bruus, Henrik; Callisen, Thomas H.

    2012-01-01

    This paper presents a theoretical and computational investigation of convection, diffusion, and adsorption in surface-based biosensors. In particular, we study the transport dynamics in a model geometry of a surface plasmon resonance (SPR) sensor. The work, however, is equally relevant for other...... microfluidic surface-based biosensors, operating under flow conditions. A widely adopted approximate quasi-steady theory to capture convective and diffusive mass transport is reviewed, and an analytical solution is presented. An expression of the Damköhler number is derived in terms of the nondimensional...... concentration to the maximum surface capacity is critical for reliable use of the quasi-steady theory. Finally, our results provide users of surface-based biosensors with a tool for correcting experimentally obtained adsorption rate constants....

  16. Evaluation of Satellite-Based Surface Energy Budget Products with Surface Measurements Over the Great Lakes

    Science.gov (United States)

    Wang, H.; Loeb, N. G.; Lenters, J. D.; Spence, C.; Blanken, P.

    2017-12-01

    Earth's climate is fundamentally driven by the global energy balance. While Earth's energy budget at the top-of-atmosphere (TOA) is well understood, satellite-based estimates of the global mean surface energy budget yield an imbalance of 15-20 Wm-2. The data products used to infer the components of the surface energy budget are often based upon physical or empirical models and ancillary input data sets of varying quality. In order to make progress, comparisons between satellite-based estimates of the surface energy budget components and direct surface measurements are critically needed. This study evaluates surface radiative fluxes from NASA CERES EBAF and surface turbulent heat fluxes from OAFLUX by comparing them with surface station measurements from the Great Lakes Evaporation Network (GLEN). The GLEN measurements are collected using instruments on lighthouses in the Great Lakes, and include surface evaporation measurement via eddy covariance technique. The evaluation is performed for 3 offshore and 1 nearshore Great Lakes sites. We highlight results for Stannard Rock in Lake Superior, which is the farthest lighthouse from shore ( 40km from the nearest land). Relative to the GLEN observations, the OAFLUX underestimates latent heat flux by 12 Wm-2 (19 Wm-2) at Stannard Rock (4-station average), in part due to its weaker near surface wind speed, and overestimates sensible heat flux by 12 Wm-2 (6 Wm-2), which is partly contributed by its colder surface air temperature. The CERES EBAF-Surface overestimates the surface downward all-sky shortwave (longwave) flux by 8 Wm-2 (7 Wm-2) at Stannard Rock, and is comparable to the 4-station average. As a result, the surface estimated using EBAF-Surface and OAFLUX receives 16 Wm-2 (13 Wm-2) more than the GLEN observations at Stannard Rock (4-station average). The above surface energy flux differences will be further discussed based on a comparison between the input data sets used in the satellite-based estimates and

  17. Interactions between acid- and base-functionalized surfaces

    NARCIS (Netherlands)

    Giesbers, M.; Kleijn, J.M.; Cohen Stuart, M.A.

    2002-01-01

    In this paper we present an AFM force study on interactions between chemically modified surfaces. Surfaces with terminal groups of either NH2 or COOH were obtained by chemisorption of a silane-based compound (3-amino-propyltriethoxysilane) on silica or a thiol compound (11-mercapto undecanoic acid)

  18. Master sintering curve: A practical approach to its construction

    Directory of Open Access Journals (Sweden)

    Pouchly V.

    2010-01-01

    Full Text Available The concept of a Master Sintering Curve (MSC is a strong tool for optimizing the sintering process. However, constructing the MSC from sintering data involves complicated and time-consuming calculations. A practical method for the construction of a MSC is presented in the paper. With the help of a few dilatometric sintering experiments the newly developed software calculates the MSC and finds the optimal activation energy of a given material. The software, which also enables sintering prediction, was verified by sintering tetragonal and cubic zirconia, and alumina of two different particle sizes.

  19. A Comparative Study on SiC-B4C-Si Cermet Prepared by Pressureless Sintering and Spark Plasma Sintering Methods

    Science.gov (United States)

    Sahani, P.; Karak, S. K.; Mishra, B.; Chakravarty, D.; Chaira, D.

    2016-06-01

    Silicon carbide (SiC)-boron carbide (B4C) based cermets were doped with 5, 10, and 20 wt pct Silicon (Si) and their sinterability and properties were investigated for conventional sintering at 2223 K (1950 °C) and spark plasma sintering (SPS) at 1623 K (1350 °C). An average particle size of ~3 µm was obtained after 10 hours of milling. There is an enhancement of Vickers microhardness in the 10 wt pct Si sample from 18.10 in conventional sintering to 27.80 GPa for SPS. The relative density, microhardness, and indentation fracture toughness of the composition SiC60(B4C)30Si10 fabricated by SPS are 98 pct, 27.80 GPa, and 3.8 MPa m1/2, respectively. The novelty of the present study is to tailor the wettability and ductility of the cermet by addition of Si into the SiC-B4C matrix. Better densification with improved properties is achieved for cermets consolidated by SPS at lower temperatures than conventional sintering.

  20. Calcium Hex aluminate reaction sintering by Spark Plasma Sintering; Sinterizacion reactiva de Hexaluminato de Calcio mediante Spark Plasma Sintering

    Energy Technology Data Exchange (ETDEWEB)

    Iglesia, P. G. de la; Garcia-Moreno, O.; Torrecillas, R.; Menendez, J. L.

    2012-11-01

    Calcium hex aluminate (CaAl{sub 1}2O{sub 1}9) is the most alumina-rich intermediate compound of the CaO-Al{sub 2}O{sub 3} system. The formation of this aluminate is produced by the reaction between calcium oxide and alumina with the consequent formation of intermediates compounds with lower alumina content with increasing temperature (CaAl{sub 2}O{sub 4}, CaAl4O{sub 7}). In this study we studied the variation of sintering parameters for obtaining dense and pure calcium hex aluminate by reaction sintering by Spark Plasma Sintering (SPS). A mixing of Al{sub 2}O{sub 3} and CaCO{sub 3} were used as reactive. Final densities close to the theoretical and phase transformation over 93% were achieved by this method. (Author) 22 refs.

  1. Investigation of the sintering rate of snow with high-resolution penetration tests

    Science.gov (United States)

    Peinke, Isabel; Hagenmuller, Pascal; Chambon, Guillaume; Roulle, Jacques; Morin, Samuel

    2017-04-01

    Sintering in snow is very active due to a high homologous temperature and has a major effect on the evolution of the snow mechanical properties. We investigated the sintering rate of snow using high-resolution penetration tests performed with the Snow Micro Penetrometer (SMP) in a cold room at -10°C. To this end, we prepared several samples by sieving rounded grain snow with different sieve sizes (0.8, 1 and 1.6 mm) and conducted numerous SMP tests at different times during the first day of sintering. The SMP was modified such that only the measuring tip was in contact to the snow and we mounted three different tips with diameters of 4, 5 and 8 mm. The increase of the measured mean penetration resistance is shown to follow a power law whose exponent is defined as the sintering rate. The sintering rate mean value is about 0.25, which is consistent with values reported in the literature and it increases with specific surface area and depth. However, the sintering rate diminishes when SMP tip size increases, which is counterintuitive for a material property. An advanced analysis is thus required to extract relevant material properties, as the deflection at rupture, individual rupture force of bonds, and spatial intensity of rupture events, out of the SMP signal. A Poisson shot noise model [Löwe and Herwijnen 2012] was used, in which a depth-dependence of the parameters was assumed. The individual rupture force follows a power law with exponents around 0.3 with almost no dependency on the tip size. In comparison, the time evolution of intensity and deflection at rupture were negligible. This approach exploits the high-resolution of the SMP to give new insights on the sintering mechanisms in snow.

  2. The microwave effects on the properties of alumina at high frequencies of microwave sintering

    Energy Technology Data Exchange (ETDEWEB)

    Sudiana, I. Nyoman, E-mail: sudiana75@yahoo.com; Ngkoimani, La Ode; Usman, Ida [Department of Physics, Faculty of Mathematic and Natural Science, Halu Oleo University, Kampus Bumi Tridharma Anduonohu, Kendari 93232 (Indonesia); Mitsudo, Seitaro; Sako, Katsuhide; Inagaki, Shunsuke [Research Center for Development of Far-Infrared Region, University of Fukui, 3-9-1 Bunkyo, Fukui-shi 910-8507 (Japan); Aripin, H. [Center for Material Processing and Renewable Energy, Faculty of Learning Teacher and Education Science, Siliwangi University, Jl. Siliwangi 24 Tasikmalaya 46115, West Java (Indonesia)

    2016-03-11

    Microwave sintering of materials has attracted much research interest because of its significant advantages (e.g. reduced sintering temperatures and soaking times) over the conventional heating. Most researchers compared processes that occurred during the microwave and conventional heating at the same temperature and time. The enhancements found in the former method are indicated as a 'non-thermal effect' which is usually used for explaining the phenomena in microwave processing. Numerous recent studies have been focused on the effect to elucidate the microwave interaction mechanism with materials. Moreover, recent progress on microwave sources such as gyrotrons has opened the possibility for processing materials by using a higher microwave frequency. Therefore, the technology is expected to exhibit a stronger non-thermal effect. This paper presents results from a series of experiments to study the non-thermal effect on microwave sintered alumina. Sintering by using a wide rage of microwave frequencies up to 300 GHz as well as a conventional furnace was carried out. The linear shrinkages of samples for each sintering method were measured. Pores and grains taken from scanning electron microstructure (SEM) images of cut surfaces were also examined. The results of a comparative study of the shrinkages and microstructure evolutions of the sintered samples under annealing in microwave heating systems and in an electric furnace were analyzed. A notably different behavior of the shrinkages and microstructures of alumina after being annealed was found. The results suggested that microwave radiations provided an additional force for mass transports. The results also indicated that the sintering process depended on microwave frequencies.

  3. The microwave effects on the properties of alumina at high frequencies of microwave sintering

    International Nuclear Information System (INIS)

    Sudiana, I. Nyoman; Ngkoimani, La Ode; Usman, Ida; Mitsudo, Seitaro; Sako, Katsuhide; Inagaki, Shunsuke; Aripin, H.

    2016-01-01

    Microwave sintering of materials has attracted much research interest because of its significant advantages (e.g. reduced sintering temperatures and soaking times) over the conventional heating. Most researchers compared processes that occurred during the microwave and conventional heating at the same temperature and time. The enhancements found in the former method are indicated as a 'non-thermal effect' which is usually used for explaining the phenomena in microwave processing. Numerous recent studies have been focused on the effect to elucidate the microwave interaction mechanism with materials. Moreover, recent progress on microwave sources such as gyrotrons has opened the possibility for processing materials by using a higher microwave frequency. Therefore, the technology is expected to exhibit a stronger non-thermal effect. This paper presents results from a series of experiments to study the non-thermal effect on microwave sintered alumina. Sintering by using a wide rage of microwave frequencies up to 300 GHz as well as a conventional furnace was carried out. The linear shrinkages of samples for each sintering method were measured. Pores and grains taken from scanning electron microstructure (SEM) images of cut surfaces were also examined. The results of a comparative study of the shrinkages and microstructure evolutions of the sintered samples under annealing in microwave heating systems and in an electric furnace were analyzed. A notably different behavior of the shrinkages and microstructures of alumina after being annealed was found. The results suggested that microwave radiations provided an additional force for mass transports. The results also indicated that the sintering process depended on microwave frequencies.

  4. Characterization of Uranium Oxide and Ln-bearing Uranium Oxide during Sintering

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, J.B. [Netzsch Instruments, Inc., Estes Park, CO (United States); Byler, D.D.; Stanek, C.R.; Dunwoody, J.T.; Luther, E.P.; Volz, H.M.; Vogel, S.C.; McClellan, K.J. [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2009-06-15

    In support of the transmutation fuel development as part of the effort to close the fuel cycle, research has been carried out to gain an in-depth understanding of the evolution of material properties during sintering as well as the properties of post-sintered oxide fuels. Of course the effects of material and test parameters such as starting powder O/M, green density, particle size distribution, heating rate and atmosphere on the densification of oxide and mixed oxide fuels have been widely studied, sometimes with conflicting results. However, the evolution of thermophysical properties such as specific heat and thermal conductivity during densification is not well known. Further, the effects of lanthanides on densification as well as on other thermodynamic and transport properties during sintering have not been widely studied. The purpose of this work was to characterize the effects of key material and test parameters on the thermophysical properties during sintering (both surface and volume transport) and on post-sintered UO{sub 2+x} and UO{sub 2+x} + lanthanide samples. Mixtures of UO{sub 2+x} and lanthanide component powder as well as pre-synthesized solid solutions have been studied. In addition to the standard bulk characterization methods such as dilatometry (thermal expansion / densification), laser flash (thermal diffusivity / thermal conductivity), differential scanning calorimetry (specific heat and transformation energetics) and thermogravimetric analysis (mass change), we have employed ancillary techniques such as neutron scattering, laboratory X-ray diffraction and scanning electron microscopy to help evaluate phases, lattice parameters and microstructure during sintering. The experimental data from the methods mentioned above have been cross-correlated to help explain the physics which govern the sintering process as well as those which govern the development of the thermophysical properties of these materials. The results of this work will be

  5. Analysis of key factors influencing the evaporation performances of an oriented linear cutting copper fiber sintered felt

    Science.gov (United States)

    Pan, Minqiang; Zhong, Yujian

    2018-01-01

    Porous structure can effectively enhance the heat transfer efficiency. A kind of micro vaporizer using the oriented linear cutting copper fiber sintered felt is proposed in this work. Multiple long cutting copper fibers are firstly fabricated with a multi-tooth tool and then sintered together in parallel to form uniform thickness metal fiber sintered felts that provided a characteristic of oriented microchannels. The temperature rise response and thermal conversion efficiency are experimentally investigated to evaluate the influences of porosity, surface structure, feed flow rate and input power on the evaporation characteristics. It is indicated that the temperature rise response of water is mainly affected by input power and feed flow rate. High input power and low feed flow rate present better temperature rise response of water. Porosity rather than surface structure plays an important role in the temperature rise response of water at a relatively high input power. The thermal conversion efficiency is dominated by the input power and surface structure. The oriented linear cutting copper fiber sintered felts for three kinds of porosities show better thermal conversion efficiency than that of the oriented linear copper wire sintered felt when the input power is less than 115 W. All the sintered felts have almost the same performance of thermal conversion at a high input power.

  6. Relationship between microstructure of the skin surface and surface reflection based on geometric optics.

    Science.gov (United States)

    Yoshida, Kenichiro; Miyaki, Masahiro; Ojima, Nobutoshi; Iwata, Kayoko

    2012-06-01

    The behavior of reflected light in skin affects skin appearance and provides clues as to the internal condition of the skin. Surface topography is one of the central physical factors contributing to surface reflection. We tried to clarify the relationship between microstructure of the skin surface and surface reflection based on geometric optics. Microstructures and surface reflections in the left cheeks of adult females were evaluated. Skin topography was acquired measuring replicas using confocal laser microscopy. Surface topography was used to calculate arithmetical mean deviation of the surface (S(a)), and geometric index from gradient of the surface (S(grad)), which is expected to correlate with the directionality of surface reflection (DoSR) based on geometric optics. A surface reflection image was acquired from differently polarized pictures of a face, and the index of surface reflection (I(obs)) was calculated as the average pixel value of the area of shine. Correlations between indices were then evaluated. S(grad) and S(a) showed significant correlation (preflection from the reflection model than S(a). In addition, S(grad) can explain differences in DoSR for some panelists even in the case of an identical S(a). The topographic element involved in DoSR was extracted from height mapping. S(grad) reflects the ratio of flat area, offering a more effective indicator than S(a) for distinguishing topographic characteristics with respect to surface reflection. Copyright © 2012 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  7. Estudo da oxidação de cerâmicas à base de carbeto de silício sinterizado via fase líquida utilizando nitreto de alumínio e óxido de ítrio como aditivos Study of oxidation in liquid phase sintered silicon carbide with addition of aluminum nitride and yttrium oxide

    Directory of Open Access Journals (Sweden)

    M. J. Bondioli

    2008-06-01

    Full Text Available Materiais cerâmicos à base de carbeto de silício foram desenvolvidos através de sinterização via fase líquida usando AlN-Y2O3 como sistema de aditivos. Duas composições foram desenvolvidas utilizando pós de SiC e diferentes teores de AlN e Y2O3. Os pós foram misturados e homogeneizados, secados e subseqüentemente desaglomerados. As misturas do pó foram compactadas por prensagem uniaxial com subseqüente prensagem isostática a frio e os compactos foram sinterizados a 2080 ºC, por 1 h, em atmosfera 0,2 MPa de N2. As amostras sinterizadas foram caracterizadas por difração de raios X e pela sua densidade relativa. O comportamento da oxidação foi investigado e relacionado ao teor de aditivos. Para tanto, as amostras foram submetidas aos ensaios de oxidação em temperaturas de 1200, 1300 e 1400 ºC, ao ar por 120 h. O ganho de massa das amostras foi traçado em função do tempo de exposição, obtendo a evolução da oxidação na superfície das amostras. A composição das fases cristalinas presentes nas superfícies oxidadas foi obtida utilizando difração de raios X. Baseados nos resultados foram determinados os coeficientes de crescimento parabólico da taxa de oxidação referentes a cada composição estudada. Os resultados indicam que as amostras apresentam oxidação com comportamento parabólico em todas as condições, sendo que as amostras contendo menor quantidade de Y2O3 em relação ao AlN apresentaram maior resistência a oxidação quando submetidas a temperatura de 1200 ºC; porém com o aumento da temperatura para 1400 ºC, as amostras contendo maior quantidade de Y2O3 em relação ao AlN apresentaram maior resistência à oxidação, fato relacionado com as fases intergranulares presentes no sistema, após a sinterização.Silicon carbide (SiC ceramics were developed by liquid phase sintering using AlN-Y2O3 as additive. Two compositions were obtained using different AlN-Y2O3 contents. The powders were mixed

  8. Development of sintering-resistant CaO-based sorbent derived from eggshells and bauxite tailings for cyclic CO2 capture.

    Science.gov (United States)

    Shan, ShaoYun; Ma, AiHua; Hu, YiCheng; Jia, QingMing; Wang, YaMing; Peng, JinHui

    2016-01-01

    Carbon dioxide, one of the major greenhouse gases, are believed to be a major contributor to global warming. As a consequence, it is imperative for us to control and remove CO2 emissions. The CaO, a kind of effective CO2 sorbent at high temperature, has attracted increasing attention due to some potential advantages. The main drawback in practical application is the deterioration of CO2 capture capacity following multiples cycles. In the present study, novel low-cost porous CaO-based sorbents with excellent CO2 absorption-desorption performance were synthesized using bauxite tailings (BTs) and eggshells as raw materials via solid-phase method. Effect of different BTs content on CO2 absorption-desorption properties was investigated. Phase composition and morphologies were analyzed by XRD and SEM, and CO2 absorption properties were investigated by the simultaneous thermogravimetric analyzer. The as-prepared CaO-based sorbent doped with 10 wt% BTs showed superior CO2 absorption stability during multiple absorption-desorption cycles, with being >55% conversion after 40 cycles. This improved CO2 absorption performance was attributed to the particular morphologies of the CaO-based sorbents. Additionally, during absorption-desorption cycles the occurrence of Ca12Al14O33 phase is considered to be responsible for the excellent CO2 absorption performance of CaO-based sorbents. In the meanwhile, the use of solid waste eggshell and BTs not only decreases the release of solid waste, but also moderates the greenhouse effect resulted from CO2. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. New materials through a variety of sintering methods

    Science.gov (United States)

    Jaworska, L.; Cyboroń, J.; Cygan, S.; Laszkiewicz-Łukasik, J.; Podsiadło, M.; Novak, P.; Holovenko, Y.

    2018-03-01

    New sintering techniques make it possible to obtain materials with special properties that are impossible to obtain by conventional sintering techniques. This issue is especially important for ceramic materials for application under extreme conditions. Following the tendency to limit critical materials in manufacturing processes, the use of W, Si, B, Co, Cr should be limited, also. One of the cheapest and widely available materials is aluminum oxide, which shows differences in phase composition, grain size, hardness, strain and fracture toughness of the same type of powder, sintered via various methods. In this paper the alumina was sintered using the conventional free sintering process, microwave sintering, Spark Plasma Sintering (SPS), high pressure-high temperature method (HP-HT) and High Pressure Spark Plasma Sintering (HP SPS). Phase composition analysis, by X-ray diffraction of the alumina materials sintered using various methods, was carried out. For the conventional sintering method, compacts are composed of α-Al2O3 and θ-Al2O3. For compacts sintered using SPS, microwave and HP-HT methods, χ-Al2O3 and γ-Al2O3 phases were additionally present. Mechanical and physical properties of the obtained materials were compared between the methods of sintering. On the basis of images from scanning electron microscope quantitative analysis was performed to determine the degree of grain growth of alumina after sintering.

