WorldWideScience

Sample records for sintered contact component

  1. Investigation of the Sintering Process Using Non-Contact Electromagnetic Acoustic Transducers

    Energy Technology Data Exchange (ETDEWEB)

    James C. Foley; David K. Rehbein; Daniel J. Barnard

    2001-05-30

    In-situ characterizations of green state part density and sintering state have long been desired in the powder metal community. Recent advances in non-contact electromagnetic acoustic transducer (EMAT) technology have enabled in-situ monitoring of acoustic amplitude and velocity as sintering proceeds. Samples were made from elemental powders of Al (99.99%), Al (99.7%), Ag, (99.99%), Cu (99.99%) and Fe (99.9%). The powders were pressed in a uniaxial die and examined with acoustic waves for changes in velocity and amplitude during sintering for the samples containing Al, Ag, and Cu. The changes in acoustic properties were correlated with sample microstructures and mechanical properties. Evolution of a series of reverberating echoes during sintering is shown to provide information on the state of sintering, and changes in sintering kinetics as well as having the potential for detection of interior flaws.

  2. Applying "Spark Plasma Sintering" Technology to Enhance the Resistance to Contact Fatigue of Sintered Steel Based on Astaloy CRL

    Science.gov (United States)

    Rodziňák, D.; Čerňan, J.; Puchý, V.

    2017-12-01

    The article deals with the effect of porosity on the contact fatigue of sintered material type Astaloy CrL with 0.3 and 0.4% C. Sets of samples were used with densities beginning from the value of 7000 kg.m-3 to the value of almost 7859 kg.m-3 which represents almost zero porosity (compact material). It has been found out that the increase of compacting pressure applied simultaneously with temperature results in the reduction of porosity from the value of 9.10% to 0.0005% and increase in hardness from 145 to 193 HV10, depending on the carbon content. Logically there is also an increase in the fatigue life by the contact fatigue tests for the value of 50×106 cycles from the value of 900 MPa to 1150 MPa for samples with 0.3% of C and from 900 MPa to 1300 MPa for samples with 0.4% C. These investigations were also carried out in the past, but to achieve the reduction of porosity, different technonologies were used at each level such as double pressing, hot pressing, saturation, hot forging, etc. In this case, the single technology of "spark plasma sintering" making use of compacting at high temperatures is capable to continuously reduce porosity to zero.

  3. Embrittling Components in Sintered Steels: Comparison of Phosphorus and Boron

    Science.gov (United States)

    Danninger, Herbert; Vassileva, Vassilka; Gierl-Mayer, Christian

    2017-12-01

    In ferrous powder metallurgy, both boron and phosphorus have been known to be sintering activators for a long time. However, the use has been widely different: while P is a standard additive to sintered iron and steels, boron has been frequently studied, but its use in practice is very limited. Both additives are also known to be potentially embrittling, though in a different way. In the present study the differences between the effects of both elements are shown: while P activates sintering up to a certain threshold, in part by stabilizing ferrite, in part by forming a transient liquid phase, boron is the classical additive enhancing persistent liquid phase, being virtually insoluble in the iron matrix. The consequence is that sintered steels can tolerate quite a proportion of phosphorus, depending on composition and sintering process; boron however is strongly embrittling in particular in combination with carbon, which requires establishing a precisely defined content that enhances sintering but is not yet embrittling. The fracture mode of embrittled materials is also different: while with Fe-P the classical intergranular fracture is observed, with boron a much more rugged fracture surface appears, indicating some failure through the eutectic interparticle network but mostly transgranular cleavage. If carbon is added, in both cases transgranular cleavage dominates even in the severely embrittled specimens, indicating that no more the grain boundaries and sintering necks are the weakest links in the systems.

  4. Finite element modeling and numerical simulation of sintered tungsten components under hydrogen atmosphere

    Science.gov (United States)

    Mamen, B.; Song, J.; Barriere, T.; Gelin, J.-C.

    2013-05-01

    Powder injection molding (PIM) is a suitable technology for manufacturing of complex shapes with tungsten powders and has a great potential in many applications. Sintering is one of the most important steps in Powder Injection Molding process. The sintering behaviour of tungsten injection moulded components, under pure hydrogen atmosphere at temperature up to 1700°C using fine 0.4μm and coarse powders 7.0 μm, is investigated by means of the beam bending and dilatometric tests in the Setaram{copyright, serif} analyser. To simulate the shrinkage and shape distortion of tungsten injection moulded components during the sintering process using finite element methods, viscoplastic constitutive law is implemented in ABAQUS software as user subroutine UMAT and incorporated with the identified parameters. Comparison between the numerical simulations results and experimental ones, in term of shrinkages and sintered densities, shows good agreement between the two.

  5. Effect of Alloying Type and Lean Sintering Atmosphere on the Performance of PM Components

    Science.gov (United States)

    Sundaram, M. Vattur; Shvab, R.; Millot, S.; Hryha, E.; Nyborg, L.

    2017-12-01

    In order to be cost effective and to meet increasing performance demands, powder metallurgy steel components require continuous improvement in terms of materials and process development. This study demonstrates the feasibility of manufacturing structural components using two different alloys systems, i.e. lean Cr-prealloyed and diffusion bonded water atomised powders with different processing conditions. The components were sintered at two different temperatures, i.e. 1120 and 1250 °C for 30 minutes in three different atmospheres: vacuum, N2- 10%H2 atmosphere as well as lean N2-5%H2-0.5%CO-(0.1-0.4)%CH4 sintering atmosphere. Components after sintering were further processed by either low pressure carburizing, sinterhardening or case hardening. All trials were performed in the industrial furnaces to simulate the actual production of the components. Microstructure, fractography, apparent and micro hardness analyses were performed close to the surface and in the middle of the sample to characterize the degree of sintering (temperature and atmosphere) and the effect of heat treatment. In all cases, components possess mostly martensitic microstructure with a few bainitic regions. The fracture surface shows well developed sinter necks. Inter- and trans-granular ductile and cleavage fracture modes are dominant and their fraction is determined by the alloy and processing route.

  6. Enery Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Zwitter; Phillip Nash; Xiaoyan Xu; Chadwick Johnson

    2011-03-31

    This is the final technical report for the Department of Energy NETL project NT01931 Energy Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications. Titanium has been identified as one of the key materials with the required strength that can reduce the weight of automotive components and thereby reduce fuel consumption. Working with newly developed sources of titanium powder, Webster-Hoff will develop the processing technology to manufacture low cost vehicle components using the single press/single sinter techniques developed for iron based powder metallurgy today. Working with an automotive or truck manufacturer, Webster-Hoff will demonstrate the feasibility of manufacturing a press and sinter titanium component for a vehicle application. The project objective is two-fold, to develop the technology for manufacturing press and sinter titanium components, and to demonstrate the feasibility of producing a titanium component for a vehicle application. The lowest cost method for converting metal powder into a net shape part is the Powder Metallurgy Press and Sinter Process. The method involves compaction of the metal powder in a tool (usually a die and punches, upper and lower) at a high pressure (up to 60 TSI or 827 MPa) to form a green compact with the net shape of the final component. The powder in the green compact is held together by the compression bonds between the powder particles. The sinter process then converts the green compact to a metallurgically bonded net shape part through the process of solid state diffusion. The goal of this project is to expand the understanding and application of press and sinter technology to Titanium Powder applications, developing techniques to manufacture net shape Titanium components via the press and sinter process. In addition, working with a vehicle manufacturer, demonstrate the feasibility of producing a titanium component for a vehicle. This is not a research program, but rather a

  7. Initial stage sintering of polymer particles – Experiments and modelling of size-, temperature- and time-dependent contacts

    Directory of Open Access Journals (Sweden)

    Fuchs Regina

    2017-01-01

    Full Text Available The early-stage sintering of thin layers of micron-sized polystyrene (PS particles, at sintering temperatures near and above the glass transition temperature Tg (~ 100°C, is studied utilizing 3D tomography, nanoindentation and confocal microscopy. Our experimental results confirm the existence of a critical particle radius (rcrit ~ 1 μm below which surface forces need to be considered as additional driving force, on top of the usual surfacetension driven viscous flow sintering mechanism. Both sintering kinetics and mechanical properties of particles smaller than rcrit are dominated by contact deformation due to surface forces, so that sintering of larger particles is generally characterized by viscous flow. Consequently, smaller particles require shorter sintering. These experimental observations are supported by discrete particle simulations that are based on analytical models: for small particles, if only viscous sintering is considered, the model under-predicts the neck radius during early stage sintering, which confirms the need for an additional driving mechanism like elastic-plastic repulsion and surface forces that are both added to the DEM model.

  8. An examination of the interparticle contact area during sintering of W-0.3 wt pct Co

    International Nuclear Information System (INIS)

    Mitlin, D.; German, R.M.

    1998-01-01

    As a powder compact sinters, its microstructure evolves. One way to quantify the scale of the microstructure is to consider the interparticle contact area. This study examines two known models for calculating the interparticle contact area: the classic two-sphere model and the Voronoi cell model. Both models have particular assumptions about the microstructure that make them not applicable for treating densification to near full density with concurrent grain growth. The classic two-sphere model assumes a regular packing of particles and a perfectly spherical particle geometry and neglects an increasing particle coordination number with sintering. The Voronoi cell model assumes that the scale of the microstructure remains constant; i.e., as long as the compact is densifying, grain growth does not occur. The authors propose a modified Voronoi cell that accounts for an increasing grain size, making it applicable to a general case where grain growth occurs during sintering. The three models are compared to the interparticle contact area data, obtained by stereology techniques, for W-0.3 wt pct Co sintered from green state to near full density. The original Voronoi cell model fits the data only at low temperatures, before the onset of grain growth. Below approximately 90 pct relative density, the two-sphere model with an assumed coordination number of six (coordination number in a green compact) and the modified Voronoi cell model provide a good fit to the data. At higher densities, both models overestimate the interparticle contact area

  9. Structural characterization of biomedical Co–Cr–Mo components produced by direct metal laser sintering

    Energy Technology Data Exchange (ETDEWEB)

    Barucca, G., E-mail: g.barucca@univpm.it [SIMAU, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona (Italy); Santecchia, E.; Majni, G. [SIMAU, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona (Italy); Girardin, E. [DISCO, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona (Italy); Bassoli, E.; Denti, L.; Gatto, A. [DIMeC, University of Modena and Reggio Emilia, via Vignolese 905/B, Modena 41125 (Italy); Iuliano, L. [DISPEA, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy); Moskalewicz, T. [Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków (Poland); Mengucci, P. [SIMAU, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona (Italy)

    2015-03-01

    Direct metal laser sintering (DMLS) is a technique to manufacture complex functional mechanical parts from a computer-aided design (CAD) model. Usually, the mechanical components produced by this procedure show higher residual porosity and poorer mechanical properties than those obtained by conventional manufacturing techniques. In this work, a Co–Cr–Mo alloy produced by DMLS with a composition suitable for biomedical applications was submitted to hardness measurements and structural characterization. The alloy showed a hardness value remarkably higher than those commonly obtained for the same cast or wrought alloys. In order to clarify the origin of this unexpected result, the sample microstructure was investigated by X-ray diffraction (XRD), electron microscopy (SEM and TEM) and energy dispersive microanalysis (EDX). For the first time, a homogeneous microstructure comprised of an intricate network of thin ε (hcp)-lamellae distributed inside a γ (fcc) phase was observed. The ε-lamellae grown on the {111}{sub γ} planes limit the dislocation slip inside the γ (fcc) phase, causing the measured hardness increase. The results suggest possible innovative applications of the DMLS technique to the production of mechanical parts in the medical and dental fields. - Highlights: • Samples of a Co–Cr–Mo biomedical alloy were produced by direct metal laser sintering. • Hardness values unexpectedly high were attributed to a peculiar microstructure. • Fine lamellae of the ε-phase alternated to the γ-phase were observed for the first time. • A nucleation and growth model for the observed microstructure is proposed.

  10. Effect of the quantity of carbonate components and sintering parameters on the quality of hydrothermally synthesized carbonate hydroxyapatite

    Science.gov (United States)

    Ruddyard, A. A.; Soejoko, D. S.; Nurlely

    2017-07-01

    Carbonated hydroxyapatite is a biomaterial with high biocompatibility with human bone, moreso than regular hydroxyapatite, making it an acceptable synthetic bone graft material. The purpose of this research is to study the effect of sintering temperature and time on carbonated hydroxyapatite samples synthesized using a hydrothermal method with CaCO3 as one of its components. The samples are then characterized using Fourier-Transform Infrared Spectroscopy, X-Ray Diffraction, and Scanning Electron Microscope. Infrared (IR) spectra showed that the CO3 content in each sample is proportional to the amount of CaCO3 used during synthesis. X-Ray Diffraction (XRD) patterns showed an increase in apatite content and a decrease in calcite content as sintering temperature and time increases, with temperature increases having a stronger effect on the samples than time increases. Calcite disappears completely after sintering at 900 °C for 2 hours.

  11. The contact drag of towed demersal fishing gear components

    Science.gov (United States)

    O'Neill, F. G.; Summerbell, K.; Ivanović, A.

    2018-01-01

    The contact demersal towed fishing gears make with the seabed can lead to penetration of the substrate, lateral displacement of the sediment and a pressure field transmitted through the sediment. It will also contribute to the overall drag of the fishing gear. Consequently, there can be environmental effects such as habitat alteration and benthic mortality, and impacts to the fuel efficiency of the fishing operation which will affect emissions of nitrogen oxides, sulphur oxides and greenhouse gases such as CO2. Here we present the results of experimental trials that measure the contact drag of a range of elements that represent some of the components of towed demersal gears that are in contact with the seabed. We show that the contact drag of the gear components depends on their weight, geometry, the type of sediment on which they are towed and whether they are rolling or not. As expected, the contact drag of each gear component increases as its weight increases and the drag of fixed elements is greater than that of the rolling ones. The dependence on aspect ratio is more complex and the drag (per unit area) of narrow cylinders is less than that of wider ones when they roll on the finer sediment or are fixed (not permitted to roll) on the coarser sediment. When they roll on the coarse sediment there is no dependence on aspect ratio. Our results also suggest that fixed components may penetrate the seabed to a lesser depth when they are towed at higher speeds but when they roll there is no such relationship.

  12. Shape distortion and thermo-mechanical properties of dense SOFC components from green tape to sintered body

    DEFF Research Database (Denmark)

    Teocoli, Francesca; Esposito, Vincenzo; Ni, De Wei

    . The characterization of thermo-mechanical properties, such as viscoelasticity, enables a prediction of microstructural stability of SOFCs. Tape-cast bi-layer structures for CGO/YSZ and CGO/ScYSZ was studied during the thermal processing. Different sintering kinetics of bi-layer tape give rise to localized tensile...... stresses, which develop a camber in the final sintered body. To analyze the phenomena, shrinkage of SOFC components single layers and camber development of bi-layers were measured in-situ by optical dilatometry. In addition, a thoughtful investigation of the viscoelastic properties of individual layers...... was carried out by thermo-mechanical analysis (TMA). The results from the different techniques were found complementary and viscous behavior of the layered ceramics was verified....

  13. Shape distortion and thermo-mechanical properties of SOFC components from green tape to sintering body

    DEFF Research Database (Denmark)

    Teocoli, Francesca; Ni, De Wei; Tadesse Molla, Tesfaye

    to the strain rate difference between materials, was calculated using Cai’s model. Camber (curvature) development for in situ co-firing of a bi-layer ceramic green tape has been investigated. Analysis of shape evolution from green to sintered body can be carried out by the thermo-mechanical analysis techniques....

  14. Synthesis and Sintering Behavior of Cordierite Prepared from Multi-Component Materials Including Alkaline-Earth Minerals

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Suk-In; Kim, Nam-Il; Lee, Sang-Jin [Mokpo National University, Muan (Korea, Republic of)

    2016-10-15

    Cordierite was synthesized using multi-component materials based on a talc-alumina-clay system. The cordierite sintered at 1360 °C showed a high relative density of 98.8% and a low thermal expansion coefficient of 1.59×10{sup -}6/°C. To study the effect of adding alkaline-earth minerals on the cordierite properties, petalite, potash-feldspar, and dicalcium phosphate were added to the synthesized cordierite. In the case of 9 wt% petalite or potash-feldspar addition, the cordierite was more densified; however, the thermal expansion coefficient and the pyroplasticity index were increased. In particular, a 5 μm thick self-glazed coating was formed with the addition of 9 wt% potash-feldspar. In the case of adding dicalcium phosphate, a glass phase was formed at low temperature and gas bubbles formed at high temperature above 1320 ℃. The cordierite synthesized using multi-component materials is expected to be employed as a material for high thermal shock, dense-microstructure flameware.

  15. Sintered Cr/Pt and Ni/Au ohmic contacts to B{sub 12}P{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Frye, Clint D., E-mail: frye6@llnl.gov [Lawrence Livermore National Laboratory, Livermore, California 94550 and Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506 (United States); Kucheyev, Sergei O.; Voss, Lars F.; Conway, Adam M.; Shao, Qinghui; Nikolić, Rebecca J., E-mail: nikolic1@llnl.gov [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Edgar, James H. [Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506 (United States)

    2015-05-15

    Icosahedral boron phosphide (B{sub 12}P{sub 2}) is a wide-bandgap semiconductor possessing interesting properties such as high hardness, chemical inertness, and the reported ability to self-heal from irradiation by high energy electrons. Here, the authors developed Cr/Pt and Ni/Au ohmic contacts to epitaxially grown B{sub 12}P{sub 2} for materials characterization and electronic device development. Cr/Pt contacts became ohmic after annealing at 700 °C for 30 s with a specific contact resistance of 2 × 10{sup −4} Ω cm{sup 2}, as measured by the linear transfer length method. Ni/Au contacts were ohmic prior to any annealing, and their minimum specific contact resistance was ∼l–4 × 10{sup −4} Ω cm{sup 2} after annealing over the temperature range of 500–800 °C. Rutherford backscattering spectrometry revealed a strong reaction and intermixing between Cr/Pt and B{sub 12}P{sub 2} at 700 °C and a reaction layer between Ni and B{sub 12}P{sub 2} thinner than ∼25 nm at 500 °C.

  16. Sinterable powders

    International Nuclear Information System (INIS)

    Zanghi, J.S.; Kasprzyk, M.R.

    1979-01-01

    A description is given of sinterable powders and methods of producing sintered products using such powders. The powders consist of (a) a particulate ceramic material, e.g. SiC, having specified particle size and surface area; (b) a carbon source material, e.g. sugar or a phenol-formaldehyde resin; and (c) a residue from a solution of H 3 BO 3 , B 2 O 3 , or mixtures of these as sintering aid. (U.K.)

  17. Laser sintering of copper nanoparticles

    International Nuclear Information System (INIS)

    Zenou, Michael; Saar, Amir; Ermak, Oleg; Kotler, Zvi

    2014-01-01

    Copper nanoparticle (NP) inks serve as an attractive potential replacement to silver NP inks in functional printing applications. However their tendency to rapidly oxidize has so far limited their wider use. In this work we have studied the conditions for laser sintering of Cu-NP inks in ambient conditions while avoiding oxidation. We have determined the regime for stable, low-resistivity copper (< ×3 bulk resistivity value) generation in terms of laser irradiance and exposure duration and have indicated the limits on fast processing. The role of pre-drying conditions on sintering outcome has also been studied. A method, based on spectral reflectivity measurements, was used for non-contact monitoring of the sintering process evolution. It also indicates preferred spectral regions for sintering. Finally, we illustrated how selective laser sintering can generate high-quality, fine line (<5 µm wide) and dense copper circuits. (paper)

  18. A methodology to model physical contact between structural components in NASTRAN

    Science.gov (United States)

    Prabhu, Annappa A.

    1993-01-01

    Two components of a structure which are located side by side, will come in contact by certain force and will transfer the compressive force along the contact area. If the force acts in the opposite direction, the elements will separate and no force will be transferred. If this contact is modeled, the load path will be correctly represented, and the load redistribution results in more realistic stresses in the structure. This is accomplished by using different sets of rigid elements for different loading conditions, or by creating multipoint constraint sets. Comparison of these two procedures is presented for a 4 panel unit (PU) stowage drawer installed in an experiment rack in the Spacelab Life Sciences (SLS-2) payload.

  19. Preseason Functional Movement Screen Component Tests Predict Severe Contact Injuries in Professional Rugby Union Players.

    Science.gov (United States)

    Tee, Jason C; Klingbiel, Jannie F G; Collins, Robert; Lambert, Mike I; Coopoo, Yoga

    2016-11-01

    Tee, JC, Klingbiel, JFG, Collins, R, Lambert, MI, and Coopoo, Y. Preseason Functional Movement Screen component tests predict severe contact injuries in professional rugby union players. J Strength Cond Res 30(11): 3194-3203, 2016-Rugby union is a collision sport with a relatively high risk of injury. The ability of the Functional Movement Screen (FMS) or its component tests to predict the occurrence of severe (≥28 days) injuries in professional players was assessed. Ninety FMS test observations from 62 players across 4 different time periods were compared with severe injuries sustained during 6 months after FMS testing. Mean composite FMS scores were significantly lower in players who sustained severe injury (injured 13.2 ± 1.5 vs. noninjured 14.5 ± 1.4, Effect Size = 0.83, large) because of differences in in-line lunge (ILL) and active straight leg raise scores (ASLR). Receiver-operated characteristic curves and 2 × 2 contingency tables were used to determine that ASLR (cut-off 2/3) was the injury predictor with the greatest sensitivity (0.96, 95% confidence interval [CI] = 0.79-1.0). Adding the ILL in combination with ASLR (ILL + ASLR) improved the specificity of the injury prediction model (ASLR specificity = 0.29, 95% CI = 0.18-0.43 vs. ASLR + ILL specificity = 0.53, 95% CI = 0.39-0.66, p ≤ 0.05). Further analysis was performed to determine whether FMS tests could predict contact and noncontact injuries. The FMS composite score and various combinations of component tests (deep squat [DS] + ILL, ILL + ASLR, and DS + ILL + ASLR) were all significant predictors of contact injury. The FMS composite score also predicted noncontact injury, but no component test or combination thereof produced a similar result. These findings indicate that low scores on various FMS component tests are risk factors for injury in professional rugby players.

  20. Contact Kinematics Correlates to Tibial Component Migration Following Single Radius Posterior Stabilized Knee Replacement.

    Science.gov (United States)

    Teeter, Matthew G; Perry, Kevin I; Yuan, Xunhua; Howard, James L; Lanting, Brent A

    2018-03-01

    Contact kinematics between total knee arthroplasty components is thought to affect implant migration; however, the interaction between kinematics and tibial component migration has not been thoroughly examined in a modern implant system. A total of 24 knees from 23 patients undergoing total knee arthroplasty with a single radius, posterior stabilized implant were examined. Patients underwent radiostereometric analysis at 2 and 6 weeks, 3 and 6 months, and 1 and 2 years to measure migration of the tibial component in all planes. At 1 year, patients also had standing radiostereometric analysis examinations acquired in 0°, 20°, 40°, and 60° of flexion, and the location of contact and magnitude of any condylar liftoff was measured for each flexion angle. Regression analysis was performed between kinematic variables and migration at 1 year. The average magnitude of maximum total point motion across all patients was 0.671 ± 0.270 mm at 1 year and 0.608 ± 0.359 mm at 2 years (P = .327). Four implants demonstrated continuous migration of >0.2 mm between the first and second year of implantation. There were correlations between the location of contact and tibial component anterior-posterior tilt, varus-valgus tilt, and anterior-posterior translation. The patients with continuous migration demonstrated atypical kinematics and condylar liftoff in some instances. Kinematics can influence tibial component migration, likely through alterations of force transmission. Abnormal kinematics may play a role in long-term implant loosening. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Superior-inferior position of patellar component affects patellofemoral kinematics and contact forces in computer simulation.

    Science.gov (United States)

    Nakamura, Shinichiro; Tanaka, Yoshihisa; Kuriyama, Shinichi; Nishitani, Kohei; Ito, Hiromu; Furu, Moritoshi; Matsuda, Shuichi

    2017-06-01

    Anterior knee pain has been reported as a major postoperative complication after total knee arthroplasty, which may lead to patient dissatisfaction. Rotational alignment and the medial-lateral position correlate with patellar maltracking, which can cause knee pain postoperatively. However, the superior-inferior position of the patellar component has not been investigated. The purpose of the current study was to investigate the effects of the patellar superior-inferior position on patellofemoral kinematics and kinetics. Superior, central, and inferior models with a dome patellar component were constructed. In the superior and inferior models, the position of the patellar component translated superiorly and inferiorly, respectively, by 3mm, relative to the center model. Kinematics of the patellar component, quadriceps force, and patellofemoral contact force were calculated using a computer simulation during a squatting activity in a weight-bearing deep knee bend. In the inferior model, the flexion angle, relative to the tibial component, was the greatest among all models. The inferior model showed an 18.0%, 36.5%, and 22.7% increase in the maximum quadriceps force, the maximum medial patellofemoral force, and the maximum lateral patellofemoral force, respectively, compared with the superior model. Superior-inferior positions affected patellofemoral kinematic and kinetics. Surgeons should avoid the inferior position of the patellar component, because the inferior positioned model showed greater quadriceps and patellofemoral force, resulting in a potential risk for anterior knee pain and component loosening. Copyright © 2017. Published by Elsevier Ltd.

  2. A contact sex pheromone component of the emerald ash borer Agrilus planipennis Fairmaire (Coleoptera: Buprestidae).

    Science.gov (United States)

    Silk, Peter J; Ryall, Krista; Barry Lyons, D; Sweeney, Jon; Wu, Junping

    2009-05-01

    Analyses of the elytral hydrocarbons from male and female emerald ash borer, Agrilus planipennis Fairmaire, that were freshly emerged vs. sexually mature (>10 days old) revealed a female-specific compound, 9-methyl-pentacosane (9-Me-C(25)), only present in sexually mature females. This material was synthesized by the Wittig reaction of 2-decanone with (n-hexadecyl)-triphenylphosphonium bromide followed by catalytic reduction to yield racemic 9-Me C(25), which matched the natural compound by gas chromatography/mass spectrometry (retention time and EI mass spectrum). In field bioassays with freeze-killed sexually mature A. planipennis females, feral males spent significantly more time in contact and attempting copulation with unwashed females than with females that had been washed in n-hexane to remove the cuticular lipids. Hexane-washed females to which 9-Me-C(25) had been reapplied elicited similar contact time and percentage of time attempting copulation as unwashed females, indicating that 9-methyl-pentacosane is a contact sex pheromone component of A. planipennis. This is the first contact sex pheromone identified in the Buprestidae.

  3. A contact sex pheromone component of the emerald ash borer Agrilus planipennis Fairmaire (Coleoptera: Buprestidae)

    Science.gov (United States)

    Silk, Peter J.; Ryall, Krista; Barry Lyons, D.; Sweeney, Jon; Wu, Junping

    2009-05-01

    Analyses of the elytral hydrocarbons from male and female emerald ash borer, Agrilus planipennis Fairmaire, that were freshly emerged vs. sexually mature (>10 days old) revealed a female-specific compound, 9-methyl-pentacosane (9-Me-C25), only present in sexually mature females. This material was synthesized by the Wittig reaction of 2-decanone with ( n-hexadecyl)-triphenylphosphonium bromide followed by catalytic reduction to yield racemic 9-Me C25, which matched the natural compound by gas chromatography/mass spectrometry (retention time and EI mass spectrum). In field bioassays with freeze-killed sexually mature A. planipennis females, feral males spent significantly more time in contact and attempting copulation with unwashed females than with females that had been washed in n-hexane to remove the cuticular lipids. Hexane-washed females to which 9-Me-C25 had been reapplied elicited similar contact time and percentage of time attempting copulation as unwashed females, indicating that 9-methyl-pentacosane is a contact sex pheromone component of A. planipennis. This is the first contact sex pheromone identified in the Buprestidae.

  4. Durability evaluation method for contact component interconnections in printed circuit boards under thermal loads

    Science.gov (United States)

    Azin, Anton; Zhukov, Andrey A.; Ponomarev, Sergey A.; Ponomarev, Sergey V.

    2017-11-01

    In designing sophisticated printed circuit boards, required evaluation of the product life cycle is relevant in terms of presumably applied load conditions during operation. The paper describes the durability evaluation method of printed circuit board components with contact output such as ball grid array (BGA) and pitch grid array (PGA) under thermal loads. Experiment data and numerical simulation results of soldered connections have been obtained. This method is demonstrated by a practical application example-evaluating of printed circuit board durability under cyclic thermal loads. The application of proposed method for printed circuit boards would make it possible to predict the service life of these designed products.

  5. Effect of different atmospheres on the electrical contact performance of electronic components under fretting wear

    Science.gov (United States)

    Liu, Xin-Long; Cai, Zhen-Bing; Cui, Ye; Liu, Shan-Bang; Xu, Xiao-Jun; Zhu, Min-Hao

    2018-04-01

    The effects of oxide etch on the surface morphology of metals for industrial application is a common cause of electrical contacts failure, and it has becomes a more severe problem with the miniaturization of modern electronic devices. This study investigated the effects of electrical contact resistance on the contactor under three different atmospheres (oxygen, air, and nitrogen) based on 99.9% copper/pogo pins contacts through fretting experiments. The results showed the minimum and stable electrical contact resistance value when shrouded in the nitrogen environment and with high friction coefficient. The rich oxygen environment promotes the formation of cuprous oxide, thereby the electrical contact resistance increases. Scanning electron microscope microscopy and electron probe microanalysis were used to analyze the morphology and distribution of elements of the wear area, respectively. The surface product between contacts was investigated by x-ray photoelectron spectroscopy analysis to explain the different electrical contact properties of the three tested samples during fretting.

  6. Sintering and densification; new techniques: sinter forging

    International Nuclear Information System (INIS)

    Winnubst, A.J.A.

    1998-01-01

    In this chapter pressure assisted sintering methods will be described. Attention will mainly be paid to sinter forging as a die-wall free uniaxial pressure sintering technique, where large creep strains are possible. Sinter forging is an effective tool to reduce sintering temperature and time and to obtain a nearly theoretically dense ceramic. In this way grain size in tetragonal zirconia ceramics can be reduced down to 100 nm. Another important phenomenon is the reduction of the number density and size of cracks and flaws resulting in higher strength and improved reliability, which is of utmost importance for engineering ceramics. The creep deformation during sinter forging causes a rearrangement of the grains resulting in a reduction of interatomic spaces between grains, while grain boundary (glassy) phases can be removed. The toughness and in some cases the wear resistance is enhanced after sinter forging as a result of the grain-boundary-morphology improvement. (orig.)

  7. Characterization and in vivo evaluation of laser sintered dental endosseous implants in dogs.

    Science.gov (United States)

    Witek, Lukasz; Marin, Charles; Granato, Rodrigo; Bonfante, Estevam A; Campos, Felipe; Bisinotto, Julio; Suzuki, Marcelo; Coelho, Paulo G

    2012-08-01

    Laser metal sintering has shown promising results, but no comparison with other commercially available surface has been performed. This study sought to evaluate the biomechanical and histological early bone response to laser sintered implants relative to alumina-blasted/acid-etched (AB/AE). Surface topography was characterized by scanning electron microscopy and optical interferometry. Surface chemistry was assessed by x-ray photoelectron spectroscopy. Beagle dogs (n = 18) received 4 Ti-6Al-4V implants (one per surface) in each radius, remaining for 1, 3, and 6 weeks (n = 6 dogs per evaluation time) in vivo. Bone-to-implant contact (BIC) and bone area fraction occupancy (BAFO) were evaluated. Biomechanical evaluation comprised torque-to-interface failure. The laser sintered surface presented higher S(a) and S(q) than AB/AE. Chemistry assessment showed the alloy metallic components along with adsorbed carbon species. Significantly higher torque was observed at 1 (p laser sintered, whereas at 3 week no significant differences were observed. Significantly higher BIC and BAFO was observed for the Laser Sintered (p laser sintered implants presented biocompatible and osseoconductive properties and improved biomechanical response compared with the AB/AE surface only at 1 and 6 weeks in vivo. Copyright © 2012 Wiley Periodicals, Inc.

  8. Three-dimensional direct laser written graphitic electrical contacts to randomly distributed components

    Science.gov (United States)

    Dorin, Bryce; Parkinson, Patrick; Scully, Patricia

    2018-04-01

    The development of cost-effective electrical packaging for randomly distributed micro/nano-scale devices is a widely recognized challenge for fabrication technologies. Three-dimensional direct laser writing (DLW) has been proposed as a solution to this challenge, and has enabled the creation of rapid and low resistance graphitic wires within commercial polyimide substrates. In this work, we utilize the DLW technique to electrically contact three fully encapsulated and randomly positioned light-emitting diodes (LEDs) in a one-step process. The resolution of the contacts is in the order of 20 μ m, with an average circuit resistance of 29 ± 18 kΩ per LED contacted. The speed and simplicity of this technique is promising to meet the needs of future microelectronics and device packaging.

  9. Changes in contact angle providing evidence for surface alteration in multi-component solid foods

    Science.gov (United States)

    Reinke, Svenja K.; Hauf, Katharina; Vieira, Josélio; Heinrich, Stefan; Palzer, Stefan

    2015-11-01

    Chocolate blooming, one of the major problems in the confectionery industry, is the formation of visible white spots or a greyish haze on the surface of chocolate products due to large sugar or fat crystals on the surface. This leads to aesthetic changes and deterioration of taste and thus large sales losses for the confectionery industry due to consumer complaints. Chocolate blooming is often related to migration of lipids or sugar molecules to the chocolate surface, where they recrystallize with an associated polymorphic change of crystal structure on the surface. The wetting behaviour from contact angle measurements gives further insight into surface properties and is needed to determine surface energies and to evaluate possible migration mechanisms and preferred pathways. Therefore, an equilibrium contact angle is needed which is not directly accessible and is influenced by surface texture and interaction between solid and test liquid. In this study, the surface of cocoa butter and conventional chocolates was characterized by measuring the contact angle with the sessile drop protocol. The influence of roughness, test liquid and pre-crystallization of the samples as well as the storage temperature were investigated. In case of no pre-crystallization, a change in surface properties due to storage at 20 °C was detected, whereas samples stored at 30 °C showed the same wetting behaviour as fresh samples. This is associated with polymorphic transformation from thermodynamically less stable crystals to more stable configurations.

  10. Changes in contact angle providing evidence for surface alteration in multi-component solid foods

    International Nuclear Information System (INIS)

    Reinke, Svenja K; Hauf, Katharina; Heinrich, Stefan; Vieira, Josélio; Palzer, Stefan

    2015-01-01

    Chocolate blooming, one of the major problems in the confectionery industry, is the formation of visible white spots or a greyish haze on the surface of chocolate products due to large sugar or fat crystals on the surface. This leads to aesthetic changes and deterioration of taste and thus large sales losses for the confectionery industry due to consumer complaints. Chocolate blooming is often related to migration of lipids or sugar molecules to the chocolate surface, where they recrystallize with an associated polymorphic change of crystal structure on the surface. The wetting behaviour from contact angle measurements gives further insight into surface properties and is needed to determine surface energies and to evaluate possible migration mechanisms and preferred pathways. Therefore, an equilibrium contact angle is needed which is not directly accessible and is influenced by surface texture and interaction between solid and test liquid. In this study, the surface of cocoa butter and conventional chocolates was characterized by measuring the contact angle with the sessile drop protocol. The influence of roughness, test liquid and pre-crystallization of the samples as well as the storage temperature were investigated. In case of no pre-crystallization, a change in surface properties due to storage at 20 °C was detected, whereas samples stored at 30 °C showed the same wetting behaviour as fresh samples. This is associated with polymorphic transformation from thermodynamically less stable crystals to more stable configurations. (paper)

  11. The impact of the unstructured contacts component in influenza pandemic modeling.

    Directory of Open Access Journals (Sweden)

    Marco Ajelli

    Full Text Available Individual based models have become a valuable tool for modeling the spatiotemporal dynamics of epidemics, e.g. influenza pandemic, and for evaluating the effectiveness of intervention strategies. While specific contacts among individuals into diverse environments (family, school/workplace can be modeled in a standard way by employing available socio-demographic data, all the other (unstructured contacts can be dealt with by adopting very different approaches. This can be achieved for instance by employing distance-based models or by choosing unstructured contacts in the local communities or by employing commuting data.Here we show how diverse choices can lead to different model outputs and thus to a different evaluation of the effectiveness of the containment/mitigation strategies. Sensitivity analysis has been conducted for different values of the first generation index G(0, which is the average number of secondary infections generated by the first infectious individual in a completely susceptible population and by varying the seeding municipality. Among the different considered models, attack rate ranges from 19.1% to 25.7% for G(0 = 1.1, from 47.8% to 50.7% for G(0 = 1.4 and from 62.4% to 67.8% for G(0 = 1.7. Differences of about 15 to 20 days in the peak day have been observed. As regards spatial diffusion, a difference of about 100 days to cover 200 km for different values of G(0 has been observed.To reduce uncertainty in the models it is thus important to employ data, which start being available, on contacts on neglected but important activities (leisure time, sport mall, restaurants, etc. and time-use data for improving the characterization of the unstructured contacts. Moreover, all the possible effects of different assumptions should be considered for taking public health decisions: not only sensitivity analysis to various model parameters should be performed, but intervention options should be based on the analysis and

  12. Two-component bond for coating materials coming into contact with radioactivity

    International Nuclear Information System (INIS)

    Svoboda, L.; Fajfr, K.

    1989-01-01

    The two-component bonding agent consists of an epoxy resin of the diane-bis-glycidyl ether type and an amine hardener containing benzyl alcohol and bis-2-ethylhexyl phthalate. The claimed bond features high radiation stability and very good decontaminability. Thanks to low viscosity of the bond, pigmented reactor-plastics can be prepared. The procedure is described of applying the bond onto a concrete surface. (E.S.)

  13. Early Contacts between Substrate Proteins and TatA Translocase Component in Twin-arginine Translocation*

    Science.gov (United States)

    Fröbel, Julia; Rose, Patrick; Müller, Matthias

    2011-01-01

    Twin-arginine translocation (Tat) is a unique protein transport pathway in bacteria, archaea, and plastids. It mediates the transmembrane transport of fully folded proteins, which harbor a consensus twin-arginine motif in their signal sequences. In Gram-negative bacteria and plant chloroplasts, three membrane proteins, named TatA, TatB, and TatC, are required to enable Tat translocation. Available data suggest that TatA assembles into oligomeric pore-like structures that might function as the protein conduit across the lipid bilayer. Using site-specific photo-cross-linking, we have investigated the molecular environment of TatA under resting and translocating conditions. We find that monomeric TatA is an early interacting partner of functionally targeted Tat substrates. This interaction with TatA likely precedes translocation of Tat substrates and is influenced by the proton-motive force. It strictly depends on the presence of TatB and TatC, the latter of which is shown to make contacts with the transmembrane helix of TatA. PMID:22041896

  14. Early contacts between substrate proteins and TatA translocase component in twin-arginine translocation.

    Science.gov (United States)

    Fröbel, Julia; Rose, Patrick; Müller, Matthias

    2011-12-23

    Twin-arginine translocation (Tat) is a unique protein transport pathway in bacteria, archaea, and plastids. It mediates the transmembrane transport of fully folded proteins, which harbor a consensus twin-arginine motif in their signal sequences. In Gram-negative bacteria and plant chloroplasts, three membrane proteins, named TatA, TatB, and TatC, are required to enable Tat translocation. Available data suggest that TatA assembles into oligomeric pore-like structures that might function as the protein conduit across the lipid bilayer. Using site-specific photo-cross-linking, we have investigated the molecular environment of TatA under resting and translocating conditions. We find that monomeric TatA is an early interacting partner of functionally targeted Tat substrates. This interaction with TatA likely precedes translocation of Tat substrates and is influenced by the proton-motive force. It strictly depends on the presence of TatB and TatC, the latter of which is shown to make contacts with the transmembrane helix of TatA.

  15. Electrical Signal Path Study and Component Assay for the MAJORANA N-Type Segmented Contact Detector

    Energy Technology Data Exchange (ETDEWEB)

    Amman, Mark; Bergevin, Marc; Chan, Yuen-Dat; Detwiler, Jason A.; Fujikawa, Brian .; Lesko, Kevin T.; Luke, Paul N.; Prior, Gersende; Poon, Alan W.; Smith, Alan R.; Vetter, Kai; Yaver, Harold; Zimmermann, Sergio

    2009-02-24

    The purpose of the present electrical signal path study is to explore the various issues related to the deployment of highly-segmented low-background Ge detectors for the MAJORANA double-beta decay experiment. A significant challenge is to simultaneously satisfy competing requirements for the mechanical design, electrical readout performance, and radiopurity specifications from the MAJORANA project. Common to all rare search experiments, there is a very stringent limit on the acceptable radioactivity level of all the electronics components involved. Some of the findings are summarized in this report.

  16. Synthesis and identification of organic components of 'Red Oil' (contact research)

    International Nuclear Information System (INIS)

    Miyata, Teijiro; Takada, Junichi; Nakagiri, Naotaka; Koike, Tadao; Tsukamoto, Michio; Watanabe, Koji; Nishio, Gunji

    1999-05-01

    To make clear the organic constituents of the energetic material described as 'Red Oil', laboratory studies were made on the synthesis and identification of chemical constituents of the materials obtained in the synthesis. In the studies, the synthesis was made using a variety of solvent systems (100%TBP/HNO 3 , 100%TBP/HNO 3 /U, 30%TBP/70%n-Dodecane/HNO 3 , 30%TBP/70%n-Dodecane/HNO 3 /U) with an experimental apparatus (1.0 liter under) under conditions, e.g., a temperature range 129 - 192degC and a reaction time 90 - 270 minutes, and GC and GC/MS techniques were mainly used for the identification. A GC analysis showed that the 'Red Oil' prepared from a solvent system (30%TBP/70%n-Dodecane/HNO 3 ) should comprised more than 150 degraded products, 94 products of which were identified purely by a GC/MS technique. Major components found, except for TBP and n-Dodecane being used as the starting materials, were mono- and di-nitro compounds of them, dodecanones, n-butyl nitrate, DBP and MBP. The quantitative analysis of gases formed in the 'Red Oil' synthesis experiments showed that they consisted of various compounds, the order of decreasing content in volume % were NO 2 (23 - 50), CO 2 (17 - 34), N 2 O(5.5 - 15), N 2 (4.3 - 12), CO(4 - 12), NO(1.5 - 8), and hydrocarbons (0.7 - 1.2), and that no detectable presence of O 2 and N 2 . Most of the components in the distillated volatiles collected in the condenser were n-botyl nitrate, but n-butanol were found in relatively small quantities. No significant effect of uranyl nitrate was found on the organic constituents in the 'Red Oil' synthesized. (author)

  17. Sintering of nonstoichiometric UO2

    International Nuclear Information System (INIS)

    Susnik, D.; Holc, J.

    1983-01-01

    Activated sintering of UO 2 pellets at 1100 deg C is described. In CO 2 atmosphere is UO 2 is nonstoichiometric and pellets from active UO 2 powders sinter at 900 deg C to high density. At 1100 deg C the final sintered density is practically achieved at heating on sintering temperature. After reduction and cooling in H 2 atmosphere which is followed sintering in CO 2 the structure is identical to the structured UO 2 pellets sintered at high temperature in H 2 . Density of activated sintered UO 2 pellets is stable, even after additional sintering at 1800 deg C. (author)

  18. Laser Sintered Calcium Phosphate Bone

    National Research Council Canada - National Science Library

    Vail, Neil

    1999-01-01

    ...) technology selective laser sintering (SLS). BME has successfully implemented a pilot facility to fabricate calcium phosphate implants using anatomical data coupled with the selective laser sintering process...

  19. A method for sintering

    DEFF Research Database (Denmark)

    2012-01-01

    The present invention provides a method for sintering, comprising in the following order the steps of: providing a body in the green state or in the pre-sintered state on a support; providing a load on at least one spacer on the support such that the load is located above said body in the green...

  20. Sintering of beryllium oxide

    International Nuclear Information System (INIS)

    Caillat, R.; Pointud, R.

    1955-01-01

    This study had for origin to find a process permitting to manufacture bricks of beryllium oxide of pure nuclear grade, with a density as elevated as possible and with standardized shape. The sintering under load was the technique kept for the manufacture of the bricks. Because of the important toxicity of the beryllium oxide, the general features for the preliminary study of the sintering, have been determined while using alumina. The obtained results will be able to act as general indication for ulterior studies with sintering under load. (M.B.) [fr

  1. Sintering with a chemical reaction as applied to uranium monocarbide

    International Nuclear Information System (INIS)

    Accary, A.; Caillat, R.

    1960-01-01

    The present paper provides a survey of different investigations whose aim was the preparation and fabrication of uranium monocarbide for nuclear use. If a chemical reaction takes place in the sample during the sintering operation, it may be expected that the atom rearrangements involved in this reaction should favour the sintering process and thereby lower the temperature needed to yield a body of a given density. With this hypothesis in mind, the following methods have been studied: - Sintering of U-C mixtures; - Sintering of UO 2 -C mixtures; - Hot pressing of U-C mixtures; - Extrusion of U-C mixtures. To generalize our result, it could be said that a chemical reaction does not lead to high densification, if one depends on a simple contact between discrete particles. On the contrary, a chemical reaction can help sintering if, as our hot pressing experiments shows, the densification can be achieved prior to the reaction. (author) [fr

  2. Three-dimensional simulation of viscous-flow agglomerate sintering.

    Science.gov (United States)

    Kirchhof, M J; Schmid, H -J; Peukert, W

    2009-08-01

    The viscous-flow sintering of different agglomerate particle morphologies is studied by three-dimensional computer simulations based on the concept of fractional volume of fluid. For a fundamental understanding of particle sintering characteristics, the neck growth kinetics in agglomerate chains and in doublets consisting of differently sized primary particles is investigated. Results show that different sintering contacts in agglomerates even during the first stages are not completely independent from each other, even though differences are small. The neck growth kinetics of differently sized primary particles is determined by the smaller one up to a size difference by a factor of approximately 2, whereas for larger size differences, the kinetics becomes faster. In particular, the agglomerate sintering kinetics is investigated for particle chains of different lengths and for different particle morphologies each having ten primary particles and nine initial sintering contacts. For agglomerate chains, the kinetics approximately can be normalized by using the radius of the fully coalesced sphere. In general, different agglomerate morphologies show equal kinetics during the first sintering stages, whereas during advanced stages, compact morphologies show significantly faster sintering progress than more open morphologies. Hence, the overall kinetics cannot be described by simply using constant morphology correction factors such as fractal dimension or mean coordination number which are used in common sintering models. However, for the first stages of viscous-flow agglomerate sintering, which are the most important for many particle processes, a sintering equation is presented. Although we use agglomerates consisting of spherical primary particles, our methodology can be applied to other aggregate geometries as well.

  3. Predicting ground contact events for a continuum of gait types: An application of targeted machine learning using principal component analysis.

    Science.gov (United States)

    Osis, Sean T; Hettinga, Blayne A; Ferber, Reed

    2016-05-01

    An ongoing challenge in the application of gait analysis to clinical settings is the standardized detection of temporal events, with unobtrusive and cost-effective equipment, for a wide range of gait types. The purpose of the current study was to investigate a targeted machine learning approach for the prediction of timing for foot strike (or initial contact) and toe-off, using only kinematics for walking, forefoot running, and heel-toe running. Data were categorized by gait type and split into a training set (∼30%) and a validation set (∼70%). A principal component analysis was performed, and separate linear models were trained and validated for foot strike and toe-off, using ground reaction force data as a gold-standard for event timing. Results indicate the model predicted both foot strike and toe-off timing to within 20ms of the gold-standard for more than 95% of cases in walking and running gaits. The machine learning approach continues to provide robust timing predictions for clinical use, and may offer a flexible methodology to handle new events and gait types. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Phenomenological theory of sintering and its application to swelling

    Directory of Open Access Journals (Sweden)

    Kornyushin Y.

    2004-01-01

    Full Text Available The general phenomenological theory of sintering, formulated by the author in 1998 is applied to the problem of swelling. Driving forces, caused by the presence of the evolution of heat in the volume of a sample (electric contact, hf, inductive heating or penetrating radiation, e.g., neutrons could be the sources of the heat in the bulk of a sample are considered. The influence of these driving forces on sintering, structure and properties is discussed. The role of mobile and immobile dislocations, grain boundaries, and pores is considered. Cycling and pulsing regimes of sintering are investigated.

  5. Fusibility and sintering characteristics of ash

    International Nuclear Information System (INIS)

    Ots, A. A.

    2012-01-01

    The temperature characteristics of ash fusibility are studied for a wide range of bituminous and brown coals, lignites, and shales with ratios R B/A of their alkaline and acid components between 0.03 and 4. Acritical value of R B/A is found at which the fusion temperatures are minimal. The sintering properties of the ashes are determined by measuring the force required to fracture a cylindrical sample. It is found that the strength of the samples increases sharply at certain temperatures. The alkali metal content of the ashes has a strong effect on their sintering characteristics.

  6. Sintered cobalt-rare earth intermetallic product

    International Nuclear Information System (INIS)

    Benz, M.G.

    1975-01-01

    This patent describes a sintered product having substantially stable permanent magnet properties in air at room temperature. It comprises compacted particulate cobalt--rare earth alloy consisting essentially of a Co 5 R intermetallic phase and a CoR intermetallic phase which is richer in rare earth metal content than the Co 5 R phase, where R is a rare earth metal. The Co 5 R intermetallic phase is present in an amount of at least 65 percent by weight of the sintered product and the CoR intermetallic phase which is richer in rare earth metal content than the Co 5 R phase is present in a positive amount having a value ranging up to about 35 percent by weight of the product. The sintered product has a density of at least 87 percent and has pores which are substantially noninterconnecting and wherein the component grains have an average size less than 30 microns

  7. Fumigant and contact toxicity of 22 wooden essential oils and their major components against Drosophila suzukii (Diptera: Drosophilidae).

    Science.gov (United States)

    Kim, Junheon; Jang, Miyeon; Shin, Eunsik; Kim, Jeongmin; Lee, Si Hyeock; Park, Chung Gyoo

    2016-10-01

    Fumigant and contact toxicities of 22 plant essential oils (EOs) from 14 families and their constituents against the adult spotted wing drosophila (SWD), Drosophila suzukii were examined. Analyses by GC, GC-MS, and NMR led to the identification of 2, 16, 13, 4, 6, 9, and 10 compounds from Gaultheria fragrantissima, Croton anistatum, Illicium verum, Liquidamabar orientalis, Cinnamomum cassia, Rosa damasena, and Santalum album, respectively. In fumigant toxicity test, G. fragrantissima, C. anistatum, and I. verum exhibited 100, 93.8, and 95.8, and 100, 70.0, and 80.0% mortalities against the adult male and female SWD at 4.41mg/L air, respectively. LC 50 values (mg/L air) of G. fragrantissima, C. anistatum, and I. verum were 3.46, 3.67, and 3.16 against male, and 3.48, 4.31, and 4.01 against female SWD. LC 50 values (mg/L air) of methyl salicylate and trans-anethole were 2.17 and 1.75 against male and 2.65 and 3.00 against female SWD, respectively. In contact toxicity tests, L. orientalis, C. cassia, R. damasena, and S. album showed insecticidal activity with LD 50 values (μg/fly) of 2.64, 1.84, 3.40 and 2.18 against male SWD and of 3.74, 2.24, 8.91 and 5.61 against female SWD, respectively. 2-Phehy-1-ethanol, 3-phenyl-1-propanol, trans-cinnamaldehyde, trans-cinnamyl alcohol, and α-santalol also exhibited insecticidal activity with LD 50 values of 9.79, 5.52, 2.39, 3.02 and 2.37 against male SWD and of 11.77, 7.04, 2.94, 3.32, and 3.99 against female SWD, respectively. trans-Cinnamaldehyde exhibited the highest AChE inhibition but its inhibition is likely due to a non-specific chemical inhibition. Our results indicate that wooden EOs and their components can be used as fumigants or spray-type control agents against SWD. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Morphological analysis and modelling of sintering and of sintered materials

    International Nuclear Information System (INIS)

    Jernot, Jean-Paul

    1982-01-01

    This research thesis addresses the study of solid phase sintering of metallic powders, and aims at describing as precisely as possible the different involved matter transport mechanisms, first by using a thermodynamic approach to sintering. Sintering diagrams are also used to determine prevailing mechanisms. The microstructure of sintered materials has been studied by using image quantitative analysis, thus by using a morphological approach to sintering. Morphological parameters allow, on the one hand, the evolution of powders during sintering to be followed, and, on the other hand, sintered products to be correctly characterised. Moreover, the author reports the study of the evolution of some physical properties of sintered materials with respect to their microstructure parameters. This leads to the development of a modelling of the behaviour of these materials [fr

  9. Efficient Radiation Shielding Through Direct Metal Laser Sintering

    Data.gov (United States)

    National Aeronautics and Space Administration — We have developed a method for efficient component-level radiation shielding that can be printed by direct metal laser sintering (DMLS) from files generated by the...

  10. Thermodynamics and mechanisms of sintering

    International Nuclear Information System (INIS)

    Pask, J.A.

    1978-10-01

    A phenomenological overview and exploration of the thermodynamic and geometric factors play a role in the process of densification of model compact systems consisting of crystalline spheres of uniform size in regular and irregular packing that form grain boundaries at every contact point. A further assumption is the presence of isotropic surface and grain boundary energies. Although such systems are unrealistic in comparison with normal powder compacts, their potential sintering behavior can be analyzed and provided with a limiting set of behavior conditions which can be looked upon as one boundary condition. This approach is logically realistic since it is easier to understand and provide a basis for understanding the more complex real powder systems

  11. Sintering of Synroc D

    International Nuclear Information System (INIS)

    Robinson, G.

    1982-01-01

    Sintering has been investigated as a method for the mineralization and densification of high-level nuclear defense waste powder. Studies have been conducted on Synroc D composite powder LS04. Optimal densification has been found to be highly dependent on the characteristics of the starting material. Powder subjected to milling, which was believed to reduce the level of agglomeration and possibly particle size, was found to densify better than powder not subjected to this milling. Densities of greater than 95% of theoretical could be achieved for samples sintered at 1150 to 1200 0 C. Mineralogy was found to be as expected for Synroc D for samples sintered in a CO 2 /CO atmosphere where the Fe +2 /Fe +3 ratio was maintained at 1.0 to 5.75. In a more oxidizing, pure CO 2 atmosphere a new phase, not previously identified in Synroc D, was found

  12. Laboratory sol-gel preparation of fine fraction of sintered uranium dioxide spheres

    International Nuclear Information System (INIS)

    Landspersky, H.; Tympl, M.

