WorldWideScience

Sample records for sink capacity faster

  1. Low Carbon sink capacity of Red Sea mangroves.

    Science.gov (United States)

    Almahasheer, Hanan; Serrano, Oscar; Duarte, Carlos M; Arias-Ortiz, Ariane; Masque, Pere; Irigoien, Xabier

    2017-08-29

    Mangroves forests of Avicennia marina occupy about 135 km 2 in the Red Sea and represent one of the most important vegetated communities in this otherwise arid and oligotrophic region. We assessed the soil organic carbon (C org ) stocks, soil accretion rates (SAR; mm y -1 ) and soil C org sequestration rates (g C org m -2 yr -1 ) in 10 mangrove sites within four locations along the Saudi coast of the Central Red Sea. Soil C org density and stock in Red Sea mangroves were among the lowest reported globally, with an average of 4 ± 0.3 mg C org cm -3 and 43 ± 5 Mg C org ha -1 (in 1 m-thick soils), respectively. Sequestration rates of C org , estimated at 3 ± 1 and 15 ± 1 g C org m -2 yr -1 for the long (millennia) and short (last century) temporal scales, respectively, were also relatively low compared to mangrove habitats from more humid bioregions. In contrast, the accretion rates of Central Red Sea mangroves soils were within the range reported for global mangrove forests. The relatively low C org sink capacity of Red Sea mangroves could be due to the extreme environmental conditions such as low rainfall, nutrient limitation and high temperature, reducing the growth rates of the mangroves and increasing soil respiration rates.

  2. Low Carbon sink capacity of Red Sea mangroves

    KAUST Repository

    Almahasheer, Hanan

    2017-08-22

    Mangroves forests of Avicennia marina occupy about 135 km2 in the Red Sea and represent one of the most important vegetated communities in this otherwise arid and oligotrophic region. We assessed the soil organic carbon (C-org) stocks, soil accretion rates (SAR; mm y(-1)) and soil C-org sequestration rates (g C-org m(-2) yr(-1)) in 10 mangrove sites within four locations along the Saudi coast of the Central Red Sea. Soil C-org density and stock in Red Sea mangroves were among the lowest reported globally, with an average of 4 +/- 0.3 mg Corg cm(-3) and 43 +/- 5 Mg C-org ha(-1) (in 1 m-thick soils), respectively. Sequestration rates of C-org, estimated at 3 +/- 1 and 15 +/- 1 g C-org m(-2) yr(-1) for the long (millennia) and short (last century) temporal scales, respectively, were also relatively low compared to mangrove habitats from more humid bioregions. In contrast, the accretion rates of Central Red Sea mangroves soils were within the range reported for global mangrove forests. The relatively low C-org sink capacity of Red Sea mangroves could be due to the extreme environmental conditions such as low rainfall, nutrient limitation and high temperature, reducing the growth rates of the mangroves and increasing soil respiration rates.

  3. Low Carbon sink capacity of Red Sea mangroves

    KAUST Repository

    Almahasheer, Hanan; Serrano, Oscar; Duarte, Carlos M.; Arias-Ortiz, Ariane; Masque, Pere; Irigoien, Xabier

    2017-01-01

    Mangroves forests of Avicennia marina occupy about 135 km2 in the Red Sea and represent one of the most important vegetated communities in this otherwise arid and oligotrophic region. We assessed the soil organic carbon (C-org) stocks, soil accretion rates (SAR; mm y(-1)) and soil C-org sequestration rates (g C-org m(-2) yr(-1)) in 10 mangrove sites within four locations along the Saudi coast of the Central Red Sea. Soil C-org density and stock in Red Sea mangroves were among the lowest reported globally, with an average of 4 +/- 0.3 mg Corg cm(-3) and 43 +/- 5 Mg C-org ha(-1) (in 1 m-thick soils), respectively. Sequestration rates of C-org, estimated at 3 +/- 1 and 15 +/- 1 g C-org m(-2) yr(-1) for the long (millennia) and short (last century) temporal scales, respectively, were also relatively low compared to mangrove habitats from more humid bioregions. In contrast, the accretion rates of Central Red Sea mangroves soils were within the range reported for global mangrove forests. The relatively low C-org sink capacity of Red Sea mangroves could be due to the extreme environmental conditions such as low rainfall, nutrient limitation and high temperature, reducing the growth rates of the mangroves and increasing soil respiration rates.

  4. Experimental investigation of a PCM-HP heat sink on its thermal performance and anti-thermal-shock capacity for high-power LEDs

    International Nuclear Information System (INIS)

    Wu, Yuxuan; Tang, Yong; Li, Zongtao; Ding, Xinrui; Yuan, Wei; Zhao, Xuezhi; Yu, Binhai

    2016-01-01

    Highlights: • A phase-change material (PCM) base heat pipe heat sink (PCM-HP heat sink) is designed. • The PCM-HP heat sink can significantly lower the LED heating rate and temperature. • The PCM-HP heat sink achieves a best anti-thermal-shock capacity in LED cyclic working modes. - Abstract: High-power LEDs demonstrate a number of benefits compared with conventional incandescent lamps and fluorescent lamps, including a longer lifetime, higher brightness and lower power consumption. However, owing to their severe high heat flux, it is difficult to develop effective thermal management of high-power LEDs, especially under cyclic working modes, which cause serious periodic thermal stress and limit further development. Focusing on the above problem, this paper designed a phase-change material (PCM) base heat pipe heat sink (PCM-HP heat sink) that consists of a PCM base, adapter plate, heat pipe and finned radiator. Different parameters, such as three types of interior materials to fill the heat sink, three LED power inputs and eight LED cyclic working modes, were separately studied to investigate the thermal performance and anti-thermal-shock capacity of the PCM-HP heat sink. The results show that the PCM-HP heat sink possesses remarkable thermal performance owing to the reduction of the LED heating rate and peak temperature. More importantly, an excellent anti-thermal-shock capacity of the PCM-HP heat sink is also demonstrated when applied in LED cyclic working modes, and this capacity demonstrates the best range.

  5. Determining the capacity and rate of advance of tunneling scoops during the sinking of shafts

    Energy Technology Data Exchange (ETDEWEB)

    Durov, E.M.

    1979-03-01

    Methods for calculating parameters and selecting tunneling rigs for deepening mine shafts and for determining their rate of advance are outlined. The output according to type of rig, scoop capacity and range of rate of advance in the shaft are determined firstly and then a graph of output in relation to the change of maximum rates of advance is constructed. The desired productivity is determined on the basis of output per working shift in loose soil. Having determined scoop capacity and rate of advance, the remaining parameters of the excavation may be determined.

  6. Effect of environmental factors (wave exposure and depth) and anthropogenic pressure in the C sink capacity of Posidonia oceanica meadows

    KAUST Repository

    Mazarrasa, Iné s; Marbà , Nú ria; Garcia-Orellana, Jordi; Masqué , Pere; Arias-Ortiz, Ariane; Duarte, Carlos M.

    2017-01-01

    Seagrass are among the most important natural carbon sinks on Earth with Posidonia oceanica (Mediterranean Sea) considered as the most relevant species. Yet, the number of direct measurements of organic carbon burial rates in P. oceanica is still scarce and the effect of local environmental factors remains largely unexplored. In addition, P. oceanica meadows are declining due to the increase in anthropogenic pressure in coastal areas during the last century. The aim of this study is to assess the recent carbon sink capacity of P. oceanica and particularly the effect of human pressure and two environmental factors, water depth and exposure to wave energy (based on a fetch index), on the carbon burial rate since 1900. We conducted an extensive survey of sediment cores in meadows distributed across a gradient of depth, fetch, and human pressure around The Balearic Islands. Sediment and carbon accumulation rates were obtained from 210Pb concentrations profiles. Top-30 centimeters carbon stocks (6.1 ± 1.4 kg C m−2) and burial rates (26 ± 6 g C m−2 yr1) varied up to fivefold across meadows. No significant effect of water depth in carbon burial rates was observed. Although fetch was significantly correlated with sediment mean grain size, confirming the effect of wave exposure in the patterns of sedimentation, fetch alone could not explain the differences in carbon burial rates among the meadows examined. Human pressure affected carbon burial rates, leading to increased rates since the onset of the rise in anthropogenic pressure, particularly so in sheltered meadows supporting high human pressure.

  7. Effect of environmental factors (wave exposure and depth) and anthropogenic pressure in the C sink capacity of Posidonia oceanica meadows

    KAUST Repository

    Mazarrasa, Inés

    2017-03-20

    Seagrass are among the most important natural carbon sinks on Earth with Posidonia oceanica (Mediterranean Sea) considered as the most relevant species. Yet, the number of direct measurements of organic carbon burial rates in P. oceanica is still scarce and the effect of local environmental factors remains largely unexplored. In addition, P. oceanica meadows are declining due to the increase in anthropogenic pressure in coastal areas during the last century. The aim of this study is to assess the recent carbon sink capacity of P. oceanica and particularly the effect of human pressure and two environmental factors, water depth and exposure to wave energy (based on a fetch index), on the carbon burial rate since 1900. We conducted an extensive survey of sediment cores in meadows distributed across a gradient of depth, fetch, and human pressure around The Balearic Islands. Sediment and carbon accumulation rates were obtained from 210Pb concentrations profiles. Top-30 centimeters carbon stocks (6.1 ± 1.4 kg C m−2) and burial rates (26 ± 6 g C m−2 yr1) varied up to fivefold across meadows. No significant effect of water depth in carbon burial rates was observed. Although fetch was significantly correlated with sediment mean grain size, confirming the effect of wave exposure in the patterns of sedimentation, fetch alone could not explain the differences in carbon burial rates among the meadows examined. Human pressure affected carbon burial rates, leading to increased rates since the onset of the rise in anthropogenic pressure, particularly so in sheltered meadows supporting high human pressure.

  8. Chlorine Doping of Amorphous TiO2 for Increased Capacity and Faster Li+-Ion Storage

    NARCIS (Netherlands)

    Moitzheim, S.; Balder, J.E.; Poodt, P.; Unnikrishnan, S.; Gendt, S. de; Vereecken, P.M.

    2017-01-01

    Titania (TiO2) offers a high theoretical capacity of 336 mAh g-1 with the insertion of one Li per Ti unit. Unfortunately, the poor ionic and electronic conductivity of bulk TiO2 electrodes limits its practical implementation. Nanosizing titania below ∼20 nm has shown to increase the rate performance

  9. Writing faster Python

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Did you know that Python preallocates integers from -5 to 257 ? Reusing them 1000 times, instead of allocating memory for a bigger integer, can save you a couple of milliseconds of code’s execution time. If you want to learn more about this kind of optimizations then, … well, probably this presentation is not for you :) Instead of going into such small details, I will talk about more "sane" ideas for writing faster code. After a very brief overview of how to optimize Python code (rule 1: don’t do this; rule 2: don’t do this yet; rule 3: ok, but what if I really want to do this ?), I will show simple and fast ways of measuring the execution time and finally, discuss examples of how some code structures could be improved. You will see: - What is the fastest way of removing duplicates from a list - How much faster your code is when you reuse the built-in functions instead of trying to reinvent the wheel - What is faster than the good ol’ for loop - If the lookup is faster in a list or a set (and w...

  10. Preparing for faster filling

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Following the programmed technical stop last week, operators focussed on preparing the machine for faster filling, which includes multibunch injection and a faster pre-cycle phase.   The LHC1 screen shot during the first multibunch injection operation. The LHC operational schedule incorporates a technical stop for preventive maintenance roughly every six weeks of stable operation, during which several interventions on the various machines are carried out. Last week these included the replacement of a faulty magnet in the SPS pre-accelerator, which required the subsequent re-setting of the system of particle extraction and transfer to the LHC. At the end of last week, all the machines were handed back for operation and work could start on accommodating all the changes made into the complex systems in order for normal operation to be resumed. These ‘recovery’ operations continued through the weekend and into this week. At the beginning of this week, operators succeeded in pro...

  11. Bribes for Faster Delivery

    OpenAIRE

    Sanyal, Amal

    2000-01-01

    The paper models the practice of charging bribes for faster delivery of essential services in third world countries. It then examines the possibility of curbing corruption by supervision, and secondly, by introducing competition among delivery agents. It is argued that a supervisory solution eludes the problem because no hard evidence of the reduction of corruption can be established for this type of offenses. It is also shown that using more than one supplier cannot eliminate the practice, a...

  12. Longer - Faster - Purer

    CERN Multimedia

    Caroline Duc

    2013-01-01

    The MR-ToF-MS, a new ion trap, has been integrated into ISOLTRAP, the experiment that performs accurate mass measurements on short-lived nuclides produced at ISOLDE. When used as a mass separator and spectrometer, it extends ISOLTRAP’s experimental reach towards the limits of nuclear stability.   Susanne Kreim, the ISOLTRAP local group leader at CERN in front of a part of the ISOLTRAP device. When mass measurement experiments like ISOLTRAP* are placed in an on-line radioactive ion-beam facility they face a major challenge: the efficient and fast transfer of the nuclide of interest to the location where the mass measurement is performed. The biggest yield of one selected nuclide, without contaminants, needs to be transferred to the set-up as quickly as possible in order to measure its mass with the greatest precision. Recently, the ISOLTRAP collaboration installed a new device that provides a faster separation of isobars.** It has significantly improved ISOLTRAP’s purificat...

  13. What's Up with Sinking?

    Science.gov (United States)

    Blintz, William

    2005-01-01

    In Hamlet, Shakespeare invites readers to ponder a famous philosophical question: To be or not to be? That is the question. In this issue, two trade books invite students to explore the question: To sink or not to sink? That is the experiment. Though both books are targeted for younger children, teachers can use these books with elementary…

  14. Sinking towards destiny: High throughput measurement of phytoplankton sinking rates through time-resolved fluorescence plate spectroscopy.

    Science.gov (United States)

    Bannon, Catherine C; Campbell, Douglas A

    2017-01-01

    Diatoms are marine primary producers that sink in part due to the density of their silica frustules. Sinking of these phytoplankters is crucial for both the biological pump that sequesters carbon to the deep ocean and for the life strategy of the organism. Sinking rates have been previously measured through settling columns, or with fluorimeters or video microscopy arranged perpendicularly to the direction of sinking. These side-view techniques require large volumes of culture, specialized equipment and are difficult to scale up to multiple simultaneous measures for screening. We established a method for parallel, large scale analysis of multiple phytoplankton sinking rates through top-view monitoring of chlorophyll a fluorescence in microtitre well plates. We verified the method through experimental analysis of known factors that influence sinking rates, including exponential versus stationary growth phase in species of different cell sizes; Thalassiosira pseudonana CCMP1335, chain-forming Skeletonema marinoi RO5A and Coscinodiscus radiatus CCMP312. We fit decay curves to an algebraic transform of the decrease in fluorescence signal as cells sank away from the fluorometer detector, and then used minimal mechanistic assumptions to extract a sinking rate (m d-1) using an RStudio script, SinkWORX. We thereby detected significant differences in sinking rates as larger diatom cells sank faster than smaller cells, and cultures in stationary phase sank faster than those in exponential phase. Our sinking rate estimates accord well with literature values from previously established methods. This well plate-based method can operate as a high throughput integrative phenotypic screen for factors that influence sinking rates including macromolecular allocations, nutrient availability or uptake rates, chain-length or cell size, degree of silification and progression through growth stages. Alternately the approach can be used to phenomically screen libraries of mutants.

  15. Sink-oriented Dynamic Location Service Protocol for Mobile Sinks with an Energy Efficient Grid-Based Approach

    Directory of Open Access Journals (Sweden)

    Hyunseung Choo

    2009-03-01

    Full Text Available Sensor nodes transmit the sensed information to the sink through wireless sensor networks (WSNs. They have limited power, computational capacities and memory. Portable wireless devices are increasing in popularity. Mechanisms that allow information to be efficiently obtained through mobile WSNs are of significant interest. However, a mobile sink introduces many challenges to data dissemination in large WSNs. For example, it is important to efficiently identify the locations of mobile sinks and disseminate information from multi-source nodes to the multi-mobile sinks. In particular, a stationary dissemination path may no longer be effective in mobile sink applications, due to sink mobility. In this paper, we propose a Sink-oriented Dynamic Location Service (SDLS approach to handle sink mobility. In SDLS, we propose an Eight-Direction Anchor (EDA system that acts as a location service server. EDA prevents intensive energy consumption at the border sensor nodes and thus provides energy balancing to all the sensor nodes. Then we propose a Location-based Shortest Relay (LSR that efficiently forwards (or relays data from a source node to a sink with minimal delay path. Our results demonstrate that SDLS not only provides an efficient and scalable location service, but also reduces the average data communication overhead in scenarios with multiple and moving sinks and sources.

  16. Sink-oriented Dynamic Location Service Protocol for Mobile Sinks with an Energy Efficient Grid-Based Approach.

    Science.gov (United States)

    Jeon, Hyeonjae; Park, Kwangjin; Hwang, Dae-Joon; Choo, Hyunseung

    2009-01-01

    Sensor nodes transmit the sensed information to the sink through wireless sensor networks (WSNs). They have limited power, computational capacities and memory. Portable wireless devices are increasing in popularity. Mechanisms that allow information to be efficiently obtained through mobile WSNs are of significant interest. However, a mobile sink introduces many challenges to data dissemination in large WSNs. For example, it is important to efficiently identify the locations of mobile sinks and disseminate information from multi-source nodes to the multi-mobile sinks. In particular, a stationary dissemination path may no longer be effective in mobile sink applications, due to sink mobility. In this paper, we propose a Sink-oriented Dynamic Location Service (SDLS) approach to handle sink mobility. In SDLS, we propose an Eight-Direction Anchor (EDA) system that acts as a location service server. EDA prevents intensive energy consumption at the border sensor nodes and thus provides energy balancing to all the sensor nodes. Then we propose a Location-based Shortest Relay (LSR) that efficiently forwards (or relays) data from a source node to a sink with minimal delay path. Our results demonstrate that SDLS not only provides an efficient and scalable location service, but also reduces the average data communication overhead in scenarios with multiple and moving sinks and sources.

  17. Regulation of assimilate import into sink organs: Update on molecular drivers of sink strength

    Directory of Open Access Journals (Sweden)

    Saadia eBihmidine

    2013-06-01

    Full Text Available Recent developments have altered our view of molecular mechanisms that determine sink strength, defined here as the capacity of non-photosynthetic structures to compete for import of photoassimilates. We review new findings from diverse systems, including stems, seeds, flowers, and fruits. An important advance has been the identification of new transporters and facilitators with major roles in the accumulation and equilibration of sugars at a cellular level. Exactly where each exerts its effect varies among systems. Sugarcane and sweet sorghum stems, for example, both accumulate high levels of sucrose, but may do so via different paths. The distinction is central to strategies for targeted manipulation of sink strength using transporter genes, and shows the importance of system-specific analyses. Another major advance has been the identification of deep hypoxia as a feature of normal grain development. This means that molecular drivers of sink strength in endosperm operate in very low oxygen levels, and under metabolic conditions quite different than previously assumed. Successful enhancement of sink strength has nonetheless been achieved in grains by up-regulating genes for starch biosynthesis. Additionally, our understanding of sink strength is enhanced by awareness of the dual roles played by invertases (INV, not only in sucrose metabolism, but also in production of the hexose sugar signals that regulate cell-cycle and cell-division programs. These contributions of INV to cell expansion and division prove to be vital for establishment of young sinks ranging from flowers to fruit. Since INV genes are themselves sugar-responsive feast genes, they can mediate a feed-forward enhancement of sink strength when assimilates are abundant. Greater overall productivity and yield have thus been attained in key instances, indicating that even broader enhancements may be achievable as we discover the detailed molecular mechanisms that drive sink strength

  18. Energies and carbon sinks

    International Nuclear Information System (INIS)

    Riedacker, A.

    2002-01-01

    The Kyoto Protocol puts a lot of emphasis on carbon sinks. This emphasis almost obliterates the other potential contributions of biomass in the fight against climatic changes and toward sustainable development. Biomass represents an infinite supply of renewable energy sources which do not increase the levels of carbon in the atmosphere, contribute to energy savings resulting from the use of wood rather than other materials, the sustainable management of soils, the fight against drought, agroforestry from which the production of foods depends, the mitigating of certain extreme climatic occurrences and the protection of dams from increased silting. The industrial revolution contributed to the increase in greenhouse gas emissions. When discussing some of the finer points of the Kyoto Protocol, the focus was placed on carbon sinks. The author indicates that the biomass cycle had to be considered, both in situ and ex situ. Details to this effect are provided, and a section dealing with greenhouse gases other than carbon must be taken into account. The rural environment must be considered globally. The author indicates that in the future, the emissions resulting from the transportation of agricultural products will have to be considered. Within the realm of the policies on sustainable development, the fight against climatic change represents only one aspect. In arid and semi-arid regions, one must take into account meeting the energy needs of the populations, the fight against drought and the preservation of biodiversity. The planting of trees offers multiple advantages apart from being a carbon sink: roughage, wood for burning, protection of soils, etc. A few examples are provided. 8 refs., 3 figs

  19. Zero bugs and program faster

    CERN Document Server

    Thompson, Kate

    2015-01-01

    A book about programming, improving skill, and avoiding mistakes. The author spent two years researching every bug avoidance technique she could find. This book contains the best of them. If you want to program faster, with fewer bugs, and write more secure code, buy this book! "This is the best book I have ever read." - Anonymous reviewer "Four score and seven years ago this book helped me debug my server code." -Abraham Lincoln "Would my Javascript have memory leaks without this book? Would fishes fly without water?" -Socrates "This book is the greatest victory since the Spanish Armada, and the best about programming." -Queen Elizabeth

  20. Size matters: bigger is faster.

    Science.gov (United States)

    Sereno, Sara C; O'Donnell, Patrick J; Sereno, Margaret E

    2009-06-01

    A largely unexplored aspect of lexical access in visual word recognition is "semantic size"--namely, the real-world size of an object to which a word refers. A total of 42 participants performed a lexical decision task on concrete nouns denoting either big or small objects (e.g., bookcase or teaspoon). Items were matched pairwise on relevant lexical dimensions. Participants' reaction times were reliably faster to semantically "big" versus "small" words. The results are discussed in terms of possible mechanisms, including more active representations for "big" words, due to the ecological importance attributed to large objects in the environment and the relative speed of neural responses to large objects.

  1. Sinking a Granular Raft

    Science.gov (United States)

    Protière, Suzie; Josserand, Christophe; Aristoff, Jeffrey M.; Stone, Howard A.; Abkarian, Manouk

    2017-03-01

    We report experiments that yield new insights on the behavior of granular rafts at an oil-water interface. We show that these particle aggregates can float or sink depending on dimensionless parameters taking into account the particle densities and size and the densities of the two fluids. We characterize the raft shape and stability and propose a model to predict its shape and maximum length to remain afloat. Finally we find that wrinkles and folds appear along the raft due to compression by its own weight, which can trigger destabilization. These features are characteristics of an elastic instability, which we discuss, including the limitations of our model.

  2. Slow light brings faster communications

    International Nuclear Information System (INIS)

    Gauthier, D.

    2006-01-01

    Two teams of researchers have managed to significantly reduce the speed of light in an optical fibre, which could open the door to all-optical routers for telecommunications, as Daniel Gauthier explains. Optical engineers around the globe are working hard to meet the ever-growing demand for higher-speed information networks, and the latest systems being developed operate at rates close to 160 GB per second - which is over 100 times quicker than the fastest broadband services currently available and a world away from the 56 kb per second dial-up connections of the early years of the Internet. Paradoxically, it seems that making light travel slower rather than faster might be the best way to meet these high-speed challenges. (U.K.)

  3. Sinks as integrative elements of the anthropogenic metabolism

    Science.gov (United States)

    Kral, Ulrich; Brunner, Paul H.

    2015-04-01

    The anthropogenic metabolism is an open system requiring exchange of materials and energy between the anthroposphere and the environment. Material and energy flows are taken from nature and become utilized by men. After utilization, the materials either remain in the anthroposphere as recycling products, or they leave the anthroposphere as waste and emission flows. To accommodate these materials without jeopardizing human and environmental health, limited natural sinks are available; thus, man-made sinks have to be provided where natural sinks are missing or overloaded. The oral presentation (1) suggests a coherent definition of the term "sink", encompassing natural and man-made processes, (2) presents a framework to analyse and evaluate anthropogenic material flows to sinks, based on the tool substance flow analysis and impact assessment methodology, and (3) applies the framework in a case study approach for selected substances such as Copper and Lead in Vienna and Perfluorooctane sulfonate in Switzerland. Finally, the numeric results are aggregated in terms of a new indicator that specifies on a regional scale which fractions of anthropogenic material flows to sinks are acceptable. The following results are obtained: In Vienna, 99% of Cu flows to natural and man-made sinks are in accordance with accepted standards. However, the 0.7% of Cu entering urban soils and the 0.3% entering receiving waters surpass the acceptable level. In the case of Pb, 92% of all flows into sinks prove to be acceptable, but 8% are disposed of in local landfills with limited capacity. For PFOS, 96% of all flows into sinks are acceptable. 4% cannot be evaluated due to a lack of normative criteria, despite posing a risk for human health and the environment. The case studies corroborate the need and constraints of sinks to accommodate inevitable anthropogenic material flows.

  4. Modeling the energy performance of event-driven wireless sensor network by using static sink and mobile sink.

    Science.gov (United States)

    Chen, Jiehui; Salim, Mariam B; Matsumoto, Mitsuji

    2010-01-01

    Wireless Sensor Networks (WSNs) designed for mission-critical applications suffer from limited sensing capacities, particularly fast energy depletion. Regarding this, mobile sinks can be used to balance the energy consumption in WSNs, but the frequent location updates of the mobile sinks can lead to data collisions and rapid energy consumption for some specific sensors. This paper explores an optimal barrier coverage based sensor deployment for event driven WSNs where a dual-sink model was designed to evaluate the energy performance of not only static sensors, but Static Sink (SS) and Mobile Sinks (MSs) simultaneously, based on parameters such as sensor transmission range r and the velocity of the mobile sink v, etc. Moreover, a MS mobility model was developed to enable SS and MSs to effectively collaborate, while achieving spatiotemporal energy performance efficiency by using the knowledge of the cumulative density function (cdf), Poisson process and M/G/1 queue. The simulation results verified that the improved energy performance of the whole network was demonstrated clearly and our eDSA algorithm is more efficient than the static-sink model, reducing energy consumption approximately in half. Moreover, we demonstrate that our results are robust to realistic sensing models and also validate the correctness of our results through extensive simulations.

  5. Modeling the Energy Performance of Event-Driven Wireless Sensor Network by Using Static Sink and Mobile Sink

    Science.gov (United States)

    Chen, Jiehui; Salim, Mariam B.; Matsumoto, Mitsuji

    2010-01-01

    Wireless Sensor Networks (WSNs) designed for mission-critical applications suffer from limited sensing capacities, particularly fast energy depletion. Regarding this, mobile sinks can be used to balance the energy consumption in WSNs, but the frequent location updates of the mobile sinks can lead to data collisions and rapid energy consumption for some specific sensors. This paper explores an optimal barrier coverage based sensor deployment for event driven WSNs where a dual-sink model was designed to evaluate the energy performance of not only static sensors, but Static Sink (SS) and Mobile Sinks (MSs) simultaneously, based on parameters such as sensor transmission range r and the velocity of the mobile sink v, etc. Moreover, a MS mobility model was developed to enable SS and MSs to effectively collaborate, while achieving spatiotemporal energy performance efficiency by using the knowledge of the cumulative density function (cdf), Poisson process and M/G/1 queue. The simulation results verified that the improved energy performance of the whole network was demonstrated clearly and our eDSA algorithm is more efficient than the static-sink model, reducing energy consumption approximately in half. Moreover, we demonstrate that our results are robust to realistic sensing models and also validate the correctness of our results through extensive simulations. PMID:22163503

  6. Long-term decline of the Amazon carbon sink.

    Science.gov (United States)

    Brienen, R J W; Phillips, O L; Feldpausch, T R; Gloor, E; Baker, T R; Lloyd, J; Lopez-Gonzalez, G; Monteagudo-Mendoza, A; Malhi, Y; Lewis, S L; Vásquez Martinez, R; Alexiades, M; Álvarez Dávila, E; Alvarez-Loayza, P; Andrade, A; Aragão, L E O C; Araujo-Murakami, A; Arets, E J M M; Arroyo, L; Aymard C, G A; Bánki, O S; Baraloto, C; Barroso, J; Bonal, D; Boot, R G A; Camargo, J L C; Castilho, C V; Chama, V; Chao, K J; Chave, J; Comiskey, J A; Cornejo Valverde, F; da Costa, L; de Oliveira, E A; Di Fiore, A; Erwin, T L; Fauset, S; Forsthofer, M; Galbraith, D R; Grahame, E S; Groot, N; Hérault, B; Higuchi, N; Honorio Coronado, E N; Keeling, H; Killeen, T J; Laurance, W F; Laurance, S; Licona, J; Magnussen, W E; Marimon, B S; Marimon-Junior, B H; Mendoza, C; Neill, D A; Nogueira, E M; Núñez, P; Pallqui Camacho, N C; Parada, A; Pardo-Molina, G; Peacock, J; Peña-Claros, M; Pickavance, G C; Pitman, N C A; Poorter, L; Prieto, A; Quesada, C A; Ramírez, F; Ramírez-Angulo, H; Restrepo, Z; Roopsind, A; Rudas, A; Salomão, R P; Schwarz, M; Silva, N; Silva-Espejo, J E; Silveira, M; Stropp, J; Talbot, J; ter Steege, H; Teran-Aguilar, J; Terborgh, J; Thomas-Caesar, R; Toledo, M; Torello-Raventos, M; Umetsu, R K; van der Heijden, G M F; van der Hout, P; Guimarães Vieira, I C; Vieira, S A; Vilanova, E; Vos, V A; Zagt, R J

    2015-03-19

    Atmospheric carbon dioxide records indicate that the land surface has acted as a strong global carbon sink over recent decades, with a substantial fraction of this sink probably located in the tropics, particularly in the Amazon. Nevertheless, it is unclear how the terrestrial carbon sink will evolve as climate and atmospheric composition continue to change. Here we analyse the historical evolution of the biomass dynamics of the Amazon rainforest over three decades using a distributed network of 321 plots. While this analysis confirms that Amazon forests have acted as a long-term net biomass sink, we find a long-term decreasing trend of carbon accumulation. Rates of net increase in above-ground biomass declined by one-third during the past decade compared to the 1990s. This is a consequence of growth rate increases levelling off recently, while biomass mortality persistently increased throughout, leading to a shortening of carbon residence times. Potential drivers for the mortality increase include greater climate variability, and feedbacks of faster growth on mortality, resulting in shortened tree longevity. The observed decline of the Amazon sink diverges markedly from the recent increase in terrestrial carbon uptake at the global scale, and is contrary to expectations based on models.

  7. The role of plantation sinks

    International Nuclear Information System (INIS)

    Read, Peter

    2001-01-01

    In this paper it is argued that in the long term biofuel should play a significant role in global climate policy. Recent technological developments, as well as sustainable development criteria, would favour growing biofuel in community- scale plantations in developing countries. It is also pointed out that the lead times involved in growing biofuels are so great that the inclusion of biofuel plantation sinks in the CDM for the first commitment period would be desirable. It is suggested that to meet opposition to the inclusion of plantation sinks in the first commitment period plantation, sinks should be linked to biofuels technology development and production, and a biofuels obligation for plantation sink projects in the CDM should be established. (Author)

  8. Effects of drought stress on seed sink strength and leaf protein ...

    African Journals Online (AJOL)

    Assimilate availability and the capacity to utilise them in the reproductive structures to a large extent determine reproductive sink establishment and yield of crops under drought stress. This study was carried out to investigate the effect of drought stress imposed at early pod-fill stage on seed sink strength of common bean ...

  9. [Review of lime carbon sink.

    Science.gov (United States)

    Liu, Li Li; Ling, Jiang Hua; Tie, Li; Wang, Jiao Yue; Bing, Long Fei; Xi, Feng Ming

    2018-01-01

    Under the background of "missing carbon sink" mystery and carbon capture and storage (CCS) technology development, this paper summarized the lime material flow process carbon sink from the lime carbonation principles, impact factors, and lime utilization categories in chemical industry, metallurgy industry, construction industry, and lime kiln ash treatment. The results showed that the lime carbonation rate coefficients were mainly impacted by materials and ambient conditions; the lime carbon sink was mainly in chemical, metallurgy, and construction industries; and current researches focused on the mechanisms and impact factors for carbonation, but their carbon sequestration calculation methods had not been proposed. Therefore, future research should focus on following aspects: to establish a complete system of lime carbon sequestration accounting method in view of material flow; to calculate lime carbon sequestration in both China and the world and explain their offset proportion of CO 2 emission from lime industrial process; to analyze the contribution of lime carbon sequestration to missing carbon sink for clarifying part of missing carbon sinks; to promote the development of carbon capture and storage technology and provide some scientific bases for China's international negotiations on climate change.

  10. FASTER Test Reactor Preconceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Grandy, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Belch, H. [Argonne National Lab. (ANL), Argonne, IL (United States); Brunett, A. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Heidet, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Hill, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hoffman, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Jin, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Mohamed, W. [Argonne National Lab. (ANL), Argonne, IL (United States); Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Passerini, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Sumner, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Vilim, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hayes, S. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-03-31

    The FASTER test reactor plant is a sodium-cooled fast spectrum test reactor that provides high levels of fast and thermal neutron flux for scientific research and development. The 120MWe FASTER reactor plant has a superheated steam power conversion system which provides electrical power to a local grid allowing for recovery of operating costs for the reactor plant.

  11. FASTER test reactor preconceptual design report summary

    Energy Technology Data Exchange (ETDEWEB)

    Grandy, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Belch, H. [Argonne National Lab. (ANL), Argonne, IL (United States); Brunett, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Heidet, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Hill, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hoffman, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Jin, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Mohamed, W. [Argonne National Lab. (ANL), Argonne, IL (United States); Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Passerini, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Sumner, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Vilim, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hayes, Steven [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-02-29

    The FASTER reactor plant is a sodium-cooled fast spectrum test reactor that provides high levels of fast and thermal neutron flux for scientific research and development. The 120MWe FASTER reactor plant has a superheated steam power conversion system which provides electrical power to a local grid allowing for recovery of operating costs for the reactor plant.

  12. Sinking bubbles in stout beers

    Science.gov (United States)

    Lee, W. T.; Kaar, S.; O'Brien, S. B. G.

    2018-04-01

    A surprising phenomenon witnessed by many is the sinking bubbles seen in a settling pint of stout beer. Bubbles are less dense than the surrounding fluid so how does this happen? Previous work has shown that the explanation lies in a circulation of fluid promoted by the tilted sides of the glass. However, this work has relied heavily on computational fluid dynamics (CFD) simulations. Here, we show that the phenomenon of sinking bubbles can be predicted using a simple analytic model. To make the model analytically tractable, we work in the limit of small bubbles and consider a simplified geometry. The model confirms both the existence of sinking bubbles and the previously proposed mechanism.

  13. Host country attractiveness for CDM non-sink projects

    International Nuclear Information System (INIS)

    Jung, Martina

    2006-01-01

    In the present study, CDM host countries are classified according to their attractiveness for CDM non-sink projects by using cluster analysis. The attractiveness of host countries for CDM non-sink projects is described by three indicators: mitigation potential, institutional CDM capacity and general investment climate. The results suggest that only a small proportion of potential host countries will attract most of the CDM investment. The CDM (non-sink) stars are China, India, Brazil, Argentina, Mexico, South Africa, Indonesia and Thailand. They are followed by attractive countries like Costa Rica, Trinidad and Tobago, Mongolia, Panama, and Chile. While most of the promising CDM host countries are located in Latin America and Asia, the general attractiveness of African host countries is relatively low (with the exception of South Africa). Policy implications of this rather inequitable geographical distribution of CDM project activities are discussed briefly

  14. How Low Can You Sink?

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 2. How Low Can You Sink? In Search of Global Minima. Vivek S Borkar. General Article Volume 2 ... Author Affiliations. Vivek S Borkar1. Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India ...

  15. Tropical Wetlands as Carbon Sinks

    Science.gov (United States)

    Jones, M. B.; Saunders, M.

    2007-12-01

    This presentation focuses on the tropical wetlands of sub-Saharan Africa. These are an understudied ecosystem in which large emergent grasses and sedges normally dominate and which have the potential to sequester significant amounts of carbon. Measurements of Net Primary Production of these wetlands show that they are some of the highest values recorded for any ecosystem. We have used eddy covariance to measure Net Ecosystem Exchange of pristine and disturbed wetlands and show that pristine systems can have sink strengths as strong as tropical forests while disturbed systems that have been reclaimed for agricultural purposes have a very much reduced carbon sink activity and may be net carbon sources. The management issues surrounding the use of these wetlands illustrate a direct conflict between the production of food crops for the local population and the maintenance of carbon sequestration as an ecosystem service.

  16. Sinking offshore platform. Nedsenkbar fralandsplatform

    Energy Technology Data Exchange (ETDEWEB)

    Einstabland, T.B.; Olsen, O.

    1988-12-19

    The invention deals with a sinking offshore platform of the gravitational type designed for being installed on the sea bed on great depths. The platform consists of at least three inclining pillars placed on a foundation unit. The pillars are at the upper end connected to a tower structure by means of a rigid construction. The tower supports the platform deck. The rigid construction comprises a centre-positioned cylinder connected to the foundation. 11 figs.

  17. Modelling fungal sink competitiveness with grains for assimilates in wheat infected by a biotrophic pathogen

    Science.gov (United States)

    Bancal, Marie-Odile; Hansart, Amandine; Sache, Ivan; Bancal, Pierre

    2012-01-01

    Background and Aims Experiments have shown that biotrophic fungi divert assimilates for their growth. However, no attempt has been made either to account for this additional sink or to predict to what extent it competes with both grain filling and plant reserve metabolism for carbon. Fungal sink competitiveness with grains was quantified by a mixed experimental–modelling approach based on winter wheat infected by Puccinia triticina. Methods One week after anthesis, plants grown under controlled conditions were inoculated with varying loads. Sporulation was recorded while plants underwent varying degrees of shading, ensuring a range of both fungal sink and host source levels. Inoculation load significantly increased both sporulating area and rate. Shading significantly affected net assimilation, reserve mobilization and sporulating area, but not grain filling or sporulation rates. An existing carbon partitioning (source–sink) model for wheat during the grain filling period was then enhanced, in which two parameters characterize every sink: carriage capacity and substrate affinity. Fungal sink competitiveness with host sources and sinks was modelled by representing spore production as another sink in diseased wheat during grain filling. Key Results Data from the experiment were fitted to the model to provide the fungal sink parameters. Fungal carriage capacity was 0·56 ± 0·01 µg dry matter °Cd−1 per lesion, much less than grain filling capacity, even in highly infected plants; however, fungal sporulation had a competitive priority for assimilates over grain filling. Simulation with virtual crops accounted for the importance of the relative contribution of photosynthesis loss, anticipated reserve depletion and spore production when light level and disease severity vary. The grain filling rate was less reduced than photosynthesis; however, over the long term, yield loss could double because the earlier reserve depletion observed here would shorten the

  18. Air capacity for Sydney

    OpenAIRE

    Forsyth, Peter

    2013-01-01

    Like most large cities, Sydney has an airport problem. Demand is increasing faster than supply, and additional capacity will be needed if costly rationing, and delays, are to be avoided. However, compared to many cities, the problems facing Sydney are modest. At the moment, demand is only just exceeding capacity. There is a good chance that the available capacity will be rationed efficiently. Options for expanding capacity are being evaluated well. There may be problems in the future- poor op...

  19. Verification of Carbon Sink Assessment. Can We Exclude Natural Sinks?

    International Nuclear Information System (INIS)

    Alexandrov, G.; Yamagata, Y

    2004-01-01

    Any human-induced terrestrial sink is susceptible to the effects of elevated atmospheric CO2 concentration, nitrogen deposition, climate variability and other natural or indirect human-induced factors. It has been suggested in climate negotiations that the effects of these factors should be excluded from estimates of carbon sequestration used to meet the emission reduction commitments under the Kyoto Protocol. This paper focuses on the methodologies for factoring out the effects of atmospheric and climate variability/change. We estimate the relative magnitude of the non-human induced effects by using two biosphere models and discuss possibilities for narrowing estimate uncertainty

  20. Investigation of internally finned LED heat sinks

    Science.gov (United States)

    Li, Bin; Xiong, Lun; Lai, Chuan; Tang, Yumei

    2018-03-01

    A novel heat sink is proposed, which is composed of a perforated cylinder and internally arranged fins. Numerical studies are performed on the natural convection heat transfer from internally finned heat sinks; experimental studies are carried out to validate the numerical results. To compare the thermal performances of internally finned heat sinks and externally finned heat sinks, the effects of the overall diameter, overall height, and installation direction on maximum temperature, air flow and heat transfer coefficient are investigated. The results demonstrate that internally finned heat sinks show better thermal performance than externally finned heat sinks; the maximum temperature of internally finned heat sinks decreases by up to 20% compared with the externally finned heat sinks. The existence of a perforated cylinder and the installation direction of the heat sink affect the thermal performance significantly; it is shown that the heat transfer coefficient of the heat sink with the perforated cylinder is improved greater than that with the imperforated cylinder by up to 34%, while reducing the mass of the heat sink by up to 13%. Project supported by the Scientific Research Fund of Sichuan Provincial Education Department (No. 18ZB0516) and the Sichuan University of Arts and Science (No. 2016KZ009Y).

  1. Emission and Sink of Greenhouse Gases in Soils of Moscow

    Science.gov (United States)

    Mozharova, N. V.; Kulachkova, S. A.; Lebed'-Sharlevich, Ya. I.

    2018-03-01

    The first inventory and zoning of the emission and sink of methane and carbon dioxide in the urban structure of greenhouse gases from soils and surface technogenic formations (STFs) (Technosols) on technogenic, recrementogenic, and natural sediments have been performed with consideration for the global warming potential under conditions of different formation rate of these gases, underflooding, and sealing. From gas geochemical criteria and anthropogenic pedogenesis features, the main sources of greenhouse gases, their intensity, and mass emission were revealed. The mass fractions of emissions from the sectors of waste and land use in the inventories of greenhouse gas emissions have been determined. New sources of gas emission have been revealed in the first sector, the emissions from which add tens of percent to the literature and state reports. In the second sector, emissions exceed the available data in 70 times. Estimation criteria based on the degree of manifestation and chemical composition of soil-geochemical anomalies and barrier capacities have been proposed. The sink of greenhouse gases from the atmosphere and the internal (latent) sink of methane in soils and STFs have been determined. Ecological functions of soils and STFs have been shown, and the share of latent methane sink has been calculated. The bacterial oxidation of methane in soils and STFs exceeds its emission to the atmosphere in almost hundred times.

  2. Sink-to-Sink Coordination Framework Using RPL: Routing Protocol for Low Power and Lossy Networks

    Directory of Open Access Journals (Sweden)

    Meer M. Khan

    2016-01-01

    Full Text Available RPL (Routing Protocol for low power and Lossy networks is recommended by Internet Engineering Task Force (IETF for IPv6-based LLNs (Low Power and Lossy Networks. RPL uses a proactive routing approach and each node always maintains an active path to the sink node. Sink-to-sink coordination defines syntax and semantics for the exchange of any network defined parameters among sink nodes like network size, traffic load, mobility of a sink, and so forth. The coordination allows sink to learn about the network condition of neighboring sinks. As a result, sinks can make coordinated decision to increase/decrease their network size for optimizing over all network performance in terms of load sharing, increasing network lifetime, and lowering end-to-end latency of communication. Currently, RPL does not provide any coordination framework that can define message exchange between different sink nodes for enhancing the network performance. In this paper, a sink-to-sink coordination framework is proposed which utilizes the periodic route maintenance messages issued by RPL to exchange network status observed at a sink with its neighboring sinks. The proposed framework distributes network load among sink nodes for achieving higher throughputs and longer network’s life time.

  3. Faster than Nyquist signaling algorithms to silicon

    CERN Document Server

    Dasalukunte, Deepak; Rusek, Fredrik; Anderson, John B

    2014-01-01

    This book addresses the challenges and design trade-offs arising during the hardware design of Faster-than-Nyquist (FTN) signaling transceivers. The authors describe how to design for coexistence between the FTN system described and Orthogonal frequency-division multiplexing (OFDM) systems, enabling readers to design FTN specific processing blocks as add-ons to the conventional transceiver chain.   • Provides a comprehensive introduction to Faster-than-Nyquist (FTN) signaling transceivers, covering both theory and hardware implementation; • Enables readers to design systems that achieve bandwidth efficiency by making better use of the available spectrum resources; • Describes design techniques to achieve 2x improvement in bandwidth usage with similar performance as that of an OFDM system.  

  4. Pigeons home faster through polluted air

    OpenAIRE

    Zhongqiu Li; Franck Courchamp; Daniel T. Blumstein

    2016-01-01

    Air pollution, especially haze pollution, is creating health issues for both humans and other animals. However, remarkably little is known about how animals behaviourally respond to air pollution. We used multiple linear regression to analyse 415 pigeon races in the North China Plain, an area with considerable air pollution, and found that while the proportion of pigeons successfully homed was not influenced by air pollution, pigeons homed faster when the air was especially polluted. Our resu...

  5. Faster than light, slower than time

    International Nuclear Information System (INIS)

    Rucker, R.

    1981-01-01

    The problem with faster-than-light travel is that, in the framework of Special Relativity, it is logically equivalent to time-travel. The problem with time-travel is that it leads to two types of paradoxes. The paradoxes, and the various means of skirting them, are all discussed here. Virtually all the examples are drawn from science-fiction novels, which are a large and neglected source of thought-experiments. (Auth.)

  6. Compressing bitmap indexes for faster search operations

    International Nuclear Information System (INIS)

    Wu, Kesheng; Otoo, Ekow J.; Shoshani, Arie

    2002-01-01

    In this paper, we study the effects of compression on bitmap indexes. The main operations on the bitmaps during query processing are bitwise logical operations such as AND, OR, NOT, etc. Using the general purpose compression schemes, such as gzip, the logical operations on the compressed bitmaps are much slower than on the uncompressed bitmaps. Specialized compression schemes, like the byte-aligned bitmap code(BBC), are usually faster in performing logical operations than the general purpose schemes, but in many cases they are still orders of magnitude slower than the uncompressed scheme. To make the compressed bitmap indexes operate more efficiently, we designed a CPU-friendly scheme which we refer to as the word-aligned hybrid code (WAH). Tests on both synthetic and real application data show that the new scheme significantly outperforms well-known compression schemes at a modest increase in storage space. Compared to BBC, a scheme well-known for its operational efficiency, WAH performs logical operations about 12 times faster and uses only 60 percent more space. Compared to the uncompressed scheme, in most test cases WAH is faster while still using less space. We further verified with additional tests that the improvement in logical operation speed translates to similar improvement in query processing speed

  7. Compressing bitmap indexes for faster search operations

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kesheng; Otoo, Ekow J.; Shoshani, Arie

    2002-04-25

    In this paper, we study the effects of compression on bitmap indexes. The main operations on the bitmaps during query processing are bitwise logical operations such as AND, OR, NOT, etc. Using the general purpose compression schemes, such as gzip, the logical operations on the compressed bitmaps are much slower than on the uncompressed bitmaps. Specialized compression schemes, like the byte-aligned bitmap code(BBC), are usually faster in performing logical operations than the general purpose schemes, but in many cases they are still orders of magnitude slower than the uncompressed scheme. To make the compressed bitmap indexes operate more efficiently, we designed a CPU-friendly scheme which we refer to as the word-aligned hybrid code (WAH). Tests on both synthetic and real application data show that the new scheme significantly outperforms well-known compression schemes at a modest increase in storage space. Compared to BBC, a scheme well-known for its operational efficiency, WAH performs logical operations about 12 times faster and uses only 60 percent more space. Compared to the uncompressed scheme, in most test cases WAH is faster while still using less space. We further verified with additional tests that the improvement in logical operation speed translates to similar improvement in query processing speed.

  8. Variable food absorption by Antarctic krill: Relationships between diet, egestion rate and the composition and sinking rates of their fecal pellets

    Science.gov (United States)

    Atkinson, A.; Schmidt, K.; Fielding, S.; Kawaguchi, S.; Geissler, P. A.

    2012-01-01

    The kinetics of food processing by zooplankton affects both their energy budgets and the biogeochemical fate of their fecal pellets. We sampled 40 schools of krill across the Scotia Sea during spring, summer and autumn and found that in all 3 seasons, every aspect of their absorption and defecation varied greatly. The C content of fecal pellets varied from 0.85% to 29% of their dry mass (median 9.8%) and C egestion rates varied 75-fold. C:N mass ratios of pellets ranged from 4.9 to 13.2 (median 7.8), higher than values of 3.9 in the krill and 5.4 in their food, pointing to enhanced uptake of N. Pellet sinking rates equated to 27-1218 m d -1 (median 304 m d -1), being governed mainly by pellet diameter (80-600 μm, mean 183 μm) and density (1.038-1.391 g cm -3, mean 1.121 g cm -3). Pellets showed little loss of C or N in filtered seawater over the first 2 days and were physically robust. When feeding rates were low, slow gut passage time and high absorption efficiency resulted in low egestion rates of pellets that were low in C and N content. These pellets were compact, dense and fast-sinking. Conversely, in good feeding conditions much food tended to pass quickly through the gut and was not efficiently absorbed, producing C and N-rich, slow-sinking pellets. Such "superfluous feeding" probably maximises the absolute rates of nutrient absorption. Food composition was also important: diatom-rich diets depressed the C content of the pellets but increased their sinking rates, likely due to silica ballasting. So depending on how krill process food, their pellets could represent both vehicles for rapid export and slow sinking, C and N-rich food sources for pelagic scavengers. C egestion rates by krill averaged 3.4% of summer primary production (and ingestion rates would be 2-10-fold higher than this) so whatever the fate of the pellets, krill are an important re-packager within the food web. While salp pellets tend to sink faster than those of krill, it is the latter

  9. Fracture as a material sink

    Science.gov (United States)

    Volokh, K. Y.

    2017-12-01

    Cracks are created by massive breakage of molecular or atomic bonds. The latter, in its turn, leads to the highly localized loss of material, which is the reason why even closed cracks are visible by a naked eye. Thus, fracture can be interpreted as the local material sink. Mass conservation is violated locally in the area of material failure. We consider a theoretical formulation of the coupled mass and momenta balance equations for a description of fracture. Our focus is on brittle fracture and we propose a finite strain hyperelastic thermodynamic framework for the coupled mass-flow-elastic boundary value problem. The attractiveness of the proposed framework as compared to the traditional continuum damage theories is that no internal parameters (like damage variables, phase fields, etc.) are used while the regularization of the failure localization is provided by the physically sound law of mass balance.

  10. Better Faster Noise with the GPU

    DEFF Research Database (Denmark)

    Wyvill, Geoff; Frisvad, Jeppe Revall

    Filtered noise [Perlin 1985] has, for twenty years, been a fundamental tool for creating functional texture and it has many other applications; for example, animating water waves or the motion of grass waving in the wind. Perlin noise suffers from a number of defects and there have been many atte...... attempts to create better or faster noise but Perlin’s ‘Gradient Noise’ has consistently proved to be the best compromise between speed and quality. Our objective was to create a better noise cheaply by use of the GPU....

  11. Quantifying the source-sink balance and carbohydrate content in three tomato cultivars

    Directory of Open Access Journals (Sweden)

    Tao eLi

    2015-06-01

    Full Text Available The effect of supplementary lighting on plant growth depends on the balance between assimilate production in source leaves and the overall capacity of the plants to use assimilates. This study aims at quantifying the source-sink balance and carbohydrate content of three tomato cultivars differing in fruit size, and to investigate to what extent the source/sink ratio correlates with the potential fruit size. Cultivars Komeett (large size, Capricia (medium size and Sunstream (small size, cherry tomato were grown at similar crop management as in commercial practice. Supplementary lighting was applied. Source strength was estimated from total plant growth rate using periodic destructive plant harvests in combination with the crop growth model TOMSIM. Sink strength was estimated from potential fruit growth rate which was determined from non-destructively measuring the fruit growth rate at non-limiting assimilate supply, growing only one fruit on each truss. Carbohydrate content in leaves and stems were periodically determined. During the early growth stage, ‘Komeett’ and ‘Capricia’ showed sink limitation and ‘Sunstream’ was close to sink limitation. Subsequently, during the fully fruiting stage all three cultivars were strongly source-limited as indicated by the low source/sink ratio (average source/sink ratio from 50 days after planting onwards was 0.17, 0.22 and 0.33 for ‘Komeett’, ‘Capricia’ and ‘Sunstream’, respectively. Carbohydrate content in leaves and stems increased linearly with the source/sink ratio. We conclude that under high irradiance tomato plants are sink-limited during their early growth stage, the level of sink limitation differs between cultivars but is not correlated with their potential fruit size. During the fully fruiting stage tomato plants are source-limited and the extent of source limitation of a cultivar is positively correlated with its potential fruit size.

  12. Faster and Energy-Efficient Signed Multipliers

    Directory of Open Access Journals (Sweden)

    B. Ramkumar

    2013-01-01

    Full Text Available We demonstrate faster and energy-efficient column compression multiplication with very small area overheads by using a combination of two techniques: partition of the partial products into two parts for independent parallel column compression and acceleration of the final addition using new hybrid adder structures proposed here. Based on the proposed techniques, 8-b, 16-b, 32-b, and 64-b Wallace (W, Dadda (D, and HPM (H reduction tree based Baugh-Wooley multipliers are developed and compared with the regular W, D, H based Baugh-Wooley multipliers. The performances of the proposed multipliers are analyzed by evaluating the delay, area, and power, with 65 nm process technologies on interconnect and layout using industry standard design and layout tools. The result analysis shows that the 64-bit proposed multipliers are as much as 29%, 27%, and 21% faster than the regular W, D, H based Baugh-Wooley multipliers, respectively, with a maximum of only 2.4% power overhead. Also, the power-delay products (energy consumption of the proposed 16-b, 32-b, and 64-b multipliers are significantly lower than those of the regular Baugh-Wooley multiplier. Applicability of the proposed techniques to the Booth-Encoded multipliers is also discussed.