  10. Dry Sintered Metal Coating of Halloysite Nanotubes

    Directory of Open Access Journals (Sweden)

    James C. Nicholson

    2016-09-01

    Full Text Available Halloysite nanotubes (HNTs are a naturally-occurring aluminosilicate whose dimensions measure microns in length and tens of nanometers in diameter. Bonding defects between the alumina and silica lead to net negative and positive charges on the exterior and interior lumen, respectively. HNTs have been shown to enhance the material properties of polymer matrices and enable the sustained release of loaded chemicals, drugs, and growth factors. Due to the net charges, these nanotubes can also be readily coated in layered-depositions using the HNT exterior lumen’s net negative charge as the basis for assembly. These coatings are primarily done through wet chemical processes, the majority of which are limited in their use of desired chemicals, due to the polarity of the halloysite. Furthermore, this restriction in the type of chemicals used often requires the use of more toxic chemicals in place of greener options, and typically necessitates the use of a significantly longer chemical process to achieve the desired coating. In this study, we show that HNTs can be coated with metal acetylacetonates—compounds primarily employed in the synthesis of nanoparticles, as metal catalysts, and as NMR shift reagents—through a dry sintering process. This method was capable of thermally decaying the metal acetylacetonate, resulting in a free positively-charged metal ion that readily bonded to the negatively-charged HNT exterior, resulting in metallic coatings forming on the HNT surface. Our coating method may enable greater deposition of coated material onto these nanotubes as required for a desired application. Furthermore, the use of chemical processes using toxic chemicals is not required, thus eliminating exposure to toxic chemicals and costs associated with the disposal of the resultant chemical waste.

  11. Microstructural designs of spark-plasma sintered silicon carbide ceramic scaffolds

    Directory of Open Access Journals (Sweden)

    Román-Manso, B.

    2014-04-01

    Full Text Available Concentrated ceramic inks based on β-SiC powders, with different amounts of Y2O3 and Al2O3 as sintering aids, are developed for the adequate production of SiC scaffolds, with different patterned morphologies, by the Robocasting technique. The densifi cation of the as-produced 3D structures, previously heat treated in air at 600 ºC for the organics burn-out, is achieved with a Spark Plasma Sintering (SPS furnace. The effects of the amount of sintering additives (7 - 20 wt. % and the size of the SiC powders (50 nm and 0.5 μm on the processing of the inks, microstructure, hardness and elastic modulus of the sintered scaffolds, are studied. The use of nano-sized β-SiC powders significantly restricts the attainable maximum solids volume fraction of the ink (0.32 compared to 0.44 of the submicron-sized powders-based ink, involving a much larger porosity of the green ceramic bodies. Furthermore, reduced amounts of additives improve the mechanical properties of the ceramic skeleton; particularly, the stiffness. The grain size and specific surface area of the starting powders, the ink solids content, green porosity, amount of sintering additives and SPS temperatures are the main parameters to be taken into account for the production of these SiC cellular ceramics.Se han fabricado andamiajes de carburo de silicio (SiC usando la técnica de “Robocasting”, a partir de tintas cerámicas conteniendo β-SiC y distintas cantidades de Y2O3 and Al2O3, como aditivos de sinterización. La densificación de las estructuras tridimensionales, previamente calcinadas a 600 ºC para eliminar los aditivos orgánicos, se realizó en un horno de “Spark Plasma Sintering” (SPS. Se analizó el efecto de la cantidad de aditivos de sinterización (7-20 % en peso y del tamaño de partícula inicial del polvo de SiC (50 nm y 0.5 μm en el procesado de las tintas, en la microestructura, la dureza y el módulo elástico de las estructuras sinterizadas. El uso de polvo

  12. Comparison of Vacuum Sintered and Selective Laser Melted Steel AISI 316L

    OpenAIRE

    Brytan Z.

    2017-01-01

    The paper presents the results of the basic mechanical properties determined in the static tensile test, impact un-notched Charpy test and hardness of austenitic stainless steel type 316L produced by two techniques: classical pressing and sintering in a vacuum with rapid cooling and selective laser melting (SLM). In this work fracture surface of Charpy test, samples were studied.

  13. Fe-Zn intermetallic phases prepared by diffusion annealing and spark-plasma sintering

    Czech Academy of Sciences Publication Activity Database

    Pokorný, P.; Cinert, Jakub; Pala, Zdeněk

    2016-01-01

    Roč. 50, č. 2 (2016), s. 253-256 ISSN 1580-2949 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61389021 Keywords : Fe-Zn intermetallics * spark-plasma sintering * diffusion annealing * phase composition * hardness Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 0.436, year: 2016

  14. Comparison of Vacuum Sintered and Selective Laser Melted Steel AISI 316L

    Directory of Open Access Journals (Sweden)

    Brytan Z.

    2017-12-01

    Full Text Available The paper presents the results of the basic mechanical properties determined in the static tensile test, impact un-notched Charpy test and hardness of austenitic stainless steel type 316L produced by two techniques: classical pressing and sintering in a vacuum with rapid cooling and selective laser melting (SLM. In this work fracture surface of Charpy test, samples were studied.

  15. Fluorophotometric determination of uranium: an automated sintering furnace and factors affecting precision

    International Nuclear Information System (INIS)

    Strain, J.E.

    1978-07-01

    The fusion furnace consists of four individually controlled, slotted-tube furnaces that automatically dry, sinter and anneal the fluoride or carbonate pellet used in the fluorometric determination of uranium. The furnace operates in air and prepares approximately 90 pellets per hour for fluorometric measurement. The factors that were thought to affect the precision of the method were investigated. The two factors that seem to be the most influential are (1) the manner in which the sample is loaded onto the pellet; and (2) the surface characteristics of the platinum dish in which the pellet is sintered and measured fluorometrically

  16. Liquid Film Capillary Mechanism for Densification of Ceramic Powders during Flash Sintering

    Directory of Open Access Journals (Sweden)

    Rachman Chaim

    2016-04-01

    Full Text Available Recently, local melting of the particle surfaces confirmed the formation of spark and plasma during spark plasma sintering, which explains the rapid densification mechanism via liquid. A model for rapid densification of flash sintered ceramics by liquid film capillary was presented, where liquid film forms by local melting at the particle contacts, due to Joule heating followed by thermal runaway. Local densification is by particle rearrangement led by spreading of the liquid, due to local attractive capillary forces. Electrowetting may assist this process. The asymmetric nature of the powder compact represents an invasive percolating system.

  17. Rapid pressureless low-temperature sintering of Ag nanoparticles for high-power density electronic packaging

    International Nuclear Information System (INIS)

    Wang, Shuai; Li, Mingyu; Ji, Hongjun; Wang, Chunqing

    2013-01-01

    This paper describes a method to achieve rapid pressureless low-temperature sintering of Ag nanoparticles for bonding. Organic shells adsorbing on the surface of Ag nanoparticles to stabilize them were thinned to create a sparse protecting layer. The numerous coherent twin boundaries formed in sintered Ag nanoparticles with a grain size of 21 nm induce ultrahigh thermal conductivity (229 W m −1 K −1 ), which overcomes the intrinsic defect that metals with nanosized grains generally exhibit a significantly reduced thermal conductivity because of the grain boundary scattering effect

  18. Sintered cobalt-rare earth intermetallic product

    International Nuclear Information System (INIS)

    Benz, M.G.

    1975-01-01

    This patent describes a sintered product having substantially stable permanent magnet properties in air at room temperature. It comprises compacted particulate cobalt--rare earth alloy consisting essentially of a Co 5 R intermetallic phase and a CoR intermetallic phase which is richer in rare earth metal content than the Co 5 R phase, where R is a rare earth metal. The Co 5 R intermetallic phase is present in an amount of at least 65 percent by weight of the sintered product and the CoR intermetallic phase which is richer in rare earth metal content than the Co 5 R phase is present in a positive amount having a value ranging up to about 35 percent by weight of the product. The sintered product has a density of at least 87 percent and has pores which are substantially noninterconnecting and wherein the component grains have an average size less than 30 microns

  19. Method of manufacturing sintered nuclear fuel

    International Nuclear Information System (INIS)

    Watarumi, Kazutoshi.

    1984-01-01

    Purpose: To obtain composite pellets with an improved strength. Method: A core mainly composed of fuel materials is previously prepared, embedded into the central portion of a pellet, silted therearound with cladding material, and then pressmolded and sintered. For instance, a rugby-ball like core body with the maximum outer diameter of 6 mm and the height of 6 mm is made by compressive molding with uranium dioxide powder, then coating material comprising the same powder incorporated with 0.1 % by weight of SiC fibers is filled around the core body, which is molded into a composite pellet by means of pressing and then sintered at 1600 0 C, to obtain a sintered pellet of 93.5 % theoretical density. As the result of the compression test for the pellet, it showed a strength greater by 15 % than that of the similar mono-layer pellet. (Kamimura, M.)

  20. Antibacterial activity, corrosion resistance and wear behavior of spark plasma sintered Ta-5Cu alloy for biomedical applications.

    Science.gov (United States)

    Cui, Jing; Zhao, Liang; Zhu, Weiwei; Wang, Bi; Zhao, Cancan; Fang, Liming; Ren, Fuzeng

    2017-10-01

    Tantalum has been widely used in orthopedic and dental implants. However, the major barrier to the extended use of such medical devices is the possibility of bacterial adhesion to the implant surface which will cause implant-associated infections. To solve this problem, bulk Ta-5Cu alloy has been fabricated by a combination of mechanical alloying and spark plasma sintering. The effect of the addition of Cu on the hardness, antibacterial activity, cytocompatibility, corrosion resistance and wear performance was systematically investigated. The sintered Ta-5Cu alloy shows enhanced antibacterial activity against E. Coli due to the sustained release of Cu ions. However, the addition of Cu would produce slight cytotoxicity and decrease corrosion resistance of Ta. Furthermore, pin-on-disk wear tests show that Ta-5Cu alloy has a much lower coefficient of friction but a higher wear rate and shows a distinct wear mode from that of Ta upon sliding against stainless steel 440C. Wear-induced plastic deformation leads to elongation of Ta and Cu grains along the sliding direction and nanolayered structures were observed upon approaching the sliding surface. The presence of hard oxides also shows a profound effect on the plastic flow of the base material and results in localized vortex patterns. The obtained results are expected to provide deep insights into the development of novel Ta-Cu alloy for biomedical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Effects of sintering additives on the microstructural and mechanical properties of the ion-irradiated SiCf/SiC

    Science.gov (United States)

    Fitriani, Pipit; Sharma, Amit Siddharth; Yoon, Dang-Hyok

    2018-05-01

    SiCf/SiC composites containing three different types of sintering additives viz. Sc-nitrate, Al2O3-Sc2O3, and Al2O3-Y2O3, were subjected to ion irradiation using 0.2 MeV H+ ions with a fluence of 3 × 1020 ions/m2 at room temperature. Although all composites showed volumetric swelling upon ion irradiation, SiCf/SiC with Sc-nitrate showed the smallest change followed by those with the Al2O3-Sc2O3 and Al2O3-Y2O3 additives. In particular, SiCf/SiC containing the conventional Al2O3-Y2O3 additive revealed significant microstructural changes, such as surface roughening and the formation of cracks and voids, resulting in reduced fiber pullout upon irradiation. On the other hand, the SiCf/SiC with Sc-nitrate showed the highest resistance against ion irradiation without showing any macroscopic changes in surface morphology and mechanical strength, indicating the importance of the sintering additive in NITE-based SiCf/SiC for nuclear structural applications.

  2. Spark Plasma Sintering As a Solid-State Recycling Technique: The Case of Aluminum Alloy Scrap Consolidation.

    Science.gov (United States)

    Paraskevas, Dimos; Vanmeensel, Kim; Vleugels, Jef; Dewulf, Wim; Deng, Yelin; Duflou, Joost R

    2014-08-06

    Recently, "meltless" recycling techniques have been presented for the light metals category, targeting both energy and material savings by bypassing the final recycling step of remelting. In this context, the use of spark plasma sintering (SPS) is proposed in this paper as a novel solid-state recycling technique. The objective is two-fold: (I) to prove the technical feasibility of this approach; and (II) to characterize the recycled samples. Aluminum (Al) alloy scrap was selected to demonstrate the SPS effectiveness in producing fully-dense samples. For this purpose, Al alloy scrap in the form of machining chips was cold pre-compacted and sintered bellow the solidus temperature at 490 °C, under elevated pressure of 200 MPa. The dynamic scrap compaction, combined with electric current-based joule heating, achieved partial fracture of the stable surface oxides, desorption of the entrapped gases and activated the metallic surfaces, resulting in efficient solid-state chip welding eliminating residual porosity. The microhardness, the texture, the mechanical properties, the microstructure and the density of the recycled specimens have been investigated. An X-ray computed tomography (CT) analysis confirmed the density measurements, revealing a void-less bulk material with homogeneously distributed intermetallic compounds and oxides. The oxide content of the chips incorporated within the recycled material slightly increases its elastic properties. Finally, a thermal distribution simulation of the process in different segments illustrates the improved energy efficiency of this approach.

  3. Spark Plasma Sintering As a Solid-State Recycling Technique: The Case of Aluminum Alloy Scrap Consolidation

    Directory of Open Access Journals (Sweden)

    Dimos Paraskevas

    2014-08-01

    Full Text Available Recently, “meltless” recycling techniques have been presented for the light metals category, targeting both energy and material savings by bypassing the final recycling step of remelting. In this context, the use of spark plasma sintering (SPS is proposed in this paper as a novel solid-state recycling technique. The objective is two-fold: (I to prove the technical feasibility of this approach; and (II to characterize the recycled samples. Aluminum (Al alloy scrap was selected to demonstrate the SPS effectiveness in producing fully-dense samples. For this purpose, Al alloy scrap in the form of machining chips was cold pre-compacted and sintered bellow the solidus temperature at 490 °C, under elevated pressure of 200 MPa. The dynamic scrap compaction, combined with electric current-based joule heating, achieved partial fracture of the stable surface oxides, desorption of the entrapped gases and activated the metallic surfaces, resulting in efficient solid-state chip welding eliminating residual porosity. The microhardness, the texture, the mechanical properties, the microstructure and the density of the recycled specimens have been investigated. An X-ray computed tomography (CT analysis confirmed the density measurements, revealing a void-less bulk material with homogeneously distributed intermetallic compounds and oxides. The oxide content of the chips incorporated within the recycled material slightly increases its elastic properties. Finally, a thermal distribution simulation of the process in different segments illustrates the improved energy efficiency of this approach.

  4. Fabrication of 200 mm Diameter Sintering Body of Skutterudite Thermoelectric Material by Spark Plasma Sintering

    Science.gov (United States)

    Tomida, T.; Sumiyoshi, A.; Nie, G.; Ochi, T.; Suzuki, S.; Kikuchi, M.; Mukaiyama, K.; Guo, J. Q.

    2017-05-01

    Filled skutterudite is a promising material for thermoelectric power generation because its ZT value is relatively high. However, mass production of high-performance thermoelectric materials remains a challenge. This study focused on the sintering process of thermoelectric materials. Large-diameter n-type (Yb or La, Ca, Al, Ga, In)0.8(Co, Fe)4Sb12 skutterudite sintering bodies with a small thickness were successfully produced by the spark plasma sintering (SPS) method. When direct current flows through the thermoelectric sintering body during the SPS pulse, the Peltier effect causes a temperature difference within the sintering body. To eliminate the Peltier effect, an electrical insulating material was inserted between the punch (electrode) and the sintering body. In this way, an n-type La-filled skutterudite sample with a diameter of 200 mm, thickness of 21 mm, and weight of 5 kg was successfully produced. The thermoelectric properties and microstructures of the sample were almost the same throughout the whole sintering body, and the dimensionless figure of merit reached 1.0 at 773 K.

  5. Nano-sized ceramic particles of hydroxyapatite calcined with an anti-sintering agent.

    Science.gov (United States)

    Okada, Masahiro; Furuzono, Tsutomu

    2007-03-01

    Nano-sized crystals of calcined hydroxyapatite (HAp) having spherical morphologies were fabricated by calcination at 800 degrees C for 1 h with an anti-sintering agent surrounding the original HAp particles and the agent was subsequently removed by washing after calcination. The original HAp particles were prepared by a modified emulsion system, and surrounded with poly(acrylic acid, calcium salt) (PAA-Ca) by utilizing a precipitation reaction between calcium hydroxide and poly(acrylic acid) adsorbed on the HAp particle surfaces in an aqueous medium. In the case of calcination without PAA-Ca, micron-sized particles consisting of sintered polycrystals were mainly observed by scanning electron microscopy, indicating the calcination-induced sintering among the crystals. On the other hand, most of the crystals calcined with the anti-sintering agent were observed as isolated particles, and the mean size of the HAp crystals was around 80 nm. This result indicates that PAA-Ca and its thermally decomposed product, CaO, surrounding the HAp crystals could protect them against calcination-induced sintering during calcination at 800 degrees C. The HAp crystals calcined with PAA-Ca showed high crystallinity, and no other calcium phosphate phases could be detected.

  6. Experimental simulation of evaporation-driven silica sinter formation and microbial silicification in hot spring systems.

    Science.gov (United States)

    Orange, François; Lalonde, Stefan V; Konhauser, Kurt O

    2013-02-01

    Evaporation of silica-rich geothermal waters is one of the main abiotic drivers of the formation of silica sinters around hot springs. An important role in sinter structural development is also played by the indigenous microbial communities, which are fossilized and eventually encased in the silica matrix. The combination of these two factors results in a wide variety of sinter structures and fabrics. Despite this, no previous experimental fossilization studies have focused on evaporative-driven silica precipitation. We present here the results of several experiments aimed at simulating the formation of sinters through evaporation. Silica solutions at different concentrations were repeatedly allowed to evaporate in both the presence and absence of the cyanobacterium Synechococcus elongatus. Without microorganisms, consecutive silica additions led to the formation of well-laminated deposits. By contrast, when microorganisms were present, they acted as reactive surfaces for heterogeneous silica particle nucleation; depending on the initial silica concentration, the deposits were then either porous with a mixture of silicified and unmineralized cells, or they formed a denser structure with a complete entombment of the cells by a thick silica crust. The deposits obtained experimentally showed numerous similarities in terms of their fabric to those previously reported for natural hot springs, demonstrating the complex interplay between abiotic and biotic processes during silica sinter growth.

  7. Laser sintering of ceramics of Y2O3 pure e doped

    International Nuclear Information System (INIS)

    Oliveira, T.C. de; Goncalves, R.S.; Silva, R.S. da

    2012-01-01

    The Yttria (Y 2 O 3 ) is one of the most promising materials for refractory and optical applications due mainly to its high corrosion resistance, wide range of optical transmission and high melting point. However, due to its high melting point, ceramic bodies to obtain high density Y 2 O 3 high temperatures and require special sintering. Recently it has been proposed in the literature a new method of sintering in which a CO 2 laser, in continuous mode, is employed as the primary source of heat during sintering. Irradiation with laser light produces heating surface at elevated temperatures in a time interval of a few seconds, allowing to obtain dense ceramic bodies at elevated temperatures and with different properties from those sintered by conventional methods. In this paper, Y 2 O 3 powders of pure and doped with Mn, Ca and Zn were synthesized by the polymeric precursors and after calcination at 600 ° C/4h showed single phase. For the production and characterization of the samples used techniques DTA / TG, XRD Dilatometry, SEM and Radioluminescence. The sintered ceramics had a high relative density and strong dependence on the dopant used, which accelerate the densification process. Measures Radioluminescence showed characteristic peaks of Y 2 O 3 and dependence on the dopant used. (author)

  8. Sintering and thermal ageing studies of zirconia - yttria ceramics by impedance spectroscopy

    International Nuclear Information System (INIS)

    Florio, Daniel Zanetti de

    1998-01-01

    ZrO 2 :8 mol %Y 2 O 3 solid electrolyte ceramic pellets have been prepared with powders of three different origins: a Nissan (Japan) commercial powder, a powder obtained by the coprecipitation technique at IPEN, and the mixing of powder oxides (ZrO 2 produced at a Pilot Plant at IPEN and 99.9% pure Y 2 O 3 of USA origin). These starting powders have been analysed by the following techniques: X-ray fluorescence for yttrium content, X-ray diffraction for structural phase content, sedimentation for particle size distribution, gas adsorption (BET) for surface area determination, and transmission electron microscopy for average particle size determination. Pressed ceramic pellets have been analysed by dilatometry to evaluate the sintering stages. Sintered pellets have been characterized by X-ray diffraction for phase analysis and scanning electron microscopy for grain morphology analysis. Impedance spectroscopy analysis have been carried out to follow thermal ageing of zirconia-yttria solid electrolyte at 600 deg C, the working temperature of permanent oxygen sensor, and to study sintering kinetics. The main results show that ageing at 600 deg C decreases the emf sensor response in the first 100 h to a steady value. Moreover, sintering studies by impedance spectroscopy allowed for finding correlations between electrical parameters, sintering kinetics and grain growth mechanisms. (author)

  9. Impact of iron powder pressing temperature on high-temperature corrosion of the obtained sinters

    Directory of Open Access Journals (Sweden)

    A. Jaroń

    2010-07-01

    Full Text Available The work presents the results of kinetic studies of the high-temperature oxidation process of metallic iron sinters obtained by a hotpressing method in an anaerobic atmosphere. The conducted studies for a model arrangement (iron allow to determine the effect of conditions for obtaining metallic pressed materials on the course of a high-temperature corrosion process. What is more, iron oxide sinters characterized by an expanded surface disclosed by a morphological analysis of the resulting scales may be used as catalyst carriers or as input material for obtaining porous iron by reduction. Sinters intended for research were obtained in a device for one-axial hot-pressing of samples at a pressure of 8 MPa within the temperature range 600 – 900oC in vacuum. The research into the kinetics of metallic sinters oxidation was carried out in the standard apparatus for high-temperature thermogravimetric studies using a continuous method with automatic recording of measurement within the temperature range 500 – 700oC in synthetic air atmosphere. The dependence of oxidation kinetics of metallic sinters on a pressing temperature was determined. Morphology as well as the chemical and phase composition of the tested samples were described using the SEM/EDX and XRD methods.