    1984-01-01

    The results are summed up of the laboratory investigation of preparing the fine fraction of sintered uranium dioxide particles from uranyl gel using the method of the mixed reactor and the method of the dual-liquid nozzle, processed by leaching, drying, calcination and sintering. None of the two methods provides monodispersion particles under the given conditions but better control of the throughflow of the liquid media may improve results. Leaching of the fine fraction is very quick and the leaching of most components takes no longer than 5 minutes. In view of the fact that leaching of all components does not proceed at the same rate it is recommended that leaching time be doubled, or that leaching take place in two stages. Azeotropic distillation with chlorinated hydrocarbons is a favourable procedure for obtaining quality material; it is, however, necessary to prevent dried particles from comino. into contact with the water phase condensing on the walls of the distillation vessel and running down onto the surface of the distilling mixture. Calcination at a temperature of 500 degC in a thin layer and sintering at temperatures between 1350 and 1550 degC at an adequate rate of inflow of gaseous media and adequate rate of outflow of reaction wastes results in the production of high quality material whose density exceeds 97 to 98% theoretical density. (author)

  13. SinterHab

    Science.gov (United States)

    Rousek, Tomáš; Eriksson, Katarina; Doule, Ondřej

    2012-05-01

    This project describes a design study for a core module on a Lunar South Pole outpost, constructed by 3D printing technology with the use of in-situ resources and equipped with a bio-regenerative life support system. The module would be a hybrid of deployable (CLASS II) and in-situ built (CLASS III) structures. It would combine deployable membrane structures and pre-integrated rigid elements with a sintered regolith shell for enhanced radiation and micrometeorite shielding. The closed loop ecological system would support a sustainable presence on the Moon with particular focus on research activities. The core module accommodates from four to eight people, and provides laboratories as a test bed for development of new lunar technologies directly in the environment where they will be used. SinterHab also includes an experimental garden for development of new bio-regenerative life support system elements. The project explores these various concepts from an architectural point-of-view particularly, as they constitute the building, construction and interior elements. The construction method for SinterHab is based on 3D printing by sintering of the lunar regolith. Sinterator robotics 3D printing technology proposed by NASA JPL enables construction of future generations of large lunar settlements with little imported material and the use of solar energy. The regolith is processed, placed and sintered by the Sinterator robotics system which combines the NASA ATHLETE and the Chariot remotely controlled rovers. Microwave sintering creates a rigid structure in the form of walls, vaults and other architectural elements. The interior is coated with a layer of inflatable membranes inspired by the TransHab project. The life-support system is mainly bio-regenerative and several parts of the system are intrinsically multifunctional and serve more than one purpose. The plants for food production are also an efficient part of atmosphere revitalization and water treatment. Moreover

  14. Sintering behavior of LZSA glass-ceramics

    Directory of Open Access Journals (Sweden)

    Oscar Rubem Klegues Montedo

    2009-06-01

    Full Text Available The LZSA glass-ceramic system (Li2O-ZrO2-SiO2-Al2O 3 shows interesting properties, such as good chemical resistance, low thermal expansion, high abrasion resistance, and a low dielectric constant. However, in order to obtain a high performance material for specific applications, the sintering behavior must be better understood so that the porosity may be reduced and other properties improved. In this context, a sintering investigation for a specific LZSA glass-ceramic system composition was carried out. A 18.8Li2O-8.3ZrO2-64.2SiO2-8.7Al 2O3 glass was prepared by melting the solids, quenching the melt in water, and grinding the resulting solid in order to obtain a powder (3.68 μm average particle diameter. Subsequently, the glass powder was characterized (chemical analysis and determination of thermal properties and the sintering behavior was investigated using optical non-contact dilatometry measurements. The results showed that the crystallization process strongly reduced the sintering in the temperature interval from 785 to 940 °C, and a maximum thermal shrinkage of 15.4% was obtained with operating conditions of 1020 °C and 180 minutes.

  15. In situ Investigation of Titanium Powder Microwave Sintering by Synchrotron Radiation Computed Tomography

    Directory of Open Access Journals (Sweden)

    Yu Xiao

    2016-01-01

    Full Text Available In this study, synchrotron radiation computed tomography was applied to investigate the mechanisms of titanium powder microwave sintering in situ. On the basis of reconstructed images, we observed that the sintering described in this study differs from conventional sintering in terms of particle smoothing, rounding, and short-term growth. Contacted particles were also isolated. The kinetic curves of sintering neck growth and particle surface area were obtained and compared with those of other microwave-sintered metals to examine the interaction mechanisms between mass and microwave fields. Results show that sintering neck growth accelerated from the intermediate period; however, this finding is inconsistent with that of aluminum powder microwave sintering described in previous work. The free surface areas of the particles were also quantitatively analyzed. In addition to the eddy current loss in metal particles, other heating mechanisms, including dielectric loss, interfacial polarization effect, and local plasma-activated sintering, contributed to sintering neck growth. Thermal and non-thermal effects possibly accelerated the sintering neck growth of titanium. This study provides a useful reference of further research on interaction mechanisms between mass and microwave fields during microwave sintering.

  16. Electric Field-Assisted Pressureless Sintering of Ceramic Protonic Conductors

    DEFF Research Database (Denmark)

    Muccillo, R.; Esposito, Vincenzo; de Florio, D. Z.

    2017-01-01

    Gadolinium, yttrium and samarium-doped barium cerate pressed pellets were submitted to flash sintering experiments isothermally in the temperature range 800-1300oC under 200 V cm-1 electric field. The pellets were positioned inside a dilatometer furnace with Pt-Ir electrodes connected either...... to a power supply or to an impedance analyzer to evaluate the bulk and the grain boundary contributions to the electrical resistivity. Near full density was achieved in the sintered samples. The combined results of dilatometry and impedance measurements in conventionally and flash sintered specimens show...... substantial improvement of the electrical conductivity. Joule heating is assumed to be the primary effect for sintering. Improved grain-to-grain contact and the removal of depleted chemical species due to Joule heating at the space charge region are proposed, respectively, as the reasons for the decrease...

  17. Preparation and mechanism of the sintered bricks produced from Yellow River silt and red mud

    Energy Technology Data Exchange (ETDEWEB)

    He, Hongtao [Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Yue, Qinyan, E-mail: qyyue@sdu.edu.cn [Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Su, Yuan; Gao, Baoyu; Gao, Yue; Wang, Jingzhou; Yu, Hui [Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer The best condition was red mud content of 40% and sintering at 1050 Degree-Sign C for 2 h. Black-Right-Pointing-Pointer Bricks' weight loss was caused by the removal of absorbed water and crystal water. Black-Right-Pointing-Pointer Bricks' sintering shrinkage depended on the sodium and iron compounds of red mud. Black-Right-Pointing-Pointer Sintering can strengthen bricks and decrease leaching concentration of toxic metal. - Abstract: The preparation, characteristics and mechanisms of sintered bricks manufactured by Yellow River silt and red mud were studied. The sintering shrinkage, weight loss on ignition, water absorption and compressive strength were tested to determine the optimum preparation condition. Sintering mechanisms were discussed through linear regression analysis. Crystalline components of raw materials and bricks were analyzed by X-ray diffraction. Leaching toxicity of raw materials and bricks were measured according to sulphuric acid and nitric acid method. Radiation safety of the sintered bricks was characterized by calculating internal exposure index and external exposure index. The results showed that at the chosen best parameters (red mud content of 40%, sintering temperature of 1050 Degree-Sign C and sintering time of 2 h), the best characteristics of sintered bricks could be obtained. The weight loss on ignition of sintered bricks was principally caused by the removal of absorbed water and crystal water. The sintering shrinkage of sintered bricks mainly depended on sodium compounds and iron compounds of red mud. The sintering process made some components of raw materials transform into other crystals having better thermostability. Besides, the leaching toxicity and radioactivity index of sintered bricks produced under the optimum condition were all below standards.

  18. Sintering of B4C by pressureless liquid phase sintering

    International Nuclear Information System (INIS)

    Rocha, Rosa Maria da; Melo, Francisco Cristovao Lourenco de

    2009-01-01

    The effect of three different sintering additive systems on densification of boron carbide powder was investigated. The sintering additives were Al 2 O 3 :Y 2 O 3 , AlN:Y 2 O 3 and BN:Y 2 O 3 compositions. Powder mixtures were prepared with 10 vol% of sintering aids following conventional powder technology processes. Samples were sintered by pressureless sintering at 2050 deg C/30min in argon atmosphere. Sintered samples were compared to a sintered B 4 C without sintering additive. Samples were characterized by XRD to analyze the crystalline phases after sintering and SEM to observe the microstructure and the second phase distribution. YB 4 and YB 2 C 2 were identified in all samples, indicating a reaction between Y 2 O 3 , B 4 C and B 2 O 3 present at the B 4 C particle surface. The best densification result was achieved with Al 2 O 3 :Y 2 O 3 additive system, showing 92.0 % of theoretical density, low porosity and 15.2 % of linear shrinkage. But this sample showed the highest weight loss. (author)

  19. Sintering uranium oxide using a preheating step

    International Nuclear Information System (INIS)

    Jensen, N.J.; Nivas, Y.; Packard, D.R.

    1977-01-01

    Compacted pellets of uranium oxide or uranium oxide with one or more additives are heated in a kiln in a process having a preheating step, a sintering step, a reduction step, and a cooling step in a controlled atmosphere. The process is practiced to give a range of temperature and atmosphere conditions for obtaining optimum fluoride removal from the compacted pellets along with optimum sintering in a single process. The preheating step of this process is conducted in a temperature range of about 600 0 to about 900 0 C and the pellets are held for at least twenty min, and preferably about 60 min, in an atmosphere having a composition in the range of about 10 to about 75 vol % hydrogen with the balance being carbon dioxide. The sintering step is conducted at a temperature in the range of about 900 0 C to 1500 0 C in the presence of an atmosphere having a composition in the range of about 0.5 to about 90 vol % hydrogen with the balance being carbon dioxide. The reduction step reduces the oxygen to metal ratio of the pellets to a range of about 1.98 to 2.10:1 and this is accomplished by gradually cooling the pellets for about 30 to about 120 min from the temperature of the sintering step to about 1100 0 C in an atmosphere of about 10 to 90 vol % hydrogen with the balance being carbon dioxide. Thereafter the pellets are cooled to about 100 0 C under a protective atmosphere, and in one preferred practice the same atmosphere used in the reduction step is used in the cooling step. The preheating, sintering and reduction steps may also be conducted with their respective atmospheres having an initial additional component of water vapor and the water vapor can comprise up to about 20 vol %

  20. Uniaxial ratcheting behavior of sintered nanosilver joint for electronic packaging

    International Nuclear Information System (INIS)

    Chen, Gang; Yu, Lin; Mei, Yunhui; Li, Xin; Chen, Xu; Lu, Guo-Quan

    2014-01-01

    Uniaxial ratcheting behavior and the fatigue life of sintered nanosilver joint were investigated at room temperature. All tests were carried out under stress-controlled mode. Force–displacement data were recorded during the entire fatigue lifespan by a non-contact displacement detecting system. Effects of stress amplitude, mean stress, stress rate, and stress ratio on the uniaxial ratcheting behavior of the sintered nanosilver joint were discussed. Stress-life (S–N) curves of the sintered joints were also obtained. The Smith–Watson–Topper (SWT) model, the Gerber model and the modified Goodman model, all of which took effect of mean stress into consideration, were compared for predicting the fatigue life of the sintered joint. Both the ratcheting strain and its rate increased with increasing stress amplitude or mean stress. The increase in stress amplitude and mean stress both reduced the fatigue life of the sintered joint, while the fatigue life prolonged with the increase in stress rate and stress ratio. The modified Goodman model predicted the fatigue life of the sintered joints well

  1. Boric oxide or boric acid sintering aid for sintering ceramics

    International Nuclear Information System (INIS)

    Lawler, H.A.

    1979-01-01

    The invention described relates to the use of liquid sintering aid in processes involving sintering of ceramic materials to produce dense, hard articles having industrial uses. Although the invention is specifically discussed in regard to compositions containing silicon carbide as the ceramic material, other sinterable carbides, for example, titanium carbide, may be utilized as the ceramic material. A liquid sintering aid for densifying ceramic material is selected from solutions of H 3 BO 3 , B 2 O 3 and mixtures of these solutions. In sintering ceramic articles, e.g. silicon carbide, a shaped green body is formed from a particulate ceramic material and a resin binder, and the green body is baked at a temperature of 500 to 1000 0 C to form a porous body. The liquid sintering aid of B 2 O 3 and/or H 3 BO 3 is then dispersed through the porous body and the treated body is sintered at a temperature of 1900 to 2200 0 C to produce the sintered ceramic article. (U.K.)

  2. Sintering of magnesia: effect of additives

    Indian Academy of Sciences (India)

    % was studied on the sinter- ing and microstructural developments of the chemically pure magnesia using the pressureless sintering technique between 1500 and 1600◦C. Sintering was evaluated by per cent densification and microstructural ...

  3. 21 CFR 176.170 - Components of paper and paperboard in contact with aqueous and fatty foods.

    Science.gov (United States)

    2010-04-01

    ... dispersant for pigment suspension at a level not to exceed 0.25 percent by weight of pigment. The suspension.../preservative in fillers, pigment slurries, starch sizing solutions, and latex coatings at levels not to exceed... in coating formulations and in component slurries and emulsions, used in the production of paper and...

  4. Non-contact electric potential measurements of electrode components in an operating polymer electrolyte fuel cell by near ambient pressure XPS.

    Science.gov (United States)

    Yu, Liwei; Takagi, Yasumasa; Nakamura, Takahiro; Sekizawa, Oki; Sakata, Tomohiro; Uruga, Tomoya; Tada, Mizuki; Iwasawa, Yasuhiro; Samjeské, Gabor; Yokoyama, Toshihiko

    2017-11-22

    Photoelectron spectroscopy has the advantage of providing electric potentials by non-contact measurements based on the kinetic energy shift in component potential. We performed operando hard X-ray photoelectron spectroscopy (HAXPES) measurements with an 8 keV excitation source to measure the shift in electron kinetic energies as a function of the voltages of all the components at the anode and cathode electrodes of a polymer electrolyte fuel cell (PEFC). At the cathode electrode, when we increase the voltage between the cathode and anode from 0.2 to 1.2 V, the O 1s and F 1s peaks shift to a lower binding energy and the magnitude of the energy shift is equal to the voltage. The Pt 3d and C 1s peaks do not shift with the voltage since platinum nanoparticles and carbon supports at the cathode electrode have ground contact. In contrast to the cathode electrode, the peak shifts of all the components at the anode electrode show the same amount of shift as the voltages. It is clear that the change in the potential difference occurs only in an electrical double layer at the interface between the cathode electrode (Pt/C) and the electrolyte (Nafion and water), and that the anode electrode is in equilibrium as a pseudo-hydrogen electrode. Moreover, the electric potential variation of the cathode electrode in a PEFC under a power generation condition was also directly detected by operando HAXPES.

  5. Sintering techniques for microstructure control in ceramics

    Science.gov (United States)

    Rosenberger, Andrew T.

    during sintering on microstructure and electronic properties of lithium aluminum titanium phosphate (LATP) electrolyte material was investigated by sintering LATP pellets under DC voltages of 0V, 2V, 10V, and 20V. Application of a DC voltage increased relative density from 86% to a maximum of 95.5%. However, unlike reports on other material systems such as zirconia, a high DC voltage induced, rather than restrained, abnormal grain growth. Conductivity decreased with applied voltage from 4.8*10 -4 S/cm at 0V to 1.3*10-4 S/cm at 20V, which was attributed to the high faceting and poor grain-to-grain contact of the grains sintered under 10V and 20V. This indicates that field-assisted sintering techniques may actually be detrimental to solid state battery materials, and that the field effects are significantly different from those observed in other systems in the literature.

  6. Models of current sintering

    Science.gov (United States)

    Angst, Sebastian; Engelke, Lukas; Winterer, Markus; Wolf, Dietrich E.

    2017-06-01

    Densification of (semi-)conducting particle agglomerates with the help of an electrical current is much faster and more energy efficient than traditional thermal sintering or powder compression. Therefore, this method becomes more and more common among experimentalists, engineers, and in industry. The mechanisms at work at the particle scale are highly complex because of the mutual feedback between current and pore structure. This paper extends previous modelling approaches in order to study mixtures of particles of two different materials. In addition to the delivery of Joule heat throughout the sample, especially in current bottlenecks, thermoelectric effects must be taken into account. They lead to segregation or spatial correlations in the particle arrangement. Various model extensions are possible and will be discussed.

  7. Contact sensitizing potential of annatto extract and its two primary color components, cis-bixin and norbixin, in female BALB/c mice.

    Science.gov (United States)

    Auttachoat, Wimolnut; Germolec, Dori R; Smith, Matthew J; White, Kimber L; Guo, Tai L

    2011-10-01

    The present studies were performed to examine the contact allergenic effects of an annatto extract (ANT) in female BALB/c mice. ANT at 5-10% induced a greater than threefold increase in lymph node cell proliferation when compared to the control in the LLNA. Moreover, a significant increase in the percent ear swelling at 24h after ANT challenge was observed in the MEST. A significant increase in the percentage of B cells was also observed. To determine which of the two predominant coloring components (norbixin and bixin) in ANT was responsible for the sensitizing effects of ANT, norbixin was subsequently examined, with negative results being observed in both the LLNA and MEST following treatment with norbixin (1-20%). These findings suggested that perhaps bixin was responsible for the positive responses in both the LLNA and MEST following exposure to ANT. Therefore, further studies using a partially purified cis-bixin extract were conducted. Positive responses in both the LLNA and MEST were observed in mice treated with cis-bixin at the concentrations as low as 0.1-0.5%. These results have demonstrated that cis-bixin, but not norbixin, is likely a contact sensitizer and contributes to the contact hypersensitivity effects observed following dermal exposure to ANT in mice. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Production of pure sintered alumina

    International Nuclear Information System (INIS)

    Rocha, J.C. da; Huebner, H.W.

    1982-01-01

    With the aim of optimizing the sintering parameters, the strength of a large number of alumina samples was determined which were produced under widely varying sintering conditions and with different amounts of MgO content. The strength as a function of sintering time or temperature was found to go through a maximum. With increasing time, this maximum is shifted to lower temperatures, and with decreasing temperature to longer times. Data pairs of sintering times and temperatures which yeld the strength maximum were determined. The value of the strength at the maximum remains unchanged. The strength is high (= 400 MN/m 2 , at a grain size of 3 um and a porosity of 2 per cent) and comparable to foreign aluminas produced for commercial purposes, or even higher. The increase in the sintering time from 1 h to 16 h permits a reduction of the sintering temperature from 1600 to 1450 0 C without losing strength. The practical importance of this fact for a production of sintered alumina on a large scale is emphasized. (Author) [pt

  9. Electric Field-Assisted Pressureless Sintering of Ceramic Protonic Conductors

    DEFF Research Database (Denmark)

    Muccillo, R.; Esposito, Vincenzo; Zanetti De Florio, Daniel

    2017-01-01

    -5 A the electric current pulse amplitude. The sintering experiments were carried out in ambient atmosphere with the pellets positioned inside a vertical dilatometer furnace with Pt-Ir electrodes connected either to a power supply for applying the electric field or to an impedance analyzer for collecting [-Z''(ω) x......Gadolinium, yttrium and samarium-doped barium cerate (BCGd, BCY and BCSm, respectively) polycrystalline green pellets were submitted to electric field-assisted pressureless sintering experiments isothermally in the temperature range 800-1200oC under 100-200 V cm-1 electric fields, limiting to 1...... of the electrical conductivity of flash sintered specimens. Joule heating is assumed to be the primary effect of the electric current pulse through the specimens. Improved grain-to-grain contact and the removal of depleted chemical species due to Joule heating at the space charge region are proposed, respectively...

  10. Cell response to hydroxyapatite surface topography modulated by sintering temperature.

    Science.gov (United States)

    Mealy, Jacob; O'Kelly, Kevin

    2015-11-01

    Increased mesenchymal stem cell (MSC) activity on hydroxyapatite (HA) bone tissue engineering scaffolds will improve their viability in diffusion-based in vivo environments and is therefore highly desirable. This work focused on modulating the sintered HA surface topography with a view to increasing cell activity; this was achieved by varying the sintering temperature of the HA substrates. Cells were cultured on the substrates for periods of up to 19 days and displayed a huge variation in viability. MSC metabolic activity was measured using a resazurin sodium salt assay and revealed that surfaces sintered from 1250 to 1350°C significantly outperformed their lower temperature counterparts from day one (p ≤ 0.05). Surfaces sintered at 1300°C induced 57% more cell activity than the control at day 16. No significant activity was observed on surfaces sintered below 1200°C. It is suggested that this is due to the granular morphology produced at these temperatures providing insufficient contact area for cell attachment. In addition, we propose the average surface wavelength as a more quantitative surface descriptor than those readily found in the literature. The wavelengths of the substrates presented here were highly correlated with cell activity (R(2)  = 0.9019); with a wavelength of 2.675 µm on the 1300°C surface inducing the highest cell response. © 2015 Wiley Periodicals, Inc.

  11. The sintering of nitrogen ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Hampshire, S.

    1986-01-01

    The mechanism of densification with oxide additives and the role of the ..cap alpha..-BETA phase transformation is investigated in a detailed kinetic study. Selected compositions in the Si-Al-O-N system are detailed, with and without additives. Although the work is mainly concerned with the identification of the mechanisms of sintering, some property measurements on a sintered BETA-sialon are reported and the feasibility of preparing pure ..cap alpha..-sialon phases is explored.

  12. Method of sintering ceramic materials

    Science.gov (United States)

    Holcombe, Cressie E.; Dykes, Norman L.

    1992-01-01

    A method for sintering ceramic materials is described. A ceramic article is coated with layers of protective coatings such as boron nitride, graphite foil, and niobium. The coated ceramic article is embedded in a container containing refractory metal oxide granules and placed within a microwave oven. The ceramic article is heated by microwave energy to a temperature sufficient to sinter the ceramic article to form a densified ceramic article having a density equal to or greater than 90% of theoretical density.

  13. Experimental and finite element modeling study of co-sintering of multilayer, multifunctional ceramics

    Science.gov (United States)

    Wu, Kuan

    2007-12-01

    The co-sintering behavior of low temperature co-fired ceramics (LTCC) is investigated by combining experiment and simulation methods. The numerical method offers a way to provide quantitative information regarding the final sintered shape of multilayer ceramics, which can be used to optimize the design of multilayer, multifunctional components and help reduce tedious and expensive empirical design iterations. To predict the sintering behavior of LTCC, parameters in the viscoplastic constitutive equations for single materials (such as shear viscosity G, bulk viscosity K, and sintering stress sigma s, etc.) need to be known. An apparatus was constructed for in situ measurements of the longitudinal and radial shrinkage during free sintering and sinter forging experiments. Cylindrical samples of individual LTCC materials (DuPont 951AX, Heraeus CT-800, Ferro A6-S) were made. Free sintering and sinter-forging experiments have been performed at various heating rates and under different intermittently applied axial loads. Various methods for analyzing the data were used to extract those parameters and their dependence on temperature and relative density. The constitutive parameters obtained from experiments were then implemented in the user subroutine UMAT of the general-purpose finite element program ABAQUS to simulate the free sintering behavior of bi-layer structures (DU951/CT800) with different thickness ratios. The simulation results were then compared with the actual experimental results, which were obtained by free co-sintering bi-layer planar samples with different thickness ratios. Simulation results showed the finite element analysis was successful in predicting the shape changes and the stresses at different positions during sintering of bi-layer structures. This finite element model was also used to examine the sensitivity to various parameters of the sintering results, such as elastic Poisson's ratio v, Young's modulus E, sintering stress sigmas, shear and

  14. Preparation of silicon carbide/carbon fiber composites through high-temperature spark plasma sintering

    Directory of Open Access Journals (Sweden)

    Ehsan Ghasali

    2017-12-01

    Full Text Available This study discusses the potentials of spark plasma sintering (SPS integrated with high temperature process that can enable sintering of SiC/Cf composites without any sintering aids. The random distribution of carbon fibers was obtained through mixing composite components in ethanol by using a shaker mill for 10 min. The corresponding sintering process was carried out at 1900 and 2200 °C with 50 MPa pressure applied at maximum temperature. The results showed that 89 ± 0.9 and 97 ± 0.8% of the theoretical density can be obtained for sintering temperatures of 1900 and 2200 °C, respectively. The densification curves were plotted to monitor sintering behavior with punch displacement changes. The appropriate bonding between SiC particles and carbon fibers was detected using FE-SEM for sample which was sintered at 2200 °C. The clear maximum in hardness (2992 ± 33 Vickers, bending strength (427 ± 26 MPa and fracture toughness (4.2 ± 0.3 MPa m1/2 were identified for sample sintered at 2200 °C. XRD investigations supposed that SiC and carbon were the only crystalline phases in both sintered samples.

  15. Analysis and modeling of sintering of Sr-hexaferrite produced by PIM technology

    Directory of Open Access Journals (Sweden)

    Zlatkov B.S.

    2011-01-01

    Full Text Available The powder injection moulding (PIM technology is lately becoming more and more significant due to complex design possibilities and good repeatability. This technology requires optimization of all steps starting with material and binder, injection, debinding and sintering parameters. Sintering is one of the key links in this technology. The powder injection moulding process is specific as during feedstock injection powder particles mixed into the binder do not come into mechanical contact. Shrinkage during sintering of PIM samples is high. In this work we have analyzed and modeled the sintering process of isotropic PIM samples of Sr-hexaferrite. The Master Sintering Curve (MSC principle has been applied to analyze sintering of two types of PIM Sr-hexaferrite samples with completely removed binder and only the extraction step of the debinding procedure (thermal debinding proceeding simultaneously with sintering. Influence of the heating rate on resulting sample microstructures has also been analyzed. Influence of the sintering time and temperature was analyzed using three different phenomenological equations.

  16. An investigation in texturing high Tc superconducting ceramics by creep sintering

    International Nuclear Information System (INIS)

    Regnier, P.; Deschanels, X.; Maurice, F.; Schmirgeld, L.; Aguillon, C.; Senoussi, S.; Mac Carthy, M.; Tatlock, G.J.

    1991-01-01

    We study in detail the possibility of high-T c superconducting ceramics texturing by high pressing them during sintering. We show texture variations as a function of the applied load, of the deformation, of the temperature, and of the sintering stage length, of the rate of variation of temperature, of the material nature in contact with ceramic and of the original powder quality. We present results obtained by optical microscopy, electronic microscopy, X-rays, and local chemical analysis

  17. Modeling Macroscopic Shape Distortions during Sintering of Multi-layers

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye

    Ceramic multi-layered composites are being used as components in various technologies ranging from electronics to energy conversion devices. Thus, different architectures of multi-layers involving ceramic materials are often required to be produced by powder processing, followed by sintering...... the camber development during co-firing. The effect of extrinsic factors (e.g. gravity, thickness ratio and friction) on the shape evolution of bi-layers during co-firing has been studied using the developed model and experiments. Furthermore, a new analytical model describing stresses during sintering...... of tubular bi-layer structures has been developed by using the direct correspondence between elasticity and linear viscous problems. The finite element model developed in this study and sintering experiments of tubular bi-layer sample have been used to verify and validate the developed analytical model...

  18. Physics and Technology of Transparent Ceramic Armor: Sintered Al2O3 vs Cubic Materials

    National Research Council Canada - National Science Library

    Krell, Andreas; Hutzler, Thomas; Klimke, Jens

    2006-01-01

    Sintered sub-micrometer alumina (alpha-Al2O3) is the hardest transparent armor. However, its trigonal structure gives rise to a strong thickness effect that makes thicker components translucent. Cubic ceramics (no birefringence...

  19. Sintering diagrams of UO2

    International Nuclear Information System (INIS)

    Mohan, A.; Soni, N.C.; Moorthy, V.K.

    1979-01-01

    Ashby's method (see Acta Met., vol. 22, p. 275, 1974) of constructing sintering diagrams has been modified to obtain contribution diagrams directly from the computer. The interplay of sintering variables and mechanisms are studied and the factors that affect the participation of mechanisms in UO 2 are determined. By studying the physical properties, it emerges that the order of inaccuracies is small in most cases and do not affect the diagrams. On the other hand, even a 10% error in activation energies, which is quite plausible, would make a significant difference to the diagram. The main criticism of Ashby's approach is that the numerous properties and equations used, communicate their inaccuracies to the diagrams and make them unreliable. The present study has considerably reduced the number of factors that need to be refined to make the sintering diagrams more meaningful. (Auth.)

  20. Ice sintering timescales at the surface of Europa and implications for surface properties

    Science.gov (United States)

    Phillips, C. B.; Molaro, J.; Meirion-Griffith, G.

    2017-12-01

    The planned exploration of Europa by NASA's Europa Clipper Mission and the possibility of a future Europa lander have driven the need to characterize its surface strength, roughness, porosity, thermal conductivity, and regolith depth in order to accurately interpret remote sensing data and develop appropriate spacecraft landing systems. Many processes contribute to Europa's landscape evolution, such as sputtering, mass wasting, thermal segregation, and impact gardening, driving the creation and distribution of icy regolith across the surface. While the efficacy of these processes are not well constrained, any amount of regolith emplaced at the surface will undergo subsequent processing due to sintering. Ice sintering is a form of frost metamorphism whereby contacting ice grains experience the diffusion of material into their contact region, forming a "neck" between them and densifying over time. Over long enough timescales, ice aggregates will sinter into solid material, which may contribute to the incorporation of non-ice material into Europa's subsurface and help to drive subsurface chemistry. Sintering also interacts with other processes, adding to the complexity of icy surface evolution. For example, sputtering preferentially removes larger grains and may enhance sintering rates, and changes in ice porosity may affect the response of the surface to micrometeorite impacts. Quantifying the effects of ice sintering will allow us to predict the microstructural properties of Europa's surface at spacecraft scales. To this end, we have modeled pressure-less (no overburden) sintering of spherical water-ice grains and validated the results with a laboratory experiment. We also modeled ice at the surface of Europa to obtain a first-order approximation of the sintering timescale and surface properties. Preliminary results indicate that ice grains will experience neck growth but not significant densification over Europa's surface age, suggesting that loose surface ice

  1. Recycling of mill scale in sintering process

    Directory of Open Access Journals (Sweden)

    El-Hussiny N.A.

    2011-01-01

    Full Text Available This investigation deals with the effect of replacing some amount of Baharia high barite iron ore concentrate by mill scale waste which was characterized by high iron oxide content on the parameters of the sintering process., and investigation the effect of different amount of coke breeze added on sintering process parameters when using 5% mill scale waste with 95% iron ore concentrate. The results of this work show that, replacement of iron ore concentrate with mill scale increases the amount of ready made sinter, sinter strength and productivity of the sinter machine and productivity at blast furnace yard. Also, the increase of coke breeze leads to an increase the ready made sinter and productivity of the sintering machine at blast furnace yard. The productivity of the sintering machine after 5% decreased slightly due to the decrease of vertical velocity.

  2. Phosphorus containing sintered alloys (review)

    International Nuclear Information System (INIS)

    Muchnik, S.V.

    1984-01-01

    Phosphorus additives are considered for their effect on the properties of sintered alloys of different applications: structural, antifriction, friction, magnetic, hard, superhard, heavy etc. Data are presented on compositions and properties of phosphorus-containing materials produced by the powder metallurgy method. Phosphorus is shown to be an effective activator of sintering in some cases. When its concentration in the material is optimal it imparts the material such properties as strength, viscosity, hardness, wear resistance. Problems concerning powder metallurgy of amorphous phosphorus-containing alloys are reported

  3. Sintering of ultra high molecular weight polyethylene

    Indian Academy of Sciences (India)

    ... involves compaction of polymeric powder under pressure and sintering of the preforms at temperature above its melting point. In this study, we report our results on compaction and sintering behaviour of two grades of UHMWPE with reference to the powder morphology, sintering temperatures and strength development.

  4. Master Sintering Surface: A practical approach to its construction and utilization for Spark Plasma Sintering prediction

    Directory of Open Access Journals (Sweden)

    Pouchly V.

    2012-01-01

    Full Text Available The sintering is a complex thermally activated process, thus any prediction of sintering behaviour is very welcome not only for industrial purposes. Presented paper shows the possibility of densification prediction based on concept of Master Sintering Surface (MSS for pressure assisted Spark Plasma Sintering (SPS. User friendly software for evaluation of the MSS is presented. The concept was used for densification prediction of alumina ceramics sintered by SPS.

  5. Pressure-assisted low-temperature sintering for paper-based writing electronics.

    Science.gov (United States)

    Xu, L Y; Yang, G Y; Jing, H Y; Wei, J; Han, Y D

    2013-09-06

    With the aim of preparing paper-based writing electronics, a kind of conductive pen was made with nano-silver ink as the conductive component and a rollerball pen as the writing implement. This was used to direct-write conductive patterns on Epson photo paper. In order to decrease the sintering temperature, pressure was introduced to enhance the driving forces for sintering. Compared with hot sintering without pressure, hot-pressure can effectively improve the conductivity of silver coatings, reduce the sintering time and thus improve productivity. Importantly, pressure can achieve a more uniform and denser microstructure, which increases the connection strength of the silver coating. At the optimum hot-pressure condition (sintering temperature 120 ° C/sintering pressure 25 MPa/sintering time 15 min), a typical measured resistivity value was 1.43 × 10⁻⁷ Ω m, nine greater than that of bulk silver. This heat treatment process is compatible with paper and does not cause any damage to the paper substrates. Even after several thousand bending cycles, the resistivity values of writing tracks by hot-pressure sintering stay almost the same (from 1.43 × 10⁻⁷ to 1.57 × 10⁻⁷ Ω m). The stability and flexibility of the writing circuits are good, which demonstrates the promising future of writing electronics.

  6. Pressure-assisted low-temperature sintering for paper-based writing electronics

    International Nuclear Information System (INIS)

    Xu, L Y; Yang, G Y; Jing, H Y; Han, Y D; Wei, J

    2013-01-01

    With the aim of preparing paper-based writing electronics, a kind of conductive pen was made with nano-silver ink as the conductive component and a rollerball pen as the writing implement. This was used to direct-write conductive patterns on Epson photo paper. In order to decrease the sintering temperature, pressure was introduced to enhance the driving forces for sintering. Compared with hot sintering without pressure, hot-pressure can effectively improve the conductivity of silver coatings, reduce the sintering time and thus improve productivity. Importantly, pressure can achieve a more uniform and denser microstructure, which increases the connection strength of the silver coating. At the optimum hot-pressure condition (sintering temperature 120 ° C/sintering pressure 25 MPa/sintering time 15 min), a typical measured resistivity value was 1.43 × 10 −7 Ω m, nine greater than that of bulk silver. This heat treatment process is compatible with paper and does not cause any damage to the paper substrates. Even after several thousand bending cycles, the resistivity values of writing tracks by hot-pressure sintering stay almost the same (from 1.43 × 10 −7 to 1.57 × 10 −7 Ω m). The stability and flexibility of the writing circuits are good, which demonstrates the promising future of writing electronics. (paper)

  7. Sintering additives for zirconia ceramics

    International Nuclear Information System (INIS)

    Wu, S.

    1986-01-01

    This book is an overview of sintering science and its application to zirconia materials including CaO, MgO, and Y/sub 2/O/sub 3/-CeO/sub 2/ doped materials. This book is a reference for first-time exposure to zirconia materials technology, particularly densification

  8. Sintering additives for zirconia ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Wu, S.

    1986-01-01

    This book is an overview of sintering science and its application to zirconia materials including CaO, MgO, and Y/sub 2/O/sub 3/-CeO/sub 2/ doped materials. This book is a reference for first-time exposure to zirconia materials technology, particularly densification.

  9. New Cosmetic Contact Allergens

    Directory of Open Access Journals (Sweden)

    An Goossens

    2015-02-01

    Full Text Available Allergic and photo-allergic contact dermatitis, and immunologic contact urticaria are potential immune-mediated adverse effects from cosmetics. Fragrance components and preservatives are certainly the most frequently observed allergens; however, all ingredients must be considered when investigating for contact allergy.

  10. Effect of the sintering temperature and time on phase assemblage and electrical conductivity of zirconia-scandia-ceria

    International Nuclear Information System (INIS)

    Grosso, R.L.; Muccillo, E.N.S.

    2012-01-01

    ZrO 2 -based solid electrolytes have been extensively studied over the last decades for application in solid oxide fuel cells (SOFCs). Zirconia containing scandia and ceria solid electrolyte is a potential candidate in SOFCs operating at intermediate temperatures (600 - 800 deg C). In this work, commercial ZrO 2 containing 10 mol% Sc 2 O 3 and 1 mol% CeO 2 was sintered by the conventional and two-step methods. Several sintering conditions were evaluated by varying the temperature as well as the residence time. High values of sintered density (> 98%) were obtained. A careful selection of the sintering conditions is necessary in order to obtain a single cubic phase, as revealed by X-ray diffraction results. The grain growth can be controlled in specimens sintered by the two-step method. The electrical conductivity show similar behavior for the grain component independent on the sintering method. (author)

  11. Strain-enhanced sintering of iron powders

    Energy Technology Data Exchange (ETDEWEB)

    Amador, D.R.; Torralba, J.M. [Universidad Carlos III de Madrid, Departamento de Ciencias de Materiales e Ingenieria Metalurgica, Leganes, Madrid (Spain); Monge, M.A.; Pareja, R. [Universidad Carlos III de Madrid, Departamento de Fisica, Madrid (Spain)

    2005-02-01

    Sintering of ball-milled and un-milled Fe powders has been investigated using dilatometry, X-ray, density, and positron annihilation techniques. A considerable sintering enhancement is found in milled powders showing apparent activation energies that range between 0.44 and 0.80 eV/at. The positron annihilation results, combined with the evolution of the shrinkage rate with sintering temperature, indicate generation of lattice defects during the sintering process of milled and un-milled powders. The sintering enhancement is attributed to pipe diffusion along the core of moving dislocations in the presence of the vacancy excess produced by plastic deformation. Positron annihilation results do not reveal the presence of sintering-induced defects in un-milled powders sintered above 1200 K, the apparent activation energy being in good agreement with that for grain-boundary diffusion in {gamma}-Fe. (orig.)

  12. Some aspects of barreling in sintered plain carbon steel powder metallurgy preforms during cold upsetting

    Directory of Open Access Journals (Sweden)

    Sumesh Narayan

    2012-04-01

    Full Text Available The present research establishes a relationship of bulged diameter with densification and hydrostatic stress in forming of sintered iron (Fe powder metallurgy preforms cold upset under two different frictional conditions, namely, nil/no and graphite lubricant condition. Sintered plain carbon steel cylindrical preforms with carbon (C contents of 0, 0.35, 0.75 and 1.1% with constant initial theoretical density of 84% and aspect ratio of 0.4 and 0.6 were prepared using a suitable die-set assembly on a 1 MN capacity hydraulic press and sintered for 90 minutes at 1200 °C. Each sintered preform was cold upset under two different frictional constraints. It is seen that the degree of bulging reduces with reducing frictional constraints at the die contact surface. Further, it is found that the bulging ratio changed as a function of relative density and hydrostatic stress, respectively, according to the power law equations.

  13. Kiln furniture for sintering electronic ceramics. Ceramics shosei jigu (doguzai) ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Fushimi, T.; Shibata, S. (Toshiba Ceramics Co. Ltd., Tokyo (Japan))

    1994-05-01

    This paper summarizes refractory jigs used in manufacturing electronic ceramics. Jigs used vary with types of sintering kilns. Sintering kilns include pusher kiln, trolley kiln, roller hearth kiln, batch kiln, and HIP. The paper describes jigs by electronic ceramics materials. Ferrites are sintered in a pusher kiln, where such jigs are used as a base plate, stanchions, shelf plates, saggers, and a setter. Jigs that contact with ferrite are demanded not to give such adverse effects to materials to be sintered as crystal growth. Soft ferrites of Mn/Zn and Ni/Zn systems use jigs of pure alumina and zirconia nature, while large-size soft ferrites use setters with rough surface. A barium titanate system as a ceramic dielectric uses a zirconia jig, and materials containing Pb and Bi such as for varistors use magnesia and spinel jigs. Alumina porcelain substrates use mullite or high-alumina pusher kilns and alumina jigs. 4 refs., 1 fig., 4 tabs.

  14. The role of the native oxide shell on the microwave sintering of copper metal powder compacts

    International Nuclear Information System (INIS)

    Mahmoud, Morsi M.; Link, Guido; Thumm, Manfred

    2015-01-01

    Highlights: • Thin oxide native layer had a critical role on microwave sintering of copper. • Explain why microwaves interact with copper powder differently than its bulk. • Abnormal expansion in copper is due to the plastic deformation and crack formation. • In-situ setup gives important insight about the microwave sintering of metals. • Microwave sintering is a promising candidate technology in powder metallurgy. - Abstract: Successful microwave sintering of several metal powders had been reported by many researchers with remarkable improvements in the materials properties and/or in the overall process. However, the concept behind microwave heating of metal powders has not been fully understood till now, as it is well known that bulk metals reflect microwaves. The progress of microwave sintering of copper metal powder compacts was investigated via combining both in-situ electrical resistivity and dilatometry measurements that give important information about microstructural changes with respect to the inter-particle electrical contacts during sintering. The sintering behavior of copper metal powders was depending on the type of the gas used, particle size, the initial green density, the soaking sintering time and the thin oxide layer on the particles surfaces. The thin copper oxide native layer (ceramics) that thermodynamically formed on the particles surfaces under normal handling and ambient environmental conditions had a very critical and important role in the microwave absorption and interaction, the sintering behavior and the microstructural changes. This finding could help to have a fundamental understanding of why MW’s interact with copper metal powder in a different way than its bulk at room temperature, i.e. why a given metal powder could be heated using microwaves while its bulk reflects it

  15. Possible actions for the minimization of the environmental impact of the iron ore sintering fumes

    International Nuclear Information System (INIS)

    Garcia-Carcedo, F.; Ayala, N.; Isidro, A.; Moro, A.; Cornejo, N.; Ferreira, S.; Hernandez, A.; Cobo, A.; Alaiz, E.; Garcia, J. R.

    2004-01-01

    In sintering plants, gaseous emissions are generated which must comply with increasingly demanding environmental regulations. In the sintering process, about 40 kg of coke and 1,700 Nm''3 of air are used per ton of useful sinter. Sintering fumes have a gaseous phase formed mainly of N 2 , O 2 , CO 2 , H 2 O and CO and the minor components SO . SO 3 , NO and NO 2 . Other minor components include unburned organic products and CLH, and minimal proportions of other high impact compounds such as dioxins and furans are also present. Chlorides and heavy metals are present in the solid fraction. This paper reviews the situation of each emission in relation with the applicable regulations, and the possible means of reducing these emissions. (Author) 12 refs

  16. Determinants of the quality of sintered steel for the automotive industry

    Directory of Open Access Journals (Sweden)

    Barbara Lisiecka

    2016-03-01

    Full Text Available The increasing demand on components obtained using powder metallurgy is driven by economic changes that have turned product quality into the most basic criterion which affects the interest in a component and its successful use. The improvement in quality should be expected in the beginning of the planning of the technological process and selection of adequate raw materials. High requirements concerning product quality management and production improvement stimulates the development of the current automotive industry where sintered steels represent the highest percentage of products. The multiphase sinters investigated in the study were prepared from two types of water–atomized steel powders: 316L and 409L. Optical microscopy, X–ray phase analysis and examinations of microhardness were performed in order to determine the microstructure and basic properties of sintered steels. The main assumption for this study was to analyse the microstructure and mechanical properties of sintered steels used for manufacturing of various car parts.

  17. Sintered wire cesium dispenser photocathode

    Science.gov (United States)

    Montgomery, Eric J; Ives, R. Lawrence; Falce, Louis R

    2014-03-04

    A photoelectric cathode has a work function lowering material such as cesium placed into an enclosure which couples a thermal energy from a heater to the work function lowering material. The enclosure directs the work function lowering material in vapor form through a low diffusion layer, through a free space layer, and through a uniform porosity layer, one side of which also forms a photoelectric cathode surface. The low diffusion layer may be formed from sintered powdered metal, such as tungsten, and the uniform porosity layer may be formed from wires which are sintered together to form pores between the wires which are continuous from the a back surface to a front surface which is also the photoelectric surface.

  18. Constrained Sintering in Fabrication of Solid Oxide Fuel Cells.

    Science.gov (United States)

    Lee, Hae-Weon; Park, Mansoo; Hong, Jongsup; Kim, Hyoungchul; Yoon, Kyung Joong; Son, Ji-Won; Lee, Jong-Ho; Kim, Byung-Kook

    2016-08-09

    Solid oxide fuel cells (SOFCs) are inevitably affected by the tensile stress field imposed by the rigid substrate during constrained sintering, which strongly affects microstructural evolution and flaw generation in the fabrication process and subsequent operation. In the case of sintering a composite cathode, one component acts as a continuous matrix phase while the other acts as a dispersed phase depending upon the initial composition and packing structure. The clustering of dispersed particles in the matrix has significant effects on the final microstructure, and strong rigidity of the clusters covering the entire cathode volume is desirable to obtain stable pore structure. The local constraints developed around the dispersed particles and their clusters effectively suppress generation of major process flaws, and microstructural features such as triple phase boundary and porosity could be readily controlled by adjusting the content and size of the dispersed particles. However, in the fabrication of the dense electrolyte layer via the chemical solution deposition route using slow-sintering nanoparticles dispersed in a sol matrix, the rigidity of the cluster should be minimized for the fine matrix to continuously densify, and special care should be taken in selecting the size of the dispersed particles to optimize the thermodynamic stability criteria of the grain size and film thickness. The principles of constrained sintering presented in this paper could be used as basic guidelines for realizing the ideal microstructure of SOFCs.

  19. Consolidation of copper and aluminium powders by spark plasma sintering

    Science.gov (United States)

    Saiprasad, M.; Atchayakumar, R.; Thiruppathi, K.; Raghuraman, S.

    2016-09-01

    Processing in the powder metallurgy route has emerged as an economical process for the production of near net shaped components with a wide range of desired mechanical properties suitable for various applications of industrial needs. This research work was conducted with an objective of studying the improvisation of density and hardness of Copper-Aluminium alloy prepared by spark plasma sintering. Cu-Al alloy with a composition of 95% copper and 5% aluminium was prepared by SPS process. SPS is a low voltage, DC pulse current activated, pressure-assisted sintering, which enables sintering at lower temperatures and shorter durations. The combination offered by Cu-Al alloy of high strength and high corrosion resistance results their applications under a wide variety of conditions. The density and hardness of the prepared sample were measured by conducting appropriate tests. Apparently, the values of hardness and density of the specimen prepared by SPS seemed to be better than that of conventional sintering. The experimental procedure, testing methodologies and analysis are presented.

  20. Nuclear tracks in sinterized gemstones

    International Nuclear Information System (INIS)

    Espinosa, G.; Rodriguez, L.V.; Golzarri, J.I.; Castano, V.M.

    1993-01-01

    The responses of sinterized gemstones to alpha particles attempt analyzed with the objective of finding new materials for SSNTD, and also to understand their interaction with radiation and the formation of tracks. In this work we present the results of the characterization of these materials as SSNTD. The micro structural changes observed by electron microscopy. The preparation, etching solution concentration, etching time and effects of temperature are discussed. (Author)

  1. Microwave sintering of ceramic materials

    Science.gov (United States)

    Karayannis, V. G.

    2016-11-01

    In the present study, the potential of microwave irradiation as an innovative energy- efficient alternative to conventional heating technologies in ceramic manufacturing is reviewed, addressing the advantages/disadvantages, while also commenting on future applications of possible commercial interest. Ceramic materials have been extensively studied and used due to several advantages they exhibit. Sintering ceramics using microwave radiation, a novel technology widely employed in various fields, can be an efficient, economic and environmentally-friendlier approach, to improve the consolidation efficiency and reduce the processing cycle-time, in order to attain substantial energy and cost savings. Microwave sintering provides efficient internal heating, as energy is supplied directly and penetrates the material. Since energy transfer occurs at a molecular level, heat is generated throughout the material, thus avoiding significant temperature gradients between the surface and the interior, which are frequently encountered at high heating rates upon conventional sintering. Thus, rapid, volumetric and uniform heating of various raw materials and secondary resources for ceramic production is possible, with limited grain coarsening, leading to accelerated densification, and uniform and fine-grained microstructures, with enhanced mechanical performance. This is particularly important for manufacturing large-size ceramic products of quality, and also for specialty ceramic materials such as bioceramics and electroceramics. Critical parameters for the process optimization, including the electromagnetic field distribution, microwave-material interaction, heat transfer mechanisms and material transformations, should be taken into consideration.

  2. Contact hysteroscopy.

    Science.gov (United States)

    Baggish, M S; Barbot, J

    1983-06-01

    In 1907 innovations in optics and illumination made by Maximilian Nitze were applied to hysteroscopy by Charles David, who wrote a treatise of hysteroscopy. David improved illumination by placing an electric incandescent bulb at the intrauterine end of his endoscope and also sealed the distal end of the tube with a piece of glass. The history of the contact endoscope that the authors personally used is connected to the invention by Vulmiere (1952) of a revolutionary illumination process in endoscopy--the "cold light" process. The components of cold light consist of a powerful external light source that is transmitted via a special optical guide into the endometrial cavity. The 1st application of his principle (1963) was an optical trochar contained in a metallic sheath. This simple endoscope was perfected, and in 1973 Barbot and Parent, in France, began to use it to examine the uterine cavity. Discussion focuses on methods, instrumentation, method for examination (grasping the instrument, setup, light source, anesthesia, dilatation, technique, and normal endometrium); cervical neoplasia; nonneoplastic lesions of the endometrium (endometrial polyp, submucous myoma, endometrial hyperplasia); intrauterine device localization; neoplastic lesions of the endometrium; precursors (adenocarcinoma); hysteroscopy in pregnancy (embryoscopy, hydatidiform mole, postpartum hemorrhage, incomplete abortion, spontaneous abortion, induced abortions, and amnioscopy); and examinations of children and infants. The contact endoscope must make light contact with the structure to be viewed. The principles of contact endoscopy depend on an interpretation of color, contour, vascular pattern, and a sense of touch. These are computed together and a diagnosis is made on the basis of previously learned clinical pathologic correlations. The contact endoscope is composed of 3 parts: an optical guide; a cylindric chamber that collects and traps ambient light; and a magnifying eyepiece. The phase of

  3. Titanium Powder Sintering in a Graphite Furnace and Mechanical Properties of Sintered Parts

    OpenAIRE

    Changzhou Yu; Peng Cao; Mark Ian Jones

    2017-01-01

    Recent accreditation of titanium powder products for commercial aircraft applications marks a milestone in titanium powder metallurgy. Currently, powder metallurgical titanium production primarily relies on vacuum sintering. This work reported on the feasibility of powder sintering in a non-vacuum furnace and the tensile properties of the as-sintered Ti. Specifically, we investigated atmospheric sintering of commercially pure (C.P.) titanium in a graphite furnace backfilled with argon and stu...

  4. Production of sintered alumina from powder; optimization of the sinterized parameters for the maximum mechanical resistence

    International Nuclear Information System (INIS)

    Rocha, J.C. da.

    1981-02-01

    Pure, sinterized alumina and the optimization of the parameters of sinterization in order to obtain the highest mechanical resistence are discussed. Test materials are sinterized from a fine powder of pure alumina (Al 2 O 3 ), α phase, at different temperatures and times, in air. The microstructures are analysed concerning porosity and grain size. Depending on the temperature or the time of sinterization, there is a maximum for the mechanical resistence. (A.R.H.) [pt

  5. Alternative sintering methods compared to conventional thermal sintering for inkjet printed silver nanoparticle ink

    NARCIS (Netherlands)

    Niittynen, J.; Abbel, R.; Mäntysalo, M.; Perelaer, J.; Schubert, U.S.; Lupo, D.

    2014-01-01

    In this contribution several alternative sintering methods are compared to traditional thermal sintering as high temperature and long process time of thermal sintering are increasing the costs of inkjet-printing and preventing the use of this technology in large scale manufacturing. Alternative

  6. Protocol for Ultralow-Temperature Ceramic Sintering: An Integration of Nanotechnology and the Cold Sintering Process.

    Science.gov (United States)

    Guo, Hanzheng; Baker, Amanda; Guo, Jing; Randall, Clive A

    2016-11-22

    The sintering process is an essential step in taking particulate materials into dense ceramic materials. Although a number of sintering techniques have emerged over the past few years, the sintering process is still performed at high temperatures. Here we establish a protocol to achieve dense ceramic solids at extremely low temperatures (sustainable manufacturing practices.

  7. Compositional homogeneity in a medical-grade stainless steel sintered with a Mn–Si additive

    International Nuclear Information System (INIS)

    Salahinejad, E.; Hadianfard, M.J.; Ghaffari, M.; Mashhadi, Sh. Bagheri; Okyay, A.K.

    2012-01-01

    In this paper, chemical composition uniformity in amorphous/nanocrystallization medical-grade stainless steel (ASTM ID: F2581) sintered with a Mn–Si additive was studied via scanning electron microscopy, energy dispersive X-ray spectroscopy, and transmission electron microscopy. The results show that as a result of sintering at 1000 °C, no dissociation of Mn–Si additive particles embedded in the stainless steel matrix occurs. In contrast, sintering at 1050 °C develops a relatively homogeneous microstructure from the chemical composition viewpoint. The aforementioned phenomena are explained by liquation of the Mn–Si eutectic additive, thereby wetting of the main powder particles, penetrating into the particle contacts and pore zones via capillary forces, and providing a path of high diffusivity. - Highlights: ► Local chemical composition in a sintered stainless steel was studied. ► Due to sintering at 1000 °C, no dissociation of additive particles occurs. ► Sintering at 1050 °C provides a uniform chemical composition.

  8. Liquid Phase Sintering of (Ti,Zr)C with WC-Co.

    Science.gov (United States)

    Ma, Taoran; Borrajo-Pelaez, Rafael; Hedström, Peter; Blomqvist, Andreas; Borgh, Ida; Norgren, Susanne; Odqvist, Joakim

    2017-01-11

    (Ti,Zr)C powder was sintered with WC-Co following an industrial process, including an isotherm at 1410 °C. A series of interrupted sintering trials was performed with the aim of studying the sintering behavior and the microstructural evolution during both solid-state and liquid-state sintering. Reference samples, using the same elemental compositions but with the starting components TiC and ZrC instead of (Ti,Zr)C, were also sintered. The microstructure was investigated using scanning electron microscopy and energy dispersive X-ray spectroscopy. It is found that the (Ti,Zr)C phase decomposes into Ti-rich and Zr-rich nano-scale lamellae before the liquid-state of the sintering initiates. The final microstructure consists of the binder and WC as well as two different γ phases, rich in either Ti (γ₁) or Zr (γ₂). The γ₂ phase grains have a core-shell structure with a (Ti,Zr)C core following the full sintering cycle. The major differences observed in (Ti,Zr)C with respect to the reference samples after the full sintering cycle were the referred core-shell structure and the carbide grain sizes; additionally, the microstructural evolution during sintering differs. The grain size of carbides (WC, γ₁, and γ₂) is about 10% smaller in WC-(Ti,Zr)C-Co than WC-TiC-ZrC-Co. The shrinkage behavior and hardness of both composites are reported and discussed.