  13. Causes of sinks near Tucson, Arizona, USA

    Science.gov (United States)

    Hoffmann, J.P.; Pool, D.R.; Konieczki, A.D.; Carpenter, M.C.

    1998-01-01

    Land subsidence in the form of sinks has occurred on and near farmlands near Tucson, Pima County, Arizona, USA. The sinks occur in alluvial deposits along the flood plain of the Santa Cruz River, and have made farmlands dangerous and unsuitable for farming. More than 1700 sinks are confined to the flood plain of the Santa Cruz River and are grouped along two north-northwestward-trending bands that are approximately parallel to the river and other flood-plain drainages. An estimated 17,000 m3 of sediment have been removed in the formation of the sinks. Thirteen trenches were dug to depths of 4-6 m to characterize near-surface sediments in sink and nonsink areas. Sediments below about 2 m included a large percentage of dispersive clays in sink areas. Sediments in nonsink areas contain a large component of medium- to coarse-grained, moderately to well sorted sand that probably fills a paleochannel. Electromagnetic surveys support the association of silts and clays in sink areas that are highly electrically conductive relative to sand in nonsink areas. Sinks probably are caused by the near-surface process of subsurface erosion of dispersive sediments along pre-existing cracks in predominantly silt and clay sediments. The pre-existing cracks probably result from desiccation or tension that developed during periods of water-table decline and channel incision during the past 100 years or in earlier periods.

  14. Forest carbon sinks in the Northern Hemisphere

    Science.gov (United States)

    Christine L. Goodale; Michael J. Apps; Richard A. Birdsey; Christopher B. Field; Linda S. Heath; Richard A. Houghton; Jennifer C. Jenkins; Gundolf H. Kohlmaier; Werner Kurz; Shirong Liu; Gert-Jan Nabuurs; Sten Nilsson; Anatoly Z. Shvidenko

    2002-01-01

    There is general agreement that terrestrial systems in the Northern Hemisphere provide a significant sink for atmospheric CO2; however, estimates of the magnitude and distribution of this sink vary greatly. National forest inventories provide strong, measurement-based constraints on the magnitude of net forest carbon uptake. We brought together...

  15. Large CO2 Sinks: Their role in the mitigation of greenhouse gases from an international, national (Canadian) and provincial (Alberta) perspective

    International Nuclear Information System (INIS)

    Gunter, W.D.; Wong, S.; Cheel, D.B.; Sjostrom, G.

    1998-01-01

    Significant reduction of CO 2 emissions on a global scale may be achieved by reduction of energy intensity, by reduction of carbon intensity or by capture and storage of CO 2 . A portfolio of these methods is required to achieve the large reductions required; of which utilization of carbon sinks (i.e. material, geosphere and biosphere) will be an important player. Material sinks will probably only play a minor role as compared to biosphere and geosphere sinks in storage of CO 2 . Biosphere sinks are attractive because they can sequester CO 2 from a diffuse source whereas geosphere sinks require a pure waste stream of CO 2 (obtained by using expensive separation methods). On the other hand, environmental factors and storage time favor geosphere sinks. It is expected that a combination of the two will be used in order to meet emission reduction targets over the next 100 yr.A critical look is taken at capacities, retention/residence times, rates of uptake and relative cost of utilization of biosphere and geosphere sinks at three scales - global, national (Canada) and provincial (Alberta). Biosphere sinks considered are oceans, forests and soils. Geosphere sinks considered are enhanced oil recovery, coal beds, depleted oil and gas reservoirs and deep aquifers. The largest sinks are oceans and deep aquifers. The other biosphere and geosphere sinks have total capacities approximately of an order of lower magnitude. The sinks that will probably be used first are those that are economically viable such as enhanced oil-recovery, agriculture, forestry and possibly enhanced coalbed methane-recovery. The other sinks will be used when these options have been exhausted or are not available or a penalty (e.g. carbon tax) exists. Although the data tabulated for these sinks is only regarded as preliminary, it provides a starting point for assessment of the role of large sinks in meeting greenhouse gas emission reduction targets. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam

  16. Ocean carbon sinks and international climate policy

    International Nuclear Information System (INIS)

    Rehdanz, Katrin; Tol, Richard S.J.; Wetzel, Patrick

    2006-01-01

    Terrestrial vegetation sinks have entered the Kyoto Protocol as offsets for anthropogenic greenhouse gas emissions, but ocean sinks have escaped attention. Ocean sinks are as unexplored and uncertain as were the terrestrial sinks at the time of negotiation of the Kyoto Protocol. It is not unlikely that certain countries will advocate the inclusion of ocean carbon sinks to reduce their emission reduction obligations in post-2012 negotiations. We use a simple model of the international market for carbon dioxide emissions to evaluate who would gain or loose from allowing for ocean carbon sinks. Our analysis is restricted to information on anthropogenic carbon sequestration within the exclusive economic zone of a country. We use information on the actual carbon flux and derive the human-induced uptake for the period from 1990 onwards. Like the carbon sequestration of business as usual forest management activities, natural ocean carbon sequestration applies at zero costs. The total amount of anthropogenic ocean carbon sequestration is large, also in the exclusive economic zones. As a consequence, it substantially alters the costs of emission reduction for most countries. Countries such as Australia, Denmark, France, Iceland, New Zealand, Norway and Portugal would gain substantially, and a large number of countries would benefit too. Current net exporters of carbon permits, particularly Russia, would gain less and oppose the inclusion of ocean carbon sinks

  17. Biological control of the terrestrial carbon sink

    Science.gov (United States)

    Schulze, E.-D.

    2006-03-01

    This lecture reviews the past (since 1964 when the International Biological Program began) and the future of our understanding of terrestrial carbon fluxes with focus on photosynthesis, respiration, primary-, ecosystem-, and biome-productivity. Photosynthetic capacity is related to the nitrogen concentration of leaves, but the capacity is only rarely reached under field conditions. Average rates of photosynthesis and stomatal conductance are closely correlated and operate near 50% of their maximal rate, with light being the limiting factor in humid regions and air humidity and soil water the limiting factor in arid climates. Leaf area is the main factor to extrapolate from leaves to canopies, with maximum surface conductance being dependent on leaf level stomatal conductance. Additionally, gas exchange depends also on rooting depth which determines the water and nutrient availability and on mycorrhizae which regulate the nutrient status. An important anthropogenic disturbance is the nitrogen uptake from air pollutants, which is not balanced by cation uptake from roots and this may lead to damage and breakdown of the plant cover. Photosynthesis is the main carbon input into ecosystems, but it alone does not represent the ecosystem carbon balance, which is determined by respiration of various kinds. Plant respiration and photosynthesis determine growth (net primary production) and microbial respiration balances the net ecosystem flux. In a spruce forest, 30% of the assimilatory carbon gain is used for respiration of needles, 20% is used for respiration in stems. Soil respiration is about 50% the carbon gain, half of which is root respiration, half is microbial respiration. In addition, disturbances lead to carbon losses, where fire, harvest and grazing bypass the chain of respiration. In total, the carbon balance at the biome level is only about 1% of the photosynthetic carbon input, or may indeed become negative. The recent observed increase in plant growth has

  18. Biological control of the terrestrial carbon sink

    Directory of Open Access Journals (Sweden)

    E.-D. Schulze

    2006-01-01

    Full Text Available This lecture reviews the past (since 1964 when the International Biological Program began and the future of our understanding of terrestrial carbon fluxes with focus on photosynthesis, respiration, primary-, ecosystem-, and biome-productivity. Photosynthetic capacity is related to the nitrogen concentration of leaves, but the capacity is only rarely reached under field conditions. Average rates of photosynthesis and stomatal conductance are closely correlated and operate near 50% of their maximal rate, with light being the limiting factor in humid regions and air humidity and soil water the limiting factor in arid climates. Leaf area is the main factor to extrapolate from leaves to canopies, with maximum surface conductance being dependent on leaf level stomatal conductance. Additionally, gas exchange depends also on rooting depth which determines the water and nutrient availability and on mycorrhizae which regulate the nutrient status. An important anthropogenic disturbance is the nitrogen uptake from air pollutants, which is not balanced by cation uptake from roots and this may lead to damage and breakdown of the plant cover. Photosynthesis is the main carbon input into ecosystems, but it alone does not represent the ecosystem carbon balance, which is determined by respiration of various kinds. Plant respiration and photosynthesis determine growth (net primary production and microbial respiration balances the net ecosystem flux. In a spruce forest, 30% of the assimilatory carbon gain is used for respiration of needles, 20% is used for respiration in stems. Soil respiration is about 50% the carbon gain, half of which is root respiration, half is microbial respiration. In addition, disturbances lead to carbon losses, where fire, harvest and grazing bypass the chain of respiration. In total, the carbon balance at the biome level is only about 1% of the photosynthetic carbon input, or may indeed become negative. The recent observed increase in

  19. Fast Physics Testbed for the FASTER Project

    Energy Technology Data Exchange (ETDEWEB)

    Lin, W.; Liu, Y.; Hogan, R.; Neggers, R.; Jensen, M.; Fridlind, A.; Lin, Y.; Wolf, A.

    2010-03-15

    This poster describes the Fast Physics Testbed for the new FAst-physics System Testbed and Research (FASTER) project. The overall objective is to provide a convenient and comprehensive platform for fast turn-around model evaluation against ARM observations and to facilitate development of parameterizations for cloud-related fast processes represented in global climate models. The testbed features three major components: a single column model (SCM) testbed, an NWP-Testbed, and high-resolution modeling (HRM). The web-based SCM-Testbed features multiple SCMs from major climate modeling centers and aims to maximize the potential of SCM approach to enhance and accelerate the evaluation and improvement of fast physics parameterizations through continuous evaluation of existing and evolving models against historical as well as new/improved ARM and other complementary measurements. The NWP-Testbed aims to capitalize on the large pool of operational numerical weather prediction products. Continuous evaluations of NWP forecasts against observations at ARM sites are carried out to systematically identify the biases and skills of physical parameterizations under all weather conditions. The highresolution modeling (HRM) activities aim to simulate the fast processes at high resolution to aid in the understanding of the fast processes and their parameterizations. A four-tier HRM framework is established to augment the SCM- and NWP-Testbeds towards eventual improvement of the parameterizations.

  20. Mesoscale inversion of carbon sources and sinks

    International Nuclear Information System (INIS)

    Lauvaux, T.

    2008-01-01

    Inverse methods at large scales are used to infer the spatial variability of carbon sources and sinks over the continents but their uncertainties remain large. Atmospheric concentrations integrate the surface flux variability but atmospheric transport models at low resolution are not able to simulate properly the local atmospheric dynamics at the measurement sites. However, the inverse estimates are more representative of the large spatial heterogeneity of the ecosystems compared to direct flux measurements. Top-down and bottom-up methods that aim at quantifying the carbon exchanges between the surface and the atmosphere correspond to different scales and are not easily comparable. During this phD, a mesoscale inverse system was developed to correct carbon fluxes at 8 km resolution. The high resolution transport model MesoNH was used to simulate accurately the variability of the atmospheric concentrations, which allowed us to reduce the uncertainty of the retrieved fluxes. All the measurements used here were observed during the intensive regional campaign CERES of May and June 2005, during which several instrumented towers measured CO 2 concentrations and fluxes in the South West of France. Airborne measurements allowed us to observe concentrations at high altitude but also CO 2 surface fluxes over large parts of the domain. First, the capacity of the inverse system to correct the CO 2 fluxes was estimated using pseudo-data experiments. The largest fraction of the concentration variability was attributed to regional surface fluxes over an area of about 300 km around the site locations depending on the meteorological conditions. Second, an ensemble of simulations allowed us to define the spatial and temporal structures of the transport errors. Finally, the inverse fluxes at 8 km resolution were compared to direct flux measurements. The inverse system has been validated in space and time and showed an improvement of the first guess fluxes from a vegetation model

  1. Topology Optimization of Thermal Heat Sinks

    DEFF Research Database (Denmark)

    Klaas Haertel, Jan Hendrik; Engelbrecht, Kurt; Lazarov, Boyan Stefanov

    2015-01-01

    In this paper, topology optimization is applied to optimize the cooling performance of thermal heat sinks. The coupled two-dimensional thermofluid model of a heat sink cooled with forced convection and a density-based topology optimization including density filtering and projection are implemented...... in COMSOL Multiphysics. The optimization objective is to minimize the heat sink’s temperature for a prescribed pressure drop and fixed heat generation. To conduct the optimization, COMSOL’s Optimization Module with GCMMA as the optimization method is used. The implementation of this topology optimization...... approach in COMSOL Multiphysics is described in this paper and results for optimized two-dimensional heat sinks are presented. Furthermore, parameter studies regarding the effect of the prescribed pressure drop of the system on Reynolds number and realized heat sink temperature are presented and discussed....

  2. A Possible Sink for Methane on Mars

    NARCIS (Netherlands)

    Nørnberg, P.; Jensen, S. J. K.; Skibsted, J.; Jakobsen, H. J.; ten Kate, I. L.; Gunnlaugsson, H. P.; Merrison, J. P.; Finster, K.; Bak, E.; Iversen, J. J.; Kondrup, J. C.

    2014-01-01

    Mechanical simulated wind activation of mineral surfaces act as a trap for Methane through formation of covalent Si-C bonds stable up to temperatures above 250 C. This mechanism is proposed as a Methane sink on Mars.

  3. Flooding and sinking of nuclear merchant ships

    International Nuclear Information System (INIS)

    Lettnin, H.K.J.; Wehowsky, P.

    1978-01-01

    In contrast to land-based power plants for ship reactors the marine environment brings up the peril of sinking. But this peril is low for nuclear ships with its high safety standard. An evaluation of casualties from 1964 - 1974 for ships>8000 GRT allows to estimate a very low sink probability for nuclear ships in the range of 10 -7 to 10 -8 p.a. In spite of this low probability a sinking cannot be excluded absolutely. Therefore passive means must be provided for sinking in deep waters: to maintain the integrity of at least one enclosure as activity barrier; to supply seawater into the safety containment for decay heat removal. For sinking in shallow waters and flooding at least one of the redundant decay heat removal systems including power supply stays operable. A mathematical tool is available for the design of flood openings of sufficient cross sections to flood the containment and to reach a pressure balance in case of postulated sinking in deep waters of any depth

  4. Reduced growth due to belowground sink limitation is not fully explained by reduced photosynthesis.

    Science.gov (United States)

    Campany, Courtney E; Medlyn, Belinda E; Duursma, Remko A

    2017-08-01

    Sink limitation is known to reduce plant growth, but it is not known how plant carbon (C) balance is affected, limiting our ability to predict growth under sink-limited conditions. We manipulated soil volume to impose sink limitation of growth in Eucalyptus tereticornis Sm. seedlings. Seedlings were grown in the field in containers of different sizes and planted flush to the soil alongside freely rooted (Free) seedlings. Container volume negatively affected aboveground growth throughout the experiment, and light saturated rates of leaf photosynthesis were consistently lower in seedlings in containers (-26%) compared with Free seedlings. Significant reductions in photosynthetic capacity in containerized seedlings were related to both reduced leaf nitrogen content and starch accumulation, indicating direct effects of sink limitation on photosynthetic downregulation. After 120 days, harvested biomass of Free seedlings was on average 84% higher than seedlings in containers, but biomass distribution in leaves, stems and roots was not different. However, the reduction in net leaf photosynthesis over the growth period was insufficient to explain the reduction in growth, so that we also observed an apparent reduction in whole-plant C-use efficiency (CUE) between Free seedlings and seedlings in containers. Our results show that sink limitation affects plant growth through feedbacks to both photosynthesis and CUE. Mass balance approaches to predicting plant growth under sink-limited conditions need to incorporate both of these feedbacks. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Sink Potential of Canadian Agricultural Soils

    International Nuclear Information System (INIS)

    Boehm, M.; Junkins, B.; Desjardins, R.; Lindwall, W.; Kulshreshtha, S.

    2004-01-01

    Net greenhouse gas (GHG) emissions from Canadian crop and livestock production were estimated for 1990, 1996 and 2001 and projected to 2008. Net emissions were also estimated for three scenarios (low (L), medium (M) and high (H)) of adoption of sink enhancing practices above the projected 2008 level. Carbon sequestration estimates were based on four sink-enhancing activities: conversion from conventional to zero tillage (ZT), reduced frequency of summerfallow (SF), the conversion of cropland to permanent cover crops (PC), and improved grazing land management (GM). GHG emissions were estimated with the Canadian Economic and Emissions Model for Agriculture (CEEMA). CEEMA estimates levels of production activities within the Canadian agriculture sector and calculates the emissions and removals associated with those levels of activities. The estimates indicate a decline in net emissions from 54 Tg CO2-Eq yr-1 in 1990 to 52 Tg CO2-Eq yr-1 in 2008. Adoption of the sink-enhancing practices above the level projected for 2008 resulted in further declines in emissions to 48 Tg CO2-Eq yr-1 (L), 42 Tg CO2-Eq yr-1 (M) or 36 Tg CO2-Eq yr-1 (H). Among the sink-enhancing practices, the conversion from conventional tillage to ZT provided the largest C sequestration potential and net reduction in GHG emissions among the scenarios. Although rates of C sequestration were generally higher for conversion of cropland to PC and adoption of improved GM, those scenarios involved smaller areas of land and therefore less C sequestration. Also, increased areas of PC were associated with an increase in livestock numbers and CH4 and N2O emissions from enteric fermentation and manure, which partially offset the carbon sink. The CEEMA estimates indicate that soil C sinks are a viable option for achieving the UNFCCC objective of protecting and enhancing GHG sinks and reservoirs as a means of reducing GHG emissions (UNFCCC, 1992)

  6. Development of Thermal Design Program for an Electronic Telecommunication System Using Heat Sink

    International Nuclear Information System (INIS)

    Lee, Jung Hwan; Kim, Jong Man; Chun, Ji Hwan; Bae, Chul Ho; Suh, Myung Won

    2007-01-01

    The purpose of this study is to investigate the cooling performance of heat sinks for an electronic telecommunication system by adequate natural convection. Heat generation rates of electronic components and the temperature distributions of heat sinks and surrounding air are analyzed experimentally and numerically. In order to perform the heat transfer analysis for the thermal design of telecommunication system, a program is developed. The program used the graphic user interface environment to determine the arrangement of heat sources, interior fan capacity, and heat sink configuration. The simulation results showed that the heat sinks were able to achieve a cooling capacity of up to 230W at the maximum temperature difference of 19 .deg. C. To verify the results from the numerical simulation, an experiment was conducted under the same condition as the numerical simulation, and their results were compared. The design program gave good prediction of the effects of various parameters involved in the design of a heat sinks for an electronic telecommunication system

  7. Landfills as sinks for (hazardous) substances.

    Science.gov (United States)

    Scharff, Heijo

    2012-12-01

    The primary goal of waste regulations is to protect human health and the environment. This requires the removal from the material cycle of those materials that cannot be processed without harm. Policies to promote recycling hold a risk that pollutants are dispersed. Materials have an environmental impact during their entire life cycle from extraction through production, consumption and recycling to disposal. Essentially there are only two routes for pollutants that cannot be rendered harmless: storage in sinks or dispersion into the environment. Many sinks do not contain substances absolutely, but result in slow dispersion. Dispersion leads to exposure and impact to human health and the environment. It is therefore important to assess the impact of the release to the environment. Based on various sources this paper discusses important material flows and their potential impact. This is compared with the intentions and achievements of European environmental and resource policy. The polluter pays principle is being implemented in Europe, but lags behind implementation of waste management regulations. As long as producers are allowed to add hazardous substances to their products and don't take their products back, it is in society's best interest to carefully consider whether recycling or storage in a sink is the better solution. This requires further development of life-cycle assessment tools and harmonization of regulations. In many cases the sink is unavoidable. Landfills as sinks will be needed in the future. Fail-safe design and construction as well as sustainable management of landfills must be further developed.

  8. Regulation Effects of Water and Nitrogen on the Source-Sink Relationship in Potato during the Tuber Bulking Stage

    Science.gov (United States)

    Li, Wenting; Xiong, Binglin; Wang, Shiwen; Deng, Xiping; Yin, Lina; Li, Hongbing

    2016-01-01

    The source-sink relationship determines crop yield, and it is largely regulated by water and nutrients in agricultural production. This has been widely investigated in cereals, but fewer studies have been conducted in root and tuber crops such as potato (Solanum tuberosum L.). The objective of this study was to investigate the source-sink relationship in potato and the regulation of water and nitrogen on the source-sink relationship during the tuber bulking stage. A pot experiment using virus-free plantlets of the Atlantic potato cultivar was conducted, using three water levels (50%, 70% and 90% of field capacity) and three nitrogen levels (0, 0.2, 0.4 g N∙kg−1 soil). The results showed that, under all water and nitrogen levels, plant source capacity were small at the end of the experiment, since photosynthetic activity in leaves were low and non-structural reserves in underground stems were completely remobilized. While at this time, there were very big differences in maximum and minimum tuber number and tuber weight, indicating that the sink tuber still had a large potential capacity to take in assimilates. These results suggest that the source-supplied assimilates were not sufficient enough to meet the demands of sink growth. Thus, we concluded that, unlike cereals, potato yield is more likely to be source-limited than sink-limited during the tuber bulking stage. Water and nitrogen are two key factors in potato production management. Our results showed that water level, nitrogen level and the interaction between water and nitrogen influence potato yield mainly through affecting source capacity via the net photosynthetic rate, total leaf area and leaf life span. Well-watered, sufficient nitrogen and well-watered combined with sufficient nitrogen increased yield mainly by enhancing the source capacity. Therefore, this suggests that increasing source capacity is more crucial to improve potato yield. PMID:26752657

  9. Minimization of sink mark defects in injection molding process ...

    African Journals Online (AJOL)

    user

    3Institute of Remote Sensing, Anna University, Chennai-600025, INDIA .... Most of the Taguchi based studies used sink mark index or sink index as the parameter. It is an .... Maintaining higher pack pressure requires additional power and cost.

  10. The influence of mesoscale and submesoscale circulation on sinking particles in the northern Gulf of Mexico

    Directory of Open Access Journals (Sweden)

    Guangpeng Liu

    2018-04-01

    Full Text Available Mesoscale eddies and fronts in the ocean greatly impact lateral transport and in turn the trajectories of sinking particles. Such influence was explored for April and October 2012 in the Gulf of Mexico using numerical simulations performed with a regional model at 1-km horizontal resolution. Results are compared qualitatively to field samples from two sediment traps located at GC600 (27°22.5 N, 90°30.7 W and AT357 (27°31.5 N, 89°42.6 W, 81 km apart. In April the traps collected a comparable amount of material, while in October the flux at GC600 greatly exceeded that at AT357. Through inverse calculations, several thousand particle trajectories were reconstructed multiple times from the ocean surface to the depth of the traps (approximately 1,000 m using a range of sinking velocities, 20–100 m d–1. Taken together, model results and trap data indicate that cross-shore transport of riverine input induced by mesoscale eddies, and convergence and divergence processes at the scale of a few kilometers, significantly impact the trajectory of sinking particles. The large majority of modeled particles reach the bottom faster than would be expected by their sinking speeds alone. This finding is associated with submesoscale-induced horizontal convergence in the mixed layer that aggregates particles preferentially in downwelling regions, accelerating their descent. Furthermore, this study confirms that the cone of influence of vertical fluxes is highly variable in both space and time in the presence of an energetic eddy field, especially for particles with sinking velocity of 50 m d–1 or less. It also demonstrates that the variability of vertical fluxes in the Gulf of Mexico is highly complex and can be understood only by considering the mesoscale circulation and seasonal cycle of primary productivity, which in turn are linked to riverine inputs, wind forcing and the seasonal cycle of the mixed-layer depth.

  11. Source and sink nodes in absence seizures.

    Science.gov (United States)

    Rodrigues, Abner C; Machado, Birajara S; Caboclo, Luis Otavio S F; Fujita, Andre; Baccala, Luiz A; Sameshima, Koichi

    2016-08-01

    As opposed to focal epilepsy, absence seizures do not exhibit a clear seizure onset zone or focus since its ictal activity rapidly engages both brain hemispheres. Yet recent graph theoretical analysis applied to absence seizures EEG suggests the cortical focal presence, an unexpected feature for this type of epilepsy. In this study, we explore the characteristics of absence seizure by classifying the nodes as to their source/sink natures via weighted directed graph analysis based on connectivity direction and strength estimation using information partial directed coherence (iPDC). By segmenting the EEG signals into relatively short 5-sec-long time windows we studied the evolution of coupling strengths from both sink and source nodes, and the network dynamics of absence seizures in eight patients.

  12. Novel Natural Convection Heat Sink Design Concepts From First Principles

    Science.gov (United States)

    2016-06-01

    CONVECTION HEAT SINK DESIGN CONCEPTS FROM FIRST PRINCIPLES by Derek E. Fletcher June 2016 Thesis Advisor: Garth Hobson Second Reader...COVERED Master’s Thesis 4. TITLE AND SUBTITLE NOVEL NATURAL CONVECTION HEAT SINK DESIGN CONCEPTS FROM FIRST PRINCIPLES 5. FUNDING NUMBERS 6...CONVECTION HEAT SINK DESIGN CONCEPTS FROM FIRST PRINCIPLES Derek E. Fletcher Lieutenant Commander, United States Navy B.S., Southwestern

  13. Longevity of terrestrial Carbon sinks: effects of soil degradation on greenhouse gas emissions

    Science.gov (United States)

    Kuhn, Nikolaus J.; Berger, Samuel; Kuonen, Samuel

    2013-04-01

    Soil erosion by water is a key process of soil and land degradation. In addition, significant amounts of nutrients and organic Carbon are moved from eroding source areas to landscape sinks. As a consequence, areas affected by erosion suffer a loss of fertility, while sinks experience the development of a stockpile of the deposited sediment, including soil organic matter and nutrients. The deposited nutrients are largely unavailable for the plants growing in these landscape sediment sinks once the thickness of the deposited layer is greater than the rooting depth of the plants. In addition, the deposited organic matter is decomposed slowly through the pack of sediment. At sites of erosion, nutrients have to be replaced and organic matter content of the soil declines due to a destruction of the A horizon. Over time, the risk of a significant reduction in productivity, for example caused by a loss of top soil with a sufficient water storage capacity for maximum plant growth, leads to a decline in CO2 uptake by photosynthesis. Soil organic matter at eroding sites therefore declines and consequently the sediment that is moved to landscape sinks also has a smaller organic matter content than sediment generated from the non-degraded soil. The sediment sinks, on the other hand, emit an increasing amount of greenhouse gases as a consequence of the increasing amount of organic matter deposited while the upslope area is eroded. Over time, the perceived sink effect of soil erosion for greenhouse gases is therefore replaced with a neutral or positive emission balance of erosion in agricultural landscapes. Such a switch from none or a negative emission balance of agricultural landscapes to a positive balance carries the risk of accelerating climate change. In this study, we tried to estimate the risk associated with ongoing soil degradation and closing landscape soil organic matter sinks. Currently observed global erosion rates were linked to known limitations of soil

  14. Limited Capacity for Faster Digestion in Larval Coral Reef Fish at an Elevated Temperature.

    Science.gov (United States)

    McLeod, Ian M; Clark, Timothy D

    2016-01-01

    The prevalence of extreme, short-term temperature spikes in coastal regions during summer months is predicted to increase with ongoing climate change. In tropical systems, these changes are predicted to increase the metabolic demand of coral reef fish larvae while also altering the plankton communities upon which the larvae feed during their pelagic phase. The consequences of these predictions remain speculative in the absence of empirical data on the interactive effects of warm temperatures on the metabolism, postprandial processes and growth responses of coral reef fish larvae. Here, we tested the effect of increased temperature on the metabolism, postprandial performance and fine-scale growth patterns of a coral reef fish (Amphiprion percula) in the latter half of its ~11-d larval phase. First, we measured the length and weight of fed versus fasted larvae (N = 340; mean body mass 4.1±0.05 mg) across fine temporal scales at a typical current summer temperature (28.5°C) and a temperature that is likely be encountered during warm summer periods later this century (31.5°C). Second, we measured routine metabolic rate (Mo2 routine) and the energetics of the postprandial processes (i.e., digestion, absorption and assimilation of a meal; termed specific dynamic action (SDA)) at both temperatures. Larvae fed voraciously when provided with food for a 12-hour period and displayed a temperature-independent increase in mass of 40.1% (28.5°C) and 42.6% (31.5°C), which was largely associated with the mass of prey in the gut. A subsequent 12-h fasting period revealed that the larvae had grown 21.2±4.8% (28.5°C) and 22.8±8.8% (31.5°C) in mass and 10.3±2.0% (28.5°C) and 7.8±2.6% (31.5°C) in length compared with pre-feeding values (no significant temperature effect). Mo2 routine was 55±16% higher at 31.5°C and peak Mo2 during the postprandial period was 28±11% higher at 31.5°C, yet elevated temperature had no significant effect on SDA (0.51±0.06 J at 28.5°C vs. 0.53±0.07 J at 31.5°C), SDA duration (6.0±0.6 h vs. 6.5±0.5 h), or the percent of total meal energy used for SDA (SDA coefficient: 10.1±1.3% vs. 13.0±1.7%). Our findings of higher Mo2 routine but similar SDA coefficient at high temperature provide the first empirical evidence that coral reef fish larvae may have to secure more food to attain similar growth rates during warm summer periods, and perhaps with chronically warmer conditions associated with climate change.

  15. Limited Capacity for Faster Digestion in Larval Coral Reef Fish at an Elevated Temperature.

    Directory of Open Access Journals (Sweden)

    Ian M McLeod

    Full Text Available The prevalence of extreme, short-term temperature spikes in coastal regions during summer months is predicted to increase with ongoing climate change. In tropical systems, these changes are predicted to increase the metabolic demand of coral reef fish larvae while also altering the plankton communities upon which the larvae feed during their pelagic phase. The consequences of these predictions remain speculative in the absence of empirical data on the interactive effects of warm temperatures on the metabolism, postprandial processes and growth responses of coral reef fish larvae. Here, we tested the effect of increased temperature on the metabolism, postprandial performance and fine-scale growth patterns of a coral reef fish (Amphiprion percula in the latter half of its ~11-d larval phase. First, we measured the length and weight of fed versus fasted larvae (N = 340; mean body mass 4.1±0.05 mg across fine temporal scales at a typical current summer temperature (28.5°C and a temperature that is likely be encountered during warm summer periods later this century (31.5°C. Second, we measured routine metabolic rate (Mo2 routine and the energetics of the postprandial processes (i.e., digestion, absorption and assimilation of a meal; termed specific dynamic action (SDA at both temperatures. Larvae fed voraciously when provided with food for a 12-hour period and displayed a temperature-independent increase in mass of 40.1% (28.5°C and 42.6% (31.5°C, which was largely associated with the mass of prey in the gut. A subsequent 12-h fasting period revealed that the larvae had grown 21.2±4.8% (28.5°C and 22.8±8.8% (31.5°C in mass and 10.3±2.0% (28.5°C and 7.8±2.6% (31.5°C in length compared with pre-feeding values (no significant temperature effect. Mo2 routine was 55±16% higher at 31.5°C and peak Mo2 during the postprandial period was 28±11% higher at 31.5°C, yet elevated temperature had no significant effect on SDA (0.51±0.06 J at 28.5°C vs. 0.53±0.07 J at 31.5°C, SDA duration (6.0±0.6 h vs. 6.5±0.5 h, or the percent of total meal energy used for SDA (SDA coefficient: 10.1±1.3% vs. 13.0±1.7%. Our findings of higher Mo2 routine but similar SDA coefficient at high temperature provide the first empirical evidence that coral reef fish larvae may have to secure more food to attain similar growth rates during warm summer periods, and perhaps with chronically warmer conditions associated with climate change.

  16. Cortex Matures Faster in Youths With Highest IQ

    Science.gov (United States)

    ... NIH Cortex Matures Faster in Youths With Highest IQ Past Issues / Summer 2006 Table of Contents For ... on. Photo: Getty image (StockDisc) Youths with superior IQ are distinguished by how fast the thinking part ...

  17. Quantum mechanics and faster-than-light communication: methodological considerations

    International Nuclear Information System (INIS)

    Ghirardi, G.C.; Weber, T.

    1983-06-01

    A detailed quantum mechanical analysis of a recent proposal of faster than light communication through wave packet reduction is performed. The discussion allows us to focus on some methodological problems about critical investigations in physical theories. (author)

  18. What factors influence mitigative capacity?

    International Nuclear Information System (INIS)

    Winkler, Harald; Baumert, Kevin; Blanchard, Odile; Burch, Sarah; Robinson, John

    2007-01-01

    This article builds on Yohe's seminal piece on mitigative capacity, which elaborates 'determinants' of mitigative capacity, also reflected in the IPCC's third assessment report. We propose a revised definition, where mitigative capacity is a country's ability to reduce anthropogenic greenhouse gas emissions or enhance natural sinks. By 'ability' we mean skills, competencies, fitness, and proficiencies that a country has attained which can contribute to GHG emissions mitigation. A conceptual framework is proposed, linking mitigative capacity to a country's sustainable development path, and grouping the factors influencing mitigative capacity into three main sets: economic factors, institutional ones, and technology. Both quantitative and qualitative analysis of factors is presented, showing how these factors vary across countries. We suggest that it is the interplay between the three economic factors-income, abatement cost and opportunity cost-that shape mitigative capacity. We find that income is an important economic factor influencing mitigative capacity, while abatement cost is important in turning mitigative capacity into actual mitigation. Technology is a critical mitigative capacity, including the ability to absorb existing climate-friendly technologies or to develop innovative ones. Institutional factors that promote mitigative capacity include the effectiveness of government regulation, clear market rules, a skilled work force and public awareness. We briefly investigate such as high abatement cost or lack of political willingness that prevent mitigative capacity from being translated into mitigation

  19. On the meaning of sink capture efficiency and sink strength for point defects

    International Nuclear Information System (INIS)

    Mansur, L.K.; Wolfer, W.G.

    1982-01-01

    The concepts of sink capture efficiency and sink strength for point defects are central to the theory of point defect reactions in materials undergoing irradiation. Two fundamentally different definitions of the capture efficiency are in current use. The essential difference can be stated simply. The conventional meaning denotes a measure of the loss rate of point defects to sinks per unit mean point defect concentration. A second definition of capture efficiency, introduced recently, gives a measure of the point defect loss rate without normalization to the mean point defect concentration. The relationship between the two capture efficiencies is here derived. By stating the relationship we hope to eliminate confusion caused by comparisons of the two types of capture efficiencies at face value and to provide a method of obtaining one from the other. Internally consistent usage of either of the capture efficiencies leads to the same results for the calculation of measuable quantities, as is required physically. (orig.)

  20. STEAM GENERATOR TUBE INTEGRITY ANALYSIS OF A TOTAL LOSS OF ALL HEAT SINKS ACCIDENT FOR WOLSONG NPP UNIT 1

    Directory of Open Access Journals (Sweden)

    HEOK-SOON LIM

    2014-02-01

    Full Text Available A total loss of all heat sinks is considered a severe accident with a low probability of occurrence. Following a total loss of all heat sinks, the degasser/condenser relief valves (DCRV become the sole means available for the depressurization of the primary heat transport system. If a nuclear power plant has a total loss of heat sinks accident, high-temperature steam and differential pressure between the primary heat transport system (PHTS and the steam generator (SG secondary side can cause a SG tube creep rupture. To protect the PHTS during a total loss of all heat sinks accident, a sufficient depressurization capability of the degasser/condenser relief valve and the SG tube integrity is very important. Therefore, an accurate estimation of the discharge through these valves is necessary to assess the impact of the PHTS overprotection and the SG tube integrity of the primary circuit. This paper describes the analysis of DCRV discharge capacity and the SG tube integrity under a total loss of all heat sink using the CATHENA code. It was found that the DCRV's discharge capacity is enough to protect the overpressure in the PHTS, and the SG tube integrity is maintained in a total loss of all heat accident.

  1. Steam Generator Tube Integrity Analysis of A Total Loss of all Heat Sinks Accident for Wolsong NPP Unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Heoksoon; Song, Taeyoung; Chi, Moongoo [Korea Htydro and Nuclear Power Co., Ltd., Daejeon (Korea, Republic of); Kim, Seoungrae [Nuclear Engineering Service and Solution, Daejeon (Korea, Republic of)

    2014-02-15

    A total loss of all heat sinks is considered a severe accident with a low probability of occurrence. Following a total loss of all heat sinks, the degasser/condenser relief valves (DCRV) become the sole means available for the depressurization of the primary heat transport system. If a nuclear power plant has a total loss of heat sinks accident, high-temperature steam and differential pressure between the primary heat transport system (PHTS) and the steam generator (SG) secondary side can cause a SG tube creep rupture. To protect the PHTS during a total loss of all heat sinks accident, a sufficient depressurization capability of the degasser/condenser relief valve and the SG tube integrity is very important. Therefore, an accurate estimation of the discharge through these valves is necessary to assess the impact of the PHTS overprotection and the SG tube integrity of the primary circuit. This paper describes the analysis of DCRV discharge capacity and the SG tube integrity under a total loss of all heat sink using the CATHENA code. It was found that the DCRV's discharge capacity is enough to protect the overpressure in the PHTS, and the SG tube integrity is maintained in a total loss of all heat accident.

  2. Steam Generator Tube Integrity Analysis of A Total Loss of all Heat Sinks Accident for Wolsong NPP Unit 1

    International Nuclear Information System (INIS)

    Lim, Heoksoon; Song, Taeyoung; Chi, Moongoo; Kim, Seoungrae

    2014-01-01

    A total loss of all heat sinks is considered a severe accident with a low probability of occurrence. Following a total loss of all heat sinks, the degasser/condenser relief valves (DCRV) become the sole means available for the depressurization of the primary heat transport system. If a nuclear power plant has a total loss of heat sinks accident, high-temperature steam and differential pressure between the primary heat transport system (PHTS) and the steam generator (SG) secondary side can cause a SG tube creep rupture. To protect the PHTS during a total loss of all heat sinks accident, a sufficient depressurization capability of the degasser/condenser relief valve and the SG tube integrity is very important. Therefore, an accurate estimation of the discharge through these valves is necessary to assess the impact of the PHTS overprotection and the SG tube integrity of the primary circuit. This paper describes the analysis of DCRV discharge capacity and the SG tube integrity under a total loss of all heat sink using the CATHENA code. It was found that the DCRV's discharge capacity is enough to protect the overpressure in the PHTS, and the SG tube integrity is maintained in a total loss of all heat accident

  3. Source-sink relationships in radish plant

    Directory of Open Access Journals (Sweden)

    Z. Starck

    2015-01-01

    Full Text Available The problem of source-sink relationships in di- and tetraploidal radish plants grown in. hydroponic cultures was investigated in two stages of their development: with intensively growing swollen hypocotyl and in the period of actively accumulating nutrients in the storage organ. It was found, that the proportion, between the mass of organs, their RGR and NAR was very similar in di- and tetraploidal populations, probably owing to a similar rate of photosynthesis and pattern of assimilates distribution. The high variability of swollen hypocotyls size is slightly correlated with the size of the whole aerial part and is not correlated with the rate of photosynthesis in leaves. Partial defoliation of radish plants did not affect the rate of photosynthesis of the remaining leaves. Only in the cotyledones the oldest donors of 14C-assimilates, a slight compensation of photosynthesis was reported. It may suggest, that the rate of photosynthesis in radish plants is not under the control of sink activity. The size of the storage organ have determined in some extent its attractive force and influenced the amount of 14C-assimilates exported from their donors. Translocation of photosynthates from the young, still growing leaves was conditioned mainly by their retention power. Therefore, in young radish plants cotyledons were the main donor of 14C-assimilates.

  4. Causes of sinks near Tucson, Arizona, USA

    Science.gov (United States)

    Hoffmann, John P.; Pool, Donald R.; Konieczki, A. D.; Carpenter, Michael C.

    Land subsidence in the form of sinks has occurred on and near farmlands near Tucson, Pima County, Arizona, USA. The sinks occur in alluvial deposits along the flood plain of the Santa Cruz River, and have made farmlands dangerous and unsuitable for farming. More than 1700 sinks are confined to the flood plain of the Santa Cruz River and are grouped along two north-northwestward-trending bands that are approximately parallel to the river and other flood-plain drainages. An estimated 17,000m3 of sediment have been removed in the formation of the sinks. Thirteen trenches were dug to depths of 4-6m to characterize near-surface sediments in sink and nonsink areas. Sediments below about 2m included a large percentage of dispersive clays in sink areas. Sediments in nonsink areas contain a large component of medium- to coarse-grained, moderately to well sorted sand that probably fills a paleochannel. Electromagnetic surveys support the association of silts and clays in sink areas that are highly electrically conductive relative to sand in nonsink areas. Sinks probably are caused by the near-surface process of subsurface erosion of dispersive sediments along pre-existing cracks in predominantly silt and clay sediments. The pre-existing cracks probably result from desiccation or tension that developed during periods of water-table decline and channel incision during the past 100 years or in earlier periods. Résumé Des effondrements en forme d'entonnoir se sont produits sur et près d'exploitations agricoles de Pima (Arizona). Ces entonnoirs apparaissent dans les alluvions le long de la plaine d'inondation de la rivière Santa Cruz ; ils ont rendu ces terrains dangereux et inexploitables pour l'agriculture. Plus de 1700 entonnoirs existent dans la plaine d'inondation de la rivière Santa Cruz et sont groupés en deux bandes orientées nord-nord-ouest, approximativement parallèles à la rivière et aux autres chenaux de la plaine d'inondation. Un volume de sédiments estim

  5. Laminar nanofluid flow in microheat-sinks

    Energy Technology Data Exchange (ETDEWEB)

    Koo, J.; Kleinstreuer, C. [North Carolina State University, Raleigh, NC (United States). Dept. of Mechanical and Aerospace Engineering

    2005-06-01

    In response to the ever increasing demand for smaller and lighter high-performance cooling devices, steady laminar liquid nanofluid flow in microchannels is simulated and analyzed. Considering two types of nanofluids, i.e., copper-oxide nanospheres at low volume concentrations in water or ethylene glycol, the conjugated heat transfer problem for microheat-sinks has been numerically solved. Employing new models for the effective thermal conductivity and dynamic viscosity of nanofluids, the impact of nanoparticle concentrations in these two mixture flows on the microchannel pressure gradients, temperature profiles and Nusselt numbers are computed, in light of aspect ratio, viscous dissipation, and enhanced temperature effects. Based on these results, the following can be recommended for microheat-sink performance improvements: Use of large high-Prandtl number carrier fluids, nanoparticles at high volume concentrations of about 4% with elevated thermal conductivities and dielectric constants very close to that of the carrier fluid, microchannels with high aspect ratios, and treated channel walls to avoid nanoparticle accumulation. (Author)

  6. The ocean carbon sink - impacts, vulnerabilities and challenges

    Science.gov (United States)

    Heinze, C.; Meyer, S.; Goris, N.; Anderson, L.; Steinfeldt, R.; Chang, N.; Le Quéré, C.; Bakker, D. C. E.

    2015-06-01

    Carbon dioxide (CO2) is, next to water vapour, considered to be the most important natural greenhouse gas on Earth. Rapidly rising atmospheric CO2 concentrations caused by human actions such as fossil fuel burning, land-use change or cement production over the past 250 years have given cause for concern that changes in Earth's climate system may progress at a much faster pace and larger extent than during the past 20 000 years. Investigating global carbon cycle pathways and finding suitable adaptation and mitigation strategies has, therefore, become of major concern in many research fields. The oceans have a key role in regulating atmospheric CO2 concentrations and currently take up about 25% of annual anthropogenic carbon emissions to the atmosphere. Questions that yet need to be answered are what the carbon uptake kinetics of the oceans will be in the future and how the increase in oceanic carbon inventory will affect its ecosystems and their services. This requires comprehensive investigations, including high-quality ocean carbon measurements on different spatial and temporal scales, the management of data in sophisticated databases, the application of Earth system models to provide future projections for given emission scenarios as well as a global synthesis and outreach to policy makers. In this paper, the current understanding of the ocean as an important carbon sink is reviewed with respect to these topics. Emphasis is placed on the complex interplay of different physical, chemical and biological processes that yield both positive and negative air-sea flux values for natural and anthropogenic CO2 as well as on increased CO2 (uptake) as the regulating force of the radiative warming of the atmosphere and the gradual acidification of the oceans. Major future ocean carbon challenges in the fields of ocean observations, modelling and process research as well as the relevance of other biogeochemical cycles and greenhouse gases are discussed.

  7. New analytical approaches for faster or greener phytochemical analyses

    NARCIS (Netherlands)

    Shen, Y.

    2015-01-01

    Summary

    Chapter 1 provides a short introduction into the constraints of phytochemical analysis. In order to make them faster, less laborious and greener, there is a clear scope for miniaturized and simplified sample preparation, solvent-free extractions

  8. ZKBoo: Faster Zero-Knowledge for Boolean Circuits

    DEFF Research Database (Denmark)

    Giacomelli, Irene; Madsen, Jesper; Orlandi, Claudio

    2016-01-01

    variants of IKOS, which highlights their pros and cons for practically rele- vant soundness parameters; ◦ A generalization and simplification of their approach, which leads to faster Σ-protocols (that can be made non-interactive using the Fiat-Shamir heuristic) for state- ments of the form “I know x...

  9. Faster and timing-attack resistant AES-GCM

    NARCIS (Netherlands)

    Käsper, E.; Schwabe, P.; Clavier, C.; Gaj, K.

    2009-01-01

    We present a bitsliced implementation of AES encryption in counter mode for 64-bit Intel processors. Running at 7.59 cycles/byte on a Core 2, it is up to 25% faster than previous implementations, while simultaneously offering protection against timing attacks. In particular, it is the only

  10. Increasing the Capital Income Tax Leads to Faster Growth

    NARCIS (Netherlands)

    Uhlig, H.F.H.V.S.; Yanagawa, N.

    1994-01-01

    This paper shows that under rather mild conditions, higher capital income taxes lead to faster growth in an overlapping generations economy with endogenous growth. Government expenditures are financed with labor income taxes as well as capital income taxes. Since capital income accrues to the old,

  11. Effects of biofouling on the sinking behavior of microplastics

    Science.gov (United States)

    Kaiser, David; Kowalski, Nicole; Waniek, Joanna J.

    2017-12-01

    Although plastic is ubiquitous in marine systems, our current knowledge of transport mechanisms is limited. Much of the plastic entering the ocean sinks; this is intuitively obvious for polymers such as polystyrene (PS), which have a greater density than seawater, but lower density polymers like polyethylene (PE) also occur in sediments. Biofouling can cause large plastic objects to sink, but this phenomenon has not been described for microplastics microplastic particles in estuarine and coastal waters to determine how biofouling changes their sinking behavior. Sinking velocities of PS increased by 16% in estuarine water (salinity 9.8) and 81% in marine water (salinity 36) after 6 weeks of incubation. Thereafter sinking velocities decreased due to lower water temperatures and reduced light availability. Biofouling did not cause PE to sink during the 14 weeks of incubation in estuarine water, but PE started to sink after six weeks in coastal water when sufficiently colonized by blue mussels Mytilus edulis, and its velocity continued to increase until the end of the incubation period. Sinking velocities of these PE pellets were similar irrespective of salinity (10 vs. 36). Biofilm composition differed between estuarine and coastal stations, presumably accounting for differences in sinking behavior. We demonstrate that biofouling enhances microplastic deposition to marine sediments, and our findings should improve microplastic transport models.

  12. The potential contribution of sinks to meeting Kyoto Protocol commitments

    DEFF Research Database (Denmark)

    Missfeldt, F.; Haites, E.

    2001-01-01

    scenario, at least some of the sinks have costs lower than the market price, so the larger the eligible sinks, the lower the compliance costs for industrialised countries. Greater use of sinks also reduces the net income received by the economies in transition and developing countries. Increased use......, a range of average costs is used with the lowest cost allowing maximum use of sinks. The effects considered are the impacts on compliance costs for OECD countries, economies in transition, and developing countries and the mix of actions used by industrialised countries to achieve compliance. In every...

  13. Investigation of Heat Sink Efficiency for Electronic Component Cooling Applications

    DEFF Research Database (Denmark)

    Staliulionis, Ž.; Zhang, Zhe; Pittini, Riccardo

    2014-01-01

    Research and optimisation of cooling of electronic components using heat sinks becomes increasingly important in modern industry. Numerical methods with experimental real-world verification are the main tools to evaluate efficiency of heat sinks or heat sink systems. Here the investigation...... of relatively simple heat sink application is performed using modeling based on finite element method, and also the potential of such analysis was demonstrated by real-world measurements and comparing obtained results. Thermal modeling was accomplished using finite element analysis software COMSOL and thermo...

  14. Sources and sinks of stratospheric water vapor

    International Nuclear Information System (INIS)

    Ellsaesser, H.W.

    1979-11-01

    A tutorial review of the understanding of stratospheric H 2 O and the processes controlling it is presented. Paradoxes posed by currently available observational data are cited and suggestions made as to how they might be resolved. Such resolution appears to require: that the bulk of our current data provides unrepresentative and misleading vertical and latitudinal H 2 O gradients immediately downstream from the tropical tropopause; and, that there exists within the troposphere a mechanism different from or in addition to the tropical tropopause cold trap for drying air to the mixing ratios found in the lower stratosphere. Satisfaction of these requirements will reconcile much heretofore puzzling observational data and will obviate the necessity for a stratospheric sink for H 2 O

  15. Omnivory in birds is a macroevolutionary sink.

    Science.gov (United States)

    Burin, Gustavo; Kissling, W Daniel; Guimarães, Paulo R; Şekercioğlu, Çağan H; Quental, Tiago B

    2016-04-07

    Diet is commonly assumed to affect the evolution of species, but few studies have directly tested its effect at macroevolutionary scales. Here we use Bayesian models of trait-dependent diversification and a comprehensive dietary database of all birds worldwide to assess speciation and extinction dynamics of avian dietary guilds (carnivores, frugivores, granivores, herbivores, insectivores, nectarivores, omnivores and piscivores). Our results suggest that omnivory is associated with higher extinction rates and lower speciation rates than other guilds, and that overall net diversification is negative. Trait-dependent models, dietary similarity and network analyses show that transitions into omnivory occur at higher rates than into any other guild. We suggest that omnivory acts as macroevolutionary sink, where its ephemeral nature is retrieved through transitions from other guilds rather than from omnivore speciation. We propose that these dynamics result from competition within and among dietary guilds, influenced by the deep-time availability and predictability of food resources.

  16. UHS, Ultimate Heat Sink Cooling Pond Analysis

    International Nuclear Information System (INIS)

    Codell, R.; Nuttle, W.K.

    1998-01-01

    1 - Description of program or function: Three programs model performance of an ultimate heat sink cooling pond. National Weather Service data is read and analyzed to predict periods of lowest cooling performance and highest evaporative loss. The data is compared to local site data for significant differences. Then the maximum pond temperature is predicted. Five programs model performance of an ultimate heat sink spray pond. The cooling performance, evaporative water loss, and drift water loss as a function of wind speed are estimated for a spray field. These estimates are used in conjunction with National Weather Service data to predict periods of lowest cooling performance and highest evaporative loss. This data is compared to local site data for significant differences. Then the maximum pond temperature is predicted. 2 - Method of solution: The transfer of heat and water vapor is modeled using an equilibrium temperature procedure for an UHS cooling pond. The UHS spray pond model considers heat, mass, and momentum transfer from a single water drop with the surrounding air, and modification of the surrounding air resulting from the heat, mass, and momentum transfer from many drops in different parts of a spray field. 3 - Restrictions on the complexity of the problem: The program SPRCO uses RANF, a uniform random number generator which is an intrinsic function on the CDC. All programs except COMET use the NAMELIST statement, which is non standard. Otherwise these programs conform to the ANSI Fortran 77 standard. The meteorological data scanning procedure requires tens of years of recorded data to be effective. The models and methods, provided as useful tool for UHS analyses of cooling ponds and spray ponds, are intended as guidelines only. Use of these methods does not automatically assure NRC approval, nor are they required procedures for nuclear-power-plant licensing

  17. Photosynthesis and sink activity of wasp-induced galls in Acacia pycnantha.

    Science.gov (United States)

    Dorchin, Netta; Cramer, Michael D; Hoffmann, John H

    2006-07-01

    Although insect galls are widely known to influence source-sink relationships in plants, the relationship between photosynthesis and gall activity has not been extensively studied. In this study we used 14CO2, photosynthesis, and respiration measurements to examine the capacity of bud galls induced by the wasp Trichilogaster signiventris (Pteromalidae) as carbon sinks in Acacia pycnantha. Galls of this species develop either in vegetative or reproductive buds, depending on the availability of tissues at different times of the year, and effectively eliminate seed production by the plant. Photosynthetic rates in phyllodes subtending clusters of galls were greater than rates in control phyllodes, a result we attributed to photosynthesis compensating for increased carbon demand by the galls. Contrary to previous studies, we found that photosynthesis within galls contributed substantially to the carbon budgets of the galls, particularly in large, mature galls, which exhibited lower specific respiration rates allowing for a net carbon gain in the light. To determine the sink capacity and competitive potential of galls, we measured the proportion of specific radioactivity in galls originating from either vegetative or reproductive buds and found no difference between them. The proportion of the total amount of phyllode-derived 14C accumulated in both clustered and solitary galls was less than that in fruits. Galls and fruits were predominantly reliant on subtending rather than on distant phyllodes for photosynthate. Solitary galls that developed in vegetative buds constituted considerably stronger sinks than galls in clusters on inflorescences where there was competition between galls or fruits for resources from the subtending phyllode. Wasps developing in solitary vegetative galls were correspondingly significantly larger than those from clustered galls. We conclude that, in the absence of inflorescence buds during summer and fall, the ability of the wasps to cause gall

  18. Multiple Object Tracking Using the Shortest Path Faster Association Algorithm

    Directory of Open Access Journals (Sweden)

    Zhenghao Xi

    2014-01-01

    Full Text Available To solve the persistently multiple object tracking in cluttered environments, this paper presents a novel tracking association approach based on the shortest path faster algorithm. First, the multiple object tracking is formulated as an integer programming problem of the flow network. Then we relax the integer programming to a standard linear programming problem. Therefore, the global optimum can be quickly obtained using the shortest path faster algorithm. The proposed method avoids the difficulties of integer programming, and it has a lower worst-case complexity than competing methods but better robustness and tracking accuracy in complex environments. Simulation results show that the proposed algorithm takes less time than other state-of-the-art methods and can operate in real time.