  10. Validation of DEM modeling of sintering using an in situ X-ray microtomography analysis of the sintering of NaCl powder

    Science.gov (United States)

    Martin, Sylvain; Navarro, Sebastián; Palancher, Hervé; Bonnin, Anne; Léchelle, Jacques; Guessasma, Mohamed; Fortin, Jérôme; Saleh, Khashayar

    2016-11-01

    This paper aims to validate the discrete element method (DEM) model of sintering. In situ X-ray microtomography experiments have been carried out at the ESRF to follow the sintering of NaCl powder, the properties of which are close to the DEM model assumptions. DEM simulations are then run using an improved implicit method. The comparison between experiment and simulation shows the capability of DEM to predict the behavior of the sample on both particle and packing scale. The main advantages and limits of this approach are finally discussed based on these results and those of previous studies.

  11. PRODUCTION OF WELDMENTS FROM SINTERED TITANIUM ALLOYS

    Directory of Open Access Journals (Sweden)

    A. YE. Kapustyan

    2014-04-01

    Full Text Available Purpose. Limited application of details from powder titanium alloys is connected with the difficulties in obtaining of long-length blanks, details of complex shape and large size. We can solve these problems by applying the welding production technology. For this it is necessary to conduct a research of the structure and mechanical properties of welded joints of sintered titanium alloys produced by flash welding. Methodology. Titanium industrial powders, type PT5-1 were used as original substance. Forming of blanks, whose chemical composition corresponded to BT1-0 alloy, was carried out using the powder metallurgy method. Compounds were obtained by flash welding without preheating. Microstructural investigations and mechanical tests were carried out. To compare the results investigations of BT1-0 cast alloy were conducted. Findings. Samples of welded joints of sintered titanium blanks from VT1-0 alloy using the flash butt welding method were obtained. During welding the microstructure of basic metal consisting of grains of an a-phase, with sizes 40...70 mkm, is transformed for the seam weld and HAZ into the lamellar structure of an a-phase. The remaining pores in seam weld were practically absent; in the HAZ their size was up to 2 mkm, with 30 mkm in the basic metal. Attainable level of mechanical properties of the welded joint in sintered titanium alloys is comparable to the basic metal. Originality. Structure qualitative changes and attainable property complex of compounds of sintered titanium alloys, formed as a result of flash butt welding were found out. Practical value. The principal possibility of high-quality compounds obtaining of sintered titanium alloys by flash welding is shown. This gives a basis for wider application of sintered titanium alloys due to long-length blanks production that are correspond to deformable strand semi finished product.

  12. Evaluation of press-and-sinter parameters for tantalum pentoxide by the diametral compression test

    International Nuclear Information System (INIS)

    Livne, Z.; Fields, R.J.; Agulyansky, A.

    1997-01-01

    Submicron Ta 2 O 5 powder was consolidated by cold pressing using pressures between 24 MPa and 240 MPa followed by sintering at temperatures in the range 1300 degrees C to 1500 degrees C. The resulting disks were fractured in diametral compression tests (DCT) to determine the tensile strength. The strength, mode of fracture, and fracture surface were subsequently used to identify potential processing routes for high density, fine grained Ta 2 O 5 for the use as sputtering targets. Besides the conventional single or triple cleft fracture, two other modes of failure were observed in the diametrical compression test: delamination due to stratification flaws introduced by high pressure pre-pressing before sintering, and fragmentation caused by slow microcrack growth in the presence of phase transformation stresses arising in samples sintered above the transformation temperature of 1360 degrees C

  13. Creating hierarchical porosity hydroxyapatite scaffolds with osteoinduction by three-dimensional printing and microwave sintering.

    Science.gov (United States)

    Pei, Xuan; Ma, Liang; Zhang, Boqing; Sun, Jianxun; Sun, Yong; Fan, Yujiang; Gou, Zhongru; Zhou, Changchun; Zhang, Xingdong

    2017-11-14

    Hierarchical porosity, which includes micropores and macropores in scaffolds, contributes to important multiple biological functions for tissue regeneration. This paper introduces a two-step method of combining three-dimensional printing (3DP) and microwave sintering to fabricate two-level hierarchical porous scaffolds. The results showed that 3D printing made the macroporous structure well-controlled and microwave sintering generated micropores on the macropore surface. The resulting hierarchical macro/microporous hydroxyapatite scaffold induced bone formation following intramuscular implantation. Moreover, when comparing the hierarchical macro/microporous hydroxyapatite scaffold to the non-osteoinductive hydroxyapatite scaffolds (either 3D printed or H 2 O 2 foamed) subjected to muffle sintering which do not have micropores, the critical role of micropores in material-driven bone formation was shown. The findings presented herein could be useful for the further optimization of bone grafting materials for bone regeneration.

  14. Influence of the amount containing spodumene or albite on the sintering of a triaxial ceramic

    International Nuclear Information System (INIS)

    Oliveira, Camila Felippe de; Strecker, Kurt

    2012-01-01

    In this study, we investigated the properties of porcelain stoneware, made with albite or spodumene. The amount of the feldspar in the compositions ranged from 15 to 30% by weight. Specimens were pressed and sintered at 1000, 1100, 1200 and 1280 °C with an isotherm of 1 hour at the maximum temperature. The samples were characterized by analysis of the fracture surface using scanning electron microscopy and the vitrification curves, showing both the linear shrinkage and porosity in relation to the sintering temperature. The best results were obtained for samples containing 30% spodumene sintered at 1280 °C, with a linear shrinkage of 9.97% and porosity of 13.28%, while the corresponding results of samples containing 30% albite were 10.13% and 12.17%, respectively. It is concluded that the use of spodumene in the production of porcelain stoneware is viable, resulting in comparable properties. (author)

  15. Phase characterisation in spark plasma sintered TiPt alloy

    CSIR Research Space (South Africa)

    Chikosha, S

    2011-12-01

    Full Text Available The conclusions drawn from this presentation are that Spark Plasma Sintering (SPS) of equiatomic BE TiPt powder produces fully sintered specimens, with incomplete homogenisation. There is a need for improved furnace atmosphere control so...

  16. Process for microwave sintering boron carbide

    Science.gov (United States)

    Holcombe, C.E.; Morrow, M.S.

    1993-10-12

    A method of microwave sintering boron carbide comprises leaching boron carbide powder with an aqueous solution of nitric acid to form a leached boron carbide powder. The leached boron carbide powder is coated with a glassy carbon precursor to form a coated boron carbide powder. The coated boron carbide powder is consolidated in an enclosure of boron nitride particles coated with a layer of glassy carbon within a container for microwave heating to form an enclosed coated boron carbide powder. The enclosed coated boron carbide powder is sintered within the container for microwave heating with microwave energy.

  17. Fusibility and sintering characteristics of ash

    International Nuclear Information System (INIS)

    Ots, A. A.

    2012-01-01

    The temperature characteristics of ash fusibility are studied for a wide range of bituminous and brown coals, lignites, and shales with ratios R B/A of their alkaline and acid components between 0.03 and 4. Acritical value of R B/A is found at which the fusion temperatures are minimal. The sintering properties of the ashes are determined by measuring the force required to fracture a cylindrical sample. It is found that the strength of the samples increases sharply at certain temperatures. The alkali metal content of the ashes has a strong effect on their sintering characteristics.

  18. Strengthening of porous matrix materials with evaporation/condensation sintering for composite materials applications

    Science.gov (United States)

    Haslam, Jeffery John

    1998-12-01

    The need for improved fuel economy and reduced environmental emissions from power turbines has prompted the development of high temperature fiber composite materials. One use of these materials is for liners of the hot combustion regions of jet engines and land based power turbines. Stability of the composite materials against oxidative damage during long term use at high temperatures has motivated recent research into fiber composite materials composed entirely of oxide ceramics. All-oxide fiber reinforced composites containing porous, strongly bonded matrices have become of interest. The porosity provides for crack deflection along the fibers to prevent catastrophic failure of the fiber reinforcements. A new application of a processing method that produces evaporation/condensation sintering was employed to prevent shrinkage of the matrix. This processing method and the properties of the matrix, fibers, and composite were evaluated in this work. Producing a matrix without shrinkage is important to prevent undesirable crack-like voids from forming in the matrix. These voids are caused by constraint against shrinkage by the fiber reinforcements. Dry hydrogen chloride gas produced a reactive gas atmosphere that was used to sinter the zirconia particles with minimal shrinkage because the gas promotes evaporation/condensation sintering with zirconia. Sintering of samples that did not contain fiber reinforcements was studied to evaluate the properties of the matrix material. The sintering of monoclinic, tetragonal, and cubic zirconias in the reactive gas atmosphere was compared. Additions of mullite (which did not sinter significantly at processing temperatures) further reduced the shrinkage. The effects of the processing conditions on the sintering shrinkage, microstructure development, and mechanical properties were studied. Cubic and monoclinic zirconia coarsened significantly in the HCl gas sintering atmosphere. The coarsening of the particles during the sintering

  19. Surface phase transitions in cu-based solid solutions

    Science.gov (United States)

    Zhevnenko, S. N.; Chernyshikhin, S. V.

    2017-11-01

    We have measured surface energy in two-component Cu-based systems in H2 + Ar gas atmosphere. The experiments on solid Cu [Ag] and Cu [Co] solutions show presence of phase transitions on the surfaces. Isotherms of the surface energy have singularities (the minimum in the case of copper solid solutions with silver and the maximum in the case of solid solutions with cobalt). In both cases, the surface phase transitions cause deficiency of surface miscibility: formation of a monolayer (multilayer) (Cu-Ag) or of nanoscale particles (Cu-Co). At the same time, according to the volume phase diagrams, the concentration and temperature of the surface phase transitions correspond to the solid solution within the volume. The method permits determining the rate of diffusional creep in addition to the surface energy. The temperature and concentration dependence of the solid solutions' viscosity coefficient supports the fact of the surface phase transitions and provides insights into the diffusion properties of the transforming surfaces.

  20. Calcination, Reduction and Sintering of ADU Spheres for HTGR Fuel

    International Nuclear Information System (INIS)

    Jeong, Kyung Chai; Eom, Sung Ho; Kim, Yeon Ku; Kim, Woong Ki; Kim, Young Min; Lee, Young Woo; Kim, Ju Hee; Cho, Hyo Jin; Cho, Moon Seoung

    2011-01-01

    The international oil market is again in turmoil in accordance with the increasing of human needs and energy consumption. Soaring oil prices, fears of supply security, and climate change are concerned becoming more concrete make for an uncertain energy future. In this view point, nuclear energy is an important, yet controversial option for energy supply. High Temperature Gas Reactor will play a dominant role in the worldwide fleet of nuclear reactors of the next decade for electricity production and high temperature heat. HTGR have two reactor types which use the basic fuel concept based on the dispersion of TRISO coated particles in graphite in shown Fig.1. The TRISO coated particle for these purposes is prepared with pyro-carbon and silicone carbide coatings on a spherical UO 2 kernel surface as fissile material. The TRISO fuel particle consists of a microsphere (i.e., UO 2 kernel) of nuclear material: encapsulated by multiple layers of pyro-carbon and a SiC layer. This multiple coating layers system has been engineered to retain the fission products generated by fission of the nuclear material in the kernel during normal operation and all licensing basis events over the design lifetime of the fuel. UO 2 kernels are produced by using the modified sol-gel process, a wet process, generally known as the GSP method. Wet chemical processes are flexible in producing kernels of different size and chemical composition with high throughout and yield, good spherical shape, and narrow size distribution. This chemical processing route is well-known to the potential kernel fabrication processes. The principle, as set out in Fig.2, involves first of all preparing a pseudo-sol(also known as a 'broth') from an initial uranyl nitrate solution . This broth solution is obtained through addition of a number of additives, as determined by process know-how, including a soluble organic polymer, that are subsequently gels into droplets and are dispersed for ADU precipitation. The

  1. Role of Cu During Sintering of Fe0.96Cu0.04 Nanoparticles

    Science.gov (United States)

    Sivaprahasam, D.; Sriramamurthy, A. M.; Bysakh, S.; Sundararajan, G.; Chattopadhyay, K.

    2018-01-01

    Nanoparticle agglomerates of passivated Fe (n-Fe) and Fe0.96Cu0.04 (n-Fe0.96Cu0.04), synthesized through the levitational gas condensation (LGC) process, were compacted and sintered using the conventional powder metallurgy method. The n-Fe0.96Cu0.04 agglomerates produced lower green density than n-Fe, and when compacted under pressure beyond 200 MPa, they underwent lateral cracking during ejection attributed to the presence of a passive oxide layer. Sintering under dynamic hydrogen atmosphere can produce a higher density of compact in n-Fe0.96Cu0.04 in comparison to n-Fe. Both the results of dilatometry and thermogravimetric (TG) measurements of the samples under flowing hydrogen revealed enhancement of the sintering process as soon as the reduction of oxide layers could be accomplished. The shrinkage rate of n-Fe0.96Cu0.04 reached a value three times higher than n-Fe at a low temperature of 723 K (450 °C) during heating. This enhanced shrinkage rate was the manifestation of accumulation of Cu at the surface of the particles. The formation of a thin-surface melted layer enriched with copper during heating to isothermal holding facilitated as a medium of transport for diffusion of the elements. The compacts produced by sintering at 773 K (500 °C), with relative density 82 pct, were found to be unstable and oxidized instantly when exposed to ambient atmosphere. The stable compacts of density more than 92 pct with 300- to 450-nm grain size could only be produced when sintering was carried out at 973 K (700 °C) and beyond. The 0.22 wt pct residual oxygen obtained in the sintered compact is similar to what is used for conventional ferrous powder metallurgy products.

  2. A GPU-based mipmapping method for water surface visualization

    Science.gov (United States)

    Li, Hua; Quan, Wei; Xu, Chao; Wu, Yan

    2018-03-01

    Visualization of water surface is a hot topic in computer graphics. In this paper, we presented a fast method to generate wide range of water surface with good image quality both near and far from the viewpoint. This method utilized uniform mesh and Fractal Perlin noise to model water surface. Mipmapping technology was enforced to the surface textures, which adjust the resolution with respect to the distance from the viewpoint and reduce the computing cost. Lighting effect was computed based on shadow mapping technology, Snell's law and Fresnel term. The render pipeline utilizes a CPU-GPU shared memory structure, which improves the rendering efficiency. Experiment results show that our approach visualizes water surface with good image quality at real-time frame rates performance.

  3. Prediction of heating rate controlled viscous flow activation energy during spark plasma sintering of amorphous alloy powders

    Science.gov (United States)

    Paul, Tanaji; Harimkar, Sandip P.

    2017-07-01

    The viscous flow behavior of Fe-based amorphous alloy powder during isochronal spark plasma sintering was analyzed under the integrated theoretical background of the Arrhenius and directional structural relaxation models. A relationship between viscous flow activation energy and heating rate was derived. An extension of the pertinent analysis to Ti-based amorphous alloys confirmed the broad applicability of such a relationship for predicting the activation energy for sintering below the glass transition temperature (T g) of the amorphous alloy powders.

  4. Sintering of dioxide pellets in an oxidizing atmosphere (CO2)

    International Nuclear Information System (INIS)

    Santos, G.R.T.

    1992-01-01

    This work consists in the study of the sintering process of U O 2 pellets in an oxidizing atmosphere. Sintering tests were performed in an CO 2 atmosphere and the influence of temperature and time on the pellets density and microstructure were verified. The results obtained were compared to those from the conventional sintering process and its efficiency was confirmed. (author)

  5. Effect of increasing lanthanum substitution and the sintering ...

    Indian Academy of Sciences (India)

    Administrator

    Young's modulus of the microwave sintered samples (8.8–12.5 and 160–180 GPa) are higher than that for conventional sintered (8–10 and 135–155 GPa) samples. Keywords. Microwave sintering; La-substituted SBTi ceramics; mechanical properties. 1. Introduction. In recent years, bismuth layer-structured ferroelectrics.

  6. Acid-base characteristics of powdered-activated-carbon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Reed, B.E. (West Virginia Univ., Morgantown (United States)); Jensen, J.N.; Matsumoto, M.R. (State Univ. of New York, Buffalo (United States))

    Adsorption of heavy metals onto activated carbon has been described using the surface-complex-formation (SCF) model, a chemical equilibrium model. The SCF model requires a knowledge of the amphoteric nature of activated carbon prior to metal adsorption modeling. In the past, a single-diprotic-acid-site model had been employed to describe the amphoteric nature of activated-carbon surfaces. During this study, the amphoteric nature of two powdered activated carbons were investigated, and a three-monoprotic site surface model was found to be a plausible alternative. The single-diprotic-acid-site and two-monoprotic-site models did not describe the acid-base behavior of the two carbons studied adequately. The two-diprotic site was acceptable for only one of the study carbons. The acid-base behavior of activated carbon surfaces seem to be best modeled as a series of weak monoprotic acids.

  7. Trends in interfacial design for surface plasmon resonance based immunoassays

    Energy Technology Data Exchange (ETDEWEB)

    Shankaran, Dhesingh Ravi [Art, Science and Technology Center for Cooperative Research, Kyushu University, Kasuga-shi, Fukuoka, 816-8580 (Japan); Miura, Norio [Art, Science and Technology Center for Cooperative Research, Kyushu University, Kasuga-shi, Fukuoka, 816-8580 (Japan)

    2007-12-07

    Immunosensors based on surface plasmon resonance (SPR) have become a promising tool in sensor technology for biomedical, food, environmental, industrial and homeland security applications. SPR is a surface sensitive optical technique, suitable for real-time and label-free analysis of biorecognition events at functional transducer surfaces. Fabrication of highly active and robust sensing surfaces is an important part in immunoassays because the quality, quantity, chemistry and topography of the interfacial biomembranes play a major role in immunosensor performance. Eventually, a variety of immobilization methods such as physical adsorption, covalent coupling, Langmuir-Blodgett film, polymer thin film, self-assembly, sol-gel, etc, have been introduced over the years for the immobilization of biomolecules (antibody or antigen) on the transducer surfaces. The selection of an immobilization method for an immunoassay is governed by several factors such as nature and stability of the biomolecules, target analyte, application, detection principle, mode of signal transduction, matrix complexity, etc. This paper provides an overview of the various surface modification methods for SPR based immunosensor fabrication. The preparation, structure and application of different functional interfacial surfaces have been discussed along with a brief introduction to the SPR technology, biomolecules and detection principles. (review article)

  8. Trends in interfacial design for surface plasmon resonance based immunoassays

    International Nuclear Information System (INIS)

    Shankaran, Dhesingh Ravi; Miura, Norio

    2007-01-01

    Immunosensors based on surface plasmon resonance (SPR) have become a promising tool in sensor technology for biomedical, food, environmental, industrial and homeland security applications. SPR is a surface sensitive optical technique, suitable for real-time and label-free analysis of biorecognition events at functional transducer surfaces. Fabrication of highly active and robust sensing surfaces is an important part in immunoassays because the quality, quantity, chemistry and topography of the interfacial biomembranes play a major role in immunosensor performance. Eventually, a variety of immobilization methods such as physical adsorption, covalent coupling, Langmuir-Blodgett film, polymer thin film, self-assembly, sol-gel, etc, have been introduced over the years for the immobilization of biomolecules (antibody or antigen) on the transducer surfaces. The selection of an immobilization method for an immunoassay is governed by several factors such as nature and stability of the biomolecules, target analyte, application, detection principle, mode of signal transduction, matrix complexity, etc. This paper provides an overview of the various surface modification methods for SPR based immunosensor fabrication. The preparation, structure and application of different functional interfacial surfaces have been discussed along with a brief introduction to the SPR technology, biomolecules and detection principles. (review article)

  9. Design of structurally colored surfaces based on scalar diffraction theory

    DEFF Research Database (Denmark)

    Johansen, Villads Egede; Andkjær, Jacob Anders; Sigmund, Ole

    2014-01-01

    In this paper we investigate the possibility of controlling the color and appearance of surfaces simply by modifying the height profile of the surface on a nanoscale level. The applications for such methods are numerous: new design possibilities for high-end products, color engraving on any highly...... reflective surface, paint-free text and coloration, UV-resistant coloring, etc. In this initial study, the main focus is on finding a systematic way to obtain these results. For now the simulation and optimization is based on a simple scalar diffraction theory model. From the results, several design issues...

  10. Inference-Based Surface Reconstruction of Cluttered Environments

    KAUST Repository

    Biggers, K.