  9. Liquid Phase Sintering of (Ti,ZrC with WC-Co

    Directory of Open Access Journals (Sweden)

    Taoran Ma

    2017-01-01

    Full Text Available (Ti,ZrC powder was sintered with WC-Co following an industrial process, including an isotherm at 1410 °C. A series of interrupted sintering trials was performed with the aim of studying the sintering behavior and the microstructural evolution during both solid-state and liquid-state sintering. Reference samples, using the same elemental compositions but with the starting components TiC and ZrC instead of (Ti,ZrC, were also sintered. The microstructure was investigated using scanning electron microscopy and energy dispersive X-ray spectroscopy. It is found that the (Ti,ZrC phase decomposes into Ti-rich and Zr-rich nano-scale lamellae before the liquid-state of the sintering initiates. The final microstructure consists of the binder and WC as well as two different γ phases, rich in either Ti (γ1 or Zr (γ2. The γ2 phase grains have a core-shell structure with a (Ti,ZrC core following the full sintering cycle. The major differences observed in (Ti,ZrC with respect to the reference samples after the full sintering cycle were the referred core-shell structure and the carbide grain sizes; additionally, the microstructural evolution during sintering differs. The grain size of carbides (WC, γ1, and γ2 is about 10% smaller in WC-(Ti,ZrC-Co than WC-TiC-ZrC-Co. The shrinkage behavior and hardness of both composites are reported and discussed.

  10. Device for welding components using ultrasonics, particularly for solar cell contacts and solar cell connections. Vorrichtung zum Verschweissen von Bauteilen unter Verwendung von Ultraschall, insbesondere von Solarzellenkontakten und Solarzellenverbindern

    Energy Technology Data Exchange (ETDEWEB)

    Gochermann, H.

    1983-06-23

    This is a device for welding components, particularly solar cell contacts and solar cell connections, using an ultrasonic welding device. The ultrasonic welding device has a high frequency generator, an ultrasonic emitter, a transmitter, a sonotrode, a device for accommodating the components and controls. The sonotrode is provided with a circumferential beading acting as the welding disc, which, together with the sonotrode, is rolled over the components by a relative movement. The part of the beading which is tangential to the component introduces ultrasonic energy into the component. The relative movement is made possible by the system of the ultrasonic emitter, transmitter and sonotrode with the surrounding beading being mounted so that it can rotate in a vibration node of the transmitter. (orig.).

  11. Implementation Challenges for Sintered Silicon Carbide Fiber Bonded Ceramic Materials for High Temperature Applications

    Science.gov (United States)

    Singh, M.

    2011-01-01

    During the last decades, a number of fiber reinforced ceramic composites have been developed and tested for various aerospace and ground based applications. However, a number of challenges still remain slowing the wide scale implementation of these materials. In addition to continuous fiber reinforced composites, other innovative materials have been developed including the fibrous monoliths and sintered fiber bonded ceramics. The sintered silicon carbide fiber bonded ceramics have been fabricated by the hot pressing and sintering of silicon carbide fibers. However, in this system reliable property database as well as various issues related to thermomechanical performance, integration, and fabrication of large and complex shape components has yet to be addressed. In this presentation, thermomechanical properties of sintered silicon carbide fiber bonded ceramics (as fabricated and joined) will be presented. In addition, critical need for manufacturing and integration technologies in successful implementation of these materials will be discussed.

  12. Master sintering curves of two different alumina powder compacts

    Directory of Open Access Journals (Sweden)

    Vaclav Pouchly

    2009-12-01

    Full Text Available Concept of Master Sintering Curve is a strong tool for optimizing sintering schedule. The sintering behaviour can be predicted, and sintering activation energy can be calculated with the help of few dilatometric measurements. In this paper an automatic procedure was used to calculate Master Sintering Curves of two different alumina compacts. The sintering activation energies were determined as 640 kJ/mol for alumina with particle size of 240 nm, respective 770 kJ/mol for alumina with particle size of 110 nm. The possibility to predict sintering behaviour with the help of Master Sintering Curve was verified.

  13. Sintering characteristics of nano-ceramic coatings

    NARCIS (Netherlands)

    de Hosson, J.T.M.; Popma, R.

    2003-01-01

    This paper concentrates on sintering characteristics of nano-sized ceramic SiO2 particles. The sintering process is studied as a function of temperature using a conventional furnace and using a laser beam. The underlying idea is to combine the nanoceramic sol-gel concept with inkjet technology and

  14. Mechanical characteristics of microwave sintered silicon carbide

    Indian Academy of Sciences (India)

    In firing of products by conventionally sintered process, SiC grain gets oxidized producing SiO2 (∼ 32 wt%) and deteriorates the quality of the product substantially. Partially sintered silicon carbide by such a method is a useful material for a varieties of applications ranging from kiln furniture to membrane material.

  15. Kinetic analysis of boron carbide sintering

    International Nuclear Information System (INIS)

    Borchert, W.; Kerler, A.R.

    1975-01-01

    The kinetics of the sintering of boron carbide were investigated by shrinkage measurements with a high-temperature dilatometer under argon atmosphere in dependence on temperature, grain size, and pressure. The activation energies and the reaction mechanisms of the different stages of sintering were determined. (orig.) [de

  16. Electro sinter forging of titanium disks

    DEFF Research Database (Denmark)

    Cannella, Emanuele; Nielsen, Chris Valentin; Bay, Niels Oluf

    Electro sinter forging (ESF) is a new sintering process based on the principle of electrical Joule heating. In the present work, middle frequency direct current (MFDC) was flowing through the powder compact, which was under mechanical pressure. The main parameters are the high electrical current,...

  17. Sintering of ultra high molecular weight polyethylene

    Indian Academy of Sciences (India)

    Abstract. Ultra high molecular weight polyethylene (UHMWPE) is a high performance polymer having low coefficient of friction, good abrasion resistance, good chemical ... In this study, we report our results on compaction and sintering behaviour of two grades of UHMWPE with reference to the powder morphology, sintering ...

  18. Sintered-to-size FBR fuel

    International Nuclear Information System (INIS)

    Rasmussen, D.E.; Schaus, P.S.

    1984-04-01

    Fabrication of sintered-to-size PuO 2 -UO 2 fuel pellets was completed for testing of proposed FBR product specifications. Approximately 6000 pellets were fabricated to two nominal diameters and two densities by cold pressing and sintering to size. Process control and correlation between test and production batches are discussed

  19. Sintering of zirconia in high-pressure

    International Nuclear Information System (INIS)

    Kunrath, A.O.; Strohaecker, T.R.; Pereira, A.S.; Jornada, J.A.H. da; Piermarini, G.J.

    1989-01-01

    A systematic study about the sintering of zirconia hyperfines powders in high-pressure is presented. The differents conditions effect of sintering in microstructure and in hardness and tenacity properties of zirconia samples with a very fine grain is also studied. (C.G.C.) [pt

  20. Modeling the microstructural evolution during constrained sintering

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Frandsen, Henrik Lund; Tikare, V.

    A numerical model able to simulate solid state constrained sintering of a powder compact is presented. The model couples an existing kinetic Monte Carlo (kMC) model for free sintering with a finite element (FE) method for calculating stresses on a microstructural level. The microstructural respon...

  1. Modeling the Microstructural Evolution During Constrained Sintering

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Frandsen, Henrik Lund; Pryds, Nini

    2015-01-01

    A numerical model able to simulate solid-state constrained sintering is presented. The model couples an existing kinetic Monte Carlo model for free sintering with a finite element model (FEM) for calculating stresses on a microstructural level. The microstructural response to the local stress as ...

  2. Mechanical characteristics of microwave sintered silicon carbide

    Indian Academy of Sciences (India)

    Unknown

    Central Glass and Ceramic Research Institute, Kolkata 700 032, India. Abstract. The present work deals with the sintering of ... recently become an attractive area of research and deve- lopment. The major advantages of ... without the usage of sintering aids (Lee and Case 1999;. Goldstein et al 1999). Several studies have ...

  3. THE POLARIZING EFFECTS IN SINTERED KAOLIN

    African Journals Online (AJOL)

    compacted and sintered density of the ceramic have been studied, and a density — pressure relationship for before- and after-sintering conditions obtained. INTRODUCTION. Ceramics have been known to mankind for thousands of years, and have been used in construction materials. In many applications, ceramics have.

  4. The Influence of Sintering Temperature of Reactive Sintered (Ti, MoC-Ni Cermets

    Directory of Open Access Journals (Sweden)

    Marek Jõeleht

    2015-09-01

    Full Text Available Titanium-molybdenum carbide nickel cermets ((Ti, MoC-Ni were produced using high energy milling and reactive sintering process. Compared to conventional TiC-NiMo cermet sintering the parameters for reactive sintered cermets vary since additional processes are present such as carbide synthesis. Therefore, it is essential to acquire information about the suitable sintering regime for reactive sintered cermets. One of the key parameters is the final sintering temperature when the liquid binder Ni forms the final matrix and vacancies inside the material are removed. The influence of the final sintering temperature is analyzed by scanning electron microscopy. Mechanical properties of the material are characterized by transverse rupture strength, hardness and fracture toughness.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7179

  5. Topography, microhardness, and precision of fit on ready-made zirconia abutment before/after sintering process.

    Science.gov (United States)

    Kanno, Taro; Milleding, Percy; Wennerberg, Ann

    2007-09-01

    Sintering porcelain on a ceramic abutment may change the microstructure and result in aging processes that influence the mechanical properties, internal strain, and the three-dimensional form of the abutment, thus causing a possible misfit between the abutment and the fixture. The aim was to investigate topography, microhardness, and precision of fit on yttrium-stabilized zirconia (Y-TZP) abutments before/after the sintering process. Ten Y-TZP abutment samples were ground to a shape used in the clinical situation and divided at random into two groups: before/after sintering. After the surface roughness was measured on all abutments, the abutments were connected to fixture replicas, embedded in resin, and cut in the longitudinal axis. Both sides of the cut samples were measured with respect to microhardness and minimum distance between fixture and abutment surface. t-Test, one-way analysis of variance, and Bonferroni multiple comparisons were used to investigate statistical significant differences. The surface roughness (S(a) and S(dr)) after sintering was significantly higher than before sintering. The total average values of microhardness after sintering were statistically lower than before sintering with a difference of 2%. The total distance between abutment/fixture before/after sintering demonstrated no statistically significant difference. Contact between abutment/fixture was most common at the top area of the fixture. A slight decrease of microhardness and contamination of porcelain particles immediately below the veneered part were found on the Y-TZP abutment after sintering. The sintering process did not affect the precision of fit.

  6. Sintered ceramics having controlled density and porosity

    International Nuclear Information System (INIS)

    Brassfield, H.C.; DeHollander, W.R.; Nivas, Y.

    1980-01-01

    A new method was developed for sintering ceramic uranium dioxide powders, in which ammonium oxalate is admixed with the powder prior to being pressed into a cylindrical green body, so that the end-point density of the final nuclear-reactor fuel product can be controlled. When the green body is heated, the ammonium oxalate decomposes and leaves discrete porosity in the sintered body, which corresponds to the ammonium oxalate regions in the green body. Thus the end-point density of the sintered body is a function of the amount of ammonium oxalate added. The final density of the sintered product is about 90-97% of the theoretical. The addition of ammonium oxalate also allows control of the pore size and distribution throughout the fuel. The process leaves substantially no impurities in the sintered strucuture. (DN)

  7. Liquid Film Capillary Mechanism for Densification of Ceramic Powders during Flash Sintering

    Directory of Open Access Journals (Sweden)

    Rachman Chaim

    2016-04-01

    Full Text Available Recently, local melting of the particle surfaces confirmed the formation of spark and plasma during spark plasma sintering, which explains the rapid densification mechanism via liquid. A model for rapid densification of flash sintered ceramics by liquid film capillary was presented, where liquid film forms by local melting at the particle contacts, due to Joule heating followed by thermal runaway. Local densification is by particle rearrangement led by spreading of the liquid, due to local attractive capillary forces. Electrowetting may assist this process. The asymmetric nature of the powder compact represents an invasive percolating system.

  8. Contacts to semiconductors

    International Nuclear Information System (INIS)

    Tove, P.A.

    1975-08-01

    Contacts to semiconductors play an important role in most semiconductor devices. These devices range from microelectronics to power components, from high-sensitivity light or radiation detectors to light-emitting of microwave-generating components. Silicon is the dominating material but compound semiconductors are increasing in importance. The following survey is an attempt to classify contact properties and the physical mechanisms involved, as well as fabrication methods and methods of investigation. The main interest is in metal-semiconductor type contacts where a few basic concepts are dealt with in some detail. (Auth.)

  9. Titanium Powder Sintering in a Graphite Furnace and Mechanical Properties of Sintered Parts

    Directory of Open Access Journals (Sweden)

    Changzhou Yu

    2017-02-01

    Full Text Available Recent accreditation of titanium powder products for commercial aircraft applications marks a milestone in titanium powder metallurgy. Currently, powder metallurgical titanium production primarily relies on vacuum sintering. This work reported on the feasibility of powder sintering in a non-vacuum furnace and the tensile properties of the as-sintered Ti. Specifically, we investigated atmospheric sintering of commercially pure (C.P. titanium in a graphite furnace backfilled with argon and studied the effects of common contaminants (C, O, N on sintering densification of titanium. It is found that on the surface of the as-sintered titanium, a severely contaminated porous scale was formed and identified as titanium oxycarbonitride. Despite the porous surface, the sintered density in the sample interiors increased with increasing sintering temperature and holding time. Tensile specimens cut from different positions within a large sintered cylinder reveal different tensile properties, strongly dependent on the impurity level mainly carbon and oxygen. Depending on where the specimen is taken from the sintered compact, ultimate tensile strength varied from 300 to 580 MPa. An average tensile elongation of 5% to 7% was observed. Largely depending on the interstitial contents, the fracture modes from typical brittle intergranular fracture to typical ductile fracture.

  10. Spark Plasma Sintering of Load-Bearing Iron-Carbon Nanotube-Tricalcium Phosphate CerMets for Orthopaedic Applications

    Science.gov (United States)

    Montufar, Edgar B.; Horynová, Miroslava; Casas-Luna, Mariano; Diaz-de-la-Torre, Sebastián; Celko, Ladislav; Klakurková, Lenka; Spotz, Zdenek; Diéguez-Trejo, Guillermo; Fohlerová, Zdenka; Dvorak, Karel; Zikmund, Tomáš; Kaiser, Jozef

    2016-04-01

    Recently, ceramic-metallic composite materials (CerMets) have been investigated for orthopaedic applications with promising results. This first generation of bio-CerMets combine the bioactivity of hydroxyapatite with the mechanical stability of titanium to fabricate bioactive, tough and biomechanically more biocompatible osteosynthetic devices. Nonetheless, these first CerMets are not biodegradable materials and a second surgery is required to remove the implant after bone healing. The present work aims to develop the next generation bio-CerMets, which are potential biodegradable materials. The process to produce the new biodegradable CerMet consisted of mixing powder of soluble and osteoconductive alpha tricalcium phosphate with biocompatible and biodegradable iron with consolidation through spark plasma sintering (SPS). The microstructure, composition and mechanical strength of the new CerMet were studied by metallography, x-ray diffraction and diametral tensile strength tests, respectively. The results show that SPS produces CerMet with higher mechanical performance (120 MPa) than the ceramic component alone (29 MPa) and similar mechanical strength to the pure metallic component (129 MPa). Nonetheless, although a short sintering time (10 min) was used, partial transformation of the alpha tricalcium phosphate into its allotropic and slightly less soluble beta phase was observed. Cell adhesion tests show that osteoblasts are able to attach to the CerMet surface, presenting spread morphology regardless of the component of the material with which they are in contact. However, the degradation process restricted to the small volume of the cell culture well quickly reduces the osteoblast viability.

  11. The evaluation of microstructure and mechanical properties of sintered sub-micron WC-Co powders

    International Nuclear Information System (INIS)

    Nor Izan Izura; Mohd Asri Selamat; Noraizham Mohamad Diah; Talib Ria Jaafar

    2007-01-01

    A cemented tungsten carbide (WC-Co) is widely used for a variety of machining, cutting, drilling and other applications. The properties of this tungsten heavy alloy are sensitive to processing and degraded by residual porosity. The sequence of high end powder metallurgy process include mixing, compacting and followed by multi-atmosphere sintering of green compact were analyzed. The sub micron (<1.0 μm) and less than 10.0 μm of WC powders are sintered with a metal binder 6% Co to provide pore-free part. The powder compacts were sintered at temperatures cycle in the range of 1200 degree Celsius-1550 degree Celsius in nitrogen-based sintering atmosphere. To date, however there have been few reported studies in the literature that the best sintering was carried out via liquid phase sintering in vacuum at approximately 1500 degree Celsius. from this study we found that in order to attain high mechanical properties, a fine grain size of powder is necessary. Therefore, the attention of this work is to develop and produce wear resistant component with better properties or comparable to the commercial ones. (author)

  12. Melting and Sintering of Ashes

    DEFF Research Database (Denmark)

    Hansen, Lone Aslaug

    1997-01-01

    , the biggest deviations being found for salt rich (i.e. straw derived) ashes.A simple model assuming proportionality between fly ash fusion and deposit formation was found to be capable of ranking deposition rates for the different straw derived fly ashes, whereas for the fly ashes from coal/straw co......-firing, the model only had a qualitative agreement with the measured ash deposit formation rates.Sintering measurements were carried out by means of compression strength testing of ash pellets. This method showed to not be applicable for the salt rich fly ash derived from straw combustion. For the fly ashes...... have been employed in a simple model for prediction of ash deposit formation, the results of which have been compared to ash deposition formation rates measured at the respective boilers.The ash fusion results were found to directly reflect the ash compositional data:a) Fly ashes and deposits from...

  13. Computer simulation of low-temperature composites sintering processes for additive technologies

    Science.gov (United States)

    Tovpinets, A. O.; Leytsin, V. N.; Dmitrieva, M. A.

    2017-12-01

    This is impact research of mixture raw components characteristics on the low-temperature composites structure formation during the sintering process. The obtained results showed that the structure determination of initial compacts obtained after thermal destruction of the polymer binder lets quantify the concentrations of main components and the refractory crystalline product of thermal destruction. Accounting for the distribution of thermal destruction refractory product allows us to refine the forecast of thermal stresses in the matrix of sintered composite. The presented results can be considered as a basis for optimization of initial compositions of multilayer low-temperature composites obtained by additive technologies.

  14. Science of sintering and its future

    International Nuclear Information System (INIS)

    Ristic, M.M.

    1975-01-01

    Some new books published by M.Yu. Baljshin, V.A. Ivensen, V.V. Skorohod and others are characterized by the wish to give a complete approach to the problems of sintering theory. Bearing just this in mind while writing the book ''An Essay on the Generalization of Sintering Theory'' (G.V.Samsonov, M.M. Ristic with the collaborators) an idea was born: to ask the most eminent scientists in this field to present their own opinions on the theme ''The Science of Sintering and Modern Views on its Future''. There were formed 18 questions, given in the appendix to be answered. The received answers were presented in 10 chapters of this book. The fourth part of the book consists of papers of eminent scientists engaged in the field of sintering science (some of which were published here for the first time). This material is published in the book with the consent of the authors and these original contributions provide a more profound knowledge of sintering. The initial idea, that the book should have a monograph character and in which the answers would serve as some data on the latest notions of the science of sintering, was somewhat changed since the original opinions of individual scientists are given in the book and these, are sometimes very contradictory. This, in fact, gives the book a special charm because the unsolved problems in the science of sintering are most evidently stressed in this way

  15. IRON ORE SINTER PRODUCTION USING ELECTRIC ARC FURNACE DUST AS RAW MATERIAL

    Directory of Open Access Journals (Sweden)

    Victor Bridi Telles

    2013-03-01

    Full Text Available The steel production through Electric Arc Furnaces (EAF generates approximately 15% to 20% of Electric Arc Furnace Dust (EAFD. This waste is considered dangerous due to the presence of metals as lead and cadmium that leach in contact with water. Because of this, the EAFD recycling becomes an alternative to diminish the costs with landfills and environmental harms caused by the waste. The iron ore sintering is a process that reuses most part of powders generated by the steelmaking. However the EAFD is not reused in this process because it contains zinc. The zinc is highly detrimental inside blast furnaces causing heavy crusts and affecting the thermodynamic equilibrium of the process. Therefore, this work studies the EAFD reuse in the iron ore sintering process to produce iron ore sinter with zinc contents between the limits established for blast furnaces.

  16. PRODUCTION OF PROTOTYPE PARTS USING DIRECT METAL LASER SINTERING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Josef Sedlak

    2015-08-01

    Full Text Available Unconventional methods of modern materials preparation include additive technologies which involve the sintering of powders of different chemical composition, granularity, physical, chemical and other utility properties. The technology called Rapid Prototyping, which uses different technological principles of producing components, belongs to this type of material preparation. The Rapid Prototyping technology facilities use photopolymers, thermoplastics, specially treated paper or metal powders. The advantage is the direct production of metal parts from input data and the fact that there is no need for the production of special tools (moulds, press tools, etc.. Unused powder from sintering technologies is re-used for production 98% of the time, which means that the process is economical, as well as ecological.The present paper discusses the technology of Direct Metal Laser Sintering (DMLS, which falls into the group of additive technologies of Rapid Prototyping (RP. The major objective is a detailed description of DMLS, pointing out the benefits it offers and its application in practice. The practical part describes the production and provides an economic comparison of several prototype parts that were designed for testing in the automotive industry.

  17. Surface Morphology and Corrosion Behavior of Hydroxyapatite-Coated Co-Cr Implant: Effect of Sintering Conditions

    Science.gov (United States)

    Shirdar, Mostafa Rezazadeh; Taheri, Mohammad Mahdi

    2017-12-01

    The surface morphology and corrosion behavior of a hydroxyapatite (HA)-coated cobalt-chromium (Co-Cr) implant after sintering posttreatment using different times and temperatures were investigated. The substrates were electrophoretically coated with calcium phosphate in solution of Ca(NO3)·4H2O and NH4H2PO4. Sintering at four different conditions was then performed on the as-deposited samples. Scanning electron microscopy, contact angle measurement, and potentiodynamic polarization studies were employed to investigate the surface morphology, porosity, wettability, and corrosion behavior of the coated samples. The results revealed that the HA-coated substrate sintered at temperature of 600°C for 20 min showed fairly uniform microstructure with the highest density and corrosion resistance compared with the other conditions. Moreover, the highest wettability was exhibited by the HA surface sintered at temperature of 500°C for 60 min.

  18. Experimental sintering of ash at conduit conditions and implications for the longevity of tuffisites

    Science.gov (United States)

    Gardner, James E.; Wadsworth, Fabian B.; Llewellin, Edward W.; Watkins, James M.; Coumans, Jason P.

    2018-03-01

    Escape of gas from magma in the conduit plays a crucial role in mitigating explosivity. Tuffisite veins—ash-filled cracks that form in and around volcanic conduits—represent important gas escape pathways. Sintering of the ash infill decreases its porosity, eventually forming dense glass that is impermeable to gas. We present an experimental investigation of surface tension-driven sintering and associated densification of rhyolitic ash under shallow conduit conditions. Suites of isothermal (700-800 °C) and isobaric H2O pressure (20 and 40 MPa) experiments were run for durations of 5-90 min. Obsidian powders with two different size distributions were used: 1-1600 μm (mean size = 89 μm), and 63-400 μm (mean size = 185 μm). All samples evolved similarly through four textural phases: phase 1—loose and cohesion-less particles; phase 2—particles sintered at contacts and surrounded by fully connected tortuous pore space of up to 40% porosity; phase 3—continuous matrix of partially coalesced particles that contain both isolated spherical vesicles and connected networks of larger, contorted vesicles; phase 4—dense glass with 2-5% fully isolated vesicles that are mainly spherical. Textures evolve faster at higher temperature and higher H2O pressure. Coarse samples sinter more slowly and contain fewer, larger vesicles when fully sintered. We quantify the sintering progress by measuring porosity as a function of experimental run-time, and find an excellent collapse of data when run-time is normalized by the sintering timescale {λ}_s=η \\overline{R}/σ , where η is melt viscosity, \\overline{R} is mean particle radius, and σ is melt-gas surface tension. Because timescales of diffusive H2O equilibration are generally fast compared to those of sintering, the relevant melt viscosity is calculated from the solubility H2O content at experimental temperature and pressure. We use our results to develop a framework for estimating ash sintering rates under shallow

  19. Immobilization of Uranium Silicides in Sintered Glass

    International Nuclear Information System (INIS)

    Mateos, P.; Russo, D.O.; Heredia, A.D.; Sanfilippo, M.

    2003-01-01

    High activity nuclear spent fuels vitrification by fusion is a well known technology which has industrial scale in France, England, Japan, EEUU. Borosilicates glasses are used in this process.Sintered glasses are an alternative to the immobilization task in which there is also a wide experience around the world.The available technics are: cold pressing and sintering , hot-pressing and hot isostatic pressing.This work compares Borosilicates and Iron silicates sintered glasses behaviour when different ammounts of nuclear simulated waste is added

  20. Solidification of HLLW into sintered ceramics

    International Nuclear Information System (INIS)

    O-Oka, K.; Ohta, T.; Masuda, S.; Tsunoda, N.

    1979-01-01

    Simulated HLLW from the PNC reprocessing plant at Tokai was solidified into sintered ceramics by normal sintering or hot-pressing with addition of some oxides. Among various ceramic products obtained so far, the most preferable was nepheline-type sintered solids formed with addition of SiO 2 and Al 2 O 3 to the simulated waste calcine. The solid shows advantageous properties in leach rate and mechanical strength, which suggest that the ceramic solids were prepared with additions of ZrO 2 or MnO 2 , and some of them showed good characteristics

  1. Investigation of the sintering rate of snow with high-resolution penetration tests

    Science.gov (United States)

    Peinke, Isabel; Hagenmuller, Pascal; Chambon, Guillaume; Roulle, Jacques; Morin, Samuel

    2017-04-01

    Sintering in snow is very active due to a high homologous temperature and has a major effect on the evolution of the snow mechanical properties. We investigated the sintering rate of snow using high-resolution penetration tests performed with the Snow Micro Penetrometer (SMP) in a cold room at -10°C. To this end, we prepared several samples by sieving rounded grain snow with different sieve sizes (0.8, 1 and 1.6 mm) and conducted numerous SMP tests at different times during the first day of sintering. The SMP was modified such that only the measuring tip was in contact to the snow and we mounted three different tips with diameters of 4, 5 and 8 mm. The increase of the measured mean penetration resistance is shown to follow a power law whose exponent is defined as the sintering rate. The sintering rate mean value is about 0.25, which is consistent with values reported in the literature and it increases with specific surface area and depth. However, the sintering rate diminishes when SMP tip size increases, which is counterintuitive for a material property. An advanced analysis is thus required to extract relevant material properties, as the deflection at rupture, individual rupture force of bonds, and spatial intensity of rupture events, out of the SMP signal. A Poisson shot noise model [Löwe and Herwijnen 2012] was used, in which a depth-dependence of the parameters was assumed. The individual rupture force follows a power law with exponents around 0.3 with almost no dependency on the tip size. In comparison, the time evolution of intensity and deflection at rupture were negligible. This approach exploits the high-resolution of the SMP to give new insights on the sintering mechanisms in snow.

  2. Effect of sintering temperature and heating mode on consolidation of ...

    Indian Academy of Sciences (India)

    Microwave sintering was performed in 2.45 GHz multimode microwave furnace at temperatures ranging from 570–630 °C. Microwave sintering at a heating rate of as high as 22°C/min resulted in ∼55% reduction of processing time as compared to conventional sintering. A lower sintered density observed in the case of ...

  3. Sintering of nano crystalline o silicon carbide doping with

    Indian Academy of Sciences (India)

    Sinterable silicon carbide powders were prepared by attrition milling and chemical processing of an acheson type -SiC. Pressureless sintering of these powders was achieved by addition of aluminium nitride together with carbon. Nearly 99% sintered density was obtained. The mechanism of sintering was studied by ...

  4. Study of the suitability of a commercial hydroxyapatite powder to obtain sintered compacts for medical applications

    Science.gov (United States)

    Palacio, C.; Jaramillo, D.; Correa, S.; Arroyave, M.

    2017-06-01

    Hydroxyapatite (HA) is a material widely used by the medical community due to its Ca/P ratio is comparable to the Ca/P ratio of bones and teeth, which promotes osteoinduction and osteoconduction processes when in contact with bone tissue, either as volume piece or coating. This work focuses on studying the quality of the commercial HA powder MKnano-#MKN-HXAP-S12 µm, after processing, to obtain sintered compact discs with suitable physical and chemical characteristics for implants applications. The HA powder was processed through calcination, grinding, pressing and sintering to evaluate the effect of such as procedures in the compacts dics quality. The raw powder was characterized by laser diffraction, SEM, XRF, XRD, TGA and DSC while the characteristics of the obtained compact discs were determined by dilatometry and XRD to identify the sintering temperature range, constituent phases, the amorphous content and the crystallinity degree, parameters that allow determining their suitability for implants applications. Although, it was not possible to obtain sintered compacts with the suitable chemical composition and without fractures, this work allowed to identify the parameters that determine the suitability of a HA powder to obtain sintered compacts for medical applications, as well as the characterization protocol that allows the evaluation of such parameters.

  5. Measurement and model on thermal properties of sintered diamond composites

    International Nuclear Information System (INIS)

    Moussa, Tala; Garnier, Bertrand; Peerhossaini, Hassan

    2013-01-01

    Highlights: ► Thermal properties of sintered diamond used for grinding is studied. ► Flash method with infrared temperature measurement is used to investigate. ► Thermal conductivity increases with the amount of diamond. ► It is very sensitive to binder conductivity. ► Results agree with models assuming imperfect contact between matrix and particles. - Abstract: A prelude to the thermal management of grinding processes is measurement of the thermal properties of working materials. Indeed, tool materials must be chosen not only for their mechanical properties (abrasion performance, lifetime…) but also for thermal concerns (thermal conductivity) for efficient cooling that avoids excessive temperatures in the tool and workpiece. Sintered diamond is currently used for grinding tools since it yields higher performances and longer lifetimes than conventional materials (mineral or silicon carbide abrasives), but its thermal properties are not yet well known. Here the thermal conductivity, heat capacity and density of sintered diamond are measured as functions of the diamond content in composites and for two types of metallic binders: hard tungsten-based and soft cobalt-based binders. The measurement technique for thermal conductivity is derived from the flash method. After pulse heating, the temperature of the rear of the sample is measured with a noncontact method (infrared camera). A parameter estimation method associated with a three-layer nonstationary thermal model is used to obtain sample thermal conductivity, heat transfer coefficient and absorbed energy. With the hard metallic binder, the thermal conductivity of sintered diamond increased by up to 64% for a diamond content increasing from 0 to 25%. The increase is much less for the soft binder: 35% for diamond volumes up to 25%. In addition, experimental data were found that were far below the value predicted by conventional analytical models for effective thermal conductivity. A possible explanation

  6. U3O8 microspheres sintering kinetics

    International Nuclear Information System (INIS)

    Godoy, A.L.E.

    1986-01-01

    U 3 O 8 microspheres sintering kinetics was determined using a hot-stage optical microscopy apparatus, able to reach temperature up to 1350 0 C in controlled atmospheres. The sintered material had its microstructure analysed by optical and electron microscopy. The microspheres were characterized initialy utilizing X-ray diffractometry and thermogravimetry. The equation which describes the microspheres shrinkage in function of the time was obtained using finite difference analysis X-ray diffractometry indicated hexagonal structure for the microspheres main starting material, ammonium diuranate thermogravimetric analysis showed reduction of this material to U 3 O 8 at 600 0 C. Ceramography results showed 5 hours sintered microspheres grain sizes G vary with the temperature. Sintered U 3 O 8 micrographs compared with published results for UO 2 , indicate similar homogeneity microstructural characteristics and suggest the processed micorspheres to be potentially useful as nuclear fuels. (Author) [pt

  7. Electric contact arcing

    International Nuclear Information System (INIS)

    Cuthrell, R.E.

    1976-01-01

    Electrical contacts must function properly in many types of components used in nuclear weapon systems. Design, application, and testing of these components require detailed knowledge of chemical and physical phenomena associated with stockpile storage, stockpile testing, and operation. In the past, investigation of these phenomena has led to significant discoveries on the effects of surface contaminants, friction and wear, and the mechanics of closure on contact performance. A recent investigation of contact arcing phenomena which revealed that, preceding contact closure, arcs may occur at voltages lower than had been previously known is described. This discovery is important, since arcing may damage contacts, and repetitive testing of contacts performed as part of a quality assurance program might produce cumulative damage that would yield misleading life-test data and could prevent proper operation of the contacts at some time in the future. This damage can be avoided by determining the conditions under which arcing occurs, and ensuring that these conditions are avoided in contact testing

  8. Thermal barrier coating resistant to sintering

    Science.gov (United States)

    Subramanian, Ramesh; Seth, Brij B.

    2004-06-29

    A device (10) is made, having a ceramic thermal barrier coating layer (16) characterized by a microstructure having gaps (18) with a sintering inhibiting material (22) disposed on the columns (20) within the gaps (18). The sintering resistant material (22) is stable over the range of operating temperatures of the device (10), is not soluble with the underlying ceramic layer (16) and is applied by a process that is not an electron beam physical vapor deposition process.

  9. Characterization and Sintering of Armstrong Process Titanium Powder

    Science.gov (United States)

    Xu, Xiaoyan; Nash, Philip; Mangabhai, Damien

    2017-04-01

    Titanium and titanium alloys have a high strength to weight ratio and good corrosion resistance but also need longer time and have a higher cost on machining. Powder metallurgy offers a viable approach to produce near net-shape complex components with little or no machining. The Armstrong titanium powders are produced by direct reduction of TiCl4 vapor with liquid sodium, a process which has a relatively low cost. This paper presents a systematic research on powder characterization, mechanical properties, and sintering behavior and of Armstrong process powder metallurgy, and also discusses the sodium issue, and the advantages and disadvantages of Armstrong process powders.

  10. Analysis of Laser Sintering Technology

    Directory of Open Access Journals (Sweden)

    Vladislav Markovič

    2014-02-01

    Full Text Available The new, high-tech development and customization is one ofthe most important factors in promoting the country‘s economicgrowth indicators. The economic downturn in the industryrequires technology and equipment using a minimumof raw materials and providing maximum performance. Thisstatement perfectly describes the innovative, forward-looking,cost-effective laser powder sintering (SLS technology. Here,thanks to the latest engineering achievements, product surfacesare modified and improved, they gain new characteristics. SLSis viable in automobile, engineering, construction, aerospace,aircraft, printing, medical and other areas.In order to create a product which meets the standards andtechnical documentation it is necessary to use and ensure highquality of raw materials, high-end equipment, qualified personnel,the working environment with proper climatic conditions, ergonomics,etc. But all of these, the quality of the product becomesthe decisive indicators meaningless if know how to properly selectthe laser processing operation. Scanning speed, beam power,pulse frequency, protective gases, powder layer thickness – allof them are the physical and mechanical characteristics of thechange in a small range changes the quality of the product of thefuture, the field of application and performance characteristics.

  11. Discrimination symbol applying method for sintered nuclear fuel product

    International Nuclear Information System (INIS)

    Ishizaki, Jin

    1998-01-01

    The present invention provides a symbol applying method for applying discrimination information such as an enrichment degree on the end face of a sintered nuclear product. Namely, discrimination symbols of information of powders are applied by a sintering aid to the end face of a molded member formed by molding nuclear fuel powders under pressure. Then, the molded product is sintered. The sintering aid comprises aluminum oxide, a mixture of aluminum oxide and silicon dioxide, aluminum hydride or aluminum stearate alone or in admixture. As an applying means of the sintering aid, discrimination symbols of information of powders are drawn by an isostearic acid on the end face of the molded product, and the sintering aid is sprayed thereto, or the sintering aid is applied directly, or the sintering aid is suspended in isostearic acid, and the suspension is applied with a brush. As a result, visible discrimination information can be applied to the sintered member easily. (N.H.)

  12. Solid-state sintering of tungsten heavy alloys

    International Nuclear Information System (INIS)

    Gurwell, W.E.

    1994-10-01

    Solid-state sintering is a technologically important step in the fabrication of tungsten heavy alloys. This work addresses practical variables affecting the sinterability: powder particle size, powder mixing, and sintering temperature and time. Compositions containing 1 to 10 micrometer (μM) tungsten (W) powders can be fully densified at temperatures near the matrix solidus. Blending with an intensifier bar provided good dispersion of elemental powders and good as-sintered mechanical properties under adequate sintering conditions. Additional ball milling increases powder bulk density which primarily benefits mold and die filling. Although fine, 1 μm W powder blends have high sinterability, higher as-sintered ductilities are reached in shorter sintering times with coarser, 5 μm W powder blends; 10μm W powder blends promise the highest as-sintered ductilities due to their coarse microstructural W

  13. Characterization of Uranium Oxide and Ln-bearing Uranium Oxide during Sintering

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, J.B. [Netzsch Instruments, Inc., Estes Park, CO (United States); Byler, D.D.; Stanek, C.R.; Dunwoody, J.T.; Luther, E.P.; Volz, H.M.; Vogel, S.C.; McClellan, K.J. [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2009-06-15

    In support of the transmutation fuel development as part of the effort to close the fuel cycle, research has been carried out to gain an in-depth understanding of the evolution of material properties during sintering as well as the properties of post-sintered oxide fuels. Of course the effects of material and test parameters such as starting powder O/M, green density, particle size distribution, heating rate and atmosphere on the densification of oxide and mixed oxide fuels have been widely studied, sometimes with conflicting results. However, the evolution of thermophysical properties such as specific heat and thermal conductivity during densification is not well known. Further, the effects of lanthanides on densification as well as on other thermodynamic and transport properties during sintering have not been widely studied. The purpose of this work was to characterize the effects of key material and test parameters on the thermophysical properties during sintering (both surface and volume transport) and on post-sintered UO{sub 2+x} and UO{sub 2+x} + lanthanide samples. Mixtures of UO{sub 2+x} and lanthanide component powder as well as pre-synthesized solid solutions have been studied. In addition to the standard bulk characterization methods such as dilatometry (thermal expansion / densification), laser flash (thermal diffusivity / thermal conductivity), differential scanning calorimetry (specific heat and transformation energetics) and thermogravimetric analysis (mass change), we have employed ancillary techniques such as neutron scattering, laboratory X-ray diffraction and scanning electron microscopy to help evaluate phases, lattice parameters and microstructure during sintering. The experimental data from the methods mentioned above have been cross-correlated to help explain the physics which govern the sintering process as well as those which govern the development of the thermophysical properties of these materials. The results of this work will be

  14. Innovation: Contact

    African Journals Online (AJOL)

    Principal Contact. Ruth Hoskins Editor University of KwaZulu-Natal, Information Studies Programme Email: hoskinsr@ukzn.ac.za. Support Contact. Gita Ramdass Email: ramdass@ukzn.ac.za. ISSN: 1025-8892. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More ...

  15. Effects of sintering atmosphere and initial particle size on sintering of gadolinia-doped ceria

    International Nuclear Information System (INIS)

    Batista, Rafael Morgado

    2014-01-01

    The effects of the sintering atmosphere and initial particle size on the sintering of ceria containing 10 mol% gadolinia (GdO 1.5 ) were systematically investigated. The main physical parameter was the specific surface area of the initial powders. Nanometric powders with three different specific surface areas were utilized, 210 m 2 /g, 36,2 m 2 /g e 7,4 m 2 /g. The influence on the densification, and micro structural evolution were evaluated. The starting sintering temperature was verified to decrease with increasing on the specific surface area of raw powders. The densification was accelerated for the materials with smaller particle size. Sintering paths for crystallite growth were obtained. Master sintering curves for gadolinium-doped ceria were constructed for all initial powders. A computational program was developed for this purpose. The results for apparent activation energy showed noticeable dependence with specific surface area. In this work, the apparent activation energy for densification increased with the initial particle size of powders. The evolution of the particle size distributions on non isothermal sintering was investigated by WPPM method. It was verified that the grain growth controlling mechanism on gadolinia doped ceria is the pore drag for initial stage and beginning of intermediate stage. The effects of the sintering atmosphere on the stoichiometry deviation of ceria, densification, microstructure evolution, and electrical conductivity were analyzed. Inert, oxidizing, and reducing atmospheres were utilized on this work. Deviations on ceria stoichiometry were verified on the bulk materials. The deviation verified was dependent of the specific surface area and sintering atmosphere. Higher reduction potential atmospheres increase Ce 3+ bulk concentration after sintering. Accelerated grain growth and lower electrical conductivities were verified when reduction reactions are significantly present on sintering. (author)

  16. Master sintering curve: A practical approach to its construction

    Directory of Open Access Journals (Sweden)

    Pouchly V.

    2010-01-01

    Full Text Available The concept of a Master Sintering Curve (MSC is a strong tool for optimizing the sintering process. However, constructing the MSC from sintering data involves complicated and time-consuming calculations. A practical method for the construction of a MSC is presented in the paper. With the help of a few dilatometric sintering experiments the newly developed software calculates the MSC and finds the optimal activation energy of a given material. The software, which also enables sintering prediction, was verified by sintering tetragonal and cubic zirconia, and alumina of two different particle sizes.

  17. Calcium Hex aluminate reaction sintering by Spark Plasma Sintering; Sinterizacion reactiva de Hexaluminato de Calcio mediante Spark Plasma Sintering

    Energy Technology Data Exchange (ETDEWEB)

    Iglesia, P. G. de la; Garcia-Moreno, O.; Torrecillas, R.; Menendez, J. L.

    2012-11-01

    Calcium hex aluminate (CaAl{sub 1}2O{sub 1}9) is the most alumina-rich intermediate compound of the CaO-Al{sub 2}O{sub 3} system. The formation of this aluminate is produced by the reaction between calcium oxide and alumina with the consequent formation of intermediates compounds with lower alumina content with increasing temperature (CaAl{sub 2}O{sub 4}, CaAl4O{sub 7}). In this study we studied the variation of sintering parameters for obtaining dense and pure calcium hex aluminate by reaction sintering by Spark Plasma Sintering (SPS). A mixing of Al{sub 2}O{sub 3} and CaCO{sub 3} were used as reactive. Final densities close to the theoretical and phase transformation over 93% were achieved by this method. (Author) 22 refs.

  18. Integrated analysis of oxide nuclear fuel sintering

    International Nuclear Information System (INIS)

    Baranov, V.; Kuzmin, R.; Tenishev, A.; Timoshin, I.; Khlunov, A.; Ivanov, A.; Petrov, I.

    2011-01-01

    Dilatometric and thermal-gravimetric investigations have been carried out for the sintering process of oxide nuclear fuel in gaseous Ar - 8% H 2 atmosphere at temperatures up to 1600 0 C. The pressed compacts were fabricated under real production conditions of the OAO MSZ with application of two different technologies, so called 'dry' and 'wet' technologies. Effects of the grain size growth after the heating to different temperatures were observed. In order to investigate the effects produced by rate of heating on properties of sintered fuel pellets, the heating rates were varied from 1 to 8 0 C per minute. Time of isothermal overexposure at maximal temperature (1600 0 C) was about 8 hours. Real production conditions were imitated. The results showed that the sintering process of the fuel pellets produced by two technologies differs. The samples sintered under different heating rates were studied with application of scanning electronic microscopy analysis for determination of mean grain size. A simulation of heating profile for industrial furnaces was performed to reduce the beam cycles and estimate the effects of variation of the isothermal overexposure temperatures. Based on this data, an optimization of the sintering conditions was performed in operations terms of OAO MSZ. (authors)

  19. Study of high-coercivity sintered NdFeB magnets

    International Nuclear Information System (INIS)

    Bai, G.; Gao, R.W.; Sun, Y.; Han, G.B.; Wang, B.

    2007-01-01

    Magnetic powders for sintered NdFeB magnets have been prepared by using an advanced processing method including strip casting, hydrogen decrepitation, jet milling and rubber isotropic press. The effects of Dy, Ga and Co addition on the microstructure and magnetic properties of sintered magnets have been investigated. By adopting a suitable component ratio and adjusting proper technological parameters, we have prepared high-coercivity sintered NdFeB magnets with hard magnetic properties of j H c =25.6 kOe, B r =13.2 kG and (BH) max =39.9 MGOe. The temperature coefficient of coercivity of the magnets (between 20 and 150 deg. C) is -0.53% deg. C. The magnetic properties at high temperature satisfy the needs of permanent magnet motors

  20. Study of high-coercivity sintered NdFeB magnets

    Energy Technology Data Exchange (ETDEWEB)

    Bai, G. [School of Physics and Microelectronics, Shandong University, Jinan, 250100 (China); Department of Mathematics and Physics, Xi' an Institute of Technology, Xi' an, 710032 (China); Gao, R.W. [School of Physics and Microelectronics, Shandong University, Jinan, 250100 (China)]. E-mail: gaorwbox@sdu.edu.cn; Sun, Y. [School of Physics and Microelectronics, Shandong University, Jinan, 250100 (China); Han, G.B. [School of Physics and Microelectronics, Shandong University, Jinan, 250100 (China); Wang, B. [School of Physics and Microelectronics, Shandong University, Jinan, 250100 (China); Baotou Rare Earth Research Institute, Batou 014030 (China)

    2007-01-15

    Magnetic powders for sintered NdFeB magnets have been prepared by using an advanced processing method including strip casting, hydrogen decrepitation, jet milling and rubber isotropic press. The effects of Dy, Ga and Co addition on the microstructure and magnetic properties of sintered magnets have been investigated. By adopting a suitable component ratio and adjusting proper technological parameters, we have prepared high-coercivity sintered NdFeB magnets with hard magnetic properties of {sub j} H {sub c}=25.6 kOe, B {sub r}=13.2 kG and (BH){sub max}=39.9 MGOe. The temperature coefficient of coercivity of the magnets (between 20 and 150 deg. C) is -0.53% deg. C. The magnetic properties at high temperature satisfy the needs of permanent magnet motors.

  1. Electric field-assisted sintering of nanocrystalline hydroxyapatite for biomedical applications

    Science.gov (United States)

    Tran, Tien Bich

    As the main inorganic component of bone, hydroxyapatite (HA, Ca 10(PO4)6(OH)2) should be an ideal candidate in biomaterials selection. When grain sizes are in the nanometric regime, protein adsorption and cell adhesion are enhanced, while strength, hardness, and wear resistance are improved. Unfortunately, low phase stability, poor sinterability, and a tendency towards exaggerated grain coarsening challenge full densification of nanocrystalline hydroxyapatite by conventional sintering methods. The field-assisted sintering technique (FAST) has successfully consolidated a variety of nanocrystalline metals and ceramics in dramatically reduced times. The sintering enhancements observed during FAST can be attributed to thermal and athermal effects. The rapid heating rates (up to ˜1000ºC/min) afforded by FAST contribute a significant thermal effect. Since fast heating rates reduce powder exposure to sub-sintering temperatures, non-densifying surface diffusion is limited. The athermal effects of FAST are less well understood and can include plasma generation, dielectric breakdown, particle surface cleaning, grain boundary pinning, and space charge effects. Applying the field-assisted sintering technique to nanocrystalline hydroxyapatite yielded surprising results. Deviations from conventional densification behavior were observed, with dehydroxylation identified as the most deleterious process to densification as well as mechanical and biological performance. Since hydroxyapatite is not a stable phase at high temperatures and low water partial pressure atmospheres, desintering due to dehydroxylation-related pore formation became apparent during Stage III sintering. In fact, the degree of desintering and pore formation increased with the extent of Stage III sintering and grain growth. The atomic rearrangements taking place during grain boundary migration are believed to favor the formation of more-stable oxyapatite through hydroxyapatite dehydroxylation. This behavior was

  2. New materials through a variety of sintering methods

    Science.gov (United States)

    Jaworska, L.; Cyboroń, J.; Cygan, S.; Laszkiewicz-Łukasik, J.; Podsiadło, M.; Novak, P.; Holovenko, Y.

    2018-03-01

    New sintering techniques make it possible to obtain materials with special properties that are impossible to obtain by conventional sintering techniques. This issue is especially important for ceramic materials for application under extreme conditions. Following the tendency to limit critical materials in manufacturing processes, the use of W, Si, B, Co, Cr should be limited, also. One of the cheapest and widely available materials is aluminum oxide, which shows differences in phase composition, grain size, hardness, strain and fracture toughness of the same type of powder, sintered via various methods. In this paper the alumina was sintered using the conventional free sintering process, microwave sintering, Spark Plasma Sintering (SPS), high pressure-high temperature method (HP-HT) and High Pressure Spark Plasma Sintering (HP SPS). Phase composition analysis, by X-ray diffraction of the alumina materials sintered using various methods, was carried out. For the conventional sintering method, compacts are composed of α-Al2O3 and θ-Al2O3. For compacts sintered using SPS, microwave and HP-HT methods, χ-Al2O3 and γ-Al2O3 phases were additionally present. Mechanical and physical properties of the obtained materials were compared between the methods of sintering. On the basis of images from scanning electron microscope quantitative analysis was performed to determine the degree of grain growth of alumina after sintering.

  3. Method of manufacturing sintered nuclear fuel

    International Nuclear Information System (INIS)

    Watarumi, Kazutoshi.

    1984-01-01

    Purpose: To obtain composite pellets with an improved strength. Method: A core mainly composed of fuel materials is previously prepared, embedded into the central portion of a pellet, silted therearound with cladding material, and then pressmolded and sintered. For instance, a rugby-ball like core body with the maximum outer diameter of 6 mm and the height of 6 mm is made by compressive molding with uranium dioxide powder, then coating material comprising the same powder incorporated with 0.1 % by weight of SiC fibers is filled around the core body, which is molded into a composite pellet by means of pressing and then sintered at 1600 0 C, to obtain a sintered pellet of 93.5 % theoretical density. As the result of the compression test for the pellet, it showed a strength greater by 15 % than that of the similar mono-layer pellet. (Kamimura, M.)

  4. Sintering of nickel steam reforming catalysts

    DEFF Research Database (Denmark)

    Sehested, Jens; Larsen, Niels Wessel; Falsig, Hanne

    2014-01-01

    The lifetimes of heterogeneous catalysts in many widely used industrial processes are determined by the loss of active surface area. In this context, the underlying physical sintering mechanism and quantitative information about the rate of sintering at industrial conditions are relevant....... In this paper, particle migration and coalescence in nickel steam reforming catalysts is studied. Density functional theory calculations indicate that Ni-OH dominate nickel transport at nickel surfaces in the presence of steam and hydrogen as Ni-OH has the lowest combined energies of formation and diffusion...... compared to other potential nickel transport species. The relation between experimental catalyst sintering data and the effective mass diffusion constant for Ni-OH is established by numerical modelling of the particle migration and coalescence process. Using this relation, the effective mass diffusion...

  5. Design of sintering-stable heterogeneous catalysts

    DEFF Research Database (Denmark)

    Gallas-Hulin, Agata

    the crystalline framework of a zeolite creates a steric hindrance against agglomeration into larger clusters. In the present study, experimental protocols for encapsulation of metal nanoparticles inside zeolites were developed. Two different methodologies were proposed to encapsulate gold, palladium and platinum......One of the major issues in the use of metal nanoparticles in heterogeneous catalysis is sintering. Sintering occurs at elevated temperatures because of increased mobility of nanoparticles, leading to their agglomeration and, as a consequence, to the deactivation of the catalyst. It is an emerging...... problem especially for the noble metals-based catalysis. These metals being expensive and scarce, it is worth developing catalyst systems which preserve their activity over time. Encapsulation of nanoparticles inside zeolites is one of the ways to prevent sintering. Entrapment of nanoparticles inside...

  6. Fabrication of 200 mm Diameter Sintering Body of Skutterudite Thermoelectric Material by Spark Plasma Sintering

    Science.gov (United States)

    Tomida, T.; Sumiyoshi, A.; Nie, G.; Ochi, T.; Suzuki, S.; Kikuchi, M.; Mukaiyama, K.; Guo, J. Q.

    2017-05-01

    Filled skutterudite is a promising material for thermoelectric power generation because its ZT value is relatively high. However, mass production of high-performance thermoelectric materials remains a challenge. This study focused on the sintering process of thermoelectric materials. Large-diameter n-type (Yb or La, Ca, Al, Ga, In)0.8(Co, Fe)4Sb12 skutterudite sintering bodies with a small thickness were successfully produced by the spark plasma sintering (SPS) method. When direct current flows through the thermoelectric sintering body during the SPS pulse, the Peltier effect causes a temperature difference within the sintering body. To eliminate the Peltier effect, an electrical insulating material was inserted between the punch (electrode) and the sintering body. In this way, an n-type La-filled skutterudite sample with a diameter of 200 mm, thickness of 21 mm, and weight of 5 kg was successfully produced. The thermoelectric properties and microstructures of the sample were almost the same throughout the whole sintering body, and the dimensionless figure of merit reached 1.0 at 773 K.

  7. PRODUCTION OF WELDMENTS FROM SINTERED TITANIUM ALLOYS

    Directory of Open Access Journals (Sweden)

    A. YE. Kapustyan

    2014-04-01

    Full Text Available Purpose. Limited application of details from powder titanium alloys is connected with the difficulties in obtaining of long-length blanks, details of complex shape and large size. We can solve these problems by applying the welding production technology. For this it is necessary to conduct a research of the structure and mechanical properties of welded joints of sintered titanium alloys produced by flash welding. Methodology. Titanium industrial powders, type PT5-1 were used as original substance. Forming of blanks, whose chemical composition corresponded to BT1-0 alloy, was carried out using the powder metallurgy method. Compounds were obtained by flash welding without preheating. Microstructural investigations and mechanical tests were carried out. To compare the results investigations of BT1-0 cast alloy were conducted. Findings. Samples of welded joints of sintered titanium blanks from VT1-0 alloy using the flash butt welding method were obtained. During welding the microstructure of basic metal consisting of grains of an a-phase, with sizes 40...70 mkm, is transformed for the seam weld and HAZ into the lamellar structure of an a-phase. The remaining pores in seam weld were practically absent; in the HAZ their size was up to 2 mkm, with 30 mkm in the basic metal. Attainable level of mechanical properties of the welded joint in sintered titanium alloys is comparable to the basic metal. Originality. Structure qualitative changes and attainable property complex of compounds of sintered titanium alloys, formed as a result of flash butt welding were found out. Practical value. The principal possibility of high-quality compounds obtaining of sintered titanium alloys by flash welding is shown. This gives a basis for wider application of sintered titanium alloys due to long-length blanks production that are correspond to deformable strand semi finished product.

  8. Phase characterisation in spark plasma sintered TiPt alloy

    CSIR Research Space (South Africa)

    Chikosha, S

    2011-12-01

    Full Text Available The conclusions drawn from this presentation are that Spark Plasma Sintering (SPS) of equiatomic BE TiPt powder produces fully sintered specimens, with incomplete homogenisation. There is a need for improved furnace atmosphere control so...

  9. Process for microwave sintering boron carbide

    Science.gov (United States)

    Holcombe, C.E.; Morrow, M.S.

