WorldWideScience

Sample records for sintered copper material

  1. Laser sintering of copper nanoparticles

    International Nuclear Information System (INIS)

    Zenou, Michael; Saar, Amir; Ermak, Oleg; Kotler, Zvi

    2014-01-01

    Copper nanoparticle (NP) inks serve as an attractive potential replacement to silver NP inks in functional printing applications. However their tendency to rapidly oxidize has so far limited their wider use. In this work we have studied the conditions for laser sintering of Cu-NP inks in ambient conditions while avoiding oxidation. We have determined the regime for stable, low-resistivity copper (< ×3 bulk resistivity value) generation in terms of laser irradiance and exposure duration and have indicated the limits on fast processing. The role of pre-drying conditions on sintering outcome has also been studied. A method, based on spectral reflectivity measurements, was used for non-contact monitoring of the sintering process evolution. It also indicates preferred spectral regions for sintering. Finally, we illustrated how selective laser sintering can generate high-quality, fine line (<5 µm wide) and dense copper circuits. (paper)

  2. Sintering studies on iron-carbon-copper compacts

    Directory of Open Access Journals (Sweden)

    Perianayagam Philomen-D-Anand Raj

    2016-01-01

    Full Text Available Sintered Iron-Carbon-Copper parts are among the most widely used powder metallurgy product in automobile. In this paper, studies have been carried out to find out the sintering characteristics of iron-carbon-copper compacts when sintered in nitrogen atmosphere. The effects of various processing parameters on the sintering characteristics were studied. The various processing parameters considered were compaction pressure, green density and sintering temperature. The sintering characteristics determined were sintered density, porosity, dimensional change, micro hardness and radial crush strength. The results obtained have been discussed on the basis of micro structural observations. The characteristics of SEM fractography were also used to determine the mechanism of fracture. The fracture energy is strongly dependent on density of the compact.

  3. Underwater explosive compaction-sintering of tungsten-copper coating on a copper surface

    Science.gov (United States)

    Chen, Xiang; Li, Xiaojie; Yan, Honghao; Wang, Xiaohong; Chen, Saiwei

    2018-01-01

    This study investigated underwater explosive compaction-sintering for coating a high-density tungsten-copper composite on a copper surface. First, 50% W-50% Cu tungsten-copper composite powder was prepared by mechanical alloying. The composite powder was pre-compacted and sintered by hydrogen. Underwater explosive compaction was carried out. Finally, a high-density tungsten-copper coating was obtained by diffusion sintering of the specimen after explosive compaction. A simulation of the underwater explosive compaction process showed that the peak value of the pressure in the coating was between 3.0 and 4.8 GPa. The hardness values of the tungsten-copper layer and the copper substrate were in the range of 87-133 and 49 HV, respectively. The bonding strength between the coating and the substrate was approximately 100-105 MPa.

  4. Effect of Microstructure on the Thermal Properties of Sintered Iron-copper Composites

    OpenAIRE

    Ugarteche, Caroline Velasques; Furlan, Kaline Pagnan; Pereira, Rafaela do Vale; Trindade, Gabriel; Binder, Roberto; Binder, Cristiano; Klein, Aloisio Nelmo

    2015-01-01

    Copper is a well know material for use as heat sink or heat exchanger. However, copper has a considerable low tensile strength and temperature limit. A material that has a good thermal conductivity, low cost, but also resistance is the desired. Effects of copper on the sintering and thermal properties of iron-copper composites produced by powder metallurgy and Fe on copper-iron composites have been investigated. Copper and iron were varied from 20 to 80 vol.% in the samples, alternating the c...

  5. Structure and characteristics of functional powder composite materials obtained by spark plasma sintering

    Science.gov (United States)

    Oglezneva, S. A.; Kachenyuk, M. N.; Kulmeteva, V. B.; Ogleznev, N. B.

    2017-07-01

    The article describes the results of spark plasma sintering of ceramic materials based on titanium carbide, titanium carbosilicide, ceramic composite materials based on zirconium oxide, strengthened by carbon nanostructures and composite materials of electrotechnical purpose based on copper with addition of carbon structures and titanium carbosilicide. The research shows that the spark plasma sintering can achieve relative density of the material up to 98%. The effect of sintering temperature on the phase composition, density and porosity of the final product has been studied. It was found that with addition of carbon nanostructures the relative density and hardness decrease, but the fracture strength of ZrO2 increases up to times 2. The relative erosion resistance of the electrodes made of composite copper-based powder materials, obtained by spark plasma sintering during electroerosion treatment of tool steel exceeds that parameter of pure copper up to times 15.

  6. Two-step flash light sintering of copper nanoparticle ink to remove substrate warping

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Chung-Hyeon; Joo, Sung-Jun [Department of Mechanical Convergence Engineering, Hanyang University, Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Kim, Hak-Sung, E-mail: kima@hanyang.ac.kr [Department of Mechanical Convergence Engineering, Hanyang University, Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Institute of Nano Science and Technology, Hanyang University, Seoul, 133-791 (Korea, Republic of)

    2016-10-30

    Highlights: • We performed the two-step flash light sintering for copper nanoparticle ink to remove substrate warping. • 12 J/cm{sup 2} of preheating and 7 J/cm{sup 2} of main sintering energies were determined as optimum conditions to sinter the copper nanoparticle ink. • The resistivity of two-step sintered copper nanoparticle ink was 3.81 μΩ cm with 5B adhesion level, 2.3 times greater than that of bulk copper. • The two-step sintered case showed a high conductivity without any substrate warping. - Abstract: A two-step flash light sintering process was devised to reduce the warping of polymer substrates during the sintering of copper nanoparticle ink. To determine the optimum sintering conditions of the copper nanoparticle ink, the flash light irradiation conditions (pulse power, pulse number, on-time, and off-time) were varied and optimized. In order to monitor the flash light sintering process, in situ resistance and temperature monitoring of copper nanoink were conducted during the flash light sintering process. Also, a transient heat transfer analysis was performed by using the finite-element program ABAQUS to predict the temperature changes of copper nanoink and polymer substrate. The microstructures of the sintered copper nanoink films were analyzed by scanning electron microscopy. Additionally, an X-ray diffraction and Fourier transform infrared spectroscopy were used to characterize the crystal phase change of the sintered copper nanoparticles. The resulting two-step flash light sintered copper nanoink films exhibited a low resistivity (3.81 μΩ cm, 2.3 times of that of bulk copper) and 5B level of adhesion strength without warping of the polymer substrate.

  7. The role of the native oxide shell on the microwave sintering of copper metal powder compacts

    International Nuclear Information System (INIS)

    Mahmoud, Morsi M.; Link, Guido; Thumm, Manfred

    2015-01-01

    Highlights: • Thin oxide native layer had a critical role on microwave sintering of copper. • Explain why microwaves interact with copper powder differently than its bulk. • Abnormal expansion in copper is due to the plastic deformation and crack formation. • In-situ setup gives important insight about the microwave sintering of metals. • Microwave sintering is a promising candidate technology in powder metallurgy. - Abstract: Successful microwave sintering of several metal powders had been reported by many researchers with remarkable improvements in the materials properties and/or in the overall process. However, the concept behind microwave heating of metal powders has not been fully understood till now, as it is well known that bulk metals reflect microwaves. The progress of microwave sintering of copper metal powder compacts was investigated via combining both in-situ electrical resistivity and dilatometry measurements that give important information about microstructural changes with respect to the inter-particle electrical contacts during sintering. The sintering behavior of copper metal powders was depending on the type of the gas used, particle size, the initial green density, the soaking sintering time and the thin oxide layer on the particles surfaces. The thin copper oxide native layer (ceramics) that thermodynamically formed on the particles surfaces under normal handling and ambient environmental conditions had a very critical and important role in the microwave absorption and interaction, the sintering behavior and the microstructural changes. This finding could help to have a fundamental understanding of why MW’s interact with copper metal powder in a different way than its bulk at room temperature, i.e. why a given metal powder could be heated using microwaves while its bulk reflects it

  8. Aspects regarding the tribological evaluation of sintered composites obtained from mixture of copper with carbon fibers

    Science.gov (United States)

    Caliman, R.

    2015-11-01

    This paper presents a study of the tribological properties of sintered composite materials made from combination of copper with short carbon fibers. Sintered composite materials are more effective if refer to specific properties per unit volume compared to conventional isotropic materials. Potential advantages of copper - carbon composite materials are: high resistance to breakage and high value ratios strength/density; resistance to high temperatures; low density and high resistance to wear; low or high friction coefficient. The sintered composite materials used in this research work are obtained combining different percentages of copper with short carbon fibres with iron and lead in order to investigate the variation of the friction behaviour. Varying the percentage of copper from 92,2% to 97,6% and the percentage of short carbon fibres from 7,8% to 2,4%, five different composite materials are obtained and tested. Friction tests are carried out, at room temperature, in dry conditions, on a pin-on-disc machine. The friction coefficient was measured using abrasive discs made from steel 4340 having the average hardness of 40 HRC, and sliding velocity of 0,6 m/sec. The main objective of this research work it was to identify a combination of materials with improved friction behaviour. The experimental results revealed that the force applied on the specimen during the tests, is playing a very important role regarding friction coefficient and also the wearing speed. Graphite particles are conveyed consistently inside the net, enhancing scraped spot safety and voltage drop over normal composite material. The static tests demonstrated that this new kind of sintered composite material has preferable electrical execution over previous brush material in the same conditions, and the element tests demonstrated that the temperature climb is not enormous when the brush with this new composite material is exchanged on with huge current and the surface scraped spot is littler amid

  9. Flash light sintered copper precursor/nanoparticle pattern with high electrical conductivity and low porosity for printed electronics

    International Nuclear Information System (INIS)

    Chung, Wan-Ho; Hwang, Hyun-Jun; Kim, Hak-Sung

    2015-01-01

    In this work, the hybrid copper inks with precursor and nanoparticles were fabricated and sintered via flash light irradiation to achieve highly conductive electrode pattern with low porosity. The hybrid copper ink was made of copper nanoparticles and various copper precursors (e.g., copper(II) chloride, copper(II) nitrate trihydrate, copper(II) sulfate pentahydrate and copper(II) trifluoroacetylacetonate). The printed hybrid copper inks were sintered at room temperature and under ambient conditions using an in-house flash light sintering system. The effects of copper precursor weight fraction and the flash light irradiation conditions (light energy and pulse duration) were investigated. Surfaces of the sintered hybrid copper patterns were analyzed using a scanning electron microscope. Also, spectroscopic characterization techniques such as Fourier transform infrared spectroscopy and X-ray diffraction were used to investigate the crystal phases of the flash light sintered copper precursors. High conductivity hybrid copper patterns (27.3 μΩ cm), which is comparable to the resistivity of bulk copper (1.68 μΩ cm) were obtained through flash light sintering at room temperature and under ambient conditions. - Highlights: • The hybrid copper inks with precursor and nanoparticles were fabricated. • The hybrid copper ink was sintered via flash light irradiation. • The resistivity of sintered hybrid copper ink was 27.3 μΩ cm. • Highly conductive copper film with low porosity could be achieved

  10. Flash light sintered copper precursor/nanoparticle pattern with high electrical conductivity and low porosity for printed electronics

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Wan-Ho; Hwang, Hyun-Jun [Department of Mechanical Convergence Engineering, Hanyang University, 17 Haendang-Dong, Seongdong-Gu, Seoul 133-791 (Korea, Republic of); Kim, Hak-Sung, E-mail: kima@hanyang.ac.kr [Department of Mechanical Convergence Engineering, Hanyang University, 17 Haendang-Dong, Seongdong-Gu, Seoul 133-791 (Korea, Republic of); Institute of Nano Science and Technology, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2015-04-01

    In this work, the hybrid copper inks with precursor and nanoparticles were fabricated and sintered via flash light irradiation to achieve highly conductive electrode pattern with low porosity. The hybrid copper ink was made of copper nanoparticles and various copper precursors (e.g., copper(II) chloride, copper(II) nitrate trihydrate, copper(II) sulfate pentahydrate and copper(II) trifluoroacetylacetonate). The printed hybrid copper inks were sintered at room temperature and under ambient conditions using an in-house flash light sintering system. The effects of copper precursor weight fraction and the flash light irradiation conditions (light energy and pulse duration) were investigated. Surfaces of the sintered hybrid copper patterns were analyzed using a scanning electron microscope. Also, spectroscopic characterization techniques such as Fourier transform infrared spectroscopy and X-ray diffraction were used to investigate the crystal phases of the flash light sintered copper precursors. High conductivity hybrid copper patterns (27.3 μΩ cm), which is comparable to the resistivity of bulk copper (1.68 μΩ cm) were obtained through flash light sintering at room temperature and under ambient conditions. - Highlights: • The hybrid copper inks with precursor and nanoparticles were fabricated. • The hybrid copper ink was sintered via flash light irradiation. • The resistivity of sintered hybrid copper ink was 27.3 μΩ cm. • Highly conductive copper film with low porosity could be achieved.

  11. The influence of green microstructure and sintering parameters on precipitation process during copper-nickel-zinc ferrites sintering

    International Nuclear Information System (INIS)

    Barba, A.; Clausell, C.; Jarque, J. C.; Monzo, M.

    2014-01-01

    Microstructural changes that occur during heat treatment of copper-nickel-zinc ferrites have been studied. The process of precipitation of the two types of crystals that occur during the sintering process has been analyzed. It is found that this process depends on dry relative density of the press specimens and on the following sintering parameters: sintering temperature, sintering time and cooling rate of the thermal cycle. Crystal precipitates characterization have been done by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) analysis, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). These techniques have allowed to determine the nature of these crystals, which in this case correspond to zinc and copper oxides. It has been used two chemical reactions to explain the bulk precipitation and subsequent re-dissolution of these crystal precipitates during sintering. (Author)

  12. Low-cost optical fabrication of flexible copper electrode via laser-induced reductive sintering and adhesive transfer

    Science.gov (United States)

    Back, Seunghyun; Kang, Bongchul

    2018-02-01

    Fabricating copper electrodes on heat-sensitive polymer films in air is highly challenging owing to the need of expensive copper nanoparticles, rapid oxidation of precursor during sintering, and limitation of sintering temperature to prevent the thermal damage of the polymer film. A laser-induced hybrid process of reductive sintering and adhesive transfer is demonstrated to cost-effectively fabricate copper electrode on a polyethylene film with a thermal resistance below 100 °C. A laser-induced reductive sintering process directly fabricates a high-conductive copper electrode onto a glass donor from copper oxide nanoparticle solution via photo-thermochemical reduction and agglomeration of copper oxide nanoparticles. The sintered copper patterns were transferred in parallel to a heat-sensitive polyethylene film through self-selective surface adhesion of the film, which was generated by the selective laser absorption of the copper pattern. The method reported here could become one of the most important manufacturing technologies for fabricating low-cost wearable and disposable electronics.

  13. Copper stabilization in beneficial use of waterworks sludge and copper-laden electroplating sludge for ceramic materials.

    Science.gov (United States)

    Tang, Yuanyuan; Chan, Siu-Wai; Shih, Kaimin

    2014-06-01

    A promising strategy for effectively incorporating metal-containing waste materials into a variety of ceramic products was devised in this study. Elemental analysis confirmed that copper was the predominant metal component in the collected electroplating sludge, and aluminum was the predominant constituent of waterworks sludge collected in Hong Kong. The use of waterworks sludge as an aluminum-rich precursor material to facilitate copper stabilization under thermal conditions provides a promising waste-to-resource strategy. When sintering the mixture of copper sludge and the 900 °C calcined waterworks sludge, the CuAl2O4 spinel phase was first detected at 650 °C and became the predominant product phase at temperatures higher than 850 °C. Quantification of the XRD pattern using the Rietveld refinement method revealed that the weight of the CuAl2O4 spinel phase reached over 50% at 850 °C. The strong signals of the CuAl2O4 phase continued until the temperature reached 1150 °C, and further sintering initiated the generation of the other copper-hosting phases (CuAlO2, Cu2O, and CuO). The copper stabilization effect was evaluated by the copper leachability of the CuAl2O4 and CuO via the prolonged leaching experiments at a pH value of 4.9. The leaching results showed that the CuAl2O4 phase was superior to the CuAlO2 and CuO phases for immobilizing hazardous copper over longer leaching periods. The findings clearly indicate that spinel formation is the most crucial metal stabilization mechanism when sintering multiphase copper sludge with aluminum-rich waterworks sludge, and suggest a promising and reliable technique for reusing both types of sludge waste for ceramic materials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Tribological behaviour and statistical experimental design of sintered iron-copper based composites

    Science.gov (United States)

    Popescu, Ileana Nicoleta; Ghiţă, Constantin; Bratu, Vasile; Palacios Navarro, Guillermo

    2013-11-01

    The sintered iron-copper based composites for automotive brake pads have a complex composite composition and should have good physical, mechanical and tribological characteristics. In this paper, we obtained frictional composites by Powder Metallurgy (P/M) technique and we have characterized them by microstructural and tribological point of view. The morphology of raw powders was determined by SEM and the surfaces of obtained sintered friction materials were analyzed by ESEM, EDS elemental and compo-images analyses. One lot of samples were tested on a "pin-on-disc" type wear machine under dry sliding conditions, at applied load between 3.5 and 11.5 × 10-1 MPa and 12.5 and 16.9 m/s relative speed in braking point at constant temperature. The other lot of samples were tested on an inertial test stand according to a methodology simulating the real conditions of dry friction, at a contact pressure of 2.5-3 MPa, at 300-1200 rpm. The most important characteristics required for sintered friction materials are high and stable friction coefficient during breaking and also, for high durability in service, must have: low wear, high corrosion resistance, high thermal conductivity, mechanical resistance and thermal stability at elevated temperature. Because of the tribological characteristics importance (wear rate and friction coefficient) of sintered iron-copper based composites, we predicted the tribological behaviour through statistical analysis. For the first lot of samples, the response variables Yi (represented by the wear rate and friction coefficient) have been correlated with x1 and x2 (the code value of applied load and relative speed in braking points, respectively) using a linear factorial design approach. We obtained brake friction materials with improved wear resistance characteristics and high and stable friction coefficients. It has been shown, through experimental data and obtained linear regression equations, that the sintered composites wear rate increases

  15. Powder metallurgy: Solid and liquid phase sintering of copper

    Science.gov (United States)

    Sheldon, Rex; Weiser, Martin W.

    1993-01-01

    Basic powder metallurgy (P/M) principles and techniques are presented in this laboratory experiment. A copper based system is used since it is relatively easy to work with and is commercially important. In addition to standard solid state sintering, small quantities of low melting metals such as tin, zinc, lead, and aluminum can be added to demonstrate liquid phase sintering and alloy formation. The Taguchi Method of experimental design was used to study the effect of particle size, pressing force, sintering temperature, and sintering time. These parameters can be easily changed to incorporate liquid phase sintering effects and some guidelines for such substitutions are presented. The experiment is typically carried out over a period of three weeks.

  16. Studies on the sintering of copper powder compacts

    International Nuclear Information System (INIS)

    Elmasry, M.A.A.; Abadir, M.F.; Mahdy, A.N.; Elkinawy, W.S.

    1995-01-01

    Solid state sintering behavior of cylindrical compacts, (1 cm diameter and 1 cm height), made of copper powder was studied within a range of compacting pressure of 75 up to 300 MPa, sintering temperature of 600 up to to 900 degree C, and sintering time of 5 up to 60 min in a reducing atmosphere composed of H2 and N 2 gases with a volumetric ratio 3:1. The green and the sintered densities were found to to increase with the compacting pressure. Higher sintering temperature, and time favour increased sintered density. probable mechanisms during the initial stage of sintering were disclosed. It was found that low pressures cause dilation of closed pores, and vice versa. At low pressures and temperatures the surface diffusion mechanism is favoured, While high temperatures favour lattice diffusion mechanism. at high pressures, the lattice diffusion mechanism is suppressed while surface diffusion predominates. Density and hence shrinkage were also found to increase with the increase of sintering time, While its rate increases with the increase of sintering temperature. the influence of sintering conditions on the hardness of the compacts was studied. An increase in hardness, When higher compacting pressures and higher sintering temperatures were adopted, has bee obtained. 11 figs

  17. Consolidation of copper and aluminium powders by spark plasma sintering

    Science.gov (United States)

    Saiprasad, M.; Atchayakumar, R.; Thiruppathi, K.; Raghuraman, S.

    2016-09-01

    Processing in the powder metallurgy route has emerged as an economical process for the production of near net shaped components with a wide range of desired mechanical properties suitable for various applications of industrial needs. This research work was conducted with an objective of studying the improvisation of density and hardness of Copper-Aluminium alloy prepared by spark plasma sintering. Cu-Al alloy with a composition of 95% copper and 5% aluminium was prepared by SPS process. SPS is a low voltage, DC pulse current activated, pressure-assisted sintering, which enables sintering at lower temperatures and shorter durations. The combination offered by Cu-Al alloy of high strength and high corrosion resistance results their applications under a wide variety of conditions. The density and hardness of the prepared sample were measured by conducting appropriate tests. Apparently, the values of hardness and density of the specimen prepared by SPS seemed to be better than that of conventional sintering. The experimental procedure, testing methodologies and analysis are presented.

  18. Flash sintering of ceramic materials

    Science.gov (United States)

    Dancer, C. E. J.

    2016-10-01

    During flash sintering, ceramic materials can sinter to high density in a matter of seconds while subjected to electric field and elevated temperature. This process, which occurs at lower furnace temperatures and in shorter times than both conventional ceramic sintering and field-assisted methods such as spark plasma sintering, has the potential to radically reduce the power consumption required for the densification of ceramic materials. This paper reviews the experimental work on flash sintering methods carried out to date, and compares the properties of the materials obtained to those produced by conventional sintering. The flash sintering process is described for oxides of zirconium, yttrium, aluminium, tin, zinc, and titanium; silicon and boron carbide, zirconium diboride, materials for solid oxide fuel applications, ferroelectric materials, and composite materials. While experimental observations have been made on a wide range of materials, understanding of the underlying mechanisms responsible for the onset and latter stages of flash sintering is still elusive. Elements of the proposed theories to explain the observed behaviour include extensive Joule heating throughout the material causing thermal runaway, arrested by the current limitation in the power supply, and the formation of defect avalanches which rapidly and dramatically increase the sample conductivity. Undoubtedly, the flash sintering process is affected by the electric field strength, furnace temperature and current density limit, but also by microstructural features such as the presence of second phase particles or dopants and the particle size in the starting material. While further experimental work and modelling is still required to attain a full understanding capable of predicting the success of the flash sintering process in different materials, the technique non-etheless holds great potential for exceptional control of the ceramic sintering process.

  19. Morphological analysis and modelling of sintering and of sintered materials

    International Nuclear Information System (INIS)

    Jernot, Jean-Paul

    1982-01-01

    This research thesis addresses the study of solid phase sintering of metallic powders, and aims at describing as precisely as possible the different involved matter transport mechanisms, first by using a thermodynamic approach to sintering. Sintering diagrams are also used to determine prevailing mechanisms. The microstructure of sintered materials has been studied by using image quantitative analysis, thus by using a morphological approach to sintering. Morphological parameters allow, on the one hand, the evolution of powders during sintering to be followed, and, on the other hand, sintered products to be correctly characterised. Moreover, the author reports the study of the evolution of some physical properties of sintered materials with respect to their microstructure parameters. This leads to the development of a modelling of the behaviour of these materials [fr

  20. 3D interconnect technology based on low temperature copper nanoparticle sintering

    NARCIS (Netherlands)

    Zhang, B.; Carisey, Y.C.P.; Damian, A.; Poelma, R.H.; Zhang, G.Q.; van Zeijl, H.W.; Bi, Keyun; Liu, Sheng; Zhou, Shengjun

    2016-01-01

    We explore a methodology for patterned copper nanoparticle paste for 3D interconnect applications in wafer to wafer (W2W) bonding. A novel fine pitch thermal compression bonding process (sintering) with coated copper nanoparticle paste was developed. Most of the particle size is between 10-30 nm.

  1. Expeditious low-temperature sintering of copper nanoparticles with thin defective carbon shells

    Science.gov (United States)

    Kim, Changkyu; Lee, Gyoungja; Rhee, Changkyu; Lee, Minku

    2015-04-01

    The realization of air-stable nanoparticles, well-formulated nanoinks, and conductive patterns based on copper is a great challenge in low-cost and large-area flexible printed electronics. This work reports the synthesis of a conductively interconnected copper structure via thermal sintering of copper inks at a low temperature for a short period of time, with the help of thin defective carbon shells coated onto the copper nanoparticles. Air-stable copper/carbon core/shell nanoparticles (typical size ~23 nm, shell thickness ~1.0 nm) are prepared by means of an electric explosion of wires. Gaseous oxidation of the carbon shells with a defective structure occurs at 180 °C, impacting the choice of organic solvents as well as the sintering conditions to create a crucial neck formation. Isothermal oxidation and reduction treatment at 200 °C for only about 10 min yields an oxide-free copper network structure with an electrical resistivity of 25.1 μΩ cm (14.0 μΩ cm at 250 °C). Finally, conductive copper line patterns are achieved down to a 50 μm width with an excellent printing resolution (standard deviation ~4.0%) onto a polyimide substrate using screen printing of the optimized inks.The realization of air-stable nanoparticles, well-formulated nanoinks, and conductive patterns based on copper is a great challenge in low-cost and large-area flexible printed electronics. This work reports the synthesis of a conductively interconnected copper structure via thermal sintering of copper inks at a low temperature for a short period of time, with the help of thin defective carbon shells coated onto the copper nanoparticles. Air-stable copper/carbon core/shell nanoparticles (typical size ~23 nm, shell thickness ~1.0 nm) are prepared by means of an electric explosion of wires. Gaseous oxidation of the carbon shells with a defective structure occurs at 180 °C, impacting the choice of organic solvents as well as the sintering conditions to create a crucial neck formation

  2. Microstructure and thermal properties of Cu-SiC composite materials depending on the sintering technique

    Directory of Open Access Journals (Sweden)

    Chmielewski Marcin

    2017-01-01

    Full Text Available The presented paper investigates the relationship between the microstructure and thermal properties of copper-silicon carbide composites obtained through hot pressing (HP and spark plasma sintering (SPS techniques. The microstructural analysis showed a better densification in the case of composites sintered in the SPS process. TEM investigations revealed the presence of silicon in the area of metallic matrix in the region close to metal-ceramic boundary. It is the product of silicon dissolving process in copper occurring at an elevated temperature. The Cu-SiC interface is significantly defected in composites obtained through the hot pressing method, which has a major influence on the thermal conductivity of materials.

  3. Analysis of key factors influencing the evaporation performances of an oriented linear cutting copper fiber sintered felt

    Science.gov (United States)

    Pan, Minqiang; Zhong, Yujian

    2018-01-01

    Porous structure can effectively enhance the heat transfer efficiency. A kind of micro vaporizer using the oriented linear cutting copper fiber sintered felt is proposed in this work. Multiple long cutting copper fibers are firstly fabricated with a multi-tooth tool and then sintered together in parallel to form uniform thickness metal fiber sintered felts that provided a characteristic of oriented microchannels. The temperature rise response and thermal conversion efficiency are experimentally investigated to evaluate the influences of porosity, surface structure, feed flow rate and input power on the evaporation characteristics. It is indicated that the temperature rise response of water is mainly affected by input power and feed flow rate. High input power and low feed flow rate present better temperature rise response of water. Porosity rather than surface structure plays an important role in the temperature rise response of water at a relatively high input power. The thermal conversion efficiency is dominated by the input power and surface structure. The oriented linear cutting copper fiber sintered felts for three kinds of porosities show better thermal conversion efficiency than that of the oriented linear copper wire sintered felt when the input power is less than 115 W. All the sintered felts have almost the same performance of thermal conversion at a high input power.

  4. Full densification of inkjet-printed copper conductive tracks on a flexible substrate utilizing a hydrogen plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Young-Tae [Department of Fusion Chemical Engineering, Hanyang University, Ansan 15588 (Korea, Republic of); Lee, Young-In [Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul 01811 (Korea, Republic of); Kim, Seil [Department of Fusion Chemical Engineering, Hanyang University, Ansan 15588 (Korea, Republic of); Lee, Kun-Jae [Department of Energy Engineering, Dankook University, Cheonan 31116 (Korea, Republic of); Choa, Yong-Ho, E-mail: choa15@hanyang.ac.kr [Department of Fusion Chemical Engineering, Hanyang University, Ansan 15588 (Korea, Republic of)

    2017-02-28

    Highlights: • Hydrogen thermally- and plasma- treatments are applied to reduce and sinter the inkjet-printed copper patterns at low temperature. • Plasma sintered Cu patterns have fully densified microstructure with the resistivity of 3.23 μW cm. • Cu conductive track with dense microstructure remains its electrical resistivity after 1 month. • Thermal sintered Cu patterns show a relatively poor microstructure and high resistivity. - Abstract: Low temperature sintering techniques are crucial in developing flexible printed electronics. In this work, we demonstrate a novel hydrogen plasma sintering method that achieves a full reduction and densification of inkjet-printed patterns using a copper complex ion ink. After inkjet printing on polyethylene terephthalate (PET) substrates, both hydrogen plasma and conventional hydrogen thermal treatment were employed to compare the resulting microstructures, electrical properties and anti-oxidation behavior. The plasma treated pattern shows a fully densified microstructure with a resistivity of 3.23 μΩ cm, while the thermally treated pattern shows a relatively poor microstructure and high resistivity. In addition, the hydrogen plasma-treated copper pattern retains its electrical resistivity for one month without any significant decrease. This novel hydrogen plasma sintering technique could be used to produce conductive patterns with excellent electrical properties, allowing for highly reliable flexible printed electronics.

  5. New materials through a variety of sintering methods

    Science.gov (United States)

    Jaworska, L.; Cyboroń, J.; Cygan, S.; Laszkiewicz-Łukasik, J.; Podsiadło, M.; Novak, P.; Holovenko, Y.

    2018-03-01

    New sintering techniques make it possible to obtain materials with special properties that are impossible to obtain by conventional sintering techniques. This issue is especially important for ceramic materials for application under extreme conditions. Following the tendency to limit critical materials in manufacturing processes, the use of W, Si, B, Co, Cr should be limited, also. One of the cheapest and widely available materials is aluminum oxide, which shows differences in phase composition, grain size, hardness, strain and fracture toughness of the same type of powder, sintered via various methods. In this paper the alumina was sintered using the conventional free sintering process, microwave sintering, Spark Plasma Sintering (SPS), high pressure-high temperature method (HP-HT) and High Pressure Spark Plasma Sintering (HP SPS). Phase composition analysis, by X-ray diffraction of the alumina materials sintered using various methods, was carried out. For the conventional sintering method, compacts are composed of α-Al2O3 and θ-Al2O3. For compacts sintered using SPS, microwave and HP-HT methods, χ-Al2O3 and γ-Al2O3 phases were additionally present. Mechanical and physical properties of the obtained materials were compared between the methods of sintering. On the basis of images from scanning electron microscope quantitative analysis was performed to determine the degree of grain growth of alumina after sintering.

  6. Thermoelectric Properties of Hot-Pressed and PECS-Sintered Magnesium-Doped Copper Aluminum Oxide

    Science.gov (United States)

    Liu, Chang; Morelli, Donald T.

    2011-05-01

    Copper aluminum oxide (CuAlO2) is considered as a potential candidate for thermoelectric applications. Partially magnesium-doped CuAlO2 bulk pellets were fabricated using solid-state reactions, hot-pressing, and pulsed electric current sintering (PECS) techniques. X-ray diffraction and scanning electron microscopy were adopted for structural analysis. High-temperature transport property measurements were performed on hot-pressed samples. Electrical conductivity increased with Mg doping before secondary phases became significant, while the Seebeck coefficient displayed the opposite trend. Thermal conductivity was consistently reduced as the Mg concentration increased. Effects of Mg doping, preparation conditions, and future modification on this material's properties are discussed.

  7. The influence of green microstructure and sintering parameters on precipitation process during copper-nickel-zinc ferrites sintering

    Directory of Open Access Journals (Sweden)

    Barba, Antonio

    2014-04-01

    Full Text Available Microstructural changes that occur during heat treatment of copper-nickel-zinc ferrites have been studied. The process of precipitation of the two types of crystals that occur during the sintering process has been analyzed. It is found that this process depends on dry relative density of the press specimens and on the following sintering parameters: sintering temperature, sintering time and cooling rate of the thermal cycle. Crystal precipitates characterization have been done by scanning electron microscopy (SEM, energy-dispersive X-ray (EDX analysis, X-ray diffraction (XRD, and X-ray photoelectron spectroscopy (XPS. These techniques have allowed to determine the nature of these crystals, which in this case correspond to zinc and copper oxides. It has been used two chemical reactions to explain the bulk precipitation and subsequent re-dissolution of these crystal precipitates during sintering.En este trabajo se han estudiado los cambios microestructurales que se producen durante el tratamiento térmico de las ferritas de cobre-níquel-cinc y se ha analizado el proceso de precipitación de los dos tipos de cristales que aparecen durante el proceso de sinterización. Se ha encontrado que este proceso depende de la densidad relativa en seco de las muestras compactadas y de las siguientes variables de la etapa de sinterización: temperatura y tiempo de sinterización y velocidad de enfriamiento. La caracterización de los cristales precipitados se ha realizado por microscopía electrónica de barrido (MEB, microanálisis por dispersión de energía de rayos X (EDX, difracción de rayos X (DRX, y espectroscopía de fotoelectrones de rayos X (XPS. Estas técnicas han permitido determinar la naturaleza de estos cristales, que en este caso corresponden a los óxidos de cinc y de cobre. Se han propuesto dos reacciones químicas que permiten explicar el proceso de precipitación y la posterior re-disolución de estos cristales precipitados durante la

  8. Electrical wire explosion process of copper/silver hybrid nano-particle ink and its sintering via flash white light to achieve high electrical conductivity.

    Science.gov (United States)

    Chung, Wan-Ho; Hwang, Yeon-Taek; Lee, Seung-Hyun; Kim, Hak-Sung

    2016-05-20

    In this work, combined silver/copper nanoparticles were fabricated by the electrical explosion of a metal wire. In this method, a high electrical current passes through the metal wire with a high voltage. Consequently, the metal wire evaporates and metal nanoparticles are formed. The diameters of the silver and copper nanoparticles were controlled by changing the voltage conditions. The fabricated silver and copper nano-inks were printed on a flexible polyimide (PI) substrate and sintered at room temperature via a flash light process, using a xenon lamp and varying the light energy. The microstructures of the sintered silver and copper films were observed using a scanning electron microscope (SEM) and a transmission electron microscope (TEM). To investigate the crystal phases of the flash-light-sintered silver and copper films, x-ray diffraction (XRD) was performed. The absorption wavelengths of the silver and copper nano-inks were measured using ultraviolet-visible spectroscopy (UV-vis). Furthermore, the resistivity of the sintered silver and copper films was measured using the four-point probe method and an alpha step. As a result, the fabricated Cu/Ag film shows a high electrical conductivity (4.06 μΩcm), which is comparable to the resistivity of bulk copper (1.68 μΩcm). In addition, the fabricated Cu/Ag nanoparticle film shows superior oxidation stability compared to the Cu nanoparticle film.

  9. Effect of Bed Temperature on the Laser Energy Required to Sinter Copper Nanoparticles

    Science.gov (United States)

    Roy, N. K.; Dibua, O. G.; Cullinan, M. A.

    2018-03-01

    Copper nanoparticles (NPs), due to their high electrical conductivity, low cost, and easy availability, provide an excellent alternative to other metal NPs such as gold, silver, and aluminum in applications ranging from direct printing of conductive patterns on metal and flexible substrates for printed electronics applications to making three-dimensional freeform structures for interconnect fabrication for chip-packaging applications. Lack of research on identification of optimum sintering parameters such as fluence/irradiance requirements for sintering of Cu NPs serves as the primary motivation for this study. This article focuses on the identification of a good sintering irradiance window for Cu NPs on an aluminum substrate using a continuous wave (CW) laser. The study also includes the comparison of CW laser sintering irradiance windows obtained with substrates at different initial temperatures. The irradiance requirements for sintering of Cu NPs with the substrate at 150-200°C were found to be 5-17 times smaller than the irradiance requirements for sintering with the substrate at room temperature. These findings were also compared against the results obtained with a nanosecond (ns) laser and a femtosecond (fs) laser.

  10. Full densification of inkjet-printed copper conductive tracks on a flexible substrate utilizing a hydrogen plasma sintering

    Science.gov (United States)

    Kwon, Young-Tae; Lee, Young-In; Kim, Seil; Lee, Kun-Jae; Choa, Yong-Ho

    2017-02-01

    Low temperature sintering techniques are crucial in developing flexible printed electronics. In this work, we demonstrate a novel hydrogen plasma sintering method that achieves a full reduction and densification of inkjet-printed patterns using a copper complex ion ink. After inkjet printing on polyethylene terephthalate (PET) substrates, both hydrogen plasma and conventional hydrogen thermal treatment were employed to compare the resulting microstructures, electrical properties and anti-oxidation behavior. The plasma treated pattern shows a fully densified microstructure with a resistivity of 3.23 μΩ cm, while the thermally treated pattern shows a relatively poor microstructure and high resistivity. In addition, the hydrogen plasma-treated copper pattern retains its electrical resistivity for one month without any significant decrease. This novel hydrogen plasma sintering technique could be used to produce conductive patterns with excellent electrical properties, allowing for highly reliable flexible printed electronics.

  11. Modeling of sintering of functionally gradated materials

    International Nuclear Information System (INIS)

    Gasik, M.; Zhang, B.

    2001-01-01

    The functionally gradated materials (FGMs) are distinguished from isotropic materials by gradients of composition, phase distribution, porosity, and related properties. For FGMs made by powder metallurgy, sintering control is one of the most important factors. In this study sintering process of FGMs is modeled and simulated with a computer. A new modeling approach was used to formulate equation systems and the model for sintering of gradated hard metals, coupled with heat transfer and grain growth. A FEM module was developed to simulate FGM sintering in conventional, microwave and hybrid conditions, to calculate density, stress and temperature distribution. Behavior of gradated WC-Co hardmetal plate and cone specimens was simulated for various conditions, such as mean particle size, green density distribution and cobalt gradation parameter. The results show that the deformation behavior and stress history of graded powder compacts during heating, sintering and cooling could be predicted for optimization of sintering process. (author)

  12. Microwave sintering of ceramic materials

    Science.gov (United States)

    Karayannis, V. G.

    2016-11-01

    In the present study, the potential of microwave irradiation as an innovative energy- efficient alternative to conventional heating technologies in ceramic manufacturing is reviewed, addressing the advantages/disadvantages, while also commenting on future applications of possible commercial interest. Ceramic materials have been extensively studied and used due to several advantages they exhibit. Sintering ceramics using microwave radiation, a novel technology widely employed in various fields, can be an efficient, economic and environmentally-friendlier approach, to improve the consolidation efficiency and reduce the processing cycle-time, in order to attain substantial energy and cost savings. Microwave sintering provides efficient internal heating, as energy is supplied directly and penetrates the material. Since energy transfer occurs at a molecular level, heat is generated throughout the material, thus avoiding significant temperature gradients between the surface and the interior, which are frequently encountered at high heating rates upon conventional sintering. Thus, rapid, volumetric and uniform heating of various raw materials and secondary resources for ceramic production is possible, with limited grain coarsening, leading to accelerated densification, and uniform and fine-grained microstructures, with enhanced mechanical performance. This is particularly important for manufacturing large-size ceramic products of quality, and also for specialty ceramic materials such as bioceramics and electroceramics. Critical parameters for the process optimization, including the electromagnetic field distribution, microwave-material interaction, heat transfer mechanisms and material transformations, should be taken into consideration.

  13. Enhanced thermal diffusivity of copperbased composites using copper-RGO sheets

    Science.gov (United States)

    Kim, Sangwoo; Kwon, Hyouk-Chon; Lee, Dohyung; Lee, Hyo-Soo

    2017-11-01

    The synthesis of copper-reduced graphene oxide (RGO) sheets was investigated in order to control the agglutination of interfaces and develop a manufacturing process for copper-based composite materials based on spark plasma sintering. To this end, copper-GO (graphene oxide) composites were synthesized using a hydrothermal method, while the copper-reduced graphene oxide composites were made by hydrogen reduction. Graphene oxide-copper oxide was hydrothermally synthesized at 80 °C for 5 h, and then annealed at 800 °C for 5 h in argon and hydrazine rate 9:1 to obtain copper-RGO flakes. The morphology and structure of these copper-RGO sheets were characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy. After vibratory mixing of the synthesized copper-RGO composites (0-2 wt%) with copper powder, they were sintered at 600 °C for 5 min under100 MPa of pressure by spark plasma sintering process. The thermal diffusivity of the resulting sintered composite was characterized by the laser flash method at 150 °C.

  14. Release of copper from sintered tungsten-bronze shot under different pH conditions and its potential toxicity to aquatic organisms

    International Nuclear Information System (INIS)

    Thomas, Vernon G.; Santore, Robert C.; McGill, Ian

    2007-01-01

    Sintered tungsten-bronze is a new substitute for lead shot, and is about to be deposited in and around the wetlands of North America. This material contains copper in the alloyed form of bronze. This in vitro study was performed according to U.S. Fish and Wildlife Service criteria to determine the dissolution rate of copper from the shot, and to assess the toxic risk that it may present to aquatic organisms. The dissolution of copper from tungsten-bronze shot, pure copper shot, and glass beads was measured in a buffered, moderately hard, synthetic water of pH 5.5, 6.6, and 7.8 over a 28-day period. The dissolution of copper from both the control copper shot and the tungsten-bronze shot was affected significantly by the pH of the water and the duration of dissolution (all p values < 0.000). The rate of copper release from tungsten bronze shot was 30 to 50 times lower than that from the copper shot, depending on pH (p < 0.0000). The observed expected environmental concentration of copper released from tungsten-bronze shot after 28 days was 0.02 μg/L at pH 7.8, and 0.4 μg/L at pH 5.6, using a loading and exposure scenario specific in a U.S. Fish and Wildlife Service protocol. Ratio Quotient values derived from the highest EEC observed in this study (0.4 μg/L), and the copper toxic effect levels for all aquatic species listed in the U.S. Environmental Protection Agency ambient water quality criteria database, were all far less than the 0.1 criterion value. Given the conditions stipulated by the U.S. Fish and Wildlife Service and the U.S. Environmental Protection Agency, heavy loading from discharged tungsten-bronze shot would not pose a toxic risk to potable water, or to soil. Consequently, it would appear that no toxic risks to aquatic organisms will attend the use of tungsten-bronze shot of the approved composition. Given the likelihood that sintered tungsten-bronze of the same formula will be used for fishing weights, bullets, and wheel balance weights, it is

  15. Mechanical alloying and sintering of nanostructured tungsten carbide-reinforced copper composite and its characterization

    International Nuclear Information System (INIS)

    Yusoff, Mahani; Othman, Radzali; Hussain, Zuhailawati

    2011-01-01

    Research highlights: → W 2 C phase was formed at short milling time while WC only appears after longer milling time. → Cu crystallite size decreased but internal strain increased with increasing milling time. → Increasing milling time induced more WC formation, thus improving the hardness of the composite. → Electrical conductivity is reduced due to powder refinement and the presence of carbide phases. -- Abstract: Elemental powders of copper (Cu), tungsten (W) and graphite (C) were mechanically alloyed in a planetary ball mill with different milling durations (0-60 h), compacted and sintered in order to precipitate hard tungsten carbide particles into a copper matrix. Both powder and sintered composite were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) and assessed for hardness and electrical conductivity to investigate the effects of milling time on formation of nanostructured Cu-WC composite and its properties. No carbide peak was detected in the powder mixtures after milling. Carbide WC and W 2 C phases were precipitated only in the sintered composite. The formation of WC began with longer milling times, after W 2 C formation. Prolonged milling time decreased the crystallite size as well as the internal strain of Cu. Hardness of the composite was enhanced but electrical conductivity reduced with increasing milling time.

  16. Thermophysical properties and microstructure of graphite flake/copper composites processed by electroless copper coating

    International Nuclear Information System (INIS)

    Liu, Qian; He, Xin-Bo; Ren, Shu-Bin; Zhang, Chen; Ting-Ting, Liu; Qu, Xuan-Hui

    2014-01-01

    Highlights: • GF–copper composites were fabricated using a sparking plasma sintering, which involves coating GF with copper, using electroless plating technique. • The oriented graphite flake distributed homogeneously in matrix. • With the increase of flake graphite from 44 to 71 vol.%, the basal plane thermal conductivity of composites increases from 445 to 565 W m −1 K −1 and the thermal expansion of composites decreases from 8.1 to 5.0. • The obtained composites are suitable for electronic packaging materials. -- Abstract: This study focuses on the fabrication of thermal management material for power electronics applications using graphite flake reinforced copper composites. The manufacturing route involved electroless plating of copper on the graphite flake and further spark plasma sintering of composite powders. The relative density of the composites with 44–71 vol.% flakes achieved up to 98%. Measured thermal conductivities and coefficients of thermal expansion of composites ranged from 455–565 W m −1 K −1 and 8 to 5 ppm K −1 , respectively. Obtained graphite flake–copper composites exhibit excellent thermophysical properties to meet the heat dispersion and matching requirements of power electronic devices to the packaging materials

  17. Method of sintering ceramic materials

    Science.gov (United States)

    Holcombe, Cressie E.; Dykes, Norman L.

    1992-01-01

    A method for sintering ceramic materials is described. A ceramic article is coated with layers of protective coatings such as boron nitride, graphite foil, and niobium. The coated ceramic article is embedded in a container containing refractory metal oxide granules and placed within a microwave oven. The ceramic article is heated by microwave energy to a temperature sufficient to sinter the ceramic article to form a densified ceramic article having a density equal to or greater than 90% of theoretical density.

  18. One step sintering of homogenized bauxite raw material and kinetic study

    Science.gov (United States)

    Gao, Chang-he; Jiang, Peng; Li, Yong; Sun, Jia-lin; Zhang, Jun-jie; Yang, Huan-ying

    2016-10-01

    A one-step sintering process of bauxite raw material from direct mining was completed, and the kinetics of this process was analyzed thoroughly. The results show that the sintering kinetics of bauxite raw material exhibits the liquid-phase sintering behavior. A small portion of impurities existed in the raw material act as a liquid phase. After X-ray diffraction analyses, scanning electron microscopy observations, and kinetics calculations, sintering temperature and heating duration were determined as the two major factors contributing to the sintering process and densification of bauxite ore. An elevated heating temperature and longer duration favor the densification process. The major obstacle for the densification of bauxite material is attributed to the formation of the enclosed blowhole during liquid-phase sintering.

  19. Thermophysical properties and microstructure of graphite flake/copper composites processed by electroless copper coating

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qian; He, Xin-Bo; Ren, Shu-Bin; Zhang, Chen; Ting-Ting, Liu; Qu, Xuan-Hui, E-mail: quxh@ustb.edu.cn

    2014-02-25

    Highlights: • GF–copper composites were fabricated using a sparking plasma sintering, which involves coating GF with copper, using electroless plating technique. • The oriented graphite flake distributed homogeneously in matrix. • With the increase of flake graphite from 44 to 71 vol.%, the basal plane thermal conductivity of composites increases from 445 to 565 W m{sup −1} K{sup −1} and the thermal expansion of composites decreases from 8.1 to 5.0. • The obtained composites are suitable for electronic packaging materials. -- Abstract: This study focuses on the fabrication of thermal management material for power electronics applications using graphite flake reinforced copper composites. The manufacturing route involved electroless plating of copper on the graphite flake and further spark plasma sintering of composite powders. The relative density of the composites with 44–71 vol.% flakes achieved up to 98%. Measured thermal conductivities and coefficients of thermal expansion of composites ranged from 455–565 W m{sup −1} K{sup −1} and 8 to 5 ppm K{sup −1}, respectively. Obtained graphite flake–copper composites exhibit excellent thermophysical properties to meet the heat dispersion and matching requirements of power electronic devices to the packaging materials.

  20. Dissolution of copper, tin, and iron from sintered tungsten-bronze spheres in a simulated avian gizzard, and an assessment of their potential toxicity to birds

    International Nuclear Information System (INIS)

    Thomas, Vernon G.; McGill, Ian R.

    2008-01-01

    The rates of dissolution of copper, tin, and iron from sintered tungsten-bronze spheres (51.1%W, 44.4%Cu, 3.9%Sn, 0.6%Fe, by mass) were measured in an in vitro simulated avian gizzard at pH 2.0, and 42C. Most of the spheres had disintegrated completely to a fine powder by day 14. Dissolution of copper, tin, and iron from the spheres was linear over time; all r > 0.974; all P < 0.001. The mean rate of release of copper, tin, and iron was 30.4 mg, 2.74 mg, and 0.38 mg per g tungsten-bronze per day, respectively. These rates of metal release were compared to those in published studies to determine whether the simultaneous ingestion of eight spheres of 3.48 mm diameter would pose a toxic risk to birds. The potential absorption rates of iron and tin (0.54 mg Fe/day, and 3.89 mg Sn/day) from eight tungsten-bronze spheres of total mass 1.42 g would not prove toxic, based on empirical studies of tin and iron ingestion in waterfowl. The release of 43.17 mg copper/day from eight tungsten-bronze spheres, while exceeding the daily copper requirements of domesticated birds, is far below the levels of copper known to cause copper toxicosis in birds. We conclude that sintered tungsten-bronze material made into gunshot, fishing weights, or wheel balance weights, would not pose a toxic risk to wild birds when ingested

  1. Carboxylate and amino group coated silver nanoparticles as joining materials for copper-to-copper silver joints.

    Science.gov (United States)

    Oestreicher, A; Röhrich, T; Lerch, M

    2012-12-01

    Organic silver complexes are introduced where silver is linked either with a carboxyl group or with an amino group. Upon heating, nanoparticles are generated if the respective ligands are long enough to act as stabilizing agents in the nanoparticulate regime. With decomposition and volatilization of the organic material, the sintering of silver occurs. The thermal characteristics of the carboxylates silver-n-octanoate, silver-n-decanoate, and AgOOC(CH2OCH2)2CH2OCH3 are compared with silver-n-alkylamines (n = 8, 9, and 12), and their thermal behavior is discussed based on thermogravimetry (TG) measurements. The consecutive stages of a metallization process are addressed based on the properties of AgOOC(CH2OCH2)2CH2OCH3, and the usable effects of the individual phases of this metal organic compound are analyzed by cross-sectional scanning electron microscope (SEM) images of silver joints. Selection criteria are addressed based on the thermal behavior. A mechanism for the joining process is proposed, considering formation and sintering of the nanoparticles. It was found that the bulk material can be used for low-temperature joining processes. Strong adherence to copper as a basic material can be achieved.

  2. Preparation and characterization of copper-graphite composites by electrical explosion of wire in liquid.

    Science.gov (United States)

    Bien, T N; Gul, W H; Bac, L H; Kim, J C

    2014-11-01

    Copper-graphite nanocomposites containing 5 vol.% graphite were prepared by a powder metallurgy route using an electrical wire explosion (EEW) in liquid method and spark plasma sintering (SPS) process. Graphite rods with a 0.3 mm diameter and copper wire with a 0.2 mm diameter were used as raw materials for EEWin liquid. To compare, a pure copper and copper-graphite mixture was also prepared. The fabricated graphite was in the form of a nanosheet, onto which copper particles were coated. Sintering was performed at 900 degrees C at a heating rate of 30 degrees C/min for 10 min and under a pressure of 70 MPa. The density of the sintered composite samples was measured by the Archimedes method. A wear test was performed by a ball-on-disc tribometer under dry conditions at room temperature in air. The presence of graphite effectively reduced the wear of composites. The copper-graphite nanocomposites prepared by EEW had lower wear rates than pure copper material and simple mixed copper-graphite.

  3. The effects of applied current on one-dimensional interdiffusion between copper and nickel in spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Rudinsky, S.; Gauvin, R.; Brochu, M., E-mail: mathieu.brochu@mcgill.ca [Department of Mining and Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec H3A 0C5 (Canada)

    2014-10-21

    Spark plasma sintering (SPS) is a powder metallurgy technique that employs the use of fast sintering kinetics to produce final consolidated components in a matter of minutes. In order to use blended powders in SPS to obtain fully alloyed parts, diffusion during sintering must be understood. An investigation into the effects of current on the diffusion of copper and nickel was performed using SPS. Bulk specimens were used to generate diffusion couples in SPS in alternating orientations with respect to the direction of the current. Control samples were produced using a horizontal insertion vacuum furnace. Experiments were performed at temperatures between 850°C and 1000°C for 3 h. Concentration profiles were obtained by the use of both energy-dispersive spectroscopy and a Monte Carlo simulated correction curve. Diffusion coefficients and activation energies were calculated for samples produced by SPS and annealing without current. It was shown that, at temperatures near 0.9 T{sub m}, the application of current in SPS inhibits diffusion between copper and nickel due to the re-orientation of electrons caused by the loss of ferromagnetism in nickel. Activation energy for diffusion is, however, decreased due to the temperature gradients arising from the difference in resistivity between the two species.

  4. PENGUKURAN NILAI DIELEKTRIK MATERIAL CALCIUM COPPER TITANAT ( CaCu3Ti4O12 MENGGUNAKAN SPEKTROSKOPI IMPEDANSI TERKOMPUTERISASI

    Directory of Open Access Journals (Sweden)

    Widodo Budi Kurniawan

    2017-05-01

    ABSTRACT   The measurement of the complex dielectric constant and the magnitude of the capacitor impedances of the ceramic materials Calcium Copper Titanate CaCu3Ti4O12 (CCTO with purity of 99% has been done by using the method of computerized impedance spectroscopy in the frequency range 5 kHz - 120 kHz. The highest dielectric constant of the material was found to be 745 at 5 kHz in the sample sintered 7000C and the highest impedance of capacitor occured in CCTO sample non sintered that is 150434Ω. The results showed that complex dielectric constant and impedance of the capacitor of the material under study was frequency dependent.   Keywords : impedance spectroscopy, CaCu3Ti4O12,complex dielectric constant and impedance of capacitor

  5. Properties of millimetre wave sintered and oxygenated YBa2Cu3Ox bulk material

    International Nuclear Information System (INIS)

    Hunyar, C.

    1999-12-01

    High temperature superconductors are ceramic materials whose properties strongly depend on the techniques used for their production. The successful use of microwaves for the sintering of other oxidic ceramics suggests the examination of the advantages and disadvantages of that production technique for superconductors. For this purpose pellets of commercially available YBa 2 Cu 3 O x powder from the Solvay company were pressed and sintered by millimetre wave heating (30 GHz, generated in a gyrotron). In various experiments the sintering temperatures were varied between 920 C and 990 C, and the holding times between 15 min and 240 min. The densities of the pellets were measured by the Archimedes method and the material structure was examined with an optical microscope. A strong densification from 86 to 93% of theoretical density could be observed within 30 min at a holding temperature of 960 C. With sintering temperatures above 960 C no significant increase in density occurred. At 950 C, only minor grain growth could be observed, which increased up to 960 C temperature. At higher temperatures a mixture of small grains and crystallites of about 150 μm size established itself. CuO already present in the original powder started to melt along the grain boundaries where it acts as a limiting factor for grain growth. With millimetre wave sintering the same material densities could be achieved in less than one third of the time needed for conventional sintering processes. In addition the effects of millimetre wave heating on the oxygen diffusion in YBCO were investigated with several pairs of identical samples. The pairs were deoxygenated and subsequently oxygenated in an atmosphere of pure O 2 in a conventional tube furnace and by millimetre wave heating respectively. To compare the oxygen concentration of the samples, their specific surface resistance at room temperature, which correlates with the oxygen content, was measured in a cylindrical copper resonator with

  6. Investigation of Structure and Physico-Mechanical Properties of Composite Materials Based on Copper - Carbon Nanoparticles Powder Systems

    Directory of Open Access Journals (Sweden)

    Kovtun V.

    2015-04-01

    Full Text Available Physico-mechanical and structural properties of electrocontact sintered copper matrix- carbon nanoparticles composite powder materials are presented. Scanning electron microscopy revealed the influence of preliminary mechanical activation of the powder system on distribution of carbon nanoparticles in the metal matrix. Mechanical activation ensures mechanical bonding of nanoparticles to the surface of metal particles, thus giving a possibility for manufacture of a composite with high physico-mechanical properties.

  7. Electro sinter forging of titanium disks

    DEFF Research Database (Denmark)

    Cannella, Emanuele; Nielsen, Chris Valentin; Bay, Niels Oluf

    by measuring the electrical resistance during the sintering process [5], since low electrical resistance corresponds to high density. It is, however, necessary to be aware that increased temperature, on the other hand, increases the resistance. SEM micrographs and Computed Tomography (CT) are carried out......Electro sinter forging (ESF) is a new sintering process based on the principle of electrical Joule heating. In the present work, middle frequency direct current (MFDC) was flowing through the powder compact, which was under mechanical pressure. The main parameters are the high electrical current......, up to 10 kA, and the low voltage, 1-2 V, resulting in heat generation in the powder. Figure 1 shows the experimental setup. The punches were made of a conductive material; namely a copper alloy. The die, which has to be electrically insulating, was made of alumina. The ESF process takes 3-4s...

  8. Cu-Nb3Sn superconducting wires prepared by ''Copper Liquid Phase Sintering method'' using the Nb-H

    International Nuclear Information System (INIS)

    Resende, A.T. de.

    1985-01-01

    Cu-30% Nb in weighting were prepared by the method of Copper sintering liquid phase the method was improved by substitution of Nb power by Nb-H powder, obtaining a high density material with good mechanical properties, which was reduced to fine. Wire, Without heat treatment. The Cu-Nb 3 Sn wires were obtained by external diffusion process depositing tin in the Cu-30%Nb wires, and by internal diffusion process using the Sn-8.5% Cu in weighting, which was reduced to rods of 3.5 mm. These Cu-30%Nb rods were enclosed in copper tubes and deformed mechanically by rotary swaging and drawing. During the drawing step some wires were fractured, that were analysed and correlated with the microstructure of the Sn-8.5 Wt% Cu alloy. External and internal diffusion samples; after a fast thermal treatment for Sn diffusion, were submited to the temperature of 700 0 C to provide the reaction between Sn and Nb, leading to the Nb 3 Sn phase. Samples with several reaction times, and its influence on T c and J c critical parameters and normal resistivity were prepared and analysed. (author) [pt

  9. Final flotation waste kinetics of sintering at different heating regimes

    Directory of Open Access Journals (Sweden)

    Cocić Mira

    2016-01-01

    Full Text Available In the copper extraction, especially during the process of flotation enrichment and the pyrometallurgical processing, the waste materials that represent huge polluters of environment are being generated. In order to examine the application of Final flotation waste (FFW in the manufacturing of new materials from the glass-ceramic group phase and mineral composition were examined as well as thermal properties. FFW kinetics of sintering has been tested at different dyamics (1°C/min, 29°C/min and 43°C/min, in order to find the optimum conditions for sintering with a minimum amount of energy and time consumption. The samples were examined using: X-ray diffraction, X-ray fluorescence analysis, SEM (Scanning Electron Microscopy and thermal microscopy. The best results for the production of glass ceramic materials were obtained during the sintering at heating regime of 29°C/min. [Projekat Ministarstva nauke Republike Srbije, br. 176010

  10. The physical chemistry and materials science behind sinter-resistant catalysts.

    Science.gov (United States)

    Dai, Yunqian; Lu, Ping; Cao, Zhenming; Campbell, Charles T; Xia, Younan

    2018-06-18

    Catalyst sintering, a main cause of the loss of catalytic activity and/or selectivity at high reaction temperatures, is a major concern and grand challenge in the general area of heterogeneous catalysis. Although all heterogeneous catalysts are inevitably subjected to sintering during their operation, the immediate and drastic consequences can be mitigated by carefully engineering the catalytic particles and their interactions with the supports. In this tutorial review, we highlight recent progress in understanding the physical chemistry and materials science involved in sintering, including the discussion of advanced techniques, such as in situ microscopy and spectroscopy, for investigating the sintering process and its rate. We also discuss strategies for the design and rational fabrication of sinter-resistant catalysts. Finally, we showcase recent success in improving the thermal stability and thus sinter resistance of supported catalytic systems.

  11. Adjustment of Part Properties for an Elastomeric Laser Sintering Material

    Science.gov (United States)

    Wegner, A.; Ünlü, T.

    2018-03-01

    Laser sintering of polymers is gaining more and more importance within the field of small series productions. Polyamide 12 is predominantly used, although a variety of other materials are also available for the laser sintering process. For example, elastomeric, rubberlike materials offer very different part property profiles. Those make the production of flexible parts like, e.g., sealings, flexible tubes or shoe soles possible because they offer high part ductility and low hardness. At the chair for manufacturing technology, a new elastomeric laser sintering material has been developed and then commercialized by a spin-off from university. The aim of the presented study was the analysis of the new material's properties. Proof was found that Shore hardness can be modified by varying the parameter settings. Therefore, the correlation between process parameters, energy input, Shore hardness and other part properties like mechanical properties were analyzed. Based on these results, suitable parameter settings were established which lead to the possibility of producing parts with different Shore hardnesses.

  12. Grain-growth law during Stage 1 sintering of materials

    International Nuclear Information System (INIS)

    He Zeming; Ma, J.

    2002-01-01

    This work investigates the grain-growth behaviour of powder compact during Stage 1 sintering (<90{%} theoretical density). It is widely accepted that grain size is an important state variable in the constitutive modelling in material sintering. However, it is noted that all the existing grain-growth laws proposed in the literature do not incorporate the effect of externally applied stress independently. In this work, a grain-growth law with externally applied stress as a variable was proposed. Alumina powders were forge-sintered at different applied stresses to examine the proposed grain-growth relationship. The proposed grain-growth law was then applied to model the grain-growth process on the sinter forging of tool steel. It is shown that the present proposed grain-growth law provides a good description on the experimental results. (author)

  13. Novel sintered ceramic materials incorporated with EAF carbon steel slag

    Science.gov (United States)

    Karayannis, V.; Ntampegliotis, K.; Lamprakopoulos, S.; Papapolymerou, G.; Spiliotis, X.

    2017-01-01

    In the present research, novel sintered clay-based ceramic materials containing electric arc furnace carbon steel slag (EAFC) as a useful admixture were developed and characterized. The environmentally safe management of steel industry waste by-products and their valorization as secondary resources into value-added materials towards circular economy have attracted much attention in the last years. EAF Carbon steel slag in particular, is generated during the manufacture of carbon steel. It is a solid residue mainly composed of rich-in- Fe, Ca and Si compounds. The experimental results show that the beneficial incorporation of lower percentages of EAFC up to 6%wt. into ceramics sintered at 950 °C is attained without significant variations in sintering behavior and physico-mechanical properties. Further heating up to 1100 °C strongly enhances the densification of the ceramic microstructures, thus reducing the porosity and strengthening their mechanical performance. On the other side, in terms of thermal insulation behavior as well as energy consumption savings and production cost alleviation, the optimum sintering temperature appears to be 950 °C.

  14. Boric oxide or boric acid sintering aid for sintering ceramics

    International Nuclear Information System (INIS)

    Lawler, H.A.

    1979-01-01

    The invention described relates to the use of liquid sintering aid in processes involving sintering of ceramic materials to produce dense, hard articles having industrial uses. Although the invention is specifically discussed in regard to compositions containing silicon carbide as the ceramic material, other sinterable carbides, for example, titanium carbide, may be utilized as the ceramic material. A liquid sintering aid for densifying ceramic material is selected from solutions of H 3 BO 3 , B 2 O 3 and mixtures of these solutions. In sintering ceramic articles, e.g. silicon carbide, a shaped green body is formed from a particulate ceramic material and a resin binder, and the green body is baked at a temperature of 500 to 1000 0 C to form a porous body. The liquid sintering aid of B 2 O 3 and/or H 3 BO 3 is then dispersed through the porous body and the treated body is sintered at a temperature of 1900 to 2200 0 C to produce the sintered ceramic article. (U.K.)

  15. Brush-Painting and Photonic Sintering of Copper Oxide and Silver Inks on Wood and Cardboard Substrates to Form Antennas for UHF RFID Tags

    Directory of Open Access Journals (Sweden)

    Erja Sipilä

    2016-01-01

    Full Text Available Additive deposition of inks with metallic inclusions provides compelling means to embed electronics into versatile structures. The need to integrate electronics into environmentally friendly components and structures increases dramatically together with the increasing popularity of the Internet of Things. We demonstrate a novel brush-painting method for depositing copper oxide and silver inks directly on wood and cardboard substrates and discuss the optimization of the photonic sintering process parameters for both materials. The optimized parameters were utilized to manufacture passive ultra high frequency (UHF radio frequency identification (RFID tag antennas. The results from wireless testing show that the RFID tags based on the copper oxide and silver ink antennas on wood substrate are readable from ranges of 8.5 and 11 meters, respectively, and on cardboard substrate from read ranges of 8.5 and 12 meters, respectively. These results are well sufficient for many future wireless applications requiring remote identification with RFID.

  16. Analysis of wear in organic and sintered friction materials used in small wind energy converters

    Directory of Open Access Journals (Sweden)

    Jorge Alberto Lewis Esswein Junior

    2008-09-01

    Full Text Available Wind energy converters of small size used in isolated units to generate electrical energy must present low maintenance cost to such facilities economically viable. The aspect to be analyzed in cost reduction is the brake system, since in isolated systems the use of brake is more frequent reducing the brake pads life time. This study aims at analyzing the wear behavior of some materials used in brake pads. An organic material was analyzed comparing it with a commercial brake pad, and the sintered material was developed and tested. The materials behaviors were evaluated in both wear and friction coefficient. The sintered samples were made by powder metallurgy. The composition was compacted at 550 MPa and sintered in a furnace with controlled atmosphere to avoid oxidation. Despite the different compositions of the two types of materials, they presented a very similar wear; however, the sintered material presented a higher friction coefficient. An adjustment in the braking system of the wind generator might be proposed to use the sintered brake pad, due to its higher friction coefficient. Consequently, the braking action becomes lower, reducing the wear rate of the material.

  17. W/Cu composites produced by low temperature Pulse Plasma Sintering

    International Nuclear Information System (INIS)

    Rosinski, M.S.; Fortuna, E.; Michalski, A.J.; Kurzydlowski, K.J.

    2006-01-01

    The plasma facing components (PFCs) must withstand the thermal, mechanical and neutron loads under cyclic mode of operation and vacuum. Despite that PFCs of ITER and demonstration reactors must assure reliability and long in service lifetime. For that reason PFCs are designed to be made of beryllium, tungsten or carbon fibre composites armours and copper based heat sink material. Such design concepts can only be used if joining methods of these dissimilar materials are resolved. Several techniques have been developed for joining W and Cu e. g. casting of pure Cu onto W, high temperature brazing, direct diffusion bonding or CVDs of W onto Cu. The main problem in the development of such joints is the large difference in the coefficients of thermal expansion, CTE (alpha Cu > 4 alpha W) and elastic modula (ECu > 0.2 EW). These differences result in large stresses at the W/Cu interfaces during manufacturing and/or during operation, which may lead to cracking or delamination reducing lifetime of the components. Possible solution to this problem is the use of W-Cu composites (FGM). W-Cu composites are widely used for spark erosion electrodes, in heavy duty circuit breakers and as heat sinks of microelectronic devices. They are commonly produced by infiltration of a porous sintered tungsten by liquid copper. Other technological route is powder metallurgy. Coatings can be produced by low pressure plasma spraying. All these methods, however, are known to have some disadvantages. For infiltration there is a 30 wt.% limit of Cu content while for powder metallurgy and plasma spraying techniques porosity is of concern. In our work the W-Cu composites of different composition were produced by pulse plasma sintering (PPS). This new method utilizes pulsed high electric discharges to heat the powders under uniaxial load. The arc discharges clean surface of powder particles and intensify diffusion. The total sintering time is reduced to several minutes. In our investigations various

  18. Spark plasma sintering of pure and doped tungsten as plasma facing material

    Science.gov (United States)

    Autissier, E.; Richou, M.; Minier, L.; Naimi, F.; Pintsuk, G.; Bernard, F.

    2014-04-01

    In the current water cooled divertor concept, tungsten is an armour material and CuCrZr is a structural material. In this work, a fabrication route via a powder metallurgy process such as spark plasma sintering is proposed to fully control the microstructure of W and W composites. The effect of chemical composition (additives) and the powder grain size was investigated. To reduce the sintering temperature, W powders doped with a nano-oxide dispersion of Y2O3 are used. Consequently, the sintering temperature for W-oxide dispersed strengthened (1800 °C) is lower than for pure W powder. Edge localized mode tests were performed on pure W and compared to other preparation techniques and showed promising results.

  19. Strength behaviour of sintered steel from the view of design-relevant material data

    International Nuclear Information System (INIS)

    Sonsino, C.M.; Esper, F.J.; Leuze, G.

    1982-01-01

    A reliable design of sintered components and an aimed material's selection requires the knowledge of designrelevant material data as Cyclic stress-strain-curves, crack propagation and fracture toughness properties as well as statistically evaluated S-N-curves, because conventional material data as tensile strength, monotonic yield strength, elongation, area reduction and impact strength can lead to a false estimation of the material's fatigue behaviour. For this reason the powder metallurgical industry began to determine design-relevant material data on the example of the porous Fe-Cu-C- and Fe-Cu-Ni-alloys. The fatigue tests with notched specimen and different modes of loading show that porous sintered parts having mechanical notches are less sensitive to external notches than wrought steel, because crack-propagation is delayed by pores. The possibility to manufacture cyclic hardening alloys, their relative notch-insensitivity and with wrought steel comparable scatter of fatigue properties show the importance of sintered alloys as alternative materials. (orig.) [de

  20. Grain growth control and transparency in spark plasma sintered self-doped alumina materials

    International Nuclear Information System (INIS)

    Suarez, M.; Fernandez, A.; Menendez, J.L.; Torrecillas, R.

    2009-01-01

    Doping alumina particles with aluminum alkoxides allows dense spark plasma sintered (SPSed) materials to be obtained that have a refined grain size compared to pure materials, which is critical for their transparency. An optical model considering pore and grain size distributions has been developed to obtain information about porosity in dense materials. This work suggests that the atomic diffusion mechanisms do not depend on the sintering technique. A reduction in the activation energy by a factor of 2 has been found in SPSed materials.

  1. The shielding against radiation produced by powder metallurgy with tungsten copper alloy applied on transport equipment for radio-pharmaceutical products

    International Nuclear Information System (INIS)

    Cione, Francisco C.; Sene, Frank F.; Souza, Armando C. de; Betini, Evandro G.; Rossi, Jesualdo L.; Rizzuto, Marcia A.