  19. Copepods use chemical trails to find sinking marine snow aggregates

    DEFF Research Database (Denmark)

    Lombard, Fabien; Koski, Marja; Kiørboe, Thomas

    2013-01-01

    Copepods are major consumers of sinking marine particles and hence reduce the efficiency of the biological carbon pump. Their high abundance on marine snow suggests that they can detect sinking particles remotely. By means of laboratory observations, we show that the copepod Temora longicornis ca...

  20. Characterizing source-sink dynamics with genetic parentage assignments

    NARCIS (Netherlands)

    Peery, M. Zachariah; Beissinger, Steven R.; House, Roger F.; Berube, Martine; Hall, Laurie A.; Sellas, Anna; Palsboll, Per J.

    2008-01-01

    Source-sink dynamics have been suggested to characterize the population structure of many species, but the prevalence of source-sink systems in nature is uncertain because of inherent challenges in estimating migration rates among populations. Migration rates are often difficult to estimate directly

  1. Faster-X evolution: Theory and evidence from Drosophila.

    Science.gov (United States)

    Charlesworth, Brian; Campos, José L; Jackson, Benjamin C

    2018-02-12

    A faster rate of adaptive evolution of X-linked genes compared with autosomal genes can be caused by the fixation of recessive or partially recessive advantageous mutations, due to the full expression of X-linked mutations in hemizygous males. Other processes, including recombination rate and mutation rate differences between X chromosomes and autosomes, may also cause faster evolution of X-linked genes. We review population genetics theory concerning the expected relative values of variability and rates of evolution of X-linked and autosomal DNA sequences. The theoretical predictions are compared with data from population genomic studies of several species of Drosophila. We conclude that there is evidence for adaptive faster-X evolution of several classes of functionally significant nucleotides. We also find evidence for potential differences in mutation rates between X-linked and autosomal genes, due to differences in mutational bias towards GC to AT mutations. Many aspects of the data are consistent with the male hemizygosity model, although not all possible confounding factors can be excluded. © 2018 John Wiley & Sons Ltd.

  2. The faster-X effect: integrating theory and data.

    Science.gov (United States)

    Meisel, Richard P; Connallon, Tim

    2013-09-01

    Population genetics theory predicts that X (or Z) chromosomes could play disproportionate roles in speciation and evolutionary divergence, and recent genome-wide analyses have identified situations in which X or Z-linked divergence exceeds that on the autosomes (the so-called 'faster-X effect'). Here, we summarize the current state of both the theory and data surrounding the study of faster-X evolution. Our survey indicates that the faster-X effect is pervasive across a taxonomically diverse array of evolutionary lineages. These patterns could be informative of the dominance or recessivity of beneficial mutations and the nature of genetic variation acted upon by natural selection. We also identify several aspects of disagreement between these empirical results and the population genetic models used to interpret them. However, there are clearly delineated aspects of the problem for which additional modeling and collection of genomic data will address these discrepancies and provide novel insights into the population genetics of adaptation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Adrenaline in cardiac arrest: Prefilled syringes are faster.

    Science.gov (United States)

    Helm, Claire; Gillett, Mark

    2015-08-01

    Standard ampoules and prefilled syringes of adrenaline are widely available in Australasian EDs for use in cardiac arrest. We hypothesise that prefilled syringes can be administered more rapidly and accurately when compared with the two available standard ampoules. This is a triple arm superiority study comparing the time to i.v. administration and accuracy of dosing of three currently available preparations of adrenaline. In their standard packaging, prefilled syringes were on average more than 12 s faster to administer than the 1 mL 1:1000 ampoules and more than 16 s faster than the 10 mL 1:10,000 ampoules (P adrenaline utilising a Minijet (CSL Limited, Parkville, Victoria, Australia) is faster than using adrenaline in glass ampoules presented in their plastic packaging. Removing the plastic packaging from the 1 mL (1 mg) ampoule might result in more rapid administration similar to the Minijet. Resuscitation personnel requiring rapid access to adrenaline should consider storing it as either Minijets or ampoules devoid of packaging. These results might be extrapolatable to other clinical scenarios, including pre-hospital and anaesthesia, where other drugs are required for rapid use. © 2015 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.

  4. Fire ants perpetually rebuild sinking towers

    Science.gov (United States)

    Phonekeo, Sulisay; Mlot, Nathan; Monaenkova, Daria; Hu, David L.; Tovey, Craig

    2017-07-01

    In the aftermath of a flood, fire ants, Solenopsis invicta, cluster into temporary encampments. The encampments can contain hundreds of thousands of ants and reach over 30 ants high. How do ants build such tall structures without being crushed? In this combined experimental and theoretical study, we investigate the shape and rate of construction of ant towers around a central support. The towers are bell shaped, consistent with towers of constant strength such as the Eiffel tower, where each element bears an equal load. However, unlike the Eiffel tower, the ant tower is built through a process of trial and error, whereby failed portions avalanche until the final shape emerges. High-speed and novel X-ray videography reveal that the tower constantly sinks and is rebuilt, reminiscent of large multicellular systems such as human skin. We combine the behavioural rules that produce rafts on water with measurements of adhesion and attachment strength to model the rate of growth of the tower. The model correctly predicts that the growth rate decreases as the support diameter increases. This work may inspire the design of synthetic swarms capable of building in vertical layers.

  5. Nitrogen and carbon source-sink relationships in trees at the Himalayan treelines compared with lower elevations.

    Science.gov (United States)

    Li, Mai-He; Xiao, Wen-Fa; Shi, Peili; Wang, San-Gen; Zhong, Yong-De; Liu, Xing-Liang; Wang, Xiao-Dan; Cai, Xiao-Hu; Shi, Zuo-Min

    2008-10-01

    No single hypothesis or theory has been widely accepted for explaining the functional mechanism of global alpine/arctic treeline formation. The present study tested whether the alpine treeline is determined by (1) the needle nitrogen content associated with photosynthesis (carbon gain); (2) a sufficient source-sink ratio of carbon; or (3) a sufficient C-N ratio. Nitrogen does not limit the growth and development of trees studied at the Himalayan treelines. Levels of non-structural carbohydrates (NSC) in trees were species-specific and site-dependent; therefore, the treeline cases studied did not show consistent evidence of source/carbon limitation or sink/growth limitation in treeline trees. However, results of the combined three treelines showed that the treeline trees may suffer from a winter carbon shortage. The source capacity and the sink capacity of a tree influence its tissue NSC concentrations and the carbon balance; therefore, we suggest that the persistence and development of treeline trees in a harsh alpine environment may require a minimum level of the total NSC concentration, a sufficiently high sugar:starch ratio, and a balanced carbon source-sink relationship.

  6. Maximizing Lifetime of Wireless Sensor Networks with Mobile Sink Nodes

    Directory of Open Access Journals (Sweden)

    Yourong Chen

    2014-01-01

    Full Text Available In order to maximize network lifetime and balance energy consumption when sink nodes can move, maximizing lifetime of wireless sensor networks with mobile sink nodes (MLMS is researched. The movement path selection method of sink nodes is proposed. Modified subtractive clustering method, k-means method, and nearest neighbor interpolation method are used to obtain the movement paths. The lifetime optimization model is established under flow constraint, energy consumption constraint, link transmission constraint, and other constraints. The model is solved from the perspective of static and mobile data gathering of sink nodes. Subgradient method is used to solve the lifetime optimization model when one sink node stays at one anchor location. Geometric method is used to evaluate the amount of gathering data when sink nodes are moving. Finally, all sensor nodes transmit data according to the optimal data transmission scheme. Sink nodes gather the data along the shortest movement paths. Simulation results show that MLMS can prolong network lifetime, balance node energy consumption, and reduce data gathering latency under appropriate parameters. Under certain conditions, it outperforms Ratio_w, TPGF, RCC, and GRND.

  7. An Adaptive Clustering Approach Based on Minimum Travel Route Planning for Wireless Sensor Networks with a Mobile Sink.

    Science.gov (United States)

    Tang, Jiqiang; Yang, Wu; Zhu, Lingyun; Wang, Dong; Feng, Xin

    2017-04-26

    In recent years, Wireless Sensor Networks with a Mobile Sink (WSN-MS) have been an active research topic due to the widespread use of mobile devices. However, how to get the balance between data delivery latency and energy consumption becomes a key issue of WSN-MS. In this paper, we study the clustering approach by jointly considering the Route planning for mobile sink and Clustering Problem (RCP) for static sensor nodes. We solve the RCP problem by using the minimum travel route clustering approach, which applies the minimum travel route of the mobile sink to guide the clustering process. We formulate the RCP problem as an Integer Non-Linear Programming (INLP) problem to shorten the travel route of the mobile sink under three constraints: the communication hops constraint, the travel route constraint and the loop avoidance constraint. We then propose an Imprecise Induction Algorithm (IIA) based on the property that the solution with a small hop count is more feasible than that with a large hop count. The IIA algorithm includes three processes: initializing travel route planning with a Traveling Salesman Problem (TSP) algorithm, transforming the cluster head to a cluster member and transforming the cluster member to a cluster head. Extensive experimental results show that the IIA algorithm could automatically adjust cluster heads according to the maximum hops parameter and plan a shorter travel route for the mobile sink. Compared with the Shortest Path Tree-based Data-Gathering Algorithm (SPT-DGA), the IIA algorithm has the characteristics of shorter route length, smaller cluster head count and faster convergence rate.

  8. Even Faster Web Sites Performance Best Practices for Web Developers

    CERN Document Server

    Souders, Steve

    2009-01-01

    Performance is critical to the success of any web site, and yet today's web applications push browsers to their limits with increasing amounts of rich content and heavy use of Ajax. In this book, Steve Souders, web performance evangelist at Google and former Chief Performance Yahoo!, provides valuable techniques to help you optimize your site's performance. Souders' previous book, the bestselling High Performance Web Sites, shocked the web development world by revealing that 80% of the time it takes for a web page to load is on the client side. In Even Faster Web Sites, Souders and eight exp

  9. Faster magnet sorting with a threshold acceptance algorithm

    International Nuclear Information System (INIS)

    Lidia, S.; Carr, R.

    1995-01-01

    We introduce here a new technique for sorting magnets to minimize the field errors in permanent magnet insertion devices. Simulated annealing has been used in this role, but we find the technique of threshold acceptance produces results of equal quality in less computer time. Threshold accepting would be of special value in designing very long insertion devices, such as long free electron lasers (FELs). Our application of threshold acceptance to magnet sorting showed that it converged to equivalently low values of the cost function, but that it converged significantly faster. We present typical cases showing time to convergence for various error tolerances, magnet numbers, and temperature schedules

  10. Robustness of a bisimulation-type faster-than preorder

    Directory of Open Access Journals (Sweden)

    Katrin Iltgen

    2009-11-01

    Full Text Available TACS is an extension of CCS where upper time bounds for delays can be specified. Luettgen and Vogler defined three variants of bismulation-type faster-than relations and showed that they all three lead to the same preorder, demonstrating the robustness of their approach. In the present paper, the operational semantics of TACS is extended; it is shown that two of the variants still give the same preorder as before, underlining robustness. An explanation is given why this result fails for the third variant. It is also shown that another variant, which mixes old and new operational semantics, can lead to smaller relations that prove the same preorder.

  11. CSRtrack Faster Calculation of 3-D CSR Effects

    CERN Document Server

    Dohlus, Martin

    2004-01-01

    CSRtrack is a new code for the simulation of Coherent Synchrotron radiation effects on the beam dynamics of linear accelerators. It incorporates the physics of our previous code, TraFiC4, and adds new algorithms for the calculation of the CSR fields. A one-dimensional projected method allows quick estimates and a greens function method allows 3D calculations about ten times faster than with the `direct' method. The tracking code is written in standard FORTRAN77 and has its own parser for comfortable input of calculation parameters and geometry. Phase space input and the analysis of the traced particle distribution is done with MATLAB interface programs.

  12. Faster magnet sorting with a threshold acceptance algorithm

    International Nuclear Information System (INIS)

    Lidia, S.

    1994-08-01

    The authors introduce here a new technique for sorting magnets to minimize the field errors in permanent magnet insertion devices. Simulated annealing has been used in this role, but they find the technique of threshold acceptance produces results of equal quality in less computer time. Threshold accepting would be of special value in designing very long insertion devices, such as long FEL's. Their application of threshold acceptance to magnet sorting showed that it converged to equivalently low values of the cost function, but that it converged significantly faster. They present typical cases showing time to convergence for various error tolerances, magnet numbers, and temperature schedules

  13. 20 Recipes for Programming MVC 3 Faster, Smarter Web Development

    CERN Document Server

    Munro, Jamie

    2011-01-01

    There's no need to reinvent the wheel every time you run into a problem with ASP.NET's Model-View-Controller (MVC) framework. This concise cookbook provides recipes to help you solve tasks many web developers encounter every day. Each recipe includes the C# code you need, along with a complete working example of how to implement the solution. Learn practical techniques for applying user authentication, providing faster page reloads, validating user data, filtering search results, and many other issues related to MVC3 development. These recipes help you: Restrict access to views with password

  14. How to Elect a Leader Faster than a Tournament

    OpenAIRE

    Alistarh, Dan; Gelashvili, Rati; Vladu, Adrian

    2014-01-01

    The problem of electing a leader from among $n$ contenders is one of the fundamental questions in distributed computing. In its simplest formulation, the task is as follows: given $n$ processors, all participants must eventually return a win or lose indication, such that a single contender may win. Despite a considerable amount of work on leader election, the following question is still open: can we elect a leader in an asynchronous fault-prone system faster than just running a $\\Theta(\\log n...

  15. Faster than light motion does not imply time travel

    International Nuclear Information System (INIS)

    Andréka, Hajnal; Madarász, Judit X; Németi, István; Székely, Gergely; Stannett, Mike

    2014-01-01

    Seeing the many examples in the literature of causality violations based on faster than light (FTL) signals one naturally thinks that FTL motion leads inevitably to the possibility of time travel. We show that this logical inference is invalid by demonstrating a model, based on (3+1)-dimensional Minkowski spacetime, in which FTL motion is permitted (in every direction without any limitation on speed) yet which does not admit time travel. Moreover, the Principle of Relativity is true in this model in the sense that all observers are equivalent. In short, FTL motion does not imply time travel after all. (paper)

  16. Temperature effects on sinking velocity of different Emiliania huxleyi strains.

    Science.gov (United States)

    Rosas-Navarro, Anaid; Langer, Gerald; Ziveri, Patrizia

    2018-01-01

    The sinking properties of three strains of Emiliania huxleyi in response to temperature changes were examined. We used a recently proposed approach to calculate sinking velocities from coccosphere architecture, which has the advantage to be applicable not only to culture samples, but also to field samples including fossil material. Our data show that temperature in the sub-optimal range impacts sinking velocity of E. huxleyi. This response is widespread among strains isolated in different locations and moreover comparatively predictable, as indicated by the similar slopes of the linear regressions. Sinking velocity was positively correlated to temperature as well as individual cell PIC/POC over the sub-optimum to optimum temperature range in all strains. In the context of climate change our data point to an important influence of global warming on sinking velocities. It has recently been shown that seawater acidification has no effect on sinking velocity of a Mediterranean E. huxleyi strain, while nutrient limitation seems to have a small negative effect on sinking velocity. Given that warming, acidification, and lowered nutrient availability will occur simultaneously under climate change scenarios, the question is what the net effect of different influential factors will be. For example, will the effects of warming and nutrient limitation cancel? This question cannot be answered conclusively but analyses of field samples in addition to laboratory culture studies will improve predictions because in field samples multi-factor influences and even evolutionary changes are not excluded. As mentioned above, the approach of determining sinking rate followed here is applicable to field samples. Future studies could use it to analyse not only seasonal and geographic patterns but also changes in sinking velocity over geological time scales.

  17. Global modelling of the total OH reactivity: investigations on the “missing” OH sink and its atmospheric implications

    Directory of Open Access Journals (Sweden)

    V. Ferracci

    2018-05-01

    Full Text Available The hydroxyl radical (OH plays a crucial role in the chemistry of the atmosphere as it initiates the removal of most trace gases. A number of field campaigns have observed the presence of a missing OH sink in a variety of regions across the planet. A comparison of direct measurements of the OH loss frequency, also known as total OH reactivity (kOH, with the sum of individual known OH sinks (obtained via the simultaneous detection of species such as volatile organic compounds and nitrogen oxides indicates that, in some cases, up to 80 % of kOH is unaccounted for. In this work, the UM-UKCA chemistry-climate model was used to investigate the wider implications of the missing reactivity on the oxidising capacity of the atmosphere. Simulations of the present-day atmosphere were performed and the model was evaluated against an array of field measurements to verify that the known OH sinks were reproduced well, with a resulting good agreement found for most species. Following this, an additional sink was introduced to simulate the missing OH reactivity as an emission of a hypothetical molecule, X, which undergoes rapid reaction with OH. The magnitude and spatial distribution of this sink were underpinned by observations of the missing reactivity. Model runs showed that the missing reactivity accounted for on average 6 % of the total OH loss flux at the surface and up to 50 % in regions where emissions of the additional sink were high. The lifetime of the hydroxyl radical was reduced by 3 % in the boundary layer, whilst tropospheric methane lifetime increased by 2 % when the additional OH sink was included. As no OH recycling was introduced following the initial oxidation of X, these results can be interpreted as an upper limit of the effects of the missing reactivity on the oxidising capacity of the troposphere. The UM-UKCA simulations also allowed us to establish the atmospheric implications of the newly characterised reactions of peroxy

  18. Faster quantum chemistry simulation on fault-tolerant quantum computers

    International Nuclear Information System (INIS)

    Cody Jones, N; McMahon, Peter L; Yamamoto, Yoshihisa; Whitfield, James D; Yung, Man-Hong; Aspuru-Guzik, Alán; Van Meter, Rodney

    2012-01-01

    Quantum computers can in principle simulate quantum physics exponentially faster than their classical counterparts, but some technical hurdles remain. We propose methods which substantially improve the performance of a particular form of simulation, ab initio quantum chemistry, on fault-tolerant quantum computers; these methods generalize readily to other quantum simulation problems. Quantum teleportation plays a key role in these improvements and is used extensively as a computing resource. To improve execution time, we examine techniques for constructing arbitrary gates which perform substantially faster than circuits based on the conventional Solovay–Kitaev algorithm (Dawson and Nielsen 2006 Quantum Inform. Comput. 6 81). For a given approximation error ϵ, arbitrary single-qubit gates can be produced fault-tolerantly and using a restricted set of gates in time which is O(log ϵ) or O(log log ϵ); with sufficient parallel preparation of ancillas, constant average depth is possible using a method we call programmable ancilla rotations. Moreover, we construct and analyze efficient implementations of first- and second-quantized simulation algorithms using the fault-tolerant arbitrary gates and other techniques, such as implementing various subroutines in constant time. A specific example we analyze is the ground-state energy calculation for lithium hydride. (paper)

  19. Elastic coupling of limb joints enables faster bipedal walking

    Science.gov (United States)

    Dean, J.C.; Kuo, A.D.

    2008-01-01

    The passive dynamics of bipedal limbs alone are sufficient to produce a walking motion, without need for control. Humans augment these dynamics with muscles, actively coordinated to produce stable and economical walking. Present robots using passive dynamics walk much slower, perhaps because they lack elastic muscles that couple the joints. Elastic properties are well known to enhance running gaits, but their effect on walking has yet to be explored. Here we use a computational model of dynamic walking to show that elastic joint coupling can help to coordinate faster walking. In walking powered by trailing leg push-off, the model's speed is normally limited by a swing leg that moves too slowly to avoid stumbling. A uni-articular spring about the knee allows faster but uneconomical walking. A combination of uni-articular hip and knee springs can speed the legs for improved speed and economy, but not without the swing foot scuffing the ground. Bi-articular springs coupling the hips and knees can yield high economy and good ground clearance similar to humans. An important parameter is the knee-to-hip moment arm that greatly affects the existence and stability of gaits, and when selected appropriately can allow for a wide range of speeds. Elastic joint coupling may contribute to the economy and stability of human gait. PMID:18957360

  20. Station Capacity

    DEFF Research Database (Denmark)

    Landex, Alex

    2011-01-01

    the probability of conflicts and the minimum headway times into account. The last method analyzes how optimal platform tracks are used by examining the arrival and departure pattern of the trains. The developed methods can either be used separately to analyze specific characteristics of the capacity of a station......Stations are often limiting the capacity of railway networks. This is due to extra need of tracks when trains stand still, trains turning around, and conflicting train routes. Although stations are often the capacity bottlenecks, most capacity analysis methods focus on open line capacity. Therefore...... for platform tracks and the probability that arriving trains will not get a platform track immediately at arrival. The third method is a scalable method that analyzes the conflicts in the switch zone(s). In its simplest stage, the method just analyzes the track layout while the more advanced stages also take...

  1. Genetic Algorithm Design of a 3D Printed Heat Sink

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Tong [ORNL; Ozpineci, Burak [ORNL; Ayers, Curtis William [ORNL

    2016-01-01

    In this paper, a genetic algorithm- (GA-) based approach is discussed for designing heat sinks based on total heat generation and dissipation for a pre-specified size andshape. This approach combines random iteration processesand genetic algorithms with finite element analysis (FEA) to design the optimized heat sink. With an approach that prefers survival of the fittest , a more powerful heat sink can bedesigned which can cool power electronics more efficiently. Some of the resulting designs can only be 3D printed due totheir complexity. In addition to describing the methodology, this paper also includes comparisons of different cases to evaluate the performance of the newly designed heat sinkcompared to commercially available heat sinks.

  2. Sources and sinks of carbon dioxide in the Arctic regions

    Energy Technology Data Exchange (ETDEWEB)

    Gosink, T. A.; Kelley, J. J.

    1982-01-01

    The data base required to adequately ascertain seasonal source and sink strengths in the arctic regions is difficult to obtain. However, there are now a reasonable quantity of data for this polar region to estimate sources and sinks within the Arctic which may contribute significantly to the annual tropospheric CO/sub 2/ concentration fluctuation. The sea-ice-air and the sea-air interfaces account for most of the contribution to the sources and sinks for carbon dioxide. Although the arctic and subarctic region is small in extent, it certainly is not impervious and ice sealed. Our estimate, based on historical data and current research, indicates that the Arctic, which is about 4% of the earth's surface, is an annual net sink for approx. 10/sup 15/ g CO/sub 2/ accounting for an equivalent of approx. 3% of the annual anthropogenic contribution of CO/sub 2/ to the troposphere.

  3. Efficient Information Dissemination in Wireless Sensor Networks using Mobile Sinks

    National Research Council Canada - National Science Library

    Vincze, Zoltan; Vidacs, Attila; Vida, Rolland

    2006-01-01

    ...; therefore, relaying information between sensors and a sink node, possibly over multiple wireless hops, in an energy-efficient manner is a challenging task that preoccupies the research community for some time now...

  4. Heat sink management during CANDU low level operation

    International Nuclear Information System (INIS)

    Wang Liansheng

    2008-01-01

    This paper introduces the practice of low-level operation with opening on the main heat transport system during an outage for a Candu-6 nuclear power plant, analyses the risks of losing heat sink during this condition, and points out the safety measures and management requirement for controlling such risks. This paper can be used as a reference for improving and optimizing the heat sink management for the coming outages. (author)

  5. Sinking and fit of abutment of locking taper implant system

    Science.gov (United States)

    Moon, Seung-Jin; Kim, Hee-Jung; Son, Mee-Kyoung

    2009-01-01

    STATEMENT OF PROBLEM Unlike screw-retention type, fixture-abutment retention in Locking taper connection depends on frictional force so it has possibility of abutment to sink. PURPOSE In this study, Bicon® Implant System, one of the conical internal connection implant system, was used with applying loading force to the abutments connected to the fixture. Then the amount of sinking was measured. MATERIAL AND METHODS 10 Bicon® implant fixtures were used. First, the abutment was connected to the fixture with finger force. Then it was tapped with a mallet for 3 times and loads of 20 kg corresponding to masticatory force using loading application instrument were applied successively. The abutment state, slightly connected to the fixture without pressure was considered as a reference length, and every new abutment length was measured after each load's step was added. The amount of abutment sinking (mm) was gained by subtracting the length of abutment-fixture under each loading condition from reference length. RESULTS It was evident, that the amount of abutment sinking in Bicon® Implant System increased as loads were added. When loads of 20 kg were applied more than 5 - 7 times, sinking stopped at 0.45 ± 0.09 mm. CONCLUSION Even though locking taper connection type implant shows good adaption to occlusal force, it has potential for abutment sinking as loads are given. When locking taper connection type implant is used, satisfactory loads are recommended for precise abutment location. PMID:21165262

  6. DOE translation tool: Faster and better than ever

    International Nuclear Information System (INIS)

    El-Chakieh, T.; Vincent, C.

    2006-01-01

    CAE's constant push to advance power plant simulation practices involves continued investment in our technologies. This commitment has yielded many advances in our simulation technologies and tools to provide faster maintenance updates, easier process updates and higher fidelity models for power plant simulators. Through this quest, a comprehensive, self-contained and user-friendly DCS translation tool for plant control system emulation was created. The translation tool converts an ABB Advant AC160 and/or AC450 control system, used in both gas turbine-based, fossil and nuclear power plants, into Linux or Windows-based ROSE[reg] simulation schematics. The translation for a full combined-cycle gas turbine (CCGT) plant that comprises more than 5,300 function plans distributed over 15 nodes is processed in less than five hours on a dual 2.8Ghz Xeon Linux platform in comparison to the 12 hours required by CAE's previous translation tool. The translation process, using the plant configuration files, includes the parsing of the control algorithms, the databases, the graphic and the interconnection between nodes. A Linux or Windows API is then used to automatically populate the ROSE[reg] database. Without such a translation, tool or if ?stimulation? of real control system is not feasible or too costly, simulation of the DCS manually takes months of error prone manual coding. The translation can be performed for all the nodes constituting the configuration files of the whole plant DCS, or in order to provide faster maintenance updates and easier process updates, partial builds are possible at 3 levels: a. single schematic updates, b. multi-schematic updates and c. single node updates based on the user inputs into the Graphical User Interface. improvements including: - Process time reduction of over 60%; - All communication connections between nodes are fully automated; - New partial build for one schematic, a group of schematics or a single node; - Availability on PC

  7. Faster and more accurate transport procedures for HZETRN

    International Nuclear Information System (INIS)

    Slaba, T.C.; Blattnig, S.R.; Badavi, F.F.

    2010-01-01

    The deterministic transport code HZETRN was developed for research scientists and design engineers studying the effects of space radiation on astronauts and instrumentation protected by various shielding materials and structures. In this work, several aspects of code verification are examined. First, a detailed derivation of the light particle (A ≤ 4) and heavy ion (A > 4) numerical marching algorithms used in HZETRN is given. References are given for components of the derivation that already exist in the literature, and discussions are given for details that may have been absent in the past. The present paper provides a complete description of the numerical methods currently used in the code and is identified as a key component of the verification process. Next, a new numerical method for light particle transport is presented, and improvements to the heavy ion transport algorithm are discussed. A summary of round-off error is also given, and the impact of this error on previously predicted exposure quantities is shown. Finally, a coupled convergence study is conducted by refining the discretization parameters (step-size and energy grid-size). From this study, it is shown that past efforts in quantifying the numerical error in HZETRN were hindered by single precision calculations and computational resources. It is determined that almost all of the discretization error in HZETRN is caused by the use of discretization parameters that violate a numerical convergence criterion related to charged target fragments below 50 AMeV. Total discretization errors are given for the old and new algorithms to 100 g/cm 2 in aluminum and water, and the improved accuracy of the new numerical methods is demonstrated. Run time comparisons between the old and new algorithms are given for one, two, and three layer slabs of 100 g/cm 2 of aluminum, polyethylene, and water. The new algorithms are found to be almost 100 times faster for solar particle event simulations and almost 10 times

  8. The sustainability of carbon sinks in forests. Studying the sensitivity of forest carbon sinks in the Netherlands, Europe and the Amazon to climate and management

    International Nuclear Information System (INIS)

    Kruijt, B.; Kramer, K.; Van den Wyngaert, I.; Groen, R.; Elbers, J.A.; Jans, W.W.P.

    2003-01-01

    The aim of this study was to assess the sustainability of carbon sinks in managed or unmanaged forests of Europe and the Amazon. First, the functioning and seasonal variability of the carbon sink strength in forest ecosystems was analysed in relation to climate variability. For this, existing global data sets of ecosystem fluxes measured by eddy correlation were analysed. A simple, comprehensive empirical model was derived to represent these flux variabilities. Also, new soil respiration measurements were initiated in the Netherlands and Amazonia and their usefulness to understand the uptake- and emission components of carbon exchange was analysed. Then, two long-term forest dynamics models were parameterised (FORSPACE and CENTURY) for Dutch Pinus and Fagus forests, to study the development of forest carbon stocks over a century under different management and climate scenarios. Finally, using the empirical model as well as the long-term models, scenario predictions were made. It turns out that uptake rates are expected to decrease in a climate with higher temperatures, but that storage capacity for carbon can be expected to be slightly enhanced, especially if also the management intensity is carefully tuned down

  9. Australia's CO2 geological storage potential and matching of emission sources to potential sinks

    International Nuclear Information System (INIS)

    Bradshaw, J.; Bradshaw, B.E.; Wilson, P.; Spencer, L.; Allinson, G.; Nguyen, V.

    2004-01-01

    Within the GEODISC program of the Australian Petroleum Cooperative Research Centre (APCRC), Geoscience Australia (GA) and the University of New South Wales (UNSW) have completed an analysis of the potential for the geological storage of CO 2 . The geological analysis assessed over 100 potential environmentally sustainable sites for CO 2 injection (ESSCIs) by applying a deterministic risk assessment based on the five factors of: storage capacity, injectivity potential, site details, containment and natural resources. Utilising a risked storage capacity suggests that at a regional scale Australia has a CO 2 storage potential in excess of 1600 years of current annual total net emissions. Whilst this estimate does give an idea of the enormous magnitude of the geological storage potential of CO 2 in Australia, it does not account for various factors that are evident in source to sink matching. If preferences due to source to sink matching are incorporated, and an assumption is made that some economic imperative will apply to encourage geological storage of CO 2 , then a more realistic analysis can be derived. In such a case, Australia may have the potential to store a maximum of 25% of our total annual net emissions, or approximately 100-115 Mt CO 2 per year. (author)

  10. Studies on source sink relationship of composite tea plants using 14C

    International Nuclear Information System (INIS)

    Marimuthu, S.; Raj Kumar, R.; Jayakumar, D.; Cox, Spurgeon

    2000-01-01

    An experiment on sink capacity of grafted tea plants was carried out adopting radiotracer technique under nursery conditions with two different graft combinations besides the un-grafted control plants. Among the control plants, UPASI-3 translocated higher quantum of photosynthates towards the growing shoot followed by UPASI-9 and ATK-I. In order to confirm the sink capacity of axillary shoot of rootstock, shoot arising from rootstock has been removed prior to exposure of root stock mother leaf. This led to a dramatic enhancement in assimilates translocation towards UPASI-3 scions. ATK- I rootstock mother leaves retained higher amount of photoassimilates when UPASI-9 was used as scion. Variation existed in partitioning of dry matter in response to cultivar type used for composite plant product. Axillary shoot of rootstock, ATK-I drained about seven per cent of total dry matter production irrespective of the scions. UPASI-3 scions drew about 40 per cent of total dry matter and it enhanced to 60 per cent on removal of axillary shoot of ATK-I. Results highlight that the removal of axillary shoot of the rootstock should be practiced at nursery level, immediately after initiation of its growth to obtain the balanced shoot : root ratio. (author)

  11. Eddy covariance and biometric measurements show that a savanna ecosystem in Southwest China is a carbon sink

    Science.gov (United States)

    Fei, Xuehai; Jin, Yanqiang; Zhang, Yiping; Sha, Liqing; Liu, Yuntong; Song, Qinghai; Zhou, Wenjun; Liang, Naishen; Yu, Guirui; Zhang, Leiming; Zhou, Ruiwu; Li, Jing; Zhang, Shubin; Li, Peiguang

    2017-02-01

    Savanna ecosystems play a crucial role in the global carbon cycle. However, there is a gap in our understanding of carbon fluxes in the savanna ecosystems of Southeast Asia. In this study, the eddy covariance technique (EC) and the biometric-based method (BM) were used to determine carbon exchange in a savanna ecosystem in Southwest China. The BM-based net ecosystem production (NEP) was 0.96 tC ha-1 yr-1. The EC-based estimates of the average annual gross primary productivity (GPP), ecosystem respiration (Reco), and net ecosystem carbon exchange (NEE) were 6.84, 5.54, and -1.30 tC ha-1 yr-1, respectively, from May 2013 to December 2015, indicating that this savanna ecosystem acted as an appreciable carbon sink. The ecosystem was more efficient during the wet season than the dry season, so that it represented a small carbon sink of 0.16 tC ha-1 yr-1 in the dry season and a considerable carbon sink of 1.14 tC ha-1 yr-1 in the wet season. However, it is noteworthy that the carbon sink capacity may decline in the future under rising temperatures and decreasing rainfall. Consequently, further studies should assess how environmental factors and climate change will influence carbon-water fluxes.

  12. Eddy covariance and biometric measurements show that a savanna ecosystem in Southwest China is a carbon sink

    Science.gov (United States)

    Fei, Xuehai; Jin, Yanqiang; Zhang, Yiping; Sha, Liqing; Liu, Yuntong; Song, Qinghai; Zhou, Wenjun; Liang, Naishen; Yu, Guirui; Zhang, Leiming; Zhou, Ruiwu; Li, Jing; Zhang, Shubin; Li, Peiguang

    2017-01-01

    Savanna ecosystems play a crucial role in the global carbon cycle. However, there is a gap in our understanding of carbon fluxes in the savanna ecosystems of Southeast Asia. In this study, the eddy covariance technique (EC) and the biometric-based method (BM) were used to determine carbon exchange in a savanna ecosystem in Southwest China. The BM-based net ecosystem production (NEP) was 0.96 tC ha−1 yr−1. The EC-based estimates of the average annual gross primary productivity (GPP), ecosystem respiration (Reco), and net ecosystem carbon exchange (NEE) were 6.84, 5.54, and −1.30 tC ha−1 yr−1, respectively, from May 2013 to December 2015, indicating that this savanna ecosystem acted as an appreciable carbon sink. The ecosystem was more efficient during the wet season than the dry season, so that it represented a small carbon sink of 0.16 tC ha−1 yr−1 in the dry season and a considerable carbon sink of 1.14 tC ha−1 yr−1 in the wet season. However, it is noteworthy that the carbon sink capacity may decline in the future under rising temperatures and decreasing rainfall. Consequently, further studies should assess how environmental factors and climate change will influence carbon-water fluxes. PMID:28145459

  13. A Lifetime Optimization Algorithm Limited by Data Transmission Delay and Hops for Mobile Sink-Based Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yourong Chen

    2017-01-01

    Full Text Available To improve the lifetime of mobile sink-based wireless sensor networks and considering that data transmission delay and hops are limited in actual system, a lifetime optimization algorithm limited by data transmission delay and hops (LOA_DH for mobile sink-based wireless sensor networks is proposed. In LOA_DH, some constraints are analyzed, and an optimization model is proposed. Maximum capacity path routing algorithm is used to calculate the energy consumption of communication. Improved genetic algorithm which modifies individuals to meet all constraints is used to solve the optimization model. The optimal solution of sink node’s sojourn grid centers and sojourn times which maximizes network lifetime is obtained. Simulation results show that, in three node distribution scenes, LOA_DH can find the movement solution of sink node which covers all sensor nodes. Compared with MCP_RAND, MCP_GMRE, and EASR, the solution improves network lifetime and reduces average amount of node discarded data and average energy consumption of nodes.

  14. Innovations for competitiveness: European views on "better-faster-cheaper"

    Science.gov (United States)

    Atzei, A.; Groepper, P.; Novara, M.; Pseiner, K.

    1999-09-01

    The paper elaborates on " lessons learned" from two recent ESA workshops, one focussing on the role of Innovation in the competitiveness of the space sector and the second on technology and engineering aspects conducive to better, faster and cheaper space programmes. The paper focuses primarily on four major aspects, namely: a) the adaptations of industrial and public organisations to the global market needs; b) the understanding of the bottleneck factors limiting competitiveness; c) the trends toward new system architectures and new engineering and production methods; d) the understanding of the role of new technology in the future applications. Under the pressure of market forces and the influence of many global and regional players, applications of space systems and technology are becoming more and more competitive. It is well recognised that without major effort for innovation in industrial practices, organisations, R&D, marketing and financial approaches the European space sector will stagnate and loose its competence as well as its competitiveness. It is also recognised that a programme run according to the "better, faster, cheaper" philosophy relies on much closer integration of system design, development and verification, and draws heavily on a robust and comprehensive programme of technology development, which must run in parallel and off-line with respect to flight programmes. A company's innovation capabilities will determine its future competitive advantage (in time, cost, performance or value) and overall growth potential. Innovation must be a process that can be counted on to provide repetitive, sustainable, long-term performance improvements. As such, it needs not depend on great breakthroughs in technology and concepts (which are accidental and rare). Rather, it could be based on bold evolution through the establishment of know-how, application of best practices, process effectiveness and high standards, performance measurement, and attention to

  15. Carrying Capacity

    DEFF Research Database (Denmark)

    Schroll, Henning; Andersen, Jan; Kjærgård, Bente

    2012-01-01

    A spatial planning act was introduced inIndonesia 1992 and renewed in 2008. It emphasised the planning role of decentralised authorities. The spatial planning act covers both spatial and environmental issues. It defines the concept of carrying capacity and includes definitions of supportive....../cities. Four different sectors (water, food production, waste, and forests) were selected as core areas for decentralised spatial planning. Indicators for SCC and ACC were identified and assessed with regard to relevance and quantifiability. For each of the indicators selected, a legal threshold or guiding...... was introduced inIndonesia 1992 and renewed in 2008. It emphasised the planning role of decentralised authorities. The spatial planning act covers both spatial and environmental issues. It defines the concept of carrying capacity and includes definitions of supportive carrying capacity (SCC) and assimilative...

  16. Bird on Your Smartphone: How to make identification faster?

    Science.gov (United States)

    Hidayat, T.; Kurniawan, I. S.; Tapilow, F. S.

    2018-01-01

    Identification skills of students are needed in the field activities of animal ecology course. Good identification skills will help students to understand the traits, determine differences and similarities in order to naming of birds’ species. This study aims to describe the identification skill of students by using smart phone applications designed in such a way as a support in the field activities. Research method used was quasi experiment involving 60 students which were divided into two groups, one group that use smartphone applications (SA) and other group using a guidebook (GB). This study was carried out in the classroom and outside (the field). Instruments used in this research included tests and questionnaire. The identification skills were measured by tests, indicated by an average score (AS). The results showed that the identification skills of SA students were higher (AS = 3.12) than those of GB one (AS = 2.91). These results are in accordance with response of students. The most of students (90.08%) mentioned that the use of smart phone applications in identifying birds is helpful, more effective and convenience to make identification faster. For further implementation, however, performance of the smartphone used here need to be enhanced to improve the identification skills of students and for wider use.

  17. Faster Double-Size Bipartite Multiplication out of Montgomery Multipliers

    Science.gov (United States)

    Yoshino, Masayuki; Okeya, Katsuyuki; Vuillaume, Camille

    This paper proposes novel algorithms for computing double-size modular multiplications with few modulus-dependent precomputations. Low-end devices such as smartcards are usually equipped with hardware Montgomery multipliers. However, due to progresses of mathematical attacks, security institutions such as NIST have steadily demanded longer bit-lengths for public-key cryptography, making the multipliers quickly obsolete. In an attempt to extend the lifespan of such multipliers, double-size techniques compute modular multiplications with twice the bit-length of the multipliers. Techniques are known for extending the bit-length of classical Euclidean multipliers, of Montgomery multipliers and the combination thereof, namely bipartite multipliers. However, unlike classical and bipartite multiplications, Montgomery multiplications involve modulus-dependent precomputations, which amount to a large part of an RSA encryption or signature verification. The proposed double-size technique simulates double-size multiplications based on single-size Montgomery multipliers, and yet precomputations are essentially free: in an 2048-bit RSA encryption or signature verification with public exponent e=216+1, the proposal with a 1024-bit Montgomery multiplier is at least 1.5 times faster than previous double-size Montgomery multiplications.

  18. A piece of paper falling faster than free fall

    International Nuclear Information System (INIS)

    Vera, F; Rivera, R

    2011-01-01

    We report a simple experiment that clearly demonstrates a common error in the explanation of the classic experiment where a small piece of paper is put over a book and the system is let fall. This classic demonstration is used in introductory physics courses to show that after eliminating the friction force with the air, the piece of paper falls with acceleration g. To test if the paper falls behind the book in a nearly free fall motion or if it is dragged by the book, we designed a version of this experiment that includes a ball and a piece of paper over a book that is forced to fall using elastic cords. We recorded a video of our experiment using a high-speed video camera at 300 frames per second that shows that the book and the paper fall faster than the ball, which falls well behind the book with an acceleration approximately equal to g. Our experiment shows that the piece of paper is dragged behind the book and therefore the paper and book demonstration should not be used to show that all objects fall with acceleration g independently of their mass.

  19. Higher Resolution and Faster MRI of 31Phosphorus in Bone

    Science.gov (United States)

    Frey, Merideth; Barrett, Sean; Sethna, Zachary; Insogna, Karl; Vanhouten, Joshua

    2013-03-01

    Probing the internal composition of bone on the sub-100 μm length scale is important to study normal features and to look for signs of disease. However, few useful non-destructive techniques are available to evaluate changes in the bone mineral chemical structure and functional micro-architecture on the interior of bones. MRI would be an excellent candidate, but bone is a particularly challenging tissue to study given the relatively low water density, wider linewidths of its solid components leading to low spatial resolution, and the long imaging time compared to conventional 1H MRI. Our lab has recently made advances in obtaining high spatial resolution (sub-400 μm)3 three-dimensional 31Phosphorus MRI of bone through use of the quadratic echo line-narrowing sequence (1). In this talk, we describe our current results using proton decoupling to push this technique even further towards the factor of 1000 increase in spatial resolution imposed by fundamental limits. We also discuss our work to speed up imaging through novel, faster reconstruction algorithms that can reconstruct the desired image from very sparse data sets. (1) M. Frey, et al. PNAS 109: 5190 (2012).

  20. Hexagonal undersampling for faster MRI near metallic implants.

    Science.gov (United States)

    Sveinsson, Bragi; Worters, Pauline W; Gold, Garry E; Hargreaves, Brian A

    2015-02-01

    Slice encoding for metal artifact correction acquires a three-dimensional image of each excited slice with view-angle tilting to reduce slice and readout direction artifacts respectively, but requires additional imaging time. The purpose of this study was to provide a technique for faster imaging around metallic implants by undersampling k-space. Assuming that areas of slice distortion are localized, hexagonal sampling can reduce imaging time by 50% compared with conventional scans. This work demonstrates this technique by comparisons of fully sampled images with undersampled images, either from simulations from fully acquired data or from data actually undersampled during acquisition, in patients and phantoms. Hexagonal sampling is also shown to be compatible with parallel imaging and partial Fourier acquisitions. Image quality was evaluated using a structural similarity (SSIM) index. Images acquired with hexagonal undersampling had no visible difference in artifact suppression from fully sampled images. The SSIM index indicated high similarity to fully sampled images in all cases. The study demonstrates the ability to reduce scan time by undersampling without compromising image quality. © 2014 Wiley Periodicals, Inc.

  1. A piece of paper falling faster than free fall

    Energy Technology Data Exchange (ETDEWEB)

    Vera, F; Rivera, R, E-mail: fvera@ucv.cl [Instituto de Fisica, Pontificia Universidad Catolica de ValparaIso, Av. Universidad 330, Curauma, ValparaIso (Chile)

    2011-09-15

    We report a simple experiment that clearly demonstrates a common error in the explanation of the classic experiment where a small piece of paper is put over a book and the system is let fall. This classic demonstration is used in introductory physics courses to show that after eliminating the friction force with the air, the piece of paper falls with acceleration g. To test if the paper falls behind the book in a nearly free fall motion or if it is dragged by the book, we designed a version of this experiment that includes a ball and a piece of paper over a book that is forced to fall using elastic cords. We recorded a video of our experiment using a high-speed video camera at 300 frames per second that shows that the book and the paper fall faster than the ball, which falls well behind the book with an acceleration approximately equal to g. Our experiment shows that the piece of paper is dragged behind the book and therefore the paper and book demonstration should not be used to show that all objects fall with acceleration g independently of their mass.

  2. Learning Faster by Discovering and Exploiting Object Similarities

    Directory of Open Access Journals (Sweden)

    Tadej Janež

    2013-03-01

    Full Text Available In this paper we explore the question: “Is it possible to speed up the learning process of an autonomous agent by performing experiments in a more complex environment (i.e., an environment with a greater number of different objects?” To this end, we use a simple robotic domain, where the robot has to learn a qualitative model predicting the change in the robot's distance to an object. To quantify the environment's complexity, we defined cardinal complexity as the number of objects in the robot's world, and behavioural complexity as the number of objects' distinct behaviours. We propose Error reduction merging (ERM, a new learning method that automatically discovers similarities in the structure of the agent's environment. ERM identifies different types of objects solely from the data measured and merges the observations of objects that behave in the same or similar way in order to speed up the agent's learning. We performed a series of experiments in worlds of increasing complexity. The results in our simple domain indicate that ERM was capable of discovering structural similarities in the data which indeed made the learning faster, clearly superior to conventional learning. This observed trend occurred with various machine learning algorithms used inside the ERM method.

  3. Skin graft donor site: a procedure for a faster healing.

    Science.gov (United States)

    Cuomo, Roberto; Grimaldi, Luca; Brandi, Cesare; Nisi, Giuseppe; D'Aniello, Carlo

    2017-10-23

    The authors want to evaluate the efficacy of fibrillary tabotamp dressing in skin graft-donor site. A comparison was made with Vaseline gauzes. Tabotamp is an absorbable haemostatic product of Ethicon (Johnson and Johnson) obtained by sterile and oxidized regenerated cellulose (Rayon). It is used for mild to moderate bleeding. 276 patients were subject to skin graft and divided into two group: Group A and Group B. The donor site of patients in Group A was medicated with fibrillary tabotamp, while the patients of Group B were medicated only with Vaseline gauze. We recorded infection, timing of healing, number of dressing change, the pain felt during and after the dressing change with visual analog scale (VAS) and a questionnaire. Patients allocated in Group A healed faster than the Group B. Questionnaires and VAS analysis showed lower pain felt, lower intake of pain drugs and lower infection rate in the Group A than the Group B. Analysis of coast showed lower dressing change in Group A than the Group B. We believe that the use of tabotamp is a very viable alternative to improve healing.

  4. Causal events enter awareness faster than non-causal events

    Directory of Open Access Journals (Sweden)

    Pieter Moors

    2017-01-01

    Full Text Available Philosophers have long argued that causality cannot be directly observed but requires a conscious inference (Hume, 1967. Albert Michotte however developed numerous visual phenomena in which people seemed to perceive causality akin to primary visual properties like colour or motion (Michotte, 1946. Michotte claimed that the perception of causality did not require a conscious, deliberate inference but, working over 70 years ago, he did not have access to the experimental methods to test this claim. Here we employ Continuous Flash Suppression (CFS—an interocular suppression technique to render stimuli invisible (Tsuchiya & Koch, 2005—to test whether causal events enter awareness faster than non-causal events. We presented observers with ‘causal’ and ‘non-causal’ events, and found consistent evidence that participants become aware of causal events more rapidly than non-causal events. Our results suggest that, whilst causality must be inferred from sensory evidence, this inference might be computed at low levels of perceptual processing, and does not depend on a deliberative conscious evaluation of the stimulus. This work therefore supports Michotte’s contention that, like colour or motion, causality is an immediate property of our perception of the world.

  5. New models for estimating the carbon sink capacity of Spanish softwood species

    International Nuclear Information System (INIS)

    Ruiz-Peinado, R.; Rio, M. del; Montero, G.

    2011-01-01

    Quantifying the carbon balance in forests is one of the main challenges in forest management. Forest carbon stocks are usually estimated indirectly through biomass equations applied to forest inventories, frequently considering different tree biomass components. The aim of this study is to develop systems of equations for predicting tree biomass components for the main forest softwood species in Spain: Abies alba Mill., A. pinsapo Boiss., Juniperus thurifera L., Pinus canariensis Sweet ex Spreng., P. halepensis Mill., P. nigra Arn., P. pinaster Ait., P. pinea L., P. sylvestris L., P. uncinata Mill. For each species, a system of additive biomass models was fitted using seemingly unrelated regression. Diameter at the breast height and total height were used as independent variables. Diameter appears in all component models, while tree height was included in the stem component model of all species and in some branch component equations. Total height was included in order to improve biomass estimations at different sites. These biomass models were compared to previously available equations in order to test their accuracy and it was found that they yielded better fitting statistics in all cases. Moreover, the models fulfil the additivity property. We also developed root:shoot ratios in order to determine the partitioning into aboveground and belowground biomass. A number of differences were found between species, with a minimum of 0.183 for A. alba and a maximum of 0.385 for P. uncinata. The mean value for the softwood species studied was 0.265. Since the Spanish National Forest Inventory (NFI) records species, tree diameter and height of sample trees, these biomass models and ratios can be used to accurately estimate carbon stocks from NFI data. (Author) 55 refs.

  6. New models for estimating the carbon sink capacity of Spanish softwood species

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Peinado, R.; Rio, M. del; Montero, G.

    2011-07-01

    Quantifying the carbon balance in forests is one of the main challenges in forest management. Forest carbon stocks are usually estimated indirectly through biomass equations applied to forest inventories, frequently considering different tree biomass components. The aim of this study is to develop systems of equations for predicting tree biomass components for the main forest softwood species in Spain: Abies alba Mill., A. pinsapo Boiss., Juniperus thurifera L., Pinus canariensis Sweet ex Spreng., P. halepensis Mill., P. nigra Arn., P. pinaster Ait., P. pinea L., P. sylvestris L., P. uncinata Mill. For each species, a system of additive biomass models was fitted using seemingly unrelated regression. Diameter at the breast height and total height were used as independent variables. Diameter appears in all component models, while tree height was included in the stem component model of all species and in some branch component equations. Total height was included in order to improve biomass estimations at different sites. These biomass models were compared to previously available equations in order to test their accuracy and it was found that they yielded better fitting statistics in all cases. Moreover, the models fulfil the additivity property. We also developed root:shoot ratios in order to determine the partitioning into aboveground and belowground biomass. A number of differences were found between species, with a minimum of 0.183 for A. alba and a maximum of 0.385 for P. uncinata. The mean value for the softwood species studied was 0.265. Since the Spanish National Forest Inventory (NFI) records species, tree diameter and height of sample trees, these biomass models and ratios can be used to accurately estimate carbon stocks from NFI data. (Author) 55 refs.

  7. Phase Change Material Heat Sink for an ISS Flight Experiment

    Science.gov (United States)

    Quinn, Gregory; Stieber, Jesse; Sheth, Rubik; Ahlstrom, Thomas

    2015-01-01

    A flight experiment is being constructed to utilize the persistent microgravity environment of the International Space Station (ISS) to prove out operation of a microgravity compatible phase change material (PCM) heat sink. A PCM heat sink can help to reduce the overall mass and volume of future exploration spacecraft thermal control systems (TCS). The program is characterizing a new PCM heat sink that incorporates a novel phase management approach to prevent high pressures and structural deformation that often occur with PCM heat sinks undergoing cyclic operation in microgravity. The PCM unit was made using brazed aluminum construction with paraffin wax as the fusible material. It is designed to be installed into a propylene glycol and water cooling loop, with scaling consistent with the conceptual designs for the Orion Multipurpose Crew Vehicle. This paper reports on the construction of the PCM heat sink and on initial ground test results conducted at UTC Aerospace Systems prior to delivery to NASA. The prototype will be tested later on the ground and in orbit via a self-contained experiment package developed by NASA Johnson Space Center to operate in an ISS EXPRESS rack.

  8. Design consideration for a diversity of heat sink

    Energy Technology Data Exchange (ETDEWEB)

    Rueckbrodt, Karin; Meischak, Stefan [AREVA NP GmbH, Erlangen (Germany)

    2013-07-01

    The defense in depth approach requires in all cases to prevent and mitigate accidents that could release radioactive materials. To assure the physical design barriers (preserve fuel integrity, reactor coolant pressure boundary integrity, and containment integrity) the decay heat has to be removed. External and internal events have to be taken in consideration for the robustness of all the involved cooling systems. To ensure the cooling function in all conceivable and all unlikely events an analysis for the necessity of a diversified heat sink is essential. The diversified concepts analyses the type of the primary heat sink and use contrary sources for the heat sink, air instead of water, well instead of a river. A complete diversity is realized if also for the heat transfer diversified systems are implemented. The described solutions are mainly applied for BWR plants, but can be partly transferred analogously to PWR plants. (orig.)