    2012-08-01

    We present an inference-based surface reconstruction algorithm that is capable of identifying objects of interest among a cluttered scene, and reconstructing solid model representations even in the presence of occluded surfaces. Our proposed approach incorporates a predictive modeling framework that uses a set of user-provided models for prior knowledge, and applies this knowledge to the iterative identification and construction process. Our approach uses a local to global construction process guided by rules for fitting high-quality surface patches obtained from these prior models. We demonstrate the application of this algorithm on several example data sets containing heavy clutter and occlusion. © 2012 IEEE.

  11. Integration of Heat Treatment with Shot Peening of 17-4 Stainless Steel Fabricated by Direct Metal Laser Sintering

    Science.gov (United States)

    AlMangour, Bandar; Yang, Jenn-Ming

    2017-11-01

    Direct metal laser sintering (DMLS) is a promising powder-based additive manufacturing process for fabrication of near-net-shape parts. However, the typically poor fatigue performance of DMLS parts must be addressed for use in demanding industrial applications. Post-treatment can be applied to enhance the performance of such components. Earlier attempts at inducing grain refinement through severe plastic deformation of part surfaces using shot peening improved the physical and mechanical properties of metals without chemical alteration. However, heat treatment can modify the surface-hardening effects attained by shot peening. Hence, we examined the feasibility of applying shot peening combined with heat treatment to improve the performance of DMLS-fabricated 17-4 stainless steel parts through microstructural evolution studies and hardness measurements. Compared to a specimen treated only by shot peening, the sample exposed to additional heat treatment showed increased hardness due to aging of the dominant phase.

  12. Discussion on the Local Magnetic Force between Reversely Magnetized Micro Metal Particles in the Microwave Sintering Process

    Directory of Open Access Journals (Sweden)

    Yu Xiao

    2017-02-01

    Full Text Available Synchrotron radiation computed tomography was applied to investigate Cu–Fe mixture microwave sintering in situ and to examine the magnetic force between reversely magnetized micro-metal particles in microwave sintering. Results revealed that the growth rate of the sintering necks between Cu–Fe particles and Cu–Cu particles around the iron particles distributed in a vertical direction was faster than that of the sintering necks in the horizontal direction. These phenomena were consistent with the possible influence caused by the magnetic force between metal particles, as shown in our simple particle model. The kinetic curves of sintering neck growth along the vertical and horizontal directions quantitatively revealed the difference in growth rates. The contributing factors of magnetic force in microwave sintering were subsequently discussed. The volume of iron particles was proportional to the influence of magnetic force, and their shape elicited a remarkable influence based on demagnetization effects. This study provided a useful basis for microwave sintering mechanisms and anisotropic material preparation.

  13. Mechanical characteristics of microwave sintered silicon carbide

    Indian Academy of Sciences (India)

    Unknown

    tions ranging from kiln furniture to membrane material. Keywords. Microwave sintering; biaxial flexure; silicon carbide. 1. Introduction. Silicon carbide (SiC) ceramics is a very well known candidate material for a structural application. However, due to (i) poor densification due to highly directional bonding, (ii) susceptibility of ...

  14. Sintering behavior of LZSA glass-ceramics

    Directory of Open Access Journals (Sweden)

    Oscar Rubem Klegues Montedo

    2009-06-01

    Full Text Available The LZSA glass-ceramic system (Li2O-ZrO2-SiO2-Al2O 3 shows interesting properties, such as good chemical resistance, low thermal expansion, high abrasion resistance, and a low dielectric constant. However, in order to obtain a high performance material for specific applications, the sintering behavior must be better understood so that the porosity may be reduced and other properties improved. In this context, a sintering investigation for a specific LZSA glass-ceramic system composition was carried out. A 18.8Li2O-8.3ZrO2-64.2SiO2-8.7Al 2O3 glass was prepared by melting the solids, quenching the melt in water, and grinding the resulting solid in order to obtain a powder (3.68 μm average particle diameter. Subsequently, the glass powder was characterized (chemical analysis and determination of thermal properties and the sintering behavior was investigated using optical non-contact dilatometry measurements. The results showed that the crystallization process strongly reduced the sintering in the temperature interval from 785 to 940 °C, and a maximum thermal shrinkage of 15.4% was obtained with operating conditions of 1020 °C and 180 minutes.

  15. Study of ceramics sintering under high pressures

    International Nuclear Information System (INIS)

    Kunrath Neto, A.O.

    1990-01-01

    A systematic study was made on high pressure sintering of ceramics in order to obtain materials with controlled microstructure, which are not accessible by conventional methods. Some aspects with particular interest were: to achieve very low porosity, with fine grains; to produce dispersed metastable and denser phases which can act as toughening agents; the study of new possibilities for toughening enhancement. (author)

  16. Deformation behavior of sintered nanocrystalline silver layers

    International Nuclear Information System (INIS)

    Zabihzadeh, S.; Van Petegem, S.; Duarte, L.I.; Mokso, R.; Cervellino, A.; Van Swygenhoven, H.

    2015-01-01

    The microstructure of porous silver layers produced under different low temperature pressure-assisted sintering conditions is characterized and linked with the mechanical behavior studied in situ during X-ray diffraction. Peak profile analysis reveals important strain recovery and hardening mechanism during cyclic deformation. The competition between both mechanisms is discussed in terms of porosity and grain size

  17. Air-sintering mechanisms of chromites

    Energy Technology Data Exchange (ETDEWEB)

    Chick, L.A.; Bates, J.L.; Maupin, G.D.

    1991-07-01

    The sintering behaviors of La{sub 1-x}Sr{sub x}CrO{sub 3} and Y{sub 1-x}Ca{sub x}CrO{sub 3} in air at 1550{degrees}C are described as functions of alkaline earth concentration and chromium enrichment or depletion. Vapor-, liquid-, and solid-phase mass transport mechanisms appear to be operative in both systems. Liquid-phase sintering appears dominant an Y{sub 1-x}Ca{sub x}CrO{sub 3} with x = 0.15 to 0.40, especially with Cr enrichment. Either vapor- or solid-phase transport may dominate in the La{sub 1-x}Sr{sub x}CrO{sub 3} system. Slight depletion or enrichment of Cr in both systems has dramatic effects on air-sintered density and microstructure, probably due to modulation of vapor-phase transport and liquid-phase formation. Substantial Cr depletion enhances sintering. 10 refs., 9 figs.

  18. Mechanical characterization of microwave sintered zinc oxide

    Indian Academy of Sciences (India)

    Unknown

    Keywords. Zinc oxide; microwave sintering; microhardness. 1. Introduction. The application of microwave energy for the processing of ceramics has become an attractive area of research and innovation recently. The major advantages of the micro- wave processing of ceramic materials are accelerated densification rate as a ...

  19. Nanoparticle-Based Surface Modifications for Microtribology Control and Superhydrophobicity

    Science.gov (United States)

    Hurst, Kendall Matthew

    2010-11-01

    The emergence of miniaturization techniques for consumer electronics has brought forth the relatively new and exciting field of microelectromechanical systems (MEMS). However, due to the inherent forces that exist between surfaces at the micro- and nanoscale, scientists and semiconductor manufacturers are still struggling to improve the lifetime and reliability of complex microdevices. Due to the extremely large surface area-to-volume ratio of typical MEMS and microstructured surfaces, dominant interfacial forces exist which can be detrimental to their operational lifetime. In particular, van der Waals, capillary, and electrostatic forces contribute to the permanent adhesion, or stiction , of microfabricated surfaces. This strong adhesion force also contributes to the friction and wear of these silicon-based systems. The scope of this work was to examine the effect of utilizing nanoparticles as the basis for roughening surfaces for the purpose of creating films with anti-adhesive and/or superhydrophobic properties. All of the studies presented in this work are focused around a gas-expanded liquid (GXL) process that promotes the deposition of colloidal gold nanoparticles (AuNPs) into conformal thin films. The GXL particle deposition process is finalized by a critical point drying step which is advantageous to the microelectromechanical systems and semiconductor (IC) industries. In fact, preliminary results illustrated that the GXL particle deposition process can easily be integrated into current MEMS microfabrication processes. Thin films of AuNPs deposited onto the surfaces of silicon-based MEMS and tribology test devices were shown to have a dramatic effect on the adhesion of microstructures. In the various investigations, the apparent work of adhesion between surfaces was reduced by 2-4 orders of magnitude. This effect is greatly attributed to the roughening of the typically smooth silicon oxide surfaces which, in turn, dramatically decreases the "real are of

  20. Sintering of silicon nitride ceramics with magnesium silicon nitride and yttrium oxide as sintering aids

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, J; Xu, J Y [Shanghai Institute of Technology, Shanghai 200235 (China); Peng, G H [Guangxi Normal University, Guilin 541004, Guangxi (China); Zhuang, H R; Li, W L; Xu, S Y [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Mao, Y J, E-mail: guojianjiang@sit.edu.cn [Shanghai University, Shanghai 200444 (China)

    2011-10-29

    Silicon nitride (Si{sub 3}N{sub 4}) ceramics had been produced through pressureless sintering and hot-pressing sintering with MgSiN{sub 2}-Y{sub 2}O{sub 3} or only MgSiN{sub 2} as sintering aids. The influences of the amount of MgSiN{sub 2} and Y{sub 2}O{sub 3} and sintering methods on the properties of Si{sub 3}N{sub 4} ceramics were investigated. The results show that the bend strength of Si{sub 3}N{sub 4} ceramic fabricated through pressureless sintering at 1820 deg. C for 4 h with 5.6 wt.% MgSiN{sub 2}-15.8 wt.% Y{sub 2}O{sub 3} as sintering additive could achieve 839 MPa. However, the bend strength of Si{sub 3}N{sub 4} ceramic produced by hot-pressing sintering at 1750 deg. C for 1 h under uniaxial pressure of 20 MPa with 4.76 wt.% MgSiN{sub 2} was 1149 MPa. The thermal conductivity of the Si{sub 3}N{sub 4} ceramic 2 3 4 could reach to 129 W{center_dot}m{sup -1{center_dot}}K{sup 1}. The present work demonstrated that MgSiN{sub 2} aids and hot-pressing sintering were effective to improve the thermal conductivity of Si{sub 3}N{sub 4} ceramic.

  1. Effect of sintering temperature on micro structural and impedance spectroscopic properties of Ni0.5Zn0.5Fe2O4 nano ferrite

    Science.gov (United States)

    Venkatesh, Davuluri; Ramesh, K. V.; Sastry, C. V. S. S.

    2017-07-01

    Ni-Zn nanoferrite Ni0.5Zn0.5Fe2O4 is prepared by citrate gel auto combustion method and sintered at various temperatures 800, 900, 1000, 1100 and 1200°C. The room temperature x-ray diffraction conforms that the single phase spinel structure is formed. Crystallite size and density were increased with increasing of sintering temperature. From Raman spectroscopy all sintered samples are single phase with cubic spinel structure belong to Fd3m space group. From surface morphology studies it is clearly observed that the particle size increased with increasing of sintering temperature. Impedance spectroscopy revel that increasing of conductivity is due to grain resistance is decreased with increasing of sintering temperature. Cole-Cole plots are studied from impedance data. The electrical modulus analysis shows that non-Debye nature of Ni0.5Zn0.5Fe2O4 ferrite.

  2. Evaluation of Microstructure and Mechanical Properties of Al-TiC Metal Matrix Composite Prepared by Conventional, Microwave and Spark Plasma Sintering Methods

    Directory of Open Access Journals (Sweden)

    Ehsan Ghasali

    2017-10-01

    Full Text Available In this research, the mechanical properties and microstructure of Al-15 wt % TiC composite samples prepared by spark plasma, microwave, and conventional sintering were investigated. The sintering process was performed by the speak plasma sintering (SPS technique, microwave and conventional furnaces at 400 °C, 600 °C, and 700 °C, respectively. The results showed that sintered samples by SPS have the highest relative density (99% of theoretical density, bending strength (291 ± 12 MPa, and hardness (253 ± 23 HV. The X-ray diffraction (XRD investigations showed the formation of TiO2 from the surface layer decomposition of TiC particles. Scanning electron microscopy (SEM micrographs demonstrated uniform distribution of reinforcement particles in all sintered samples. The SEM/EDS analysis revealed the formation of TiO2 around the porous TiC particles.

  3. Reduced sintering of mass-selected Au clusters on SiO2 by alloying with Ti: an aberration-corrected STEM and computational study

    DEFF Research Database (Denmark)

    Niu, Yubiao; Schlexer, Philomena; Sebök, Béla

    2018-01-01

    Au nanoparticles represent the most remarkable example of a size effect in heterogeneous catalysis. However, a major issue hindering the use of Au nanoparticles in technological applications is their rapid sintering. We explore the potential of stabilizing Au nanoclusters on SiO2 by alloying them...... in the Au/Ti clusters, but in line with the model computational investigation, Au atoms were still present on the surface. Thus size-selected, deposited nanoalloy Au/Ti clusters appear to be promising candidates for sustainable gold-based nanocatalysis....

  4. Fundamental studies of the mechanisms of slag deposit formation: Studies on initiation, growth and sintering in the formation of utility boiler deposits: Topical technical report

    Energy Technology Data Exchange (ETDEWEB)

    Tangsathitkulchai, M.; Austin, L.G.

    1986-03-01

    Three laboratory-scale devices were utilized to investigate the mechanisms of the initiation, growth and sintering process involved in the formation of boiler deposits. Sticking apparatus investigations were conducted to study deposit initiation by comparing the adhesion behavior of the ash drops on four types of steel-based heat exchanger materials under the conditions found in a utility boiler and an entrained slagging gasifier. In addition, the adhesion behavior of the ash drops on a reduced steel surface were investigated. All the ash drops studied in this investigation were produced from bituminous coals.

  5. Fast surface-based travel depth estimation algorithm for macromolecule surface shape description.

    Science.gov (United States)

    Giard, Joachim; Alface, Patrice Rondao; Gala, Jean-Luc; Macq, Benoît

    2011-01-01

    Travel Depth, introduced by Coleman and Sharp in 2006, is a physical interpretation of molecular depth, a term frequently used to describe the shape of a molecular active site or binding site. Travel Depth can be seen as the physical distance a solvent molecule would have to travel from a point of the surface, i.e., the Solvent-Excluded Surface (SES), to its convex hull. Existing algorithms providing an estimation of the Travel Depth are based on a regular sampling of the molecule volume and the use of the Dijkstra's shortest path algorithm. Since Travel Depth is only defined on the molecular surface, this volume-based approach is characterized by a large computational complexity due to the processing of unnecessary samples lying inside or outside the molecule. In this paper, we propose a surface-based approach that restricts the processing to data defined on the SES. This algorithm significantly reduces the complexity of Travel Depth estimation and makes possible the analysis of large macromolecule surface shape description with high resolution. Experimental results show that compared to existing methods, the proposed algorithm achieves accurate estimations with considerably reduced processing times.

  6. TiO2 doped UO2 fuels sintered by spark plasma sintering

    Science.gov (United States)

    Yao, Tiankai; Scott, Spencer M.; Xin, Guoqing; Lian, Jie

    2016-02-01

    UO2 fuels doped with oxide additives Cr2O3 and TiO2 display larger grain size, improving fission product retention capability and thus accident tolerance. Spark plasma sintering (SPS) was applied to consolidate TiO2-doped UO2 fuel pellets with 0.5 wt % dopant concentration, above its solubility, in order to induce eutectic phase formation and promote sintering kinetics. The grain size can reach 80 μm by sintering at 1700 °C for 20 min, and liquid U-Ti-O eutectic phase occurs at the triple junction of grain boundaries and significantly improves grain growth during sintering. The oxide additive also impedes the reduction of the initial hyperstoichiometric fuel powders to more stoichiometric fuel pellets upon SPS process. Thermal-mechanical properties of the sintered doped fuel pellets including thermal conductivity and hardness are measured and compared with undoped fuel pellets. The enlarged grain size (80 μm) and densification within short sintering duration highlight the immense possibility of SPS in fabricating large grained UO2 fuel pellets to improve fuel performance.

  7. Sintering uranium oxide using a preheating step

    International Nuclear Information System (INIS)

    Jensen, N.J.; Nivas, Y.; Packard, D.R.

    1977-01-01

    Compacted pellets of uranium oxide or uranium oxide with one or more additives are heated in a kiln in a process having a preheating step, a sintering step, a reduction step, and a cooling step in a controlled atmosphere. The process is practiced to give a range of temperature and atmosphere conditions for obtaining optimum fluoride removal from the compacted pellets along with optimum sintering in a single process. The preheating step of this process is conducted in a temperature range of about 600 0 to about 900 0 C and the pellets are held for at least twenty min, and preferably about 60 min, in an atmosphere having a composition in the range of about 10 to about 75 vol % hydrogen with the balance being carbon dioxide. The sintering step is conducted at a temperature in the range of about 900 0 C to 1500 0 C in the presence of an atmosphere having a composition in the range of about 0.5 to about 90 vol % hydrogen with the balance being carbon dioxide. The reduction step reduces the oxygen to metal ratio of the pellets to a range of about 1.98 to 2.10:1 and this is accomplished by gradually cooling the pellets for about 30 to about 120 min from the temperature of the sintering step to about 1100 0 C in an atmosphere of about 10 to 90 vol % hydrogen with the balance being carbon dioxide. Thereafter the pellets are cooled to about 100 0 C under a protective atmosphere, and in one preferred practice the same atmosphere used in the reduction step is used in the cooling step. The preheating, sintering and reduction steps may also be conducted with their respective atmospheres having an initial additional component of water vapor and the water vapor can comprise up to about 20 vol %

  8. Surface alloying of nickel based superalloys by laser

    International Nuclear Information System (INIS)

    Rodriguez, G.P.; Garcia, I.; Damborenea, J.J. de

    1998-01-01

    Ni based superalloys present a high oxidation resistance at high temperature as well as good mechanical properties. But new technology developments force to research in this materials to improve their properties at high temperature. In this work, two Ni based superalloys (Nimonic 80A and Inconel 600) were surface alloyed with aluminium using a high power laser. SEM and EDX were used to study the microstructure of the obtained coatings. Alloyed specimens were tested at 1.273 K between 24 and 250 h. Results showed the generation of a protective and continuous coating of alumina on the laser treated specimens surface that can improve oxidation resistance. (Author) 8 refs

  9. Comparative sinterability of combustion synthesized and commercial titanium carbides

    International Nuclear Information System (INIS)

    Manley, B.W.

    1984-11-01

    The influence of various parameters on the sinterability of combustion synthesized titanium carbide was investigaged. Titanium carbide powders, prepared by the combustion synthesis process, were sintered in the temperature range 1150 to 1600 0 C. Incomplete combustion and high oxygen contents were found to be the cause of reduced shrinkage during sintering of the combustion syntheized powders when compared to the shrinkage of commercial TiC. Free carbon was shown to inhibit shrinkage. The activation energy for sintering was found to depend on stoichiometry (C/Ti). With decreasing C/Ti, the rate of sintering increased. 29 references, 16 figures, 13 tables

  10. Permeability model of sintered porous media: analysis and experiments

    Science.gov (United States)

    Flórez Mera, Juan Pablo; Chiamulera, Maria E.; Mantelli, Marcia B. H.

    2017-11-01

    In this paper, the permeability of porous media fabricated from copper powder sintering process was modeled and measured, aiming the use of the porosity as input parameter for the prediction of the permeability of sintering porous media. An expression relating the powder particle mean diameter with the permeability was obtained, based on an elementary porous media cell, which is physically represented by a duct formed by the arrangement of spherical particles forming a simple or orthorhombic packing. A circular duct with variable section was used to model the fluid flow within the porous media, where the concept of the hydraulic diameter was applied. Thus, the porous is modeled as a converging-diverging duct. The electrical circuit analogy was employed to determine two hydraulic resistances of the cell: based on the Navier-Stokes equation and on the Darcýs law. The hydraulic resistances are compared between themselves and an expression to determine the permeability as function of average particle diameter is obtained. The atomized copper powder was sifted to reduce the size dispersion of the particles. The porosities and permeabilities of sintered media fabricated from powders with particle mean diameters ranging from 20 to 200 microns were measured, by means of the image analysis method and using an experimental apparatus. The permeability data of a porous media, made of copper powder and saturated with distilled water, was used to compare with the permeability model. Permeability literature models, which considers that powder particles have the same diameter and include porosity data as input parameter, were compared with the present model and experimental data. This comparison showed to be quite good.

  11. Multifunctional methacrylate-based coatings for glass and metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pospiech, Doris, E-mail: pospiech@ipfdd.de [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Jehnichen, Dieter [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Starke, Sandra; Müller, Felix [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Technische Universität Dresden, Organic Chemistry of Polymers, Dresden (Germany); Bünker, Tobias [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Wollenberg, Anne [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Technische Universität Dresden, Organic Chemistry of Polymers, Dresden (Germany); Häußler, Liane; Simon, Frank; Grundke, Karina; Oertel, Ulrich [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Opitz, Michael; Kruspe, Rainer [IDUS Biologisch Analytisches Umweltlabor GmbH, Ottendorf-Okrilla (Germany)

    2017-03-31

    Highlights: • New methacrylate-based copolymers synthesized by free radical polymerization. • Comonomer AAMA was able to complex Cu (II) ions in solvent annealing procedure. • Coatings had efficient anti-biofouling efficacy. - Abstract: In order to prevent freshwater biofouling glass and metal surfaces were coated with novel transparent methacrylate-based copolymers. The multifunctionality of the copolymers, such as adhesion to the substrate, surface polarity, mechanical long-term stability in water, and ability to form metal complexes was inserted by the choice of suitable comonomers. The monomer 2-acetoacetoxy ethyl methacrylate (AAMA) was used as complexing unit to produce copper(II) complexes in the coating’s upper surface layer. The semifluorinated monomer 1H,1H,2H,2H-perfluorodecyl methacrylate was employed to adjust the surface polarity and wettability. Comprehensive surface characterization techniques, such as X-ray photoelectron spectroscopy (XPS) and contact angle measurements showed that surface compositions and properties can be easily adjusted by varying the concentrations of the comonomers. The formation of copper(II) complexes along the copolymer chains and their stability against washing out with plenty of water was proven by XPS. Copolymers containing semifluorinated comonomers significantly inhibited the growth of Achnanthidium species. Copolymers with copper-loaded AAMA-sequences were able to reduce both the growth of Achnanthidium spec. and Staphylococcus aureus.