    2015-01-01

    Safety is mandatory on medicine radiopharmaceutical transportation and dependent on radiation shielding material. The focus of the present work is to minimize the use of harmful materials as lead and depleted uranium usually used in packages transportation. The tungsten-copper composite obtained by powder metallurgy (PM) is non-toxic. In powder metallurgy the density and the porosity of the compacted parts depends basically upon particle size distribution of each component, mixture, compacting pressure and sintering temperature cycle. The tungsten-copper composite, when used for shielding charged particles, X-rays, gamma photons or other photons of lower energy require proper interpretation of the radiation transport phenomena. The radioactive energy reduction varies according to the porosity and density of the materials used as shielding. The main factor for radiation attenuation is the cross section value for tungsten. The motivation research factor is an optimization of the tungsten and cooper composition in order to achieve the best linear absorption coefficient given by equation I (x) = I 0 e (-ux) . Experiments were conducted to quantify the effective radiation shielding properties of tungsten-copper composite produced by PM, varying the cooper amount in the composite. The studied compositions were 15%, 20% and 25% copper in mass. The Compaction pressure was 270 MPa and the sintering atmosphere was in 1.1 atm in N 2 +H 2 . The sintering temperature was 980 deg C for 2 h. The linear absorption coefficient factor was similar either for the green and the sintered compacts, due the amount of porosity did not affect the radiation attenuation. Thus the sintered was meant for size reduction and mechanical properties enhancement. (author)

  2. The shielding against radiation produced by powder metallurgy with tungsten copper alloy applied on transport equipment for radio-pharmaceutical products

    Energy Technology Data Exchange (ETDEWEB)

    Cione, Francisco C.; Sene, Frank F.; Souza, Armando C. de; Betini, Evandro G.; Rossi, Jesualdo L., E-mail: fceoni@hotmail.com, E-mail: ffsene@hotmail.com, E-mail: armandocirilo@yahoo.com, E-mail: evandrobetini@gmail.com, E-mail: jelrossi@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Rizzuto, Marcia A., E-mail: marizzutto@if.usp.br [Universidade de Sao Paulo (IF/USP), SP (Brazil). Instituto de Fisica

    2015-07-01

    Safety is mandatory on medicine radiopharmaceutical transportation and dependent on radiation shielding material. The focus of the present work is to minimize the use of harmful materials as lead and depleted uranium usually used in packages transportation. The tungsten-copper composite obtained by powder metallurgy (PM) is non-toxic. In powder metallurgy the density and the porosity of the compacted parts depends basically upon particle size distribution of each component, mixture, compacting pressure and sintering temperature cycle. The tungsten-copper composite, when used for shielding charged particles, X-rays, gamma photons or other photons of lower energy require proper interpretation of the radiation transport phenomena. The radioactive energy reduction varies according to the porosity and density of the materials used as shielding. The main factor for radiation attenuation is the cross section value for tungsten. The motivation research factor is an optimization of the tungsten and cooper composition in order to achieve the best linear absorption coefficient given by equation I{sub (x)} = I{sub 0}e{sup (-ux)}. Experiments were conducted to quantify the effective radiation shielding properties of tungsten-copper composite produced by PM, varying the cooper amount in the composite. The studied compositions were 15%, 20% and 25% copper in mass. The Compaction pressure was 270 MPa and the sintering atmosphere was in 1.1 atm in N{sub 2}+H{sub 2}. The sintering temperature was 980 deg C for 2 h. The linear absorption coefficient factor was similar either for the green and the sintered compacts, due the amount of porosity did not affect the radiation attenuation. Thus the sintered was meant for size reduction and mechanical properties enhancement. (author)

  3. Implementation Challenges for Sintered Silicon Carbide Fiber Bonded Ceramic Materials for High Temperature Applications

    Science.gov (United States)

    Singh, M.

    2011-01-01

    During the last decades, a number of fiber reinforced ceramic composites have been developed and tested for various aerospace and ground based applications. However, a number of challenges still remain slowing the wide scale implementation of these materials. In addition to continuous fiber reinforced composites, other innovative materials have been developed including the fibrous monoliths and sintered fiber bonded ceramics. The sintered silicon carbide fiber bonded ceramics have been fabricated by the hot pressing and sintering of silicon carbide fibers. However, in this system reliable property database as well as various issues related to thermomechanical performance, integration, and fabrication of large and complex shape components has yet to be addressed. In this presentation, thermomechanical properties of sintered silicon carbide fiber bonded ceramics (as fabricated and joined) will be presented. In addition, critical need for manufacturing and integration technologies in successful implementation of these materials will be discussed.

  4. Thermal Stability of Silver Paste Sintering on Coated Copper and Aluminum Substrates

    Science.gov (United States)

    Pei, Chun; Chen, Chuantong; Suganuma, Katsuaki; Fu, Guicui

    2018-01-01

    The thermal stability of silver (Ag) paste sintering on coated copper (Cu) and aluminum (Al) substrates has been investigated. Instead of conventional zincating or nickel plating, magnetron sputtering was used to achieve coating with titanium (Ti) and Ag. Silicon (Si) chips were bonded to coated Cu and Al substrates using a mixture of submicron Ag flakes and particles under 250°C and 0.4 MPa for 30 min. The joints were then subject to aging testing at 250°C for duration of 200 h, 500 h, and 1000 h. Two types of joints exhibited satisfactory initial shear strength above 45 MPa. However, the shear strength of the joints on Al substrate decreased to 28 MPa after 1000 h of aging, while no shear strength decline was detected for the joints on Cu substrate. Fracture surface analysis revealed that the vulnerable points of the two types of joints were (1) the Ag layer and (2) the interface between the Ti layer and Cu substrate. Based on the results of scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDS), and simulations, cracks in the Ag layer were identified as the cause of the shear strength degradation in the joints on Al substrate. The interface evolution of the joints on Cu substrate was ascribed to Cu migration and discontinuity points that initialized in the Ti layer. This study reveals that Al exhibited superior thermal stability with sintered Ag paste.

  5. Treatment of copper industry waste and production of sintered glass-ceramic.

    Science.gov (United States)

    Coruh, Semra; Ergun, Osman Nuri; Cheng, Ta-Wui

    2006-06-01

    Copper waste is iron-rich hazardous waste containing heavy metals such as Cu, Zn, Co, Pb. The results of leaching tests show that the concentration of these elements exceeds the Turkish and EPA regulatory limits. Consequently, this waste cannot be disposed of in its present form and therefore requires treatment to stabilize it or make it inert prior to disposal. Vitrification was selected as the technology for the treatment of the toxic waste under investigation. During the vitrification process significant amounts of the toxic organic and inorganic chemical compounds could be destroyed, and at the same time, the metal species are immobilized as they become an integral part of the glass matrix. The copper flotation waste samples used in this research were obtained from the Black Sea Copper Works of Samsun, Turkey. The samples were vitrified after being mixed with other inorganic waste and materials. The copper flotation waste and their glass-ceramic products were characterized by X-ray analysis (XRD), scanning electron microscopy and by the toxicity characteristic leaching procedure test. The products showed very good chemical durability. The glass-ceramics fabricated at 850 degrees C/2 h have a large application potential especially as construction and building materials.

  6. [Study on physical properties of titanium alloy sample fabricated with vacuum-sintered powder metallurgy].

    Science.gov (United States)

    Ding, X; Liang, X; Chao, Y; Han, X

    2000-06-01

    To investigate the physical properties of titanium alloy fabricated with vacuum-sintered powder metallurgy. The titanium powders of three different particle sizes(-160mesh, -200 - +300mesh, -300mesh) were selected, and mixed with copper and aluminum powder in different proportions. Two other groups were made up of titanium powder(-200 - +300mesh) plated with copper and tin. The build-up and, condensation method and a double-direction press with a metal mold were used. The green compacts were sintered at 1000 degrees C for 15 minutes in a vacuum furnace at 0.025 Pa. In the double-direction press, the specimens were compacted at the pressure of 100 MPa, 200 MPa and 300 MPa respectively. Then the linear shrinkage ratio and the opening porosity of the sintered compacts were evaluated respectively. 1. The linear shrinkage ratio of specimens decreased with the increased compacted pressure(P powders at the same compacted pressure(P > 0.05), but that of titanium powder plated with copper and tin was higher than those of other specimens without plating(P powder did not affect the opening porosity at the same compacted pressure(P > 0.05). The composition of titanium-based metal powder mixtures and the compacted pressures affect the physical properties of sintered compacts. Titanium powder plated with copper and tin is compacted and sintered easily, and the physical properties of sintered compacts are greatly improved.

  7. Microstructure and mechanical strength of near- and sub-micrometre grain size copper prepared by spark plasma sintering

    DEFF Research Database (Denmark)

    Zhu, K. N.; Godfrey, A.; Hansen, Niels

    2017-01-01

    Spark plasma sintering (SPS) has been used to prepare fully dense samples of copper in a fully recrystallized condition with grain sizes in the near- and sub-micrometre regime. Two synthesis routes have been investigated to achieve grain size control: (i) SPS at different temperatures from 800...... transmission electron microscope, and on electron back-scatter diffraction studies, confirms the samples are in a nearly fully recrystallized condition, with grains that are dislocation-free, and have a random texture, with a high fraction of high angle boundaries. The mechanical strength of the samples has...

  8. All-photonic drying and sintering process via flash white light combined with deep-UV and near-infrared irradiation for highly conductive copper nano-ink

    Science.gov (United States)

    Hwang, Hyun-Jun; Oh, Kyung-Hwan; Kim, Hak-Sung

    2016-01-01

    We developed an ultra-high speed photonic sintering method involving flash white light (FWL) combined with near infrared (NIR) and deep UV light irradiation to produce highly conductive copper nano-ink film. Flash white light irradiation energy and the power of NIR/deep UV were optimized to obtain high conductivity Cu films. Several microscopic and spectroscopic characterization techniques such as scanning electron microscopy (SEM), a x-ray diffraction (XRD), and Fourier-transform infrared (FT-IR) spectroscopy were employed to characterize the Cu nano-films. Optimally sintered Cu nano-ink films produced using a deep UV-assisted flash white light sintering technique had the lowest resistivity (7.62 μΩ·cm), which was only 4.5-fold higher than that of bulk Cu film (1.68 μΩ•cm). PMID:26806215

  9. Changes of Fe matrix lattice constant during liquid phase sintering of Fe-Cu-C compacts by x-ray diffraction techniques

    International Nuclear Information System (INIS)

    Mazli Mustapha; Abdul Kadir Masrom; Mohammad, M.; Meh, B.; Zawati Harun

    2002-01-01

    The dissolution of graphite and copper during sintering of PM steels prepared from iron, copper and graphite powder mixes were studied using X-Ray Diffraction method. This paper present the investigation carried out to study the changes of iron's lattice constant during liquid phase sintering of the compacts. The electrical conductivity measurement method was also used for determining the extent of carbon and copper dissolution and its influence on the formation of sintered compacts. In the experiment, the Fe-Cu-C powders were compacted into a pellets using hand press machine and were then sintered in a 5% H 2 + 95% N 2 gas atmosphere at different sintering temperature in the range of 400 degree C and 1200 degree C. The effect of sintering parameters on the mechanical properties of the sintered compacts was studied to find a correlation between mechanical behaviour, microstructure, and the resistivity in order to develop nondestructive testing method. It was observed that measurement of Fe matrix lattice constant and electrical conductivity of sintered compacts could be a viable method in studying all stages of sintering process. (Author)

  10. Composites of amorphous and nanocrystalline Zr–Cu–Al–Nb bulk materials synthesized by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Drescher, P., E-mail: philipp.drescher@uni-rostock.de [Fluidic Technology and Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, 18059 Rostock (Germany); Witte, K. [Physics of New Materials, Institute of Physics, University of Rostock, 18051 Rostock (Germany); Yang, B. [Polymer Physics, Institute of Physics, University of Rostock, 18051 Rostock (Germany); Steuer, R.; Kessler, O. [Chair of Materials Science, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, 18059 Rostock (Germany); Burkel, E. [Physics of New Materials, Institute of Physics, University of Rostock, 18051 Rostock (Germany); Schick, C. [Polymer Physics, Institute of Physics, University of Rostock, 18051 Rostock (Germany); Seitz, H. [Fluidic Technology and Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, 18059 Rostock (Germany)

    2016-05-15

    The fabrication of Zr{sub 70}Cu{sub 24}Al{sub 4}Nb{sub 2} bulk metallic glass composite samples by spark plasma sintering (SPS) process has been successfully realized. The unique characteristics of bulk metallic glasses could lead to the possibility of future applications as new structural and functional materials. The densification of an amorphous Zr{sub 70}Cu{sub 24}Al{sub 4}Nb{sub 2} powder was realized in a systematic study changing the sintering temperature in the SPS process leading to stable composites characteristic of amorphous and nanocrystalline structures. X-ray diffractometry (XRD) and differential scanning calorimetry (DSC) analysis, transmission electron microscopy (TEM) as well as hardness tests were applied to determine the structural and mechanical properties of the sintered materials. A stable amorphous bulk metallic glass based on Zr{sub 70}Cu{sub 24}Al{sub 4}Nb{sub 2} with a low fraction of crystallites could be fabricated applying a nominal sintering temperature of 400 °C. Higher sintering temperatures lead to composites with high fractions of nanocrystalline material with porosities below 0.5%.

  11. Porous copper template from partially spark plasma-sintered Cu–Zn ...

    Indian Academy of Sciences (India)

    Administrator

    analysis. Keywords. Metal; corrosion; porous structure; sintering; powder metallurgy. 1. Introduction ... well as in the case, when the overall electrode potential of the final ... at 100 °C/min to reach sintering temperature and load was applied ...

  12. The Influence of Sintering Temperature of Reactive Sintered (Ti, MoC-Ni Cermets

    Directory of Open Access Journals (Sweden)

    Marek Jõeleht

    2015-09-01

    Full Text Available Titanium-molybdenum carbide nickel cermets ((Ti, MoC-Ni were produced using high energy milling and reactive sintering process. Compared to conventional TiC-NiMo cermet sintering the parameters for reactive sintered cermets vary since additional processes are present such as carbide synthesis. Therefore, it is essential to acquire information about the suitable sintering regime for reactive sintered cermets. One of the key parameters is the final sintering temperature when the liquid binder Ni forms the final matrix and vacancies inside the material are removed. The influence of the final sintering temperature is analyzed by scanning electron microscopy. Mechanical properties of the material are characterized by transverse rupture strength, hardness and fracture toughness.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7179

  13. Fabrication of Al/Diamond Particles Functionally Graded Materials by Centrifugal Sintered-Casting Method

    International Nuclear Information System (INIS)

    Watanabe, Yoshimi; Shibuya, Masafumi; Sato, Hisashi

    2013-01-01

    The continuous graded structure of functionally graded materials (FGMs) can be created under a centrifugal force. Centrifugal sintered-casting (CSC) method, proposed by the authors, is one of the fabrication methods of FGM under centrifugal force. This method is a combination of the centrifugal sintering method and centrifugal casting method. In this study, Al/diamond particle FGM was fabricated by the proposed method.

  14. Welding of titanium and nickel alloy by combination of explosive welding and spark plasma sintering technologies

    Energy Technology Data Exchange (ETDEWEB)

    Malyutina, Yu. N., E-mail: iuliiamaliutina@gmail.com; Bataev, A. A., E-mail: bataev@adm.nstu.ru; Shevtsova, L. I., E-mail: edeliya2010@mail.ru [Novosibirsk State Technical University, Novosibirsk, 630073 (Russian Federation); Mali, V. I., E-mail: vmali@mail.ru; Anisimov, A. G., E-mail: anis@hydro.nsc.ru [Lavrentyev Institute of Hydrodynamics SB RAS, Novosibirsk, 630090 (Russian Federation)

    2015-10-27

    A possibility of titanium and nickel-based alloys composite materials formation using combination of explosive welding and spark plasma sintering technologies was demonstrated in the current research. An employment of interlayer consisting of copper and tantalum thin plates makes possible to eliminate a contact between metallurgical incompatible titanium and nickel that are susceptible to intermetallic compounds formation during their interaction. By the following spark plasma sintering process the bonding has been received between titanium and titanium alloy VT20 through the thin powder layer of pure titanium that is distinguished by low defectiveness and fine dispersive structure.

  15. A comparative study of structural and mechanical properties of Al–Cu composites prepared by vacuum and microwave sintering techniques

    Directory of Open Access Journals (Sweden)

    Penchal Reddy Matli

    2018-04-01

    Full Text Available In this paper, the aluminum metal matrix composite reinforced with copper particulates (3, 6 and 9 vol.% were fabricated by high energy ball milling, followed by vacuum sintering (VS and microwave sintering techniques (MS separately. The effects of Cu content and preparation methods on the microstructure and compression mechanical behavior of Al–Cu matrix composites were investigated. The microstructural characterizations revealed a homogeneous distribution of Cu particles in the Al matrix and also fine microstructures of microwave sintered samples. The microwave sintered specimen exhibited the highest hardness and better mechanical properties compared to vacuum sintered specimens. Furthermore, the hardness and compressive strength increased 137.2% and 30.3% for the microwave sintered Al–9 vol.% Cu composite, respectively. The increase in mechanical properties with the increasing volume fraction of Cu particulates can be ascribed to the presence of harder Cu particles reinforcement. The developed materials of the microwave sintered Al–Cu composite in this investigation could be successfully used for industrial applications due to improved mechanical properties. Keywords: Al matrix composites, Microwave sintering, Microstructure, Mechanical behavior

  16. Syntheses and sintering of materials in view of nuclear waste storage

    International Nuclear Information System (INIS)

    Picot, V.; Glorieux, B.; Montel, J.M.; Deschanels, X.; Jorion, F.

    2005-01-01

    In the context of nuclear waste conditioning, the solid solution monazite-brabantite is extensively studied. Previous works have already shown its potential ability to confine minor actinides with excellent performance in term of chemical durability and structural stability. This present work concerns the synthesis and the sintering of such matrices. The challenge is to propose a synthesis and a sintering processes able to ensure the containment of actinides up to 10%wt. (Am, Cm, Np) in dense matrices (about 95% of the theoretical density). Those processes have to be performed on the equipment similar to that used in a facility dedicated to the high-level radioactive materials studies (glove box and hot cell). The optimized protocols, implying mixer-mill, synthesis by solid reaction at high temperature, uniaxial press compaction and sintering, are presented and discussed. (authors)

  17. Development of high-performance sintered friction material for synchronizer ring; Koseino shoketsu synchronizer ring masatsu zairyo no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Miyajima, K; Fuwa, Y; Okajima, H; Yoshikawa, K [Toyota Motor Corp., Aichi (Japan); Nakamura, M [Japan Powder Metallurgy Co. Ltd., Tokyo (Japan)

    1997-10-01

    Increasing vehicle speed and power, high-performance synchronizer ring of manual transmission is required. We develop double layer sintered synchronizer ring for high performance and cost reduction. The main structure is consisted of ferrous sinter for high strength. In this paper, friction materials of sintered synchronizer ring are studied. We can get the good friction and anti-wear property by means of hard particles (FeTi, ZrO2), solid lubricant (Graphite) and suitable porosity in brass sinter matrix. And we also achieve high joining strength between double layers adding Cu-P material. 6 refs., 13 figs., 2 tabs.

  18. Sintering behavior and thermal conductivity of nickel-coated graphite flake/copper composites fabricated by spark plasma sintering

    Science.gov (United States)

    Xu, Hui; Chen, Jian-hao; Ren, Shu-bin; He, Xin-bo; Qu, Xuan-hui

    2018-04-01

    Nickel-coated graphite flakes/copper (GN/Cu) composites were fabricated by spark plasma sintering with the surface of graphite flakes (GFs) being modified by Ni-P electroless plating. The effects of the phase transition of the amorphous Ni-P plating and of Ni diffusion into the Cu matrix on the densification behavior, interfacial microstructure, and thermal conductivity (TC) of the GN/Cu composites were systematically investigated. The introduction of Ni-P electroless plating efficiently reduced the densification temperature of uncoated GF/Cu composites from 850 to 650°C and slightly increased the TC of the X-Y basal plane of the GF/Cu composites with 20vol%-30vol% graphite flakes. However, when the graphite flake content was greater than 30vol%, the TC of the GF/Cu composites decreased with the introduction of Ni-P plating as a result of the combined effect of the improved heat-transfer interface with the transition layer, P generated at the interface, and the diffusion of Ni into the matrix. Given the effect of the Ni content on the TC of the Cu matrix and on the interface thermal resistance, a modified effective medium approximation model was used to predict the TC of the prepared GF/Cu composites.

  19. Understanding the spark plasma sintering from the view of materials joining

    International Nuclear Information System (INIS)

    Dong, Peng; Wang, Zhe; Wang, Wenxian; Chen, Shaoping; Zhou, Jun

    2016-01-01

    Spark plasma sintering (SPS) is an attractive consolidation process. However, the mechanism behind this process is still an open topic for debate. This paper presents the first attempt to understand the SPS mechanism from perspective of materials joining. For this, TiNi_f/Al composites were fabricated by SPS, and the interfacial microstructures were investigated using field emission scanning electron microscopy and transmission electron microscopy. According to the experimental results, several joining processes were reflected well during SPS, involving micro-arc welding, electric resistance welding and diffusion welding. The proposed understanding of SPS will be helpful to the control of sintering quality.

  20. Grain boundary corrosion of copper canister weld material

    International Nuclear Information System (INIS)

    Gubner, Rolf; Andersson, Urban; Linder, Mats; Nazarov, Andrej; Taxen, Claes

    2006-01-01

    The proposed design for a final repository for spent fuel and other long-lived residues in Sweden is based on the multi-barrier principle. The waste will be encapsulated in sealed cylindrical canisters, which will then be placed in granite bedrock and surrounded by compacted bentonite clay. The canister design is based on a thick cast inner container fitted inside a corrosion-resistant copper canister. During fabrication of the outer copper canisters there will be some unavoidable grain growth in the welded areas. As grains grow, they will tend to concentrate impurities within the copper at the new grain boundaries. The work described in this report was undertaken to determine whether there is any possibility of enhanced corrosion at grain boundaries within the copper canister, based on the recommendations of the report SKB-TR--01-09 (INIS ref. 32025363). Grain boundary corrosion of copper is not expected to be a problem for the copper canisters in a repository. However, as one step in the experimental verification it is necessary to study grain boundary corrosion of copper in an environment where it may occur. A literature study aimed to find one or several solutions that are aggressive with respect to grain boundary corrosion of copper. Copper specimens cut from welds of real copper canisters where exposed to aerated ammonium hydroxide solution for a period of 14 days at 80 degrees C and 10 bar pressure. The samples were investigated prior to exposure using the scanning Kelvin probe technique to characterize anodic and cathodic areas on the samples. The degree of corrosion was determined by optical microscopy. No grain boundary corrosion could be observed in the autoclave experiments, however, a higher rate of corrosion was observed for the weld material compared to the base material. The work suggests that grain boundary corrosion of copper weld material is most unlikely to adversely affect SKB's copper canisters under the conditions in the repository

  1. Grain boundary corrosion of copper canister weld material

    Energy Technology Data Exchange (ETDEWEB)

    Gubner, Rolf; Andersson, Urban; Linder, Mats; Nazarov, Andrej; Taxen, Claes [Corrosion and Metals Research Inst. (KIMAB), Stockholm (Sweden)

    2006-01-15

    The proposed design for a final repository for spent fuel and other long-lived residues in Sweden is based on the multi-barrier principle. The waste will be encapsulated in sealed cylindrical canisters, which will then be placed in granite bedrock and surrounded by compacted bentonite clay. The canister design is based on a thick cast inner container fitted inside a corrosion-resistant copper canister. During fabrication of the outer copper canisters there will be some unavoidable grain growth in the welded areas. As grains grow, they will tend to concentrate impurities within the copper at the new grain boundaries. The work described in this report was undertaken to determine whether there is any possibility of enhanced corrosion at grain boundaries within the copper canister, based on the recommendations of the report SKB-TR--01-09 (INIS ref. 32025363). Grain boundary corrosion of copper is not expected to be a problem for the copper canisters in a repository. However, as one step in the experimental verification it is necessary to study grain boundary corrosion of copper in an environment where it may occur. A literature study aimed to find one or several solutions that are aggressive with respect to grain boundary corrosion of copper. Copper specimens cut from welds of real copper canisters where exposed to aerated ammonium hydroxide solution for a period of 14 days at 80 degrees C and 10 bar pressure. The samples were investigated prior to exposure using the scanning Kelvin probe technique to characterize anodic and cathodic areas on the samples. The degree of corrosion was determined by optical microscopy. No grain boundary corrosion could be observed in the autoclave experiments, however, a higher rate of corrosion was observed for the weld material compared to the base material. The work suggests that grain boundary corrosion of copper weld material is most unlikely to adversely affect SKB's copper canisters under the conditions in the repository.

  2. Experimental investigations on the synthesis of W–Cu nanocomposite through spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Elsayed, Ayman, E-mail: aymanhamada@cmrdi.sci.eg [Central Metallurgical R& D Institute, Department of Powder Technology, P.O. Box 87, Helwan, Cairo 11421 (Egypt); Li, Wei [San Diego State University, College of Engineering, Department of Mechanical Engineering, 5500 Campanile Drive, San Diego, CA 92128-1326 (United States); El Kady, Omayma A. [Central Metallurgical R& D Institute, Department of Powder Technology, P.O. Box 87, Helwan, Cairo 11421 (Egypt); Daoush, Walid M. [Helwan University, Faculty of Industrial Education, Department of Production Technology, Cairo (Egypt); Olevsky, Eugene A.; German, Randall M. [San Diego State University, College of Engineering, Department of Mechanical Engineering, 5500 Campanile Drive, San Diego, CA 92128-1326 (United States)

    2015-08-05

    Highlights: • Tungsten–copper composites have been synthesized using SPS of nano powders. • Various preparation methods, namely mixing, milling and coating have been used. • Conventional compaction and sintering has also been used for comparison. • The composites by SPS have shown finer microstructure and better hardness. • Mixing has proven best preparation method with best physical/mechanical properties. - Abstract: Elemental powders of nanosized tungsten and chemically deposited nanosized copper were used for preparing tungsten/copper composites, which are used as electric contact components. A composite of 70 wt.%W/30 wt.%Cu (52 vol%W/48 vol%Cu) composition was prepared by three powder metallurgy techniques. Elemental mixing, mechanical milling and electroless Cu coating on tungsten particles were used for the synthesis. The obtained powder blends underwent consolidation by rapid hot pressing using the spark plasma sintering (SPS) route at 950 °C under vacuum and by conventional vacuum pressureless sintering for comparison. The elemental powders and the sintered composites were investigated by optical microscopy and SEM. Electrical conductivity, hardness, transverse rupture strength, and wear properties were measured. Results show that the synthesis of the composite by the investigated route yields good performance. Samples prepared by SPS have shown better mechanical properties than those prepared by compaction and sintering due to their fine microstructure.

  3. Preparation of wood-like structured copper with superhydrophobic properties

    Science.gov (United States)

    Wang, Tianchi; Liu, Guiju; Kong, Jian

    2015-12-01

    Here, we report a method to use natural wood lauan as a template to fabricate superhydrophobic biomorphic copper on a carbon substrate (Cu/C). First, a carbon substrate with the microstructure of lauan was obtained by sintering lauan in an oxygen-free environment. A biomorphic Cu/C material was then obtained by immersing this carbon substrate into a Cu(NO3)2 solution and sintering. Finally, the hydrophobicity of the products obtained was investigated. The Cu/C retained the microstructure of the wood well. It exhibited excellent superhydrophobicity after it was modified with fluorine silane. The water contact angle of this modified Cu/C reached 160°.

  4. Elaboration of functionally graded materials for plasma facing components of the thermonuclear machines

    International Nuclear Information System (INIS)

    Autissier, Emmanuel

    2014-01-01

    The objective of this study was to develop a Functionally Graded Material (FGM) W/Cu to replace the compliance layer (Cu-OFHC) in the plasma facing components of thermonuclear fusion reactor like ITER. The peculiarity of this work is to elaborate these materials without exceeding the melting temperature of copper in order to control its microstructure. The co-sintering is the most attractive solution to achieve this goal. The first phase of this study has been to decrease the sintering temperature of the tungsten to achieve this co-sintering. The elaboration of a Functionally Graded Materials being delicate, thermomechanical calculations were performed in order to determine the number and chemical composition in order to increase the lifespan of Plasma Facing Components. Spark Plasma Sintering conditions were optimized in order to achieve maximum density of W x Cu 1-x composites. The effect of copper content and density of the W x Cu 1-x composites on thermal and mechanical properties was investigated. The SPS conditions were applied for W/CuCrZr assemblies with a compliance layer composed of several interlayers. The importance of time for the integrity of assemblies thereof has been highlighted. The study of the dwell time during W/CuCrZr assembly leads to identify a parameter to characterize the integrity of the interface regardless of the composition and the nature of the layer of compliance. Moreover, the phenomena associated with the formation of the interface assembly have been identified. The interface W/W x Cu 1-x is formed by the extrusion of the copper layer of the W x Cu 1-x inside the tungsten porosities. The W y Cu 1-y /CuCrZr interface is formed by copper migration of CuCrZr layer inside the W y Cu 1-y layer. Finally optimization assembly conditions showed that the mechanical stresses due to the densification of the Functionally Graded Materials can be limited by sintering the FGM before the assembly. (author)

  5. Mechanochemical Effects on the Synthesis of Copper Orthophosphate and cyclo-Tetraphosphate Bulks by the Hydrothermal Hot Pressing Method

    Directory of Open Access Journals (Sweden)

    Isao Tanaka

    2009-01-01

    Full Text Available Copper orthophosphate, Cu3(PO42, and cyclo-tetraphosphates, Cu2P4O12, were synthesized using phosphoric acid and basic copper carbonate, and then treated with a planetary mill for up to 360 minutes. The un-milled and milled samples were characterized by X-ray diffraction (XRD and Fourier transform infrared (FT-IR spectroscopy. SEM images, particle size distribution, specific surface area, UV-Vis reflectance spectra were also used to evaluate the materials. The un-milled and milled materials were used to fabricate copper phosphate bulks by a hydrothermal hot pressing method. The influence of powder condition on the sintering behavior of the copper phosphates was studied.

  6. Identification of Material Parameters for the Simulation of Acoustic Absorption of Fouled Sintered Fiber Felts

    Directory of Open Access Journals (Sweden)

    Nicolas Lippitz

    2016-08-01

    Full Text Available As a reaction to the increasing noise pollution, caused by the expansion of airports close to residential areas, porous trailing edges are investigated to reduce the aeroacoustic noise produced by flow around the airframe. Besides mechanical and acoustical investigations of porous materials, the fouling behavior of promising materials is an important aspect to estimate the performance in long-term use. For this study, two sintered fiber felts were selected for a long-term fouling experiment where the development of the flow resistivity and accumulation of dirt was observed. Based on 3D structural characterizations obtained from X-ray tomography of the initial materials, acoustic models (Biot and Johnson–Champoux–Allard in the frame of the transfer matrix method were applied to the sintered fiber felts. Flow resistivity measurements and the measurements of the absorption coefficient in an impedance tube are the basis for a fouling model for sintered fiber felts. The contribution will conclude with recommendations concerning the modeling of pollution processes of porous materials.

  7. The influence of electrocorundum granulation on the properties of sintered Cu/electrocorundum composites

    Directory of Open Access Journals (Sweden)

    Strojny-Nędza A.

    2015-01-01

    Full Text Available Copper/alumina composites are extensively used in automotive and aerospace industry for products that are subjected to severe thermal and mechanical loadings, such as rocket thrusters and components of aircraft engines. These materials are well-known for their good frictional wear resistance, good resistance to thermal fatigue, high thermal conductivity and high specific heat. In this paper, the sintering process of copper/electrocorundum composites reinforced by electrocorundum particles with diameters of 3 or 180 μm and 1, 3, 5 vol.% content is presented. The effects of different particle sizes of the ceramic reinforcement on the microstructure, physical, mechanical, tribological and thermal properties of the fabricated composites are discussed.

  8. Density determination of sintered ceramic nuclear fuel materials

    International Nuclear Information System (INIS)

    Landspersky, H.; Medek, J.

    1980-01-01

    The feasibility was tested of using solids for pycnometric determination of the density of uranium dioxide-based sintered ceramic fuel materials manufactured by the sol-gel method in the shape of spherical particles of 0.7 to 1.0 mm in size and of particles smaller than 200 μm. For fine particles, this is the only usable method of determining their density which is a very important parameter of the fine fraction when it is employed for the manufacture of fuel elements by vibration compacting. The method consists in compacting a mixture of pycnometric material and dispersed particles of uranium dioxide, determining the size and weight of the compact, and in calculating the density of the material measured from the weight of the oxide sample in the mixture. (author)

  9. Double coating protection of Nd–Fe–B magnets: Intergranular phosphating treatment and copper plating

    International Nuclear Information System (INIS)

    Zheng, Jingwu; Chen, Haibo; Qiao, Liang; Lin, Min; Jiang, Liqiang; Che, Shenglei; Hu, Yangwu

    2014-01-01

    In this work, a double coating protection technique of phosphating treatment and copper plating was made to improve the corrosion resistance of sintered Nd–Fe–B magnets. In other words, the intergranular region of sintered Nd–Fe–B is allowed to generate passive phosphate conversion coating through phosphating treatment, followed by the copper coating on the surface of sintered Nd–Fe–B. The morphology and corrosion resistance of the phosphated sintered Nd–Fe–B were observed using SEM and electrochemical method respectively. The phosphate conversion coating was formed more preferably on the intergranular region of sintered Nd–Fe–B than on the main crystal region; just after a short time of phosphating treatment, the intergranular region of sintered Nd–Fe–B has been covered by the phosphate conversion coating and the corrosion resistance is significantly improved. With the synergistic protection of the intergranular phosphorization and the followed copper electrodeposition, the corrosion resistance of the sintered Nd–Fe–B is significantly better than that with a single phosphate film or single plating protection. - Highlights: • We combined intergranular phosphating and copper plating to protect Nd–Fe–B. • The phosphate conversion coating was formed preferably on the intergranular region. • The phosphating coating can obviously improve the corrosion resistance of Nd–Fe–B. • The corrosion resistance of Nd–Fe–B was improved by double coating protection

  10. Double coating protection of Nd–Fe–B magnets: Intergranular phosphating treatment and copper plating

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jingwu; Chen, Haibo; Qiao, Liang [College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014 (China); Lin, Min [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering Chinese Academy of Science, Ningbo 315201 (China); Jiang, Liqiang; Che, Shenglei [College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014 (China); Hu, Yangwu, E-mail: 346648086@qq.com [College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014 (China); Wenzhou Institute of Industry and Science, Wenzhou 325000 (China)

    2014-12-15

    In this work, a double coating protection technique of phosphating treatment and copper plating was made to improve the corrosion resistance of sintered Nd–Fe–B magnets. In other words, the intergranular region of sintered Nd–Fe–B is allowed to generate passive phosphate conversion coating through phosphating treatment, followed by the copper coating on the surface of sintered Nd–Fe–B. The morphology and corrosion resistance of the phosphated sintered Nd–Fe–B were observed using SEM and electrochemical method respectively. The phosphate conversion coating was formed more preferably on the intergranular region of sintered Nd–Fe–B than on the main crystal region; just after a short time of phosphating treatment, the intergranular region of sintered Nd–Fe–B has been covered by the phosphate conversion coating and the corrosion resistance is significantly improved. With the synergistic protection of the intergranular phosphorization and the followed copper electrodeposition, the corrosion resistance of the sintered Nd–Fe–B is significantly better than that with a single phosphate film or single plating protection. - Highlights: • We combined intergranular phosphating and copper plating to protect Nd–Fe–B. • The phosphate conversion coating was formed preferably on the intergranular region. • The phosphating coating can obviously improve the corrosion resistance of Nd–Fe–B. • The corrosion resistance of Nd–Fe–B was improved by double coating protection.

  11. Sintering Theory and Practice

    Science.gov (United States)

    German, Randall M.

    1996-01-01

    Although sintering is an essential process in the manufacture of ceramics and certain metals, as well as several other industrial operations, until now, no single book has treated both the background theory and the practical application of this complex and often delicate procedure. In Sintering Theory and Practice, leading researcher and materials engineer Randall M. German presents a comprehensive treatment of this subject that will be of great use to manufacturers and scientists alike. This practical guide to sintering considers the fact that while the bonding process improves strength and other engineering properties of the compacted material, inappropriate methods of control may lead to cracking, distortion, and other defects. It provides a working knowledge of sintering, and shows how to avoid problems while accounting for variables such as particle size, maximum temperature, time at that temperature, and other problems that may cause changes in processing. The book describes the fundamental atomic events that govern the transformation from particles to solid, covers all forms of the sintering process, and provides a summary of many actual production cycles. Building from the ground up, it begins with definitions and progresses to measurement techniques, easing the transition, especially for students, into advanced topics such as single-phase solid-state sintering, microstructure changes, the complications of mixed particles, and pressure-assisted sintering. German draws on some six thousand references to provide a coherent and lucid treatment of the subject, making scientific principles and practical applications accessible to both students and professionals. In the process, he also points out and avoids the pitfalls found in various competing theories, concepts, and mathematical disputes within the field. A unique opportunity to discover what sintering is all about--both in theory and in practice What is sintering? We see the end product of this thermal

  12. Instrumentation for thermal diffusivity determination of sintered materials

    International Nuclear Information System (INIS)

    Turquetti Filho, R.

    1990-01-01

    A new procedure to measure the sinterized materials thermal diffusivity, using the heat pulse method was developed in this work. The experimental data were performed at room temperature with UO sub(2), ThO sub(2), and Al sub(2)O sub(3) samples with 94%, 95%, and 96% of theoretical densities, respectively. Nondimensional root mean square deviation for theoretical function fitting was found to be on the order, of 10 sup(-3). The total error associated with the measurements for thermal diffusivity was ± 5%. (author)

  13. Sol-gel synthesis of lithium metatitanate as tritium breeding material under different sintering conditions

    Science.gov (United States)

    Lu, Wei; Wang, Jing; Pu, Wenjing; Li, Kaiping; Ma, Shubing; Wang, Weihua

    2018-04-01

    Lithium metatitanate (Li2TiO3) is a promising tritium breeding material candidate for solid blanket of D-T fusion reactors, due to its high mechanical strength, chemical stability, and tritium release rate. In this paper, Li2TiO3 powder with homogeneous crystal structure is synthesized by sol-gel method. The chemical reactions in gel thermal cracking and sintering process are studied by thermo gravimetric/differential scanning calorimetry (TG-DSC). The relationship between the sintering condition and the particle/grain size is characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results show that below 673 K the gel precursor is completely decomposed and Li2TiO3 phase initially forms. The LiTiO2 by-product formed under the reductive atmosphere in muffle furnace, could be oxidized continually to Li2TiO3 at higher sintering temperature (≥1273 K) for longer sintering time (≥10 h). Both grain and particle sizes rely on a linear growth with the increase of sintering time at 1273 K. Over 1473 K, significant agglomerations exist among particles. The optimal sintering condition is selected as 1273 K for 10 h, for the purer Li2TiO3 phase (>99%), smaller grain and particle size.

  14. Effect of metallic coating on the properties of copper-silicon carbide composites

    Science.gov (United States)

    Chmielewski, M.; Pietrzak, K.; Teodorczyk, M.; Nosewicz, S.; Jarząbek, D.; Zybała, R.; Bazarnik, P.; Lewandowska, M.; Strojny-Nędza, A.

    2017-11-01

    In the presented paper a coating of SiC particles with a metallic layer was used to prepare copper matrix composite materials. The role of the layer was to protect the silicon carbide from decomposition and dissolution of silicon in the copper matrix during the sintering process. The SiC particles were covered by chromium, tungsten and titanium using Plasma Vapour Deposition method. After powder mixing of components, the final densification process via Spark Plasma Sintering (SPS) method at temperature 950 °C was provided. The almost fully dense materials were obtained (>97.5%). The microstructure of obtained composites was studied using scanning electron microscopy as well as transmission electron microscopy. The microstructural analysis of composites confirmed that regardless of the type of deposited material, there is no evidence for decomposition process of silicon carbide in copper. In order to measure the strength of the interface between ceramic particles and the metal matrix, the micro tensile tests have been performed. Furthermore, thermal diffusivity was measured with the use of the laser pulse technique. In the context of performed studies, the tungsten coating seems to be the most promising solution for heat sink application. Compared to pure composites without metallic layer, Cu-SiC with W coating indicate the higher tensile strength and thermal diffusitivy, irrespective of an amount of SiC reinforcement. The improvement of the composite properties is related to advantageous condition of Cu-SiC interface characterized by well homogenity and low porosity, as well as individual properties of the tungsten coating material.

  15. Sintering of Cu–Al2O3 nano-composite powders produced by a thermochemical route

    Directory of Open Access Journals (Sweden)

    MARIJA KORAC

    2007-11-01

    Full Text Available This paper presents the synthesis of nano-composite Cu–Al2O3 powder by a thermochemical method and sintering, with a comparative analysis of the mechanical and electrical properties of the obtained solid samples. Nano-crystalline Cu–Al2O3 powders were produced by a thermochemical method through the following stages: spray-drying, oxidation of the precursor powder, reduction by hydrogen and homogenization. Characterization of powders included analytical electron microscopy (AEM coupled with energy dispersive spectroscopy (EDS, differenttial thermal and thermogravimetric (DTA–TGA analysis and X-ray diffraction (XRD analysis. The size of the produced powders was 20–50 nm, with a noticeable presence of agglomerates. The composite powders were characterized by a homogenous distribution of Al2O3 in a copper matrix. The powders were cold pressed at a pressure of 500 MPa and sintered in a hydrogen atmosphere under isothermal conditions in the temperature range from 800 to 900 °C for up to 120 min. Characterization of the Cu–Al2O3 sintered system included determination of the density, relative volume change, electrical and mechanical properties, examination of the microstructure by SEM and focused ion beam (FIB analysis, as well as by EDS. The obtained nano-composite, the structure of which was, with certain changes, presserved in the final structure, provided a sintered material with a homogenеous distribution of dispersoid in a copper matrix, with exceptional effects of reinforcement and an excellent combination of mechanical and electrical properties.

  16. Analysis of the conductivity of commercial easy sintering grade 3 mol% Y{sub 2}O{sub 3}-ZrO{sub 2} materials

    Energy Technology Data Exchange (ETDEWEB)

    Badwal, Sukhvinder P.S.; Ciacchi, Fabio T.; Giampietro, Kristine M. [CSIRO, Manufacturing and Infrastructure Technology, Private Bag 33, Clayton South 3169, Victoria (Australia)

    2005-01-14

    Fine grain zirconia-yttria materials are required for enhanced performance in solid oxide fuel cells and related devices and in applications requiring good thermo-mechanical properties. Materials with about 3 mol% Y{sub 2}O{sub 3}-ZrO{sub 2} composition are good electrolyte materials for solid oxide fuel cell, ceramic membrane oxygen separation and a number of related devices because of their superior mechanical properties and ease of fabrication into thin self-supporting structures in comparison with a material in the 8-10 mol% Y{sub 2}O{sub 3}-ZrO{sub 2} composition range. In this study, sintering behaviour, impedance studies, four-probe DC conductivity measurements and microstructure analysis has been performed on various easy sintering grade materials from two commercial powder suppliers. These materials achieve near theoretical density at sintering temperatures as low as 1350-1400C. For direct comparison of the conductivity and impedance behaviour in easy sintering grade materials, several other 3 mol% Y{sub 2}O{sub 3}-ZrO{sub 2} powders were also investigated. The total ionic conductivity at 850C in easy sintering grade materials is comparable with normal-grade commercial materials of similar composition despite a slightly higher grain boundary impedance at lower temperatures (below circa 450C). There were no obvious differences in the grain boundary thickness, calculated from the impedance data, of normal and easy sintering grade materials.

  17. Manufacturing of copper-graphite brushes for automobile applications

    International Nuclear Information System (INIS)

    Answar, M.Y.

    2006-01-01

    Copper-graphite brushes are used in high-volume automotive applications, such as ignition switches, window lifts, wiper motors, engine cooling fans, ABS break system and seat actuators etc. The amount of graphite in these brushes may range from 5 -20 wt. %. In this paper, some of the results of a study carried out using locally produced electrolytic copper powder and imported graphite powder are being summarized. The green compacts were produced by compaction at 650 MPa. These compacts were sintered at temperatures between 950 to 1050 degree C for various time intervals. The effects of sintering temperatures and time on the properties are analyzed. The influence of small additions of zinc on hardness of the sintered alloy compacts is also investigated. (author)

  18. A study of emission property and microstructure of rare earth oxide-molybdenum cermet cathode materials made by spark plasma sintering

    International Nuclear Information System (INIS)

    Wang Jinshu; Li Hongyi; Yang Sa; Cui Ying; Zhou Meiling

    2004-01-01

    A fast sintering method, spark plasma sintering (SPS) was used for the synthesis of rare earth oxide-molybdenum cathode material. The secondary emission property, microstructure, and phase constitution of materials have been studied in this paper. The experimental results show that the maximum secondary emission coefficient of this material can be high to 3.84, much higher than that of rare earth oxide-molybdenum cathode made by traditional sintering method. The grain size is less than 1 μm and rare earth distributed evenly in the material. After the material was activated at 1600 deg. C, a 4 μm layer of rare earth oxide which leads to the high secondary emission coefficient of the material, is formed on the surface of the cathode

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. M Mandal. Articles written in Bulletin of Materials Science. Volume 37 Issue 4 June 2014 pp 743-752. Porous copper template from partially spark plasma-sintered Cu–Zn aggregate via dezincification · M Mandal D Singh Gouthama B S Murty S Sangal K Mondal · More Details ...

  20. Development of sintering materials by sea sediments and TiO/sub 2/ for the cleaning teaching

    International Nuclear Information System (INIS)

    Rehman, M.A.; Alam, A.M.A.; Kaneco, S.; Katsumata, H.; Suzuki, T.

    2007-01-01

    A solar decontamination process for water was developed using photocatalysts supported on sea bottom sediments with sodium silicate. The supported catalysts were systematically optimized with respect to TiO/sub 2/ dosages, calcinations temperature and binder dosages. The Young's Modulus value (compressed strength) was found 12.5 kN/mm/sub 2/ of optimized supported catalyst which would not mixed with the water of real samples during the photocatalysis. The composition of the optimized catalyst was selected as sediments 82%, TiO /sub 2/ 15% and Na/sub 2/SiO/sub 3/ 3%, where the sintering temperature was 750degreeC. Humic acid as a model compound was used to evaluate the degradation efficiency of the developed sintering material. The complete mineralization of humic acid was achieved by 40 h sunlight irradiation. About 100 ml of (15 mg/L) of humic acid was successfully degraded with 15 g sintering materials under sunlight irradiation. The solar photocatalytical degradation treatment is simple, easy handling and cheap. Therefore, since the artificial lamp devices, for example Hg-Xe lamp, are particularly expensive in the local and nonexclusive areas, the optimized developed sintering material appears to be very suitable treatment method for humic acid in those area

  1. Study on acoustical properties of sintered bronze porous material for transient exhaust noise of pneumatic system

    Science.gov (United States)

    Li, Jingxiang; Zhao, Shengdun; Ishihara, Kunihiko

    2013-05-01

    A novel approach is presented to study the acoustical properties of sintered bronze material, especially used to suppress the transient noise generated by the pneumatic exhaust of pneumatic friction clutch and brake (PFC/B) systems. The transient exhaust noise is impulsive and harmful due to the large sound pressure level (SPL) that has high-frequency. In this paper, the exhaust noise is related to the transient impulsive exhaust, which is described by a one-dimensional aerodynamic model combining with a pressure drop expression of the Ergun equation. A relation of flow parameters and sound source is set up. Additionally, the piston acoustic source approximation of sintered bronze silencer with cylindrical geometry is presented to predict SPL spectrum at a far-field observation point. A semi-phenomenological model is introduced to analyze the sound propagation and reduction in the sintered bronze materials assumed as an equivalent fluid with rigid frame. Experiment results under different initial cylinder pressures are shown to corroborate the validity of the proposed aerodynamic model. In addition, the calculated sound pressures according to the equivalent sound source are compared with the measured noise signals both in time-domain and frequency-domain. Influences of porosity of the sintered bronze material are also discussed.

  2. Technological parameter effect on properties of sintered hard-magnetic type Nd-Fe-B materials

    International Nuclear Information System (INIS)

    Rastegaev, V.S.; Stepanova, G.I.; Gudim, Z.Yu.

    1989-01-01

    The effect of each technological operation on manufacturing hard magnets from Nd-Fe-B alloys on properties of sintered permanent magnets is studied. It is noted that violation of the metting regime can result in burn-up of boron and rare earths, and violation of the grinding mode-formation of nonmagnetic powder fractions, etc. Special attention is paid to material protection against oxidation by introducing passivating additions and creating of particular conditions for alloy sintering and heat treatment

  3. Evaluation of copper, aluminum bronze, and copper-nickel container material for the Yucca mountain project

    International Nuclear Information System (INIS)

    Kass, J.

    1990-01-01

    Copper, 70 percent aluminum bronze, and 70/30 copper-nickel were evaluated as potential waste-packaging materials as part of the Yucca Mountain Project. The proposed waste repository site is under a desert mountain in southern Nevada. The expected temperatures at the container surface are higher than at other sites, about 250C at the beginning of the containment period; they could fall below the boiling point of water during this period, but will be exposed to very little water, probably less than 5 l/a. Initial gamma flux will be 10 4 rad/h, and no significant hydrostatic or lithostatic pressure is expected. Packages will contain PWR or BWR fuel, or processed-glass waste. Three copper alloys are being considered for containers: oxygen-free copper (CDA 102); 7 percent aluminum bronze (CDA 613); and 70/30 copper-nickel (CDA 715). Phase separation due to prolonged thermal exposure could be a problem for the two alloys, causing embrittlement. The reduction of internal oxides present in pure copper by hydrogen could cause mechanical degradation. Corrosion and oxidation rates measured for the three materials in well water with and without gamma irradiation at flux rates about ten times higher than those expected were all quite small. The corrosion/oxidation rates for CDA715 show a marked increase under irradiation, but are still acceptable. In the presence of ammonia and other nitrogen-bearing species stress corrosion cracking (SCC) is a concern. Welded U-bend specimens of all three materials have been tested for up to 10000 h in highly irradiated environments, showing no SCC. There was some alloy segregation in the Al bronze specimens. The investigators believe that corrosion and mechanical properties will not present problems for these materials at this site. Further work is needed in the areas of weld inspection, welding techniques, embrittlement of weld metal, the effects of dropping the containers during emplacement, and stress corrosion cracking. Other materials

  4. Material Evaluation and Process Optimization of CNT-Coated Polymer Powders for Selective Laser Sintering

    Directory of Open Access Journals (Sweden)

    Shangqin Yuan

    2016-10-01

    Full Text Available Multi-walled carbon nanotubes (CNTs as nano-reinforcements were introduced to facilitate the laser sintering process and enhance the thermal and mechanical properties of polymeric composites. A dual experimental-theoretical method was proposed to evaluate the processability and predict the process parameters of newly developed CNT-coated polyamide 12 (CNTs/PA12 powders. The thermal conductivity, melt viscosity, phase transition and temperature-dependent density and heat capacity of PA12 and CNTs/PA12 powders were characterized for material evaluation. The composite powders exhibited improved heat conduction and heat absorption compared with virgin polymer powders, and the stable sintering range of composite powders was extended and found to be favourable for the sintering process. The microstructures of sintered composites revealed that the CNTs remained at the powder boundaries and formed network architectures, which instantaneously induced the significant enhancements in tensile strength, elongation at break and toughness without sacrificing tensile modulus.

  5. Effect of sintering conditions on the microstructural and mechanical characteristics of porous magnesium materials prepared by powder metallurgy.

    Science.gov (United States)

    Čapek, Jaroslav; Vojtěch, Dalibor

    2014-02-01

    There has recently been an increased demand for porous magnesium materials in many applications, especially in the medical field. Powder metallurgy appears to be a promising approach for the preparation of such materials. Many works have dealt with the preparation of porous magnesium; however, the effect of sintering conditions on material properties has rarely been investigated. In this work, we investigated porous magnesium samples that were prepared by powder metallurgy using ammonium bicarbonate spacer particles. The effects of the purity of the argon atmosphere and sintering time on the microstructure (SEM, EDX and XRD) and mechanical behaviour (universal loading machine and Vickers hardness tester) of porous magnesium were studied. The porosities of the prepared samples ranged from 24 to 29 vol.% depending on the sintering conditions. The purity of atmosphere played a significant role when the sintering time exceeded 6h. Under a gettered argon atmosphere, a prolonged sintering time enhanced diffusion connections between magnesium particles and improved the mechanical properties of the samples, whereas under a technical argon atmosphere, oxidation at the particle surfaces caused deterioration in the mechanical properties of the samples. These results suggest that a refined atmosphere is required to improve the mechanical properties of porous magnesium. © 2013.

  6. Effect of particle size distribution on sintering of tungsten

    International Nuclear Information System (INIS)

    Patterson, B.R.; Griffin, J.A.

    1984-01-01

    To date, very little is known about the effect of the nature of the particle size distribution on sintering. It is reasonable that there should be an effect of size distribution, and theory and prior experimental work examining the effects of variations in bimodal and continuous distributions have shown marked effects on sintering. Most importantly, even with constant mean particle size, variations in distribution width, or standard deviation, have been shown to produce marked variations in microstructure and sintering rate. In the latter work, in which spherical copper powders were blended to produce lognormal distributions of constant geometric mean particle size by weight frequency, blends with larger values of geometric standard deviation, 1nσ, sintered more rapidly. The goals of the present study were to examine in more detail the effects of variations in the width of lognormal particle size distributions of tungsten powder and determine the effects of 1nσ on the microstructural evolution during sintering

  7. Science of sintering

    International Nuclear Information System (INIS)

    Kuczynski, G.

    1977-01-01

    Although the methods of integration of materials by sintering, have been used since the early history of humanity, the actual understanding of the process involved came only in the last three decades. As in the most human endeavors, the art preceded theory. The comprehension of the elementary processes occuring during sintering comes from the studies of model system. Although the elementary processes occuring during sintering are today quite well understood, the problem of shrinkage of a powder compact which was at the origin of Sintering Science is still far from solved. This is due to the complexity of the internal geometry of the compacts. The recent attempts to apply statistics to this problem, seem to offer some promise

  8. Effect of High Speed Sintering on the Properties of Zirconia Oxide Materials

    Science.gov (United States)

    2018-03-22

    12. REPORT TYPE 22/03/2018 Poster 4. TITLE AND SUBTITLE Effect of High-Speed Sintering on the Properties ofZirconia-Oxide Materials 6. AUTHOR(S...2018-03/24/2018 Sa. CONTRACT NUMBER Sb. GRANT NUMBER Sc. PROGRAM ELEMENT NUMBER Sd. PROJECT NUMBER Se. TASK NUMBER Sf. WORK UNIT NUMBER 8

  9. Monitoring Sintering Burn-Through Point Using Infrared Thermography

    Directory of Open Access Journals (Sweden)

    Francisco G. Bulnes

    2013-08-01

    Full Text Available Sintering is a complex industrial process that applies heat to fine particles of iron ore and other materials to produce sinter, a solidified porous material used in blast furnaces. The sintering process needs to be carefully adjusted, so that the combustion zone reaches the bottom of the material just before the discharge end. This is known as the burnthrough point. Many different parameters need to be finely tuned, including the speed and the quantities of the materials mixed. However, in order to achieve good results, sintering control requires precise feedback to adjust these parameters. This work presents a sensor to monitor the sintering burn-through point based on infrared thermography. The proposed procedure is based on the acquisition of infrared images at the end of the sintering process. At this position, infrared images contain the cross-section temperatures of the mixture. The objective of this work is to process this information to extract relevant features about the sintering process. The proposed procedure is based on four steps: key frame detection, region of interest detection, segmentation and feature extraction. The results indicate that the proposed procedure is very robust and reliable, providing features that can be used effectively to control the sintering process.

  10. Temperature, Crystalline Phase and Influence of Substrate Properties in Intense Pulsed Light Sintering of Copper Sulfide Nanoparticle Thin Films.

    Science.gov (United States)

    Dexter, Michael; Gao, Zhongwei; Bansal, Shalu; Chang, Chih-Hung; Malhotra, Rajiv

    2018-02-02

    Intense Pulsed Light sintering (IPL) uses pulsed, visible light to sinter nanoparticles (NPs) into films used in functional devices. While IPL of chalcogenide NPs is demonstrated, there is limited work on prediction of crystalline phase of the film and the impact of optical properties of the substrate. Here we characterize and model the evolution of film temperature and crystalline phase during IPL of chalcogenide copper sulfide NP films on glass. Recrystallization of the film to crystalline covellite and digenite phases occurs at 126 °C and 155 °C respectively within 2-7 seconds. Post-IPL films exhibit p-type behavior, lower resistivity (~10 -3 -10 -4  Ω-cm), similar visible transmission and lower near-infrared transmission as compared to the as-deposited film. A thermal model is experimentally validated, and extended by combining it with a thermodynamic approach for crystal phase prediction and via incorporating the influence of film transmittivity and optical properties of the substrate on heating during IPL. The model is used to show the need to a-priori control IPL parameters to concurrently account for both the thermal and optical properties of the film and substrate in order to obtain a desired crystalline phase during IPL of such thin films on paper and polycarbonate substrates.

  11. Production of sintered alumina from powder; optimization of the sinterized parameters for the maximum mechanical resistence

    International Nuclear Information System (INIS)

    Rocha, J.C. da.

    1981-02-01

    Pure, sinterized alumina and the optimization of the parameters of sinterization in order to obtain the highest mechanical resistence are discussed. Test materials are sinterized from a fine powder of pure alumina (Al 2 O 3 ), α phase, at different temperatures and times, in air. The microstructures are analysed concerning porosity and grain size. Depending on the temperature or the time of sinterization, there is a maximum for the mechanical resistence. (A.R.H.) [pt

  12. Thermal conductivity of glass copper-composite

    International Nuclear Information System (INIS)

    Kinoshita, Makoto; Terai, Ryohei; Haidai, Haruki

    1980-01-01

    Glass-metal composites are to be one of the answers for promoting thermal conduction in the glassy solids containing high-level radioactive wastes. In order to investigate the effect of metal addition on thermal conductivity of glasses, glass-copper composites were selected, and the conductivities of the composites were measured and discussed in regards to copper content and microstructure. Fully densified composites were successfully prepared by pressure sintering of the powder mixtures of glass and copper at temperatures above the yield points of the constituent glasses if the copper content was not so much. The conductivity was measured by means of a comparative method, in which the thermal gradient of the specimen was compared with that of quartz glass as standard under thermally steady state. Measurements were carried out at around 50 0 C. The thermal conductivity increased with increasing content of copper depending on the kind of copper powder used. The conductivities of the composites of the same copper content differed considerably each another. Fine copper powder was effective on increasing conductivity, and the conductivity became about threefold of that of glass by mixing the fine copper powder about 10 vol%. For the composites containing the fine copper powder less than 5 vol%, the conductivity obeyed so-called logarithmic rule, one of the mixture rules of conductivity, whereas for composites containing more than 5 vol%, the conductivity remarkably increased apart from the rule. This fact suggests that copper becomes continuous in the composite when the copper content increased beyond 5 vol%. For the composites containing coarse copper powder, the conductivity was increased not significantly, and obeyed an equation derived from the model in which conductive material dispersed in less conductive one. (author)

  13. Effects of sintering atmosphere and initial particle size on sintering of gadolinia-doped ceria

    International Nuclear Information System (INIS)

    Batista, Rafael Morgado

    2014-01-01

    The effects of the sintering atmosphere and initial particle size on the sintering of ceria containing 10 mol% gadolinia (GdO 1.5 ) were systematically investigated. The main physical parameter was the specific surface area of the initial powders. Nanometric powders with three different specific surface areas were utilized, 210 m 2 /g, 36,2 m 2 /g e 7,4 m 2 /g. The influence on the densification, and micro structural evolution were evaluated. The starting sintering temperature was verified to decrease with increasing on the specific surface area of raw powders. The densification was accelerated for the materials with smaller particle size. Sintering paths for crystallite growth were obtained. Master sintering curves for gadolinium-doped ceria were constructed for all initial powders. A computational program was developed for this purpose. The results for apparent activation energy showed noticeable dependence with specific surface area. In this work, the apparent activation energy for densification increased with the initial particle size of powders. The evolution of the particle size distributions on non isothermal sintering was investigated by WPPM method. It was verified that the grain growth controlling mechanism on gadolinia doped ceria is the pore drag for initial stage and beginning of intermediate stage. The effects of the sintering atmosphere on the stoichiometry deviation of ceria, densification, microstructure evolution, and electrical conductivity were analyzed. Inert, oxidizing, and reducing atmospheres were utilized on this work. Deviations on ceria stoichiometry were verified on the bulk materials. The deviation verified was dependent of the specific surface area and sintering atmosphere. Higher reduction potential atmospheres increase Ce 3+ bulk concentration after sintering. Accelerated grain growth and lower electrical conductivities were verified when reduction reactions are significantly present on sintering. (author)

  14. Sintering of powders obtained by mechanical alloying of Cu-1.2 Al w%, Cu-2.3 Ti w% and Cu-2.7 V w%

    International Nuclear Information System (INIS)

    Rivas, C; Sepulveda, A; Zuniga, A; Donoso, E; Palma, R

    2008-01-01

    This work studies the effect of compacting pressure, temperature and sintering time on density and microstructure after sintering mechanically alloyed powders of Cu-1.2 Al w%, Cu- 2.3 Ti w% and Cu-2.7 V w%. The alloys were manufactured from elementary powders of Cu, Ti, Al and V, by reactive milling. The powders were compacted and sintered under reducer atmosphere. For each alloy, the final density and resulting microstructure of 8 different compacting and sintering conditions were studied, where the following parameters were considered: (1) Compacting pressure (200 MPa and 400 MPa), (2) Sintering temperature (850 o C and 950 o C), (3) Sintering time (1h and 4h). Adjustments were made using lineal regression to describe the effect of the variation of pressure, temperature and time on the density of the materials obtained, and the morphology of the residual porosity was described by observation under an optic microscope. The final maximum density obtained was, in ascending order: Cu-V, 66% of the theoretical density, TD; Cu-Ti, 65% TD and Cu-Al, 77% TD. The reactive milling process produced flake-shaped particles, hardened by deformation, which made the alloys have a final density that was much less than the sintered pure copper (density 87% TD). This is because the hardened powder resists deformation during compacting, which creates less points of contact between particles, slows down sintering, and yields a lower density. The alloying element influenced the size of the particle obtained during the milling, which is attributed to the different milling mediums (toluene for Ti and V, methanol for Al) and to the different hardness of each ceramic when forming in the copper during milling. The bigger the particle size, the greater the green density, the lesser the densification, and the greater the final density, in accordance with the theory. For the three alloys, the increased compacting pressure gives greater green density, greater densification and a final greater

  15. Improvement of mechanical strength of sintered Mo alloyed steel by optimization of sintering and cold-forging processes with densification

    Science.gov (United States)

    Kamakoshi, Y.; Shohji, I.; Inoue, Y.; Fukuda, S.

    2017-10-01

    Powder metallurgy (P/M) materials have been expected to be spread in automotive industry. Generally, since sintered materials using P/M ones contain many pores and voids, mechanical properties of them are inferior to those of conventional wrought materials. To improve mechanical properties of the sintered materials, densification is effective. The aim of this study is to improve mechanical strength of sintered Mo-alloyed steel by optimizing conditions in sintering and cold-forging processes. Mo-alloyed steel powder was compacted. Then, pre-sintering (PS) using a vacuum sintering furnace was conducted. Subsequently, coldforging (CF) by a backward extrusion method was conducted to the pre-sintered specimen. Moreover, the cold-forged specimen was heat treated by carburizing, tempering and quenching (CQT). Afterwards, mechanical properties were investigated. As a result, it was found that the density of the PS specimen is required to be more than 7.4 Mg/m3 to strengthen the specimen by heat treatment after CF. Furthermore, density and the microstructure of the PS specimen are most important factors to make the high density and strength material by CF. At the CF load of 1200 kN, the maximum density ratio reached approximately 99% by the use of the PS specimen with proper density and microstructure. At the CF load of 900 kN, although density ratio was high like more than 97.8%, transverse rupture strength decreased sharply. Since densification caused high shear stress and stress concentration in the surface layer, microcracks occurred by the damages of inter-particle sintered connection of the surface layer. On the contrary, in case of the CF load of 1200 kN, ultra-densification of the surface layer occurred by a sufficient plastic flow. Such sufficient compressed specimens regenerated the sintered connections by high temperature heat treatment and thus the high strength densified material was obtained. These processes can be applicable to near net shape manufacturing

  16. Sintering equation: determination of its coefficients by experiments - using multiple regression

    International Nuclear Information System (INIS)

    Windelberg, D.

    1999-01-01

    Sintering is a method for volume-compression (or volume-contraction) of powdered or grained material applying high temperature (less than the melting point of the material). Maekipirtti tried to find an equation which describes the process of sintering by its main parameters sintering time, sintering temperature and volume contracting. Such equation is called a sintering equation. It also contains some coefficients which characterise the behaviour of the material during the process of sintering. These coefficients have to be determined by experiments. Here we show that some linear regressions will produce wrong coefficients, but multiple regression results in an useful sintering equation. (orig.)

  17. The determination of copper in biological materials by flame spectrophotometry

    Science.gov (United States)

    Newman, G. E.; Ryan, M.

    1962-01-01

    A method for the determination of the copper content of biological materials by flame spectrophotometry is described. The effects of interference by ions such as sodium and phosphate were eliminated by isolating copper as the dithizonate in CCl4. Results obtained for the urinary excretion of copper by a patient with Wilson's disease before and after treatment with penicillamine are reported. PMID:14479334

  18. Corrosion resistance of copper canister weld material

    International Nuclear Information System (INIS)

    Gubner, Rolf; Andersson, Urban

    2007-03-01

    The proposed design for a final repository for spent fuel and other long-lived residues is based on the multi-barrier principle. The waste will be encapsulated in sealed cylindrical canisters, which will be placed in granite bedrock and surrounded by compacted bentonite clay. The canister design is based on a thick cast iron insert fitted inside a copper canister. SKB has since several years developed manufacturing processes for the canister components using a network of manufacturers. For the encapsulation process SKB has built the Canister Laboratory to demonstrate and develop the encapsulation technique in full scale. The critical part of the encapsulation of spent fuel is the sealing of the canister which is done by welding the copper lid to the cylindrical part of the canister. Two welding techniques have been developed in parallel, Electron Beam Welding (EBW) and Friction Stir Welding (FSW). During the past two decades, SKB has developed the technology EBW at The Welding Institute (TWI) in Cambridge, UK. The development work at the Canister Laboratory began in 1999. In electron beam welding, a gun is used to generate the electron beam which is aimed at the joint. The beam heats up the material to the melting point allowing a fusion weld to be formed. The gun was developed by TWI and has a unique design for use at reduced pressure. The system has gone through a number of improvements under the last couple of years including implementation of a beam oscillation system. However, during fabrication of the outer copper canisters there will be some unavoidable grain growth in the welded areas. As grains grow they will tend to concentrate impurities at the new grain boundaries that might pose adverse effects on the corrosion resistance of welds. As a new method for joining, SKB has been developing friction stir welding (FSW) for sealing copper canisters for spent nuclear fuel in cooperation with TWI since 1997. FSW was invented in 1991 at TWI and is a thermo

  19. Corrosion resistance of copper canister weld material

    Energy Technology Data Exchange (ETDEWEB)

    Gubner, Rolf; Andersson, Urban [Corrosion and Metals Research Institute, Sto ckholm (Sweden)

    2007-03-15

    The proposed design for a final repository for spent fuel and other long-lived residues is based on the multi-barrier principle. The waste will be encapsulated in sealed cylindrical canisters, which will be placed in granite bedrock and surrounded by compacted bentonite clay. The canister design is based on a thick cast iron insert fitted inside a copper canister. SKB has since several years developed manufacturing processes for the canister components using a network of manufacturers. For the encapsulation process SKB has built the Canister Laboratory to demonstrate and develop the encapsulation technique in full scale. The critical part of the encapsulation of spent fuel is the sealing of the canister which is done by welding the copper lid to the cylindrical part of the canister. Two welding techniques have been developed in parallel, Electron Beam Welding (EBW) and Friction Stir Welding (FSW). During the past two decades, SKB has developed the technology EBW at The Welding Institute (TWI) in Cambridge, UK. The development work at the Canister Laboratory began in 1999. In electron beam welding, a gun is used to generate the electron beam which is aimed at the joint. The beam heats up the material to the melting point allowing a fusion weld to be formed. The gun was developed by TWI and has a unique design for use at reduced pressure. The system has gone through a number of improvements under the last couple of years including implementation of a beam oscillation system. However, during fabrication of the outer copper canisters there will be some unavoidable grain growth in the welded areas. As grains grow they will tend to concentrate impurities at the new grain boundaries that might pose adverse effects on the corrosion resistance of welds. As a new method for joining, SKB has been developing friction stir welding (FSW) for sealing copper canisters for spent nuclear fuel in cooperation with TWI since 1997. FSW was invented in 1991 at TWI and is a thermo

  20. The porosity effect on properties of sintered materials as their conductivity and Youngs modulus of elasticity

    International Nuclear Information System (INIS)

    Ondracek, G.; Thuemmler, F.

    1979-01-01

    A set of equations derived demonstrates quantitatively the influence of closed pores on the conductivity as well as on Youngsmodulus of elasticity of sintered materials. There are three microstructural parameters following from the theoretical derivation controlling the porosity effect on the properties, which are the total porosity, the form factor and the orientation factor of the pores. By quantitative microstructure analysis these factors become available providing together with the equations the tool - to calculate the conductivity and Youngs modulus of elasticity from microstructural quantities of sintered materials thus substituting direct property measurements by quantitative microstructure analysis if desired - to endeaver technologically optimum microstructures to obtain theoretically predicted special property values and to precalculate property alterations by microstructure variations ('taylor-made-materials') - to supplement the conventional microstructural quality control by calculated property data. (orig.) [de

  1. [Study on preparation and physicochemical properties of surface modified sintered bone].

    Science.gov (United States)

    Li, Jingfeng; Zheng, Qixin; Guo, Xiaodong

    2012-06-01

    The aim of this study is to investigate a new method for preparing a biomimetic bone material-surface modified sintered bovine cancellous bone, and to improve its bioactivity as a tissue engineering bone. The prepared sintered bovine cancellous bones with the same size were randomly divided into two groups, immersing in 1 and 1. 5 times simulated body fluid (SBF), respectively. The three time periods of soak time were 7, 14, and 21 days. After sintered bone was dried, the surface morphology of sintered bone and surface mineralization composition were observed under scanning electron microscopy (SEM). By comparing the effect of surface modification of sintered bone materials, we chose the most ideal material and studied its pore size, the rate of the porosity, the compress and bend intensity. And then the material and the sintered bone material without surface modification were compared. The study indicated that sintered bone material immersed in SBF (1.5 times) for 14 days showed the best effect of surface modification, retaining the original physico-chemical properties of sintered bone.

  2. Permeability model of sintered porous media: analysis and experiments

    Science.gov (United States)

    Flórez Mera, Juan Pablo; Chiamulera, Maria E.; Mantelli, Marcia B. H.

    2017-11-01

    In this paper, the permeability of porous media fabricated from copper powder sintering process was modeled and measured, aiming the use of the porosity as input parameter for the prediction of the permeability of sintering porous media. An expression relating the powder particle mean diameter with the permeability was obtained, based on an elementary porous media cell, which is physically represented by a duct formed by the arrangement of spherical particles forming a simple or orthorhombic packing. A circular duct with variable section was used to model the fluid flow within the porous media, where the concept of the hydraulic diameter was applied. Thus, the porous is modeled as a converging-diverging duct. The electrical circuit analogy was employed to determine two hydraulic resistances of the cell: based on the Navier-Stokes equation and on the Darcýs law. The hydraulic resistances are compared between themselves and an expression to determine the permeability as function of average particle diameter is obtained. The atomized copper powder was sifted to reduce the size dispersion of the particles. The porosities and permeabilities of sintered media fabricated from powders with particle mean diameters ranging from 20 to 200 microns were measured, by means of the image analysis method and using an experimental apparatus. The permeability data of a porous media, made of copper powder and saturated with distilled water, was used to compare with the permeability model. Permeability literature models, which considers that powder particles have the same diameter and include porosity data as input parameter, were compared with the present model and experimental data. This comparison showed to be quite good.

  3. Glass-ceramic coating material for the CO2 laser based sintering of thin films as caries and erosion protection.

    Science.gov (United States)

    Bilandžić, Marin Dean; Wollgarten, Susanne; Stollenwerk, Jochen; Poprawe, Reinhart; Esteves-Oliveira, Marcella; Fischer, Horst

    2017-09-01

    The established method of fissure-sealing using polymeric coating materials exhibits limitations on the long-term. Here, we present a novel technique with the potential to protect susceptible teeth against caries and erosion. We hypothesized that a tailored glass-ceramic material could be sprayed onto enamel-like substrates to create superior adhesion properties after sintering by a CO 2 laser beam. A powdered dental glass-ceramic material from the system SiO 2 -Na 2 O-K 2 O-CaO-Al 2 O 3 -MgO was adjusted with individual properties suitable for a spray coating process. The material was characterized using X-ray fluorescence analysis (XRF), heating microscopy, dilatometry, scanning electron microscopy (SEM), grain size analysis, biaxial flexural strength measurements, fourier transform infrared spectroscopy (FTIR), and gas pycnometry. Three different groups of samples (each n=10) where prepared: Group A, powder pressed glass-ceramic coating material; Group B, sintered hydroxyapatite specimens; and Group C, enamel specimens (prepared from bovine teeth). Group B and C where spray coated with glass-ceramic powder. All specimens were heat treated using a CO 2 laser beam process. Cross-sections of the laser-sintered specimens were analyzed using laser scanning microscopy (LSM), energy dispersive X-ray analysis (EDX), and SEM. The developed glass-ceramic material (grain size d50=13.1mm, coefficient of thermal expansion (CTE)=13.310 -6 /K) could be spray coated on all tested substrates (mean thickness=160μm). FTIR analysis confirmed an absorption of the laser energy up to 95%. The powdered glass-ceramic material was successfully densely sintered in all sample groups. The coating interface investigation by SEM and EDX proved atomic diffusion and adhesion of the glass-ceramic material to hydroxyapatite and to dental enamel. A glass-ceramic material with suitable absorption properties was successfully sprayed and laser-sintered in thin films on hydroxyapatite as well as on

  4. Studies on the influence of surface pre-treatments on electroless copper coating of boron carbide particles

    International Nuclear Information System (INIS)

    Deepa, J.P.; Resmi, V.G.; Rajan, T.P.D.; Pavithran, C.; Pai, B.C.