  9. Optimization of triangular microchannel heat sinks using constructible theory

    International Nuclear Information System (INIS)

    Mardani, Moloud; Salimpour, Mohammad Reza

    2016-01-01

    The present paper examines the optimization of triangular microchannel heat sinks. The impact of volume fraction of solid material and pressure drop on the maximum temperature of the microchannel heat sinks are investigated and their optimum operating conditions are compared. From the results, it is seen that increasing the side angle of the triangular microchannel, improves its performance. Furthermore, there is an appropriate agreement between the analytical and numerical results. Finally, the effect of degrees of freedom on the performance of microchannels is investigated. To accomplish this end, the triangular microchannels with the side angle of 60 degree have been chosen as it has the best performance compared to other microchannels. It is observed that the minimized maximum temperatures of optimized microchannel heat sinks with three degrees of freedom are 10% lower than the ones with two degrees of freedom

  10. Development and testing of aluminum micro channel heat sink

    Science.gov (United States)

    Kumaraguruparan, G.; Sornakumar, T.

    2010-06-01

    Microchannel heat sinks constitute an innovative cooling technology for the removal of a large amount of heat from a small area and are suitable for electronics cooling. In the present work, Tool Steel D2 grade milling slitting saw type plain milling cutter is fabricated The microchannels are machined in aluminum work pieces to form the microchannel heat sink using the fabricated milling cutter in an horizontal milling machine. A new experimental set-up is fabricated to conduct the tests on the microchannel heat sink. The heat carried by the water increases with mass flow rate and heat input. The heat transfer coefficient and Nusselt number increases with mass flow rate and increased heat input. The pressure drop increases with Reynolds number and decreases with input heat. The friction factor decreases with Reynolds number and decreases with input heat. The thermal resistance decreases with pumping power and decreases with input heat.

  11. Review of tribological sinks in six major industries

    Energy Technology Data Exchange (ETDEWEB)

    Imhoff, C.H.; Brown, D.R.; Hane, G.J.; Hutchinson, R.A.; Erickson, R.; Merriman, T.; Gruber, T.; Barber, S.

    1985-09-01

    Friction and material wear occur throughout all industries and are involved in many processes within each industry. These conditions make assessing tribological activity overall in industry very complex and expensive. Therefore, a research strategy to obtain preliminary information on only the most significant industrial tribological sinks was defined. The industries examined were selected according to both the magnitude of overall energy consumption (particularly machine drive) and the known presence of significant tribological sinks. The six industries chosen are as follows: mining, agriculture, primary metals, chemicals/refining, food, and pulp and paper. They were reviewed to identify and characterize the major tribology sinks. It was concluded that wear losses are greater than friction losses, and that reducing wear rates would improve industrial productivity.

  12. Bounds on the dynamics of sink populations with noisy immigration.

    Science.gov (United States)

    Eager, Eric Alan; Guiver, Chris; Hodgson, Dave; Rebarber, Richard; Stott, Iain; Townley, Stuart

    2014-03-01

    Sink populations are doomed to decline to extinction in the absence of immigration. The dynamics of sink populations are not easily modelled using the standard framework of per capita rates of immigration, because numbers of immigrants are determined by extrinsic sources (for example, source populations, or population managers). Here we appeal to a systems and control framework to place upper and lower bounds on both the transient and future dynamics of sink populations that are subject to noisy immigration. Immigration has a number of interpretations and can fit a wide variety of models found in the literature. We apply the results to case studies derived from published models for Chinook salmon (Oncorhynchus tshawytscha) and blowout penstemon (Penstemon haydenii). Copyright © 2013 Elsevier Inc. All rights reserved.

  13. A model for bacterial colonization of sinking aggregates.

    Science.gov (United States)

    Bearon, R N

    2007-01-01

    Sinking aggregates provide important nutrient-rich environments for marine bacteria. Quantifying the rate at which motile bacteria colonize such aggregations is important in understanding the microbial loop in the pelagic food web. In this paper, a simple analytical model is presented to predict the rate at which bacteria undergoing a random walk encounter a sinking aggregate. The model incorporates the flow field generated by the sinking aggregate, the swimming behavior of the bacteria, and the interaction of the flow with the swimming behavior. An expression for the encounter rate is computed in the limit of large Péclet number when the random walk can be approximated by a diffusion process. Comparison with an individual-based numerical simulation is also given.

  14. Shampoo-clay heals diaper rash faster than calendula officinalis.

    Science.gov (United States)

    Adib-Hajbaghery, Mohsen; Mahmoudi, Mansoreh; Mashaiekhi, Mahdi

    2014-06-01

    Diaper rash is one of the most common skin disorders of infancy and childhood. Some studies have shown that Shampoo-clay was effective to treat chronic dermatitis. Then, it is supposed that it may be effective in diaper rash; however, no published studies were found in this regard. This study aimed to compare the effects of Shampoo-clay (S.C) and Calendula officinalis (C.O) to improve infantile diaper rash. A randomized, double blind, parallel controlled, non-inferiority trial was conducted on 60 outpatient infants referred to health care centers or pediatric clinics in Khomein city and diagnosed with diaper rash. Patients were randomly assigned into two treatment groups including S.C group (n = 30) and C.O group (n = 30) by using one to one allocation ratio. The rate of complete recovery in three days was the primary outcome. Data was collected using a checklist and analyzed using t-test, Chi-square and Fisher's exact tests and risk ratio. Totally, 93.3% of lesions in the S.C group healed in the first 6 hours, while this rate was 40% in C.O group (P < 0.001). The healing ratio for improvement in the first 6 hours was 7 times more in the S.C group. In addition, 90% of infants in the SC group and 36.7% in the C.O group were improved completely in the first 3 days (P < 0.001). S.C was effective to heal diaper rash, and also had faster effects compared to C.O.

  15. Visual Motion Processing Subserves Faster Visuomotor Reaction in Badminton Players.

    Science.gov (United States)

    Hülsdünker, Thorben; Strüder, Heiko K; Mierau, Andreas

    2017-06-01

    Athletes participating in ball or racquet sports have to respond to visual stimuli under critical time pressure. Previous studies used visual contrast stimuli to determine visual perception and visuomotor reaction in athletes and nonathletes; however, ball and racquet sports are characterized by motion rather than contrast visual cues. Because visual contrast and motion signals are processed in different cortical regions, this study aimed to determine differences in perception and processing of visual motion between athletes and nonathletes. Twenty-five skilled badminton players and 28 age-matched nonathletic controls participated in this study. Using a 64-channel EEG system, we investigated visual motion perception/processing in the motion-sensitive middle temporal (MT) cortical area in response to radial motion of different velocities. In a simple visuomotor reaction task, visuomotor transformation in Brodmann area 6 (BA6) and BA4 as well as muscular activation (EMG onset) and visuomotor reaction time (VMRT) were investigated. Stimulus- and response-locked potentials were determined to differentiate between perceptual and motor-related processes. As compared with nonathletes, athletes showed earlier EMG onset times (217 vs 178 ms, P < 0.001), accompanied by a faster VMRT (274 vs 243 ms, P < 0.001). Furthermore, athletes showed an earlier stimulus-locked peak activation of MT (200 vs 182 ms, P = 0.002) and BA6 (161 vs 137 ms, P = 0.009). Response-locked peak activation in MT was later in athletes (-7 vs 26 ms, P < 0.001), whereas no group differences were observed in BA6 and BA4. Multiple regression analyses with stimulus- and response-locked cortical potentials predicted EMG onset (r = 0.83) and VMRT (r = 0.77). The athletes' superior visuomotor performance in response to visual motion is primarily related to visual perception and, to a minor degree, to motor-related processes.

  16. Passive sinking into the snow as possible survival strategy during the off-host stage in an insect ectoparasite.

    Science.gov (United States)

    Kaunisto, Sirpa; Ylonen, Hannu; Kortet, Raine

    2015-07-22

    Abiotic and biotic factors determine success or failure of individual organisms, populations and species. The early life stages are often the most vulnerable to heavy mortality due to environmental conditions. The deer ked (Lipoptena cervi Linnaeus, 1758) is an invasive insect ectoparasite of cervids that spends an important period of the life cycle outside host as immobile pupa. During winter, dark-coloured pupae drop off the host onto the snow, where they are exposed to environmental temperature variation and predation as long as the new snowfall provides shelter against these mortality factors. The other possible option is to passively sink into the snow, which is aided by morphology of pupae. Here, we experimentally studied passive snow sinking capacity of pupae of L. cervi. We show that pupae have a notable passive snow sinking capacity, which is the most likely explained by pupal morphology enabling solar energy absorption and pupal weight. The present results can be used when planning future studies and when evaluating possible predation risk and overall survival of this invasive ectoparasite species in changing environmental conditions.

  17. Two decades of ocean CO2 sink and variability

    International Nuclear Information System (INIS)

    Quere, C. Le; Bopp, L.; Heimann, M.; Prentice, I.C.; Aumont, O.; Bousquet, P.; Ciais, P.; Francey, R.; Rayner, P.J.; Keeling, C.D.; Keeling, R.F.; Piper, S.C.; Kheshgi, H.; Peyliln, P.

    2003-01-01

    Atmospheric CO 2 has increased at a nearly identical average rate of 3.3 and 3.2 Pg C/yr for the decades of the 1980s and the 1990s, in spite of a large increase in fossil fuel emissions from 5.4 to 6.3 Pg C/yr. Thus, the sum of the ocean and land CO 2 sinks was 1 Pg C/yr larger in the 1990s than in to the 1980s. Here we quantify the ocean and land sinks for these two decades using recent atmospheric inversions and ocean models. The ocean and land sinks are estimated to be, respectively, 0.3 (0.1 to 0.6) and 0.7 (0.4 to 0.9) Pg C/yr larger in the 1990s than in the 1980s. When variability less than 5 yr is removed, all estimates show a global oceanic sink more or less steadily increasing with time, and a large anomaly in the land sink during 1990-1994. For year-to-year variability, all estimates show 1/3 to 1/2 less variability in the ocean than on land, but the amplitude and phase of the oceanic variability remain poorly determined. A mean oceanic sink of 1.9 Pg C/yr for the 1990s based on O 2 observations corrected for ocean outgassing is supported by these estimates, but an uncertainty on the mean value of the order of ±0.7 Pg C/yr remains. The difference between the two decades appears to be more robust than the absolute value of either of the two decades

  18. Trends and regional distributions of land and ocean carbon sinks

    Directory of Open Access Journals (Sweden)

    J. L. Sarmiento

    2010-08-01

    Full Text Available We show here an updated estimate of the net land carbon sink (NLS as a function of time from 1960 to 2007 calculated from the difference between fossil fuel emissions, the observed atmospheric growth rate, and the ocean uptake obtained by recent ocean model simulations forced with reanalysis wind stress and heat and water fluxes. Except for interannual variability, the net land carbon sink appears to have been relatively constant at a mean value of −0.27 Pg C yr−1 between 1960 and 1988, at which time it increased abruptly by −0.88 (−0.77 to −1.04 Pg C yr−1 to a new relatively constant mean of −1.15 Pg C yr−1 between 1989 and 2003/7 (the sign convention is negative out of the atmosphere. This result is detectable at the 99% level using a t-test. The land use source (LU is relatively constant over this entire time interval. While the LU estimate is highly uncertain, this does imply that most of the change in the net land carbon sink must be due to an abrupt increase in the land sink, LS = NLS – LU, in response to some as yet unknown combination of biogeochemical and climate forcing. A regional synthesis and assessment of the land carbon sources and sinks over the post 1988/1989 period reveals broad agreement that the Northern Hemisphere land is a major sink of atmospheric CO2, but there remain major discrepancies with regard to the sign and magnitude of the net flux to and from tropical land.

  19. High capacity photonic integrated switching circuits

    NARCIS (Netherlands)

    Albores Mejia, A.

    2011-01-01

    As the demand for high-capacity data transfer keeps increasing in high performance computing and in a broader range of system area networking environments; reconfiguring the strained networks at ever faster speeds with larger volumes of traffic has become a huge challenge. Formidable bottlenecks

  20. New Method of Sinking Caisson Tunnel in Soft Soil

    OpenAIRE

    Bame, Abda Berisso

    2013-01-01

    Sinking a caisson tunnel in soft soil is new idea and this new concept could be an alternative method of tunneling in soft soil. The aim of this study is to evaluate geotechnical feasibility of sinking the caisson tunnel to the desired depth at the selected soil profile along tunnel alignment. This caisson tunneling method is proposed to reduce the use of temporary works such as propping of sheet pile walls and increase the ease and speed of construction. Besides, it reduces the disturbance o...

  1. ECONOMIC EVALUATION OF CO2 STORAGE AND SINK ENHANCEMENT OPTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Bert Bock; Richard Rhudy; Howard Herzog; Michael Klett; John Davison; Danial G. De La Torre Ugarte; Dale Simbeck

    2003-02-01

    This project developed life-cycle costs for the major technologies and practices under development for CO{sub 2} storage and sink enhancement. The technologies evaluated included options for storing captured CO{sub 2} in active oil reservoirs, depleted oil and gas reservoirs, deep aquifers, coal beds, and oceans, as well as the enhancement of carbon sequestration in forests and croplands. The capture costs for a nominal 500 MW{sub e} integrated gasification combined cycle plant from an earlier study were combined with the storage costs from this study to allow comparison among capture and storage approaches as well as sink enhancements.

  2. Novel two-phase jet impingement heat sink for active cooling of electronic devices

    International Nuclear Information System (INIS)

    Oliveira, Pablo A. de; Barbosa, Jader R.

    2017-01-01

    Highlights: • Novel jet-based heat sink integrates the evaporator and the expansion device. • The system was tested with a small-scale oil-free R-134a compressor. • The thermodynamic performance of the cooling system was evaluated experimentally. • The single-jet maximum cooling capacity was 160 W, with a COP of 2.3 and a η 2nd of 8%. • Maximum heat transfer coefficient of 15 kW m −2 K −1 and surface temperature of 30 °C. - Abstract: This work presents a compact vapor compression cooling system equipped with a small-scale oil-free R-134a compressor and a jet-impingement-based heat sink that integrates the evaporator and the expansion device into a single unit. At the present stage of the development, a single orifice was used to generate the high-speed two-phase impinging jet on the heated surface. The effects of the compressor piston stroke, applied thermal load and orifice diameter on the system performance were quantified. The thermodynamic performance of the system was evaluated in terms of the temperature of the heated surface, impinging jet heat transfer coefficient, several system thermal resistances, coefficient of performance, second-law efficiency and second-law ratio. The coefficient of performance of the new refrigeration system increased with the cooling capacity, justifying its application in the removal of large thermal loads. The maximum system cooling capacity with a single jet was approximately 160 W, which was achieved with an orifice diameter of 500 μm and operation at a full compressor piston stroke. This condition corresponded to a COP of 2.3, a second-law efficiency of 8.0%, a jet impingement heat transfer coefficient above 15 kW m −2 K −1 and a heater surface temperature of approximately 30 °C.

  3. Exerting Capacity.

    Science.gov (United States)

    Leger, J Michael; Phillips, Carolyn A

    2017-05-01

    Patient safety has been at the forefront of nursing research since the release of the Institute of Medicine's report estimating the number of preventable adverse events in hospital settings; yet no research to date has incorporated the perspectives of bedside nurses using classical grounded theory (CGT) methodology. This CGT study explored the perceptions of bedside registered nurses regarding patient safety in adult acute care hospitals. Data analysis used three techniques unique to CGT-the constant comparative method, coding, and memoing-to explore the values, realities, and beliefs of bedside nurses about patient safety. The analysis resulted in a substantive theory, Exerting Capacity, which explained how bedside nurses balance the demands of keeping their patients safe. Exerting Capacity has implications for health care organization leaders, nursing leaders, and bedside nurses; it also has indications for future research into the concept of patient safety.

  4. Deficiency of employability capacity

    Directory of Open Access Journals (Sweden)

    Pelse I.

    2012-10-01

    Full Text Available Young unemployed people have comprised one of the significantly largest groups of the unemployed people in Latvia in recent years. One of the reasons why young people have difficulty integrating into the labour market is the “expectation gap” that exists in the relations between employers and the new generation of workers. Employers focus on capacity-building for employability such individual factors as strength, patience, self-discipline, self-reliance, self-motivation, etc., which having a nature of habit and are developed in a long-term work socialization process, which begins even before the formal education and will continue throughout the life cycle. However, when the socialization is lost, these habits are depreciated faster than they can be restored. Currently a new generation is entering the labour market, which is missing the succession of work socialization. Factors, such as rising unemployment and poverty in the background over the past twenty years in Latvia have created a very unfavourable employability background of “personal circumstances” and “external factors”, which seriously have impaired formation of the skills and attitudes in a real work environment. The study reveals another paradox – the paradox of poverty. Common sense would want to argue that poverty can be overcome by the job. However, the real state of affairs shows that unfavourable coincidence of the individual, personal circumstances and external factors leads to deficit of employability capacity and possibility of marked social and employment deprivation.

  5. Development of a discharge model for the Bopp and Reuther Degasser/Condenser relief valves for heat sink assessment

    International Nuclear Information System (INIS)

    Hasnaoui, C. . chiheb@hasnaoui.net; Huynh, M.

    2004-01-01

    A total loss of all sustained engineering heat sinks is considered as a severe accident with low probability of occurrence. Following a total loss of all sustained engineering heat sinks, the Degasser/Condenser relief valves (3332-RV11 and RV21) would then become the sole means available for the depressurization of the primary heat transport system. Accurate estimation of the discharge through these valves is required to assess the impact of this kind of accident on fuel cooling and the primary circuit integrity. This paper describes a model used to estimate the Degasser/Condenser relief valve discharge capacity. This model is used to predict the flow discharge under a range of conditions upstream of the relief valves; from sub-cooled to saturated liquid and up to vapor conditions. The defined model is then used to estimate the relief valve discharge rates under various hypothetical conditions of the PHTS using the Cathena code. (author)

  6. Sink strength simulations using the Monte Carlo method: Applied to spherical traps

    Science.gov (United States)

    Ahlgren, T.; Bukonte, L.

    2017-12-01

    The sink strength is an important parameter for the mean-field rate equations to simulate temporal changes in the micro-structure of materials. However, there are noteworthy discrepancies between sink strengths obtained by the Monte Carlo and analytical methods. In this study, we show the reasons for these differences. We present the equations to estimate the statistical error for sink strength calculations and show the way to determine the sink strengths for multiple traps. We develop a novel, very fast Monte Carlo method to obtain sink strengths. The results show that, in addition to the well-known sink strength dependence of the trap concentration, trap radius and the total sink strength, the sink strength also depends on the defect diffusion jump length and the total trap volume fraction. Taking these factors into account, allows us to obtain a very accurate analytic expression for the sink strength of spherical traps.

  7. The use of segregated heat sink structures to achieve enhanced passive cooling for outdoor wireless devices

    International Nuclear Information System (INIS)

    O'Flaherty, K; Punch, J

    2014-01-01

    Environmental standards which govern outdoor wireless equipment can stipulate stringent conditions: high solar loads (up to 1 kW/m 2 ), ambient temperatures as high as 55°C and negligible wind speeds (0 m/s). These challenges result in restrictions on power dissipation within a given envelope, due to the limited heat transfer rates achievable with passive cooling. This paper addresses an outdoor wireless device which features two segregated heat sink structures arranged vertically within a shielded chimney structure: a primary sink to cool temperature-sensitive components; and a secondary sink for high power devices. Enhanced convective cooling of the primary sink is achieved due to the increased mass flow within the chimney generated by the secondary sink. An unshielded heat sink was examined numerically, theoretically and experimentally, to verify the applicability of the methods employed. Nusselt numbers were compared for three cases: an unshielded heat sink; a sink located at the inlet of a shield; and a primary heat sink in a segregated structure. The heat sink, when placed at the inlet of a shield three times the length of the sink, augmented the Nusselt number by an average of 64% compared to the unshielded case. The Nusselt number of the primary was found to increase proportionally with the temperature of the secondary sink, and the optimum vertical spacing between the primary and secondary sinks was found to be close to zero, provided that conductive transfer between the sinks was suppressed.

  8. Factoring out natural and indirect human effects on terrestrial carbon sources and sinks

    Energy Technology Data Exchange (ETDEWEB)

    Canadell, J.G. [Global Carbon Project, CSIRO Marine and Atmospheric Research, GPO Box 3023, Canberra, ACT 2601 (Australia); Kirschbaum, M.U.F. [Environmental Biology Group, RSBS, Australian National University, GPO Box 475, Canberra, ACT 2601 (Australia); Kurz, W.A. [Natural Resources Canada, Canadian Forest Service, 506 West Burnside Road, Victoria, BC V8Z 1M5 (Canada); Sanz, M.J. [Fundacion CEAM, Parque Tecnologico, Charles H. Darwin 14, 46980 Paterna, Valencia (Spain); Schlamadinger, B. [Joanneum Research, Elisabethstrasse 11, Graz A-8010 (Austria); Yamagata, Y. [Center for Global Environmental Research, National Institute of Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506 (Japan)

    2007-06-15

    The capacity to partition natural, indirect, and direct human-induced effects on terrestrial carbon (C) sources and sinks is necessary to be able to predict future terrestrial C dynamics and thus their influence on atmospheric CO2 growth. However, it will take a number of years before we can better attribute quantitative estimates of the contribution of various C processes to the net C balance. In a policy context, factoring out natural and indirect human-induced effects on C sources and sinks from the direct human-induced influences, is seen as a requirement of a C accounting approach that establishes a clear and unambiguous connection between human activities and the assignment of C credits and debits. We present options for factoring out various groups of influences including climate variability, CO2 and N fertilization, and legacies from forest management. These are: (1) selecting longer accounting or measurement periods to reduce the effects of inter-annual variability; (2) correction of national inventories for inter-annual variability; (3) use of activity-based accounting and C response curves; (4) use of baseline scenarios or benchmarks at the national level; (5) stratification of the landscape into units with distinct average C stocks. Other, more sophisticated modeling approaches (e.g., demographic models in combination with forest inventories; process-based models) are possible options for future C accounting systems but their complexity and data requirements make their present adoption more difficult in an inclusive international C accounting system.

  9. Source-sink relationships in two soybean cultivars with indeterminate growth under water deficit

    Directory of Open Access Journals (Sweden)

    Alexandre José da Silva

    Full Text Available Abstract Water deficit is a major factor limiting crop yield in rainfed areas. We hypothesized that under water deficit the decrease of photosynthetic production stimulates: carbohydrate remobilization from leaves, stems and roots to reproductive organs; and decreasing flowering intensity and pod development. The present work aims to study the effect of water deficit during bloom and grain pod-filling stages in two indeterminate soybean cultivar, Vtop and Nidera. The following physiological parameters were evaluated by means of daily CO2 assimilation rate (Ai, dynamic of carbohydrates in tissues, plant growth, grain yield and yield components. The study was conducted in a greenhouse with plants sown in tanks of 0.5 m3. Regardless of the phenological phase, water deficit reduced Ai, plant growth and number of pods and seeds per plant. The fact that grain yield was less affected by water deficit at bloom than at grain pod-filling stage was attributed to larger seeds found at bloom. In both treatments, a sharp reduction on carbohydrate content was found in leaves, stem and roots at the beginning of pod formation. The high amounts of carbohydrates remobilized for seed growth, along with the high values of Ai observed in well-watered plants, indicate that grain yield of soybeans is source rather than sink limited. On the other hand, in water deficit treatments, a new stimulus for carbohydrate storage was found in the leaves and stem at the beginning of grain maturity, suggesting that grain yield was limited by sink capacity.

  10. Westerly Winds and the Southern Ocean CO2 Sink Since the Last Glacial-Interglacial Transition

    Science.gov (United States)

    Hodgson, D. A.; Saunders, K. M.; Roberts, S. J.; Perren, B.; Butz, C.; Sime, L. C.; Davies, S. J.; Grosjean, M.

    2017-12-01

    The capacity of the Southern Ocean carbon sink is partly controlled by the Southern Hemisphere westerly winds (SHW) and sea ice. These regulate the upwelling of dissolved carbon-rich deep water to Antarctic surface waters, determine the surface area for air-sea gas exchange and therefore modulate the net uptake of atmospheric CO2. Some models have proposed that strengthened SHW will result in a weakening of the Southern Ocean CO2 sink. If these models are correct, then one would expect that reconstructions of changes in SHW intensity on centennial to millennial timescales would show clear links with Antarctic ice core and Southern Ocean marine geological records of atmospheric CO2, temperature and sea ice. Here, we present a 12,300 year reconstruction of past wind strength based on three independent proxies that track the changing inputs of sea salt aerosols and minerogenic particles into lake sediments on sub-Antarctic Macquarie Island. The proxies are consistent in showing that periods of high wind intensity corresponded with the increase in CO2 across the late Last Glacial-Interglacial Transition and in the last 7,000 years, suggesting that the winds have contributed to the long term outgassing of CO2 from the ocean during these periods.

  11. Factoring out natural and indirect human effects on terrestrial carbon sources and sinks

    International Nuclear Information System (INIS)

    Canadell, J.G.; Kirschbaum, M.U.F.; Kurz, W.A.; Sanz, M.J.; Schlamadinger, B.; Yamagata, Y.

    2007-01-01

    The capacity to partition natural, indirect, and direct human-induced effects on terrestrial carbon (C) sources and sinks is necessary to be able to predict future terrestrial C dynamics and thus their influence on atmospheric CO2 growth. However, it will take a number of years before we can better attribute quantitative estimates of the contribution of various C processes to the net C balance. In a policy context, factoring out natural and indirect human-induced effects on C sources and sinks from the direct human-induced influences, is seen as a requirement of a C accounting approach that establishes a clear and unambiguous connection between human activities and the assignment of C credits and debits. We present options for factoring out various groups of influences including climate variability, CO2 and N fertilization, and legacies from forest management. These are: (1) selecting longer accounting or measurement periods to reduce the effects of inter-annual variability; (2) correction of national inventories for inter-annual variability; (3) use of activity-based accounting and C response curves; (4) use of baseline scenarios or benchmarks at the national level; (5) stratification of the landscape into units with distinct average C stocks. Other, more sophisticated modeling approaches (e.g., demographic models in combination with forest inventories; process-based models) are possible options for future C accounting systems but their complexity and data requirements make their present adoption more difficult in an inclusive international C accounting system

  12. Pathway of phloem unloading in tobacco sink leaves

    International Nuclear Information System (INIS)

    Turgeon, R.

    1987-01-01

    Phloem unloading in transition sink leaves of tobacco (Nicotiana tabacum L.) was analyzed by quantitative autoradiography. Source leaves were labeled with 14 CO 2 and experimental treatments were begun approximately 1 h later when label had entered the sink leaves. Autoradiographs were prepared from rapidly frozen, lyophilized sink tissue at the beginning and end of the treatments and the amount of label in veins and in surrounding cells was determined by microdensitometry. Photoassimilate unloaded from third order and larger, but not smaller, veins. Long-distance import and unloading did not respond the same way to all experimental treatments. Import was completely inhibited by cold, anaerobiosis or steam girdling the sink leaf petiole. Unloading was inhibited by cold but continued in an anaerobic atmosphere and after steam girdling. Uptake of exogenous [ 14 C]sucrose was inhibited by anaerobiosis. Since an apoplastic pathway of phloem unloading would involve solute uptake from the apoplast the results are most consistent with passive symplastic unloading of photoassimilates from phloem to surrounding cells

  13. Development of an operations evaluation system for sinking EDM

    NARCIS (Netherlands)

    Lauwers, B.; Oosterling, J.A.J.; Vanderauwera, W.

    2010-01-01

    This paper describes the development and validation of an operations evaluation system for sinking EDM operations. Based on a given workpiece geometry (e.g. mould), regions to be EDM'ed are automatically indentified. For a given electrode configuration, consisting of one or more regions, EDM

  14. Million Trees Los Angeles: Carbon dioxide sink or source?

    Science.gov (United States)

    E.G. McPherson; A. Kendall; S. Albers

    2015-01-01

    This study seeks to answer the question, 'Will the Million Trees LA (MTLA) programme be a CO2 sink or source?' Using surveys, interviews, field sampling and computer simulation of tree growth and survival over a 40-year period, we developed the first process-based life cycle inventory of CO2 for a large tree...

  15. Enhanced heat sink with geometry induced wall-jet

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Md. Mahamudul, E-mail: sohel0991@gmail.com; Tikadar, Amitav; Bari, Fazlul; Morshed, A. K. M. M. [Department of Mechanical Engineering Bangladesh University of Engineering and Technology, Dhaka-1000. Bangladesh (Bangladesh)

    2016-07-12

    Mini-channels embedded in solid matrix have already proven to be a very efficient way of electronic cooling. Traditional mini-channel heat sinks consist of single layer of parallel channels. Although mini-channel heat sink can achieve very high heat flux, its pumping requirement for circulating liquid through the channel increase very sharply as the flow velocity increases. The pumping requirements of the heat sink can be reduced by increasing its performance. In this paper a novel approach to increase the thermal performance of the mini-channel heat sink is proposed through geometry induced wall jet which is a passive technique. Geometric irregularities along the channel length causes abrupt pressure change between the channels which causes cross flow through the interconnections thus one channel faces suction and other channel jet action. This suction and jet action disrupts boundary layer causing enhanced heat transfer performance. A CFD model has been developed using commercially available software package FLUENT to evaluate the technique. A parametric study of the velocities and the effect of the position of the wall-jets have been performed. Significant reduction in thermal resistance has been observed for wall-jets, it is also observed that this reduction in thermal resistance is dependent on the position and shape of the wall jet.

  16. Intrinsic and extrinsic drivers of source-sink dynamics

    Science.gov (United States)

    1. Many factors affect the presence and exchange of individuals among subpopulations and influence not only the emergence, but the strength of ensuing source-sink dynamics within metapopulations, yet their relative contributions remain largely unexplored. 2. To help identify the...

  17. Source to sink transport and regulation by environmental factors

    Directory of Open Access Journals (Sweden)

    Remi eLemoine

    2013-07-01

    Full Text Available Source-to-sink transport of sugar is one of the major determinants of plant growth and relies on the efficient and controlled distribution of sucrose (and some other sugars such as raffinose and polyols across plant organs through the phloem. However, sugar transport through the phloem can be affected by many environmental factors that alter source/sink relationships. In this paper, we summarize current knowledge about the phloem transport mechanisms and review the effects of several abiotic (water and salt stress, mineral deficiency, CO2, light, temperature, air and soil pollutants and biotic (mutualistic and pathogenic microbes, viruses, aphids and parasitic plants factors. Concerning abiotic constraints, alteration of the distribution of sugar among sinks is often reported, with some sinks as roots favoured in case of mineral deficiency. Many of these constraints impair the transport function of the phloem but the exact mechanisms are far from being completely known. Phloem integrity can be disrupted (e.g. by callose deposition and under certain conditions, phloem transport is affected, earlier than photosynthesis. Photosynthesis inhibition could result from the increase in sugar concentration due to phloem transport decrease. Biotic interactions (aphids, fungi, viruses… also affect crop plant productivity. Recent breakthroughs have identified some of the sugar transporters involved in these interactions on the host and pathogen sides. The different data are discussed in relation to the phloem transport pathways. When possible, the link with current knowledge on the pathways at the molecular level will be highlighted.

  18. Recent findings on sinks for sulfide in gravity sewer networks

    DEFF Research Database (Denmark)

    Nielsen, Asbjørn Haaning; Hvitved-Jacobsen, Thorkild; Vollertsen, Jes

    2006-01-01

    summarizes this newly obtained knowledge and emphasizes important implications of the findings. Model simulations of the in-sewer processes important for the sulfur cycle showed that sulfide oxidation in the wetted biofilm is typically the most important sink for dissolved sulfide in gravity sewers. However...

  19. Role of Sink Density in Nonequilibrium Chemical Redistribution in Alloys

    Science.gov (United States)

    Martínez, Enrique; Senninger, Oriane; Caro, Alfredo; Soisson, Frédéric; Nastar, Maylise; Uberuaga, Blas P.

    2018-03-01

    Nonequilibrium chemical redistribution in open systems submitted to external forces, such as particle irradiation, leads to changes in the structural properties of the material, potentially driving the system to failure. Such redistribution is controlled by the complex interplay between the production of point defects, atomic transport rates, and the sink character of the microstructure. In this work, we analyze this interplay by means of a kinetic Monte Carlo (KMC) framework with an underlying atomistic model for the Fe-Cr model alloy to study the effect of ideal defect sinks on Cr concentration profiles, with a particular focus on the role of interface density. We observe that the amount of segregation decreases linearly with decreasing interface spacing. Within the framework of the thermodynamics of irreversible processes, a general analytical model is derived and assessed against the KMC simulations to elucidate the structure-property relationship of this system. Interestingly, in the kinetic regime where elimination of point defects at sinks is dominant over bulk recombination, the solute segregation does not directly depend on the dose rate but only on the density of sinks. This model provides new insight into the design of microstructures that mitigate chemical redistribution and improve radiation tolerance.

  20. Analysis of ultimate-heat-sink spray ponds. Technical report

    International Nuclear Information System (INIS)

    Codell, R.

    1981-08-01

    This report develops models which can be utilized in the design of certain types of spray ponds used in ultimate heat sinks at nuclear power plants, and ways in which the models may be employed to determine the design basis required by U.S. Nuclear Regulatory Commission Regulatory Guide 1.27

  1. Characterization of Hop-and-Sink Locomotion of Water Fleas

    Science.gov (United States)

    Skipper, A. N.; Murphy, D. W.; Webster, D. R.

    2017-11-01

    The freshwater crustacean Daphnia magna is a widely studied zooplankton in relation to food webs, predator-prey interactions, and other biological/ecological considerations; however, their locomotion is poorly quantified and understood. These water fleas utilize a hop-and-sink mechanism that consists of making quick, impulsive jumps by beating their antennae to propel themselves forward (roughly 1 body length). The animals then sink for a period, during which they stretch out their antennae to increase drag and thereby reduce their sinking velocity. Time-resolved three-dimensional flow fields surrounding the animals were quantified with a unique infrared tomographic particle image velocimetry (tomo-PIV) system. Three-dimensional kinematics data were also extracted from the image sequences. In the current work, we compared body kinematics and flow disturbance among organisms of size in the range of 1.3 to 2.8 mm. The stroke cycle averaged 150 +/- 20 ms, with each stroke cycle split nearly evenly between power and recovery strokes. The kinematics data collapsed onto a self-similar curve when properly nondimensionalized, and a general trend was shown to exist between the nondimensionalized peak body speed and body length. The fluid flow induced by each antennae consisted of a viscous vortex ring that demonstrated a slow decay in the wake. The viscous dissipation showed no clear dependence on body size, whereas the volume of fluid exceeding 5 mm/s (the speed near the sinking speed of the animal) decayed more slowly with increasing body size.

  2. Quantifying greenhouse gas sources and sinks in managed wetland systems

    Science.gov (United States)

    Stephen M Ogle; Patrick Hunt; Carl Trettin

    2014-01-01

    This chapter provides methodologies and guidance for reporting greenhouse gas (GHG) emissions and sinks at the entity scale for managed wetland systems. More specifically, it focuses on methods for managed palustrine wetlands.1 Section 4.1 provides an overview of wetland systems and resulting GHG emissions, system boundaries and temporal scale, a summary of the...

  3. Capacity Building

    International Nuclear Information System (INIS)

    Molloy, Brian; Mallick, Shahid

    2014-01-01

    Outcomes & Recommendations: • Significant increase needed in the nuclear workforce both to replace soon-to-retire current generation and to staff large numbers of new units planned • Key message, was the importance of an integrated approach to workforce development. • IAEA and other International Organisations were asked to continue to work on Knowledge Management, Networks and E&T activities • IAEA requested to conduct Global Survey of HR needs – survey initiated but only 50% of operating countries (30% of capacity) took part, so results inconclusive

  4. Combining stable isotope and carbohydrate analyses in phloem sap and fine roots to study seasonal changes of source-sink relationships in a Mediterranean beech forest.

    Science.gov (United States)

    Scartazza, Andrea; Moscatello, Stefano; Matteucci, Giorgio; Battistelli, Alberto; Brugnoli, Enrico

    2015-08-01

    Carbon isotope composition (δ(13)C) and carbohydrate content of phloem sap and fine roots were measured in a Mediterranean beech (Fagus sylvatica L.) forest throughout the growing season to study seasonal changes of source-sink relationships. Seasonal variations of δ(13)C and content of phloem sap sugars, collected during the daylight period, reflected the changes in soil and plant water status. The correlation between δ(13)C and content of phloem sap sugars, collected from plants belonging to different social classes, was significantly positive only during the driest month of July. In this month, δ(13)C of phloem sap sugars was inversely related to the increment of trunk radial growth and positively related to δ(13)C of fine roots. We conclude that the relationship between δ(13)C and the amount of phloem sap sugars is affected by a combination of causes, such as sink strength, tree social class, changes in phloem anatomy and transport capacity, and phloem loading of sugars to restore sieve tube turgor following the reduced plant water potential under drought conditions. However, δ(13)C and sugar composition of fine roots suggested that phloem transport of leaf sucrose to this belowground component was not impaired by mild drought and that sucrose was in a large part allocated towards fine roots in July, depending on tree social class. Hence, fine roots could represent a functional carbon sink during the dry seasonal periods, when transport and use of assimilates in other sink tissues are reduced. These results indicate a strict link between above- and belowground processes and highlight a rapid response of this Mediterranean forest to changes in environmental drivers to regulate source-sink relationships and carbon sink capacity. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Spatial distribution of carbon sources and sinks in Canada's forests

    International Nuclear Information System (INIS)

    Chen, Jing M.; Weimin, Ju; Liu, Jane; Cihlar, Josef; Chen, Wenjun

    2003-01-01

    Annual spatial distributions of carbon sources and sinks in Canada's forests at 1 km resolution are computed for the period from 1901 to 1998 using ecosystem models that integrate remote sensing images, gridded climate, soils and forest inventory data. GIS-based fire scar maps for most regions of Canada are used to develop a remote sensing algorithm for mapping and dating forest burned areas in the 25 yr prior to 1998. These mapped and dated burned areas are used in combination with inventory data to produce a complete image of forest stand age in 1998. Empirical NPP age relationships were used to simulate the annual variations of forest growth and carbon balance in 1 km pixels, each treated as a homogeneous forest stand. Annual CO 2 flux data from four sites were used for model validation. Averaged over the period 1990-1998, the carbon source and sink map for Canada's forests show the following features: (i) large spatial variations corresponding to the patchiness of recent fire scars and productive forests and (ii) a general south-to-north gradient of decreasing carbon sink strength and increasing source strength. This gradient results mostly from differential effects of temperature increase on growing season length, nutrient mineralization and heterotrophic respiration at different latitudes as well as from uneven nitrogen deposition. The results from the present study are compared with those of two previous studies. The comparison suggests that the overall positive effects of non-disturbance factors (climate, CO 2 and nitrogen) outweighed the effects of increased disturbances in the last two decades, making Canada's forests a carbon sink in the 1980s and 1990s. Comparisons of the modeled results with tower-based eddy covariance measurements of net ecosystem exchange at four forest stands indicate that the sink values from the present study may be underestimated

  6. Available transmission capacity assessment

    Directory of Open Access Journals (Sweden)

    Škokljev Ivan

    2012-01-01

    Full Text Available Effective power system operation requires the analysis of vast amounts of information. Power market activities expose power transmission networks to high-level power transactions that threaten normal, secure operation of the power system. When there are service requests for a specific sink/source pair in a transmission system, the transmission system operator (TSO must allocate the available transfer capacity (ATC. It is common that ATC has a single numerical value. Additionally, the ATC must be calculated for the base case configuration of the system, while generation dispatch and topology remain unchanged during the calculation. Posting ATC on the internet should benefit prospective users by aiding them in formulating their requests. However, a single numerical value of ATC offers little for prospect for analysis, planning, what-if combinations, etc. A symbolic approach to the power flow problem (DC power flow and ATC offers a numerical computation at the very end, whilst the calculation beforehand is performed by using symbols for the general topology of the electrical network. Qualitative analysis of the ATC using only qualitative values, such as increase, decrease or no change, offers some new insights into ATC evaluation, multiple transactions evaluation, value of counter-flows and their impact etc. Symbolic analysis in this paper is performed after the execution of the linear, symbolic DC power flow. As control variables, the mathematical model comprises linear security constraints, ATC, PTDFs and transactions. The aim is to perform an ATC sensitivity study on a five nodes/seven lines transmission network, used for zonal market activities tests. A relatively complicated environment with twenty possible bilateral transactions is observed.

  7. Lifetime Optimization of a Multiple Sink Wireless Sensor Network through Energy Balancing

    Directory of Open Access Journals (Sweden)

    Tapan Kumar Jain

    2015-01-01

    Full Text Available The wireless sensor network consists of small limited energy sensors which are connected to one or more sinks. The maximum energy consumption takes place in communicating the data from the nodes to the sink. Multiple sink WSN has an edge over the single sink WSN where very less energy is utilized in sending the data to the sink, as the number of hops is reduced. If the energy consumed by a node is balanced between the other nodes, the lifetime of the network is considerably increased. The network lifetime optimization is achieved by restructuring the network by modifying the neighbor nodes of a sink. Only those nodes are connected to a sink which makes the total energy of the sink less than the threshold. This energy balancing through network restructuring optimizes the network lifetime. This paper depicts this fact through simulations done in MATLAB.

  8. Analysis on the Role of RSG-GAS Pool Cooling System during Partial Loss of Heat Sink Accident

    Science.gov (United States)

    Susyadi; Endiah, P. H.; Sukmanto, D.; Andi, S. E.; Syaiful, B.; Hendro, T.; Geni, R. S.

    2018-02-01

    RSG-GAS is a 30 MW reactor that is mostly used for radioisotope production and experimental activities. Recently, it is regularly operated at half of its capacity for efficiency reason. During an accident, especially loss of heat sink, the role of its pool cooling system is very important to dump decay heat. An analysis using single failure approach and partial modeling of RELAP5 performed by S. Dibyo, 2010 shows that there is no significant increase in the coolant temperature if this system is properly functioned. However lessons learned from the Fukushima accident revealed that an accident can happen due to multiple failures. Considering ageing of the reactor, in this research the role of pool cooling system is to be investigated for a partial loss of heat sink accident which is at the same time the protection system fails to scram the reactor when being operated at 15 MW. The purpose is to clarify the transient characteristics and the final state of the coolant temperature. The method used is by simulating the system in RELAP5 code. Calculation results shows the pool cooling systems reduce coolant temperature for about 1 K as compared without activating them. The result alsoreveals that when the reactor is being operated at half of its rated power, it is still in safe condition for a partial loss of heat sink accident without scram.

  9. Acoustic monitoring of a ball sinking in vibrated granular sediments

    Science.gov (United States)

    van den Wildenberg, Siet; Léopoldès, Julien; Tourin, Arnaud; Jia, Xiaoping

    2017-06-01

    We develop an ultrasound probing to investigate the dynamics of a high density ball sinking in 3D opaque dense granular suspensions under horizontal weak vibrations. We show that the motion of the ball in these horizontally vibrated glass bead packings saturated by water is consistent with the frictional rheology. The extracted stress-strain relation evidences an evolution of flow behaviour from frictional creep to inertial regimes. Our main finding is that weak external vibration primarily affects the yield stress and controls the depth of sinking via vibration-induced sliding at the grain contact. Also, we observe that the extracted rheological parameters depend on the size of the probing ball, suggesting thus a non-local rheology.

  10. A novel high performance, ultra thin heat sink for electronics

    International Nuclear Information System (INIS)

    Escher, W.; Michel, B.; Poulikakos, D.

    2010-01-01

    We present an ultra thin heat sink for electronics, combining optimized impinging slot-jets, micro-channels and manifolds for efficient cooling. We first introduce a three-dimensional numerical model of the heat transfer structure, to investigate its hydrodynamic and thermal performance and its sensitivity to geometric parameters. In a second step we propose a three-dimensional hydrodynamic numerical model representing the complete system. Based on this model we design a novel manifold providing uniform fluid distribution. In order to save computational time a simpler semi-empirical model is proposed and validated. The semi-empirical model allows a robust optimization of the heat sink geometric parameters. The design is optimized for a 2 x 2 cm 2 chip and provides a total thermal resistance of 0.087 cm 2 K/W for flow rates 2 for a temperature difference between fluid inlet and chip of 65 K.

  11. Prediction of work piece geometry in electrochemical cavity sinking

    Energy Technology Data Exchange (ETDEWEB)

    Riggs, J B; Muller, R H; Tobias, C W

    1981-01-01

    A computer-implemented model for predicting ECM work piece geometry has been developed and experimentally verified with a commercial ECM machine for cavity sinking in copper and 302-stainless steel with 2N KNO/sub 3/ electrolyte. Constant tool piece feed rates of 7-10 x 10/sup -4/ cm/s, and applied voltages of 11-25 V were used. The model predicts the dependence of work piece geometry on operating conditions and on the electrochemical and physical properties of the metal-electrolyte pair. Comparison of eight equilibrium and six unsteady state experimental cavity profiles in copper showed satisfactory agreement with predictions, as did five equilibrium profiles for cavity sinking in 302-stainless steel.

  12. Pin fin compliant heat sink with enhanced flexibility

    Science.gov (United States)

    Schultz, Mark D.

    2018-04-10

    Heat sinks and methods of using the same include a top and bottom plate, at least one of which has a plurality of pin contacts flexibly connected to one another, where the plurality of pin contacts have vertical and lateral flexibility with respect to one another; and pin slice layers, each having multiple pin slices, arranged vertically between the top and bottom plates such that the plurality of pin slices form substantially vertical pins connecting the top and bottom plates.

  13. Field Test of a Steam Condenser Heat Sink Concept

    Science.gov (United States)

    1974-01-01

    stored underground for a specified time. A functional and economical heat rejection system is an important design consideration for such...per- mits the use of tunnels for other than just heat sink purposes. If existing tunnels can be used, the concept becomes economically attractive...that the water meter readings aie a valid indication of the mpu ! and that condensate was lost bv seepage thionuli the lock and or ballast into the

  14. Analytical analysis and experimental verification of interleaved parallelogram heat sink

    International Nuclear Information System (INIS)

    Chen, Hong-Long; Wang, Chi-Chuan

    2017-01-01

    Highlights: • A novel air-cooled heat sink profile (IPFM) is proposed to compete with the typical design. • It features two different perimeters with odd fin being rectangular and the rest being parallelogram. • A new modified dimensionless parameter characterized the flow length in triangular region is proposed. • The analytical predictions are in line with the experiments for both conventional and IPFM design. • IPFM design shows a much lower pressure drop and a superior performance especially for dense fins. - Abstract: In this study, a novel air-cooled heat sink profile is proposed to compete with the conventional design. The new design is termed as IPFM (Interleaved Parallelogram Fin Module) which features two different geometrical perimeter shapes of fins. This new design not only gains the advantage of lower pressure drop for power saving; but also gains a material saving for less fin surface area. An assessment of flow impedance and performance between the conventional and IPFM heat sink is analytically investigated and experimentally verified. A new modified dimensionless friction factor for triangular region is proposed. The analytical predictions agree with experimental measurements for both conventional and IPFM design. In electronic cooling design, especially for cloud server air-cooled heat sink design, the flow pattern is usually laminar with Reynolds number being operated less than 2000. In this regime, the IPFM design shows 8–12% less of surface than conventional design when the flow rate is less than 10 CFM; yet the thermal performance is slightly inferior to the conventional design when the flowrate is raised towards 25 CFM. Yet in the test range of 5–25 CFM, a 10–15% lower flow impedance is observed. The smaller fin spacing, the more conspicuous reduction of flow impedance is observed. The optimization of cutting angle is around 35° for 10 CFM, and it is reduced to 15° at a larger flowrate of 20 CFM.

  15. Is The Bovine Pedal Bone Sinking Around Calving?

    DEFF Research Database (Denmark)

    Bach, Kurt; Nielsen, Søren Saxmose; Capion, Nynne

    weeks. The correlation between “days from calving” and “thickness of the soft tissue” was 0.31 (Pearson’s, p...Introduction Softening of connective tissue of the claw suspensory apparatus around calving as described by Tarlton, et al. (2002) may lead to sinking of the bovine pedal bone resulting in compression of the digital cushion. The objective of this study was to describe changes in the thickness...

  16. Sinking of armour layer around a vertical cylinder exposed to waves and current

    DEFF Research Database (Denmark)

    Nielsen, Anders Wedel; Probst, Thomas; Petersen, Thor Ugelvig

    2015-01-01

    The mechanisms of the sinking of a scour protection adjacent to a monopile are described in this paper, together with the determination of the equilibrium sinking depth in various wave and combined wave and current conditions based on physical model tests.Sinking of the rocks may ultimately lead ...

  17. Sink strengths of dislocations taking into account bulk recombination effects

    International Nuclear Information System (INIS)

    Steinbach, E.

    1988-01-01

    The applicability of the rate theory to describe radiation damage processes is closely associated with the calculation of the various sink strengths. In this connection the effect of bulk recombination is usually neglected, because of the complexity of the problem. For this reason we present in this paper, for the first time, by means of the rigorous elastic-field model of a dislocation embedded in a lossy continuum, analytic expressions for the diffusion flux of irradiation-induced point defects into a dislocation, taking into account the elastic interaction, additional sinks and higher order bulk recombination effects. The resulting self-consistent formulae for the dislocation sink strengths clearly demonstrate the importance of the bulk recombination for the micro-structures of irradiated materials. In conjunction with the Harwell computer code VS5 it became clear that this new dislocation bias also leads to a change in the macrostructural observables. The order of magnitude of this effect emphasizes that neglecting bulk recombination as a general principle is not justified

  18. The sinking of the Soviet Mike class nuclear powered submarine

    International Nuclear Information System (INIS)

    1989-01-01

    The purpose of this preliminary study is to assess the quantities of the longer-lived or persistent radioactive materials, or source terms, that have been lost at sea with the sinking of the Soviet MIKE class submarine off Bear Island on 7 April 1989. The report arrives at an assessment of the amount of radioactivity and compares this to the quantities of radioactive materials dumped by the UK from 1953 to 1982 at which time sea dumping of radioactive wastes was suspended by international resolve. This comparison can be used to assess the relative significance of the sinking of this submarine. The study does not extrapolate the estimated radioactive source terms to an environmental or radiological significance of the sinking, although it is concluded that unless the submarine is recovered intact from the ocean floor, the by far greater part of the radioactive materials on board will disperse to the marine environment at some future time, if they are not doing so already. (author)

  19. Trends in the sources and sinks of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Le Quere, Corrine [University of East Anglia, Norwich, United Kingdom; Raupach, Mike [GCP, Canberra, Australia; Canadell, J.G. [CSIRO Marine and Atmospheric Research; Marland, Gregg [ORNL; Bopp, Laurent [National Center for Scientific Research, Gif-sur-Yvette, France; Ciais, Philippe [Laboratoire des Sciences du Climat et de l' Environement, France; Friedlingstein, Pierre [National Center for Scientific Research, Gif-sur-Yvette, France; Viovy, Nicolas [National Center for Scientific Research, Gif-sur-Yvette, France; Conway, T.J. [NOAA, Boulder, CO; Doney, Scott C. [Woods Hole Oceanographic Institution; Feely, R. A. [NOAA Pacific Marine Environmental Laboratory; Foster, Pru [University of Bristol, UK; House, Joanna I [University of Bristol, UK; Prentice, Colin I. [University of Bristol, UK; Gurney, Kevin [Purdue University; Houghton, R.A. [Woods Hole Research Center, Woods Hole, MA; Huntingford, Chris [Center for Ecology and Hydrology, Oxon, England; Levy, Peter E. [Center for Ecology and Hydrology, Midlothian, Scotland; Lomas, M. R. [University of Sheffield; Woodward, F. I. [University of Sheffield; Majkut, Joseph [Princeton University; Sarmiento, Jorge L. [Princeton University; Metzl, Nicolas [University of Paris; Ometto, Jean P [ORNL; Randerson, James T. [University of California, Irvine; Peters, Glen P [Center for International Climate and Energy Research (CICERO), Oslo, Norway; Running, Steven [University of Montana, Missoula; Sitch, Stephen [University of Leeds, UK; Takahashi, Taro [Columbia University; Van der Werf, Guido [Universitate Amsterdam

    2009-12-01

    Efforts to control climate change require the stabilization of atmospheric CO2 concentrations. This can only be achieved through a drastic reduction of global CO2 emissions. Yet fossil fuel emissions increased by 29% between 2000 and 2008, in conjunction with increased contributions from emerging economies, from the production and international trade of goods and services, and from the use of coal as a fuel source. In contrast, emissions from land-use changes were nearly constant. Between 1959 and 2008, 43% of each year's CO2 emissions remained in the atmosphere on average; the rest was absorbed by carbon sinks on land and in the oceans. In the past 50 years, the fraction of CO2 emissions that remains in the atmosphere each year has likely increased, from about 40% to 45%, and models suggest that this trend was caused by a decrease in the uptake of CO2 by the carbon sinks in response to climate change and variability. Changes in the CO2 sinks are highly uncertain, but they could have a significant influence on future atmospheric CO2 levels. It is therefore crucial to reduce the uncertainties.

  20. Control of Delta Avulsion by Downstream Sediment Sinks

    Science.gov (United States)

    Salter, Gerard; Paola, Chris; Voller, Vaughan R.

    2018-01-01

    Understanding how fluxes are partitioned at delta bifurcations is critical for predicting patterns of land loss and gain in deltas worldwide. Although the dynamics of river deltas are influenced from both upstream and downstream, previous studies of bifurcations have focused on upstream controls. Using a quasi-1-D bifurcation model, we show that flow switching in bifurcations is strongly influenced by downstream sediment sinks. We find that coupling between upstream and downstream feedbacks can lead to oscillations in water and sediment flux partitioning. The frequency and initial rate of growth/decay of the oscillations depend on both upstream and downstream conditions, with dimensionless bifurcate length and bypass fraction emerging as key downstream parameters. With a strong offshore sink, causing bypass in the bifurcate branches, we find that bifurcation dynamics become "frozen"; that is, the bifurcation settles on a permanent discharge ratio. In contrast, under depositional conditions, we identify three dynamical regimes: symmetric; soft avulsion, where both branches remain open but the dominant branch switches; and full avulsion. Finally, we show that differential subsidence alters these regimes, with the difference in average sediment supply to each branch exactly compensating for the difference in accommodation generation. Additionally, the model predicts that bifurcations with shorter branches are less asymmetric than bifurcations with longer branches, all else equal, providing a possible explanation for the difference between backwater length distributaries, which tend to be avulsive, and relatively stable mouth-bar-scale networks. We conclude that bifurcations are sensitive both quantitatively and qualitatively to downstream sinks.