    1993-10-12

    A method of microwave sintering boron carbide comprises leaching boron carbide powder with an aqueous solution of nitric acid to form a leached boron carbide powder. The leached boron carbide powder is coated with a glassy carbon precursor to form a coated boron carbide powder. The coated boron carbide powder is consolidated in an enclosure of boron nitride particles coated with a layer of glassy carbon within a container for microwave heating to form an enclosed coated boron carbide powder. The enclosed coated boron carbide powder is sintered within the container for microwave heating with microwave energy.

  10. Influence of green compaction on the sintering behaviour of SiC-TiC-TiB{sub 2} composites

    Energy Technology Data Exchange (ETDEWEB)

    Waesche, R.; Yarim, R.; Nicolaides, D. [Federal Inst. for Materials Research and Testing (BAM), Berlin (Germany)

    2004-07-01

    The influence of different processing parameters like powder milling time and die pressure during manufacturing of SiC-TiC-TiB{sub 2} particulate composites has been investigated. The results show that at least a pressure of 90 MPa is necessary for obtaining fully dense samples. The degree of densification is dependent on the compaction process. At low green densities only the powder agglomerates are able to sinter. With increasing compaction pressure the contact area between the agglomerates increases also leading to increasing sintering densities up to fully dense samples. (orig.)

  11. Sintering of dioxide pellets in an oxidizing atmosphere (CO2)

    International Nuclear Information System (INIS)

    Santos, G.R.T.

    1992-01-01

    This work consists in the study of the sintering process of U O 2 pellets in an oxidizing atmosphere. Sintering tests were performed in an CO 2 atmosphere and the influence of temperature and time on the pellets density and microstructure were verified. The results obtained were compared to those from the conventional sintering process and its efficiency was confirmed. (author)

  12. Effect of increasing lanthanum substitution and the sintering ...

    Indian Academy of Sciences (India)

    Administrator

    Young's modulus of the microwave sintered samples (8.8–12.5 and 160–180 GPa) are higher than that for conventional sintered (8–10 and 135–155 GPa) samples. Keywords. Microwave sintering; La-substituted SBTi ceramics; mechanical properties. 1. Introduction. In recent years, bismuth layer-structured ferroelectrics.

  13. Effects of sintering temperature on the mechanical properties of sintered NdFeB permanent magnets prepared by spark plasma sintering

    International Nuclear Information System (INIS)

    Wang, G.P.; Liu, W.Q.; Huang, Y.L.; Ma, S.C.; Zhong, Z.C.

    2014-01-01

    Sintered NdFeB-based permanent magnets were fabricated by spark plasma sintering (SPS) and a conventional method to investigate the mechanical and magnetic properties. The experimental results showed that sintered NdFeB magnet prepared by the spark plasma sintering (SPS NdFeB) possesses a better mechanical properties compared to the conventionally sintered one, of which the maximum value of bending strength and Vickers hardness was 402.3 MPa and 778.1 MPa, respectively. The effects of sintering temperature on bending strength and Vickers hardness were investigated. It was shown that the bending strength firstly increases to the maximum value and then decreases with the increase of sintering temperature in a certain range. The investigations of microstructures and mechanical properties indicated that the unique sintering mechanism in the SPS process is responsible for the improvement of mechanical properties of SPS NdFeB. Furthermore, the relations between the mechanical properties and relevant microstructure have been analyzed based on the experimental fact. - Highlights: • Studied the sintering temperature effect on strengthening mechanism of NdFeB magnet firstly. • It showed that sintering temperature may effectively affect the mechanical properties. • The maximum bending strength and Vickers hardness was 402.3 MPa and 778.1 MPa, respectively

  14. Effects of sintering temperature on the mechanical properties of sintered NdFeB permanent magnets prepared by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G.P., E-mail: wgp@jxnu.edu.cn [College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022 (China); Liu, W.Q. [Key Laboratory of Advanced Functional Materials Science and Engineering, Ministry of Education, Beijing University of Technology, Beijing 100022 (China); Huang, Y.L.; Ma, S.C.; Zhong, Z.C. [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China)

    2014-01-15

    Sintered NdFeB-based permanent magnets were fabricated by spark plasma sintering (SPS) and a conventional method to investigate the mechanical and magnetic properties. The experimental results showed that sintered NdFeB magnet prepared by the spark plasma sintering (SPS NdFeB) possesses a better mechanical properties compared to the conventionally sintered one, of which the maximum value of bending strength and Vickers hardness was 402.3 MPa and 778.1 MPa, respectively. The effects of sintering temperature on bending strength and Vickers hardness were investigated. It was shown that the bending strength firstly increases to the maximum value and then decreases with the increase of sintering temperature in a certain range. The investigations of microstructures and mechanical properties indicated that the unique sintering mechanism in the SPS process is responsible for the improvement of mechanical properties of SPS NdFeB. Furthermore, the relations between the mechanical properties and relevant microstructure have been analyzed based on the experimental fact. - Highlights: • Studied the sintering temperature effect on strengthening mechanism of NdFeB magnet firstly. • It showed that sintering temperature may effectively affect the mechanical properties. • The maximum bending strength and Vickers hardness was 402.3 MPa and 778.1 MPa, respectively.

  15. Mechanical characteristics of microwave sintered silicon carbide

    Indian Academy of Sciences (India)

    Unknown

    tions ranging from kiln furniture to membrane material. Keywords. Microwave sintering; biaxial flexure; silicon carbide. 1. Introduction. Silicon carbide (SiC) ceramics is a very well known candidate material for a structural application. However, due to (i) poor densification due to highly directional bonding, (ii) susceptibility of ...

  16. Low temperature sintering of hyperstoichiometric uranium dioxide

    International Nuclear Information System (INIS)

    Chevrel, H.

    1991-12-01

    In the lattice of uranium dioxide with hyperstoichiometric oxygen content (UO 2+x ), each additional oxygen atoms is introduced by shifting two anions from normal sites to interstitial ones, thereby creating two oxygen vacancies. The point defects then combine to form complex defects comprising several interstitials and vacancies. The group of anions (3x) in the interstitial position participate in equilibria promoting the creation of uranium vacancies thereby considerably increasing uranium self-diffusion. However, uranium grain boundaries diffusion governs densification during the first two stages of sintering of uranium dioxide with hyperstoichiometric oxygen content, i.e., up to 93% of the theoretical density. Surface diffusion and evaporation-condensation, which are considerably accentuated by the hyperstoichiometric deviation, play an active role during sintering by promoting crystalline growth during the second and third stages of sintering. U 8 O 8 can be added to adjust the stoichiometry and to form a finely porous structure and thus increase the pore area subjected to surface phenomena. The composition with an O/U ratio equal to 2.25 is found to densify the best, despite a linear growth in sintering activation energy with hyperstoichiometric oxygen content, increasing from 300 kj.mol -1 for UO 2.10 to 440 kJ.mol -1 for UO 2.25 . Seeds can be introduced to obtain original microstructures, for example the presence of large grains in small-grain matrix

  17. Study of ceramics sintering under high pressures

    International Nuclear Information System (INIS)

    Kunrath Neto, A.O.

    1990-01-01

    A systematic study was made on high pressure sintering of ceramics in order to obtain materials with controlled microstructure, which are not accessible by conventional methods. Some aspects with particular interest were: to achieve very low porosity, with fine grains; to produce dispersed metastable and denser phases which can act as toughening agents; the study of new possibilities for toughening enhancement. (author)

  18. Deformation behavior of sintered nanocrystalline silver layers

    International Nuclear Information System (INIS)

    Zabihzadeh, S.; Van Petegem, S.; Duarte, L.I.; Mokso, R.; Cervellino, A.; Van Swygenhoven, H.

    2015-01-01

    The microstructure of porous silver layers produced under different low temperature pressure-assisted sintering conditions is characterized and linked with the mechanical behavior studied in situ during X-ray diffraction. Peak profile analysis reveals important strain recovery and hardening mechanism during cyclic deformation. The competition between both mechanisms is discussed in terms of porosity and grain size

  19. Air-sintering mechanisms of chromites

    Energy Technology Data Exchange (ETDEWEB)

    Chick, L.A.; Bates, J.L.; Maupin, G.D.

    1991-07-01

    The sintering behaviors of La{sub 1-x}Sr{sub x}CrO{sub 3} and Y{sub 1-x}Ca{sub x}CrO{sub 3} in air at 1550{degrees}C are described as functions of alkaline earth concentration and chromium enrichment or depletion. Vapor-, liquid-, and solid-phase mass transport mechanisms appear to be operative in both systems. Liquid-phase sintering appears dominant an Y{sub 1-x}Ca{sub x}CrO{sub 3} with x = 0.15 to 0.40, especially with Cr enrichment. Either vapor- or solid-phase transport may dominate in the La{sub 1-x}Sr{sub x}CrO{sub 3} system. Slight depletion or enrichment of Cr in both systems has dramatic effects on air-sintered density and microstructure, probably due to modulation of vapor-phase transport and liquid-phase formation. Substantial Cr depletion enhances sintering. 10 refs., 9 figs.

  20. Mechanical characterization of microwave sintered zinc oxide

    Indian Academy of Sciences (India)

    Unknown

    Keywords. Zinc oxide; microwave sintering; microhardness. 1. Introduction. The application of microwave energy for the processing of ceramics has become an attractive area of research and innovation recently. The major advantages of the micro- wave processing of ceramic materials are accelerated densification rate as a ...

  1. Laser Sintering Technology and Balling Phenomenon.

    Science.gov (United States)

    Oyar, Perihan

    2018-02-01

    The aim of this review was to evaluate the balling phenomenon which occurs typically in Selective Laser Sintering (SLS). The balling phenomenon is a typical SLS defect, and observed in laser sintered powder, significantly reduces the quality of SLS, and hinders the further development of SLS Technology. Electronic database searches were performed using Google Scholar. The keywords "laser sintering, selective laser sintering, direct metal laser melting, and balling phenomenon" were searched in title/abstract of publications, limited to December 31, 2016. The inclusion criteria were SLS, balling phenomenon, some alloys (such as Cr-Co, iron, stainless steel, and Cu-based alloys) mechanical properties, microstructure and bond strength between metal-ceramic crown, laboratory studies, full text, and in English language. A total of 100 articles were found the initial search and yielded a total of 50 studies, 30 of which did not fulfill the inclusion criteria and were therefore excluded. In addition, 20 studies were found by screening the reference list of all included publications. Finally, 40 studies were selected for this review. The method in question is regulated by powder material characteristics and the conditions of laser processing. The procedure of formation, affecting factors, and the mechanism of the balling effect are very complex.

  2. Peridynamic Theory as a New Paradigm for Multiscale Modeling of Sintering

    Energy Technology Data Exchange (ETDEWEB)

    Silling, Stewart A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Abdeljawad, Fadi [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ford, Kurtis Ross [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Sintering is a component fabrication process in which powder is compacted by pressing or some other means and then held at elevated temperature for a period of hours. The powder grains bond with each other, leading to the formation of a solid component with much lower porosity, and therefore higher density and higher strength, than the original powder compact. In this project, we investigated a new way of computationally modeling sintering at the length scale of grains. The model uses a high-fidelity, three-dimensional representation with a few hundred nodes per grain. The numerical model solves the peridynamic equations, in which nonlocal forces allow representation of the attraction, adhesion, and mass diffusion between grains. The deformation of the grains is represented through a viscoelastic material model. The project successfully demonstrated the use of this method to reproduce experimentally observed features of material behavior in sintering, including densification, the evolution of microstructure, and the occurrence of random defects in the sintered solid.

  3. Sintering of silicon nitride ceramics with magnesium silicon nitride and yttrium oxide as sintering aids

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, J; Xu, J Y [Shanghai Institute of Technology, Shanghai 200235 (China); Peng, G H [Guangxi Normal University, Guilin 541004, Guangxi (China); Zhuang, H R; Li, W L; Xu, S Y [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Mao, Y J, E-mail: guojianjiang@sit.edu.cn [Shanghai University, Shanghai 200444 (China)

    2011-10-29

    Silicon nitride (Si{sub 3}N{sub 4}) ceramics had been produced through pressureless sintering and hot-pressing sintering with MgSiN{sub 2}-Y{sub 2}O{sub 3} or only MgSiN{sub 2} as sintering aids. The influences of the amount of MgSiN{sub 2} and Y{sub 2}O{sub 3} and sintering methods on the properties of Si{sub 3}N{sub 4} ceramics were investigated. The results show that the bend strength of Si{sub 3}N{sub 4} ceramic fabricated through pressureless sintering at 1820 deg. C for 4 h with 5.6 wt.% MgSiN{sub 2}-15.8 wt.% Y{sub 2}O{sub 3} as sintering additive could achieve 839 MPa. However, the bend strength of Si{sub 3}N{sub 4} ceramic produced by hot-pressing sintering at 1750 deg. C for 1 h under uniaxial pressure of 20 MPa with 4.76 wt.% MgSiN{sub 2} was 1149 MPa. The thermal conductivity of the Si{sub 3}N{sub 4} ceramic 2 3 4 could reach to 129 W{center_dot}m{sup -1{center_dot}}K{sup 1}. The present work demonstrated that MgSiN{sub 2} aids and hot-pressing sintering were effective to improve the thermal conductivity of Si{sub 3}N{sub 4} ceramic.

  4. Yttrium oxide transparent ceramics by low-temperature microwave sintering

    International Nuclear Information System (INIS)

    Luo, Junming; Zhong, Zhenchen; Xu, Jilin

    2012-01-01

    Graphical abstract: The figure shows the SEM photos of the surfaces of the Y 2 O 3 transparent ceramic samples obtained by microwave sintering and vacuum sintering. It is clearly demonstrated that the grain distribution of the vacuum sintering sample is not uniform with the smallest and the largest particle size at about 2 μm and 15 μm respectively, while the grain distribution of microwave sintering sample is uniform with the average diameter at about 2–4 μm (the smallest reported so far) and with no abnormal growth-up or coarsening phenomenon. We have further found out that the smaller the grain size, the higher the mechanical and optical properties. Display Omitted Highlights: ► The microwave sintering temperature of the sample is lower compared with vacuum. ► The microwave sintering time of the sample is shorter compared with vacuum. ► The mechanical properties of the microwave sintering sample is improved greatly. ► The Y 2 O 3 grain of microwave sintering sample is the smallest reported so far. -- Abstract: Yttrium oxide (Y 2 O 3 ) transparent ceramics samples have been successfully fabricated by microwave sintering processing at relatively low temperatures. In comparison with the vacuum sintering processing, Y 2 O 3 transparent ceramics can be obtained by microwave sintering at lower sintering temperature and shorter sintering time, and they possess higher transmittances and mechanical properties. The technologies of low-temperature microwave sintering and the relationships of the microstructures and properties of the specified samples have been investigated in detail. We have found out that the low-temperature microwave sintering technique has its obvious advantages over the conventional methods in manufacturing yttrium oxide transparent ceramics.

  5. TiO2 doped UO2 fuels sintered by spark plasma sintering

    Science.gov (United States)

    Yao, Tiankai; Scott, Spencer M.; Xin, Guoqing; Lian, Jie

    2016-02-01

    UO2 fuels doped with oxide additives Cr2O3 and TiO2 display larger grain size, improving fission product retention capability and thus accident tolerance. Spark plasma sintering (SPS) was applied to consolidate TiO2-doped UO2 fuel pellets with 0.5 wt % dopant concentration, above its solubility, in order to induce eutectic phase formation and promote sintering kinetics. The grain size can reach 80 μm by sintering at 1700 °C for 20 min, and liquid U-Ti-O eutectic phase occurs at the triple junction of grain boundaries and significantly improves grain growth during sintering. The oxide additive also impedes the reduction of the initial hyperstoichiometric fuel powders to more stoichiometric fuel pellets upon SPS process. Thermal-mechanical properties of the sintered doped fuel pellets including thermal conductivity and hardness are measured and compared with undoped fuel pellets. The enlarged grain size (80 μm) and densification within short sintering duration highlight the immense possibility of SPS in fabricating large grained UO2 fuel pellets to improve fuel performance.

  6. Comparative sinterability of combustion synthesized and commercial titanium carbides

    International Nuclear Information System (INIS)

    Manley, B.W.

    1984-11-01

    The influence of various parameters on the sinterability of combustion synthesized titanium carbide was investigaged. Titanium carbide powders, prepared by the combustion synthesis process, were sintered in the temperature range 1150 to 1600 0 C. Incomplete combustion and high oxygen contents were found to be the cause of reduced shrinkage during sintering of the combustion syntheized powders when compared to the shrinkage of commercial TiC. Free carbon was shown to inhibit shrinkage. The activation energy for sintering was found to depend on stoichiometry (C/Ti). With decreasing C/Ti, the rate of sintering increased. 29 references, 16 figures, 13 tables

  7. Powder injection molding of Stellite 6 powder: Sintering, microstructural and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Gülsoy, H. Özkan [Marmara University, Technology Faculty, Metall. and Mater. Eng., 34722 Istanbul (Turkey); Özgün, Özgür, E-mail: oozgun@bingol.edu.tr [Bingol University, Faculty of Engineering and Architecture, Mechanical Eng. Dep., 12000 Bingol (Turkey); Bilketay, Sezer [Marmara University, Technology Faculty, Metall. and Mater. Eng., 34722 Istanbul (Turkey)

    2016-01-10

    The purpose of this study was to produce Co-based Stellite 6 superalloy components by using the method of Powder Injection Molding (PIM) and to characterize the microstructural and mechanical properties of the produced components. The experimental studies were started through the formation of feedstock by mixing Stellite 6 powder with a multicomponent binder system. Prepared feedstock was formed by utilizing powder injection molding technique. Then the molded samples were subjected to the solvent and thermal debinding processes. Different sintering cycles were applied to the raw components for the purpose of determining the optimum sintering conditions. The densities of the sintered components were determined in accordance with the Archimedes' principle. The microstructural characterization was performed through scanning electron microscope (SEM) analysis, energy dispersive spectrometry (EDS) analyses, and X-ray diffraction (XRD) analysis. Hardness measurement and tensile test were conducted in order to determine the mechanical properties. The results illustrated that the injection molded Stellite 6 components were composed of fine and equiaxed grains, plenty of carbide precipitates exhibiting homogenous distribution throughout the microstructure formed at the grain boundaries and thus the mechanical properties were considerably high.

  8. Powder injection molding of Stellite 6 powder: Sintering, microstructural and mechanical properties

    International Nuclear Information System (INIS)

    Gülsoy, H. Özkan; Özgün, Özgür; Bilketay, Sezer

    2016-01-01

    The purpose of this study was to produce Co-based Stellite 6 superalloy components by using the method of Powder Injection Molding (PIM) and to characterize the microstructural and mechanical properties of the produced components. The experimental studies were started through the formation of feedstock by mixing Stellite 6 powder with a multicomponent binder system. Prepared feedstock was formed by utilizing powder injection molding technique. Then the molded samples were subjected to the solvent and thermal debinding processes. Different sintering cycles were applied to the raw components for the purpose of determining the optimum sintering conditions. The densities of the sintered components were determined in accordance with the Archimedes' principle. The microstructural characterization was performed through scanning electron microscope (SEM) analysis, energy dispersive spectrometry (EDS) analyses, and X-ray diffraction (XRD) analysis. Hardness measurement and tensile test were conducted in order to determine the mechanical properties. The results illustrated that the injection molded Stellite 6 components were composed of fine and equiaxed grains, plenty of carbide precipitates exhibiting homogenous distribution throughout the microstructure formed at the grain boundaries and thus the mechanical properties were considerably high.

  9. Effects of annealing conditions of electrodes on the photovoltaic properties of sintered cadmium sulfide/cadmium telluride solar cells

    International Nuclear Information System (INIS)

    Kim, C.S.; Im, H.B.

    1990-01-01

    Polycrystalline n-CdS/p-CdTe solar cells with a commercial carbon paint on the p-CdTe layer and an In- Ag paint on the n-CdS layer were fabricated by a coating and sintering method. Electrical properties of the conducting paints and solar cell parameters of the heterojunction solar cells were investigated as a function of electrode annealing conditions. The sintered CdS/CdTe solar cells whose electrode contacts were annealed at 350 degrees C for 10 min in nitrogen showed maximum values of short-circuit current density, fill factor, and solar efficiency. Commercial carbon and silver paints can be used as electrodes to fabricate sintered CdS/CdTe solar cells with efficiency over 10%

  10. Microstructure characteristics of high borated stainless steel fabricated by hot-pressing sintering

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xuan; Wang, Mingjia, E-mail: mingjiawangysu@126.com; Zhao, Hongchang

    2016-04-25

    The present study investigated the microstructure of powder metallurgy (P/M) high borated stainless steel through hot-pressing sintering in a temperature range of 1000–1150 °C within 30 min under 30 MPa. Microstructure and phase examinations were carried out by applying scanning electron microscope, electron backscatter diffraction and X-ray diffraction analysis. The results of as-atomized powders demonstrated that many powders kept egg-type structure with an austenite outer layer and the eutectic borides were much finer than those in traditional cast products. Microstructure studies revealed that borides suffered Ostwald ripening and were significantly influenced by the sintering temperature. Orientation maps indicated that the inter-particle contact areas consisted of equiaxed grains and the regions consisting of large elongated grains partly inherited the microstructure characteristics of as-atomized powder particles. Furthermore, the mechanisms governing the morphological changes in microstructure were discussed. - Highlights: • Near-complete densification could be obtained through hot-pressing sintering. • There was no phase transformation and present phases were M{sub 2}B and austenite. • Borides suffered Ostwald ripening and were significantly influenced by temperature. • Inter-particle contact areas consisted of equiaxed grains for recrystallization. • Deformation-free zones exhibited elongated grains for dendritic arms coarsening.

  11. Phase transformation of NiTi alloys during vacuum sintering

    Science.gov (United States)

    Wang, Jun; Hu, Kuang

    2017-05-01

    The aim of this study is to ascertain the Phase transformation of NiTi alloys during vacuum sintering. NiTi shape memory alloys (SMA) of atomic ratio 1:1 were prepared through press forming and vacuum sintering with the mixture of Ni and Ti powders. Different samples were prepared by changing the sintering time and the sintering temperature. Phase and porosity of the samples were investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). The results show that in the process of sintering NiTi2 and Ni3Ti phases are formed firstly and then transform into NiTi phase. The quantity of NiTi2 and Ni3Ti phases gradually decreased but not eliminate completely with increase of sintering time. The porosity of specimen sintering at 900°C decreases slightly with increase of sintering time. With increase of sintering time the porosity of specimen sintering at 1050°C decreased firstly and then increased because of generation rich titanium liquid in the process of sintering.

  12. Spark plasma sintering of hydrothermally synthesized bismuth ferrite

    Directory of Open Access Journals (Sweden)

    Zorica Branković

    2016-12-01

    Full Text Available Bismuth ferrite, BiFeO3 (BFO, powder was synthesized by hydrothermal method from Bi(NO33·5 H2O and Fe(NO33·9 H2O as precursors. The synthesized powder was further sintered using spark plasma sintering (SPS. The sintering conditions were optimized in order to achieve high density, minimal amount of secondary phases and improved ferroelectric and magnetic properties. The optimal structure and properties were achieved after spark plasma sintering at 630 °C for 20 min, under uniaxial pressure of 90 MPa. The composition, microstructure, ferroelectric and magnetic properties of the SPS samples were characterized and compared to those of conventionally sintered ceramics obtained from the same powder. Although the samples sintered using conventional method showed slightly lower amount of secondary phases, the spark plasma sintered samples exhibited favourable microstructure and better ferroelectric properties.

  13. Formation of non-ferromagnetic grain boundary phase in a Ga-doped Nd-rich Nd–Fe–B sintered magnet

    International Nuclear Information System (INIS)

    Sasaki, T.T.; Ohkubo, T.; Takada, Y.; Sato, T.; Kato, A.; Kaneko, Y.; Hono, K.

    2016-01-01

    We have characterized the microstructures of as-sintered and optimally post-sinter annealed Nd-rich Ga-doped Nd–Fe–B magnets by scanning electron microscopy (SEM) and aberration-corrected scanning transmission electron microscopy (STEM). While the Nd 2 Fe 14 B grains in the as-sintered sample with a coercivity of 0.99 T are in direct contact with each other, those in the optimally annealed sample with a coercivity of 1.8 T are completely enveloped by typically 10-nm-thick Nd-rich phase that contains little Fe. This strongly suggests that the Nd 2 Fe 14 B grains in the optimally annealed Nd-rich Ga-doped Nd–Fe–B magnets are exchange decoupled in contrast to those in the commercial sintered magnets.

  14. Effect of characteristics of fine iron ores on the granulation behavior of concentrate in sintering granulation process

    Science.gov (United States)

    Wu, Shengli; Que, Zhigang; Zhai, Xiaobo; Li, Kailang

    2017-12-01

    Concentrates have advantages of high ferrous grade, less harmful impurities and lower price. However, the small size and poor granulation behavior of concentrates could deteriorate the permeability of the sinter bed and reduce sinter productivity, thus making it difficult to use concentrates effectively. Therefore, in order to strengthen the granulation behavior of concentrates, granulation experiments were carried out and experiment samples made with one kind of concentrates and five kinds of fine iron ores were produced in this paper. Then, the effects of water absorbility and wettability of fine iron ores on granulation behavior of concentrates were investigated. Furthermore, optimized ore blending recipes were proposed to strengthen the granulation behavior of concentrates by sinter pot tests. Results show that the granulation behavior of concentrates was improved for the samples exhibiting high maximum capillary water and small contact angle in fine iron ores. Compared with the scheme of blending ores containing 15 mass% concentrate, the growth index of quasi-particles increased by 20.62% in the case of iron ore BR-2 replacing half of iron ore BR-1, the vertical sintering speed went up from 26.32 to 29.26 mm min-1, the productivity increased from 1.95 to 2.20 t m-2 h-1. The growth index of the quasi-particles increased by 30% when using iron ore AR-2 to replace half of iron ore AR-1. The vertical sintering speed and the productivity of sinter improved to 29.82 mm min-1 and 2.24 t m-2 h-1, respectively. The results help to improve the granulation behavior of concentrates by optimizing the blending ore recipes, based on the characteristics of fine iron ores, and thus use these concentrates more efficiently in the sintering process.

  15. Numerical simulation of electric field assisted sintering

    Science.gov (United States)

    McWilliams, Brandon A.

    A fully coupled thermal-electric-sintering finite element model was developed and implemented to explore electric field assisted sintering techniques (FAST). FAST is a single step processing operation for producing bulk materials from powders, in which the powder is heated by the application of electric current under pressure. This process differs from other powder processing techniques such as hot isostatic pressing (HIP) and traditional press and sinter operations where the powder or compact is heated externally, in that the powder is heated directly as a result of internal Joule heating (for conductive powders) and/or by direct conduction from the die and punches. The overall result is much more efficient heating which allows heating rates of >1000°C/min to be achieved which is desirable for sintering bulk nanocrystalline and other novel high performance materials. Previous modeling efforts on FAST have only considered the thermal-electric aspect of the problem and have neglected densification. In addition to the introduction of a sintering model, a detailed thermal-electric study of process parameters was carried out in order to identify key system variables and quantify their effect on the overall system response and subsequent thermal history of a consolidated sample. This analysis was compared to empirical data from a parallel experimental study and shown to satisfactorily predict the observed trends. This model was then integrated with a phenomenologically based sintering model to capture the densification of the sample. This fully coupled model was used to predict densification kinetics under FAST like conditions and examine the evolution of material properties as the sample transitions from a loose powder to a fully dense compact and the resulting effect on the electrical and thermal fields within the compact. This model was also used to explore the effect of non-uniform thermal, electrical, stress and density fields on the final geometry and local

  16. Crystallization Kinetics of Polyamide 12 during Selective Laser Sintering

    Directory of Open Access Journals (Sweden)

    Meng Zhao

    2018-02-01

    Full Text Available Selective laser sintering (SLS of thermoplastic materials is an additive manufacturing process that overcomes the boundary between prototype construction and functional components. This technique also meets the requirements of traditional and established production processes. Crystallization behavior is one of the most critical properties during the cooling process and needs to be fully understood. Due to the huge influence of crystallization on the mechanical and thermal properties, it is important to investigate this process more closely. A commercial SLS polyamide (PA12 powder was measured with differential scanning calorimetry (DSC to model a wider temperature range. To model isothermal crystallization between 160 and 168 °C, the Avrami model was used to determine the degree of crystallization. For non-isothermal crystallization between 0.2 and 20 K/min, different models were compared including the Ozawa, Jeziory, and Nakamura equations.

  17. Reheating of zinc-titanate sintered specimens

    Directory of Open Access Journals (Sweden)

    Labus N.

    2015-01-01

    Full Text Available The scope of this work was observing dimensional and heat transfer changes in ZnTiO3 samples during heating in nitrogen and air atmosphere. Interactions of bulk specimens with gaseous surrounding induce microstructure changes during heating. Sintered ZnTiO3 nanopowder samples were submitted to subsequent heating. Dilatation curves and thermogravimetric with simultaneous differential thermal analysis TGA/DTA curves were recorded. Reheating was performed in air and nitrogen atmospheres. Reheated samples obtained at different characteristic temperatures in air were analyzed by X-ray diffraction (XRD. Microstructures obtained by scanning electron microscopy (SEM of reheated sintered samples are presented and compared. Reheating in a different atmosphere induced different microstructures. The goal was indicating possible causes leading to the microstructure changes. [Projekat Ministarstva nauke Republike Srbije, br. OI172057 i br. III45014

  18. Foaming Glass Using High Pressure Sintering

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    Foam glass is a high added value product which contributes to waste recycling and energy efficiency through heat insulation. The foaming can be initiated by a chemical or physical process. Chemical foaming with aid of a foaming agent is the dominant industrial process. Physical foaming has two...... variations. One way is by saturation of glass melts with gas. The other involves sintering of powdered glass under a high gas pressure resulting in glass pellets with high pressure bubbles entrapped. Reheating the glass pellets above the glass transition temperature under ambient pressure allows the bubbles...... to expand. After heat-treatment foam glass can be obtained with porosities of 80–90 %. In this study we conduct physical foaming of cathode ray tube (CRT) panel glass by sintering under high pressure (5-25 MPa) using helium, nitrogen, or argon at 640 °C (~108 Pa s). Reheating a sample in a heating...

  19. Reaction sintering of ceramic-metal composites

    International Nuclear Information System (INIS)

    Botta Filho, W.J.; Rodrigues, J.A.; Tomasi, R.; Pandolfelli, V.C.; Passos, J.F.S.S.; Folgueras, M.V.

    1990-01-01

    Reaction sintering experiments have been carried out in the system Al 2 O 3 -ZrAl 2 -Nb 2 O 5 with the objective of producing ceramic-metal composites of improved toughness. The sintering treatments have been done in the temperature range of 700 0 C to 1400 0 C under different conditions of vacuum and in air and argon atmospheres. The treated samples have been analysed by X-ray diffraction and analytical electron microscopy. The results are discussed in function of the degree of reaction, the development of microstructure and the densification. These results have shown that although an exchange reaction can occur to produce a composite, the control of the reaction to obtain a dense microstructure has not been possible yet. (author) [pt

  20. Sintering of fly ash based composites with zeolite and bentonite addition for application in construction materials

    Directory of Open Access Journals (Sweden)

    Terzić Anja

    2017-01-01

    Full Text Available Due to pozzolanic characteristics, fly ash is commonly used as a cement replacement in construction composites. Addition of natural clays with sorption ability (i.e. zeolite and bentonite in to the fly ash based construction materials is of both scientific and industrial interest. Namely, due to the application of sorptive clay minerals, it is possible to immobilize toxic heavy metals from the composite structure. The thermal compatibility of fly ash and zeolite, as well as fly ash and bentonite, within the composite was observed during sintering procedure. The starting components were used in 1:1 ratio and they were applied without additional mechanical treatment. The used compaction pressure for the tablets was 2 t•cm-2. The sintering process was conducted at 1000ºC and 1200ºC for two hours in the air atmosphere. The mineralogical phase composition of the non-treated and sintered samples was analyzed using X-ray diffraction method. Scanning electron microscopy was applied in the analysis of the microstructure of starting and sintered samples. The thermal behavior was observed via DTA method. The influence of temperature on the properties of fly ash-zeolite and fly ash-bentonite composites was investigated. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III 45008 and OI 172057

  1. Study of nano-metric silicon carbide powder sintering. Application to fibers processing

    International Nuclear Information System (INIS)

    Malinge, A.

    2011-01-01

    Silicon carbide ceramic matrix composites (SiCf/SiCm) are of interest for high temperature applications in aerospace or nuclear components for their relatively high thermal conductivity and low activation under neutron irradiation. While most of silicon carbide fibers are obtained through the pyrolysis of a poly-carbo-silane precursor, sintering of silicon carbide nano-powders seems to be a promising route to explore. For this reason, pressureless sintering of SiC has been studied. Following the identification of appropriate sintering aids for the densification, optimization of the microstructure has been achieved through (i) the analysis of the influence of operating parameters and (ii) the control of the SiC β a SiC α phase transition. Green fibers have been obtained by two different processes involving the extrusion of SiC powder dispersion in polymer solution or the coagulation of a water-soluble polymer containing ceramic particles. Sintering of these green fibers led to fibers of around fifty microns in diameter. (author) [fr

  2. Sintering Behavior, Microstructure, and Mechanical Properties: A Comparison among Pressureless Sintered Ultra-Refractory Carbides

    Directory of Open Access Journals (Sweden)

    Laura Silvestroni

    2010-01-01

    Full Text Available Nearly fully dense carbides of zirconium, hafnium, and tantalum were obtained by pressureless sintering at 1950°C with the addition of 5–20 vol% of MoSi2. Increasing the amount of sintering aid, the final density increased too, thanks to the formation of small amounts of liquid phase constituted by M-Mo-Si-O-C, where M is either Zr, Hf, or Ta. The matrices of the composites obtained with the standard procedure showed faceted squared grains; when an ultrasonication step was introduced in the powder treatment, the grains were more rounded and no exaggerated grains growth occurred. Other secondary phases observed in the microstructure were SiC and mixed silicides of the transition metals. Among the three carbides prepared by pressurless sintering, TaC-based composites had the highest mechanical properties at room temperature (strength 590 MPa, Young's modulus 480 GPa, toughness 3.8 MPa·m1/2. HfC-based materials showed the highest sinterability (in terms of final density versus amount of sintering aid and the highest high-temperature strength (300 MPa at 1500  °C.

  3. Fabrication of Sintered Annular Fuel Pellet

    International Nuclear Information System (INIS)

    Rhee, Young Woo; Kim, Dong Joo; Kim, Jong Hun; Yang, Jae Ho; Kim, Keon Sik; Kang, Ki Won; Song, Kun Woo

    2010-01-01

    A dual cooled annular fuel has been seriously considered as a favorable option for uprating the power density of a Pressurized Water Reactor fuel assembly. An annular fuel has a geometrically inherent advantage such as an increased heat transfer area and a thin pellet thickness. It results in a lot of advantages from the point of a fuel safety and its economy. In order to actualize the dual cooled fuel, an essential element is the annular pellet with precisely controlled diametric tolerance. However, the unique shape of annular fuel pellet causes challenging difficulties to satisfy a diametric tolerance specification. Because of an inhomogeneous green density distribution along the compact height, an hour-glassing usually occurred in a sintered cylindrical PWR fuel pellet fabricated by a conventional doubleacting press. Thus, a sintered pellet usually undergoes a centerless grinding process in order to secure a pellet's specifications. In the case of an annular pellet fabrication using a conventional double-acting press, the same hour-glass shape would probably occur. The outer diameter tolerance of an annular pellet can be controlled easily similar to that of a conventional cylindrical PWR pellet through a centerless grinding. However, it appears not to be simple in the case of an inner surface grinding. It would be the best way to satisfy the specifications for the inner diameter in an as-fabricated pellet. In the present study, we are trying to find a way to minimize the diametric tolerance of the sintered annular pellet without inner surface grinding. This paper deals with a new approach that we have tried to reduce the diametric tolerance of the sintered annular pellet

  4. Sintering of titanium alloy by powder metallurgy

    Energy Technology Data Exchange (ETDEWEB)

    Cosme, C.R.M. [Universidade de Brasilia (UnB), DF (Brazil); Henriques, V.A.R.; Cairo, C.A.A.; Taddei, E.B. [Centro Tecnico Aeroespacial (CTA), Sao Jose dos Campos, SP (Brazil)

    2009-07-01

    Full text: Titanium alloys are suitable for biomaterial applications, considering its biocompatibility and low elastic modulus compared to steel. Bone resorption in this case can be reduced by load sharing between the implant and natural bone.Starting powders were obtained by hydride method, carried out under positive hydrogen pressure at 500 deg C for titanium and 800 deg C for Nb, Zr and Ta powders. After reaching the nominal temperature, the material was held for 3h, with subsequent cooling to room temperature and milling of the friable hydride. Samples were produce by mixing of initial metallic powders followed by and cold isostatic pressing. Subsequent densification by sintering was performed at temperature range between 900 and 1700 deg C. Characterization was carried out with scanning electron microscopy, X-ray diffractometry and microhardness measurements. Microstructural examinations revealed higher amount of &⧣946;-phase for higher sintering temperature and dissolution of Ta and NB particles. In vitro tests revealed low cytotoxicity of sintered samples. (author)

  5. Sintering and deformation of nanocrystalline ceramics

    International Nuclear Information System (INIS)

    Hahn, H.; Averback, R.S.; Hofler, H.J.; Logas, J.

    1991-01-01

    Nanocrystalline ceramics have been produced by the method of inert gas condensation of ultra-small particles and in situ consolidation. Sintering characteristics and microstructural parameter such as grain size, porosity and pore size distributions have been investigated by a variety of techniques, including: X-ray diffraction, gravimetry, nitrogen adsorption, scanning electron microscopy and small angle neutron scattering. In pure TiO 2 , the sintering temperatures are drastically lowered compared to conventional ceramics, however, extensive grain growth occurs before full densification is achieved. High density, nanocrystalline ceramics can be prepared by pressure assisted sintering, doping and additions of second phases. High temperature microhardness and creep deformation in compression were measured and it was found that creep processes occur at lower temperatures than in ceramics with larger grain sizes. Nanocrystalline TiO 2 with densities >99% can be deformed plastically without fracture at temperatures below half the melting point. The total strains exceed 0.6 at strain rates as high as 10 -3 s -l . The stress exponent of the strain rate, n, is approximately 3 and the grain size dependence is G -q with q in the range of 1-1.5. In this paper it is concluded that the creep deformation occurs by an interface reaction controlled mechanism

  6. Injection molding of silicon carbide capable of being sintered without pressure

    Science.gov (United States)

    Muller-Zell, A.; Schwarzmeier, R.

    1984-01-01

    The most suitable SiC mass for injection molding of SiC articles (for subsequent pressureless sintering) consisted of beta SiC 84, a wax mixture 8, and polyethylene or polystyrene 8 parts. The most effective method for adding the binders was by dissolving them in a solvent and subsequent evaporation. The sequence of component addition was significant, and all parameters were optimized together rather than individually.

  7. Basic characteristics of Australian iron ore concentrate and its effects on sinter properties during the high-limonite sintering process

    Science.gov (United States)

    Liu, Dong-hui; Liu, Hao; Zhang, Jian-liang; Liu, Zheng-jian; Xue, Xun; Wang, Guang-wei; Kang, Qing-feng

    2017-09-01

    The basic characteristics of Australian iron ore concentrate (Ore-A) and its effects on sinter properties during a high-limonite sintering process were studied using micro-sinter and sinter pot methods. The results show that the Ore-A exhibits good granulation properties, strong liquid flow capability, high bonding phase strength and crystal strength, but poor assimilability. With increasing Ore-A ratio, the tumbler index and the reduction index (RI) of the sinter first increase and then decrease, whereas the softening interval (Δ T) and the softening start temperature ( T 10%) of the sinter exhibit the opposite behavior; the reduction degradation index (RDI+3.15) of the sinter increases linearly, but the sinter yield exhibits no obvious effects. With increasing Ore-A ratio, the distribution and crystallization of the minerals are improved, the main bonding phase first changes from silico-ferrite of calcium and aluminum (SFCA) to kirschsteinite, silicate, and SFCA and then transforms to 2CaO·SiO2 and SFCA. Given the utilization of Ore-A and the improvement of the sinter properties, the Ore-A ratio in the high-limonite sintering process is suggested to be controlled at approximately 6wt%.

  8. Co-Sintering behaviour of zirconia-ferritic steel composites

    Directory of Open Access Journals (Sweden)

    Alexander Michaelis

    2016-08-01

    Full Text Available The combination of metallic and ceramic materials allows the combination of positive properties of both and can be applied in various industrial fields. At the moment, the deployment of these composites faces difficult and complex manufacturing. One attempt, which offers a short process route and a high degree of flexibility regarding design is a combined shaping (co-shaping with a combined sintering (co-sintering. The article will show co-sintering results of different metal-ceramic symmetric and asymmetric multi-layered tapes, consisting of yttria stabilized zirconia combined with a ferritic iron chromium steel. Focus is on the densification and co-sintering behaviour of ceramic layers depending on the sintering behaviour of metallic layers. Co-sintered composites were characterized by field emission scanning electron microscopy, x-ray diffraction measurements and in terms of adhesive tensile strength.

  9. Prioritized Contact Transport Stream

    Science.gov (United States)

    Hunt, Walter Lee, Jr. (Inventor)

    2015-01-01

    A detection process, contact recognition process, classification process, and identification process are applied to raw sensor data to produce an identified contact record set containing one or more identified contact records. A prioritization process is applied to the identified contact record set to assign a contact priority to each contact record in the identified contact record set. Data are removed from the contact records in the identified contact record set based on the contact priorities assigned to those contact records. A first contact stream is produced from the resulting contact records. The first contact stream is streamed in a contact transport stream. The contact transport stream may include and stream additional contact streams. The contact transport stream may be varied dynamically over time based on parameters such as available bandwidth, contact priority, presence/absence of contacts, system state, and configuration parameters.

  10. Formation of High Temperature Compounds in W-C-B System by Reactive Spark Plasma Sintering

    Directory of Open Access Journals (Sweden)

    Janis Grabis

    2015-09-01

    Full Text Available The formation of high temperature composites in W-C-Bsystem from fine-grained powders in dependence on the ratio of components byusing reactive spark plasma sintering was studied. The mixture of W2Cand C nanoparticles was used as tungsten and carbon precursors. The W2Cand carbon mixture with different ratio of components was prepared by reductionof WO3 in presence of CH4 in nitrogen inductively coupledplasma. The specific surface area of the mixture was in the range of 36–42 m2/gin dependence on the content of carbon. The W2C and carbon particleswere mixed mechanically with amorphous boron and densified using the sparkplasma sintering technique at 1500–1700 oC and pressure of 30 MPafor 4 minutes. The sintered bodies contained WB2 and B4Cphases. The ratio of phase depends on the content of the components in the rawmixture.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7352

  11. Reactive Sintering of Bimodal WC-Co Hardmetals

    OpenAIRE

    Marek Tarraste; Kristjan Juhani; Jüri Pirso; Mart Viljus

    2015-01-01

    Bimodal WC-Co hardmetals were produced using novel technology - reactive sintering. Milled and activated tungsten and graphite powders were mixed with commercial coarse grained WC-Co powder and then sintered. The microstructure of produced materials was free of defects and consisted of evenly distributed coarse and fine tungsten carbide grains in cobalt binder. The microstructure, hardness and fracture toughness of reactive sintered bimodal WC-Co hardmetals is exhibited. Developed bimodal har...

  12. Sintering of Lead-Free Piezoelectric Sodium Potassium Niobate Ceramics

    Directory of Open Access Journals (Sweden)

    Barbara Malič

    2015-12-01

    Full Text Available The potassium sodium niobate, K0.5Na0.5NbO3, solid solution (KNN is considered as one of the most promising, environment-friendly, lead-free candidates to replace highly efficient, lead-based piezoelectrics. Since the first reports of KNN, it has been recognized that obtaining phase-pure materials with a high density and a uniform, fine-grained microstructure is a major challenge. For this reason the present paper reviews the different methods for consolidating KNN ceramics. The difficulties involved in the solid-state synthesis of KNN powder, i.e., obtaining phase purity, the stoichiometry of the perovskite phase, and the chemical homogeneity, are discussed. The solid-state sintering of stoichiometric KNN is characterized by poor densification and an extremely narrow sintering-temperature range, which is close to the solidus temperature. A study of the initial sintering stage revealed that coarsening of the microstructure without densification contributes to a reduction of the driving force for sintering. The influences of the (K + Na/Nb molar ratio, the presence of a liquid phase, chemical modifications (doping, complex solid solutions and different atmospheres (i.e., defect chemistry on the sintering are discussed. Special sintering techniques, such as pressure-assisted sintering and spark-plasma sintering, can be effective methods for enhancing the density of KNN ceramics. The sintering behavior of KNN is compared to that of a representative piezoelectric lead zirconate titanate (PZT.

  13. Sintering of Lead-Free Piezoelectric Sodium Potassium Niobate Ceramics

    Science.gov (United States)

    Malič, Barbara; Koruza, Jurij; Hreščak, Jitka; Bernard, Janez; Wang, Ke; Fisher, John G.; Benčan, Andreja

    2015-01-01

    The potassium sodium niobate, K0.5Na0.5NbO3, solid solution (KNN) is considered as one of the most promising, environment-friendly, lead-free candidates to replace highly efficient, lead-based piezoelectrics. Since the first reports of KNN, it has been recognized that obtaining phase-pure materials with a high density and a uniform, fine-grained microstructure is a major challenge. For this reason the present paper reviews the different methods for consolidating KNN ceramics. The difficulties involved in the solid-state synthesis of KNN powder, i.e., obtaining phase purity, the stoichiometry of the perovskite phase, and the chemical homogeneity, are discussed. The solid-state sintering of stoichiometric KNN is characterized by poor densification and an extremely narrow sintering-temperature range, which is close to the solidus temperature. A study of the initial sintering stage revealed that coarsening of the microstructure without densification contributes to a reduction of the driving force for sintering. The influences of the (K + Na)/Nb molar ratio, the presence of a liquid phase, chemical modifications (doping, complex solid solutions) and different atmospheres (i.e., defect chemistry) on the sintering are discussed. Special sintering techniques, such as pressure-assisted sintering and spark-plasma sintering, can be effective methods for enhancing the density of KNN ceramics. The sintering behavior of KNN is compared to that of a representative piezoelectric lead zirconate titanate (PZT). PMID:28793702

  14. The electric conductivity of some forms of sintered synthetic zeolites

    International Nuclear Information System (INIS)

    Susic, M.; Petrovic, V.; Ristic, M.; Petranovic, N.

    1978-01-01

    Some forms of synthetic zeolites were sintered and their electric conductivity was measured. The conductivity was observed in correlation with the conductivity of non-sintered pressed samples. Also the change in microstructural constituents in the course of the process of sintering was observed with an optical microscope. It has been found that there is a considerable change in conductivity due to sintering as well as a change in the activation energy for conduction. Also the porosity is noticeably changed. A marked affect of the nature of counter ions on the electric conductivity is shown

  15. Sintering, microstructural and dilatometric studies of combustion synthesized Synroc phases

    International Nuclear Information System (INIS)

    Muthuraman, M.; Patil, K.C.; Senbagaraman, S.; Umarji, A.M.

    1996-01-01

    Sintering, microstructure, and linear thermal expansion properties of Synroc-B and constituent phases, viz. perovskite CaTiO 3 , zirconolite ZrTi 2 O 7 , hollandite (ideal formula BaAl2Ti 6 O 16 ) have been investigated. Synroc-B powder when pelletized and sintered at 1250 C for 2 h achieved >95% theoretical density. Sintered Synroc-B has a linear thermal expansion coefficient α of 8.72 x 10 -6 K -1 and Vicker's microhardness 9.88 GPa. The linear thermal expansion curves did not show any hysteresis indicating the absence of microcracking in the sintered bodies

  16. Rapid laser sintering of metal nano-particles inks.

    Science.gov (United States)

    Ermak, Oleg; Zenou, Michael; Toker, Gil Bernstein; Ankri, Jonathan; Shacham-Diamand, Yosi; Kotler, Zvi

    2016-09-23

    Fast sintering is of importance in additive metallization processes and especially on sensitive substrates. This work explores the mechanisms which set limits to the laser sintering rate of metal nano-particle inks. A comparison of sintering behavior of three different ink compositions with laser exposure times from micro-seconds to seconds reveals the dominant factor to be the organic content (OC) in the ink. With a low OC silver ink, of 2% only, sintering time falls below 100 μs with resistivity <×4 bulk silver. Still shorter exposure times result in line delamination and deformation with a similar outcome when the OC is increased.

  17. Interpretation of Frenkel’s theory of sintering considering evolution of activated pores: III. Determination of equilibrium sintering time

    Directory of Open Access Journals (Sweden)

    Yu C.L.

    2015-01-01

    Full Text Available In this article, the Frenkel’s theory of liquid-phase sintering was interpreted regarding pores as the activated volume. The mathematical model established by Nikolić et al. was used to infer the equilibrium sintering time at varied sintering temperatures during the isothermal sintering of codierite glass by Giess et al. Through the calculation, the equilibrium time at 800ºC, 820ºC, 840ºC and 860ºC is inferred to be 7014.42mins, 1569.65mins, 368.92mins and 114.61mins, respectively. The equilibrium time decreases as the temperature increases. And the theoretical value is in good accordance with the experimental results. Thus, the model established by Nikolić et al. can be applied successfully to predict the equilibrium sintering time of the cordierite glass at varied temperatures during isothermal sintering.

  18. Densification of silicon and zirconium carbides by a new process: spark plasma sintering; Densification des carbures de silicium et de zirconium par un procede innovant: le spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Guillard, F

    2006-12-15

    Materials research for suitable utilization in 4. generation nuclear plants needs new ways to densify testing components. Two carbides, silicon and zirconium carbide seems to be the most suitable choice due to their mechanical, thermal and neutron-transparency properties against next nuclear plant specifications. Nevertheless one main difficulty remains, which is densifying them even at high temperature. Spark Plasma Sintering a new metal-, ceramic- and composite-sintering process has been used to densify both SiC and ZrC. Understanding bases of mass transport mechanisms in SPS have been studied. Composites and interfaces have been processed and analyzed. This manuscript reports original results on SiC and ZrC ceramics sintered with commercial powder started, without additives. (author)

  19. Designing a Tool System for Lowering Friction during the Ejection of In-Die Sintered Micro Gears

    DEFF Research Database (Denmark)

    Cannella, Emanuele; Nielsen, Emil Krabbe; Stolfi, Alessandro

    2017-01-01

    is affected by the influence of friction during the ejection phase, caused by radial expansion of the compacted and sintered powder. This paper presents the development of a pre-stressed tool system for the manufacture of micro gears made of aluminum. By using the hot isostatic pressing (HIP) sintering......The continuous improvements in micro-forging technologies generally involve process, material, and tool design. The field assisted sintering technique (FAST) is a process that makes possible the manufacture of near-net-shape components in a closed-die setup. However, the final part quality...... process and different combinations of process parameters, the designed tool system was compared to a similar tool system designed without a pre-stressing strategy. The comparison between the two tool systems was based on the ejection force and part fidelity. The ejection force was measured during...

  20. Phase-field simulation of liquid phase migration in the WC-Co system during liquid phase sintering

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Kaiming; Zhang, Lijun; Du, Yong [Central South Univ., Changsha (China). State Key Lab. of Powder Metallurgy; Schwarze, Christian; Steinbach, Ingo [Bochum Univ. (Germany). Interdisciplinary Centre for Advanced Materials Simulation

    2016-04-15

    Liquid phase sintering is a process for forming high performance, multiple-phase components from powders. The process includes very complex interactions between various mass transportation phenomena, among which the liquid phase migration represents an important one in the aspect of forming a gradient structure in cemented carbide. In the present work, phase-field simulation of the liquid phase migration phenomenon during liquid phase sintering is performed in the WC-Co based cemented carbide. The simulation results are analyzed and compared with the experimentally determined key factors of microstructural evolution, such as contiguity and liquid phase migration rate. The diffusion-controlled solution-precipitation mechanism of the liquid phase migration process in the cemented carbide system is confirmed from the current simulation result, which provides deeper understanding of the microstructural evolution during the liquid phase migration process. These simulations can offer guidance in preventing the liquid phase migration process during liquid phase sintering of cellular cemented carbide.

  1. Effects of particle size and forming pressure on pore properties of Fe-Cr-Al porous metal by pressureless sintering

    Science.gov (United States)

    Koo, Bon-Uk; Yi, Yujeong; Lee, Minjeong; Kim, Byoung-Kee

    2017-03-01

    With increased hydrogen consumption in ammonia production, refining and synthesis, fuel cells and vehicle industries, development of the material components related to hydrogen production is becoming an important factor in industry growth. Porous metals for fabrication of hydrogen are commonly known for their relative excellence in terms of large area, lightness, lower heat capacity, high toughness, and permeability. Fe-Cr-Al alloys not only have high corrosion resistance, heat resistance, and chemical stability but also ductility, excellent mechanical properties. In order to control powder size and sintering temperature effects of Fe-Cr-Al porous metal fabrication, Fe-Cr-Al powder was classified into 25-35 μm, 35-45 μm, 45-75 μm using an auto shaking sieve machine and then classified Fe-Cr-Al powders were pressed into disk shapes using a uniaxial press machine and CIP. The pelletized Fe-Cr-Al specimens were sintered at various temperatures in high vacuum. Properties such as pore size, porosity, and air permeability were evaluated using perm-porosimetry. Microstructure and phase changes were observed with SEM and XRD. Porosity and relative density were proportionated to increasing sintering temperature. With sufficient sintering at increasing temperatures, the pore size is expected to be gradually reduced. Porosity decreased with increasing sintering temperature and gradually increased necking of the powder.

  2. Salt-soda sinter process for recovering aluminum from fly ash

    Science.gov (United States)

    McDowell, W.J.; Seeley, F.G.

    A method for recovering aluminum values from fly ash comprises sintering the fly ash with a mixture of NaCl and Na/sub 2/CO/sub 3/ to a temperature in the range 700/sup 0/ to 900/sup 0/C for a period of time sufficient to convert greater than 90% of the aluminum content of the fly ash into an acidsoluble fraction and then contacting the thus-treated fraction with an aqueous solution of nitric or sulfuric acid to effect dissolution of aluminum and other metal values in said solution.

  3. Residual stresses in a co-sintered SOC half-cell during post-sintering cooling

    DEFF Research Database (Denmark)

    Charlas, Benoit; Chatzichristodoulou, Christodoulos; Brodersen, Karen

    2014-01-01

    Due to the thermal expansion mismatch between the layers of a Solid Oxide Cell, residual stresses (thermal stresses) develop during the cooling after sintering. Residual stresses can induce cell curvature for asymmetric cells but more importantly they also result in more fragile cells. Depending...

  4. Powder densification maps in Selective Laser Sintering

    International Nuclear Information System (INIS)

    Bourell, D.; Wohlert, M.; Harlan, N.; Beaman, J.; Das, S.