    2011-01-01

    Boron carbide is one of the hard ceramic particles which find application as structural materials and neutron shielding material due to its high neutron capture cross section. Copper coating on boron carbide particle is essential for the synthesis of metal-ceramic composites with enhanced sinterability and dispersibility. Surface characteristics of the substrate and the coating parameters play a foremost role in the formation of effective electroless coating. The effect of surface pre-treatment conditions and pH on electroless copper coating of boron carbide particles has been studied. Surface pre-treatement of B 4 C when compared to acid treated and alkali treated particles were carried out. Uniform copper coating was observed at pH 12 in alkali treated particles when compared to others due to the effective removal of inevitable impurities during the production and processing of commercially available B 4 C. A threshold pH 11 was required for initiation of copper coating on boron carbide particles. The growth pattern of the copper coating also varies depending on the surface conditions from acicular to spherical morphology.

  5. Sintering and microstructure of ice: a review

    International Nuclear Information System (INIS)

    Blackford, Jane R

    2007-01-01

    Sintering of ice is driven by the thermodynamic requirement to decrease surface energy. The structural morphology of ice in nature has many forms-from snowflakes to glaciers. These forms and their evolution depend critically on the balance between the thermodynamic and kinetic factors involved. Ice is a crystalline material so scientific understanding and approaches from more conventional materials can be applied to ice. The early models of solid state ice sintering are based on power law models originally developed in metallurgy. For pressure sintering of ice, these are based on work on hot isostatic pressing of metals and ceramics. Recent advances in recognizing the grain boundary groove geometry between sintering ice particles require models that use new approaches in materials science. The newer models of sintering in materials science are beginning to incorporate more realistic processing conditions and microstructural complexity, and so there is much to be gained from applying these to ice in the future. The vapour pressure of ice is high, which causes it to sublime readily. The main mechanism for isothermal sintering of ice particles is by vapour diffusion; however other transport mechanisms certainly contribute. Plastic deformation with power law creep combined with recrystallization become important mechanisms in sintering with external pressure. Modern experimental techniques, low temperature scanning electron microscopy and x-ray tomography, are providing new insights into the evolution of microstructures in ice. Sintering in the presence of a small volume fraction of the liquid phase causes much higher bond growth rates. This may be important in natural snow which contains impurities that form a liquid phase. Knowledge of ice microstructure and sintering is beneficial in understanding mechanical behaviour in ice friction and the stability of snow slopes prone to avalanches. (topical review)

  6. Spark plasma versus conventional sintering in the electrical properties of Nasicon-type materials

    Czech Academy of Sciences Publication Activity Database

    Pérez-Estébanez, Marta; Isasi-Marín, J.; Rivera-Calzada, A.; León, C.; Nygren, M.

    2015-01-01

    Roč. 651, December (2015), s. 636-642 ISSN 0925-8388 R&D Projects: GA MŠk(CZ) LO1219 Keywords : electrode materials * ionic conduction * sintering Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 3.014, year: 2015 http://www.sciencedirect.com/science/article/pii/S0925838815308227

  7. Novel approaches for the in situ study of the sintering of nuclear oxide fuel materials and their surrogates

    Energy Technology Data Exchange (ETDEWEB)

    Clavier, Nicolas; Nkou Bouala, Galy Ingrid; Dacheux, Nicolas; Podor, Renaud [Montpellier Univ., Bagnols sur Ceze (France). ICSM - UMR 5257 CEA/CNRS/ENSCM; Lechelle, Jacques [CEA, DNE, DEC, SESC, LLCC, St-Paul lez Durance (France); Martinez, Julien [CEA, DEN, DTEC, SECA, LFC, Bagnols sur Ceze (France)

    2017-07-01

    Sintering is one of the key-points of the processing of ceramic materials. It is then of primary interest for the nuclear fuel cycle, in which it constitutes an important step in the fabrication of either UO{sub 2} or (U,Pu)O{sub 2} pellets used in current PWR reactors. The sintering of actinides oxides not only drives the final density and microstructure of the fuels, but also several characteristics that can impact significantly their behavior in the reactor. Dedicated tools are then needed to monitor the microstructure of such materials and forecast their evolution. In this frame, this paper presents the new potentialities offered by the use of environmental scanning electron microscope at high temperature (HT-ESEM) for the study of nuclear ceramics sintering. First, the results obtained from bulk pellets are detailed, either regarding original fundamental data at the grain level (such as grain boundaries and pores motion), or design of dedicated microstructures through the assessment of grain growth kinetics. Acquisition of sintering maps thanks to the combination of HT-ESEM observations and classical dilatometric measurements are also addressed. In a second part, observations undertaken at the 2-grain scale to monitor the first stage of sintering, dedicated to neck elaboration, are presented, and compared to the results currently provided by numerical models.

  8. Phosphorus containing sintered alloys (review)

    International Nuclear Information System (INIS)

    Muchnik, S.V.

    1984-01-01

    Phosphorus additives are considered for their effect on the properties of sintered alloys of different applications: structural, antifriction, friction, magnetic, hard, superhard, heavy etc. Data are presented on compositions and properties of phosphorus-containing materials produced by the powder metallurgy method. Phosphorus is shown to be an effective activator of sintering in some cases. When its concentration in the material is optimal it imparts the material such properties as strength, viscosity, hardness, wear resistance. Problems concerning powder metallurgy of amorphous phosphorus-containing alloys are reported

  9. Two steps sintering alumina doped with niobia

    International Nuclear Information System (INIS)

    Gomes, L.B.; Hatzfeld, J.; Heck, M.; Pokorny, A.; Bergmann, C.P.

    2014-01-01

    In this work, high surface area commercial alumina was doped with niobia and sintered in two steps in order to obtain dense materials with lower processing temperatures. The powders were milled and uniaxially pressed (200 MPa). The first step of sintering took place at 1100°C for 3, 6, 9 and 12 hours, followed by the second step at 1350°C for 3 hours. The relative density, porosity and water absorption of the samples were determined by the Archimedes method. The crystalline phases were analyzed by X-ray Diffraction (XRD) and the morphology of the samples after sintering, evaluated by Scanning Electron Microscopy (SEM). The results indicate that the use of niobia combined with the two steps sintering promotes an increase in the density of the material, even at lower sintering temperatures. (author)

  10. Corrosion behavior of copper-base materials in a gamma-irradiated environment

    International Nuclear Information System (INIS)

    Yunker, W.H.

    1990-09-01

    Specimens of three copper-base materials were corrosion tested with gamma radiation exposure dose rates in the range of 1.9 x 10 3 R/h to 4.9 x 10 5 R/h. Materials used were pure copper, 7% aluminum bronze and 30% copper-nickel. Exposures were performed in moist air at 95 degree C and 150 degree C and liquid Well J-13 water at 95 degree C, for periods of up to 16 months. Specimens were monitored for uniform weight loss, stress-induced corrosion and crevice corrosion. Specimen surfaces were examined visually at 10X magnification as well as by Auger Electron Spectroscopy, x-ray diffraction and metallography. Corrosion was not severe in any of the cases. In general, the pure copper was corroded most uniformly while the copper-nickel was the least reproducibly corroded. 11 refs, 40 figs., 15 tabs

  11. Photoluminescence characteristics of sintered silica glass doped with Cu ions using mesoporous SiO{sub 2}-PVA nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Hiroshi [Art, Science and Technology Center for Cooperative Research, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Murata, Takahiro [Faculty of Education and Master' s Course in Education, Kumamoto University, 2-40-1 Kurokami, Chuo-ku, Kumamoto 860-8555 (Japan); Fujino, Shigeru, E-mail: fujino@astec.kyushu-u.ac.jp [Art, Science and Technology Center for Cooperative Research, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan)

    2015-07-15

    Monolithic silica glasses doped with Cu ions were prepared by immersing a mesoporous SiO{sub 2}-polyvinyl alcohol (PVA) nanocomposite in a copper nitrate solution followed by sintering at 1100 °C for 12 h in air. The Cu ions were reduced from divalent to monovalent during the sintering process and consequently Cu{sup +} was doped into the silica glass matrix. The sintered glass possessed blue or yellow photoluminescence (PL) under UV irradiation, depending on the total concentration of Cu ions in the sintered silica glass. At a lower concentration below 30 ppm, the isolated Cu{sup +} existed in the glass matrix resulting in the blue PL. However, above 70 ppm, the Cu{sup +}–Cu{sup +} pairs were present, exhibiting the yellow PL. It was demonstrated that the PL characteristics of the sintered silica glasses doped with monovalent copper ions were affected by the total concentration of Cu ions in the glass, which can be adjusted as a function of the immersion conditions. - Highlights: • Silica glass doped with Cu{sup +} was fabricated by sintering the nanocomposite. • The Cu ions were reduced from divalent to monovalent during the sintering process. • The sintered glass possessed blue or yellow PL under UV irradiation. • The blue and yellow PL are due to isolated Cu{sup +} and Cu{sup +}–Cu{sup +} pairs, respectively. • The PL characteristics depended on the total concentration of Cu ions in the glass.

  12. Stress Intensity of Delamination in a Sintered-Silver Interconnection: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    DeVoto, D. J.; Paret, P. P.; Wereszczak, A. A.

    2014-08-01

    In automotive power electronics packages, conventional thermal interface materials such as greases, gels, and phase-change materials pose bottlenecks to heat removal and are also associated with reliability concerns. The industry trend is toward high thermal performance bonded interfaces for large-area attachments. However, because of coefficient of thermal expansion mismatches between materials/layers and resultant thermomechanical stresses, adhesive and cohesive fractures could occur, posing a reliability problem. These defects manifest themselves in increased thermal resistance. This research aims to investigate and improve the thermal performance and reliability of sintered-silver for power electronics packaging applications. This has been experimentally accomplished by the synthesis of large-area bonded interfaces between metalized substrates and copper base plates that have subsequently been subjected to thermal cycles. A finite element model of crack initiation and propagation in these bonded interfaces will allow for the interpretation of degradation rates by a crack-velocity (V)-stress intensity factor (K) analysis. A description of the experiment and the modeling approach are discussed.

  13. Effects of phosphourus addition on the physical properties and surface condition of tungsten-copper composites

    International Nuclear Information System (INIS)

    Akiyoshi, N.; Nakada, K.; Nakayama, M.; Kohda, K.

    2001-01-01

    Tungsten-copper composites containing a small amount of phosphorus prepared using conventional P/M method. Cu 3 P powder was used as phosphorous source. The effects of phosphorus addition on the physical properties and the surface condition were investigated and the existing form of phosphorus was specified on the tungsten-copper composites The results are summarized as follows. The tungsten-copper composite containing 10 % copper, for example, demonstrated optimum thermal conductivity at the phosphorus addition of 0.02 %. The density of the composites was almost 100 % and the surface of the sintered body was flat and smooth after sintering at a temperature between 1100 and 1150 o C. It was shown that phosphorus exists as Co 2 P. (author)

  14. HIP bonding between niobium/copper/stainless steel materials

    International Nuclear Information System (INIS)

    Inoue, Hitoshi; Fujino, Takeo; Hitomi, Nobuteru; Saito, Kenji; Yamada, Masahiro; Shibuya, Junichi; Ota, Tomoko

    2000-01-01

    We have used niobium flanges for the niobium bulk superconducting RF cavities, however, they are expensive. Stainless steel flanges instead of the niobium flanges will be used in the future large scale production of sc cavities like the KEK/JAERI joint project. For a future R and D of the vacuum sealing related to the clean horizontal assembly method or development of cavities welded a helium vessel in the KEK/JAERI joint project, a converter section of niobium material to stainless steel is required. From these requirements we need to develop the converter. We have tried a HIP bonding method between niobium materials and stainless steel or copper material. It was made clear that the technology could offer an enough bonding strength even higher than niobium tensile strength in the joined surface between niobium and stainless steel or copper. (author)

  15. Evaluation of copper, aluminum bronze, and copper-nickel for YMP [Yucca Mountain Project] container material

    International Nuclear Information System (INIS)

    Kass, J.N.

    1989-05-01

    In this presentation, I will discuss our evaluation of the materials copper, 7% aluminum bronze, and 70/30 copper-nickel. These are three of the six materials currently under consideration as potential waste-packaging materials. I should mention that we are also considering alternatives to these six materials. This work is part of the Yucca Mountain Project (YMP), formerly known as the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. The expected-case environment in our proposed vault is quite different from that encountered at the WIPP site or that expected in a Canadian vault. Our proposed site is under a desert mountain, Yucca Mountain, in southern Nevada. The repository itself will be located approximately 700 feet above the water table and 300 to 1200 feet below the surface of the mountain. The variations in these numbers are due to the variations in mountain topography

  16. Corrosion of copper-based materials in gamma radiation

    International Nuclear Information System (INIS)

    Yunker, W.H.

    1986-06-01

    The corrosion behaviors of pure copper (CDA 101), 7% aluminum-copper bronze (CDA 613) and 30% nickel-copper (CDA 715) are being studied in a gamma radiation field of 1 x 10 5 R/h. These studies are in support of the Nevada Nuclear Waste Storage Investigations (NNWSI) Project, by Lawrence Livermore National Laboratory (LLNL), of copper-based materials for possible use in container systems for the permanent geologic burial of nuclear waste. Weight loss, tear drop (stressed), and crevice specimens of the three materials were exposed to water vapor-air atmospheres at 95 0 C and 150 0 C and to liquid water at 95 0 C for periods of one, three, and six months. Longer exposures are in progress. Measurements include: changes in the chemical composition of the gas and water, specimen weight changes, oxide film weights, evidence of microcracking and crevice corrosion, and chemical composition of the oxide films by Auger electron spectroscopy and x-ray diffraction. Interim results show considerable pit and under-film corrosion of alloys CDA 613 and CDA 715. Uniform corrosion rates range from 0.012 mil/yr (0.30 μm/yr) to 0.22 mil/yr (5.6 μm/yr), based on specimen weight losses during six- and seven-month exposures. The time dependencies will be determined as more data become available

  17. Feasibility assessment of copper-base waste package container materials in a tuff repository

    International Nuclear Information System (INIS)

    Acton, C.F.; McCright, R.D.

    1986-01-01

    This report discussed progress made during the second year of a two-year study on the feasibility of using copper or a copper-base alloy as a container material for a waste package in a potential repository in tuff rock at the Yucca Mountain site in Nevada. Corrosion testing in potentially corrosive irradiated environments received emphasis during the feasibility study. Results of experiments to evaluate the effect of a radiation field on the uniform corrosion rate of the copper-base materials in repository-relevant aqueous environments are given as well as results of an electrochemical study of the copper-base materials in normal and concentrated J-13 water. Results of tests on the irradiation of J-13 water and on the subsequent formation of hydrogen peroxide are given. A theoretical study was initiated to predict the long-term corrosion behavior of copper in the repository. Tests were conducted to determine whether copper would adversely affect release rates of radionuclides to the environment because of degradation of the Zircaloy cladding. A manufacturing survey to determine the feasibility of producing copper containers utilizing existing equipment and processes was completed. The cost and availability of copper was also evaluated and predicted to the year 2000. Results of this feasibility assessment are summarized

  18. Progress of research on plasma facing materials in University of Science and Technology Beijing

    International Nuclear Information System (INIS)

    Ge, Chang-Chun; Zhou, Zhang-Jian; Song, Shu-Xiang; Du, Juan; Zhong, Zhi-Hong

    2007-01-01

    In this paper, we report some new progress on plasma facing materials in University of Science and Technology Beijing (USTB), China. They include fabrication of tungsten coating with ultra-fine grain size by atmosphere plasma spraying; fabrication of tungsten with ultra-fine grain size by a newly developed method named as resistance sintering under ultra-high pressure; using the concept of functionally graded materials to join tungsten to copper based heat sink; joining silicon doped carbon to copper by brazing using a Ti based amorphous filler and direct casting

  19. U3O8 microspheres sintering kinetics

    International Nuclear Information System (INIS)

    Godoy, A.L.E.

    1986-01-01

    U 3 O 8 microspheres sintering kinetics was determined using a hot-stage optical microscopy apparatus, able to reach temperature up to 1350 0 C in controlled atmospheres. The sintered material had its microstructure analysed by optical and electron microscopy. The microspheres were characterized initialy utilizing X-ray diffractometry and thermogravimetry. The equation which describes the microspheres shrinkage in function of the time was obtained using finite difference analysis X-ray diffractometry indicated hexagonal structure for the microspheres main starting material, ammonium diuranate thermogravimetric analysis showed reduction of this material to U 3 O 8 at 600 0 C. Ceramography results showed 5 hours sintered microspheres grain sizes G vary with the temperature. Sintered U 3 O 8 micrographs compared with published results for UO 2 , indicate similar homogeneity microstructural characteristics and suggest the processed micorspheres to be potentially useful as nuclear fuels. (Author) [pt

  20. Mechanical characteristics of microwave sintered silicon carbide

    Indian Academy of Sciences (India)

    In firing of products by conventionally sintered process, SiC grain gets oxidized producing SiO2 (∼ 32 wt%) and deteriorates the quality of the product substantially. Partially sintered silicon carbide by such a method is a useful material for a varieties of applications ranging from kiln furniture to membrane material.

  1. Subcritical CO{sub 2} sintering of microspheres of different polymeric materials to fabricate scaffolds for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Bhamidipati, Manjari; Sridharan, BanuPriya [Bioengineering Graduate Program, University of Kansas, Lawrence, KS (United States); Scurto, Aaron M. [Bioengineering Graduate Program, University of Kansas, Lawrence, KS (United States); Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS (United States); Detamore, Michael S., E-mail: detamore@ku.edu [Bioengineering Graduate Program, University of Kansas, Lawrence, KS (United States); Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS (United States)

    2013-12-01

    The aim of this study was to use CO{sub 2} at sub-critical pressures as a tool to sinter 3D, macroporous, microsphere-based scaffolds for bone and cartilage tissue engineering. Porous scaffolds composed of ∼ 200 μm microspheres of either poly(lactic-co-glycolic acid) (PLGA) or polycaprolactone (PCL) were prepared using dense phase CO{sub 2} sintering, which were seeded with rat bone marrow mesenchymal stromal cells (rBMSCs), and exposed to either osteogenic (PLGA, PCL) or chondrogenic (PLGA) conditions for 6 weeks. Under osteogenic conditions, the PLGA constructs produced over an order of magnitude more calcium than the PCL constructs, whereas the PCL constructs had far superior mechanical and structural integrity (125 times stiffer than PLGA constructs) at week 6, along with twice the cell content of the PLGA constructs. Chondrogenic cell performance was limited in PLGA constructs, perhaps as a result of the polymer degradation rate being too high. The current study represents the first long-term culture of CO{sub 2}-sintered microsphere-based scaffolds, and has established important thermodynamic differences in sintering between the selected formulations of PLGA and PCL, with the former requiring adjustment of pressure only, and the latter requiring the adjustment of both pressure and temperature. Based on more straightforward sintering conditions and more favorable cell performance, PLGA may be the material of choice for microspheres in a CO{sub 2} sintering application, although a different PLGA formulation with the encapsulation of growth factors, extracellular matrix-derived nanoparticles, and/or buffers in the microspheres may be advantageous for achieving a more superior cell performance than observed here. - Highlights: • The first long-term culture of CO{sub 2}-sintered microsphere-based scaffolds. • Established important thermodynamic differences between sintering PLGA and PCL. • PCL sintering with CO{sub 2} required manipulation of both

  2. Microstructure and properties of copper composite containing in situ NbC reinforcement: Effects of milling speed

    International Nuclear Information System (INIS)

    Zuhailawati, Hussain; Salihin, Hassin Mohd; Mahani, Yusoff

    2010-01-01

    This paper presents a study on the effects of milling speed on the properties of in situ copper-based composite produced by mechanical alloying followed by cold pressing and sintering. A powdered mixture of copper, niobium and graphite with the composition of Cu-30%NbC was milled at various speeds (100, 200, 300 and 400 rpm). The NbC phase started to precipitate in the as-milled powder after 30 h milling at 400 rpm and the formation was completed after sintering at 950 o C. Enhancements of NbC phase formation with a reduction in Cu crystallite size were observed with the increase of milling speed. Density, hardness and electrical conductivity of the sintered composite were evaluated. An increase in milling speed resulted in an increase in sintered density and hardness but a reduction of electrical conductivity. The changes in the properties were correlated to the formation of NbC phase and refinement of copper and niobium carbide crystallite size since higher milling speed is associated with higher kinetic energy per hit.

  3. Friction material composites copper-metal-free material design perspective

    CERN Document Server

    Sundarkrishnaa, K L

    2015-01-01

    This book examines material composites used in connection with brake friction, their design and safety. To aid in understanding, the essentials of friction are explained. This second edition was extended to include friction material composites without copper, as they offer an environmentally friendlier option. The second edition is intended to support beginners by offering insights into the essentials of friction material composites, helping them to develop a broader understanding of brake friction materials. Friction materials find wide-ranging applications in household and industrial appliances, brake pads for automotive applications, rail brake friction pads and composition brake blocks. This second edition is an introductory volume to a set of related books, and is based on the author’s experience and expertise with various material manufacturers, brake manufacturers, vehicle manufacturers, researchers and testing labs around the world with which the author has been associated for the past 28 years.

  4. Thermal Properties of Carbon Nanotube–Copper Composites for Thermal Management Applications

    Directory of Open Access Journals (Sweden)

    Jia Chengchang

    2010-01-01

    Full Text Available Abstract Carbon nanotube–copper (CNT/Cu composites have been successfully synthesized by means of a novel particles-compositing process followed by spark plasma sintering (SPS technique. The thermal conductivity of the composites was measured by a laser flash technique and theoretical analyzed using an effective medium approach. The experimental results showed that the thermal conductivity unusually decreased after the incorporation of CNTs. Theoretical analyses revealed that the interfacial thermal resistance between the CNTs and the Cu matrix plays a crucial role in determining the thermal conductivity of bulk composites, and only small interfacial thermal resistance can induce a significant degradation in thermal conductivity for CNT/Cu composites. The influence of sintering condition on the thermal conductivity depended on the combined effects of multiple factors, i.e. porosity, CNTs distribution and CNT kinks or twists. The composites sintered at 600°C for 5 min under 50 MPa showed the maximum thermal conductivity. CNT/Cu composites are considered to be a promising material for thermal management applications.

  5. Corrosion behaviour of sintered Ti–Ni–Cu–Nb in 0.9% NaCl environment

    Directory of Open Access Journals (Sweden)

    Moipone Linda Lethabane

    2015-10-01

    Full Text Available The uniform and localized corrosion behaviour of sintered Ti–Ni containing niobium and copper additions were studied using potentiodynamic and cyclic polarization measurements in 0.9% sodium chloride. Results indicated that copper and niobium addition did not have significant effects on the uniform corrosion characteristics, but significantly improved the pitting corrosion resistance. Both copper and niobium additions significantly increased the re-passivation potentials, while copper was observed to reduce the pitting hysteresis loop area. Alloys containing 15% copper and 2% niobium additions depicted the most improved pitting corrosion resistance, and increased the re-passivation value from −315.60 mV to a high re-passivation potential of 840.68 mV.

  6. Fabrication of Elemental Copper by Intense Pulsed Light Processing of a Copper Nitrate Hydroxide Ink.

    Science.gov (United States)

    Draper, Gabriel L; Dharmadasa, Ruvini; Staats, Meghan E; Lavery, Brandon W; Druffel, Thad

    2015-08-05

    Printed electronics and renewable energy technologies have shown a growing demand for scalable copper and copper precursor inks. An alternative copper precursor ink of copper nitrate hydroxide, Cu2(OH)3NO3, was aqueously synthesized under ambient conditions with copper nitrate and potassium hydroxide reagents. Films were deposited by screen-printing and subsequently processed with intense pulsed light. The Cu2(OH)3NO3 quickly transformed in less than 100 s using 40 (2 ms, 12.8 J cm(-2)) pulses into CuO. At higher energy densities, the sintering improved the bulk film quality. The direct formation of Cu from the Cu2(OH)3NO3 requires a reducing agent; therefore, fructose and glucose were added to the inks. Rather than oxidizing, the thermal decomposition of the sugars led to a reducing environment and direct conversion of the films into elemental copper. The chemical and physical transformations were studied with XRD, SEM, FTIR and UV-vis.

  7. Characterization and mass balance of trace elements in an iron ore sinter plant

    Directory of Open Access Journals (Sweden)

    Lucas Ladeira Lau

    2016-04-01

    Full Text Available Environmental legislation is becoming more restrictive in several industrial sectors, especially in the steel industry, which is well known for its large pollution potential. With the recent growth of interest in effects of trace elements on the environment and health, the inclusion of emission limits on these elements in this legislation has become increasingly popular. This article aims to describe the partitioning of trace elements between the products (sinter and plant emissions in an iron ore sinter plant, aiming to better understand the behavior of these elements in the sintering process to eventually support interventions to modify these partitions. Chemical characterization of several sintering inputs was initially performed, revealing that the steel-making residues contained large concentrations of trace elements, whereas low concentrations were observed in the flux. Based on the trace element concentrations, we analyzed the injection of trace elements in a sintering pilot using a sintering mixture. Mass balance was then used to determine the theoretical partitioning of trace elements in the sinter and emissions; cadmium, nickel, lead, mercury, and copper exhibited greater tendencies to concentrate in atmospheric emissions.

  8. Superhard MgB sub 2 bulk material prepared by high-pressure sintering

    CERN Document Server

    Ma, H A; Chen, L X; Zhu, P W; Ren, G Z; Guo, W L; Fu, X Q; Zou Guang Tian; Ren, Z A; Che, G C; Zhao, Z X

    2002-01-01

    Superhard MgB sub 2 bulk material with a golden metallic shine was synthesized by high-pressure sintering for 8 h at 5.5 GPa and different temperatures. Appropriate pressure and temperature conditions for synthesizing polycrystalline MgB sub 2 with high hardness were investigated. The samples were characterized by means of atomic force microscopy and x-ray diffraction. The Vickers hardness, bulk density, and electrical resistivity were measured at room temperature.

  9. Reduction of surface erosion caused by helium blistering in sintered beryllium and sintered aluminum powder

    International Nuclear Information System (INIS)

    Das, S.K.; Kaminsky, M.

    1976-01-01

    Studies have been conducted to find materials with microstructures which minimize the formation of blisters. A promising class of materials appears to be sintered metal powder with small average grain sizes and low atomic number Z. Studies of the surface erosion of sintered aluminum powder (SAP 895) and of aluminum held at 400 0 C due to blistering by 100 keV helium ions have been conducted and the results are compared to those obtained earlier for room temperature irradiation. A significant reduction of the erosion rate in SAP 895 in comparison to annealed aluminum and SAP 930 is observed. In addition results on the blistering of sintered beryllium powder (type I) irradiated at room temperature and 600 0 C by 100 keV helium ions are given. These results will be compared with those reported recently for vacuum cast beryllium foil and a foil of sintered beryllium powder (type II) which was fabricated differently, than type I. For room temperature irradiation only a few blisters could be observed in sintered beryllium powder type I and type II and they are smaller in size and in number than in vacuum cast beryllium. For irradiation at 600 0 C large scale exfoliation of blisters was observed for vacuum cast beryllium but much less exfoliation was seen for sintered beryllium powder, type I, and type II. The results show a reduction in erosion rate cast beryllium, for both room temperature and 600 0 C

  10. Implementation of a spark plasma sintering facility in a hermetic glovebox for compaction of toxic, radiotoxic, and air sensitive materials

    Energy Technology Data Exchange (ETDEWEB)

    Tyrpekl, V., E-mail: vaclav.tyrpekl@ec.europa.eu, E-mail: vaclav.tyrpekl@gmail.com; Berkmann, C.; Holzhäuser, M.; Köpp, F.; Cologna, M.; Somers, J. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe (Germany); Wangle, T. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe (Germany); Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, Praha 1, 115 19 (Czech Republic)

    2015-02-15

    Spark plasma sintering (SPS) is a rapidly developing method for densification of powders into compacts. It belongs to the so-called “field assisted sintering techniques” that enable rapid sintering at much lower temperatures than the classical approaches of pressureless sintering of green pellets or hot isostatic pressing. In this paper, we report the successful integration of a SPS device into a hermetic glovebox for the handling of highly radioactive material containing radioisotopes of U, Th, Pu, Np, and Am. The glovebox implantation has been facilitated by the replacement of the hydraulic system to apply pressure with a compact electromechanical unit. The facility has been successfully tested using UO{sub 2} powder. Pellets with 97% of the theoretical density were obtained at 1000 °C for 5 min, significantly lower than the ∼1600 °C for 5-10 h used in conventional pellet sintering.

  11. DWPF coupled feed flowsheet material balance with batch one sludge and copper nitrate catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A.S.

    1993-09-28

    The SRTC has formally transmitted a recommendation to DWPF to replace copper formate with copper nitrate as the catalyst form during precipitate hydrolysis [1]. The SRTC was subsequently requested to formally document the technical bases for the recommendation. A memorandum was issued on August 23, 1993 detailing the activities (and responsible individuals) necessary to address the impact of this change in catalyst form on process compatibility, safety, processibility environmental impact and product glass quality [2]. One of the activities identified was the preparation of a material balance in which copper nitrate is substituted for copper formate and the identification of key comparisons between this material balance and the current Batch 1 sludge -- Late Wash material balance [3].

  12. Effects of sintering processes on mechanical properties and microstructure of TiB2–TiC + 8 wt% nano-Ni composite ceramic cutting tool material

    International Nuclear Information System (INIS)

    Zou Bin; Huang Chuanzhen; Song Jinpeng; Liu Ziye; Liu Lin; Zhao Yan

    2012-01-01

    Highlights: ► TiB 2 –TiC + 8 wt% nano-Ni ceramic tool material was sintered by six processes. ► The properties of material depended mainly on the holding stages and duration. ► SP1 process was involved with the multiple holding stages and longer duration. ► SP1 process led to many pores, and coarsening and brittle rupture of grains. ► Tool material sintered by SP6 process exhibited the optimum mechanical properties. - Abstract: TiB 2 –TiC composite powder was prepared by ball-milled with ethanol and vacuum dry, and TiB 2 –TiC + 8 wt% nano-Ni composite ceramic cutting tool material was sintered using vacuum hot-pressed sintering technique by six processes which included the different holding stages and times. The effects of sintering processes on the mechanical properties and microstructure were investigated. The polished surface and fracture surface of TiB 2 –TiC + 8 wt% nano-Ni ceramics sintered by the different sintering processes were observed by scanning electron microscope (SEM), X-ray diffraction (XRD) and energy-dispersive spectrometry (EDS), and the relationships between mechanical properties and microstructure were discussed. The mechanical properties and microstructure depended mainly on the total holding time and the different holding stages. The longer holding time and multiple holding stages led to coarsening of TiB 2 and TiC grains, formation of pores and the brittle rupture of grains, which deteriorated the mechanical properties of TiB 2 –TiC + 8 wt% nano-Ni ceramic. TiB 2 –TiC + 8 wt% nano-Ni composite ceramic cutting tool material sintered by SP6 process exhibited the optimum resultant mechanical properties because of its finer microstructure and higher relative density, and its flexural strength, fracture toughness and hardness were 916.8 MPa, 7.80 MPa m 1/2 and 22.54 GPa, respectively.

  13. Sintering unalloyed titanium in DC electrical abnormal glow discharge

    Directory of Open Access Journals (Sweden)

    Allan Seeber

    2010-03-01

    Full Text Available Powder metallurgy is widely used in the manufacture of components that have complex geometry. The good dimensional control, reduction in manufacturing steps and operating costs which has favored the use of this technique for manufacturing of titanium alloys components. However, the high affinity of this material with oxygen hinders strongly the sintering process. For this, the sintering associated with plasma technology can be considered an alternative technique for the processing of this material. The strict control of sintering atmosphere performed at low pressures and the reactive species present in the plasma environment can help to improve the sintering of this material. The results presented in this paper show a good correlation between the parameters used for the compaction of the samples and the microstructure develop during the plasma sintering of samples. The microstructure of the plasma assisted samples is also affected by the particular configuration used in the plasma reactor.

  14. Method of manufacturing sintered nuclear fuel

    International Nuclear Information System (INIS)

    Watarumi, Kazutoshi.

    1984-01-01

    Purpose: To obtain composite pellets with an improved strength. Method: A core mainly composed of fuel materials is previously prepared, embedded into the central portion of a pellet, silted therearound with cladding material, and then pressmolded and sintered. For instance, a rugby-ball like core body with the maximum outer diameter of 6 mm and the height of 6 mm is made by compressive molding with uranium dioxide powder, then coating material comprising the same powder incorporated with 0.1 % by weight of SiC fibers is filled around the core body, which is molded into a composite pellet by means of pressing and then sintered at 1600 0 C, to obtain a sintered pellet of 93.5 % theoretical density. As the result of the compression test for the pellet, it showed a strength greater by 15 % than that of the similar mono-layer pellet. (Kamimura, M.)

  15. Effects of Ceramic Density and Sintering Temperature on the Mechanical Properties of a Novel Polymer-Infiltrated Ceramic-Network Zirconia Dental Restorative (Filling) Material.

    Science.gov (United States)

    Li, Weiyan; Sun, Jian

    2018-05-10

    BACKGROUND Polymer-infiltrated ceramic-network (PICN) dental material is a new and practical development in orthodontics. Sintering is the process of forming a stable solid mass from a powder by heating without melting. The aim of this study was to evaluate the effects of sintering temperature on the mechanical properties of a PICN zirconia dental material. MATERIAL AND METHODS A dense zirconia ceramic and four PICN zirconia dental materials, with varying porosities, were sintered at three different temperatures; 12 PICN zirconia dental materials based on these porous ceramics were prepared, as well as a pure polymer. After the specimen preparation, flexural strength and elastic modulus values were measured using the three-point bending test, and fracture toughness were determined by the single-edge notched beam (SENB) method. The Vickers hardness test method was used with an indentation strength (IS) test. Scanning electron microscopy (SEM) was used to examine the microstructure of the ceramic surface and the fracture surface. RESULTS Mechanical properties of the PICN dental materials, including flexural strength, elastic modulus, fracture toughness, and hardness, were more similar to the properties of natural teeth when compared with traditional dental ceramic materials, and were affected by the density and sintering temperature. SEM showed that the porous ceramic network became cohesive and that the length of cracks in the PICN dental material was reduced. CONCLUSIONS PICN zirconia dental materials were characterized by similar mechanical properties to natural dental tissues, but further studies are required continue to improve the similarities with natural human enamel and dentin.

  16. Master sintering curve: A practical approach to its construction

    Directory of Open Access Journals (Sweden)

    Pouchly V.

    2010-01-01

    Full Text Available The concept of a Master Sintering Curve (MSC is a strong tool for optimizing the sintering process. However, constructing the MSC from sintering data involves complicated and time-consuming calculations. A practical method for the construction of a MSC is presented in the paper. With the help of a few dilatometric sintering experiments the newly developed software calculates the MSC and finds the optimal activation energy of a given material. The software, which also enables sintering prediction, was verified by sintering tetragonal and cubic zirconia, and alumina of two different particle sizes.

  17. W-Cu gradient materials - processing, properties and application possibilities

    International Nuclear Information System (INIS)

    Joensson, M.; Kieback, B.

    2001-01-01

    The functionally graded material (FGM) of tungsten with its high thermal and mechanical resistance and copper with its very high thermal and electrical conductivity and ductility expands the application fields of this material in the direction of extreme demands such as plasma facing components in fusion reactors. The PM-production of W-Cu-gradients recommends itself because of the possibility to form the gradient by the mixing of powder components, but is also demanding because of the differences in their sintering behavior and thermal expansions. W-Gu-gradient samples of different concentration profiles have been formed in layers by powder stacking in a die and continuously by centrifugal powder forming. The consolidation routes were determined by the concentration areas of the gradients and encompass liquid phase sintering, pressure assisted solid phase sintering and the application of coated Tungsten powder and sintering additives. The microstructure and the concentration profiles of the samples have been investigated metaliographically and by EDX. The influence of processing and the gradient profile of the properties have been characterized by TRS and the investigation of residual thermal stresses by neutron diffraction. (author)

  18. Microwave sintering of hydroxyapatite-based composites

    International Nuclear Information System (INIS)

    Fang, Y.; Roy, D.M.; Cheng, J.; Roy, R.; Agrawal, D.K.

    1993-01-01

    Composites of hydroxyapatite/partially stabilized zirconia (HAp/PSZ) and hydroxyapatite/silicon carbide whiskers (HAp/SiC) were sintered at 1100-1200 degrees C by microwave at 2.45 GHz. Characterization of the sintered composites was carried out by density, microstructure, phase composition, and fracture toughness measurements. The results show that although not yet fully densified, a much higher sintered density in the HAp/PSZ composite was achieved by microwave sintering than by conventional sintering at the same temperature. A relative density of 93% was achieved by 20 min. microwave processing at 1200 degrees C. Comparatively, 2 h conventional sintering of the same material at 1200 degrees C led to only 75.5% relative density. K IC of this microwave sintered HAp/PSZ of 93% density was found to be 3.88 MPa√m, which is 250% of the value for pure HAp of the same density. A further increase in K IC could be expected if full or nearly full densification was achieved. Sintering of PSZ particles in the HAp/PSZ composite was also observed in the microwave processed sample. Microwave sintering of HAp/SiC was not successful in the current study due to the oxidation of SiC in air at high temperature. 8 refs., 4 figs., 1 tab

  19. Electrodeposition and Properties of Copper Layer on NdFeB Device

    Directory of Open Access Journals (Sweden)

    LI Yue

    2017-06-01

    Full Text Available To decrease the impact of the regular Ni/Cu/Ni coating on the magnetic performance of sintered NdFeB device, alkaline system of HEDP complexing agent was applied to directly electro-deposit copper layer on NdFeB matrix, then nickel layer was electrodeposited on the copper layer and Cu/Ni coating was finally obtained to replace the regular Ni/Cu/Ni coating. The influence of concentration of HEDP complexing agent on deposition course was tested by electrochemical testing; morphology of copper layer was characterized by SEM, XRD and TEM; the binding force of copper layer and the thermal reduction of magnetic of NdFeB caused by electrodeposited coating were respectively explored through the thermal cycle test and thermal demagnetization test. The results show that the concentration of HEDP has great impact on the deposition overpotential of copper. In the initial electrodepositing stage, copper particles precipitate at the grain boundaries of NdFeB magnets with a preferred (111 orientation. The copper layer is compact and has enough binding force with the NdFeB matrix to meet the requirements in SJ 1282-1977. Furthermore, the thermal demagnetization loss rate of the sintered NdFeB with the protection of Cu/Ni coating is significantly less than that with the protection of Ni/Cu/Ni coating.

  20. Neutron irradiation test of copper alloy/stainless steel joint materials

    International Nuclear Information System (INIS)

    Yamada, Hirokazu; Kawamura, Hiroshi

    2006-01-01

    As a study about the joint technology of copper alloy and stainless steel for utilization as cooling piping in International Thermonuclear Experimental Reactor (ITER), Al 2 O 3 -dispersed strengthened copper or CuCrZr was jointed to stainless steel by three kinds of joint methods (casting joint, brazing joint and friction welding method) for the evaluation of the neutron irradiation effect on joints. A neutron irradiation test was performed to three types of joints and each copper alloy. The average value of fast neutron fluence in this irradiation test was about 2 x 10 24 n/m 2 (E>1 MeV), and the irradiation temperature was about 130degC. As post-irradiation examinations, tensile tests, hardness tests and observation of fracture surface after the tensile tests were performed. All type joints changed to be brittle by the neutron irradiation effect like each copper alloy material, and no particular neutron irradiation effect due to the effect of joint process was observed. On the casting and friction welding, hardness of copper alloy near the joint boundary changed to be lower than that of each copper alloy by the effect of joint procedure. However, tensile strength of joints was almost the same as that of each copper alloy before/after neutron irradiation. On the other hand, tensile strength of joints by brazing changed to be much lower than CuAl-25 base material by the effect of joint process before/after neutron irradiation. Results in this study showed that the friction welding method and the casting would be able to apply to the joint method of piping in ITER. This report is based on the final report of the ITER Engineering Design Activities (EDA). (author)

  1. Fabrication of conductive copper patterns using reactive inkjet printing followed by two-step electroless plating

    International Nuclear Information System (INIS)

    Chen, Jin-Ju; Lin, Guo-Qiang; Wang, Yan; Sowade, Enrico; Baumann, Reinhard R.; Feng, Zhe-Sheng

    2017-01-01

    Highlights: • Copper patterns were fabricated by reactive inkjet printing and two-step electroless plating. • Cu particles produced via reactive inkjet printing act as catalyst for copper electroless plating. • High conductivity can be obtained without many printing passes and high temperature sintering. • This approach can largely avoid nozzle-clogging problems. • This approach presents a potential way in the flexible printed electronics with simple process. - Abstract: A simple and low-cost process for fabricating conductive copper patterns on flexible polyimide substrates was demonstrated. Copper catalyst patterns were first produced on polyimide substrates using reactive inkjet printing of Cu (II)-bearing ink and reducing ink, and then the conductive copper patterns were generated after a two-step electroless plating procedure. The copper layers were characterized by optical microscope, SEM, XRD and EDS. Homogeneously distributed copper nanoclusters were found in the catalyst patterns. A thin copper layer with uniform particle size was formed after first-step electroless plating, and a thick copper layer of about 14.3 μm with closely packed structure and fine crystallinity was produced after second-step electroless plating. This resulting copper layer had good solderability, reliable adhesion strength and a low resistivity of 5.68 μΩ cm without any sintering process.

  2. Fabrication of conductive copper patterns using reactive inkjet printing followed by two-step electroless plating

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jin-Ju; Lin, Guo-Qiang; Wang, Yan [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054 (China); Sowade, Enrico; Baumann, Reinhard R. [Digital Printing and Imaging Technology, Technische Universität Chemnitz, Chemnitz, 09126 (Germany); Feng, Zhe-Sheng, E-mail: fzs@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054 (China)

    2017-02-28

    Highlights: • Copper patterns were fabricated by reactive inkjet printing and two-step electroless plating. • Cu particles produced via reactive inkjet printing act as catalyst for copper electroless plating. • High conductivity can be obtained without many printing passes and high temperature sintering. • This approach can largely avoid nozzle-clogging problems. • This approach presents a potential way in the flexible printed electronics with simple process. - Abstract: A simple and low-cost process for fabricating conductive copper patterns on flexible polyimide substrates was demonstrated. Copper catalyst patterns were first produced on polyimide substrates using reactive inkjet printing of Cu (II)-bearing ink and reducing ink, and then the conductive copper patterns were generated after a two-step electroless plating procedure. The copper layers were characterized by optical microscope, SEM, XRD and EDS. Homogeneously distributed copper nanoclusters were found in the catalyst patterns. A thin copper layer with uniform particle size was formed after first-step electroless plating, and a thick copper layer of about 14.3 μm with closely packed structure and fine crystallinity was produced after second-step electroless plating. This resulting copper layer had good solderability, reliable adhesion strength and a low resistivity of 5.68 μΩ cm without any sintering process.

  3. Primary Copper Smelter and Refinery as a Recycling Plant—A System Integrated Approach to Estimate Secondary Raw Material Tolerance

    Directory of Open Access Journals (Sweden)

    Olof Forsén

    2017-10-01

    Full Text Available The primary production of sulfide concentrates includes smelting to copper matte or blister copper, conversion of matte to blister copper, and refining to copper. Smelting, converting, and fire-refining can use a limited amount of secondary materials. Molten copper can effectively dissolve many metals, from valuable noble metals to harmful impurities such as bismuth. However, some of the impurity metals in copper are valuable in other applications. In this paper, we outline the main material flows in copper smelting and electrorefining and describe how minor metals can be recovered from secondary raw materials using copper as a carrier material. We will use a system integrated approach to define the factors that affect the recovery of different metals and copper quality. Metals typical in copper production are used as examples, like noble metals, As, Bi, Se, and Te, including metals in the EU critical raw materials list like PGM and Sb.

  4. A finite difference model of the iron ore sinter process

    OpenAIRE

    Muller, J.; de Vries, T.L.; Dippenaar, B.A.; Vreugdenburg, J.C.

    2015-01-01

    Iron ore fines are agglomerated to produce sinter, which is an important feed material for blast furnaces worldwide. A model of the iron ore sintering process has been developed with the objective of being representative of the sinter pot test, the standard laboratory process in which the behaviour of specific sinter feed mixtures is evaluated. The model aims to predict sinter quality, including chemical quality and physical strength, as well as key sinter process performance parameters such ...

  5. Non-pressurized sintered silicon carbide with titanium carbide reinforcement

    International Nuclear Information System (INIS)

    Adler, J.

    1992-01-01

    A non-pressurized compression of SiC-TiC composite materials can be achieved via liquid phase sintering by the application of oxidic additives. Materials with TiC proportions up to 40% by volume of TiC and densities of 97 to 98% TD were produced at sintering temperatures around 1875 C. With SiC sintered in the liquid phase an increase of toughness at fracture of 80% compared with conventionally non-pressurized sintered SiC was achieved with B/C additive. No further increase could be achieved by the addition of TiC particles. However, the oxidation resistance at 1200 C was worsened. (orig.) [de

  6. Hydrothermal Cold Sintering

    Science.gov (United States)

    Kang, Xiaoyu

    Solid state sintering transforms particle compact to a physically robust and dense polycrystalline monolith driven by reduction of surface energy and curvature. Since bulk diffusion is required for neck formation and pore elimination, sintering temperature about 2/3 of melting point is needed. It thus places limitations for materials synthesis and integration, and contributes to significant energy consumption in ceramic processing. Furthermore, since surface transport requires lower temperature than bulk processes, grain growth is often rapid and can be undesired for physical properties. For these reasons, several techniques have been developed including Liquid Phase Sintering (LPS), Hot Pressing (HP) and Field Assisted Sintering Technique (FAST), which introduce either viscous melt, external pressure or electric field to speed up densification rates at lower temperature. However, because of their inherent reliability on bulk diffusion, temperatures required are often too high for integrating polymers and non-noble metals. Reduction of sintering temperature below 400 °C would require a different densification mechanism that is based on surface transport with external forces to drive volume shrinkage. Densification method combining uniaxial pressure and solution under hydrothermal condition was first demonstrated by Kanahara's group at Kochi University in 1986 and was brought to our attention by the work of Kahari, etc, from University of Oulu on densification of Li2MoO 4 in 2015. This relatively new process showed promising ultra-low densification temperature below 300 °C, however little was known about its fundamental mechanism and scope of applications, which became the main focus of this dissertation. In this work, a uniaxial hydraulic press, a standard stainless steel 1/2 inch diameter die with heating band were utilized in densifying metal oxides. Applied pressure and sintering temperature were between 100 MPa and 700 MPa and from room temperature to 300

  7. Characterization of In-Situ Cu–TiH2–C and Cu–Ti–C Nanocomposites Produced by Mechanical Milling and Spark Plasma Sintering

    Directory of Open Access Journals (Sweden)

    Nguyen Thi Hoang Oanh

    2017-03-01

    Full Text Available This study focuses on the fabrication and microstructural investigation of Cu–TiH2–C and Cu–Ti–C nanocomposites with different volume fractions (10% and 20% of TiC. Two mixtures of powders were ball milled for 10 h, consequently consolidated by spark plasma sintering (SPS at 900 and 1000 °C producing bulk materials with relative densities of 95–97%. The evolution process of TiC formation during sintering process was studied by using X-ray diffraction (XRD, scanning electron microscopy (SEM, and high resolution transmission electron microscopy (HRTEM. XRD patterns of composites present only Cu and TiC phases, no residual Ti phase can be detected. TEM images of composites with (10 vol % TiC sintered at 900 °C show TiC nanoparticles about 10–30 nm precipitated in copper matrix, most of Ti and C dissolved in the composite matrix. At the higher sintering temperature of 1000 °C, more TiC precipitates from Cu–TiH2–C than those of Cu–Ti–C composite, particle size ranges from 10 to 20 nm. The hardness of both nanocomposites also increased with increasing sintering temperature. The highest hardness values of Cu–TiH2–C and Cu–Ti–C nanocomposites sintered at 1000 °C are 314 and 306 HV, respectively.

  8. Coarsening-densification transition temperature in sintering of uranium dioxide

    International Nuclear Information System (INIS)

    Balakrishna, Palanki; Narasimha Murty, B.; Chakraborthy, K.P.; Jayaraj, R.N.; Ganguly, C.

    2001-01-01

    The concept of coarsening-densification transition temperature (CDTT) has been proposed to explain the experimental observations of the study of sintering undoped uranium dioxide and niobia-doped uranium dioxide powder compacts in argon atmosphere in a laboratory tubular furnace. The general method for deducing CDTT for a given material under the prevailing conditions of sintering and the likely variables that influence the CDTT are described. Though the present work is specific in nature for uranium dioxide sintering in argon atmosphere, the concept of CDTT is fairly general and must be applicable to sintering of any material and has immense potential to offer advantages in designing and/or optimizing the profile of a sintering furnace, in the diagnosis of the fault in the process conditions of sintering, and so on. The problems of viewing the effect of heating rate only in terms of densification are brought out in the light of observing the undesirable phenomena of coring and bloating and causes were identified and remedial measures suggested

  9. Low-temperature densification and excellent thermal properties of W–Cu thermal-management composites prepared from copper-coated tungsten powders

    International Nuclear Information System (INIS)

    Zhang, Lianmeng; Chen, Wenshu; Luo, Guoqiang; Chen, Pingan; Shen, Qiang; Wang, Chuanbin

    2014-01-01

    Highlights: • High-density (98.4%) W–20 wt.%Cu composites were low-temperature fabricated. • A highly pure Cu network and a homogenous microstructure formed in the composites. • The interfaces between W and Cu are well bonded with no spaces. • The composites have excellent thermal properties. -- Abstract: High-density W–20 wt.%Cu composites containing a Cu-network structure and exhibiting good thermal properties were fabricated by low-temperature hot-press sintering from high-purity copper-coated tungsten powders. The relative density of W–20 wt.%Cu composites sintered at 950 °C–100 MPa–2 h was 98.4%. The low-temperature densification of W–Cu composites occurs because the sintering mode of the coated particles involves only sintering of Cu to Cu, rather than both Cu to W and Cu to Cu, as required for conventional powder particles. The microstructure shows that a network of high-purity Cu extends throughout the composites, and that the W is distributed homogeneously; the interfaces between W and Cu show good contact. The composites have excellent thermal conductivity (239 W/(m K)) and a relatively low coefficient of thermal expansion (7.4 × 10 −6 /K), giving them some of the best properties reported to date for thermal-management materials. The excellent performance is mainly because of their structure, which arises from the characteristics of the high-purity copper-coated tungsten powders

  10. Synthesis of Cu-CNTs nanocomposites via double pressing double sintering method

    Directory of Open Access Journals (Sweden)

    Marjan Darabi

    2018-01-01

    Full Text Available In this research, copper (Cu-carbon nanotubes (CNTs nanocomposites were synthesized with different weight percentages of CNTs by double pressing double sintering (DPDS method as well as conventional sintering method. A planetary ball mill was used to disperse CNTs in Cu matrix. The milled powders were first cold pressed to 450 MPa in a uniaxial stainless-steel die with cylindrical compacts (diameter: 12 mm and height: 5 mm. The effect of CNTs content and the DPDS method on the properties of the nanocomposites were investigated. The microstructure and phase analysis of Cu-CNTs nanocomposite samples were studied by FESEM and X-Ray Diffraction. The electrical conductivity of nanocomposites was measured and compared to both sintering methods. Mechanical properties of Cu-CNTs nanocomposites were characterized using bending strength and micro-hardness measurements. Enhancements of about 32% in bending strength, 31.6% in hardness and 19.5% in electrical conductivity of Cu-1 wt.% CNTs nanocomposite synthesized by DPDS method were observed as compared to Cu-1 wt.% CNTs nanocomposites fabricated under the similar condition by a conventional sintering process.

  11. Effect of post-sintering treatment on properties of Bi-based high Tc superconductors

    International Nuclear Information System (INIS)

    Nagai, Masayuki; Kozuka, Akira; Morishita, Ken; Nishino, Tadashi; Hattori, Takeo; Takata, Masasuke

    1989-01-01

    A new method to obtain the pure 110K phase in the system Bi-Sr-Ca-Cu-O was examined employing post-sintering treatment. The mixture of Bi 2 O 3 , SrCO 3 , CaCO 3 and CuO with the basic composition of Bi/Sr/Ca/Cu=2/2/1/2 was calcined. The resulting powder was soaked in ethanol containing copper acetate and calcium acetate, the amounts of which were determined to give the composition of Bi/Sr/Ca/Cu=2/2/2/3 after sintering. The resistivity was measured by the d.c. four probe method in a cryostat. The current level was maintained at 50 mA and the voltage drop was determined by averaging the values in the forward and reverse directions. The zero T c ranged from 65 to 69K for the samples after sintering, while that ranged from 69 to 71K for those with post-sintering treatment. The effect of the treatment was not drastic but significant. Modified post-sintering treatment is being examined and the results are reported in the symposium

  12. Field assisted sintering of refractory carbide ceramics and fiber reinforced ceramic matrix composites

    Science.gov (United States)

    Gephart, Sean

    The sintering behaviors of silicon carbide (SiC) and boron carbide (B4C) based materials were investigated using an emerging sintering technology known as field assisted sintering technology (FAST), also known as spark plasma sintering (SPS) and pulse electric current sintering (PECS). Sintering by FAST utilizes high density electric current, uniaxial pressure, and relatively high heating rate compared to conventional sintering techniques. This effort investigated issues of scaling from laboratory FAST system (25 ton capacity) to industrial FAST system (250 ton capacity), as well as exploring the difference in sintering behavior of single phase B4C and SiC using FAST and conventional sintering techniques including hot-pressing (HP) and pressure-less sintering (PL). Materials were analyzed for mechanical and bulk properties, including characterization of density, hardness, fracture toughness, fracture (bend) strength, elastic modulus and microstructure. A parallel investigation was conducted in the development of ceramic matrix composites (CMC) using SiC powder impregnation of fiber compacts followed by FAST sintering. The FAST technique was used to sinter several B4C and SiC materials to near theoretical density. Preliminary efforts established optimized sintering temperatures using the smaller 25 ton laboratory unit, targeting a sample size of 40 mm diameter and 8 mm thickness. Then the same B4C and SiC materials were sintered by the larger 250 ton industrial FAST system, a HP system, and PL sintering system with a targeted dense material geometry of 4 x 4 x 0.315 inches3 (101.6 x 101.6 x 8 mm3). The resulting samples were studied to determine if the sintering dynamics and/or the resulting material properties were influenced by the sintering technique employed. This study determined that FAST sintered ceramic materials resulted in consistently higher averaged values for mechanical properties as well as smaller grain size when compared to conventionally sintered

  13. Corrosion behavior of copper-base materials in a gamma-irradiated environment; Final report

    Energy Technology Data Exchange (ETDEWEB)

    Yunker, W.H.

    1990-09-01

    Specimens of three copper-base materials were corrosion tested with gamma radiation exposure dose rates in the range of 1.9 {times} 10{sup 3} R/h to 4.9 {times} 10{sup 5} R/h. Materials used were pure copper, 7% aluminum bronze and 30% copper-nickel. Exposures were performed in moist air at 95{degree}C and 150{degree}C and liquid Well J-13 water at 95{degree}C, for periods of up to 16 months. Specimens were monitored for uniform weight loss, stress-induced corrosion and crevice corrosion. Specimen surfaces were examined visually at 10X magnification as well as by Auger Electron Spectroscopy, x-ray diffraction and metallography. Corrosion was not severe in any of the cases. In general, the pure copper was corroded most uniformly while the copper-nickel was the least reproducibly corroded. 11 refs, 40 figs., 15 tabs.

  14. Die casting copper motor rotors: mold materials and processing for cost-effective manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Peters, D.T.; Cowie, J.G.; Brush, E.F. Jr.

    2000-07-01

    This project seeks to demonstrate mold materials for copper pressure die-casting that are cost-effective and practical for production use in die-casting copper motor rotors. The incorporation of die-cast copper for conductor bars and end rings of the induction motor in place of aluminum would result in attractive improvements in motor energy efficiency through reductions in motor losses ranging from 15% to 20%. Die-cast motor rotors are produced in aluminum today because rotor fabrication by pressure die-casting is an established practice. Lack of a durable and cost-effective mold material has been the technical barrier preventing manufacture of the die-cast copper rotor. This project tested H-13 steel die inserts that establish the baseline. Nickel-, tungsten-, and molybdenum-based high temperature alloys were extensively tested. Results indicate that substantially extended die life is possible using high temperature die materials, pre-heated and operated at elevated temperatures. Pre-heating and high operating temperatures were shown to be critical in extending the die life by decreasing the cyclic stresses associated with thermal expansion. Extended die life provides the opportunity for economically viable copper motor rotor die-casting. (orig.)

  15. Quartz crystal reinforced quartz glass by spark plasma sintering

    International Nuclear Information System (INIS)

    Torikai, D.; Barazani, B.; Ono, E.; Santos, M.F.M.; Suzuki, C.K.

    2011-01-01

    The Spark Plasma Sintering presents fast processing time when compared to conventional sintering techniques. This allows to control the grain growth during sintering as well as the diffusion rate of a multi-material compounds, and make possible obtainment of functionally graded materials and nanostructured compounds. Powders of high purity silica glass and crystalline silica were sintered in a SPS equipment at temperatures around 1350° C, i.e., above the softening temperature of silica glass and below the melting temperature of quartz crystal. As a result, glass ceramics with pure silica glass matrix reinforced with crystalline alpha-quartz grains were fabricated at almost any desired range of composition, as well as controlled size of the crystalline reinforcement. X-ray diffraction and density measurements showed the possibility to manufacture a well controlled density and crystallinity glass-ceramic materials. (author)

  16. Microstructure evolution during pressureless sintering of bulk oxide ceramics

    Directory of Open Access Journals (Sweden)

    Karel Maca

    2009-06-01

    Full Text Available The author’s experience concerning the infl uence of the choice of different pressureless heating schedules on the fi nal microstructure of oxide ceramic materials is summarized in the paper. Alumina, ceria, strontium titanate, as well as tetragonal (3 mol% Y2O3 and cubic (8 mol% Y2O3 zirconia were cold isostatically pressed or injection moulded and pressureless sintered with different heating schedules – namely with Constant-Rate of Heating with different dwell temperatures (CRH, with Rate-Controlled Sintering (RCS and with Two-Step Sintering (TSS. It was examined whether some of these three sintering schedules, with the same fi nal density achieved, can lead to a decrease of the grain size of sintered ceramics. The results showed that only TSS (and only for selected materials brought significant decrease of the grain size.

  17. The Effects of Solid Phase Additives on Sintering Properties of Alumina Bioceramic

    Institute of Scientific and Technical Information of China (English)

    WANG Xin-yu; LI Shi-pu; HE Jian-hua; JIANG Xin; LI Jian-hua

    2003-01-01

    In order to reduce the sintering temperature and improve the preparing conditions of alumina bioceramics,the Mg-Zr-Y composite solid phase additives were added into high purity Al2O3 micro-powder by chemical coprecipitation method.The powder was shaped under 200MPa cold isostatic pressure,and then the biscuits were sintered at 1600℃ under normal pressure.The sintered alumina materials were tested and the sintering mechanism was discussed.The results show that physical properties of the material were improved comparatively.The Mg-Zr-Y composite solid additives could promote the sintering of alumina bioceramics and the mechanism is solid phase sintering.

  18. Sintering-alkaline processing of borosilicate ores of Tajikistan

    International Nuclear Information System (INIS)

    Nazarov, F.A.

    2018-01-01

    The aim of the work is to study the processes of decomposition of boron-containing ore by sintering with NaOH, finding the optimal parameters of the decomposition process, studying the kinetics of processes and developing the technological foundations for ore processing. The processes of borosilicate ore processing were studied by sintering with NaOH. Possible mechanisms of chemical reactions of the process of sintering-alkaline decomposition of boron-containing ore are established, the results of which are substantiated by physicochemical methods of analysis. A principal technological scheme for processing of borosilicate ores by a sintering-alkaline method has been developed. In the first chapter, data on alkaline and caking processes for processing boron-containing and aluminium comprising raw materials are available in the literature. Based on this, the directions of our own research are outlined. The second chapter is devoted to the study of the chemical and mineralogical compositions of borosilicate ores and their concentrates with the help of X-ray phase and chemical analysis methods, the stoichiometric calculation of the formation of aluminum, iron, and boron salts has been carried out, and a thermodynamic analysis of the processes of sintering borosilicate ores with alkali has been considered. The third chapter presents the results of a study of sintering-alkaline method of processing of initial borosilicate ore of the Ak-Arkhar Deposit and its concentrate without calcination and after calcination. The kinetics of sintering of borosilicate ores with sodium hydroxide was studied. The optimal conditions of borosilicate ore sintering before and after the preliminary calcination with alkali were determined. Optimal parameters of the sintering process have been found: sintering temperature 800-8500 deg C, duration of the process - 60 minutes, mass ratio of NaOH to raw materials 2: 1. The conditions for sintering of borosilicate concentrate with alkali have been

  19. Production and properties of bronze based cellular materials

    International Nuclear Information System (INIS)

    Strobl, S.; Danninger, H.

    2001-01-01

    For production of lightweight components, cellular materials offer attractive potential. Here, manufacturing of sintered bodies from bronze hollow spheres is described. The process starts with fabrication of hollow copper particles by cementation of Cu on iron particles. The still fragile Cu shells are consolidated by coating with Sn and subsequent gravity sintering. The resulting specimens exhibit a closed cell bronze structure with rather consistent morphology and cell wall thickness. The apparent density may range between 1.5 and 3.0 gcm -3 and can be controlled by variation of particle size and wall thickness. The mechanical behavior of the structures esp. during compressive loading is described and related to the microstructural parameters. (author)

  20. Thermal characteristic of sintered AgeCu nano-paste for high-temperature die-attach application

    International Nuclear Information System (INIS)

    Tan, Kim Seah; Cheong, Kuan Yew; Wong, Yew Hoong

    2015-01-01

    In this work, thermal characteristic of silver-copper (Ag-Cu) nano-paste that consists of a mixture of nano-sized Ag and Cu particles and organic compounds meant for high-temperature die-attach application is reported. The Ag-Cu nano-paste was sintered at 380 deg. C for 30 min without the need of applying external pressure and the effect of Cu loading (20-80 wt%) on the thermal properties was investigated in against of pure Ag nano-paste and pure Cu nano-paste. The results showed the specific heat of sintered Ag-Cu nano-paste was increased as the loading of Cu increased. For thermal conductivity and coefficient of thermal expansion (CTE) of sintered Ag-Cu nano-paste, a declining trend has been recorded with the increment of Cu loading. Overall, the sintered Ag-Cu nano-paste with 20 wt% of Cu loading has demonstrated the best combination of thermal conductivity (K) and CTE (α), which were 159 W/m K and 13 x 10 -6 /K, respectively. It has proven that there was a strong correlation between the amount of pores and thermal properties of the nano-paste. The ratio of K/α is a performance index (M), which has shown a higher value (12.2 x 10 6 W/m) than most of the commonly used die-attach systems. Finally, the Ag-Cu nano-paste has demonstrated a melting point of 955 deg. C, which can be proposed as an alternative high-temperature die-attach material

  1. Tool design and materials for electro sinter forging (ESF)

    DEFF Research Database (Denmark)

    Cannella, Emanuele; Nielsen, Chris Valentin

    ) process, the main requirement is the electrical current passing through the electrical conducting powder. To obtain this, a closed-die setup with electrical insulating properties was used. Furthermore, the alignment between the compacting punch and die needed to be ensured by pre-aligning or alternatively...... by using an alignment system. The present work is focused on the designing phase of a tool for the electro sinter forging of a disc, made from titanium powder. By applying a pre-alignment system, the setup resulted suitable for this application. A tool design for sintering rings is also showed....

  2. Cold compaction behavior and pressureless sinterability of ball milled WC and WC/Cu powders

    Directory of Open Access Journals (Sweden)

    Hashemi Seyed R.

    2016-01-01

    Full Text Available In this research, cold compaction behavior and pressureless sinterability of WC, WC-10%wtCu and WC-30%wtCu powders were investigated. WC and WC/Cu powders were milled in a planetary ball mill for 20h. The milled powders were cold compacted at 100, 200, 300 and 400 MPa pressures. The compressibility behavior of the powders was evaluated using the Heckel, Panelli-Ambrosio and Ge models. The results showed that the Panelli-Ambrosio was the preferred equation for description the cold compaction behavior of the milled WC and WC-30%wtCu powders. Also, the most accurate model for describing the compressibility of WC-10%wtCu powders was the Heckel equation. The cold compacts were sintered at 1400°C. It was found that by increasing the cold compaction pressure of powder compacts before sintering, the sinterability of WC-30%wtCu powder compacts was enhanced. However, the cold compaction magnitude was not affected significantly on the sinterability of WC and WC-10%wtCu powders. The microstructural investigations of the sintered samples by Scanning Electron Microscopy (SEM confirmed the presence of porosities at the interface of copper-tungsten carbide phases.

  3. Sintering and densification; new techniques: sinter forging

    International Nuclear Information System (INIS)

    Winnubst, A.J.A.

    1998-01-01

    In this chapter pressure assisted sintering methods will be described. Attention will mainly be paid to sinter forging as a die-wall free uniaxial pressure sintering technique, where large creep strains are possible. Sinter forging is an effective tool to reduce sintering temperature and time and to obtain a nearly theoretically dense ceramic. In this way grain size in tetragonal zirconia ceramics can be reduced down to 100 nm. Another important phenomenon is the reduction of the number density and size of cracks and flaws resulting in higher strength and improved reliability, which is of utmost importance for engineering ceramics. The creep deformation during sinter forging causes a rearrangement of the grains resulting in a reduction of interatomic spaces between grains, while grain boundary (glassy) phases can be removed. The toughness and in some cases the wear resistance is enhanced after sinter forging as a result of the grain-boundary-morphology improvement. (orig.)

  4. The effect of alumina particles on the microstructural and mechanical properties of copper foams fabricated by space-holder method

    Science.gov (United States)

    Salvo, C.; Aguilar, C.; Lascano, S.; Pérez, L.; López, M.; Mangalaraja, R. V.

    2018-05-01

    The copper foam is an interesting field of research because of its several advantages as an engineering material. Powder metallurgy presents an alternative route to obtain a porous structure with high strength to weight ratio and functional properties. The viability of processing copper foam separately with two different space-holders such as ammonium hydrogen carbonate (NH4HCO3) and sodium chloride (NaCl) of 50 vol% was studied. The green compacts obtained under 200 MPa were sintered at different cycles for the complete removal of space-holder. The sintered foams were characterized by optical microscopy (OM), scanning electron microscopy (SEM) and uniaxial testing machine (UTM) to study their structural features and compressive strength, respectively. The results showed that NaCl particles were the best alternative to obtain a porous structure, hence two different sizes (1 and 0.01 μm) of alumina (Al2O3) particles with 2, 4 and 6 vol% were used to fabricate copper foams. As a result, a bimodal structure consisting of macro and micropores with a highly interconnected porosity was achieved. In addition, the smaller size alumina particles promoted a higher density of pores, however, the compressive strength was reduced for the higher volume fraction of alumina particles.

  5. Liquid Phase Sintering of Highly Alloyed Stainless Steel

    DEFF Research Database (Denmark)

    Mathiesen, Troels

    1996-01-01

    Liquid phase sintering of stainless steel is usually applied to improve corrosion resistance by obtaining a material without an open pore system. The dense structure normally also give a higher strength when compared to conventional sintered steel. Liquid phase sintrering based on addition...... of boride to AISI 316L type steels have previously been studied, but were found to be sensitive to intergranular corrosion due to formation of intermetallic phases rich in chromium and molybdenum. In order to improve this system further, new investigations have focused on the use of higher alloyed stainless...... steel as base material. The stainless base powders were added different amounts and types of boride and sintered in hydrogen at different temperatures and times in a laboratory furnace. During sintering the outlet gas was analyzed and subsequently related to the obtained microstructure. Thermodynamic...

  6. Mechanisms of sintering

    International Nuclear Information System (INIS)

    Mohan, Ashok; Soni, N.C.; Moorthy, V.K.

    1980-01-01

    The basic mechanisms by which the material moves during sintering have not only held a strange fascination but are also very important in determining the properties of the end product. Kuczynski's exponent method has been subsequently refined by several schools to make it increasingly reliable. There is now a fairly good understanding of mechanisms in some of the materials. However in others the issue is complicated by their basic nature. The problems of ambiguity in criterion and that of more than one mechanism being simultaneously operative have been tackled with dexterity by Ashby for drawing sintering mechanism diagrams. The method has been modified to give Relative Contribution Diagrams (RCD). These yield additional information and have been used for analysis. The main criticism against this is that it uses a very large number of rate equations and material properties, which can communicate their inaccuracies to the diagram. A case study of UO 2 was undertaken and it has been shown quantitatively that inaccuracies in a smaller number of properties only affect the diagrams to any significant extent. (auth.)

  7. THE EFFECT OFCARBON NANOTUBES ON THE SINTERING BEHAVIOR OF ZIRCONIA BASED MATERIALS

    OpenAIRE

    A. M. Zahedi; H. R. Rezaie; J. Javadpour

    2015-01-01

    Different volume fractions (1.3, 2.6, and 7.6 Vol.%) of carbon nanotubes (CNTs) were dispersed within 8Y-TZP nanopowders. Mixed powder specimens were subsequently processed by spark plasma sintering (SPS) and effects of CNTs on the sintering process of 8Y-TZP/CNT composites was studied. Maintenance of CNTs through the SPS process was confirmed using TEM and Raman Spectroscopy. Studies on the sintering profile of zirconia-CNT composites (Z-xC composites) could, to some extent, clarify the effe...

  8. Comparison of Ti(C,N)-based cermets processed by hot-pressing sintering and conventional pressureless sintering

    International Nuclear Information System (INIS)

    Xu, Qingzhong; Ai, Xing; Zhao, Jun; Qin, Weizhen; Wang, Yintao; Gong, Feng

    2015-01-01

    Highlights: • The HP sintered Ti(C,N)-based cermets exhibit high hardness with fine grain size. • The PLS sintered cermets possess high mechanical properties with low porosity. • The applied pressure can rearrange particles and contribute to grain refinement. • The heating rate can greatly affect the solid and liquid phase sintering of cermets. - Abstract: A suitable sintering method is important to obtain the Ti(C,N)-based cermets with superior properties. In this paper, Ti(C,N)-based cermets were fabricated by hot-pressing sintering (HP) and conventional pressureless sintering (PLS) technology, respectively, to investigate the influence of different sintering methods on the microstructure and mechanical properties of cermets materials. The microstructure, fracture morphology, indention cracks and phase composition were observed and detected using scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The transverse rupture strength (TRS), Vickers hardness (HV) and fracture toughness (K IC ) were also measured. The results reveal that all of the Ti(C,N)-based cermets exhibit core–rim microstructures with black cores, white cores and grey rims embedded into metal binder phases. The grain size of the samples fabricated by HP is much finer and the structure is more compact than those fabricated by PLS, while there exist pores in the HP sintered samples. The sintering process has no influence on the phase composition of cermets, but affects the phase content and crystallinity. The samples fabricated by PLS present higher transverse rupture strength, fracture toughness and density than samples fabricated by HP. However, the HP sintered samples possess a higher hardness

  9. Investigations on microstructure, electrical and magnetic properties of copper spinel ferrite with WO3 addition for applications in the humidity sensors

    Science.gov (United States)

    Tudorache, Florin

    2018-04-01

    In the present study we report the structural, electrical, magnetic and humidity characteristics of copper ferrite with different percent on tungsten trioxide addition. The aim of this study was to obtain more stable and sensitive active materials for humidity sensors. In order to highlight the influence of tungsten on the structural, electrical and magnetic properties, the ferrite samples were fabricated via sol-gel self-combustion method and sintered for 30 min at 1000 °C with percent between 0 and 20% tungsten trioxide additions. The X-ray diffraction investigations showed the copper ferrite phase composition. The scanning electron microscopy revealed the influence of the substitution on characteristics of the crystallites and the profilometry showed the surface topography of samples. The investigation was focused on the variation of permittivity and electrical conductivity, in relation with tungsten trioxide addition, frequency and humidity. We have also, investigated the relevant magnetic characteristics of the copper ferrite material by highlighting the influence of tungsten trioxide addition on to Curie temperature and the permeability frequency characteristics. The data suggests that the copper ferrite with tungsten trioxide addition can be used as active material for humidity sensors.