  12. Multifunctional methacrylate-based coatings for glass and metal surfaces

    International Nuclear Information System (INIS)

    Pospiech, Doris; Jehnichen, Dieter; Starke, Sandra; Müller, Felix; Bünker, Tobias; Wollenberg, Anne; Häußler, Liane; Simon, Frank; Grundke, Karina; Oertel, Ulrich; Opitz, Michael; Kruspe, Rainer

    2017-01-01

    Highlights: • New methacrylate-based copolymers synthesized by free radical polymerization. • Comonomer AAMA was able to complex Cu (II) ions in solvent annealing procedure. • Coatings had efficient anti-biofouling efficacy. - Abstract: In order to prevent freshwater biofouling glass and metal surfaces were coated with novel transparent methacrylate-based copolymers. The multifunctionality of the copolymers, such as adhesion to the substrate, surface polarity, mechanical long-term stability in water, and ability to form metal complexes was inserted by the choice of suitable comonomers. The monomer 2-acetoacetoxy ethyl methacrylate (AAMA) was used as complexing unit to produce copper(II) complexes in the coating’s upper surface layer. The semifluorinated monomer 1H,1H,2H,2H-perfluorodecyl methacrylate was employed to adjust the surface polarity and wettability. Comprehensive surface characterization techniques, such as X-ray photoelectron spectroscopy (XPS) and contact angle measurements showed that surface compositions and properties can be easily adjusted by varying the concentrations of the comonomers. The formation of copper(II) complexes along the copolymer chains and their stability against washing out with plenty of water was proven by XPS. Copolymers containing semifluorinated comonomers significantly inhibited the growth of Achnanthidium species. Copolymers with copper-loaded AAMA-sequences were able to reduce both the growth of Achnanthidium spec. and Staphylococcus aureus.

  13. Measurement and model on thermal properties of sintered diamond composites

    International Nuclear Information System (INIS)

    Moussa, Tala; Garnier, Bertrand; Peerhossaini, Hassan

    2013-01-01

    Highlights: ► Thermal properties of sintered diamond used for grinding is studied. ► Flash method with infrared temperature measurement is used to investigate. ► Thermal conductivity increases with the amount of diamond. ► It is very sensitive to binder conductivity. ► Results agree with models assuming imperfect contact between matrix and particles. - Abstract: A prelude to the thermal management of grinding processes is measurement of the thermal properties of working materials. Indeed, tool materials must be chosen not only for their mechanical properties (abrasion performance, lifetime…) but also for thermal concerns (thermal conductivity) for efficient cooling that avoids excessive temperatures in the tool and workpiece. Sintered diamond is currently used for grinding tools since it yields higher performances and longer lifetimes than conventional materials (mineral or silicon carbide abrasives), but its thermal properties are not yet well known. Here the thermal conductivity, heat capacity and density of sintered diamond are measured as functions of the diamond content in composites and for two types of metallic binders: hard tungsten-based and soft cobalt-based binders. The measurement technique for thermal conductivity is derived from the flash method. After pulse heating, the temperature of the rear of the sample is measured with a noncontact method (infrared camera). A parameter estimation method associated with a three-layer nonstationary thermal model is used to obtain sample thermal conductivity, heat transfer coefficient and absorbed energy. With the hard metallic binder, the thermal conductivity of sintered diamond increased by up to 64% for a diamond content increasing from 0 to 25%. The increase is much less for the soft binder: 35% for diamond volumes up to 25%. In addition, experimental data were found that were far below the value predicted by conventional analytical models for effective thermal conductivity. A possible explanation

  14. Surface Segregation during Directional Solidification of Ni-Base Superalloys

    Science.gov (United States)

    Brewster, G.; Dong, H. B.; Green, N. R.; D'Souza, N.

    2008-02-01

    Some aspects pertaining to the increased microsegregation at the external casting surface during directional solidification of a typical Ni-base superalloy, CMSX 10N, are presented. Increased eutectic coverage was observed at the external surface along the solidification length. This eutectic appears as a thin segregated layer proud of the secondary dendrite arms preventing them from impinging onto the mold wall. The extent of surface eutectic coverage was represented as a fractional measure of the ingot perimeter. Possible mechanisms focusing on the following: (1) interaction between mold and metal, (2) inclination of primary dendrite, and (3) contraction of the dendrite network have been investigated in relation to the observed phenomenon. We deduce that the most likely explanation is associated with the contraction of the dendritic network, which qualitatively accounts both for the observed morphology and the increased eutectic fraction at the external surface of the casting.

  15. The influence of Si on the microstructure and sintering behavior of ultrafine WC

    Science.gov (United States)

    Nanda Kumar, A. K.; Watabe, Masaaki; Kurokawa, Kazuya

    2012-11-01

    The microstructure of sintered nanoscale tungsten carbide powders with 1 wt % Si addition was found to be populated by an abnormally large number of elongated grains. Interrupted sintering experiments were conducted to clarify the origins of the excessive abnormal grain growth seen in the microstructure. It was observed that rapid coarsening occurred at high temperatures owing to the formation of a liquid phase. However, the grain shape evolution during this coarsening period was found to be a consequence of excessive stacking faults and micro twins on the basal planes probably generated by reaction of WC with Si. Analyses of the microstructures and the isothermal and non isothermal coarsening behaviors suggested that the platelet morphology evolved by defect-assisted nucleation and growth on faceted grains. Based on experimental evidence from samples interrupted at low temperatures and crystal growth theories, we discuss the possible mechanisms that eventually led to the rampant platelet-type morphology. Further, the influence of such rapid grain growth on the shrinkage rate during sintering is also discussed. In comparison with the cyclic coarsening-densification process of sintering in pure nanoscale WC, the addition of Si leads to only two distinct sintering stages: either densification dominated or coarsening dominated. Concurrent densification and coarsening cannot be sustained particularly in the presence of a liquid phase that significantly enhances coarsening.

  16. Effect of sintering time on the performance of turmeric dye-sensitized solar cells

    Science.gov (United States)

    Basuki, Hidajat, R. Lullus Lambang G.; Suyitno, Kristiawan, Budi; Rachmanto, Rendy Adhi

    2017-01-01

    This study reports the effect of sintering time on the performance of the dye-sensitized solar cells with turmeric dyes as sensitizers. Sintering TiO2 semiconductors were conducted at a temperature of 450°C for 30, 50, 90, 120, 150, and 180 minutes. The natural dye was extracted from dried turmeric powders with ethanol solvent. The results show that size of grains and the opening area of TiO2 semiconductor depended on the sintering time. The improvement of the properties of TiO2 semiconductor allowed more turmeric dyes were adsorbed by the semiconductors and then improved the performance of solar cells. The sintering time of 150 minutes produced large grains with an average diameter of 68.87 nm, and a porosity area of 26.51% caused the performance of DSSCs was the highest among other sintering time. The Voc, Jsc, and efficiency of DSSCs with turmeric-based natural dyes 0.64 V, 0.47 mA/cm2, and 0.2%, respectively.

  17. Formation and properties of two-phase bulk metallic glasses by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Xie Guoqiang, E-mail: xiegq@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Louzguine-Luzgin, D.V. [WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Inoue, Akihisa [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2011-06-15

    Research highlights: > Two-phase bulk metallic glasses with high strength and good soft magnetic properties as well as satisfying large-size requirements were produced by spark plasma sintering. > Effects of sintering temperature on thermal stability, microstructure, mechanical and magnetic properties were investigated. > Densified samples were obtained by the spark plasma sintering at above 773 K. - Abstract: Using a mixture of the gas-atomized Ni{sub 52.5}Nb{sub 10}Zr{sub 15}Ti{sub 15}Pt{sub 7.5} and Fe{sub 73}Si{sub 7}B{sub 17}Nb{sub 3} glassy alloy powders, we produced the two-phase bulk metallic glass (BMG) with high strength and good soft magnetic properties as well as satisfying large-size requirements by the spark plasma sintering (SPS) process. Two kinds of glassy particulates were homogeneously dispersed each other. With an increase in sintering temperature, density of the produced samples increased, and densified samples were obtained by the SPS process at above 773 K. Good bonding state among the Ni- and Fe-based glassy particulates was achieved.

  18. Influence of spark plasma sintering and baghdadite powder on mechanical properties of hydroxyapatite

    NARCIS (Netherlands)

    Khandan, A.; Karamian, E.; Mehdikhani-Nahrkhalaji, M.; Mirmohammadi, H.; Farzadi, A.; Ozada, N.; Heidarshenas, B.; Zamani, K.

    2015-01-01

    Since hydroxyapatite-based materials have similar composition and crystallinity as natural calcified tissues, can be used for bone/tissue engineering. In the present study a novel nanocomposite based on bioceramics such as Natural Hydroxyapatite (NHA) and Baghdadite (BAG), was sintered by spark

  19. Phase transformation of NiTi alloys during vacuum sintering

    Science.gov (United States)

    Wang, Jun; Hu, Kuang

    2017-05-01

    The aim of this study is to ascertain the Phase transformation of NiTi alloys during vacuum sintering. NiTi shape memory alloys (SMA) of atomic ratio 1:1 were prepared through press forming and vacuum sintering with the mixture of Ni and Ti powders. Different samples were prepared by changing the sintering time and the sintering temperature. Phase and porosity of the samples were investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). The results show that in the process of sintering NiTi2 and Ni3Ti phases are formed firstly and then transform into NiTi phase. The quantity of NiTi2 and Ni3Ti phases gradually decreased but not eliminate completely with increase of sintering time. The porosity of specimen sintering at 900°C decreases slightly with increase of sintering time. With increase of sintering time the porosity of specimen sintering at 1050°C decreased firstly and then increased because of generation rich titanium liquid in the process of sintering.

  20. A comparative approach to synthesis and sintering of alumina/yttria nanocomposite powders using different precipitants

    Energy Technology Data Exchange (ETDEWEB)

    Kafili, G. [Department of Nanotechnology Engineering, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, 81746-73441 (Iran, Islamic Republic of); Movahedi, B., E-mail: b.movahedi@ast.ui.ac.ir [Department of Nanotechnology Engineering, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, 81746-73441 (Iran, Islamic Republic of); Milani, M. [Faculty of Advanced Materials and Renewable Energy Research Center, Tehran (Iran, Islamic Republic of)

    2016-11-01

    Alumina/yttria nanocomposite powder as an yttrium aluminum garnet (YAG) precursor was synthesized via partial wet route using urea and ammonium hydrogen carbonate (AHC) as precipitants, respectively. The products were characterized using X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and energy dispersive spectroscopy. The use of urea produced very tiny spherical Y-compounds with chemical composition of Y{sub 2}(CO{sub 3}){sub 3}·nH{sub 2}O, which were attracted to the surface of alumina nanoparticles and consequently, a core-shell structure was obtained. The use of ammonium hydrogen carbonate produced sheets of Y-compounds with chemical composition of Y(OH)CO{sub 3} covering the alumina nanoparticles. A fine-grained YAG ceramic (about 500 nm), presenting a non-negligible transparency (45% RIT at IR range) was obtained by the spark plasma sintering (SPS) of alumina-yttria nanocomposite synthesized in the urea system. This amount of transmission was obtained by only the sintering of the powder specimen without any colloidal forming process before sintering or adding any sintering aids or dopant elements. However, by spark plasma sintering of alumina-yttria nanocomposite powder synthesized in AHC system, an opaque YAG ceramic with an average grain size of 1.2 μm was obtained. - Highlights: • Urea proved to be an appropriate precipitant for obtaining a core-shell alumina/yttria nanocomposite. • Alumina/yttria nanocomposite powders with more appropriate morphology and highly sinterability. • A fine-grained YAG ceramic was obtained by SPS of alumina-yttria nanocomposite.

  1. Spark plasma sintering of hydrothermally synthesized bismuth ferrite

    Directory of Open Access Journals (Sweden)

    Zorica Branković

    2016-12-01

    Full Text Available Bismuth ferrite, BiFeO3 (BFO, powder was synthesized by hydrothermal method from Bi(NO33·5 H2O and Fe(NO33·9 H2O as precursors. The synthesized powder was further sintered using spark plasma sintering (SPS. The sintering conditions were optimized in order to achieve high density, minimal amount of secondary phases and improved ferroelectric and magnetic properties. The optimal structure and properties were achieved after spark plasma sintering at 630 °C for 20 min, under uniaxial pressure of 90 MPa. The composition, microstructure, ferroelectric and magnetic properties of the SPS samples were characterized and compared to those of conventionally sintered ceramics obtained from the same powder. Although the samples sintered using conventional method showed slightly lower amount of secondary phases, the spark plasma sintered samples exhibited favourable microstructure and better ferroelectric properties.

  2. Studies on sintering kinetics of ThO{sub 2}–UO{sub 2} pellets using master sintering curve approach

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Joydipta, E-mail: joydipta@barc.gov.in [Radiometallurgy Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Ray, Aditi [Theoretical Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kumar, Arun [Nuclear Fuels Group, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Banerjee, Srikumar [Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2013-11-15

    Three different compositions of thoria–urania pellets, namely, ThO{sub 2}–4%UO{sub 2}, ThO{sub 2}–10%UO{sub 2} and ThO{sub 2}–20%UO{sub 2} (all compositions are in wt% containing natural uranium) were fabricated by Coated Agglomerate Pelletization (CAP) process. The compositions studied in the current paper are the proposed fuels for the forthcoming Indian Advanced Heavy water Reactor (AHWR) and its variant based on low enriched uranium. Sintering kinetics of ThO{sub 2}–x%UO{sub 2} (x = 4, 10, 20) green pellets, thus fabricated, were evaluated using constant heating rate experiments in a vertical dilatometer. Activation energies of sintering (Q) were estimated using Arrhenius plot as proposed by Wang and Raj. Master Sintering Curves (MSC) for the above three compositions were constructed using shrinkage data. A FORTRAN program, employing optimization based numerical algorithm for fitting relative density vs. work of sintering data with sigmoid function, was used for this purpose. The apparent activation energies, evaluated using MSC principle, appear to be consistent with the values obtained by Arrhenius plot.

  3. Sintering of manganese ore in natura with different additions on activated carbon

    International Nuclear Information System (INIS)

    Lima, M.M.F.; Mapa, T.F.M.; Lima, R.M.F.

    2016-01-01

    Full text: The shortage of high grade manganese ore and the importance of economically viable processes suggest a necessity of the recovery of ore residues. So, this work presents a route to obtain by-products of economic interest from manganese ore residues in bench scale. The objective was the sintering of manganese ore in natura using a particle size below 0,037μm with different additions of activated carbon. For this, the fine residues were calcined at 800°C during 60 minutes, homogenized in an agate mortar with 12% humidity and additions of 9 and 12% of activated carbon. After homogenization, the sintering process was carried out at 1145°C and 1155°C during 5, 15 and 30 minutes at natural air. The products sintered were characterized by bulk density, BET surface area, OM, SEM / EDS and diffraction X-rays. During the calcination of the ore, the mass loss was (15.16 ± 0.02)% due to the elimination of volatiles and water. The surface area of the ore was reduced due to the diffusion process that occurred during sintering. While, the bulk density values had little variation, around (3.51 ± 0.06)g/cm³. The analyses of micro-regions EDS showed that the matrix is a silicate with a high Mn content. It was identified yet, other silicates with different proportions of Si, Al, Ti, Na, Mn, Mg and Ca. (author)

  4. Sintering of manganese ore in natura with different additions on activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Lima, M.M.F.; Mapa, T.F.M.; Lima, R.M.F. [Universidade Federal de Ouro Preto (UFOP), MG (Brazil)

    2016-07-01

    Full text: The shortage of high grade manganese ore and the importance of economically viable processes suggest a necessity of the recovery of ore residues. So, this work presents a route to obtain by-products of economic interest from manganese ore residues in bench scale. The objective was the sintering of manganese ore in natura using a particle size below 0,037μm with different additions of activated carbon. For this, the fine residues were calcined at 800°C during 60 minutes, homogenized in an agate mortar with 12% humidity and additions of 9 and 12% of activated carbon. After homogenization, the sintering process was carried out at 1145°C and 1155°C during 5, 15 and 30 minutes at natural air. The products sintered were characterized by bulk density, BET surface area, OM, SEM / EDS and diffraction X-rays. During the calcination of the ore, the mass loss was (15.16 ± 0.02)% due to the elimination of volatiles and water. The surface area of the ore was reduced due to the diffusion process that occurred during sintering. While, the bulk density values had little variation, around (3.51 ± 0.06)g/cm³. The analyses of micro-regions EDS showed that the matrix is a silicate with a high Mn content. It was identified yet, other silicates with different proportions of Si, Al, Ti, Na, Mn, Mg and Ca. (author)

  5. Experiments for practical education in process parameter optimization for selective laser sintering to increase workpiece quality

    Science.gov (United States)

    Reutterer, Bernd; Traxler, Lukas; Bayer, Natascha; Drauschke, Andreas

    2016-04-01

    Selective Laser Sintering (SLS) is considered as one of the most important additive manufacturing processes due to component stability and its broad range of usable materials. However the influence of the different process parameters on mechanical workpiece properties is still poorly studied, leading to the fact that further optimization is necessary to increase workpiece quality. In order to investigate the impact of various process parameters, laboratory experiments are implemented to improve the understanding of the SLS limitations and advantages on an educational level. Experiments are based on two different workstations, used to teach students the fundamentals of SLS. First of all a 50 W CO2 laser workstation is used to investigate the interaction of the laser beam with the used material in accordance with varied process parameters to analyze a single-layered test piece. Second of all the FORMIGA P110 laser sintering system from EOS is used to print different 3D test pieces in dependence on various process parameters. Finally quality attributes are tested including warpage, dimension accuracy or tensile strength. For dimension measurements and evaluation of the surface structure a telecentric lens in combination with a camera is used. A tensile test machine allows testing of the tensile strength and the interpreting of stress-strain curves. The developed laboratory experiments are suitable to teach students the influence of processing parameters. In this context they will be able to optimize the input parameters depending on the component which has to be manufactured and to increase the overall quality of the final workpiece.

  6. Enery Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Zwitter; Phillip Nash; Xiaoyan Xu; Chadwick Johnson

    2011-03-31

    This is the final technical report for the Department of Energy NETL project NT01931 Energy Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications. Titanium has been identified as one of the key materials with the required strength that can reduce the weight of automotive components and thereby reduce fuel consumption. Working with newly developed sources of titanium powder, Webster-Hoff will develop the processing technology to manufacture low cost vehicle components using the single press/single sinter techniques developed for iron based powder metallurgy today. Working with an automotive or truck manufacturer, Webster-Hoff will demonstrate the feasibility of manufacturing a press and sinter titanium component for a vehicle application. The project objective is two-fold, to develop the technology for manufacturing press and sinter titanium components, and to demonstrate the feasibility of producing a titanium component for a vehicle application. The lowest cost method for converting metal powder into a net shape part is the Powder Metallurgy Press and Sinter Process. The method involves compaction of the metal powder in a tool (usually a die and punches, upper and lower) at a high pressure (up to 60 TSI or 827 MPa) to form a green compact with the net shape of the final component. The powder in the green compact is held together by the compression bonds between the powder particles. The sinter process then converts the green compact to a metallurgically bonded net shape part through the process of solid state diffusion. The goal of this project is to expand the understanding and application of press and sinter technology to Titanium Powder applications, developing techniques to manufacture net shape Titanium components via the press and sinter process. In addition, working with a vehicle manufacturer, demonstrate the feasibility of producing a titanium component for a vehicle. This is not a research program, but rather a

  7. Low Temperature Constrained Sintering of Cerium Gadolinium OxideFilms for Solid Oxide Fuel Cell Applications

    Energy Technology Data Exchange (ETDEWEB)

    Nicholas, Jason Dale [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    Cerium gadolinium oxide (CGO) has been identified as an acceptable solid oxide fuel cell (SOFC) electrolyte at temperatures (500-700 C) where cheap, rigid, stainless steel interconnect substrates can be used. Unfortunately, both the high sintering temperature of pure CGO, >1200 C, and the fact that constraint during sintering often results in cracked, low density ceramic films, have complicated development of metal supported CGO SOFCs. The aim of this work was to find new sintering aids for Ce0.9Gd0.1O1.95, and to evaluate whether they could be used to produce dense, constrained Ce0.9Gd0.1O1.95 films at temperatures below 1000 C. To find the optimal sintering aid, Ce0.9Gd0.1O1.95 was doped with a variety of elements, of which lithium was found to be the most effective. Dilatometric studies indicated that by doping CGO with 3mol% lithium nitrate, it was possible to sinter pellets to a relative density of 98.5% at 800 C--a full one hundred degrees below the previous low temperature sintering record for CGO. Further, it was also found that a sintering aid's effectiveness could be explained in terms of its size, charge and high temperature mobility. A closer examination of lithium doped Ce0.9Gd0.1O1.95 indicated that lithium affects sintering by producing a Li2O-Gd2O3-CeO2 liquid at the CGO grain boundaries. Due to this liquid phase sintering, it was possible to produce dense, crack-free constrained films of CGO at the record low temperature of 950 C using cheap, colloidal spray deposition processes. This is the first time dense constrained CGO films have been produced below 1000 C and could help commercialize metal supported ceria based solid oxide fuel cells.