    2002-01-01

    Selective Laser Sintering (SLS) is a manufacturing process in which a part is produced without the need for part-specific tooling. It competes effectively with other manufacturing processes when part geometry is complex and the production run is not large. Traditionally, this was limited to prototype production, although tooling applications are now appearing. This paper describes several applications of powder densification maps to advance solutions in direct SLS of metallic and ceramic powders. Time-dependent plasticity issues arise in pre-processing of powder to make it suitable for SLS and in post-processing of SLS parts to obtain desired density. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  5. Computer Modeling of Direct Metal Laser Sintering

    Science.gov (United States)

    Cross, Matthew

    2014-01-01

    A computational approach to modeling direct metal laser sintering (DMLS) additive manufacturing process is presented. The primary application of the model is for determining the temperature history of parts fabricated using DMLS to evaluate residual stresses found in finished pieces and to assess manufacturing process strategies to reduce part slumping. The model utilizes MSC SINDA as a heat transfer solver with imbedded FORTRAN computer code to direct laser motion, apply laser heating as a boundary condition, and simulate the addition of metal powder layers during part fabrication. Model results are compared to available data collected during in situ DMLS part manufacture.

  6. Selective laser sintering in biomedical engineering.

    Science.gov (United States)

    Mazzoli, Alida

    2013-03-01

    Selective laser sintering (SLS) is a solid freeform fabrication technique, developed by Carl Deckard for his master's thesis at the University of Texas, patented in 1989. SLS manufacturing is a technique that produces physical models through a selective solidification of a variety of fine powders. SLS technology is getting a great amount of attention in the clinical field. In this paper the characteristics features of SLS and the materials that have been developed for are reviewed together with a discussion on the principles of the above-mentioned manufacturing technique. The applications of SLS in tissue engineering, and at-large in the biomedical field, are reviewed and discussed.

  7. SEM hot stage sintering of UO2

    International Nuclear Information System (INIS)

    Miller, D.J.

    1976-06-01

    The sintering of hyperstoichiometric uranium dioxide powder compacts, in the hot stage of a scanning electron microscope, was continuously monitored using 16 mm time lapse movies. From alumina microspheres placed on the surface of the compacts, shrinkage measurements were obtained. Converting shrinkage measurements into densification profiles indicates that a maximum densification rate is reached at a critical density, independent of the constant heating rates. At temperatures above 1350 0 C, the movement of the reference microspheres made shrinkage measurements impossible. It is believed the evolution of UO 3 gas from hyperstoichiometric UO 2 is the cause of this limitation

  8. Silica phases in sinters and residues from geothermal fields of New Zealand

    Science.gov (United States)

    Rodgers, K. A.; Browne, P. R. L.; Buddle, T. F.; Cook, K. L.; Greatrex, R. A.; Hampton, W. A.; Herdianita, N. R.; Holland, G. R.; Lynne, B. Y.; Martin, R.; Newton, Z.; Pastars, D.; Sannazarro, K. L.; Teece, C. I. A.

    2004-06-01

    Five silica phases are major components of silica sinters, deposited from both near-neutral pH alkali-chloride and acid-sulfate thermal waters, and of silica residues formed at the surface of geothermal fields in New Zealand. In all cases, the initial silica is noncrystalline opal-A deposited commonly as microspheres that possess an underlying nanospherical substructure, upon different substrate templets, including microbes living in hot springs. Deposition may also occur monomerically upon earlier deposited silica. Following microsphere growth through Ostwald ripening, silica remains mobile throughout the postdepositional history of the sinter/residue deposits, resulting in a range of textures. These include the continuing growth of microspheres, the development of secondary microspheres and silica coatings, phase transformations, a reduction in sinter porosity, dissolution features, and late-stage deposition of drusy quartz and opal-A. The sinter mass attempts to achieve thermodynamic equilibrium through stepwise phase transformations (maturation): opal-A crystallises to paracrystalline opal-CT±opal-C, which recrystallises to microcrystalline α-quartz+moganite. No intermediate silica phases are produced, but gradual changes occur among different opal-A or opal-CT/-C phases. The phase maturation produces changes in particle densities, silanol water, and in X-ray powder response of the different silica phases, although the rates of change can be perturbed by heating, weathering, and dissolution of the sinter/residue. The properties of opal-A change little in a sinter/residue mass within the first 10,000 years, but reductions occur in the densities, silanol water, and X-ray scattering bandwidth of older sinters where opal-A can persist for up to 100,000 years. Eventually, opal-A transforms to opal-CT when silanol water is reduced sufficiently for enough -Si-O-Si- linkages to produce a crude diffraction-like X-ray response. The transformation is aided by heat, as

  9. Contact allergy to 2-hydroxy-5-tert-butyl benzylalcohol and 2,6-bis(hydroxymethyl)-4-tert-butylphenol, components of a phenolic resin used in marking pens

    DEFF Research Database (Denmark)

    Hagdrup, H; Egsgaard, H; Carlsen, L

    1994-01-01

    2-hydroxy-5-tert-butyl benzylalcohol and 2,6-bis(hydroxymethyl)-4-tert-butylphenol were identified as contact allergens in a phenolic resin used as a tackifier in the ink of a marking pen, which, after being used directly on the skin, caused an acute contact dermatitis on the hand of a 13-year...

  10. Pressless process in route of obtaining sintered Nd–Fe–B magnets

    Energy Technology Data Exchange (ETDEWEB)

    Popov, A.G, E-mail: apopov@imp.uran.ru [Institute of Metal Physics, UB of the RAS, 18, S. Kovalevskoy, Street, 620990 Ekaterinburg (Russian Federation); Golovnia, O.A. [Institute of Metal Physics, UB of the RAS, 18, S. Kovalevskoy, Street, 620990 Ekaterinburg (Russian Federation); Bykov, V.A. [Institute of Metallurgy, UB of the RAS, 101, Amundsena, Street, 620016 Ekaterinburg (Russian Federation)

    2015-06-01

    A short review on the pressless process (PLP) involved in the manufacture of sintered Nd–Fe–B magnet is given. Two approaches to increasing the degree of powder alignment with a high filling density ρ{sub f} in PLP-containers are proposed. (1) An increase in the pulse duration of applied magnetic field from 3.6 to 6.5 ms enhances the magnetic alignment of magnets prepared from the powder with ρ{sub f}=2.5 g/cm{sup 3} and ρ{sub f}=3 g/cm{sup 3} by 3% and 11%, respectively. (2) Addition of internal lubricants such as zinc stearate or esters reduces friction forces between the powder particles and, when the concentration of lubricants is bellow a critical concentration C{sub cr}, increases B{sub r} and (BH){sub max} by 5–7%. Simulation of the magnetic alignment of uniaxial particles demonstrates that a decrease in the coefficient of friction between the powder particles from 0.9 to 0.6 caused by the lubricant addition enhances the alignment degree. Contact dilatometry was used to study the anisotropy of densification of PLP-powders upon sintering. It has been shown that the anisotropy of the powder shrinkage is formed at the first stage of sintering at the temperature about 800 °C and is caused by the capillary action in the Nd-rich liquid. - Highlights: • A review of the pressless process for NdFeB magnets in the world and Russia is given. • Enhancement of the alignment degree by application of pulsed magnetic field is studied. • Reduction of the friction forces via addition of internal lubricants is proposed. • The simulation of the magnetic alignment of Nd–Fe–B uniaxial particles is presented. • A reason of anisotropic shrinkage of the powder at sintering is suggested.

  11. Sintering of powders obtained by mechanical alloying of Cu-1.2 Al w%, Cu-2.3 Ti w% and Cu-2.7 V w%

    International Nuclear Information System (INIS)

    Rivas, C; Sepulveda, A; Zuniga, A; Donoso, E; Palma, R

    2008-01-01

    This work studies the effect of compacting pressure, temperature and sintering time on density and microstructure after sintering mechanically alloyed powders of Cu-1.2 Al w%, Cu- 2.3 Ti w% and Cu-2.7 V w%. The alloys were manufactured from elementary powders of Cu, Ti, Al and V, by reactive milling. The powders were compacted and sintered under reducer atmosphere. For each alloy, the final density and resulting microstructure of 8 different compacting and sintering conditions were studied, where the following parameters were considered: (1) Compacting pressure (200 MPa and 400 MPa), (2) Sintering temperature (850 o C and 950 o C), (3) Sintering time (1h and 4h). Adjustments were made using lineal regression to describe the effect of the variation of pressure, temperature and time on the density of the materials obtained, and the morphology of the residual porosity was described by observation under an optic microscope. The final maximum density obtained was, in ascending order: Cu-V, 66% of the theoretical density, TD; Cu-Ti, 65% TD and Cu-Al, 77% TD. The reactive milling process produced flake-shaped particles, hardened by deformation, which made the alloys have a final density that was much less than the sintered pure copper (density 87% TD). This is because the hardened powder resists deformation during compacting, which creates less points of contact between particles, slows down sintering, and yields a lower density. The alloying element influenced the size of the particle obtained during the milling, which is attributed to the different milling mediums (toluene for Ti and V, methanol for Al) and to the different hardness of each ceramic when forming in the copper during milling. The bigger the particle size, the greater the green density, the lesser the densification, and the greater the final density, in accordance with the theory. For the three alloys, the increased compacting pressure gives greater green density, greater densification and a final greater

  12. Direct metal laser sintering: a digitised metal casting technology.

    Science.gov (United States)

    Venkatesh, K Vijay; Nandini, V Vidyashree

    2013-12-01

    Dental technology is undergoing advancements at a fast pace and technology is being imported from various other fields. One such imported technology is direct metal laser sintering technology for casting metal crowns. This article will discuss the process of laser sintering for making metal crowns and fixed partial dentures with a understanding of their pros and cons.

  13. Monitoring Sintering Burn-Through Point Using Infrared Thermography

    Directory of Open Access Journals (Sweden)

    Francisco G. Bulnes

    2013-08-01

    Full Text Available Sintering is a complex industrial process that applies heat to fine particles of iron ore and other materials to produce sinter, a solidified porous material used in blast furnaces. The sintering process needs to be carefully adjusted, so that the combustion zone reaches the bottom of the material just before the discharge end. This is known as the burnthrough point. Many different parameters need to be finely tuned, including the speed and the quantities of the materials mixed. However, in order to achieve good results, sintering control requires precise feedback to adjust these parameters. This work presents a sensor to monitor the sintering burn-through point based on infrared thermography. The proposed procedure is based on the acquisition of infrared images at the end of the sintering process. At this position, infrared images contain the cross-section temperatures of the mixture. The objective of this work is to process this information to extract relevant features about the sintering process. The proposed procedure is based on four steps: key frame detection, region of interest detection, segmentation and feature extraction. The results indicate that the proposed procedure is very robust and reliable, providing features that can be used effectively to control the sintering process.

  14. Monitoring sintering burn-through point using infrared thermography.

    Science.gov (United States)

    Usamentiaga, Rubén; Molleda, Julio; Garcia, Daniel F; Bulnes, Francisco G

    2013-08-09

    Sintering is a complex industrial process that applies heat to fine particles of iron ore and other materials to produce sinter, a solidified porous material used in blast furnaces. The sintering process needs to be carefully adjusted, so that the combustion zone reaches the bottom of the material just before the discharge end. This is known as the burn-through point. Many different parameters need to be finely tuned, including the speed and the quantities of the materials mixed. However, in order to achieve good results, sintering control requires precise feedback to adjust these parameters. This work presents a sensor to monitor the sintering burn-through point based on infrared thermography. The proposed procedure is based on the acquisition of infrared images at the end of the sintering process. At this position, infrared images contain the cross-section temperatures of the mixture. The objective of this work is to process this information to extract relevant features about the sintering process. The proposed procedure is based on four steps: key frame detection, region of interest detection, segmentation and feature extraction. The results indicate that the proposed procedure is very robust and reliable, providing features that can be used effectively to control the sintering process.

  15. Tool design and materials for electro sinter forging (ESF)

    DEFF Research Database (Denmark)

    Cannella, Emanuele; Nielsen, Chris Valentin

    A near net-shape forming process represents a suitable solution to obtain the final product by avoiding secondary machining processes. In this field, electro sinter forging is capable of accomplishing the advantages of sintering in a reduced amount of time. Classified as a high field mode (HFM...

  16. Effects of Sintering Temperature on the Density And Porosity of ...

    African Journals Online (AJOL)

    Effects of sintering temperature on the density and porosity of sodium chloride preforms for alu- minium foam manufacturing have been investigated. Cold pressed salt preforms were sintered at 30, 760 and 790 and di erent times ranging between 6- 18 hours in a carbolite furnace at a heating rate of 5/minute. The Results of ...

  17. Monitoring Sintering Burn-Through Point Using Infrared Thermography

    Science.gov (United States)

    Usamentiaga, Rubén; Molleda, Julio; Garcia, Daniel F.; Bulnes, Francisco G.

    2013-01-01

    Sintering is a complex industrial process that applies heat to fine particles of iron ore and other materials to produce sinter, a solidified porous material used in blast furnaces. The sintering process needs to be carefully adjusted, so that the combustion zone reaches the bottom of the material just before the discharge end. This is known as the burn-through point. Many different parameters need to be finely tuned, including the speed and the quantities of the materials mixed. However, in order to achieve good results, sintering control requires precise feedback to adjust these parameters. This work presents a sensor to monitor the sintering burn-through point based on infrared thermography. The proposed procedure is based on the acquisition of infrared images at the end of the sintering process. At this position, infrared images contain the cross-section temperatures of the mixture. The objective of this work is to process this information to extract relevant features about the sintering process. The proposed procedure is based on four steps: key frame detection, region of interest detection, segmentation and feature extraction. The results indicate that the proposed procedure is very robust and reliable, providing features that can be used effectively to control the sintering process. PMID:23939585

  18. Effect of sintering temperature on structural and electrical properties ...

    Indian Academy of Sciences (India)

    TECS

    vity measurement. The crystallinity and surface morphology of the samples improved with sintering tempera- ture. Further, the electrical conductivity measurement indicated that the conduction mechanism is mainly ionic. The conductivity of samples sintered at 1673 K and 1773 K at 800°C are of the order of 0⋅1 S-cm. –1.

  19. The sintering behavior of close-packed spheres

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Tikare, V.; Frandsen, Henrik Lund

    2012-01-01

    The sintering behavior of close-packed spheres is investigated using a numerical model. The investigated systems are the body-centered cubic (bcc), face-centered cubic (fcc) and hexagonal close-packed spheres (hcp). The sintering behavior is found to be ideal, with no grain growth until full dens...

  20. Field assisted hot pressing of sintering Inconel 718 MIM samples

    Science.gov (United States)

    Dugauguez, Olivier; Torralba, Jose Manuel; Barriere, Thierry; Gelin, Jean-Claude

    2016-10-01

    In this investigation on samples obtained by Metal Injection Molding (MIM), the conventional way of sintering in a furnace will be compared to Field Assisted Hot pressing (FAHP) sintering. The difficulty of this method is to be able to control the shrinkage of the sample and so its shape. It has yet not been investigated with a super alloy powder and so, the effects of a high sintering rate. By accelerating the sintering kinetics, the thermal behavior may be modified. Hence, the behavior of the Inconel 718 sintered by FAHP has been investigated. The sintered samples were all injected from a feedstock composed of a fine particle Inconel powder and a binder principally composed of Cellulose Acetate Butyrate CAB and Poly-Ethylene Glycol PEG. The effects of the two methods on the microstructure and the mechanical properties are then compared. There was no difference in distribution of pores between the conventional sintering and the FAHP sintering but a finer grain size showed better hardness.

  1. Sintering of Multilayered Porous Structures: Part I-Constitutive Models

    DEFF Research Database (Denmark)

    Olevsky, Eugene; Tadesse Molla, Tesfaye; Frandsen, Henrik Lund

    2013-01-01

    Theoretical analyses of shrinkage and distortion kinetics during sintering of bilayered porous structures are carried out. The developed modeling framework is based on the continuum theory of sintering; it enables the direct assessment of the cofiring process outcomes and of the impact of process...

  2. Microstructure and properties of sintered mullite developed from ...

    Indian Academy of Sciences (India)

    Dense mullite aggregates with 72% Al2O3 have been synthesized by reaction sintering of two varieties of Indian bauxite and silica sol. The bauxites used are of inferior grade with different levels of accessory impurities such as Fe2O3, TiO2, CaO. The phase and microstructure development of sintered samples were ...

  3. Sintering, camber development of layer composites and a new ...

    Indian Academy of Sciences (India)

    NiZnCu hexagonal ferrite (abbreviated as ZT/NZC) composite samples were prepared successfully by using restricted shrinkage sintering process (RSS) (Liu et al 2009a, b). But the electromagnetic performance degra- dation of co-sintered layer ...

  4. Corrosion behaviour of sintered duplex stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Utrilla, M. Victoria; Urena, Alejandro; Otero, Enrique; Munez, Claudio Jose [Escuela Superior de Ciencias Experimentales y Tecnologia, Universidad Rey Juan Carlos, C/ Tulipan s/n, 28933 Mostoles, Madrid (Spain)

    2004-07-01

    Duplex austenite-ferrite stainless steels were prepared by mixing austenitic (316L) and ferritic (434L) atomized powders. Although different 316L/434L ratios were prepared, present work centred its study on 50% ferrite - 50% austenite sintered steel. The powders were mixed and pressed at 700 MPa and sintered at 1250 deg. C for 30 min in vacuum. The cooling rate was 5 deg. C/min. Solution treatment was carried out to homogenize the microstructure at 1100 deg. C during 20 min. A microstructural study of the material in solution was performed, evaluating the microstructure, proportion and shape of porosity, and ferrite percentage. This last was measured by two methods, quantitative metallography and Fischer ferrito-metry. The materials were heat treated in the range of 700 to 1000 deg. C, for 10, 30 and 60 min and water quenched, to study the microstructural changes and the influence on the intergranular corrosion resistance. The method used to evaluate the sensitization to the intergranular corrosion was the electrochemical potentio-kinetic reactivation procedure (EPR). The test solution was 0.5 M H{sub 2}SO{sub 4} + 0,01 M KSCN at 30 deg. C. The criterion used to evaluate the sensitization was the ratio between the maximum reactivation density (Ir) and the maximum activation density (Ia). The results of the electrochemical tests were discussed in relation with the microstructures observed at the different heat treatments. (authors)

  5. EDITORIAL: Close contact Close contact

    Science.gov (United States)

    Demming, Anna

    2010-07-01

    The development of scanning probe techniques, such as scanning tunnelling microscopy [1], has often been touted as the catalyst for the surge in activity and progress in nanoscale science and technology. Images of nanoscale structural detail have served as an invaluable investigative resource and continue to fascinate with the fantastical reality of an intricate nether world existing all around us, but hidden from view of the naked eye by a disparity in scale. As is so often the case, the invention of the scanning tunnelling microscope heralded far more than just a useful new apparatus, it demonstrated the scope for exploiting the subtleties of electronic contact. The shrinking of electronic devices has been a driving force for research into molecular electronics, in which an understanding of the nature of electronic contact at junctions is crucial. In response, the number of experimental techniques in molecular electronics has increased rapidly in recent years. Scanning tunnelling microscopes have been used to study electron transfer through molecular films on a conducting substrate, and the need to monitor the contact force of scanning tunnelling electrodes led to the use of atomic force microscopy probes coated in a conducting layer as studied by Cui and colleagues in Arizona [2]. In this issue a collaboration of researchers at Delft University and Leiden University in the Netherlands report a new device architecture for the independent mechanical and electrostatic tuning of nanoscale charge transport, which will enable thorough studies of molecular transport in the future [3]. Scanning probes can also be used to pattern surfaces, such as through spatially-localized Suzuki and Heck reactions in chemical scanning probe lithography. Mechanistic aspects of spatially confined Suzuki and Heck chemistry are also reported in this issue by researchers in Oxford [4]. All these developments in molecular electronics fabrication and characterization provide alternative

  6. The Emergence of Quantitative Sintering Theory from 1945 to 1955

    Science.gov (United States)

    German, Randall M.

    2017-04-01

    Particles flow and pack under stress, allowing shaping of the particles into target engineering geometries. Subsequently, in a process termed sintering, the particles are heated to induce bonding that results in a strong solid. Although first practiced 26,000 years ago, sintering was largely unexplained until recent times. Sintering science moved from an empirical and largely qualitative notion into a quantitative theory over a relatively short time period following World War II. That conceptual transition took place just as commercial applications for sintered materials underwent significant growth. This article highlights the key changes in sintering concepts that occurred in the 1945-1955 time period. This time span starts with the first quantitative neck growth model from Frenkel and ends with the quantitative shrinkage model from Kingery and Berg that includes several transport mechanisms.

  7. Preliminary investigation of liquid phase sintering in ferrous systems

    International Nuclear Information System (INIS)

    Klein, J.

    1975-04-01

    Liquid phase sintering was utilized to achieve, by a simple compaction and sintering procedure involving short times and moderate temperatures, a virtually full dense high carbon Fe:C alloy and high boron Fe:B alloy. Parameters such as powder characteristics and mixing, compacting pressure, heating program and the liquid phase fraction were found to influence the sintered density. The response of the Fe:C alloy to a heat treatment is reported along with preliminary experiments in the iron base ternary system Fe:W:C. Residual porosities observed in microstructures of certain liquid phase sintered compacts were accounted for by a proposed capillary flow of the liquid phase and a local densification competing against an overall densification. Some general recommendations are made for liquid phase sintering of powder aggregates. 15 fig., 7 tables

  8. Sintered silver joints via controlled topography of electronic packaging subcomponents

    Science.gov (United States)

    Wereszczak, Andrew A.

    2014-09-02

    Disclosed are sintered silver bonded electronic package subcomponents and methods for making the same. Embodiments of the sintered silver bonded EPSs include topography modification of one or more metal surfaces of semiconductor devices bonded together by the sintered silver joint. The sintered silver bonded EPSs include a first semiconductor device having a first metal surface, the first metal surface having a modified topography that has been chemically etched, grit blasted, uniaxial ground and/or grid sliced connected to a second semiconductor device which may also include a first metal surface with a modified topography, a silver plating layer on the first metal surface of the first semiconductor device and a silver plating layer on the first metal surface of the second semiconductor device and a sintered silver joint between the silver plating layers of the first and second semiconductor devices which bonds the first semiconductor device to the second semiconductor device.

  9. Intense pulsed light sintering of copper nanoink for printed electronics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hak-Sung; Dhage, Sanjay R.; Shim, Dong-Eun [University of California, Mechanical and Aerospace Engineering Department, Los Angeles, CA (United States); Hahn, H.T. [University of California, Mechanical and Aerospace Engineering Department, Los Angeles, CA (United States); University of California, Material Science and Engineering Department, California NanoSystems Institute, Los Angeles, CA (United States)

    2009-12-15

    An intense pulsed light (IPL) from a xenon flash lamp was used to sinter copper nanoink printed on low-temperature polymer substrates at room temperature in ambient condition. The IPL can sinter the copper nanoink without damaging the polymer substrates in extremely short time (2 ms). The microstructure of the sintered copper film was investigated using X-ray powder diffraction (XRD), optical microscopy, scanning electron microscopy (SEM), X-ray micro tomography, and atomic force microscopy (AFM). The sintered copper film has a grainy structure with neck-like junctions. The resulting resistivity was 5{mu}{omega} cm of electrical resistivity which is only 3 times as high as that of bulk copper. The IPL sintering technique allows copper nanoparticles to be used in inkjet printing on low-temperature substrates such as polymers in ambient conditions. (orig.)

  10. Microstructure evolution during pressureless sintering of bulk oxide ceramics

    Directory of Open Access Journals (Sweden)

    Karel Maca

    2009-06-01

    Full Text Available The author’s experience concerning the infl uence of the choice of different pressureless heating schedules on the fi nal microstructure of oxide ceramic materials is summarized in the paper. Alumina, ceria, strontium titanate, as well as tetragonal (3 mol% Y2O3 and cubic (8 mol% Y2O3 zirconia were cold isostatically pressed or injection moulded and pressureless sintered with different heating schedules – namely with Constant-Rate of Heating with different dwell temperatures (CRH, with Rate-Controlled Sintering (RCS and with Two-Step Sintering (TSS. It was examined whether some of these three sintering schedules, with the same fi nal density achieved, can lead to a decrease of the grain size of sintered ceramics. The results showed that only TSS (and only for selected materials brought significant decrease of the grain size.

  11. Ash chemistry and sintering, verification of the mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M.; Skrifvars, B.J.; Backman, R.; Lauren, T.; Uusikartano, T.; Malm, H.; Stenstroem, P.; Vesterkvist, M. [Aabo Akademi, Turku (Finland). Combustion Chemistry Research Group

    1997-10-01

    In this project four sintering mechanisms have been studied, i.e., partial melting with a viscous liquid, partial melting with a non-viscous liquid, chemical reaction sintering and solid state sintering. The work has aimed at improving the understanding of ash sintering mechanisms and quantifying their role in combustion and gasification. The work has been oriented in particular on the understanding of biomass ash behavior. The work has not directly focused on any specific technical application. However, results can also be applied on other fuels such as brown coal, petroleum coke, black liquor and different types of wastes (PDF, RDF, MSW). During 1996 the work has focused on identifying bed agglomeration mechanisms and analysing bed agglomerates in both full scale and lab scale FB reactors, as well as comparing how well the compression strength based sintering test can predict bed agglomeration in an FB furnace. (orig.)

  12. Study on selective laser sintering of glass fiber reinforced polystyrene

    Science.gov (United States)

    Yang, Laixia; Wang, Bo; Zhou, Wenming

    2017-12-01

    In order to improve the bending strength of Polystyrene (PS) sintered parts by selective laser sintering, Polystyrene/glass fiber (PS/GF) composite powders were prepared by mechanical mixing method. The size distribution of PS/GF composite powders was characterized by laser particle size analyzer. The optimum ratio of GF was determined by proportioning sintering experiments. The influence of process parameters on the bending strength of PS and PS/GF sintered parts was studied by orthogonal test. The result indicates that the particle size of PS/GF composite powder is mainly distributed in 24.88 μm~139.8 μm. When the content of GF is 10%, it has better strengthen effect. Finally, the article used the optimum parameter of the two materials to sinter prototype, it is found that the PS/GF prototype has the advantages of good accuracy and high strength.

  13. Powder metallurgy: Solid and liquid phase sintering of copper

    Science.gov (United States)

    Sheldon, Rex; Weiser, Martin W.

    1993-01-01

    Basic powder metallurgy (P/M) principles and techniques are presented in this laboratory experiment. A copper based system is used since it is relatively easy to work with and is commercially important. In addition to standard solid state sintering, small quantities of low melting metals such as tin, zinc, lead, and aluminum can be added to demonstrate liquid phase sintering and alloy formation. The Taguchi Method of experimental design was used to study the effect of particle size, pressing force, sintering temperature, and sintering time. These parameters can be easily changed to incorporate liquid phase sintering effects and some guidelines for such substitutions are presented. The experiment is typically carried out over a period of three weeks.

  14. Formation of porous wollastonite-based ceramics after sintering with yeast as the pore-forming agent

    Directory of Open Access Journals (Sweden)

    Obradović Nina

    2017-01-01

    Full Text Available In this paper, synthesis of porous wollastonite-based ceramics was reported. Ceramic precursor, methylhydrocyclosiloxane, together with micro-sized CaCO3, was used as starting material. After 20 min of ultrasound treatment, and calcination at 250 oC for 30 min, yeast as a pore-forming agent was added to the as-obtained powders. Sintering regime was set up based on the results obtained by differential thermal analysis. Prepared mixture was pressed into pallets and sintered at 900 oC for 1 h. After the sintering regime, porous wollastonite-based ceramics was obtained. The phase composition of the sintered samples as well as microstructures was analyzed by X-ray diffraction method and SEM. In a batch test, the influence of pH, contact time and initial ion concentration on adsorption efficiency of As+5, Cr+6, and phosphate ions on synthesized wollastonite-based ceramics were studied. Time-dependent adsorption was best described by pseudo-second-order kinetic model and Weber-Morris model that predicted intra-particle diffusion as a rate-controlling step of overall process. High adsorption capacities 39.97, 21.87, and 15.29 mgg-1 were obtained for As+5, Cr+6, and phosphate ions, respectively.

  15. Ultrasonic and mechanical behavior of green and partially sintered alumina: Effects of slurry consolidation chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Schilling, C.H.; Garcia, V.J.; Smith, R.M. [Ames Lab., IA (United States)]|[Iowa State Univ., Ames, IA (United States). Dept. of Materials Science and Engineering; Roberts, R.A. [Iowa State Univ., Ames, IA (United States)

    1998-10-01

    Green and partially sintered compacts of {alpha}-Al{sub 2}O{sub 3} powder were made by filtration of aqueous suspensions under three conditions: (i) electrostatic stabilization without any organic additive, (ii) strong flocculation near the isoelectric point without any organic additive, and (iii) weak flocculation by the use of maltodextrin or oxalic acid additives. The authors evaluated relationships between the macroscopic and interparticle mechanical behavior of these compacts using model correlations with measurements of diametral compression, ultrasonic velocity, and ultrasonic attenuation. Although type iii green specimens were less dense than type i, type iii exhibited significant increases in velocity, macroscopic Young`s modulus, interparticle-contact stiffness, and diametral compressive strength, suggesting that the mechanism of stiffening/strengthening entailed interparticle bridging of maltodextrin or oxalic acid. These properties were significantly reduced upon heating type iii specimens to 500 C, suggesting that pyrolysis of surface-adsorbed maltodextrin and oxalic acid may have reduced the interparticle stiffness and strength. In contrast, negligible changes in these properties occurred upon heating type i specimens to the same temperature. Despite small increases in packing density, significant decreases in attenuation and significant increases in velocity, interparticle-contact stiffness, and Young`s modulus occurred upon heating all specimens to {ge}700 C, suggesting the formation of interparticle necks by solid-state sintering.

  16. Sintered soft magnetic materials. Properties and applications

    Science.gov (United States)

    Bas, J. A.; Calero, J. A.; Dougan, M. J.

    2003-01-01

    A comparison is presented of the characteristics and production requirements of a variety of materials used to produce sintered soft magnetic parts. These include pure iron, phosphorous-iron, silicon-iron, nickel-iron, and cobalt-iron, together with new coated materials based on encapsulated iron powders. In these bonded materials an organic and/or inorganic insulator is used to coat the metallic powder particles giving a magnetic composite. The suitability of the different materials for use in both direct and alternating current applications is reviewed, and examples are provided of their application in both the automotive and other sectors. The results of a comparative study of motors using stators and rotors based on both conventional laminated materials and the insulated iron powders are presented, in which the new materials show advantages of reduced hysteresis losses at high frequencies, and isotropy of magnetic properties. Nevertheless, the applications of these materials in electrical motors requires the modification of existing designs.

  17. Sintering and microstructure evolution in columnar thermal barrier coatings

    International Nuclear Information System (INIS)

    Krishnamurthy, Ramanathan; Srolovitz, David J.

    2009-01-01

    Sintering of thermal barrier coatings changes their key properties, such as thermal conductivity and thermal shock resistance, thus adversely impacting their reliability. We present a novel modeling approach to study the evolution of coating structure during sintering. We model the sintering of individual columns using a thermodynamic principle, and incorporate the center-to-center approach rates for the columns calculated using this principle in a larger scale discrete dynamics model for the evolution of a large number of columns. Surface energies, grain boundary energies and strain energies associated with the deformation of the columns are all included in this framework, while sintering is assumed to occur by the concerted action of surface and grain boundary diffusion. Two sets of initial conditions corresponding to different extents of pre-sintering among neighboring columns are considered. When the extent of pre-sintering is small, we observe that small clusters containing 5-20 columns are formed. In contrast, where a larger amount of pre-sintering exists, we observe, especially at large column densities, that clusters containing 50-100 columns separated by large inter-cluster pores/channels that appear to organize themselves into a network are formed. These observations are in good agreement with recently published experimental observations. We also explain how these results can explain the development of a 'mud-crack'-like pattern

  18. Thermomechanical Modeling of Sintered Silver - A Fracture Mechanics-based Approach: Extended Abstract: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Paret, Paul P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); DeVoto, Douglas J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Narumanchi, Sreekant V [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-01

    Sintered silver has proven to be a promising candidate for use as a die-attach and substrate-attach material in automotive power electronics components. It holds promise of greater reliability than lead-based and lead-free solders, especially at higher temperatures (less than 200 degrees Celcius). Accurate predictive lifetime models of sintered silver need to be developed and its failure mechanisms thoroughly characterized before it can be deployed as a die-attach or substrate-attach material in wide-bandgap device-based packages. We present a finite element method (FEM) modeling methodology that can offer greater accuracy in predicting the failure of sintered silver under accelerated thermal cycling. A fracture mechanics-based approach is adopted in the FEM model, and J-integral/thermal cycle values are computed. In this paper, we outline the procedures for obtaining the J-integral/thermal cycle values in a computational model and report on the possible advantage of using these values as modeling parameters in a predictive lifetime model.

  19. Development of optical ceramic materials for infrared applications by optimizing sintering conditions

    Science.gov (United States)

    Isogai, Masafumi; Sano, Masahiko

    2017-05-01

    The authors developed production process of polycrystalline Zinc Sulfide (ZnS) materials which have been widely applied to windows and domes for infrared sensor systems. Commercially available ZnS powders of ca. 5 um particle sizes were used as a starting material and Spark Plasma Sintering method (SPS) was applied to the powders for firing process. It was found that the densification of the sintered materials was inhibited by outgassing from ZnS powders during the sintering process (ca. 400 Celsius). Thermal desorption spectroscopy analyses revealed the components of outgassing, such as hydrogen sulfide, sulfur oxide and organic molecules. Based on these analyses, the optimum conditions on heating rate and starting temperature of uniaxial pressurization were investigated to remove the outgassing. The polycrystalline ZnS materials fired under the optimized SPS conditions have such characteristics as better transmittance than 65 % and good uniformity in both 3 - 5 um and 8 - 12 um wavelength regions. These results show the importance of removing outgassing from starting materials.

  20. Sintering Bonding Process with Ag Nanoparticle Paste and Joint Properties in High Temperature Environment

    Directory of Open Access Journals (Sweden)

    Jianfeng Yan

    2016-01-01

    Full Text Available Ag nanoparticle paste is prepared based on the polyol method and subsequent concentration by centrifuging. The sintering bonding process using Ag nanoparticle paste at different bonding pressures is studied. The joint strengths are increased as the bonding pressure increases from 0 MPa to 7.5 MPa. This is due to the fact that the higher assistant bonding pressure is beneficial to the growth of neck size between the adjacent particles and forms denser sintered Ag layers. The joint strength bonded under 10 MPa is lower than that bonded under 7.5 MPa, which may be due to the residue of organic component in the sintered Ag layer. The joint properties bonded with Ag nanoparticle paste in high temperature environment are evaluated by heat treatments at temperatures ranges of 200–350°C for 50 hours. The results show that the mechanical properties of joint with Ag nanoparticle paste are better than the joint with Pb95Sn5 solder after storage at high temperatures.

  1. Tribological behaviour and statistical experimental design of sintered iron-copper based composites

    Science.gov (United States)

    Popescu, Ileana Nicoleta; Ghiţă, Constantin; Bratu, Vasile; Palacios Navarro, Guillermo

    2013-11-01

    The sintered iron-copper based composites for automotive brake pads have a complex composite composition and should have good physical, mechanical and tribological characteristics. In this paper, we obtained frictional composites by Powder Metallurgy (P/M) technique and we have characterized them by microstructural and tribological point of view. The morphology of raw powders was determined by SEM and the surfaces of obtained sintered friction materials were analyzed by ESEM, EDS elemental and compo-images analyses. One lot of samples were tested on a "pin-on-disc" type wear machine under dry sliding conditions, at applied load between 3.5 and 11.5 × 10-1 MPa and 12.5 and 16.9 m/s relative speed in braking point at constant temperature. The other lot of samples were tested on an inertial test stand according to a methodology simulating the real conditions of dry friction, at a contact pressure of 2.5-3 MPa, at 300-1200 rpm. The most important characteristics required for sintered friction materials are high and stable friction coefficient during breaking and also, for high durability in service, must have: low wear, high corrosion resistance, high thermal conductivity, mechanical resistance and thermal stability at elevated temperature. Because of the tribological characteristics importance (wear rate and friction coefficient) of sintered iron-copper based composites, we predicted the tribological behaviour through statistical analysis. For the first lot of samples, the response variables Yi (represented by the wear rate and friction coefficient) have been correlated with x1 and x2 (the code value of applied load and relative speed in braking points, respectively) using a linear factorial design approach. We obtained brake friction materials with improved wear resistance characteristics and high and stable friction coefficients. It has been shown, through experimental data and obtained linear regression equations, that the sintered composites wear rate increases

  2. Effects of various additives on sintering of aluminum nitride

    Science.gov (United States)

    Komeya, K.; Inoue, H.; Tsuge, A.

    1982-01-01

    Effects of thirty additives on sintering A/N were investigated. The addition of alkali earth oxides and rare earth oxides gave fully densified aluminum nitride. This is due to the formation of nitrogen-containing aluminate liquid in the system aluminum nitride-alkali earth oxides or rare earth oxides. Microstructural studies of the sintered specimens with the above two types of additives suggested that the densification was due to the liquid phase sintering. Additions of silicon compounds resulted in poor densification by the formation of highly refractory compounds such as A/N polytypes.

  3. Low temperature spark plasma sintering of YIG powders

    International Nuclear Information System (INIS)

    Fernandez-Garcia, L.; Suarez, M.; Menendez, J.L.

    2010-01-01

    A transition from a low to a high spin state in the magnetization saturation between 1000 and 1100 o C calcination temperature is observed in YIG powders prepared by oxides mixture. Spark plasma sintering of these powders between 900 and 950 o C leads to dense samples with minimal formation of YFeO 3 , opening the way to co-sintering of YIG with metals or metallic alloys. The optical properties depend on the sintering stage: low (high) density samples show poor (bulk) optical absorption.

  4. Microwave sintering of nanophase ceramics without concomitant grain growth

    Science.gov (United States)

    Eastman, Jeffrey A.; Sickafus, Kurt E.; Katz, Joel D.

    1993-01-01

    A method of sintering nanocrystalline material is disclosed wherein the nanocrystalline material is microwaved to heat the material to a temperature less than about 70% of the melting point of the nanocrystalline material expressed in degrees K. This method produces sintered nanocrystalline material having a density greater than about 95% of theoretical and an average grain size not more than about 3 times the average grain size of the nanocrystalline material before sintering. Rutile TiO.sub.2 as well as various other ceramics have been prepared. Grain growth of as little as 1.67 times has resulted with densities of about 90% of theoretical.

  5. Manufacturing of metal supported BSCF membranes by spark plasma sintering

    OpenAIRE

    Laptev, Alexander; Bram, Martin; Zivcec, Maria; Baumann, Stefan; Jarligo, Maria Ophelia; Sebold, Doris; Pfaff, Ewald; Broeckmann, Christoph

    2013-01-01

    Spark plasma sintering (SPS), also known as field assisted sintering technique (FAST), is a relatively new method for rapid consolidation of metallic or ceramic powders. In the present work, its suitability for the manufacturing of metal supported Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) based membrane by co-sintering of functional ceramic BSCF layer and porous metallic support has been investigated. The BSCF based membranes are highly attractive for oxygen separation from air due to mixed ionic and e...

  6. Cleanable sintered metal filters in hot off-gas systems

    International Nuclear Information System (INIS)

    Schurr, G.A.

    1981-01-01

    Filters with sintered metal elements, arranged as tube bundles with backflush air cleaning, are the equivalent of bag filters for high-temperature, harsh environments. They are virtually the only alternative for high-temperature off-gas systems where a renewable, highly efficient particle trap is required. Tests were conducted which show that the sintered metal elements installed in a filter system provide effective powder collection in high-temperature atmospheres over thousands of cleaning cycles. Such a sintered metal filter system is now installed on the experimental defense waste calciner at the Savannah River Laboratory. The experimental results included in this paper were used as the basis for its design

  7. Low temperature spark plasma sintering of YIG powders

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Garcia, L. [Department of Nanostructured Materials, Centro de Investigacion en Nanomateriales y Nanotecnologia (CINN). Principado de Asturias - Consejo superior de Investigaciones Cientificas (CSIC) - Universidad de Oviedo - UO, Parque Tecnologico de Asturias, 33428 Llanera, Asturias (Spain); Suarez, M., E-mail: m.suarez@cinn.e [Department of Nanostructured Materials, Centro de Investigacion en Nanomateriales y Nanotecnologia (CINN). Principado de Asturias - Consejo superior de Investigaciones Cientificas (CSIC) - Universidad de Oviedo - UO, Parque Tecnologico de Asturias, 33428 Llanera, Asturias (Spain); Fundacion ITMA, Parque Tecnologico de Asturias, 33428, Llanera (Spain); Menendez, J.L. [Department of Nanostructured Materials, Centro de Investigacion en Nanomateriales y Nanotecnologia (CINN). Principado de Asturias - Consejo superior de Investigaciones Cientificas (CSIC) - Universidad de Oviedo - UO, Parque Tecnologico de Asturias, 33428 Llanera, Asturias (Spain)

    2010-07-16

    A transition from a low to a high spin state in the magnetization saturation between 1000 and 1100 {sup o}C calcination temperature is observed in YIG powders prepared by oxides mixture. Spark plasma sintering of these powders between 900 and 950 {sup o}C leads to dense samples with minimal formation of YFeO{sub 3}, opening the way to co-sintering of YIG with metals or metallic alloys. The optical properties depend on the sintering stage: low (high) density samples show poor (bulk) optical absorption.

  8. Development of Expanded Thermoplastic Polyurethane Bead Foams and Their Sintering Mechanism

    Science.gov (United States)

    Hossieny, Nemat

    Polymer bead foaming technology represents a breakthrough in the production of low density plastic foamed components that have a complex geometrical structure and has helped to expand the market for plastic foams by broadening their applications. In this research, the unique microstructure of thermoplastic polyurethane (TPU) consisting of phase-separated hard segment (HS) domains dispersed in the soft segment (SS) matrix has been utilized to develop expanded TPU (E-TPU) bead foam with microcellular morphologies and also to create inter-bead sintering into three dimensional products using steam-chest molding machine. The phase-separation and crystallization behavior of the HS chains in the TPU microstructure was systematically studied in the presence of dissolved gases and also by changing the microstructure of TPU by melt-processing and addition of nano-/micro-sized additives. It was observed that the presence of gas improved the phase separation (i.e. crystallization) of HSs and increased the overall crystallinity of the TPU. It was also shown that by utilizing the HS crystalline domains, the overall foaming behavior of TPU (i.e. cell nucleation and expansion ratio) can be significantly improved. Moreover, the HS crystalline domains can be effective for both sintering of the beads as well strengthening the individual beads to improve the property of the moulded part. It was also observed that unlike other polymer bead foaming technologies, the E-TPU bead foaming sintering does not require formation of double melting-peak. The original broad melting peak existing in the TPU microstructure due to the wide size distribution of HS crystallites can be effectively utilized for the purpose of sintering as well as maintenance of the overall dimensional stability of the moulded part.

  9. New horizons in selective laser sintering surface roughness characterization

    Science.gov (United States)

    Vetterli, M.; Schmid, M.; Knapp, W.; Wegener, K.

    2017-12-01

    Powder-based additive manufacturing of polymers and metals has evolved from a prototyping technology to an industrial process for the fabrication of small to medium series of complex geometry parts. Unfortunately due to the processing of powder as a basis material and the successive addition of layers to produce components, a significant surface roughness inherent to the process has been observed since the first use of such technologies. A novel characterization method based on an elastomeric pad coated with a reflective layer, the Gelsight, was found to be reliable and fast to characterize surfaces processed by selective laser sintering (SLS) of polymers. With help of this method, a qualitative and quantitative investigation of SLS surfaces is feasible. Repeatability and reproducibility investigations are performed for both 2D and 3D areal roughness parameters. Based on the good results, the Gelsight is used for the optimization of vertical SLS surfaces. A model built on laser scanning parameters is proposed and after confirmation could achieve a roughness reduction of 10% based on the S q parameter. The Gelsight could be successfully identified as a fast, reliable and versatile surface topography characterization method as it applies to all kind of surfaces.

  10. Sintering equation: determination of its coefficients by experiments - using multiple regression

    International Nuclear Information System (INIS)

    Windelberg, D.

    1999-01-01

    Sintering is a method for volume-compression (or volume-contraction) of powdered or grained material applying high temperature (less than the melting point of the material). Maekipirtti tried to find an equation which describes the process of sintering by its main parameters sintering time, sintering temperature and volume contracting. Such equation is called a sintering equation. It also contains some coefficients which characterise the behaviour of the material during the process of sintering. These coefficients have to be determined by experiments. Here we show that some linear regressions will produce wrong coefficients, but multiple regression results in an useful sintering equation. (orig.)

  11. Improvement of mechanical strength of sintered Mo alloyed steel by optimization of sintering and cold-forging processes with densification

    Science.gov (United States)

    Kamakoshi, Y.; Shohji, I.; Inoue, Y.; Fukuda, S.

    2017-10-01

    Powder metallurgy (P/M) materials have been expected to be spread in automotive industry. Generally, since sintered materials using P/M ones contain many pores and voids, mechanical properties of them are inferior to those of conventional wrought materials. To improve mechanical properties of the sintered materials, densification is effective. The aim of this study is to improve mechanical strength of sintered Mo-alloyed steel by optimizing conditions in sintering and cold-forging processes. Mo-alloyed steel powder was compacted. Then, pre-sintering (PS) using a vacuum sintering furnace was conducted. Subsequently, coldforging (CF) by a backward extrusion method was conducted to the pre-sintered specimen. Moreover, the cold-forged specimen was heat treated by carburizing, tempering and quenching (CQT). Afterwards, mechanical properties were investigated. As a result, it was found that the density of the PS specimen is required to be more than 7.4 Mg/m3 to strengthen the specimen by heat treatment after CF. Furthermore, density and the microstructure of the PS specimen are most important factors to make the high density and strength material by CF. At the CF load of 1200 kN, the maximum density ratio reached approximately 99% by the use of the PS specimen with proper density and microstructure. At the CF load of 900 kN, although density ratio was high like more than 97.8%, transverse rupture strength decreased sharply. Since densification caused high shear stress and stress concentration in the surface layer, microcracks occurred by the damages of inter-particle sintered connection of the surface layer. On the contrary, in case of the CF load of 1200 kN, ultra-densification of the surface layer occurred by a sufficient plastic flow. Such sufficient compressed specimens regenerated the sintered connections by high temperature heat treatment and thus the high strength densified material was obtained. These processes can be applicable to near net shape manufacturing

  12. Frictional heating of tribological contacts

    NARCIS (Netherlands)

    Bos, Johannes

    1995-01-01

    Wherever friction occurs, mechanical energy is transformed into heat. The tem­ perature rise associated with this heating can have an important influence on the tribological behaviour of the contacting components. Apart from determining per­ formance, thermal phenomena affect reliability and may

  13. Fabrication, Structural Characterization and Uniaxial Tensile Properties of Novel Sintered Multi-Layer Wire Mesh Porous Plates.

    Science.gov (United States)

    Duan, Liuyang; Zhou, Zhaoyao; Yao, Bibo

    2018-01-17

    contact area between the interconnecting wires, resulting in a stronger sintering neck that exhibited higher tensile strength. The wire diameter increased from 81 μm to 122 μm and the tensile strength increased from 296 MPa to 362 MPa. The fracture morphology showed that the wires experience necking deformation and ductile fracture.

  14. Fabrication, Structural Characterization and Uniaxial Tensile Properties of Novel Sintered Multi-Layer Wire Mesh Porous Plates

    Directory of Open Access Journals (Sweden)

    Liuyang Duan

    2018-01-01

    coarser wires led to a bigger contact area between the interconnecting wires, resulting in a stronger sintering neck that exhibited higher tensile strength. The wire diameter increased from 81 μm to 122 μm and the tensile strength increased from 296 MPa to 362 MPa. The fracture morphology showed that the wires experience necking deformation and ductile fracture.

  15. Plutonium Immobilization Project Binder Burnout and Sintering Studies (Milestone 6.6a)

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, G.

    1999-10-28

    The Plutonium Immobilization Team has developed an integrated test program to understand and optimize the controlling variables for the sintering step of the plutonium immobilization process. Sintering is the key process step that controls the product minerology. It is expected that the sintering will be the limiting process step that controls the throughput of the production line. The goal of the current sintering test program is to better understand factors that affect the sintering process.

  16. Plutonium Immobilization Project Binder Burnout and Sintering Studies (Milestone 6.6a)

    International Nuclear Information System (INIS)

    Chandler, G.

    1999-01-01

    The Plutonium Immobilization Team has developed an integrated test program to understand and optimize the controlling variables for the sintering step of the plutonium immobilization process. Sintering is the key process step that controls the product mineralogy. It is expected that the sintering will be the limiting process step that controls the throughput of the production line. The goal of the current sintering test program is to better understand factors that affect the sintering process

  17. Method and means of reducing erosion of components of plasma devices exposed to helium and hydrogen isotope radiation

    Science.gov (United States)

    Kaminsky, Manfred S.; Das, Santosh K.; Rossing, Thomas D.

    1977-01-25

    Surfaces of components of plasma devices exposed to radiation by atoms or ions of helium or isotopes of hydrogen can be protected from damage due to blistering by shielding the surfaces with a structure formed by sintering a powder of aluminum or beryllium and its oxide or by coating the surfaces with such a sintered metal powder.

  18. Sintering and electrical properties of strontium-doped lanthanum manganite

    Energy Technology Data Exchange (ETDEWEB)

    Tarrago, Diego Pereira; Sousa, Vania Caldas de [Universidade Federal do Rio Grande do Sul (LABIOMAT/PPGEM/UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia de Minas, Metalurgica e de Materiais. Lab. de Biomateriais], Email: dptarrago@gmail.com; Moreno Buriel, Berta; Chinarro Martini, Eva; Jurado Egea, Jose Ramon [Consejo Superior de Investigaciones Cientificas (ICV/CSIC), Madrid (Spain). Inst. de Ceramica y Vidrio; Malfatti, Celia de Fraga [Universidade Federal do Rio Grande do Sul (LAPEC/PPGEM/UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia de Minas, Metalurgica e de Materiais. Lab. de Pesquisa em Corrosao

    2010-07-01

    Lanthanum strontium manganites (LSM) are potential materials for cathode applications in solid oxide fuel cells (SOFC) due to their good catalytic activity, chemical stability and compatibility with electrolyte materials in high temperatures. The sinterability of single phase La{sub 1-x}Sr{sub x}Mn{sub O3} (x=0.18) perovskite powders and the electrical properties of the resulting samples are analyzed in this study. Using a heating microscope, the powders were pressed and sintered at different pressures and temperatures, resulting in an open porosity of 33.36% when compacted at 125 MPa and sintered at 1200 degree C. Top and cross-section s canning electron microscopy (SEM) micrographs revealed interconnected pores in the sintered body and, hence, a suitable microstructure for the application. The activation energy for conductance was 0.04 eV and the tested LSM bulk started to exhibit adequate electrical properties at about 500 degree C. (author)

  19. Zone refining of sintered, microwave-derived YBCO superconductors

    International Nuclear Information System (INIS)

    Warrier, K.G.K.; Varma, H.K.; Mani, T.V.; Damodaran, A.D.; Balachandran, U.

    1993-07-01

    Post-sintering treatments such as zone melting under thermal gradient has been conducted on sintered YBCO tape cast films. YBCO precursor powder was derived through decomposition of a mixture of nitrates of cations in a microwave oven for ∼4 min. The resulting powder was characterized and made into thin sheets by tape casting and then sintered at 945 C for 5 h. The sintered tapes were subjected to repeated zone refining operations at relatively high speeds of ∼30 mm/h. A microstructure having uniformly oriented grains in the a-b plane throughout the bulk of the sample was obtained by three repeated zone refining operations. Details of precursor preparation, microwave processing and its advantages, zone refining conditions, and microstructural features are presented in this paper

  20. Quartz crystal reinforced quartz glass by spark plasma sintering

    International Nuclear Information System (INIS)

    Torikai, D.; Barazani, B.; Ono, E.; Santos, M.F.M.; Suzuki, C.K.

    2011-01-01

    The Spark Plasma Sintering presents fast processing time when compared to conventional sintering techniques. This allows to control the grain growth during sintering as well as the diffusion rate of a multi-material compounds, and make possible obtainment of functionally graded materials and nanostructured compounds. Powders of high purity silica glass and crystalline silica were sintered in a SPS equipment at temperatures around 1350° C, i.e., above the softening temperature of silica glass and below the melting temperature of quartz crystal. As a result, glass ceramics with pure silica glass matrix reinforced with crystalline alpha-quartz grains were fabricated at almost any desired range of composition, as well as controlled size of the crystalline reinforcement. X-ray diffraction and density measurements showed the possibility to manufacture a well controlled density and crystallinity glass-ceramic materials. (author)

  1. Onset conditions for flash sintering of UO2

    Science.gov (United States)

    Raftery, Alicia M.; Pereira da Silva, João Gustavo; Byler, Darrin D.; Andersson, David A.; Uberuaga, Blas P.; Stanek, Christopher R.; McClellan, Kenneth J.

    2017-09-01

    In this work, flash sintering was demonstrated on stoichiometric and non-stoichiometric uranium dioxide pellets at temperatures ranging from room temperature (26 °C) up to 600 °C . The onset conditions for flash sintering were determined for three stoichiometries (UO2.00, UO2.08, and UO2.16) and analyzed against an established thermal runaway model. The presence of excess oxygen was found to enhance the flash sintering onset behavior of uranium dioxide, lowering the field required to flash and shortening the time required for a flash to occur. The results from this study highlight the effect of stoichiometry on the flash sintering behavior of uranium dioxide and will serve as the foundation for future studies on this material.

  2. Foam glass obtained through high-pressure sintering

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    2018-01-01

    are subjected to a second heat treatment above the glass transition temperature at atmospheric pressure. This heat treatment causes expansion of the pores due to high internal gas pressure. We found that the foaming ability strongly depends on the gas pressure applied during sintering, and on the kinetic......Foam glasses are usually prepared through a chemical approach, that is, by mixing glass powder with foaming agents, and heating the mixture to a temperature above the softening point (106.6 Pa s) of the glass. The foaming agents release gas, enabling expansion of the sintered glass. Here, we use...... a physical foaming approach to prepare foam glass. First, closed pores filled with inert gases (He, Ar, or N2) are physically introduced into a glass body by sintering cathode ray tube (CRT) panel glass powder at high gas pressure (5‐25 MPa) at 640°C and, then cooled to room temperature. The sintered bodies...

  3. Non-pressurized sintered silicon carbide with titanium carbide reinforcement

    International Nuclear Information System (INIS)

    Adler, J.