  10. [Effect of chloramines disinfection for biofilm formation control on copper and stainless steel pipe materials].

    Science.gov (United States)

    Zhou, Ling-ling; Zhang, Yong-ji; Li, Xing; Li, Gui-bai

    2008-12-01

    Two rotating annular bioreactors (RABs) with copper and stainless steel pipe materials were adopted in the study, the effects of these two pipe materials and chloramines disinfection on biofilms formation in drinking water distribution system were evaluated. The maximum viable bacterial number in biofilm of copper and stainless steel reached 5.5 x 10(3) CFU/cm2 and 2.5 x 10(5) CFU/cm2 at 18th and 21st day without chloramines, and the viable bacterial number at the apparent steady state was 1.0 x 10(3) CFU/cm2 and 1.3 x 10(5) CFU/cm2 respectively. It was obvious that the biomass on copper materials was lower than that of the stainless steel. The maximum viable bacterial on copper and stainless steel under chloramines was 5.0 x 10(2) CFU/cm2 and 5.0 x 10(4) CFU/cm2, which was one order of magnitude lower than that of without chloramines, and its number was 10 CFU/cm2 and 3.5 x 10(4) CFU/cm2 at the steady state. These results illustrated that chloramines had apparent ability in controlling biomass when the biofilm was on steady states, especially for copper material. There was exponential relationship between biomass in biofilm and residue chloramines, which meant less biomass with more chloramines, synergistic effects were observed between chloramines and copper materials on biomass in biofilms inactivation.

  11. Report on in-situ studies of flash sintering of uranium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Raftery, Alicia Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-24

    Flash sintering is a novel type of field assisted sintering that uses an electric field and current to provide densification of materials on very short time scales. The potential for field assisted sintering techniques to be used in producing nuclear fuel is gaining recognition due to the potential economic benefits and improvements in material properties. The flash sintering behavior has so far been linked to applied and material parameters, but the underlying mechanisms active during flash sintering have yet to be identified. This report summarizes the efforts to investigate flash sintering of uranium dioxide using dilatometer studies at Los Alamos National Laboratory and two separate sets of in-situ studies at Brookhaven National Laboratory’s NSLS-II XPD-1 beamline. The purpose of the dilatometer studies was to understand individual parameter (applied and material) effects on the flash behavior and the purpose of the in-situ studies was to better understand the mechanisms active during flash sintering. As far as applied parameters, it was found that stoichiometry, or oxygen-to-metal ratio, has a significant effect on the flash behavior (time to flash and speed of flash). Composite systems were found to have degraded sintering behavior relative to pure UO2. The critical field studies are complete for UO2.00 and will be analyzed against an existing model for comparison. The in-situ studies showed that the strength of the field and current are directly related to the sample temperature, with temperature-driven phase changes occurring at high values. The existence of an ‘incubation time’ has been questioned, due to a continuous change in lattice parameter values from the moment that the field is applied. Some results from the in-situ experiments, which should provide evidence regarding ion migration, are still being analyzed. Some preliminary conclusions can be made from these results with regard to using field assisted sintering to

  12. Experimental Studies of the Effects of Anode Composition and Process Parameters on Anode Slime Adhesion and Cathode Copper Purity by Performing Copper Electrorefining in a Pilot-Scale Cell

    Science.gov (United States)

    Zeng, Weizhi; Wang, Shijie; Free, Michael L.

    2016-10-01

    Copper electrorefining tests were conducted in a pilot-scale cell under commercial tankhouse environment to study the effects of anode compositions, current density, cathode blank width, and flow rate on anode slime behavior and cathode copper purity. Three different types of anodes (high, mid, and low impurity levels) were used in the tests and were analyzed under SEM/EDS. The harvested copper cathodes were weighed and analyzed for impurities concentrations using DC Arc. The adhered slimes and released slimes were collected, weighed, and analyzed for compositions using ICP. It was shown that the lead-to-arsenic ratio in the anodes affects the sintering and coalescence of slime particles. High current density condition can improve anode slime adhesion and cathode purity by intensifying slime particles' coalescence and dissolving part of the particles. Wide cathode blanks can raise the anodic current densities significantly and result in massive release of large slime particle aggregates, which are not likely to contaminate the cathode copper. Low flow rate can cause anode passivation and increase local temperatures in front of the anode, which leads to very intense sintering and coalescence of slime particles. The results and analyses of the tests present potential solutions for industrial copper electrorefining process.

  13. Low temperature sintering of fluorapatite glass-ceramics.

    Science.gov (United States)

    Denry, Isabelle; Holloway, Julie A

    2014-02-01

    Fluorapatite glass-ceramics have been shown to be excellent candidates as scaffold materials for bone grafts, however, scaffold production by sintering is hindered by concurrent crystallization of the glass. Objective, our goal was to investigate the effect of Ca/Al ratio on the sintering behavior of Nb-doped fluorapatite-based glasses in the SiO2-Al2O3-P2O5-MgO-Na2O-K2O-CaO-CaF2 system. Methods, glass compositions with Ca/Al ratio of 1 (A), 2 (B), 4 (C) and 19 (D) were prepared by twice melting at 1525°C for 3h. Glasses were either cast as cylindrical ingots or ground into powders. Disk-shaped specimens were prepared by either sectioning from the ingots or powder-compacting in a mold, followed by heat treatment at temperatures ranging between 700 and 1050°C for 1h. The density was measured on both sintered specimens and heat treated discs as controls. The degree of sintering was determined from these measurements. Results and Significance XRD showed that fluorapatite crystallized in all glass-ceramics. A high degree of sintering was achieved at 775°C for glass-ceramic D (98.99±0.04%), and 900°C for glass-ceramic C (91.31±0.10). Glass-ceramics A or B were only partially sintered at 1000°C (63.6±0.8% and 74.1±1.5%, respectively). SEM revealed a unique microstructure of micron-sized spherulitic fluorapatite crystals in glass-ceramics C and D. Increasing the Ca/Al ratio promoted low temperature sintering of fluorapatite glass-ceramics, which are traditionally difficult to sinter. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Reaction-sintered porous mineral-based mullite ceramic membrane supports made from recycled materials.

    Science.gov (United States)

    Dong, Yingchao; Zhou, Jian-Er; Lin, Bin; Wang, Yongqing; Wang, Songlin; Miao, Lifeng; Lang, Ying; Liu, Xingqin; Meng, Guangyao

    2009-12-15

    Bulk porous mullite supports for ceramic membranes were prepared directly using a mixture of industrial waste fly ash and bauxite by dry-pressing, followed by sintering between 1200 and 1550 degrees C. The effects of sintering temperature on the phase composition and shrinkage percent of porous mullite were studied. The XRD results indicate that secondary mullitization reaction took place above 1200 degrees C, and completed at 1450 degrees C. During sintering, the mixture samples first shrunk, then expanded abnormally between 1326 and 1477 degrees C, and finally shrunk again above 1477 degrees C. This unique volume self-expansion is ascribed to the secondary mullitization reaction between bauxite and fly ash. More especially, the micro-structural variations induced by this self-expansion sintering were verified by SEM, porosity, pore size distribution and nitrogen gas permeation flux. During self-expansion sintering, with increasing temperature, an abnormal increase in both open porosity and pore size is observed, which also results in the increase of nitrogen gas flux. The mineral-based mullite supports with increased open porosity were obtained. Furthermore, the sintered porous mullite membrane supports were characterized in terms of thermal expansion co-efficient and mechanical strength.

  15. Effect of Sintering Temperature on the Properties of Aluminium-Aluminium Oxide Composite Materials

    Directory of Open Access Journals (Sweden)

    Dewan Muhammad Nuruzzaman

    2016-12-01

    Full Text Available In this study, aluminium-aluminium oxide (Al-Al2O3 metal matrix composites of different weight percentage reinforcements of aluminium oxide were processed at different sintering temperatures. In order to prepare these composite specimens, conventional powder metallurgy (PM method was used. Three types specimens of different compositions such as 95%Al+5%Al2O3, 90%Al+10%Al2O3 and 85%Al+15%Al2O3 were prepared under 20 Ton compaction load. Then, all the specimens were sintered in a furnace at two different temperatures 550oC and 580oC. In each sintering process, two different heating cycles were used. After the sintering process, it was observed that undistorted flat specimens were successfully prepared for all the compositions. The effects of sintering temperature and weight fraction of aluminium oxide particulates on the density, hardness and microstructure of Al-Al2O3 composites were observed. It was found that density and hardness of the composite specimens were significantly influenced by sintering temperature and percentage aluminium oxide reinforcement. Furthermore, optical microscopy revealed that almost uniform distribution of aluminium oxide reinforcement within the aluminium matrix was achieved.

  16. Low sintering temperature glass waste forms for sequestering radioactive iodine

    Science.gov (United States)

    Nenoff, Tina M.; Krumhansl, James L.; Garino, Terry J.; Ockwig, Nathan W.

    2012-09-11

    Materials and methods of making low-sintering-temperature glass waste forms that sequester radioactive iodine in a strong and durable structure. First, the iodine is captured by an adsorbant, which forms an iodine-loaded material, e.g., AgI, AgI-zeolite, AgI-mordenite, Ag-silica aerogel, ZnI.sub.2, CuI, or Bi.sub.5O.sub.7I. Next, particles of the iodine-loaded material are mixed with powdered frits of low-sintering-temperature glasses (comprising various oxides of Si, B, Bi, Pb, and Zn), and then sintered at a relatively low temperature, ranging from 425.degree. C. to 550.degree. C. The sintering converts the mixed powders into a solid block of a glassy waste form, having low iodine leaching rates. The vitrified glassy waste form can contain as much as 60 wt % AgI. A preferred glass, having a sintering temperature of 500.degree. C. (below the silver iodide sublimation temperature of 500.degree. C.) was identified that contains oxides of boron, bismuth, and zinc, while containing essentially no lead or silicon.

  17. Sintering and dielectric properties of a technical porcelain prepared from economical natural raw materials

    Directory of Open Access Journals (Sweden)

    S. Kasrani

    Full Text Available Abstract In this study, the production of a technical porcelain, for the ceramic dielectric applications by using economical natural raw materials, was investigated. The basic porcelain composition was selected consisting of 30 wt% kaolin, 45 wt% potash-feldspar and 25 wt% quartz. The obtained phases in the sintered samples were investigated by X-ray diffraction, Fourier transform infrared spectroscopy analysis, and scanning electron microscopy images. It has been confirmed by these techniques that the main crystalline phases were quartz and mullite. Dielectric measurements of technical porcelains have been carried out at 1 kHz from room temperature to 200 °C. The dielectric constant, loss factor, dielectric loss tangent, and resistivity of the porcelain sample sintered at 1160 °C were 22-25, 0.32-1.80, 0.006-0.07, and 0.2-9 x 1013 Ω.cm, respectively. The value of dielectric constant was significantly high when compared to that of conventional porcelains which did not exceed generally 9.

  18. Sintering and dielectric properties of a technical porcelain prepared from economical natural raw materials

    Energy Technology Data Exchange (ETDEWEB)

    Kasrani, S.; Harabi, A.; Barama, S.-E.; Foughali, L.; Benhassine, M. T., E-mail: souad478@yahoo.fr, E-mail: harabi52@gmail.com, E-mail: sebarama@usa.com, E-mail: foughali_lazhar@yahoo.fr, E-mail: mtb25dz@gmail.com [Ceramics Lab. Mentouri University of Constantine (Algeria); Aldhayan, D.M., E-mail: aldhayan@ksu.edu.sa [Chemistry Department, Riyadh, King Saud University (Saudi Arabia)

    2016-10-15

    In this study, the production of a technical porcelain, for the ceramic dielectric applications by using economical natural raw materials, was investigated. The basic porcelain composition was selected consisting of 30 wt% kaolin, 45 wt% potash-feldspar and 25 wt% quartz. The obtained phases in the sintered samples were investigated by X-ray diffraction, Fourier transform infrared spectroscopy analysis, and scanning electron microscopy images. It has been confirmed by these techniques that the main crystalline phases were quartz and mullite. Dielectric measurements of technical porcelains have been carried out at 1 kHz from room temperature to 200 °C. The dielectric constant, loss factor, dielectric loss tangent, and resistivity of the porcelain sample sintered at 1160 °C were 22-25, 0.32-1.80, 0.006-0.07, and 0.2-9 x 10{sup 13} Ω.cm, respectively. The value of dielectric constant was significantly high when compared to that of conventional porcelains which did not exceed generally 9. (author)

  19. Sintering and dielectric properties of a technical porcelain prepared from economical natural raw materials

    International Nuclear Information System (INIS)

    Kasrani, S.; Harabi, A.; Barama, S.-E.; Foughali, L.; Benhassine, M. T.; Aldhayan, D.M.

    2016-01-01

    In this study, the production of a technical porcelain, for the ceramic dielectric applications by using economical natural raw materials, was investigated. The basic porcelain composition was selected consisting of 30 wt% kaolin, 45 wt% potash-feldspar and 25 wt% quartz. The obtained phases in the sintered samples were investigated by X-ray diffraction, Fourier transform infrared spectroscopy analysis, and scanning electron microscopy images. It has been confirmed by these techniques that the main crystalline phases were quartz and mullite. Dielectric measurements of technical porcelains have been carried out at 1 kHz from room temperature to 200 °C. The dielectric constant, loss factor, dielectric loss tangent, and resistivity of the porcelain sample sintered at 1160 °C were 22-25, 0.32-1.80, 0.006-0.07, and 0.2-9 x 10 13 Ω.cm, respectively. The value of dielectric constant was significantly high when compared to that of conventional porcelains which did not exceed generally 9. (author)

  20. Reactive Sintering of Bimodal WC-Co Hardmetals

    Directory of Open Access Journals (Sweden)

    Marek Tarraste

    2015-09-01

    Full Text Available Bimodal WC-Co hardmetals were produced using novel technology - reactive sintering. Milled and activated tungsten and graphite powders were mixed with commercial coarse grained WC-Co powder and then sintered. The microstructure of produced materials was free of defects and consisted of evenly distributed coarse and fine tungsten carbide grains in cobalt binder. The microstructure, hardness and fracture toughness of reactive sintered bimodal WC-Co hardmetals is exhibited. Developed bimodal hardmetal has perspective for demanding wear applications for its increased combined hardness and toughness. Compared to coarse material there is only slight decrease in fracture toughness (K1c is 14.7 for coarse grained and 14.4 for bimodal, hardness is increased from 1290 to 1350 HV units.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7511

  1. Copper sulfates as cathode materials for Li batteries

    Science.gov (United States)

    Schwieger, Jonathan N.; Kraytsberg, Alexander; Ein-Eli, Yair

    As lithium battery technology sets out to bridge the gap between portable electronics and the electrical automotive industry, cathode materials still stand as the bottleneck regarding performances. In the realm of highly attractive polyanion-type structures as high-voltage cathode materials, the sulfate group (SO 4) 2- possesses an acknowledged superiority over other contenders in terms of open circuit voltage arising from the inductive effect of strong covalent S-O bonds. In parallel, novel lithium insertion mechanisms are providing alternatives to traditional intercalation, enabling reversible multi-electron processes securing high capacities. Combining both of these advantageous features, we report here the successful electrochemical reactivity of copper sulfate pentahydrate (CuSO 4·5H 2O) with respect to lithium insertion via a two-electron displacement reaction entailing the extrusion of metallic copper at a dual voltage of 3.2 V and 2.7 V followed by its reversible insertion at 3.5 V and 3.8 V. At this stage, cyclability was still shown to be limited due to the irreversible degradation to a monohydrate structure owing to constitutional water loss.

  2. Ductile-to-brittle transition behavior of tungsten-copper composites

    International Nuclear Information System (INIS)

    Hiraoka, Y.; Inoue, T.; Akiyoshi, N.; Yoo, M.K.

    2001-01-01

    A series of W-Cu composites were fabricated alternatively by infiltration method (19-48 vol% Cu) or by pressing and sintering method (20-80 vol% Cu), and three-point bend tests were carried out at temperatures between 77 and 363 K. Ductile-to-brittle transition behavior of the composite was investigated and also effects of Cu content as well as fabrication method on the strength and ductility of the composite were discussed. Results were summarized as follows. (1) Composite containing 19-40 vol% of copper demonstrated ductile-to-brittle transition behavior. Transition temperature tended to decrease substantially with increasing Cu content, though ductility of the composite by infiltration method was much better than that by pressing and sintering method. (2) Composite containing 48-80 vol% of copper did not demonstrate transition behavior regardless of fabrication method. (3) These results were well interpreted in terms of microstructure and fractography. (author)

  3. Nickel and Copper-Free Sintered Structural Steels Containing Mn, Cr, Si, and Mo Developed for High Performance Applications

    Directory of Open Access Journals (Sweden)

    Cias A.

    2017-03-01

    Full Text Available In an attempt to study the sinterability of potential high-strength nickel-free sintered structural steels containing Mn, Cr, Si and Mo compacts were prepared based on sponge and water atomised iron powders and on Astaloy prealloyed powders. To these were admixed ferromanganese, ferroslicon, and graphite. The samples were sintered at temperatures 1120 and 1250°C in laboratory tube furnaces in hydrogen, hydrogen-nitrogen atmospheres with dew points better than -60°C or in nitrogen in a semiclosed container in a local microatmosphere. After sintering the samples were slowly cooled or sinterhardened. Generally resultant microstructures were inhomogeneous, consisted of pearlite/ bainite/martensite, but were characterised by an absence of oxide networks. Sintering studies performed over a range of compositions have shown that superior strength, ranging beyond 900 MPa, along with reasonable tensile elongation, can be achieved with these new steels.

  4. The development of Zirconia and Copper toughened Alumina ceramic insert

    Science.gov (United States)

    Amalina Sabuan, Nur; Zolkafli, Nurfatini; Mebrahitom, A.; Azhari, Azmir; Mamat, Othman

    2018-04-01

    Ceramic cutting tools have been utilized in industry for over a century for its productivity and efficiency in machine tools and cutting tool material. However, due to the brittleness property the application has been limited. In order to manufacture high strength ceramic cutting tools, there is a need for suitable reinforcement to improve its toughness. In this case, copper (Cu) and zirconia (ZrO2) powders were added to investigate the hardness and physical properties of the developed composite insert. A uniaxial pre-forming process of the mix powder was done prior to densification by sintering at 1000 and 1300°C. The effect of the composition of the reinforcement on the hardness, density, shrinkage and microstructure of the inserts was investigated. It was found that an optimum density of 3.26 % and hardness 1385HV was obtained for composite of 10wt % zirconia and 10wt% copper at temperature 1000 °C.

  5. Vacuum-sintered body of a novel apatite for artificial bone

    Science.gov (United States)

    Tamura, Kenichi; Fujita, Tatsushi; Morisaki, Yuriko

    2013-12-01

    We produced regenerative artificial bone material and bone parts using vacuum-sintered bodies of a novel apatite called "Titanium medical apatite (TMA®)" for biomedical applications. TMA was formed by chemically connecting a Ti oxide molecule with the reactive [Ca10(PO4)6] group of Hydroxyapatite (HAp). The TMA powders were kneaded with distilled water, and solid cylinders of compacted TMA were made by compression molding at 10 MPa using a stainless-steel vessel. The TMA compacts were dried and then sintered in vacuum (about 10-3 Pa) or in air using a resistance heating furnace in the temperature range 1073-1773 K. TMA compacts were sintered at temperatures greater than 1073 K, thus resulting in recrystallization. The TMA compact bodies sintered in the range 1273-1773 K were converted into mixtures composed of three crystalline materials: α-TCP (tricalcium phosphate), β-TCP, and Perovskite-CaTiO3. The Perovskite crystals were stable and hard. In vacuum-sintering, the Perovskite crystals were transformed into fibers (approximately 1 µm in diameter × 8 µm in length), and the fiber distribution was uniform in various directions. We refer to the TMA vacuum-sintered bodies as a "reinforced composite material with Perovskite crystal fibers." However, in atmospheric sintering, the Perovskite crystals were of various sizes and were irregularly distributed as a result of the effect of oxygen. After sintering temperature at 1573 K, the following results were obtained: the obtained TMA vacuum-sintered bodies (1) were white, (2) had a density of approximately 2300 kg/m3 (corresponding to that of a compact bone or a tooth), and had a thermal conductivity of approximately 31.3 W/(m·K) (corresponding to those of metal or ceramic implants). Further, it was possible to cut the TMA bodies into various forms with a cutting machine. An implant made of TMA and inserted into a rabbit jaw bone was covered by new bone tissues after just one month because of the high

  6. Furnace for the continuous sintering of pellets of ceramic nuclear fuel material

    International Nuclear Information System (INIS)

    Heyraud, J.

    1977-01-01

    The furnace comprises a hearth for the longitudinal displacement of pellet containers, means for injecting gas at both ends of the furnace, for sucking gas between preheating and sintering zones and for condensing the binder, means for displacing the containers from an introduction lock-chamber to an extraction lock-chamber, a conveyor belt which passes through a glove box and provides a leak-tight connection between the lock-chambers. A station for loading containers with pellet sub-containers prior to sintering and a station for unloading the pellet sub-containers after sintering are juxtaposed within the glove box. 3 claims, 1 drawing figure

  7. Spark plasma sintering of titanium aluminide intermetallics and its composites

    Science.gov (United States)

    Aldoshan, Abdelhakim Ahmed

    Titanium aluminide intermetallics are a distinct class of engineering materials having unique properties over conventional titanium alloys. gamma-TiAl compound possesses competitive physical and mechanical properties at elevated temperature applications compared to Ni-based superalloys. gamma-TiAl composite materials exhibit high melting point, low density, high strength and excellent corrosion resistance. Spark plasma sintering (SPS) is one of the powder metallurgy techniques where powder mixture undergoes simultaneous application of uniaxial pressure and pulsed direct current. Unlike other sintering techniques such as hot iso-static pressing and hot pressing, SPS compacts the materials in shorter time (< 10 min) with a lower temperature and leads to highly dense products. Reactive synthesis of titanium aluminide intermetallics is carried out using SPS. Reactive sintering takes place between liquid aluminum and solid titanium. In this work, reactive sintering through SPS was used to fabricate fully densified gamma-TiAl and titanium aluminide composites starting from elemental powders at different sintering temperatures. It was observed that sintering temperature played significant role in the densification of titanium aluminide composites. gamma-TiAl was the predominate phase at different temperatures. The effect of increasing sintering temperature on microhardness, microstructure, yield strength and wear behavior of titanium aluminide was studied. Addition of graphene nanoplatelets to titanium aluminide matrix resulted in change in microhardness. In Ti-Al-graphene composites, a noticeable decrease in coefficient of friction was observed due to the influence of self-lubrication caused by graphene.

  8. REMOVAL COPPER, CHROMIUM, ARSENIC FROM OUT-OF- SERVICE CCA-TREATED WOOD MATERIALS

    Directory of Open Access Journals (Sweden)

    Engin Derya Gezer

    2004-11-01

    Full Text Available Remediation can be defined as removing copper, chromium and arsenic from out-of-service CCA treated wood products. There are some various remediation methods that can be applied to remove copper, chromium and arsenic from out-of service CCA treated wood products in order to re-use that wooden materials and minimize adverse impacts of those out-of service CCA treated wood to environment, human health, animals and other living organisms. In this study, those applied various remediation methods to remove copper, chromium and arsenic were summarized.

  9. Sintering of Synroc D

    International Nuclear Information System (INIS)

    Robinson, G.

    1982-01-01

    Sintering has been investigated as a method for the mineralization and densification of high-level nuclear defense waste powder. Studies have been conducted on Synroc D composite powder LS04. Optimal densification has been found to be highly dependent on the characteristics of the starting material. Powder subjected to milling, which was believed to reduce the level of agglomeration and possibly particle size, was found to densify better than powder not subjected to this milling. Densities of greater than 95% of theoretical could be achieved for samples sintered at 1150 to 1200 0 C. Mineralogy was found to be as expected for Synroc D for samples sintered in a CO 2 /CO atmosphere where the Fe +2 /Fe +3 ratio was maintained at 1.0 to 5.75. In a more oxidizing, pure CO 2 atmosphere a new phase, not previously identified in Synroc D, was found

  10. Magnetic properties of sintered high energy sm-co and nd-fe-b magnets

    Directory of Open Access Journals (Sweden)

    Talijan Nadežda M.

    2006-01-01

    Full Text Available Magnetic properties of permanent magnetic materials based on intermetallic compounds of Sm-Co and Nd-Fe-B are in direct dependence on the microstructure. In the first part of this paper, having in mind the importance of the regime of sintering and heat treatment to obtain the optimal magnetic structure, yet another approach in defining the most adequate technological parameters of the sintering process for applied heat treatment conditions was made. The goal of these investigations was to use the correlation that exists between sintering conditions (temperature and time and intensity of the diffraction peak of the (111 plane of the SmCo5 phase to optimize. In the second part a brief overview of high energy magnetic materials based on Nd-Fe-B is presented with special emphasis to the current research and development of high remanent nanocomposite magnetic materials based on Nd-Fe-B alloys with a reduced Nd content. Part of experimental results gained during research of the sintering process of SmCo5 magnetic materials were realized and published earlier. The scientific meeting devoted to the 60th anniversary of Frankel’s theory of sintering was an opportunity to show once more the importance and role of sintering in optimization of the magnetic microstructure of sintered Sm Co5 magnetic materials.

  11. Effect Of Compaction Pressure And Sintering Temperature On The Liquid Phase Sintering Behavior Of Al-Cu-Zn Alloy

    Directory of Open Access Journals (Sweden)

    Lee S.H.

    2015-06-01

    Full Text Available The liquid phase sintering characteristics of Al-Cu-Zn alloy were investigated with respect to various powder metallurgy processing conditions. Powders of each alloying elements were blended to form Al-6Cu-5Zn composition and compacted with pressures of 200, 400, and 600 MPa. The sintering process was performed at various temperatures of 410, 560, and 615°C in N2 gas atmosphere. Density and micro-Vickers hardness measurements were conducted at different processing stages, and transverse rupture strength of sintered materials was examined for each condition, respectively. The microstructure was characterized using optical microscope and scanning electron microscopy. The effect of Zn addition on the liquid phase sintering behavior during P/M process of the Al-Cu-Zn alloy was also discussed in detail.

  12. The pressureless sintering and mechanical properties of AlON ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, N., E-mail: zhangning5832@163.com [Key Lab. of Advanced Materials and Manufacturing Technology of Liaoning Province, Shenyang University, Shenyang, Liaoning 110044 (China); Liang, B.; Wang, X.Y.; Kan, H.M.; Zhu, K.W. [Key Lab. of Advanced Materials and Manufacturing Technology of Liaoning Province, Shenyang University, Shenyang, Liaoning 110044 (China); Zhao, X.J. [Department of Materials Science and Engineering, School of Materials and Metallurgy, Northeastern University, Shenyang, Liaoning 110004 (China)

    2011-07-25

    Highlights: {yields} A one-step pressureless sintering process was proposed, which is simple and viable. {yields} Cheap and easily available {alpha}-Al{sub 2}O{sub 3} and aluminum powders were chosen as raw materials substituting for expensive AlN ultrafine powders. {yields} The sintering temperature of AlON ceramic was reduced by 50 deg. C and the flexural strength was enhanced by 29.4%. - Abstract: Aluminum oxynitride (AlON) ceramic was synthesized by one-step pressureless sintering technology using low cost and easily available {alpha}-Al{sub 2}O{sub 3} and aluminum powders as raw materials. The sintering temperature was reduced because aluminum powders were nitridized into high activity AlN under the flowing nitrogen atmosphere. The curves of thermal analysis, microstructure and atomic distribution were investigated. The influence of sintering temperatures on phase composition, sintering densification and flexural strength was also explored. The experimental results showed that {alpha}-Al{sub 2}O{sub 3} and aluminum powders were acceptable substitutes for more expensive AlN ultrafine powders. Under the optimum sintering process at 1750 deg. C for 2 h, the sintered density and flexural strength of AlON ceramic were higher, 3.62 g/cm{sup 3} and 321 MPa, respectively. The sintering temperature was decreased by 50 deg. C because newly formed high activity AlN in situ reacted with Al{sub 2}O{sub 3} into Al{sub 23}O{sub 27}N{sub 5}, enhancing flexural strength by 29.4%. However, the sintering temperature could not be too high because grain growth and displacement of oxygen atoms from AlON ceramics by nitrogen atoms caused a decline in sintering densification and flexural strength.

  13. Sintering of MSW fly ash for reuse as a concrete aggregate.

    Science.gov (United States)

    Mangialardi, T

    2001-10-12

    The sintering process of municipal solid waste (MSW) fly ash was investigated in order to manufacture sintered products for reuse as concrete aggregates. Four types of fly ash resulting from different Italian MSW incineration plants were tested in this study. A modification of the chemical composition of MSW fly ash--through a preliminary four-stage washing treatment of this material with water--was attempted to improve the chemical and mechanical characteristics of sintered products.The sintering treatment of untreated or washed fly ash was performed on cylindrical compact specimens (15 mm in diameter and 20mm in height) at different compact pressures, sintering temperatures and times.The sintering process of untreated MSW fly ashes proved to be ineffective for manufacturing sintered products for reuse as a construction material, because of the adverse chemical characteristics of these fly ashes in terms of sulfate, chloride, and vitrifying oxide contents.A preliminary washing treatment of MSW fly ash with water greatly improved the chemical and mechanical characteristics of sintered products and, for all the types of fly ash tested, the sintered products satisfied the Italian requirements for normal weight aggregates for use in concretes having a specified strength not greater than 12 and 15N/mm(2), when measured on cylindrical and cubic specimens, respectively.A compact pressure of 28 N/mm(2), a sintering temperature of 1140 degrees C, and a sintering time of 60 min were the best operating conditions for manufacturing sintered products of washed MSW fly ash.

  14. Improvement of mechanical properties of zirconia-toughened alumina by sinter forging

    NARCIS (Netherlands)

    He, Y.; Winnubst, Aloysius J.A.; Verweij, H.; Burggraaf, Anthonie; Burggraaf, A.J.

    1994-01-01

    ZTA powder with a composition of 85 wt% alumina/15 wt% zirconia was prepared by a gel precipitation method. Sinter forging was performed with this powder to enhance the mechanical properties of ZTA materials. The influence of processing flaws on mechanical properties of sinter forged materials and

  15. Liquid phase sintered SiC. Processing and transformation controlled microstructure tailoring

    Directory of Open Access Journals (Sweden)

    V.A. Izhevskyi

    2000-10-01

    Full Text Available Microstructure development and phase formation processes during sintering of silicon carbide based materials with AlN-Y2O3, AlN-Yb2O3, and AlN-La2O3 sintering additives were investigated. Densification of the materials occurred by liquid-phase sintering mechanism. Proportion of alpha- and beta-SiC powders in the initial mixtures was a variable parameter, while the molar ratio of AlN/RE2O3, and the total amount of additives (10 vol. % were kept constant. Shrinkage behavior during sintering in interrelation with the starting composition of the material and the sintering atmosphere was investigated by high temperature dilatometry. Kinetics of b-SiC to a-SiC phase transformation during post-sintering heat treatment at temperatures 1900-1950 °C was studied, the degree of phase transformation being determined by quantitative x-ray analysis using internal standard technique. Evolution of microstructure resulting from beta-SiC to alpha-SiC transformation was followed up by scanning electron microscopy on polished and chemically etched samples. Transformation-controlled grain growth mechanism similar to the one observed for silicon nitride based ceramics was established. Possibility of in-situ platelet reinforced dense SiC-based ceramics fabrication with improved mechanical properties by means of sintering was shown.

  16. On the sintering kinetics in UO2

    International Nuclear Information System (INIS)

    Marajofsky, A.

    1998-01-01

    The fabrication process of UO 2 pellets from powders involve pressing and a sintering anneal at high temperature (1650 deg. C to 1750 deg. C) during two or more hours in a hydrogen atmosphere. An alternative method is the oxidative sintering, made at lower temperature (1000 deg. C to 1300 deg. C) in a CO 2 or CO/CO 2 atmosphere. The sintering phenomena consist in the densification of the material by a thermal treatment below the fusion point. For a compact made by pressing a powder, sintering is the process of annulation of the porosity present in the compact or pellet. Several theories describe the sintering phenomena dividing it in three stages, initial, intermediate and final: in all of them the densification is a continuous growing function of time. Nevertheless it has been experimentally reported that a reduction of the density occurs in the third step of the sintering. The phenomena has been called solarization. Solarization has been attributed to the effect of the evolved gases from additives or to the CO 2 atmosphere in oxidative sintering. Thus, it is convenient to distinguish between solarization in oxidative or reducing conditions. Reducing solarization is a consequence of the tendency towards equilibrium of intergranular pores. In oxidative sintering it occurs in the reducing anneal after the sintering and is due to the change in the lattice parameter. This work shows examples of both types of solarization and qualitative interpretation of this phenomena. Both situations show the need of strict control of the sintering and powder production conditions. (author)

  17. In-situ heating TEM observation of microscopic structural changes of size-controlled metallic copper/gelatin composite.

    Science.gov (United States)

    Narushima, Takashi; Hyono, Atsushi; Nishida, Naoki; Yonezawa, Tetsu

    2012-10-01

    Copper/gelatin composite particles with controlled sizes were prepared at room temperature from cupric sulfate pentahydrate in the presence of gelatin as a protective reagent by using hydrazine monohydrate as a reducing agent. The formed particles with the size between 190-940 nm were secondary aggregated particles which were composed of smaller nanosized particles ("particle-in-particle"), the presence of which was established by XRD patterns and a cross-sectional TEM image. The sintering behavior of these copper/gelatin composite particles was demonstrated by in-situ heating TEM under a high vacuum (approximately 10(-5) Pa) and separately with the oxygen partial pressure controlled at the 10(-4) Pa level. It was established that the particles began to sinter at about 330 degrees C with the oxygen and that they sublimate above 450 degrees C both in the vacuum and oxygen conditions. This result shows that the introduction of an adequate amount of oxygen was effective to remove the gelatin surrounding the particles. It can also be concluded that the sintering of the copper/gelatin composite particles occurred even in the absence of a reducing agent such as hydrogen gas.

  18. Copper infiltrated high speed steels based composites

    International Nuclear Information System (INIS)

    Madej, M.; Lezanski, J.

    2003-01-01

    High hardness, mechanical strength, heat resistance and wear resistance of M3/2 high speed steel (HSS) make it an attractive material. Since technological and economical considerations are equally important, infiltration of high-speed steel skeleton with liquid cooper has proved to be a suitable technique whereby fully dense material is produced at low cost. Attempts have been made to describe the influence of the production process parameters and alloying additives, such as tungsten carbide on the microstructure and mechanical properties of copper infiltrated HSS based composites. The compositions of powder mixtures are 100% M3/2, M3/2+10% Wc, M3/2=30% WC. The powders were uniaxially cold compacted in a cylindrical die at 800 MPa. The green compacts were sintered in vacuum at 1150 o C for 60 minutes. Thereby obtained porous skeletons were subsequently infiltrated with cooper, by gravity method, in vacuum furnace at 1150 o C for 15 minutes. (author)

  19. Simultaneous determination of arsenic, copper, manganese, selenium, and zinc in biological materials by neutron activation analysis

    International Nuclear Information System (INIS)

    Damsgaard, E.; Heydorn, K.

    1976-08-01

    A method for the simultaneous determination of arsenic, copper, manganese, selenium, and zinc in biological material was developed by the incorporation of separation procedures for copper and zinc into an existing procedure. Investigation of the performance characteristics of the method was carried out with reference to copper and zinc. For certain materials characterized by a high Cu/Zn ratio, or a high zinc content, or both, such as liver, copper ihterferes in the determination of zinc thus requiring a small correction by an iterative procedure. Blank values for copper depend on the rinsing of the irradiation container, and a single rinsing with redistilled water was found superior to other rinsing procedures. Nuclear interference was negligible. The accuracy of the method was checked by analysis of Standard Reference Materials and the precision verified by analysis of Intercomparison Samples. Results are presented for 5 male foetuses of 3-5 months' gestational age. The distribution of arsenic, manganese and selenium is similar to that previously reported for adults. With the exception of liver, concentrations of copper in foetal organs were lower than values in the literature indicate. (author)

  20. Present knowledge and perspectives on the role of copper in brake materials and related environmental issues: A critical assessment

    International Nuclear Information System (INIS)

    Straffelini, Giovanni; Ciudin, Rodica; Ciotti, Alessandro; Gialanella, Stefano

    2015-01-01

    This critical review presents several aspects related to the use of copper as a main component in brake pads in road vehicles. The compositions of these materials are attracting increasing interest and concern due to the relative contribution of wear products to particulate matter emissions in the environment as a result of braking action even though there has been a reduction in exhaust products from internal combustion engines. We review the data on the main wear mechanisms in brake systems and highlight the positive role of copper. However, similar to other heavy metal emissions, even the release of copper into the atmosphere may have important environmental and health effects. Thus, several replacement strategies are being pursued, and the positive and negative features will be critically reviewed. Additionally, the future perspectives in materials development will be discussed. - Highlights: • Copper in brake pad materials: role and concerns. • Environmental and health impact of copper. • Copper replacement in frictional brake materials. • International legislation and standards on the above issues. - Importance of copper in brake pad materials and concern as regards environmental and health impact of its emission as brake wear product.

  1. Bonding tungsten, W–Cu-alloy and copper with amorphous Fe–W alloy transition

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Song, E-mail: wangsongrain@163.com [Laboratory of Special Ceramics and Powder Metallurgy, University of Science and Technology Beijing, Beijing 100083 (China); Laboratory of Advanced Materials, Tsinghua University, Beijing 100084 (China); Ling, Yunhan, E-mail: yhling@mail.tsinghua.edu.cn [Laboratory of Advanced Materials, Tsinghua University, Beijing 100084 (China); Zhao, Pei [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Zang, Nanzhi [Laboratory of Advanced Materials, Tsinghua University, Beijing 100084 (China); Wang, Jianjun [Laboratory of Special Ceramics and Powder Metallurgy, University of Science and Technology Beijing, Beijing 100083 (China); Guo, Shibin [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Zhang, Jun [Laboratory of Advanced Materials, Tsinghua University, Beijing 100084 (China); Xu, Guiying [Laboratory of Special Ceramics and Powder Metallurgy, University of Science and Technology Beijing, Beijing 100083 (China)

    2013-05-15

    W/Cu graded materials are the leading candidate materials used as the plasma facing components in a fusion reactor. However, tungsten and copper can hardly be jointed together due to their great differences in physical properties such as coefficient of thermal expansion and melting point, and the lack of solid solubility between them. To overcome those difficulties, a new amorphous Fe–W alloy transitional coating and vacuum hot pressing (VHP) method were proposed and introduced in this paper. The morphology, composition and structure of the amorphous Fe–W alloy coating and the sintering interface of the specimens were analyzed by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and X-ray diffraction (XRD). The thermal shock resistance of the bonded composite was also tested. The results demonstrated that amorphous structure underwent change from amorphous to nano grains during joining process, and the joined W/Cu composite can endued plasma thermal shock resistance with energy density more than 5.33 MW/m{sup 2}. It provides a new feasible technical to join refractory tungsten to immiscible copper with amorphous Fe–W alloy coating.

  2. Pure and Oxidized Copper Materials as Potential Antimicrobial Surfaces for Spaceflight Activities

    Science.gov (United States)

    Hahn, C.; Hans, M.; Hein, C.; Mancinelli, R. L.; Mücklich, F.; Wirth, R.; Rettberg, P.; Hellweg, C. E.; Moeller, R.

    2017-12-01

    Microbial biofilms can lead to persistent infections and degrade a variety of materials, and they are notorious for their persistence and resistance to eradication. During long-duration space missions, microbial biofilms present a danger to crew health and spacecraft integrity. The use of antimicrobial surfaces provides an alternative strategy for inhibiting microbial growth and biofilm formation to conventional cleaning procedures and the use of disinfectants. Antimicrobial surfaces contain organic or inorganic compounds, such as antimicrobial peptides or copper and silver, that inhibit microbial growth. The efficacy of wetted oxidized copper layers and pure copper surfaces as antimicrobial agents was tested by applying cultures of Escherichia coli and Staphylococcus cohnii to these metallic surfaces. Stainless steel surfaces were used as non-inhibitory control surfaces. The production of reactive oxygen species and membrane damage increased rapidly within 1 h of exposure on pure copper surfaces, but the effect on cell survival was negligible even after 2 h of exposure. However, longer exposure times of up to 4 h led to a rapid decrease in cell survival, whereby the survival of cells was additionally dependent on the exposed cell density. Finally, the release of metal ions was determined to identify a possible correlation between copper ions in suspension and cell survival. These measurements indicated a steady increase of free copper ions, which were released indirectly by cells presumably through excreted complexing agents. These data indicate that the application of antimicrobial surfaces in spaceflight facilities could improve crew health and mitigate material damage caused by microbial contamination and biofilm formation. Furthermore, the results of this study indicate that cuprous oxide layers were superior to pure copper surfaces related to the antimicrobial effect and that cell density is a significant factor that influences the time dependence of

  3. Copper sulfates as cathode materials for Li batteries

    Energy Technology Data Exchange (ETDEWEB)

    Schwieger, Jonathan N.; Kraytsberg, Alexander; Ein-Eli, Yair [Technion Israel Institute of Technology, Department of Materials Engineering, Technion City, Haifa 32000 (Israel)

    2011-02-01

    As lithium battery technology sets out to bridge the gap between portable electronics and the electrical automotive industry, cathode materials still stand as the bottleneck regarding performances. In the realm of highly attractive polyanion-type structures as high-voltage cathode materials, the sulfate group (SO{sub 4}){sup 2-} possesses an acknowledged superiority over other contenders in terms of open circuit voltage arising from the inductive effect of strong covalent S-O bonds. In parallel, novel lithium insertion mechanisms are providing alternatives to traditional intercalation, enabling reversible multi-electron processes securing high capacities. Combining both of these advantageous features, we report here the successful electrochemical reactivity of copper sulfate pentahydrate (CuSO{sub 4}.5H{sub 2}O) with respect to lithium insertion via a two-electron displacement reaction entailing the extrusion of metallic copper at a dual voltage of 3.2 V and 2.7 V followed by its reversible insertion at 3.5 V and 3.8 V. At this stage, cyclability was still shown to be limited due to the irreversible degradation to a monohydrate structure owing to constitutional water loss. (author)

  4. Determination of copper in geological materials by X-ray fluorescence

    International Nuclear Information System (INIS)

    Roca, M.; Bayon, A.

    1981-01-01

    X-ray fluorescence has been applied to the determination of copper content of geological materials in the concentration range of 0.01 to % CuO. A molybdenum target tube Is used, samples being presented in finely-ground powder form. Various methods for the correction for background and Instrumental copper interferences have been considered. To correct for matrix effects different tube scattered primary radiations have been tested as references or internal standards. MoK(41 - (C) provides the most suitable results. The use of influence empirical coefficients for the effect of iron on copper and of mass absorption coefficients has also been considered. For samples with a high content of lead, several procedures to correct for I t s influence have been investigated. Comparison between data obtained by X-ray fluorescence and wet-chemical techniques indicated good agreement. (Author) 6 refs

  5. Science of sintering and its future

    International Nuclear Information System (INIS)

    Ristic, M.M.

    1975-01-01

    Some new books published by M.Yu. Baljshin, V.A. Ivensen, V.V. Skorohod and others are characterized by the wish to give a complete approach to the problems of sintering theory. Bearing just this in mind while writing the book ''An Essay on the Generalization of Sintering Theory'' (G.V.Samsonov, M.M. Ristic with the collaborators) an idea was born: to ask the most eminent scientists in this field to present their own opinions on the theme ''The Science of Sintering and Modern Views on its Future''. There were formed 18 questions, given in the appendix to be answered. The received answers were presented in 10 chapters of this book. The fourth part of the book consists of papers of eminent scientists engaged in the field of sintering science (some of which were published here for the first time). This material is published in the book with the consent of the authors and these original contributions provide a more profound knowledge of sintering. The initial idea, that the book should have a monograph character and in which the answers would serve as some data on the latest notions of the science of sintering, was somewhat changed since the original opinions of individual scientists are given in the book and these, are sometimes very contradictory. This, in fact, gives the book a special charm because the unsolved problems in the science of sintering are most evidently stressed in this way

  6. Microwave sintering of nano size powder β-TCP bioceramics

    Directory of Open Access Journals (Sweden)

    Mirhadi B.

    2014-01-01

    Full Text Available A nano sized beta tricalcium phosphate (β-TCP powder was conventional sintered (CS and microwave sintered (MW, in order to obtain dense β-TCP ceramics. In this work the effect of microwave sintering conditions on the microstructure, phase composition and mechanical properties of materials based on tricalcium phosphate (TCP was investigated by SEM (scanning electron microscopyand XRD(X-ray diffraction and then compared with conventional sintered samples. Nano-size β-TCP powders with average grain size of 80 nm were prepared by the wet chemical precipitation method with calcium nitrate and diammonium hydrogen phosphate as calcium and phosphorus precursors, respectively. The precipitation process employed was also found to be suitable for the production of submicrometre β-TCP powder in situ. The β-TCP samples microwave (MW sintered for 15 min at 1100°C, with average grain size of 3μm, showed better densification, higher density and certainly higher hardness than samples conventionally sintered for 2 h at the same temperature. By comparing sintered and MW sintered β-TCP samples, it was concluded that MW sintered β-TCP samples have superior mechanical properties.

  7. Corrosion of copper-based materials in irradiated moist air systems

    International Nuclear Information System (INIS)

    Reed, D.T.; Van Konynenburg, R.A.

    1991-06-01

    The atmospheric corrosion of oxygen-free copper (CDA-102), 70/30 copper-nickel (CDA-715), and 7% aluminum bronze (CDA-613) in an irradiated moist air environment was investigated. Experiments were performed in both dry and 40% RH (at sign 90 degree C) air at temperatures of 90 and 150 degree C. Initial corrosion rates were determined based on a combination of weight gain and weight loss measurements. Corrosion products observed were identified. These experiments support efforts by the Yucca Mountain Project (YMP) to evaluate possible metallic barrier materials for nuclear waste containers. 8 refs., 1 fig., 2 tabs

  8. Atomic absorption spectrometric determination of copper, zinc, and lead in geological materials

    Science.gov (United States)

    Sanzolone, R.F.; Chao, T.T.

    1976-01-01

    An atomic absorption spectrometric method is described for the determination of copper, zinc, and lead in geological materials. The sample is digested with HF-HCl-H2O2; the final solution for analysis is in 10 % (v/v) HCl. Copper and zinc are determined directly by aspirating the solution into an air-acetylene flame. A separate aliquot of the solution is used for determination of lead; lead is extracted into TOPO-MIBK from the acidic solution in the presence of iodide and ascorbic acid. For a 0.50-g sample, the limits of determination are 10-2000 p.p.m. for Cu and Zn, and 5-5000 p.p.m. for Pb. As much as 40 % Fe or Ca. and 10 % Al, Mg, or Mn in the sample do not interfere. The proposed method can be applied to the determination of copper, zinc, and lead in a wide range of geological materials including iron- and manganese-rich, calcareous and carbonate samples. ?? 1976.

  9. Direct laser sintering of metal powders: Mechanism, kinetics and microstructural features

    International Nuclear Information System (INIS)

    Simchi, A.

    2006-01-01

    In the present work, the densification and microstructural evolution during direct laser sintering of metal powders were studied. Various ferrous powders including Fe, Fe-C, Fe-Cu, Fe-C-Cu-P, 316L stainless steel, and M2 high-speed steel were used. The empirical sintering rate data was related to the energy input of the laser beam according to the first order kinetics equation to establish a simple sintering model. The equation calculates the densification of metal powders during direct laser sintering process as a function of operating parameters including laser power, scan rate, layer thickness and scan line spacing. It was found that when melting/solidification approach is the mechanism of sintering, the densification of metals powders (D) can be expressed as an exponential function of laser specific energy input (ψ) as ln(1 - D) = -Kψ. The coefficient K is designated as 'densification coefficient'; a material dependent parameter that varies with chemical composition, powder particle size, and oxygen content of the powder material. The mechanism of particle bonding and microstructural features of the laser sintered powders are addressed

  10. Lanthanide (Nd, Gd) compounds with garnet and monazite structures. Powders synthesis by “wet” chemistry to sintering ceramics by Spark Plasma Sintering

    Energy Technology Data Exchange (ETDEWEB)

    Potanina, Ekaterina, E-mail: ekaterina.potanina@list.ru [Department of Solid State Chemistry, Lobachevsky State University of Nizhni Novgorod, National Research University, 23 Prospekt Gagarina, BLDG 2, 603950 Nizhny Novgorod (Russian Federation); Golovkina, Ludmila, E-mail: golovkina_lyudmila@mail.ru [Department of Solid State Chemistry, Lobachevsky State University of Nizhni Novgorod, National Research University, 23 Prospekt Gagarina, BLDG 2, 603950 Nizhny Novgorod (Russian Federation); Orlova, Albina, E-mail: albina.orlova@inbox.ru [Department of Solid State Chemistry, Lobachevsky State University of Nizhni Novgorod, National Research University, 23 Prospekt Gagarina, BLDG 2, 603950 Nizhny Novgorod (Russian Federation); Nokhrin, Aleksey, E-mail: nokhrin@nifti.unn.ru [Research Institute of Physics and Technology, Lobachevsky State University of Nizhni Novgorod, National Research University, 23 Prospekt Gagarina, BLDG 3, 603950 Nizhny Novgorod (Russian Federation); Boldin, Maksim, E-mail: boldin@nifti.unn.ru [Research Institute of Physics and Technology, Lobachevsky State University of Nizhni Novgorod, National Research University, 23 Prospekt Gagarina, BLDG 3, 603950 Nizhny Novgorod (Russian Federation); Sakharov, Nikita, E-mail: nvsaharov@nifti.unn.ru [Research Institute of Physics and Technology, Lobachevsky State University of Nizhni Novgorod, National Research University, 23 Prospekt Gagarina, BLDG 3, 603950 Nizhny Novgorod (Russian Federation)

    2016-05-15

    Complex oxide Y{sub 2.5}Nd{sub 0.5}Al{sub 5}O{sub 12} with garnet structure and phosphates NdPO{sub 4} and GdPO{sub 4} with monazite structure were obtained by using precipitation methods. Ceramics Y{sub 2.5}Nd{sub 0.5}Al{sub 5}O{sub 12} and NdPO{sub 4} were processed by Spark Plasma Sintering (SPS). Relative density more 98%, sintering time did not exceed 8 min, sintering temperature 1330–1390 °C. Leaching rates of elements from ceramics were 10{sup −6}–10{sup −7} g/(cm{sup 2} d). The process of ceramics sintering has two-stage character: the first step of sintering-compaction process is related to the plastic flow of the material, the second step–to the process of grain boundary diffusion and grain growth. - Highlights: • Powders were obtained by precipitation (sol–gel) method. • Ceramics were sintering by Spark Plasma Sintering method (ρ{sub rel} > 98%); shrinkage time does not exceed 8 min. • The process of ceramics sintering has two-stage character.

  11. Preparation and mechanism of the sintered bricks produced from Yellow River silt and red mud

    International Nuclear Information System (INIS)

    He, Hongtao; Yue, Qinyan; Su, Yuan; Gao, Baoyu; Gao, Yue; Wang, Jingzhou; Yu, Hui

    2012-01-01

    Highlights: ► The best condition was red mud content of 40% and sintering at 1050 °C for 2 h. ► Bricks’ weight loss was caused by the removal of absorbed water and crystal water. ► Bricks’ sintering shrinkage depended on the sodium and iron compounds of red mud. ► Sintering can strengthen bricks and decrease leaching concentration of toxic metal. - Abstract: The preparation, characteristics and mechanisms of sintered bricks manufactured by Yellow River silt and red mud were studied. The sintering shrinkage, weight loss on ignition, water absorption and compressive strength were tested to determine the optimum preparation condition. Sintering mechanisms were discussed through linear regression analysis. Crystalline components of raw materials and bricks were analyzed by X-ray diffraction. Leaching toxicity of raw materials and bricks were measured according to sulphuric acid and nitric acid method. Radiation safety of the sintered bricks was characterized by calculating internal exposure index and external exposure index. The results showed that at the chosen best parameters (red mud content of 40%, sintering temperature of 1050 °C and sintering time of 2 h), the best characteristics of sintered bricks could be obtained. The weight loss on ignition of sintered bricks was principally caused by the removal of absorbed water and crystal water. The sintering shrinkage of sintered bricks mainly depended on sodium compounds and iron compounds of red mud. The sintering process made some components of raw materials transform into other crystals having better thermostability. Besides, the leaching toxicity and radioactivity index of sintered bricks produced under the optimum condition were all below standards.

  12. Sintering and electrical properties of strontium-doped lanthanum manganite

    Energy Technology Data Exchange (ETDEWEB)

    Tarrago, Diego Pereira; Sousa, Vania Caldas de [Universidade Federal do Rio Grande do Sul (LABIOMAT/PPGEM/UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia de Minas, Metalurgica e de Materiais. Lab. de Biomateriais], Email: dptarrago@gmail.com; Moreno Buriel, Berta; Chinarro Martini, Eva; Jurado Egea, Jose Ramon [Consejo Superior de Investigaciones Cientificas (ICV/CSIC), Madrid (Spain). Inst. de Ceramica y Vidrio; Malfatti, Celia de Fraga [Universidade Federal do Rio Grande do Sul (LAPEC/PPGEM/UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia de Minas, Metalurgica e de Materiais. Lab. de Pesquisa em Corrosao

    2010-07-01

    Lanthanum strontium manganites (LSM) are potential materials for cathode applications in solid oxide fuel cells (SOFC) due to their good catalytic activity, chemical stability and compatibility with electrolyte materials in high temperatures. The sinterability of single phase La{sub 1-x}Sr{sub x}Mn{sub O3} (x=0.18) perovskite powders and the electrical properties of the resulting samples are analyzed in this study. Using a heating microscope, the powders were pressed and sintered at different pressures and temperatures, resulting in an open porosity of 33.36% when compacted at 125 MPa and sintered at 1200 degree C. Top and cross-section s canning electron microscopy (SEM) micrographs revealed interconnected pores in the sintered body and, hence, a suitable microstructure for the application. The activation energy for conductance was 0.04 eV and the tested LSM bulk started to exhibit adequate electrical properties at about 500 degree C. (author)

  13. Predicting sintering deformation of ceramic film constrained by rigid substrate using anisotropic constitutive law

    International Nuclear Information System (INIS)

    Li Fan; Pan Jingzhe; Guillon, Olivier; Cocks, Alan

    2010-01-01

    Sintering of ceramic films on a solid substrate is an important technology for fabricating a range of products, including solid oxide fuel cells, micro-electronic PZT films and protective coatings. There is clear evidence that the constrained sintering process is anisotropic in nature. This paper presents a study of the constrained sintering deformation using an anisotropic constitutive law. The state of the material is described using the sintering strains rather than the relative density. In the limiting case of free sintering, the constitutive law reduces to a conventional isotropic constitutive law. The anisotropic constitutive law is used to calculate sintering deformation of a constrained film bonded to a rigid substrate and the compressive stress required in a sinter-forging experiment to achieve zero lateral shrinkage. The results are compared with experimental data in the literature. It is shown that the anisotropic constitutive law can capture the behaviour of the materials observed in the sintering experiments.

  14. Low-sintering condenser materials on the basis of barium titanate; Niedrig-sinternde Kondensatorwerkstoffe auf der Basis von Bariumtitanat

    Energy Technology Data Exchange (ETDEWEB)

    Naghib zadeh, Hamid

    2010-07-01

    The main objective of this work was the development of new barium titanate capacitor materials, which fully densified at a sintering temperature of 900 C and exhibit a high and almost temperature-independent dielectric constant as well as low dielectric loss. In order to decrease the sintering temperature of barium titanate from ca. 1300 C to 900 C, addition of various types of sintering aids have been tested. Li-containing sintering additives show the best result concerning densification and dielectric properties. By addition of 2 to 3 wt% (SrO-B{sub 2}O{sub 3}-Li{sub 2}O) -, (ZnO-B{sub 2}O{sub 3}-Li{sub 2}O) - or (LiF-SrCO{sub 3})-additive combinations to commercially available barium titanate powder 95 % of the theoretical density was achieved after sintering at 900 C. The sintered capacitor materials with the above mentioned additive combinations possess high dielectric constants from 1800 to 3590. It is well known that for a high temperature stability of dielectric constant the formation of core-shell structure in a fine-grained microstructure is required (average grain size < 1 {mu}m). For BaTiO{sub 3} samples contained 2 wt% LiF-SrCO{sub 3} is temperature coefficient of capacitance (TCC) relatively low. The TCC in temperature range between 0 C and 80 C is less than {+-} 15%. The formation of the core-shell structure in a fine-grained microstructure of this sample, which is required to have low TCC, was detected by TEM / EDX analyses. The significantly higher TCC for the BaTiO{sub 3} samples contained 3 wt% SrO-B{sub 2}O{sub 3}-Li{sub 2}O is due to the strong grain growth during sintering. To reduce the TCC in this sample Nb{sub 2}O{sub 5}-Co{sub 2}O{sub 3} was added. By addition of 1.5 wt% Nb{sub 2}O{sub 5}-Co{sub 2}O{sub 3} the temperature stability of the dielectric constant could be significantly improved as a result of the grain growth inhibition and the core-shell formation during sintering. For BaTiO{sub 3} samples contained ZnO-B{sub 2}O{sub 3}-Li

  15. Copper and zinc distribution coefficients for sandy aquifer materials

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Astrup, Thomas; Boddum, J. K.

    2000-01-01

    Distribution coe�cients (Kd) were measured for copper (Cu) and zinc (Zn) in laboratory batch experiments for 17 sandy aquifer materials at environmentally relevant solute concentrations (Cu: 5±300 mg/l, Zn: 20±3100 mg/l). The Kd values ranged two to three orders of magnitude (Cu: 70±10,800 l/ kg...

  16. Influence of sintering atmospheres on the aluminium sintering characteristics

    International Nuclear Information System (INIS)

    Mintzer, S.; Bermudez Belkys, S.

    1993-01-01

    This paper describes the aluminium powder (Al) cool compacted (at 95% from theoretical density) which was sintered at 903 K during 4 hours at different atmospheres; oxidizing (air), inert Argon (Ar), Nitrogen (N) and high vacuum. The results obtained show: a) porosity measurements; greater porosity when sintering in Ar and air. b) Metallographic and Scanning observations: many fine pores (< 1 μm) and pore lines distributed at random, at air sintering and greater pores distributed preferentially near the surface, in Ar and N atmospheres. c) Dimensional changes: tendency to contraction of the samples at N and vacuum sintering and expansion in Ar or air. d) Mechanical properties: greater strength and fluence stresses at air and N sintering. The analysis of the results is performed considering sintering modes in presence of an oxide layer and dropped inert gases. (Author)

  17. Analysis of copper contamination in transformer insulating material with nanosecond- and femtosecond-laser-induced breakdown spectroscopy

    Science.gov (United States)

    Aparna, N.; Vasa, N. J.; Sarathi, R.

    2018-06-01

    This work examines the oil-impregnated pressboard insulation of high-voltage power transformers, for the determination of copper contamination. Nanosecond- and femtosecond-laser-induced breakdown spectroscopy revealed atomic copper lines and molecular copper monoxide bands due to copper sulphide diffusion. X-ray diffraction studies also indicated the presence of CuO emission. Elemental and molecular mapping compared transformer insulating material ageing in different media—air, N2, He and vacuum.

  18. Constrained sintering of an air-plasma-sprayed thermal barrier coating

    International Nuclear Information System (INIS)

    Cocks, A.C.F.; Fleck, N.A.

    2010-01-01

    A micromechanical model is presented for the constrained sintering of an air-plasma-sprayed, thermal barrier coating upon a thick superalloy substrate. The coating comprises random splats with intervening penny-shaped cracks. The crack faces make contact at asperities, which progressively sinter in-service by interfacial diffusion, accommodated by bulk creep. Diffusion is driven by the reduction in interfacial energy at the developing contacts and by the local asperity contact stress. At elevated operating temperature, both sintering and creep strains accumulate within the plane of the coating. The sensitivities of sintering rate and microstructure evolution rate to the kinetic parameters and thermodynamic driving forces are explored. It is demonstrated that the sintering response is governed by three independent timescales, as dictated by the material and geometric properties of the coating. Finally, the role of substrate constraint is assessed by comparing the rate of constrained sintering with that for free sintering.

  19. Method of manufacturing a niobium-aluminum-germanium superconductive material

    Science.gov (United States)

    Wang, J.L.F.; Pickus, M.R.; Douglas, K.E.

    A method for manufacturing flexible Nb/sub 3/ (Al,Ge) multifilamentary superconductive material in which a sintered porous Nb compact is infiltrated with an Al-Ge alloy. It is deformed and heat treated in a series of steps at successively higher temperatures preferably below 1000/sup 0/C during the heat treatment, cladding material such as copper can be applied to facilitate a deformation step preceding the heat treatment and can remain in place through the heat treatment to serve as a temperature stabilizer for the superconductive material produced. These lower heat treatment temperatures favor formation of filaments with reduced grain size and with more grain boundaries which in turn increase the current-carrying capacity of the superconductive material.

  20. Spark plasma sintering of SiC and ZrC

    Energy Technology Data Exchange (ETDEWEB)

    Guillard, F.; Galy, J. [CEMES-CNRS, 29 rue Jeanne Marvig BP94347 31055 Toulouse Cx 4 (France); Allemand, A. [CEA Saclay, DRT/DTEN/S3ME/LTMEx, 91191 Gif-sur-Yvette (France)

    2005-07-01

    Spark plasma sintering a relative new technique allows sintering material powders in a reduced time compared to formal process of densification. In order to analyse densification mechanisms and to compare with hot isostatic pressing technique, pellets of silicon carbide and zirconium carbide were sintered by HIP and by SPS from 1750 to 1950 deg. C, with different pressures (50 to 75 MPa) and various holding times (0 to 10 min). Their densities were determined and their microstructures were SEM analysed. (authors)

  1. Antwerp Copper Plates

    DEFF Research Database (Denmark)

    Wadum, Jørgen

    1999-01-01

    In addition to presenting a short history of copper paintings, topics detail artists’ materials and techniques, as well as aspects of the copper industry, including mining, preparation and trade routes.......In addition to presenting a short history of copper paintings, topics detail artists’ materials and techniques, as well as aspects of the copper industry, including mining, preparation and trade routes....

  2. Effect of current on the microstructure and performance of (Bi2Te3)0.2(Sb2Te3)0.8 thermoelectric material via field activated and pressure assisted sintering

    International Nuclear Information System (INIS)

    Chen Ruixue; Meng Qingsen; Fan Wenhao; Wang Zhong

    2011-01-01

    (Bi 2 Te 3 ) 0.2 (Sb 2 Te 3 ) 0.8 thermoelectric material was sintered via a field activated and pressure assisted sintering (FAPAS) process. By applying different current intensity (0, 60, 320 A/cm 2 ) in the sintering process, the effects of electric current on the microstructure and thermoelectric performance were investigated. This demonstrated that the application of electric current in the sintering process could significantly improve the uniformity and density of (Bi 2 Te 3 ) 0.2 (Sb 2 Te 3 ) 0.8 samples. When the current intensity was raised to 320 A/cm 2 , the preferred orientation of grains was observed. Moreover, positive effects on the thermoelectric performance of applying electric current in the sintering process were also confirmed. An increase of 0.02 and 0.11 in the maximum figure of merit ZT value could be acquired by applying current of 60 and 320 A/cm 2 , respectively. (semiconductor materials)

  3. Properties of Mo-alloyed sintered manganese steels

    International Nuclear Information System (INIS)

    Romanski, A.; Cias, A.

    1998-01-01

    Sintered alloy steels are needed for mostly PM structural parts. Powder metallurgy techniques provide a means of fabricating high quality steel parts with tailored mechanical properties. It is now possible to produce sintered steel parts with properties equal to an even superior to those of parts made by more traditional routes. Challenges arise both with the material selection and component fabrication. This work outlines the processing for high performance structural application. (author)

  4. Wsbnd Cu functionally graded material: Low temperature fabrication and mechanical characterization

    Science.gov (United States)

    Yusefi, Ali; Parvin, Nader; Mohammadi, Hossein

    2018-04-01

    In this study, we fabricated and characterized a Wsbnd Cu functionally graded material (FGM) with 11 layers, including a pure copper layer. Samples were prepared by mixing a mechanically alloyed Nisbnd Mnsbnd Cu powder with W and Cu powders, stacking the powders, pressing the stacked layers, and finally sintering at 1000 °C. The utilization of a Nisbnd Mnsbnd Cu system may reduce the cost but without losing the good sintering behavior and physical and mechanical properties. The composition of the material was analyzed based on scanning electron microscopy images and by energy dispersive X-ray spectroscopy mapping, which indicated that in the presence of Ni and Mn, the Cu atoms could diffuse into the W particles. All of the layers had a very high relative density, thereby indicating their densification and excellent sintering behavior. We also found that the porosity values in the Cu phase remained unchanged at approximately 2.39% across the FGM. Mechanical measurements showed that the hardness (72%), modulus of elasticity (61%), and ultimate tensile strength (58%) increased with the W content across the Wsbnd Cu FGM, whereas the fracture toughness (KIC) varied in the opposite manner (minimum of 4.52 MPa/m0.5).

  5. The fungicidal properties of the carbon materials obtained from chitin and chitosan promoted by copper salts

    Energy Technology Data Exchange (ETDEWEB)

    Ilnicka, Anna, E-mail: annakucinska@o2.pl; Walczyk, Mariusz; Lukaszewicz, Jerzy P.

    2015-07-01

    Renewable raw materials chitin and chitosan (N-deacetylated derivative of chitin) were subjected to action of different copper modifiers that were carbonized in the atmosphere of the N{sub 2} inert gas. As a result of the novel manufacturing procedure, a series of carbon materials was obtained with developed surface area and containing copper derivatives of differentiated form, size, and dispersion. The copper modifier and manufacturing procedure (concentration, carbonization temperature) influence the physical–chemical and fungicide properties of the carbons. The received carbons were chemically characterized using several methods like low-temperature adsorption of nitrogen, X-ray diffraction analysis, scanning electron microscopy, cyclic voltammetry, elemental analysis, and bioassay. Besides chemical testing, some biological tests were performed and let to select carbons with the highest fungicidal activity. Such carbons were characteristic of the specific form of copper derivatives occurring in them, i.e., nanocrystallites of Cu{sup 0} and/or Cu{sub 2}O of high dispersion on the surface of carbon. The carbons may find an application as effective contact fungistatic agents in cosmetology, medicine, food industry, etc. - Highlights: • The novel manufacturing procedure yields new functional carbon materials. • Two biopolymers chitin and chitosan can undergo copper(II) ion modification. • The Cu-modified carbon materials exhibit high fungicidal activity. • The fungicidal activity results from the presence of Cu{sup 0} and Cu{sub 2}O nano-crystallites.

  6. Copper wire bonding

    CERN Document Server

    Chauhan, Preeti S; Zhong, ZhaoWei; Pecht, Michael G

    2014-01-01

    This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks.  Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material.  However, copper wire bonding has several process and reliability concerns due to its material properties.  Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation.  In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed.  The book also discusses best practices and re...

  7. Verification of the Skorohod-Olevsky Viscous Sintering (SOVS) Model

    Energy Technology Data Exchange (ETDEWEB)

    Lester, Brian T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-11-16

    Sintering refers to a manufacturing process through which mechanically pressed bodies of ceramic (and sometimes metal) powders are heated to drive densification thereby removing the inherit porosity of green bodies. As the body densifies through the sintering process, the ensuing material flow leads to macroscopic deformations of the specimen and as such the final configuration differs form the initial. Therefore, as with any manufacturing step, there is substantial interest in understanding and being able to model the sintering process to predict deformation and residual stress. Efforts in this regard have been pursued for face seals, gear wheels, and consumer products like wash-basins. To understand the sintering process, a variety of modeling approaches have been pursued at different scales.

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Nano-composites of 1, 3, 5 and 7 vol% Al2O3 (average size < 50 nm) and microcomposites having compositions 5, 10, 15, 20 vol% of Al2O3 (average size ∼ 10 m) reinforced in copper matrix were fabricated by powder metallurgy route. All the specimens were sintered at different sintering temperatures (850, 900 and ...

  9. Fabrication and characterization of Cu/YSZ cermet high-temperature electrolysis cathode material prepared by high-energy ball-milling method

    International Nuclear Information System (INIS)

    Lee, Sungkyu; Kang, Kyoung-Hoon; Kim, Jong-Min; Hong, Hyun Seon; Yun, Yongseung; Woo, Sang-Kook

    2008-01-01

    Cu/YSZ composites (40 and 60 vol.% Cu powder with balance YSZ) was successfully fabricated by high-energy ball-milling of Cu and YSZ powders at 400 rpm for 24 h, pressing into pellets (O 13 mm x 2 mm) and subsequent sintering process at 900 deg. C under flowing 5%-H 2 /Ar gas for use as cermet cathode material of high-temperature electrolysis (HTE) of water vapor in a more economical way compared with conventional Ni/YSZ cermet cathode material. The Cu/YSZ composite powders thus synthesized and sintered were characterized using various analytical tools such as XRD, SEM, and laser diffraction and scattering method. Electrical conductivity of sintered Cu/YSZ cermet pellets thus fabricated was measured using 4-probe technique and compared with that of Ni/YSZ cermets. The effect of composites composition on the electrical conductivity was investigated and marked increase in electrical conductivity for copper contents greater than 40 vol.% in the composite was explained by percolation threshold

  10. Electrodeposition of Copper/Carbonous Nanomaterial Composite Coatings for Heat-Dissipation Materials

    Directory of Open Access Journals (Sweden)

    Yasuki Goto

    2017-12-01

    Full Text Available Carbonous nanomaterials are promising additives for composite coatings for heat-dissipation materials because of their excellent thermal conductivity. Here, copper/carbonous nanomaterial composite coatings were prepared using nanodiamond (ND as the carbonous nanomaterial. The copper/ND composite coatings were electrically deposited onto copper substrates from a continuously stirred copper sulfate coating bath containing NDs. NDs were dispersed by ultrasonic treatment, and the initial bath pH was adjusted by adding sodium hydroxide solution or sulfuric acid solution before electrodeposition. The effects of various coating conditions—the initial ND concentration, initial bath pH, stirring speed, electrical current density, and the amount of electricity—on the ND content of the coatings were investigated. Furthermore, the surface of the NDs was modified by hydrothermal treatment to improve ND incorporation. A higher initial ND concentration and a higher stirring speed increased the ND content of the coatings, whereas a higher initial bath pH and a greater amount of electricity decreased it. The electrical current density showed a minimum ND content at approximately 5 A/dm2. Hydrothermal treatment, which introduced carboxyl groups onto the ND surface, improved the ND content of the coatings. A copper/ND composite coating with a maximum of 3.85 wt % ND was obtained.

  11. Double Step Sintering Behavior Of 316L Nanoparticle Dispersed Micro-Sphere Powder

    Directory of Open Access Journals (Sweden)

    Jeon Byoungjun

    2015-06-01

    Full Text Available 316L stainless steel is a well-established engineering material and lots of components are fabricated by either ingot metallurgy or powder metallurgy. From the viewpoints of material properties and process versatility, powder metallurgy has been widely applied in industries. Generally, stainless steel powders are prepared by atomization processes and powder characteristics, compaction ability, and sinterability are quite different according to the powder preparation process. In the present study, a nanoparticle dispersed micro-sphere powder is synthesized by pulse wire explosion of 316L stainless steel wire in order to facilitate compaction ability and sintering ability. Nanoparticles which are deposited on the surface of micro-powder are advantageous for a rigid die compaction while spherical micro-powder is not to be compacted. Additionally, double step sintering behavior is observed for the powder in the dilatometry of cylindrical compact body. Earlier shrinkage peak comes from the sintering of nanoparticle and later one results from the micro-powder sintering. Microstructure as well as phase composition of the sintered body is investigated.