  1. Faster Increases in Human Life Expectancy Could Lead to Slower Population Aging

    Science.gov (United States)

    2015-01-01

    Counterintuitively, faster increases in human life expectancy could lead to slower population aging. The conventional view that faster increases in human life expectancy would lead to faster population aging is based on the assumption that people become old at a fixed chronological age. A preferable alternative is to base measures of aging on people’s time left to death, because this is more closely related to the characteristics that are associated with old age. Using this alternative interpretation, we show that faster increases in life expectancy would lead to slower population aging. Among other things, this finding affects the assessment of the speed at which countries will age. PMID:25876033

  2. The effect of glyphosate on import into a sink leaf of sugar beet

    International Nuclear Information System (INIS)

    Shieh, Wenjang; Geiger, D.R.

    1990-01-01

    The basis for glyphosate inducted limitation of carbon import into developing leaves was studied in sugar beet. To separate the effects of the herbicide on export from those on import, glyphosate was supplied to a developing leaf from two exporting source leaves which fed the sink leaf. Carbon import into the sink leaf was determined by supplying 14 CO 2 to a third source leaf which also supplies carbon to the monitored sink leaf. Import into the sink leaf decreased within 2 to 3 h after glyphosate application, even though photosynthesis and export in the source leaf supplying 14 C were unaffected. Reduced import into the sink leaf was accompanied by increased import by the tap root. Elongation of the sink leaf was only slightly decreased following arrival of glyphosate. Photosynthesis by the sink leaf was not inhibited. The results to data support the view that import is slowed by the inhibition of synthesis of structural or storage compounds in the developing leaves

  3. Capacity Expansion and Reliability Evaluation on the Networks Flows with Continuous Stochastic Functional Capacity

    Directory of Open Access Journals (Sweden)

    F. Hamzezadeh

    2014-01-01

    Full Text Available In many systems such as computer network, fuel distribution, and transportation system, it is necessary to change the capacity of some arcs in order to increase maximum flow value from source s to sink t, while the capacity change incurs minimum cost. In real-time networks, some factors cause loss of arc’s flow. For example, in some flow distribution systems, evaporation, erosion or sediment in pipes waste the flow. Here we define a real capacity, or the so-called functional capacity, which is the operational capacity of an arc. In other words, the functional capacity of an arc equals the possible maximum flow that may pass through the arc. Increasing the functional arcs capacities incurs some cost. There is a certain resource available to cover the costs. First, we construct a mathematical model to minimize the total cost of expanding the functional capacities to the required levels. Then, we consider the loss of flow on each arc as a stochastic variable and compute the system reliability.

  4. Subterranean karst environments as a global sink for atmospheric methane

    Science.gov (United States)

    Webster, Kevin D.; Drobniak, Agnieszka; Etiope, Giuseppe; Mastalerz, Maria; Sauer, Peter E.; Schimmelmann, Arndt

    2018-03-01

    The air in subterranean karst cavities is often depleted in methane (CH4) relative to the atmosphere. Karst is considered a potential sink for the atmospheric greenhouse gas CH4 because its subsurface drainage networks and solution-enlarged fractures facilitate atmospheric exchange. Karst landscapes cover about 14% of earth's continental surface, but observations of CH4 concentrations in cave air are limited to localized studies in Gibraltar, Spain, Indiana (USA), Vietnam, Australia, and by incomplete isotopic data. To test if karst is acting as a global CH4 sink, we measured the CH4 concentrations, δ13CCH4, and δ2HCH4 values of cave air from 33 caves in the USA and three caves in New Zealand. We also measured CO2 concentrations, δ13CCO2, and radon (Rn) concentrations to support CH4 data interpretation by assessing cave air residence times and mixing processes. Among these caves, 35 exhibited subatmospheric CH4 concentrations in at least one location compared to their local atmospheric backgrounds. CH4 concentrations, δ13CCH4, and δ2HCH4 values suggest that microbial methanotrophy within caves is the primary CH4 consumption mechanism. Only 5 locations from 3 caves showed elevated CH4 concentrations compared to the atmospheric background and could be ascribed to local CH4 sources from sewage and outgassing swamp water. Several associated δ13CCH4 and δ2HCH4 values point to carbonate reduction and acetate fermentation as biochemical pathways of limited methanogenesis in karst environments and suggest that these pathways occur in the environment over large spatial scales. Our data show that karst environments function as a global CH4 sink.

  5. Sinks without borders: Snowshoe hare dynamics in a complex landscape

    Science.gov (United States)

    Griffin, Paul C.; Mills, L. Scott

    2009-01-01

    A full understanding of population dynamics of wide-ranging animals should account for the effects that movement and habitat use have on individual contributions to population growth or decline. Quantifying the per-capita, habitat-specific contribution to population growth can clarify the value of different patch types, and help to differentiate population sources from population sinks. Snowshoe hares, Lepus americanus, routinely use various habitat types in the landscapes they inhabit in the contiguous US, where managing forests for high snowshoe hare density is a priority for conservation of Canada lynx, Lynx canadensis. We estimated density and demographic rates via mark–recapture live trapping and radio-telemetry within four forest stand structure (FSS) types at three study areas within heterogeneous managed forests in western Montana. We found support for known fate survival models with time-varying individual covariates representing the proportion of locations in each of the FSS types, with survival rates decreasing as use of open young and open mature FSS types increased. The per-capita contribution to overall population growth increased with use of the dense mature or dense young FSS types and decreased with use of the open young or open mature FSS types, and relatively high levels of immigration appear to be necessary to sustain hares in the open FSS types. Our results support a conceptual model for snowshoe hares in the southern range in which sink habitats (open areas) prevent the buildup of high hare densities. More broadly, we use this system to develop a novel approach to quantify demographic sources and sinks for animals making routine movements through complex fragmented landscapes.

  6. Salt Marshes as Sources and Sinks of Silica

    Science.gov (United States)

    Carey, J.; Fulweiler, R. W.

    2014-12-01

    The role of salt marshes in controlling silica exchange between terrestrial and marine environments is unclear. In some studies, large quantities of dissolved silica (DSi) appear to be exported from marshes via tidal exchange, potentially fueling future diatom production in adjacent waters. In contrast, other studies report insignificant DSi export and found instead that salt marshes appeared to be Si sinks. Further, few studies examine salt marsh Si export in relation to inorganic nitrogen (DIN) and phosphorus (DIP). We address these uncertainties by quantifying net fluxes of DSi and biogenic Si (BSi), as well as DIN and DIP during the spring and summer in a relatively undisturbed southern New England salt marsh (Narragansett Bay, USA). Our data demonstrates that during the spring, when estuarine waters are deplete in DSi, the marsh serves as a net sink of BSi (132 mol h-1) and a source of DSi (31 mol h-1) to the estuary. The spring DIN:DSi ratios of ebbing water were more than five times lower than flood waters. Most importantly, the DSi export rates (6.5 x103 mol d-1 km-2) are an order of magnitude larger than the export by rivers in the region (115 mol d-1 km-2), indicating the marsh tidal exchange is vital in supplying the Si necessary for spring diatom blooms in the estuary. Conversely, during the summer the marsh served as a net Si sink, importing on average 59 mol DSi h-1 and 39 mol BSi h-1. These data highlight that the role of salt marshes in silica cycling appears to have a strong seasonality. We hypothesize that net import of Si increases the residence time of Si in estuarine systems, providing an important and previously over-looked ecosystem service. In the absence of salt marshes, ~5.1 x 104 kmol of Si would be exported from this system during the growing season, possibly decreasing Si availability and altering phytoplankton species composition in the estuary.

  7. Reading faster

    Directory of Open Access Journals (Sweden)

    Paul Nation

    2009-12-01

    Full Text Available This article describes the visual nature of the reading process as it relates to reading speed. It points out that there is a physical limit on normal reading speed and beyond this limit the reading process will be different from normal reading where almost every word is attended to. The article describes a range of activities for developing reading fluency, and suggests how the development of fluency can become part of a reading programme.

  8. Sinking into the Sea? Climate Change and AOSIS Strategies

    DEFF Research Database (Denmark)

    Højland, Camille Marie Risager; Svendsen, Gert Tinggaard

    2017-01-01

    that a small actor like AOSIS plays in protecting the citizens of its member states rather than free ride on larger actors. Which strategies should AOSIS use to encourage an even more ambitious climate policy in the future? We suggest five relevant strategies: 1) Introduction of sanctions in the Paris...... Agreement, 2) A CO2 tax, 3) Subsidising new green technology, 4) That AOSIS should look for coalition partners, e.g. China, and 5) Even stronger focus on the linkage between climate change and future migration. Employing such strategies may save the SIDS from sinking into the sea and, at the same time......, secure the target level from the Paris Agreement....

  9. Reduced Future Precipitation Makes Permanence of Amazonian Carbon Sinks Questionable

    Science.gov (United States)

    Arora, V.

    2011-12-01

    The tropical forests of the Amazon, considered as a tipping element in Earth's climate system, provide several ecosystem services including the maintenance of favourable regional climatic conditions in the region and storage of large amounts of carbon in their above- and below-ground pools. While it is nearly impossible, at present, to put a dollar value on these ecosystem services, the developed countries have started paying large sums of money to developing countries in the tropics to reduce deforestation. Norway recently committed up to $1 billion to the Amazon fund. The United Nations' Reducing Emissions from Deforestation and forest Degradation (REDD) program also financially supports national activities of 13 countries worldwide. The primary assumption inherent in paying for avoiding deforestation is that avoided land use change emissions contribute towards climate change mitigation. In addition, the standing forests that are spared deforestation contribute towards additional carbon sinks associated with the CO2 fertilization effect. Implicit in this reasoning is the understanding that the carbon sinks provided by avoided deforestation have some "permanence" associated with them, at least in the order of 50-100 years. Clearly, if "avoided deforestation" is essentially "delayed deforestation" then the benefits will not be long lasting. More importantly, changes in climate have the potential to adversely affect the permanence of carbon sinks, whether they are being paid for or not. This presentation will address the question of "permanence" by analyzing simulations of the second generation Canadian Earth system model (CanESM2) that are contributing results to the upcoming fifth Coupled Modeled Intercomparison Project (CMIP5). CanESM2 results for the future RCP 2.6, 4.5 and 8.5 scenarios show, that due to reduced future precipitation, the Amazonian region remains a net source of carbon over the 21st century in all scenarios. The carbon losses during the recent

  10. Fate and transport of fragrance materials in principal environmental sinks.

    Science.gov (United States)

    Zhang, Xiaolei; Brar, Satinder Kaur; Yan, Song; Tyagi, Rajeshwar Dayal; Surampalli, Rao Y

    2013-10-01

    Fragrance materials are widely present in the environment, such as air, water, and soil. Concerns have been raised due to the increasing utilization and suspected impact on human health. The bioaccumulating property is considered as one of the causes of the toxicity to human beings. The removal of fragrance materials from environmental sinks has not been paid enough attention due to the lack of regulation and research on their toxicity. This paper provides systematic information on how fragrance materials are transferred to the environment, how do they affect human lives, and what is their fate in water, wastewater, wastewater sludge, and soil. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Manipulation of the hypocotyl sink activity by reciprocal grafting of two Raphanus sativus varieties: its effects on morphological and physiological traits of source leaves and whole-plant growth.

    Science.gov (United States)

    Sugiura, Daisuke; Betsuyaku, Eriko; Terashima, Ichiro

    2015-12-01

    To reveal whether hypocotyl sink activities are regulated by the aboveground parts, and whether physiology and morphology of source leaves are affected by the hypocotyl sink activities, we conducted grafting experiments using two Raphanus sativus varieties with different hypocotyl sink activities. Comet (C) and Leafy (L) varieties with high and low hypocotyl sink activities were reciprocally grafted and resultant plants were called by their scion and stock such as CC, LC, CL and LL. Growth, leaf mass per area (LMA), total non-structural carbohydrates (TNCs) and photosynthetic characteristics were compared among them. Comet hypocotyls in CC and LC grew well regardless of the scions, whereas Leafy hypocotyls in CL and LL did not. Relative growth rate was highest in LL and lowest in CC. Photosynthetic capacity was correlated with Rubisco (ribulose 1·5-bisphosphate carboxylase/oxygenase) content but unaffected by TNC. High C/N ratio and accumulation of TNC led to high LMA and structural LMA. These results showed that the hypocotyl sink activity was autonomously regulated by hypocotyl and that the down-regulation of photosynthesis was not induced by TNC. We conclude that the change in the sink activity alters whole-plant growth through the changes in both biomass allocation and leaf morphological characteristics in R. sativus. © 2015 John Wiley & Sons Ltd.

  12. A Comprehensive Study of Data Collection Schemes Using Mobile Sinks in Wireless Sensor Networks

    Science.gov (United States)

    Khan, Abdul Waheed; Abdullah, Abdul Hanan; Anisi, Mohammad Hossein; Bangash, Javed Iqbal

    2014-01-01

    Recently sink mobility has been exploited in numerous schemes to prolong the lifetime of wireless sensor networks (WSNs). Contrary to traditional WSNs where sensory data from sensor field is ultimately sent to a static sink, mobile sink-based approaches alleviate energy-holes issues thereby facilitating balanced energy consumption among nodes. In mobility scenarios, nodes need to keep track of the latest location of mobile sinks for data delivery. However, frequent propagation of sink topological updates undermines the energy conservation goal and therefore should be controlled. Furthermore, controlled propagation of sinks' topological updates affects the performance of routing strategies thereby increasing data delivery latency and reducing packet delivery ratios. This paper presents a taxonomy of various data collection/dissemination schemes that exploit sink mobility. Based on how sink mobility is exploited in the sensor field, we classify existing schemes into three classes, namely path constrained, path unconstrained, and controlled sink mobility-based schemes. We also organize existing schemes based on their primary goals and provide a comparative study to aid readers in selecting the appropriate scheme in accordance with their particular intended applications and network dynamics. Finally, we conclude our discussion with the identification of some unresolved issues in pursuit of data delivery to a mobile sink. PMID:24504107

  13. A highly stable microchannel heat sink for convective boiling

    International Nuclear Information System (INIS)

    Lu, Chun Ting; Pan Chin

    2009-01-01

    To develop a highly stable two-phase microchannel heat sink, we experimented with convective boiling in diverging, parallel microchannels with different distributions of laser-etched artificial nucleation sites. Each microchannel had a mean hydraulic diameter of 120 µm. The two-phase flow visualization and the magnitudes of pressure drop and inlet temperature oscillations under boiling conditions demonstrated clearly the merits of using artificial nucleation sites to further stabilize the flow boiling in diverging, parallel microchannels. The stability map showed the plane of subcooling number versus phase change number. It illustrated that diverging, parallel microchannels with artificial nucleation cavities have a much wider stable region than parallel microchannels with uniform cross-sections or diverging, parallel microchannels without artificial nucleation cavities. In addition, the results revealed that the design with cavities distributed uniformly along the downstream half of the channel presented the best stability performance among the three distributions of nucleation sites. This particular design can be regarded as a highly stable microchannel heat sink for convective boiling

  14. Performance of a polymeric heat sink with circular microchannels

    Energy Technology Data Exchange (ETDEWEB)

    Barba, Alessandro; Musi, Barbara; Spiga, Marco [Department of Industrial Engineering, University of Parma, Parco Area delle Scienze 181, 43100 Parma (Italy)

    2006-06-15

    The object of this work is the thermal investigation of a polymeric microchannel heat sink designed for the active cooling of small flat surfaces. Its performance, pressure drop, temperature distribution, and thermal resistance are evaluated. A three-dimensional procedure is developed and applied to a geometrical configuration consisting of a circular microduct (with a gas running through it), embedded in a solid substrate with rectangular cross-section. The conjugate heat transfer problem is solved assuming fully developed laminar flow in forced convection. The bottom side of the heat sink receives a uniform heat flux, while the top side is adiabatic. Considering a gas flow with low Prandtl and Reynolds numbers, the temperature distribution is given by the sum of a linear function (in the stream direction) and a numerical solution obtained in 2-D coordinates resorting to a finite element software, based on the Rayleigh-Ritz-Galerkin method, with user-defined error tolerance. Rarefaction, compressibility and viscous dissipation are neglected, i.e., the Knudsen, Mach and Brinkman numbers are low. The theoretical results are shown in some graphs and compared with experimental data concerning helium and nitrogen flows in Nylon circular microducts. The agreement is quite satisfactory. [Author].

  15. Martian dust storms as a possible sink of atmospheric methane

    Science.gov (United States)

    Farrell, W. M.; Delory, G. T.; Atreya, S. K.

    2006-11-01

    Recent laboratory tests, analog studies and numerical simulations all suggest that Martian dust devils and larger dusty convective storms generate and maintain large-scale electric fields. Such expected E-fields will have the capability to create significant electron drift motion in the collisional gas and to form an extended high energy (u $\\gg$ kT) electron tail in the distribution. We demonstrate herein that these energetic electrons are capable of dissociating any trace CH4 in the ambient atmosphere thereby acting as an atmospheric sink of this important gas. We demonstrate that the methane destruction rate increases by a factor of 1012 as the dust storm E-fields, E, increase from 5 to 25 kV/m, resulting in an apparent decrease in methane stability from ~ 1010 sec to a value of ~1000 seconds. While destruction in dust storms is severe, the overall methane lifetime is expected to decrease only moderately due to recycling of products, heterogeneous effects from localized sinks, etc. We show further evidence that the electrical activity anticipated in Martian dust storms creates a new harsh electro-chemical environment.

  16. CO2 Sink/Source in the Indonesian Seas

    KAUST Repository

    Kartadikaria, Aditya R.

    2015-04-01

    Two distinct CO2 sink/source characteristics appeared from the compiled observed data 1984-2013 in the tropical Indonesian seas. The western part persistently emits CO2 to the atmosphere, while the eastern is rather dynamic which emits and absorbs smaller amount of CO2 to and from atmosphere, respectively. The segregation is proximal to the virtual Wallace line, where in the continental shelf is located. Lower salinity and higher silicate condition in the western part influenced the higher pCO2 condition in Java Sea. Temperature is found to have a limited influence to control different characteristic in the west and east, but SST change of 2.0 0C during La Ninã condition effectively reduced the source amount of CO2 by 50% compared to Normal year condition. Yet, during La Ninã, higher wind speed increases CO2 flux twice compared to Normal year. In the continental shelf area where CO2 sink area is found, 29 years data showed that pCO2 trend is increasing ±0.6-3.8 μatm/year. From this study, the overall areas have a significant source of CO2 of approximately 10 - 24 μatm.

  17. Plant Fructokinases: Evolutionary, Developmental, and Metabolic Aspects in Sink Tissues

    Directory of Open Access Journals (Sweden)

    Ofer Stein

    2018-03-01

    Full Text Available Sucrose, a glucose–fructose disaccharide, is the main sugar transported in the phloem of most plants and is the origin of most of the organic matter. Upon arrival in sink tissues, the sucrose must be cleaved by invertase or sucrose synthase. Both sucrose-cleaving enzymes yield free fructose, which must be phosphorylated by either fructokinase (FRK or hexokinase (HXK. The affinity of FRK to fructose is much higher than that of HXK, making FRKs central for fructose metabolism. An FRK gene family seems to exist in most, if not all plants and usually consists of several cytosolic FRKs and a single plastidic FRK. These genes are expressed mainly in sink tissues such as roots, stems, flowers, fruits, and seeds, with lower levels of expression often seen in leaves. Plant FRK enzymes vary in their biochemical properties such as affinity for fructose, inhibition by their substrate (i.e., fructose, and expression level in different tissues. This review describes recently revealed roles of plant FRKs in plant development, including the combined roles of the plastidic and cytosolic FRKs in vascular tissues and seed development.

  18. Predator transitory spillover induces trophic cascades in ecological sinks

    DEFF Research Database (Denmark)

    Casini, Michele; Blenckner, Thorsten; Möllmann, Christian

    2012-01-01

    Understanding the effects of cross-system fluxes is fundamental in ecosystem ecology and biological conservation. Source-sink dynamics and spillover processes may link adjacent ecosystems by movement of organisms across system boundaries. However, effects of temporal variability in these cross-sy...... in structuring natural systems. The integration of regional and local processes is central to predict species and ecosystem responses to future climate changes and ongoing anthropogenic disturbances......Understanding the effects of cross-system fluxes is fundamental in ecosystem ecology and biological conservation. Source-sink dynamics and spillover processes may link adjacent ecosystems by movement of organisms across system boundaries. However, effects of temporal variability in these cross......-system fluxes on a whole marine ecosystem structure have not yet been presented. Here we show, using 35 y of multitrophic data series from the Baltic Sea, that transitory spillover of the top-predator cod from its main distribution area produces cascading effects in the whole food web of an adjacent and semi...

  19. Do Continental Shelves Act as an Atmospheric CO2 Sink?

    Science.gov (United States)

    Cai, W.

    2003-12-01

    Recent air-to-sea CO2 flux measurements at several major continental shelves (European Atlantic Shelves, East China Sea and U.S. Middle Atlantic Bight) suggest that shelves may act as a one-way pump and absorb atmospheric CO2 into the ocean. These observations also favor the argument that continental shelves are autotrophic (i.e., net production of organic carbon, OC). The U.S. South Atlantic Bight (SAB) contrasts these findings in that it acts as a strong source of CO2 to the atmosphere while simultaneously exporting dissolved inorganic carbon (DIC) to the open ocean. We report pCO2, DIC, and alkalinity data from the SAB collected in 8 cruises along a transect from the shore to the shelf break in the central SAB. The shelf-wide net heterotrophy and carbon exports in the SAB are subsidized by the export of OC from the abundant intertidal marshes, which are a sink for atmospheric CO2. It is proposed here that the SAB represents a marsh-dominated heterotrophic ocean margin as opposed to river-dominated autotrophic margins. To further investigate why margins may behave differently in term of CO2 sink/source, the physical and biological conditions of several western boundary current margins are compared. Based on this and other studies, DIC export flux from margins to the open ocean must be significant in the overall global ocean carbon budget.

  20. Thermal performance measurements on ultimate heat sinks--cooling ponds

    International Nuclear Information System (INIS)

    Hadlock, R.K.; Abbey, O.B.

    1977-12-01

    The primary objective of the studies described is to obtain the requisite data, with respect to modeling requirements, to characterize thermal performance of heat sinks for nuclear facilities existing at elevated water temperatures in result of experiencing a genuinely large heat load and responding to meteorological influence. The data should reflect thermal performance for combinations leading to worst-case meteorological influence. A geothermal water retention basin has been chosen as the site for the first measurement program and data have been obtained in the first of several experiments scheduled to be performed there. These data illustrate the thermal and water budgets during episodes of cooling from an initially high pond water bulk temperature. Monitoring proceeded while the pond experienced only meteorological and seepage influence. The data are discussed and are presented as a data volume which may be used for calculation purposes. Suggestions for future measurement programs are stated with the intent to maintain and improve relevance to nuclear ultimate heat sinks while continuing to examine the performance of the analog geothermal pond. It is further suggested that the geothermal pond, with some modification, may be a suitable site for spray pond measurements

  1. LPTA: Location Predictive and Time Adaptive Data Gathering Scheme with Mobile Sink for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Chuan Zhu

    2014-01-01

    Full Text Available This paper exploits sink mobility to prolong the lifetime of sensor networks while maintaining the data transmission delay relatively low. A location predictive and time adaptive data gathering scheme is proposed. In this paper, we introduce a sink location prediction principle based on loose time synchronization and deduce the time-location formulas of the mobile sink. According to local clocks and the time-location formulas of the mobile sink, nodes in the network are able to calculate the current location of the mobile sink accurately and route data packets timely toward the mobile sink by multihop relay. Considering that data packets generating from different areas may be different greatly, an adaptive dwelling time adjustment method is also proposed to balance energy consumption among nodes in the network. Simulation results show that our data gathering scheme enables data routing with less data transmission time delay and balance energy consumption among nodes.

  2. Study on the effect of sink moving trajectory on wireless sensor networks

    Science.gov (United States)

    Zhong, Peijun; Ruan, Feng

    2018-03-01

    Wireless sensor networks are developing very fast in recent years, due to their wide potential applications. However there exists the so-called hot spot problem, namely the nodes close to static sink node tend to die earlier than other nodes since they have heavier burden to forward. The introduction of mobile sink node can effectively alleviate this problem since sink node can move along certain trajectories, causing hot spot nodes more evenly distributed. In this paper, we make extensive experimental simulations for circular sensor network, with one mobile sink moving along different radius circumference. The whole network is divided into several clusters and there is one cluster head (CH) inside each cluster. The ordinary sensors communicate with CH and CHs construct a chain until the sink node. Simulation results show that the best network performance appears when sink moves along 0.25 R in terms of network lifetime.

  3. An energy efficient multiple mobile sinks based routing algorithm for wireless sensor networks

    Science.gov (United States)

    Zhong, Peijun; Ruan, Feng

    2018-03-01

    With the fast development of wireless sensor networks (WSNs), more and more energy efficient routing algorithms have been proposed. However, one of the research challenges is how to alleviate the hot spot problem since nodes close to static sink (or base station) tend to die earlier than other sensors. The introduction of mobile sink node can effectively alleviate this problem since sink node can move along certain trajectories, causing hot spot nodes more evenly distributed. In this paper, we mainly study the energy efficient routing method with multiple mobile sinks support. We divide the whole network into several clusters and study the influence of mobile sink number on network lifetime. Simulation results show that the best network performance appears when mobile sink number is about 3 under our simulation environment.

  4. New Configurations of Micro Plate-Fin Heat Sink to Reduce Coolant Pumping Power

    Science.gov (United States)

    Rezania, A.; Rosendahl, L. A.

    2012-06-01

    The thermal resistance of heat exchangers has a strong influence on the electric power produced by a thermoelectric generator (TEG). In this work, a real TEG device is applied to three configurations of micro plate-fin heat sink. The distance between certain microchannels is varied to find the optimum heat sink configuration. The particular focus of this study is to reduce the coolant mass flow rate by considering the thermal resistances of the heat sinks and, thereby, to reduce the coolant pumping power in the system. The three-dimensional governing equations for the fluid flow and the heat transfer are solved using the finite-volume method for a wide range of pressure drop laminar flows along the heat sink. The temperature and the mass flow rate distribution in the heat sink are discussed. The results, which are in good agreement with previous computational studies, show that using suggested heat sink configurations reduces the coolant pumping power in the system.

  5. LPTA: location predictive and time adaptive data gathering scheme with mobile sink for wireless sensor networks.

    Science.gov (United States)

    Zhu, Chuan; Wang, Yao; Han, Guangjie; Rodrigues, Joel J P C; Lloret, Jaime

    2014-01-01

    This paper exploits sink mobility to prolong the lifetime of sensor networks while maintaining the data transmission delay relatively low. A location predictive and time adaptive data gathering scheme is proposed. In this paper, we introduce a sink location prediction principle based on loose time synchronization and deduce the time-location formulas of the mobile sink. According to local clocks and the time-location formulas of the mobile sink, nodes in the network are able to calculate the current location of the mobile sink accurately and route data packets timely toward the mobile sink by multihop relay. Considering that data packets generating from different areas may be different greatly, an adaptive dwelling time adjustment method is also proposed to balance energy consumption among nodes in the network. Simulation results show that our data gathering scheme enables data routing with less data transmission time delay and balance energy consumption among nodes.

  6. Nested atmospheric inversion for the terrestrial carbon sources and sinks in China

    Directory of Open Access Journals (Sweden)

    F. Jiang

    2013-08-01

    Full Text Available In this study, we establish a nested atmospheric inversion system with a focus on China using the Bayesian method. The global surface is separated into 43 regions based on the 22 TransCom large regions, with 13 small regions in China. Monthly CO2 concentrations from 130 GlobalView sites and 3 additional China sites are used in this system. The core component of this system is an atmospheric transport matrix, which is created using the TM5 model with a horizontal resolution of 3° × 2°. The net carbon fluxes over the 43 global land and ocean regions are inverted for the period from 2002 to 2008. The inverted global terrestrial carbon sinks mainly occur in boreal Asia, South and Southeast Asia, eastern America and southern South America. Most China areas appear to be carbon sinks, with strongest carbon sinks located in Northeast China. From 2002 to 2008, the global terrestrial carbon sink has an increasing trend, with the lowest carbon sink in 2002. The inter-annual variation (IAV of the land sinks shows remarkable correlation with the El Niño Southern Oscillation (ENSO. The terrestrial carbon sinks in China also show an increasing trend. However, the IAV in China is not the same as that of the globe. There is relatively stronger land sink in 2002, lowest sink in 2006, and strongest sink in 2007 in China. This IAV could be reasonably explained with the IAVs of temperature and precipitation in China. The mean global and China terrestrial carbon sinks over the period 2002–2008 are −3.20 ± 0.63 and −0.28 ± 0.18 PgC yr−1, respectively. Considering the carbon emissions in the form of reactive biogenic volatile organic compounds (BVOCs and from the import of wood and food, we further estimate that China's land sink is about −0.31 PgC yr−1.

  7. Endangered Butterflies as a Model System for Managing Source Sink Dynamics on Department of Defense Lands

    Science.gov (United States)

    used three species of endangered butterflies as a model system to rigorously investigate the source-sink dynamics of species being managed on military...lands. Butterflies have numerous advantages as models for source-sink dynamics , including rapid generation times and relatively limited dispersal, but...they are subject to the same processes that determine source-sink dynamics of longer-lived, more vagile taxa.1.2 Technical Approach: For two of our

  8. Ozone, OH and NO3 sink terms at a coniferous forest site in Central Germany: Role of biogenic VOCs

    Science.gov (United States)

    Bonn, B.; Bourtsoukidis, S.; Haunold, W.; Sitals, R.; Jacobi, S.

    2012-04-01

    Oxidation capacities of ecosystems are important to facilitate an ecosystem feedback on oxidation stress and in order to survive. We have conducted seasonal ambient measurements of a series of biogenic VOCs using a plant enclosure technique and determined the ambient levels of ozone, NOx as well as basic meteorological parameters at a managed spruce forest site in Central Germany (Mt. Kleiner Feldberg). The site is 810 m a.s.l. and faces distinct anthropogenic contributions from the Rhine-Main-area including the airport and major traffic routes in from the southeast. The opposite direction is moderately polluted and can be classified as Central German background condition. Since atmospheric chemistry and pollutants become very important especially for this site, which is the most polluted one in Germany with respect to ozone we approximated the sink terms for the atmospheric oxidation agents of interest at this site, i.e ozone, OH and NO3 using the measurements and box model steady state calculations for intermediate species not measured directly between the first of April and the start of November 2011. BVOC measurements were obtained with PTR-MS every 36 s and averaged for 30 min intervals afterwards to facilitate the inclusion of the monitoring data of the Hessian Agency for the Environment and Geology (HLUG) in Wiesbaden, Germany: temperature, humidity, global radiation, ozone and NOx. Analysis was performed with Matlab (Mathworks Inc.) and included the gas-phase chemistry set-up described by the Master Chemical Mechanism (MCM, v3, [1]). This resulted in the following outcome for sinks of oxidants: Ozone: Significant contributions were found for mono- and sesquiterpenes as well as for NOx. The individual contributions vary notably with the time of the day and the year and the emission strength of biogenic VOCs. Especially for the early season in April sesquiterpene reactions dominated the sink by up to 80% during nighttime, while NOx reactions dominated the

  9. New Configurations of Micro Plate-Fin Heat Sink to Reduce Coolant Pumping Power

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania; Rosendahl, Lasse

    2012-01-01

    the optimum heat sink configuration. The particular focus of this study is to reduce the coolant mass flow rate by considering the thermal resistances of the heat sinks and, thereby, to reduce the coolant pumping power in the system. The threedimensional governing equations for the fluid flow and the heat......The thermal resistance of heat exchangers has a strong influence on the electric power produced by a thermoelectric generator (TEG). In this work, a real TEG device is applied to three configurations of micro plate-fin heat sink. The distance between certain microchannels is varied to find...... heat sink configurations reduces the coolant pumping power in the system....

  10. Why Britain might sink its own [nuclear] subs

    International Nuclear Information System (INIS)

    Paloczi-Horvath, G.

    1989-01-01

    The House of Commons Defence Committee recently took evidence from both the Ministry of Defence and Nirex, the UK's agency for the disposal of radioactive waste, on the decommissioning of nuclear submarines. On the evidence of both the MoD and Nirex, the Ministry now seems to favour the simplest, least costly and potentially most controversial way of getting rid of these submarines - by sinking them two miles below the surface of the Atlantic. The trouble for the MoD and the British government is that this cannot be done at the moment because of a voluntary international moratorium on nuclear dumping at sea which took effect in 1983 and which the UK government grudgingly accepts. (author)

  11. Subsurface Water as Natural CO{sub 2} Sink

    Energy Technology Data Exchange (ETDEWEB)

    Gillon, M. [Centre National de la Recherche Scientifique (UMR CNRS 8148-IDES), Interaction et Dynamique des Environnements de Surface, Universite Paris 11 and Centre National de la Recherche Scientifique (UMR UAPV-INRA EMMAH), Environnement Mediterraneen et Modelisation des Agro-Hydrosystemes, Universite d' Avignon et des Pays de Vaucluse, Avignon, (France); Barbecot, F.; Gibert, E.; Massault, M. [Centre National de La Recherche Scientifique (UMR CNRS 8148-IDES), Interaction et Dynamique des Environnements de Surface, Universite Paris 11 (France)

    2013-07-15

    In aquifer recharge areas, groundwater mineralization acts as an important sink for CO{sub 2} (assessed at 100 Mt{sub co2}/a on a European scale). An isotopic study of C fluxes in the unsaturated zone of a sand carbonate aquifer shows that the physical and geochemical processes controlling CO{sub 2} abstraction induce changes in the isotopic composition of both dissolved and matrix carbonates. An integrated record of these fluxes toward the aquifers is evidenced through isotopic investigation of the recharge areas. It is evidenced that the unsaturated zone represents an archive of pristine conditions, and would help to quantify downward C fluxes and environmental changes related to this CO{sub 2} abstraction process. (author)

  12. Important aspects of sinks for linking emission trading systems

    Energy Technology Data Exchange (ETDEWEB)

    Hirsbrunner, Simon; Taenzler, Dennis; Reuster, Lena [Adelphi Research gGmbH, Berlin (Germany)

    2011-06-15

    The discussion on how to design policy instruments to reduce emissions and enhance removals from land use, land use change, and forestry is likely to be a key feature of a future global climate protection framework and will also influence the design of an emerging global carbon market. By analyzing different ETSs it turns out that very specific provisions are in place to deal with carbon sinks. Different instruments, eligible activities and standards reflect the prevailing emissions profile and cultural preferences of a geographic area. The inclusion of forestry in a cap, for instance, makes provisions on additionality and non-permanence obsolete, but increases the relevance of other issues such as accounting and enforcement. (orig.)

  13. Sinking during earthquakes: Critical acceleration criteria control drained soil liquefaction

    Science.gov (United States)

    Clément, C.; Toussaint, R.; Stojanova, M.; Aharonov, E.

    2018-02-01

    This article focuses on liquefaction of saturated granular soils, triggered by earthquakes. Liquefaction is defined here as the transition from a rigid state, in which the granular soil layer supports structures placed on its surface, to a fluidlike state, in which structures placed initially on the surface sink to their isostatic depth within the granular layer. We suggest a simple theoretical model for soil liquefaction and show that buoyancy caused by the presence of water inside a granular medium has a dramatic influence on the stability of an intruder resting at the surface of the medium. We confirm this hypothesis by comparison with laboratory experiments and discrete-element numerical simulations. The external excitation representing ground motion during earthquakes is simulated via horizontal sinusoidal oscillations of controlled frequency and amplitude. In the experiments, we use particles only slightly denser than water, which as predicted theoretically increases the effect of liquefaction and allows clear depth-of-sinking measurements. In the simulations, a micromechanical model simulates grains using molecular dynamics with friction between neighbors. The effect of the fluid is captured by taking into account buoyancy effects on the grains when they are immersed. We show that the motion of an intruder inside a granular medium is mainly dependent on the peak acceleration of the ground motion and establish a phase diagram for the conditions under which liquefaction happens, depending on the soil bulk density, friction properties, presence of water, and peak acceleration of the imposed large-scale soil vibrations. We establish that in liquefaction conditions, most cases relax toward an equilibrium position following an exponential in time. We also show that the equilibrium position itself, for most liquefaction regimes, corresponds to the isostatic equilibrium of the intruder inside a medium of effective density. The characteristic time to relaxation is

  14. Transient performance of a thermal energy storage-based heat sink using a liquid metal as the phase change material

    International Nuclear Information System (INIS)

    Fan, Li-Wu; Wu, Yu-Yue; Xiao, Yu-Qi; Zeng, Yi; Zhang, Yi-Ling; Yu, Zi-Tao

    2016-01-01

    Highlights: • A liquid metal is adopted as the PCM in a thermal energy storage-based heat sink. • Transient performance of the heat sink is tested in comparison to an organic PCM. • The liquid metal has a similar volumetric latent heat of fusion to the organic PCM. • Outperformance of the liquid metal is found due to its higher thermal conductivity. • Liquid metals are preferred when the system weight is less important than volume. - Abstract: In this Technical Note, the use of a liquid metal, i.e., a low melting point Pb–Sn–In–Bi alloy, as the phase change material (PCM) in thermal energy storage-based heat sinks is tested in comparison to an organic PCM (1-octadecanol) having a similar melting point of ∼60 °C. The thermophysical properties of the two types of PCM are characterized, revealing that the liquid metal is much more conductive while both have nearly identical volumetric latent heat of fusion (∼215 MJ/m"3). By using at the same volume of 80 mL, i.e., the same energy storage capacity, the liquid metal is shown to outperform significantly over the organic PCM under the various heating powers up to 105.3 W/cm"2. During the heating period, the use of the liquid metal leads to a remarkable extension of the effective protection time to nearly twice longer as well as a reduction of the highest overheating temperature by up to 50 °C. The cool-down period can also be shortened significantly by taking advantage of the much higher thermal conductivity of the liquid metal. These findings suggest that liquid metals could serve as a promising PCM candidate for particular applications where the volume limit is very rigorous and the penalty in weight increment is acceptable.

  15. Role of bicarbonate as a pH buffer and electron sink in microbial dechlorination of chloroethenes

    Directory of Open Access Journals (Sweden)

    Delgado Anca G

    2012-09-01

    Full Text Available Abstract Background Buffering to achieve pH control is crucial for successful trichloroethene (TCE anaerobic bioremediation. Bicarbonate (HCO3− is the natural buffer in groundwater and the buffer of choice in the laboratory and at contaminated sites undergoing biological treatment with organohalide respiring microorganisms. However, HCO3− also serves as the electron acceptor for hydrogenotrophic methanogens and hydrogenotrophic homoacetogens, two microbial groups competing with organohalide respirers for hydrogen (H2. We studied the effect of HCO3− as a buffering agent and the effect of HCO3−-consuming reactions in a range of concentrations (2.5-30 mM with an initial pH of 7.5 in H2-fed TCE reductively dechlorinating communities containing Dehalococcoides, hydrogenotrophic methanogens, and hydrogenotrophic homoacetogens. Results Rate differences in TCE dechlorination were observed as a result of added varying HCO3− concentrations due to H2-fed electrons channeled towards methanogenesis and homoacetogenesis and pH increases (up to 8.7 from biological HCO3− consumption. Significantly faster dechlorination rates were noted at all HCO3− concentrations tested when the pH buffering was improved by providing 4-(2-hydroxyethyl-1-piperazineethanesulfonic acid (HEPES as an additional buffer. Electron balances and quantitative PCR revealed that methanogenesis was the main electron sink when the initial HCO3− concentrations were 2.5 and 5 mM, while homoacetogenesis was the dominant process and sink when 10 and 30 mM HCO3− were provided initially. Conclusions Our study reveals that HCO3− is an important variable for bioremediation of chloroethenes as it has a prominent role as an electron acceptor for methanogenesis and homoacetogenesis. It also illustrates the changes in rates and extent of reductive dechlorination resulting from the combined effect of electron donor competition stimulated by HCO3− and the changes in pH exerted by

  16. Tropical secondary forests regenerating after shifting cultivation in the Philippines uplands are important carbon sinks.

    Science.gov (United States)

    Mukul, Sharif A; Herbohn, John; Firn, Jennifer

    2016-03-08

    In the tropics, shifting cultivation has long been attributed to large scale forest degradation, and remains a major source of uncertainty in forest carbon accounting. In the Philippines, shifting cultivation, locally known as kaingin, is a major land-use in upland areas. We measured the distribution and recovery of aboveground biomass carbon along a fallow gradient in post-kaingin secondary forests in an upland area in the Philippines. We found significantly higher carbon in the aboveground total biomass and living woody biomass in old-growth forest, while coarse dead wood biomass carbon was higher in the new fallow sites. For young through to the oldest fallow secondary forests, there was a progressive recovery of biomass carbon evident. Multivariate analysis indicates patch size as an influential factor in explaining the variation in biomass carbon recovery in secondary forests after shifting cultivation. Our study indicates secondary forests after shifting cultivation are substantial carbon sinks and that this capacity to store carbon increases with abandonment age. Large trees contribute most to aboveground biomass. A better understanding of the relative contribution of different biomass sources in aboveground total forest biomass, however, is necessary to fully capture the value of such landscapes from forest management, restoration and conservation perspectives.

  17. No evidence for faster male hybrid sterility in population crosses of an intertidal copepod (Tigriopus californicus).

    Science.gov (United States)

    Willett, Christopher S

    2008-06-01

    Two different forces are thought to contribute to the rapid accumulation of hybrid male sterility that has been observed in many inter-specific crosses, namely the faster male and the dominance theories. For male heterogametic taxa, both faster male and dominance would work in the same direction to cause the rapid evolution of male sterility; however, for taxa lacking differentiated sex chromosomes only the faster male theory would explain the rapid evolution of male hybrid sterility. It is currently unknown what causes the faster evolution of male sterility, but increased sexual selection on males and the sensitivity of genes involved in male reproduction are two hypotheses that could explain the observation. Here, patterns of hybrid sterility in crosses of genetically divergent copepod populations are examined to test potential mechanisms of faster male evolution. The study species, Tigriopus californicus, lacks differentiated, hemizygous sex chromosomes and appears to have low levels of divergence caused by sexual selection acting upon males. Hybrid sterility does not accumulate more rapidly in males than females in these crosses suggesting that in this taxon male reproductive genes are not inherently more prone to disruption in hybrids.

  18. Alluvial Mountain Meadow Source-Sink Dynamics: Land-Cover Effects on Water and Fluvial Carbon Export

    Science.gov (United States)

    Weiss, T.; Covino, T. P.; Wohl, E.; Rhoades, C.; Fegel, T.; Clow, D. W.

    2017-12-01

    Fluvial networks of historically glaciated mountain landscapes alternate between confined and unconfined valley segments. In low-gradient unconfined reaches, river-connected wet meadows commonly establish, and have been recognized as important locations of long-term water, carbon, and nutrient storage. Among connected meadow floodplains, sink-source behavior shifts as a function of flow state; storing water at high flows (snowmelt) and contributing toward higher late-season baseflows. Despite these benefits, historical and contemporary land-use practices often result in the simplification of wet meadow systems, leading to reduced river-floodplain connectivity, lower water-tables and reductions in hydrologic buffering capacity. In this study, we are exploring hydrologic-carbon relationships across a gradient of valley confinement and river-floodplain connectivity (connected, n=3; disconnected, n=4) within the Colorado Rockies. Our approach includes hydrologic analysis, fluorometric assays, water chemistry, instream metabolic measures, and land-cover assessment to examine patterns between land-form, carbon quantity and quality, and stream ecosystem productivity. Between different meadow types, preliminary results suggest differences between instream productivity, carbon qualities, and hydrologic-carbon sink-source dynamics across the season. These data and analyses will provide insight into water, carbon and nutrient flux dynamics as a function of land-cover in mountain headwaters.

  19. Efficient on-chip hotspot removal combined solution of thermoelectric cooler and mini-channel heat sink

    International Nuclear Information System (INIS)

    Hao, Xiaohong; Peng, Bei; Xie, Gongnan; Chen, Yi

    2016-01-01

    Highlights: • A combined solution of thermoelectric cooler (TEC) and mini-channel heat sink to remove the hotspot of the chip has been proposed. • The TEC's mathematical model is established to assess its work performance. • A comparative study on the proposed efficient On-Chip Hotspot Removal Combined Solution. - Abstract: Hotspot will significantly degrade the reliability and performance of the electronic equipment. The efficient removal of hotspot can make the temperature distribution uniform, and ensure the reliable operation of the electronic equipment. This study proposes a combined solution of thermoelectric cooler (TEC) and mini-channel heat sink to remove the hotspot of the chip in the electronic equipment. Firstly, The TEC's mathematical model is established to assess its work performance under different boundary conditions. Then, the hotspot removal capability of the TEC is discussed for different cooling conditions, which has shown that the combined equipment has better hotspot removal capability compared with others. Finally, A TEC is employed to investigate the hotspot removal capacity of the combined solution, and the results have indicated that it can effectively remove hotspot in the diameter of 0.5 mm, the power density of 600W/cm 2 when its working current is 3A and heat transfer thermal resistance is 0 K/W.

  20. In situ measurement of mesopelagic particle sinking rates and the control of carbon transfer to the ocean interior during the Vertical Flux in the Global Ocean (VERTIGO) voyages in the North Pacific

    Science.gov (United States)

    Trull, T. W.; Bray, S. G.; Buesseler, K. O.; Lamborg, C. H.; Manganini, S.; Moy, C.; Valdes, J.

    2008-07-01

    sinking slower than 137 m d -1. At K2, less than 1% of the POC flux sank at >820 m d -1, but a large fraction (˜15-45%) of the flux was contributed by other fast-sinking classes (410 and 205 m d -1). PIC and BSi minerals were not present in higher proportions in the faster sinking fractions, but the observations were too limited to rule out a ballasting contribution to the control of sinking rates. Photographic evidence for a wide range of particle types within individual sinking-rate fractions suggests that biological processes that set the porosity and shape of particles are also important and may mask the role of minerals. Comparing the spectrum of sinking rates observed at K2 with the power-law profile of flux attenuation with depth obtained from other VERTIGO sediment traps deployed at multiple depths [Buesseler, K.O., Lamborg, C.H., Boyd, P.W., Lam, P.J., Trull, T.W., Bidigare, R.R., Bishop, J.K.B., Casciotti, K.L., Dehairs, F., Elskens, M., Honda, M., Karl, D.M., Siegel, D., Silver, M., Steinberg, D., Valdes, J., Van Mooy, B., Wilson, S.E., 2007b. Revisiting carbon flux through the Ocean's twilight zone. Science 316(5824), 567-570, doi: 10.1126/science.1137959] emphasizes the importance of particle transformations within the mesopelagic zone in the control of carbon transport to the ocean interior.

  1. Performance analysis of data delivery schemes for a multi-sink wireless sensor network

    NARCIS (Netherlands)

    Tan, H.P.; Gabor, A.F.; Seah, W.K.G.; Lee, P.W.Q.

    2008-01-01

    Wireless sensor networks are expected to be deployed in harsh environments characterised by extremely poor and fluctuating channel conditions. With the commonly adopted single-sink architecture, such conditions are exemplified by contention near the sink as a result of multipath delivery. This may

  2. On the estimation method of compressed air consumption during pneumatic caisson sinking

    OpenAIRE

    平川, 修治; ヒラカワ, シュウジ; Shuji, HIRAKAWA

    1990-01-01

    There are several methods in estimation of compressed air consumption during pneumatic caisson sinking. It is re uired in the estimation of compressed air consumption by the methods under the same conditions. In this paper, it is proposed the methods which is able to estimate accurately the compressed air consumption during pnbumatic caissons sinking at this moment.

  3. Data dissemination of emergency messages in mobile multi-sink wireless sensor networks

    NARCIS (Netherlands)

    Erman-Tüysüz, A.; Havinga, Paul J.M.

    In wireless sensor networks (WSNs), data dissemination is generally performed from sensor nodes to a static sink. If the data under consideration is an emergency message such as a fire alarm, it must be transmitted as fast and reliably as possible towards the sink of WSN. In such mission critical

  4. Carbon source-sink limitations differ between two species with contrasting growth strategies.

    Science.gov (United States)

    Burnett, Angela C; Rogers, Alistair; Rees, Mark; Osborne, Colin P

    2016-11-01

    Understanding how carbon source and sink strengths limit plant growth is a critical knowledge gap that hinders efforts to maximize crop yield. We investigated how differences in growth rate arise from source-sink limitations, using a model system comparing a fast-growing domesticated annual barley (Hordeum vulgare cv. NFC Tipple) with a slow-growing wild perennial relative (Hordeum bulbosum). Source strength was manipulated by growing plants at sub-ambient and elevated CO 2 concentrations ([CO 2 ]). Limitations on vegetative growth imposed by source and sink were diagnosed by measuring relative growth rate, developmental plasticity, photosynthesis and major carbon and nitrogen metabolite pools. Growth was sink limited in the annual but source limited in the perennial. RGR and carbon acquisition were higher in the annual, but photosynthesis responded weakly to elevated [CO 2 ] indicating that source strength was near maximal at current [CO 2 ]. In contrast, photosynthetic rate and sink development responded strongly to elevated [CO 2 ] in the perennial, indicating significant source limitation. Sink limitation was avoided in the perennial by high sink plasticity: a marked increase in tillering and root:shoot ratio at elevated [CO 2 ], and lower non-structural carbohydrate accumulation. Alleviating sink limitation during vegetative development could be important for maximizing growth of elite cereals under future elevated [CO 2 ]. © 2016 John Wiley & Sons Ltd.

  5. Determination of sink intensity of side shoots by the use of radioactive substances

    International Nuclear Information System (INIS)

    Hartmann, H.D.; Forche, E.

    1980-01-01

    The influence of side shoots in the source-sink system of tomato plants was demonstrated by following the translocation of 32 P and 14 C applied to different leaves. The results showed that the side shoots were important sinks for photosynthetic products until the growing fruits of adjoining inflorescences became predominant attraction centres. (orig.) [de

  6. Exact results on diffusion in a piecewise linear potential with a time-dependent sink

    Energy Technology Data Exchange (ETDEWEB)

    Diwaker, E-mail: diwakerphysics@gmail.com [Central University of Himachal Pradesh, School of Physical and Astronomical Sciences (India); Chakraborty, Aniruddha [Indian Institute of Technology Mandi (India)

    2016-02-15

    The Smoluchowski equation with a time-dependent sink term is solved exactly. In this method, knowing the probability distribution P(0, s) at the origin, allows deriving the probability distribution P(x, s) at all positions. Exact solutions of the Smoluchowski equation are also provided in different cases where the sink term has linear, constant, inverse, and exponential variation in time.

  7. 78 FR 55117 - Ultimate Heat Sink for Nuclear Power Plants; Draft Regulatory Guide

    Science.gov (United States)

    2013-09-09

    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0203] Ultimate Heat Sink for Nuclear Power Plants; Draft... (DG), DG-1275, ``Ultimate Heat Sink for Nuclear Power Plants.'' This regulatory guide (RG) describes methods and procedures acceptable to the NRC staff that nuclear power plant facility licensees and...

  8. Increasing carbon sinks in European forests: effect of afforestation and changes in mean growing stock volume

    NARCIS (Netherlands)

    Vilén, T.; Cienciala, E.; Schelhaas, M.; Verkerk, P.J.; Lindner, M.; Peltola, H.

    2016-01-01

    In Europe, both forest area and growing stock have increased since the 1950s, and European forests have acted as a carbon sink during the last six decades. However, the contribution of different factors affecting the sink is not yet clear. In this study, historical inventory data were combined with

  9. An Application of Path Sharing To Routing For Mobile Sinks In ...

    African Journals Online (AJOL)

    CODEXT protocol for optimizing routing to multiple sinks through reinforcement learning. Such a routing situation arises in WSNs with multiple, possibly mobile sinks, such as WSNs with actuators deployed in parallel to sensors. This protocol is based on GAF protocol and grid structure to reduce energy consumed.

  10. Vehicle parts detection based on Faster - RCNN with location constraints of vehicle parts feature point

    Science.gov (United States)

    Yang, Liqin; Sang, Nong; Gao, Changxin

    2018-03-01

    Vehicle parts detection plays an important role in public transportation safety and mobility. The detection of vehicle parts is to detect the position of each vehicle part. We propose a new approach by combining Faster RCNN and three level cascaded convolutional neural network (DCNN). The output of Faster RCNN is a series of bounding boxes with coordinate information, from which we can locate vehicle parts. DCNN can precisely predict feature point position, which is the center of vehicle part. We design an output strategy by combining these two results. There are two advantages for this. The quality of the bounding boxes are greatly improved, which means vehicle parts feature point position can be located more precise. Meanwhile we preserve the position relationship between vehicle parts and effectively improve the validity and reliability of the result. By using our algorithm, the performance of the vehicle parts detection improve obviously compared with Faster RCNN.

  11. The Faster, Better, Cheaper Approach to Space Missions: An Engineering Management Assessment

    Science.gov (United States)

    Hamaker, Joe

    2000-01-01

    This paper describes, in viewgraph form, the faster, better, cheaper approach to space missions. The topics include: 1) What drives "Faster, Better, Cheaper"? 2) Why Space Programs are Costly; 3) Background; 4) Aerospace Project Management (Old Culture); 5) Aerospace Project Management (New Culture); 6) Scope of Analysis Limited to Engineering Management Culture; 7) Qualitative Analysis; 8) Some Basic Principles of the New Culture; 9) Cause and Effect; 10) "New Ways of Doing Business" Survey Results; 11) Quantitative Analysis; 12) Recent Space System Cost Trends; 13) Spacecraft Dry Weight Trend; 14) Complexity Factor Trends; 15) Cost Normalization; 16) Cost Normalization Algorithm; 17) Unnormalized Cost vs. Normalized Cost; and 18) Concluding Observations.