    1992-01-01

    A non-pressurized compression of SiC-TiC composite materials can be achieved via liquid phase sintering by the application of oxidic additives. Materials with TiC proportions up to 40% by volume of TiC and densities of 97 to 98% TD were produced at sintering temperatures around 1875 C. With SiC sintered in the liquid phase an increase of toughness at fracture of 80% compared with conventionally non-pressurized sintered SiC was achieved with B/C additive. No further increase could be achieved by the addition of TiC particles. However, the oxidation resistance at 1200 C was worsened. (orig.) [de

  4. Pressureless sintering behavior of injection molded alumina ceramics

    Directory of Open Access Journals (Sweden)

    Liu W.

    2014-01-01

    Full Text Available The pressureless sintering behaviors of two widely used submicron alumina (MgOdoped and undoped with different solid loadings produced by injection molding have been studied systematically. Regardless of the sinterability of different powders depending on their inherent properties, solid loading plays a critical role on the sintering behavior of injection molded alumina, which greatly determines the densification and grain size, and leads to its full densification at low temperatures. As compared to the MgO-doped alumina powder, the undoped specimens exhibit a higher sinterability for its smaller particle size and larger surface area. While full densification could be achieved for MgO-doped powders with only a lower solid loading, due to the fact that MgO addition can reduce the detrimental effect of the large pore space on the pore-boundary separation.

  5. Modeling constrained sintering of bi-layered tubular structures

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye; Kothanda Ramachandran, Dhavanesan; Ni, De Wei

    2015-01-01

    Constrained sintering of tubular bi-layered structures is being used in the development of various technologies. Densification mismatch between the layers making the tubular bi-layer can generate stresses, which may create processing defects. An analytical model is presented to describe...... the densification and stress developments during sintering of tubular bi-layered samples. The correspondence between linear elastic and linear viscous theories is used as a basis for derivation of the model. The developed model is first verified by finite element simulation for sintering of tubular bi-layer system....... Furthermore, the model is validated using densification results from sintering of bi-layered tubular ceramic oxygen membrane based on porous MgO and Ce0.9Gd0.1O1.95-d layers. Model input parameters, such as the shrinkage kinetics and viscous parameters are obtained experimentally using optical dilatometry...

  6. Verification of the Skorohod-Olevsky Viscous Sintering (SOVS) Model

    Energy Technology Data Exchange (ETDEWEB)

    Lester, Brian T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-11-16

    Sintering refers to a manufacturing process through which mechanically pressed bodies of ceramic (and sometimes metal) powders are heated to drive densification thereby removing the inherit porosity of green bodies. As the body densifies through the sintering process, the ensuing material flow leads to macroscopic deformations of the specimen and as such the final configuration differs form the initial. Therefore, as with any manufacturing step, there is substantial interest in understanding and being able to model the sintering process to predict deformation and residual stress. Efforts in this regard have been pursued for face seals, gear wheels, and consumer products like wash-basins. To understand the sintering process, a variety of modeling approaches have been pursued at different scales.

  7. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume ... Costume Contact Lenses Can Ruin Vision Eye Makeup Safety In fact, it is illegal to sell colored ...

  8. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... with Colored Contact Lenses Julian: Teenager Blinded In One Eye By Non-Prescription Contact Lens Laura: Vision ... Robyn: Blurry Vision and Daily Eye Drops After One Use Facts About Colored Contacts and Halloween Safety ...

  9. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume ... use of colored contact lenses , from the U.S. Food and Drug Administration (FDA). Are the colored lenses ...

  10. Ash chemistry and sintering, verification of the mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M.; Skrifvars, B.J. [Aabo Akademi, Turku (Finland)

    1996-12-01

    In this project four sintering mechanisms have been studied, i.e., partial melting with a viscous liquid, partial melting with a non-viscous liquid, chemical reaction sintering and solid state sintering. The work has aimed at improving the understanding of ash sintering mechanisms and quantifying their role in combustion and gasification. The work has been oriented in particular on the understanding of biomass ash behavior. The work has not directly focused on any specific technical application. However, results can also be applied on other fuels such as brown coal, petroleum coke, black liquor and different types of wastes (PDF, RDF, MSW). In one part of study the melting behavior was calculated for ten biomass ashes and compared with lab measurements of sintering tendencies. The comparison showed that the T{sub 15} temperatures, i.e. those temperatures at which the ashes contained 15 % molten phase, correlated fairly well with the temperature at which the sintering measurements detected sintering. This suggests that partial melting can be predicted fairly accurate for some ashes already with the today existing thermodynamic calculation routines. In some cases, however the melting calculations did not correlate with the detected sintering temperatures. In a second part detailed measurements on ash behavior was conducted both in a semi full scale CFB and a lab scale FBC. Ashes and deposits were collected and analyzed in several different ways. These analyses show that the ash chemistry shifts radically when the fuel is shifted. Fuels with silicate based ashes behaved totally different than those with an oxide or salt based ash. The chemistry was also affected by fuel blending. The ultimate goal has been to be able to predict the ash thermal behavior during biomass thermal conversion, using the fuel and ash elemental analyses and a few operational key parameters as the only input data. This goal has not yet today been achieved. (author)

  11. Low temperature sintering of fluorapatite glass-ceramics.

    Science.gov (United States)

    Denry, Isabelle; Holloway, Julie A

    2014-02-01

    Fluorapatite glass-ceramics have been shown to be excellent candidates as scaffold materials for bone grafts, however, scaffold production by sintering is hindered by concurrent crystallization of the glass. Objective, our goal was to investigate the effect of Ca/Al ratio on the sintering behavior of Nb-doped fluorapatite-based glasses in the SiO2-Al2O3-P2O5-MgO-Na2O-K2O-CaO-CaF2 system. Methods, glass compositions with Ca/Al ratio of 1 (A), 2 (B), 4 (C) and 19 (D) were prepared by twice melting at 1525°C for 3h. Glasses were either cast as cylindrical ingots or ground into powders. Disk-shaped specimens were prepared by either sectioning from the ingots or powder-compacting in a mold, followed by heat treatment at temperatures ranging between 700 and 1050°C for 1h. The density was measured on both sintered specimens and heat treated discs as controls. The degree of sintering was determined from these measurements. Results and Significance XRD showed that fluorapatite crystallized in all glass-ceramics. A high degree of sintering was achieved at 775°C for glass-ceramic D (98.99±0.04%), and 900°C for glass-ceramic C (91.31±0.10). Glass-ceramics A or B were only partially sintered at 1000°C (63.6±0.8% and 74.1±1.5%, respectively). SEM revealed a unique microstructure of micron-sized spherulitic fluorapatite crystals in glass-ceramics C and D. Increasing the Ca/Al ratio promoted low temperature sintering of fluorapatite glass-ceramics, which are traditionally difficult to sinter. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. Process for preparing sintered uranium dioxide nuclear fuel

    International Nuclear Information System (INIS)

    Carter, R.E.

    1975-01-01

    Uranium dioxide is prepared for use as fuel in nuclear reactors by sintering it to the desired density at a temperature less than 1300 0 C in a chemically controlled gas atmosphere comprised of at least two gases which in equilibrium provide an oxygen partial pressure sufficient to maintain the uranium dioxide composition at an oxygen/uranium ratio of at least 2.005 at the sintering temperature. 7 Claims, No Drawings

  13. Corrosion Properties of Sintered and Wrought Stainless Seel

    DEFF Research Database (Denmark)

    Mathiesen, Troels; Maahn, Ernst Emanuel

    1997-01-01

    The corrosion properties of a range of stainless steels produced by powder metallurgy (PM) are compared with wrought AISI304 and AISI316 Steel. Characterisation of the passivation properties in 0.5M H2SO4 and pittingresistance in 0.3% chloride solution by polarisation show properties...... of the sintered PM150 that are comparable or better than those of wrought 316 steel depending on the applied sintering technique....

  14. Low temperature sintering of fluorapatite glass-ceramics

    Science.gov (United States)

    Denry, Isabelle; Holloway, Julie A.

    2014-01-01

    Fluorapatite glass-ceramics have been shown to be excellent candidates as scaffold materials for bone grafts, however, scaffold production by sintering is hindered by concurrent crystallization of the glass. Our goal was to investigate the effect of Ca/Al ratio on the sintering behavior of Nb-doped fluorapatite-based glasses in the SiO2-Al2O3-P2O5-MgO-Na2O-K2O-CaO-CaF2 system. Glass compositions with Ca/Al ratio of 1 (A), 2 (B), 4 (C) and 19 (D) were prepared by twice melting at 1525°C for 3h. Glasses were either cast as cylindrical ingots or ground into powders. Disc-shaped specimens were prepared by either sectioning from the ingots or powder-compacting in a mold, followed by heat treatment at temperatures ranging between 700 and 1050°C for 1h. The density was measured on both sintered specimens and heat treated discs as controls. The degree of sintering was determined from these measurements. XRD showed that fluorapatite crystallized in all glass-ceramics. A high degree of sintering was achieved at 775°C for glass-ceramic D (98.99±0.04%), and 900°C for glass-ceramic C (91.31±0.10). Glass-ceramics A or B were only partially sintered at 1000°C (63.6±0.8% and 74.1±1.5%, respectively). SEM revealed a unique microstructure of micron-sized spherulitic fluorapatite crystals in glass-ceramics C and D. Increasing the Ca/Al ratio promoted low temperature sintering of fluorapatite glass-ceramics, which are traditionally difficult to sinter. PMID:24252652

  15. Properties of Bulk Sintered Silver As a Function of Porosity

    Energy Technology Data Exchange (ETDEWEB)

    Wereszczak, Andrew A [ORNL; Vuono, Daniel J [ORNL; Wang, Hsin [ORNL; Ferber, Mattison K [ORNL; Liang, Zhenxian [ORNL

    2012-06-01

    This report summarizes a study where various properties of bulk-sintered silver were investigated over a range of porosity. This work was conducted within the National Transportation Research Center's Power Device Packaging project that is part of the DOE Vehicle Technologies Advanced Power Electronics and Electric Motors Program. Sintered silver, as an interconnect material in power electronics, inherently has porosity in its produced structure because of the way it is made. Therefore, interest existed in this study to examine if that porosity affected electrical properties, thermal properties, and mechanical properties because any dependencies could affect the intended function (e.g., thermal transfer, mechanical stress relief, etc.) or reliability of that interconnect layer and alter how its performance is modeled. Disks of bulk-sintered silver were fabricated using different starting silver pastes and different sintering conditions to promote different amounts of porosity. Test coupons were harvested out of the disks to measure electrical resistivity and electrical conductivity, thermal conductivity, coefficient of thermal expansion, elastic modulus, Poisson's ratio, and yield stress. The authors fully recognize that the microstructure of processed bulk silver coupons may indeed not be identical to the microstructure produced in thin (20-50 microns) layers of sintered silver. However, measuring these same properties with such a thin actual structure is very difficult, requires very specialized specimen preparation and unique testing instrumentation, is expensive, and has experimental shortfalls of its own, so the authors concluded that the herein measured responses using processed bulk sintered silver coupons would be sufficient to determine acceptable values of those properties. Almost all the investigated properties of bulk sintered silver changed with porosity content within a range of 3-38% porosity. Electrical resistivity, electrical conductivity

  16. Impact strength of sintered astaloy CrM powders

    International Nuclear Information System (INIS)

    Kazior, J.; Ploszczak, J.; Nykiel, M.; Pieczonka, T.

    2003-01-01

    In this paper results of a series of impact tests on sintered Astaloy CrM powders alloys modified by boron are presented and discussed. Boron in different forms, i.e. as elemental boron powder, boron carbide B 4 C powder or mixture of boron and carbon elemental powders, was used in different weight percentage to activate sintering of Astaloy CrM powder and to increase hardenability, with aim of increasing impact strength in view of structural applications. (author)

  17. Enhanced Sintering of Boron Carbide-Silicon Composites by Silicon

    Science.gov (United States)

    Zeng, Xiaojun; Liu, Weiliang

    2016-11-01

    Boron carbide (B4C)-silicon (Si) composites have been prepared by aqueous tape casting, laminating, and spark plasma sintering (SPS). The influences of silicon (Si) content on the phases, microstructure, sintering properties, and mechanical properties of the obtained B4C-Si composites are studied. The results indicate that the addition of Si powder can act as a sintering aid and contribute to the sintering densification. The addition of Si powder can also act as a second phase and contribute to the toughening for composites. The relative density of B4C-Si composites samples with adding 10 wt.% Si powder prepared by SPS at 1600 °C and 50 MPa for 8 min is up to 98.3%. The bending strength, fracture toughness, and Vickers hardness of the sintered samples are 518.5 MPa, 5.87 MPa m1/2, and 38.9 GPa, respectively. The testing temperature-dependent high-temperature bending strength and fracture toughness can reach a maximum value at 1350 °C. The B4C-Si composites prepared at 1600, 1650, and 1700 °C have good high-temperature mechanical properties. This paper provides a facile low-temperature sintering route for B4C ceramics with improved properties.

  18. Bending Behavior of Porous Sintered Stainless Steel Fiber Honeycombs

    Science.gov (United States)

    Zou, Shuiping; Wan, Zhenping; Lu, Longsheng; Tang, Yong

    2017-02-01

    A novel porous honeycomb-type substrate has been developed using solid-state sintering stainless steel fibers. The porous sintered stainless steel fiber honeycombs (PSSSFH) are composed of a skeleton of sintered stainless steel fibers, three-dimensionally interconnected porous structures and multiple parallel microchannels. The bending behavior of the PSSSFH is investigated using three-point bending tests. Four stages, including an elastic stage, a yielding stage with a plateau, a hardening stage and a failure stage, are observed during the bending process of the PSSSFH. In the initial yielding stage, the bending forces increase slowly with displacement increasing, and then a yielding plateau follows, which is unique compared with other porous materials. Moreover, the structure parameters of the PSSSFH are varied to investigate the influence on the bending strength. It is determined that the multiple parallel microchannels can enhance the bending strength of porous stainless steel fiber sintered substrates (PSSFSS) and do not influence the variation trend of bending strength of PSSFSS with porosity increasing. The open ratio is conducive to increasing the bending strength, and the microchannel diameters ranging from 0.5 mm to 1.5 mm have little influence on the bending strength. In addition, both the increasing of sintering temperature and sintering time can strengthen the PSSSFH.

  19. Industrial Sintering of Uranium Oxide in a Continuous Furnace

    International Nuclear Information System (INIS)

    Hauser, R.; Porneuf, A.

    1963-01-01

    Under a USAEC-EURATOM research contract, CICAF (Compagnie industrielle de combustibles atomiques frittes) was asked by the French Atomic Energy Commission to design and construct a continuous furnace sintering under a reducing atmosphere at high temperature. The characteristic features of the furnace are automatic operation, rigorous control of presintering and sintering atmospheres, flexibility of temperature regulation so that the thermal cycle can be adjusted to the product to be sintered and high output (5 t of uranium oxide per month). It can operate continuously up to 1700 deg. C, the presintering taking place at a lower temperature (800 deg. C) in a preliminary furnace which forms an integral part of the whole. The sintering atmosphere is cracked ammonia or pure hydrogen; the presintering atmosphere is a mixture o f about 10% hydrogen and 90% nitrogen. The sintered pellets densify to above 97% of theoretical density, with a total dispersion of less than 1%. Structurally, they are equi-axed grains of about 10μm. It was established that the stoichiometric variation of the uranium oxide sintered in a continuous furnace was less than 0.005. (author) [fr

  20. Manufacture of sintered bricks of high density from beryllium oxide

    International Nuclear Information System (INIS)

    Pointud, R.; Rispal, Ch.; Le Garec, M.

    1959-01-01

    Beryllium oxide bricks of nuclear purity 100 x 100 x 50 and 100 x 100 x 100 mm of very high density (between 2.85 and 3.00) are manufactured by sintering under pressure in graphite moulds at temperatures between 1,750 and 1,850 deg. C, and under a pressure of 150 kg/cm 2 . The physico-chemical state of the saw material is of considerable importance with regard to the success of the sintering operation. In addition, a study of the sintering of a BeO mixture with 3 to 5 per cent of boron introduced in the form of boric acid, boron carbide or elementary boron shows that high densities can only be obtained by sintering under pressure. For technical reasons of manufacture, only the mixture based on boron carbide is used. The sintering is carried out in graphite moulds at 1500 deg. C under 150 kg/cm 2 pressure, and bricks can be obtained with density between 2,85 and 2,90. Laboratory studies and the industrial manufacture of various sinters are described in detail. (author) [fr

  1. Effect of sintering temperature on optical properties and microstructure of translucent zirconia prepared by high-pressure spark plasma sintering

    Directory of Open Access Journals (Sweden)

    Haibin Zhang, Byung-Nam Kim, Koji Morita, Hidehiro Yoshida Keijiro Hiraga and Yoshio Sakka

    2011-01-01

    Full Text Available Aiming to characterize the effect of sintering temperature on transparency of zirconia, we have evaluated the optical properties and microstructure of translucent cubic zirconia prepared by high-pressure spark plasma sintering (SPS at 1000–1200 circleC. Color centers (oxygen vacancies with trapped electrons and residual pores were primary defects in the samples. In SPS samples, the total forward transmittance and in-line transmittance are mainly affected by color centers with a limited contribution from residual pores; in contrast, the changes in reflectance are only related to the porosity. The amounts of color centers and residual pores increase with sintering temperature that reduces the total forward and in-line transmittance of the as-sintered zirconia. Annealing in oxidizing atmosphere improves the total forward and in-line transmittance. During the annealing, the concentration of color centers decreases but the porosity increases.

  2. Effect Of Compaction Pressure And Sintering Temperature On The Liquid Phase Sintering Behavior Of Al-Cu-Zn Alloy

    Directory of Open Access Journals (Sweden)

    Lee S.H.

    2015-06-01

    Full Text Available The liquid phase sintering characteristics of Al-Cu-Zn alloy were investigated with respect to various powder metallurgy processing conditions. Powders of each alloying elements were blended to form Al-6Cu-5Zn composition and compacted with pressures of 200, 400, and 600 MPa. The sintering process was performed at various temperatures of 410, 560, and 615°C in N2 gas atmosphere. Density and micro-Vickers hardness measurements were conducted at different processing stages, and transverse rupture strength of sintered materials was examined for each condition, respectively. The microstructure was characterized using optical microscope and scanning electron microscopy. The effect of Zn addition on the liquid phase sintering behavior during P/M process of the Al-Cu-Zn alloy was also discussed in detail.

  3. Thermal Analysis of Sintered Silver Nanoparticles Film

    Directory of Open Access Journals (Sweden)

    M. Keikhaie

    2014-07-01

    Full Text Available Thin bonded films have many applications in antireflection and reflection coating, insulating and conducting films and semiconductor industries. Thermal conductivity is one of the most important parameter for power packaging since the thermal resistance of the interconnections is directly related to the heat removal capability and thermal management of the power package. The defects in materials play very important role on the effective thermal conductivity. In this paper, finite element method (FEM was utilized to simulate the effect of pores on the effective thermal conductivity of sintered silver nanoparticles film. The simulation results indicate that the effective thermal conductivity of film is different at different directions and would be enhanced when the pore angle is 90. The simulation results will help us to further understand the heat transfer process across highly porous structures and will provide us a powerful guide to design coating with high thermal insulation or conductor property. Because of there is no similar experimental data for this simulation results, this paper is a comparative work among three different models.

  4. Polymer powders for selective laser sintering (SLS)

    Science.gov (United States)

    Schmid, Manfred; Amado, Antonio; Wegener, Konrad

    2015-05-01

    Selective Laser Sintering (SLS) is close to be accepted as a production technique (Additive Manufacturing). However, one problem limiting employment of SLS for additive manufacturing in a wide-ranging industrial scope is the narrow variety of applicable polymers. The commonly applied SLS powder to date is polyamide 12 (PA 12). PA 12 or ccompounds of PA 12 (dry blends) are approximately 90 % of complete industrial consumption. The remaining small quantity is distributed on polyamide 11 (PA11) and some other `exotic' polymers (TPU, PEBA, P(E)EK). Industry is awaiting commodity polymers like polypropylene (PP) or polyethylene (PE) crucial to open new market segments. But several approaches launching those polymers failed. But what are the reasons for the difficulties in developing new SLS powders? The contribution is to answer this and highlights the combination of intrinsic and extrinsic polymer properties necessary to generate a polymer powder promising for SLS application. Particle shape, powder distribution, thermal, rheological and optical requirements must be considered and only a particularly controlled property combination leads to successful SLS implementation. Thermal behavior, particle shape and -distribution is discussed in detail, although the other properties can't be disregarded for providing new commercially successful SLS powder finally.

  5. Microwave combustion and sintering without isostatic pressure

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1998-01-01

    In recent years interest has grown rapidly in the application of microwave energy to the processing of ceramics, composites, polymers, and other materials. Advances in the understanding of microwave/materials interactions will facilitate the production of new ceramic materials with superior mechanical properties. One application of particular interest is the use of microwave energy for the mobilization of uranium for subsequent redeposition. Phase III (FY98) will focus on the microwave assisted chemical vapor infiltration tests for mobilization and redeposition of radioactive species in the mixed sludge waste. Uranium hexachloride and uranium (IV) borohydride are volatile compounds for which the chemical vapor infiltration procedure might be developed for the separation of uranium. Microwave heating characterized by an inverse temperature profile within a preformed ceramic matrix will be utilized for CVI using a carrier gas. Matrix deposition is expected to commence from the inside of the sample where the highest temperature is present. The preform matrix materials, which include aluminosilicate based ceramics and silicon carbide based ceramics, are all amenable to extreme volume reduction, densification, and vitrification. Important parameters of microwave sintering such as frequency, power requirement, soaking temperature, and holding time will be investigated to optimize process conditions for the volatilization of uranyl species using a reactive carrier gas in a microwave chamber

  6. Damage Behavior of Sintered Fiber Felts

    Directory of Open Access Journals (Sweden)

    Nicolas Lippitz

    2015-04-01

    Full Text Available The reduction of aircraft noise is important due to a rising number of flights and the growth of urban centers close to airports. During landing, a significant part of the noise is generated by flow around the airframe. To reduce that noise porous trailing edges are investigated. Ideally, the porous materials should to be structural materials as well. Therefore, the mechanical properties and damage behavior are of major interest. The aim of this study is to show the change of structure and the damage behavior of sintered fiber felts, which are promising materials for porous trailing edges, under tensile loading using a combination of tensile tests and three dimensional computed tomography scans. By stopping the tensile test after a defined stress or strain and scanning the sample, it is possible to correlate structural changes and the development of damage to certain features in the stress-strain curve and follow the damage process with a high spatial resolution. Finally, the correlation between material structure and mechanical behavior is demonstrated.

  7. 3Y-TZP/Si2N2O composite obtained by pressureless sintering

    International Nuclear Information System (INIS)

    Santos, Carlos Augusto Xavier

    2006-01-01

    Zirconia 3YTZP presents excellent properties at room temperature. These properties decrease as the temperature increases because high temperature acts negatively over the stress induced transformation toughening in the matrix. The addition of Si 3 N 4 and SiC in a Y-TZP matrix is very interesting because leads to formation of silicon oxynitride and it increases the mechanical properties like toughness and hardness. Certainly the mechanical properties increment is limited by several difficulties which have appeared during processing and heating of these materials. This paper studies the Y-TZP/Si 2 N 2 0 pressureless sintered composite, under different temperatures, showing the behavior of 20 vol %Si 3 N 4 -SiC when added in YTZP matrix and heated under no pressure system. Al 2 O 3 and Y 2 O 3 were used as sintering aids. The mixture was milled and molded by cold isostatic pressure. Samples were heated at 1500 deg, 1600 deg and 17000 deg C x 2h without pressure under atmospheric conditions using Si 3 N 4 bed-powder. Samples were characterized by XRD and density, hardness, toughness, bending strength were measured. The structure of the material was observed in SEMITEM/EPMA to verify the distribution and composition of the materials in the composite and the contact between filler surface and the matrix. The formation of SiON 2 was observed in the sintered material due to reaction between both nitride and carbide with Y - TZP matrix. Furthermore the material showed an increment of both hardness and toughness as temperature increases. The samples presented considerable resistance to oxidation below 1000 deg C. (author)

  8. Systemic contact dermatitis

    Directory of Open Access Journals (Sweden)

    Daria Nowak

    2016-02-01

    Full Text Available Systemic contact dermatitis (SCD is a skin inflammation occurring in a patient after systemic administration of a hapten, which previously caused an allergic contact skin reaction in the same person. Most frequently, hypersensitivity reactions typical for SCD occur after absorption of haptens with food or inhalation. Haptens occur mainly in the forms of metals and compounds present in natural resins, preservatives, food thickeners, flavorings and medicines. For many years, several studies have been conducted on understanding the pathogenesis of SCD in which both delayed type hypersensitivity (type IV and immediate type I are observed. Components of the complement system are also suspected to attend there. Helper T cells (Th (Th1 and Th2, cytotoxic T lymphocytes (Tc, and NK cells play a crucial role in the pathogenesis of SCD. They secrete a number of pro-inflammatory cytokines. In addition, regulatory T cells (Tregs have an important role. They control and inhibit activity of the immune system during inflammation. Tregs release suppressor cytokines and interact directly with a target cell through presentation of immunosuppressive particles at the cell surface. Diagnostic methods are generally the patch test, oral provocation test, elimination diet and lymphocyte stimulation test. There are many kinds of inflammatory skin reactions caused by systemic haptens’ distribution. They are manifested in a variety of clinical phenotypes of the disease.

  9. [Contact lens care and maintenance].

    Science.gov (United States)

    Bloise, L

    2017-04-01

    All contact lenses with replacement schedules longer than daily must be maintained. At each step of their use, the lenses may be contaminated. Contact lens solutions perform the essential functions of cleaning, decontaminating and preserving the lenses to prevent infectious problems and improve wearing comfort. Contact lens contamination essentially comes from hands, cleaning solutions, cases, water and the environment. The pathogenic microorganisms are mainly Gram-negative bacteria, fungi and amoebae. Contact lens deposits may or may not have an organic origin. Their presence increases the risk of infection because they serve as a nutrient matrix for microbes, and they are responsible for wearing discomfort. Contact lens solutions differ in their composition, their mechanism of action and the concentration of the various agents. To prescribe the best lens care system to each wearer and for each material, it is necessary to be very familiar with them. Maintenance is the main cause of discomfort with contact lenses, either through improper use, solution-material incompatibility, or a reaction of the wearer to the components. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Clinical update on contact allergy

    DEFF Research Database (Denmark)

    Uter, Wolfgang; Johansen, Jeanne Duus; Orton, David I

    2005-01-01

    PURPOSE OF REVIEW: The aim of this article is to review recent findings in contact allergy, regarding clinical research. RECENT FINDINGS: The biocide methyldibromo glutaronitrile was identified to be an important sensitizer. Subsequently, it was banned from leave-on cosmetics in the European Union......, and cutting fluid components. SUMMARY: Constant awareness for new allergens, confirmed by critical evaluation, standardization of patch test materials, and the identification of temporal patterns and subgroups at risk will improve both the diagnosis and prevention of allergic contact dermatitis....

  11. Spreading depression analysis of contact behaviour of rats.

    Science.gov (United States)

    Tikal, K

    1977-08-01

    Social contact behaviour induced by spreading cortical depression was studied in rats. The controls looked for and remained in contact, whereas between the rats with spreading cortical depression and their other partners there was no contact. This phenomenon is due mainly to the absence of an active urge for contact. The contact behaviour of rats is evidently controlled by the cerebral cortex or by subcortical areas of the brain which are inhibited after the elicitation of spreading depression. The experiments show that the contact behaviour of rats has at least two components - an active urge for contact and passive tolerance of contact.

  12. [Correct contact lens hygiene].

    Science.gov (United States)

    Blümle, S; Kaercher, T; Khaireddin, R

    2013-06-01

    Although contact lenses have long been established in ophthalmology, practical aspects of handling contact lenses is becoming increasingly less important in the clinical training as specialist for ophthalmology. Simultaneously, for many reasons injuries due to wearing contact lenses are increasing. In order to correct this discrepancy, information on contact lenses and practical experience with them must be substantially increased from a medical perspective. This review article deals with the most important aspects for prevention of complications, i.e. contact lens hygiene.

  13. Dry Sintered Metal Coating of Halloysite Nanotubes

    Directory of Open Access Journals (Sweden)

    James C. Nicholson

    2016-09-01

    Full Text Available Halloysite nanotubes (HNTs are a naturally-occurring aluminosilicate whose dimensions measure microns in length and tens of nanometers in diameter. Bonding defects between the alumina and silica lead to net negative and positive charges on the exterior and interior lumen, respectively. HNTs have been shown to enhance the material properties of polymer matrices and enable the sustained release of loaded chemicals, drugs, and growth factors. Due to the net charges, these nanotubes can also be readily coated in layered-depositions using the HNT exterior lumen’s net negative charge as the basis for assembly. These coatings are primarily done through wet chemical processes, the majority of which are limited in their use of desired chemicals, due to the polarity of the halloysite. Furthermore, this restriction in the type of chemicals used often requires the use of more toxic chemicals in place of greener options, and typically necessitates the use of a significantly longer chemical process to achieve the desired coating. In this study, we show that HNTs can be coated with metal acetylacetonates—compounds primarily employed in the synthesis of nanoparticles, as metal catalysts, and as NMR shift reagents—through a dry sintering process. This method was capable of thermally decaying the metal acetylacetonate, resulting in a free positively-charged metal ion that readily bonded to the negatively-charged HNT exterior, resulting in metallic coatings forming on the HNT surface. Our coating method may enable greater deposition of coated material onto these nanotubes as required for a desired application. Furthermore, the use of chemical processes using toxic chemicals is not required, thus eliminating exposure to toxic chemicals and costs associated with the disposal of the resultant chemical waste.

  14. Impact of Fe powder sintering and soldering in production of porous heating surface on flow boiling heat transfer in minichannels

    Science.gov (United States)

    Depczyński, Wojciech; Piasecki, Artur; Piasecka, Magdalena; Strąk, Kinga

    2017-10-01

    This paper focuses on identification of the impact of porous heated surface on flow boiling heat transfer in a rectangular minichannel. The heated element for Fluorinert FC-72 was a thin plate made of Haynes-230. Infrared thermography was used to determine changes in the temperature on its outer smooth side. The porous surface in contact with the fluid in the minichannel was produced in two processes: sintering or soldering of Fe powder to the plate. The results were presented as relationships between the heat transfer coefficient and the distance from the minichannel inlet and as boiling curves. Results obtained for using a smooth heated plate at the saturated boiling region were also presented to compare. In the subcooled boiling region, at a higher heat flux, the heat transfer coefficient was slightly higher for the surface prepared via soldering. In the saturated boiling region, the local heat transfer coefficients obtained for the smooth plate surface were slightly higher than those achieved from the sintered plate surface. The porous structures formed have low thermal conductivity. This may induce noticeable thermal resistance at the diffusion bridges of the sintered structures, in particular within the saturated boiling region.

  15. Consolidation of metallic hollow spheres by electric sintering

    Science.gov (United States)

    Mironov, V.; Tatarinov, A.; Lapkovsky, V.

    2017-07-01

    This paper considers peculiarities of the technology of production of structures from metallic hollow spheres (MHS) using magnetic fields and electric sintering. In these studies, the raw material was MHS obtained by burning of polystyrene balls coated by carbon steel. MHS had an outer diameter of 3-5 mm and a steel wall thickness of 70-120 microns. Pulsed current generators were used for electric sintering of MHS to obtain different spatial structures. Since MHS have small strength, the compressive pressure during sintering should be minimal. To improve the adhesion strength and reduce the required energy for sintering, hollow spheres were coated with copper by ion-plasma sputtering in vacuum. The coating thickness was 10-15 microns. The ferromagnetic properties of MHS allowed using of magnet fields for orientation of the spheres in the structures, as well as using of perforated tapes acting as orienting magnetic cores. Ultrasonic testing of MHS structures has been tried using through propagation of ultrasound in low kilohertz frequency range. Sensitivity of the propagation parameters to water filling of inter-spheres space and sintering temperature was demonstrated.

  16. Leaching of metals from fresh and sintered red mud.

    Science.gov (United States)

    Ghosh, Indrani; Guha, Saumyen; Balasubramaniam, R; Kumar, A V Ramesh

    2011-01-30

    The disposal of red mud, a solid waste generated during the extraction of alumina from bauxite, is one of the major problems faced by the aluminum industry. Proper disposal followed by its utilization, for example as bricks, can provide a satisfactory solution to this problem. Pollution potential of red mud and its finished product, due to metals leaching out from them under certain environmental conditions, need to be studied. Sintering of red mud was performed in a resistance type vertical tube furnace to simulate the brick-making conditions in lab-scale. Leachability of metals in red mud and the sintered product was evaluated by performing sequential extraction experiments on both. The metals studied were the 'macro metals' iron and aluminum and the 'trace metals' copper and chromium. The total extractabilities of all the metals estimated by the microwave digestion of red mud samples decreased due to sintering. The leachability in sequential extraction of the macro metals iron and aluminum, on the other hand, increased due to sintering in all phases of sequential extraction. However, the effect of sintering on the leachability of the trace metals by sequential extraction was different for copper and chromium in different fractions of sequential extraction. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Low sintering temperature glass waste forms for sequestering radioactive iodine

    Science.gov (United States)

    Nenoff, Tina M.; Krumhansl, James L.; Garino, Terry J.; Ockwig, Nathan W.

    2012-09-11

    Materials and methods of making low-sintering-temperature glass waste forms that sequester radioactive iodine in a strong and durable structure. First, the iodine is captured by an adsorbant, which forms an iodine-loaded material, e.g., AgI, AgI-zeolite, AgI-mordenite, Ag-silica aerogel, ZnI.sub.2, CuI, or Bi.sub.5O.sub.7I. Next, particles of the iodine-loaded material are mixed with powdered frits of low-sintering-temperature glasses (comprising various oxides of Si, B, Bi, Pb, and Zn), and then sintered at a relatively low temperature, ranging from 425.degree. C. to 550.degree. C. The sintering converts the mixed powders into a solid block of a glassy waste form, having low iodine leaching rates. The vitrified glassy waste form can contain as much as 60 wt % AgI. A preferred glass, having a sintering temperature of 500.degree. C. (below the silver iodide sublimation temperature of 500.degree. C.) was identified that contains oxides of boron, bismuth, and zinc, while containing essentially no lead or silicon.

  18. Pellet-press-to-sintering-boat nuclear fuel pellet loading system

    International Nuclear Information System (INIS)

    Bucher, G.D.

    1988-01-01

    This patent describes a system for loading nuclear fuel pellets into a sintering boat from a pellet press which ejects newly made the pellets from a pellet press die table surface. The system consists of: (a) a bowl having an inner surface, a longitudinal axis, an open and generally circular top of larger diameter, and an open and generally circular bottom of smaller diameter; (b) means for supporting the bowl in a generally upright position such that the bowl is rotatable about its longitudinal axis; (c) means for receiving the ejected pellets proximate the die table surface of the pellet press and for discharging the received pellets into the bowl at a location proximate the inner surface towards the top of the bowl with a pellet velocity having a horizontal component which is generally tangent to the inner surface of the bowl proximate the location; (d) means for rotating the bowl about the longitudinal axis such that the bowl proximate the location has a velocity generally equal, in magnitude and direction, to the horizontal component of the pellet velocity at the location; and (e) means for moving the sintering boat generally horizontally beneath and proximate the bottom of the bowl

  19. Thermal conduction and linear expansion of sintered rhenium and tungsten-rhenium alloys at a temperature up to 1000 K

    International Nuclear Information System (INIS)

    Pozdnyak, N.Z.; Belyaev, R.A.; Vavilov, Yu.V.; Vinogradov, Yu.G.; Serykh, G.M.

    1978-01-01

    Preparation technology (by powder metallurgy methods) of sintered rhenium and tungsten-rhenium VR-5, VR-10, and VR-20 alloys is described. Thermal conduction of rhenium and VR-20 alloy has been measured in the temperature range from 300 to 1000 K. The value obtained turned out to be considerably less than those published elsewhere, this testifies to the great thermal contact resistance between the material grains. Also measured is the mean linear expansion coefficient for the mentioned above materials in the same temperature range. Linear expansion increases with rhenium content increase

  20. Low temperature pressureless immediate sintering of novel nanostructured WC/Co/NiCrSiB-alloy cemented carbide

    OpenAIRE

    Amel-Farzad, H.; Taheri-Nassaj, E.; Meertens, D.; Dunin-Borkowski, R. E.; Tavabi, A. H.

    2017-01-01

    A novel nanostructured cemented carbide formed from WC-5%Co-20%BNi2 brazing alloy is described. During sintering, the BNi2 alloy is infiltrated into a green compact of WC-5%Co at 1050-1100 {\\deg}C for 2-60 minutes. Perfect wetting behavior and a zero contact angle are achieved after only 40 s. Relative densities of 98.5% and 100% and microhardness values of above 1500HV1 and 1800HV1 are obtained after 2 and 30 minutes, respectively. A change in mean particle size of about 600 nm in the precur...

  1. Theory-based design of sintered granular composites triples three-phase boundary in fuel cells

    Science.gov (United States)

    Amitai, Shahar; Bertei, Antonio; Blumenfeld, Raphael

    2017-11-01

    Solid-oxide fuel cells produce electric current from energy released by a spontaneous electrochemical reaction. The efficiency of these devices depends crucially on the microstructure of their electrodes and in particular on the three-phase boundary (TPB) length, along which the energy-producing reaction occurs. We present a systematic maximization of the TPB length as a function of four readily controllable microstructural parameters, for any given mean hydraulic radius, which is a conventional measure of the permeability to gas flow. We identify the maximizing parameters and show that the TPB length can be increased by a factor of over 300% compared to current common practices. We support this result by calculating the TPB of several numerically simulated structures. We also compare four models for a single intergranular contact in the sintered electrode and show that the model commonly used in the literature is oversimplified and unphysical. We then propose two alternatives.

  2. W/Cu composites produced by low temperature Pulse Plasma Sintering

    International Nuclear Information System (INIS)

    Rosinski, M.S.; Fortuna, E.; Michalski, A.J.; Kurzydlowski, K.J.

    2006-01-01

    The plasma facing components (PFCs) must withstand the thermal, mechanical and neutron loads under cyclic mode of operation and vacuum. Despite that PFCs of ITER and demonstration reactors must assure reliability and long in service lifetime. For that reason PFCs are designed to be made of beryllium, tungsten or carbon fibre composites armours and copper based heat sink material. Such design concepts can only be used if joining methods of these dissimilar materials are resolved. Several techniques have been developed for joining W and Cu e. g. casting of pure Cu onto W, high temperature brazing, direct diffusion bonding or CVDs of W onto Cu. The main problem in the development of such joints is the large difference in the coefficients of thermal expansion, CTE (alpha Cu > 4 alpha W) and elastic modula (ECu > 0.2 EW). These differences result in large stresses at the W/Cu interfaces during manufacturing and/or during operation, which may lead to cracking or delamination reducing lifetime of the components. Possible solution to this problem is the use of W-Cu composites (FGM). W-Cu composites are widely used for spark erosion electrodes, in heavy duty circuit breakers and as heat sinks of microelectronic devices. They are commonly produced by infiltration of a porous sintered tungsten by liquid copper. Other technological route is powder metallurgy. Coatings can be produced by low pressure plasma spraying. All these methods, however, are known to have some disadvantages. For infiltration there is a 30 wt.% limit of Cu content while for powder metallurgy and plasma spraying techniques porosity is of concern. In our work the W-Cu composites of different composition were produced by pulse plasma sintering (PPS). This new method utilizes pulsed high electric discharges to heat the powders under uniaxial load. The arc discharges clean surface of powder particles and intensify diffusion. The total sintering time is reduced to several minutes. In our investigations various

  3. [Influence on microstructure of dental zirconia ceramics prepared by two-step sintering].

    Science.gov (United States)

    Jian, Chao; Li, Ning; Wu, Zhikai; Teng, Jing; Yan, Jiazhen

    2013-10-01

    To investigate the microstructure of dental zirconia ceramics prepared by two-step sintering. Nanostructured zirconia powder was dry compacted, cold isostatic pressed, and pre-sintered. The pre-sintered discs were cut processed into samples. Conventional sintering, single-step sintering, and two-step sintering were carried out, and density and grain size of the samples were measured. Afterward, T1 and/or T2 of two-step sintering ranges were measured. Effects on microstructure of different routes, which consisted of two-step sintering and conventional sintering were discussed. The influence of T1 and/or T2 on density and grain size were analyzed as well. The range of T1 was between 1450 degrees C and 1550 degrees C, and the range of T2 was between 1250 degrees C and 1350 degrees C. Compared with conventional sintering, finer microstructure of higher density and smaller grain could be obtained by two-step sintering. Grain growth was dependent on T1, whereas density was not much related with T1. However, density was dependent on T2, and grain size was minimally influenced. Two-step sintering could ensure a sintering body with high density and small grain, which is good for optimizing the microstructure of dental zirconia ceramics.

  4. Granulation of coke breeze fine for using in the sintering process

    Directory of Open Access Journals (Sweden)

    Mohamed F.M.

    2010-01-01

    Full Text Available Coke breeze is the main fuel used in the sintering process. The value of -3+1 mm. represents the most favorable particle size for coke breeze in the sintering process. About 20% of total coke fines (-0.5 mm are produced during different steps of preparation. Introducing these fines during the sintering process proves to be very harmful for different operating parameters. Thus ,this study aims at investigating the production of granules resulting from these fines using molasses as organic binder and its application in sintering of an iron ore. The results showed that the granules having the highest mechanical properties were obtained with 14.5 wt % molasses addition. The sintering experiments were performed by using coke breeze in different shapes (-3+1 mm in size, coke breeze without sieving and coke breeze granules -3+1 mm. The reduction experiments, microscopic structure and X-ray analysis for the produced sinter were carried out. The results revealed that, all sinter properties (such as shatter test, productivity of sinter machine and blast furnace, reduction time and chemical composition for produced sinter by using coke breeze with size -3+1 mm and coke breeze granules were almost the same. The iron ore sinter which was produced by using coke breeze without sieving yielded low productivity for both sinter machine and blast furnace. Furthermore, using coke breeze without sieving in sintering of an iron ore decreases the vertical velocity of sinter machine and increases the reduction time.

  5. High performance sinter-HIP for hard metals

    International Nuclear Information System (INIS)

    Hongxia Chen; Deming Zhang; Yang Li; Jingping Chen

    2001-01-01

    The horizontal sinter-HIP equipment with great charge capacity and high performance, developed and manufactured by Central Iron and Steel Research Institute(CISRI), is mainly used for sintering and condensation of hard metals. This equipment is characterized by large hot zone, high heating speed, good temperature uniformity and fast cooling system. The equipment can provide uniform hot zone with temperature difference less than 6 o C at 1500-1600 o C and 6-10 MPa by controlling temperature, pressure and circulation of gas precisely. Using large scale horizontal sinter-HIP equipment to produce hard matals have many advantages such as stable quality, high efficiency of production, high rate of finished products and low production cost, so this equipment is a good choice for manufacturer of hard metals. (author)

  6. CdS sintered films: growth and characteristics

    International Nuclear Information System (INIS)

    Sharma, Monika; Kumar, Sushil; Sharma, L.M.; Sharma, T.P.; Husain, M.

    2004-01-01

    Cadmium sulphide finds extensive applications in a variety of optoelectronic devices. CdS, with a band gap of 2.43 eV, is a suitable window material in heterojunction solar cells that employ CdTe, Cu 2 S or CuInSe 2 as an absorber. Polycrystalline films of CdS, thickness ∼15 μm, were grown onto chemically clean and optically plane glass substrates by sintering process. A 10 min sintering time and 500 deg. C sintering temperature were found to be optimum. As deposited films were characterized through optical, structural and electrical transport properties using optical reflection spectroscopy, X-ray diffractometry and I-V characteristics techniques

  7. Nano pores evolution in hydroxyapatite microsphere during spark plasma sintering

    Directory of Open Access Journals (Sweden)

    Lin C.

    2011-01-01

    Full Text Available Micron-spherical granules of hydroxyapatite (HAp nanoparticles were prepared by powder granulation methods. Through subsequent sintering, porous HAp microspheres with tailored pore and grain framework structures were obtained. Detailed microstructure investigation by SEM and TEM revealed the correlation of the pore structure and the necking strength with the sintering profiles that determine the coalescence features of the nanoparticles. The partially sintered porous HAp microspheres containing more than 50% porosity consisting of pores and grains both in nano-scale are active in inducing the precipitation of HAp in simulated body fluid. The nano-porous HAp microspheres with an extensive surface and interconnecting pores thus demonstrate the potential of stimulating the formation of collagen and bone and the integration with the newly formed bones during physiological bone remodeling.

  8. Immobilization of high-level wastes into sintered glass: 1

    International Nuclear Information System (INIS)

    Russo, D.O.; Messi de Bernasconi, N.; Audero, M.A.

    1987-01-01

    In order to immobilize the high-level radioactive wastes from fuel elements reprocessing, borosilicate glass was adopted. Sintering experiments are described with the variety VG 98/12 (SiO 2 , TiO 2 , Al 2 O 3 , B 2 O 3 , MgO, CaO and Na 2 O) (which does not present devitrification problems) mixed with simulated calcinated wastes. The hot pressing line (sintering under pressure) was explored in two variants 1: In can; 2: In graphite matrix with sintered pellet extraction. With scanning electron microscopy it is observed that the simulated wastes do not disolve in the vitreous matrix, but they remain dispersed in the same. The results obtained point out that the leaching velocities are independent from the density and from the matrix type employed, as well as from the fact that the wastes do no dissolve in the matrix. (M.E.L.) [es

  9. High efficiency particulate removal with sintered metal filters

    International Nuclear Information System (INIS)

    Kirstein, B.E.; Paplawsky, W.J.; Pence, D.T.; Hedahl, T.G.

    1981-01-01

    Because of their particle removal efficiencies and durability, sintered metal filters have been chosen for HEPA filter protection in the off-gas treatment system for the proposed Idaho National Engineering Laboratory Transuranic Waste Treatment Facility. Process evaluation of sintered metal filters indicated a lack of sufficient process design data to assume trouble-free operation. Subsequent pilot-scale testing was performed with fly ash as the test particulate. The test results showed that the sintered metal filters can have an efficiency greater than 0.9999999 for the specific test conditions used. Stable pressure drop characteristics were observed in pulsed and reversed flow blowback modes of operation. Over 4900 hours of operation were obtained with operating conditions ranging up to approximately 90 0 C and 24 volume percent water vapor in the gas stream

  10. Evaluation of dilatometric techniques for studies of sintering kinetics

    International Nuclear Information System (INIS)

    El-Sayed Ali, M.; Toft Soerensen, O.

    1985-04-01

    The kinetics of the initial sintering stage of CeO 2 is evaluated by three different techniques: constant heating rate dilatometry, constant shrinkage rate dilatometry and a new technique recently introduced by the authors called Stepwise Isothermal Dilatometry (SID). Comparative measurements with these techniques showed that too high activation energies were obtained with the two first techniques, both of which can be termed as nonisothermal, whereas activation energies comparable to those reported for cation diffusion in other fluorite oxides were obtained with the latter technique. Of the three techniques SID is thus considered to be the most accurate for studies of the sintering kinetics. In contrast to the two nonisothermal techniques SID has the further advantage that both the controlling mechanism and its activation energy can be determined in a single experiment. From the SID-measurement it was concluded that the initial sintering stage of CeO 2 is controlled by grain-boundary diffusion. (author)

  11. High efficiency particulate removal with sintered metal filters

    International Nuclear Information System (INIS)

    Kirstein, B.E.; Paplawsky, W.J.; Pence, D.T.; Hedahl, T.G.

    1981-01-01

    Because of their particle removal efficiencies and durability, sintered metal filters have been chosen for high efficiency particulate air (HEPA) filter protection in the off-gas treatment system for the proposed Idaho National Engineering Laboratory Transuranic Waste Treatment Facility. Process evaluation of sintered metal filters indicated a lack of sufficient process design data to ensure trouble-free operation. Subsequence pilot scale testing was performed with flyash as the test particulate. The test results showed that the sintered metal filters can have an efficiency greater than 0.9999999 for the specific test conditions used. Stable pressure drop characteristics were observed in pulsed and reversed flow blowback modes of operation. Over 4900 hours of operation were obtained with operating conditions ranging up to approximately 90 0 C and 24 vol % water vapor in the gas stream

  12. Reactive Sintering of Bimodal WC-Co Hardmetals

    Directory of Open Access Journals (Sweden)

    Marek Tarraste

    2015-09-01

    Full Text Available Bimodal WC-Co hardmetals were produced using novel technology - reactive sintering. Milled and activated tungsten and graphite powders were mixed with commercial coarse grained WC-Co powder and then sintered. The microstructure of produced materials was free of defects and consisted of evenly distributed coarse and fine tungsten carbide grains in cobalt binder. The microstructure, hardness and fracture toughness of reactive sintered bimodal WC-Co hardmetals is exhibited. Developed bimodal hardmetal has perspective for demanding wear applications for its increased combined hardness and toughness. Compared to coarse material there is only slight decrease in fracture toughness (K1c is 14.7 for coarse grained and 14.4 for bimodal, hardness is increased from 1290 to 1350 HV units.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7511

  13. Characterizations of Rapid Sintered Nanosilver Joint for Attaching Power Chips

    Directory of Open Access Journals (Sweden)

    Shuang-Tao Feng

    2016-07-01

    Full Text Available Sintering of nanosilver paste has been extensively studied as a lead-free die-attach solution for bonding semiconductor power chips, such as the power insulated gated bipolar transistor (IGBT. However, for the traditional method of bonding IGBT chips, an external pressure of a few MPa is reported necessary for the sintering time of ~1 h. In order to shorten the processing duration time, we developed a rapid way to sinter nanosilver paste for bonding IGBT chips in less than 5 min using pulsed current. In this way, we firstly dried as-printed paste at about 100 °C to get rid of many volatile solvents because they may result in defects or voids during the out-gassing from the paste. Then, the pre-dried paste was further heated by pulse current ranging from 1.2 kA to 2.4 kA for several seconds. The whole procedure was less than 3 min and did not require any gas protection. We could obtain robust sintered joint with shear strength of 30–35 MPa for bonding 1200-V, 25-A IGBT and superior thermal properties. Static and dynamic electrical performance of the as-bonded IGBT assemblies was also characterized to verify the feasibility of this rapid sintering method. The results indicate that the electrical performance is comparable or even partially better than that of commercial IGBT modules. The microstructure evolution of the rapid sintered joints was also studied by scanning electron microscopy (SEM. This work may benefit the wide usage of nanosilver paste for rapid bonding IGBT chips in the future.

  14. Microscopic appearance analysis of raw material used for the production of sintered UO2 by scanning electron microscope

    International Nuclear Information System (INIS)

    Liu feiming

    1992-01-01

    The paper describes the microscopic appearance of UO 2 , U 3 O 8 , ADU and AUC powders used for the production of sintered UO 2 slug of nuclear fuel component of PWR. The characteristic analysis of the microscopic appearance observed by scanning electron microscope shows that the quality and finished product rate of sintered UO 2 depend on the appearance characteristic of the active Uo 2 powder, such as grade size and its distribution, spherulitized extent, surface condition and heap model etc.. The addition of U 3 O 8 to the UO 2 powder improves significantly the quality and the finished product rate. The mechanism of this effect is discussed on the basis of the microscopic appearance characteristic for two kinds of powder

  15. Comparison of Residual Stresses in Inconel 718 Simple Parts Made by Electron Beam Melting and Direct Laser Metal Sintering

    Science.gov (United States)

    Sochalski-Kolbus, L. M.; Payzant, E. A.; Cornwell, P. A.; Watkins, T. R.; Babu, S. S.; Dehoff, R. R.; Lorenz, M.; Ovchinnikova, O.; Duty, C.

    2015-03-01

    Residual stress profiles were mapped using neutron diffraction in two simple prism builds of Inconel 718: one fabricated with electron beam melting (EBM) and the other with direct laser metal sintering. Spatially indexed stress-free cubes were obtained by electrical discharge machining (EDM) equivalent prisms of similar shape. The (311) interplanar spacings from the EDM sectioned sample were compared to the interplanar spacings calculated to fulfill stress and moment balance. We have shown that applying stress and moment balance is a necessary supplement to the measurements for the stress-free cubes with respect to accurate stress calculations in additively manufactured components. In addition, our work has shown that residual stresses in electron beam melted parts are much smaller than that of direct laser metal sintered parts most likely due to the powder preheating step in the EBM process.

  16. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume ... new application of artificial intelligence shows whether a patient’s eyes point to high blood pressure or risk ...

  17. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... sell contacts without a prescription are breaking the law, and may be fined $11,000 per violation. " ... wear any kind of contact lens. In Butler's case, the lenses caused an infection and left her ...

  18. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume ... Academy Jobs at the Academy Financial Relationships with Industry Medical Disclaimer Privacy Policy Terms of Service For ...

  19. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... in a pair of colored contact lenses, Laura Butler of Parkersburg, W.Va., had "extreme pain in ... to wear any kind of contact lens. In Butler's case, the lenses caused an infection and left ...

  20. Contact Angle Goniometer

    Data.gov (United States)

    Federal Laboratory Consortium — Description:The FTA32 goniometer provides video-based contact angle and surface tension measurement. Contact angles are measured by fitting a mathematical expression...

  1. Multiple Josephson contact interferometer

    International Nuclear Information System (INIS)

    Zappe, H.H.

    1978-01-01

    The interferometer (quantum interference between two parallel contacts) displays a mid connector and contacts of the same size, or contacts at which the middle one is twice the size as the other two, or a double connector and three contacts by which the middle contact carries twice the current as the other two. Also there can be provided interferometers with three and four contacts as well as with symmetrical double current connectors and the same largest Josephson current through all contacts. Because all contacts display the same phase state in the voltage free switching state, the amplification property can be increased and current dissipation can be decreased in a way that logic circuits with high integration degree and high switching velocities can be designed. (DG) [de

  2. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... Cleveland. "This is far from the truth." Real People, Real Problems with Colored Contact Lenses Julian: Teenager ... the lenses. Never share contact lenses with another person. Get follow up exams with your eye care ...

  3. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... popping touch. But colored contact lenses are popular year-round, not just at Halloween. But few know the ... also available in Spanish . Follow The Academy Professionals: Education Guidelines News Multimedia Public & Patients: Contact Us About ...

  4. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... Contact Lens Facts Over-the-Counter Costume Contacts May Contain Chemicals Harmful to Eyes Four Ways Over- ... without a prescription are breaking the law, and may be fined $11,000 per violation. "Many of ...

  5. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... Costume Contacts May Contain Chemicals Harmful to Eyes Four Ways Over-the-Counter Costume Contact Lenses Can ... was in severe pain and on medication for four weeks, and couldn't see well enough to ...

  6. Corporate Consumer Contact API

    Data.gov (United States)

    General Services Administration — The data in the Corporate Consumer Contact API is based on the content you can find in the Corporate Consumer Contact listing in the Consumer Action Handbook (PDF)....