  8. Effect of sintering temperature on physical properties & hardness of CoCrMo alloys fabricated by metal injection moulding process

    Science.gov (United States)

    Ridhwan Abdullah, Ahmad; Aidah Nabihah Dandang, Nur; Zalikha Khalil, Nur; Harun, Wan Sharuzi Wan

    2017-10-01

    Metal Injection Moulding (MIM) process is one of the Powder Metallurgy manufacturing techniques utilised to produce Cobalt Chromium Molybdenum (CoCrMo) compacts. The objective of this study is to determine physical properties and hardness of CoCrMo alloy compact sintered at three different sintering temperature at the similar soaking time. At the beginning, sample were fabricated by using Injection Moulding machine. Cobalt Chrome Molybdenum (CoCrMo) metal powder was selected for this study. A morphological study was conducted using optical microscope (OM) and micro-Vickers hardness testing. From the result obtained, it shows upward trend either on the hardness or physical properties of the samples. CoCrMo sintered compact become harder and volume of pores on surface become less due to the increase on sintering temperature. However, effect of increasing sintering temperature shows significant shrinkage of the sample, beginning losses in dimensional accuracy. It is discovered that a little change in sintering temperature gives significant impact on the microstructure, physical, mechanical of the alloy.

  9. A silicon-based electrical source for surface plasmon polaritons

    NARCIS (Netherlands)

    Walters, Robert J.; van Loon, Rob V.A.; Brunets, I.; Schmitz, Jurriaan; Polman, Albert

    2009-01-01

    This work demonstrates the fabrication of a silicon-based electrical source for surface plasmon polaritons (SPPs) at low temperatures using silicon nanocrystal doped alumina within a metal-insulator-metal (MIM) waveguide geometry. The fabrication method uses established microtechnology processes

  10. Circuit Design of Surface Acoustic Wave Based Micro Force Sensor

    OpenAIRE

    Yuanyuan Li; Wenke Lu; Changchun Zhu; Qinghong Liu; Haoxin Zhang; Chenchao Tang

    2014-01-01

    Pressure sensors are commonly used in industrial production and mechanical system. However, resistance strain, piezoresistive sensor, and ceramic capacitive pressure sensors possess limitations, especially in micro force measurement. A surface acoustic wave (SAW) based micro force sensor is designed in this paper, which is based on the theories of wavelet transform, SAW detection, and pierce oscillator circuits. Using lithium niobate as the basal material, a mathematical model is established ...

  11. Microstructures and mechanical properties of Fe-28Al-5Cr/TiC composites produced by hot-pressing sintering

    International Nuclear Information System (INIS)

    Zhang Xinghua; Yang Jun; Ma Jiqiang; Bi Qinling; Cheng Jun; Liang Yongmin; Liu Weimin

    2011-01-01

    Highlights: → The near fully dense Fe-28Al-5Cr/TiC composites are produced by hot-pressing sintering. → All the materials exhibit high compressive and bending strength. → Compressive strength increases but bending strength and ductility diminish with rising TiC amount in the composites. → Wear resistance significantly increases with rising TiC amount. - Abstract: The mechanical properties and microstructures of Fe-28Al-5Cr based composites reinforced with 15, 25, 35, 50 wt.% TiC ceramic particle, produced by hot-pressing sintering method, were investigated. The relative density of all the composites was up to 99%. The distribution of TiC was uniform in the composites. Results of XRD analysis showed that the composites were composed of TiC and disorder Fe 3 Al phases. All the materials exhibited very high strength of 1200-2000 MPa. The hardness and compressive strength of the composites increased obviously but compressive strain decreased gradually except 50% composite with increasing TiC content. The bending strength and deflection of the composites decreased significantly with increasing TiC content. The bending fracture surfaces of all the materials were examined using scanning electron microscopy (SEM). The fracture mode transformed gradually from tough dimple fracture mode to brittle cleavage facets crack mode with the increase of TiC content. Wear resistance of the Fe-28Al-5Cr alloy was also significantly improved by addition of TiC.

  12. Impact of absorptivity and wavelength on the optical properties of aggregates with sintering necks

    Science.gov (United States)

    Bao, Yujia; Huang, Yong; He, Beichen

    2018-04-01

    In this paper, we constructed sintered aggregates based on the particle superposition model and apply the ball-necking factor η to characterize the sintering degree. The impact of the absorptivity characterized by the complex refractive index m and the wavelength of the incident light λ on the optical properties of aggregates with different η were compared and investigated. The results indicate that for different m and λ, the light scattering characteristics exhibit regular changes in the values, the peak locations and the size trends. Further, the deviation of 1 - S22/S11 caused by various η is noteworthy and considerable so that it can be used as a probe sensor parameter in the detection of the sintered aggregates configuration.

  13. Multi-Scale Modeling of Liquid Phase Sintering Affected by Gravity: Preliminary Analysis

    Science.gov (United States)

    Olevsky, Eugene; German, Randall M.

    2012-01-01

    A multi-scale simulation concept taking into account impact of gravity on liquid phase sintering is described. The gravity influence can be included at both the micro- and macro-scales. At the micro-scale, the diffusion mass-transport is directionally modified in the framework of kinetic Monte-Carlo simulations to include the impact of gravity. The micro-scale simulations can provide the values of the constitutive parameters for macroscopic sintering simulations. At the macro-scale, we are attempting to embed a continuum model of sintering into a finite-element framework that includes the gravity forces and substrate friction. If successful, the finite elements analysis will enable predictions relevant to space-based processing, including size and shape and property predictions. Model experiments are underway to support the models via extraction of viscosity moduli versus composition, particle size, heating rate, temperature and time.

  14. The effect of different fluxing agents on the sintering of dry pressed porcelain bodies

    Directory of Open Access Journals (Sweden)

    Radomír Sokolář

    2017-09-01

    Full Text Available The aim of the article is to find the optimal fluxing agent for porcelain body regarding to the possibility of the lowest firing temperature. Sintering behaviour of dry pressed test samples made from the mixture of kaolin and three different types of industrially milled feldspar rocks, bone ash and quartz sand with similar granulometry as dependence of water absorption on the firing temperature was investigated. The most intensive fluxing agent for the sintering is bone ash—the mixture containing bone ash (20wt.% showed sintering temperature 1200 °C. That is about 50 °C lower compared with the most intensive feldspar based fluxing agent—potassium feldspar rock containing 75% of pure microcline.

  15. Effect of Sintering Temperature on Structural and Morphological Properties of Europium (III Oxide Doped Willemite

    Directory of Open Access Journals (Sweden)

    Nur Fatin Syamimi

    2014-01-01

    Full Text Available Willemite- (Zn2SiO4- based glass ceramics doped with various amounts of europium oxide (Eu2O3 were prepared by solid state melting and quenching method. Effect of sintering temperature (600–1000°C on structural and morphological properties of the doped samples was investigated. Phase composition, phase evolution, functional groups, and microstructure analysis were, respectively, characterized using X-ray diffractometer (XRD, fourier transform infrared spectroscopy, field emission scanning electron microscopy (FE-SEM, and energy-dispersive X-ray. XRD analysis detected the presence of rhombohedral crystalline phase in the doped samples sintered at different temperatures. FE-SEM and bulk density results confirmed that doping of the willemite with Eu2O3 effectively enhanced densification. The microstructural analysis of the doped samples showed that the average grain size increased with the increase of sintering temperature.

  16. Multifunctional methacrylate-based coatings for glass and metal surfaces

    Science.gov (United States)

    Pospiech, Doris; Jehnichen, Dieter; Starke, Sandra; Müller, Felix; Bünker, Tobias; Wollenberg, Anne; Häußler, Liane; Simon, Frank; Grundke, Karina; Oertel, Ulrich; Opitz, Michael; Kruspe, Rainer

    2017-03-01

    In order to prevent freshwater biofouling glass and metal surfaces were coated with novel transparent methacrylate-based copolymers. The multifunctionality of the copolymers, such as adhesion to the substrate, surface polarity, mechanical long-term stability in water, and ability to form metal complexes was inserted by the choice of suitable comonomers. The monomer 2-acetoacetoxy ethyl methacrylate (AAMA) was used as complexing unit to produce copper(II) complexes in the coating's upper surface layer. The semifluorinated monomer 1H,1H,2H,2H-perfluorodecyl methacrylate was employed to adjust the surface polarity and wettability. Comprehensive surface characterization techniques, such as X-ray photoelectron spectroscopy (XPS) and contact angle measurements showed that surface compositions and properties can be easily adjusted by varying the concentrations of the comonomers. The formation of copper(II) complexes along the copolymer chains and their stability against washing out with plenty of water was proven by XPS. Copolymers containing semifluorinated comonomers significantly inhibited the growth of Achnanthidium species. Copolymers with copper-loaded AAMA-sequences were able to reduce both the growth of Achnanthidium spec. and Staphylococcus aureus.

  17. Grain boundary engineering in sintered Nd-Fe-B permanent magnets for efficient utilization of heavy rare earth elements

    Energy Technology Data Exchange (ETDEWEB)

    Loewe, Konrad

    2016-10-18

    The first part of the thesis investigates the diffusion of rare-earth (RE) elements in commercial sintered Nd-Fe-B based permanent magnets. A strong temperature dependence of the diffusion distance and resulting change in magnetic properties were found. A maximum increase in coercivity of ∼+350 kA/m using a Dy diffusion source occurred at the optimum annealing temperature of 900 C. After annealing for 6 h at this temperature, a Dy diffusion distance of about 4 mm has been observed with a scanning Hall probe. Consequently, the maximum thickness of grain boundary diffusion processed magnets with homogeneous properties is also only a few mm. The microstructural changes in the magnets after diffusion were investigated by electron microscopy coupled with electron probe microanalysis. It was found that the diffusion of Dy into sintered Nd-Fe-B permanent magnets occurs along the grain boundary phases, which is in accordance with previous studies. A partial melting of the Nd-Fe-B grains during the annealing process lead to the formation of so - called (Nd,Dy)-Fe-B shells at the outer part of the grains. These shells are μm thick at the immediate surface of the magnet and become thinner with increasing diffusion distance towards the center of the bulk. With scanning transmission electron microscopy coupled with electron probe analysis a Dy content of about 1 at.% was found in a shell located about 1.5 mm away from the surface of the magnet. The evaluation of diffusion speeds of Dy and other RE (Tb, Ce, Gd) in Nd-Fe-B magnets showed that Tb diffuses significantly faster than Dy, and Ce slightly slower than Dy, which is attributed to differences in the respective phase diagrams. The addition of Gd to the grain boundaries has an adverse effect on coercivity. Exemplary of the heavy rare earth element Tb, the nano - scale elemental distribution around the grain boundaries after the diffusion process was visualized with high resolution scanning transmission electron microscopy

  18. Large-scale roll-to-roll photonic sintering of flexo printed silver nanoparticle electrodes

    DEFF Research Database (Denmark)

    Hösel, Markus; Krebs, Frederik C

    2012-01-01

    In this report we employ static and roll-to-roll (R2R) photonic sintering processes on flexo printed silver nanoparticle-based electrode structures with a heat-sensitive 60 mm thin barrier foil as a substrate. We use large area electrode structures to visualize the increased optical footprint...... energies above the threshold level have only minor impact on the conductivity but lead to cracks and substrate deformation. A second silver nanoparticle ink was printed, which was already optimized for lowtemperature drying. Here we show that photonic sintering has only a minor impact on the conductivity...

  19. A physically based model of global freshwater surface temperature

    Science.gov (United States)

    van Beek, Ludovicus P. H.; Eikelboom, Tessa; van Vliet, Michelle T. H.; Bierkens, Marc F. P.

    2012-09-01

    Temperature determines a range of physical properties of water and exerts a strong control on surface water biogeochemistry. Thus, in freshwater ecosystems the thermal regime directly affects the geographical distribution of aquatic species through their growth and metabolism and indirectly through their tolerance to parasites and diseases. Models used to predict surface water temperature range between physically based deterministic models and statistical approaches. Here we present the initial results of a physically based deterministic model of global freshwater surface temperature. The model adds a surface water energy balance to river discharge modeled by the global hydrological model PCR-GLOBWB. In addition to advection of energy from direct precipitation, runoff, and lateral exchange along the drainage network, energy is exchanged between the water body and the atmosphere by shortwave and longwave radiation and sensible and latent heat fluxes. Also included are ice formation and its effect on heat storage and river hydraulics. We use the coupled surface water and energy balance model to simulate global freshwater surface temperature at daily time steps with a spatial resolution of 0.5° on a regular grid for the period 1976-2000. We opt to parameterize the model with globally available data and apply it without calibration in order to preserve its physical basis with the outlook of evaluating the effects of atmospheric warming on freshwater surface temperature. We validate our simulation results with daily temperature data from rivers and lakes (U.S. Geological Survey (USGS), limited to the USA) and compare mean monthly temperatures with those recorded in the Global Environment Monitoring System (GEMS) data set. Results show that the model is able to capture the mean monthly surface temperature for the majority of the GEMS stations, while the interannual variability as derived from the USGS and NOAA data was captured reasonably well. Results are poorest for

  20. Concentrated solar energy used for sintering magnesium titanates for electronic applications

    Science.gov (United States)

    Apostol, Irina; Rodríguez, Jose; Cañadas, Inmaculada; Galindo, Jose; Mendez, Senen Lanceros; de Abreu Martins, Pedro Libȃnio; Cunha, Luis; Saravanan, Kandasamy Venkata

    2018-04-01

    Solar energy is an important renewable source of energy with many advantages: it is unlimited, clean and free. The main objective of this work was to sinter magnesium titanate ceramics in a solar furnace using concentrated solar energy, which is a novel and original process. The direct conversion of solar power into high temperature makes this process simple, feasible and ecologically viable/environmentally sustainable. We performed the solar sintering experiments at Plataforma Solar de Almeria-CIEMAT, Spain. This process takes place in a vertical axis solar furnace (SF5-5 kW) hosting a mobile flat mirror heliostat, a fixed parabolic mirror concentrator, an attenuator and a test table the concentrator focus. We sintered (MgO)0.63(TiO2)0.37, (MgO)0.49(TiO2)0.51, (MgO)0.50(TiO2)0.50 ceramics samples in air at about 1100 °C for a duration of 16 min, 1 h, 2 h and 3 h in the solar furnace. The MgO/TiO2 ratio and the dwell time was varied in order to obtain phase pure MgTiO3 ceramic. We obtained a pure MgTiO3 geikielite phase by solar sintering of (MgO)0.63(TiO2)0.37 samples at 1100 °C (16 min-3 h). Samples of (MgO)0.63(TiO2)0.37, solar sintered at 1100 °C for 3 h, resulted in well-sintered, non-porous samples with good density (3.46 g/cm3). The sintered samples were analyzed by XRD for phase determination. The grain and surface morphology was observed using SEM. Electrical measurements were carried out on solar sintered samples. The effect of processing parameters on microstructure and dielectric properties were investigated and is presented.

  1. Study of corrosion behavior for nitrocarburized sintered Astaloy CrM + C

    International Nuclear Information System (INIS)

    Teimouri, M.; Ahmadi, M.; Pirayesh, N.; Aliofkhazraei, M.; Khoee, M. Mousavi; Khorsand, H.; Mirzamohammadi, S.

    2009-01-01

    Salt bath nitriding/nitrocarburizing is a surface treatment developed to improve tribological and corrosion properties of ferrous materials. In this research, sintered Astaloy CrM + 0.3% C samples were nitrocarburized at 580 deg. C for 1, 1.5, 2 and 2.5 h. The microstructure and phase composition of the surface layer was investigated by optical and scanning microscopy and X-ray diffraction. Corrosion behavior of samples was evaluated using both potentiodynamic polarization technique and electrochemical impedance spectroscopy in 3.5% sodium chloride solution. XRD analyses indicate that the surface layer in nitrocarburized samples is mainly composed of ε-iron carbonitride (Fe 2-3 (CN)). The results reveal that salt bath nitrocarburizing for at least 2 h can improve significantly corrosion resistance of sintered Astaloy CrM + C.

  2. Photonic Crystal Biosensor Based on Optical Surface Waves

    Directory of Open Access Journals (Sweden)

    Giovanni Dietler

    2013-02-01

    Full Text Available A label-free biosensor device based on registration of photonic crystal surface waves is described. Angular interrogation of the optical surface wave resonance is used to detect changes in the thickness of an adsorbed layer, while an additional simultaneous detection of the critical angle of total internal reflection provides independent data of the liquid refractive index. The abilities of the device are demonstrated by measuring of biotin molecule binding to a streptavidin monolayer, and by measuring association and dissociation kinetics of immunoglobulin G proteins. Additionally, deposition of PSS / PAH polyelectrolytes is recorded in situ resulting calculation of PSS and PAH monolayer thicknesses separately.

  3. Face recognition based on depth maps and surface curvature

    Science.gov (United States)

    Gordon, Gaile G.

    1991-09-01

    This paper explores the representation of the human face by features based on the curvature of the face surface. Curature captures many features necessary to accurately describe the face, such as the shape of the forehead, jawline, and cheeks, which are not easily detected from standard intensity images. Moreover, the value of curvature at a point on the surface is also viewpoint invariant. Until recently range data of high enough resolution and accuracy to perform useful curvature calculations on the scale of the human face had been unavailable. Although several researchers have worked on the problem of interpreting range data from curved (although usually highly geometrically structured) surfaces, the main approaches have centered on segmentation by signs of mean and Gaussian curvature which have not proved sufficient in themselves for the case of the human face. This paper details the calculation of principal curvature for a particular data set, the calculation of general surface descriptors based on curvature, and the calculation of face specific descriptors based both on curvature features and a priori knowledge about the structure of the face. These face specific descriptors can be incorporated into many different recognition strategies. A system that implements one such strategy, depth template comparison, giving recognition rates between 80% and 90% is described.

  4. Frequency selective surfaces based high performance microstrip antenna

    CERN Document Server

    Narayan, Shiv; Jha, Rakesh Mohan

    2016-01-01

    This book focuses on performance enhancement of printed antennas using frequency selective surfaces (FSS) technology. The growing demand of stealth technology in strategic areas requires high-performance low-RCS (radar cross section) antennas. Such requirements may be accomplished by incorporating FSS into the antenna structure either in its ground plane or as the superstrate, due to the filter characteristics of FSS structure. In view of this, a novel approach based on FSS technology is presented in this book to enhance the performance of printed antennas including out-of-band structural RCS reduction. In this endeavor, the EM design of microstrip patch antennas (MPA) loaded with FSS-based (i) high impedance surface (HIS) ground plane, and (ii) the superstrates are discussed in detail. The EM analysis of proposed FSS-based antenna structures have been carried out using transmission line analogy, in combination with the reciprocity theorem. Further, various types of novel FSS structures are considered in desi...

  5. Pressureless Reaction Sintering of AlON using Aluminum Orthophosphate as a Transient Liquid Phase

    Energy Technology Data Exchange (ETDEWEB)

    Michael Bakas; Henry Chu

    2009-01-01

    Use of aluminum oxynitride (AlON) in transparent armor systems has been difficult due to the expense and limitations of the processing methods currently necessary to achieve transparency. Development of a pressureless processing method based on direct reaction sintering of alumina and aluminum nitride powders would reduce costs and provide a more flexible and practical manufacturing method. It may be possible to develop such a processing method using liquid phase sintering; as long as the liquid phase does not remain in the final sample. AlPO4 forms a liquid phase with Al2O3 and AlN at the temperatures required to sinter AlON, and slowly decomposes into P2O5 and alumina. Therefore, it was investigated as a possible transient liquid phase for reaction-sintered AlON. Small compacts of alumina and aluminum nitride with up to of 15wt% AlPO4 additive were pressed and sintered. It was found that AlPO4 formed the requisite transient liquid phase, and it was possible to adjust the process to produce AlON samples with good transmission and densities of 3.66-3.67 g/cc. XRD confirmed the samples formed were AlON, with no trace of any remaining phosphate phases or excess alumina or aluminum nitride. Based on the results, it was concluded that AlPO4 could be utilized as a transient liquid phase to improve the density and transmission of AlON produced by pressureless reaction sintering.