  12. Real-time vehicle detection and tracking in video based on faster R-CNN

    Science.gov (United States)

    Zhang, Yongjie; Wang, Jian; Yang, Xin

    2017-08-01

    Vehicle detection and tracking is a significant part in auxiliary vehicle driving system. Using the traditional detection method based on image information has encountered enormous difficulties, especially in complex background. To solve this problem, a detection method based on deep learning, Faster R-CNN, which has very high detection accuracy and flexibility, is introduced. An algorithm of target tracking with the combination of Camshift and Kalman filter is proposed for vehicle tracking. The computation time of Faster R-CNN cannot achieve realtime detection. We use multi-thread technique to detect and track vehicle by parallel computation for real-time application.

  13. Dedicated workspaces: Faster resumption times and reduced cognitive load in sequential multitasking

    DEFF Research Database (Denmark)

    Jeuris, Steven; Bardram, Jakob Eyvind

    2016-01-01

    Studies show that virtual desktops have become a widespread approach to window management within desktop environments. However, despite their success, there is no experimental evidence of their effect on multitasking. In this paper, we present an experimental study incorporating 16 participants...... to perform the same tasks. Results show that adopting virtual desktops as dedicated workspaces allows for faster task resumption (10 s faster on average) and reduced cognitive load during sequential multitasking. Within our experiment the majority of users already benefited from using dedicated workspaces...

  14. Non-uniform dispersion of the source-sink relationship alters wavefront curvature.

    Directory of Open Access Journals (Sweden)

    Lucia Romero

    Full Text Available The distribution of cellular source-sink relationships plays an important role in cardiac propagation. It can lead to conduction slowing and block as well as wave fractionation. It is of great interest to unravel the mechanisms underlying evolution in wavefront geometry. Our goal is to investigate the role of the source-sink relationship on wavefront geometry using computer simulations. We analyzed the role of variability in the microscopic source-sink relationship in driving changes in wavefront geometry. The electrophysiological activity of a homogeneous isotropic tissue was simulated using the ten Tusscher and Panfilov 2006 action potential model and the source-sink relationship was characterized using an improved version of the Romero et al. safety factor formulation (SFm2. Our simulations reveal that non-uniform dispersion of the cellular source-sink relationship (dispersion along the wavefront leads to alterations in curvature. To better understand the role of the source-sink relationship in the process of wave formation, the electrophysiological activity at the initiation of excitation waves in a 1D strand was examined and the source-sink relationship was characterized using the two recently updated safety factor formulations: the SFm2 and the Boyle-Vigmond (SFVB definitions. The electrophysiological activity at the initiation of excitation waves was intimately related to the SFm2 profiles, while the SFVB led to several counterintuitive observations. Importantly, with the SFm2 characterization, a critical source-sink relationship for initiation of excitation waves was identified, which was independent of the size of the electrode of excitation, membrane excitability, or tissue conductivity. In conclusion, our work suggests that non-uniform dispersion of the source-sink relationship alters wavefront curvature and a critical source-sink relationship profile separates wave expansion from collapse. Our study reinforces the idea that the

  15. How phosphorus limitation can control climatic gas sources and sinks

    Science.gov (United States)

    Gypens, Nathalie; Borges, Alberto V.; Ghyoot, Caroline

    2017-04-01

    Since the 1950's, anthropogenic activities severely increased river nutrient loads in European coastal areas. Subsequent implementation of nutrient reduction policies have considerably reduced phosphorus (P) loads from mid-1980's, while nitrogen (N) loads were maintained, inducing a P limitation of phytoplankton growth in many eutrophied coastal areas such as the Southern Bight of the North Sea (SBNS). When dissolved inorganic phosphorous (DIP) is limiting, most phytoplankton organisms are able to indirectly acquire P from dissolved organic P (DOP). We investigate the impact of DOP use on the importance of phytoplankton production and atmospheric fluxes of CO2 and dimethylsulfide (DMS) in the SBNS from 1951 to 2007 using an extended version of the R-MIRO-BIOGAS model. This model includes a description of the ability of phytoplankton organisms to use DOP as a source of P. Results show that primary production can increase up to 70% due to DOP uptake in limiting DIP conditions. Consequently, simulated DMS emissions double while CO2 emissions to the atmosphere decrease, relative to the reference simulation without DOP uptake. At the end of the simulated period (late 2000's), the net direction of air-sea CO2 annual flux, changed from a source to a sink for atmospheric CO2 in response to use of DOP and increase of primary production.

  16. Entropy generation of nanofluid flow in a microchannel heat sink

    Science.gov (United States)

    Manay, Eyuphan; Akyürek, Eda Feyza; Sahin, Bayram

    2018-06-01

    Present study aims to investigate the effects of the presence of nano sized TiO2 particles in the base fluid on entropy generation rate in a microchannel heat sink. Pure water was chosen as base fluid, and TiO2 particles were suspended into the pure water in five different particle volume fractions of 0.25%, 0.5%, 1.0%, 1.5% and 2.0%. Under laminar, steady state flow and constant heat flux boundary conditions, thermal, frictional, total entropy generation rates and entropy generation number ratios of nanofluids were experimentally analyzed in microchannel flow for different channel heights of 200 μm, 300 μm, 400 μm and 500 μm. It was observed that frictional and total entropy generation rates increased as thermal entropy generation rate were decreasing with an increase in particle volume fraction. In microchannel flows, thermal entropy generation could be neglected due to its too low rate smaller than 1.10e-07 in total entropy generation. Higher channel heights caused higher thermal entropy generation rates, and increasing channel height yielded an increase from 30% to 52% in thermal entropy generation. When channel height decreased, an increase of 66%-98% in frictional entropy generation was obtained. Adding TiO2 nanoparticles into the base fluid caused thermal entropy generation to decrease about 1.8%-32.4%, frictional entropy generation to increase about 3.3%-21.6%.

  17. Managing carbon sinks by changing rotation length in European forests

    International Nuclear Information System (INIS)

    Kaipainen, Terhi; Liski, Jari; Pussinen, Ari; Karjalainen, Timo

    2004-01-01

    Elongation of rotation length is a forest management activity countries may choose to apply under Article 3.4 of the Kyoto Protocol to help them meet their commitments for reduction of greenhouse gas emissions. We used the CO2FIX model to analyze how the carbon stocks of trees, soil and wood products depend on rotation length in different European forests. Results predicted that the carbon stock of trees increased in each forest when rotation length was increased, but the carbon stock of soil decreased slightly in German and Finnish Scots pine forests; the carbon stock of wood products also decreased slightly in cases other than the Sitka spruce forest in UK. To estimate the efficiency of increasing rotation length as an Article 3.4 activity, we looked at changes in the carbon stock of trees resulting from a 20-year increase in current rotation lengths. To achieve the largest eligible carbon sink mentioned in Article 3.4 of the Kyoto Protocol, the rotation lengths need to be increased on areas varying from 0.3 to 5.1 Mha depending on the forest. This would in some forests cause 1-6% declines in harvesting possibilities. The possible decreases in the carbon stock of soil indicate that reporting the changes in the carbon stocks of forests under Article 3.4 may require measuring soil carbon

  18. OPG's approach of crediting natural circulation in outage heat sinks

    International Nuclear Information System (INIS)

    Fung, K.K.; Mackinnon, J.C.

    2001-01-01

    A review of crediting natural circulation as a backup means of removing the reactor core decay heat during an outage in Ontario Power Generation's nuclear stations was completed in 2000. The objective was to define the configurations and conditions under which natural circulation can be confidently credited as an effective heat transport mechanism for use in shutdown heat sink management. The project was an interdisciplinary program, and involved analyses in the areas of heat transport system thermalhydaulics, fuel and fuel channel thermal and mechanical behaviour, radiation physics, and probabilistic risks. The assessment shows that it is economically acceptable to credit natural circulation as a backup means of removing the core decay heat whenever the no fuel failure criteria are met. The economic risks associated with such a potential use decrease with time after shutdown. The waiting times after shutdown when there would be various levels of risks of damaging the pressure tubes and fuel bundles were derived for use in planning maintenance activities so as to minimize the economic risks. (author)

  19. Broadband piezoelectric vibration energy harvesting using a nonlinear energy sink

    Science.gov (United States)

    Xiong, Liuyang; Tang, Lihua; Liu, Kefu; Mace, Brian R.

    2018-05-01

    A piezoelectric vibration energy harvester (PVEH) is capable of converting waste or undesirable ambient vibration energy into useful electric energy. However, conventional PVEHs typically work in a narrow frequency range, leading to low efficiency in practical application. This work proposes a PVEH based on the principle of the nonlinear energy sink (NES) to achieve broadband energy harvesting. An alternating current circuit with a resistive load is first considered in the analysis of the dynamic properties and electric performance of the NES-based PEVH. Then, a standard rectifying direct current (DC) interface circuit is developed to evaluate the DC power from the PVEH. To gain insight into the NES mechanism involved, approximate analysis of the proposed PVEH systems under harmonic excitation is sought using the mixed multi-scale and harmonic balance method and the Newton–Raphson harmonic balance method. In addition, an equivalent circuit model (ECM) of the electromechanical system is derived and circuit simulations are conducted to explore and validate the energy harvesting and vibration absorption performance of the proposed NES-based PVEH. The response is also compared with that obtained by direct numerical integration of the equations of motion. Finally, the optimal resistance to obtain the maximum DC power is determined based on the Newton–Raphson harmonic balance method and validated by the ECM. In general, the NES-based PVEH can absorb the vibration from the primary structure and collect electric energy within a broad frequency range effectively.

  20. Understanding sources, sinks, and transport of marine debris

    Science.gov (United States)

    Law, Kara Lavender; Maximenko, Nikolai

    2011-07-01

    Fifth International Marine Debris Conference: Hydrodynamics of Marine Debris; Honolulu, Hawaii, 20 March 2011; Ocean pollution in the form of marine debris, especially plastic debris, has received increasing public and media attention in recent years through striking but frequently inaccurate descriptions of “garbage patches.” Marine debris is composed of all manufactured materials, including glass, metal, paper, fibers, and plastic, that have been deliberately dumped or that accidentally entered the marine environment. Marine debris is most visible on beaches, but it has been observed in all oceans and in such remote locations as on the deep seabed and floating in the middle of subtropical ocean gyres. While many initiatives have been developed to solve this pollution problem through prevention and cleanup efforts, there is relatively little scientific information available to assess the current status of the problem or to provide metrics to gauge the success of remediation measures. With this in mind, a full-day workshop entitled “Hydrodynamics of Marine Debris” was convened at the Fifth International Marine Debris Conference in Hawaii, bringing together observational scientists and oceanographic modelers to outline the steps necessary to quantify the major sources and sinks of marine debris and the pathways between them. The ultimate goal in integrating the two approaches of study is to quantify the basinscale and global inventory of marine debris by closing the associated mass budgets.

  1. Geophysical Monitoring at the CO2SINK Site: Combining Seismic and Geoelectric Data

    Science.gov (United States)

    Giese, R.; Lüth, S.; Cosma, C.; Juhlin, C.; Kiessling, D.; Schütt, H.; Schöbel, B.; Schmidt-Hattenberger, C.; Schilling, F.; Co2SINK Group

    2009-04-01

    The CO2SINK project at the German town of Ketzin (near Berlin), is aimed at a pilot storage of CO2, and at developing and testing efficient integrated monitoring procedures (physical, chemical, and biological observations) for assessing the processes triggered within the reservoir by a long term injection operation. In particular, geophysical methods as seismic and geoelectric measurements have delivered the structural framework, and they enable to observe the reaction of the reservoir and the caprock to CO2 propagation at locations which are not accessible for direct observations. We report on the seismic monitoring program of the CO2SINK project which comprises baseline and repeat observations at different scales in time and space, combined with comprehensive geoelectrical monitoring performed in the Ketzin wells and on the surface. The main objectives of the 3D seismic survey (carried out in spring 2005) were to provide the structural model around the location of the Ketzin wells, to verify earlier geologic interpretations of structure based on vintage 2D seismic and borehole data, as well as providing a baseline for future seismic surveys. The uppermost 1000 m are well imaged and show an anticlinal structure with an east-west striking central graben on its top. The 3D baseline survey was extended by VSP (vertical seismic profiling), MSP (moving source profiling) on 7 profiles, and crosshole tomographic measurements. 2D "star" measurements were carried out on the 7 MSP profiles in order to tie-in the down-hole surveys with the 3D baseline survey. These measurements provide enhanced resolution in time (faster and more cost effective than a full 3D survey) and space (higher source and receiver frequencies). Three crosshole measurements were performed, one baseline survey in May 2008, and two repeats in July and August 2008, respectively. A third crosshole repeat is planned for a later stage in the project when a steady state situation has been reached in the

  2. Breaking the Myth That Relay Swimming Is Faster Than Individual Swimming.

    Science.gov (United States)

    Skorski, Sabrina; Etxebarria, Naroa; Thompson, Kevin G

    2016-04-01

    To investigate if swimming performance is better in a relay race than in the corresponding individual race. The authors analyzed 166 elite male swimmers from 15 nations in the same competition (downloaded from www.swimrankings.net). Of 778 observed races, 144 were Olympic Games performances (2000, 2004, 2012), with the remaining 634 performed in national or international competitions. The races were 100-m (n = 436) and 200-m (n = 342) freestyle events. Relay performance times for the 2nd-4th swimmers were adjusted (+ 0.73 s) to allow for the "flying start." Without any adjustment, mean individual relay performances were significantly faster for the first 50 m and overall time in the 100-m events. Furthermore, the first 100 m of the 200-m relay was significantly faster (P > .001). During relays, swimmers competing in 1st position did not show any difference compared with their corresponding individual performance (P > .16). However, swimmers competing in 2nd-4th relay-team positions demonstrated significantly faster times in the 100-m (P individual events (P team positions were adjusted for the flying start no differences were detected between relay and individual race performance for any event or split time (P > .17). Highly trained swimmers do not swim (or turn) faster in relay events than in their individual races. Relay exchange times account for the difference observed in individual vs relay performance.

  3. Pedestrian crowd dynamics in merging sections: Revisiting the ;faster-is-slower; phenomenon

    Science.gov (United States)

    Shahhoseini, Zahra; Sarvi, Majid; Saberi, Meead

    2018-02-01

    The study of the discharge of active or self-driven matter in narrow passages has become of the growing interest in a variety of fields. The question has particularly important practical applications for the safety of pedestrian human flows notably in emergency scenarios. It has been suggested predominantly through simulation in some theoretical studies as well as through few experimentations that under certain circumstances, an elevated vigour to escape may exacerbate the outflow and cause further delay although the experimental evidence is rather mixed. The dimensions of this complex phenomenon known as the "faster-is slower" effect are of crucial importance to be understood owing to its potential practical implications for the emergency management. The contextual requirements of observing this phenomenon are yet to be identified. It is not clear whether a "do not speed up" policy is universally beneficial and advisable in an evacuation scenario. Here for the first time we experimentally examine this phenomenon in relation to the pedestrian flows at merging sections as a common geometric feature of crowd egress. Various merging angles and three different speed regimes were examined in high-density laboratory experiments. The measurements of flow interruptions and egress efficiency all indicated that the pedestrians were discharged faster when moving at elevated speed levels. We also observed clear dependencies between the discharge rate and the physical layout of the merging with certain designs clearly outperforming others. But regardless of the design, we observed faster throughput and greater avalanche sizes when we instructed pedestrians to run. Our results give the suggestion that observation of the faster-is-slower effect may necessitate certain critical conditions including passages being overly narrow relative to the size of participles (pedestrians) to create long-lasting blockages. The faster-is-slower assumption may not be universal and there may be

  4. Motivational salience signal in the basal forebrain is coupled with faster and more precise decision speed.

    Science.gov (United States)

    Avila, Irene; Lin, Shih-Chieh

    2014-03-01

    The survival of animals depends critically on prioritizing responses to motivationally salient stimuli. While it is generally believed that motivational salience increases decision speed, the quantitative relationship between motivational salience and decision speed, measured by reaction time (RT), remains unclear. Here we show that the neural correlate of motivational salience in the basal forebrain (BF), defined independently of RT, is coupled with faster and also more precise decision speed. In rats performing a reward-biased simple RT task, motivational salience was encoded by BF bursting response that occurred before RT. We found that faster RTs were tightly coupled with stronger BF motivational salience signals. Furthermore, the fraction of RT variability reflecting the contribution of intrinsic noise in the decision-making process was actively suppressed in faster RT distributions with stronger BF motivational salience signals. Artificially augmenting the BF motivational salience signal via electrical stimulation led to faster and more precise RTs and supports a causal relationship. Together, these results not only describe for the first time, to our knowledge, the quantitative relationship between motivational salience and faster decision speed, they also reveal the quantitative coupling relationship between motivational salience and more precise RT. Our results further establish the existence of an early and previously unrecognized step in the decision-making process that determines both the RT speed and variability of the entire decision-making process and suggest that this novel decision step is dictated largely by the BF motivational salience signal. Finally, our study raises the hypothesis that the dysregulation of decision speed in conditions such as depression, schizophrenia, and cognitive aging may result from the functional impairment of the motivational salience signal encoded by the poorly understood noncholinergic BF neurons.

  5. Storage capacity of hydrogen in gas hydrates

    International Nuclear Information System (INIS)

    Tsuda, Takaaki; Ogata, Kyohei; Hashimoto, Shunsuke; Sugahara, Takeshi; Sato, Hiroshi; Ohgaki, Kazunari

    2010-01-01

    The storage capacity of H 2 in the THF, THT, and furan hydrates was studied by p-V-T measurements. We confirmed that the storage and release processes of H 2 in all hydrates could be performed reversibly by pressure swing without destroying of hydrate cages. H 2 absorption in both THT and furan hydrates is much faster than THF hydrate in spite of same unit-cell structure. On the other hand, the storage amounts of H 2 are coincident in the all additive hydrates and would reach at about 1.0 mass% asymptotically.

  6. An energy efficient distance-aware routing algorithm with multiple mobile sinks for wireless sensor networks.

    Science.gov (United States)

    Wang, Jin; Li, Bin; Xia, Feng; Kim, Chang-Seob; Kim, Jeong-Uk

    2014-08-18

    Traffic patterns in wireless sensor networks (WSNs) usually follow a many-to-one model. Sensor nodes close to static sinks will deplete their limited energy more rapidly than other sensors, since they will have more data to forward during multihop transmission. This will cause network partition, isolated nodes and much shortened network lifetime. Thus, how to balance energy consumption for sensor nodes is an important research issue. In recent years, exploiting sink mobility technology in WSNs has attracted much research attention because it can not only improve energy efficiency, but prolong network lifetime. In this paper, we propose an energy efficient distance-aware routing algorithm with multiple mobile sink for WSNs, where sink nodes will move with a certain speed along the network boundary to collect monitored data. We study the influence of multiple mobile sink nodes on energy consumption and network lifetime, and we mainly focus on the selection of mobile sink node number and the selection of parking positions, as well as their impact on performance metrics above. We can see that both mobile sink node number and the selection of parking position have important influence on network performance. Simulation results show that our proposed routing algorithm has better performance than traditional routing ones in terms of energy consumption.

  7. Stochastic carbon sinks for combating carbon dioxide emissions in the EU

    International Nuclear Information System (INIS)

    Gren, Ing-Marie; Carlsson, Mattias; Elofsson, Katarina; Munnich, Miriam

    2012-01-01

    This paper carries out numerical calculations on the potential of carbon sinks in the EU Emissions Trading Scheme (ETS) and national commitments under conditions of stochastic carbon dioxide emissions from fossil fuels and carbon sequestration by forests. Chance constraint programming is used to analyze the role of stochastic carbon sinks for national and EU-wide compliance costs. The analytical results show that the inclusion of the carbon sink option can reduce costs for low enough marginal cost and risk discount, but also that costless carbon sinks as by-products from forestry are not part of a cost-effective solution under a high reliability concern. Cost savings are reduced due to risk discounting under a reliability concern, in particular when assigning Chebyshev's inequality as compared with a normal probability distribution. It is also shown that the supply of forest sinks on the market depends on the differences in marginal abatement cost between the trading and the non-trading sectors, and in risk discounting between achievements of the ETS cap and the national commitment. Relatively low marginal abatement cost in the non-trading sector and high risk discounting of national commitment achievements increase the supply of sinks in the market and, hence, reduces the equilibrium price. The empirical application illustrates the importance of risk discounting for the magnitude of cost savings obtained from introducing forest carbon sinks in the EU ETS and national commitments.

  8. Characterization of Radial Curved Fin Heat Sink under Natural and Forced Convection

    Science.gov (United States)

    Khadke, Rishikesh; Bhole, Kiran

    2018-02-01

    Heat exchangers are important structures widely used in power plants, food industries, refrigeration, and air conditioners and now widely used in computing systems. Finned type of heat sink is widely used in computing systems. The main aim of the design of the heat sink is to maintain the optimum temperature level. To achieve this goal so many geometrical configurations are implemented. This paper presents a characterization of radially curved fin heat sink under natural and forced convection. Forced convection is studied for the optimization of temperature for better efficiency. The different alternatives in geometry are considered in characterization are heat intensity, the height of the fin and speed of the fan. By recognizing these alternatives the heat sink is characterized by the heat flux usually generated in high-end PCs. The temperature drop characteristics across height and radial direction are presented for the constant heat input and air flow in the heat sink. The effect of dimensionless elevation height (0 ≤ Z* ≤ 1) and Elenbaas Number (0.4 ≤ El ≤ 2.8) of the heat sink were investigated for study of the Nusselt number. Based on experimental characterization, process plan has been developed for the selection of the similar heat sinks for desired output (heat dissipation and temperature distribution).

  9. Future restrictions for sinks in the CDM. How about a cap on supply?

    International Nuclear Information System (INIS)

    Forner, C.; Jotzo, F.

    2002-01-01

    The first commitment period of the Kyoto Protocol is expected to result in only a small role for the Clean Development Mechanism (CDM), including afforestation and reforestation projects. Wide ranging concerns regarding sinks in the CDM have been reflected in the Marrakech Accords capping the total amount of emission offsets from sinks projects to be used by Annex I countries. Decisions about the second commitment period and beyond are likely to be of far greater importance for these projects. This paper contributes to the discussion on how caps on sinks under the CDM could be used to obtain overall improved outcomes for developing countries. We examine two distinctive ways in which quantitative caps on sinks in the CDM can be implemented: one, restricting the use of sinks CERs to meet targets, as under the Marrakech Accords (a cap on demand); and two, restricting supply of sink CERs using a quota system. We argue in favour of a supply side cap, if Parties are to preserve the idea of limiting sinks in the CDM. Limiting the supply of credits could lead to better financial outcomes for developing countries as a whole, make higher-cost projects viable which may have better sustainability impacts, and provide an alternative to deal with equity concerns between developing countries

  10. Heat sink design considerations in medium power electronic applications with long power cycles

    CERN Document Server

    AUTHOR|(SzGeCERN)744611; Papastergiou, Konstantinos; Thiringer, Torbjörn; Bongiorno, Massimo

    2015-01-01

    The aim of this work is to investigate the impact of the heat sink thickness and material, as well as, of the convection coefficient of the water cooling system on the power-electronics module thermal stressing. The heat extraction capability of different thicknesses is tested. It is concluded that the thickest heat sink results in marginally lower temperature variation at the junction level compared to the second thickest one. In the thickest heat sink case, the linear dependence of the thermal resistance on the thickness counteracts the benefit of the increased thermal capacitance. The increase in the cooling medium flow rate, which corresponds to an increase in the convection coefficient between the heat sink bottom surface and the water, can be avoided by increasing the thickness of the heat sink. In this way, the energy consumption of the cooling system is reduced. The increase in the flow rate drastically reduces the thermal stressing in the thinnest heat sink case. The increase of the heat sink thickne...

  11. Source-sink interaction: a century old concept under the light of modern molecular systems biology.

    Science.gov (United States)

    Chang, Tian-Gen; Zhu, Xin-Guang; Raines, Christine

    2017-07-20

    Many approaches to engineer source strength have been proposed to enhance crop yield potential. However, a well-co-ordinated source-sink relationship is required finally to realize the promised increase in crop yield potential in the farmer's field. Source-sink interaction has been intensively studied for decades, and a vast amount of knowledge about the interaction in different crops and under different environments has been accumulated. In this review, we first introduce the basic concepts of source, sink and their interactions, then summarize current understanding of how source and sink can be manipulated through both environmental control and genetic manipulations. We show that the source-sink interaction underlies the diverse responses of crops to the same perturbations and argue that development of a molecular systems model of source-sink interaction is required towards a rational manipulation of the source-sink relationship for increased yield. We finally discuss both bottom-up and top-down routes to develop such a model and emphasize that a community effort is needed for development of this model. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Understanding of radiation effect on sinks in aluminum materials for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sang Il; Kim, Ji Hyun [UNIST, Daejeon (Korea, Republic of)

    2015-05-15

    Aluminum and its alloy are widely used in structural materials for research reactor such as guide tube and cladding because of its physical properties such as high thermal conductivity, neutron economy and corrosion resistant properties. Although aluminum and its alloy have excellent characteristic, radiation induced hardening and swelling are still important safety concern. From microstructural analysis, it was confirmed that dislocation loop, void and precipitate are major sinks which induced swelling and hardening. Among these defects, precipitation such as Mg{sub 2}Si and Si were generated by reaction between alloy elements and transmutations. Therefore, radiation induced swelling and hardening can be predicted by analyzing these defect. However, quantitative analysis of these defects has not been done by computational tools. Therefore, it is unclear that specific mechanism of alloy element effects on the irradiation swelling and hardening in aluminum alloys. Historically, radiation induced phenomena such as swelling, growth and hardening is simulated by Mean Field Radiation Damage Theory (MFRDT). From the MFRDT, reactions of irradiation defect and sink are calculated and then sink density is evolved at each type of sinks. The aim of this study is understanding of radiation effect on sink behavior. From the simplified reaction mechanism, defect concentration, sink density and irradiation hardening are calculated at each sink type. Transmutation effect was mostly dominant and dislocation loop and void effect were negligible.

  13. An Energy Efficient Distance-Aware Routing Algorithm with Multiple Mobile Sinks for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jin Wang

    2014-08-01

    Full Text Available Traffic patterns in wireless sensor networks (WSNs usually follow a many-to-one model. Sensor nodes close to static sinks will deplete their limited energy more rapidly than other sensors, since they will have more data to forward during multihop transmission. This will cause network partition, isolated nodes and much shortened network lifetime. Thus, how to balance energy consumption for sensor nodes is an important research issue. In recent years, exploiting sink mobility technology in WSNs has attracted much research attention because it can not only improve energy efficiency, but prolong network lifetime. In this paper, we propose an energy efficient distance-aware routing algorithm with multiple mobile sink for WSNs, where sink nodes will move with a certain speed along the network boundary to collect monitored data. We study the influence of multiple mobile sink nodes on energy consumption and network lifetime, and we mainly focus on the selection of mobile sink node number and the selection of parking positions, as well as their impact on performance metrics above. We can see that both mobile sink node number and the selection of parking position have important influence on network performance. Simulation results show that our proposed routing algorithm has better performance than traditional routing ones in terms of energy consumption.

  14. Total iron binding capacity

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003489.htm Total iron binding capacity To use the sharing features on this page, please enable JavaScript. Total iron binding capacity (TIBC) is a blood test to ...

  15. Sinking Deltas are Trapped in a Dual Lock-in of Technology and Institutions: Exploring the Trap and 3 Steps to Break Out.

    Science.gov (United States)

    Seijger, C.; Janssen, S.; Erkens, G.

    2017-12-01

    Although the topic of sinking deltas has been put convincingly in the academic spotlight, we consider it highly unlikely that neither subsidence nor the resulting damage will reduce in the near future as subsiding deltas are trapped in a dual lock-in of technology and institutions. People, and the engineering technologies they have applied, are root causes for sinking deltas worldwide. To serve growing economics and populations, conventional water management strategies have increasingly been implemented (more dikes, dams, groundwater pumping, land reclamation) that cause, exacerbate, or facilitate subsidence. The increasing implementation of these strategies enlarged the power of those implementing it: in the US, an increase in dam and levee construction projects meant an increase in power of the US Army Corps of Engineers; in groundwater irrigation, rich farmers have the capacity to monopolise groundwater over poorer farmers; and key beneficiaries of more hydropower projects in China are the hydropower companies. Nine factors for the lock-in are introduced and illustrated for delta regions in Asia, Europe, and the US. The lock-in factors describe financial, social and technological reasons why certain institutions and technologies become dominant over alternatives. Sinking deltas like the Mekong or Mississippi Delta are thus trapped in a dual lock-in and on a self-reinforcing path of delta development with increasing areas of deltas sinking below sea level. Due to the persistency of these developments, pathways for change are needed. We propose three steps to break the dual lock-in (see Figure): (1) getting to know the lock-in through transdisciplinary research (2 years) (2) temporarily bypass it through experiments in technology and institutions (10 years) (3) constitute a new, more sustainable lock-in by mainstreaming shifts in technology and institutions (10-50 years) The dual lock-in concept offers a novel integrated understanding on sinking deltas

  16. Responsibility and Capacities

    DEFF Research Database (Denmark)

    Ryberg, Jesper

    2014-01-01

    That responsible moral agency presupposes certain mental capacities, constitutes a widely accepted view among theorists. Moreover, it is often assumed that degrees in the development of the relevant capacities co-vary with degrees of responsibility. In this article it is argued that, the move from...... the view that responsibility requires certain mental capacities to the position that degrees of responsibility co-vary with degrees of the development of the mental capacities, is premature....

  17. Methyl bromide: ocean sources, ocean sinks, and climate sensitivity.

    Science.gov (United States)

    Anbar, A D; Yung, Y L; Chavez, F P

    1996-03-01

    The oceans play an important role in the geochemical cycle of methyl bromide (CH3Br), the major carrier of O3-destroying bromine to the stratosphere. The quantity of CH3Br produced annually in seawater is comparable to the amount entering the atmosphere each year from natural and anthropogenic sources. The production mechanism is unknown but may be biological. Most of this CH3Br is consumed in situ by hydrolysis or reaction with chloride. The size of the fraction which escapes to the atmosphere is poorly constrained; measurements in seawater and the atmosphere have been used to justify both a large oceanic CH3Br flux to the atmosphere and a small net ocean sink. Since the consumption reactions are extremely temperature-sensitive, small temperature variations have large effects on the CH3Br concentration in seawater, and therefore on the exchange between the atmosphere and the ocean. The net CH3Br flux is also sensitive to variations in the rate of CH3Br production. We have quantified these effects using a simple steady state mass balance model. When CH3Br production rates are linearly scaled with seawater chlorophyll content, this model reproduces the latitudinal variations in marine CH3Br concentrations observed in the east Pacific Ocean by Singh et al. [1983] and by Lobert et al. [1995]. The apparent correlation of CH3Br production with primary production explains the discrepancies between the two observational studies, strengthening recent suggestions that the open ocean is a small net sink for atmospheric CH3Br, rather than a large net source. The Southern Ocean is implicated as a possible large net source of CH3Br to the atmosphere. Since our model indicates that both the direction and magnitude of CH3Br exchange between the atmosphere and ocean are extremely sensitive to temperature and marine productivity, and since the rate of CH3Br production in the oceans is comparable to the rate at which this compound is introduced to the atmosphere, even small

  18. CDMA systems capacity engineering

    CERN Document Server

    Kim, Kiseon

    2004-01-01

    This new hands-on resource tackles capacity planning and engineering issues that are crucial to optimizing wireless communication systems performance. Going beyond the system physical level and investigating CDMA system capacity at the service level, this volume is the single-source for engineering and analyzing systems capacity and resources.

  19. PAYMENT CAPACITY SENSITIVITY FACTORS

    Directory of Open Access Journals (Sweden)

    Daniel BRÎNDESCU – OLARIU

    2014-11-01

    The results of the study facilitate the determination and classification of the main sensitivity factors for the payment capacity at sample level, the establishment of general benchmarks for the payment capacity (as no such benchmarks currently exist in the Romanian literature and the identification of the mechanisms through which the variation of different factors impacts the payment capacity.

  20. Sink- or Source-driven Phanerozoic carbon cycle?

    Science.gov (United States)

    Godderis, Y.; Donnadieu, Y.; Maffre, P.; Carretier, S.

    2017-12-01

    The Phanerozoic evolution of the atmospheric CO2 level is controlled by the fluxes entering or leaving the exospheric system. Those fluxes (including continental weathering, magmatic degassing, organic carbon burial, oxidation of sedimentary organic carbon) are intertwined, and their relative importance in driving the global carbon cycle evolution may have fluctuated through time. Deciphering the causes of the Phanerozoic climate evolution thus requires a holistic and quantitative approach. Here we focus on the role played by the paleogeographic configuration on the efficiency of the CO2 sink by continental silicate weathering, and on the impact of the magmatic degassing of CO2. We use the spatially resolved numerical model GEOCLIM (geoclimmodel.worpress.com) to compute the response of the silicate weathering and atmospheric CO2 to continental drift for 22 time slices of the Phanerozoic. Regarding the CO2 released by the magmatic activity, we reconstruct several Phanerozoic histories of this flux, based on published indexes. We calculate the CO2 evolution for each degassing scenario, and accounting for the paleogeographic setting. We show that the paleogeographic setting is a main driver of the climate from 540 Ma to about the beginning of the Jurassic. Regarding the role of the magmatic degassing, the various reconstructions do not converge towards a single signal, and thus introduce large uncertainties in the calculated CO2 level over time. Nevertheless, the continental dispersion, which prevails since the Jurassic, promotes the CO2 consumption by weathering and forces atmospheric CO2 to stay low. Warm climates of the "middle" Cretaceous and early Cenozoic require enhanced CO2 degassing by magmatic activity. In summary, the Phanerozoic climate evolution can be hardly assigned to a single process, but is the result of complex and intertwined processes.

  1. Carbon sequestration in sinks. An overview of potential and costs

    Energy Technology Data Exchange (ETDEWEB)

    Kolshus, Hans H.

    2001-07-01

    Prior to the resumed climate negotiations in Bonn in July this year, it was thought that an agreement on the unresolved crunch issues of the Kyoto Protocol was unrealistic. This was primarily due to the US withdrawal from the Kyoto Protocol, and the failure of the previous climate negotiations that stranded mainly because of disagreement on the inclusion of land use, land-use change, and forestry (LULUCF) activities. The LULUCF issue is controversial in the climate negotiations, but an agreement has now been reached. This paper explores the possible contribution of LULUCF activities in promoting greenhouse gas emissions reductions. A survey on the literature of the potential and cost of LULUCF activities is therefore central. Analysis of the recent climate negotiations is also important. It is clear that the potential for carbon sequestration is large, but there are large variations in the estimates as factors such as land availability and the rate of carbon uptake complicate the calculations. There are also variations in the costs estimates, and economic analysis of LULUCF projects are not easily compared as no standard method of analysis has emerged and come into wide use. Despite the difficulties in comparing the costs of carbon sequestration, it is clear that it is a relatively inexpensive measure. Even though the potential for carbon sequestration is large, its role in reducing emissions of greenhouse gases (GHG) is limited by the Kyoto Protocol. The recent climate negotiations in Bonn and Marrakesh have specified the modalities, rules and guidelines relating to LULUCF activities. One of the main outcomes is that Japan, Canada and Russia are allowed large inclusions of sinks in their GHG emission accounts. (author)

  2. Carbon sequestration in sinks. An overview of potential and costs

    International Nuclear Information System (INIS)

    Kolshus, Hans H.

    2001-01-01

    Prior to the resumed climate negotiations in Bonn in July this year, it was thought that an agreement on the unresolved crunch issues of the Kyoto Protocol was unrealistic. This was primarily due to the US withdrawal from the Kyoto Protocol, and the failure of the previous climate negotiations that stranded mainly because of disagreement on the inclusion of land use, land-use change, and forestry (LULUCF) activities. The LULUCF issue is controversial in the climate negotiations, but an agreement has now been reached. This paper explores the possible contribution of LULUCF activities in promoting greenhouse gas emissions reductions. A survey on the literature of the potential and cost of LULUCF activities is therefore central. Analysis of the recent climate negotiations is also important. It is clear that the potential for carbon sequestration is large, but there are large variations in the estimates as factors such as land availability and the rate of carbon uptake complicate the calculations. There are also variations in the costs estimates, and economic analysis of LULUCF projects are not easily compared as no standard method of analysis has emerged and come into wide use. Despite the difficulties in comparing the costs of carbon sequestration, it is clear that it is a relatively inexpensive measure. Even though the potential for carbon sequestration is large, its role in reducing emissions of greenhouse gases (GHG) is limited by the Kyoto Protocol. The recent climate negotiations in Bonn and Marrakesh have specified the modalities, rules and guidelines relating to LULUCF activities. One of the main outcomes is that Japan, Canada and Russia are allowed large inclusions of sinks in their GHG emission accounts. (author)

  3. Acetone in the atmosphere: Distribution, sources, and sinks

    Science.gov (United States)

    Singh, H. B.; O'Hara, D.; Herlth, D.; Sachse, W.; Blake, D. R.; Bradshaw, J. D.; Kanakidou, M.; Crutzen, P. J.

    1994-01-01

    Acetone (CH3COCH3) was found to be the dominant nonmethane organic species present in the atmosphere sampled primarily over eastern Canada (0-6 km, 35 deg-65 deg N) during ABLE3B (July to August 1990). A concentration range of 357 to 2310 ppt (= 10(exp -12) v/v) with a mean value of 1140 +/- 413 ppt was measured. Under extremely clean conditions, generally involving Arctic flows, lowest (background) mixing ratios of 550 +/- 100 ppt were present in much of the troposphere studied. Correlations between atmospheric mixing ratios of acetone and select species such as C2H2, CO, C3H8, C2Cl4 and isoprene provided important clues to its possible sources and to the causes of its atmospheric variability. Biomass burning as a source of acetone has been identified for the first time. By using atmospheric data and three-dimensional photochemical models, a global acetone source of 40-60 Tg (= 10(exp 12) g)/yr is estimated to be present. Secondary formation from the atmospheric oxidation of precursor hydrocarbons (principally propane, isobutane, and isobutene) provides the single largest source (51%). The remainder is attributable to biomass burning (26%), direct biogenic emissions (21%), and primary anthropogenic emissions (3%). Atmospheric removal of acetone is estimated to be due to photolysis (64%), reaction with OH radicals (24%), and deposition (12%). Model calculations also suggest that acetone photolysis contributed significantly to PAN formation (100-200 ppt) in the middle and upper troposphere of the sampled region and may be important globally. While the source-sink equation appears to be roughly balanced, much more atmospheric and source data, especially from the southern hemisphere, are needed to reliably quantify the atmospheric budget of acetone.

  4. Optimization under uncertainty of parallel nonlinear energy sinks

    Science.gov (United States)

    Boroson, Ethan; Missoum, Samy; Mattei, Pierre-Olivier; Vergez, Christophe

    2017-04-01

    Nonlinear Energy Sinks (NESs) are a promising technique for passively reducing the amplitude of vibrations. Through nonlinear stiffness properties, a NES is able to passively and irreversibly absorb energy. Unlike the traditional Tuned Mass Damper (TMD), NESs do not require a specific tuning and absorb energy over a wider range of frequencies. Nevertheless, they are still only efficient over a limited range of excitations. In order to mitigate this limitation and maximize the efficiency range, this work investigates the optimization of multiple NESs configured in parallel. It is well known that the efficiency of a NES is extremely sensitive to small perturbations in loading conditions or design parameters. In fact, the efficiency of a NES has been shown to be nearly discontinuous in the neighborhood of its activation threshold. For this reason, uncertainties must be taken into account in the design optimization of NESs. In addition, the discontinuities require a specific treatment during the optimization process. In this work, the objective of the optimization is to maximize the expected value of the efficiency of NESs in parallel. The optimization algorithm is able to tackle design variables with uncertainty (e.g., nonlinear stiffness coefficients) as well as aleatory variables such as the initial velocity of the main system. The optimal design of several parallel NES configurations for maximum mean efficiency is investigated. Specifically, NES nonlinear stiffness properties, considered random design variables, are optimized for cases with 1, 2, 3, 4, 5, and 10 NESs in parallel. The distributions of efficiency for the optimal parallel configurations are compared to distributions of efficiencies of non-optimized NESs. It is observed that the optimization enables a sharp increase in the mean value of efficiency while reducing the corresponding variance, thus leading to more robust NES designs.

  5. CO2 fluxes from a tropical neighborhood: sources and sinks

    Science.gov (United States)

    Velasco, E.; Roth, M.; Tan, S.; Quak, M.; Britter, R.; Norford, L.

    2011-12-01

    Cities are the main contributors to the CO2 rise in the atmosphere. The CO2 released from the various emission sources is typically quantified by a bottom-up aggregation process that accounts for emission factors and fossil fuel consumption data. This approach does not consider the heterogeneity and variability of the urban emission sources, and error propagation can result in large uncertainties. In this context, direct measurements of CO2 fluxes that include all major and minor anthropogenic and natural sources and sinks from a specific district can be used to evaluate emission inventories. This study reports and compares CO2 fluxes measured directly using the eddy covariance method with emissions estimated by emissions factors and activity data for a residential neighborhood of Singapore, a highly populated and urbanized tropical city. The flux measurements were conducted during one year. No seasonal variability was found as a consequence of the constant climate conditions of tropical places; but a clear diurnal pattern with morning and late afternoon peaks in phase with the rush-hour traffic was observed. The magnitude of the fluxes throughout daylight hours is modulated by the urban vegetation, which is abundant in terms of biomass but not of land-cover (15%). Even though the carbon uptake by vegetation is significant, it does not exceed the anthropogenic emissions and the monitored district is a net CO2 source of 20.3 ton km-2 day-1 on average. The carbon uptake by vegetation is investigated as the difference between the estimated emissions and the measured fluxes during daytime.

  6. Thermal performance analysis of optimized hexagonal finned heat sinks in impinging air jet

    Energy Technology Data Exchange (ETDEWEB)

    Yakut, Kenan, E-mail: kyakut@atauni.edu.tr [Department of Mechanical Engineering, Faculty of Engineering, Atatürk University, 25100, Erzurum (Turkey); Yeşildal, Faruk, E-mail: fayesildal@agri.edu.tr [Department of Mechanical Engineering, Faculty of Patnos Sultan Alparslan Natural Sciences and Engineering, Ağrı İbrahim Çeçen University, 04100, Ağrı (Turkey); Karabey, Altuğ, E-mail: akarabey@yyu.edu.tr [Department of Machinery and Metal Technology, Erciş Vocational High School, Yüzüncü Yıl University, 65400, Van (Turkey); Yakut, Rıdvan, E-mail: ryakut@kafkas.edu.tr [Department of Mechanical Engineering, Faculty of Engineering and Architecture, Kafkas University, 36100, Kars (Turkey)

    2016-04-18

    In this study, thermal performance analysis of hexagonal finned heat sinks which optimized according to the experimental design and optimization method of Taguchi were investigated. Experiments of air jet impingement on heated hexagonal finned heat sinks were carried out adhering to the L{sub 18}(2{sup 1*}3{sup 6}) orthogonal array test plan. Optimum geometries were determined and named OH-1, OH-2. Enhancement efficiency with the first law of thermodynamics was analyzed for optimized heat sinks with 100, 150, 200 mm heights of hexagonal fin. Nusselt correlations were found out and variations of enhancement efficiency with Reynolds number presented in η–Re graphics.

  7. Anaerobic nitrogen turnover by sinking diatom aggregates at varying ambient oxygen levels

    DEFF Research Database (Denmark)

    Stief, Peter; Kamp, Anja; Thamdrup, Bo

    2016-01-01

    nitrate supply. Sinking diatom aggregates can contribute directly to fixed-nitrogen loss in low-oxygen environments in the ocean and vastly expand the ocean volume in which anaerobic nitrogen turnover is possible, despite relatively high ambient oxygen levels. Depending on the extent of intracellular......In the world’s oceans, even relatively low oxygen levels inhibit anaerobic nitrogen cycling by free-living microbes. Sinking organic aggregates, however, might provide oxygen-depleted microbial hotspots in otherwise oxygenated surface waters. Here, we show that sinking diatom aggregates can host...

  8. Transient cooling of electronics using phase change material (PCM)-based heat sinks

    International Nuclear Information System (INIS)

    Kandasamy, Ravi; Wang Xiangqi; Mujumdar, Arun S.

    2008-01-01

    Use of a phase change material (PCM)-based heat sink in transient thermal management of plastic quad flat package (QFP) electronic devices was investigated experimentally and numerically. Results show that increased power inputs enhance the melting rate as well as the thermal performance of the PCM-based heat sinks until the PCM is fully melted. A three-dimensional computational fluid dynamics model was proposed to simulate the problem and demonstrated good agreement with experimental data. Results indicate the potential for PCM-based heat sinks for use in intermittent-use devices

  9. Static vs. mobile sink: The influence of basic parameters on energy efficiency in wireless sensor networks.

    Science.gov (United States)

    Khan, Majid I; Gansterer, Wilfried N; Haring, Guenter

    2013-05-15

    Over the last decade a large number of routing protocols has been designed for achieving energy efficiency in data collecting wireless sensor networks. The drawbacks of using a static sink are well known. It has been argued in the literature that a mobile sink may improve the energy dissipation compared to a static one. Some authors focus on minimizing Emax , the maximum energy dissipation of any single node in the network, while others aim at minimizing Ebar , the average energy dissipation over all nodes. In our paper we take a more holistic view, considering both Emax and Ebar . The main contribution of this paper is to provide a simulation-based analysis of the energy efficiency of WSNs with static and mobile sinks. The focus is on two important configuration parameters: mobility path of the sink and duty cycling value of the nodes. On the one hand, it is well known that in the case of a mobile sink with fixed trajectory the choice of the mobility path influences energy efficiency. On the other hand, in some types of applications sensor nodes spend a rather large fraction of their total lifetime in idle mode, and therefore higher energy efficiency can be achieved by using the concept of reduced duty cycles. In particular, we quantitatively analyze the influence of duty cycling and the mobility radius of the sink as well as their interrelationship in terms of energy consumption for a well-defined model scenario. The analysis starts from general load considerations and is refined into a geometrical model. This model is validated by simulations which are more realistic in terms of duty cycling than previous work. It is illustrated that over all possible configuration scenarios in terms of duty cycle and mobility radius of the sink the energy dissipation in the WSN can vary up to a factor of nine in terms of Emax and up to a factor of 17 in terms of Ebar. It turns out that in general the choice of the duty cycle value is more important for achieving energy

  10. Ballast minerals and the sinking carbon flux in the ocean: carbon-specific respiration rates and sinking velocity of marine snow aggregates

    Directory of Open Access Journals (Sweden)

    M. H. Iversen

    2010-09-01

    Full Text Available Recent observations have shown that fluxes of ballast minerals (calcium carbonate, opal, and lithogenic material and organic carbon fluxes are closely correlated in the bathypelagic zones of the ocean. Hence it has been hypothesized that incorporation of biogenic minerals within marine aggregates could either protect the organic matter from decomposition and/or increase the sinking velocity via ballasting of the aggregates. Here we present the first combined data on size, sinking velocity, carbon-specific respiration rate, and composition measured directly in three aggregate types; Emiliania huxleyi aggregates (carbonate ballasted, Skeletonema costatum aggregates (opal ballasted, and aggregates made from a mix of both E. huxleyi and S. costatum (carbonate and opal ballasted. Overall average carbon-specific respiration rate was ~0.13 d−1 and did not vary with aggregate type and size. Ballasting from carbonate resulted in 2- to 2.5-fold higher sinking velocities than those of aggregates ballasted by opal. We compiled literature data on carbon-specific respiration rate and sinking velocity measured in aggregates of different composition and sources. Compiled carbon-specific respiration rates (including this study vary between 0.08 d−1 and 0.20 d−1. Sinking velocity increases with increasing aggregate size within homogeneous sources of aggregates. When compared across different particle and aggregate sources, however, sinking velocity appeared to be independent of particle or aggregate size. The carbon-specific respiration rate per meter settled varied between 0.0002 m−1 and 0.0030 m−1, and decreased with increasing aggregate size. It was lower for calcite ballasted aggregates as compared to that of similar sized opal ballasted aggregates.

  11. Experimental study of electromagnetic radiation from a faster-than-light vacuum macroscopic source

    Energy Technology Data Exchange (ETDEWEB)

    Bessarab, A.V. [Russian Federal Nuclear Center-All-Russia Scientific Research Institute of Experimental Physics, Sarov, Nizhni Novgorod region, 607188 (Russian Federation); Martynenko, S.P. [Russian Federal Nuclear Center-All-Russia Scientific Research Institute of Experimental Physics, Sarov, Nizhni Novgorod region, 607188 (Russian Federation); Prudkoi, N.A. [Russian Federal Nuclear Center-All-Russia Scientific Research Institute of Experimental Physics, Sarov, Nizhni Novgorod region, 607188 (Russian Federation); Soldatov, A.V. [Russian Federal Nuclear Center-All-Russia Scientific Research Institute of Experimental Physics, Sarov, Nizhni Novgorod region, 607188 (Russian Federation)]. E-mail: soldatov@vniief.ru; Terekhin, V.A. [Russian Federal Nuclear Center-All-Russia Scientific Research Institute of Experimental Physics, Sarov, Nizhni Novgorod region, 607188 (Russian Federation)

    2006-08-15

    The effect which manifests itself in the form of directed electromagnetic pulses (EMP) initiated by an X-ray incident obliquely upon a conducting surface has been confirmed and investigated experimentally in detail. A planar accelerating diode comprising a metallic cathode and grid anode was initiated with an oblique short soft-X-ray pulse from a point laser-plasma source. Then a source of directed EMP-a current of accelerated photoelectrons-was formed whose boundary ran along the anode external surface with a faster-than-light velocity. The plasma was formed when short-pulse ({approx}0.3ns) laser radiation from ISKRA-5 facility was focused on a plane Au target. The amplitude-in-time and spatial characteristics of radiation emitted by the faster-than-light source have been measured. Parameters of the accelerated electron current have been measured too.

  12. Withholding response to self-face is faster than to other-face.

    Science.gov (United States)

    Zhu, Min; Hu, Yinying; Tang, Xiaochen; Luo, Junlong; Gao, Xiangping

    2015-01-01

    Self-face advantage refers to adults' response to self-face is faster than that to other-face. A stop-signal task was used to explore how self-face advantage interacted with response inhibition. The results showed that reaction times of self-face were faster than that of other-face not in the go task but in the stop response trials. The novelty of the finding was that self-face has shorter stop-signal reaction time compared to other-face in the successful inhibition trials. These results indicated the processing mechanism of self-face may be characterized by a strong response tendency and a corresponding strong inhibition control.

  13. Object Detection Based on Fast/Faster RCNN Employing Fully Convolutional Architectures

    Directory of Open Access Journals (Sweden)

    Yun Ren

    2018-01-01

    Full Text Available Modern object detectors always include two major parts: a feature extractor and a feature classifier as same as traditional object detectors. The deeper and wider convolutional architectures are adopted as the feature extractor at present. However, many notable object detection systems such as Fast/Faster RCNN only consider simple fully connected layers as the feature classifier. In this paper, we declare that it is beneficial for the detection performance to elaboratively design deep convolutional networks (ConvNets of various depths for feature classification, especially using the fully convolutional architectures. In addition, this paper also demonstrates how to employ the fully convolutional architectures in the Fast/Faster RCNN. Experimental results show that a classifier based on convolutional layer is more effective for object detection than that based on fully connected layer and that the better detection performance can be achieved by employing deeper ConvNets as the feature classifier.

  14. Investigating the Mpemba Effect: When Hot Water Freezes Faster than Cold Water

    Science.gov (United States)

    Ibekwe, R. T.; Cullerne, J. P.

    2016-01-01

    Under certain conditions a body of hot liquid may cool faster and freeze before a body of colder liquid, a phenomenon known as the Mpemba Effect. An initial difference in temperature of 3.2 °C enabled warmer water to reach 0 °C in 14% less time than colder water. Convection currents in the liquid generate a temperature gradient that causes more…

  15. Faster dissolution of PuO2 in nitrous media by means of electrolytic oxidation

    International Nuclear Information System (INIS)

    Baumgaertner, F.; Kim, J.I.; Luckner, N.; Brueckl, N.; Lieberer, E.

    1984-03-01

    The contribution shows that the dissolution of PuO 2 in HNO 3 can be accelerated considerably by means of electrolytic oxidation. A glass apparatus has been developed which uses platinum electrodes providing for sufficient contact between electrodes and solids. Increase of temperature, acid concentration, and electrode current density, and a good contact between electrode and metal oxide will improve the dissolution kinetics. The reaction could be made even faster by addition of Ce 4+ . (orig.) [de

  16. Earlier time to aerobic exercise is associated with faster recovery following acute sport concussion.

    Science.gov (United States)

    Lawrence, David Wyndham; Richards, Doug; Comper, Paul; Hutchison, Michael G

    2018-01-01

    To determine whether earlier time to initiation of aerobic exercise following acute concussion is associated with time to full return to (1) sport and (2) school or work. A retrospective stratified propensity score survival analysis of acute (≤14 days) concussion was used to determine whether time (days) to initiation of aerobic exercise post-concussion was associated with, both, time (days) to full return to (1) sport and (2) school or work. A total of 253 acute concussions [median (IQR) age, 17.0 (15.0-20.0) years; 148 (58.5%) males] were included in this study. Multivariate Cox regression models identified that earlier time to aerobic exercise was associated with faster return to sport and school/work adjusting for other covariates, including quintile propensity strata. For each successive day in delay to initiation of aerobic exercise, individuals had a less favourable recovery trajectory. Initiating aerobic exercise at 3 and 7 days following injury was associated with a respective 36.5% (HR, 0.63; 95% CI, 0.53-0.76) and 73.2% (HR, 0.27; 95% CI, 0.16-0.45) reduced probability of faster full return to sport compared to within 1 day; and a respective 45.9% (HR, 0.54; 95% CI, 0.44-0.66) and 83.1% (HR, 0.17; 95% CI, 0.10-0.30) reduced probability of faster full return to school/work. Additionally, concussion history, symptom severity, LOC deleteriously influenced concussion recovery. Earlier initiation of aerobic exercise was associated with faster full return to sport and school or work. This study provides greater insight into the benefits and safety of aerobic exercise within the first week of the injury.