  7. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... not require the same level of care or consideration as a standard contact lens because they can ... sell contacts without a prescription are breaking the law, and may be fined $11,000 per violation. " ...

  8. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... lens because they can be purchased over-the-counter or on the Internet," says Thomas Steinemann, MD, ... Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume Contacts May Contain Chemicals Harmful to Eyes ...

  9. Contact Us about Asbestos

    Science.gov (United States)

    How to contact EPA for more information on asbestos, including state and regional contacts, EPA’s Asbestos Abatement/Management Ombudsman and the Toxic Substances Control Act (TSCA) Assistance Information Service (TSCA Hotline).

  10. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... like a suction cup." Halloween is a popular time for people to use colored contact lenses to ... wear costume contact lenses for Halloween or any time of year, follow these guidelines: Get an eye ...

  11. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume ... an ophthalmologist — an eye medical doctor — who will measure each eye and talk to you about proper ...

  12. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... contact lenses , from the U.S. Food and Drug Administration (FDA). Are the colored lenses you are considering ... Follow The Academy Professionals: Education Guidelines News Multimedia Public & Patients: Contact Us About the Academy Jobs at ...

  13. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... prescription. Follow the contact lens care directions for cleaning, disinfecting, and wearing the lenses. Never share contact ... with Industry Medical Disclaimer Privacy Policy Terms of Service For Advertisers For Media Ophthalmology Job Center © American ...

  14. Predicting sintering deformation of ceramic film constrained by rigid substrate using anisotropic constitutive law

    International Nuclear Information System (INIS)

    Li Fan; Pan Jingzhe; Guillon, Olivier; Cocks, Alan

    2010-01-01

    Sintering of ceramic films on a solid substrate is an important technology for fabricating a range of products, including solid oxide fuel cells, micro-electronic PZT films and protective coatings. There is clear evidence that the constrained sintering process is anisotropic in nature. This paper presents a study of the constrained sintering deformation using an anisotropic constitutive law. The state of the material is described using the sintering strains rather than the relative density. In the limiting case of free sintering, the constitutive law reduces to a conventional isotropic constitutive law. The anisotropic constitutive law is used to calculate sintering deformation of a constrained film bonded to a rigid substrate and the compressive stress required in a sinter-forging experiment to achieve zero lateral shrinkage. The results are compared with experimental data in the literature. It is shown that the anisotropic constitutive law can capture the behaviour of the materials observed in the sintering experiments.

  15. Preparation of Ni-Ti shape memory alloy by spark plasma sintering method

    Czech Academy of Sciences Publication Activity Database

    Salvetr, P.; Kubatík, Tomáš František; Novák, P.

    2016-01-01

    Roč. 16, č. 4 (2016), s. 804-808 ISSN 1213-2489 Institutional support: RVO:61389021 Keywords : Ni-Ti alloy * Powder metallurgy * Reactive sintering * Spark plasma sintering Subject RIV: JK - Corrosion ; Surface Treatment of Materials

  16. Contribution to the development and the modelling of an ultrasonic conformable phased array transducer for the contact inspection of 3D complex geometry components; Contribution au developpement et a la modelisation d'un traducteur ultrasonore multielements conformable pour l'inspection au contact de composants a geometrie complexe 3D

    Energy Technology Data Exchange (ETDEWEB)

    Guedes, O

    2005-04-15

    With the difficulties encountered for the exploration of complex shape surfaces, particularly in nuclear industry, the ultrasonic conformable phased array transducer allows a non destructive evaluation of parts with 3D complex parts. For this, one can use the Smart Contact Transducer principle to generate an ultrasonic field by adaptive dynamic focalisation, with a matrix array composed of independent elements moulded in a soft resin. This work deals with the electro-acoustic conception, with the realization of such a prototype and with the study of it's mechanical and acoustic behaviour. The array design is defined using a radiation model adapted to the simulation of contact sources on a free surface. Once one have defined the shape of the radiating elements, a vibratory analysis using finite elements method allows the determination of the emitting structure with 1-3 piezocomposite, witch leads to the realization of emitting-receiving elements. With the measurement of the field transmitted by such elements, we deduced new hypothesis to change the model of radiation. Thus one can take into account normal and tangential stresses calculated with finite element modelling at the interface between the element and the propagation medium, to use it with the semi-analytical model. Some vibratory phenomena dealing with fluid coupling of contact transducers have been studied, and the prediction of the transverse wave radiation profile have been improved. The last part of this work deals with the realization of the first prototype of the conformable phased array transducer. For this a deformation measuring system have been developed, to determine the position of each element on real time with the displacement of the transducer on complex shape surfaces. With those positions, one can perform the calculation of the a delay law intended for the adaptive dynamic focusing of the desired ultrasonic field. The conformable phased array transducer have been characterized in

  17. Influence of alloying elements and density on aqueous corrosion behaviour of some sintered low alloy steels

    International Nuclear Information System (INIS)

    Kandavel, T.K.; Chandramouli, R.; Karthikeyan, P.

    2012-01-01

    Highlights: ► Corrosion of low alloy P/M steels under HCl acid pickling environment has been studied. ► Influence of density, strain and alloying elements on the rate of corrosion of the steels has been investigated. ► Residual porosity has significant effect on acid corrosion. ► Addition of the alloying elements Cu, Mo and Ti reduces the corrosion rate significantly. ► Carbide forming elements Mo and Ti improve further the resistance of the steels to aqueous corrosion. -- Abstract: Low alloy steels produced through powder metallurgy route of sintering followed by forging are promising candidate materials for high strength small components. Porosity in such steels poses a real challenge during acid pickling treatment, which is one of the processing steps during manufacturing. The present research work attempts to investigate the mechanism underlying the acid corrosion behaviour of some sintered low alloy steels under induced acid pickling conditions. Sintered-forged low alloy steel samples containing molybdenum (Mo), copper (Cu) and titanium (Ti) were subjected to aqueous corrosion attack by immersing the samples in 18% HCl (Hydrochloric acid) solution for 25 h. Sample weight loss and Fe (Iron) loss were estimated for the corroded samples. The morphology of the corroded surfaces was studied through metallography and scanning electron microscopy. Higher porosity alloys underwent enhanced corrosion rates. Both corrosion rate and iron loss are found to decrease linearly with reduction in porosity in all cases of the alloys. The alloying elements Mo, Ti and Cu, when added in combination, have played a complementary role in the reduction of corrosion rate by almost one order of magnitude compared to unalloyed steel. Presence of carbides of the carbide forming elements Mo and Ti played a positive role on the corrosion behaviour of the low alloy steels.

  18. Pressure sintering and creep deformation: a joint modeling approach

    International Nuclear Information System (INIS)

    Notis, M.R.

    1979-10-01

    Work related to microchemical and microstructural aspects of the joint modeling of pressure sintering and creep in ceramic oxides is reported. Quantitative techniques for the microchemical analysis of ceramic oxides and for the examination of impurity segregation effects in polycrystalline ceramic materials were developed. This has included fundamental absorption corrections for the oxygen anion species as a function of foil thickness. The evolution in microstructure during the transition from intermediate stage to final stage densification during hot pressing of cobalt oxide and preliminary studies with doped oxides were studied. This work shows promise in using time-integrated microstructural effects to elucidate the role of impurities in the sintering of ceramic materials

  19. In situ Transmission Electron Microscopy of catalyst sintering

    DEFF Research Database (Denmark)

    DeLaRiva, Andrew T.; Hansen, Thomas Willum; Challa, Sivakumar R.

    2013-01-01

    Recent advancements in the field of electron microscopy, such as aberration correctors, have now been integrated into Environmental Transmission Electron Microscopes (TEMs), making it possible to study the behavior of supported metal catalysts under operating conditions at atomic resolution. Here......, we focus on in situ electron microscopy studies of catalysts that shed light on the mechanistic aspects of catalyst sintering. Catalyst sintering is an important mechanism for activity loss, especially for catalysts that operate at elevated temperatures. Literature from the past decade is reviewed...

  20. Pressure sintering and creep deformation: a joint modeling approach

    Energy Technology Data Exchange (ETDEWEB)

    Notis, M.R.

    1979-10-01

    Work related to microchemical and microstructural aspects of the joint modeling of pressure sintering and creep in ceramic oxides is reported. Quantitative techniques for the microchemical analysis of ceramic oxides and for the examination of impurity segregation effects in polycrystalline ceramic materials were developed. This has included fundamental absorption corrections for the oxygen anion species as a function of foil thickness. The evolution in microstructure during the transition from intermediate stage to final stage densification during hot pressing of cobalt oxide and preliminary studies with doped oxides were studied. This work shows promise in using time-integrated microstructural effects to elucidate the role of impurities in the sintering of ceramic materials.

  1. Method and apparatus for radio frequency ceramic sintering

    Science.gov (United States)

    Hoffman, Daniel J.; Kimrey, Jr., Harold D.

    1993-01-01

    Radio frequency energy is used to sinter ceramic materials. A coaxial waveguide resonator produces a TEM mode wave which generates a high field capacitive region in which a sample of the ceramic material is located. Frequency of the power source is kept in the range of radio frequency, and preferably between 60-80 MHz. An alternative embodiment provides a tunable radio frequency circuit which includes a series input capacitor and a parallel capacitor, with the sintered ceramic connected by an inductive lead. This arrangement permits matching of impedance over a wide range of dielectric constants, ceramic volumes, and loss tangents.

  2. Sintering of Kernel UO2 for High Temperature Reactor Fuel

    International Nuclear Information System (INIS)

    Sukarsono; Dwi-Heru-Sucahyo; Hidayati; Evi-Hertiviana; Bambang-Sugeng

    2000-01-01

    Sintering investigation of UO 2 gel has been done. The gel was preparedthrough two ways. The first, gel was produced using PVA as additive agent.The second gel was produced using HMTA and Urea as additive agent. From thepreparation of gel, the PVA method better than the urea - HMTA method,because was not necessary the cold temperature for sol preparation and alsowas not necessary the hot temperature for gelation process. After nextprocessing, the sintered gel of gel through PVA, also better than HMTAprocess. (author)

  3. Sintering and microstructure of ZnO varistor

    International Nuclear Information System (INIS)

    Leite, E.R.; Longo, E.; Varela, J.A.

    1987-01-01

    The sintering and microstructure of ZnO-Bi 2 O 3 (ZB) and ZuO-Sb 2 O 3 -CoO-Bi 2 O 3 (ZSCB) varistors in several temperatures, for one hour in dry air temperature were studied. The compounds were analyzed by scanning electron microscopy, X-ray diffraction, differential thermal analysis and the density and porosity were determined by mercury picnometry. The experimental results showed that the ZB and ZSCB system sinters by liquid means and that liquid will control the density and grain growth mechanisms. (E.G.) [pt

  4. Contact lens in keratoconus

    OpenAIRE

    Rathi, Varsha M; Mandathara, Preeji S; Dumpati, Srikanth

    2013-01-01

    Contact lenses are required for the visual improvement in patients with keratoconus. Various contact lens options, such as rigid gas permeable (RGP) lenses, soft and soft toric lenses, piggy back contact lenses (PBCL), hybrid lenses and scleral lenses are availble. This article discusses about selection of a lens depending on the type of keratoconus and the fitting philosophies of various contact lenses including the starting trial lens. A Medline search was carried out for articles in the En...

  5. Functionally graded Nylon-11/silica nanocomposites produced by selective laser sintering

    International Nuclear Information System (INIS)

    Chung, Haseung; Das, Suman

    2008-01-01

    Selective laser sintering (SLS), a layered manufacturing-based freeform fabrication approach was explored for constructing three-dimensional structures in functionally graded polymer nanocomposites. Here, we report on the processing and properties of functionally graded polymer nanocomposites of Nylon-11 filled with 0-10% by volume of 15 nm fumed silica nanoparticles. SLS processing parameters for the different compositions were developed by design of experiments (DOE). The densities and micro/nanostructures of the nanocomposites were examined by optical microscopy and transmission electron microscopy (TEM). The tensile and compressive properties for each composition were then tested. These properties exhibit a nonlinear variation as a function of filler volume fraction. Finally, two component designs exhibiting a one-dimensional polymer nanocomposite material gradient were fabricated. The results indicate that particulate-filled functionally graded polymer nanocomposites exhibiting a one-dimensional composition gradient can be successfully processed by SLS to produce three-dimensional components with spatially varying mechanical properties

  6. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... Ophthalmologist Patient Stories Español Eye Health / News Halloween Hazard: The Hidden Dangers of Buying Decorative Contact Lenses ... One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume ...

  7. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... an Ophthalmologist Patient Stories Español Eye Health / News Halloween Hazard: The Hidden Dangers of Buying Decorative Contact ... After One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter ...

  8. Hydrogenation of passivated contacts

    Energy Technology Data Exchange (ETDEWEB)

    Nemeth, William; Yuan, Hao-Chih; LaSalvia, Vincenzo; Stradins, Pauls; Page, Matthew R.

    2018-03-06

    Methods of hydrogenation of passivated contacts using materials having hydrogen impurities are provided. An example method includes applying, to a passivated contact, a layer of a material, the material containing hydrogen impurities. The method further includes subsequently annealing the material and subsequently removing the material from the passivated contact.

  9. Determination of optimum thermal debinding and sintering process parameters using Taguchi Method

    CSIR Research Space (South Africa)

    Seerane, M

    2015-07-01

    Full Text Available on the basis of obtaining a defect-free part after sintering and also determining a sintering time that gives high sintering density. Thermal debinding was conducted after solvent debinding. The feedstock used to produce green compacts composed of Ti6Al4V... International Light Metals Technology Conference (LMT 2015), Port Elizabeth, South Africa, July 27-29 Determination of Optimum Process for Thermal Debinding and Sintering using Taguchi Method SEERANE Mandya,*, CHIKWANDA Hildab, MACHAKA Ronaldc CSIR...

  10. Model for the evaluation and prediction of production rate of sinter ...

    African Journals Online (AJOL)

    A model has been derived for evaluation and prediction of production rate of sinter machine operating on vertical mode. The quadratic model expressed as: P = 0.4395 V – 0.0526 V2 + 0.54, showed that the production rate of the sinter machine was dependent on the vertical sintering height. The maximum deviation of the ...

  11. Influence of various manufacturing parameters on some characteristics of UO2 powders and their sintering behaviour

    International Nuclear Information System (INIS)

    Mintz, M.H.; Vaknin, Sh.; Kremener, A.; Hadari, Z.

    1977-02-01

    Various parameters in the process of manufacturing uranium dioxide are examined and their influence on the characteristics and sintering behaviour of the powders obtained established. In addition some correlations between the powder aggregates microstructure and their adhesion properties and sintering behaviour are indicated. Shrinkage during the sintering process is also discussed

  12. Application of fine-grained coke breeze fractions in the process of iron ore sintering

    Directory of Open Access Journals (Sweden)

    M. Niesler

    2014-01-01

    Full Text Available The testing cycle, described in the paper, included fine-grained coke breeze granulation tests and iron concentrate sintering tests with the use of selected granulate samples. The use of granulated coke breeze in the sintering process results in a higher process efficiency, shorter sintering duration and fuel saving.

  13. Sintering of uranium dioxide pellets (UO2) in an oxidizing atmosphere (C O2)

    International Nuclear Information System (INIS)

    Santos, G.R.T.

    1992-01-01

    This work consists in the study of the sintering process of U O 2 pellets in an oxidizing atmosphere. Sintering tests were performed in an CO 2 atmosphere and the influence of temperature and time on the pellets density and microstructure were verified. The results obtained were compared to those from the conventional sintering process and its efficiency was confirmed. (author)

  14. Fabrication of High Strength and Ductile Stainless Steel Fiber Felts by Sintering

    Science.gov (United States)

    Wang, J. Z.; Tang, H. P.; Qian, M.; Li, A. J.; Ma, J.; Xu, Z. G.; Li, C. L.; Liu, Y.; Wang, Y.

    2016-03-01

    Stainless steel fiber felts are important porous stainless steel products for a variety of industry applications. A systematic study of the sintering of 28- µm stainless steel fibers has been conducted for the first time, assisted with synchrotron radiation experiments to understand the evolution of the sintered joints. The critical sintering conditions for the formation of bamboo-like grain structures in the fiber ligaments were identified. The evolution of the number density of the sintered joints and the average sintered neck radius during sintering was assessed based on synchrotron radiation experiments. The optimum sintering condition for the fabrication of high strength and ductile 28- µm-diameter stainless steel fiber felts was determined to be sintering at 1000°C for 900 s. Sintering under this optimum condition increased the tensile strength of the as-sintered stainless steel fiber felts by 50% compared to conventional sintering (1200°C for 7200 s), in addition to much reduced sintering cycle and energy consumption.

  15. Spark Plasma Sintered AlN-BN Composites and Its Thermal Conductivity

    NARCIS (Netherlands)

    Zhao Haiyang, [No Value; Wang Weimin, [No Value; Wang Hao, [No Value; Fu Zhengyi, [No Value

    2008-01-01

    A series of samples of hexagonal boron nitride-aluminum nitride ceramic composites with different amounts of CaF(2) as sintering aid were prepared by spark plasma sintered at 1700-1850 degrees C for 5 min. The addition of CaF(2) effectively lowered the sintering temperature and promoted the

  16. Contact lens in keratoconus

    Directory of Open Access Journals (Sweden)

    Varsha M Rathi

    2013-01-01

    Full Text Available Contact lenses are required for the visual improvement in patients with keratoconus. Various contact lens options, such as rigid gas permeable (RGP lenses, soft and soft toric lenses, piggy back contact lenses (PBCL, hybrid lenses and scleral lenses are availble. This article discusses about selection of a lens depending on the type of keratoconus and the fitting philosophies of various contact lenses including the starting trial lens. A Medline search was carried out for articles in the English language with the keywords keratoconus and various contact lenses such as Rose k lens, RGP lens, hybrid lens, scleral lens and PBCL.

  17. Contact lens in keratoconus

    Science.gov (United States)

    Rathi, Varsha M; Mandathara, Preeji S; Dumpati, Srikanth

    2013-01-01

    Contact lenses are required for the visual improvement in patients with keratoconus. Various contact lens options, such as rigid gas permeable (RGP) lenses, soft and soft toric lenses, piggy back contact lenses (PBCL), hybrid lenses and scleral lenses are availble. This article discusses about selection of a lens depending on the type of keratoconus and the fitting philosophies of various contact lenses including the starting trial lens. A Medline search was carried out for articles in the English language with the keywords keratoconus and various contact lenses such as Rose k lens, RGP lens, hybrid lens, scleral lens and PBCL. PMID:23925325

  18. Process for the production of metal nitride sintered bodies and resultant silicon nitride and aluminum nitride sintered bodies

    Science.gov (United States)

    Yajima, S.; Omori, M.; Hayashi, J.; Kayano, H.; Hamano, M.

    1983-01-01

    A process for the manufacture of metal nitride sintered bodies, in particular, a process in which a mixture of metal nitrite powders is shaped and heated together with a binding agent is described. Of the metal nitrides Si3N4 and AIN were used especially frequently because of their excellent properties at high temperatures. The goal is to produce a process for metal nitride sintered bodies with high strength, high corrosion resistance, thermal shock resistance, thermal shock resistance, and avoidance of previously known faults.

  19. Investigation of Contact Formation during Silicon Solar Cell Production

    Science.gov (United States)

    Mojrová, Barbora

    2016-05-01

    This article deals with the investigation of the influence of sintering conditions on the formation process of screen printed contacts on passivated boron doped P+ emitters. The experiment was focused on measuring of resistance changes of two thick film pastes during firing processes with different conditions. Two different temperature profiles were compared at an atmospheric concentration of O2. The influence of the O2 concentration on resistance was investigated for one profile. A rapid thermal processing furnace modified for in-situ resistance measurements was used. The change of resistance was measured simultaneously with the temperature.

  20. Effects of sintering temperature on the density and porosity

    African Journals Online (AJOL)

    2013-03-01

    Mar 1, 2013 ... used as a model system for the investigation of ce- ramic sintering behavior [1, 2]. However, the system ... cially available metal foams are based on aluminium, copper, nickel and metal alloys [4]. ... Zhao et al [9] reported that the porosity of the as- manufactured foam is determined by the density of.

  1. Effect of sintering temperature and heating mode on consolidation of ...

    Indian Academy of Sciences (India)

    ventional vacuum furnace (10. −2 torr). The transverse rupture strength (TRS) samples (31·7 ... testing machine (model: 1195, INSTRON, UK) at a cross- head speed of 0·5 mm/min and SEM of fractured surfaces ... Photographs of 7775 alloy sintered under vacuum at. 590. ◦. C and 630. ◦. C in conventional furnace. where f is ...

  2. Novel sintered ceramic materials incorporated with EAF carbon steel slag

    Science.gov (United States)

    Karayannis, V.; Ntampegliotis, K.; Lamprakopoulos, S.; Papapolymerou, G.; Spiliotis, X.

    2017-01-01

    In the present research, novel sintered clay-based ceramic materials containing electric arc furnace carbon steel slag (EAFC) as a useful admixture were developed and characterized. The environmentally safe management of steel industry waste by-products and their valorization as secondary resources into value-added materials towards circular economy have attracted much attention in the last years. EAF Carbon steel slag in particular, is generated during the manufacture of carbon steel. It is a solid residue mainly composed of rich-in- Fe, Ca and Si compounds. The experimental results show that the beneficial incorporation of lower percentages of EAFC up to 6%wt. into ceramics sintered at 950 °C is attained without significant variations in sintering behavior and physico-mechanical properties. Further heating up to 1100 °C strongly enhances the densification of the ceramic microstructures, thus reducing the porosity and strengthening their mechanical performance. On the other side, in terms of thermal insulation behavior as well as energy consumption savings and production cost alleviation, the optimum sintering temperature appears to be 950 °C.

  3. Effect of sintering temperature and time on the mechanical ...

    Indian Academy of Sciences (India)

    Administrator

    partial sintering of the alloy particles on the cell walls. Pore size and pore interconnectivity are critical factors in porous material for tissue engineering. Micropores are scale to provide pathways for body fluid and nutrient transpor- tation, needed for bone regeneration and growth.25 In addition, these kinds of pores provide ...

  4. Diffusion of silver during sintering in high permittivity COG dielectrics

    NARCIS (Netherlands)

    Mikkenie, R.; Groen, W.A.; Drift, R. van der

    2010-01-01

    To achieve cost reduction in multi-layer ceramic capacitors and actuators, which use a silver-palladium alloy as internal electrode, the trend is to use alloys with the highest silver content possible. This requires ceramic materials which must be sintered at a relative low temperature. Goal is to

  5. Sintering, camber development of layer composites and a new ...

    Indian Academy of Sciences (India)

    Abstract. Zinc–magnesium titanate dielectrics/nickel–zinc–copper ferrite layer composites were prepared by tape- casting technique combined with a uniaxial pressure shaping technique. The sintering and camber development of the composites were investigated. The results show that the difference of shrinkage in the ...

  6. Electrical discharge machining studies on reactive sintered FeAl

    Indian Academy of Sciences (India)

    Electrical discharge machining (EDM) studies on reactive sintered FeAl were carried out with different process parameters. The metal removal rate and tool removal rate were found to increase with the applied pulse on-time. The surface roughness of machined surface also changed with the applied pulse on-time.

  7. Preparation and characterization of solid-state sintered aluminum ...

    Indian Academy of Sciences (India)

    AZO target; ZnAl2O4 spinel; resistivity; AZO thin film. 1. Introduction. Transparent conducting oxides ... (i) low cost, (ii) low growth temperature, (iii) non-toxicity, and (iv) easy adjustment of conductivity by adding ... strate via sputtering, a target with high sintering density is required. In this work, preparation of high quality AZO ...

  8. Sintering, camber development of layer composites and a new ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 37; Issue 1. Sintering ... To eliminate or decrease the camber, a new method semi-fixed uniaxial pressure technique (SUP) was proposed. ... Department of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China ...

  9. Sintering Reaction of Pseudoleucite Syenite: Thermodynamic Analysis and Process Evaluation

    Science.gov (United States)

    TAN, Danjun; MA, Hongwen; LI, Ge; LIU, Hao; ZOU, Dan

    On the basis of comprehensive analysis of the modal composition of a pseudoleucite syenite ore sample, collected from the Zijin Hill of Lin County, Shanxi Province, thermodynamic analysis of the pseudoleucite syenite sintering process with sodium carbonate as the additive was carried out. It indicated that when the pseudoleucite syenite was sintered at 760-880°C for 1.0-1.5 h, with sodium carbonate as the additive. The decomposition rate of minerals in the pseudoleucite syenite could reach 97.1%. The thermodynamic calculation shows that it needs to consume Na 2CO 3, i.e., 0.65 t treating per ton pseudoleucite syenite ore and approximately 95% of Na 2CO 3 could be recycled. This process consumes heat energy (2.29-2.48)×10 -6 kJ, corresponding to standard coal 190.97-206.82 kg as the thermal efficiency was 40% and CO 2 emission was 0.77-0.81 t. Compared with the Russian limestone-sintering technique, the natural mineral resources and energy consumptions and greenhouse gas emissions of the soda-sintering technique were reduced by 65%, 63%, and 65%, respectively. It is, therefore, feasible that the procedure suggested in this article could be industrialized providing both economic benefit and environmental conservation.

  10. Effect of sintering temperature and heating mode on consolidation of ...

    Indian Academy of Sciences (India)

    sintering of various Al-based composites. Microwave heat- ing of metallic powders (Al–Cu–Fe) to single phase was first reported by Vauchera et al (2008). To the best of our know- ... insulation also consisted of graphite coated SiC rods. Tem- perature ... Figure 3 compares thermal profile for 7775 aluminum alloy compacts ...

  11. Coal fly ash utilization: low temperature sintering of wall tiles.

    Science.gov (United States)

    Chandra, Navin; Sharma, Priya; Pashkov, G L; Voskresenskaya, E N; Amritphale, S S; Baghel, Narendra S

    2008-01-01

    We present here a study of the sintering of fly ash and its mixture with low alkali pyrophyllite in the presence of sodium hexa meta phosphate (SHMP), a complex activator of sintering, for the purpose of wall tile manufacturing. The sintering of fly ash with SHMP in the temperature range 925-1050 degrees C produces tiles with low impact strength; however, the incremental addition of low alkali pyrophyllite improves impact strength. The impact strength of composites with >or=40% (w/w) pyrophyllite in the fly ash-pyrophyllite mix satisfies the acceptable limit (19.6 J/m) set by the Indian Standards Institute for wall tiles. Increasing the pyrophyllite content results in an increase in the apparent density of tiles, while shrinkage and water absorption decrease. The strength of fly ash tiles is attributed to the formation of a silicophosphate phase; in pyrophyllite rich tiles, it is attributed to the formation of a tridymite-structured T-AlPO(4) phase. Scanning electron micrographs show that the reinforcing rod shaped T-AlPO(4) crystals become more prominent as the pyrophyllite content increases in the sintered tiles.

  12. Optical properties of CdS sintered film

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Chemical method has been used to prepare cadmium sulphide by using cadmium, hydrochloric acid and H2S. The reflection spectra of covered and uncovered sintered films of CdS have been recorded by 'Hitachi spectrophotometer' over the wavelength range 300–700 nm. The energy band gaps of these films ...

  13. Preparation and Characterization of Sintered Microporous Polymeric Filters

    Directory of Open Access Journals (Sweden)

    Meysam Salari

    2017-09-01

    Full Text Available Nowadays filtration process is increasingly used in various areas such as water purification, food industries, filtering the air dust and other separation applications. In this work, the HDPE microporous filters have been fabricated at different pressure and time conditions via sintering process and then were characterized by different techniques. It can be expected that microstructure and mechanical properties of the samples could be controlled by changing the fabrication parameters like temperature, pressure, time of the process and also by changing the properties of the resin such as powder shape, particle size and rheological properties. In the first step, by using DSC, MFI, rheology test and optical microscope, the most suitable polymeric powder for sintering process was chosen. The sintering temperature was fixed in the vicinity of melting temperature of the used HDPE powder, based on DSC result. In order to evaluate mechanical properties and porosity of the samples, the results obtained from the shear punch test, acetone drop permeability, gas permeability, transition optical microscopy and SEM, have been used; then the effect of pressure and time parameters on the characteristics of the product has been studied. Finally, it was concluded that it is possible to make microporous filters with suitable mechanical properties, using sintering process at controlled pressure and temperature conditions.It can be seen that by increasing time and pressure, on the one hand the mechanical properties of the products increase, and on the other hand, their porosity and the gas permeability of the vents decrease.

  14. Effect of sintering on controlled release profile of diltiazem ...

    African Journals Online (AJOL)

    The study was designed to formulate and evaluate diltiazem hydrochloride wax matrix tablets for controlled release using sintering technique. Granules of diltiazem hydrochloride-wax were prepared by melt granulation technique. This was formed by triturating the drug powder with a melted carnauba wax (drug: wax ratio, ...

  15. The polarising effects in sintered kaolin | D'ujanga | Tanzania ...

    African Journals Online (AJOL)

    The polarizing effects in sintered kaolin samples were analysed in terms of the sample density (or porosity) using direct current (dc) techniques. More porous samples exhibited higher polarizing effects than the less porous ones. The conduction carriers in kaolin samples at room temperature were found to be mainly ...

  16. Electrical discharge machining studies on reactive sintered FeAl

    Indian Academy of Sciences (India)

    Unknown

    MS received 7 November 2005. Abstract. Electrical discharge machining (EDM) studies on reactive sintered FeAl were carried out with differ- ... electric breakdown process spreads at an explosive rate, resulting in the formation of a .... of cutting fluid takes place which would give out a car- bon residue. The visual black layer ...

  17. New membranes made of sintered clay application to crossflow ...

    African Journals Online (AJOL)

    The new mineral membranes made of sintered clay are performed and characterized in terms of porosity, hydraulic resistance, pore diameter and mechanical resistance. It is shown that these membranes can be used as microfiltration membrane. The variations of the filtrate flux as a function of time are measured during the ...

  18. Physical chemistry and modelling of the sintering of actinide oxides

    International Nuclear Information System (INIS)

    Lechelle, Jacques

    2013-01-01

    This report gives a synthesis of the work I have carried out or to which I have numerically contributed to from 1996 up to 2012 in the Department of Plutonium Uranium and minor Actinides in Cadarache CEA Center. Their main goal is the study and the modeling of the sintering process of nuclear fuels which is the unifying thread of this document. Both in order to take into account the physical and chemical features of the actinide bearing oxide material and in order to combine the different transport phenomena leading to sintering, a sub-granular scale model is under development. Extension to a varying chemical composition as well as exchanges with the gaseous phase are foreseen. A simulation on a larger scale (pellet scale) is ongoing in the framework of a PhD thesis. Validation means have been tested with (U,Pu)O 2 material on the scale of the pellet (Small Angle Neutron Diffusion), on the scale of powder granules (X-Ray High Resolution Micro-Tomography) and with CeO 2 at the 'Institut de Chimie Separative' in Marcoule on a single crystal scale (Environmental Scanning Electron Microscope). The required microstructure homogeneity for nuclear fuels has led to a campaign of experimental studies about the role of Cr 2 O 3 as a sintering aid. Whole of these studies improve our understanding of fuel sintering and hence leads to an improved mastering of this process. (author) [fr

  19. Microstructure and properties of sintered mullite developed from ...

    Indian Academy of Sciences (India)

    purpose are clay minerals such as kaolinite, pyrophyllite, si- llimanite group ... racterized in terms of bulk density, apparent porosity, phase .... density at 1650. ◦. C. Gradual removal of open pores with an increase in sintering temperature is the reason for higher den- sification. Formation of higher amount of low density glass.

  20. Synthesis and electrical field-assisted sintering behaviour of yttria ...

    Indian Academy of Sciences (India)

    Synthesis and electrical field-assisted sintering behaviour of yttria-stabilized tetragonal ZrO2 nanopowders by polyacrylamide gel method. XINGHUA SU. ∗. , BENPAN WANG, JIE ZHOU and HAOYU SUN. School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China. MS received 5 May 2015; ...

  1. Effect of increasing lanthanum substitution and the sintering ...

    Indian Academy of Sciences (India)

    Compared with SBTi ceramics and other lanthanide-substituted compositions, the incorporation of La3+ results in clear improvement in properties for SBLT ( ∼ 0.75) with respect to the values of hardness and Young's modulus of the microwave sintered samples (8.8–12.5 and 160–180 GPa) are higher than that for ...

  2. High-level radioactive waste fixation in sintered vitreous matrix

    International Nuclear Information System (INIS)

    Russo, D.O.; Messi de Bernasconi, N.; Audero, M.A.

    1987-01-01

    The safe storage of high-level wastes from fuel elements reprocessing includes, as a first step, the fixation of the same in materials having a good resistance to the leaching in aqueous medium, such as borosilicate glass. As an alternative to the usual method of the molten glasses, a procedure for the sintering of a powdered glass and waste mixture at lower temperatures (600-700 deg C) has been developed, which minimizes the volatilization of active compounds during the process. Two glasses matrices of different composition and characteristics were used, to which the simulated wastes were added in the ratio of a 10% in weight of oxides. Two sintering techniques were employed 1: cold pressing and further sintering; 2: hot pressing and sintering under pressure. The densities were measured, the microstructure of the samples was analyzed and leaching essays were made in distilled water. The pellet's microstructure was observed by means of optical microscopy, by reflection in polished samples and by transparency in thin slices. The presence of crystalline compounds was analyzed by means of x rays and electron microprobe. The results have shown the convenience to continue with hot pressing essays, because a denser product with a higher resistance to the leaching is thus obtained. (M.E.L.) [es

  3. Strain in the mesoscale kinetic Monte Carlo model for sintering

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Frandsen, Henrik Lund; Tikare, V.

    2014-01-01

    Shrinkage strains measured from microstructural simulations using the mesoscale kinetic Monte Carlo (kMC) model for solid state sintering are discussed. This model represents the microstructure using digitized discrete sites that are either grain or pore sites. The algorithm used to simulate dens...

  4. Optical properties of CdS sintered film

    Indian Academy of Sciences (India)

    Chemical method has been used to prepare cadmium sulphide by using cadmium, hydrochloric acid and H2S. The reflection spectra of covered and uncovered sintered films of CdS have been recorded by 'Hitachi spectrophotometer' over the wavelength range 300–700 nm. The energy band gaps of these films have been ...

  5. Joining of β-SiC by spark plasma sintering

    Czech Academy of Sciences Publication Activity Database

    Grasso, S.; Tatarko, Peter; Rizzo, S.; Porwal, H.; Hu, Ch.; Katoh, Y.; Salvo, M.; Reece, M. J.; Ferraris, M.

    2014-01-01

    Roč. 34, č. 7 (2014), s. 1681-1686 ISSN 0955-2219 EU Projects: European Commission(XE) 264526 - GLACERCO Institutional support: RVO:68081723 Keywords : β-SiC * joining * Spark plasma sintering Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.947, year: 2014

  6. Binding Mechanisms in Selective Laser Sintering and Selective Laser Melting

    NARCIS (Netherlands)

    Kruth, J.P.; Mercelis, P.; Van Vaerenbergh, J.; van Vaerenbergh, J.; Froyen, L.; Rombouts, M.

    2005-01-01

    Purpose – This paper provides an overview of the different binding mechanisms in selective laser sintering (SLS) and selective laser melting (SLM), thus improving the understanding of these processes. Design/methodology/approach – A classification of SLS/SLM processes was developed, based on the

  7. New developments in laser sintering of diamond cutting disks

    NARCIS (Netherlands)

    Kovalenko, V.; Golovko, L.; Meijer, J.; Anyakin, M.

    2007-01-01

    The analysis of techniques and problems in the fabrication of cutting tools based on super hard composites results in a solution by the application of lasers. The results of systematic study of diamond composites sintering with laser radiation are discussed. A mathematical modeling of the heat

  8. Preparation and characterization of solid-state sintered aluminum ...

    Indian Academy of Sciences (India)

    Preparation and characterization of solid-state sintered aluminum-doped zinc oxide with different alumina contents. YU-HSIEN CHOU. ∗. , J L H CHAU, W L WANG, C S CHEN, S H WANG and C C YANG. Nanopowder and Thin Film Technology Centre, ITRI–South, Industrial Technology Research Institute, Tainan 70955,.

  9. Photoconductive cells from screen-printed and sintered cadmium sulfoselenide

    Czech Academy of Sciences Publication Activity Database

    Franc, Jiří; Nešpůrek, Stanislav

    2008-01-01

    Roč. 25, č. 3 (2008), s. 41-46 ISSN 1356-5362 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z40500505 Keywords : photoconductivity * detectors (circuits) * sintering * pastes Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.471, year: 2008

  10. Evolution of Electrically Active Defects in n-GaN During Heat Treatment Typical for Ohmic Contact Formation

    DEFF Research Database (Denmark)

    Boturchuk, Ievgen; Scheffler, Leopold Julian; Larsen, Arne Nylandsted

    2017-01-01

    Ohmic contact formation to n-type GaN often involves high temperature steps, for example sintering at about 800 °C in the case of Ti-based contacts. Such processing steps might cause changes in the distribution, concentration, and properties of the defects. The present work aims at contributing t...... are studied by the means of deep level transient spectroscopy (DLTS). Changes in carrier capture kinetics are monitored with varying filling pulse duration....

  11. Processing of Syndiotactic Polystyrene to Microspheres for Part Manufacturing through Selective Laser Sintering

    Directory of Open Access Journals (Sweden)

    Nicolas Mys

    2016-10-01

    Full Text Available Syndiotactic polystyrene pellets were processed into powder form using mechanical (ball milling, rotor milling and physicochemical (spray drying techniques with the intention of using it as feed material for selective laser sintering. New materials are an important component in broadening the application window for selective laser sintering but must meet strict requirements to be used. Particles obtained were characterized in size and shape using SEM imaging, analyzed by software, and compared to the product obtained by conventional ball milling. Rotor milling and spray drying proved capable of making spherical powders, yet only rotor milling achieved particles with a mean diameter within the desired range of 45–97 µm. Subsequently, the obtained powders were examined for the effect each processing technique imparts on the intrinsic properties of the material. Differential scanning calorimetry analysis revealed amorphization for all methods and a reduction in crystallinity after processing, however, the reduction in crystallinity was acceptably low for the spray-dried and rotor-milled powders. Ball milling displayed an exceptional reduction in crystallinity, suggesting severe degradation. As a final test, the rotor-milled powder was subjected to single-layer test and displayed good coalescence and smooth morphology, albeit with a large amount of warpage.

  12. Melt-Pool Temperature and Size Measurement During Direct Laser Sintering

    Energy Technology Data Exchange (ETDEWEB)

    List, III, Frederick Alyious [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dinwiddie, Ralph Barton [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carver, Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gockel, Joy E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    Additive manufacturing has demonstrated the ability to fabricate complex geometries and components not possible with conventional casting and machining. In many cases, industry has demonstrated the ability to fabricate complex geometries with improved efficiency and performance. However, qualification and certification of processes is challenging, leaving companies to focus on certification of material though design allowable based approaches. This significantly reduces the business case for additive manufacturing. Therefore, real time monitoring of the melt pool can be used to detect the development of flaws, such as porosity or un-sintered powder and aid in the certification process. Characteristics of the melt pool in the Direct Laser Sintering (DLS) process is also of great interest to modelers who are developing simulation models needed to improve and perfect the DLS process. Such models could provide a means to rapidly develop the optimum processing parameters for new alloy powders and optimize processing parameters for specific part geometries. Stratonics’ ThermaViz system will be integrated with the Renishaw DLS system in order to demonstrate its ability to measure melt pool size, shape and temperature. These results will be compared with data from an existing IR camera to determine the best approach for the determination of these critical parameters.

  13. Sintering furnace for remote fuel fabrication

    International Nuclear Information System (INIS)

    Bowen, W.W.

    1978-10-01

    Component testing and evaluation of a chemical vapor deposition Re/W muffle has been initiated. Hydrogen permeation testing and thermal cycling behavior will be evaluated. Fabrication of prototype 10-12 Kg furnace is scheduled for completion late in 1979, at which time testing of the system will be initiated

  14. Sintering of ultra high molecular weight polyethylene

    Indian Academy of Sciences (India)

    Unknown

    only by plastic flow or by fragmentation. However, as the pressure is released, the elastic component of the strain recovers leading to an increase in volume and thus lower density. This density of the compacts is known as the green density, which is always lower than the theoretical one. Figure 2 illustrates variation of green ...

  15. Microstructural optimization of solid-state sintered silicon carbide

    Science.gov (United States)

    Vargas-Gonzalez, Lionel R.

    Silicon carbide armor, manufactured through solid-state sintering, liquid-phase sintering, and hot-pressing, is being used by the United States Armed Forces for personal and vehicle protection. There is a lack of consensus, however, on which process results in the best-performing ballistic armor. Previous studies have shown that hot-pressed ceramics processed with secondary oxide and/or rare earth oxides, which exhibit high fracture toughness, perform well in handling and under ballistic impact. This high toughness is due to the intergranular nature of the fracture, creating a tortuous path for cracks and facilitating crack deflection and bridging. However, it has also been shown that higher-hardness sintered SiC materials might perform similarly or better to hot-pressed armor, in spite of the large fracture toughness deficit, if the microstructure (density, grain size, purity) of these materials are improved. In this work, the development of theoretically-dense, clean grain boundary, high hardness solid-state sintered silicon carbide (SiC) armor was pursued. Boron carbide and graphite (added as phenolic resin to ensure the carbon is finely dispersed throughout the microstructure) were used as the sintering aids. SiC batches between 0.25--4.00 wt.% carbon were mixed and spray dried. Cylindrical pellets were pressed at 13.7 MPa, cold-isostatically pressed (CIP) at 344 MPa, sintered under varying sintering soaking temperatures and heating rates, and varying post hot-isostatic pressing (HIP) parameters. Carbon additive amounts between 2.0--2.5 wt.% (based on the resin source), a 0.36 wt.% B4C addition, and a 2050°C sintering soak yielded parts with high sintering densities (˜95.5--96.5%) and a fine, equiaxed microstructure (d50 = 2.525 mum). A slow ramp rate (10°C/min) prevented any occurrence of abnormal grain growth. Post-HIPing at 1900°C removed the remaining closed porosity to yield a theoretically-dense part (3.175 g/cm3, according to rule of mixtures). These

  16. On the Mechanism of Microwave Flash Sintering of Ceramics

    Directory of Open Access Journals (Sweden)

    Yury V. Bykov

    2016-08-01

    Full Text Available The results of a study of ultra-rapid (flash sintering of oxide ceramic materials under microwave heating with high absorbed power per unit volume of material (10–500 W/cm3 are presented. Ceramic samples of various compositions—Al2O3; Y2O3; MgAl2O4; and Yb(LaO2O3—were sintered using a 24 GHz gyrotron system to a density above 0.98–0.99 of the theoretical value in 0.5–5 min without isothermal hold. An analysis of the experimental data (microwave power; heating and cooling rates along with microstructure characterization provided an insight into the mechanism of flash sintering. Flash sintering occurs when the processing conditions—including the temperature of the sample; the properties of thermal insulation; and the intensity of microwave radiation—facilitate the development of thermal runaway due to an Arrhenius-type dependency of the material’s effective conductivity on temperature. The proper control over the thermal runaway effect is provided by fast regulation of the microwave power. The elevated concentration of defects and impurities in the boundary regions of the grains leads to localized preferential absorption of microwave radiation and results in grain boundary softening/pre-melting. The rapid densification of the granular medium with a reduced viscosity of the grain boundary phase occurs via rotation and sliding of the grains which accommodate their shape due to fast diffusion mass transport through the (quasi-liquid phase. The same mechanism based on a thermal runaway under volumetric heating can be relevant for the effect of flash sintering of various oxide ceramics under a dc/ac voltage applied to the sample.

  17. Effect of sintering process parameters on the properties of 3Y-PSZ ceramics

    International Nuclear Information System (INIS)

    Chu, H L; Chen, R S; Wang, C L; Hwang, W S; Lee, H E; Sie, Y Y; Wang, M C

    2013-01-01

    The effect of sintering process parameters on the properties of 3 mol% yttria partially stability zirconia (3Y-PSZ) ceramics has been investigated. The relative density of the sintered pellet rapidly increases from 70.5 to 93.6% with rose temperature from 1473 to 1573 K. In addition, the relative density only slightly increases from 94.9 to 96.6 %, when rose sintered temperature from 1573 to 1773 K. This result shows that no significant influence on the densification behavior when sintering at 1573 to 1773 K for 2 h. The Vickers hardness and toughness also increase with the sintered temperature

  18. PRESSURELESS SINTERING OF B4C-NANOTiB2 NANOCOMPOSITE BY ADDITION OF Fe AND Ni AS SINTERING AIDS

    Directory of Open Access Journals (Sweden)

    M. M. Mohammadi Samani

    2014-12-01

    Full Text Available B4C and its composites with TiB2 as second phase continues to be extensively used as the preferred ceramic material in military applications as armor systems for absorbing and dissipating kinetic energy from high velocity projectiles. It also exhibits a high melting point (2427 °C, and high neutron absorption cross section. Pressureless sintering of the B 4C-nanoTiB2 nanocomposite using small amount of Fe and Ni (≤3 Wt% as sintering aids was investigated in order to clarify the role of Fe and Ni additions on the mechanical and microstructural properties of B4C-nanoTiB2 nanocomposites. Different amount of Fe and Ni, mainly 1 to 3 Wt% were added to the base material. Pressureless sintering was conducted at 2175, 2225 and 2300 °C. It was found that Addition of 3 Wt% Fe and 3 wt% Ni and sintering at 2300 °C resulted in improving the density of the samples to about 99% of theoretical density. The nanocomposite samples exhibited high density, hardness, and microstructural uniformity.

  19. Studies on sintering kinetics of ThO2-UO2 pellets using master sintering curve approach

    Science.gov (United States)

    Banerjee, Joydipta; Ray, Aditi; Kumar, Arun; Banerjee, Srikumar

    2013-11-01

    Three different compositions of thoria-urania pellets, namely, ThO2-4%UO2, ThO2-10%UO2 and ThO2-20%UO2 (all compositions are in wt% containing natural uranium) were fabricated by Coated Agglomerate Pelletization (CAP) process. The compositions studied in the current paper are the proposed fuels for the forthcoming Indian Advanced Heavy water Reactor (AHWR) and its variant based on low enriched uranium. Sintering kinetics of ThO2-x%UO2 (x = 4, 10, 20) green pellets, thus fabricated, were evaluated using constant heating rate experiments in a vertical dilatometer. Activation energies of sintering (Q) were estimated using Arrhenius plot as proposed by Wang and Raj. Master Sintering Curves (MSC) for the above three compositions were constructed using shrinkage data. A FORTRAN program, employing optimization based numerical algorithm for fitting relative density vs. work of sintering data with sigmoid function, was used for this purpose. The apparent activation energies, evaluated using MSC principle, appear to be consistent with the values obtained by Arrhenius plot.

  20. The preparation of sintered NdFeB magnet with high-coercivity and high temperature-stability

    Energy Technology Data Exchange (ETDEWEB)

    Yan, G H; Chen, R J; Ding, Y; Guo, S; Lee, Don; Yan, A R, E-mail: yangh@nimte.ac.cn [Zhejiang province Key Laboratory of Magnetic Materials and Application Technology, Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 (China)

    2011-01-01

    The NdFeB magnets with high intrinsic coercivity have been produced by using the conventional powder metallurgy method (including SC, HD and JM) of sintered NdFeB magnets. The effects of grain boundary phases on the microstructure and magnetic properties of as-sintered and annealed magnets have been tried to investigate. Also the Curie temperature of the magnets was studied. By adopting suitable component ratio of some heavy rare-earth atoms and some micro-quantity additives, we have prepared high-coercivity sintered NdFeB magnets with magnetic properties of {sub j}H{sub c}=36.3kOe, B{sub r}=11.7kGs and (BH){sub max}=34.0MGOe. The temperature coefficient of residual magnetic flux of the magnets (between 20 and 200 deg. C) is -0.113%/deg. C, while the temperature coefficient of intrinsic coercivity -0.355%/deg. C. The Curie temperature of the magnets is about 342 deg. C.

  1. The preparation of sintered NdFeB magnet with high-coercivity and high temperature-stability

    International Nuclear Information System (INIS)

    Yan, G H; Chen, R J; Ding, Y; Guo, S; Lee, Don; Yan, A R

    2011-01-01

    The NdFeB magnets with high intrinsic coercivity have been produced by using the conventional powder metallurgy method (including SC, HD and JM) of sintered NdFeB magnets. The effects of grain boundary phases on the microstructure and magnetic properties of as-sintered and annealed magnets have been tried to investigate. Also the Curie temperature of the magnets was studied. By adopting suitable component ratio of some heavy rare-earth atoms and some micro-quantity additives, we have prepared high-coercivity sintered NdFeB magnets with magnetic properties of j H c =36.3kOe, B r =11.7kGs and (BH) max =34.0MGOe. The temperature coefficient of residual magnetic flux of the magnets (between 20 and 200 deg. C) is -0.113%/deg. C, while the temperature coefficient of intrinsic coercivity -0.355%/deg. C. The Curie temperature of the magnets is about 342 deg. C.

  2. Sintering behavior, microstructure and mechanical properties of vacuum sintered SiC/spinel nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guoqiang, E-mail: lguoqi1@lsu.edu [Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803 (United States); Department of Mechanical Engineering, Southern University, Baton Rouge, LA 70813 (United States); Tavangarian, Fariborz [Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803 (United States)

    2014-12-05

    Highlights: • Bulk SiC/spinel nanocomposite was synthesized from talc, aluminum and graphite powders. • Sintering behavior and mechanical properties of SiC/spinel nanocomposite was studied. • The obtained bulk SiC/spinel nanocomposite had a mean crystallite size of about 34 nm. - Abstract: A mixture of SiC and spinel (MgAl{sub 2}O{sub 4}) nanopowder was prepared through the ball milling of talc, aluminum and graphite powder. The powder was uniaxially pressed into the form of pellets and the prepared specimens were annealed at various temperatures for different holding times. The prepared samples were investigated through X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), nanoindentation test, cold crushing strength (CCS) test and Archimedes principle test. The obtained results showed that the hardness, CCS and bulk density did not follow the same trend at different temperatures due to the interaction among various parameters. The detailed investigation of microstructure, phase changes and experimental conditions revealed the mechanisms behind these behaviors. The best sample obtained after annealing at 1200 °C for 1 h in vacuum had the mean hardness of 1.6 GPa and the mean CCS of 118 MPa.

  3. Microstructure Evolution and Mechanical Properties Improvement in Liquid-Phase-Sintered Hydroxyapatite by Laser Sintering

    Directory of Open Access Journals (Sweden)

    Songlin Duan

    2015-03-01

    Full Text Available CaO-Al2O3-SiO2 (CAS as a liquid phase was introduced into hydroxyapatite (HAp to prepare bone scaffolds. The effects of the CAS content (1, 2, 3, 4 and 5 wt% on microstructure and mechanical properties of HAp ceramics were investigated. The optimal compression strength, fracture toughness and Vickers hardness reached 22.22 MPa, 1.68 MPa·m1/2 and 4.47 GPa when 3 wt% CAS was added, which were increased by 105%, 63% and 11% compared with those of HAp ceramics without CAS, respectively. The improvement of the mechanical properties was attributed to the improved densification, which was caused by the solid particle to rearrange during liquid phase sintering. Moreover, simulated body fluid (SBF study indicated the HAp ceramics could maintain the mechanical properties and form a bone-like apatite layer when they were immersed in SBF. Cell culture was used to evaluate biocompatibility of the HAp ceramics. The results demonstrated MG-63 cells adhered and spread well.

  4. Development of a Master Sintering Curve for Al-Mg Alloy

    Directory of Open Access Journals (Sweden)

    Yong-Shin Lee

    2016-01-01

    Full Text Available A new master sintering curve (MSC is proposed for Al-Mg alloy in order to effectively design the pressure-assisted sintering process. In this work, hot pressing experiments of Al-Mg alloy powders are performed. The changes of relative density during hot pressing are measured for the various heating rates of 5°C/min, 10°C/min, and 20°C/min at the fixed pressure of 50 MPa. A work of sintering, designated as Θ, is introduced and defined as Θ(t,T=∫0t1/Texp-Q/RTdt. A work of sintering, Θ, could be interpreted as a measure for the amount of sintering work. The MSC in this work defines the relation between the apparent density and a work of sintering, Θ. Since the measurement of an apparent activation energy, Q, is very difficult, the correct value of Q is obtained numerically using a mean residual square method. Then, the master sintering curves for sintering of Al-Mg alloy powders are proposed for the sintering temperatures of 400°C and 500°C through scaling procedures. It is expected that the master sintering curves proposed in this work could help an engineer to design pressure-assisted sintering process for Al-Mg alloy.

  5. The effects of surface finish and grain size on the strength of sintered silicon carbide

    Science.gov (United States)

    You, Y. H.; Kim, Y. W.; Lee, J. G.; Kim, C. H.

    1985-01-01

    The effects of surface treatment and microstructure, especially abnormal grain growth, on the strength of sintered SiC were studied. The surfaces of sintered SiC were treated with 400, 800 and 1200 grit diamond wheels. Grain growth was induced by increasing the sintering times at 2050 C. The beta to alpha transformation occurred during the sintering of beta-phase starting materials and was often accompanied by abnormal grain growth. The overall strength distributions were established using Weibull statistics. The strength of the sintered SiC is limited by extrinsic surface flaws in normal-sintered specimens. The finer the surface finish and grain size, the higher the strength. But the strength of abnormal sintering specimens is limited by the abnormally grown large tabular grains. The Weibull modulus increases with decreasing grain size and decreasing grit size for grinding.

  6. Evaluation of Sintering Behavior of Premix Al-Zn-Mg-Cu Alloy Powder

    Directory of Open Access Journals (Sweden)

    Haris Rudianto

    2015-01-01

    Full Text Available Sintering of light aluminium alloys powder has been investigated as a way to substitute steels in automotive and aerospace industries. Premix Al-5.5Zn-2.5Mg-0.5Cu composite powder called Alumix 431D was analyzed in this research. Sintering was carried out under ultra high purity nitrogen gas and before reaching sintering temperature, green samples were delubricated at 400°C for 30 min. The powder possesses high sinterability by reaching 96% relative density at 580°C sintering temperature. Formation of liquid phase seems to support achieving high sintering density. Optimum mechanical properties also were obtained under those conditions. T6 heat treatment was done to improve the mechanical properties by formation of precipitation strengthening, and MgZn2 appears to be dominant strengthening precipitate. X-ray diffraction, optical microscopy, and SEM-EDS were used to characterize powder, and sintered and heat treated samples.

  7. Low density, variation in sintered density and high nitrogen in uranium dioxide

    International Nuclear Information System (INIS)

    Balakrishna, Palanki; Murty, B.N.; Anuradha, M.; Nageshwara Rao, P.; Jayaraj, R.N.; Ganguly, C.