  12. Hexagonal OsB2: Sintering, microstructure and mechanical properties

    International Nuclear Information System (INIS)

    Xie, Zhilin; Lugovy, Mykola; Orlovskaya, Nina; Graule, Thomas; Kuebler, Jakob; Mueller, Martin; Gao, Huili; Radovic, Miladin; Cullen, David A.

    2015-01-01

    Highlights: • ReB 2 -type hexagonal OsB 2 powder has been densified by spark plasma sintering. • The sintered OsB 2 contains ∼80 wt.% hexagonal and ∼20 wt.% orthorhombic phases. • The average grain size of the sintered OsB 2 sample was 0.56 ± 0.26 μm. • H = 31 ± 9 GPa and E = 574 ± 112 GPa measured by nanoindentation. - Abstract: The metastable high pressure ReB 2 -type hexagonal OsB 2 bulk ceramics was produced by spark plasma sintering. The phase composition, microstructure, and mechanical behavior of the sintered OsB 2 were studied by X-ray diffraction, optical microscopy, TEM, SEM, EDS, and nanoindentation. The produced ceramics was rather porous and contained a mixture of hexagonal (∼80 wt.%) and orthorhombic (∼20 wt.%) phases as identified by X-ray diffraction and EBSD analysis. Two boron-rich phases, which do not contain Os, were also identified by TEM and SEM/EDS analysis. Nanoindentation measurements yielded a hardness of 31 ± 9 GPa and Young’s modulus of 574 ± 112 GPa, indicating that the material is rather hard and very stiff; however, it is very prone to crack formation and propagation, which is indicative of a very brittle nature of this material. Improvements in the sintering regime are required in order to produce dense, homogeneous and single phase hexagonal OsB 2 bulk ceramics

  13. Weight loss studies of fastener materials corrosion in contact with timbers treated with copper azole and alkaline copper quaternary compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kear, Gareth [Building Research Association of New Zealand (BRANZ) Ltd., Science and Engineering Services, Private Bag 50 908, Porirua City 5240 (New Zealand)], E-mail: G.Kear@soton.ac.uk; Wu Haizhen; Jones, Mark S. [Building Research Association of New Zealand (BRANZ) Ltd., Science and Engineering Services, Private Bag 50 908, Porirua City 5240 (New Zealand)

    2009-02-15

    Corrosion rates of mild steel, AISI 316 stainless steel and hot-dipped galvanised steel in contact with preservative-treated Pinus radiata have been determined using four distinct accelerated (49 {+-} 1 deg. C) and non-accelerated (21 {+-} 2 deg. C) weight loss methodologies. The data were measured as a function of timber moisture content and copper concentration over periods of exposure ranging from 2 weeks to 14 months. The results show that the corrosion resistance of the stainless steel was not influenced by classification or magnitude of preservative loading. Corrosion rates of this material were multiple orders of magnitude lower than those of the mild and galvanised steels. In most instances, corrosion rates of hot-dipped galvanised layers in contact with alkaline copper quaternary-treated timbers were up to a factor of 10 times, or greater, than those measured for copper-chrome-arsenate treatments. A direct negative influence of copper ion concentration on the corrosion resistance of mild steel was also observed for each preservative type.

  14. Method and apparatus for radio frequency ceramic sintering

    Science.gov (United States)

    Hoffman, Daniel J.; Kimrey, Jr., Harold D.

    1993-01-01

    Radio frequency energy is used to sinter ceramic materials. A coaxial waveguide resonator produces a TEM mode wave which generates a high field capacitive region in which a sample of the ceramic material is located. Frequency of the power source is kept in the range of radio frequency, and preferably between 60-80 MHz. An alternative embodiment provides a tunable radio frequency circuit which includes a series input capacitor and a parallel capacitor, with the sintered ceramic connected by an inductive lead. This arrangement permits matching of impedance over a wide range of dielectric constants, ceramic volumes, and loss tangents.

  15. Techniques for ceramic sintering using microwave energy

    International Nuclear Information System (INIS)

    Kimrey, H.D.; Janney, M.A.; Becher, P.F.

    1987-01-01

    The use of microwave energy for ceramic sintering offers exciting new possibilities for materials processing. Based on experience gathered in microwave processing associated with the heating of fusion plasmas, we have developed hardware and methods for uniformly heating ceramic parts of large volume and irregular shape to temperatures in excess of 1600 0 C, in vacuum or pressurized atmosphere. Microwave processing at 28 GHz yields enhanced densification rates with a corresponding reduction in sintering temperatures. 6 refs

  16. Preparation of Ti3Al intermetallic compound by spark plasma sintering

    Science.gov (United States)

    Ito, Tsutomu; Fukui, Takahiro

    2018-04-01

    Sintered compacts of single phase Ti3Al intermetallic compound, which have excellent potential as refractory materials, were prepared by spark plasma sintering (SPS). A raw powder of Ti3Al intermetallic compound with an average powder diameter of 176 ± 56 μm was used in this study; this large powder diameter is disadvantageous for sintering because of the small surface area. The samples were prepared at sintering temperatures (Ts) of 1088, 1203, and 1323 K, sintering stresses (σs) of 16, 32, and 48 MPa, and a sintering time (ts) of 10 min. The calculated relative densities based on the apparent density of Ti3Al provided by the supplier were approximately 100% under all sintering conditions. From the experimental results, it was evident that SPS is an effective technique for dense sintering of Ti3Al intermetallic compounds in a short time interval. In this report, the sintering characteristics of Ti3Al intermetallic compacts are briefly discussed and compared with those of pure titanium compacts.

  17. Fracture toughness of yttria-stabilized zirconia sintered in conventional and microwave ovens.

    Science.gov (United States)

    Marinis, Aristotelis; Aquilino, Steven A; Lund, Peter S; Gratton, David G; Stanford, Clark M; Diaz-Arnold, Ana M; Qian, Fang

    2013-03-01

    The fabrication of zirconium dioxide (ZrO2) dental prosthetic substructures requires an extended sintering process (8 to 10 hours) in a conventional oven. Microwave sintering is a shorter process (2 hours) than conventional sintering. The purpose of this study was to compare the fracture toughness of 3 mol % Y2O3-stabilized ZrO2 sintered in a conventional or microwave oven. Partially sintered ZrO2 specimens from 3 manufacturers, KaVo, Lava 3M, and Crystal HS were milled (KaVo Everest engine) and randomly divided into 2 groups: conventional sintering and microwave sintering (n=16 per group). The specimens were sintered according to the manufacturers' recommendations and stored in artificial saliva for 10 days. Fracture toughness was determined by using a 4-point bend test, and load to fracture was recorded. Mean fracture toughness for each material was calculated. A 2-way ANOVA followed by the Tukey HDS post hoc test was used to assess the significance of sintering and material effects on fracture toughness, including an interaction between the 2 factors (α=.05). The 2-way ANOVA suggested a significant main effect for ZrO2 manufacturer (P.05). The main effect of the sintering process (Conventional [5.30 MPa·m(1/2) ±1.00] or Microwave [5.36 MPa·m(1/2) ±0.92]) was not significant (P=.76), and there was no interaction between sintering and ZrO2 manufacturer (P=.91). Based on the results of this study, no statistically significant difference was observed in the fracture toughness of ZrO2 sintered in microwave or conventional ovens. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  18. Spark Plasma Sintering constrained process parameters of sintered silver paste for connection in power electronic modules: Microstructure, mechanical and thermal properties

    Energy Technology Data Exchange (ETDEWEB)

    Alayli, N. [Université Paris 13, Sorbonne Paris Cité, Laboratoire des Sciences des Procédés et des Matériaux, Centre National de la Recherche Scientifique, Unité Propre de Recherche 3407, 99 avenue Jean Baptiste Clément, F-93430 Villetaneuse (France); Université de Versailles-Saint-Quentin-en-Yvelines, Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, Centre National de la Recherche Scientifique/INSU, Laboratoire Atmosphères Milieux Observations Spatiales-IPSL, Quartier des Garennes, 11 Boulevard d' Alembert, F-78280 Guyancourt (France); Schoenstein, F., E-mail: frederic.schoenstein@univ-paris13.fr [Université Paris 13, Sorbonne Paris Cité, Laboratoire des Sciences des Procédés et des Matériaux, Centre National de la Recherche Scientifique, Unité Propre de Recherche 3407, 99 avenue Jean Baptiste Clément, F-93430 Villetaneuse (France); Girard, A. [Office National d' Étude et de Recherches Aérospatiales, Laboratoire d' Étude des Microstructures, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 104, 29 avenue de la Division Leclerc, F-92322 Châtillon (France); and others

    2014-11-14

    Processing parameters of Spark Plasma Sintering (SPS) technique were constrained to process nano sized silver particles bound in a paste for interconnection in power electronic devices. A novel strategy combining debinding step and consolidation processes (SPS) in order to elaborate nano-structured silver bulk material is investigated. Optimum parameters were sought for industrial power electronics packaging from the microstructural and morphological properties of the sintered material. The latter was studied by Scanning Electron Microscope (SEM) and X-Ray Diffraction (XRD) to determine the density and the grain size of crystallites. Two types of samples, termed S1 (bulk) and S2 (multilayer) were elaborated and characterized. They are homogeneous with a low degree of porosity and a good adhesion to the substrate and the process parameters are compatible with industrial constraints. As the experimental results show, the mean crystallite size is between 60 nm and 790 nm with a density between 50% and 92% resulting in mechanical and thermal properties that are better than that of lead free solder. The best SPS sintering parameters, the applied pressure, the temperature and the processing time were determined as being 3 MPa, 300 °C and 1 min respectively when the desizing time of the preprocessing step was kept below 5 min at 150 °C. Using these processing parameters, acceptable for automotive packaging industry, a semi-conductor power chip was successfully connected to a metalized substrate by sintered silver with thermal and electrical properties better than those of current solders and with thermomechanical properties allowing absorption of thermoplastic stresses. - Highlights: • The sintered silver joints have nanometric structure. • The grain growth was controlled by the SPS sintering parameters. • New connection material improve thermal and electrical properties of current solders. • Interconnection's plastic strain can absorb thermo

  19. Processing and properties of mechanically alloyed sintered steels with hard inclusions

    International Nuclear Information System (INIS)

    Gutsfeld, C.

    1991-10-01

    The aim of this work was the development of mechanically alloyed sintered steels with inert hard inclusions and their characterisation concerning the mechanical properties and the sliding wear behaviour. For this material concept the hard materials NbC, TiC, TiN and Al 2 O 3 were chosen with volume contents upto 20%. Mechanical alloying of the raw powders is a necessary prerequisit for an extreme fine and homogeneous microstructure and good mechanical and wear properties. Through a connecting powder annealing a conventional powder metallurgical processing with cold pressing and sintering is possible. For the consolidation pressureless liquid phase sintering initiated through phosphorus contents of 0,6% is suitable. Because of the strong hampering of grain growth through the included hard particles sintering densities upto 99% TD are possible with extreme fine microstructures. The mechanical properties can be varied in wide ranges. So tensile strengths of 1150 MPa, elongations at fracture of 17%, hardness of over 800 HV and fatigue strengths of 370 MPa have been reached. Throughout HIP or sinter forging the mechanical properties can be improved furthermore. (orig.) [de

  20. Low temperature sintering of fluorapatite glass-ceramics

    Science.gov (United States)

    Denry, Isabelle; Holloway, Julie A.

    2014-01-01

    Fluorapatite glass-ceramics have been shown to be excellent candidates as scaffold materials for bone grafts, however, scaffold production by sintering is hindered by concurrent crystallization of the glass. Our goal was to investigate the effect of Ca/Al ratio on the sintering behavior of Nb-doped fluorapatite-based glasses in the SiO2-Al2O3-P2O5-MgO-Na2O-K2O-CaO-CaF2 system. Glass compositions with Ca/Al ratio of 1 (A), 2 (B), 4 (C) and 19 (D) were prepared by twice melting at 1525°C for 3h. Glasses were either cast as cylindrical ingots or ground into powders. Disc-shaped specimens were prepared by either sectioning from the ingots or powder-compacting in a mold, followed by heat treatment at temperatures ranging between 700 and 1050°C for 1h. The density was measured on both sintered specimens and heat treated discs as controls. The degree of sintering was determined from these measurements. XRD showed that fluorapatite crystallized in all glass-ceramics. A high degree of sintering was achieved at 775°C for glass-ceramic D (98.99±0.04%), and 900°C for glass-ceramic C (91.31±0.10). Glass-ceramics A or B were only partially sintered at 1000°C (63.6±0.8% and 74.1±1.5%, respectively). SEM revealed a unique microstructure of micron-sized spherulitic fluorapatite crystals in glass-ceramics C and D. Increasing the Ca/Al ratio promoted low temperature sintering of fluorapatite glass-ceramics, which are traditionally difficult to sinter. PMID:24252652

  1. Effects of sintering temperature on the mechanical properties of sintered NdFeB permanent magnets prepared by spark plasma sintering

    International Nuclear Information System (INIS)

    Wang, G.P.; Liu, W.Q.; Huang, Y.L.; Ma, S.C.; Zhong, Z.C.

    2014-01-01

    Sintered NdFeB-based permanent magnets were fabricated by spark plasma sintering (SPS) and a conventional method to investigate the mechanical and magnetic properties. The experimental results showed that sintered NdFeB magnet prepared by the spark plasma sintering (SPS NdFeB) possesses a better mechanical properties compared to the conventionally sintered one, of which the maximum value of bending strength and Vickers hardness was 402.3 MPa and 778.1 MPa, respectively. The effects of sintering temperature on bending strength and Vickers hardness were investigated. It was shown that the bending strength firstly increases to the maximum value and then decreases with the increase of sintering temperature in a certain range. The investigations of microstructures and mechanical properties indicated that the unique sintering mechanism in the SPS process is responsible for the improvement of mechanical properties of SPS NdFeB. Furthermore, the relations between the mechanical properties and relevant microstructure have been analyzed based on the experimental fact. - Highlights: • Studied the sintering temperature effect on strengthening mechanism of NdFeB magnet firstly. • It showed that sintering temperature may effectively affect the mechanical properties. • The maximum bending strength and Vickers hardness was 402.3 MPa and 778.1 MPa, respectively

  2. Effects of sintering temperature on the mechanical properties of sintered NdFeB permanent magnets prepared by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G.P., E-mail: wgp@jxnu.edu.cn [College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022 (China); Liu, W.Q. [Key Laboratory of Advanced Functional Materials Science and Engineering, Ministry of Education, Beijing University of Technology, Beijing 100022 (China); Huang, Y.L.; Ma, S.C.; Zhong, Z.C. [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China)

    2014-01-15

    Sintered NdFeB-based permanent magnets were fabricated by spark plasma sintering (SPS) and a conventional method to investigate the mechanical and magnetic properties. The experimental results showed that sintered NdFeB magnet prepared by the spark plasma sintering (SPS NdFeB) possesses a better mechanical properties compared to the conventionally sintered one, of which the maximum value of bending strength and Vickers hardness was 402.3 MPa and 778.1 MPa, respectively. The effects of sintering temperature on bending strength and Vickers hardness were investigated. It was shown that the bending strength firstly increases to the maximum value and then decreases with the increase of sintering temperature in a certain range. The investigations of microstructures and mechanical properties indicated that the unique sintering mechanism in the SPS process is responsible for the improvement of mechanical properties of SPS NdFeB. Furthermore, the relations between the mechanical properties and relevant microstructure have been analyzed based on the experimental fact. - Highlights: • Studied the sintering temperature effect on strengthening mechanism of NdFeB magnet firstly. • It showed that sintering temperature may effectively affect the mechanical properties. • The maximum bending strength and Vickers hardness was 402.3 MPa and 778.1 MPa, respectively.

  3. Spark plasma sintered bismuth telluride-based thermoelectric materials incorporating dispersed boron carbide

    Energy Technology Data Exchange (ETDEWEB)

    Williams, H.R., E-mail: hugo.williams@leicester.ac.uk [Department of Engineering, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Ambrosi, R.M. [Space Research Centre, Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Chen, K. [School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom); Friedman, U. [Department of Engineering, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Ning, H.; Reece, M.J. [School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom); Robbins, M.C.; Simpson, K. [European Thermodynamics Ltd., 8 Priory Business Park, Wistow Road, Kibworth LE8 0R (United Kingdom); Stephenson, K. [European Space Agency, ESTEC TEC-EP, Keplerlaan 1, 2201AZ Noordwijk (Netherlands)

    2015-03-25

    Highlights: • Nano-B{sub 4}C reinforced Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} p-type thermoelectric produced by SPS. • Addition of B{sub 4}C up to 0.2 vol% to SPS’d material has little effect on zT. • Vickers hardness improved by 27% by adding 0.2 vol% B{sub 4}C. • Fracture toughness of SPS material: K{sub IC} = 0.80 MPa m{sup 1/2} by SEVNB. • Mechanical properties much better than commercial directionally solidified material. - Abstract: The mechanical properties of bismuth telluride based thermoelectric materials have received much less attention in the literature than their thermoelectric properties. Polycrystalline p-type Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} materials were produced from powder using spark plasma sintering (SPS). The effects of nano-B{sub 4}C addition on the thermoelectric performance, Vickers hardness and fracture toughness were measured. Addition of 0.2 vol% B{sub 4}C was found to have little effect on zT but increased hardness by approximately 27% when compared to polycrystalline material without B{sub 4}C. The K{sub IC} fracture toughness of these compositions was measured as 0.80 MPa m{sup 1/2} by Single-Edge V-Notched Beam (SEVNB). The machinability of polycrystalline materials produced by SPS was significantly better than commercially available directionally solidified materials because the latter is limited by cleavage along the crystallographic plane parallel to the direction of solidification.

  4. Modeling Macroscopic Shape Distortions during Sintering of Multi-layers

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye

    as to help achieve defect free multi-layer components. The initial thickness ratio between the layers making the multi-layer has also significant effect on the extent of camber evolution depending on the material systems. During sintering of tubular bi-layer structures, tangential (hoop) stresses are very...... large compared to radial stresses. The maximum value of hoop stress, which can generate processing defects such as cracks and coating peel-offs, occurs at the beginning of the sintering cycle. Unlike most of the models defining material properties based on porosity and grain size only, the multi...... (firing). However, unintended features like shape instabilities of samples, cracks or delamination of layers may arise during sintering of multi-layer composites. Among these defects, macroscopic shape distortions in the samples can cause problems in the assembly or performance of the final component...

  5. Preparation of Ni-Ti shape memory alloy by spark plasma sintering method

    Czech Academy of Sciences Publication Activity Database

    Salvetr, P.; Kubatík, Tomáš František; Novák, P.

    2016-01-01

    Roč. 16, č. 4 (2016), s. 804-808 ISSN 1213-2489 Institutional support: RVO:61389021 Keywords : Ni-Ti alloy * Powder metallurgy * Reactive sintering * Spark plasma sintering Subject RIV: JK - Corrosion ; Surface Treatment of Materials

  6. Enhancing the Ductility of Laser-Welded Copper-Aluminum Connections by using Adapted Filler Materials

    Science.gov (United States)

    Weigl, M.; Albert, F.; Schmidt, M.

    Laser micro welding of direct copper-aluminum connections typically leads to the formation of intermetallic phases and an embrittlement of the metal joints. By means of adapted filler materials it is possible to reduce the brittle phases and thereby enhance the ductility of these dissimilar connections. As the element silicon features quite a well compatibility with copper and aluminum, filler materials based on Al-Si and Cu-Si alloys are used in the current research studies. In contrast to direct Cu-Al welds, the aluminum filler alloy AlSi12 effectuates a more uniform element mixture and a significantly enhanced ductility.

  7. Functional lignocellulosic material for the remediation of copper(II) ions from water: Towards the design of a wood filter.

    Science.gov (United States)

    Vitas, Selin; Keplinger, Tobias; Reichholf, Nico; Figi, Renato; Cabane, Etienne

    2018-05-09

    In this study, the chemical modification of bulk beech wood is described along with its utilization as biosorbent for the remediation of copper from water. The material was prepared by esterification using anhydrides, and reaction conditions were optimized to propose a greener process, in particular by reducing the amount of solvent. This modification yields a lignocellulosic material whose native structure is preserved, with an increased amount of carboxylic groups (up to 3 mmol/g). We demonstrate that the material can remove up to 95% of copper from low concentration solutions (100- 500 ppm). The adsorption efficiency decreases with concentrated copper solutions, and we show that a limited number of -COOH groups participate in copper binding (ca. 0.1 Cu/-COOH). This result suggests a limited accessibility of -COOH groups in the wood scaffold. This was demonstrated by the characterization of -COOH and copper distributions inside wood. Raman and EDX imaging confirmed that most -COOH groups are located inside the wood cell walls, thereby limiting interactions with copper. According to this study, critical limitations of bulk wood as a biosorbent were identified, and the results will be used to improve the material and design an efficient wood filter for heavy metal remediation. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Effect of sintering temperature on the densification of B4C pellets

    International Nuclear Information System (INIS)

    Gomide, R.G.; Durazzo, M.; Riella, H.G.

    1990-01-01

    Boron is largely used in several types of nuclear reactors control and safety systems. In the majority of these applications sintered boron carbide pellets are used. Near stoichiometric B 4 C hardly densifies during pressureless sintering. As a starting point of an overall program to produce > 70% TD B 4 C pellets pressing parameters have been studied for further study of the influence of sintering temperature in the densification of this ceramic material. Dilatometric analyses show that sintering starts at 1760 0 C for the F 1200 ESK - type boron carbide powders. Moreover, the sintering experiments show that up to 92% TD pellets can be obtained. (author) [pt

  9. Sintering and Electrical Characterization of La and Nb Co‐doped SrTiO3 Electrode Materials for Solid Oxide Cell Applications

    DEFF Research Database (Denmark)

    Sudireddy, Bhaskar Reddy; Agersted, Karsten

    2014-01-01

    Single‐phase lanthanum and niobium co‐doped strontium titanate (Sr1–3x/2LaxTi0.9Nb0.1O3; x = 0–0.02) ceramics were prepared. Dilatometry in reducing atmosphere showed an increase in the sintering rate and sintered density with an increase in La amount. Microscopy of fractured surfaces of sintered...... samples showed that the average grain size increased drastically in reducing conditions with increasing La content (and associated A‐site vacancies). By incorporating 2 mol.% La, the electronic conductivity significantly improved from 80 to 135 S cm−1 at 1,000 °C, and even larger improvements were...... observed at lower temperatures. These observations demonstrate the flexibility in tailoring the microstructure and electronic transport properties by doping small amounts of La into the Nb‐doped SrTiO3 and show that Sr1–3x/2LaxTi0.9Nb0.1O3 is a potential electrode material for solid oxide cells....

  10. Liquid phase sintered superconducting cermet

    International Nuclear Information System (INIS)

    Ray, S.P.

    1990-01-01

    This patent describes a method of making a superconducting cermet having superconducting properties with improved bulk density, low porosity and in situ stabilization. It comprises: forming a structure of a superconducting ceramic material having the formula RM 2 Cu 3 O (6.5 + x) wherein R is one or more rare earth elements capable of reacting to form a superconducting ceramic, M is one or more alkaline earth metal elements selected from barium and strontium capable of reacting to form a superconducting ceramic, x is greater than 0 and less than 0.5; and a precious metal compound in solid form selected from the class consisting of oxides, sulfides and halides of silver; and liquid phase sintering the mixture at a temperature wherein the precious metal of the precious metal compound is molten and below the melting point of the ceramic material. The liquid phase sintering is carried out for a time less than 36 hours but sufficient to improve the bulk density of the cermet

  11. Effects of particle shape and temperature on compaction of copper powder at micro scale

    Directory of Open Access Journals (Sweden)

    Chang Chao-Cheng

    2017-01-01

    Full Text Available This study investigated the effects of particle shape and temperature on the compaction of copper powder at micro scale. Copper powder particles were compressed inside a cylindrical die cavity with 2 mm diameter to form compacts with about 3 mm height. Two kinds of particle shapes, spherical and dendritic, and two forming temperatures, room temperature and 400 °C, were considered in the experiments. Some of the produced compacts were further sintered at 600 °C. The study also used simple upsetting tests to investigate the characteristics of the deformation of the compacts under compressive stresses. The results showed that the compacts produced at room temperature demonstrated brittle deformations. However, by increasing the forming temperature to 400 °C, ductile deformations have been observed on the compacts of dendritic particles. Furthermore, the sintering treatment resulted in increases in dimensions, decreases in relative density and hardness, and an increase in ductility. It also led to pore growths which have been seen on scanning-electron microscope images. These phenomena were most significant in the dendritic powder compacts which were produced at 400 °C and treated by the sintering process.

  12. Influence of sintering temperature on structural, dielectric and magnetic properties of Li substituted CuFe{sub 2}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Manikandan, V. [Department of Physics, Government College of Technology, Coimbatore, Tamil Nadu-13 (India); Vanitha, A., E-mail: avanitha570@gmail.com [Department of Physics, Government College of Technology, Coimbatore, Tamil Nadu-13 (India); Kumar, E. Ranjith, E-mail: ranjueaswar@gmail.com [Department of Physics, Dr. NGP Institute of Technology, Coimbatore, Tamil Nadu-48 (India); Kavita, S. [Centre for Automotive Energy Materials, International Advanced Research Centre for Powder Metallurgy and New Materials, Chennai, Tamil nadu-113 (India)

    2017-03-15

    Lithium substituted copper ferrite (Li{sub x}Cu{sub (1−x)}Fe{sub 2}O{sub 4}) nanoparticles have been successfully synthesized by chemical co-precipitation method. XRD analysis confirms the formation of Li substituted Cu ferrite with crystallite size in the range of 17–41 nm. The SEM and TEM microstructure of nanoparticle is well characterized and fine nature improves while increasing of Li concentration and also FTIR analysis exhibit the usual behaviour of ferrite materials. The dielectric properties of the material are increased with increase of concentration. The hysteresis loop is increased which is evident from the increase of saturation magnetization which implies that soft magnetic material has altered into hard magnetic material - Highlights: • Nano rod formation has been initiated while increase of Li concentration. • Under the strong influence of sintering temperature, the soft magnetic behaviour has been changed into hard magnetic behaviour. • The average crystallite sizes of the samples are in the range of 17-41 nm.

  13. Hexagonal OsB{sub 2}: Sintering, microstructure and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Zhilin [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Lugovy, Mykola [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Institute for Problems of Materials Science, 3 Krzhizhanivskii Str., Kyiv 03142 (Ukraine); Orlovskaya, Nina, E-mail: Nina.Orlovskaya@ucf.edu [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Graule, Thomas; Kuebler, Jakob [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for High Performance Ceramics, CH-8600 Dubendorf (Switzerland); Mueller, Martin [Laboratory of Mechanical Metallurgy, EPFL, CH-1015 Lausanne (Switzerland); Gao, Huili [Department of Mechanical Engineering, Texas A& M University, College Station, TX 77843 (United States); Radovic, Miladin [Department of Materials Science and Engineering, Texas A& M University, College Station, TX 77843 (United States); Cullen, David A. [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2015-06-15

    Highlights: • ReB{sub 2}-type hexagonal OsB{sub 2} powder has been densified by spark plasma sintering. • The sintered OsB{sub 2} contains ∼80 wt.% hexagonal and ∼20 wt.% orthorhombic phases. • The average grain size of the sintered OsB{sub 2} sample was 0.56 ± 0.26 μm. • H = 31 ± 9 GPa and E = 574 ± 112 GPa measured by nanoindentation. - Abstract: The metastable high pressure ReB{sub 2}-type hexagonal OsB{sub 2} bulk ceramics was produced by spark plasma sintering. The phase composition, microstructure, and mechanical behavior of the sintered OsB{sub 2} were studied by X-ray diffraction, optical microscopy, TEM, SEM, EDS, and nanoindentation. The produced ceramics was rather porous and contained a mixture of hexagonal (∼80 wt.%) and orthorhombic (∼20 wt.%) phases as identified by X-ray diffraction and EBSD analysis. Two boron-rich phases, which do not contain Os, were also identified by TEM and SEM/EDS analysis. Nanoindentation measurements yielded a hardness of 31 ± 9 GPa and Young’s modulus of 574 ± 112 GPa, indicating that the material is rather hard and very stiff; however, it is very prone to crack formation and propagation, which is indicative of a very brittle nature of this material. Improvements in the sintering regime are required in order to produce dense, homogeneous and single phase hexagonal OsB{sub 2} bulk ceramics.

  14. Comparative analysis of copper and zinc based agrichemical biocide products: materials characteristics, phytotoxicity and in vitro antimicrobial efficacy

    Directory of Open Access Journals (Sweden)

    Harikishan Kannan

    2016-07-01

    Full Text Available In the past few decades, copper based biocides have been extensively used in food crop protection including citrus, small fruits and in all garden vegetable production facilities. Continuous and rampant use of copper based biocides over decades has led to accumulation of this metal in the soil and the surrounding ecosystem. Toxic levels of copper and its derivatives in both the soil and in the run off pose serious environmental and public health concerns. Alternatives to copper are in great need for the agriculture industry to produce food crops with minimal environmental risks. A combination of copper and zinc metal containing biocide such as Nordox 30/30 or an improved version of zinc-only containing biocide would be a good alternative to copper-only products if the efficacy can be maintained. As of yet there is no published literature on the comparative study of the materials characteristics and phyto-compatibility properties of copper and zinc-based commercial products that would allow us to evaluate the advantages and disadvantages of both versions of pesticides. In this report, we compared copper hydroxide and zinc oxide based commercially available biocides along with suitable control materials to assess their efficacy as biocides. We present a detailed material characterization of the biocides including morphological studies involving electron microscopy, molecular structure studies involving X-ray diffraction, phytotoxicity studies in model plant (tomato and antimicrobial studies involving surrogate plant pathogens (Xanthomonas alfalfae subsp. citrumelonis, Pseudomonas syringae pv. syringae and Clavibacter michiganensis subsp. michiganensis. Zinc based compounds were found to possess comparable to superior antimicrobial properties while exhibiting significantly lower phytotoxicity when compared to copper based products thus suggesting their potential as an alternative.

  15. Investigation of an Electrochemical Method for Separation of Copper, Indium, and Gallium from Pretreated CIGS Solar Cell Waste Materials

    Directory of Open Access Journals (Sweden)

    Anna M. K. Gustafsson

    2015-01-01

    Full Text Available Recycling of the semiconductor material copper indium gallium diselenide (CIGS is important to ensure a future supply of indium and gallium, which are relatively rare and therefore expensive elements. As a continuation of our previous work, where we recycled high purity selenium from CIGS waste materials, we now show that copper and indium can be recycled by electrodeposition from hydrochloric acid solutions of dissolved selenium-depleted material. Suitable potentials for the reduction of copper and indium were determined to be −0.5 V and −0.9 V (versus the Ag/AgCl reference electrode, respectively, using cyclic voltammetry. Electrodeposition of first copper and then indium from a solution containing the dissolved residue from the selenium separation and ammonium chloride in 1 M HCl gave a copper yield of 100.1 ± 0.5% and an indium yield of 98.1 ± 2.5%. The separated copper and indium fractions contained no significant contamination of the other elements. Gallium remained in solution together with a small amount of indium after the separation of copper and indium and has to be recovered by an alternative method since electrowinning from the chloride-rich acid solution was not effective.

  16. Two-stage sintering of Al2O3 with polysiloxane

    International Nuclear Information System (INIS)

    Godoy, A.L.E.; Bressiani, A.H.A.

    2014-01-01

    The final stage of sintering involves grain growth which often is not desirable in the microstructure of structural ceramics and cutting tools. The ceramics derived from inorganic polymers allow the production of thermo mechanical materials due to their hardness and especially their excellent structural stability under aggressive environment. The aim of this study is to investigate the effect of two steps sintering process on density, microstructure and hardness of ceramics derived from the mixture alumina-polysiloxane (PMS). Alumina was ball-milled for 12, 24 and 48 hours. The alumina powder mean particle size was characterized by laser diffraction. It was added 10% wt of PMS. Pellets were prepared by die pressing and sintering at 1650°C/10min and 1550°C/1h. The sintered materials were characterized by evaluation of apparent density by helium picnometry, X-ray diffraction, scanning electron microscopy and Vickers indentation analysis for hardness determination. The specimens are composed by mullite and the best results were obtained with the addition of alumina milled for 48 hours. (author)

  17. Microstructure evolution of SiC sintered bodies activated by boron and carbon

    International Nuclear Information System (INIS)

    Gubernat, A.; Stobierski, L.

    2003-01-01

    Investigation on the role of sintering aids on densification of silicon carbide indicate that boron and carbon modify mass transport mechanisms. It leads to changes of microstructure of polycrystalline silicon carbide. In the present work the influence of varying proportions of sintering aids on the material microstructure was studied. The microstructural changes were related to the changes of the selected properties of the resulting materials. (author)

  18. Wafer size effect on material removal rate in copper CMP process

    Energy Technology Data Exchange (ETDEWEB)

    Yuh, Minjong; Jang, Soocheon; Park, Inho; Jeong, Haedo [Pusan National University, Busan (Korea, Republic of)

    2017-06-15

    The semiconductor industry has employed the Chemical mechanical planarization (CMP) to enable surface topography control. Copper has been used to build interconnects because of its low-resistivity and high-electromigration. In this study, the effect of wafer size on the Material removal rate (MRR) in copper CMP process was investigated. CMP experiments were conducted using copper blanket wafers with diameter of 100, 150, 200 and 300 mm, while temperature and friction force were measured by infrared and piezoelectric sen-sors. The MRR increases with an increase in wafer size under the same process conditions. The wafer size increased the sliding distance of pad, resulting in an increase in the process temperature. This increased the process temperature, accelerating the chemical etching rate and the dynamic etch rate. The sliding distance of the pad was proportional to the square of the wafer radius; it may be used to predict CMP results and design a CMP machine.

  19. Peridynamic Theory as a New Paradigm for Multiscale Modeling of Sintering

    Energy Technology Data Exchange (ETDEWEB)

    Silling, Stewart A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Abdeljawad, Fadi [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ford, Kurtis Ross [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Sintering is a component fabrication process in which powder is compacted by pressing or some other means and then held at elevated temperature for a period of hours. The powder grains bond with each other, leading to the formation of a solid component with much lower porosity, and therefore higher density and higher strength, than the original powder compact. In this project, we investigated a new way of computationally modeling sintering at the length scale of grains. The model uses a high-fidelity, three-dimensional representation with a few hundred nodes per grain. The numerical model solves the peridynamic equations, in which nonlocal forces allow representation of the attraction, adhesion, and mass diffusion between grains. The deformation of the grains is represented through a viscoelastic material model. The project successfully demonstrated the use of this method to reproduce experimentally observed features of material behavior in sintering, including densification, the evolution of microstructure, and the occurrence of random defects in the sintered solid.

  20. Sinterability and microstructure evolution during sintering of ferrous powder mixtures

    Directory of Open Access Journals (Sweden)

    Kétner Bendo Demétrio

    2013-01-01

    Full Text Available The present work is focused on ferrous powder metallurgy and presents some results of a development of a suitable masteralloy for use as an additive to iron powder for the production of sintered steels. The masteralloy was produced by melting a powder mixture containing approximately Fe + 20% Ni + 20% Mn + 20% Si + 1% C (wt%, in order to obtain a cast billet that was converted into fine powder by crushing and milling. It was observed presence of SiC in the masteralloy after melting that is undesirable in the alloy. Si element should be introduced by using ferrosilicon. Sintered alloys with distinct contents of alloying elements were prepared by mixing the masteralloy powder to plain iron powder. Samples were produced by die compaction of the powder mixtures and sintering at 1200 °C in a differential dilatometer in order to record their linear dimensional behaviour during heating up and isothermal sintering, aiming at studying the sinterability of the compacts. Microstructure development during sintering was studied by SEM, XRD and microprobe analyses.

  1. Two step sintering of zirconia-escandia-ceria

    International Nuclear Information System (INIS)

    Grosso, R.L.; Muccillo, E.N.S.

    2011-01-01

    Recent reports show that the ceramic system based on zirconia-scandia-ceria is a good candidate to act as solid electrolyte in solid oxide fuel cells operating at intermediate temperatures (600-800 °C). In this work, commercial ZrO_2 containing 10 mol% scandium oxide and 1 mol% cerium oxide was sintered by the two stage method. This technique was proposed to in order to obtain ceramic materials with high density along with fine grain sizes, because it avoids the grain growth occurring in the last stage of sintering. A number of experimental conditions were fully exploited by varying the dwell temperature (T_2) and the dwell time. The peak temperature (T_1) was chosen from linear shrinkage results. High (>98%) density values were obtained using this method. The medium grain size was evaluated for selected sintered samples. X-ray diffraction patterns reveal a secondary (rhombohedral) phase in sintered samples. The intensity of the secondary phase is a function of T_1 being small for relatively higher peak temperatures. (author)

  2. Selective Production of 2-Methylfuran by Gas-Phase Hydrogenation of Furfural on Copper Incorporated by Complexation in Mesoporous Silica Catalysts.

    Science.gov (United States)

    Jiménez-Gómez, Carmen Pilar; Cecilia, Juan A; Moreno-Tost, Ramón; Maireles-Torres, Pedro

    2017-04-10

    Copper species have been incorporated in mesoporous silica (MS) through complexation with the amine groups of dodecylamine, which was used as a structure-directing agent in the synthesis. A series of Cu/SiO 2 catalysts (xCu-MS) with copper loadings (x) from 2.5 to 20 wt % was synthesized and evaluated in the gas-phase hydrogenation of furfural (FUR). The most suitable catalytic performance in terms of 2-methylfuran yield was obtained with an intermediate copper content (10 wt %). This 10Cu-MS catalyst exhibits a 2-methylfuran yield higher than 95 mol % after 5 h time-on-stream (TOS) at a reaction temperature of 210 °C with a H 2 /FUR molar ratio of 11.5 and a weight hourly space velocity (WHSV) of 1.5 h -1 . After 14 h TOS, this catalyst still showed a yield of 80 mol %. In all cases, carbonaceous deposits on the external surface were the cause of the catalyst deactivation, although sintering of the copper particles was observed for higher copper loadings. This intermediate copper loading (10 wt %) offered a suitable balance between resistance to sintering and tendency to form carbonaceous deposits. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Application and Research Status of Alternative Materials for 3D-printing Technology

    Directory of Open Access Journals (Sweden)

    WANG Yanqing

    2016-08-01

    Full Text Available Application features and research status of alternative 3D-printing materials for six typical 3D-printingtechniques were reviewed. From the point of view of physical forms, four kinds of materials of liquid photosensitive resin material, thin sheet material (paper or plastic film , low melting point filament material and powder material are included. And from the composition point of view, nearly all kinds of materials in the production and life are included such as polymer materials: plastic, resin, wax; metal and alloy materials; ceramic materials. Liquid photosensitive resin material is used for stereo lithigraphy apparatus(SLA; thin sheet materials such as paper or plastic film are used for laminated object manufacturing(LOM; low melting point polymer filament materials such as wax filament, polyolefin resin filament, polyamide filament and ABS filament are used for fused deposition modeling(FDM; very wide variety powder materials including nylon powder, nylon-coated glass powder, polycarbonate powder, polyamide powder, wax powder, metal powder(Re-sintering and infiltration of copper are needed after sintering, wax-coated ceramic powder, wax-coated metal powder and thermosetting resin-coated fine sand are used for selective laser sintering(SLS. Nearly the same above powder materials are used for selective laser melting(SLM, but the printed parts own much more higher density and better mechanical properties. Powder materials are likewise used for threedimensional printing and gluing(3DP, however, the powders are stuck together by tricolor binder sprayed through nozzle and cross-section shape of the part is color-printed on it. Finally, the development direction in both quality and the yield of 3D-printing materials were pointed out to be a bottle-neck issue and a hot topic in the field of 3D-printing.

  4. Sintering of uranium dioxide obtained by continuous precipitation of AUC

    International Nuclear Information System (INIS)

    Amaya, C.D.; Sterba, M.E.; Russo, D.O.

    1993-01-01

    The Nuclear Materials Division in Bariloche Atomic Center evaluates the ceramic behaviour of UO 2 powders obtained from continuously precipitated and reduced AUC (Ammonium Uranyl Tri Carbonate). An analysis is made of powder characteristics (particle morphology and size distribution and specific area) on behaviour of UO 2 during sintering (compaction, sintering, pore and grain microstructure, etc.). 1 ref

  5. Effects of sintering atmosphere and initial particle size on sintering of gadolinia-doped ceria; Efeitos da atmosfera de sinterizacao e do tamanho de particula na sinterizacao da ceria-gadolinia

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Rafael Morgado

    2014-07-01

    The effects of the sintering atmosphere and initial particle size on the sintering of ceria containing 10 mol% gadolinia (GdO{sub 1.5}) were systematically investigated. The main physical parameter was the specific surface area of the initial powders. Nanometric powders with three different specific surface areas were utilized, 210 m{sup 2}/g, 36,2 m{sup 2}/g e 7,4 m{sup 2}/g. The influence on the densification, and micro structural evolution were evaluated. The starting sintering temperature was verified to decrease with increasing on the specific surface area of raw powders. The densification was accelerated for the materials with smaller particle size. Sintering paths for crystallite growth were obtained. Master sintering curves for gadolinium-doped ceria were constructed for all initial powders. A computational program was developed for this purpose. The results for apparent activation energy showed noticeable dependence with specific surface area. In this work, the apparent activation energy for densification increased with the initial particle size of powders. The evolution of the particle size distributions on non isothermal sintering was investigated by WPPM method. It was verified that the grain growth controlling mechanism on gadolinia doped ceria is the pore drag for initial stage and beginning of intermediate stage. The effects of the sintering atmosphere on the stoichiometry deviation of ceria, densification, microstructure evolution, and electrical conductivity were analyzed. Inert, oxidizing, and reducing atmospheres were utilized on this work. Deviations on ceria stoichiometry were verified on the bulk materials. The deviation verified was dependent of the specific surface area and sintering atmosphere. Higher reduction potential atmospheres increase Ce{sup 3+} bulk concentration after sintering. Accelerated grain growth and lower electrical conductivities were verified when reduction reactions are significantly present on sintering. (author)

  6. Comparative studies on mechanical properties of WC-Co composites sintered by SPS and conventional techniques

    Directory of Open Access Journals (Sweden)

    Pristinskiy Yuri

    2017-01-01

    Full Text Available Spark plasma sintering (SPS is an extremely fast solidification technique for compounds that are difficult to sinter within the material group metals, ceramics, or composites thereof, SPS uses a uniaxial pressure and a very rapid heating cycle to consolidate these materials. With SPS the main benefit is the ability to control the WC grain size due to the short sintering times at high temperature. Additionally, its allows to avoid negative reactions between WC and cobalt and to minimize the formation of undesirable phases in sintered composites. The WC-6wt.% Co cermet prepared by SPS processing achieves the enhanced mechanical properties with the hardness of 18.3 GPa and the fracture toughness of 15.5 MPa·m1/2 in comparison to standard reference tungsten carbide/cobalt material.

  7. Vitrification of copper flotation waste

    Energy Technology Data Exchange (ETDEWEB)

    Karamanov, Alexander [Institute of Physical Chemistry, Bulgarian Academy of Science, G. Bonchev Str. Block 11, 1113 Sofia (Bulgaria)]. E-mail: karama@ing.univaq.it; Aloisi, Mirko [Department of Chemistry, Chemical Engineering and Materials, University of L' Aquila, 67040 Monteluco di Roio, L' Aquila (Italy); Pelino, Mario [Department of Chemistry, Chemical Engineering and Materials, University of L' Aquila, 67040 Monteluco di Roio, L' Aquila (Italy)

    2007-02-09

    The vitrification of an hazardous iron-rich waste (W), arising from slag flotation of copper production, was studied. Two glasses, containing 30 wt% W were melted for 30 min at 1400 deg. C. The first batch, labeled WSZ, was obtained by mixing W, blast furnace slag (S) and zeolite tuff (Z), whereas the second, labeled WG, was prepared by mixing W, glass cullet (G), sand and limestone. The glass frits showed high chemical durability, measured by the TCLP test. The crystallization of the glasses was evaluated by DTA. The crystal phases formed were identified by XRD resulting to be pyroxene and wollastonite solid solutions, magnetite and hematite. The morphology of the glass-ceramics was observed by optical and scanning electron microscopy. WSZ composition showed a high rate of bulk crystallization and resulted to be suitable for producing glass-ceramics by a short crystallization heat-treatment. WG composition showed a low crystallization rate and good sinterability; glass-ceramics were obtained by sinter-crystallization of the glass frit.

  8. Vitrification of copper flotation waste.

    Science.gov (United States)

    Karamanov, Alexander; Aloisi, Mirko; Pelino, Mario

    2007-02-09

    The vitrification of an hazardous iron-rich waste (W), arising from slag flotation of copper production, was studied. Two glasses, containing 30wt% W were melted for 30min at 1400 degrees C. The first batch, labeled WSZ, was obtained by mixing W, blast furnace slag (S) and zeolite tuff (Z), whereas the second, labeled WG, was prepared by mixing W, glass cullet (G), sand and limestone. The glass frits showed high chemical durability, measured by the TCLP test. The crystallization of the glasses was evaluated by DTA. The crystal phases formed were identified by XRD resulting to be pyroxene and wollastonite solid solutions, magnetite and hematite. The morphology of the glass-ceramics was observed by optical and scanning electron microscopy. WSZ composition showed a high rate of bulk crystallization and resulted to be suitable for producing glass-ceramics by a short crystallization heat-treatment. WG composition showed a low crystallization rate and good sinterability; glass-ceramics were obtained by sinter-crystallization of the glass frit.

  9. Vitrification of copper flotation waste

    International Nuclear Information System (INIS)

    Karamanov, Alexander; Aloisi, Mirko; Pelino, Mario

    2007-01-01

    The vitrification of an hazardous iron-rich waste (W), arising from slag flotation of copper production, was studied. Two glasses, containing 30 wt% W were melted for 30 min at 1400 deg. C. The first batch, labeled WSZ, was obtained by mixing W, blast furnace slag (S) and zeolite tuff (Z), whereas the second, labeled WG, was prepared by mixing W, glass cullet (G), sand and limestone. The glass frits showed high chemical durability, measured by the TCLP test. The crystallization of the glasses was evaluated by DTA. The crystal phases formed were identified by XRD resulting to be pyroxene and wollastonite solid solutions, magnetite and hematite. The morphology of the glass-ceramics was observed by optical and scanning electron microscopy. WSZ composition showed a high rate of bulk crystallization and resulted to be suitable for producing glass-ceramics by a short crystallization heat-treatment. WG composition showed a low crystallization rate and good sinterability; glass-ceramics were obtained by sinter-crystallization of the glass frit

  10. Sintering of nonstoichiometric UO2

    International Nuclear Information System (INIS)

    Susnik, D.; Holc, J.

    1983-01-01

    Activated sintering of UO 2 pellets at 1100 deg C is described. In CO 2 atmosphere is UO 2 is nonstoichiometric and pellets from active UO 2 powders sinter at 900 deg C to high density. At 1100 deg C the final sintered density is practically achieved at heating on sintering temperature. After reduction and cooling in H 2 atmosphere which is followed sintering in CO 2 the structure is identical to the structured UO 2 pellets sintered at high temperature in H 2 . Density of activated sintered UO 2 pellets is stable, even after additional sintering at 1800 deg C. (author)

  11. Titanium Powder Sintering in a Graphite Furnace and Mechanical Properties of Sintered Parts

    Directory of Open Access Journals (Sweden)

    Changzhou Yu

    2017-02-01

    Full Text Available Recent accreditation of titanium powder products for commercial aircraft applications marks a milestone in titanium powder metallurgy. Currently, powder metallurgical titanium production primarily relies on vacuum sintering. This work reported on the feasibility of powder sintering in a non-vacuum furnace and the tensile properties of the as-sintered Ti. Specifically, we investigated atmospheric sintering of commercially pure (C.P. titanium in a graphite furnace backfilled with argon and studied the effects of common contaminants (C, O, N on sintering densification of titanium. It is found that on the surface of the as-sintered titanium, a severely contaminated porous scale was formed and identified as titanium oxycarbonitride. Despite the porous surface, the sintered density in the sample interiors increased with increasing sintering temperature and holding time. Tensile specimens cut from different positions within a large sintered cylinder reveal different tensile properties, strongly dependent on the impurity level mainly carbon and oxygen. Depending on where the specimen is taken from the sintered compact, ultimate tensile strength varied from 300 to 580 MPa. An average tensile elongation of 5% to 7% was observed. Largely depending on the interstitial contents, the fracture modes from typical brittle intergranular fracture to typical ductile fracture.

  12. LOW TEMPERATURE SINTERING OF ALUMINA BIOCERAMIC UNDER NORMAL PRESSURE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Superfine alumina powder with high purity (mean particle size is less than 0. 35μm) were used as main starting material for sintering alumina ceramic. A multiple additive MgO-ZrO2 (Y2O3) was homogeneously added into the batch by the chemical coprecipitation method. Sintering of alumina bioceramic at low tempera ture (<1600C) was achieved resulting in a dense and high strength alumina ceramic with the bending strength up to 382 MPa and an improved fracture toughness. Mechanism that the multiple additives promote the sintering of alumina ceramic is discussed on the base of XRD and SEM analysis.

  13. Effect of Sintering Atmosphere and Solution Treatment on Density, Microstructure and Tensile Properties of Duplex Stainless Steels Developed from Pre-alloyed Powders

    Science.gov (United States)

    Murali, Arun Prasad; Mahendran, Sudhahar; Ramajayam, Mariappan; Ganesan, Dharmalingam; Chinnaraj, Raj Kumar

    2017-10-01

    In this research, Powder Metallurgy (P/M) of Duplex Stainless Steels (DSS) of different compositions were prepared through pre-alloyed powders and elemental powders with and without addition of copper. The powder mix was developed by pot mill for 12 h to obtain the homogeneous mixture of pre-alloyed powder with elemental compositions. Cylindrical green compacts with the dimensions of 30 mm diameter and 12 mm height were compacted through universal testing machine at a pressure level of 560 ± 10 MPa. These green compacts were sintered at 1350 °C for 2 h in hydrogen and argon atmospheres. Some of the sintered stainless steel preforms were solution treated at 1050 °C followed by water quenching. The sintered as well as solution treated samples were analysed by metallography examination, Scanning Electron Microscopy and evaluation of mechanical properties. Ferrite content of sintered and solution treated DSS were measured by Fischer Ferritoscope. It is inferred that the hydrogen sintered DSS depicted better density (94% theoretical density) and tensile strength (695 MPa) than the argon sintered steels. Similarly the microstructure of solution treated DSS revealed existence of more volume of ferrite grains than its sintered condition. Solution treated hydrogen sintered DSS A (50 wt% 316L + 50 wt% 430L) exhibited higher tensile strength of 716 MPa and elongation of 17%, which are 10-13% increment than the sintered stainless steels.

  14. On-site infiltration of a copper roof runoff: role of clinoptilolite as an artificial barrier material.

    Science.gov (United States)

    Athanasiadis, Konstantinos; Helmreich, Brigitte; Horn, Harald

    2007-08-01

    On-site infiltration may be considered as a promising way of managing rainwater runoffs in urban areas, provided the hydrological and ecological conditions allow infiltration, and provided there is adequate treatment of the contaminants to avoid a risk of soil and groundwater pollution. The aim of this study was to evaluate the feasibility of the application of a new technical infiltration system equipped with clinoptilolite as an artificial barrier material for the treatment of the copper roof runoff of the Academy of Fine Arts in Munich, Germany. During the 2-yr sampling period, 30 rain events were examined. The cover material of the roof and the drainage system was responsible for the high copper concentrations in the roof runoff. The rain height and the rain intensity were of great significance regarding the establishment of the copper runoff rate. The technical infiltration system applied was able to reduce the copper from the roof runoff by a factor up to 96%. The mean measured copper concentration in percolation water was lower than the critical value of 50 microg/l set by the German Federal Soil Protection Act and Ordinance, indicating no risk for soil and groundwater contamination.

  15. The Setup Design for Selective Laser Sintering of High-Temperature Polymer Materials with the Alignment Control System of Layer Deposition

    Directory of Open Access Journals (Sweden)

    Alexey Nazarov

    2018-03-01

    Full Text Available This paper presents the design of an additive setup for the selective laser sintering (SLS of high-temperature polymeric materials, which is distinguished by an original control system for aligning the device for depositing layers of polyether ether ketone (PEEK powder. The kinematic and laser-optical schemes are given. The main cooling circuits are described. The proposed technical and design solutions enable conducting the SLS process in different types of high-temperature polymer powders. The principles of the device adjustment for depositing powder layers based on an integral thermal analysis are disclosed. The PEEK sinterability was shown on the designed installation. The physic-mechanical properties of the tested 3D parts were evaluated in comparison with the known data and showed an acceptable quality.

  16. Manufacture of sintered bricks of high density from beryllium oxide

    International Nuclear Information System (INIS)

    Pointud, R.; Rispal, Ch.; Le Garec, M.

    1959-01-01

    Beryllium oxide bricks of nuclear purity 100 x 100 x 50 and 100 x 100 x 100 mm of very high density (between 2.85 and 3.00) are manufactured by sintering under pressure in graphite moulds at temperatures between 1,750 and 1,850 deg. C, and under a pressure of 150 kg/cm 2 . The physico-chemical state of the saw material is of considerable importance with regard to the success of the sintering operation. In addition, a study of the sintering of a BeO mixture with 3 to 5 per cent of boron introduced in the form of boric acid, boron carbide or elementary boron shows that high densities can only be obtained by sintering under pressure. For technical reasons of manufacture, only the mixture based on boron carbide is used. The sintering is carried out in graphite moulds at 1500 deg. C under 150 kg/cm 2 pressure, and bricks can be obtained with density between 2,85 and 2,90. Laboratory studies and the industrial manufacture of various sinters are described in detail. (author) [fr

  17. Nd-Fe-B sintered magnets fabrication by using atomized powders

    International Nuclear Information System (INIS)

    Goto, R; Sugimoto, S; Matsuura, M; Tezuka, N; Une, Y; Sagawa, M

    2011-01-01

    Nd-Fe-B sintered magnets are required to achieve high coercivity for improvement of their thermal stability. Dy is added to increase coercivity, however, this element decrease magnetization and energy products. Therefore, Dy-lean Nd-Fe-B sintered magnets with high coercivity are strongly demanded. To increase coercivity, it is necessary that microstructure of sintered magnets is consisted of both fine main phase particles and homogeneously distributed Nd-rich phases around the main phase. To meet those requirements, Nd-Fe-B atomized powders were applied to the fabrication process of sintered magnets. Comparing with the case of using strip casting (SC) alloys, jet-milled powders from atomized powders show homogeneous distribution of Nd-rich phase. After optimized thermal treatment, coercivities of sintered magnets from atomized powders and SC alloys reach 1050 kA·m-1 and 1220 kA·m-1, respectively. This difference in coercivity was due to initial oxygen concentration of starting materials. Consequently, Nd-rich phases became oxides with high melting points, and did not melt and spread during sintering and annealing.

  18. Grain boundary corrosion of copper canister material

    International Nuclear Information System (INIS)

    Fennell, P.A.H.; Graham, A.J.; Smart, N.R.; Sofield, C.J.

    2001-03-01

    The proposed design for a final repository for spent fuel and other long-lived residues in Sweden is based on the multi-barrier principle. The waste will be encapsulated in sealed cylindrical canisters, which will then be placed in granite bedrock and surrounded by compacted bentonite clay. The canister design is based on a thick cast inner container fitted inside a corrosion-resistant copper canister. During fabrication of the outer copper canisters there will be some unavoidable grain growth in the welded areas. As grains grow they will tend to concentrate impurities within the copper at the new grain boundaries. The work described in this report was undertaken to determine whether there is any possibility of enhanced corrosion at grain boundaries within the copper canister. The potential for grain boundary corrosion was investigated by exposing copper specimens, which had undergone different heat treatments and hence had different grain sizes, to aerated artificial bentonite-equilibrated groundwater with two concentrations of chloride, for increasing periods of time. The degree of grain boundary corrosion was determined by atomic force microscopy (AFM) and optical microscopy. AFM showed no increase in grain boundary 'ditching' for low chloride groundwater. In high chloride groundwater the surface was covered uniformly with a fine-grained oxide. No increases in oxide thickness were observed. No significant grain boundary attack was observed using optical microscopy either. The work suggests that in aerated artificial groundwaters containing chloride ions, grain boundary corrosion of copper is unlikely to adversely affect SKB's copper canisters

  19. Preparation and characterization of new dental porcelains, using K-feldspar and quartz raw materials. Effect of B2O3 additions on sintering and mechanical properties.

    Science.gov (United States)

    Harabi, Abdelhamid; Guerfa, Fatiha; Harabi, Esma; Benhassine, Mohamed-Tayeb; Foughali, Lazhar; Zaiou, Soumia

    2016-08-01

    The aim of this work was to determine the effect of temperature and boric oxide (B2O3) addition on sintering and mechanical properties of a newly developed dental porcelain (DP) prepared from local Algerian raw materials. Based on a preliminary work, the new selected composition was 75wt.% feldspar, 20wt.% quartz and 5wt.% kaolin. It was prepared by sintering the mixture at different temperatures (1100-1250°C). The optimum sintering conditions gave a relatively higher density (2.47g/cm(3)) and excellent mechanical properties. The three point flexural strength (3PFS) and Martens micro-hardness of dental porcelains were 149MPa and 2600MPa, respectively. This obtained 3PFS value is more than four times greater than that of hydroxyapatite (HA) value (about 37MPa) sintered under the same conditions. However, the sintering temperature was lowered by about 25 and 50°C for 3 and 5wt.% B2O3 additions, respectively. But, it did not improve furthermore the samples density and their mechanical properties. It has also been found that B2O3 additions provoke a glass matrix composition variation which delays the leucite formation during sintering. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Microwave Sintering of Ceramic Materials for Industrial Application Final Report CRADA No. TC-1116-95

    Energy Technology Data Exchange (ETDEWEB)

    Caplan, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tandon, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Callis, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-19

    The goal of this project was to develop the commercial capability in the US to sinter alumina oxide ceramic parts for the semiconductor manufacturing equipment industry. We planned to use the millimeter microwave (30 GHz) sintering system first developed by IAP in Russia.

  1. Grain boundary and triple junction diffusion in nanocrystalline copper

    Energy Technology Data Exchange (ETDEWEB)

    Wegner, M., E-mail: m.wegner@uni-muenster.de; Leuthold, J.; Peterlechner, M.; Divinski, S. V., E-mail: divin@uni-muenster.de [Institut für Materialphysik, Universität Münster, Wilhelm-Klemm-Straße 10, D-48149, Münster (Germany); Song, X., E-mail: xysong@bjut.edu.cn [College of Materials Science and Engineering, Beijing University of Technology, 100124 Beijing (China); Wilde, G. [Institut für Materialphysik, Universität Münster, Wilhelm-Klemm-Straße 10, D-48149, Münster (Germany); Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 200444 Shanghai (China)

    2014-09-07

    Grain boundary and triple junction diffusion in nanocrystalline Cu samples with grain sizes, 〈d〉, of ∼35 and ∼44 nm produced by spark plasma sintering were investigated by the radiotracer method using the {sup 63}Ni isotope. The measured diffusivities, D{sub eff}, are comparable with those determined previously for Ni grain boundary diffusion in well-annealed, high purity, coarse grained, polycrystalline copper, substantiating the absence of a grain size effect on the kinetic properties of grain boundaries in a nanocrystalline material at grain sizes d ≥ 35 nm. Simultaneously, the analysis predicts that if triple junction diffusion of Ni in Cu is enhanced with respect to the corresponding grain boundary diffusion rate, it is still less than 500⋅D{sub gb} within the temperature interval from 420 K to 470 K.

  2. Sintering behavior of LZSA glass-ceramics

    Directory of Open Access Journals (Sweden)

    Oscar Rubem Klegues Montedo

    2009-06-01

    Full Text Available The LZSA glass-ceramic system (Li2O-ZrO2-SiO2-Al2O 3 shows interesting properties, such as good chemical resistance, low thermal expansion, high abrasion resistance, and a low dielectric constant. However, in order to obtain a high performance material for specific applications, the sintering behavior must be better understood so that the porosity may be reduced and other properties improved. In this context, a sintering investigation for a specific LZSA glass-ceramic system composition was carried out. A 18.8Li2O-8.3ZrO2-64.2SiO2-8.7Al 2O3 glass was prepared by melting the solids, quenching the melt in water, and grinding the resulting solid in order to obtain a powder (3.68 μm average particle diameter. Subsequently, the glass powder was characterized (chemical analysis and determination of thermal properties and the sintering behavior was investigated using optical non-contact dilatometry measurements. The results showed that the crystallization process strongly reduced the sintering in the temperature interval from 785 to 940 °C, and a maximum thermal shrinkage of 15.4% was obtained with operating conditions of 1020 °C and 180 minutes.

  3. Laser Sintering Technology and Balling Phenomenon.

    Science.gov (United States)

    Oyar, Perihan

    2018-02-01

    The aim of this review was to evaluate the balling phenomenon which occurs typically in Selective Laser Sintering (SLS). The balling phenomenon is a typical SLS defect, and observed in laser sintered powder, significantly reduces the quality of SLS, and hinders the further development of SLS Technology. Electronic database searches were performed using Google Scholar. The keywords "laser sintering, selective laser sintering, direct metal laser melting, and balling phenomenon" were searched in title/abstract of publications, limited to December 31, 2016. The inclusion criteria were SLS, balling phenomenon, some alloys (such as Cr-Co, iron, stainless steel, and Cu-based alloys) mechanical properties, microstructure and bond strength between metal-ceramic crown, laboratory studies, full text, and in English language. A total of 100 articles were found the initial search and yielded a total of 50 studies, 30 of which did not fulfill the inclusion criteria and were therefore excluded. In addition, 20 studies were found by screening the reference list of all included publications. Finally, 40 studies were selected for this review. The method in question is regulated by powder material characteristics and the conditions of laser processing. The procedure of formation, affecting factors, and the mechanism of the balling effect are very complex.

  4. Extension of the master sintering curve for constant heating rate modeling

    Science.gov (United States)

    McCoy, Tammy Michelle

    The purpose of this work is to extend the functionality of the Master Sintering Curve (MSC) such that it can be used as a practical tool for predicting sintering schemes that combine both a constant heating rate and an isothermal hold. Rather than just being able to predict a final density for the object of interest, the extension to the MSC will actually be able to model a sintering run from start to finish. Because the Johnson model does not incorporate this capability, the work presented is an extension of what has already been shown in literature to be a valuable resource in many sintering situations. A predicted sintering curve that incorporates a combination of constant heating rate and an isothermal hold is more indicative of what is found in real-life sintering operations. This research offers the possibility of predicting the sintering schedule for a material, thereby having advanced information about the extent of sintering, the time schedule for sintering, and the sintering temperature with a high degree of accuracy and repeatability. The research conducted in this thesis focuses on the development of a working model for predicting the sintering schedules of several stabilized zirconia powders having the compositions YSZ (HSY8), 10Sc1CeSZ, 10Sc1YSZ, and 11ScSZ1A. The compositions of the four powders are first verified using x-ray diffraction (XRD) and the particle size and surface area are verified using a particle size analyzer and BET analysis, respectively. The sintering studies were conducted on powder compacts using a double pushrod dilatometer. Density measurements are obtained both geometrically and using the Archimedes method. Each of the four powders is pressed into ¼" diameter pellets using a manual press with no additives, such as a binder or lubricant. Using a double push-rod dilatometer, shrinkage data for the pellets is obtained over several different heating rates. The shrinkage data is then converted to reflect the change in relative

  5. High-performance Ag0.8Pb18+xSbTe20 thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering

    International Nuclear Information System (INIS)

    Wang Heng; Li Jingfeng; Nan Cewen; Zhou Min; Liu Weishu; Zhang Boping; Kita, Takuji

    2006-01-01

    Polycrystalline Ag n Pb m SbTe m+2n thermoelectric materials, whose compositions can be described as Ag 0.8 Pb 18+x SbTe 20 were prepared using a combined process of mechanical alloying and spark plasma sintering. Electric properties of the sintered samples with different Pb contents were measured from room temperature to 700 K. The maximum power factor of 1.766 mW/mK 2 was obtained at 673 K for the Ag 0.8 Pb 22 SbTe 20 sample, which corresponds to a high dimensionless figure of merit, ZT=1.37. This best composition is different from that reported before

  6. Spark plasma sintering and porosity studies of uranium nitride

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Kyle D., E-mail: kylej@kth.se; Wallenius, Janne; Jolkkonen, Mikael; Claisse, Antoine

    2016-05-15

    In this study, a number of samples of UN sintered by the SPS method have been fabricated, and highly pure samples ranging in density from 68% to 99.8%TD – corresponding to an absolute density of 14.25 g/cm{sup 3} out of a theoretical density of 14.28 g/cm{sup 3} – have been fabricated. By careful adjustment of the sintering parameters of temperature and applied pressure, the production of pellets of specific porosity may now be achieved between these ranges. The pore closure behaviour of the material has also been documented and compared to previous studies of similar materials, which demonstrates that full pore closure using these methods occurs near 97.5% of relative density. - Highlights: • UN pellets are fabricated over a wide array of densities using the SPS method. • The sintereing parameters necessary to produce pellets over a wide array of density space are charted. • Pellets of extremely high density (99.9% of TD, absolute density of 14.25 g/cm{sup 3}) are fabricated. • Full-closure of the porosity in this material is obtained at around 2.5% of total porosity.

  7. Lead and copper removal from aqueous solutions by porous glass derived calcium hydroxyapatite

    International Nuclear Information System (INIS)

    Liang Wen; Zhan Lei; Piao Longhua; Ruessel, Christian

    2011-01-01

    Graphical abstract: . Adsorption of Pb 2+ increases with the increase in NaCl volume percentage (1:0%, 2:30%, 3:40%, 4:40%) of the Glass Derived Hydroxyapatite and reaches equilibrium after 24 h. Highlights: → Novel porous glass derived hydroxyapatite matrix is prepared. → Glass derived hydroxyapatite matrix adsorbs lead and copper ions in solutions effectively. → Two adsorption mechanisms including ion exchange theory and the dissolution and precipitation theory are involved in removal of the heavy metal ions from the solutions. - Abstract: A porous glass was prepared by sintering Na 2 O-CaO-B 2 O 3 glass powder with powdered sodium chloride. Subsequently, the sodium chloride was dissolved in water resulting in a highly porous material. A sample was prepared consisting of 60 vol% glass and 40 vol% salt which both had particle sizes 2 HPO 4 solutions at room temperature for 1 day. The porous glass derived hydroxyapatite matrix was then processed for removing lead and copper ions from aqueous solutions. The results showed that the glass derived calcium hydroxyapatite matrix effectively immobilizes lead and copper ions in solution. The adsorption mechanism was investigated by the X-ray Diffraction (XRD) and Scanning Electron Microscopy including Energy Dispersive X-Ray Spectrometry (SEM-EDX).

  8. Effect of Power Characteristics on the Densification of Sintered Alumina

    International Nuclear Information System (INIS)

    Al-Sarraj, Z.S.A.; Noor, S.S.

    2011-01-01

    The effect of particle size distribution, soaking time and sintering temperatures on the densification behaviors of α-Al 2 O 3 was investigated. Two different average particle sizes of 36 and 45μ were examined as a variable to analyze the difference in density, radial and axial shrinkage, densification, and microstructure developments. Conventional powder technology route was used to prepare disc-shaped green pellets sintered at 1200-1600 0 C for different periods. Density measurements for both green and sintered compacts allow for the refinement of processing parameters to obtain dense sintered bodies. Compacts with particle size of 36 μm were noticed to attain higher relative densities as compared with those of 45μm. Densification parameter (ΔP) calculations clearly reveals the presence of definite temperatures and times in which limited densification retardation occurred, which permits the suggesting of suitable sintering schemes for this material. Scanning electron micrographs analysis revealed a pore structure assist the observed behaviours for the different schemes. (author)

  9. The study of Ashby-type sintering diagrams for uranium dioxide

    International Nuclear Information System (INIS)

    Georgeoni, P.

    1980-01-01

    Computer modelling of binary and ternary Ashby-type sintering diagrams for stoechiometric and hyperstoechiometric uranium dioxide (in the range O/U = 2, 0-2, 10). Material data and mass transfer equations, selected from the literature, were used. Sintering isochronous curves were calculated and traced as well. Improvement of a modern dilatometric method by reading and processing experimental curves on a computer and by determining for them a criterion of proximity to the theoretical model equation. It was possible: to develop a reliable method of determination for the dominant mechanism, diffusion coefficient and real process activation energy; to draw up the real sintering diagram; to understand the quantitative and qualitative changes occuring during the actual sintering process of UO 2 , concerning massing and modification of pore shape; to recommend the technological parameters of the thermal regime concerning the elimination of lubricant and binder additives in order to obtain high quality sintered tablets. (author)

  10. Role of Cu During Sintering of Fe0.96Cu0.04 Nanoparticles

    Science.gov (United States)

    Sivaprahasam, D.; Sriramamurthy, A. M.; Bysakh, S.; Sundararajan, G.; Chattopadhyay, K.

    2018-04-01

    Nanoparticle agglomerates of passivated Fe ( n-Fe) and Fe0.96Cu0.04 ( n-Fe0.96Cu0.04), synthesized through the levitational gas condensation (LGC) process, were compacted and sintered using the conventional powder metallurgy method. The n-Fe0.96Cu0.04 agglomerates produced lower green density than n-Fe, and when compacted under pressure beyond 200 MPa, they underwent lateral cracking during ejection attributed to the presence of a passive oxide layer. Sintering under dynamic hydrogen atmosphere can produce a higher density of compact in n-Fe0.96Cu0.04 in comparison to n-Fe. Both the results of dilatometry and thermogravimetric (TG) measurements of the samples under flowing hydrogen revealed enhancement of the sintering process as soon as the reduction of oxide layers could be accomplished. The shrinkage rate of n-Fe0.96Cu0.04 reached a value three times higher than n-Fe at a low temperature of 723 K (450 °C) during heating. This enhanced shrinkage rate was the manifestation of accumulation of Cu at the surface of the particles. The formation of a thin-surface melted layer enriched with copper during heating to isothermal holding facilitated as a medium of transport for diffusion of the elements. The compacts produced by sintering at 773 K (500 °C), with relative density 82 pct, were found to be unstable and oxidized instantly when exposed to ambient atmosphere. The stable compacts of density more than 92 pct with 300- to 450-nm grain size could only be produced when sintering was carried out at 973 K (700 °C) and beyond. The 0.22 wt pct residual oxygen obtained in the sintered compact is similar to what is used for conventional ferrous powder metallurgy products.

  11. Inkjet printed electronics using copper nanoparticle ink

    OpenAIRE

    Kang, Jin Sung; Kim, Hak Sung; Ryu, Jongeun; Thomas Hahn, H.; Jang, Seonhee; Joung, Jae Woo

    2010-01-01

    Inkjet printing of electrode using copper nanoparticle ink is presented. Electrode was printed on a flexible glass epoxy composite substrate using drop on demand piezoelectric dispenser and was sintered at 200 °C of low temperature in N2 gas condition. The printed electrodes were made with various widths and thickness. In order to control the thickness of the printed electrode, number of printing was varied. Resistivity of printed electrode was calculated from the cross-sectional area measure...

  12. Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants.