  17. Learning to Play in a Day: Faster Deep Reinforcement Learning by Optimality Tightening

    OpenAIRE

    He, Frank S.; Liu, Yang; Schwing, Alexander G.; Peng, Jian

    2016-01-01

    We propose a novel training algorithm for reinforcement learning which combines the strength of deep Q-learning with a constrained optimization approach to tighten optimality and encourage faster reward propagation. Our novel technique makes deep reinforcement learning more practical by drastically reducing the training time. We evaluate the performance of our approach on the 49 games of the challenging Arcade Learning Environment, and report significant improvements in both training time and...

  18. Topology optimization of a pseudo 3D thermofluid heat sink model

    DEFF Research Database (Denmark)

    Haertel, Jan H. K.; Engelbrecht, Kurt; Lazarov, Boyan S.

    2018-01-01

    sink and a fixed heat production rate in the base plate. Optimized designs are presented and the resulting fin geometry is discussed from a thermal engineering point of view and compared to fin shapes resulting from a pressure drop minimization objective. Parametric studies are conducted to analyze......This paper investigates the application of density-based topology optimization to the design of air-cooled forced convection heat sinks. To reduce the computational burden that is associated with a full 3D optimization, a pseudo 3D optimization model comprising a 2D modeled conducting metal base...... layer and a thermally coupled 2D modeled thermofluid design layer is used. Symmetry conditions perpendicular to the flow direction are applied to generate periodic heat sink designs. The optimization objective is to minimize the heat sink heat transfer resistance for a fixed pressure drop over the heat...

  19. Thermal effect of a thermoelectric generator on parallel microchannel heat sink

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania; Rosendahl, Lasse

    2012-01-01

    Thermoelectric generators (TEG) convert heat energy to electrical power by means of semiconductor charge carriers serving as working fluid. In this work, a TEG is applied to a parallel microchannel heat sink. The effect of the inlet plenum arrangement on the laminar flow distribution...... in the channels is considered at a wide range of the pressure drop along the heat sink. The particular focus of this study is geometrical effect of the TEG on the heat transfer characteristics in the micro-heat sink. The hydraulic diameter of the microchannels is 270 μm, and three heat fluxes are applied...... on the hot surface of the TEG. By considering the maximum temperature limitation for Bi_2 Te_3 material and using the microchannel heat sink for cooling down the TEG system, an optimum pumping power is achieved. The results are in a good agreement with the previous experimental and theoretical studies....

  20. CTE-Matched, Liquid-Cooled, High Thermal Conductivity Heat Sink, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose the development of a CTE-matched, liquid-cooled, high thermal conductivity heat sink for use in spacecraft thermal management applications. The material...

  1. Climate-driven changes to the atmospheric CO2 sink in the subtropical North Pacific Ocean.

    Science.gov (United States)

    Dore, John E; Lukas, Roger; Sadler, Daniel W; Karl, David M

    2003-08-14

    The oceans represent a significant sink for atmospheric carbon dioxide. Variability in the strength of this sink occurs on interannual timescales, as a result of regional and basin-scale changes in the physical and biological parameters that control the flux of this greenhouse gas into and out of the surface mixed layer. Here we analyse a 13-year time series of oceanic carbon dioxide measurements from station ALOHA in the subtropical North Pacific Ocean near Hawaii, and find a significant decrease in the strength of the carbon dioxide sink over the period 1989-2001. We show that much of this reduction in sink strength can be attributed to an increase in the partial pressure of surface ocean carbon dioxide caused by excess evaporation and the accompanying concentration of solutes in the water mass. Our results suggest that carbon dioxide uptake by ocean waters can be strongly influenced by changes in regional precipitation and evaporation patterns brought on by climate variability.

  2. Diamond Microchannel Heat Sink Designs For High Heat Flux Thermal Control

    National Research Council Canada - National Science Library

    Corbin, Michael

    2002-01-01

    .... Many investigators have suggested the use of diamond heat spreaders to reduce flux levels at or near to its source, and some have suggested that diamond microchannel heat sinks ultimately may play...

  3. Non-random walk diffusion enhances the sink strength of semicoherent interfaces

    Science.gov (United States)

    Vattré, A.; Jourdan, T.; Ding, H.; Marinica, M.-C.; Demkowicz, M. J.

    2016-01-01

    Clean, safe and economical nuclear energy requires new materials capable of withstanding severe radiation damage. One strategy of imparting radiation resistance to solids is to incorporate into them a high density of solid-phase interfaces capable of absorbing and annihilating radiation-induced defects. Here we show that elastic interactions between point defects and semicoherent interfaces lead to a marked enhancement in interface sink strength. Our conclusions stem from simulations that integrate first principles, object kinetic Monte Carlo and anisotropic elasticity calculations. Surprisingly, the enhancement in sink strength is not due primarily to increased thermodynamic driving forces, but rather to reduced defect migration barriers, which induce a preferential drift of defects towards interfaces. The sink strength enhancement is highly sensitive to the detailed character of interfacial stresses, suggesting that `super-sink' interfaces may be designed by optimizing interface stress fields. Such interfaces may be used to create materials with unprecedented resistance to radiation-induced damage.

  4. 78 FR 21596 - Drawn Stainless Steel Sinks From the People's Republic of China: Countervailing Duty Order

    Science.gov (United States)

    2013-04-11

    ... single or multiple drawn bowls, with or without drain boards, whether finished or unfinished, regardless... steel, and then welding and finishing the vertical corners to form the bowls. Stainless steel sinks with...

  5. 78 FR 13017 - Drawn Stainless Steel Sinks From the People's Republic of China: Final Affirmative Countervailing...

    Science.gov (United States)

    2013-02-26

    ... of whether they are shipped with or entered with SS sinks. Excluded from the scope of the... 14 Policies and Incentives, Marketing of Industrial Zones, and Pricing [FR Doc. 2013-04280 Filed 2-25...

  6. Inventory of U.S. greenhouse gas emissions and sinks: 1990-2008

    Science.gov (United States)

    2010-04-01

    An emissions inventory that identifies and quantifies a country's primary anthropogenic sources and sinks of greenhouse gases is essential for addressing climate change. This inventory adheres to both 1) a comprehensive and detailed set of methodolog...

  7. Hormonal and metabolic regulation of tomato fruit sink activity and yield under salinity

    Czech Academy of Sciences Publication Activity Database

    Albacete, A.; Cantero-Navarro, E.; Balibrea, M. E.; Grosskinsky, D. K.; de la Cruz Gonzalez, M.; Martínez-Andújar, C.; Smigocki, A. C.; Roitsch, Thomas; Pérez-Alfocea, F.

    2014-01-01

    Roč. 65, č. 20 (2014), s. 6081-6095 ISSN 0022-0957 Institutional support: RVO:67179843 Keywords : Cell wall invertase * cytokinins * fruit * salinity * sink activity * tomato Subject RIV: EF - Botanics Impact factor: 5.526, year: 2014

  8. Proton and temperature-induced competitive segregation of iron on surface and volume sinks of silica

    International Nuclear Information System (INIS)

    Shilobreeva, S.N.; Kashkarov, L.L.; Barabanenkov, M.Yu.; Pustovit, A.N.; Zinenko, V.I.; Agafonov, Yu.A.

    2007-01-01

    Experimental results are delivered on iron redistribution in silica for proton irradiation followed by thermal annealing. Iron ions are initially implanted into silica at room temperature. Proton irradiation is performed at different temperatures. It is demonstrated, in particular, that radiation-induced migration of iron is more efficient at low temperature. Iron surface segregation and capture of iron by sinks in silica subsurface region during thermal annealing are speculated in terms of diffusion-alternative-sinks problem

  9. Proton and temperature-induced competitive segregation of iron on surface and volume sinks of silica

    Energy Technology Data Exchange (ETDEWEB)

    Shilobreeva, S.N. [Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, ul. Kosygina 19, Moscow 117975 (Russian Federation); Kashkarov, L.L. [Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, ul. Kosygina 19, Moscow 117975 (Russian Federation); Barabanenkov, M.Yu. [Institute of Microelectronics Technology and Superpure Materials, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region (Russian Federation)]. E-mail: barab@ipmt-hpm.ac.ru; Pustovit, A.N. [Institute of Microelectronics Technology and Superpure Materials, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region (Russian Federation); Zinenko, V.I. [Institute of Microelectronics Technology and Superpure Materials, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region (Russian Federation); Agafonov, Yu.A. [Institute of Microelectronics Technology and Superpure Materials, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region (Russian Federation)

    2007-03-15

    Experimental results are delivered on iron redistribution in silica for proton irradiation followed by thermal annealing. Iron ions are initially implanted into silica at room temperature. Proton irradiation is performed at different temperatures. It is demonstrated, in particular, that radiation-induced migration of iron is more efficient at low temperature. Iron surface segregation and capture of iron by sinks in silica subsurface region during thermal annealing are speculated in terms of diffusion-alternative-sinks problem.

  10. Effect of precipitate-matrix interface sinks on the growth of voids in the matrix

    International Nuclear Information System (INIS)

    Brailsford, A.D.; Mansur, L.K.

    1981-01-01

    A qualitative discussion of the differing roles played by coherent and incoherent precipitates as point defect sinks is presented. Rate theory is used to obtain semiquantitative estimates of the growth of cavities in the matrix when either type of precipitate is present. Methods for deriving the sink strengths of precipitates of arbitrary shape are developed. In three materials where available microstructural information allows an analysis, precipitates are found to cause only a small relative suppression of cavity growth via the mechanisms here considered

  11. Reconstructing source-sink dynamics in a population with a pelagic dispersal phase.

    Directory of Open Access Journals (Sweden)

    Kun Chen

    Full Text Available For many organisms, the reconstruction of source-sink dynamics is hampered by limited knowledge of the spatial assemblage of either the source or sink components or lack of information on the strength of the linkage for any source-sink pair. In the case of marine species with a pelagic dispersal phase, these problems may be mitigated through the use of particle drift simulations based on an ocean circulation model. However, when simulated particle trajectories do not intersect sampling sites, the corroboration of model drift simulations with field data is hampered. Here, we apply a new statistical approach for reconstructing source-sink dynamics that overcomes the aforementioned problems. Our research is motivated by the need for understanding observed changes in jellyfish distributions in the eastern Bering Sea since 1990. By contrasting the source-sink dynamics reconstructed with data from the pre-1990 period with that from the post-1990 period, it appears that changes in jellyfish distribution resulted from the combined effects of higher jellyfish productivity and longer dispersal of jellyfish resulting from a shift in the ocean circulation starting in 1991. A sensitivity analysis suggests that the source-sink reconstruction is robust to typical systematic and random errors in the ocean circulation model driving the particle drift simulations. The jellyfish analysis illustrates that new insights can be gained by studying structural changes in source-sink dynamics. The proposed approach is applicable for the spatial source-sink reconstruction of other species and even abiotic processes, such as sediment transport.

  12. A Sink-driven Approach to Detecting Exposed Component Vulnerabilities in Android Apps

    OpenAIRE

    Wu, Daoyuan; Luo, Xiapu; Chang, Rocky K. C.

    2014-01-01

    Android apps could expose their components for cooperating with other apps. This convenience, however, makes apps susceptible to the exposed component vulnerability (ECV), in which a dangerous API (commonly known as sink) inside its component can be triggered by other (malicious) apps. In the prior works, detecting these ECVs use a set of sinks pertaining to the ECVs under detection. In this paper, we argue that a more comprehensive and effective approach should start by a systematic selectio...

  13. The influence of heat sink temperature on the seasonal efficiency of shallow geothermal heat pumps

    Science.gov (United States)

    Pełka, Grzegorz; Luboń, Wojciech; Sowiżdżał, Anna; Malik, Daniel

    2017-11-01

    Geothermal heat pumps, also known as ground source heat pumps (GSHP), are the most efficient heating and cooling technology utilized nowadays. In the AGH-UST Educational and Research Laboratory of Renewable Energy Sources and Energy Saving in Miękinia, shallow geothermal heat is utilized for heating. In the article, the seasonal efficiency of two geothermal heat pump systems are described during the 2014/2015 heating season, defined as the period between 1st October 2014 and 30th April 2015. The first system has 10.9 kW heating capacity (according to European Standard EN 14511 B0W35) and extracts heat from three vertical geothermal loops at a depth of 80m each. During the heating season, tests warmed up the buffer to 40°C. The second system has a 17.03 kW heating capacity and extracts heat from three vertical geothermal loops at a depth of 100 m each, and the temperature of the buffer was 50°C. During the entire heating season, the water temperatures of the buffers was constant. Seasonal performance factors were calculated, defined as the quotient of heat delivered by a heat pump to the system and the sum of electricity consumed by the compressor, source pump, sink pump and controller of heat pumps. The measurements and calculations give the following results: - The first system was supplied with 13 857 kWh/a of heat and consumed 3 388 kWh/a electricity. The SPF was 4.09 and the average temperature of outlet water from heat pump was 40.8°C, and the average temperature of brine flows into the evaporator was 3.7 °C; - The second system was supplied with 12 545 kWh/a of heat and consumed 3 874 kWh/a electricity. The SPF was 3.24 and the average temperature of outlet water from heat pump was 51.6°C, and the average temperature of brine flows into the evaporator was 5.3°C. To summarize, the data shown above presents the real SPF of the two systems. It will be significant in helping to predict the SPF of objects which will be equipped with ground source heat pumps.

  14. A review on heat sink for thermo-electric power generation: Classifications and parameters affecting performance

    International Nuclear Information System (INIS)

    Elghool, Ali; Basrawi, Firdaus; Ibrahim, Thamir Khalil; Habib, Khairul; Ibrahim, Hassan; Idris, Daing Mohamad Nafiz Daing

    2017-01-01

    Highlights: • Coupling a thermoelectric power generation (TEG) to a heat sink is presented. • Review the classifications and parameters affecting performance of the TEG with heat sink. • Discuss different mathematical models of the heat sinks. • The passive heat sinks are most appropriate because of the inherent efficiency of TEG. • Medium temperature range below 300 °C is found to be most suitable for HPHS. - Abstract: In recent years, there have been growing interests in key areas related to global warming resulting from environmental emissions, and the diminishing sources of fossil fuel. The increased interest has led to significant research efforts towards finding novel technologies in clean energy production. Consequently, the merits of a thermo-electric generator (TEG) have promised a revival of alternative means of producing green energy. It is, however, impractical to account for the cost of thermal energy input to the TEG which is in the form of final waste heat. This is because the technology presents critical limitations in determining its cost efficiency nor its economic disadvantages. This paper reviews the principles of thermo-electric power production, as well the materials use, performance achieved, and application areas. The paper also takes a particular deliberation on TEG heat sinks geometries and categories. The review emphasizes more on the TEG performance while considering a number of heat sink parameters related to its performance.

  15. The sink strengths of voids and the expected swelling for both random and ordered void distributions

    International Nuclear Information System (INIS)

    Quigley, T.M.; Murphy, S.M.; Bullough, R.; Wood, M.H.

    1981-10-01

    The sink strength of a void has been obtained when the void is a member of a random or ordered distribution of voids. The former sink strength derivation has employed the embedding model and the latter the cellular model. In each case the spatially varying size-effect interaction between the intrinsic point defects and the voids has been included together with the presence of other sink types in addition to the voids. The results are compared with previously published sink strengths that have made use of an approximate representation for the size-effect interactions, and indicate the importance of using the exact form of the interaction. In particular the bias for interstitials compared with vacancies of small voids is now much reduced and contamination of the surfaces of such voids no longer appears essential to facilitate the nucleation and growth of the voids. These new sink strengths have been used, in conjunction with recently published dislocation sink strengths, to calculate the expected swelling of materials containing network dislocations and voids. Results are presented for both the random and the void lattice situations. (author)

  16. Programming Saposin-Mediated Compensatory Metabolic Sinks for Enhanced Ubiquinone Production.

    Science.gov (United States)

    Xu, Wen; Yuan, Jifeng; Yang, Shuiyun; Ching, Chi-Bun; Liu, Jiankang

    2016-12-16

    Microbial synthesis of ubiquinone by fermentation processes has been emerging in recent years. However, as ubiquinone is a primary metabolite that is tightly regulated by the host central metabolism, tweaking the individual pathway components could only result in a marginal improvement on the ubiquinone production. Given that ubiquinone is stored in the lipid bilayer, we hypothesized that introducing additional metabolic sink for storing ubiquinone might improve the CoQ 10 production. As human lipid binding/transfer protein saposin B (hSapB) was reported to extract ubiquinone from the lipid bilayer and form the water-soluble complex, hSapB was chosen to build a compensatory metabolic sink for the ubiquinone storage. As a proof-of-concept, hSapB-mediated metabolic sink systems were devised and systematically investigated in the model organism of Escherichia coli. The hSapB-mediated periplasmic sink resulted in more than 200% improvement of CoQ 8 over the wild type strain. Further investigation revealed that hSapB-mediated sink systems could also improve the CoQ 10 production in a CoQ 10 -hyperproducing E. coli strain obtained by a modular pathway rewiring approach. As the design principles and the engineering strategies reported here are generalizable to other microbes, compensatory sink systems will be a method of significant interest to the synthetic biology community.

  17. Changes in seed weight in response to different sources: sink ratio in oilseed rape

    Directory of Open Access Journals (Sweden)

    Francisco M Iglesias

    2014-06-01

    Full Text Available Little knowledge exists about the degree of source, sink and source: sink limitations on mean seed weight in oilseed rape (Brassica napus L.. The objective of this work was to analyze the nature and magnitude on seed weight response to assimilate availability during the effective seed-filling period in oilseed rape. Three Argentinean varieties, Eclipse, Impulse, and Master, were grown under field conditions, and at the beginning of the effective seed filling period, a broad range of source: sink manipulation combinations were produced. Source manipulations consisted of two incoming radiation (R level reductions: 0% (Rn and ~50% (Rs combined with three different sources: sink treatments were applied: C, control; PR, ~50% pod removal, and D, 100% defoliation. Rs significantly reduced yield (15% and MSW (12% with respect to Rn, without significant effects on the rest of the sub yield components. Source:sink manipulation treatments significantly affected all yield components. PR diminished yield by 29%, reducing ca. 40% seeds pl-1 by reductions pods pl-1 (41% with respect to Rn, whereas PR increased MSW by 19%, counterbalancing the reduction in seeds pl-1 and thereby in yield. When considering different seed positions along the main raceme, Rs reduced MSW by 12% independently of seed positions onto the raceme. On the contrary, PR increased MSW in average 17% with respect to C. Results reported here suggest that oilseed rape has source: sink co-limitation during the effective seed filling period, which is apparently higher than wheat and lower than maize.

  18. [Eco-economic thinking for developing carbon sink industry in the de-farming regions].

    Science.gov (United States)

    Wang, Ji Jun; Wang, Zheng Shu; Cheng, Si Min; Gu, Wen; Li, Yue; Li, Mao Sen

    2017-12-01

    Based on the potential and the law that plants absorb carbon dioxide, carbon sink industry means certain appropriate artificial intervention to obtain clean air, and to meet people's production and life demand for ecological environment industry. Carbon sink industry is considered as a breakthrough point and a new growth point for optimizing and upgrading of the original relatively balanced or stable agricultural industry-resources system. Among the ecosystem services in the de-farming regions, the rapid increase of the economic manifestation of carbon fixation and oxygen release function and the carbon sink potential, as well as the rise of carbon trading and carbon market both in domestic and international, have established a theoretical and practical basis for the deve-lopment of carbon industry. With the development of the carbon sink industry, improving the carbon sequestration output will become the core of the carbon sink industry. The producers or marketers will form the controlling of the carbon source, the development of the path for carbon storage increasing and re-layout of agricultural industry-resources structure, and thus bring new vitality to regional sustainable development in the de-farming regions. This indicates the emphasis for the future research and development, that is, allocating the agricultural industry-resources structure and their benign coupling mechanism after integrating the carbon sink industry.

  19. Assessing institutional capacities to adapt to climate change - integrating psychological dimensions in the Adaptive Capacity Wheel

    Science.gov (United States)

    Grothmann, T.; Grecksch, K.; Winges, M.; Siebenhüner, B.

    2013-03-01

    Several case studies show that "soft social factors" (e.g. institutions, perceptions, social capital) strongly affect social capacities to adapt to climate change. Many soft social factors can probably be changed faster than "hard social factors" (e.g. economic and technological development) and are therefore particularly important for building social capacities. However, there are almost no methodologies for the systematic assessment of soft social factors. Gupta et al. (2010) have developed the Adaptive Capacity Wheel (ACW) for assessing the adaptive capacity of institutions. The ACW differentiates 22 criteria to assess six dimensions: variety, learning capacity, room for autonomous change, leadership, availability of resources, fair governance. To include important psychological factors we extended the ACW by two dimensions: "adaptation motivation" refers to actors' motivation to realise, support and/or promote adaptation to climate. "Adaptation belief" refers to actors' perceptions of realisability and effectiveness of adaptation measures. We applied the extended ACW to assess adaptive capacities of four sectors - water management, flood/coastal protection, civil protection and regional planning - in North Western Germany. The assessments of adaptation motivation and belief provided a clear added value. The results also revealed some methodological problems in applying the ACW (e.g. overlap of dimensions), for which we propose methodological solutions.

  20. The making of giant pumpkins: how selective breeding changed the phloem of Cucurbita maxima from source to sink.

    Science.gov (United States)

    Savage, Jessica A; Haines, Dustin F; Holbrook, N Michele

    2015-08-01

    Despite the success of breeding programmes focused on increasing fruit size, relatively little is known about the anatomical and physiological changes required to increase reproductive allocation. To address this gap in knowledge, we compared fruit/ovary anatomy, vascular structure and phloem transport of two varieties of giant pumpkins, and their smaller fruited progenitor under controlled environmental conditions. We also modelled carbon transport into the fruit of competitively grown plants using data collected in the field. There was no evidence that changes in leaf area or photosynthetic capacity impacted fruit size. Instead, giant varieties differed in their ovary morphology and contained more phloem on a cross-sectional area basis in their petioles and pedicels than the ancestral variety. These results suggest that sink activity is important in determining fruit size and that giant pumpkins have an enhanced capacity to transport carbon. The strong connection observed between carbon fixation, phloem structure and fruit growth in field-grown plants indicates that breeding for large fruit has led to changes throughout the carbon transport system that could have important implications for how we think about phloem transport velocity and carbon allocation. © 2014 John Wiley & Sons Ltd.

  1. A study on emergency response guideline during the loss of steam generator secondary heat sink in pressurizer water reactor

    International Nuclear Information System (INIS)

    Yoon, D. J.; Lee, J. Y.; Song, D. S.

    1999-01-01

    A loss of secondary heat sink can occur as a result of several different initiating events, which are a loss of main feedwater during power operation, a loss of off-site power, or any other scenario for which main feedwater is isolated or lost. At this point the opening and closing of the PORV or safety valves will result in a loss of RCS inventory similar in nature to a small break loss of coolant accident. If operator action is not taken, the pressurizer PORV or safety valves will continue to cycle open and closed at the valve setpoint pressure removing RCS inventory and a limited amount of core decay heat until eventually enough inventory will be lost to result in core uncovery. We conclude that a requirement to successfully initiate bleed and feed on steam generator dryout, without any significant core uncovery expected to occur, is that the PORV flow to power ratio must exceed 140 (lbm/hr)/Mwt. For all plants whose PORV capacity is less than 140 (lbm/hr)/Mwt, since symptoms of SG dryout cannot be used to initiate bleed and feed, increasing RCS pressure and temperature or pressure greater than 2335 psig cannot be used. The only alternative symptom available is SG narrow range level. Since Kori 1,2,3 and 4' PORV capacity is more than the criteria, the bleed and feed operation can be initiated at steam generator dryout

  2. Carbon storage in old-growth forests of the Mid-Atlantic: toward better understanding the eastern forest carbon sink.

    Science.gov (United States)

    McGarvey, Jennifer C; Thompson, Jonathan R; Epstein, Howard E; Shugart, Herman H

    2015-02-01

    Few old-growth stands remain in the matrix of secondary forests that dominates the eastern North American landscape. These remnant stands offer insight on the potential carbon (C) storage capacity of now-recovering secondary forests. We surveyed the remaining old-growth forests on sites characteristic of the general Mid-Atlantic United States and estimated the size of multiple components of forest C storage. Within and between old-growth stands, variability in C density is high and related to overstory tree species composition. The sites contain 219 ± 46 Mg C/ha (mean ± SD), including live and dead aboveground biomass, leaf litter, and the soil O horizon, with over 20% stored in downed wood and snags. Stands dominated by tulip poplar (Liriodendron tulipifera) store the most live biomass, while the mixed oak (Quercus spp.) stands overall store more dead wood. Total C density is 30% higher (154 Mg C/ha), and dead wood C density is 1800% higher (46 Mg C/ha) in the old-growth forests than in the surrounding younger forests (120 and 5 Mg C/ha, respectively). The high density of dead wood in old growth relative to secondary forests reflects a stark difference in historical land use and, possibly, the legacy of the local disturbance (e.g., disease) history. Our results demonstrate the potential for dead wood to maintain the sink capacity of secondary forests for many decades to come.

  3. Capacity planning and management

    OpenAIRE

    Boydell, Briony

    2011-01-01

    After reading this chapter you should be able to: • Define and measure capacity and appreciate the factors that influence it. • Assess the difficulties of matching capacity to demand. • Evaluate and apply the different strategies for matching capacity with demand in the short, medium and long term. • Analyse the impact of constraints and bottlenecks on a process and consider the Theory of Constraints. • Outline the different strategies available for both manufacturing and service operations. ...

  4. The French capacity mechanism

    International Nuclear Information System (INIS)

    2014-01-01

    The French capacity mechanism has been design to ensure security of supply in the context of the energy transition. This energy transition challenges the electricity market design with several features: peak load growth, the development of renewables, demand response,... To ensure security of supply in this context, a capacity mechanism is being implemented in France. It is a market wide capacity obligation on electricity suppliers, based on market principles. Suppliers are responsible for forecasting their obligation, which corresponds to their contribution to winter peak load, and must procure enough capacity certificates to meet their obligations. Capacity certificates are granted to capacities through a certification process, which assesses their contribution to security of supply on the basis of availability commitments. This certification process is technology neutral and performance based, associated with controls and penalties in case of non compliance. Demand Side is fully integrated in the market, either through the reduction of suppliers' capacity obligation or direct participation after certification. In addition to the expected benefits in terms of security of supply, the French capacity market will foster the development of demand response. The participation of foreign capacities will require adaptations which are scheduled in a road-map, and could pave the way for further European integration of energy policies. (authors)

  5. Recent Changes to the Strength of the CO2 Sink in Boreal Land Regions (Invited)

    Science.gov (United States)

    Hayes, D. J.; McGuire, A. D.; Kicklighter, D. W.; Gurney, K. R.; Melillo, J. M.

    2009-12-01

    Studies suggest that high-latitude terrestrial ecosystems have had a significant influence on the global carbon budget by acting as a substantial sink of atmospheric CO2 over the latter part of the 20th Century. However, recent changes in the controlling factors of this sink, including surface air temperature warming and increases in the frequency and severity of disturbances, have the potential to alter the C balance of boreal land regions. Whether these ecosystems continue to sequester atmospheric CO2 in the face of these changes is a key question in global change science and policy, as any changes to the strength of this major terrestrial sink will have important implications for the global C budget and climate system. Here, we diagnose and attribute contemporary terrestrial CO2 sink strength in the boreal land regions using a biogeochemical process model within a simulation framework that incorporates the impacts of recent changes in atmospheric chemistry and climate variability, as well as fire, forest management and agricultural land use regimes. The simulations estimate that the boreal land regions acted as a net sink of 102 TgC yr-1 from 1960 to 1980 that declined in strength to 28 TgC yr-1 for the 1990s and switched to a source of 99 TgC yr-1 from years 2000 to 2006. The weakening sink strength in the 1990s was largely a result of C losses from Boreal North American tundra and forest ecosystems through increasing decomposition of soil organic matter in response to warmer temperatures. Compared to previous decades, a near doubling of fire emissions was the major factor causing the boreal land regions to switch to a net C source since 2000 when large burn years occurred across the region, particularly in forests of Boreal Asia. A steady sink averaging 23 TgC yr-1 was estimated for Boreal European ecosystems from 1960 to 2006, with the ‘fertilization’ effects of increasing atmospheric CO2 concentration and N deposition primarily responsible for the

  6. Heat Capacity Analysis Report

    International Nuclear Information System (INIS)

    Findikakis, A.

    2004-01-01

    The purpose of this report is to provide heat capacity values for the host and surrounding rock layers for the waste repository at Yucca Mountain. The heat capacity representations provided by this analysis are used in unsaturated zone (UZ) flow, transport, and coupled processes numerical modeling activities, and in thermal analyses as part of the design of the repository to support the license application. Among the reports that use the heat capacity values estimated in this report are the ''Multiscale Thermohydrologic Model'' report, the ''Drift Degradation Analysis'' report, the ''Ventilation Model and Analysis Report, the Igneous Intrusion Impacts on Waste Packages and Waste Forms'' report, the ''Dike/Drift Interactions report, the Drift-Scale Coupled Processes (DST and TH Seepage) Models'' report, and the ''In-Drift Natural Convection and Condensation'' report. The specific objective of this study is to determine the rock-grain and rock-mass heat capacities for the geologic stratigraphy identified in the ''Mineralogic Model (MM3.0) Report'' (BSC 2004 [DIRS 170031], Table 1-1). This report provides estimates of the heat capacity for all stratigraphic layers except the Paleozoic, for which the mineralogic abundance data required to estimate the heat capacity are not available. The temperature range of interest in this analysis is 25 C to 325 C. This interval is broken into three separate temperature sub-intervals: 25 C to 95 C, 95 C to 114 C, and 114 C to 325 C, which correspond to the preboiling, trans-boiling, and postboiling regimes. Heat capacity is defined as the amount of energy required to raise the temperature of a unit mass of material by one degree (Nimick and Connolly 1991 [DIRS 100690], p. 5). The rock-grain heat capacity is defined as the heat capacity of the rock solids (minerals), and does not include the effect of water that exists in the rock pores. By comparison, the rock-mass heat capacity considers the heat capacity of both solids and pore

  7. Faster Smith-Waterman database searches with inter-sequence SIMD parallelisation

    Directory of Open Access Journals (Sweden)

    Rognes Torbjørn

    2011-06-01

    Full Text Available Abstract Background The Smith-Waterman algorithm for local sequence alignment is more sensitive than heuristic methods for database searching, but also more time-consuming. The fastest approach to parallelisation with SIMD technology has previously been described by Farrar in 2007. The aim of this study was to explore whether further speed could be gained by other approaches to parallelisation. Results A faster approach and implementation is described and benchmarked. In the new tool SWIPE, residues from sixteen different database sequences are compared in parallel to one query residue. Using a 375 residue query sequence a speed of 106 billion cell updates per second (GCUPS was achieved on a dual Intel Xeon X5650 six-core processor system, which is over six times more rapid than software based on Farrar's 'striped' approach. SWIPE was about 2.5 times faster when the programs used only a single thread. For shorter queries, the increase in speed was larger. SWIPE was about twice as fast as BLAST when using the BLOSUM50 score matrix, while BLAST was about twice as fast as SWIPE for the BLOSUM62 matrix. The software is designed for 64 bit Linux on processors with SSSE3. Source code is available from http://dna.uio.no/swipe/ under the GNU Affero General Public License. Conclusions Efficient parallelisation using SIMD on standard hardware makes it possible to run Smith-Waterman database searches more than six times faster than before. The approach described here could significantly widen the potential application of Smith-Waterman searches. Other applications that require optimal local alignment scores could also benefit from improved performance.

  8. Paying more for faster care? Individuals' attitude toward price-based priority access in health care.

    Science.gov (United States)

    Benning, Tim M; Dellaert, Benedict G C

    2013-05-01

    Increased competition in the health care sector has led hospitals and other health care institutions to experiment with new access allocation policies that move away from traditional expert based allocation of care to price-based priority access (i.e., the option to pay more for faster care). To date, little is known about individuals' attitude toward price-based priority access and the evaluation process underlying this attitude. This paper addresses the role of individuals' evaluations of collective health outcomes as an important driver of their attitude toward (price-based) allocation policies in health care. The authors investigate how individuals evaluate price-based priority access by means of scenario-based survey data collected in a representative sample from the Dutch population (N = 1464). They find that (a) offering individuals the opportunity to pay for faster care negatively affects their evaluations of both the total and distributional collective health outcome achieved, (b) however, when health care supply is not restricted (i.e., when treatment can be offered outside versus within the regular working hours of the hospital) offering price-based priority access affects total collective health outcome evaluations positively instead of negatively, but it does not change distributional collective health outcome evaluations. Furthermore, (c) the type of health care treatment (i.e., life saving liver transplantation treatment vs. life improving cosmetic ear correction treatment - priced at the same level to the individual) moderates the effect of collective health outcome evaluations on individuals' attitude toward allocation policies. For policy makers and hospital managers the results presented in this article are helpful because they provide a better understanding of what drives individuals' preferences for health care allocation policies. In particular, the results show that policies based on the "paying more for faster care" principle are more

  9. Faster native vowel discrimination learning in musicians is mediated by an optimization of mnemonic functions.

    Science.gov (United States)

    Elmer, Stefan; Greber, Marielle; Pushparaj, Arethy; Kühnis, Jürg; Jäncke, Lutz

    2017-09-01

    The ability to discriminate phonemes varying in spectral and temporal attributes constitutes one of the most basic intrinsic elements underlying language learning mechanisms. Since previous work has consistently shown that professional musicians are characterized by perceptual and cognitive advantages in a variety of language-related tasks, and since vowels can be considered musical sounds within the domain of speech, here we investigated the behavioral and electrophysiological correlates of native vowel discrimination learning in a sample of professional musicians and non-musicians. We evaluated the contribution of both the neurophysiological underpinnings of perceptual (i.e., N1/P2 complex) and mnemonic functions (i.e., N400 and P600 responses) while the participants were instructed to judge whether pairs of native consonant-vowel (CV) syllables manipulated in the first formant transition of the vowel (i.e., from /tu/ to /to/) were identical or not. Results clearly demonstrated faster learning in musicians, compared to non-musicians, as reflected by shorter reaction times and higher accuracy. Most notably, in terms of morphology, time course, and voltage strength, this steeper learning curve was accompanied by distinctive N400 and P600 manifestations between the two groups. In contrast, we did not reveal any group differences during the early stages of auditory processing (i.e., N1/P2 complex), suggesting that faster learning was mediated by an optimization of mnemonic but not perceptual functions. Based on a clear taxonomy of the mnemonic functions involved in the task, results are interpreted as pointing to a relationship between faster learning mechanisms in musicians and an optimization of echoic (i.e., N400 component) and working memory (i.e., P600 component) functions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Faster self-paced rate of drinking for alcohol mixed with energy drinks versus alcohol alone.

    Science.gov (United States)

    Marczinski, Cecile A; Fillmore, Mark T; Maloney, Sarah F; Stamates, Amy L

    2017-03-01

    The consumption of alcohol mixed with energy drinks (AmED) has been associated with higher rates of binge drinking and impaired driving when compared with alcohol alone. However, it remains unclear why the risks of use of AmED are heightened compared with alcohol alone even when the doses of alcohol consumed are similar. Therefore, the purpose of this laboratory study was to investigate if the rate of self-paced beverage consumption was faster for a dose of AmED versus alcohol alone using a double-blind, within-subjects, placebo-controlled study design. Participants (n = 16) of equal gender who were social drinkers attended 4 separate test sessions that involved consumption of alcohol (1.97 ml/kg vodka) and energy drinks, alone and in combination. On each test day, the dose assigned was divided into 10 cups. Participants were informed that they would have a 2-h period to consume the 10 drinks. After the self-paced drinking period, participants completed a cued go/no-go reaction time (RT) task and subjective ratings of stimulation and sedation. The results indicated that participants consumed the AmED dose significantly faster (by ∼16 min) than the alcohol dose. For the performance task, participants' mean RTs were slower in the alcohol conditions and faster in the energy-drink conditions. In conclusion, alcohol consumers should be made aware that rapid drinking might occur for AmED beverages, thus heightening alcohol-related safety risks. The fast rate of drinking may be related to the generalized speeding of responses after energy-drink consumption. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  11. Faster Smith-Waterman database searches with inter-sequence SIMD parallelisation.

    Science.gov (United States)

    Rognes, Torbjørn

    2011-06-01

    The Smith-Waterman algorithm for local sequence alignment is more sensitive than heuristic methods for database searching, but also more time-consuming. The fastest approach to parallelisation with SIMD technology has previously been described by Farrar in 2007. The aim of this study was to explore whether further speed could be gained by other approaches to parallelisation. A faster approach and implementation is described and benchmarked. In the new tool SWIPE, residues from sixteen different database sequences are compared in parallel to one query residue. Using a 375 residue query sequence a speed of 106 billion cell updates per second (GCUPS) was achieved on a dual Intel Xeon X5650 six-core processor system, which is over six times more rapid than software based on Farrar's 'striped' approach. SWIPE was about 2.5 times faster when the programs used only a single thread. For shorter queries, the increase in speed was larger. SWIPE was about twice as fast as BLAST when using the BLOSUM50 score matrix, while BLAST was about twice as fast as SWIPE for the BLOSUM62 matrix. The software is designed for 64 bit Linux on processors with SSSE3. Source code is available from http://dna.uio.no/swipe/ under the GNU Affero General Public License. Efficient parallelisation using SIMD on standard hardware makes it possible to run Smith-Waterman database searches more than six times faster than before. The approach described here could significantly widen the potential application of Smith-Waterman searches. Other applications that require optimal local alignment scores could also benefit from improved performance.

  12. The Faster, Better, Cheaper Approach to Space Missions: An Engineering Management Assessment

    Science.gov (United States)

    Hamaker, Joseph W.

    1999-01-01

    NASA was chartered as an independent civilian space agency in 1958 following the Soviet Union's dramatic launch of the Sputnik 1 (1957). In his state of the union address in May of 1961, President Kennedy issued to the fledging organization his famous challenge for a manned lunar mission by the end of the decade. The Mercury, Gemini and Apollo programs that followed put the utmost value on high quality, low risk (as low as possible within the context of space flight), quick results, all with little regard for cost. These circumstances essentially melded NASAs culture as an organization capable of great technological achievement but at extremely high cost. The Space Shuttle project, the next major agency endeavor, was put under severe annual budget constraints in the 1970's. NASAs response was to hold to the high quality standards, low risk and annual cost and let schedule suffer. The result was a significant delay in the introduction of the Shuttle as well as overall total cost growth. By the early 1990's, because NASA's budget was declining, the number of projects was also declining. Holding the same cost and schedule productivity levels as before was essentially causing NASA to price itself out of business. In 1992, the helm of NASA was turned over to a new Administrator. Dan Goldin's mantra was "faster, better, cheaper" and his enthusiasm and determination to change the NASA culture was not to be ignored. This research paper documents the various implementations of "faster, better, cheaper" that have been attempted, analyzes their impact and compares the cost performance of these new projects to previous NASA benchmarks. Fundamentally, many elements of "faster, better, cheaper" are found to be working well, especially on smaller projects. Some of the initiatives are found to apply only to smaller or experimental projects however, so that extrapolation to "flagship" projects may be problematic.

  13. Semantic Size Does Not Matter: “Bigger” Words Are Not Recognised Faster

    OpenAIRE

    Kang, Sean H.K.; Yap, Melvin J.; Tse, Chi-Shing; Kurby, Christopher A.

    2011-01-01

    Sereno, O’Donnell, and Sereno (2009) reported that words are recognised faster in a lexical decision task when their referents are physically large rather than small, suggesting that “semantic size” might be an important variable that should be considered in visual word recognition research and modelling. We sought to replicate their size effect, but failed to find a significant latency advantage in lexical decision for “big” words (cf. “small” words), even though we used the same word stimul...

  14. Two-ply channels for faster wicking in paper-based microfluidic devices.

    Science.gov (United States)

    Camplisson, Conor K; Schilling, Kevin M; Pedrotti, William L; Stone, Howard A; Martinez, Andres W

    2015-12-07

    This article describes the development of porous two-ply channels for paper-based microfluidic devices that wick fluids significantly faster than conventional, porous, single-ply channels. The two-ply channels were made by stacking two single-ply channels on top of each other and were fabricated entirely out of paper, wax and toner using two commercially available printers, a convection oven and a thermal laminator. The wicking in paper-based channels was studied and modeled using a modified Lucas-Washburn equation to account for the effect of evaporation, and a paper-based titration device incorporating two-ply channels was demonstrated.

  15. Faster-than-real-time robot simulation for plan development and robot safety

    International Nuclear Information System (INIS)

    Crane, C.D. III; Dalton, R.; Ogles, J.; Tulenko, J.S.; Zhou, X.

    1990-01-01

    The University of Florida, in cooperation with the Universities of Texas, Tennessee, and Michigan and Oak Ridge National Laboratory (ORNL), is developing an advanced robotic system for the US Department of Energy under the University Program for Robotics for Advanced Reactors. As part of this program, the University of Florida has been pursuing the development of a faster-than-real-time robotic simulation program for planning and control of mobile robotic operations to ensure the efficient and safe operation of mobile robots in nuclear power plants and other hazardous environments

  16. Faster Simulation Methods for the Non-Stationary Random Vibrations of Non-Linear MDOF Systems

    DEFF Research Database (Denmark)

    Askar, A.; Köylüoglu, H. U.; Nielsen, Søren R. K.

    subject to nonstationary Gaussian white noise excitation, as an alternative to conventional direct simulation methods. These alternative simulation procedures rely on an assumption of local Gaussianity during each time step. This assumption is tantamount to various linearizations of the equations....... Such a treatment offers higher rates of convergence, faster speed and higher accuracy. These procedures are compared to the direct Monte Carlo simulation procedure, which uses a fourth order Runge-Kutta scheme with the white noise process approximated by a broad band Ruiz-Penzien broken line process...

  17. Faster Simulation Methods for the Nonstationary Random Vibrations of Non-linear MDOF Systems

    DEFF Research Database (Denmark)

    Askar, A.; Köylüo, U.; Nielsen, Søren R.K.

    1996-01-01

    subject to nonstationary Gaussian white noise excitation, as an alternative to conventional direct simulation methods. These alternative simulation procedures rely on an assumption of local Gaussianity during each time step. This assumption is tantamount to various linearizations of the equations....... Such a treatment offers higher rates of convergence, faster speed and higher accuracy. These procedures are compared to the direct Monte Carlo simulation procedure, which uses a fourth order Runge-Kutta scheme with the white noise process approximated by a broad band Ruiz-Penzien broken line process...

  18. Prospects for OPEC capacity

    International Nuclear Information System (INIS)

    Adelman, M.A.

    1995-01-01

    OPEC capacity is not exogenous, but responds to demand. Price increases have not been caused by capacity shortages. OPEC nations find it hard to set aside even very small portions of their revenues for oil investment, despite its extreme profitability. Foreign investors face high risks. Production sharing makes their after-tax return even more unstable. (author)

  19. Carbon source-sink relationship in Arabidopsis thaliana: the role of sucrose transporters.

    Science.gov (United States)

    Durand, Mickaël; Mainson, Dany; Porcheron, Benoît; Maurousset, Laurence; Lemoine, Rémi; Pourtau, Nathalie

    2018-03-01

    The regulation of source-to-sink sucrose transport is associated with AtSUC and AtSWEET sucrose transporters' gene expression changes in plants grown hydroponically under different physiological conditions. Source-to-sink transport of sucrose is one of the major determinants of plant growth. Whole-plant carbohydrates' partitioning requires the specific activity of membrane sugar transporters. In Arabidopsis thaliana plants, two families of transporters are involved in sucrose transport: AtSUCs and AtSWEETs. This study is focused on the comparison of sucrose transporter gene expression, soluble sugar and starch levels and long distance sucrose transport, in leaves and sink organs (mainly roots) in different physiological conditions (along the plant life cycle, during a diel cycle, and during an osmotic stress) in plants grown hydroponically. In leaves, the AtSUC2, AtSWEET11, and 12 genes known to be involved in phloem loading were highly expressed when sucrose export was high and reduced during osmotic stress. In roots, AtSUC1 was highly expressed and its expression profile in the different conditions tested suggests that it may play a role in sucrose unloading in roots and in root growth. The SWEET transporter genes AtSWEET12, 13, and 15 were found expressed in all organs at all stages studied, while differential expression was noticed for AtSWEET14 in roots, stems, and siliques and AtSWEET9, 10 expressions were only detected in stems and siliques. A role for these transporters in carbohydrate partitioning in different source-sink status is proposed, with a specific attention on carbon demand in roots. During development, despite trophic competition with others sinks, roots remained a significant sink, but during osmotic stress, the amount of translocated [U- 14 C]-sucrose decreased for rosettes and roots. Altogether, these results suggest that source-sink relationship may be linked with the regulation of sucrose transporter gene expression.

  20. Taking credit : Canada and the role of sinks in international climate negotiations

    International Nuclear Information System (INIS)

    Anderson, D.

    2001-01-01

    This report serves as a guide in explaining the significant, but complicated role that terrestrial carbon sinks play in international climate negotiations and the continuing need for major reductions in greenhouse gas emissions. The role that terrestrial carbon sinks should play in the Kyoto Climate Change Protocol was one of the main reasons for impasse in negotiations at the treaty talks in the Hague in November 2000. The issue is based on the allowance of countries to receive credits under the Kyoto Protocol for using forests and lands to absorb and store carbon. Storing carbon could be part of a menu of options to slow the build-up of atmospheric carbon dioxide levels. However, it was argued that without strong crediting rules and guidelines, countries like Canada could use interpretations that would allow them to weaken the emission reduction commitments made under the Protocol. This paper explained why some countries support expansive crediting of sinks and others are strongly opposed to their inclusion in the Protocol. The paper also provided a technical explanation of the science of sinks and the carbon cycle upon which policy decisions must be based. The five chapters of the report were entitled: (1) sinks and international climate negotiations, (2) counting carbon in the industrialized world, (3) counting carbon in the developing world, (4) terrestrial carbon sinks as carbon offset mechanisms, and (5) effects of land use practices and climate change on carbon exchange in terrestrial ecosystems. A decision regarding the allowance of carbon sinks will be reached in the talks scheduled for the end of July 2001 in Bonn, Germany. refs., tabs., figs

  1. The declining uptake rate of atmospheric CO2 by land and ocean sinks

    Directory of Open Access Journals (Sweden)

    M. R. Raupach

    2014-07-01

    Full Text Available Through 1959–2012, an airborne fraction (AF of 0.44 of total anthropogenic CO2 emissions remained in the atmosphere, with the rest being taken up by land and ocean CO2 sinks. Understanding of this uptake is critical because it greatly alleviates the emissions reductions required for climate mitigation, and also reduces the risks and damages that adaptation has to embrace. An observable quantity that reflects sink properties more directly than the AF is the CO2 sink rate (kS, the combined land–ocean CO2 sink flux per unit excess atmospheric CO2 above preindustrial levels. Here we show from observations that kS declined over 1959–2012 by a factor of about 1 / 3, implying that CO2 sinks increased more slowly than excess CO2. Using a carbon–climate model, we attribute the decline in kS to four mechanisms: slower-than-exponential CO2 emissions growth (~ 35% of the trend, volcanic eruptions (~ 25%, sink responses to climate change (~ 20%, and nonlinear responses to increasing CO2, mainly oceanic (~ 20%. The first of these mechanisms is associated purely with the trajectory of extrinsic forcing, and the last two with intrinsic, feedback responses of sink processes to changes in climate and atmospheric CO2. Our results suggest that the effects of these intrinsic, nonlinear responses are already detectable in the global carbon cycle. Although continuing future decreases in kS will occur under all plausible CO2 emission scenarios, the rate of decline varies between scenarios in non-intuitive ways because extrinsic and intrinsic mechanisms respond in opposite ways to changes in emissions: extrinsic mechanisms cause kS to decline more strongly with increasing mitigation, while intrinsic mechanisms cause kS to decline more strongly under high-emission, low-mitigation scenarios as the carbon–climate system is perturbed further from a near-linear regime.

  2. The declining uptake rate of atmospheric CO2 by land and ocean sinks

    International Nuclear Information System (INIS)

    Raupach, M.R.; Gloor, M.; Sarmiento, J.L.; Gasser, T.

    2014-01-01

    Through 1959-2012, an airborne fraction (AF) of 0.44 of total anthropogenic CO 2 emissions remained in the atmosphere, with the rest being taken up by land and ocean CO 2 sinks. Understanding of this uptake is critical because it greatly alleviates the emissions reductions required for climate mitigation, and also reduces the risks and damages that adaptation has to embrace. An observable quantity that reflects sink properties more directly than the AF is the CO 2 sink rate (k S ), the combined land-ocean CO 2 sink flux per unit excess atmospheric CO 2 above pre industrial levels. Here we show from observations that k S declined over 1959-2012 by a factor of about 1/3, implying that CO 2 sinks increased more slowly than excess CO 2 . Using a carbon-climate model, we attribute the decline in k S to four mechanisms: slower-than-exponential CO 2 emissions growth (35% of the trend), volcanic eruptions (25 %), sink responses to climate change (20 %), and nonlinear responses to increasing CO 2 , mainly oceanic (20 %). The first of these mechanisms is associated purely with the trajectory of extrinsic forcing, and the last two with intrinsic, feedback responses of sink processes to changes in climate and atmospheric CO 2 . Our results suggest that the effects of these intrinsic, nonlinear responses are already detectable in the global carbon cycle. Although continuing future decreases in k S will occur under all plausible CO 2 emission scenarios, the rate of decline varies between scenarios in non intuitive ways because extrinsic and intrinsic mechanisms respond in opposite ways to changes in emissions: extrinsic mechanisms cause k S to decline more strongly with increasing mitigation, while intrinsic mechanisms cause k S to decline more strongly under high-emission, low-mitigation scenarios as the carbon-climate system is perturbed further from a near-linear regime. (authors)

  3. Residual stresses and their mechanisms of production at circumferential weld by heat-sink welding

    International Nuclear Information System (INIS)

    Ueda, Yukio; Nakacho, Keiji; Ohkubo, Katsumi; Shimizu, Tsubasa.

    1983-01-01

    In the previous report, the authors showed effectiveness of the heat-sink welding (water cooling) to accomplish this end by conducting theoretical analysis and an experiment on residual stresses in the 4B pipe of SUS 304 by the conventional welding and the heat-sink welding at a certain standard heat-input condition. In this research, different pipe sizes and varied heat-input are applied. The welding residual stresses by the conventional welding and the heat-sink welding are obtained by the theoretical analysis and their production mechanisms are clarified. Hence the influence of the above changes of conditions on effectiveness of the heat-sink welding is investigated. The main results are summarized as follow. (1) In case of this pipes such as 2B and 4B pipes, it is important to minimize heat-input per one pass (especially for latter half passes) in order to improve the effectiveness of the heat-sink welding. The effectiveness can be predicted either by theoretical analysis of the temperature distribution history with consideration of the characteristic of heat transfer under spray-watering or by experimental measurement. (2) In case of 24B pipes, thick pipes, it is desirable to minimize heat-input for the first half passes, by which the heat-sink welding becomes more effective. In addition, no matter whether the conventional welding or the heat-sink welding, it is important to prevent angular distorsion which produces tensile axial stresses on the inner surface of the pipe in the weld zone. Possible measures to meet these requirements are to apply restraining jigs, to minimize the section area of the groove (ex. application of the narrow gap arc welding), and to change continuous welding to skip one. (J.P.N.)

  4. Influence of plankton community structure on the sinking velocity of marine aggregates

    Science.gov (United States)

    Bach, L. T.; Boxhammer, T.; Larsen, A.; Hildebrandt, N.; Schulz, K. G.; Riebesell, U.

    2016-08-01

    About 50 Gt of carbon is fixed photosynthetically by surface ocean phytoplankton communities every year. Part of this organic matter is reprocessed within the plankton community to form aggregates which eventually sink and export carbon into the deep ocean. The fraction of organic matter leaving the surface ocean is partly dependent on aggregate sinking velocity which accelerates with increasing aggregate size and density, where the latter is controlled by ballast load and aggregate porosity. In May 2011, we moored nine 25 m deep mesocosms in a Norwegian fjord to assess on a daily basis how plankton community structure affects material properties and sinking velocities of aggregates (Ø 80-400 µm) collected in the mesocosms' sediment traps. We noted that sinking velocity was not necessarily accelerated by opal ballast during diatom blooms, which could be due to relatively high porosity of these rather fresh aggregates. Furthermore, estimated aggregate porosity (Pestimated) decreased as the picoautotroph (0.2-2 µm) fraction of the phytoplankton biomass increased. Thus, picoautotroph-dominated communities may be indicative for food webs promoting a high degree of aggregate repackaging with potential for accelerated sinking. Blooms of the coccolithophore Emiliania huxleyi revealed that cell concentrations of 1500 cells/mL accelerate sinking by about 35-40%, which we estimate (by one-dimensional modeling) to elevate organic matter transfer efficiency through the mesopelagic from 14 to 24%. Our results indicate that sinking velocities are influenced by the complex interplay between the availability of ballast minerals and aggregate packaging; both of which are controlled by plankton community structure.

  5. The Soil Sink for Nitrous Oxide: Trivial Amount but Challenging Question

    Science.gov (United States)

    Davidson, E. A.; Savage, K. E.; Sihi, D.