    2000-01-01

    Low sintered density and density variation in sintered UO 2 were found to have been caused by non uniformity in the granule feed characteristics to the compacting press. The nitrogen impurity content of sintered UO 2 was found to be sintering furnace related and associated with low sintered density pellets. The problems of low density, variation in sintered density and high nitrogen could be solved by the replacement of the prevailing four punch precompaction by a single punch process; by the introduction of a vibro-sieve for the separation of fine particles from the press feed granules; by innovation in the powder feed shoe design for simultaneous and uniform dispensing of powder in all the die holes; by increasing the final compaction pressure and by modifying the gas flows and preheat temperature in the sintering furnace. (author)

  8. The effect of lanthanum boride on the sintering, sintered microstructure and mechanical properties of titanium and titanium alloys

    International Nuclear Information System (INIS)

    Yang, Y.F.; Luo, S.D.; Qian, M.

    2014-01-01

    An addition of ≤0.5 wt% lanthanum boride (LaB 6 ) to powder metallurgy commercially pure Ti (CP-Ti), Ti–6Al–4V and Ti–10V–2Fe–3Al (all in wt%) resulted in improved sintered density, substantial microstructural refinement, and noticeably increased tensile elongation. The addition of LaB 6 led to scavenging of both oxygen (O) and chlorine (Cl) from the titanium powder during sintering, evidenced by the formation of La 2 O 3 and LaCl x O y . The pinning effect of La 2 O 3 , LaCl x O y and TiB inhibited prior-β grain growth and resulted in subsequent smaller α-laths. The formation of nearly equiaxed α-Ti phase is partially attributed to the nucleation effect of α-Ti on TiB. The improved sintered density was caused by B from LaB 6 rather than La, while excessive formation of La 2 O 3 and TiB with an addition of >0.5 wt% LaB 6 resulted in a noticeable decrease in sintered density. The improved tensile elongation with an addition of ≤0.5 wt% LaB 6 was mainly attributed to the scavenging of oxygen by LaB 6 , partially assisted by the improved sintered density. However, an addition of >0.5 wt% LaB 6 led to the formation of large La 2 O 3 aggregates and more brittle TiB whiskers and therefore decreased tensile elongation. Balanced scavenging of O is thus important. The optimal addition of LaB 6 was 0.5 wt% but this may change depending on the powder size of the LaB 6 to be used

  9. Thermoset recycling via high-pressure high-temperature sintering: Revisiting the effect of interchange chemistry

    Science.gov (United States)

    Morin, Jeremy Edward

    In 1844 Charles Goodyear obtained U.S. Patent #3,633 for his "Gum Elastic Composition". In a published circular, which describes his patent for the sulfur vulcanization of gum elastic composition, he stated: "No degree of heat, without blaze, can melt it (rubber)... It resists the most powerful chemical reagents. Aquafortis (nitric acid), sulphuric acid, essential and common oils, turpentine and other solvents... ..." Goodyear's sulfur vulcanization of rubber fueled much of the industrial revolution and made transportation possible, as it exists today. In doing so, Goodyear created one of the most difficult materials to recycle. Rubber will not melt, dissolve, or lend itself to the usual methods of chemical decomposition. Ironically, Goodyear recognized this problem and in 1853 he patented the process of adding ground rubber to virgin material, now currently known as regrind blending. Today, scrap tires represent one of the most serious sources of pollution in the world. Studies estimate that there are roughly 2 billion scrap tires in U.S. landfills and more are being added at a rate of over 273 million tires per year. Current methods of recycling waste tires are crude, ineffective, and use rubber powder as a low cost filler instead of a new rubber. The groundwork for a very simple and effective method of producing high-quality rubber goods using 100% scrap rubber was discovered in 1944 by A. V. Tobolsky et al. This application, however, was not recognized until recently in our laboratory. The process as studied to date represents a method of creating quality, high-value added rubber goods with nothing other than heat and pressure. High pressure is required to obtain a void-free compaction of the rubber particles by forcing all of the free surfaces into intimate contact. High temperature then activates the chemical rearrangement, scission, and reformation of the chemical bonds thus providing new bridges between the once fractured interfaces. This occurs both within

  10. Preparation of non-sintered fly ash filter (NSFF) for ammonia nitrogen adsorption.

    Science.gov (United States)

    Shao, Qing; Lu, Mingming; Zhou, Jingchun; Zhu, Zufu; Song, Yinqiang

    2018-02-15

    In accordance with China's goal of 'treating wastes with wastes, turning wastes into treasure', a non-sintered fly ash filter (NSFF) with sewage sludge as additive was prepared. It consists of 70.9% fly ash, 7% sewage sludge, 9% cement, 7.1% CaO, 1% NaHCO 3 and 5% sodium silicate solution. After mixing, 34 g/(100 g dry material) water was added, and then was granulated and steam cured under 80°C for 16 h. NSFF's main performance indexes include specific surface area (SSA) of 17.038 m 2  g -1 , filter media breaking rate (FMBR) of 2.2%, apparent density (AD) of 1140 kg m -3 , and porosity of 41.67%, meeting the Chinese Standard CJ/T 299-2008. This NSFF has a larger SSA and a lower AD comparing with the other similar non-sintered fly ash ceramsite products. Moreover, leaching toxicity of the NSFF has met the Chinese Standards for Hazardous Wastes (GB5085.3-2007). Therefore, the NSFF is effective and safe to use as a water treatment filter media. The NSFF's adsorption characteristics for ammonia nitrogen was investigated. Results showed that the optimized parameters for ammonia nitrogen adsorption are as follows, NSFF dosage at 5 g, initial ammonia nitrogen concentration of 225 mg L -1 , pH at 7, contact time of 12 h and temperature at 30°C. Under the optimum conditions, the adsorption capacity of NSFF for ammonia nitrogen was 4.25 mg g -1 . The adsorption process can be best described by Langmuir isotherm and pseudo-second-order kinetic model. The proposed adsorption mechanism include adsorption and cation exchange.

  11. Effect of sintering temperature on microstructure and compressive strength of B4C-AlSi eutectic alloy

    International Nuclear Information System (INIS)

    Liu Jinyun; Zha Wusheng; Liu Gaihua; Lan Jun; Feng Quanhe; Zou Congpei

    2008-01-01

    The block neutron absorber of B 4 C based on Al-Si eutectic alloy has been prepared by powder-metallurgy method. The effects of sinter temperature on microstructure, compressive strength, and ductility of sintered billets have been investigated. It has been shown that the sintering temperature decides sensitively the compressive strength and ductility of sintered billets. Sintered under 550, 555, 560, and 565 degree C, the billet shows different states, such as sub-sintered, best-sintered, over-sintered, and molten. Sintered under 550 degree C, the powder have not been metallurgically combined with each other. Beyond 560 degree C, the billets are molten. The 555 degree C is the best sintering temperature, under which the powder have been partly melted and the metallurgical combination has been occurred, then the billets have a better ductility. (authors)

  12. Animal Research International: Contact

    African Journals Online (AJOL)

    Principal Contact. Dr. J. E. Eyo Dr. Department of Zoology, University of Nig Department of Zoology, POBox 3146, University of Nigeria, Nsukka, Enugu State, Nigeria. Phone: 234 42 308030. Email: joseph.eyo@unn.edu.ng. Support Contact. N. S. Oluah Phone: +234-83732127. Email: ndubusioluah@yahoo.com.

  13. Contact Hamiltonian mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Bravetti, Alessandro, E-mail: alessandro.bravetti@iimas.unam.mx [Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, A. P. 70543, México, DF 04510 (Mexico); Cruz, Hans, E-mail: hans@ciencias.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A. P. 70543, México, DF 04510 (Mexico); Tapias, Diego, E-mail: diego.tapias@nucleares.unam.mx [Facultad de Ciencias, Universidad Nacional Autónoma de México, A.P. 70543, México, DF 04510 (Mexico)

    2017-01-15

    In this work we introduce contact Hamiltonian mechanics, an extension of symplectic Hamiltonian mechanics, and show that it is a natural candidate for a geometric description of non-dissipative and dissipative systems. For this purpose we review in detail the major features of standard symplectic Hamiltonian dynamics and show that all of them can be generalized to the contact case.

  14. Discovery and Innovation: Contact

    African Journals Online (AJOL)

    Principal Contact. Prof. Keto Mshigeni Editor-in-Chief Academy Science Publishers. PO Box 14798-00200. Nairobi. Kenya. Phone: 254 (20) 884401-5. Fax: 254 (20) 884406. Email: aas@aasciences.org. Support Contact. Prof. Keto Mshigeni Email: aas@aasciences.org. ISSN: 1015-079X. AJOL African Journals Online.

  15. LBS Management Review: Contact

    African Journals Online (AJOL)

    Principal Contact. Dr Obinna Muogboh Managing Editor Lagos Business School Pan African University 2 Ahmed Onibudo Street, P.O. Box 73688, Victoria Island, Lagos, NIGERIA Email: omuogboh@lbs.edu.ng. Support Contact. Editor Email: omuogboh@lbs.edu.ng. ISSN: 1118-3713. AJOL African Journals Online.

  16. African Health Sciences: Contact

    African Journals Online (AJOL)

    Principal Contact. Dr James Tumwine Editor-in-Chief. Makerere University Medical School P. O. Box 7072 Kampala Uganda. Phone: 256-41-530020/1. Email: kabaleimc@gmail.com. Support Contact. Pauline Salamula Email: paulinesalamula@gmail.com. ISSN: 1680-6905. AJOL African Journals Online. HOW TO USE ...

  17. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... Get follow up exams with your eye care provider. If you notice redness, swelling, excessive discharge, pain or discomfort from wearing contact lenses, remove the lenses and seek immediate medical attention from an ophthalmologist. Related resources: Learn how to properly care for contact lenses . ...

  18. Contact Quality in Participation

    DEFF Research Database (Denmark)

    Simonsen, Jesper; Jensen, Olav Storm

    2016-01-01

    We investigate the concept of participation from the perspective of quality of the contact in the communicative interactions between participants. We argue for the need for an academic-personal competence that qualifies the human contact central in all Participatory Design (PD) activities as a wa...

  19. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... Eye Health A-Z Symptoms Glasses & Contacts Tips & Prevention News Ask an Ophthalmologist Patient Stories Español Eye ... colored contact lenses , from the U.S. Food and Drug Administration (FDA). Are the colored lenses you are ...

  20. Sciences & Nature: Contact

    African Journals Online (AJOL)

    Principal Contact. Ehouan Etienne Ehile Professor University of Abobo-Adjamé 02 BP 801 Abidjan 02. Phone: (+225) 2030 4201. Fax: (+225) 2030 4203. Email: eh_ehile@yahoo.fr. Support Contact. Irie Zoro Bi Email: banhiakalou@yahoo.fr. ISSN: 1812-0741. AJOL African Journals Online. HOW TO USE AJOL.

  1. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... in Cleveland. "This is far from the truth." Real People, Real Problems with Colored Contact Lenses Julian: Teenager Blinded ... use of colored contact lenses , from the U.S. Food and Drug Administration (FDA). Are the colored lenses ...

  2. African Zoology: Contact

    African Journals Online (AJOL)

    Principal Contact. Lester Isaacs Phone: +27466229698. Fax: +2746 622 9550. Email: lester@nisc.co.za. Support Contact. NISC office. Email: info@nisc.co.za. ISSN: 2224-073X. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's Partners ...

  3. Factor XII Contact Activation.

    Science.gov (United States)

    Naudin, Clément; Burillo, Elena; Blankenberg, Stefan; Butler, Lynn; Renné, Thomas

    2017-11-01

    Contact activation is the surface-induced conversion of factor XII (FXII) zymogen to the serine protease FXIIa. Blood-circulating FXII binds to negatively charged surfaces and this contact to surfaces triggers a conformational change in the zymogen inducing autoactivation. Several surfaces that have the capacity for initiating FXII contact activation have been identified, including misfolded protein aggregates, collagen, nucleic acids, and platelet and microbial polyphosphate. Activated FXII initiates the proinflammatory kallikrein-kinin system and the intrinsic coagulation pathway, leading to formation of bradykinin and thrombin, respectively. FXII contact activation is well characterized in vitro and provides the mechanistic basis for the diagnostic clotting assay, activated partial thromboplastin time. However, only in the past decade has the critical role of FXII contact activation in pathological thrombosis been appreciated. While defective FXII contact activation provides thromboprotection, excess activation underlies the swelling disorder hereditary angioedema type III. This review provides an overview of the molecular basis of FXII contact activation and FXII contact activation-associated disease states. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  4. Afrika Statistika: Contact

    African Journals Online (AJOL)

    Principal Contact. Prof. Gane Samb Lo Editor Université Gaston Berger BP 234, Université Saint-Louis Sénégal Phone: 221 961 23 40. Fax: 221 961 53 38. Email: ganesamblo@yahoo.com. Support Contact. Mamadou Camara Email: mdoucamara@gmail.com. ISSN: 2316-090X. AJOL African Journals Online. HOW TO ...

  5. Nigerian Food Journal: Contact

    African Journals Online (AJOL)

    Nigerian Food Journal. ... Nigerian Food Journal: Contact. Journal Home > About the Journal > Nigerian Food Journal: Contact. Log in or Register to get access to full text downloads. ... Mailing Address. Department of Food Science and Technology University of Agriculture, Makurdi, Nigeria ...

  6. Lettuce contact allergy

    DEFF Research Database (Denmark)

    Paulsen, Evy; Andersen, Klaus E

    2016-01-01

    degradability of lettuce allergens, it is recommended to patch test with freshly cut lettuce stem and supplement this with Compositae mix. As contact urticaria and protein contact dermatitis may present as dermatitis, it is important to perform prick-prick tests, and possibly scratch patch tests as well. Any...

  7. The influence of electrocorundum granulation on the properties of sintered Cu/electrocorundum composites

    Directory of Open Access Journals (Sweden)

    Strojny-Nędza A.

    2015-01-01

    Full Text Available Copper/alumina composites are extensively used in automotive and aerospace industry for products that are subjected to severe thermal and mechanical loadings, such as rocket thrusters and components of aircraft engines. These materials are well-known for their good frictional wear resistance, good resistance to thermal fatigue, high thermal conductivity and high specific heat. In this paper, the sintering process of copper/electrocorundum composites reinforced by electrocorundum particles with diameters of 3 or 180 μm and 1, 3, 5 vol.% content is presented. The effects of different particle sizes of the ceramic reinforcement on the microstructure, physical, mechanical, tribological and thermal properties of the fabricated composites are discussed.

  8. SINTERING, A PROCESS OF METAL FORMING AS AN ECONOMIC ALTERNATIVE WITH A LOW ENVIRONMENTAL IMPACT

    Directory of Open Access Journals (Sweden)

    Ángel Silvio Machado Rodríguez

    2017-07-01

    Full Text Available Sintering is a process of metal forming using metal powders, and it has a wide range of applications including for example, the manufacturing of parts for automotive components, home appliances, cutting tools, power tools, for the manufacturing of dental devices, among others. The process is characterized by the production of large-scale low cost parts and has a low environmental impact compared to other existing technologies, it requires less energy for processing and enables high utilization of raw materials. Also, it has the characteristic of obtaining, in most cases, the parts with final tolerances necessary for direct use by the customer, which ultimately reduces considerably the cost of production. The process is characterized by minimizing the loss of raw materials; facilitating precise control of the desired chemical composition; eliminating or reducing machining operations; providing a good surface finish; being an easy production process of automation; obtaining high purity; and ensuring exactly resistance characteristics required for each project.

  9. Investigation into the Properties of Sintered Ceramics from Dysna Clay and Non-Plastics Additives

    Directory of Open Access Journals (Sweden)

    Jolanta Pranckevičienė

    2011-04-01

    Full Text Available Recycling mineral wool spinning waste represents a rather serious problem. The results of the present research show that the suggested sintering ceramics out of low melting illite clay and mineral wool spinning waste is a promising way for solving the problem of mineral wool waste utilization. The conducted research into the properties of this compound has shown that by introducing 20% of waste into low melting clay allows producing ceramic materials possessing the following parameters: value of absorption is equal to 2,2%, density – 2169 kg/m3.The data of dilatometric investigation have demonstrated that adding 20 % of MVCF component leads to reducing length from 2,8% to 1,4% at the temperature of 1070 ºC. Article in Lithuanian

  10. Contact materials for nanoelectronics

    KAUST Repository

    Alshareef, Husam N.

    2011-02-01

    In this article, we review current research activities in contact material development for electronic and nanoelectronic devices. A fundamental issue in contact materials research is to understand and control interfacial reactions and phenomena that modify the expected device performance. These reactions have become more challenging and more difficult to control as new materials have been introduced and as device sizes have entered the deep nanoscale. To provide an overview of this field of inquiry, this issue of MRS Bulletin includes articles on gate and contact materials for Si-based devices, junction contact materials for Si-based devices, and contact materials for alternate channel substrates (Ge and III-V), nanodevices. © 2011 Materials Research Society.

  11. Other components

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This chapter includes descriptions of electronic and mechanical components which do not merit a chapter to themselves. Other hardware requires mention because of particularly high tolerance or intolerance of exposure to radiation. A more systematic analysis of radiation responses of structures which are definable by material was given in section 3.8. The components discussed here are field effect transistors, transducers, temperature sensors, magnetic components, superconductors, mechanical sensors, and miscellaneous electronic components

  12. Experiments for practical education in process parameter optimization for selective laser sintering to increase workpiece quality

    Science.gov (United States)

    Reutterer, Bernd; Traxler, Lukas; Bayer, Natascha; Drauschke, Andreas

    2016-04-01

    Selective Laser Sintering (SLS) is considered as one of the most important additive manufacturing processes due to component stability and its broad range of usable materials. However the influence of the different process parameters on mechanical workpiece properties is still poorly studied, leading to the fact that further optimization is necessary to increase workpiece quality. In order to investigate the impact of various process parameters, laboratory experiments are implemented to improve the understanding of the SLS limitations and advantages on an educational level. Experiments are based on two different workstations, used to teach students the fundamentals of SLS. First of all a 50 W CO2 laser workstation is used to investigate the interaction of the laser beam with the used material in accordance with varied process parameters to analyze a single-layered test piece. Second of all the FORMIGA P110 laser sintering system from EOS is used to print different 3D test pieces in dependence on various process parameters. Finally quality attributes are tested including warpage, dimension accuracy or tensile strength. For dimension measurements and evaluation of the surface structure a telecentric lens in combination with a camera is used. A tensile test machine allows testing of the tensile strength and the interpreting of stress-strain curves. The developed laboratory experiments are suitable to teach students the influence of processing parameters. In this context they will be able to optimize the input parameters depending on the component which has to be manufactured and to increase the overall quality of the final workpiece.

  13. Spark plasma sintering and porosity studies of uranium nitride

    Science.gov (United States)

    Johnson, Kyle D.; Wallenius, Janne; Jolkkonen, Mikael; Claisse, Antoine

    2016-05-01

    In this study, a number of samples of UN sintered by the SPS method have been fabricated, and highly pure samples ranging in density from 68% to 99.8%TD - corresponding to an absolute density of 14.25 g/cm3 out of a theoretical density of 14.28 g/cm3 - have been fabricated. By careful adjustment of the sintering parameters of temperature and applied pressure, the production of pellets of specific porosity may now be achieved between these ranges. The pore closure behaviour of the material has also been documented and compared to previous studies of similar materials, which demonstrates that full pore closure using these methods occurs near 97.5% of relative density.

  14. Method of making bonded or sintered permanent magnets

    Science.gov (United States)

    McCallum, R. William; Dennis, Kevin W.; Lograsso, Barbara K.; Anderson, Iver E.

    1993-08-31

    An isotropic permanent magnet is made by mixing a thermally responsive, low viscosity binder and atomized rare earth-transition metal (e.g., iron) alloy powder having a carbon-bearing (e.g., graphite) layer thereon that facilitates wetting and bonding of the powder particles by the binder. Prior to mixing with the binder, the atomized alloy powder may be sized or classified to provide a particular particle size fraction having a grain size within a given relatively narrow range. A selected particle size fraction is mixed with the binder and the mixture is molded to a desired complex magnet shape. A molded isotropic permanent magnet is thereby formed. A sintered isotropic permanent magnet can be formed by removing the binder from the molded mixture and thereafter sintering to full density.

  15. Liquid Phase Sintering of Highly Alloyed Stainless Steel

    DEFF Research Database (Denmark)

    Mathiesen, Troels

    1996-01-01

    of boride to AISI 316L type steels have previously been studied, but were found to be sensitive to intergranular corrosion due to formation of intermetallic phases rich in chromium and molybdenum. In order to improve this system further, new investigations have focused on the use of higher alloyed stainless......Liquid phase sintering of stainless steel is usually applied to improve corrosion resistance by obtaining a material without an open pore system. The dense structure normally also give a higher strength when compared to conventional sintered steel. Liquid phase sintrering based on addition...... calculations, made by use of the computer programme Thermo-Calc, were also correlated with the observed microstructure. Corrosion measurements by electrochemical techniques show no signs of intergranular corrosion in contrast to the case of AISI 316L based steel. Furthermore most of the material showed...

  16. Effective elastic properties of sintered materials with branched cracks

    Science.gov (United States)

    Fedelinski, Piotr

    2018-01-01

    The aim of work is analysis of sintered materials with branched cracks growing from the voids situated at corners of fibers. The material is modelled as a two-dimensional linear-elastic structure using the boundary element method (BEM). The materials without voids and with voids having different shapes are considered. The influence of lengths of cracks and shapes of voids on stress intensity factors (SIF) and effective elastic properties (the Young modulus and the Poisson ratio) are studied. The overall properties of the sintered materials are determined by considering the representative volume element (RVE) with large number of branched cracks. The sensitivity of effective elastic properties on boundary conditions imposed on the RVE is studied.

  17. Temperature-dependent thermal properties of spark plasma sintered alumina

    Directory of Open Access Journals (Sweden)

    Saheb Nouari

    2017-01-01

    Full Text Available In this work, we report temperature-dependent thermal properties of alumina powder and bulk alumina consolidated by spark plasma sintering method. The properties were measured between room temperature and 250ºC using a thermal constants analyzer. Alumina powder had very low thermal properties due to the presence of large pores and absence of bonding between its particles. Fully dense alumina with a relative density of 99.6 % was obtained at a sintering temperature of 1400°C and a holding time of 10 min. Thermal properties were found to mainly dependent on density. Thermal conductivity, thermal diffusivity, and specific heat of the fully dense alumina were 34.44 W/mK, 7.62 mm2s-1, and 1.22 J/gK, respectively, at room temperature. Thermal conductivity and thermal diffusivity decreased while specific heat increased with the increase in temperature from room temperature to 250ºC.

  18. Strain rate dependency of laser sintered polyamide 12

    Directory of Open Access Journals (Sweden)

    Cook J.E.T.

    2015-01-01

    Full Text Available Parts processed by Additive Manufacturing can now be found across a wide range of applications, such as those in the aerospace and automotive industry in which the mechanical response must be optimised. Many of these applications are subjected to high rate or impact loading, yet it is believed that there is no prior research on the strain rate dependence in these materials. This research investigates the effect of strain rate and laser energy density on laser sintered polyamide 12. In the study presented here, parts produced using four different laser sintered energy densities were exposed to uniaxial compression tests at strain rates ranging from 10−3 to 10+3 s−1 at room temperature, and the dependence on these parameters is presented.

  19. Bonding of TRIP-Steel/Al2O3-(3Y-TZP Composites and (3Y-TZP Ceramic by a Spark Plasma Sintering (SPS Apparatus

    Directory of Open Access Journals (Sweden)

    Aslan Miriyev

    2016-07-01

    Full Text Available A combination of the high damage tolerance of TRIP-steel and the extremely low thermal conductivity of partially stabilized zirconia (PSZ can provide controlled thermal-mechanical properties to sandwich-shaped composite specimens comprising these materials. Sintering the (TRIP-steel-PSZ/PSZ sandwich in a single step is very difficult due to differences in the sintering temperature and densification kinetics of the composite and the ceramic powders. In the present study, we successfully applied a two-step approach involving separate SPS consolidation of pure (3Y-TZP and composites containing 20 vol % TRIP-steel, 40 vol % Al2O3 and 40 vol % (3Y-TZP ceramic phase, and subsequent diffusion joining of both sintered components in an SPS apparatus. The microstructure and properties of the sintered and bonded specimens were characterized. No defects at the interface between the TZP and the composite after joining in the 1050–1150 °C temperature range were observed. Only limited grain growth occurred during joining, while crystallite size, hardness, shear strength and the fraction of the monoclinic phase in the TZP ceramic virtually did not change. The slight increase of the TZP layer’s fracture toughness with the joining temperature was attributed to the effect of grain size on transformation toughening.

  20. Low-sintering condenser materials on the basis of barium titanate; Niedrig-sinternde Kondensatorwerkstoffe auf der Basis von Bariumtitanat

    Energy Technology Data Exchange (ETDEWEB)

    Naghib zadeh, Hamid

    2010-07-01

    {sub 2}O a fine-grained microstructure was formed which caused the relatively low TCC of this sample. However, the influence of Nb{sub 2}O{sub 5}-Co{sub 2}O{sub 3}-addition on dielectric properties of ZnO-B{sub 2}O{sub 3}-Li{sub 2}O containing BaTiO{sub 3} samples was also investigated. The BaTiO{sub 3} samples contained ZnO-B{sub 2}O{sub 3}-Li{sub 2}O-Nb{sub 2}O{sub 5}-Co{sub 2}O{sub 3} show high dielectric constant up to 2370. The Co{sub 2}O{sub 3}-Nb{sub 2}O{sub 5}-addition would not cause further lowering of TCC because of a strong grain growth during sintering. To reduce the TCC, the grain growth during sintering must be controlled. For this goal the composition of ZnO-B{sub 2}O{sub 3}-Li{sub 2}O was modified. It was found that an increase of B{sub 2}O{sub 3} content or a decrease of Li{sub 2}O and ZnO content in ZnO-B{sub 2}O{sub 3}-Li{sub 2}O additive composition improves the temperature stability of the dielectric constant. The BaTiO{sub 3} ceramics contained modified ZnO-Li{sub 2}O-B{sub 2}O{sub 3} composition and 1.5 wt% Nb{sub 2}O{sub 5}-Co{sub 2}O{sub 3} shows TCC of less than {+-} 15 % over the measured temperature range from - 40 C to +125 C. However, the room temperature dielectric constant also decreases and amounts to 1280. The formation of the core-shell structure in a fine-grained microstructure has been proved in TEM/SEM studies of this sample and it is responsible for the high temperature stability of the dielectric constant. A further objective of this work was to manufacture ceramic tapes from the new capacitor materials and integration of these tapes into multi-component LTCC moduls, i.e. a combination with ferritic tapes and standard low dielectric constant tapes (Basis LTCC). Tapes and laminates from five favoured capacitor materials have been produced. The sintered laminates show significantly higher dielectric constants (up to 3350) and lower dielectric losses ({<=}0,025) in comparison to pressed samples. This is because of lower porosity of

  1. Microwave-assisted sintering of non-stoichiometric strontium bismuth niobate ceramic: Structural and dielectric properties

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Rajveer [Department of Physics and Astrophysics, University of Delhi, New Delhi 110007 (India); Department of Physics, Atmaram Sanatan Dharma College, University of Delhi, Dhaula Kuan, New Delhi 110021 (India); Luthra, Vandna [Department of Physics, Gargi College, University of Delhi, Siri Fort Road, New Delhi 110049 (India); Tandon, R.P., E-mail: ram_tandon@hotmail.com [Department of Physics and Astrophysics, University of Delhi, New Delhi 110007 (India)

    2016-11-01

    In recent years the microwave sintering has been utilized for the synthesis of materials in enhancement of the properties. In this paper strontium bismuth niobate (Sr{sub 0.8}Bi{sub 2.2}Nb{sub 2}O{sub 9}:SBN) bulk ceramic has been synthesized by microwave reactive sintering and conventional heating techniques. A relative density of 99.6% has been achieved for microwave sintered SBN, which is higher than that of (98.81%) conventionally sintered SBN. The phase formation of SBN synthesized by both processes has been confirmed by X-ray diffraction (XRD). The surface morphology of SBN was observed by scanning electron microscopy (SEM). The microstructure was found to be more uniform in case of SBN sintered by microwave sintering. The dielectric properties of SBN were studied as a function of frequency in the temperature range of 30–500 °C. Both the samples synthesized by two different processes were found to follow Curie–Weiss law above the transition temperature. The Curie temperature was found to be higher for microwave sintered SBN. The dielectric constant and the transition temperature were observed to be higher for SBN ceramic synthesized by microwave sintering technique. The ac and dc activation energy values were also found to be higher for microwave sintered SBN as compared to conventional sintering technique.

  2. O2 plasma sintering study of TiO2 photoelectrodes in dye solar cells

    Science.gov (United States)

    Moraes, R. S.; Gonçalves, A. D.; Stegemann, C.; da Silva Sobrinho, A. S.; Miyakawa, W.; Massi, M.

    2017-08-01

    The development of more efficient photoelectrochemical solar cells has been, over the years, the subject of many scientific researches. In this paper a methodology was established to carry out the sintering process of nanoporous TiO2 layer by using plasma, which was compared with sintered layers made by the conventional sintering process in a furnace. The TiO2 commercial paste was spread by doctor-blading technique and subjected to different sintering processes. Porous layer samples were subjected to structural and morphological analyses. Then photoelectrodes dye-loading was measured by optical spectrophotometry. The quality of the layers under plasma sintering process in terms of weight loss and removal of organic compounds was evaluated by thermogravimetric analysis, mass spectrometry and FT-IR. The results showed that the plasma sintering process favors the adsorption of dye on the layer surface due to the creation of active states caused by O2 reactive plasma. Furthermore the O2 plasma process provides enough energy for removing organic compounds arising from the TiO2 paste and for providing nanoparticle sintering. Solar cells assembled with the plasma-sintered layers had a power conversion efficiency 20.1% higher than the obtained in solar cells sintered in a conventional furnace, proving the efficiency of the plasma sintering process.

  3. The low magnetic field properties of superconducting bulk yttrium barium copper oxide - Sintered versus partially melted material

    Science.gov (United States)

    Hein, R. A.; Hojaji, H.; Barkatt, A.; Shafii, H.; Michael, K. A.; Thorpe, A. N.; Ware, M. F.; Alterescu, S.

    1989-01-01

    A comparison of the low magnetic field properties of sintered (990 C) and partially melted samples (1050 C) has been performed. Changes in the microstructure produced by recrystallization from the melt result in a significant increase in flux pinning at 77 K. Low-frequency (10-100 Hz), low-ac magnetic-field (0.01-9.0 Oe) ac susceptibility data show that gross changes in the loss component accompany the observed changes in microstructure. The effects of applied dc magnetic fields (10-220 Oe) on the ac responses of these microstructures have also been probed.

  4. Lanthana-bearing nanostructured ferritic steels via spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Pasebani, Somayeh [Department of Chemical and Materials Engineering, University of Idaho, Moscow, ID 83844 (United States); Center for Advanced Energy Studies, Idaho Falls, ID 83401 (United States); Charit, Indrajit, E-mail: icharit@uidaho.edu [Department of Chemical and Materials Engineering, University of Idaho, Moscow, ID 83844 (United States); Center for Advanced Energy Studies, Idaho Falls, ID 83401 (United States); Wu, Yaqiao; Burns, Jatuporn; Allahar, Kerry N.; Butt, Darryl P. [Department of Materials Science and Engineering, Boise State University, Boise, ID 83725 (United States); Center for Advanced Energy Studies, Idaho Falls, ID 83401 (United States); Cole, James I. [Idaho National Laboratory, Idaho Falls, ID 83401 (United States); Center for Advanced Energy Studies, Idaho Falls, ID 83401 (United States); Alsagabi, Sultan F. [Department of Chemical and Materials Engineering, University of Idaho, Moscow, ID 83844 (United States); Center for Advanced Energy Studies, Idaho Falls, ID 83401 (United States)

    2016-03-15

    A lanthana-containing nanostructured ferritic steel (NFS) was processed via mechanical alloying (MA) of Fe-14Cr-1Ti-0.3Mo-0.5La{sub 2}O{sub 3} (wt.%) and consolidated via spark plasma sintering (SPS). In order to study the consolidation behavior via SPS, sintering temperature and dwell time were correlated with microstructure, density, microhardness and shear yield strength of the sintered specimens. A bimodal grain size distribution including both micron-sized and nano-sized grains was observed in the microstructure of specimens sintered at 850, 950 and1050 °C for 45 min. Significant densification occurred at temperatures greater than 950 °C with a relative density higher than 98%. A variety of nanoparticles, some enriched in Fe and Cr oxides and copious nanoparticles smaller than 10 nm with faceted morphology and enriched in La and Ti oxides were observed. After SPS at 950 °C, the number density of Cr–Ti–La–O-enriched nanoclusters with an average radius of 1.5 nm was estimated to be 1.2 × 10{sup 24} m{sup −3}. The La + Ti:O ratio was close to 1 after SPS at 950 and 1050 °C; however, the number density of nanoclusters decreased at 1050 °C. With SPS above 950 °C, the density improved but the microhardness and shear yield strength decreased due to partial coarsening of the grains and nanoparticles.

  5. Evaluation of alpha-SiC sintering using statistical methods

    Science.gov (United States)

    Hurst, J. B.; Millard, M. L.

    1985-01-01

    The effect of time and temperature on the density and strength of alpha-SiC was studied and mathematically modeled using a central composite experimental design. A sintering temperature of 2150 C for 1.7 h maximized the flexural strength and densification values. However, temperatures above 2200 C promoted abnormal grain growth, with resulting appreciable decreases in strength. Flexural strength increased exponentially with increasing density for specimens with densities less than or equal to 92 percent of theoretical.

  6. Technological aspects of UO2 sintering at low temperature

    International Nuclear Information System (INIS)

    Thern, Gerardo G.; Dominguez, Carlos A.; Benitez, Ana M.; Marajofsky, Adolfo

    1999-01-01

    Within the Fuel Cycle Program of CNEA, the knowledge that plant personnel has on sintering at low temperature was evaluated, because this process could decrease costs for UO 2 and (U,Gd)O 2 pellets production, simplify the furnace maintenance and facilitate the automation of the production process, specially convenient for uranium recovery. By applying this technology, some companies have achieved production at pilot-scale and irradiated a significant number of pellets. (author)

  7. A Gas Pressure Sintering Furnace for Structural Ceramics

    National Research Council Canada - National Science Library

    Chen, I-Wei

    2001-01-01

    .... Since funds were used from University sources to advance the payment of the gas pressure sintering, we have used the residue funds to purchase characterization equipment for a' -SiAlON research. The new equipment has been delivered and has allowed characterization of a'-SiAlON, especially the mechanical properties (R-curve, creep, and high temperature strength) to be carried out in our laboratory.

  8. Spark Plasma Sintering (SPS) for Nanostructured Smart Materials

    Science.gov (United States)

    2006-02-05

    ferromagnetic SMA composites, piezo-composites with and without functionally graded microstructure( FGM ), a new active materials such as piezo-SMA composites...without functionally graded microstructure( FGM ), a new active materials such as piezo-SMA composites. These composites will be used for higher performance...g) Sintering Ambience Air. vacuum or inert gas (h) Viewing Windows 0 50mm A O80mm quartz glass with individual protecting plates Wi) Vacuum Neters

  9. Microwave Sintering and Its Application on Cemented Carbides

    OpenAIRE

    Rumman Md Raihanuzzaman; Lee Chang Chuan; Zonghan Xie; Reza Ghomashchi

    2015-01-01

    Cemented carbides, owing to their excellent mechanical properties, have been of immense interest in the field of hard materials for the past few decades. A number of processing techniques have been developed to obtain high quality carbide tools, with a wide range of grain size depending on the application and requirements. Microwave sintering is one of the heating processes, which has been used to prepare a wide range of materials including ceramics. A deep understanding ...

  10. Synthesis and electrical field-assisted sintering behaviour of yttria ...

    Indian Academy of Sciences (India)

    The 3YSZ nanopowders with mean particle size of 12 nm can be densified in 1 h at 800 ∘ C, by the application of a d.c. electrical field. Under a constant d.c. electrical field, the current density through the specimen of 3YSZ rose rapidly when the temperature increased to a certain value. In the sintering process, the current ...

  11. NEUTRON IRRADIATION EFFECTS ON SPARK PLASMA SINTERED BORON CARBIDE

    OpenAIRE

    Buyuk, Bulent; Cengiz, Meral; Tugrul, A. Beril

    2015-01-01

    In this study, spark plasma sintered boron carbide (B4C) was examined against neutrons. The specimens were irradiated by reactor neutrons (include both thermal and fast neutrons) up to fluence of 1.37x1021n m-2. Thermal and fast neutrons cause swelling by different interactions with boron (10B) atoms in the related materials. X-Ray diffraction (XRD) patterns and scanning electron microscopy (SEM) images were investigated for initial and irradiated samples. In addition, lattice parameters and ...

  12. Two-step flash light sintering of copper nanoparticle ink to remove substrate warping

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Chung-Hyeon; Joo, Sung-Jun [Department of Mechanical Convergence Engineering, Hanyang University, Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Kim, Hak-Sung, E-mail: kima@hanyang.ac.kr [Department of Mechanical Convergence Engineering, Hanyang University, Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Institute of Nano Science and Technology, Hanyang University, Seoul, 133-791 (Korea, Republic of)

    2016-10-30

    Highlights: • We performed the two-step flash light sintering for copper nanoparticle ink to remove substrate warping. • 12 J/cm{sup 2} of preheating and 7 J/cm{sup 2} of main sintering energies were determined as optimum conditions to sinter the copper nanoparticle ink. • The resistivity of two-step sintered copper nanoparticle ink was 3.81 μΩ cm with 5B adhesion level, 2.3 times greater than that of bulk copper. • The two-step sintered case showed a high conductivity without any substrate warping. - Abstract: A two-step flash light sintering process was devised to reduce the warping of polymer substrates during the sintering of copper nanoparticle ink. To determine the optimum sintering conditions of the copper nanoparticle ink, the flash light irradiation conditions (pulse power, pulse number, on-time, and off-time) were varied and optimized. In order to monitor the flash light sintering process, in situ resistance and temperature monitoring of copper nanoink were conducted during the flash light sintering process. Also, a transient heat transfer analysis was performed by using the finite-element program ABAQUS to predict the temperature changes of copper nanoink and polymer substrate. The microstructures of the sintered copper nanoink films were analyzed by scanning electron microscopy. Additionally, an X-ray diffraction and Fourier transform infrared spectroscopy were used to characterize the crystal phase change of the sintered copper nanoparticles. The resulting two-step flash light sintered copper nanoink films exhibited a low resistivity (3.81 μΩ cm, 2.3 times of that of bulk copper) and 5B level of adhesion strength without warping of the polymer substrate.

  13. Single-contact tunneling thermometry

    Science.gov (United States)

    Maksymovych, Petro

    2016-02-23

    A single-contact tunneling thermometry circuit includes a tunnel junction formed between two objects. Junction temperature gradient information is determined based on a mathematical relationship between a target alternating voltage applied across the junction and the junction temperature gradient. Total voltage measured across the junction indicates the magnitude of the target alternating voltage. A thermal gradient is induced across the junction. A reference thermovoltage is measured when zero alternating voltage is applied across the junction. An increasing alternating voltage is applied while measuring a thermovoltage component and a DC rectification voltage component created by the applied alternating voltage. The target alternating voltage is reached when the thermovoltage is nullified or doubled by the DC rectification voltage depending on the sign of the reference thermovoltage. Thermoelectric current and current measurements may be utilized in place of the thermovoltage and voltage measurements. The system may be automated with a feedback loop.

  14. Nanostructured CoSi Obtained by Spark Plasma Sintering

    Science.gov (United States)

    Longhin, Marco; Viennois, Romain; Ravot, Didier; Robin, Jean-Jacques; Villeroy, Benjamin; Vaney, Jean-Baptiste; Candolfi, Christophe; Lenoir, Bertrand; Papet, Philippe

    2015-06-01

    Cobalt monosilicide is a cheap, environmentally friendly thermoelectric material for medium temperatures (200-700°C). While its power factor is similar to the state-of-the-art thermoelectric materials, its thermal conductivity is too large to reach high ZT values. Nanostructuring might be an interesting strategy to reduce the phonon mean free path thereby improving the thermoelectric performance. In this paper, we report on a 35% reduction of the thermal conductivity of n-type CoSi by a nanostructuring approach. CoSi nanostructured powders were synthesized by arc melting, followed by 4° h mechanical milling. By optimizing the spark plasma sintering thermal and pressure cycle, pellets with 5â€"10% porosity were obtained. During sintering, a small amount of Co2Si extra phase appeared and grains coarsened. After sintering, the pellets remained nanostructured, with an averaged grain size of 70 nm. The reduction of thermal conductivity is ascribed to a decrease in both the electronic and lattice contributions. The former is directly related to a decrease in the electrical conductivity, which appears to be the limiting factor preventing nanostructured CoSi from reaching enhanced thermoelectric performances.

  15. Reactive Spark Plasma Sintering: Successes and Challenges of Nanomaterial Synthesis

    Directory of Open Access Journals (Sweden)

    Dina V. Dudina

    2013-01-01

    Full Text Available Spark plasma sintering (SPS, initially developed as an advanced sintering technique for consolidating nanopowders into nanostructured bulk materials, has been recently looked at in much broader perspective and gained a strong reputation of a versatile method of solid state processing of metals, ceramics, and composites. The powders in the SPS-dies experience the action of pulsed electric current and uniaxial pressure; they are heated at very high rates unachievable in furnace heating and sintered within shorter times and at lower temperatures than in conventional methods. The principle of SPS and convenient design of the facilities make it attractive for conducting solid state synthesis. In this paper, based on our own results and the literature data, we analyze the microstructure formation of the products of chemical reactions occurring in the SPS in an attempt to formulate the requirements to the microstructure parameters of reactant mixtures and SPS conditions that should be fulfilled in order to produce a nanostructured material. We present successful syntheses of nanostructured ceramics and metal matrix composite with nanosized reinforcements in terms of microstructure stability and attractive properties of the materials and discuss the challenges of making a dense nanostructured material when reaction and densification do not coincide during the SPS. In the final part of the paper, we provide an outlook on the further uses of reactive SPS in the synthesis of nanostructured materials.

  16. Adjustment of Part Properties for an Elastomeric Laser Sintering Material

    Science.gov (United States)

    Wegner, A.; Ünlü, T.

    2018-03-01

    Laser sintering of polymers is gaining more and more importance within the field of small series productions. Polyamide 12 is predominantly used, although a variety of other materials are also available for the laser sintering process. For example, elastomeric, rubberlike materials offer very different part property profiles. Those make the production of flexible parts like, e.g., sealings, flexible tubes or shoe soles possible because they offer high part ductility and low hardness. At the chair for manufacturing technology, a new elastomeric laser sintering material has been developed and then commercialized by a spin-off from university. The aim of the presented study was the analysis of the new material's properties. Proof was found that Shore hardness can be modified by varying the parameter settings. Therefore, the correlation between process parameters, energy input, Shore hardness and other part properties like mechanical properties were analyzed. Based on these results, suitable parameter settings were established which lead to the possibility of producing parts with different Shore hardnesses.

  17. Mineralogy and microstructure of sintered lignite coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Marina Ilic; Christopher Cheeseman; Christopher Sollars; Jonathan Knight [Faculty of Technology and Metallurgy, Belgrade (Yugoslavia)

    2003-02-01

    Lignite coal fly ash from the 'Nikola Tesla' power plant in Yugoslavia has been characterised, milled, compacted and sintered to form monolithic ceramic materials. The effect of firing at temperatures between 1130 and 1190{sup o}C on the density, water accessible porosity, mineralogy and microstructure of sintered samples is reported. This class C fly ash has an initial average particle size of 82 {mu}m and contains siliceous glass together with the crystalline phases quartz, anorthite, gehlenite, hematite and mullite. Milling the ash to an average particle size of 5.6 m, compacting and firing at 1170{sup o}C for 1 h produces materials with densities similar to clay-based ceramics that exhibit low water absorption. Sintering reduces the amount of glass, quartz, gehlenite and anhydrite, but increases formation of anorthite, mullite, hematite and cristobalite. SEM confirms the formation of a dense ceramic at 1170{sup o}C and indicates that pyroplastic effects cause pore formation and bloating at 1190{sup o}C. 23 refs., 6 figs., 2 tabs.

  18. Experimental performance evaluation of sintered Gd spheres packed beds

    DEFF Research Database (Denmark)

    Tura, A.; Nielsen, Klaus K.; Van Nong, Ngo

    2016-01-01

    Research in magnetic refrigeration heavily relies on the use of packed spheres in regenerators, however little investigation to verify that such non-monolithic arrangements guarantee a sufficiently constrained structure has yet been performed. This work presents a preliminary comparison of the pe......Research in magnetic refrigeration heavily relies on the use of packed spheres in regenerators, however little investigation to verify that such non-monolithic arrangements guarantee a sufficiently constrained structure has yet been performed. This work presents a preliminary comparison...... of the performance of AMRs consisting of Gd spheres with diameters ranging from 450-550 microns partially sintered by Spark Plasma Sintering (SPS) to similar spheres, sorted in the same size range and from the same batch, but merely packed. Pressure drop is compared at uniform temperature and at a range of heat...... rejection temperatures and temperature spans. Performance is compared in terms of temperature span at a range of heat rejection temperatures (295-308 K) and 0 and 10 W cooling loads. Results show a moderate increase of pressure drop with the sintered spheres, while temperature spans were consistently 2...

  19. Solvent/Non-Solvent Sintering To Make Microsphere Scaffolds

    Science.gov (United States)

    Laurencin, Cato T.; Brown, Justin L.; Nair, Lakshmi

    2011-01-01

    A solvent/non-solvent sintering technique has been devised for joining polymeric microspheres to make porous matrices for use as drug-delivery devices or scaffolds that could be seeded with cells for growing tissues. Unlike traditional sintering at elevated temperature and pressure, this technique is practiced at room temperature and pressure and, therefore, does not cause thermal degradation of any drug, protein, or other biochemical with which the microspheres might be loaded to impart properties desired in a specific application. Also, properties of scaffolds made by this technique are more reproducible than are properties of comparable scaffolds made by traditional sintering. The technique involves the use of two miscible organic liquids: one that is and one that is not a solvent for the affected polymer. The polymeric microspheres are placed in a mold having the size and shape of the desired scaffold, then the solvent/non-solvent mixture is poured into the mold to fill the void volume between the microspheres, then the liquid mixture is allowed to evaporate. Some of the properties of the resulting scaffold can be tailored through choice of the proportions of the liquids and the diameter of the microspheres.

  20. Characterization of the direct metal laser sintered Ti6Al4V Components

    CSIR Research Space (South Africa)

    Chauke, L

    2013-09-01

    Full Text Available using the DMLS method. Emphasis was made on internal and external flaws generated during layer by layer building 2. Experimental procedure Ti6Al4V dog-borne sample produced by DMLS powder bed method is schematically shown in Figure 1. The EONSINT M...270 equipment [10] was used for the production of dog-bone samples. The sample gauge length, breath and width are given in Figure 1. Tensile properties, hardness profile, microstructure analysis of the as received and heat treated samples were...

  1. Catalog of physical protection equipment. Book 1: Volume II. Intrusion detection components

    Energy Technology Data Exchange (ETDEWEB)

    Haberman, W.

    1977-06-01

    This volume covers acoustic components, microwave/radar components, electro-optic barriers, electric field components, orientation components, ferrous metal detection components, proximity detection components, vibration detection components, seismic components, pressure-sensitive components, pressure mats, continuity components, electrical/magnetic switches, fire detection components, and mechanical contact switches. (DLC)

  2. Catalog of physical protection equipment. Book 1: Volume II. Intrusion detection components

    International Nuclear Information System (INIS)

    Haberman, W.

    1977-06-01

    This volume covers acoustic components, microwave/radar components, electro-optic barriers, electric field components, orientation components, ferrous metal detection components, proximity detection components, vibration detection components, seismic components, pressure-sensitive components, pressure mats, continuity components, electrical/magnetic switches, fire detection components, and mechanical contact switches

  3. Microstructural stability of spark-plasma-sintered W f /W composite with zirconia interface coating under high-heat-flux hydrogen beam irradiation.

    Czech Academy of Sciences Publication Activity Database

    Avello de Lama, M.; Balden, M.; Greuner, H.; Höschen, T.; Matějíček, Jiří; You, J.H.

    Roč. 13, December ( 2017 ), s. 74-80 ISSN 2352-1791 R&D Projects: GA ČR GB14-36566G EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : tungsten-fibre/tungsten composites * plasma-facing components * spark plasma sintering Subject RIV: JI - Composite Materials OBOR OECD: Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics https://www.sciencedirect.com/science/article/pii/S2352179117300273

  4. Preparation and sintering of Zr(C,N,O) phases

    International Nuclear Information System (INIS)

    Tamborenea, S.; Mazzoni, A.D.; Aglietti, E.F.

    2003-01-01

    The Zr(C,O,N) compounds form a great mono-phase zone belonging to the pseudoternary ZrO-ZrN-ZrC system.Theses phases have cubic crystalline structure with a o parameter depending on the C, O 2 and N 2 content.These phases have many potential applications in the manufacture of ceramic pieces utilizable as electronic conductors.The Zr (C,O,N) phases can be obtained from ZrO 2 by carbonitriding reactions: that is carbothermal reduction and simultaneous nitriding.In this work a series of experiences of carbonitriding of zirconia under different conditions (temperatures between 1400 and 1600degC, times of 120 min, carbon content between 20 and 40%) in order to obtain suitable powders to be sintered.The XRD analysis shows the Zr(C,O,N) as the main products and β -ZrON as the only secondary product in proportions depending on the obtaining conditions.The variables employed were the C content and the reaction temperature.The Zr(C,O,N) content varies between 40 and 90% and tends to increase with the temperature and the carbon content whereas the β -ZrON phase varies between the 40 and 10 % decreasing its proportion with temperature and the carbon content.The oxidation resistance of these phases was studied by DTA-TG tests in air.Results show complete oxidation reaction at ∼500degC in air.The sintering of these materials was made on disks obtained by pressing of powders of Zr(C,N,O) contents higher than 90%.Sintering was performed in nitrogen atmosphere and temperatures between 1450 and 1620degC.Disks were characterized by pycnometry and Hg volumeter.The densities obtained were between 5 and 6,6g/cm 3 with a tendency to increase with the Zr(C,N,O) phase content, the temperature and the sintering time.Sintered disks were characterized by dilatometry in N 2

  5. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... be purchased over-the-counter or on the Internet," says Thomas Steinemann, MD, professor of ophthalmology at ... ask for a prescription. There is no such thing as a "one size fits all" contact lens. ...

  6. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... also available in Spanish . Follow The Academy Professionals: Education Guidelines News Multimedia Public & Patients: Contact Us About the Academy Jobs at the Academy Financial Relationships with Industry Medical ...

  7. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... seek immediate medical attention from an ophthalmologist. Related resources: Learn how to properly care for contact lenses . ... woman from Oregon made history as the first human host for an eye worm that previously had ...

  8. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... colored contact lenses to enhance their costumes. From blood-drenched vampire eyes to glow-in-the-dark ... properly fitted may scratch the eye or cause blood vessels to grow into the cornea. Even if ...

  9. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... people with high myopia? Mar 29, 2017 New Technology Helps the Legally Blind Be More Independent Oct ... Multimedia Public & Patients: Contact Us About the Academy Jobs at the Academy Financial Relationships with Industry Medical ...

  10. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... had not been properly fitted by an eye care professional, the lenses stuck to my eye like ... lenses do not require the same level of care or consideration as a standard contact lens because ...

  11. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... use of colored contact lenses , from the U.S. Food and Drug Administration (FDA). Are the colored lenses ... 2018 By Dan T. Gudgel Do you know what the difference is between ophthalmologists and optometrists? A ...

  12. Ergonomics SA: Contact

    African Journals Online (AJOL)

    Principal Contact. Mrs June McDougall. Rhodes University. Department of Human Kinetics and Ergonomics. P.O. Box 94. Rhodes University. Grahamstown. 6140. Phone: +27 46 6038471. Email: j.mcdougall@ru.ac.za ...

  13. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... sell contacts without a prescription are breaking the law, and may be fined $11,000 per violation. " ... 13, 2017 Histoplasmosis Diagnosis Sep 01, 2017 How common is retinal detachment for people with high myopia? ...

  14. Tomato contact dermatitis

    DEFF Research Database (Denmark)

    Paulsen, Evy; Christensen, Lars P; Andersen, Klaus Ejner

    2012-01-01

    The tomato plant (Solanum lycopersicum) is an important crop worldwide. Whereas immediate-type reactions to tomato fruits are well known, contact dermatitis caused by tomatoes or tomato plants is rarely reported. The aims of this study were to present new data on contact sensitization to tomato...... plants and review the literature on contact dermatitis caused by both plants and fruits. An ether extract of tomato plants made as the original oleoresin plant extracts, was used in aimed patch testing, and between 2005 and 2011. 8 of 93 patients (9%) tested positive to the oleoresin extracts....... This prevalence is in accordance with the older literature that reports tomato plants as occasional sensitizers. The same applies to tomato fruits, which, in addition, may cause protein contact dermatitis. The allergens of the plant are unknown, but both heat-stable and heat-labile constituents seem...

  15. Fragrance allergic contact dermatitis.

    Science.gov (United States)

    Cheng, Judy; Zug, Kathryn A

    2014-01-01

    Fragrances are a common cause of allergic contact dermatitis in Europe and in North America. They can affect individuals at any age and elicit a spectrum of reactions from contact urticaria to systemic contact dermatitis. Growing recognition of the widespread use of fragrances in modern society has fueled attempts to prevent sensitization through improved allergen identification, labeling, and consumer education. This review provides an overview and update on fragrance allergy. Part 1 discusses the epidemiology and evaluation of suspected fragrance allergy. Part 2 reviews screening methods, emerging fragrance allergens, and management of patients with fragrance contact allergy. This review concludes by examining recent legislation on fragrances and suggesting potential additions to screening series to help prevent and detect fragrance allergy.

  16. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... Cleveland. "This is far from the truth." Real People, Real Problems with Colored Contact Lenses Julian: Teenager ... About the Academy Jobs at the Academy Financial Relationships with Industry Medical Disclaimer Privacy Policy Terms of ...

  17. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... Follow The Academy Professionals: Education Guidelines News Multimedia Public & Patients: Contact Us About the Academy Jobs at the Academy Financial Relationships with Industry Medical Disclaimer Privacy Policy Terms of Service For Advertisers For Media Ophthalmology ...

  18. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... about the members of the eye-care team . Consumer warning about the improper use of colored contact ... About the Academy Jobs at the Academy Financial Relationships with Industry Medical Disclaimer Privacy Policy Terms of ...

  19. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... an impulsive buy from a souvenir shop, but 10 hours after she first put in a pair ... Prescription Contact Lens Laura: Vision Loss After Just 10 Hours Robyn: Blurry Vision and Daily Eye Drops ...

  20. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... in beauty salons, novelty shops or in pop-up Halloween stores are not FDA-approved and are ... share contact lenses with another person. Get follow up exams with your eye care provider. If you ...