    Science.gov (United States)

    Traini, T; Mangano, C; Sammons, R L; Mangano, F; Macchi, A; Piattelli, A

    2008-11-01

    This work focuses on a titanium alloy implants incorporating a gradient of porosity, from the inner core to the outer surface, obtained by laser sintering of metal powder. Surface appearance, microstructure, composition, mechanical properties and fractography were evaluated. All the specimens were prepared by a selective laser sintering procedure using a Ti-6Al-4V alloy powder with a particle size of 1-10 microm. The morphological and chemical analyses were performed by SEM and energy dispersive X-ray spectroscopy. The flexure strength was determined by a three-point bend test using a universal testing machine. The surface roughness was investigated using a confocal scanning laser microscope. The surface roughness variation was statistically evaluated by use of a Chi square test. A p value of metal core consisted of columnar beta grains with alpha and beta laths within the grains. The alloy was composed of 90.08% Ti, 5.67% Al and 4.25% V. The Young's modulus of the inner core material was 104+/-7.7 GPa; while that of the outer porous material was 77+/-3.5 GPa. The fracture face showed a dimpled appearance typical of ductile fracture. In conclusion, laser metal sintering proved to be an efficient means of construction of dental implants with a functionally graded material which is better adapted to the elastic properties of the bone. Such implants should minimize stress shielding effects and improve long-term performance.

  13. SINTERING OF NASCENT CALCIUM OXIDE

    Science.gov (United States)

    The paper discusses the measurement of the sintering rate of CaO in a nitrogen atmosphere at temperatures of 700-1100 C. CaO prepared from ultrapure CaCO3 was compared with an impure CaO derived from limestone. Both materials yielded an initial surface area of 104 sq m/g. The rat...

  14. Pressure sintering and creep deformation: a joint modeling approach

    International Nuclear Information System (INIS)

    Notis, M.R.

    1979-10-01

    Work related to microchemical and microstructural aspects of the joint modeling of pressure sintering and creep in ceramic oxides is reported. Quantitative techniques for the microchemical analysis of ceramic oxides and for the examination of impurity segregation effects in polycrystalline ceramic materials were developed. This has included fundamental absorption corrections for the oxygen anion species as a function of foil thickness. The evolution in microstructure during the transition from intermediate stage to final stage densification during hot pressing of cobalt oxide and preliminary studies with doped oxides were studied. This work shows promise in using time-integrated microstructural effects to elucidate the role of impurities in the sintering of ceramic materials

  15. A constitutive model and numerical simulation of sintering processes at macroscopic level

    Science.gov (United States)

    Wawrzyk, Krzysztof; Kowalczyk, Piotr; Nosewicz, Szymon; Rojek, Jerzy

    2018-01-01

    This paper presents modelling of both single and double-phase powder sintering processes at the macroscopic level. In particular, its constitutive formulation, numerical implementation and numerical tests are described. The macroscopic constitutive model is based on the assumption that the sintered material is a continuous medium. The parameters of the constitutive model for material under sintering are determined by simulation of sintering at the microscopic level using a micro-scale model. Numerical tests were carried out for a cylindrical specimen under hydrostatic and uniaxial pressure. Results of macroscopic analysis are compared against the microscopic model results. Moreover, numerical simulations are validated by comparison with experimental results. The simulations and preparation of the model are carried out by Abaqus FEA - a software for finite element analysis and computer-aided engineering. A mechanical model is defined by the user procedure "Vumat" which is developed by the first author in Fortran programming language. Modelling presented in the paper can be used to optimize and to better understand the process.

  16. Sintering behavior of porous wall tile bodies during fast single-firing process

    Directory of Open Access Journals (Sweden)

    Sidnei José Gomes Sousa

    2005-06-01

    Full Text Available In ceramic wall tile processing, fast single-firing cycles have been widely used. In this investigation a fast single-firing porous wall tile mixture was prepared using raw materials from the North Fluminense region.Specimens were obtained by uniaxial pressing and sintered in air at various temperatures (1080 - 1200 °C using a fast-firing cycle (60 minutes. Evolution of the microstructure was followed by XRD and SEM. The results revealed that the main phases formed during the sintering step are anorthite, gehlenite and hematite. It appears that the sintering process is characterized by the presence of a small amount of a liquid phase below 1140 °C. As a result, the microstructure of the ceramic bodies showed a network of small dense zones interconnected with a porous phase. In addition, the strength of the material below 1140 °C appeared to be related to the type and quantity of crystalline phases in the sintered bodies.

  17. Comparison of Reactive and Non-Reactive Spark Plasma Sintering Routes for the Fabrication of Monolithic and Composite Ultra High Temperature Ceramics (UHTC Materials

    Directory of Open Access Journals (Sweden)

    Roberto Orrù

    2013-04-01

    Full Text Available A wider utilization of ultra high temperature ceramics (UHTC materials strongly depends on the availability of efficient techniques for their fabrication as dense bodies. Based on recent results reported in the literature, it is possible to state that Spark Plasma Sintering (SPS technology offers a useful contribution in this direction. Along these lines, the use of two different SPS-based processing routes for the preparation of massive UHTCs is examined in this work. One method, the so-called reactive SPS (R-SPS, consists of the synthesis and densification of the material in a single step. Alternatively, the ceramic powders are first synthesized by Self-propagating High-temperature Synthesis (SHS and then sintered by SPS. The obtained results evidenced that R-SPS method is preferable for the preparation of dense monolithic products, while the sintering of SHS powders requires relatively milder conditions when considering binary composites. The different kinetic mechanisms involved during R-SPS of the monolithic and composite systems, i.e., combustion-like or gradual solid-diffusion, respectively, provides a possible explanation. An important role is also played by the SHS process, particularly for the preparation of composite powders, since stronger interfaces are established between the ceramic constituents formed in situ, thus favoring diffusion processes during the subsequent SPS step.

  18. Corrosion of high-density sintered tungsten alloys. Part 2

    International Nuclear Information System (INIS)

    Batten, J.J.; Moore, B.T.

    1988-12-01

    The behaviour of four high-density sintered tungsten alloys has been evluated and compared with that of pure tungsten. Rates of corrosion during the cyclic humidity and the salt mist tests were ascertained from weight loss measurements. Insight into the corrosion mechanism was gained from the nature of the corrosion products and an examination of the corroded surfaces. In the tests, the alloy 95% W, 2.5% Ni, 1.5% Fe was the most corrosion resistant. The data showed that copper as an alloying element accelerates corrosion of tungsten alloys. Both attack on the tungsten particles and the binder phase were observed together with tungsten grain loss. 6 refs., 3 tabs.,

  19. Studies on use of Copper Slag as Replacement Material for River Sand in Building Constructions

    Science.gov (United States)

    Madheswaran, C. K.; Ambily, P. S.; Dattatreya, J. K.; Rajamane, N. P.

    2014-09-01

    This work focuses on the use of copper slag, as a partial replacement of sand for use in cement concrete and building construction. Cement mortar mixtures prepared with fine aggregate made up of different proportions of copper slag and sand were tested for use as masonry mortars and plastering. Three masonry wall panels of dimensions 1 × 1 m were plastered. The studies showed that although copper slag based mortar is suitable for plastering, with the increase in copper slag content, the wastage due to material rebounding from the plastered surfaces increases. It is therefore suggested that the copper slag can be used for plastering of floorings and horizontal up to 50 % by mass of the fine aggregate, and for vertical surfaces, such as, brick/block walls it can be used up to 25 %. In this study on concrete mixtures were prepared with two water cement ratios and different proportions of copper slag ranging from 0 % (for the control mix) to 100 % of fine aggregate. The Concrete mixes were evaluated for workability, density, and compressive strength.

  20. The microwave effects on the properties of alumina at high frequencies of microwave sintering

    International Nuclear Information System (INIS)

    Sudiana, I. Nyoman; Ngkoimani, La Ode; Usman, Ida; Mitsudo, Seitaro; Sako, Katsuhide; Inagaki, Shunsuke; Aripin, H.

    2016-01-01

    Microwave sintering of materials has attracted much research interest because of its significant advantages (e.g. reduced sintering temperatures and soaking times) over the conventional heating. Most researchers compared processes that occurred during the microwave and conventional heating at the same temperature and time. The enhancements found in the former method are indicated as a 'non-thermal effect' which is usually used for explaining the phenomena in microwave processing. Numerous recent studies have been focused on the effect to elucidate the microwave interaction mechanism with materials. Moreover, recent progress on microwave sources such as gyrotrons has opened the possibility for processing materials by using a higher microwave frequency. Therefore, the technology is expected to exhibit a stronger non-thermal effect. This paper presents results from a series of experiments to study the non-thermal effect on microwave sintered alumina. Sintering by using a wide rage of microwave frequencies up to 300 GHz as well as a conventional furnace was carried out. The linear shrinkages of samples for each sintering method were measured. Pores and grains taken from scanning electron microstructure (SEM) images of cut surfaces were also examined. The results of a comparative study of the shrinkages and microstructure evolutions of the sintered samples under annealing in microwave heating systems and in an electric furnace were analyzed. A notably different behavior of the shrinkages and microstructures of alumina after being annealed was found. The results suggested that microwave radiations provided an additional force for mass transports. The results also indicated that the sintering process depended on microwave frequencies.

  1. The microwave effects on the properties of alumina at high frequencies of microwave sintering

    Energy Technology Data Exchange (ETDEWEB)

    Sudiana, I. Nyoman, E-mail: sudiana75@yahoo.com; Ngkoimani, La Ode; Usman, Ida [Department of Physics, Faculty of Mathematic and Natural Science, Halu Oleo University, Kampus Bumi Tridharma Anduonohu, Kendari 93232 (Indonesia); Mitsudo, Seitaro; Sako, Katsuhide; Inagaki, Shunsuke [Research Center for Development of Far-Infrared Region, University of Fukui, 3-9-1 Bunkyo, Fukui-shi 910-8507 (Japan); Aripin, H. [Center for Material Processing and Renewable Energy, Faculty of Learning Teacher and Education Science, Siliwangi University, Jl. Siliwangi 24 Tasikmalaya 46115, West Java (Indonesia)

    2016-03-11

    Microwave sintering of materials has attracted much research interest because of its significant advantages (e.g. reduced sintering temperatures and soaking times) over the conventional heating. Most researchers compared processes that occurred during the microwave and conventional heating at the same temperature and time. The enhancements found in the former method are indicated as a 'non-thermal effect' which is usually used for explaining the phenomena in microwave processing. Numerous recent studies have been focused on the effect to elucidate the microwave interaction mechanism with materials. Moreover, recent progress on microwave sources such as gyrotrons has opened the possibility for processing materials by using a higher microwave frequency. Therefore, the technology is expected to exhibit a stronger non-thermal effect. This paper presents results from a series of experiments to study the non-thermal effect on microwave sintered alumina. Sintering by using a wide rage of microwave frequencies up to 300 GHz as well as a conventional furnace was carried out. The linear shrinkages of samples for each sintering method were measured. Pores and grains taken from scanning electron microstructure (SEM) images of cut surfaces were also examined. The results of a comparative study of the shrinkages and microstructure evolutions of the sintered samples under annealing in microwave heating systems and in an electric furnace were analyzed. A notably different behavior of the shrinkages and microstructures of alumina after being annealed was found. The results suggested that microwave radiations provided an additional force for mass transports. The results also indicated that the sintering process depended on microwave frequencies.

  2. Process Developed for Generating Ceramic Interconnects With Low Sintering Temperatures for Solid Oxide Fuel Cells

    Science.gov (United States)

    Zhong, Zhi-Min; Goldsby, Jon C.

    2005-01-01

    Solid oxide fuel cells (SOFCs) have been considered as premium future power generation devices because they have demonstrated high energy-conversion efficiency, high power density, and extremely low pollution, and have the flexibility of using hydrocarbon fuel. The Solid-State Energy Conversion Alliance (SECA) initiative, supported by the U.S. Department of Energy and private industries, is leading the development and commercialization of SOFCs for low-cost stationary and automotive markets. The targeted power density for the initiative is rather low, so that the SECA SOFC can be operated at a relatively low temperature (approx. 700 C) and inexpensive metallic interconnects can be utilized in the SOFC stack. As only NASA can, the agency is investigating SOFCs for aerospace applications. Considerable high power density is required for the applications. As a result, the NASA SOFC will be operated at a high temperature (approx. 900 C) and ceramic interconnects will be employed. Lanthanum chromite-based materials have emerged as a leading candidate for the ceramic interconnects. The interconnects are expected to co-sinter with zirconia electrolyte to mitigate the interface electric resistance and to simplify the processing procedure. Lanthanum chromites made by the traditional method are sintered at 1500 C or above. They react with zirconia electrolytes (which typically sinter between 1300 and 1400 C) at the sintering temperature of lanthanum chromites. It has been envisioned that lanthanum chromites with lower sintering temperatures can be co-fired with zirconia electrolyte. Nonstoichiometric lanthanum chromites can be sintered at lower temperatures, but they are unstable and react with zirconia electrolyte during co-sintering. NASA Glenn Research Center s Ceramics Branch investigated a glycine nitrate process to generate fine powder of the lanthanum-chromite-based materials. By simultaneously doping calcium on the lanthanum site, and cobalt and aluminum on the

  3. Fabrication and thermoelectric performance of textured n-type Bi2(Te,Se)3 by spark plasma sintering

    International Nuclear Information System (INIS)

    Jiang Jun; Chen Lidong; Bai Shengqiang; Yao Qin; Wang Qun

    2005-01-01

    The n-type Bi 2 (Te,Se) 3 thermoelectric materials with preferred grain orientation have been fabricated through the spark plasma sintering (SPS) technique. The c-axis of the grains in the sintered samples were preferentially oriented parallel to the pressing direction, the orientation factor of the (0 0 l) planes changed from 0.4 to 0.85 with the sintering conditions. The anisotropy was investigated by measuring the electrical conductivities in the two directions perpendicular and parallel to the pressing direction. The optimal figure of merit ZT (ZT = α 2 σT/κ) of the sintered materials in the direction perpendicular to the pressing direction was comparative to that of the zone-melted materials in the same crystallographic direction, while the bending strength reached about 80 MPa, which is 7-8 times of that of the zone-melted materials

  4. Linking material flow analysis and resource policy via future scenarios of in-use stock: an example for copper.

    Science.gov (United States)

    Gerst, Michael D

    2009-08-15

    A key aspect to achieving long-term resource sustainability is the development of methodologies that explore future material cycles and their environmental impact. Using a novel dynamic in-use stock model and scenario analysis, I analyzed the multilevel global copper cycle over the next 100 years. In 1990, the industrialized world had an in-use copper stock about twice as large as the developing world and a per capita in-use stock of about six times as large. By 2100, the developing world will have an in-use copper stock about three times as large as the industrialized world, but the industrialized world will maintain a per capita stock twice that of the developing world. Under a scenario of no material substitution or technological change in copper products, global in-use stock in 2100 will be about as large as currently known copper resources. However, current scrap recycling trends and exploration will alleviate absolute supply pressure but not environmental impacts from decreasing copper are grades. Additionally, unexpected emergent properties of dematerialization are observed from the in-use stock model that arise solely from the properties of stock dynamics, an infrequently discussed cause of dematerialization in the literature.

  5. Dielectric material in lead-based perovskite and fabrication process for multilayer ceramic capacitor with copper internal electrode

    International Nuclear Information System (INIS)

    Kato, J.; Yokotani, Y.; Kagata, H.; Nakatani, S.; Kugimiya, K.

    1990-01-01

    This paper reports on the development of a multilayer ceramic capacitor with copper internal electrodes. Dielectric materials of the capacitor is lead- based perovskite (Pb a Ca b ) (Mg 1/3 Nb 2/3 ) x Ti y (Ni 1/2 W 1/2 ) z O 2 + a + b where a + b gt 1 and x + y + z = 1. The materials can be fired below 1000 degrees C and have high resistivity even when fired in the atmosphere below the equilibrium oxygen partial pressure of copper and CuO. The fabrication process of the capacitor has following features. The electrode paste is composed of copper oxide to prevent breaking of the laminated body in a burn out process. Then the copper oxide is first metalized and fired in a controlled atmosphere. The obtained capacitor of 20 dielectric layers of 17 micron meter meets to Z5U specification and has low loss tangent of 0.6% and stability under d.c. bias voltage and high a.c. field

  6. Microstructure and properties of multiphase sintered cermets Fe-Fe2B

    International Nuclear Information System (INIS)

    Nowacki, J.; Klimek, L.

    1998-01-01

    The process of multiphase sintering of iron in the vacuum has been analysed. As a result of the process iron-iron boride cermets have been produced. Fe-Fe 2 B cermets were obtained as a result of sintering of the Fe and B pure elements in the vacuum. Attemps at sintering in the solid phase and with the participation of the liquid phase, the Fe-Fe 2 B eutectic, have been made. Metallographic qualitative and quantitative studies, X-ray structural qualitative and qauantitative analysis allowed to determine the structure of Fe 2 B cermets, as well as a description of the kinetics of quantitative changes in phase proportions in the course of sintering. It has been found that their structure varies widely depending on sintering parameters and the composition of the sinters. Measurements of the Fe-Fe 2 B cermets hardness and measurements on wear during dry friction by the pin-on-disc method have shown distinct advantages of the cermets as a modern constructional materials. The hardness of Fe-Fe 2 B cermets, depending on their chemical composition and sintering parameters, ranges widely from 150 to 1500 HV, and their resistance to wear is comparable to that of diffusively boronized steels. FeFe 2 B cermets are a composite material in which iron boride, Fe 2 B, with a hardness of about 1800 HV plays the role of the reinforcement,while iron-iron boride, Fe-Fe 2 B, with a hardness of about 500 HV plays the role of matrix. The eutectic in the spaces between iron boride grains is composed of boron solid solution plates in iron with a hardness of arround 250 HV, and iron boride, Fe 2 B, plates with a hardness of approximaly 1800 HV. The combination of such different materials, a hard reinforcement and a relatively plastic matrix produces favourable properties of the cermet thus produced high hardness (1500 HV) constant over whole cross section of the material, resistance of abrasive wear and acceptable ductility. The properties mentioned above, resulting from the cermet

  7. Zinc Antimonides and Copper Chalcogenides as Thermoelectric Materials

    DEFF Research Database (Denmark)

    Blichfeld, Anders Bank

    2017-01-01

    , and linked with the physical properties. The materials crystallography approach, relating physical properties with a structural understating, has been applied in this thesis for two highly interesting materials systems, zinc antimonides and copper chalcogenides. Both of these systems are high profiled....... The preparation parameters used, have a large influence on the homogeneity of the products, and new electric phases were identified and studied for ZnSb. For the samples prepared by physical vapor deposition, the growth takes place under non-thermodynamic conditions, making it possible to access kinetically...... intensity X-ray radiation at large international facilities, making it possible to measure pair distribution function data directly on thin-film samples in a normal incident setup, termed tfPDF. The tfPDF method was demonstrated on the iron antimony system. tfPDF was developed even further to include...

  8. Review of selective laser melting: Materials and applications

    Energy Technology Data Exchange (ETDEWEB)

    Yap, C. Y., E-mail: cyap001@e.ntu.edu.sg [Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Block N3.1 - B2c - 01, Singapore 639798 (Singapore); Energy Research Institute @ NTU, Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, Block S2 - B3a - 01, Singapore 639798 (Singapore); Chua, C. K., E-mail: mckchua@ntu.edu.sg; Liu, Z. H., E-mail: azhliu@ntu.edu.sg; Zhang, D. Q., E-mail: zhangdq@ntu.edu.sg; Loh, L. E., E-mail: leloh1@e.ntu.edu.sg; Sing, S. L., E-mail: sing0011@e.ntu.edu.sg [Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Block N3.1 - B2c - 01, Singapore 639798 (Singapore); Dong, Z. L., E-mail: zldong@ntu.edu.sg [School of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, Block N4.1, Singapore 639798 (Singapore)

    2015-12-15

    Selective Laser Melting (SLM) is a particular rapid prototyping, 3D printing, or Additive Manufacturing (AM) technique designed to use high power-density laser to melt and fuse metallic powders. A component is built by selectively melting and fusing powders within and between layers. The SLM technique is also commonly known as direct selective laser sintering, LaserCusing, and direct metal laser sintering, and this technique has been proven to produce near net-shape parts up to 99.9% relative density. This enables the process to build near full density functional parts and has viable economic benefits. Recent developments of fibre optics and high-power laser have also enabled SLM to process different metallic materials, such as copper, aluminium, and tungsten. Similarly, this has also opened up research opportunities in SLM of ceramic and composite materials. The review presents the SLM process and some of the common physical phenomena associated with this AM technology. It then focuses on the following areas: (a) applications of SLM materials and (b) mechanical properties of SLM parts achieved in research publications. The review is not meant to put a ceiling on the capabilities of the SLM process but to enable readers to have an overview on the material properties achieved by the SLM process so far. Trends in research of SLM are also elaborated in the last section.

  9. Review of selective laser melting: Materials and applications

    Science.gov (United States)

    Yap, C. Y.; Chua, C. K.; Dong, Z. L.; Liu, Z. H.; Zhang, D. Q.; Loh, L. E.; Sing, S. L.

    2015-12-01

    Selective Laser Melting (SLM) is a particular rapid prototyping, 3D printing, or Additive Manufacturing (AM) technique designed to use high power-density laser to melt and fuse metallic powders. A component is built by selectively melting and fusing powders within and between layers. The SLM technique is also commonly known as direct selective laser sintering, LaserCusing, and direct metal laser sintering, and this technique has been proven to produce near net-shape parts up to 99.9% relative density. This enables the process to build near full density functional parts and has viable economic benefits. Recent developments of fibre optics and high-power laser have also enabled SLM to process different metallic materials, such as copper, aluminium, and tungsten. Similarly, this has also opened up research opportunities in SLM of ceramic and composite materials. The review presents the SLM process and some of the common physical phenomena associated with this AM technology. It then focuses on the following areas: (a) applications of SLM materials and (b) mechanical properties of SLM parts achieved in research publications. The review is not meant to put a ceiling on the capabilities of the SLM process but to enable readers to have an overview on the material properties achieved by the SLM process so far. Trends in research of SLM are also elaborated in the last section.

  10. Review of selective laser melting: Materials and applications

    International Nuclear Information System (INIS)

    Yap, C. Y.; Chua, C. K.; Liu, Z. H.; Zhang, D. Q.; Loh, L. E.; Sing, S. L.; Dong, Z. L.

    2015-01-01

    Selective Laser Melting (SLM) is a particular rapid prototyping, 3D printing, or Additive Manufacturing (AM) technique designed to use high power-density laser to melt and fuse metallic powders. A component is built by selectively melting and fusing powders within and between layers. The SLM technique is also commonly known as direct selective laser sintering, LaserCusing, and direct metal laser sintering, and this technique has been proven to produce near net-shape parts up to 99.9% relative density. This enables the process to build near full density functional parts and has viable economic benefits. Recent developments of fibre optics and high-power laser have also enabled SLM to process different metallic materials, such as copper, aluminium, and tungsten. Similarly, this has also opened up research opportunities in SLM of ceramic and composite materials. The review presents the SLM process and some of the common physical phenomena associated with this AM technology. It then focuses on the following areas: (a) applications of SLM materials and (b) mechanical properties of SLM parts achieved in research publications. The review is not meant to put a ceiling on the capabilities of the SLM process but to enable readers to have an overview on the material properties achieved by the SLM process so far. Trends in research of SLM are also elaborated in the last section

  11. Sintering study and properties of alumina matrix composites reinforced with NbC, TiC and TaC

    International Nuclear Information System (INIS)

    Tonello, K.P.S.; Trombini, V.; Bressiani, A.H.A.; Bressiani, J.C.

    2011-01-01

    Al_2O_3 based composite materials are very promising due to their good mechanical properties, and have been studied as an alternative for the production of materials with high wear resistance. In alumina based composites the addition of carbides can change and improve the sintering and mechanical properties of materials. The objective was to study the effect of adding small concentrations of NbC, TaC and TiC in the sintering, microstructure and mechanical properties of alumina composites. The sintering study was conducted in dilatometer, with heating rate of 20 ° C / min. up to 1800 ° C, and the study of microstructure and properties of the composites was performed in hot pressed samples, sintered at 1500°C/30min with constant pressure of 20MPa. The results indicated that the addition of carbides modified the sintering behavior and also indicated that the hardness and fracture toughness were improved by the presence of carbide particles. (author)

  12. Structural and electrical properties of copper-nickel-aluminum alloys obtained by conventional powder metallurgy method

    International Nuclear Information System (INIS)

    Monteiro, Waldemar A.; Carrio, Juan A.G.; Silveira, C.R. da; Pertile, H.K.S.

    2009-01-01

    This work looked for to search out systematically, in scale of laboratory, copper-nickel-aluminum alloys (Cu-Ni-Al) with conventional powder metallurgy processing, in view of the maintenance of the electric and mechanical properties with the intention of getting electric connectors of high performance or high mechanical damping. After cold uniaxial pressing (1000 kPa), sintering (780 deg C) and convenient homogenization treatments (500 deg C for different times) under vacuum (powder metallurgy), the obtained Cu-Ni-Al alloys were characterized by optical microscopy, electrical conductivity, Vickers hardness. X rays powder diffraction data were collected for the sintered samples in order to a structural and microstructural analysis. The comparative analysis is based on the sintered density, hardness, macrostructures and microstructures of the samples. (author)

  13. Durable and Washable Antibacterial Copper Nanoparticles Bridged by Surface Grafting Polymer Brushes on Cotton and Polymeric Materials

    Directory of Open Access Journals (Sweden)

    Chufeng Sun

    2018-01-01

    Full Text Available To increase the durability of antibacterial coating on cotton and polymeric substrates, surface initiated grafting polymer brushes are introduced onto the substrates surface to bridge copper nanoparticles coatings and substrate. The morphologies of the composites consisting of the copper nanoparticles and polymer brushes were characterized with scanning electron microscopy (SEM. It was found that copper nanoparticles were uniformly and firmly distributed on the surfaces of the substrates by the polymer brushes; meanwhile, the reinforced concrete-like structures were formed in the composite materials. The substrates coated by the copper nanoparticles showed the efficient antibacterial activity against Staphylococcus aureus (S. aureus and Escherichia coli (E. coli even after washing by 30 cycles. The copper nanoparticles were tethered on the substrates by the strong chemical bonds, which led to the excellent washable fitness and durability. The change of the phase structure of the copper was analyzed to investigate the release mechanism of copper ions.

  14. A study on some properties of sintered stainless steel powder compacts with sintering conditions

    International Nuclear Information System (INIS)

    Lee, Bang Sik; Kim, Kwan Hyu; Lee, Doh Jae; Choi, Dap Chun

    1986-01-01

    Sintered specimens for the mechanical and corrosion tests were prepared from 316L, 410L and 434L stainless steel powder compacts with green densities in the range of 6.2∼7.0g/cm 3 . The experimental variables studied were green density, sintering atmosphere, temperature and time, type of lubricant used and cooling rate after sintering operation. Mechanical properties of green compacts and sintered specimens were evaluated. The corrosion tests were performed by potentiodynamic anodic polarization technique. Mechanical properties were very sensitive to the sintering atmosphere; sintering in dissociated ammonia resulted in the strengthing but embrittlement of sintered 316L, 410L and 434L strainless steel powder compacts. Their corrosion resistance was also decreased. The tensile strength was increased with increases in sintering time and temperature while the decreases in the yield strength were observed. The tensile properties of green compacts were shown to closely related to the green density. Addition of 1% acrawax as a lubricant was appeared to be most effective for the improvement of green strength. (Author)

  15. Mineralogy and microstructure of sintered lignite coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Marina Ilic; Christopher Cheeseman; Christopher Sollars; Jonathan Knight [Faculty of Technology and Metallurgy, Belgrade (Yugoslavia)

    2003-02-01

    Lignite coal fly ash from the 'Nikola Tesla' power plant in Yugoslavia has been characterised, milled, compacted and sintered to form monolithic ceramic materials. The effect of firing at temperatures between 1130 and 1190{sup o}C on the density, water accessible porosity, mineralogy and microstructure of sintered samples is reported. This class C fly ash has an initial average particle size of 82 {mu}m and contains siliceous glass together with the crystalline phases quartz, anorthite, gehlenite, hematite and mullite. Milling the ash to an average particle size of 5.6 m, compacting and firing at 1170{sup o}C for 1 h produces materials with densities similar to clay-based ceramics that exhibit low water absorption. Sintering reduces the amount of glass, quartz, gehlenite and anhydrite, but increases formation of anorthite, mullite, hematite and cristobalite. SEM confirms the formation of a dense ceramic at 1170{sup o}C and indicates that pyroplastic effects cause pore formation and bloating at 1190{sup o}C. 23 refs., 6 figs., 2 tabs.

  16. Material testing of copper by extrusion-cutting

    DEFF Research Database (Denmark)

    Segalina, F.; De Chiffre, Leonardo

    2017-01-01

    was developed and implemented on a CNC lathe. An investigation was carried out extrusion-cutting copper discs using high-speed-steel cutting tools at 100 m/min cutting speed. Flow stress values for copper under machining-relevant conditions were obtained from measurement of the extrusion-cutting force...

  17. Superconducting materials fabrication process and materials obtained

    International Nuclear Information System (INIS)

    Lafon, M.O.; Magnier, C.

    1989-01-01

    The preparation process of a fine powder of YBaCuO type superconductors of easy sintering comprises: mixing in presence of alcohol an aqueous solution of rare earth nitrate or acetate, alkaline earth nitrate or acetate and copper nitrate or acetate and an oxalic acid solution, the pH value of the mixture is comprised between 2 and 4, the obtained precipitate is separated, dried, calcined and eventually crushed [fr

  18. Microstructural development and mechanical properties of iron based cermets processed by pressureless and spark plasma sintering

    International Nuclear Information System (INIS)

    Alvaredo, P.; Gordo, E.; Van der Biest, O.; Vanmeensel, K.

    2012-01-01

    Highlights: ► Processing of Fe-based cermets by pressureless sintering and spark plasma sintering. ► Influence of carbon content on the sintering mechanism and hardness. ► The cermet phase diagram was calculated and permits to explain the microstructure. ► SPS provides ferritic matrix and different carbide distribution than CPS samples. ► Pressureless sintered samples contain retained austenite at room temperature. - Abstract: Iron-based cermets are an interesting class of metal-ceramic composites in which properties and the factors influencing them are to be explored. In this work the metal matrix contains Cr, W, Mo and V as alloying elements, and the hard phase is constituted by 50 vol% of titanium carbonitride (TiCN) particles. The work studies the influence of the C content and the processing method on the sinterability, microstructure and hardness of the developed cermet materials. For that purpose, cermet samples with different C content in the matrix (0 wt%, 0.25 wt%, 0.5 wt%, 1.0 wt%) were prepared by conventional pressureless sintering (CPS) and, in order to achieve finer microstructures and to reduce the sintering time, by spark plasma sintering (SPS). The density and hardness (HV30) of the processed materials was evaluated, while their phase composition and microstructure was characterised by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The equilibrium phase diagram of the composite material was calculated by ThermoCalc software in order to elucidate the influence of the carbon content on the obtained phases and developed microstructures.

  19. Studies of ZrO2-Y2O3 ceramics properties sintered in conventional and microwave oven

    International Nuclear Information System (INIS)

    Gelfuso, M.V.; Capistrano, D.; Thomazini, D.; Grzebielucka, E.C.; Chinelatto, A.L.; Chinelatto, A.S.A.

    2009-01-01

    The ceramic materials processing with nano grain size has developed materials with new properties or improves some of its existing properties. To obtain ceramics with nano grain size, besides that to obtaining nanometric powders, a major goal is to keep the grains size after sintering. Contributing in this line of research, this study aimed to sinter zirconia-Yttria powders through two processes: conventional and microwave sintering. Zirconia stabilized with Yttria powders were obtained by chemical route based on Pechini method. Cylindrical samples were sintered between 1300 to 1500 deg C between 10 and 40 minutes. The samples were characterized by Xray diffraction, Scanning Electron Microscopy and apparent density. It was observed that the final microstructure is influenced by both methods of sintering as the curve of firing used. (author)

  20. Sintering of Mo2FeB2 based cermet and its layered composites containing Sic fibers

    International Nuclear Information System (INIS)

    Rao, D.; Upadhyaya, G.S.

    2001-01-01

    In the present investigation Mo 2 FeB 2 based cermet (KH-C50) and its composites containing SiC fibers were sintered in two different atmospheres namely hydrogen and vacuum. It was observed that vacuum sintered samples have remarkably lower porosities than the hydrogen sintered ones. Two different sintering cycles were employed for each of the atmosphere and properties of the material were studied. Introduction of fibers in the composite imparts shrinkage anisotropy during sintering. Fiber containing cermets have rather poor densification and transverse rupture strength (TRS). TRS, macro and microhardness, and boride grain size measurements were also carried out for the cermets sintered in different atmospheres. (author)

  1. Ageing sintered silver: Relationship between tensile behavior, mechanical properties and the nanoporous structure evolution

    Energy Technology Data Exchange (ETDEWEB)

    Gadaud, Pascal; Caccuri, Vincenzo; Bertheau, Denis [Institut Pprime, Dept. Phys. Mech. Mat., UPR CNRS 3346, ENSMA, Université de Poitiers, 1 av. Clément Ader, Téléport 2, 86961 Futuroscope – Chasseneuil (France); Carr, James [HMXIF, Materials Science Centre, The University of Manchester, M13 9PL (United Kingdom); Milhet, Xavier, E-mail: xavier.milhet@ensma.fr [Institut Pprime, Dept. Phys. Mech. Mat., UPR CNRS 3346, ENSMA, Université de Poitiers, 1 av. Clément Ader, Téléport 2, 86961 Futuroscope – Chasseneuil (France)

    2016-07-04

    Silver pastes sintering is a potential candidate for die bonding in power electronic modules. The joints, obtained by sintering, exhibit a significant pore fraction thus reducing the density of the material compared to bulk silver. This was shown to alter drastically the mechanical properties (Young's modulus, yield strength and ultimate tensile stress) at room temperature. While careful analysis of the microstructure has been reported for the as-sintered material, little is known about its quantitative evolution (pores and grains) during thermal ageing. To address this issue, sintered bulk specimens and sintered joints were aged either under isothermal conditions (125 °C up to 1500 h) or under thermal cycling (between −40 °C/+125 °C with 30 min dwell time at each temperature for 2400 cycles). Under these conditions, it is shown that the density of the material does not change but the sub-micron porosity evolves towards a broader size distribution, consistent with Oswald ripening. It is also shown that only the step at 125 °C during the non-isothermal ageing is responsible for the microstructure evolution: isothermal ageing at high temperature can be regarded as a useful tool to perform accelerated ageing tests. Tensile properties are investigated as both a function of ageing time and a function of density. It is shown that the elastic properties do not evolve with the ageing time unlike the plastic properties. This is discussed as a function of the material microstructure evolution.

  2. Laser Surface Treatment of Sintered Alumina

    Science.gov (United States)

    Hagemann, R.; Noelke, C.; Kaierle, S.; Wesling, V.

    Sintered alumina ceramics are used as refractory materials for industrial aluminum furnaces. In this environment the ceramic surface is in permanent contact with molten aluminum resulting in deposition of oxidic material on its surface. Consequently, a lower volume capacity as well as thermal efficiency of the furnaces follows. To reduce oxidic adherence of the ceramic material, two laser-based surface treatment processes were investigated: a powder- based single-step laser cladding and a laser surface remelting. Main objective is to achieve an improved surface quality of the ceramic material considering the industrial requirements as a high process speed.

  3. Consolidation & Factors Influencing Sintering Process in Polymer Powder Based Additive Manufacturing

    Science.gov (United States)

    Sagar, M. B.; Elangovan, K.

    2017-08-01

    Additive Manufacturing (AM) is two decade old technology; where parts are build layer manufacturing method directly from a CAD template. Over the years, AM techniques changes the future way of part fabrication with enhanced intricacy and custom-made features are aimed. Commercially polymers, metals, ceramic and metal-polymer composites are in practice where polymers enhanced the expectations in AM and are considered as a kind of next industrial revolution. Growing trend in polymer application motivated to study their feasibility and properties. Laser sintering, Heat sintering and Inhibition sintering are the most successful AM techniques for polymers but having least application. The presentation gives up selective sintering of powder polymers and listed commercially available polymer materials. Important significant factors for effective processing and analytical approaches to access them are discussed.

  4. Enhancement of pool boiling heat transfer in water using sintered copper microporous coatings

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Seong Chul; KIm, Jin Sub; You, Seung M. [Dept. of Mechanical Engineering, The University of Texas at Dallas, Richardson (United States); Son, Dong Gun; KIm, Hwan Yeol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-08-15

    Pool boiling heat transfer of water saturated at atmospheric pressure was investigated experimentally on Cu surfaces with high-temperature, thermally-conductive, microporous coatings (HTCMC). The coatings were created by sintering Cu powders on Cu surfaces in a nitrogen gas environment. A parametric study of the effects of particle size and coating thickness was conducted using three average particle sizes (APSs) of 10 μm, 25 μm, and 67 μm and various coating thicknesses. It was found that nucleate boiling heat transfer (NBHT) and critical heat flux (CHF) were enhanced significantly for sintered microporous coatings. This is believed to have resulted from the random porous structures that appear to include reentrant type cavities. The maximum NBHT coefficient was measured to be approximately 400 kW/m2k with APS 67 μm and 296 μm coating thicknesses. This value is approximately eight times higher than that of a plain Cu surface. The maximum CHF observed was 2.1 MW/m2 at APS 67 μm and 428 μm coating thicknesses, which is approximately double the CHF of a plain Cu surface. The enhancement of NBHT and CHF appeared to increase as the particle size increased in the tested range. However, two larger particle sizes (25 μm and 67 μm) showed a similar level of enhancement.

  5. Preparation of copper and silicon/copper powders by a gas ...

    Indian Academy of Sciences (India)

    Administrator

    aCentre for Materials Research, Department of Imaging and Applied Physics, ... Copper powder; Si/Cu composite particle; gas evaporation–condensation method; characteriza- tion. .... from the liquid metal surface, the mixed vapour of copper.

  6. An additive approach to low temperature zero pressure sintering of bismuth antimony telluride thermoelectric materials

    Science.gov (United States)

    Catlin, Glenn C.; Tripathi, Rajesh; Nunes, Geoffrey; Lynch, Philip B.; Jones, Howard D.; Schmitt, Devin C.

    2017-03-01

    This paper presents an additive-based approach to the formulation of thermoelectric materials suitable for screen printing. Such printing processes are a likely route to such thermoelectric applications as micro-generators for wireless sensor networks and medical devices, but require the development of materials that can be sintered at ambient pressure and low temperatures. Using a rapid screening process, we identify the eutectic combination of antimony and tellurium as an additive for bismuth-antimony-telluride that enables good thermoelectric performance without a high pressure step. An optimized composite of 15 weight percent Sb7.5Te92.5 in Bi0.5Sb1.5Te3 is scaled up and formulated into a screen-printable paste. Samples fabricated from this paste achieve a thermoelectric figure of merit (ZT) of 0.74 using a maximum processing temperature of 748 K and a total thermal processing budget of 12 K-hours.

  7. Qualitative mineralogical characterization of the sinter by X-ray diffraction

    International Nuclear Information System (INIS)

    Greca, M.C.; Pietroluongo, L.R.V.; Baliza, S.V.; Costa Pereira, E.A. da

    1987-01-01

    This paper aims the qualitative mineralogical characterization of sinters and raw materials employed on its fabrication, via X-ray diffraction technique. Thus, sample with constant coke breeze content and variable contents of sand, limestone, dunite and dolomite were prepared to obtain current sinter compositions, with variable basicity. The tests were performed at the research of the following institutions: Companhia Siderurgica Nacional, Centro de Tecnologia Mineral and Instituto Nacional de Tecnologia. (author) [pt

  8. Kinetics of UO2 sintering

    International Nuclear Information System (INIS)

    Ristic, M.M.

    1962-01-01

    Detailed conclusions related to the UO 2 sintering can be drawn from investigating the kinetics of the sintering process. This report gives an thorough analysis of the the data concerned with sintering available in the literature taking into account the Jander and Arrhenius laws. This analysis completes the study of influence of the O/U ratio and the atmosphere on the sintering. Results presented are fundamentals of future theoretical and experimental work related to characterisation of the UO 2 sintering process

  9. Binary copper oxide semiconductors: From materials towards devices

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, B.K.; Polity, A.; Reppin, D.; Becker, M.; Hering, P.; Klar, P.J.; Sander, T.; Reindl, C.; Benz, J.; Eickhoff, M.; Heiliger, C.; Heinemann, M. [1. Physics Institute, Justus-Liebig University of Giessen (Germany); Blaesing, J.; Krost, A. [Institute of Experimental Physics (IEP), Otto-von-Guericke University Magdeburg (Germany); Shokovets, S. [Institute of Physics, Ilmenau University of Technology (Germany); Mueller, C.; Ronning, C. [Institute of Solid State Physics, Friedrich Schiller University Jena (Germany)

    2012-08-15

    Copper-oxide compound semiconductors provide a unique possibility to tune the optical and electronic properties from insulating to metallic conduction, from bandgap energies of 2.1 eV to the infrared at 1.40 eV, i.e., right into the middle of the efficiency maximum for solar-cell applications. Three distinctly different phases, Cu{sub 2}O, Cu{sub 4}O{sub 3}, and CuO, of this binary semiconductor can be prepared by thin-film deposition techniques, which differ in the oxidation state of copper. Their material properties as far as they are known by experiment or predicted by theory are reviewed. They are supplemented by new experimental results from thin-film growth and characterization, both will be critically discussed and summarized. With respect to devices the focus is on solar-cell performances based on Cu{sub 2}O. It is demonstrated by photoelectron spectroscopy (XPS) that the heterojunction system p-Cu{sub 2}O/n-AlGaN is much more promising for the application as efficient solar cells than that of p-Cu{sub 2}O/n-ZnO heterojunction devices that have been favored up to now. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Background studies in support of a feasibility assessment on the use of copper-base materials for nuclear waste packages in a repository in tuff

    International Nuclear Information System (INIS)

    Van Konynenburg, R.A.; Kundig, K.J.A.; Lyman, W.S.; Prager, M.; Meyers, J.R.; Servi, I.S.

    1990-06-01

    This report combines six work units performed in FY'85--86 by the Copper Development Association and the International Copper Research Association under contract with the University of California. The work includes literature surveys and state-of-the-art summaries on several considerations influencing the feasibility of the use of copper-base materials for fabricating high-level nuclear waste packages for the proposed repository in tuff rock at Yucca Mountain, Nevada. The general conclusion from this work was that copper-base materials are viable candidates for inclusion in the materials selection process for this application. 55 refs., 48 figs., 22 tabs

  11. Background studies in support of a feasibility assessment on the use of copper-base materials for nuclear waste packages in a repository in tuff

    Energy Technology Data Exchange (ETDEWEB)

    Van Konynenburg, R.A. [Lawrence Livermore National Lab., CA (USA); Kundig, K.J.A.; Lyman, W.S.; Prager, M.; Meyers, J.R.; Servi, I.S. [CDA/INCRA Joint Advisory Group, Greenwich, CT (USA)

    1990-06-01

    This report combines six work units performed in FY`85--86 by the Copper Development Association and the International Copper Research Association under contract with the University of California. The work includes literature surveys and state-of-the-art summaries on several considerations influencing the feasibility of the use of copper-base materials for fabricating high-level nuclear waste packages for the proposed repository in tuff rock at Yucca Mountain, Nevada. The general conclusion from this work was that copper-base materials are viable candidates for inclusion in the materials selection process for this application. 55 refs., 48 figs., 22 tabs.

  12. Open-Source Selective Laser Sintering (OpenSLS) of Nylon and Biocompatible Polycaprolactone.

    Science.gov (United States)

    Kinstlinger, Ian S; Bastian, Andreas; Paulsen, Samantha J; Hwang, Daniel H; Ta, Anderson H; Yalacki, David R; Schmidt, Tim; Miller, Jordan S

    2016-01-01

    Selective Laser Sintering (SLS) is an additive manufacturing process that uses a laser to fuse powdered starting materials into solid 3D structures. Despite the potential for fabrication of complex, high-resolution structures with SLS using diverse starting materials (including biomaterials), prohibitive costs of commercial SLS systems have hindered the wide adoption of this technology in the scientific community. Here, we developed a low-cost, open-source SLS system (OpenSLS) and demonstrated its capacity to fabricate structures in nylon with sub-millimeter features and overhanging regions. Subsequently, we demonstrated fabrication of polycaprolactone (PCL) into macroporous structures such as a diamond lattice. Widespread interest in using PCL for bone tissue engineering suggests that PCL lattices are relevant model scaffold geometries for engineering bone. SLS of materials with large powder grain size (~500 μm) leads to part surfaces with high roughness, so we further introduced a simple vapor-smoothing technique to reduce the surface roughness of sintered PCL structures which further improves their elastic modulus and yield stress. Vapor-smoothed PCL can also be used for sacrificial templating of perfusable fluidic networks within orthogonal materials such as poly(dimethylsiloxane) silicone. Finally, we demonstrated that human mesenchymal stem cells were able to adhere, survive, and differentiate down an osteogenic lineage on sintered and smoothed PCL surfaces, suggesting that OpenSLS has the potential to produce PCL scaffolds useful for cell studies. OpenSLS provides the scientific community with an accessible platform for the study of laser sintering and the fabrication of complex geometries in diverse materials.

  13. The effects of surface finish and grain size on the strength of sintered silicon carbide

    Science.gov (United States)

    You, Y. H.; Kim, Y. W.; Lee, J. G.; Kim, C. H.

    1985-01-01

    The effects of surface treatment and microstructure, especially abnormal grain growth, on the strength of sintered SiC were studied. The surfaces of sintered SiC were treated with 400, 800 and 1200 grit diamond wheels. Grain growth was induced by increasing the sintering times at 2050 C. The beta to alpha transformation occurred during the sintering of beta-phase starting materials and was often accompanied by abnormal grain growth. The overall strength distributions were established using Weibull statistics. The strength of the sintered SiC is limited by extrinsic surface flaws in normal-sintered specimens. The finer the surface finish and grain size, the higher the strength. But the strength of abnormal sintering specimens is limited by the abnormally grown large tabular grains. The Weibull modulus increases with decreasing grain size and decreasing grit size for grinding.

  14. Fractal characterization of the compaction and sintering of ferrites

    NARCIS (Netherlands)

    Glass, H.J.; With, de G.

    2001-01-01

    A novel parameter, the fractal exponent DE, is derived using the concept of fractal scaling. The fractal exponent DE relates the development of a feature within a material to the development of the size of the material. As an application, structural changes during the compaction and sintering of

  15. Microwave sintering of Ag-nanoparticle thin films on a polyimide substrate

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, S., E-mail: fujii.s.ap@m.titech.ac.jp [Department of Applied Chemistry, Tokyo Institute of Technology, Tokyo 152-8522 (Japan); Department of Information and Communication System Engineering, National Institute of Technology, Okinawa College, Nago, Okinawa 905-2192 (Japan); Kawamura, S.; Maitani, M. M.; Suzuki, E.; Wada, Y. [Department of Applied Chemistry, Tokyo Institute of Technology, Tokyo 152-8522 (Japan); Mochizuki, D. [Interdisciplinary Cluster for Cutting Edge Research, Center for Energy and Environmental Science, Shinshu University, Ueda, Nagano 386-8567 (Japan)

    2015-12-15

    Ag-nanoparticle thin films on a polyimide substrate were subjected to microwave sintering by use of a single-mode waveguide applicator. A two-step sintering process was employed. First, at low conductivities of the film, the film sample was placed at the site of the maximum electric field and subjected to microwave irradiation. Second, when the conductivity of the film increased, the film sample was placed at the site of the maximum magnetic field and again subjected to microwave irradiation. The microwave sintering process was completed within 1.5 min, which is significantly lower than the time required for the oven heating process. The resulting conductivity of the film, albeit only 30% of that of the bulk material, was seven times that of a film annealed at the same temperature in a furnace. Scanning electron microscopy images revealed that the nanoparticles underwent both grain necking and grain growth during microwave sintering. In addition, this sintering process was equivalent to the oven heating process performed at a 50 °C higher annealing temperature. An electromagnetic wave simulation and a heat transfer simulation of the microwave sintering process were performed to gain a thorough understanding of the process.

  16. Microwave sintering of Ag-nanoparticle thin films on a polyimide substrate

    Directory of Open Access Journals (Sweden)

    S. Fujii

    2015-12-01

    Full Text Available Ag-nanoparticle thin films on a polyimide substrate were subjected to microwave sintering by use of a single-mode waveguide applicator. A two-step sintering process was employed. First, at low conductivities of the film, the film sample was placed at the site of the maximum electric field and subjected to microwave irradiation. Second, when the conductivity of the film increased, the film sample was placed at the site of the maximum magnetic field and again subjected to microwave irradiation. The microwave sintering process was completed within 1.5 min, which is significantly lower than the time required for the oven heating process. The resulting conductivity of the film, albeit only 30% of that of the bulk material, was seven times that of a film annealed at the same temperature in a furnace. Scanning electron microscopy images revealed that the nanoparticles underwent both grain necking and grain growth during microwave sintering. In addition, this sintering process was equivalent to the oven heating process performed at a 50 °C higher annealing temperature. An electromagnetic wave simulation and a heat transfer simulation of the microwave sintering process were performed to gain a thorough understanding of the process.

  17. Utilization of flotation wastes of copper slag as raw material in cement production

    International Nuclear Information System (INIS)

    Alp, I.; Deveci, H.; Suenguen, H.

    2008-01-01

    Copper slag wastes, even if treated via processes such as flotation for metal recovery, still contain heavy metals with hazardous properties posing environmental risks for disposal. This study reports the potential use of flotation waste of a copper slag (FWCS) as iron source in the production of Portland cement clinker. The FWCS appears a suitable raw material as iron source containing >59% Fe 2 O 3 mainly in the form of fayalite (Fe 2 SiO 4 ) and magnetite (Fe 3 O 4 ). The clinker products obtained using the FWCS from the industrial scale trial operations over a 4-month period were characterised for the conformity of its chemical composition and the physico-mechanical performance of the resultant cement products was evaluated. The data collected for the clinker products produced using an iron ore, which is currently used as the cement raw material were also included for comparison. The results have shown that the chemical compositions of all the clinker products including those of FWCS are typical of a Portland cement clinker. The mechanical performance of the standard mortars prepared from the FWCS clinkers were found to be similar to those from the iron ore clinkers with the desired specifications for the industrial cements e.g. CEM I type cements. Furthermore, the leachability tests (TCLP and SPLP) have revealed that the mortar samples obtained from the FWCS clinkers present no environmental problems while the FWCS could act as the potential source of heavy metal contamination. These findings suggest that flotation wastes of copper slag (FWCS) can be readily utilised as cement raw material due to its availability in large quantities at low cost with the further significant benefits for waste management/environmental practices of the FWCS and the reduced production and processing costs for cement raw materials

  18. Utilization of flotation wastes of copper slag as raw material in cement production.

    Science.gov (United States)

    Alp, I; Deveci, H; Süngün, H

    2008-11-30

    Copper slag wastes, even if treated via processes such as flotation for metal recovery, still contain heavy metals with hazardous properties posing environmental risks for disposal. This study reports the potential use of flotation waste of a copper slag (FWCS) as iron source in the production of Portland cement clinker. The FWCS appears a suitable raw material as iron source containing >59% Fe(2)O(3) mainly in the form of fayalite (Fe(2)SiO(4)) and magnetite (Fe(3)O(4)). The clinker products obtained using the FWCS from the industrial scale trial operations over a 4-month period were characterised for the conformity of its chemical composition and the physico-mechanical performance of the resultant cement products was evaluated. The data collected for the clinker products produced using an iron ore, which is currently used as the cement raw material were also included for comparison. The results have shown that the chemical compositions of all the clinker products including those of FWCS are typical of a Portland cement clinker. The mechanical performance of the standard mortars prepared from the FWCS clinkers were found to be similar to those from the iron ore clinkers with the desired specifications for the industrial cements e.g. CEM I type cements. Furthermore, the leachability tests (TCLP and SPLP) have revealed that the mortar samples obtained from the FWCS clinkers present no environmental problems while the FWCS could act as the potential source of heavy metal contamination. These findings suggest that flotation wastes of copper slag (FWCS) can be readily utilised as cement raw material due to its availability in large quantities at low cost with the further significant benefits for waste management/environmental practices of the FWCS and the reduced production and processing costs for cement raw materials.

  19. Inkjet Printing and Ebeam Sintering Approach to Fabrication of GHz Meta material Absorber

    International Nuclear Information System (INIS)

    Park, J. W.; Kim, Y. J.; Lee, Y. P.; Park, I. S.; Kang, J. H.; Lim, Jongwoo; Kim, Jonghee; Kim, Hyotae

    2013-01-01

    Metamaterial absorber structure of GHz range is fabricated by inkjet printing and e-beam sintering. The inkjet printing is of interest, which give the easier and quicker way to fabricate large scale metamaterials than the approaches by the lithographic process, Furthermore it is more suitable to make flexible electronics, which has yet been great technologic trend. Usual post process of inkjet printing is the sintering to ensure solvent-free from the printed pattern and to its better conductivity comparable to the ordinary vacuum deposition process. E-beam irradiation sintering of the pattern is promising because it is inherently local and low temperature process. The main procedure of metamaterials fabrication is printing a resonator structure with lossy metal such as Ag or Au. We designed two types of Ag based multiband absorber which are double and quadruple bands. Those adsorber patterns are printed on polyimide substrate with commercially available Ag ink (DGP 40LT-15C, 25C). The absorbance performance of fabricated metamaterials is characterized by Hewlett-Packard E836B network analyzer in microwave anechoic chamber. The conductivity enhancement after e-beam or other sintering process is checked by measuring sheet resistance. The absorbance of the fabricated metamaterial is measured around 60% for the types designed. The absorbance is not high enough to practical use, which is attributed to low conductivity of the printed pattern. The spectrum shows, however, quite interesting large broadness, which come in the interval between each pack absorbance, witch needs further study. Though the extent of its effectiveness of inkjet printing in metamaterials needs more experimental studies, the demonstrated capability of quick and large area fabrication to flexible substrate is excellent

  20. Microstructural Analysis of Sintered Gradient Materials Based on Distaloy SE Powder

    Directory of Open Access Journals (Sweden)

    Zarębski K.

    2016-06-01

    Full Text Available The study describes the microstructural analysis of cylindrically-shaped functionally graded products sintered from iron powder with scheduled graded structure on the cross-section running from the core to the surface layer of the sinter. Different types of structure were produced using Distaloy SE powder in two compositions - one without the addition of carbon, and another with 0.6wt% C. Two methods were used to fill the die cavity and shape the products. The first method involving a two-step compaction of individual layers. The second method using an original technique of die filling enabled the formation of transition zone between the outer layer and the core still at the stage of product shaping. As part of microstructural analysis, structural constituents were identified and voids morphology was examined. Studies covered the effect of the type of the applied method on properties of the graded zone obtained in the manufactured products

  1. Sintering of cermets on the base of corundum and molybdenum

    International Nuclear Information System (INIS)

    Fedotov, A.V.

    1987-01-01

    Liquid-phase sintering of cermets has been studied to develop rational technology allowing to produce a dense material at lower temperatures. Molybdenum of the MPCh mark with the specific surface ranged from 1900 to 4000 cm 2 /g and the corundum powder of the VK-94-1 mark with the specific surface of 6000 cm 2 /g containing upto 10% of the glass-phase have been used as initial materials. It is shown that application of the VK-94-1 ceramics powder for molybdenum content cermets allows to decrease the temperature of dense material production (∼ upto 100 deg C). To produce dense materials, it is necessary to restrict the initial porosity of compaction and to correspond it to the sintering conditions. The increase of molybdenum dispersion allows to produce material with the more homogeneous structure, higher density and strength. Molybdenum presence decreases recrystallization of corundum crystals and causes structure production resistant to high-temperature heating

  2. Microstructure and Mechanical Properties of Graphene Oxide/Copper Composites

    Directory of Open Access Journals (Sweden)

    HONG Qi-hu

    2016-09-01

    Full Text Available Graphene oxide/copper (GO/Cu composites were successfully synthesized through the ball milling and vacuum hot press sintering process. The morphologies of the mixture powders, and the microstructure and mechanical properties of GO/Cu composites were investigated by OM, SEM, XRD, hardness tester and electronic universal testing machine, respectively. The results show that the GO/Cu composites are compact. Graphene oxide with flake morphology is uniformly dispersed and well consolidated with copper matrix. When the mass fraction of graphene oxide is 0.5%, the microhardness and compress strength at RT reach up to 63HV and 276MPa, increased by 8.6% and 28%, respectively. The strengthening mechanism is load transfer effect, dislocation strengthening and fine crystal reinforcing.

  3. Simulated UO{sub 2} fuel containing CsI by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Wangle, T. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe (Germany); Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Břehová 7, Praha 1, 115 19 (Czech Republic); Tyrpekl, V. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe (Germany); Cologna, M., E-mail: marco.cologna@ec.europa.eu [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe (Germany); Somers, J. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe (Germany)

    2015-11-15

    Herein, an innovative preparation procedure has been deployed enabling, for the first time, the incorporation of volatile fission product simulant into highly dense nuclear fuel pellets. Highly volatile fission products were embedded in a dense UO{sub 2} matrix in the form of CsI by simply mixing starting materials and consolidation in a Spark Plasma Sintering step at 1000 °C with a 5 min dwell time. CsI particles were evenly distributed throughout the pellet and were located at the grain boundaries. The sintering rate is dependent on the O/U ratio of the powder. Addition of CsI also acts as a sintering aid, reducing the temperature of maximum densification. - Highlights: • A new method was developed to incorporation of volatile fission products simulants into dense nuclear fuel pellets. • CsI doped UO{sub 2} pellets were synthetized for the first time, by Spark Plasma Sintering. • The sintering rate in Spark Plasma Sintering is dependent on the O/U ratio of UO{sub 2+x}.

  4. Effect of temperature on sintered austeno-ferritic stainless steel microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Munez, C.J. [Departamento de Ciencia e Ingenieria de Materiales, Escuela Superior de Ciencias Experimentales y Tecnologia, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid (Spain)], E-mail: claudio.munez@urjc.es; Utrilla, M.V.; Urena, A. [Departamento de Ciencia e Ingenieria de Materiales, Escuela Superior de Ciencias Experimentales y Tecnologia, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid (Spain)

    2008-09-08

    The influence of temperature on microstructural changes of sintered austeno-ferritic steels has been investigated. PM stainless steels have been obtained by sintering mixtures of austenitic and ferritic stainless steel powders. Only temperature-induced phase transformation was observed in austenite, as a result of elements interdiffusion between both phases. Microstructural characterization was completed with atomic force microscopy (AFM) and micro- and nano-indentation test, it is revealed an increase in the hardness with respect to the solutionized materials.

  5. Creation and Validation of Sintered PTFE BRDF Targets & Standards.

    Science.gov (United States)

    Durell, Christopher; Scharpf, Dan; McKee, Greg; L'Heureux, Michelle; Georgiev, Georgi; Obein, Gael; Cooksey, Catherine

    2015-09-21

    Sintered polytetrafluoroethylene (PTFE) is an extremely stable, near-perfect Lambertian reflecting diffuser and calibration standard material that has been used by national labs, space, aerospace and commercial sectors for over two decades. New uncertainty targets of 2 % on-orbit absolute validation in the Earth Observing Systems community have challenged the industry to improve is characterization and knowledge of almost every aspect of radiometric performance (space and ground). Assuming "near perfect" reflectance for angular dependent measurements is no longer going to suffice for many program needs. The total hemispherical spectral reflectance provides a good mark of general performance; but, without the angular characterization of bidirectional reflectance distribution function (BRDF) measurements, critical data is missing from many applications and uncertainty budgets. Therefore, traceable BRDF measurement capability is needed to characterize sintered PTFE's angular response and provide a full uncertainty profile to users. This paper presents preliminary comparison measurements of the BRDF of sintered PTFE from several laboratories to better quantify the BRDF of sintered PTFE, assess the BRDF measurement comparability between laboratories, and improve estimates of measurement uncertainties under laboratory conditions.

  6. Master Sintering Surface: A practical approach to its construction and utilization for Spark Plasma Sintering prediction

    Directory of Open Access Journals (Sweden)

    Pouchly V.

    2012-01-01

    Full Text Available The sintering is a complex thermally activated process, thus any prediction of sintering behaviour is very welcome not only for industrial purposes. Presented paper shows the possibility of densification prediction based on concept of Master Sintering Surface (MSS for pressure assisted Spark Plasma Sintering (SPS. User friendly software for evaluation of the MSS is presented. The concept was used for densification prediction of alumina ceramics sintered by SPS.

  7. Defectoscopy of direct laser sintered metals by low transmission ultrasonic frequencies

    Directory of Open Access Journals (Sweden)

    Ebersold Zoran

    2012-01-01

    Full Text Available This paper focuses on the improvement of ultrasonic defectoscopy used for machine elements produced by direct laser metal sintering. The direct laser metal sintering process introduces the mixed metal powder and performs its subsequent laser consolidation in a single production step. Mechanical elements manufactured by laser sintering often contain many hollow cells due to weight reduction. The popular pulse echo defectoscopy method employing very high frequencies of several GHz is not successful on these samples. The aim of this paper is to present quadraphonic transmission ultrasound defectoscopy which uses low range frequencies of few tens of kHz. Therefore, the advantage of this method is that it enables defectoscopy for honeycombed materials manufactured by direct laser sintering. This paper presents the results of testing performed on AlSi12 sample. [Projekat Ministarstva nauke Republike Srbije, br. OI 172057

  8. The Electrode Characteristics of the Sintered AB{sub 5}-type Metal Hydrogen Storage Alloy for Ni-MH Secondary Battery

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Sang Min; Park, Won; Choi, Seung Jun; Park, Choong Nyeon [Department of Metallurgical Engineering, Chonnam National University, Kawngju, (Korea, Republic of); Noh, Hak [Autombile Reseach Center, Chonnom National University, Kwangju (Korea, Republic of); Choi, Jeon [Department. of Iron and Metallurgical Engineering., Hanlyo Sanup University, Kwangyang (Korea, Republic of)

    1996-12-15

    The AB{sub 5} type metal hydride electrodes using (LM)Ni{sub 4.49}C0{sub 0.1}Mn{sub 0.205}Al{sub 0.205}(LM : Lanthanium rich Mischmetal) alloy powders({<=}200mesh) which were coated with 25wt% copper in an acidic bath were prepared with or without addition of 10wt% PTFE as a binder. Prior to electrochemical measurements, the electrode were sintered at 40 for 1 and 2hrs in vacuum with Mm(mischmetal) and sponge type Ti getters. The properties such as maximum capacity, cycle life and mechanical strength of the negative electrode have been investigated. The surface analysis of the electrode was also obtained before and after charge-discharge cycling using scanning election microscope(SEM). From the observations of electrochemical behavior, it was found that the sintered electrode shows a lower maximum discharge capacity compared with non-sintered electrode but it shows a better cycle life. For the both electrode with or without addition of PTFE binder, the values of mechanical strength were obtained, and their values increasing sintering time. However, there is little difference of discharge capacity for both electrodes. (author). 9 refs., 2 tabs., 4 figs., 2 ills.

  9. Multi-wavelength copper vapour lasers for novel materials processing application

    International Nuclear Information System (INIS)

    Knowles, M.; Foster-Turner, R.; Kearsley, A.; Evans, J.

    1995-01-01

    The copper vapour laser (CVL) is a high average power, short pulse laser with a multi-kilohertz pulse repetition rate. The CVL laser lines (511 nm and 578 nm) combined with the good beam quality and high peak power available from these lasers allow it to operate in a unique parameter space. Consequently, it has demonstrated many unique and advantageous machining characteristics. We have also demonstrated efficient conversion of CVL radiation to other wavelengths using non-linear frequency conversion, dye lasers and Ti:AL 2 O 3 . Output powers of up to 4 W at 255 nm have been achieved by frequency doubling. The frequency doubled CVL is inherently narrow linewidth and frequency locked making it a suitable source for UV photolithography. Slope efficiencies in excess of 25 % have been achieved with CVL pumped Ti:Al 2 O 3 and dye lasers. These laser extend the wavelengths options into the red and infrared regions of the spectrum. The near diffraction limited beams from these tunable lasers can be efficiently frequency doubled into the blue and near UV. The wide range of wavelength options from the CVL enable a wide variety of materials processing and material interactions to be explored. A European consortium for Copper Laser Applications in Manufacture and Production (CLAMP) has been set up under the EUREKA scheme to coordinate the commercial and technical expertise currently available in Europe. (author)

  10. Characterization of SiCf/SiC and CNT/SiC composite materials produced by liquid phase sintering

    International Nuclear Information System (INIS)

    Lee, J.K.; Lee, S.P.; Cho, K.S.; Byun, J.H.; Bae, D.S.

    2011-01-01

    This paper dealt with the microstructure and mechanical properties of SiC based composites reinforced with different reinforcing materials. The composites were fabricated using reinforcing materials of carbon nanotubes (CNT) and Tyranno Lox-M SiC chopped fibers. The volume fraction of carbon nanotubes was also varied in this composite system. An Al 2 O 3 -Y 2 O 3 powder mixture was used as a sintering additive in the consolidation of the SiC matrix. The characterization of the composites was investigated by means of SEM and three point bending tests. These composites showed a dense morphology of the matrix region, by the creation of a secondary phase. The composites reinforced with SiC chopped fibers possessed a flexural strength of about 400 MPa at room temperature. The flexural strength of the carbon nanotubes composites had a tendency to decrease with increased volume fraction of the reinforcing material.

  11. On the Mechanism of Microwave Flash Sintering of Ceramics

    Directory of Open Access Journals (Sweden)

    Yury V. Bykov

    2016-08-01

    Full Text Available The results of a study of ultra-rapid (flash sintering of oxide ceramic materials under microwave heating with high absorbed power per unit volume of material (10–500 W/cm3 are presented. Ceramic samples of various compositions—Al2O3; Y2O3; MgAl2O4; and Yb(LaO2O3—were sintered using a 24 GHz gyrotron system to a density above 0.98–0.99 of the theoretical value in 0.5–5 min without isothermal hold. An analysis of the experimental data (microwave power; heating and cooling rates along with microstructure characterization provided an insight into the mechanism of flash sintering. Flash sintering occurs when the processing conditions—including the temperature of the sample; the properties of thermal insulation; and the intensity of microwave radiation—facilitate the development of thermal runaway due to an Arrhenius-type dependency of the material’s effective conductivity on temperature. The proper control over the thermal runaway effect is provided by fast regulation of the microwave power. The elevated concentration of defects and impurities in the boundary regions of the grains leads to localized preferential absorption of microwave radiation and results in grain boundary softening/pre-melting. The rapid densification of the granular medium with a reduced viscosity of the grain boundary phase occurs via rotation and sliding of the grains which accommodate their shape due to fast diffusion mass transport through the (quasi-liquid phase. The same mechanism based on a thermal runaway under volumetric heating can be relevant for the effect of flash sintering of various oxide ceramics under a dc/ac voltage applied to the sample.

  12. Effects of forming temperature and sintering rate to the final properties of FeCuAl powder compacts formed through uniaxial die compaction process

    Science.gov (United States)

    Rahman, M. M.; Ismail, M. A.; Sopyan, I.; Rahman, H. Y.

    2018-01-01

    This paper presents the outcomes of an experimental investigation on the effects of forming temperature and sintering schedule to the final characteristics of FeCuAl powder mass formed at different temperature and sintered at different schedule. A lab-scale uni-axial die compaction rig was designed and fabricated which enabled the compaction of powder mass at room temperature as well as elevated temperature. Iron (Fe) powder ASC 100.29 was mechanically mixed with other elemental powders, namely copper (Cu), and aluminum (Al) for 60 minutes and compacted at three different temperature, i.e., 30°C, 150°C, and 200°C by applying 425 MPa of simultaneous downward and upward axial loading to generate green compacts. The as-pressed samples were inspected visually and the defect-free green compacts were subsequently sintered in an argon gas fired furnace at 800°C for 60 min at three different heating/cooling rates, i.e., 5, 10, and 15°C/min, respectively. The sintered samples were then characterised for their physical, electrical, and mechanical properties. The microstructures of the sintered samples were also analysed. The results revealed that a forming temperature of 150°C and a sintering rate of 10°C/min could produce a product with better characteristics.

  13. Influence of alloying elements and density on aqueous corrosion behaviour of some sintered low alloy steels

    International Nuclear Information System (INIS)

    Kandavel, T.K.; Chandramouli, R.; Karthikeyan, P.

    2012-01-01

    Highlights: ► Corrosion of low alloy P/M steels under HCl acid pickling environment has been studied. ► Influence of density, strain and alloying elements on the rate of corrosion of the steels has been investigated. ► Residual porosity has significant effect on acid corrosion. ► Addition of the alloying elements Cu, Mo and Ti reduces the corrosion rate significantly. ► Carbide forming elements Mo and Ti improve further the resistance of the steels to aqueous corrosion. -- Abstract: Low alloy steels produced through powder metallurgy route of sintering followed by forging are promising candidate materials for high strength small components. Porosity in such steels poses a real challenge during acid pickling treatment, which is one of the processing steps during manufacturing. The present research work attempts to investigate the mechanism underlying the acid corrosion behaviour of some sintered low alloy steels under induced acid pickling conditions. Sintered-forged low alloy steel samples containing molybdenum (Mo), copper (Cu) and titanium (Ti) were subjected to aqueous corrosion attack by immersing the samples in 18% HCl (Hydrochloric acid) solution for 25 h. Sample weight loss and Fe (Iron) loss were estimated for the corroded samples. The morphology of the corroded surfaces was studied through metallography and scanning electron microscopy. Higher porosity alloys underwent enhanced corrosion rates. Both corrosion rate and iron loss are found to decrease linearly with reduction in porosity in all cases of the alloys. The alloying elements Mo, Ti and Cu, when added in combination, have played a complementary role in the reduction of corrosion rate by almost one order of magnitude compared to unalloyed steel. Presence of carbides of the carbide forming elements Mo and Ti played a positive role on the corrosion behaviour of the low alloy steels.

  14. A review of thermo-mechanical considerations of high temperature materials for synchrotron applications

    International Nuclear Information System (INIS)

    Kuzay, T.M.

    1993-01-01

    The third generation synchrotron facilities such as the 7-GeV Advanced Photon Source (APS) generate x-ray beams with very high heat load and heat flux levels. Certain front end and beamline components will be required to sustain total heat loads of 3.8 to 15 kW and heat flux levels exceeding 400 W/MM 2 even during the first phase of this project. Grazing geometry and enhanced heat transfer techniques used in the design of such components reduce the heat flux levels below the 30 W/MM 2 level, which is sustainable by the special copper materials routinely used in the component design. Although the resulting maximum surface temperatures are sustainable, the structural stresses and the fatigue issues remain viable concerns. Cyclic thermal loads have a propensity to cause spallation and thermal striping concerns. As such, the steady-state part of the problem is much easier to understand and handle than the time- dependent part. Ease of bonding as well as ultrahigh vacuum and radiation compatibility are additional constraints on material selection for these components. The two copper materials are the traditional OFHC and the newer sintered copper, Glidcop (a trademark product of the SCM Corporation of North Carolina), which are very commonly used in synchrotron components. New materials are also appearing in the form of heat sinks or heat spreaders that are bonded to the base copper in some fashion. These are either partially transparent to x-rays and have engineered volumetric heating and/or very conductive thermally to spread the thermal load in a preferred way. These materials are reviewed critically for high-heat-load or high-heat-flux applications in synchrotrons

  15. Alternative sintering methods compared to conventional thermal sintering for inkjet printed silver nanoparticle ink

    NARCIS (Netherlands)

    Niittynen, J.; Abbel, R.; Mäntysalo, M.; Perelaer, J.; Schubert, U.S.; Lupo, D.

    2014-01-01

    In this contribution several alternative sintering methods are compared to traditional thermal sintering as high temperature and long process time of thermal sintering are increasing the costs of inkjet-printing and preventing the use of this technology in large scale manufacturing. Alternative

  16. In situ formation of sintered cordierite–mullite nano–micro composites by utilizing of waste silica fume

    International Nuclear Information System (INIS)

    Khattab, R.M.; EL-Rafei, A.M.; Zawrah, M.F.