  6. Liquid phase sintered SiC ceramics from starting materials of different grade Cerâmicas à base de SiC sinterizadas via fase líquida a partir de matérias-primas de diferentes purezas

    Directory of Open Access Journals (Sweden)

    V. A. Izhevskyi

    2004-09-01

    Full Text Available Possibility of high performance ceramics manufactured from commercial SiC powder of technical grade has been shown. Sintering behavior and microstructure formation under conditions of liquid phase sintering (LPS with oxynitride sintering aids (AlN-Y2O3 of three SiC-based compositions have been investigated. Two of the compositions were based on Alcoa 1000 SiC powder of technical grade, and the third one, which was used as a reference, was based on H.C. Starck UF-15 fine grade commercial powder. Milling process used for Alcoa 1000 SiC powder granulometry improvement has been investigated in detail, while chemical treatment of milled SiC powders has been used for pick-up impurities removal. Dilatometric experiments showed that SiC powder of technical grade after appropriate treatment exhibits sinterability comparable with the fine grade SiC. Microstructural investigations performed on sintered samples showed that the final microstructure of the Alcoa 1000 SiC based materials was practically identical with the H.C. Starck SiC based reference ones. Preliminary investigations of hardness and fracture toughness were carried out revealing excellent results for the materials produced from cheaper, nationally produced starting powder.Neste trabalho é apresentada a possibilidade de obtenção de cerâmicas de SiC de alto desempenho a partir de matéria-prima comercial de grau técnico. Foi realizado o estudo de sinterização via fase líquida e desenvolvimento microestrutural de três composições à base de SiC tendo como aditivos de sinterização AlN e Y2O3 . Duas destas composições são à base de SiC-1000 da Alcoa, grau técnico, e a terceira, utilizada como referência, à base do UF-15 da H.C. Starck - Alemanha, pó comercial de granulometria fina. O processo de moagem do pó SiC-1000 da Alcoa foi acompanhado por medidas de distribuição granulométrica e posterior ataque químico, para remoção de impurezas. Os pós de grau técnico, ap

  7. Circuit Design of Surface Acoustic Wave Based Micro Force Sensor

    Directory of Open Access Journals (Sweden)

    Yuanyuan Li

    2014-01-01

    Full Text Available Pressure sensors are commonly used in industrial production and mechanical system. However, resistance strain, piezoresistive sensor, and ceramic capacitive pressure sensors possess limitations, especially in micro force measurement. A surface acoustic wave (SAW based micro force sensor is designed in this paper, which is based on the theories of wavelet transform, SAW detection, and pierce oscillator circuits. Using lithium niobate as the basal material, a mathematical model is established to analyze the frequency, and a peripheral circuit is designed to measure the micro force. The SAW based micro force sensor is tested to show the reasonable design of detection circuit and the stability of frequency and amplitude.

  8. Reheating of zinc-titanate sintered specimens

    Directory of Open Access Journals (Sweden)

    Labus N.

    2015-01-01

    Full Text Available The scope of this work was observing dimensional and heat transfer changes in ZnTiO3 samples during heating in nitrogen and air atmosphere. Interactions of bulk specimens with gaseous surrounding induce microstructure changes during heating. Sintered ZnTiO3 nanopowder samples were submitted to subsequent heating. Dilatation curves and thermogravimetric with simultaneous differential thermal analysis TGA/DTA curves were recorded. Reheating was performed in air and nitrogen atmospheres. Reheated samples obtained at different characteristic temperatures in air were analyzed by X-ray diffraction (XRD. Microstructures obtained by scanning electron microscopy (SEM of reheated sintered samples are presented and compared. Reheating in a different atmosphere induced different microstructures. The goal was indicating possible causes leading to the microstructure changes. [Projekat Ministarstva nauke Republike Srbije, br. OI172057 i br. III45014

  9. Foaming Glass Using High Pressure Sintering

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    Foam glass is a high added value product which contributes to waste recycling and energy efficiency through heat insulation. The foaming can be initiated by a chemical or physical process. Chemical foaming with aid of a foaming agent is the dominant industrial process. Physical foaming has two...... variations. One way is by saturation of glass melts with gas. The other involves sintering of powdered glass under a high gas pressure resulting in glass pellets with high pressure bubbles entrapped. Reheating the glass pellets above the glass transition temperature under ambient pressure allows the bubbles...... to expand. After heat-treatment foam glass can be obtained with porosities of 80–90 %. In this study we conduct physical foaming of cathode ray tube (CRT) panel glass by sintering under high pressure (5-25 MPa) using helium, nitrogen, or argon at 640 °C (~108 Pa s). Reheating a sample in a heating...

  10. Sintering techniques for microstructure control in ceramics

    Science.gov (United States)

    Rosenberger, Andrew T.

    Sintering techniques can be manipulated to enhance densification in difficult to sinter materials and to produce property enhancing microstructures. However, the interplay between materials, sintering techniques, and end properties is not fully understood in many material systems, and some fundamental aspects of sintering such as the nature of the effects of electric fields remains unknown. The processing property relationships were examined in two classes of materials; zirconium diboride ultra high temperature ceramic composites, and all solid lithium-ion battery phosphate materials. Investigation of zirconium diboride ceramics focused on the effects of zirconium carbide as a secondary or tertiary phase in ZrB2 and ZrB2 -- SiC. Addition of zirconium carbide was observed to increase flexural strength of composites up to 590MPa at 50wt% ZrC, significantly higher than the flexural strength of 380MPa observed in similarly prepared ZrB2 -- SiC. This difference was attributed to the absence of CTE mismatch induced residual stresses in the ZrB2 -- ZrC composites. A high temperature reaction between ZrB2 and TiC producing Zr1-xTixB2 -- ZrC composites was discovered and found to enhance densification while reducing the average grain size to as small as 1.4mum, lower than the starting powder size of 1.8mum. While a high flexural strength of 670MPa was observed, a strength dependence on the ZrC grain size indicative of CTE mismatch residual stresses was also seen. Finally, the oxidation and ablation resistance of ZrB2 -- ZrC -- SiC composites as a function of ZrC fraction and ZrC:SiC ratio was investigated. Above 5vol% ZrC, the oxidation and ablation resistance of the composites was significantly reduced due to ZrC oxidation, regardless of SiC content. While ZrC can significantly enhance the mechanical properties of the composite, the volume fraction must be kept low to avoid an undesirable reduction in the oxidation resistance. The influence of applied electrical fields

  11. Reaction sintering of ceramic-metal composites

    International Nuclear Information System (INIS)

    Botta Filho, W.J.; Rodrigues, J.A.; Tomasi, R.; Pandolfelli, V.C.; Passos, J.F.S.S.; Folgueras, M.V.

    1990-01-01

    Reaction sintering experiments have been carried out in the system Al 2 O 3 -ZrAl 2 -Nb 2 O 5 with the objective of producing ceramic-metal composites of improved toughness. The sintering treatments have been done in the temperature range of 700 0 C to 1400 0 C under different conditions of vacuum and in air and argon atmospheres. The treated samples have been analysed by X-ray diffraction and analytical electron microscopy. The results are discussed in function of the degree of reaction, the development of microstructure and the densification. These results have shown that although an exchange reaction can occur to produce a composite, the control of the reaction to obtain a dense microstructure has not been possible yet. (author) [pt

  12. Phase and microstructural characterization of Mo–Si–B multiphase intermetallic alloys produced by pressureless sintering

    International Nuclear Information System (INIS)

    Taleghani, P.R.; Bakhshi, S.R.; Borhani, G.H.; Erfanmanesh, M.

    2014-01-01

    Highlights: • Active and ultra-fine Mo–Si–B powders were produced by mechanical alloying. • The phases of MoSi 2 and MoB were obtained by sintering Mo–57Si–10B at 1400 °C for 2 h. • Composite based on MoB/MoSi 2 was obtained by sintering Mo–47Si–23B at 1300 °C for 3 h. • High content of MoB in the composite based on MoB/MoSi 2 increased density. • High hardness of the composite based on MoB/MoSi 2 is related to MoB matrix. -- Abstract: In this study Mo–47Si–23B and Mo–57Si–10B powders (at.%) was milled for 20 h in attritor ball mill with a rotational speed of 365 rpm and the ball/powder mass ratio 20/1. After degassing of As-mechanically alloyed powders at 450 °C, the powders were pressed into cylindrical samples with 25 mm diameter under 600 MPa pressure. The samples were sintered by using of a tube resistance furnace under Ar atmosphere. Phase and microstructure characteristic of mechanically alloyed powders and sintered samples, were investigated by scanning electron microscopy, X-ray diffraction and energy dispersive spectroscopy. Also hardness test was performed. Homogeneous distribution of active and ultra-fine powders were obtained after milling for 20 h. Mo–57Si–10B alloy with MoB and MoSi 2 dominant phases was produced by sintering at 1400 °C for 2 h. Dominant phases similar to Mo–57Si–10B alloy sintered at 1400 °C for 2 h could be synthesized in Mo–47Si–23B alloy after sintering at 1300 °C for 3 h, but volume fraction of MoB phase was different. The Mo–47Si–23B alloy contained a higher phase fraction of MoB compound as compared to Mo–57Si–10B alloy. Very high density in Mo–47Si–23B alloys was obtained, due to the presence of high volume fraction of MoB phase. Formation heat of MoB acted as a positive potential to increase driving force of sintering and consequently bulk density. Finally, a uniform and fine distribution of MoSi 2 particles in MoB continuous matrix in the microstructure of Mo-47Si

  13. Wavelet Packet based Detection of Surface Faults on Compact Discs

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob; Wickerhauser, Mladen Victor

    2006-01-01

    In this paper the detection of faults on the surface of a compact disc is addressed. Surface faults like scratches and fingerprints disturb the on-line measurement of the pick-up position relative to the track. This is critical since the pick-up is focused on and tracked at the information track...... based on these measurements. A precise detection of the surface fault is a prerequisite to a correct handling of the faults in order to protect the pick-up of the compact disc player from audible track losses. The actual fault handling which is addressed in other publications can be carried out...... by the use of dedicated filters adapted to remove the faults from the measurements. In this paper detection using wavelet packet filters is demonstrated. The filters are designed using the joint best basis method. Detection using these filters shows a distinct improvement compared to detection using ordinary...

  14. Determination of platinum, palladium, iridium and gold on selected geological reference materials by radiochemical neutron activation analysis: comparison of procedures based on aqua regia leaching and sodium peroxide sintering

    International Nuclear Information System (INIS)

    Nogueira, C.A.; Figueiredo, A.M.G.

    1995-01-01

    A rapid and sensitive neutron activation method for the determination of platinum, palladium, iridium and gold in rocks is described. The procedure consists of thermal neutron irradiation of about 250 mg of sample, followed by chemical treatment of the rock, precipitation of gold and the platinum group elements with tellurium and high-resolution gamma-ray spectrometry with a hyper-pure Ge detector. Two different methods were used for the chemical treatment of the rock: aqua regia leaching and sintering with sodium peroxide. The procedures were evaluated by analysis of the certified reference material SARM-7 and the reference material CHR-Pt+. (author)

  15. Determination of platinum, palladium, iridium and gold on selected geological reference materials by radiochemical neutron activation analysis: comparison of procedures based on aqua regia leaching and sodium peroxide sintering

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, C.A.; Figueiredo, A.M.G. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    1995-05-01

    A rapid and sensitive neutron activation method for the determination of platinum, palladium, iridium and gold in rocks is described. The procedure consists of thermal neutron irradiation of about 250 mg of sample, followed by chemical treatment of the rock, precipitation of gold and the platinum group elements with tellurium and high-resolution gamma-ray spectrometry with a hyper-pure Ge detector. Two different methods were used for the chemical treatment of the rock: aqua regia leaching and sintering with sodium peroxide. The procedures were evaluated by analysis of the certified reference material SARM-7 and the reference material CHR-Pt+. (author).

  16. Studies on the synthesis of nanocrystalline Y{sub 2}O{sub 3} and ThO{sub 2} through volume combustion and their sintering

    Energy Technology Data Exchange (ETDEWEB)

    Sanjay Kumar, D. [Fuel Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102, Tamil Nadu (India); Ananthasivan, K., E-mail: asivan@igcar.gov.in [Fuel Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102, Tamil Nadu (India); Venkata Krishnan, R. [Fuel Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102, Tamil Nadu (India); Amirthapandian, S. [Material Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102, Tamil Nadu (India); Dasgupta, Arup [Microscopy and Thermo-Physical Property Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102, Tamil Nadu (India)

    2016-10-15

    Volume combustion was observed in the auto-ignition of the citrate gels containing the nitrates of yttrium/thorium for the first time in mixture with a fuel (citric acid) to oxidant (Y{sup 3+} or Th{sup 4+} nitrate) ratio close to that demanded by the stoichiometry. These nanocrystalline powders were characterized for their bulk density, specific surface area, particle size distribution, carbon residue and X-ray crystallite size and were sintered by both the conventional and the two-step method. The maximum relative sintered density of Y{sub 2}O{sub 3} was 98.9% TD. The sintered density of thoria (97.8% TD) is the highest among the values reported so far, for nanocrystalline ThO{sub 2}. Characterization of the pellets and powders by using scanning electron microscopy and transmission electron microscopy reaffirmed nanocrystallinity and that the sintered pellets comprised faceted sintered grains. The two-step sintering was found to restrict “runaway” sintering. - Highlights: • Scaled-up synthesis of nanocrystalline Y{sub 2}O{sub 3} and ThO{sub 2} using citrate gel-combustion method. • VCR was observed at a fuel to nitrate ratio (R) of 0.125 and 0.17 in mixtures containing Th(NO{sub 3}){sub 4} and Y(NO{sub 3}){sub 3} respectively. • The calcined powders were compacted and sintered by using a novel two-step sintering method. • Sintered densities as high as 97.8% T.D. (ThO{sub 2}, T{sub H} = 0.48) and 98.9% T.D. (Y{sub 2}O{sub 3}, T{sub H} = 0.61) were obtained.

  17. Sintering of titanium alloy by powder metallurgy

    Energy Technology Data Exchange (ETDEWEB)

    Cosme, C.R.M. [Universidade de Brasilia (UnB), DF (Brazil); Henriques, V.A.R.; Cairo, C.A.A.; Taddei, E.B. [Centro Tecnico Aeroespacial (CTA), Sao Jose dos Campos, SP (Brazil)

    2009-07-01

    Full text: Titanium alloys are suitable for biomaterial applications, considering its biocompatibility and low elastic modulus compared to steel. Bone resorption in this case can be reduced by load sharing between the implant and natural bone.Starting powders were obtained by hydride method, carried out under positive hydrogen pressure at 500 deg C for titanium and 800 deg C for Nb, Zr and Ta powders. After reaching the nominal temperature, the material was held for 3h, with subsequent cooling to room temperature and milling of the friable hydride. Samples were produce by mixing of initial metallic powders followed by and cold isostatic pressing. Subsequent densification by sintering was performed at temperature range between 900 and 1700 deg C. Characterization was carried out with scanning electron microscopy, X-ray diffractometry and microhardness measurements. Microstructural examinations revealed higher amount of &⧣946;-phase for higher sintering temperature and dissolution of Ta and NB particles. In vitro tests revealed low cytotoxicity of sintered samples. (author)

  18. Sintering and deformation of nanocrystalline ceramics

    International Nuclear Information System (INIS)

    Hahn, H.; Averback, R.S.; Hofler, H.J.; Logas, J.

    1991-01-01

    Nanocrystalline ceramics have been produced by the method of inert gas condensation of ultra-small particles and in situ consolidation. Sintering characteristics and microstructural parameter such as grain size, porosity and pore size distributions have been investigated by a variety of techniques, including: X-ray diffraction, gravimetry, nitrogen adsorption, scanning electron microscopy and small angle neutron scattering. In pure TiO 2 , the sintering temperatures are drastically lowered compared to conventional ceramics, however, extensive grain growth occurs before full densification is achieved. High density, nanocrystalline ceramics can be prepared by pressure assisted sintering, doping and additions of second phases. High temperature microhardness and creep deformation in compression were measured and it was found that creep processes occur at lower temperatures than in ceramics with larger grain sizes. Nanocrystalline TiO 2 with densities >99% can be deformed plastically without fracture at temperatures below half the melting point. The total strains exceed 0.6 at strain rates as high as 10 -3 s -l . The stress exponent of the strain rate, n, is approximately 3 and the grain size dependence is G -q with q in the range of 1-1.5. In this paper it is concluded that the creep deformation occurs by an interface reaction controlled mechanism

  19. Roughness-Based Superhydrophobic Surfaces: Fundamentals and Future Directions

    Science.gov (United States)

    Patankar, Neelesh

    2011-11-01

    Superhydrophobicity of rough surfaces has attracted global interest through the past decade. There are naturally occurring instances of such surfaces, e.g., lotus leaves, which led to the popular term ``lotus effect.'' Numerous applications in wide ranging areas such as drag reduction, self-cleaning, heat exchangers, energy conversion, condensation, anti-icing, textile, desalination, etc., are being explored by researchers worldwide. The signature configuration for superhydrophobicity has been ``bead-like'' drops on rough surfaces that roll-off easily. This becomes possible if the liquid does not impale the roughness grooves, and if the contact angle hysteresis is low. Finding appropriate surface roughness is therefore necessary. A thermodynamic framework to enable analysis of this problem will be presented. It will be noted that the success of rough superhydrophobic substrates relies on the presence of gas pockets in the roughness grooves underneath the liquid. These gas pockets could be those of air from the surrounding environment. Current design strategies rely on the availability of air. However, if the rough substrates are fully submerged in the liquid then the trapped air in the roughness grooves may not be sustained. A design approach based on sustaining a vapor phase of the liquid itself in the roughness grooves, instead of relying on the presence of air, will be presented. The resulting surfaces, referred to as vapor stabilizing substrates, are deemed to be robust against wetting transition even if no air is present. Applications of this approach include low drag surfaces, nucleate boiling at dramatically low superheats, among others. The concept can be generalized to other transitions on the phase diagram, thus enabling the design of rough surfaces for phase manipulation in general.

  20. Surface-based determination of the pelvic coordinate system

    Science.gov (United States)

    Fieten, Lorenz; Eschweiler, Jörg; Heger, Stefan; Kabir, Koroush; Gravius, Sascha; de la Fuente, Matías; Radermacher, Klaus

    2009-02-01

    In total hip replacement (THR) one technical factor influencing the risk of dislocation is cup orientation. Computer-assisted surgery systems allow for cup navigation in anatomy-based reference frames. The pelvic coordinate system most used for cup navigation in THR is based on the mid-sagittal plane (MSP) and the anterior pelvic plane (APP). From a geometrical point of view, the MSP can be considered as a mirror plane, whereas the APP can be considered as a tangent plane comprising the anterior superior iliac spines (ASIS) and the pubic tubercles. In most systems relying on the pelvic coordinate system, the most anterior points of the ASIS and the pubic tubercles are selected manually. As manual selection of landmark points is a tedious, time-consuming and error-prone task, a surface-based approach for combined MSP and APP computation is presented in this paper: Homologous points defining the MSP and the landmark points defining the APP are selected automatically from surface patches. It is investigated how MSP computation can benefit from APP computation and vice versa, and clinical perspectives of combined MSP and APP computation are discussed. Experimental results on computed tomography data show that the surface-based approach can improve accuracy.

  1. Surface morphology effects in a vibration based triboelectric energy harvester

    Science.gov (United States)

    Nafari, A.; Sodano, H. A.

    2018-01-01

    Despite the abundance of ambient mechanical energy in our environment, it is often neglected and left unused. However, recent studies have demonstrated that mechanical vibrations can be harvested and used to power small wireless electronic devices, such as micro electromechanical sensors (MEMS) and actuators. Most commonly, these energy harvesters convert vibration into electrical energy by utilizing piezoelectric, electromagnetic or electrostatic effects. Recently, triboelectric based energy harvesters have shown to be among the simplest and most cost-effective techniques for scavenging mechanical energy. The basis of triboelectric energy harvesters is the periodic contact and separation of two surfaces with opposite triboelectric properties which results in induced charge flow through an external load. Here, a vibration driven triboelectric nanogenerator (TENG) is fabricated and the effect of micro/nano scale surface modification is studied. The TENG produces electrical energy on the basis of periodic out-of-plane charge separation between gold and polydimethylsiloxane (PDMS) with opposite triboelectric charge polarities. By introducing micro/nano scale surface modifications to the PDMS and gold, the TENG’s power output is further enhanced. This work demonstrates that the morphology of the surfaces in a TENG device is important and by increasing the effective surface area through micro/nano scale modification, the power output of the device can increase by 118%. Moreover, it is shown that unlike many TENGs proposed in the literature, the fabricated device has a high RMS open circuit voltage and short circuit current and can perform for an extended period of time.

  2. Satellite Based Analysis of Surface Urban Heat Island Intensity

    Directory of Open Access Journals (Sweden)

    Gémes Orsolya

    2016-06-01

    Full Text Available The most obvious characteristics of urban climate are higher air and surface temperatures compared to rural areas and large spatial variation of meteorological parameters within the city. This research examines the long term and seasonal development of urban surface temperature using satellite data during a period of 30 years and within a year. The medium resolution Landsat data were (preprocessed using open source tools. Besides the analysis of the long term and seasonal changes in land surface temperature within a city, also its relationship with changes in the vegetation cover was investigated. Different urban districts and local climate zones showed varying strength of correlation. The temperature difference between urban surfaces and surroundings is defined as surface urban heat island (SUHI. Its development shows remarkable seasonal and spatial anomalies. The satellite images can be applied to visualize and analyze the SUHI, although they were not collected at midday and early afternoon, when the phenomenon is normally at its maximum. The applied methodology is based on free data and software and requires minimal user interaction. Using the results new urban developments (new built up and green areas can be planned, that help mitigate the negative effects of urban climate.

  3. Modeling Apple Surface Temperature Dynamics Based on Weather Data

    Directory of Open Access Journals (Sweden)

    Lei Li

    2014-10-01

    Full Text Available The exposure of fruit surfaces to direct sunlight during the summer months can result in sunburn damage. Losses due to sunburn damage are a major economic problem when marketing fresh apples. The objective of this study was to develop and validate a model for simulating fruit surface temperature (FST dynamics based on energy balance and measured weather data. A series of weather data (air temperature, humidity, solar radiation, and wind speed was recorded for seven hours between 11:00–18:00 for two months at fifteen minute intervals. To validate the model, the FSTs of “Fuji” apples were monitored using an infrared camera in a natural orchard environment. The FST dynamics were measured using a series of thermal images. For the apples that were completely exposed to the sun, the RMSE of the model for estimating FST was less than 2.0 °C. A sensitivity analysis of the emissivity of the apple surface and the conductance of the fruit surface to water vapour showed that accurate estimations of the apple surface emissivity were important for the model. The validation results showed that the model was capable of accurately describing the thermal performances of apples under different solar radiation intensities. Thus, this model could be used to more accurately estimate the FST relative to estimates that only consider the air temperature. In addition, this model provides useful information for sunburn protection management.

  4. Sintered porous silicon. Physical properties and applications for layer-transfer silicon thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, A.K.

    2007-07-16

    This work focusses on the characterisation of sintered porous silicon and on the development of monocrystalline silicon thin-film solar cells from the Porous Silicon Process (PSI process). For the fabrication of these solar cells, a thin silicon film is epitaxially grown on a monocrystalline silicon growth substrate, that features a layer of porous silicon (PS) at the surface. Due to the thermal activation during the epitaxial growth process, the PS layer reconfigurates and mechanically weakens, which later permits the transfer of the thin-film device to a second carrier substrate. When separating the epitaxial film from the growth substrate, a residual layer of sintered porous silicon (SPS) remains attached to the rear side of the device. So far, the physical properties of this layer and its impact on the performance of PSI solar cells have been poorly investigated. This thesis aims at a comprehensive determination of the physical properties of sintered porous silicon, in particular, its thermal, optical and electrical properties. For the thermal characterisation of the fragile free standing SPS films, a contactless measurement technique based on lock-in thermography is developed and experimentally verified. This analysis identifies a third order power law dependence of the thermal conductivity of SPS on the porosity, in agreement with the predictions of the Looyenga model. Phonon scattering at the pore walls, which is known to drastically reduce the thermal conductivity of as-prepared PS, is also present in the sintered state. The obtained results reveal that, in the case of SPS, this effect is less pronounced, due to the increased structure size of the sintered material compared to the as-prepared state. The effective refractive index of SPS complies with the predictions of effective medium models, whereas Mie's theory successfully describes light scattering by the spherical pores in SPS. An analysis of the measured scattering coefficient shows that the

  5. Object-based Dimensionality Reduction in Land Surface Phenology Classification

    Directory of Open Access Journals (Sweden)

    Brian E. Bunker

    2016-11-01

    Full Text Available Unsupervised classification or clustering of multi-decadal land surface phenology provides a spatio-temporal synopsis of natural and agricultural vegetation response to environmental variability and anthropogenic activities. Notwithstanding the detailed temporal information available in calibrated bi-monthly normalized difference vegetation index (NDVI and comparable time series, typical pre-classification workflows average a pixel’s bi-monthly index within the larger multi-decadal time series. While this process is one practical way to reduce the dimensionality of time series with many hundreds of image epochs, it effectively dampens temporal variation from both intra and inter-annual observations related to land surface phenology. Through a novel application of object-based segmentation aimed at spatial (not temporal dimensionality reduction, all 294 image epochs from a Moderate Resolution Imaging Spectroradiometer (MODIS bi-monthly NDVI time series covering the northern Fertile Crescent were retained (in homogenous landscape units as unsupervised classification inputs. Given the inherent challenges of in situ or manual image interpretation of land surface phenology classes, a cluster validation approach based on transformed divergence enabled comparison between traditional and novel techniques. Improved intra-annual contrast was clearly manifest in rain-fed agriculture and inter-annual trajectories showed increased cluster cohesion, reducing the overall number of classes identified in the Fertile Crescent study area from 24 to 10. Given careful segmentation parameters, this spatial dimensionality reduction technique augments the value of unsupervised learning to generate homogeneous land surface phenology units. By combining recent scalable computational approaches to image segmentation, future work can pursue new global land surface phenology products based on the high temporal resolution signatures of vegetation index time series.

  6. Sintering of Fine Particles in Suspension Plasma Sprayed Coatings.

    Science.gov (United States)

    Latka, Leszek; Goryachev, Sergey B; Kozerski, Stefan; Pawlowski, Lech

    2010-07-01

    Suspension plasma spraying is a process that enables the production of finely grained nanometric or submicrometric coatings. The suspensions are formulated with the use of fine powder particles in water or alcohol with some additives. Subsequently, the suspension is injected into plasma jet and the liquid additives evaporate. The remaining fine solids are molten and subsequently agglomerate or remain solid, depending on their trajectory in the plasma jet. The coating's microstructure results from these two groups of particles arriving on a substrate or previously deposited coating. Previous experimental studies carried out for plasma sprayed titanium oxide and hydroxyapatite coatings enabled us to observe either a finely grained microstructure or, when a different suspension injection mode was used, to distinguish two zones in the microstructure. These two zones correspond to the dense zone formed from well molten particles, and the agglomerated zone formed from fine solid particles that arrive on the substrate in a solid state. The present paper focuses on the experimental and theoretical analysis of the formation process of the agglomerated zone. The experimental section establishes the heat flux supplied to the coating during deposition. In order to achieve this, calorimetric measurements were made by applying experimental conditions simulating the real coatings' growth. The heat flux was measured to be in the range from 0.08 to 0.5 MW/m²,depending on the experimental conditions. The theoretical section analyzes the sintering during the coating's growth, which concerns the fine particles arriving on the substrate in the solid state. The models of volume, grain boundary and surface diffusion were analyzed and adapted to the size and chemistry of the grains, temperature and time scales corresponding to the suspension plasma spraying conditions. The model of surface diffusion was found to best describe the sintering during suspension plasma spraying. The formation

  7. Sintering of Fine Particles in Suspension Plasma Sprayed Coatings

    Directory of Open Access Journals (Sweden)

    Leszek Latka

    2010-07-01

    Full Text Available Suspension plasma spraying is a process that enables the production of finely grained nanometric or submicrometric coatings. The suspensions are formulated with the use of fine powder particles in water or alcohol with some additives. Subsequently, the suspension is injected into plasma jet and the liquid additives evaporate. The remaining fine solids are molten and subsequently agglomerate or remain solid, depending on their trajectory in the plasma jet. The coating’s microstructure results from these two groups of particles arriving on a substrate or previously deposited coating. Previous experimental studies carried out for plasma sprayed titanium oxide and hydroxyapatite coatings enabled us to observe either a finely grained microstructure or, when a different suspension injection mode was used, to distinguish two zones in the microstructure. These two zones correspond to the dense zone formed from well molten particles, and the agglomerated zone formed from fine solid particles that arrive on the substrate in a solid state. The present paper focuses on the experimental and theoretical analysis of the formation process of the agglomerated zone. The experimental section establishes the heat flux supplied to the coating during deposition. In order to achieve this, calorimetric measurements were made by applying experimental conditions simulating the real coatings’ growth. The heat flux was measured to be in the range from 0.08 to 0.5 MW/m2,depending on the experimental conditions. The theoretical section analyzes the sintering during the coating’s growth, which concerns the fine particles arriving on the substrate in the solid state. The models of volume, grain boundary and surface diffusion were analyzed and adapted to the size and chemistry of the grains, temperature and time scales corresponding to the suspension plasma spraying conditions. The model of surface diffusion was found to best describe the sintering during suspension

  8. Neutron irradiation effects on spark plasma sintered boron carbide

    International Nuclear Information System (INIS)

    Buyuk, B.; Cengiz, M.; Tugrul, A.; Ozer, S.; Yucel, O.; Goller, G.; Sahin, F.C.; Lastovski, S.B.

    2015-01-01

    In this study, spark plasma sintered boron carbide (B 4 C) was examined against neutrons. The specimens were ir-radiated by reactor neutrons (include both thermal and fast neutrons) up to fluence of 1.37x10 21 n*m -2 . Thermal and fast neutrons cause swelling by different interactions with boron ( 10 B) atoms in the related materials. X-Ray diffraction (XRD) patterns and scanning electron microscopy (SEM) images were investigated for initial and irradiated samples. In addition, lattice parameters and unit cell volumes were calculated for the samples. The swelling percentages were calculated to be within a range of 0.49-3.80 % (average 1.70 %) for the outer surface of the materials for applied neutron irradiation doses. (authors)

  9. Corrosion of high-density sintered tungsten alloys. Part 2

    International Nuclear Information System (INIS)

    Batten, J.J.; Moore, B.T.

    1988-12-01

    The behaviour of four high-density sintered tungsten alloys has been evluated and compared with that of pure tungsten. Rates of corrosion during the cyclic humidity and the salt mist tests were ascertained from weight loss measurements. Insight into the corrosion mechanism was gained from the nature of the corrosion products and an examination of the corroded surfaces. In the tests, the alloy 95% W, 2.5% Ni, 1.5% Fe was the most corrosion resistant. The data showed that copper as an alloying element accelerates corrosion of tungsten alloys. Both attack on the tungsten particles and the binder phase were observed together with tungsten grain loss. 6 refs., 3 tabs.,

  10. Fiber-Optic Surface Temperature Sensor Based on Modal Interference

    Directory of Open Access Journals (Sweden)

    Frédéric Musin

    2016-07-01

    Full Text Available Spatially-integrated surface temperature sensing is highly useful when it comes to controlling processes, detecting hazardous conditions or monitoring the health and safety of equipment and people. Fiber-optic sensing based on modal interference has shown great sensitivity to temperature variation, by means of cost-effective image-processing of few-mode interference patterns. New developments in the field of sensor configuration, as described in this paper, include an innovative cooling and heating phase discrimination functionality and more precise measurements, based entirely on the image processing of interference patterns. The proposed technique was applied to the measurement of the integrated surface temperature of a hollow cylinder and compared with a conventional measurement system, consisting of an infrared camera and precision temperature probe. As a result, the optical technique is in line with the reference system. Compared with conventional surface temperature probes, the optical technique has the following advantages: low heat capacity temperature measurement errors, easier spatial deployment, and replacement of multiple angle infrared camera shooting and the continuous monitoring of surfaces that are not visually accessible.

  11. Kinetic of sintering of polyethilene glycol and lanthanum dopped aluminum oxide obtained by the sol-gel method

    Directory of Open Access Journals (Sweden)

    Novaković Tatjana B.

    2011-01-01

    Full Text Available Sintering and crystallization of low-density polyethylene glycol (PEG and lanthanum, La(III-doped Al2O3 aerogels prepared from aluminum isopropoxide were investigated. The sintering behavior of non-doped and doped aerogels was examined by following the change of specific surface area with isothermal heat-treatment. The specific surface area and crystalline phases of non-doped and PEG+La(III-doped aerogels were determined, and the effects of dopants on the sintering and crystallization of Al2O3 aerogels are discussed. Isothermal sintering experiments showed that the sintering mechanism of non-doped and PEG+La(III-doped Al2O3 aerogels is surface diffusion. The specific surface areas of alumina samples decrease rapidly during the initial period of sintering, and more slowly with prolonged sintering time. The change of the porous structure is correlated with the phase transformation of γ-Al2O3 during calcinations of Al2O3 aerogels. The surface area of non-doped Al2O3 aerogels came to about 20 m2g-1 with heat-treatment at 1100°C because of crystallization of α-Al2O3 after densification. In the case of heattreatment at 1200°C, the largest surface area was observed for PEG+La(III doped Al2O3 aerogels and the XRD pattern showed only low ordered θ-Al2O3. These indicate that the addition of PEG+La(III to boehmite sol prevents Al2O3 aerogels from sintering and crystallizing to the α-Al2O3 phase. Even after 20 h at 1000°C, PEG+La (III-doped alumina samples maintain a rather good specific surface area (108 m2 g-1 in comparison to the non-doped, containing mainly θ-Al2O3 and minor amounts of δ-Al2O3. Aluminum-oxides with these structural and textural properties are widely used as a coatings and catalyst supports in the field of various catalysis.

  12. Selective Laser Sintering And Melting Of Pristine Titanium And Titanium Ti6Al4V Alloy Powders And Selection Of Chemical Environment For Etching Of Such Materials

    Directory of Open Access Journals (Sweden)

    Dobrzański L.A.

    2015-09-01

    Full Text Available The aim of the investigations described in this article is to present a selective laser sintering and melting technology to fabricate metallic scaffolds made of pristine titanium and titanium Ti6Al4V alloy powders. Titanium scaffolds with different properties and structure were manufactured with this technique using appropriate conditions, notably laser power and laser beam size. The purpose of such elements is to replace the missing pieces of bones, mainly cranial and facial bones in the implantation treatment process. All the samples for the investigations were designed in CAD/CAM (3D MARCARM ENGINEERING AutoFab (Software for Manufacturing Applications software suitably integrated with an SLS/SLM system. Cube-shaped test samples dimensioned 10×10×10 mm were designed for the investigations using a hexagon-shaped base cell. The so designed 3D models were transferred to the machine software and the actual rapid manufacturing process was commenced. The samples produced according to the laser sintering technology were subjected to chemical processing consisting of etching the scaffolds’ surface in different chemical mediums. Etching was carried out to remove the loosely bound powder from the surface of scaffolds, which might detach from their surface during implantation treatment and travel elsewhere in an organism. The scaffolds created were subjected to micro- and spectroscopic examinations

  13. Basic characteristics of Australian iron ore concentrate and its effects on sinter properties during the high-limonite sintering process

    Science.gov (United States)

    Liu, Dong-hui; Liu, Hao; Zhang, Jian-liang; Liu, Zheng-jian; Xue, Xun; Wang, Guang-wei; Kang, Qing-feng

    2017-09-01

    The basic characteristics of Australian iron ore concentrate (Ore-A) and its effects on sinter properties during a high-limonite sintering process were studied using micro-sinter and sinter pot methods. The results show that the Ore-A exhibits good granulation properties, strong liquid flow capability, high bonding phase strength and crystal strength, but poor assimilability. With increasing Ore-A ratio, the tumbler index and the reduction index (RI) of the sinter first increase and then decrease, whereas the softening interval (Δ T) and the softening start temperature ( T 10%) of the sinter exhibit the opposite behavior; the reduction degradation index (RDI+3.15) of the sinter increases linearly, but the sinter yield exhibits no obvious effects. With increasing Ore-A ratio, the distribution and crystallization of the minerals are improved, the main bonding phase first changes from silico-ferrite of calcium and aluminum (SFCA) to kirschsteinite, silicate, and SFCA and then transforms to 2CaO·SiO2 and SFCA. Given the utilization of Ore-A and the improvement of the sinter properties, the Ore-A ratio in the high-limonite sintering process is suggested to be controlled at approximately 6wt%.

  14. Application of ultrasonic pulse velocity technique and image analysis in monitoring of the sintering process

    Directory of Open Access Journals (Sweden)

    Terzić A.

    2011-01-01

    Full Text Available Concrete which undergoes a thermal treatment before and during its life-service can be applied in plants operating at high temperature and as thermal insulation. Sintering occurs within a concrete structure in such conditions. Progression of sintering process can be monitored by the change of the porosity parameters determined with a nondestructive test method - ultrasonic pulse velocity and computer program for image analysis. The experiment has been performed on the samples of corundum and bauxite concrete composites. The apparent porosity of the samples thermally treated at 110, 800, 1000, 1300 and 1500ºC was primary investigated with a standard laboratory procedure. Sintering parameters were calculated from the creep testing. The loss of strength and material degradation occurred in concrete when it was subjected to the increased temperature and a compressive load. Mechanical properties indicate and monitor changes within microstructure. The level of surface deterioration after the thermal treatment was determined using Image Pro Plus program. Mechanical strength was estimated using ultrasonic pulse velocity testing. Nondestructive ultrasonic measurement was used as a qualitative description of the porosity change in specimens which is the result of the sintering process. The ultrasonic pulse velocity technique and image analysis proved to be reliable methods for monitoring of microstructural change during the thermal treatment and service life of refractory concrete.

  15. Room temperature sintering of printer silver nanoparticle conductive ink

    Science.gov (United States)

    Corsino, Dianne C.; Balela, Mary Donnabelle L.

    2017-11-01

    Future electronics devices are not only smaller and thinner, but are also flexible, bendable and even wearable. This evolution in technology requires direct printing of patterns onto any substrate using conductive inks made of a dispersion of metallic nanoparticles. In this study, Cl- ions was used to induce spontaneous sintering of silver nanoparticles (Ag NPs). Ag NPs with an average diameter of 56 nm were synthesized by polyol method using silver nitrate (AgNO3) and ethylene glycol (EG) as precursor and solvent, respectively. Poly(vinyl pyrrolidone) was used as the capping agent. Water-based inks were formulated containing different Ag NP loading (10–25 wt %). Using 50 mM NaCl aqueous solution as the dispersing medium, an ink with 15 wt % Ag exhibited a sheet resistance of about 2.85 Ω/sq. This very low sheet resistance was attributed to sintering of Ag NPs, which was accompanied by an increase in average diameter of nanoparticles from 56 to 569 nm.

  16. Surface-based GPR underestimates below-stump root biomass

    Science.gov (United States)

    John R. Butnor; Lisa J. Samuelson; Thomas A. Stokes; Kurt H. Johnsen; Peter H. Anderson; Carlos A. Gonzalez-Benecke

    2016-01-01

    Aims While lateral root mass is readily detectable with ground penetrating radar (GPR), the roots beneath a tree (below-stump) and overlapping lateral roots near large trees are problematic for surface-based antennas operated in reflection mode. We sought to determine if tree size (DBH) effects GPR root detection proximal to longleaf pine (Pinus palustris Mill) and if...

  17. Microprocessor-based simulator of surface ECG signals

    International Nuclear Information System (INIS)

    MartInez, A E; Rossi, E; Siri, L Nicola

    2007-01-01

    In this work, a simulator of surface electrocardiogram recorded signals (ECG) is presented. The device, based on a microcontroller and commanded by a personal computer, produces an analog signal resembling actual ECGs, not only in time course and voltage levels, but also in source impedance. The simulator is a useful tool for electrocardiograph calibration and monitoring, to incorporate as well in educational tasks and in clinical environments for early detection of faulty behaviour

  18. Evaluating bond strength of porcelain to dental alloys and the effects of repeated porcelain sintering on it

    Directory of Open Access Journals (Sweden)

    n. Rashidan

    1998-05-01

    Full Text Available   In this study, porcelain bond strength to three different alloys of Gold-base, pd-Ag and base-Metal were compared and the effect of repeated porcelain sintering on bond strength was evaluated. The obtained results showed best bond strength of porcelain with Gold-base alloy. Pd-Ag and Base-metal alloys showed less strength respectively. During repeated sintering of porcelain, bond strength has not changed in Base-metal and Gold-base alloys while it was weakened in pd-Ag alloy.

  19. Evaluating bond strength of porcelain to dental alloys and the effects of repeated porcelain sintering on it

    OpenAIRE

    n. Rashidan; F Geramipanah

    1998-01-01

      In this study, porcelain bond strength to three different alloys of Gold-base, pd-Ag and base-Metal were compared and the effect of repeated porcelain sintering on bond strength was evaluated. The obtained results showed best bond strength of porcelain with Gold-base alloy. Pd-Ag and Base-metal alloys showed less strength respectively. During repeated sintering of porcelain, bond strength has not changed in Base-metal and Gold-base alloys while it was weakened in pd-Ag alloy.

  20. Surfaced-based investigations plan, Volume 4: Yucca Mountain Project

    International Nuclear Information System (INIS)

    1988-12-01

    This document represents a detailed summary of design plans for surface-based investigations to be conducted for site characterization of the Yucca Mountain site. These plans are current as of December 1988. The description of surface-based site characterization activities contained in this document is intended to give all interested parties an understanding of the current plans for site characterization of Yucca Mountain. The maps presented in Volume 4 are products of the Geographic Information System (GIS) being used by the Yucca Mountain Project. The ARC/INFO GIS software, developed by Environmental Systems Research Institute, was used to digitize and process these SBIP maps. The maps were prepared using existing US Geological Survey (USGS) maps as a planimetric base. Roads and other surface features were interpreted from a variety of sources and entered into the GIS. Sources include the USGS maps, 1976 USGS orthophotoquads and aerial photography, 1986 and 1987 aerial photography, surveyed coordinates of field sites, and a combination of various maps, figures, descriptions and approximate coordinates of proposed locations for future activities