    2012-01-01

    Highlights: ► We succeeded to obtain in situ formed sintered cordierite–mullite nano–macro composites from waste and pure materials at 1400 °C. ► Their sinterability was greatly dependent on both firing temperature and composition. ► XRD patterns showed that the optimum temperature required for formation of sintered cordierite–mullite nano–macro composites was achieved at 1400 °C. ► The batch containing 70 wt.% cordierite and 30 wt.% mullite exhibited the best properties. ► Microstructures of the densified composites were composed of nano–macro cordierite–mullite structures. -- Abstract: This study aims at in situ formation of sintered cordierite–mullite nano–macro composites having high technological properties using waste silica fume, calcined ball clay, calcined alumina, and magnesia as starting materials. The starting materials were mixed in different ratios to obtain different cordierite–mullite composite batches in which the cordierite contents ranged from 50 to 100 wt.%. The batches were uni-axially pressed at 100 MPa and sintered at 1350, 1400 and 1450 °C to select the optimum temperature required for cordierite–mullite nano–macro composites formation. The formed phases were identified by X-ray diffraction (XRD) pattern. The sintering parameters in terms of bulk density (BD) and apparent porosity (AP) were determined. The microstructure of composites has been investigated by scanning electron microscope (SEM). Cold crushing strength (CCS) of the sintered batches was evaluated. The result revealed that the cordierite–mullite nano–macro composites were in-situ formed at 1400 °C. The batch containing 70 wt.% cordierite showed good physical and mechanical properties.

  17. Sintering study in vertical fixed bed reactor for synthetic aggregate production

    International Nuclear Information System (INIS)

    Quaresma, D.S.; Neves, A.S.S.; Melo, A.O.; Pereira, L.F.S.; Bezerra, P.T.S.; Macedo, E.N.; Souza, J.A.S.

    2017-01-01

    The synthetic aggregates are being employed in civil construction for the reduction of mineral extraction activities. Within this context, the recycling of industrial waste is the basis of the majority of processes to reduce the exploitation of mineral resources. In this work the sintering in a vertical fixed bed reactor for synthetic aggregate production using 20% pellets and 80% charcoal was studied. The pellets were prepared from a mixture containing clay, charcoal and fly ash. Two experiments varying the speed of air sucking were carried out. The material produced was analyzed by X-ray diffraction, scanning electron microscopy, measures of their ceramic properties, and particle size analysis. The results showed that the solid-state reactions, during the sintering process, were efficient and the produced material was classified as coarse lightweight aggregate. The process is interesting for the sintering of aggregates, and can be controlled by composition, particle size, temperature gradient and gaseous flow. (author)

  18. Development of a certified reference material for composition of high-purity copper as a transfer standard within GET 176-2013

    Directory of Open Access Journals (Sweden)

    Veniamin M. Zyskin

    2017-01-01

    Full Text Available Introduction. The paper gives information on the development of a certified reference material (CRM for composition of high-purity copper (Cu CRM UNIIM. The CRM is included as the transfer standard into the State primary standard of the mass (molar fraction and mass (molar concentration of the component in liquid and solid substances and materials based on coulometry GET 176-2013.Materials and methods. The CRM represents pieces of oxygen-free copper wire rod, brand KMB, produced according to GOST R 53803-2010, weighing from 0.5 to 1g. The CRM is packed in plastic vials with the capacity of 30 or 50 cm3. The certified characteristic of the CRM is copper mass fraction in copper wire rod, expressed in percentages. The certified value for copper mass fraction was established by the primary method of controlled-potential coulometry using the State primary standard GET 176-2013.Results. The permitted interval of the certified value for copper mass fraction in the CRM is from 99,950 % to 100,000 %. The relative expanded uncertainty (k=2 of the certified value for copper mass fraction does not exceed 0,030 %; the relative standard uncertainty due to inhomogeneity does not exceed 0.010 %; the relative standard uncertainty due to instability does not exceed 0.010 %. The shelf life of the developed CRM is 10 years provided that standard storage conditions are ensured.Discussion and conclusions. The developed CRM is included into the State register of type approved RMs under the number GSO 10800-2016. The CRM of high-purity copper (Cu CRM UNIIM as a transfer standard is intended for reproduction, storage and transfer of the copper mass fraction unit to other reference materials and chemical reagents by the method of comparison using a comparator and by conducting direct measurements. This CRM may also be used:– for verification of measuring instruments (MIs according to the state verification schedule described in GOST R 8.735.0-2014,– for calibration

  19. Processing and Properties of Distaloy Sa Sintered Alloys with Boron and Carbon

    Directory of Open Access Journals (Sweden)

    Karwan-Baczewska J.

    2015-04-01

    Full Text Available Prealloyed iron-based powders, manufactured in Höganäs Company, are used in the automotive parts industry. The properties and life time of such sintered parts depend, first of all, on their chemical composition, the production method of the prealloyed powder as well as on the technology of their consolidation and sintering. One of simpler and conventional methods aimed at increasing the density in sintered products is the process of activated sintering, performed, for example, by adding boron as elementary boron powder. Under this research project obtained were novel sintered materials, based on prealloyed and diffusion bonded powder, type: Distaloy SA, with the following chemical composition: Fe-1.75% Ni-1.5%Cu- 0.5%Mo with carbon (0.55%; 0.75% and boron (0.2%, 0.4% and 0.6%. Distaloy SA samples alloyed with carbon and boron were manufactured by mixing powders in a Turbula mixer, then compressed using a hydraulic press under a pressure of 600 MPa and sintered in a tube furnace at 1473 K, for a 60 minute time, in the hydrogen atmosphere. After the sintering process, there were performed density and porosity measurements as well as hardness tests and mechanical properties were carried out, too. Eventually, analyzed was the effect of boron upon density, hardness and mechanical properties of novel sintered construction parts made from Distaloy SA powder.

  20. Laser-Induced Reductive Sintering of Nickel Oxide Nanoparticles under Ambient Conditions

    KAUST Repository

    Paeng, Dongwoo; Lee, Daeho; Yeo, Junyeob; Yoo, Jae-Hyuck; Allen, Frances I.; Kim, Eunpa; So, Hongyun; Park, Hee K.; Minor, Andrew M.; Grigoropoulos, Costas P.

    2015-01-01

    © 2015 American Chemical Society. This work is concerned with the kinetics of laser-induced reductive sintering of nonstoichiometric crystalline nickel oxide (NiO) nanoparticles (NPs) under ambient conditions. The mechanism of photophysical reductive sintering upon irradiation using a 514.5 nm continuous-wave (CW) laser on NiO NP thin films has been studied through modulating the laser power density and illumination time. Protons produced due to high-temperature decomposition of the solvent present in the NiO NP ink, oxygen vacancies in the NiO NPs, and electronic excitation in the NiO NPs by laser irradiation all affect the early stage of the reductive sintering process. Once NiO NPs are reduced by laser irradiation to Ni, they begin to coalesce, forming a conducting material. In situ optical and electrical measurements during the reductive sintering process take advantage of the distinct differences between the oxide and the metallic phases to monitor the transient evolution of the process. We observe four regimes: oxidation, reduction, sintering, and reoxidation. A characteristic time scale is assigned to each regime.

  1. Laser-Induced Reductive Sintering of Nickel Oxide Nanoparticles under Ambient Conditions

    KAUST Repository

    Paeng, Dongwoo

    2015-03-19

    © 2015 American Chemical Society. This work is concerned with the kinetics of laser-induced reductive sintering of nonstoichiometric crystalline nickel oxide (NiO) nanoparticles (NPs) under ambient conditions. The mechanism of photophysical reductive sintering upon irradiation using a 514.5 nm continuous-wave (CW) laser on NiO NP thin films has been studied through modulating the laser power density and illumination time. Protons produced due to high-temperature decomposition of the solvent present in the NiO NP ink, oxygen vacancies in the NiO NPs, and electronic excitation in the NiO NPs by laser irradiation all affect the early stage of the reductive sintering process. Once NiO NPs are reduced by laser irradiation to Ni, they begin to coalesce, forming a conducting material. In situ optical and electrical measurements during the reductive sintering process take advantage of the distinct differences between the oxide and the metallic phases to monitor the transient evolution of the process. We observe four regimes: oxidation, reduction, sintering, and reoxidation. A characteristic time scale is assigned to each regime.

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Preparation and characterization of solid-state sintered aluminum-doped zinc ... Structural characteristics of titanium coating on copper substrates .... nuclear reactors, chemical processing vessels and heat exchange tubing as they .... Pitting corrosion protection of low nickel stainless steel by electropolymerized conducting ...

  3. Reactivity test between beryllium and copper

    International Nuclear Information System (INIS)

    Kawamura, H.; Kato, M.

    1995-01-01

    Beryllium has been expected for using as plasma facing material on ITER. And, copper alloy has been proposed as heat sink material behind plasma facing components. Therefore, both materials must be joined. However, the elementary process of reaction between beryllium and copper alloy does not clear in detail. For example, other authors reported that beryllium reacted with copper at high temperature, but it was not obvious about the generation of reaction products and increasing of the reaction layer. In the present work, from this point, for clarifying the elementary process of reaction between beryllium and copper, the out-of-pile compatibility tests were conducted with diffusion couples of beryllium and copper which were inserted in the capsule filled with high purity helium gas (6N). Annealing temperatures were 300, 400, 500, 600 and 700 degrees C, and annealing periods were 100, 300 and 1000h. Beryllium specimens were hot pressed beryllium, and copper specimens were OFC (Oxygen Free Copper)

  4. Preparation and electromagnetic properties of low-temperature sintered ferroelectric-ferrite composite ceramics

    International Nuclear Information System (INIS)

    Yue Zhenxing; Chen Shaofeng; Qi Xiwei; Gui Zhilun; Li Longtu

    2004-01-01

    For the purpose of multilayer chip EMI filters, the new ferroelectric-ferrite composite ceramics were prepared by mixing PMZNT relaxor ferroelectric powder with composition of 0.85Pb(Mg 1/3 Nb 2/3 )O 3 -0.1Pb(Ni 1/3 Nb 2/3 )O 3 -0.05PbTiO 3 and NiCuZn ferrite powder with composition of (Ni 0.20 Cu 0.20 Zn 0.60 )O(Fe 2 O 3 ) 0.97 at low sintering temperatures. A small amount of Bi 2 O 3 was added to low sintering temperature. Consequently, the dense composite ceramics were obtained at relative low sintering temperatures, which were lower than 940 deg. C. The X-ray diffractometer (XRD) identifications showed that the sintered ceramics retained the presence of distinct ferroelectric and ferrite phases. The sintering studies and scanning electron microscope (SEM) observations revealed that the co-existed two phases affect the sintering behavior and grain growth of components. The electromagnetic properties, such as dielectric constant and initial permeability, change continuously between those of two components. Thus, the low-temperature sintered ferroelectric-ferrite composite ceramics with tunable electromagnetic properties were prepared by adjusting the relative content of two components. These materials can be used for multilayer chip EMI filters with various properties

  5. Polyurethane nanofibers containing copper nanoparticles as future materials

    DEFF Research Database (Denmark)

    Sheikh, Faheem A.; Kanjwal, Muzafar Ahmed; Saran, Saurabh

    2011-01-01

    nanofibers. Typically, a colloidal gel consisting of copper NPs and polyurethane has been electrospun. SEM-EDX and TEM results confirmed well oriented nanofibers and good dispersion of pure copper NPs. Copper NPs have diameter in the range of 5–10nm. The thermal stability of the synthesized nanofibers...... the antimicrobial efficacy of these nanofiber mats. Subsequently, antimicrobial tests have indicated that the prepared nanofibers do posses good bactericidal effect. Accordingly, it is noted that the obtained nanofiber mats can be used as future filter membranes with good antimicrobial activities....

  6. Production of pure sintered alumina

    International Nuclear Information System (INIS)

    Rocha, J.C. da; Huebner, H.W.

    1982-01-01

    With the aim of optimizing the sintering parameters, the strength of a large number of alumina samples was determined which were produced under widely varying sintering conditions and with different amounts of MgO content. The strength as a function of sintering time or temperature was found to go through a maximum. With increasing time, this maximum is shifted to lower temperatures, and with decreasing temperature to longer times. Data pairs of sintering times and temperatures which yeld the strength maximum were determined. The value of the strength at the maximum remains unchanged. The strength is high (= 400 MN/m 2 , at a grain size of 3 um and a porosity of 2 per cent) and comparable to foreign aluminas produced for commercial purposes, or even higher. The increase in the sintering time from 1 h to 16 h permits a reduction of the sintering temperature from 1600 to 1450 0 C without losing strength. The practical importance of this fact for a production of sintered alumina on a large scale is emphasized. (Author) [pt

  7. About preparation and properties of UC based fuel materials

    International Nuclear Information System (INIS)

    Vooght, D. de; Timmermans, W.; Batist, R. de.

    1978-07-01

    The sintering behaviour and the effect of a numer of production parameters on the properties of sintered UC materials have been studied. Materials investigated include slightly hyperstoichiometric UC(UCsub(1+x)), oxygen containing UC[U(CO)] and UC containing both oxygen and nitrogen [U(CON)]. The materials have been characterized in terms of grain size distribution for the pre-sintering powder, of porosity distribution for the powdered material and for the green and sintered pellets and of the density of the green and sintered pellets. Carbothermic reaction temperature, milling time, and to some extent sintering temperature have been varied. The report discusses the possible correlations between several parameters such as milling time, powder fineness, density, grain size of the sintered product, composition (O,N content), etc. (author)

  8. Kinetics of sintering of uranium dioxide

    International Nuclear Information System (INIS)

    Soni, N.C.; Moorthy, V.K.

    1978-01-01

    The kinetics of sintering of UO 2 powders derived from ADU route and calcined at different temperatures was studied. The activation energy for sintering was found to depend on the calcination temperature, the density chosen and the sintering temperature range. The motive force for sintering is the excess free energy in the particle system. This exists in the powder compact in the form of surface energy and the excess lattice energy due to defects. The defects which can be eliminated at the operating temperature are responsible for the mobility and hence sintering. This concept of the motive force for sintering has been used to explain the difference in the activation energies observed in the present study. This would also explain phenomena such as attainment of limiting density, presence of optimum sintering temperature and the influence of calcination treatments on the sintering behaviour of powders. (author)

  9. Sinter aluminium as cladding material for fuel elements

    International Nuclear Information System (INIS)

    Mann, K.E.; Boudouresques, M.B.

    1961-01-01

    1. Survey of the production process of sinter aluminium. 2. Description of the forming processes (extrusion, forging and rolling), whereby the production of tubing for atom piles will be explained in detail. 3. Production of ribbed tubes and tubes with close tolerances of sizes. 4. The different SAP-qualities and their properties under special consideration of the properties at elevated temperatures and the creep properties. 5. Diffusion behaviour of SAP with Be, Mg, Al, U and UO 2 . 6. Corrosion behaviour in CO 2 atmosphere at high temperature and in water. 7. Weldability. 8. Effect of irradiation on the mechanical properties. 9. Superiority of SAP compared with normal wrought alloys of the same composition. (author) [fr

  10. An Investigation of Sintering Parameters on Titanium Powder for Electron Beam Melting Processing Optimization.

    Science.gov (United States)

    Drescher, Philipp; Sarhan, Mohamed; Seitz, Hermann

    2016-12-01

    Selective electron beam melting (SEBM) is a relatively new additive manufacturing technology for metallic materials. Specific to this technology is the sintering of the metal powder prior to the melting process. The sintering process has disadvantages for post-processing. The post-processing of parts produced by SEBM typically involves the removal of semi-sintered powder through the use of a powder blasting system. Furthermore, the sintering of large areas before melting decreases productivity. Current investigations are aimed at improving the sintering process in order to achieve better productivity, geometric accuracy, and resolution. In this study, the focus lies on the modification of the sintering process. In order to investigate and improve the sintering process, highly porous titanium test specimens with various scan speeds were built. The aim of this study was to decrease build time with comparable mechanical properties of the components and to remove the residual powder more easily after a build. By only sintering the area in which the melt pool for the components is created, an average productivity improvement of approx. 20% was achieved. Tensile tests were carried out, and the measured mechanical properties show comparatively or slightly improved values compared with the reference.

  11. Spark-plasma-sintering magnetic field assisted compaction of Co{sub 80}Ni{sub 20} nanowires for anisotropic ferromagnetic bulk materials

    Energy Technology Data Exchange (ETDEWEB)

    Ouar, Nassima; Schoenstein, Frédéric; Mercone, Silvana; Farhat, Samir; Jouini, Noureddine [Laboratoire des Sciences des Procédés et des Matériaux, CNRS, LSPM—UPR 3407, Université Paris 13, Sorbonne-Paris-Cité, 99 Avenue J.-B. Clément, 93430 Villetaneuse (France); Villeroy, Benjamin [Institut de Chimie et des Matériaux Paris Est, CNRS, ICMPE—UMR 7182, Equipe de Chimie Métallurgique des Terres Rares, 2-8 rue Henri Dunant, 94320 Thiais Cedex (France); Leridon, Brigitte [Laboratoire de Physique et d’Étude des Matériaux, LPEM, ESPCI-ParisTech, CNRS, UPMC, 10 rue Vauquelin, F-75231 Paris Cedex 5 (France)

    2013-10-28

    We developed a two-step process showing the way for sintering anisotropic nanostructured bulk ferromagnetic materials. A new reactor has been optimized allowing the synthesis of several grams per batch of nanopowders via a polyol soft chemistry route. The feasibility of the scale-up has been successfully demonstrated for Co{sub 80}Ni{sub 20} nanowires and a massic yield of ∼97% was obtained. The thus obtained nanowires show an average diameter of ∼6 nm and a length of ∼270 nm. A new bottom-up strategy allowed us to compact the powder into a bulk nanostructured system. We used a spark-plasma-sintering technique under uniaxial compression and low temperature assisted by a permanent magnetic field of 1 T. A macroscopic pellet of partially aligned nanowire arrays has been easily obtained. This showed optimized coercive properties along the direction of the magnetic field applied during compaction (i.e., the nanowires' direction)

  12. Microwave-assisted sintering of non-stoichiometric strontium bismuth niobate ceramic: Structural and dielectric properties

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Rajveer [Department of Physics and Astrophysics, University of Delhi, New Delhi 110007 (India); Department of Physics, Atmaram Sanatan Dharma College, University of Delhi, Dhaula Kuan, New Delhi 110021 (India); Luthra, Vandna [Department of Physics, Gargi College, University of Delhi, Siri Fort Road, New Delhi 110049 (India); Tandon, R.P., E-mail: ram_tandon@hotmail.com [Department of Physics and Astrophysics, University of Delhi, New Delhi 110007 (India)

    2016-11-01

    In recent years the microwave sintering has been utilized for the synthesis of materials in enhancement of the properties. In this paper strontium bismuth niobate (Sr{sub 0.8}Bi{sub 2.2}Nb{sub 2}O{sub 9}:SBN) bulk ceramic has been synthesized by microwave reactive sintering and conventional heating techniques. A relative density of 99.6% has been achieved for microwave sintered SBN, which is higher than that of (98.81%) conventionally sintered SBN. The phase formation of SBN synthesized by both processes has been confirmed by X-ray diffraction (XRD). The surface morphology of SBN was observed by scanning electron microscopy (SEM). The microstructure was found to be more uniform in case of SBN sintered by microwave sintering. The dielectric properties of SBN were studied as a function of frequency in the temperature range of 30–500 °C. Both the samples synthesized by two different processes were found to follow Curie–Weiss law above the transition temperature. The Curie temperature was found to be higher for microwave sintered SBN. The dielectric constant and the transition temperature were observed to be higher for SBN ceramic synthesized by microwave sintering technique. The ac and dc activation energy values were also found to be higher for microwave sintered SBN as compared to conventional sintering technique.

  13. Sintering effect on material properties of electrochemical reactors used for removal of nitrogen oxides and soot particles emitted from diesel engines

    DEFF Research Database (Denmark)

    He, Zeming; Andersen, Kjeld Bøhm; Keel, Li

    2010-01-01

    In the present work, 12-layered electrochemical reactors (comprising five cells) with a novel configuration including supporting layer lanthanum strontium manganate (LSM)-yttria stabilised zirconia (YSZ), electrode layer LSM-gadolinia-doped cerium oxide (CGO) and electrolyte layer CGO were...... fabricated via the processes of slurry preparation, tape casting and lamination and sintering. The parameters of porosity, pore size, pore size distribution, shrinkage, flow rate of the sintered reactors and the electrical conductivities of the supporting layer and the electrode in the sintered reactors were...... characterised. The effect of sintering temperature on microstructures and properties of the sintered samples was discussed, and 1,250 °C was determined as the appropriate sintering temperature for reactor production based on the performance requirements for applications. Using the present ceramic processing...

  14. Production of porous sintered materials using wastes of manufacturing engineering in self-propagating high-temperature synthesis

    Directory of Open Access Journals (Sweden)

    Y. S. Povstyana

    2016-06-01

    Full Text Available The increasing amount of wastes produced by the manufacturing engineering, as well as their physical and mechanical properties and restorability provide a search for sphere of their application. The actual problem of modern science is the utilization of wastes and using them in further production that will minimize their harmful impact on the environment and reduce the cost of expensive raw materials. Wastes are ideally suitable for the manufacture of porous permeable materials (filters. Powder metallurgy allows obtaining products with controlled filtration, physical and mechanical properties. Such materials are good filters for regeneration of technical liquids, oils, cooling fluids, sewage etc. The article analyzes the methods and technologies for the manufacture of porous ceramic materials and a new technology for their manufacture, which is based on use of mill scale and natural mineral – saponite as the main components. Compression technology provides products at low pressures and sintering by passing high-temperature synthesis. The proposed technology is characterized by low cost and good physical and mechanical properties of the product that gives a reason to use them for filtering and regeneration of technical liquids.

  15. Photoacoustic spectroscopy investigation of sintered zinc-tin-oxide ceramics

    Directory of Open Access Journals (Sweden)

    Ivetić Tamara B.

    2007-01-01

    Full Text Available In this paper the changes that occurred in differently activated ZnO-SnO2 and sintered samples were investigated using photoacoustic spectroscopy. ZnO and SnO2 powders, mixed in the molar ratio 2:1, were mechanically activated in a planetary ball mill for 10-160 min. The mixtures were pres­sed and isothermally sintered at 1300°C for two hours. X-ray diffraction analysis of the obtained sintered samples was performed in order to investigate changes of the phase composition and confirmed only the presence of a pure zinc stannate (Zn2SnO4 phase in all the sintered samples as a result of the solid state reaction and reaction sintering between the starting ZnO and SnO2 powders. The microstructure of the sintered sam­ples was examined by scanning electron microscopy and showed that mechanical activation leads to the formation of a structure with reduced particle size which accelerates spinel formation. Grain growth of the spinel phase slows down the densification process and together with the agglomerates formed during mechanical activation causes the appearance of a porous microstructure. The photoacoustic (PA phase and amplitude spectra of the sintered samples were recorded as a function of the chopped frequency of the laser beam used (red laser with a power of 25 mW, λ=632 nm in a thermal-transmission detection configuration. PA experimental data were analyzed using the Rosenzweig-Gersho thermal-piston model, which enabled determination of the thermal diffusivity, ZT (m2s-1, diffusion coefficient of the minority free carriers D (m2s-1 and the optical absorption coefficient (m-1. The detected differences of the measured thermal-electrical properties of the obtained Zn2SnO4 ceramics indicate changes in the material induced by the different preparation procedure of the starting powders before the sintering process.

  16. Process Parameter Optimization of Extrusion-Based 3D Metal Printing Utilizing PW-LDPE-SA Binder System.

    Science.gov (United States)

    Ren, Luquan; Zhou, Xueli; Song, Zhengyi; Zhao, Che; Liu, Qingping; Xue, Jingze; Li, Xiujuan

    2017-03-16

    Recently, with a broadening range of available materials and alteration of feeding processes, several extrusion-based 3D printing processes for metal materials have been developed. An emerging process is applicable for the fabrication of metal parts into electronics and composites. In this paper, some critical parameters of extrusion-based 3D printing processes were optimized by a series of experiments with a melting extrusion printer. The raw materials were copper powder and a thermoplastic organic binder system and the system included paraffin wax, low density polyethylene, and stearic acid (PW-LDPE-SA). The homogeneity and rheological behaviour of the raw materials, the strength of the green samples, and the hardness of the sintered samples were investigated. Moreover, the printing and sintering parameters were optimized with an orthogonal design method. The influence factors in regard to the ultimate tensile strength of the green samples can be described as follows: infill degree > raster angle > layer thickness. As for the sintering process, the major factor on hardness is sintering temperature, followed by holding time and heating rate. The highest hardness of the sintered samples was very close to the average hardness of commercially pure copper material. Generally, the extrusion-based printing process for producing metal materials is a promising strategy because it has some advantages over traditional approaches for cost, efficiency, and simplicity.

  17. Process Parameter Optimization of Extrusion-Based 3D Metal Printing Utilizing PW–LDPE–SA Binder System

    Directory of Open Access Journals (Sweden)

    Luquan Ren

    2017-03-01

    Full Text Available Recently, with a broadening range of available materials and alteration of feeding processes, several extrusion-based 3D printing processes for metal materials have been developed. An emerging process is applicable for the fabrication of metal parts into electronics and composites. In this paper, some critical parameters of extrusion-based 3D printing processes were optimized by a series of experiments with a melting extrusion printer. The raw materials were copper powder and a thermoplastic organic binder system and the system included paraffin wax, low density polyethylene, and stearic acid (PW–LDPE–SA. The homogeneity and rheological behaviour of the raw materials, the strength of the green samples, and the hardness of the sintered samples were investigated. Moreover, the printing and sintering parameters were optimized with an orthogonal design method. The influence factors in regard to the ultimate tensile strength of the green samples can be described as follows: infill degree > raster angle > layer thickness. As for the sintering process, the major factor on hardness is sintering temperature, followed by holding time and heating rate. The highest hardness of the sintered samples was very close to the average hardness of commercially pure copper material. Generally, the extrusion-based printing process for producing metal materials is a promising strategy because it has some advantages over traditional approaches for cost, efficiency, and simplicity.

  18. Process Parameter Optimization of Extrusion-Based 3D Metal Printing Utilizing PW–LDPE–SA Binder System

    Science.gov (United States)

    Ren, Luquan; Zhou, Xueli; Song, Zhengyi; Zhao, Che; Liu, Qingping; Xue, Jingze; Li, Xiujuan

    2017-01-01

    Recently, with a broadening range of available materials and alteration of feeding processes, several extrusion-based 3D printing processes for metal materials have been developed. An emerging process is applicable for the fabrication of metal parts into electronics and composites. In this paper, some critical parameters of extrusion-based 3D printing processes were optimized by a series of experiments with a melting extrusion printer. The raw materials were copper powder and a thermoplastic organic binder system and the system included paraffin wax, low density polyethylene, and stearic acid (PW–LDPE–SA). The homogeneity and rheological behaviour of the raw materials, the strength of the green samples, and the hardness of the sintered samples were investigated. Moreover, the printing and sintering parameters were optimized with an orthogonal design method. The influence factors in regard to the ultimate tensile strength of the green samples can be described as follows: infill degree > raster angle > layer thickness. As for the sintering process, the major factor on hardness is sintering temperature, followed by holding time and heating rate. The highest hardness of the sintered samples was very close to the average hardness of commercially pure copper material. Generally, the extrusion-based printing process for producing metal materials is a promising strategy because it has some advantages over traditional approaches for cost, efficiency, and simplicity. PMID:28772665

  19. Developments toward the use of tungsten as armour material in plasma facing components promoted by Euratom-CEA Association

    International Nuclear Information System (INIS)

    Mitteau, R.; Missiaen, J.M.; Brustolin, P.

    2006-01-01

    Tungsten is increasingly considered as a prime candidate armour material facing the plasma in fusion experiments (ASDEX, JET, ITER). This material is, however, a challenge for the engineers due to its brittleness at room temperature. Its bonding to structural or cooled substrates is a critical issue. The Euratom-CEA Association promotes the development of evolutionary techniques aiming to produce high performance assemblies between tungsten and various substrates. These are 1) functionally graded tungsten to copper, 2) direct electron beam welding of tungsten to Mo-alloy TZM and 3) the characterisation of tungsten coatings deposited on carbon fibre composite by high energy deposition processes. 1) A functionally graded material eliminates the singular point which weakens the heterogeneous assembly, reducing the stresses and allowing a better behaviour. The sintering of submicronic W-Cu powders is investigated. The green shape is processed from W-CuO powder, which is reduced by a hydrogen flow. The compaction and sintering of layers of various compositions (10 to 30 % Cu) produces an assembly (density of ∼ 94%) with a good cohesion. However, the gradient is not effectively controlled, because of the migration of melt copper during the sintering. Future work aims to improve the process by using spark or microwave assisted sintering. 2) Electron beam welding of Mo-alloy TZM is investigated, to produce high temperature components required by radiation cooled PFCs. They require only mechanical properties and no vacuum sealing. The driving line is to use simple tungsten shapes to reduce the milling cost. In spite of low weldable properties of the refractory alloys, a good bonding up to a depth of 5 mm is obtained. Hardness measurements show that the melt area and the heat affected zone are harder than TZM, the weakest materials at 230 Hv. Quench tests in water from up to 2000 o C are done without apparent crack formation. 3) Finally, characterisation techniques are

  20. An investigation in texturing high Tc superconducting ceramics by creep sintering

    International Nuclear Information System (INIS)

    Regnier, P.; Deschanels, X.; Maurice, F.; Schmirgeld, L.; Aguillon, C.; Senoussi, S.; Mac Carthy, M.; Tatlock, G.J.

    1991-01-01

    We study in detail the possibility of high-T c superconducting ceramics texturing by high pressing them during sintering. We show texture variations as a function of the applied load, of the deformation, of the temperature, and of the sintering stage length, of the rate of variation of temperature, of the material nature in contact with ceramic and of the original powder quality. We present results obtained by optical microscopy, electronic microscopy, X-rays, and local chemical analysis

  1. Strain-enhanced sintering of iron powders

    Energy Technology Data Exchange (ETDEWEB)

    Amador, D.R.; Torralba, J.M. [Universidad Carlos III de Madrid, Departamento de Ciencias de Materiales e Ingenieria Metalurgica, Leganes, Madrid (Spain); Monge, M.A.; Pareja, R. [Universidad Carlos III de Madrid, Departamento de Fisica, Madrid (Spain)

    2005-02-01

    Sintering of ball-milled and un-milled Fe powders has been investigated using dilatometry, X-ray, density, and positron annihilation techniques. A considerable sintering enhancement is found in milled powders showing apparent activation energies that range between 0.44 and 0.80 eV/at. The positron annihilation results, combined with the evolution of the shrinkage rate with sintering temperature, indicate generation of lattice defects during the sintering process of milled and un-milled powders. The sintering enhancement is attributed to pipe diffusion along the core of moving dislocations in the presence of the vacancy excess produced by plastic deformation. Positron annihilation results do not reveal the presence of sintering-induced defects in un-milled powders sintered above 1200 K, the apparent activation energy being in good agreement with that for grain-boundary diffusion in {gamma}-Fe. (orig.)

  2. Surface properties of copper based cermet materials

    International Nuclear Information System (INIS)

    Voinea, M.; Vladuta, C.; Bogatu, C.; Duta, A.

    2008-01-01

    The paper presents the characterization of the surface properties of copper based cermets obtained by two different techniques: spray pyrolysis deposition (SPD) and electrodeposition. Copper acetate was used as precursor of Cu/CuO x cermet. The surface morphology was tailored by adding copolymers of maleic anhydride with controlled hydrophobia. The films morphology of Cu/CuO x was assessed using contact angle measurements and AFM analysis. The porous structures obtained via SPD lead to higher liquid adsorption rate than the electrodeposited films. A highly polar liquid - water is recommended as testing liquid in contact angle measurements, for estimating the porosity of copper based cermets, while glycerol can be used to distinguish among ionic and metal predominant structures. Thus, contact angle measurements can be used for a primary evaluation of the films morphology and, on the other hand, of the ratio between the cermet components

  3. Identification of the man-made barium copper silicate pigments among some ancient Chinese artifacts through spectroscopic analysis.

    Science.gov (United States)

    Li, Q H; Yang, J C; Li, L; Dong, J Q; Zhao, H X; Liu, S

    2015-03-05

    This article describes the complementary application of non-invasive micro-Raman spectroscopy and energy dispersive X-ray fluorescence spectrometry to the characterization of some ancient Chinese silicate artifacts. A total of 28 samples dated from fourth century BC to third century AD were analyzed. The results of chemical analysis showed that the vitreous PbO-BaO-SiO2 material was used to sinter these silicate artifacts. The barium copper silicate pigments including BaCuSi4O10, BaCuSi2O6 and BaCu2Si2O7 were widely identified from colorful areas of the samples by Raman spectroscopy. In addition, other crystalline phases such as Fe2O3, BaSi2O5, BaSO4, PbCO3 and quartz were also identified. The present study provides very valuable information to trace the technical evolution of man-made barium copper silicate pigments and their close relationship with the making of ancient PbO-BaO-SiO2 glaze and glass. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Physical chemistry and modelling of the sintering of actinide oxides

    International Nuclear Information System (INIS)

    Lechelle, Jacques

    2013-01-01

    This report gives a synthesis of the work I have carried out or to which I have numerically contributed to from 1996 up to 2012 in the Department of Plutonium Uranium and minor Actinides in Cadarache CEA Center. Their main goal is the study and the modeling of the sintering process of nuclear fuels which is the unifying thread of this document. Both in order to take into account the physical and chemical features of the actinide bearing oxide material and in order to combine the different transport phenomena leading to sintering, a sub-granular scale model is under development. Extension to a varying chemical composition as well as exchanges with the gaseous phase are foreseen. A simulation on a larger scale (pellet scale) is ongoing in the framework of a PhD thesis. Validation means have been tested with (U,Pu)O 2 material on the scale of the pellet (Small Angle Neutron Diffusion), on the scale of powder granules (X-Ray High Resolution Micro-Tomography) and with CeO 2 at the 'Institut de Chimie Separative' in Marcoule on a single crystal scale (Environmental Scanning Electron Microscope). The required microstructure homogeneity for nuclear fuels has led to a campaign of experimental studies about the role of Cr 2 O 3 as a sintering aid. Whole of these studies improve our understanding of fuel sintering and hence leads to an improved mastering of this process. (author) [fr

  5. Effect of sintering atmosphere on the hardness of ThO2

    Science.gov (United States)

    Baena, Angela; Cardinaels, Thomas; Van Eyken, Jelle; Puzzolante, Jean Louis; Binnemans, Koen; Verwerft, Marc

    2016-08-01

    The hardness and toughness of ThO2 sintered under reducing and oxidizing conditions has been investigated and, quite unexpectedly, a significant difference in hardness was observed for the entire range of porosities studied. Reducing conditions systematically yielded higher hardness values than oxidizing conditions. Extrapolated to zero porosity, the hardness for ThO2 is H0 = 10.5 ± 0.3 GPa for oxidizing conditions and H0 = 12.4 ± 0.7 GPa for reducing conditions. Toughness values have been derived from Vickers indentations; differences in toughness were insignificant and only a single value is proposed: KIC = 0.97 ± 0.12 MPa √m. The difference in hardness is attributed to the presence of point defects, also acting as color centers and causing grey coloration of ThO2 sintered under reducing conditions. Furthermore, and of interest for nuclear fuel production, is the finding that ThO2 sintered under reducing conditions is significantly easier to grind compared to material sintered under oxidizing conditions.

  6. Determinants of the quality of sintered steel for the automotive industry

    Directory of Open Access Journals (Sweden)

    Barbara Lisiecka

    2016-03-01

    Full Text Available The increasing demand on components obtained using powder metallurgy is driven by economic changes that have turned product quality into the most basic criterion which affects the interest in a component and its successful use. The improvement in quality should be expected in the beginning of the planning of the technological process and selection of adequate raw materials. High requirements concerning product quality management and production improvement stimulates the development of the current automotive industry where sintered steels represent the highest percentage of products. The multiphase sinters investigated in the study were prepared from two types of water–atomized steel powders: 316L and 409L. Optical microscopy, X–ray phase analysis and examinations of microhardness were performed in order to determine the microstructure and basic properties of sintered steels. The main assumption for this study was to analyse the microstructure and mechanical properties of sintered steels used for manufacturing of various car parts.

  7. Nanophase intermetallic FeAl obtained by sintering after mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    D' Angelo, L., E-mail: luisa.dangelo@gmail.co [Departamento de Mecanica, UNEXPO, Luis Caballero Mejias, Charallave (Venezuela, Bolivarian Republic of); D' Onofrio, L. [Facultad de Ciencias, Dpto. Fisica, Universidad Central de Venezuela, Caracas (Venezuela, Bolivarian Republic of); Gonzalez, G., E-mail: gemagonz@ivic.v [Laboratorio de Materiales, Centro Tecnologico, Instituto Venezolano de Investigaciones Cientificas, Apdo. 21827, Caracas 1020A (Venezuela, Bolivarian Republic of)

    2009-08-26

    The preparation of bulk nanophase materials from nanocrystalline powders has been carried out by the application of sintering at high pressure. Fe-50 at.%Al system has been prepared by mechanical alloying for different milling periods from 1 to 50 h, using vials and balls of stainless steel and a ball-to-powder weight ratio (BPR) of 8:1 in a SPEX 8000 mill. Sintering of the 5 and 50 h milled powders was performed under high uniaxial pressure at 700 deg. C. The characterization of powders from each interval of milling was performed by X-ray diffraction, Moessbauer spectroscopy, scanning and transmission electron microscopy. After 5 h of milling formation of a nanocrystalline alpha-Fe(Al) solid solution that remains stable up to 50 h occurs. The grain size decreases to 7 nm after 50 h of milling. The sintering of the milled powders resulted in a nanophase-ordered FeAl alloys with a grain size of 16 nm. Grain growth during sintering was very small due to the effect of the high pressure applied.

  8. Solid-state sintering of tungsten heavy alloys

    International Nuclear Information System (INIS)

    Gurwell, W.E.

    1994-10-01

    Solid-state sintering is a technologically important step in the fabrication of tungsten heavy alloys. This work addresses practical variables affecting the sinterability: powder particle size, powder mixing, and sintering temperature and time. Compositions containing 1 to 10 micrometer (μM) tungsten (W) powders can be fully densified at temperatures near the matrix solidus. Blending with an intensifier bar provided good dispersion of elemental powders and good as-sintered mechanical properties under adequate sintering conditions. Additional ball milling increases powder bulk density which primarily benefits mold and die filling. Although fine, 1 μm W powder blends have high sinterability, higher as-sintered ductilities are reached in shorter sintering times with coarser, 5 μm W powder blends; 10μm W powder blends promise the highest as-sintered ductilities due to their coarse microstructural W

  9. Certification of a copper metal reference material for neutron dosimetry. (EC nuclear reference material 522)

    International Nuclear Information System (INIS)

    Ingelbrecht, C.; Pauwels, J.; Lievens, F.

    1993-01-01

    Copper metal of ≥ 99.995% nominal purity in the form of 0.1 and 1.0 mm thick foil and 0.5 and 1.0 mm diameter wire has been certified for its cobalt and silver mass fractions. The certified values are -1 and 0.95 ± 0.04 mg.kg -1 respectively, based on 66 results for cobalt and 88 results for silver obtained by nine laboratories using three methods. This reference material, EC-NRM 522, is intended for reactor neutron dosimetry. (authors). 14 refs., 1 annexe, 10 tabs., 2 figs

  10. Transparent Lu 2 O 3 :Eu ceramics by sinter and HIP optimization

    Science.gov (United States)

    Seeley, Z. M.; Kuntz, J. D.; Cherepy, N. J.; Payne, S. A.

    2011-09-01

    Evolution of porosity and microstructure was observed during densification of lutetium oxide ceramics doped with europium (Lu 2O 3:Eu) fabricated via vacuum sintering and hot isostatic pressing (HIP'ing). Nano-scale starting powder was uniaxially pressed and sintered under high vacuum at temperatures between 1575 and 1850 °C to obtain densities ranging between 94% and 99%, respectively. Sintered compacts were then subjected to 200 MPa argon gas at 1850 °C to reach full density. Vacuum sintering above 1650 °C led to rapid grain growth prior to densification, rendering the pores immobile. Sintering between 1600 and 1650 °C resulted in closed porosity yet a fine grain size to allow the pores to remain mobile during the subsequent HIP'ing step, resulting in a fully-dense highly transparent ceramic without the need for subsequent air anneal. Light yield performance was measured and Lu 2O 3:Eu showed ˜4 times higher light yield than commercially used scintillating glass indicating that this material has the potential to improve the performance of high energy radiography devices.

  11. Inversion defects in MgAl2O4 elaborated by pressureless sintering, pressureless sintering plus hot isostatic pressing, and spark plasma sintering

    International Nuclear Information System (INIS)

    Mussi, A.; Granger, G. Bernard; Addad, A.; Benameur, N.; Beclin, F.; Bataille, A.

    2009-01-01

    The distribution of inversion defects of Al was investigated in dense magnesium-aluminate spinel elaborated by pressureless sintering, pressureless sintering plus hot isostatic pressing, and spark plasma sintering. This study was conducted by energy electron loss spectroscopy analyses and more particularly by energy loss near edge structure investigations of the Al-L 2,3 edge. Several aspects are discussed with the purpose of understanding why charged defects dispersal reveals a special configuration.

  12. PRODUCTION OF PROTOTYPE PARTS USING DIRECT METAL LASER SINTERING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Josef Sedlak

    2015-08-01

    Full Text Available Unconventional methods of modern materials preparation include additive technologies which involve the sintering of powders of different chemical composition, granularity, physical, chemical and other utility properties. The technology called Rapid Prototyping, which uses different technological principles of producing components, belongs to this type of material preparation. The Rapid Prototyping technology facilities use photopolymers, thermoplastics, specially treated paper or metal powders. The advantage is the direct production of metal parts from input data and the fact that there is no need for the production of special tools (moulds, press tools, etc.. Unused powder from sintering technologies is re-used for production 98% of the time, which means that the process is economical, as well as ecological.The present paper discusses the technology of Direct Metal Laser Sintering (DMLS, which falls into the group of additive technologies of Rapid Prototyping (RP. The major objective is a detailed description of DMLS, pointing out the benefits it offers and its application in practice. The practical part describes the production and provides an economic comparison of several prototype parts that were designed for testing in the automotive industry.

  13. An Investigation of Sintering Parameters on Titanium Powder for Electron Beam Melting Processing Optimization

    Directory of Open Access Journals (Sweden)

    Philipp Drescher

    2016-12-01

    Full Text Available Selective electron beam melting (SEBM is a relatively new additive manufacturing technology for metallic materials. Specific to this technology is the sintering of the metal powder prior to the melting process. The sintering process has disadvantages for post-processing. The post-processing of parts produced by SEBM typically involves the removal of semi-sintered powder through the use of a powder blasting system. Furthermore, the sintering of large areas before melting decreases productivity. Current investigations are aimed at improving the sintering process in order to achieve better productivity, geometric accuracy, and resolution. In this study, the focus lies on the modification of the sintering process. In order to investigate and improve the sintering process, highly porous titanium test specimens with various scan speeds were built. The aim of this study was to decrease build time with comparable mechanical properties of the components and to remove the residual powder more easily after a build. By only sintering the area in which the melt pool for the components is created, an average productivity improvement of approx. 20% was achieved. Tensile tests were carried out, and the measured mechanical properties show comparatively or slightly improved values compared with the reference.

  14. Fabrication of Cr-doped UO2 Fuel Pellet using Liquid Phase Sintering

    International Nuclear Information System (INIS)

    Kim, Dong Joo; Yang, Jae Ho; Kim, Keon Sik; Rhee, Young Woo; Kim, Jong Hun; Oh, Jang Soo; Koo, Yang Hyun

    2013-01-01

    An enhancement of the thermal conductivity of a pellet can be obtained by the addition of a higher thermal conductive material in the pellet. In addition, the resistance to the PCI can be increased through a plasticity increase of the pellet. Thermal conductivity of ceramic materials is generally lower than that of metallic materials. The thermal conductivity of uranium oxide which is a typical ceramic material is low as well. The steep temperature gradient in the fuel pellet results from the low thermal conductivity. Therefore, the thermal conductivity improvement of a nuclear fuel pellet can enhance the fuel performance in various aspects. The lower centerline temperature of a fuel pellet affects the enhancement of fuel safety as well as fuel pellet integrity during nuclear reactor operation. Besides, the nuclear reactor power can be uprated due to the higher safety margin. So, many researches to enhance the thermal conductivity of nuclear fuel pellet have been performed in various ways. To improve the thermal conductivity of UO 2 pellet, an appropriate arrangement of the high thermal conductive material in UO 2 matrix is one of the various methods. We intended to control a placement of chromium as the high thermal conductive material. The metallic chromium and chromium oxide were arranged in a grain boundary of UO 2 using a liquid phase sintering method. The liquid phase sintering of Cr-doped UO 2 pellet could be adjusted using a control of an oxygen potential in sintering atmosphere

  15. Maps of Fe-Al phases formation kinetics parameters during isothermal sintering

    Energy Technology Data Exchange (ETDEWEB)

    Pochec, Ewelina, E-mail: epochec@wat.edu.pl [Department of Advanced Materials and Technology, Military University of Technology (Poland); Jozwiak, Stanislaw; Karczewski, Krzysztof; Bojar, Zbigniew [Department of Advanced Materials and Technology, Military University of Technology (Poland)

    2012-10-10

    Highlights: Black-Right-Pointing-Pointer The sintering temperature and compaction pressure have a strong influence on the sinters structure. Black-Right-Pointing-Pointer The measurements confirmed the presence of the high-aluminium phases from Fe-Al equilibrium system in tested sinters. Black-Right-Pointing-Pointer The kinetics of Fe-Al phase formation can be described by Johnson-Mehl-Avrami modelling. - Abstract: The influence of technological parameters (compaction pressure and sintering temperature) on Fe-Al phase formation was investigated. The kinetics of phase transformation preceding and during an SHS reaction was studied in isothermal conditions by DSC using the JMA (Johnson-Mehl-Avrami) model. This model allowed us to determine basic kinetic parameters, including the Avrami exponent, which characterises the rate and manner of particular phase nucleation. The activation energy (E{sub a}) of particular phase formation was determined by the Kissinger method. XRD analysis and SEM observations of sintered material showed that not only Fe{sub 2}Al{sub 5} phase and low-aluminium solid solution in iron but also aluminium-rich FeAl{sub 2} and FeAl{sub 3} phases are formed during the sintering of an FeAl50 elementary powder mixture in isothermal conditions with an SHS reaction. The above conclusions were confirmed by iron-based solid solution lattice parameter studies and microhardness measurements.

  16. Effect of sintering atmosphere on the hardness of ThO_2

    International Nuclear Information System (INIS)

    Baena, Angela; Cardinaels, Thomas; Van Eyken, Jelle; Puzzolante, Jean Louis; Binnemans, Koen; Verwerft, Marc

    2016-01-01

    The hardness and toughness of ThO_2 sintered under reducing and oxidizing conditions has been investigated and, quite unexpectedly, a significant difference in hardness was observed for the entire range of porosities studied. Reducing conditions systematically yielded higher hardness values than oxidizing conditions. Extrapolated to zero porosity, the hardness for ThO_2 is H_0 = 10.5 ± 0.3 GPa for oxidizing conditions and H_0 = 12.4 ± 0.7 GPa for reducing conditions. Toughness values have been derived from Vickers indentations; differences in toughness were insignificant and only a single value is proposed: K_I_C = 0.97 ± 0.12 MPa √m. The difference in hardness is attributed to the presence of point defects, also acting as color centers and causing grey coloration of ThO_2 sintered under reducing conditions. Furthermore, and of interest for nuclear fuel production, is the finding that ThO_2 sintered under reducing conditions is significantly easier to grind compared to material sintered under oxidizing conditions. - Highlights: • Reducing sintering conditions increase the hardness of polycrystalline ThO_2. • Systematic series of hardness versus porosity of ThO_2 were obtained. • Reducing sintering conditions improve grinding of ThO_2.

  17. Study of the sintering behavior of fine, ultrafine and nanocrystalline WC-CO mixtures obtained by high energy milling

    International Nuclear Information System (INIS)

    Salvador, M. D.; Bonache, V.; Amigo, V.; Busquets, D.

    2008-01-01

    In this work the sintering behaviour of fine, ultrafine and nanocrystalline WC-12Co mixtures obtained by high energy milling, as well commercial nano powders, have been studied, in order to evaluate the effect of the particle size and the powder processing, in the densification, microstructural development and mechanical properties of the final product. The consolidation of the mixtures has been made by uniaxial pressing and sintering in vacuum, and by hot isostatic pressing. The sintered materials have been evaluated by measures of density, hardness and indentation fracture toughness, and micro structurally characterized by optical microscopy and scanning and transmission electronic microscopy (SEM and TEM). The results show the improvements in resistant behaviour of the materials obtained from nanocrystalline powders, in spite of the grain growth experienced during the sintering. The best results were obtained for the milling nanocrystalline material, which presents values of hardness higher than 180 HV. (Author) 46 refs

  18. Spark plasma sintering and microwave electromagnetic properties of MnFe{sub 2}O{sub 4} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Penchal Reddy, M., E-mail: drlpenchal@gmail.com [Center for Advanced Materials, Qatar University, Doha 2713 (Qatar); Mohamed, A.M.A. [Center for Advanced Materials, Qatar University, Doha 2713 (Qatar); Department of Metallurgical and Materials Engineering, Faculty of Petroleum and Mining Engineering, Suez University, Suez 4372 (Egypt); Venkata Ramana, M. [Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan (China); Zhou, X.B.; Huang, Q. [Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Ningbo 315201 (China)

    2015-12-01

    MnFe{sub 2}O{sub 4} ferrite powder was synthesized by a facile one-pot hydrothermal route and then consolidated into dense nanostructured compacts by the spark plasma sintering (SPS) technique. The effect of sintering temperature, on densification, morphology, magnetic and microwave absorption properties was examined. Spark plasma sintering resulted in uniform microstructure, as well as maximum relative density of 98%. The magnetic analysis indicated that the MnFe{sub 2}O{sub 4} ferrite nanoparticles showed ferrimagnetic behavior. Moreover, the dielectric loss and magnetic loss properties of MnFe{sub 2}O{sub 4} ferrite nanoparticles were both enhanced due to its better dipole polarization, interfacial polarization and shape anisotropy. It is believed that such spark plasma sintered ceramic material will be applied widely in microwave absorbing area. - Highlights: • Successful synthesis of dense MnFe{sub 2}O{sub 4} ceramics using spark plasma sintering. • Lower temperature and shorter sintering time, compared to conventional methods. • Optimal sintering condition was achieved. • The magnetic properties of the sintered samples are sensitive to the density and microstructure.

  19. Effect of processing conditions on microstructural features in Mn–Si sintered steels

    Energy Technology Data Exchange (ETDEWEB)

    Oro, Raquel, E-mail: raqueld@chalmers.se [Department of Materials and Manufacturing Technology, Chalmers University of Technology, Rännvägen 2A, SE-41296 Gothenburg (Sweden); Hryha, Eduard, E-mail: hryha@chalmers.se [Department of Materials and Manufacturing Technology, Chalmers University of Technology, Rännvägen 2A, SE-41296 Gothenburg (Sweden); Campos, Mónica, E-mail: campos@ing.uc3m.es [Department of Materials Science and Engineering, IAAB, Universidad Carlos III de Madrid, Av. Universidad 30, 28911 Leganés, Madrid (Spain); Torralba, José M., E-mail: torralba@ing.uc3m.es [Department of Materials Science and Engineering, IAAB, Universidad Carlos III de Madrid, Av. Universidad 30, 28911 Leganés, Madrid (Spain); IMDEA Materials Institute, c/Eric Kandel, 2, 28906 Getafe, Madrid (Spain)

    2014-09-15

    Sintering of steels containing oxidation sensitive elements is possible if such elements are alloyed with others which present lower affinity for oxygen. In this work, a master alloy powder containing Fe–Mn–Si–C, specifically designed to create a liquid phase during sintering, has been used for such purpose. The effect of processing conditions such as sintering temperature and atmosphere was studied with the aim of describing the microstructural evolution as well as the morphology and distribution of oxides in the sintered material, evaluating the potential detrimental effect of such oxides on mechanical properties. Chemical analyses, metallography and fractography studies combined with X-ray photoelectron spectroscopy analyses on the fracture surfaces were used to reveal the main mechanism of fracture and their correlation with the chemical composition of the different fracture surfaces. The results indicate that the main mechanism of failure in these steels is brittle fracture in the surrounding of the original master alloy particles due to degradation of grain boundaries by the presence of oxide inclusions. Mn–Si oxide inclusions were observed on intergranular decohesive facets. The use of reducing atmospheres and high sintering temperatures reduces the amount and size of such oxide inclusions. Besides, high heating and cooling rates reduce significantly the final oxygen content in the sintered material. A model for microstructure development and oxide evolution during different stages of sintering is proposed, considering the fact that when the master alloy melts, the liquid formed can dissolve some of the oxides as well as the surface of the surrounding iron base particles. - Highlights: • Oxide distribution in steels containing oxidation-sensitive elements • Mn, Si introduced in a master alloy powder, mixed with a base iron powder • Selective oxidation of Mn and Si on iron grain boundaries • Decohesive fracture caused by degradation of grain

  20. Effect of processing conditions on microstructural features in Mn–Si sintered steels

    International Nuclear Information System (INIS)

    Oro, Raquel; Hryha, Eduard; Campos, Mónica; Torralba, José M.

    2014-01-01

    Sintering of steels containing oxidation sensitive elements is possible if such elements are alloyed with others which present lower affinity for oxygen. In this work, a master alloy powder containing Fe–Mn–Si–C, specifically designed to create a liquid phase during sintering, has been used for such purpose. The effect of processing conditions such as sintering temperature and atmosphere was studied with the aim of describing the microstructural evolution as well as the morphology and distribution of oxides in the sintered material, evaluating the potential detrimental effect of such oxides on mechanical properties. Chemical analyses, metallography and fractography studies combined with X-ray photoelectron spectroscopy analyses on the fracture surfaces were used to reveal the main mechanism of fracture and their correlation with the chemical composition of the different fracture surfaces. The results indicate that the main mechanism of failure in these steels is brittle fracture in the surrounding of the original master alloy particles due to degradation of grain boundaries by the presence of oxide inclusions. Mn–Si oxide inclusions were observed on intergranular decohesive facets. The use of reducing atmospheres and high sintering temperatures reduces the amount and size of such oxide inclusions. Besides, high heating and cooling rates reduce significantly the final oxygen content in the sintered material. A model for microstructure development and oxide evolution during different stages of sintering is proposed, considering the fact that when the master alloy melts, the liquid formed can dissolve some of the oxides as well as the surface of the surrounding iron base particles. - Highlights: • Oxide distribution in steels containing oxidation-sensitive elements • Mn, Si introduced in a master alloy powder, mixed with a base iron powder • Selective oxidation of Mn and Si on iron grain boundaries • Decohesive fracture caused by degradation of grain

  1. Sintering of micro-trusses created by extrusion-3D-printing of lunar regolith inks

    Science.gov (United States)

    Taylor, Shannon L.; Jakus, Adam E.; Koube, Katie D.; Ibeh, Amaka J.; Geisendorfer, Nicholas R.; Shah, Ramille N.; Dunand, David C.

    2018-02-01

    The development of in situ fabrication methods for the infrastructure required to support human life on the Moon is necessary due to the prohibitive cost of transporting large quantities of materials from the Earth. Cellular structures, consisting of a regular network (truss) of micro-struts with ∼500 μm diameters, suitable for bricks, blocks, panels, and other load-bearing structural elements for habitats and other infrastructure are created by direct-extrusion 3D-printing of liquid inks containing JSC-1A lunar regolith simulant powders, followed by sintering. The effects of sintering time, temperature, and atmosphere (air or hydrogen) on the microstructures, mechanical properties, and magnetic properties of the sintered lunar regolith micro-trusses are investigated. The air-sintered micro-trusses have higher relative densities, linear shrinkages, and peak compressive strengths, due to the improved sintering of the struts within the micro-trusses achieved by a liquid or glassy phase. Whereas the hydrogen-sintered micro-trusses show no liquid-phase sintering or glassy phase, they contain metallic iron 0.1-2 μm particles from the reduction of ilmenite, which allows them to be lifted with magnets.

  2. Microstructural and electrochemical characterization of Ni/Ti/sub 2/N composite coating for sintered NdFeB permanent magnets

    International Nuclear Information System (INIS)

    Ali, A.; Ahmad, A.; Deen, K.M.; Ahmad, R.

    2009-01-01

    Sintered NdFeB magnets have complex microstructure that makes them susceptible to corrosion in humid or moist environments. The paper presents the anticorrosion characteristics of a novel Ni/Ti/sub 2/N composite coating applied through electrodeposition and cathodic arc physical vapour deposition (CAPVD) to sintered NdFeB permanent magnets. The performance of composite coating was evaluated in simulated marine environment with the help of dc polarization techniques. The rate of coating degradation was also determined by employing ac electrochemical impedance spectroscopy (EIS). The coating morphology and surface chemistry were studied with scanning electron microscope (SEM). X-ray diffraction (XRD) was used for identification of component phases in the coating-substrate system. The results showed that the composite coating provided an adequately improved corrosion protection to the sintered NdFeB magnets in the simulated marine environment compared to the earlier reported ceramic and metallic coatings. The composite coating did not damage the magnetic properties of coating-substrate system that remained at par with the ceramic and nickel coating having copper interlayer. (author)

  3. Dilatometric study of anisotropic sintering of alumina/zirconia laminates with controlled fracture behaviour

    Czech Academy of Sciences Publication Activity Database

    Maca, K.; Pouchlý, V.; Drdlík, D.; Hadraba, Hynek; Chlup, Zdeněk

    2017-01-01

    Roč. 37, č. 14 (2017), s. 4287-4295 ISSN 0955-2219 R&D Projects: GA ČR(CZ) GA15-06390S; GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 Keywords : Alumina/zirconia laminate * Crack deflection * Master sintering curve * Sintering shrinkage Subject RIV: JH - Ceramic s, Fire-Resistant Materials and Glass OBOR OECD: Ceramic s Impact factor: 3.411, year: 2016

  4. Copper tolerance in Becium homblei

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, C; Stone, J

    1971-04-09

    Analyses show that Becium homblei has apparently no mechanism for limiting copper uptake. As growth proceeds, the concentration of metal increases in leaves and stems. Much of the copper is bound to structural material of the cells. There is a significant difference between the amount of extractable material in root and leaf tissues. These differences, in conjunction with the extrinsic factor of regular bush fires, were important factors in the evolution of this copper-resistant species of Becium. 9 references.

  5. Method of making highly sinterable lanthanum chromite powder

    Science.gov (United States)

    Richards, Von L.; Singhal, Subhash C.

    1992-01-01

    A highly sinterable powder consisting essentially of LaCrO.sub.3, containing from 5 weight % to 20 weight % of a chromite of dopant Ca, Sr, Co, Ba, or Mg and a coating of a chromate of dopant Ca, Sr, Co, Ba, or Mg; is made by (1) forming a solution of La, Cr, and dopant; (2) heating their solutions; (3) forming a combined solution having a desired ratio of La, Cr, and dopant and heating to reduce solvent; (4) forming a foamed mass under vacuum; (5) burning off organic components and forming a charred material; (6) grinding the charred material; (7) heating the char at from 590.degree. C. to 950 C. in inert gas containing up to 50,000 ppm O.sub.2 to provide high specific surface area particles; (8) adding that material to a mixture of a nitrate of Cr and dopant to form a slurry; (9) grinding the particles in the slurry; (10) freeze or spray drying the slurry to provide a coating of nitrates on the particles; and (11) heating the coated particles to convert the nitrate coating to a chromate coating and provide a highly sinterable material having a high specific surface area of over 7 m.sup.2 /g.

  6. High-concentration copper nanoparticles synthesis process for screen-printing conductive paste on flexible substrate

    International Nuclear Information System (INIS)

    Tam, Sze Kee; Ng, Ka Ming

    2015-01-01

    This study presents a method for the synthesis of copper nanoparticles, which are poised to replace silver nanoparticles in some application areas of printed electronics. This method offers three advantages. Firstly, copper loading in the synthesis reaction can be as high as 1 M, offering high productivity in large-scale production. Secondly, the size of the copper nanoparticles can be controlled from 12 to 99 nm. Thirdly, the surface polarity of the particles can be modified. Thus, a tailor-made product can be synthesized. The synthesis of copper nanoparticles coated with various capping agents, including dodecanethiol, lauric acid, nonanoic acid, polyacrylic acid, and polyvinyl pyrrolidone, was demonstrated. The nonanoic acid-coated copper nanoparticles were formulated as a screen-printing conductive paste. The particles were readily dispersed in terpineol, and the paste could be screen printed onto flexible polyester. The electrical resistivity of patterns after a low-temperature (120 °C) sintering treatment was around 5.8 × 10 −5  Ω cm.Graphical Abstract

  7. High-concentration copper nanoparticles synthesis process for screen-printing conductive paste on flexible substrate

    Energy Technology Data Exchange (ETDEWEB)

    Tam, Sze Kee; Ng, Ka Ming, E-mail: kekmng@ust.hk [The Hong Kong University of Science and Technology, Department of Chemical and Biomolecular Engineering (Hong Kong)

    2015-12-15

    This study presents a method for the synthesis of copper nanoparticles, which are poised to replace silver nanoparticles in some application areas of printed electronics. This method offers three advantages. Firstly, copper loading in the synthesis reaction can be as high as 1 M, offering high productivity in large-scale production. Secondly, the size of the copper nanoparticles can be controlled from 12 to 99 nm. Thirdly, the surface polarity of the particles can be modified. Thus, a tailor-made product can be synthesized. The synthesis of copper nanoparticles coated with various capping agents, including dodecanethiol, lauric acid, nonanoic acid, polyacrylic acid, and polyvinyl pyrrolidone, was demonstrated. The nonanoic acid-coated copper nanoparticles were formulated as a screen-printing conductive paste. The particles were readily dispersed in terpineol, and the paste could be screen printed onto flexible polyester. The electrical resistivity of patterns after a low-temperature (120 °C) sintering treatment was around 5.8 × 10{sup −5} Ω cm.Graphical Abstract.

  8. Coupling in-situ X-ray micro- and nano-tomography and discrete element method for investigating high temperature sintering of metal and ceramic powders

    Directory of Open Access Journals (Sweden)

    Yan Zilin

    2017-01-01

    Full Text Available The behaviour of various powder systems during high temperature sintering has been investigated by coupling X-ray microtomography and discrete element method (DEM. Both methods are particularly relevant to analyse particle interactions and porosity changes occurring during sintering. Two examples are presented. The first one deals with a copper powder including artificially created pores which sintering has been observed in situ at the European synchrotron and simulated by DEM. 3D images with a resolution of 1.5 μm have been taken at various times of the sintering cycle. The comparison of the real displacement of particle centers with the displacement derived from the mean field assumption demonstrates significant particle rearrangement in some regions of the sample. Although DEM simulation showed less rearrangement, it has been able to accurately predict the densification kinetics. The second example concerns multilayer ceramic capacitors (MLCCs composed of hundreds of alternated metal electrode and ceramic dielectric layers. The observation of Ni-based MLCCs by synchrotron nanotomography at Argon National Laboratory with a spatial resolution between 10 and 50 nm allowed understanding the origin of heterogeneities formed in Ni layers during sintering. DEM simulations confirmed this analysis and provided clues for reducing these defects.

  9. PLZT (9/65/35) sintering and characterization through the Pechini and partial oxalate processes

    International Nuclear Information System (INIS)

    Cerqueira, Marinalva; Nasar, Ricardo Silveira; Leite, Edson Roberto; Longo, Elson; Varela, Jode Arana

    1996-01-01

    Zr Ti O 4 obtained by the Pechini method was used as precursor for obtaining PLZT. An aqueous solution of oxalic acid was prepared with ZT, Pb (NO 3 ) 2 and La 2 O 3 particles. After the Pb C 2 O 4 and La 2 O 3 precipitation on ZT, the material was calcined and x-ray diffraction (XRD) showed the cubic phase of PLZT. This material was sintered in two steps and density about 8.0 g/cm 3 were obtained. After second sintering XRD showed the occurrence of tetragonal and rhombohedral phases. This was caused by an estequiometric deviation, however the material showed a high optical transparency. (author)

  10. Sintering of wax for controlling release from pellets.

    Science.gov (United States)

    Singh, Reena; Poddar, S S; Chivate, Amit

    2007-09-14

    The purpose of the present study was to investigate incorporation of hydrophobic (ie, waxy) material into pellets using a thermal sintering technique and to evaluate the pellets in vitro for controlled release. Pellets prepared by extrusion-spheronization technology were formulated with a water-soluble drug, microcrystalline cellulose, and carnauba wax. Powdered carnauba wax (4%-20%) prepared by grinding or by emulsification was studied with an attempt to retard the drug release. The inclusion of ground or emulsified carnauba wax did not sustain the release of theophylline for more than 3 hours. Matrix pellets of theophylline prepared with various concentrations of carnauba wax were sintered thermally at various times and temperatures. In vitro drug release profiles indicated an increase in drug release retardation with increasing carnauba wax concentration. Pellets prepared with ground wax showed a higher standard deviation than did those prepared with emulsified wax. There was incomplete release at the end of 12 hours for pellets prepared with 20% ground or emulsified wax. The sintering temperature and duration were optimized to allow for a sustained release lasting at least 12 hours. The optimized temperature and duration were found to be 100 degrees C and 140 seconds, respectively. The sintered pellets had a higher hydrophobicity than did the unsintered pellets. Scanning electron micrographs indicated that the carnauba wax moved internally, thereby increasing the surface area of wax within the pellets.

  11. Determination of copper in biological materials by neutron activation analysis using short-lived 66Cu

    International Nuclear Information System (INIS)

    Dybczynski, R.; Danko, B.; Kaczorowski, J.

    1989-01-01

    A method for determination of copper traces in biological materials based on neutron activation employing 65 Cu(n, γ) 66 Cu reaction and preconcentration by extraction chromatography has been devised. The 200-500 mg samples after wet digestion and evaporation were dissolved in glycine solution and after pH adjusting to ca. 4.4 were passed through the column with Lix 64N on Bio Beads SM-1 for isolation of copper traces from the matrix elements. Other cations were selectively eluted with 0.1 mol x 1 -1 (glycine-HNO 3 ) buffer, 1 mol x 1 -1 in NH 4 NO 3 (pH = 3.6). The resin bed with quantitatively retained copper was sealed in the PE bag and irradiated together with Cu standards in EWA reactor using pneumatic tube facility. The activity of the short-lived 66 Cu was measured in samples and standard by gamma-ray spectrometry with Ge(Li) detector. Good accuracy of the method was confirmed by analysis of the following certified reference materials: NBS 1571 Orchad leaves, IAEA H-4 Animal muscle, IAEA V-8 Rye flour, IAEA A-11 milk powder. The detection limit amounted to 0.34 mg/kg, for the sample weight of 500 mg. (author)

  12. Recycling of mill scale in sintering process

    Directory of Open Access Journals (Sweden)

    El-Hussiny N.A.

    2011-01-01

    Full Text Available This investigation deals with the effect of replacing some amount of Baharia high barite iron ore concentrate by mill scale waste which was characterized by high iron oxide content on the parameters of the sintering process., and investigation the effect of different amount of coke breeze added on sintering process parameters when using 5% mill scale waste with 95% iron ore concentrate. The results of this work show that, replacement of iron ore concentrate with mill scale increases the amount of ready made sinter, sinter strength and productivity of the sinter machine and productivity at blast furnace yard. Also, the increase of coke breeze leads to an increase the ready made sinter and productivity of the sintering machine at blast furnace yard. The productivity of the sintering machine after 5% decreased slightly due to the decrease of vertical velocity.

  13. Gas response properties of citrate gel synthesized nanocrystalline MgFe2O4: Effect of sintering temperature

    International Nuclear Information System (INIS)

    Patil, J.Y.; Mulla, I.S.; Suryavanshi, S.S.

    2013-01-01

    Graphical abstract: Display Omitted Highlights: ► Synthesis of nanocrystalline MgFe 2 O 4 by economical citrate gel combustion method. ► Structural, morphological, and gas response properties of MgFe 2 O 4 . ► Enhancement in selectivity of MgFe 2 O 4 towards LPG with sintering temperature. ► Use of MgFe 2 O 4 to detect different gases at different operating temperatures. -- Abstract: Spinel type MgFe 2 O 4 material was synthesized by citrate gel combustion method. The effect of sintering temperature on structural, morphological, and gas response properties was studied. The powder X-ray diffraction pattern and transmission electron microscope study confirms nanocrystalline spinel structure of the synthesized powder. The material was tested for response properties to various reducing gases like liquid petroleum gas (LPG), acetone, ethanol, and ammonia. The results demonstrated n-type semiconducting behavior of MgFe 2 O 4 material. It was revealed that MgFe 2 O 4 sintered at 973 K was most sensitive to LPG at 648 K and to acetone at 498 K. However MgFe 2 O 4 sintered at 1173 K exhibited higher response and selectivity to LPG with marginal increase in the operating temperature. Furthermore, the sensor exhibited a fast response and a good recovery. It was observed that the particles size, porosity, and surface activity of the sensor material is affected by the sintering temperature.

  14. Silver distribution in crystals and intercrystalline space of YBa2Cu3O7-σ-Ag composite materials

    International Nuclear Information System (INIS)

    Kozakov, A.T.; Klevtsov, A.N.; Shevtsova, S.I.; Razumovskaya, O.N.

    1991-01-01

    Chemical and phase composition is investigated of the YBa 2 Cu 3 O 7-σ -Ag composite obtained by means of Ag diffusion in high-temperature superconductor and by sintering yttrium, barium and copper with Ag or Ag 2 O. In composite samples, obtained by sintering at 900 deg C during 24 h in air and oxygen, is found silver not only in intercrystalline gaps in the form of single formations with dimensions of 1-20 μm at small content of copper, but in the crystallite composition. In samples, obtained by Ag diffusion into high-density ceramics, are found conglomerates of silver, uniformly distributed in the all volume

  15. Densification of silicon and zirconium carbides by a new process: spark plasma sintering; Densification des carbures de silicium et de zirconium par un procede innovant: le spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Guillard, F

    2006-12-15

    Materials research for suitable utilization in 4. generation nuclear plants needs new ways to densify testing components. Two carbides, silicon and zirconium carbide seems to be the most suitable choice due to their mechanical, thermal and neutron-transparency properties against next nuclear plant specifications. Nevertheless one main difficulty remains, which is densifying them even at high temperature. Spark Plasma Sintering a new metal-, ceramic- and composite-sintering process has been used to densify both SiC and ZrC. Understanding bases of mass transport mechanisms in SPS have been studied. Composites and interfaces have been processed and analyzed. This manuscript reports original results on SiC and ZrC ceramics sintered with commercial powder started, without additives. (author)

  16. Speciation and leachability of copper in mine tailings from porphyry copper mining

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Yianatos, Juan B; Ottosen, Lisbeth M.

    2005-01-01

    Mine tailing from the El Teniente-Codelco copper mine situated in VI Region of Chile was analysed in order to evaluate the mobility and speciation of copper in the solid material. Mine tailing was sampled after the rougher flotation circuits, and the copper content was measured to 1150mgkg^-^1 dry...... matter. This tailing was segmented into fractions of different size intervals: 0-38, 38-45, 45-53, 53-75, 75-106, 106-150, 150-212, and >212@mm, respectively. Copper content determination, sequential chemical extraction, and desorption experiments were carried out for each size interval in order...... to evaluate the speciation of copper. It was found that the particles of smallest size contained 50-60% weak acid leachable copper, whereas only 32% of the copper found in largest particles could be leached in weak acid. Copper oxides and carbonates were the dominating species in the smaller particles...

  17. Activation determination of copper in food

    International Nuclear Information System (INIS)

    Jiranek, V.; Bludovsky, R.

    1982-01-01

    Neutron activation analysis was used for determining copper content in food. Analyzed were dried milk, flour, coffee, tea, husked rice, and liver. Bowen's kale powder with a guaranteed copper content of 3.6 to 6.5 ppm was used as a reference biological material. The instruments, chemicals and solutions used are reported. The method is described of copper separation with α-benzoinoxime and pyridine as is the procedure for the destructive activation analysis of samples. The copper concentrations in the foods under analysis were found to range within usual limits. The copper concentration determined in the reference material agreed with the measured value. The analysis confirms that the method yields reliable results. (J.B.)

  18. FDTD simulation of microwave sintering of ceramics in multimode cavities

    Energy Technology Data Exchange (ETDEWEB)

    Iskander, M.F.; Smith, R.L.; Andrade, A.O.M.; Walsh, L.M. (Univ. of Utah, Salt Lake City, UT (United States). Dept. of Electrical Engineering); Kimrey, H. Jr. (Oak Ridge National Lab., TN (United States))

    1994-05-01

    At present, various aspects of the sintering process such as preparation of sample sizes and shapes, types of insulations, and the desirability of including a process stimulus such as SiC rods are considered forms of art and highly dependent on human expertise. The simulation of realistic sintering experiments in a multimode cavity may provide an improved understanding of critical parameters involved and allow for the development of guidelines towards the optimization of the sintering process. In this paper, the authors utilize the FDTD technique to model various geometrical arrangements and material compatibility aspects in multimode microwave cavities and to simulate realistic sintering experiments. The FDTD procedure starts with the simulation of a field distribution in multimode microwave cavities that resembles a set of measured data using liquid crystal sheets. Also included in the simulation is the waveguide feed as well as a ceramic loading plate placed at the base of the cavity. The FDTD simulation thus provides realistic representation of a typical sintering experiment. Aspects that have been successfully simulated include the effects of various types of insulation, the role of SiC rods on the uniformity of the resulting microwave fields, and the possible shielding effects that may result from excessive use of SiC. These results as well as others showing the electromagnetic fields and power-deposition patterns in multiple ceramic samples are presented.

  19. Sintering of beryllium oxide

    International Nuclear Information System (INIS)

    Caillat, R.; Pointud, R.

    1955-01-01

    This study had for origin to find a process permitting to manufacture bricks of beryllium oxide of pure nuclear grade, with a density as elevated as possible and with standardized shape. The sintering under load was the technique kept for the manufacture of the bricks. Because of the important toxicity of the beryllium oxide, the general features for the preliminary study of the sintering, have been determined while using alumina. The obtained results will be able to act as general indication for ulterior studies with sintering under load. (M.B.) [fr

  20. Optimisation of Copper Oxide Impregnation on Carbonised Oil Palm Empty Fruit Bunch for Nitric Oxide Removal using Response Surface Methodology

    Science.gov (United States)

    Ahmad, Norhidayah; Yong, Sing Hung; Ibrahim, Naimah; Ali, Umi Fazara Md; Ridwan, Fahmi Muhammad; Ahmad, Razi

    2018-03-01

    Oil palm empty fruit bunch (EFB) was successfully modified with phosphoric acid hydration followed by impregnation with copper oxide (CuO) to synthesize CuO modified catalytic carbon (CuO/EFBC) for low-temperature removal of nitric oxide (NO) from gas streams. CuO impregnation was optimised through response surface methodology (RSM) using Box-Behnken Design (BBD) in terms of metal loading (5-20%), sintering temperature (200-800˚C) and sintering time (2-6 hours). The model response for the variables was NO adsorption capacity, which was obtained from an up-flow column adsorption experiment with 100 mL/min flow of 500 ppm NO/He at different operating conditions. The optimum operating variables suggested by the model were 20% metal loading, 200˚C sintering temperature and 6 hours sintering time. A good agreement (R2 = 0.9625) was achieved between the experimental data and model prediction. ANOVA analysis indicated that the model terms (metal loading and sintering temperature) are significant (Prob.>F less than 0.05).

  1. Optimisation of Copper Oxide Impregnation on Carbonised Oil Palm Empty Fruit Bunch for Nitric Oxide Removal using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Ahmad Norhidayah

    2018-01-01

    Full Text Available Oil palm empty fruit bunch (EFB was successfully modified with phosphoric acid hydration followed by impregnation with copper oxide (CuO to synthesize CuO modified catalytic carbon (CuO/EFBC for low-temperature removal of nitric oxide (NO from gas streams. CuO impregnation was optimised through response surface methodology (RSM using Box-Behnken Design (BBD in terms of metal loading (5-20%, sintering temperature (200-800˚C and sintering time (2-6 hours. The model response for the variables was NO adsorption capacity, which was obtained from an up-flow column adsorption experiment with 100 mL/min flow of 500 ppm NO/He at different operating conditions. The optimum operating variables suggested by the model were 20% metal loading, 200˚C sintering temperature and 6 hours sintering time. A good agreement (R2 = 0.9625 was achieved between the experimental data and model prediction. ANOVA analysis indicated that the model terms (metal loading and sintering temperature are significant (Prob.>F less than 0.05.

  2. Properties of Bulk Sintered Silver As a Function of Porosity

    Energy Technology Data Exchange (ETDEWEB)

    Wereszczak, Andrew A [ORNL; Vuono, Daniel J [ORNL; Wang, Hsin [ORNL; Ferber, Mattison K [ORNL; Liang, Zhenxian [ORNL

    2012-06-01

    This report summarizes a study where various properties of bulk-sintered silver were investigated over a range of porosity. This work was conducted within the National Transportation Research Center's Power Device Packaging project that is part of the DOE Vehicle Technologies Advanced Power Electronics and Electric Motors Program. Sintered silver, as an interconnect material in power electronics, inherently has porosity in its produced structure because of the way it is made. Therefore, interest existed in this study to examine if that porosity affected electrical properties, thermal properties, and mechanical properties because any dependencies could affect the intended function (e.g., thermal transfer, mechanical stress relief, etc.) or reliability of that interconnect layer and alter how its performance is modeled. Disks of bulk-sintered silver were fabricated using different starting silver pastes and different sintering conditions to promote different amounts of porosity. Test coupons were harvested out of the disks to measure electrical resistivity and electrical conductivity, thermal conductivity, coefficient of thermal expansion, elastic modulus, Poisson's ratio, and yield stress. The authors fully recognize that the microstructure of processed bulk silver coupons may indeed not be identical to the microstructure produced in thin (20-50 microns) layers of sintered silver. However, measuring these same properties with such a thin actual structure is very difficult, requires very specialized specimen preparation and unique testing instrumentation, is expensive, and has experimental shortfalls of its own, so the authors concluded that the herein measured responses using processed bulk sintered silver coupons would be sufficient to determine acceptable values of those properties. Almost all the investigated properties of bulk sintered silver changed with porosity content within a range of 3-38% porosity. Electrical resistivity, electrical conductivity

  3. Study of sintering on Mg-Zn-Ca alloy system

    Science.gov (United States)

    Annur, Dhyah; Lestari, Franciska P.; Erryani, Aprilia; Kartika, Ika

    2018-05-01

    Magnesium and its alloy have gained a lot of interest to be used in biomedical application due to its biodegradable and biocompatible properties. In this study, sintering process in powder metallurgy was chosen to fabricatenonporous Mg-6Zn-1Ca (in wt%) alloy and porous Mg-6Zn-1Ca-10 Carbamide alloy. For creating porous alloy, carbamide (CO(NH2)2 was added to alloy system as the space holder to create porous structure material. Effect of the space holder addition and sintering temperature on porosity, phase formation, mechanical properties, and corrosion properties was observed. Sintering process was done in a tube furnace under Argon atmosphere in for 5 hours. The heat treatment was done in two steps; heated up at 250 °C for 4 hours to decompose spacer particle, followed by heated up at 580 °C or 630 °C for 5 hours. The porous structure of the resulted alloys was examined using Scanning Electron Microscope (SEM), while the phase formation was characterized by X-ray diffraction (XRD) analysis. Mechanical properties were examined using compression testing. From this study, increasing sintering temperature up to 630 °C reduced the mechanical properties of Mg-Zn-Ca alloy.

  4. High-level radioactive waste fixation in sintered vitreous matrix

    International Nuclear Information System (INIS)

    Russo, D.O.; Messi de Bernasconi, N.; Audero, M.A.

    1987-01-01

    The safe storage of high-level wastes from fuel elements reprocessing includes, as a first step, the fixation of the same in materials having a good resistance to the leaching in aqueous medium, such as borosilicate glass. As an alternative to the usual method of the molten glasses, a procedure for the sintering of a powdered glass and waste mixture at lower temperatures (600-700 deg C) has been developed, which minimizes the volatilization of active compounds during the process. Two glasses matrices of different composition and characteristics were used, to which the simulated wastes were added in the ratio of a 10% in weight of oxides. Two sintering techniques were employed 1: cold pressing and further sintering; 2: hot pressing and sintering under pressure. The densities were measured, the microstructure of the samples was analyzed and leaching essays were made in distilled water. The pellet's microstructure was observed by means of optical microscopy, by reflection in polished samples and by transparency in thin slices. The presence of crystalline compounds was analyzed by means of x rays and electron microprobe. The results have shown the convenience to continue with hot pressing essays, because a denser product with a higher resistance to the leaching is thus obtained. (M.E.L.) [es

  5. Development of the high temperature sintering furnace for DUPIC fuel fabrication

    International Nuclear Information System (INIS)

    Lee, Jung Won; Kim, B. G.; Park, J. J.; Yang, M. S.; Kim, K. H.; Kim, J. H.; Cho, K. H.; Lee, D. Y.; Lee, Y. S.

    1998-11-01

    This report describes the development of the high temperature sintering furnace for manufacturing DUPIC (Direct Use of spent PWR fuel in CANDU reactors) fuel pellets. The furnace has to be remotely operated and maintained in a high radioactive hot cell using master-slave manipulators. The high temperature sintering furnace for manufacturing DUPIC fuel pellets, which is satisfied with the requirements of remote operation and maintenance in a hot cell, was successfully developed and installed in the M6 hot cell at IMEF (Irradiated Material Examination Facility). The functional and thermal performance test was also successfully completed. The technology accumulated during developing this sintering furnace became the basis of other DUPIC equipment development, and will be very helpful in the development of equipment for use in hot cell in the future. (author). 20 figs

  6. Fabrication of porous Al-Cu sintered body and its permeability property

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Se-Hoon; Sung, Si-Young; Noh, Sang Ho; Kim, Sang Min [Korea Automotive Technology Institute, Cheonan (Korea, Republic of); Jin, Kwang Jin; Kim, Sang Min [Dongwon Technology Co., Kimhae (Korea, Republic of)

    2014-01-15

    In this study, porous Al-Cu sintered body was fabricated without any space-holder material and its properties, such as porosity, compressive yield strength, shore hardness, and permeability, were evaluated. Al-Cu powder mixtures were prepared by low-energy ball milling. The ball-milled powders were granulated and classified into size with <150 µm and 150-300 µm, and then they were compacted and sintered at 600 ℃ for 1 h in a vacuum and N{sub 2} atmosphere. The porosities of sintered bodies could be controlled in range of 15-48% by controlling the compaction pressure. The compressive yield strength and hardness were increased with a decreasing porosity. As a result, the mechanical properties and permeability of the optimized porous body were superior to that of commercial one.

  7. Titanium carbide-carbon porous nanocomposite materials for radioactive ion beam production: processing, sintering and isotope release properties

    CERN Document Server

    AUTHOR|(CDS)2081922; Stora, Thierry

    2017-01-26

    The Isotope Separator OnLine (ISOL) technique is used at the ISOLDE - Isotope Separator OnLine DEvice facility at CERN, to produce radioactive ion beams for physics research. At CERN protons are accelerated to 1.4 GeV and made to collide with one of two targets located at ISOLDE facility. When the protons collide with the target material, nuclear reactions produce isotopes which are thermalized in the bulk of the target material grains. During irradiation the target is kept at high temperatures (up to 2300 °C) to promote diffusion and effusion of the produced isotopes into an ion source, to produce a radioactive ion beam. Ti-foils targets are currently used at ISOLDE to deliver beams of K, Ca and Sc, however they are operated at temperatures close to their melting point which brings target degradation, through sintering and/or melting which reduces the beam intensities over time. For the past 10 years, nanostructured target materials have been developed and have shown improved release rates of the produced i...

  8. Thermomechanical Modeling of Sintered Silver - A Fracture Mechanics-based Approach: Extended Abstract: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Paret, Paul P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); DeVoto, Douglas J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Narumanchi, Sreekant V [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-01

    Sintered silver has proven to be a promising candidate for use as a die-attach and substrate-attach material in automotive power electronics components. It holds promise of greater reliability than lead-based and lead-free solders, especially at higher temperatures (less than 200 degrees Celcius). Accurate predictive lifetime models of sintered silver need to be developed and its failure mechanisms thoroughly characterized before it can be deployed as a die-attach or substrate-attach material in wide-bandgap device-based packages. We present a finite element method (FEM) modeling methodology that can offer greater accuracy in predicting the failure of sintered silver under accelerated thermal cycling. A fracture mechanics-based approach is adopted in the FEM model, and J-integral/thermal cycle values are computed. In this paper, we outline the procedures for obtaining the J-integral/thermal cycle values in a computational model and report on the possible advantage of using these values as modeling parameters in a predictive lifetime model.

  9. Study of ceramics sintering under high pressures

    International Nuclear Information System (INIS)

    Kunrath Neto, A.O.

    1990-01-01

    A systematic study was made on high pressure sintering of ceramics in order to obtain materials with controlled microstructure, which are not accessible by conventional methods. Some aspects with particular interest were: to achieve very low porosity, with fine grains; to produce dispersed metastable and denser phases which can act as toughening agents; the study of new possibilities for toughening enhancement. (author)

  10. Effect of sintering temperatures on titanium matrix composites reinforced by ceramic particles

    Energy Technology Data Exchange (ETDEWEB)

    Romero, F.; Amigo, V.; Busquets, D.; Klyatskina, E. [Mechanical and Materials Engineering Department. Polytechnical University of Valencia, Valencia (Spain)

    2005-07-01

    Titanium and titanium composites have a potential use in aerospace and biotechnology industries, and nowadays in others like sports and fashion ones. In this work composite materials, based on titanium matrix reinforced with ceramic particles, have been developed. PM route is used to obtain compact and sintered samples. TiN and TiAl powders, are milled with Ti powder in different volumetric percentages in a ball mill. These mixtures are pressed in a uniaxial press and sintered in a vacuum furnace at different temperatures between 1180 to 1220 deg. C. Porosity of samples is analysed, before and after the sintering process, by Archimedes technique and by image analysis. Mechanical properties and the reinforcement particles influence in the titanium matrix are studied by flexion test in green and sintered states, and by hardness and microhardness tests. Complimentarily, a microstructural analysis is carried out by optical and electron microscopy, and the reactivity between the reinforce particles and titanium matrix are studied. (authors)

  11. 3D Mapping Of Density And Crack Propagation Through Sintering Of Catalysis Tablets By X-Ray Tomography

    DEFF Research Database (Denmark)

    Jacobsen, Hjalte Sylvest; Puig-Molina, A.; Dalskov, N.

    2016-01-01

    sintering of the rejected tabletized support material are studied by 3D X-ray tomography. This is a powerful technique, which due to its nondestructive nature is suitable to study the development of internal cracks in the tablets during sintering. Cracks could be identified in the green tablet (before...... properly, cracks may arise and propagate during the sintering of the tablets. This can lead to weak sintered tablets that get rejected in the quality control. For this work, crack-containing samples of rejected tabletized support were provided. The formation, growth and closure of internal cracks during...

  12. The observation of resistivity change on the ultrasonic treated Fe-Cr ODS sinter alloy under magnetic field influence

    Science.gov (United States)

    Silalahi, Marzuki; Purwanto, Setyo; Mujamilah; Dimyati, Arbi

    2018-03-01

    About the observation of resistivity change on the ultrasonic treated Fe-Cr ODS sinter alloy under magnetic field influence. This paper reported about the observation of the resistivity change in the ultrasonic pre-treated Fe-Cr ODS sinter alloy under the influence of magnetic field at the Center for Science and Technology of Advanced Material, Nuclear Energy Agency of Indonesia. Fe-Cr ODS alloy were sinthesized by vacuum sintering of Fe- and Cr-powder dispersed Y2O3. However, before sintering the powder mixture was subjected to the irradiation process by ultrasonic for 50 hours at 20 kHz and then isostatic pressed up to 50.91 MPa to form a coin of 10 mm in diameter. LCR meassurement revealed the decreasing of resistivity about 3 times by increasing of applied magnetic field from 0 to 70 mT. In addition, VSM meassurement was performed on both as powder material and as sintered sample. The results showed increasing the magnetization with increasing magnetic field and the curve exhibits almost exact symmetry S-form with small hysterese indicating fast changing magnetization and demagnetization capability without energy loss. This opens strong speculations about the existence of magnetoresistant property of the material which is important for many application in field of sensors or electro magnetic valves.

  13. Strain rate dependency of laser sintered polyamide 12

    Directory of Open Access Journals (Sweden)

    Cook J.E.T.

    2015-01-01

    Full Text Available Parts processed by Additive Manufacturing can now be found across a wide range of applications, such as those in the aerospace and automotive industry in which the mechanical response must be optimised. Many of these applications are subjected to high rate or impact loading, yet it is believed that there is no prior research on the strain rate dependence in these materials. This research investigates the effect of strain rate and laser energy density on laser sintered polyamide 12. In the study presented here, parts produced using four different laser sintered energy densities were exposed to uniaxial compression tests at strain rates ranging from 10−3 to 10+3 s−1 at room temperature, and the dependence on these parameters is presented.

  14. Magnetic Properties of Copper Doped Nickel Ferrite Nanoparticles Synthesized by Co Precipitation Method

    Science.gov (United States)

    Anjana, V.; John, Sara; Prakash, Pooja; Nair, Amritha M.; Nair, Aravind R.; Sambhudevan, Sreedha; Shankar, Balakrishnan

    2018-02-01

    Nickel ferrite nanoparticles with copper atoms as dopant have been prepared using co-precipitation method with general formula Ni1-xCuxFe2O4 (x=0.2, 0.4, 0.6, 0.8 and 1) and are sintered at quite ambient temperature. Structural and magnetic properties were examined using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction method (XRD) and Vibrating Sample Magnetometer (VSM) to study the influence of copper doping in nickel ferrite magnetic nanoparticles. X-ray studies proves that the particles are possessing single phase spinel structure with an average particle size calculated using Debye Scherer formula. Magnetic measurements reveal that saturation magnetization value (Ms) decreases while magnetic coercivity (Hc) increases upon doping.

  15. Review of Thermal Materials for CSP Plants and LCOE Evaluation for Performance Improvement using Chilean Strategic Minerals: Lithium Salts and Copper Foams

    Directory of Open Access Journals (Sweden)

    Gustavo Cáceres

    2016-01-01

    Full Text Available The improvement of solar thermal technologies in emerging economies like Chile is particularly attractive because the country is endowed with one of the most consistently high solar potentials, lithium and copper reserves. In recent years, growing interests for lithium based salts and copper foams in application of thermal technologies could change the landscape of Chile transforming its lithium reserves and copper availability into competitive energy produced in the region. This study reviews the technical advantages of using lithium based salts—applied as heat storage media and heat transfer fluid—and copper foam/Phase Change Materials (PCM alternatives—applied as heat storage media—within tower and parabolic trough Concentrated Solar Power (CSP plants, and presents a first systematic evaluation of the costs of these alternatives based on real plant data. The methodology applied is based on material data base compilation of price and technical properties, selection of CSP plant and estimation of amount of required material, and analysis of Levelized Cost of Electricity (LCOE. Results confirm that some lithium based salts are effective in reducing the amount of required material and costs for the Thermal Energy Storage (TES systems for both plant cases, with savings of up to 68% and 4.14% in tons of salts and LCOE, respectively. Copper foam/PCM composites significantly increase thermal conductivity, decreasing the volume of the TES system, but costs of implementation are still higher than traditional options.

  16. Investigation of Thermoelectric Parameters of Bi2Te3: TEGs Assembled using Pressure-Assisted Silver Powder Sintering-Based Joining Technology

    Science.gov (United States)

    Stranz, Andrej; Waag, Andreas; Peiner, Erwin

    2015-06-01

    Operation of thermoelectric generator (TEG) modules based on bismuth telluride alloys at temperatures higher than 250°C is mostly limited by the melting point of the assembly solder. Although the thermoelectric parameters of bismuth telluride materials degrade for temperatures >130°C, the power output of the module can be enhanced with an increase in the temperature difference. For this, a temperature-stable joining technique, especially for the hot side of the modules, is required. Fabrication and process parameters of TEG modules consisting of bismuth telluride legs, alumina ceramics and copper interconnects using a joining technique based on pressure-assisted silver powder sintering are described. Measurements of the thermal force, electrical resistance, and output power are presented that were performed for hot side module temperatures up to 350°C and temperature differences higher than 300°C. Temperature cycling and results measured during extended high-temperature operation are addressed.

  17. The future of high-strength copper base conductor materials; Hochfeste Leitermaterialien auf Kupfer-Basis: quo vadis?

    Energy Technology Data Exchange (ETDEWEB)

    Freudenberger, J.; Botcharova, E.; Gaganov, A.; Lyubimova, J.; Schultz, L. [Institut fuer Festkoerper- und Werkstofforschung Dresden e.V. (Germany). Inst. fuer Metallische Werkstoffe; Witte, H.; Jones, H. [Oxford Univ. (United Kingdom). Dept. of Physics; Hermannsdoerfer, T.; Zherlitsyn, S.; Wosnitza, J. [Forschungszentrum Rossendorf e.V. (FZR), Dresden (Germany). Hochfeld-Magnetlabor; Givord, D. [Institut Neel, Grenoble (France); Barthem, V.M.T.S. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Fisica; Boettcher, R.D.; Hannemann, K. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Goettingen (Germany). Inst. fuer Aerodynamik und Stroemungstechnik

    2008-07-01

    Conductor materials with specific mechanical properties are required in many fields of science and industry. They are optimised selectively to achieve certain properties and optimum functionality, which often makes them a key component of the system in which they are used. This contribution describes current and future applications of the copper base high-strength conductor materials developed at IFW Dresden. (orig.)

  18. Application of spark plasma sintering for fabricating Nd-Fe-B composite

    Science.gov (United States)

    Sivkov, A. A.; Ivashutenko, A. S.; Lomakina, A. A.

    2015-10-01

    Constant magnets are applied in such fields as electric equipment and electric generators with fixed rotor. Rare earth metal neodymium is well known as promising material. Production of magnets by sintering three elements (neodymium, iron and boron) is one the most promising methods. But there are difficulties in choosing the right temperature for sintering and further processing. Structure and properties of the product, consisted of rare earth metals, was analyzed. X-ray analysis of the resulting product and the finished constant magnet was performed. Vickers microhardness was obtained.

  19. Investigation on the effect of sintering temperature on kaolin hollow fibre membrane for dye filtration.

    Science.gov (United States)

    Mohtor, Nur Hamizah; Othman, Mohd Hafiz Dzarfan; Ismail, Ahmad Fauzi; Rahman, Mukhlis A; Jaafar, Juhana; Hashim, Nur Awanis

    2017-07-01

    Despite its extraordinary price, ceramic membrane can still be able to surpass polymeric membrane in the applications that require high temperature and pressure conditions, as well as harsh chemical environment. In order to alleviate the high cost of ceramic material that still becomes one of the major factors that contributes to the high production cost of ceramic membrane, various attempts have been made to use low cost ceramic materials as alternatives to well-known expensive ceramic materials such as alumina, silica, and zirconia in the fabrication of ceramic membrane. Thus, local Malaysian kaolin has been chosen as the ceramic material in this study for the preparation of kaolin hollow fibre membrane since it is inexpensive and naturally abundant in Malaysia. Due to the fact that the sintering process plays a prominent role in obtaining the desired morphology, properties, and performances of prepared ceramic membrane, the aim of this work was to study the effect of different sintering temperatures applied (ranging from 1200 to 1500 °C) in the preparation of kaolin hollow fibre membrane via dry/wet phase inversion-based spinning technique and sintering process. The morphology and properties of membrane were then characterised by SEM, AFM, FTIR, XRD, and three-point bending test, while the performances of membrane were investigated by conducting water permeation and Reactive Black 5 (RB5) dye rejection tests. From the experimental results obtained, the sintering temperature of 1400 °C could be selected as the optimum sintering temperature in preparing the kaolin hollow fibre membrane with the dense sponge-like structure of separation layer that resulted in the good mechanical strength of 70 MPa with the appreciable water permeation of 75 L/h m 2  bar and RB5 rejection of 68%.

  20. Effect of sintering atmosphere on the hardness of ThO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Baena, Angela; Cardinaels, Thomas [Belgian Nuclear Research Centre (SCK-CEN), Institute for Nuclear Materials Science, Fuel Materials Group, Boeretang 200, B-2400, Mol (Belgium); KU Leuven, Department of Chemistry, Celestijnenlaan 200F, P.O. Box 2404, B-3001, Heverlee (Belgium); Van Eyken, Jelle; Puzzolante, Jean Louis [Belgian Nuclear Research Centre (SCK-CEN), Institute for Nuclear Materials Science, Fuel Materials Group, Boeretang 200, B-2400, Mol (Belgium); Binnemans, Koen [KU Leuven, Department of Chemistry, Celestijnenlaan 200F, P.O. Box 2404, B-3001, Heverlee (Belgium); Verwerft, Marc, E-mail: marc.verwerft@sckcen.be [Belgian Nuclear Research Centre (SCK-CEN), Institute for Nuclear Materials Science, Fuel Materials Group, Boeretang 200, B-2400, Mol (Belgium)

    2016-08-15

    The hardness and toughness of ThO{sub 2} sintered under reducing and oxidizing conditions has been investigated and, quite unexpectedly, a significant difference in hardness was observed for the entire range of porosities studied. Reducing conditions systematically yielded higher hardness values than oxidizing conditions. Extrapolated to zero porosity, the hardness for ThO{sub 2} is H{sub 0} = 10.5 ± 0.3 GPa for oxidizing conditions and H{sub 0} = 12.4 ± 0.7 GPa for reducing conditions. Toughness values have been derived from Vickers indentations; differences in toughness were insignificant and only a single value is proposed: K{sub IC} = 0.97 ± 0.12 MPa √m. The difference in hardness is attributed to the presence of point defects, also acting as color centers and causing grey coloration of ThO{sub 2} sintered under reducing conditions. Furthermore, and of interest for nuclear fuel production, is the finding that ThO{sub 2} sintered under reducing conditions is significantly easier to grind compared to material sintered under oxidizing conditions. - Highlights: • Reducing sintering conditions increase the hardness of polycrystalline ThO{sub 2}. • Systematic series of hardness versus porosity of ThO{sub 2} were obtained. • Reducing sintering conditions improve grinding of ThO{sub 2}.

  1. Copper-Containing Anti-Biofilm Nanofiber Scaffolds as a Wound Dressing Material.

    Directory of Open Access Journals (Sweden)

    Jayesh J Ahire

    Full Text Available Copper particles were incorporated into nanofibers during the electrospinning of poly-D,L-lactide (PDLLA and poly(ethylene oxide (PEO. The ability of the nanofibers to prevent Pseudomonas aeruginosa PA01 and Staphylococcus aureus (strain Xen 30 to form biofilms was tested. Nanofibers containing copper particles (Cu-F were thinner (326 ± 149 nm in diameter, compared to nanofibers without copper (CF; 445 ± 93 nm in diameter. The crystalline structure of the copper particles in Cu-F was confirmed by X-ray diffraction (XRD. Copper crystals were encapsulated, but also attached to the surface of Cu-F, as shown scanning transmission electron microscopy (STEM and transmission electron microscopy (TEM, respectively. The copper particles had no effect on the thermal degradation and thermal behaviour of Cu-F, as shown by thermogravimetric analysis (TGA and differential scanning calorimeter (DSC. After 48 h in the presence of Cu-F, biofilm formation by P. aeruginosa PA01 and S. aureus Xen 30 was reduced by 41% and 50%, respectively. Reduction in biofilm formation was ascribed to copper released from the nanofibers. Copper-containing nanofibers may be incorporated into wound dressings.

  2. FDTD simulation of microwave sintering in large (500/4000 liter) multimode cavities

    Energy Technology Data Exchange (ETDEWEB)

    Subirats, M.; Iskander, M.F.; White, M.J. [Univ. of Utah, Salt Lake City, UT (United States). Electrical Engineering Dept.; Kiggans, J. [Oak Ridge National Lab., TN (United States)

    1996-12-31

    To help develop large-scale microwave-sintering processes and to explore the feasibility of the commercial utilization of this technology, the authors used the recently developed multi-grid 3D Finite-Difference Time-Domain (FDTD) code and the 3D Finite-Difference Heat-Transfer (FDHT) code to determine the electromagnetic (EM) fields, the microwave power deposition, and temperature-distribution patterns in layers of samples processed in large-scale multimode microwave cavities. This paper presents results obtained from the simulation of realistic sintering experiments carried out in both 500 and 4,000 liter furnaces operating at 2.45 GHz. The ceramic ware being sintered is placed inside a cubical crucible box made of rectangular plates of various ceramic materials with various electrical and thermal properties. The crucible box can accommodate up to 5 layers of ceramic samples with 16 to 20 cup-like samples per layer. Simulation results provided guidelines regarding selection of crucible-box materials, crucible-box geometry, number of layers, shelf material between layers, and the fraction volume of the load vs. that of the furnace. Results from the FDTD and FDHT simulations will be presented and various tradeoffs involved in designing an effective microwave-processing system will be compared graphically.

  3. Present knowledge and perspectives on the role of copper in brake materials and related environmental issues: A critical assessment.

    Science.gov (United States)

    Straffelini, Giovanni; Ciudin, Rodica; Ciotti, Alessandro; Gialanella, Stefano

    2015-12-01

    This critical review presents several aspects related to the use of copper as a main component in brake pads in road vehicles. The compositions of these materials are attracting increasing interest and concern due to the relative contribution of wear products to particulate matter emissions in the environment as a result of braking action even though there has been a reduction in exhaust products from internal combustion engines. We review the data on the main wear mechanisms in brake systems and highlight the positive role of copper. However, similar to other heavy metal emissions, even the release of copper into the atmosphere may have important environmental and health effects. Thus, several replacement strategies are being pursued, and the positive and negative features will be critically reviewed. Additionally, the future perspectives in materials development will be discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. High energy X-ray diffraction study of a dental ceramics–titanium functional gradient material prepared by field assisted sintering technique

    International Nuclear Information System (INIS)

    Witte, K.; Bodnar, W.; Schell, N.; Lang, H.; Burkel, E.

    2014-01-01

    A functional gradient material with eleven layers composed of a dental ceramics and titanium was successfully consolidated using field assisted sintering technique in a two-step sintering process. High energy X-ray diffraction studies on the gradient were performed at High Energy Material Science beamline at Desy in Hamburg. Phase composition, crystal unit edges and lattice mismatch along the gradient were determined applying Rietveld refinement procedure. Phase analysis revealed that the main crystalline phase present in the gradient is α-Ti. Crystallinity increases stepwisely along the gradient with a decreasing increment between every next layer, following rather the weight fraction of titanium. The crystal unit edge a of titanium remains approximately constant with a value of 2.9686(1) Å, while c is reduced with increasing amount of titanium. In the layer with pure titanium the crystal unit edge c is constant with a value of 4.7174(2) Å. The lattice mismatch leading to an internal stress was calculated over the whole gradient. It was found that the maximal internal stress in titanium embedded in the studied gradient is significantly smaller than its yield strength, which implies that the structure of titanium along the whole gradient is mechanically stable. - Highlights: • High energy XRD studies of dental ceramics–Ti gradient material consolidated by FAST. • Phase composition, crystallinity and lattice parameters are determined. • Crystallinity increases stepwisely along the gradient following weight fraction of Ti. • Lattice mismatch leading to internal stress is calculated over the whole gradient. • Internal stress in α-Ti embedded in the gradient is smaller than its yield strength

  5. Pressureless sintering of whisker-toughened ceramic composites

    Science.gov (United States)

    Tiegs, T.N.

    1993-05-04

    A pressureless sintering method is disclosed for use in the production of whisker-toughened ceramic composites wherein the sintered density of composites containing up to about 20 vol. % SiC whiskers is improved by reducing the average aspect ratio of the whiskers to from about 10 to about 20. Sintering aids further improve the density, permitting the production of composites containing 20 vol. % SiC with sintered densities of 94% or better of theoretical density by a pressureless sintering method.

  6. Synthesis and characterization of alumina-coated aluminum sponges manufactured by sintering and dissolution process as possible structured reactors

    International Nuclear Information System (INIS)

    Méndez, Franklin J.; Rivero-Prince, Sayidh; Escalante, Yelisbeth; Villasana, Yanet; Brito, Joaquín L.

    2016-01-01

    Al_2O_3–Al sponges were manufactured by sintering and dissolution process with the aim of using these materials as structured catalytic reactors. For this purpose, several synthesis conditions were examined for the design of the cellular material, such as: particle size of NaCl, weight fraction of Al, compaction pressure, and sintering temperature or time. An alumina layers was grown on top of the aluminum surfaces during both: sintering and thermal treatment. The obtained results showed that the synthesized materials could be promising as structured reactors for endothermic or exothermic reactions. - Highlights: • An efficient method for manufactured of aluminum sponges is reported. • Methods for productions of superficial Al_2O_3 are studied. • Al_2O_3–Al sponges could be used as structured reactors.

  7. Evaluation of materials and design modifications for aircraft brakes

    Science.gov (United States)

    Ho, T. L.; Kennedy, F. E.; Peterson, M. B.

    1975-01-01

    A test program is described which was carried out to evaluate several proposed design modifications and several high-temperature friction materials for use in aircraft disk brakes. The evaluation program was carried out on a specially built test apparatus utilizing a disk brake and wheel half from a small het aircraft. The apparatus enabled control of brake pressure, velocity, and braking time. Tests were run under both constant and variable velocity conditions and covered a kinetic energy range similar to that encountered in aircraft brake service. The results of the design evaluation program showed that some improvement in brake performance can be realized by making design changes in the components of the brake containing friction material. The materials evaluation showed that two friction materials show potential for use in aircraft disk brakes. One of the materials is a nickel-based sintered composite, while the other is a molybdenum-based material. Both materials show much lower wear rates than conventional copper-based materials and are better able to withstand the high temperatures encountered during braking. Additional materials improvement is necessary since both materials show a significant negative slope of the friction-velocity curve at low velocities.

  8. Copper and copper-nickel-alloys - An overview

    Energy Technology Data Exchange (ETDEWEB)

    Klassert, Anton; Tikana, Ladji [Deutsches Kupferinstitut e.V. Am Bonneshof 5, 40474 Duesseldorf (Germany)

    2004-07-01

    With the increasing level of industrialization the demand for and the number of copper alloys rose in an uninterrupted way. Today, the copper alloys take an important position amongst metallic materials due to the large variety of their technological properties and applications. Nowadays there exist over 3.000 standardized alloys. Copper takes the third place of all metals with a worldwide consumption of over 15 millions tons per year, following only to steel and aluminum. In a modern industrial society we meet copper in all ranges of the life (electro-technology, building and construction industry, mechanical engineering, automotive, chemistry, offshore, marine engineering, medical applications and others.). Copper is the first metal customized by humanity. Its name is attributed to the island Cyprus, which supplied in the antiquity copper to Greece, Rome and the other Mediterranean countries. The Romans called it 'ore from Cyprus' (aes cyprium), later cuprum. Copper deposited occasionally also dapper and could be processed in the recent stone age simply by hammering. Already in early historical time copper alloys with 20 to 50 percent tin was used for the production of mirrors because of their high reflecting power. Although the elementary nickel is an element discovered only recently from a historical perspective, its application in alloys - without any knowledge of the alloy composition - occurred at least throughout the last 2.000 years. The oldest copper-nickel coin originates from the time around 235 B.C.. Only around 1800 AD nickel was isolated as a metallic element. In particular in the sea and offshore technology copper nickel alloys found a broad field of applications in piping systems and for valves and armatures. The excellent combination of characteristics like corrosion resistance, erosion stability and bio-fouling resistance with excellent mechanical strength are at the basis of this success. An experience of many decades supports the use

  9. Influence of sintering temperature on mechanical properties of spark plasma sintered pre-alloyed Ti-6Al-4 V powder

    Energy Technology Data Exchange (ETDEWEB)

    Muthuchamy, A.; Patel, Paridh; Rajadurai, M. [VIT Univ., Vellore, Tamil Nadu (India); Chaurisiya, Jitendar K. [NIT, Suratkal (India); Annamalai, A. Raja [VIT Univ., Vellore, Tamil Nadu (India). Centre for Innovative Manufacturing Research

    2018-04-01

    Spark plasma sintering provides faster heating that can create fully, or near fully, dense samples without significant grain growth. In this study, pre-alloyed Ti-6Al-4 V powder compact samples produced through field assisted sintering in a spark plasma sintering machine are compared as a function of consolidation temperature. The effect of sintering temperature on the densification mechanism, microstructural evolution and mechanical properties of spark plasma sintered Ti-6Al-4 V alloy compacts was investigated in detail. The compact, sintered at 1100 C, exhibited near net density, highest hardness and strength as compared to the other compacts processed at a temperature lower than 1100 C.

  10. Microstructural anomalies in a W-Ni alloy liquid phase sintered under microgravity conditions

    International Nuclear Information System (INIS)

    Liu, Y.; Iacocca, R.G.; Johnson, J.L.; German, R.M.; Kohara, Shiro

    1995-01-01

    The gravitational role in liquid phase sintering (LPS) is a problem of great interest in both materials science and engineering practice. Gravity-induced microstructural gradients in grain size, grain shape, and solid volume fraction have been well documented in liquid phase sintered tungsten heavy alloys and have been analyzed by a number of theoretical models. However, gravity may have many unknown effects on LPS, which can only be revealed by experiments conducted under microgravity conditions

  11. Structural comparison of sintering products made of "TiC + Ti" composite powders and "Ti + C" powder mixtures

    Science.gov (United States)

    Krinitcyn, Maksim G.; Pribytkov, Gennadii A.; Korosteleva, Elena N.; Firsina, Irina A.; Baranovskii, Anton V.

    2017-12-01

    In this study, powder composite materials comprised of TiC and Ti with different ratios are processed by sintering of Ti and C powder mixtures and self-propagating high-temperature synthesis (SHS) in "Ti+C" system followed by sintering. The microstructure and porosity of obtained composites are investigated and discussed. The dependence of porosity on sintering time is explained theoretically. Optimal regimes that enable to obtain the most homogeneous structure with the least porosity are described.

  12. Laser sintering of metal powders on top of sintered layers under multiple-line laser scanning

    International Nuclear Information System (INIS)

    Xiao Bin; Zhang Yuwen

    2007-01-01

    A three-dimensional numerical model for multiple-line sintering of loose powders on top of multiple sintered layers under the irradiation of a moving Gaussian laser beam is carried out. The overlaps between vertically deposited layers and adjacent lines which strengthen bonding are taken into account. The energy equation is formulated using the temperature transforming model and solved by the finite volume method. The effects of the number of the existing sintered layers, porosity and initial temperature coupled with the optimal combination laser intensity and scanning velocity are presented. The results show that the liquid pool moves slightly towards the negative scanning direction and the shape of the liquid pool becomes shallower with higher scanning velocity. A higher laser intensity is needed to achieve the required overlaps when the number of the existing sintered layers increases. Increasing porosity or initial temperature enhances the sintering process and thus less intensity is needed for the overlap requirement

  13. Dense Vertically Aligned Copper Nanowire Composites as High Performance Thermal Interface Materials.

    Science.gov (United States)

    Barako, Michael T; Isaacson, Scott G; Lian, Feifei; Pop, Eric; Dauskardt, Reinhold H; Goodson, Kenneth E; Tice, Jesse

    2017-12-06

    Thermal interface materials (TIMs) are essential for managing heat in modern electronics, and nanocomposite TIMs can offer critical improvements. Here, we demonstrate thermally conductive, mechanically compliant TIMs based on dense, vertically aligned copper nanowires (CuNWs) embedded into polymer matrices. We evaluate the thermal and mechanical characteristics of 20-25% dense CuNW arrays with and without polydimethylsiloxane infiltration. The thermal resistance achieved is below 5 mm 2 K W -1 , over an order of magnitude lower than commercial heat sink compounds. Nanoindentation reveals that the nonlinear deformation mechanics of this TIM are influenced by both the CuNW morphology and the polymer matrix. We also implement a flip-chip bonding protocol to directly attach CuNW composites to copper surfaces, as required in many thermal architectures. Thus, we demonstrate a rational design strategy for nanocomposite TIMs that simultaneously retain the high thermal conductivity of aligned CuNWs and the mechanical compliance of a polymer.

  14. Mineral Phases and Release Behaviors of As in the Process of Sintering Residues Containing As at High Temperature

    Directory of Open Access Journals (Sweden)

    Xingrun Wang

    2014-01-01

    Full Text Available To investigate the effect of sintering temperature and sintering time on arsenic volatility and arsenic leaching in the sinter, we carried out experimental works and studied the structural changes of mineral phases and microstructure observation of the sinter at different sintering temperatures. Raw materials were shaped under the pressure of 10 MPa and sintered at 1000~1350°C for 45 min with air flow rate of 2000 mL/min. The results showed that different sintering temperatures and different sintering times had little impact on the volatilization of arsenic, and the arsenic fixed rate remained above 90%; however, both factors greatly influenced the leaching concentration of arsenic. Considering the product’s environmental safety, the best sintering temperature was 1200°C and the best sintering time was 45 min. When sintering temperature was lower than 1000°C, FeAsS was oxidized into calcium, aluminum, and iron arsenide, mainly Ca3(AsO42 and AlAsO4, and the arsenic leaching was high. When it increased to 1200°C, arsenic was surrounded by a glass matrix and became chemically bonded inside the matrix, which lead to significantly lower arsenic leaching.

  15. Properties of sodium borosilicate glasses/Al2O3 sintered composites containing fluorides. Gan Fukkabutsu hokei san natoriumu garasu to alumina fukugo shoketsutai no bussei

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Bonggi; Yasui, I [The Univ. of Tokyo, Tokyo (Japan). Inst. of Industrial Science

    1993-06-01

    Glass/alumina sintered composites were synthesized from sodium borosilicate glass powder containing fluorides like AlF3 and NaF3, and Al2O3, and change in material properties was examined. Glass compositions of B2O3 and Na2O greatly affected the crystal phase and material properties. Nephelin crystal phase was extracted by the reaction of Na2O, NaF2, SiO2 and Al2O3 when B/Na<1. Coefficient of thermal expansion increased with the increase of Na/Si ratio. The residual amount of fluorides of sintered materials in nitrogen atmosphere was higher than that of air, and differed with the type of fluoride. The F[sup -] of NaF is bonded with Si of glass network and forms quiet stable glass structure, whereas, F[sup -] of AlF3 reacts with Si[sup 4+] forming SiF4 which is vaporized. Sintering temperature and dielectric constant of sintered materials containing fluoride was lower than the sintered materials without fluorides addition, however, at a sintering temperature range of 100 to 150[degree]C, it was inferred that this was because of the increase in voids due to SiF4 formed in the reaction. 16 refs., 17 figs., 3 tabs.

  16. Direct Write Processing of Multi-micron Thickness Copper Nano-particle Paste on Flexible Substrates with 532 nm Laser Wavelength

    Science.gov (United States)

    Lopez-Espiricueta, Dunia; Fearon, Eamonn; Edwardson, Stuart; Dearden, Geoffrey

    The Laser Assisted Direct Write (LA-DW) method has been implemented in the development of different markets and material processing, recently also used for creating Printed Circuit Boards (PCB) or electrical circuitry. The process consists in the deposition of metallic nano-particle (NP) inks, which are afterwards cured or sintered by laser irradiation, thus creating conductive pathways; advantages are speed, accuracy and the protection of the heat affected zone (HAZ). This research will study the behaviour of the heat dissipation relatively within the Nano-particle Copper paste after being irradiated with 1064 nm and 532 nm wavelengths, research will be developed on different widths and depths deposited onto flat surfaces such as flexible PET. Comparisons to be made between resistivity results obtained from different wavelengths.

  17. Densification of silicon and zirconium carbides by a new process: spark plasma sintering

    International Nuclear Information System (INIS)

    Guillard, F.

    2006-12-01

    Materials research for suitable utilization in 4. generation nuclear plants needs new ways to densify testing components. Two carbides, silicon and zirconium carbide seems to be the most suitable choice due to their mechanical, thermal and neutron-transparency properties against next nuclear plant specifications. Nevertheless one main difficulty remains, which is densifying them even at high temperature. Spark Plasma Sintering a new metal-, ceramic- and composite-sintering process has been used to densify both SiC and ZrC. Understanding bases of mass transport mechanisms in SPS have been studied. Composites and interfaces have been processed and analyzed. This manuscript reports original results on SiC and ZrC ceramics sintered with commercial powder started, without additives. (author)

  18. COMPACTION OF LITHIUM-SILICATE CERAMICS USING SPARK PLASMA SINTERING

    Directory of Open Access Journals (Sweden)

    Tomas Frantisek Kubatik

    2016-12-01

    Full Text Available This paper deals with the compaction of ceramics based on lithium-silicate by spark plasma sintering (SPS. The initial powder was prepared by calcination in a resistance furnace at a temperature of 1300 °C with the ratio of Li/Si = 1. Compacting by SPS was carried out at temperatures of 800 - 1000 °C with a maximum pressure of 80 MPa. Samples with open porosity of less than 1 % were prepared at the temperature of 1000 °C. According to the quantitative Rietveld refinement of x-ray diffraction data, the dominant phases in all samples were Li₂Si₂O₅ and Li₂SiO₃, together representing over 80 wt. % of the sintered material.

  19. Micromachining with copper lasers

    Science.gov (United States)

    Knowles, Martyn R. H.; Bell, Andy; Foster-Turner, Gideon; Rutterford, Graham; Chudzicki, J.; Kearsley, Andrew J.

    1997-04-01

    In recent years the copper laser has undergone extensive development and has emerged as a leading and unique laser for micromachining. The copper laser is a high average power (10 - 250 W), high pulse repetition rate (2 - 32 kHz), visible laser (511 nm and 578 nm) that produces high peak power (typically 200 kW), short pulses (30 ns) and very good beam quality (diffraction limited). This unique set of laser parameters results in exceptional micro-machining in a wide variety of materials. Typical examples of the capabilities of the copper laser include the drilling of small holes (10 - 200 micrometer diameter) in materials as diverse as steel, ceramic, diamond and polyimide with micron precision and low taper (less than 1 degree) cutting and profiling of diamond. Application of the copper laser covers the electronic, aerospace, automotive, nuclear, medical and precision engineering industries.

  20. Production of three-dimensional structures of PHB using selective laser sintering

    International Nuclear Information System (INIS)

    Pereira, Tatiana F.; Costa, Marysilvia F.; Thire, Rossana M.S.M.; Oliveira, Marcelo F.; Maia, Izaque A.; Silva, Jorge V.L.

    2011-01-01

    Selective Laser Sintering (SLS) is a technology of layer-by-layer fabrication of three-dimensional physical models directly from their computational design. The poly(3-hydroxybutyrate) (PHB) is a microbial, biodegradable and semicrystalline polyester. The objective of this work was to produce PHB parts, evaluating the reuse of material in the production of the new parts. Images of SEM of part surface showed the formation of neck that indicates sintering between PHB particles during processing. Analysis of NMR and DSC of the reused polymer showed no changes in the chemical structure and thermal properties of PHB. The parts produced from virgin and reused PHB showed no significant difference in their thermal properties. This could suggest that the reuse of raw material did not influence the process reproducibility. (author)

  1. Thermal shock resistances of a bonding material of C/C composite and copper

    International Nuclear Information System (INIS)

    Kurumada, Akira; Oku, Tatsuo; Kawamata, Kiyohiro; Motojima, Osamu; Noda, Nobuaki; McEnaney, B.

    1997-01-01

    The purpose of this study is to contribute to the development and the safety design of plasma facing components for fusion reactor devices. We evaluated the thermal shock resistance and the thermal shock fracture toughness of a bonding material which was jointed a carbon-fiber-reinforced carbon composite (C/C composite) to oxygen-free copper. We also examined the microstructures of the bonding layers using a scanning electron microscope before and after thermal shock tests. The bonding material did not fracture during thermal shock tests. However, thermal cracks and delamination cracks were observed in the bonding layers. (author)

  2. MICRO-MATERIAL HANDLING EMPLOYING E-BEAM GENERATED TOPOGRAPHIES OF COPPER AND ALUMINIUM

    Directory of Open Access Journals (Sweden)

    S. Matope

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: This paper focuses on the employment of copper and aluminium in a micro-material handling system actuated by Van der Waals forces. Electron beam (e-beam evaporator deposited both materials on a silicon substrate at a rate of 0.6-1.2 Angstroms/second, vacuum pressure between 2x10-6 and 3x10-6mbar, and at a current less than 10mA. A Veeco NanoMan V Atomic Force Microscope with Nanoscope version 7.3 software was used to analyse the root mean square (rms surface roughnesses of the generated topographies. Rumpf-Rabinovich’s rms formula was used to determine the Van der Waals forces exerted by the surfaces. It was synthesised that an e-beam deposition of 7 minutes’ duration on both materials produced an optimum micro-material handling solution, with copper suitable for the pick-up position and aluminium for the placement position.

    AFRIKAANSE OPSOMMING: Die fokus van die artikel is op die gebruik van koper en aluminium in ‘n mikromateriaalhanteringstelsel, aangedryf deur Van der Waalskragte. ‘n Elektronstraal-verdamper plaas albei materiale op ‘n silikonbasis teen ‘n tempo van 0.6-1.2 Angstrom/sekonde, vakuumdruk tussen 2x10-6 en 3x10-6mbar, en teen ‘n stroom van minder as 10mA. ‘n Veeco NanoMan V Atomic Force mikroskoop, met Nanoscope 7.3 program-matuur is gebruik om die wortel-gemiddelde-kwadraat (wgk oppervlak ruheid van die gegenereerde topografieë te analiseer. Rumpf-Rabinovich se wgk-formule is gebruik om die Van der Waalskrage wat deur die oppervlaktes uitgeoefen word te bepaal. Dit is vasgestel dat ‘n elektronstraalafsetting van 7 minute op albei materiale die optimale materiaalhanteringoplossing bied, met koper geskik vir die optelposisie en aluminium vir die plasingsposisie.

  3. Preparation and characterization of sintered Mo-Re alloys

    International Nuclear Information System (INIS)

    Morito, F.

    1993-01-01

    By the method of powder metallurgy, we have tried to fabricate Mo-Re alloys, which were electron beam weldable. Severe quality control was carried out during the whole fabrication process focused to reducing oxygen contamination. It is inevitable that the starting raw powders of Mo and Re were both high purity with 99.99 mass% up. Moreover, high vacuum sintering was performed before final sintering with high-purity hydrogen gas. As a result, we obtained electron beam weldable Mo-Re alloys, the total oxygen content of which was about 10 mass ppm or less, respectively. Several specimens were melted by electron beam welding (EBW) method. It was found that EBW gives an easy and effective survey to examine the weldability and the quality of the materials. Fracture surfaces examined by AES exhibited very low content of oxygen, carbon and nitrogen or that less than detectability limit. In conclusion, we have succeeded to obtain defect-free welds of sintered Mo-Re alloys. Furthermore it was found that Mo-Re alloys showed excellent potentialities not only in mechanical properties at low temperature but also in the respects of microstructure. (orig.)

  4. Electron Beam Welding of Thick Copper Material

    Energy Technology Data Exchange (ETDEWEB)

    Broemssen, Bernt von [IVF Industriforskning och utveckling AB, Stockholm (Sweden)

    2002-08-01

    The purpose of this study was to review the two variants of the Electron Beam Welding (EBW) processes developed (or used) by 1- SKB, Sweden with assistance from TWI, England and 2 - POSIVA, Finland with assistance from Outokumpu, Finland. The aim was also to explain the principle properties of the EBW method: how it works, the parameters controlling the welding result but also giving rise to benefits, and differences between the EBW variants. The main conclusions are that both SKB and POSIVA will within a few years succeed to qualify their respective EBW method for welding of copper canisters. The Reduced Pressure EBW that SKB use today seems to be very promising in order to avoid root defects. If POSIVA does not succeed to avoid root defects with the high vacuum method and the beam oscillation technique it should be possible for POSIVA to incorporate the Reduced Pressure technique albeit with significant changes to the EBW equipment. POSIVA has possibly an advantage over SKB with the beam oscillation technique used, which gives an extra degree of freedom to affect the weld quality. The beam oscillation could be of importance for closing of the keyhole. Before EBW of lids, the material certification showing the alloy content (specifying min and max impurity percentages) and the mechanical properties should be checked. The welded material needs also to be tested for mechanical properties. If possible the weld should have a toughness level equal to that of the unwelded parent material. Specifically some conclusions are reported regarding the SKB equipment. Suggestions for further development are also given in the conclusion chapter.

  5. Electron Beam Welding of Thick Copper Material

    International Nuclear Information System (INIS)

    Broemssen, Bernt von

    2002-08-01

    The purpose of this study was to review the two variants of the Electron Beam Welding (EBW) processes developed (or used) by 1- SKB, Sweden with assistance from TWI, England and 2 - POSIVA, Finland with assistance from Outokumpu, Finland. The aim was also to explain the principle properties of the EBW method: how it works, the parameters controlling the welding result but also giving rise to benefits, and differences between the EBW variants. The main conclusions are that both SKB and POSIVA will within a few years succeed to qualify their respective EBW method for welding of copper canisters. The Reduced Pressure EBW that SKB use today seems to be very promising in order to avoid root defects. If POSIVA does not succeed to avoid root defects with the high vacuum method and the beam oscillation technique it should be possible for POSIVA to incorporate the Reduced Pressure technique albeit with significant changes to the EBW equipment. POSIVA has possibly an advantage over SKB with the beam oscillation technique used, which gives an extra degree of freedom to affect the weld quality. The beam oscillation could be of importance for closing of the keyhole. Before EBW of lids, the material certification showing the alloy content (specifying min and max impurity percentages) and the mechanical properties should be checked. The welded material needs also to be tested for mechanical properties. If possible the weld should have a toughness level equal to that of the unwelded parent material. Specifically some conclusions are reported regarding the SKB equipment. Suggestions for further development are also given in the conclusion chapter

  6. The effect of doping on thermoelectric performance of p-type SnSe: Promising thermoelectric material

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Niraj Kumar; Bathula, Sivaiah; Gahtori, Bhasker [CSIR-Network of Institutes for Solar Energy, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India); Tyagi, Kriti [CSIR-Network of Institutes for Solar Energy, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India); Acdemy of Scientific and Innovative Research (AcSIR), CSIR-National Physical Laboratory (NPL) Campus, New Delhi (India); Haranath, D. [CSIR-Network of Institutes for Solar Energy, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India); Dhar, Ajay, E-mail: adhar@nplindia.org [CSIR-Network of Institutes for Solar Energy, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India)

    2016-05-25

    Tin selenide (SnSe) based thermoelectric materials are being explored for making inexpensive and efficient thermoelectric devices with improved thermoelectric efficiency. As both Sn and Se are earth abundant and relatively inexpensive and these alloys do not involve toxic materials, such as lead and expensive tellurium. Hence, in the present study, we have synthesized SnSe doped with 2 at% of aluminium (Al), lead (Pb), indium (In) and copper (Cu) individually, which is not reported in literature. Out of these, Cu doped SnSe resulted in enhancement of figure-of-merit (zT) of ∼0.7 ± 0.02 at 773 K, synthesized employing conventional fusion method followed by spark plasma sintering. This enhancement in zT is ∼16% over the existing state-of-the-art value for p-type SnSe alloy doped with expensive Ag. This enhancement in ZT is primarily due to the presence of Cu{sub 2}Se second phase associated with intrinsic nanostructure formation of SnSe. This enhancement has been corroborated with the microstructural characterization using field emission scanning electron microscopy and X-ray diffraction studies. Also, Cu doped SnSe exhibited a higher value of carrier concentration in comparison to other samples doped with Al, Pb and In. Further, the compatibility factor of Cu doped SnSe alloys exhibited value of 1.62 V{sup −1} at 773 K and it is suitable to segment with most of the novel TE materials for obtaining the higher thermoelectric efficiencies. - Highlights: • Tin selenide (SnSe) doped with non-toxic and inexpensive dopants. • Synthesized highly dense SnSe employing Spark plasma sintering. • Enhanced thermoelectric compatibility factor of SnSe. • Enhanced thermoelectric performance of SnSe doped with Copper.

  7. Interpretation of Frenkel’s theory of sintering considering evolution of activated pores: III. Determination of equilibrium sintering time

    Directory of Open Access Journals (Sweden)

    Yu C.L.

    2015-01-01

    Full Text Available In this article, the Frenkel’s theory of liquid-phase sintering was interpreted regarding pores as the activated volume. The mathematical model established by Nikolić et al. was used to infer the equilibrium sintering time at varied sintering temperatures during the isothermal sintering of codierite glass by Giess et al. Through the calculation, the equilibrium time at 800ºC, 820ºC, 840ºC and 860ºC is inferred to be 7014.42mins, 1569.65mins, 368.92mins and 114.61mins, respectively. The equilibrium time decreases as the temperature increases. And the theoretical value is in good accordance with the experimental results. Thus, the model established by Nikolić et al. can be applied successfully to predict the equilibrium sintering time of the cordierite glass at varied temperatures during isothermal sintering.

  8. Sintering of nanopowders of ZrO_2 (Y_2O_3): Effect of compaction pressure on densification

    International Nuclear Information System (INIS)

    Palmeira, Alexandre Alvarenga; Magnago, Roberto de Oliveira; Pereira, Glayce Cassaro; Bondioli, Marcelo Jose; Strecker, Kurt; Santos, Claudinei dos

    2014-01-01

    In this work studied the powders (nano) sintered of ZrO_2 (Y_2O_3) by dilatometry. Was identified the effect of compaction pressure variation in the final results of densification of materials. Powders were compacted at different compaction pressures. The compacts were subjected to temperatures of 1250°C to 1400°C with sintering levels ranging from 0 to 8 hours. Samples were characterized by X-ray diffraction and relative density using Archimedes method. The results were compared with powders (micro) of similar composition in order to compare the effect of particle size on densification parameters. The samples were further subjected to microstructural characterization in order to identify the average grain size of the sintering under each condition used in both materials. (author)

  9. Antibacterial properties of copper iodide-doped glass ionomer-based materials and effect of copper iodide nanoparticles on collagen degradation.

    Science.gov (United States)

    Renné, Walter G; Lindner, Amanda; Mennito, Anthony S; Agee, Kelli A; Pashley, David H; Willett, Daniel; Sentelle, David; Defee, Michael; Schmidt, Michael; Sabatini, Camila

    2017-01-01

    This study investigated the antibacterial properties and micro-hardness of polyacrylic acid (PAA)-coated copper iodide (CuI) nanoparticles incorporated into glass ionomer-based materials, and the effect of PAA-CuI on collagen degradation. PAA-CuI nanoparticles were incorporated into glass ionomer (GI), Ionofil Molar AC, and resin-modified glass ionomer (RMGI), Vitrebond, at 0.263 wt%. The antibacterial properties against Streptococcus mutans (n = 6/group) and surface micro-hardness (n = 5/group) were evaluated. Twenty dentin beams were completely demineralized in 10 wt% phosphoric acid and equally divided in two groups (n = 10/group) for incubation in simulated body fluid (SBF) or SBF containing 1 mg/ml PAA-CuI. The amount of dry mass loss and hydroxyproline (HYP) released were quantified. Kruskal-Wallis, Student's t test, two-way ANOVA, and Mann-Whitney were used to analyze the antibacterial, micro-hardness, dry mass, and HYP release data, respectively (p glass ionomer matrix yielded significant reduction (99.999 %) in the concentration of bacteria relative to the control groups. While micro-hardness values of PAA-CuI-doped GI were no different from its control, PAA-CuI-doped RMGI demonstrated significantly higher values than its control. A significant decrease in dry mass weight was shown only for the control beams (10.53 %, p = 0.04). Significantly less HYP was released from beams incubated in PAA-CuI relative to the control beams (p glass ionomer-based materials as they greatly enhance their antibacterial properties and reduce collagen degradation without an adverse effect on their mechanical properties. The use of copper-doped glass ionomer-based materials under composite restorations may contribute to an increased longevity of adhesive restorations, because of their enhanced antibacterial properties and reduced collagen degradation.

  10. Liquid helium boil-off measurements of heat leakage from sinter-forged BSCCO current leads under DC and AC conditions

    International Nuclear Information System (INIS)

    Cha, Y.S.; Niemann, R.C.; Hull, J.R.; Youngdahl, C.A.; Lanagan, M.T.; Nakade, M.; Hara, T.

    1995-06-01

    Liquid helium boil-off experiments are conducted to determine the heat leakage rate of a pair of BSCCO 2223 high-temperature superconductor current leads made by sinter forging. The experiments are carried out in both DC and AC conditions and with and without an intermediate heat intercept. Current ranges are from 0-500 A for DC tests and 0-1,000 A rms for AC tests. The leads are self-cooled. Results show that magnetic hysteresis (AC) losses for both the BSCCO leads and the low-temperature superconductor current jumper are small for the current range. It is shown that significant reduction in heat leakage rate (liquid helium boil-off rate) is realized by using the BSCCO superconductor leads. At 100 A, the heat leakage rate of the BSCCO/copper binary lead is approximately 29% of that of the conventional copper lead. Further reduction in liquid helium boil-off rate can be achieved by using an intermediate heat intercept. For example, at 500 K, the heat leakage rate of the BSCCO/copper binary lead is only 7% of that of the conventional copper lead when an intermediate heat intercept is used

  11. Powder-metallurgy preparation of NiTi shape-memory alloy using mechanical alloying and spark-plasma sintering.

    Czech Academy of Sciences Publication Activity Database

    Novák, P.; Moravec, H.; Vojtěch, V.; Knaislová, A.; Školáková, A.; Kubatík, Tomáš František; Kopeček, Jaromír

    2017-01-01

    Roč. 51, č. 1 (2017), s. 141-144 ISSN 1580-2949 R&D Projects: GA ČR(CZ) GA14-03044S Institutional support: RVO:61389021 ; RVO:68378271 Keywords : mechanical alloying * spark plasma sintering * NiTi * shape memory alloy Subject RIV: JG - Metallurgy; JG - Metallurgy (FZU-D) OBOR OECD: Materials engineering ; Materials engineering (FZU-D) Impact factor: 0.436, year: 2016 https://www.researchgate.net/publication/313900224_Powder-metallurgy_preparation_of_NiTi_shape-memory_alloy_using_mechanical_alloying_and_spark-plasma_sintering

  12. Copper atomic-scale transistors.

    Science.gov (United States)

    Xie, Fangqing; Kavalenka, Maryna N; Röger, Moritz; Albrecht, Daniel; Hölscher, Hendrik; Leuthold, Jürgen; Schimmel, Thomas

    2017-01-01

    We investigated copper as a working material for metallic atomic-scale transistors and confirmed that copper atomic-scale transistors can be fabricated and operated electrochemically in a copper electrolyte (CuSO 4 + H 2 SO 4 ) in bi-distilled water under ambient conditions with three microelectrodes (source, drain and gate). The electrochemical switching-on potential of the atomic-scale transistor is below 350 mV, and the switching-off potential is between 0 and -170 mV. The switching-on current is above 1 μA, which is compatible with semiconductor transistor devices. Both sign and amplitude of the voltage applied across the source and drain electrodes ( U bias ) influence the switching rate of the transistor and the copper deposition on the electrodes, and correspondingly shift the electrochemical operation potential. The copper atomic-scale transistors can be switched using a function generator without a computer-controlled feedback switching mechanism. The copper atomic-scale transistors, with only one or two atoms at the narrowest constriction, were realized to switch between 0 and 1 G 0 ( G 0 = 2e 2 /h; with e being the electron charge, and h being Planck's constant) or 2 G 0 by the function generator. The switching rate can reach up to 10 Hz. The copper atomic-scale transistor demonstrates volatile/non-volatile dual functionalities. Such an optimal merging of the logic with memory may open a perspective for processor-in-memory and logic-in-memory architectures, using copper as an alternative working material besides silver for fully metallic atomic-scale transistors.

  13. The Effect of (Ag, Ni, Zn)-Addition on the Thermoelectric Properties of Copper Aluminate

    DEFF Research Database (Denmark)

    Yanagiya, Shun-ichi; Van Nong, Ngo; Xu, Jianxiao Jackie

    2010-01-01

    Polycrystalline bulk copper aluminate Cu1-x-yAgxByAlO2 with B = Ni or Zn were prepared by spark plasma sintering and subsequent thermal treatment. The influence of partial substitution of Ag, Ni and Zn for Cu-sites in CuAlO2 on the high temperature thermoelectric properties has been studied......, indicating a significant improvement compared with the non-doped CuAlO2 sample...

  14. Clean recycle and utilization of hazardous iron-bearing waste in iron ore sintering process.

    Science.gov (United States)

    Gan, Min; Ji, Zhiyun; Fan, Xiaohui; Chen, Xuling; Zhou, Yang; Wang, Guojing; Tian, Ye; Jiang, Tao

    2018-04-18

    Applying recycled iron-bearing waste materials (RIM) into iron ore sintering process is the general disposal approach worldwide, while its use is still a thorny problem. Results showed that adding RIM increased contents of hazardous elements (K, Na, Pb, Zn, and Cl) in sinter product, and also enhanced emission concentration of PM 2.5 in flue gas; increasing reaction temperature, and contents of CaO & coke breeze in raw mixtures improved hazardous elements removal. Based on these features, a novel method through granulating natural iron ores and RIM separately and distributing granulated RIM in bottom sintering layers was proposed for clean RIM cycle. When recycling 5% RIM, granulating RIM separately with higher contents of CaO and coke breeze removed hazardous elements effectively, the contents of which in sinter were reduced to comparable level of the case without RIM. Moreover, distributing RIM in bottom sintering layer reached intensive release of hazardous elements and PM 2.5 during sintering, which reduced the flue gas volume needing purification by about 2/3. Through activated carbon purification, about 60% of PM 2.5 comprised high contents of hazardous elements was removed. Novel technique eliminated the negative impact of RIM and has the prospect to reach clean recycle in sinter-making plants. Copyright © 2018. Published by Elsevier B.V.

  15. Composite materials formed with anchored nanostructures

    Science.gov (United States)

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2015-03-10

    A method of forming nano-structure composite materials that have a binder material and a nanostructure fiber material is described. A precursor material may be formed using a mixture of at least one metal powder and anchored nanostructure materials. The metal powder mixture may be (a) Ni powder and (b) NiAl powder. The anchored nanostructure materials may comprise (i) NiAl powder as a support material and (ii) carbon nanotubes attached to nanoparticles adjacent to a surface of the support material. The process of forming nano-structure composite materials typically involves sintering the mixture under vacuum in a die. When Ni and NiAl are used in the metal powder mixture Ni.sub.3Al may form as the binder material after sintering. The mixture is sintered until it consolidates to form the nano-structure composite material.

  16. Synthesis and characterization of alumina-coated aluminum sponges manufactured by sintering and dissolution process as possible structured reactors

    Energy Technology Data Exchange (ETDEWEB)

    Méndez, Franklin J., E-mail: fmendez@ivic.gob.ve [Centro de Química, Instituto Venezolano de Investigaciones Científicas, Apartado Postal 21827, Caracas 1020-A (Venezuela, Bolivarian Republic of); Rivero-Prince, Sayidh [Centro de Química, Instituto Venezolano de Investigaciones Científicas, Apartado Postal 21827, Caracas 1020-A (Venezuela, Bolivarian Republic of); Facultad de Ingeniería, Universidad Central de Venezuela, Caracas (Venezuela, Bolivarian Republic of); Escalante, Yelisbeth; Villasana, Yanet [Centro de Química, Instituto Venezolano de Investigaciones Científicas, Apartado Postal 21827, Caracas 1020-A (Venezuela, Bolivarian Republic of); Brito, Joaquín L., E-mail: joabrito@ivic.gob.ve [Centro de Química, Instituto Venezolano de Investigaciones Científicas, Apartado Postal 21827, Caracas 1020-A (Venezuela, Bolivarian Republic of)

    2016-03-01

    Al{sub 2}O{sub 3}–Al sponges were manufactured by sintering and dissolution process with the aim of using these materials as structured catalytic reactors. For this purpose, several synthesis conditions were examined for the design of the cellular material, such as: particle size of NaCl, weight fraction of Al, compaction pressure, and sintering temperature or time. An alumina layers was grown on top of the aluminum surfaces during both: sintering and thermal treatment. The obtained results showed that the synthesized materials could be promising as structured reactors for endothermic or exothermic reactions. - Highlights: • An efficient method for manufactured of aluminum sponges is reported. • Methods for productions of superficial Al{sub 2}O{sub 3} are studied. • Al{sub 2}O{sub 3}–Al sponges could be used as structured reactors.

  17. High hardness-high toughness WC-20Co nanocomposites: Effect of VC variation and sintering temperature

    International Nuclear Information System (INIS)

    Kumar, Devender; Singh, K.

    2016-01-01

    WC-Co nanocomposites with variable VC content are synthesized by liquid phase sintering at two different temperatures. The as synthesized samples are characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM) and optical microscope. The mechanical properties are obtained by Vickers indentation method. The high content of VC, lead to high porosity when sintering temperature is increased from 1350 to 1400 °C. The relative density of all the samples is more than 95%. Microstructure reveals that agglomeration of W-Co-C and V-W-C increases at 1400 °C, which generates layered interfaces in radial direction and hence the material inhomogeneity. XRD pattern shows that the formation of η phase increases at 1400 °C, which is responsible to decrease the fracture toughness of the present samples. The average particle size of 102 nm, highest hardness of 1870.6 kgf/mm"2 with fracture toughness of 14.4 MN/mm"3"/"2 is observed in sample having 7.5 wt% VC, sintered at 1350 °C for one minute. This combination shows the highest hardness and reasonably high toughness as compared to conventionally sintered materials reported so far.

  18. Influence of sintering temperature on screen printed Cu2ZnSnS4 (CZTS) films

    International Nuclear Information System (INIS)

    Wang Yu; Huang Yanhua; Lee, Alex Y.S.; Wang Chiou Fu; Gong Hao

    2012-01-01

    Highlights: ► The influences of sintering temperature on structure and properties of screen printed Cu 2 ZnSnS 4 (CZTS) were investigated. ► It was found that the direct optical band gap increased with increasing the sintering temperature. ► The screen printed CZTS film after sintering at 450 °C had a high photosensitivity (G i − G d )/G d of 14%. ► The hexagonal CuS phase aggregated after sintering at 500 °C and higher temperature. - Abstract: Screen printing is a useful and simple method for coating layers of several solar materials, but care must be taken in preparing stoichiometric CZTS film due to its instability at a high processing temperature and a small chemical potential domain. This paper reports screen printing prepared CZTS films and the influence of sintering temperature on CZTS properties. The thermostability, structural, electronic and optical properties are studied. The direct optical band gap energies of the films vary from 1.39 to 1.60 eV, while the resistivities change from 830 to 6 Ω cm after sintering at different temperatures up to 550 °C. A high photosensitivity of 14% is achieved for the sample sintered at 450 °C. The phenomena observed are also discussed.

  19. Laser sintering of ceramics of Y2O3 pure e doped

    International Nuclear Information System (INIS)

    Oliveira, T.C. de; Goncalves, R.S.; Silva, R.S. da

    2012-01-01

    The Yttria (Y 2 O 3 ) is one of the most promising materials for refractory and optical applications due mainly to its high corrosion resistance, wide range of optical transmission and high melting point. However, due to its high melting point, ceramic bodies to obtain high density Y 2 O 3 high temperatures and require special sintering. Recently it has been proposed in the literature a new method of sintering in which a CO 2 laser, in continuous mode, is employed as the primary source of heat during sintering. Irradiation with laser light produces heating surface at elevated temperatures in a time interval of a few seconds, allowing to obtain dense ceramic bodies at elevated temperatures and with different properties from those sintered by conventional methods. In this paper, Y 2 O 3 powders of pure and doped with Mn, Ca and Zn were synthesized by the polymeric precursors and after calcination at 600 ° C/4h showed single phase. For the production and characterization of the samples used techniques DTA / TG, XRD Dilatometry, SEM and Radioluminescence. The sintered ceramics had a high relative density and strong dependence on the dopant used, which accelerate the densification process. Measures Radioluminescence showed characteristic peaks of Y 2 O 3 and dependence on the dopant used. (author)

  20. Modeling the microstructural evolution during constrained sintering

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Frandsen, Henrik Lund; Tikare, V.

    A numerical model able to simulate solid state constrained sintering of a powder compact is presented. The model couples an existing kinetic Monte Carlo (kMC) model for free sintering with a finite element (FE) method for calculating stresses on a microstructural level. The microstructural response...... to the stress field as well as the FE calculation of the stress field from the microstructural evolution is discussed. The sintering behavior of two powder compacts constrained by a rigid substrate is simulated and compared to free sintering of the same samples. Constrained sintering result in a larger number...