    2015-12-01

    Net uptake of atmospheric nitrous oxide (N2O) has been observed sporadically for many years. Such observations have often been discounted as measurement error or noise, but they were reported frequently enough to gain some acceptance as valid. The advent of fast response field instruments with good sensitivity and precision has permitted confirmation that some soils can be small sinks of N2O. With regards to "closing the global N2O budget" the soil sink is trivial, because it is smaller than the error terms of most other budget components. Although not important from a global budget perspective, the existence of a soil sink for atmospheric N2O presents a fascinating challenge for understanding the physical, chemical, and biological processes that explain the sink. Reduction of N2O by classical biological denitrification requires reducing conditions generally found in wet soil, and yet we have measured the N2O sink in well drained soils, where we also simultaneously measure a sink for atmospheric methane (CH4). Co-occurrence of N2O reduction and CH4 oxidation would require a broad range of microsite conditions within the soil, spanning high and low oxygen concentrations. Abiotic sinks for N2O or other biological processes that consume N2O could exist, but have not yet been identified. We are attempting to simulate processes of diffusion of N2O, CH4, and O2 from the atmosphere and within a soil profile to determine if classical biological N2O reduction and CH4 oxidation at rates consistent with measured fluxes are plausible.

  6. Uncertainty in adaptive capacity

    International Nuclear Information System (INIS)

    Neil Adger, W.; Vincent, K.

    2005-01-01

    The capacity to adapt is a critical element of the process of adaptation: it is the vector of resources that represent the asset base from which adaptation actions can be made. Adaptive capacity can in theory be identified and measured at various scales, from the individual to the nation. The assessment of uncertainty within such measures comes from the contested knowledge domain and theories surrounding the nature of the determinants of adaptive capacity and the human action of adaptation. While generic adaptive capacity at the national level, for example, is often postulated as being dependent on health, governance and political rights, and literacy, and economic well-being, the determinants of these variables at national levels are not widely understood. We outline the nature of this uncertainty for the major elements of adaptive capacity and illustrate these issues with the example of a social vulnerability index for countries in Africa. (authors)

  7. Atmospheric methane: Sources, sinks, and role in global change

    International Nuclear Information System (INIS)

    Khalil, M.A.K.

    1993-01-01

    Atmospheric methane is thought to be the most important trace gas involved in man-made climate change. It may be second only to carbon dioxide in causing global warming. Methane affects also the oxidizing capacity of the atmosphere by controlling tropospheric OH radicals and creating O 3 , and it affects the ozone layer in the stratosphere by contributing water vapor and removing chlorine atoms. In the long term, methane is a natural product of life on earth, reaching high concentrations during warm and biologically productive epochs. Yet the scientific understanding of atmospheric methane has evolved mostly during the past decade after it was shown that concentrations were rapidly rising. Because of the environmental importance of methane, North Atlantic Treaty Organization's Scientific and Environmental Affairs Division commissioned an Advanced Research Workshop. This book is the result of such a conference held during the week of 6 October 1991 at Timberline Lodge on Mount Hood near Portland, Oregon. (orig./KW)

  8. Transitions in the Communication Capacity of Dissipative Qubit Channels

    Science.gov (United States)

    Daems, D.

    2009-05-01

    The information transmission is studied for quantum channels in which the noise includes dissipative effects, more specifically, nonunitality. Noise is usually a nuisance but can sometimes be helpful. For these channels, the communication capacity is shown to increase with the dissipative component of the noise and may exhibit transitions beyond which it increases faster. The optimal states are constructed analytically as well as the pertaining “phase” diagram.

  9. Faster in-plane switching and reduced rotational viscosity characteristics in a graphene-nematic suspension

    Science.gov (United States)

    Basu, Rajratan; Kinnamon, Daniel; Skaggs, Nicole; Womack, James

    2016-05-01

    The in-plane switching (IPS) for a nematic liquid crystal (LC) was found to be considerably faster when the LC was doped with dilute concentrations of monolayer graphene flakes. Additional studies revealed that the presence of graphene reduced the rotational viscosity of the LC, permitting the nematic director to respond quicker in IPS mode on turning the electric field on. The studies were carried out with several graphene concentrations in the LC, and the experimental results coherently suggest that there exists an optimal concentration of graphene, allowing a reduction in the IPS response time and rotational viscosity in the LC. Above this optimal graphene concentration, the rotational viscosity was found to increase, and consequently, the LC no longer switched faster in IPS mode. The presence of graphene suspension was also found to decrease the LC's pretilt angle significantly due to the π-π electron stacking between the LC molecules and graphene flakes. To understand the π-π stacking interaction, the anchoring mechanism of the LC on a CVD grown monolayer graphene film on copper substrate was studied by reflected crossed polarized microscopy. Optical microphotographs revealed that the LC alignment direction depended on monolayer graphene's hexagonal crystal structure and its orientation.

  10. Faster in-plane switching and reduced rotational viscosity characteristics in a graphene-nematic suspension

    International Nuclear Information System (INIS)

    Basu, Rajratan; Kinnamon, Daniel; Skaggs, Nicole; Womack, James

    2016-01-01

    The in-plane switching (IPS) for a nematic liquid crystal (LC) was found to be considerably faster when the LC was doped with dilute concentrations of monolayer graphene flakes. Additional studies revealed that the presence of graphene reduced the rotational viscosity of the LC, permitting the nematic director to respond quicker in IPS mode on turning the electric field on. The studies were carried out with several graphene concentrations in the LC, and the experimental results coherently suggest that there exists an optimal concentration of graphene, allowing a reduction in the IPS response time and rotational viscosity in the LC. Above this optimal graphene concentration, the rotational viscosity was found to increase, and consequently, the LC no longer switched faster in IPS mode. The presence of graphene suspension was also found to decrease the LC's pretilt angle significantly due to the π-π electron stacking between the LC molecules and graphene flakes. To understand the π-π stacking interaction, the anchoring mechanism of the LC on a CVD grown monolayer graphene film on copper substrate was studied by reflected crossed polarized microscopy. Optical microphotographs revealed that the LC alignment direction depended on monolayer graphene's hexagonal crystal structure and its orientation.

  11. The Development of Future Orientation is Associated with Faster Decline in Hopelessness during Adolescence.

    Science.gov (United States)

    Mac Giollabhui, Naoise; Nielsen, Johanna; Seidman, Sam; Olino, Thomas M; Abramson, Lyn Y; Alloy, Lauren B

    2018-01-05

    Hopelessness is implicated in multiple psychological disorders. Little is known, however, about the trajectory of hopelessness during adolescence or how emergent future orientation may influence its trajectory. Parallel process latent growth curve modelling tested whether (i) trajectories of future orientation and hopelessness and (ii) within-individual change in future orientation and hopelessness were related. The study was comprised of 472 adolescents [52% female, 47% Caucasian, 47% received free lunch] recruited at ages 12-13 who completed measures of future orientation and hopelessness at five annual assessments. The results indicate that a general decline in hopelessness across adolescence occurs quicker for those experiencing faster development of future orientation, when controlling for age, sex, low socio-economic status in addition to stressful life events in childhood and adolescence. Stressful childhood life events were associated with worse future orientation at baseline and negative life events experienced during adolescence were associated with both an increase in the trajectory of hopelessness as well as a decrease in the trajectory of future orientation. This study provides compelling evidence that the development of future orientation during adolescence is associated with a faster decline in hopelessness.

  12. National health expenditure projections, 2013-23: faster growth expected with expanded coverage and improving economy.

    Science.gov (United States)

    Sisko, Andrea M; Keehan, Sean P; Cuckler, Gigi A; Madison, Andrew J; Smith, Sheila D; Wolfe, Christian J; Stone, Devin A; Lizonitz, Joseph M; Poisal, John A

    2014-10-01

    In 2013 health spending growth is expected to have remained slow, at 3.6 percent, as a result of the sluggish economic recovery, the effects of sequestration, and continued increases in private health insurance cost-sharing requirements. The combined effects of the Affordable Care Act's coverage expansions, faster economic growth, and population aging are expected to fuel health spending growth this year and thereafter (5.6 percent in 2014 and 6.0 percent per year for 2015-23). However, the average rate of increase through 2023 is projected to be slower than the 7.2 percent average growth experienced during 1990-2008. Because health spending is projected to grow 1.1 percentage points faster than the average economic growth during 2013-23, the health share of the gross domestic product is expected to rise from 17.2 percent in 2012 to 19.3 percent in 2023. Project HOPE—The People-to-People Health Foundation, Inc.

  13. Faster in-plane switching and reduced rotational viscosity characteristics in a graphene-nematic suspension

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Rajratan, E-mail: basu@usna.edu; Kinnamon, Daniel; Skaggs, Nicole; Womack, James [Soft Matter and Nanomaterials Laboratory, Department of Physics, The United States Naval Academy, Annapolis, Maryland 21402 (United States)

    2016-05-14

    The in-plane switching (IPS) for a nematic liquid crystal (LC) was found to be considerably faster when the LC was doped with dilute concentrations of monolayer graphene flakes. Additional studies revealed that the presence of graphene reduced the rotational viscosity of the LC, permitting the nematic director to respond quicker in IPS mode on turning the electric field on. The studies were carried out with several graphene concentrations in the LC, and the experimental results coherently suggest that there exists an optimal concentration of graphene, allowing a reduction in the IPS response time and rotational viscosity in the LC. Above this optimal graphene concentration, the rotational viscosity was found to increase, and consequently, the LC no longer switched faster in IPS mode. The presence of graphene suspension was also found to decrease the LC's pretilt angle significantly due to the π-π electron stacking between the LC molecules and graphene flakes. To understand the π-π stacking interaction, the anchoring mechanism of the LC on a CVD grown monolayer graphene film on copper substrate was studied by reflected crossed polarized microscopy. Optical microphotographs revealed that the LC alignment direction depended on monolayer graphene's hexagonal crystal structure and its orientation.

  14. They all like it hot: faster cleanup of contaminated soil and groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Newmark, R., LLNL

    1998-03-01

    Clean up a greasy kitchen spill with cold water and the going is slow. Us hot water instead and progress improves markedly. So it makes sense that cleanup of greasy underground contaminants such as gasoline might go faster if hot water or steam were somehow added to the process. The Environmental Protection Agency named hundreds of sites to the Superfund list - sites that have been contaminated with petroleum products or petroleum products or solvents. Elsewhere across the country, thousands of properties not identified on federal cleanup lists are contaminated as well. Given that under current regulations, underground accumulations of solvent and hydrocarbon contaminants (the most serious cause of groundwater pollution) must be cleaned up, finding a rapid and effective method of removing them is imperative. In the early 1990`s, in collaboration with the School of Engineering at the University of California at Berkeley, Lawrence Livermore developed dynamic underground stripping. This method for treating underground contaminants with heat is much faster and more effective than traditional treatment methods.

  15. Ear Detection under Uncontrolled Conditions with Multiple Scale Faster Region-Based Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    2017-04-01

    Full Text Available Ear detection is an important step in ear recognition approaches. Most existing ear detection techniques are based on manually designing features or shallow learning algorithms. However, researchers found that the pose variation, occlusion, and imaging conditions provide a great challenge to the traditional ear detection methods under uncontrolled conditions. This paper proposes an efficient technique involving Multiple Scale Faster Region-based Convolutional Neural Networks (Faster R-CNN to detect ears from 2D profile images in natural images automatically. Firstly, three regions of different scales are detected to infer the information about the ear location context within the image. Then an ear region filtering approach is proposed to extract the correct ear region and eliminate the false positives automatically. In an experiment with a test set of 200 web images (with variable photographic conditions, 98% of ears were accurately detected. Experiments were likewise conducted on the Collection J2 of University of Notre Dame Biometrics Database (UND-J2 and University of Beira Interior Ear dataset (UBEAR, which contain large occlusion, scale, and pose variations. Detection rates of 100% and 98.22%, respectively, demonstrate the effectiveness of the proposed approach.

  16. Faster recovery of a diatom from UV damage under ocean acidification.

    Science.gov (United States)

    Wu, Yaping; Campbell, Douglas A; Gao, Kunshan

    2014-11-01

    Diatoms are the most important group of primary producers in marine ecosystems. As oceanic pH declines and increased stratification leads to the upper mixing layer becoming shallower, diatoms are interactively affected by both lower pH and higher average exposures to solar ultraviolet radiation. The photochemical yields of a model diatom, Phaeodactylum tricornutum, were inhibited by ultraviolet radiation under both growth and excess light levels, while the functional absorbance cross sections of the remaining photosystem II increased. Cells grown under ocean acidification (OA) were less affected during UV exposure. The recovery of PSII under low photosynthetically active radiation was much faster than in the dark, indicating that photosynthetic processes were essential for the full recovery of photosystem II. This light dependent recovery required de novo synthesized protein. Cells grown under ocean acidification recovered faster, possibly attributable to higher CO₂ availability for the Calvin cycle producing more resources for repair. The lower UV inhibition combined with higher recovery rate under ocean acidification could benefit species such as P.tricornutum, and change their competitiveness in the future ocean. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. The impact of accelerating faster than exponential population growth on genetic variation.

    Science.gov (United States)

    Reppell, Mark; Boehnke, Michael; Zöllner, Sebastian

    2014-03-01

    Current human sequencing projects observe an abundance of extremely rare genetic variation, suggesting recent acceleration of population growth. To better understand the impact of such accelerating growth on the quantity and nature of genetic variation, we present a new class of models capable of incorporating faster than exponential growth in a coalescent framework. Our work shows that such accelerated growth affects only the population size in the recent past and thus large samples are required to detect the models' effects on patterns of variation. When we compare models with fixed initial growth rate, models with accelerating growth achieve very large current population sizes and large samples from these populations contain more variation than samples from populations with constant growth. This increase is driven almost entirely by an increase in singleton variation. Moreover, linkage disequilibrium decays faster in populations with accelerating growth. When we instead condition on current population size, models with accelerating growth result in less overall variation and slower linkage disequilibrium decay compared to models with exponential growth. We also find that pairwise linkage disequilibrium of very rare variants contains information about growth rates in the recent past. Finally, we demonstrate that models of accelerating growth may substantially change estimates of present-day effective population sizes and growth times.

  18. Treatment of the loss of ultimate heat sink initiating events in the IRSN level 1 PSA

    International Nuclear Information System (INIS)

    Dupuy, Patricia; Georgescu, Gabriel; Corenwinder, Francois

    2014-01-01

    The total loss of the ultimate heat sink is an initiating event which, even it is mainly of external origin, has been considered in the frame of internal events Level 1 PSA by IRSN. The on-going actions on the development of external hazards PSA and the recent incident of loss of the heat sink induced by the ingress of vegetable matter that occurred in France in 2009 have pointed out the need to improve the modeling of the loss of the heat sink initiating event and sequences to better take into account the fact that this loss may be induced by external hazards and thus affect all the site units. The paper presents the historical steps of the modeling of the total loss of the heat sink, the safety stakes of this modeling, the main assumptions used by IRSN in the associated PSA for the 900 MWe reactors and the results obtained. The total loss of the heat sink was not initially addressed in the safety demonstration of French NPPs. On the basis of the insights of the first probabilistic assessments performed in the 80's, the risks associated to this 'multiple failure situation' turned out to be very significant and design and organisational improvements were implemented on the plants. Reviews of the characterization of external hazards and of their consequences on the installations and French operating feedback have revealed that extreme hazards may induce a total loss of the heat sink. Moreover, the accident that occurred at Fukushima in 2011 has pointed out the risk of such a loss of long duration at all site units in case of extreme hazards. In this context, it seems relevant to further improve the modelling of the total loss of the heat sink by considering the external hazards that may cause this loss. In a first step, IRSN has improved the assumptions and data used in the loss of the heat sink PSA model, in particular by considering that such a loss may affect all the site units. The next challenge will be the deeper analysis of the impact of external hazards on

  19. Spatiotemporal distribution and national measurement of the global carbonate carbon sink.

    Science.gov (United States)

    Li, Huiwen; Wang, Shijie; Bai, Xiaoyong; Luo, Weijun; Tang, Hong; Cao, Yue; Wu, Luhua; Chen, Fei; Li, Qin; Zeng, Cheng; Wang, Mingming

    2018-06-21

    The magnitudes, spatial distributions and contributions to global carbon budget of the global carbonate carbon sink (CCS) still remain uncertain, allowing the problem of national measurement of CCS remain unresolved which will directly influence the fairness of global carbon markets and emission trading. Here, based on high spatiotemporal resolution ecological, meteorological raster data and chemical field monitoring data, combining highly reliable machine learning algorithm with the thermodynamic dissolution equilibrium model, we estimated the new CCS of 0.89 ± 0.23 petagrams of carbon per year (Pg C yr -1 ), amounting to 74.50% of global net forest sink and accounting for 28.75% of terrestrial sinks or 46.81% of the missing sink. Our measurement for 142 nations of CCS showed that Russia, Canada, China and the USA contribute over half of the global CCS. We also presented the first global fluxes maps of the CCS with spatial resolution of 0.05°, exhibiting two peaks in equatorial regions (10°S to 10°N) and low latitudes (10°N to 35°N) in Northern Hemisphere. By contrast, there are no peaks in Southern Hemisphere. The greatest average carbon sink flux (CCSF), i.e., 2.12 tC ha -1  yr -1 , for 2000 to 2014 was contributed by tropical rainforest climate near the equator, and the smallest average CCSF was presented in tropical arid zones, showing a magnitude of 0.26 tC ha -1  yr -1 . This research estimated the magnitudes, spatial distributions, variations and contributions to the global carbon budget of the CCS in a higher spatiotemporal representativeness and expandability way, which, via multiple mechanisms, introduced an important sink in the terrestrial carbon sink system and the global missing sink and that can help us further reveal and support our understanding of global rock weathering carbon sequestration, terrestrial carbon sink system and global carbon cycle dynamics which make our understanding of global change more comprehensive

  20. Governing atmospheric sinks: the architecture of entitlements in the global commons

    Directory of Open Access Journals (Sweden)

    Jouni Paavola

    2008-07-01

    Full Text Available This article revisits key works on the management of common-pool resources under common property arrangements, in order to elicit a broader notion of collective ownership for analysing institutional arrangements that govern the use of large-scale environmental resources such as biodiversity and atmospheric sinks. The article proposes a model for analysing the institutional design of governance solutions which draws attention to 1 tiers and levels, 2 organisation of generic governance functions, and 3 formulation of specific institutional rules. The article exemplifies these analytical solutions by examining the emerging governance framework for global atmospheric sinks. The article indicates how crucial parts of the institutional framework for governing atmospheric sinks are still missing, a shortcoming which maintains the ‘‘tragedy of the commons’’ in their use. The article suggests that a workable governance solution for global atmospheric sinks has to 1 cap the use of atmospheric sinks; 2 provide for a more equitable benefit sharing; 3 provide for compensation of climate change impacts and assistance for adaptation to climate change impacts; and 4 create institutional solutions for enhancing participation in environmental decisions in order to guarantee progress in and legitimacy of the governance framework.

  1. Thermal management of electronics using phase change material based pin fin heat sinks

    International Nuclear Information System (INIS)

    Baby, R; Balaji, C

    2012-01-01

    This paper reports the results of an experimental study carried out to explore the thermal characteristics of phase change material based heat sinks for electronic equipment cooling. The phase change material (PCM) used in this study is n – eicosane. All heat sinks used in the present study are made of aluminium with dimensions of 80 × 62 mm 2 base with a height of 25 mm. Pin fins acts as the thermal conductivity enhancer (TCE) to improve the distribution of heat more uniformly as the thermal conductivity of the PCM is very low. A total of three different pin fin heat sink geometries with 33, 72 and 120 pin fins filled with phase change materials giving rise to 4%, 9% and 15% volume fractions of the TCE respectively were experimentally investigated. Baseline comparisons are done with a heat sink filled with PCM, without any fin. Studies are conducted for heat sinks on which a uniform heat load is applied at the bottom for the finned and unfinned cases. The effect of pin fins of different volume fractions with power levels ranging from 4 to 8 W corresponding to a heat flux range of 1. 59 to 3.17 kW/m 2 , was explored in this paper. The volume fraction of the PCM (PCM volume / (Total volume – fin volume)) is also varied as 0. 3, 0.6 and 1 to determine the effect of PCM volume on the overall performance of the electronic equipment.

  2. Possible role of interference, protein noise, and sink effects in nonphotochemical quenching in photosynthetic complexes.

    Science.gov (United States)

    Berman, Gennady P; Nesterov, Alexander I; Gurvitz, Shmuel; Sayre, Richard T

    2017-01-01

    We analyze theoretically a simple and consistent quantum mechanical model that reveals the possible role of quantum interference, protein noise, and sink effects in the nonphotochemical quenching (NPQ) in light-harvesting complexes (LHCs). The model consists of a network of five interconnected sites (excitonic states of light-sensitive molecules) responsible for the NPQ mechanism. The model also includes the "damaging" and the dissipative channels. The damaging channel is responsible for production of singlet oxygen and other destructive outcomes. In our model, both damaging and "dissipative" charge transfer channels are described by discrete electron energy levels attached to their sinks, that mimic the continuum part of electron energy spectrum. All five excitonic sites interact with the protein environment that is modeled using a stochastic process. Our approach allowed us to derive the exact and closed system of linear ordinary differential equations for the reduced density matrix and its first momentums. These equations are solved numerically including for strong interactions between the light-sensitive molecules and protein environment. As an example, we apply our model to demonstrate possible contributions of quantum interference, protein noise, and sink effects in the NPQ mechanism in the CP29 minor LHC. The numerical simulations show that using proper combination of quantum interference effects, properties of noise, and sinks, one can significantly suppress the damaging channel. Our findings demonstrate the possible role of interference, protein noise, and sink effects for modeling, engineering, and optimizing the performance of the NPQ processes in both natural and artificial light-harvesting complexes.

  3. Global land carbon sink response to temperature and precipitation varies with ENSO phase

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yuanyuan; Michalak, Anna M.; Schwalm, Christopher R.; Huntzinger, Deborah N.; Berry, Joseph A.; Ciais, Philippe; Piao, Shilong; Poulter, Benjamin; Fisher, Joshua B.; Cook, Robert B.; Hayes, Daniel; Huang, Maoyi; Ito, Akihiko; Jain, Atul; Lei, Huimin; Lu, Chaoqun; Mao, Jiafu; Parazoo, Nicholas C.; Peng, Shushi; Ricciuto, Daniel M.; Shi, Xiaoying; Tao, Bo; Tian, Hanqin; Wang, Weile; Wei, Yaxing; Yang, Jia

    2017-05-01

    Climate variability associated with the El Niño-Southern Oscillation (ENSO) and its consequent impacts on land carbon sink interannual variability have been used as a basis for investigating carbon cycle responses to climate variability more broadly, and to inform the sensitivity of the tropical carbon budget to climate change. Past studies have presented opposing views about whether temperature or precipitation is the primary factor driving the response of the land carbon sink to ENSO. Here, we show that the dominant driver varies with ENSO phase. Whereas tropical temperature explains sink dynamics following El Niño conditions (rTG,P=0.59, p<0.01), the post La Niña sink is driven largely by tropical precipitation (rPG,T=-0.46, p=0.04). This finding points to an ENSO-phase-dependent interplay between water availability and temperature in controlling the carbon uptake response to climate variations in tropical ecosystems. We further find that none of a suite of ten contemporary terrestrial biosphere models captures these ENSO-phase-dependent responses, highlighting a key uncertainty in modeling climate impacts on the future of the global land carbon sink.

  4. Is there a decrease in the sink of atmospheric CO2 in the Nordic seas?

    International Nuclear Information System (INIS)

    Olsen, Are; Anderson, Leif G.

    2002-01-01

    It is well known that the seas off Norway sink a lot of carbon dioxide from the atmosphere, mainly because of the large heat loss from the sea in the area, which makes CO 2 more soluble in the water. Whether this sink has increased after the industrial revolution and thereby contributes to slowing down the increase of atmospheric CO 2 is uncertain. That is, it is uncertain whether there is a sink of anthropogenic CO 2 . There are indications that the opposite is true, that the sink of CO 2 in this area has slowed down along with the rise in the concentration of atmospheric CO 2 . Storing of anthropogenic CO 2 , however, takes place at higher latitudes where deep-water formation occurs, such as in the Nordic seas, where water that is saturated with anthropogenic CO 2 is transported down in the deep sea and becomes shielded from the atmosphere. Model calculations show that increased CO 2 in the atmosphere will reduce the sink of this gas in the Nordic seas. This conclusion is supported by observations from the Barents Sea

  5. Effect of heat sink layer on ultrafast magnetization recovery of FeCo films

    International Nuclear Information System (INIS)

    Ren, Y; Zhao, J Q; Zhang, Z Z; Jin, Q Y; Hu, H N; Zhou, S M

    2008-01-01

    For FeCo alloy thin films with Ag, Cu, Pt, Ta and Cr as heat sink layers, ultrafast demagnetization and recovery processes of transient magnetization have been studied by the time-resolved magneto-optical Kerr effect. For all samples, the ultrafast demagnetization process is accomplished within almost the same time interval of 500 fs, which is independent of the heat sink layer material and the pump fluence. The recovery rate of the FeCo film grown on the Si(1 0 0) substrate is enhanced with a heat sink layer. In addition, the recovery rate is found to be independent of the heat sink layer thickness; it decreases with increasing pump fluence. Among all heat sink layers, the sample with the Cr layer achieves the highest recovery rate because it has the same bcc structure as that of the FeCo layer and the small lattice mismatch. The sample with the Ta layer, has the largest damage threshold of pump fluence because of the highest melting point

  6. Dynamic sink assignment for efficient energy consumption in wireless sensor networks

    KAUST Repository

    Oikonomou, Konstantinos N.

    2012-04-01

    Efficient energy consumption is a challenging problem in wireless sensor networks (WSNs) and closely related to extending network lifetime. The usual way of tackling this issue for topologies with fixed link weight and fixed sink location, has been shown to be severely affected by the energy hole problem. In this paper, the energy consumption problem is initially studied for WSNs with fixed sink assignment and it is analytically shown that energy consumption is minimized when the sink is assigned to the node that is the solution of a suitably formulated 1-median problem. This motivates the introduction of a dynamic environment where link weights change based on the energy level and the aggregate traffic load of the adjacent nodes. Then, the sink is adaptively allowed to move among neighbor nodes, according to a scalable sink migration strategy. Simulation results support the analytical claims demonstrating energy consumption reduction and an additional network lifetime increment when migration is employed in the dynamic environment. © 2012 IEEE.

  7. Development and numerical investigation of novel gradient-porous heat sinks

    International Nuclear Information System (INIS)

    Wang, Baicun; Hong, Yifeng; Wang, Liang; Fang, Xudong; Wang, Pengfei; Xu, Zhongbin

    2015-01-01

    Highlights: • A novel design of gradient-porous heat sink (GPHS) was proposed in this work. • A 3D model was constructed to study the hydraulic and thermal performances of GPHS. • GPHS is capable of improving the hydraulic and thermal performances simultaneously. • GPHS with decreasing dp by Y can effectively suppress the bottom wall temperature. - Abstract: A novel design of gradient-porous heat sink (GPHS) was proposed and numerically studied in this work. Computational simulation was carried out to analyze the effects of gradient porous material (GPM) configuration on the hydraulic and thermal performances of heat sinks in comparison of homogeneous-porous heat sink (HPHS) serving as the control. Both gradient pore-size (dp) in the flow direction and the direction normal to flow direction were studied. It was found that, compared with conventional HPHS, GPHS can effectively improve the hydraulic and thermal performances simultaneously. Both the friction factor and overall thermal resistance of heat sinks with GPM configurations are considerably lowered. The Nusselt numbers of GPHS with gradient in flow direction are larger than those of homogeneous porous material (HPM) configurations. GPHS is also featured with the capabilities of effectively suppressing the bottom wall temperature and enhancing the convection performance.

  8. Discrete Particle Swarm Optimization Routing Protocol for Wireless Sensor Networks with Multiple Mobile Sinks.

    Science.gov (United States)

    Yang, Jin; Liu, Fagui; Cao, Jianneng; Wang, Liangming

    2016-07-14

    Mobile sinks can achieve load-balancing and energy-consumption balancing across the wireless sensor networks (WSNs). However, the frequent change of the paths between source nodes and the sinks caused by sink mobility introduces significant overhead in terms of energy and packet delays. To enhance network performance of WSNs with mobile sinks (MWSNs), we present an efficient routing strategy, which is formulated as an optimization problem and employs the particle swarm optimization algorithm (PSO) to build the optimal routing paths. However, the conventional PSO is insufficient to solve discrete routing optimization problems. Therefore, a novel greedy discrete particle swarm optimization with memory (GMDPSO) is put forward to address this problem. In the GMDPSO, particle's position and velocity of traditional PSO are redefined under discrete MWSNs scenario. Particle updating rule is also reconsidered based on the subnetwork topology of MWSNs. Besides, by improving the greedy forwarding routing, a greedy search strategy is designed to drive particles to find a better position quickly. Furthermore, searching history is memorized to accelerate convergence. Simulation results demonstrate that our new protocol significantly improves the robustness and adapts to rapid topological changes with multiple mobile sinks, while efficiently reducing the communication overhead and the energy consumption.

  9. OPEC future capacity expansions

    International Nuclear Information System (INIS)

    Sandrea, I.

    2005-01-01

    This conference presentation examined OPEC future capacity expansions including highlights from 2000-2004 from the supply perspective and actions by OPEC; OPEC spare capacity in 2005/2006; medium-term capacity expansion and investments; long-term scenarios, challenges and opportunities; and upstream policies in member countries. Highlights from the supply perspective included worst than expected non-OPEC supply response; non-OPEC supply affected by a number of accidents and strikes; geopolitical tensions; and higher than expected demand for OPEC crude. OPEC's actions included closer relationship with other producers and consumers; capacity expansions in 2004 and 2005/2006; and OPEC kept the market well supplied with crude in 2004. The presentation also provided data using graphical charts on OPEC net capacity additions until 2005/2006; OPEC production versus spare capacity from 2003 to 2005; OPEC production and capacity to 2010; and change in required OPEC production from 2005-2020. Medium term expansion to 2010 includes over 60 projects. Medium-term risks such as project execution, financing, costs, demand, reserves, depletion, integration of Iraq, and geopolitical tensions were also discussed. The presentation concluded that in the long term, large uncertainties remain; the peak of world supply is not imminent; and continued and enhanced cooperation is essential to market stability. tabs., figs

  10. Vedr.: Military capacity building

    DEFF Research Database (Denmark)

    Larsen, Josefine Kühnel; Struwe, Lars Bangert

    2013-01-01

    Military capacity building has increasingly become an integral part of Danish defence. Military capacity is a new way of thinking Danish defence and poses a new set of challenges and opportunities for the Danish military and the Political leadership. On the 12th of december, PhD. Candidate Josefine...... Kühnel Larsen and researcher Lars Bangert Struwe of CMS had organized a seminar in collaboration with Royal Danish Defense Colleg and the East African Security Governance Network. The seminar focused on some of the risks involved in Military capacity building and how these risks are dealt with from...

  11. Faster gastric emptying of a liquid meal in rats after hypothalamic dorsomedial nucleus lesion

    Directory of Open Access Journals (Sweden)

    Denofre-Carvalho S.

    1997-01-01

    Full Text Available The effects of dorsomedial hypothalamic (DMH nucleus lesion on body weight, plasma glucose levels, and the gastric emptying of a liquid meal were investigated in male Wistar rats (170-250 g. DMH lesions were produced stereotaxically by delivering a 2.0-mA current for 20 s through nichrome electrodes (0.3-mm tip exposure. In a second set of experiments, the DMH and the ventromedial hypothalamic (VMH nucleus were lesioned with a 1.0-mA current for 10 s (0.1-mm tip exposure. The medial hypothalamus (MH was also lesioned separately using a nichrome electrode (0.3-mm tip exposure with a 2.0-mA current for 20 s. Gastric emptying was measured following the orogastric infusion of a liquid test meal consisting of physiological saline (0.9% NaCl, w/v plus phenol red dye (6 mg/dl as a marker. Plasma glucose levels were determined after an 18-h fast before the lesion and on the 7th and 15th postoperative day. Body weight was determined before lesioning and before sacrificing the rats. The DMH-lesioned rats showed a significantly faster (P<0.05 gastric emptying (24.7% gastric retention, N = 11 than control (33.0% gastric retention, N = 8 and sham-lesioned (33.5% gastric retention, N = 12 rats, with a transient hypoglycemia on the 7th postoperative day which returned to normal by the 15th postoperative day. In all cases, weight gain was slower among lesioned rats. Additional experiments using a smaller current to induce lesions confirmed that DMH-lesioned rats had a faster gastric emptying (25.1% gastric retention, N = 7 than control (33.4% gastric retention, N = 17 and VMH-lesioned (34.6% gastric retention, N = 7 rats. MH lesions resulted in an even slower gastric emptying (43.7% gastric retention, N = 7 than in the latter two groups. We conclude that although DMH lesions reduce weight gain, they do not produce consistent changes in plasma glucose levels. These lesions also promote faster gastric emptying of an inert liquid meal, thus suggesting a role for

  12. Evaluating Capacity Development

    International Development Research Centre (IDRC) Digital Library (Canada)

    She also had the dubious pleasure of checking and correcting the text numerous ... Has your organization received training or other types of support for capacity ...... processors, and consumer groups in its research and development work.

  13. Enhancing ultra-high CPV passive cooling using least-material finned heat sinks

    Energy Technology Data Exchange (ETDEWEB)

    Micheli, Leonardo, E-mail: lm409@exeter.ac.uk; Mallick, Tapas K., E-mail: T.K.Mallick@exeter.ac.uk [Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE (United Kingdom); Fernandez, Eduardo F., E-mail: E.Fernandez-Fernandez2@exeter.ac.uk [Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE (United Kingdom); Centre of Advanced Studies in Energy and Environment, University of Jaen, Jaen 23071 (Spain); Almonacid, Florencia, E-mail: facruz@ujaen.es [Centre of Advanced Studies in Energy and Environment, University of Jaen, Jaen 23071 (Spain); Reddy, K. S., E-mail: ksreddy@iitm.ac.in [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, 600036 (India)

    2015-09-28

    Ultra-high concentrating photovoltaic (CPV) systems aim to increase the cost-competiveness of CPV by increasing the concentrations over 2000 suns. In this work, the design of a heat sink for ultra-high concentrating photovoltaic (CPV) applications is presented. For the first time, the least-material approach, widely used in electronics to maximize the thermal dissipation while minimizing the weight of the heat sink, has been applied in CPV. This method has the potential to further decrease the cost of this technology and to keep the multijunction cell within the operative temperature range. The designing procedure is described in the paper and the results of a thermal simulation are shown to prove the reliability of the solution. A prediction of the costs is also reported: a cost of 0.151$/W{sub p} is expected for a passive least-material heat sink developed for 4000x applications.

  14. Performance evaluation of a wavy-fin heat sink for power electronics

    International Nuclear Information System (INIS)

    Lorenzini, Marco; Fabbri, Giampietro; Salvigni, Sandro

    2007-01-01

    The almost daily increase in dissipated power per unit area of electronic components sets higher and higher demands on the performance of the heat sinks. These must not only be able to dissipate high heat fluxes, but must also keep costs to a minimum and exhibit a reliable behaviour. In this paper a novel, modular heat sink consisting of elements with wavy fin profile which can be pressed together to construct the component is presented. Its performance under steady-state conditions are assessed for the case of forced convection in terms of velocity distribution in the channels and global thermal resistance. Configurations with uniform and non-uniform heat flux are studied and some considerations are made as to the influence of the spacers between fan and heat sink proper

  15. A Type of Low-Latency Data Gathering Method with Multi-Sink for Sensor Networks

    Science.gov (United States)

    Sha, Chao; Qiu, Jian-mei; Li, Shu-yan; Qiang, Meng-ye; Wang, Ru-chuan

    2016-01-01

    To balance energy consumption and reduce latency on data transmission in Wireless Sensor Networks (WSNs), a type of low-latency data gathering method with multi-Sink (LDGM for short) is proposed in this paper. The network is divided into several virtual regions consisting of three or less data gathering units and the leader of each region is selected according to its residual energy as well as distance to all of the other nodes. Only the leaders in each region need to communicate with the mobile Sinks which have effectively reduced energy consumption and the end-to-end delay. Moreover, with the help of the sleep scheduling and the sensing radius adjustment strategies, redundancy in network coverage could also be effectively reduced. Simulation results show that LDGM is energy efficient in comparison with MST as well as MWST and its time efficiency on data collection is higher than one Sink based data gathering methods. PMID:27338401

  16. A Type of Low-Latency Data Gathering Method with Multi-Sink for Sensor Networks

    Directory of Open Access Journals (Sweden)

    Chao Sha

    2016-06-01

    Full Text Available To balance energy consumption and reduce latency on data transmission in Wireless Sensor Networks (WSNs, a type of low-latency data gathering method with multi-Sink (LDGM for short is proposed in this paper. The network is divided into several virtual regions consisting of three or less data gathering units and the leader of each region is selected according to its residual energy as well as distance to all of the other nodes. Only the leaders in each region need to communicate with the mobile Sinks which have effectively reduced energy consumption and the end-to-end delay. Moreover, with the help of the sleep scheduling and the sensing radius adjustment strategies, redundancy in network coverage could also be effectively reduced. Simulation results show that LDGM is energy efficient in comparison with MST as well as MWST and its time efficiency on data collection is higher than one Sink based data gathering methods.

  17. Human Water Use Impacts on the Strength of the Continental Sink for Atmospheric Water

    Science.gov (United States)

    Keune, Jessica; Sulis, Mauro; Kollet, Stefan; Siebert, Stefan; Wada, Yoshihide

    2018-05-01

    In the hydrologic cycle, continental landmasses constitute a sink for atmospheric moisture as annual terrestrial precipitation commonly exceeds evapotranspiration. Simultaneously, humans intervene in the hydrologic cycle and pump groundwater to sustain, for example, drinking water and food production. Here we use a coupled groundwater-to-atmosphere modeling platform, set up over the European continent, to study the influence of groundwater pumping and irrigation on the net atmospheric moisture import of the continental landmasses, which defines the strength of the continental sink. Water use scenarios are constructed to account for uncertainties of atmospheric feedback during the heatwave year 2003. We find that human water use induces groundwater-to-atmosphere feedback, which potentially weaken the continental sink over arid watersheds in southern Europe. This feedback is linked to groundwater storage, which suggests that atmospheric feedbacks to human water use may contribute to drying of watersheds, thereby raising water resources and socio-economic concerns beyond local sustainability considerations.

  18. Hormonal and metabolic regulation of tomato fruit sink activity and yield under salinity

    DEFF Research Database (Denmark)

    Albacete, Alfonso; Cantero-Navarro, Elena; Balibrea, María E.

    2014-01-01

    Salinization of water and soil has a negative impact on tomato (Solanum lycopersicum L.) productivity by reducing growth of sink organs and by inducing senescence in source leaves. It has been hypothesized that yield stability implies the maintenance or increase of sink activity in the reproductive...... structures, thus contributing to the transport of assimilates from the source leaves through changes in sucrolytic enzymes and their regulation by phytohormones. In this study, classical and functional physiological approaches have been integrated to study the influence of metabolic and hormonal factors...... sucrolytic activities (mainly cwInv and sucrose synthase), sink strength, and fruit weight, whereas the ethylene-releasing compound ethephon had a negative effect in equivalent non-stressed fruits. Fruit yield was increased by both the constitutive expression of CIN1 in the fruits (up to 4-fold) or IPT...

  19. HUMS: An Autonomous Moving Strategy for Mobile Sinks in Data-Gathering Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yanzhong Bi

    2007-06-01

    Full Text Available Sink mobility has attracted much research interest in recent years because it can improve network performance such as energy efficiency and throughput. An energy-unconscious moving strategy is potentially harmful to the balance of the energy consumption among sensor nodes so as to aggravate the hotspot problem of sensor networks. In this paper, we propose an autonomous moving strategy for the mobile sinks in data-gathering applications. In our solution, a mobile sink approaches the nodes with high residual energy to force them to forward data for other nodes and tries to avoid passing by the nodes with low energy. We performed simulation experiments to compare our solution with other three data-gathering schemes. The simulation results show that our strategy cannot only extend network lifetime notably but also provides scalability and topology adaptability.

  20. Fluid motion and solute distribution around sinking aggregates II : Implications for remote detection by colonizing zooplankters

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Thygesen, Uffe Høgsbro

    2001-01-01

    Marine snow aggregates are colonized by copepods, and encounter rates inferred from observed abundances of colonizers are high. We examined the potential for hydromechanical and chemical remote detection. The fluid disturbance generated by a sinking aggregate was described by solving the Navier......-Stokes' equation for a sinking sphere at Reynolds numbers typical of marine snow (up to 20). Fluid deformation rate, the component of the flow that can be perceived by copepods, attenuates rapidly, and detection distances estimated from knowledge of the hydromechanical sensitivity in copepods are insufficient...... to account for the observed abundances of colonizers. We next solved the advection-diffusion equation to describe the chemical trail left by a leaking and sinking aggregate. The plume is long and slender and may be detected by a horizontally cruising copepod. From the model of the plume and literature- based...

  1. Revisiting Absorptive Capacity

    DEFF Research Database (Denmark)

    de Araújo, Ana Luiza Lara; Ulhøi, John Parm; Lettl, Christopher

    Absorptive capacity has mostly been perceived as a 'passive' outcome of R&D investments. Recently, however, a growing interest into its 'proactive' potentials has emerged. This paper taps into this development and proposes a dynamic model for conceptualizing the determinants of the complementary...... learning processes of absorptive capacity, which comprise combinative and adaptive capabilities. Drawing on survey data (n=169), the study concludes that combinative capabilities primarily enhance transformative and exploratory learning processes, while adaptive capabilities strengthen all three learning...

  2. Assessment of hypervapotron heat sink performance using CFD under DEMO relevant first wall conditions

    Energy Technology Data Exchange (ETDEWEB)

    Domalapally, Phani, E-mail: p_kumar.domalapally@cvrez.cz

    2016-11-01

    Highlights: • Performance of Hypervapotron heat sink was tested for First wall limiter application. • Two different materials were tested Eurofer 97 and CuCrZr at PWR conditions. • Simulations were performed to see the effect of the different inlet conditions and materials on the maximum temperature. • It was found that CuCrZr heat sink performance is far better than Eurofer heat sink at the same operating conditions. - Abstract: Among the proposed First Wall (FW) cooling concepts for European Demonstration Fusion Power Plant (DEMO), water cooled FW is one of the options. The heat flux load distribution on the FW of the DEMO reactor is not yet precisely defined. But if the heat loads on the FW are extrapolated from ITER conditions, the numbers are quite high and have to be handled none the less. The design of the FW itself is challenging as the thermal conductivity ratio of heat sink materials in ITER (CuCrZr) and in DEMO (Eurofer 97) is ∼10–12 and the operating conditions are of Pressurized Water Reactor (PWR) in DEMO instead of 70 °C and 4 MPa as in ITER. This paper analyzes the performance of Hypervapotron (HV) heat sink for FW limiter application under DEMO conditions. Where different materials, temperatures, heat fluxes and velocities are considered to predict the performance of the HV, to establish its limits in handling the heat loads before reaching the upper limits from temperature point of view. In order to assess the performance, numerical simulations are performed using commercial CFD code, which was previously validated in predicting the thermal hydraulic performance of HV geometry. Based on the results the potential usage of HV heat sink for DEMO will be assessed.

  3. Spatio-temporal changes in biomass carbon sinks in China's forests from 1977 to 2008.

    Science.gov (United States)

    Guo, Zhaodi; Hu, Huifeng; Li, Pin; Li, Nuyun; Fang, Jingyun

    2013-07-01

    Forests play a leading role in regional and global carbon (C) cycles. Detailed assessment of the temporal and spatial changes in C sinks/sources of China's forests is critical to the estimation of the national C budget and can help to constitute sustainable forest management policies for climate change. In this study, we explored the spatio-temporal changes in forest biomass C stocks in China between 1977 and 2008, using six periods of the national forest inventory data. According to the definition of the forest inventory, China's forest was categorized into three groups: forest stand, economic forest, and bamboo forest. We estimated forest biomass C stocks for each inventory period by using continuous biomass expansion factor (BEF) method for forest stands, and the mean biomass density method for economic and bamboo forests. As a result, China's forests have accumulated biomass C (i.e., biomass C sink) of 1896 Tg (1 Tg=10(12) g) during the study period, with 1710, 108 and 78 Tg C in forest stands, and economic and bamboo forests, respectively. Annual forest biomass C sink was 70.2 Tg C a(-1), offsetting 7.8% of the contemporary fossil CO2 emissions in the country. The results also showed that planted forests have functioned as a persistent C sink, sequestrating 818 Tg C and accounting for 47.8% of total C sink in forest stands, and that the old-, mid- and young-aged forests have sequestrated 930, 391 and 388 Tg C from 1977 to 2008. Our results suggest that China's forests have a big potential as biomass C sink in the future because of its large area of planted forests with young-aged growth and low C density.

  4. Characteristics of sources and sinks of momentum in a turbulent boundary layer

    Science.gov (United States)

    Fiscaletti, D.; Ganapathisubramani, B.

    2018-05-01

    In turbulent boundary layers, the wall-normal gradient of the Reynolds shear stress identifies momentum sources and sinks (T =∂ [-u v ]/∂ y ). These motions can be physically interpreted in two ways: (1) as contributors to the turbulence term balancing the mean momentum equation, and (2) as regions of strong local interaction between velocity and vorticity fluctuations. In this paper, the space-time evolution of momentum sources and sinks is investigated in a turbulent boundary layer at the Reynolds number (Reτ) = 2700, with time-resolved planar particle image velocimetry in a plane along the streamwise and wall-normal directions. Wave number-frequency power spectra of T fluctuations reveal that the wave velocities of momentum sources and sinks tend to match the local streamwise velocity in proximity to the wall. However, as the distance from the wall increases, the wave velocities of the T events are slightly lower than the local streamwise velocities of the flow, which is also confirmed from the tracking in time of the intense momentum sources and sinks. This evidences that momentum sources and sinks are preferentially located in low-momentum regions of the flow. The spectral content of the T fluctuations is maximum at the wall, but it decreases monotonically as the distance from the wall grows. The relative spectral contributions of the different wavelengths remains unaltered at varying wall-normal locations. From autocorrelation coefficient maps, the characteristic streamwise and wall-normal extents of the T motions are respectively 60 and 40 wall units, independent of the wall distance. Both statistics and instantaneous visualizations show that momentum sources and sinks have a preferential tendency to be organized in positive-negative pairs in the wall-normal direction.

  5. A numerical method for PCM-based pin fin heat sinks optimization

    International Nuclear Information System (INIS)

    Pakrouh, R.; Hosseini, M.J.; Ranjbar, A.A.; Bahrampoury, R.

    2015-01-01

    Highlights: • Optimization of PCM-based heat sink by using the Taguchi method. • Derivation of optimal PCM percentage to reach the maximum critical time. • Optimization is performed for four different critical temperatures. • Effective design factors are fins’ height and fins’ number. • The optimum configuration depends on geometric properties and the critical temperature. - Abstract: This paper presents a numerical investigation on geometric optimization of PCM-based pin fin heat sinks. Paraffin RT44HC is used as PCM while the fins and heat sink base is made of aluminum. The fins act as thermal conductivity enhancers (TCEs). The main goal of the study is to obtain the configurations that maximize the heat sink operational time. An approach witch couples Taguchi method with numerical simulations is utilized for this purpose. Number of fins, fins height, fins thickness and the base thickness are parameters which are studied for optimization. In this study natural convection and PCM volume variation during melting process are considered in the simulations. Optimization is performed for different critical temperatures of 50 °C, 60 °C, 70 °C and 80 °C. Results show that a complex relation exists between PCM and TCE volume percentages. The optimal case strongly depends on the fins’ number, fins’ height and thickness and also the critical temperature. The optimum PCM percentages are found to be 60.61% (corresponds to 100 pin fin heat sink with 4 mm thick fins) for critical temperature of 50 °C and 82.65% (corresponds to 100 pin fin heat sink with 2 mm thick fins) for other critical temperatures

  6. Drought evolution: greater and faster impacts on blue water than on green water

    Science.gov (United States)

    Destouni, G.; Orth, R.

    2017-12-01

    Drought propagates through the terrestrial water cycle, affecting different interlinked geospheres which have so far been mostly investigated separately and without direct comparison. By use of comprehensive multi-decadal data from >400 near-natural catchments along a steep climate gradient across Europe we here analyze drought propagation from precipitation (deficits) through soil moisture to runoff (blue water) and evapotranspiration (green water). We show that soil-moisture droughts reduce runoff stronger and faster than evapotranspiration. While runoff responds within weeks, evapotranspiration can be unaffected for months, or even entirely as in central and northern Europe. Understanding these different drought pathways towards blue and green water resources contributes to improve food and water security and offers early warning potential to mitigate (future) drought impacts on society and ecosystems.

  7. Process Fragment Libraries for Easier and Faster Development of Process-based Applications

    Directory of Open Access Journals (Sweden)

    David Schumm

    2011-01-01

    Full Text Available The term “process fragment” is recently gaining momentum in business process management research. We understand a process fragment as a connected and reusable process structure, which has relaxed completeness and consistency criteria compared to executable processes. We claim that process fragments allow for an easier and faster development of process-based applications. As evidence to this claim we present a process fragment concept and show a sample collection of concrete, real-world process fragments. We present advanced application scenarios for using such fragments in development of process-based applications. Process fragments are typically managed in a repository, forming a process fragment library. On top of a process fragment library from previous work, we discuss the potential impact of using process fragment libraries in cross-enterprise collaboration and application integration.

  8. Registered nurse supply grows faster than projected amid surge in new entrants ages 23-26.

    Science.gov (United States)

    Auerbach, David I; Buerhaus, Peter I; Staiger, Douglas O

    2011-12-01

    The vast preponderance of the nation's registered nurses are women. In the 1980s and 1990 s, a decline in the number of women ages 23-26 who were choosing nursing as a career led to concerns that there would be future nurse shortages unless the trend was reversed. Between 2002 and 2009, however, the number of full-time-equivalent registered nurses ages 23-26 increased by 62 percent. If these young nurses follow the same life-cycle employment patterns as those who preceded them--as they appear to be thus far--then they will be the largest cohort of registered nurses ever observed. Because of this surge in the number of young people entering nursing during the past decade, the nurse workforce is projected to grow faster during the next two decades than previously anticipated. However, it is uncertain whether interest in nursing will continue to grow in the future.

  9. A faster sample preparation method for determination of polonium-210 in fish

    International Nuclear Information System (INIS)

    Sadi, B.B.; Jing Chen; Kochermin, Vera; Godwin Tung; Sorina Chiorean

    2016-01-01

    In order to facilitate Health Canada’s study on background radiation levels in country foods, an in-house radio-analytical method has been developed for determination of polonium-210 ( 210 Po) in fish samples. The method was validated by measurement of 210 Po in a certified reference material. It was also evaluated by comparing 210 Po concentrations in a number of fish samples by another method. The in-house method offers faster sample dissolution using an automated digestion system compared to currently used wet-ashing on a hot plate. It also utilizes pre-packed Sr-resin® cartridges for rapid and reproducible separation of 210 Po versus time-consuming manually packed Sr-resin® columns. (author)

  10. A neural network-based estimate of the seasonal to inter-annual variability of the Atlantic Ocean carbon sink

    DEFF Research Database (Denmark)

    Landschützer, P.; Gruber, N.; Bakker, D.C.E.

    2013-01-01

    The Atlantic Ocean is one of the most important sinks for atmospheric carbon dioxide (CO2), but this sink is known to vary substantially in time. Here we use surface ocean CO2 observations to estimate this sink and the temporal variability from 1998 to 2007 in the Atlantic Ocean. We benefit from ......, leading to a substantial trend toward a stronger CO2 sink for the entire South Atlantic (–0.14 Pg C yr–1 decade–1). The Atlantic carbon sink varies relatively little on inter-annual time-scales (±0.04 Pg C yr–1; 1σ)......The Atlantic Ocean is one of the most important sinks for atmospheric carbon dioxide (CO2), but this sink is known to vary substantially in time. Here we use surface ocean CO2 observations to estimate this sink and the temporal variability from 1998 to 2007 in the Atlantic Ocean. We benefit from (i...... poleward of 40° N, but many other parts of the North Atlantic increased more slowly, resulting in a barely changing Atlantic carbon sink north of the equator (–0.007 Pg C yr–1 decade–1). Surface ocean pCO2 was also increasing less than that of the atmosphere over most of the Atlantic south of the equator...

  11. Effect of type and concentration of ballasting particles on sinking rate of marine snow produced by the Appendicularian Oikopleura dioica

    DEFF Research Database (Denmark)

    Lombard, Fabien; Guidi, L.; Kiørboe, Thomas

    2013-01-01

    Ballast material (organic, opal, calcite, lithogenic) is suggested to affect sinking speed of aggregates in the ocean. Here, we tested this hypothesis by incubating appendicularians in suspensions of different algae or Saharan dust, and observing the sinking speed of the marine snow formed...... by their discarded houses. We show that calcite increases the sinking speeds of aggregates by ~100% and lithogenic material by ~150% while opal only has a minor effect. Furthermore the effect of ballast particle concentration was causing a 33 m d-1 increase in sinking speed for a 5×105 μm3 ml-1 increase in particle...

  12. The Development of Functional Overreaching Is Associated with a Faster Heart Rate Recovery in Endurance Athletes.

    Directory of Open Access Journals (Sweden)

    Anaël Aubry

    Full Text Available The aim of the study was to investigate whether heart rate recovery (HRR may represent an effective marker of functional overreaching (f-OR in endurance athletes.Thirty-one experienced male triathletes were tested (10 control and 21 overload subjects before (Pre, and immediately after an overload training period (Mid and after a 2-week taper (Post. Physiological responses were assessed during an incremental cycling protocol to exhaustion, including heart rate, catecholamine release and blood lactate concentration. Ten participants from the overload group developed signs of f-OR at Mid (i.e. -2.1 ± 0.8% change in performance associated with concomitant high perceived fatigue. Additionally, only the f-OR group demonstrated a 99% chance of increase in HRR during the overload period (+8 ± 5 bpm, large effect size. Concomitantly, this group also revealed a >80% chance of decreasing blood lactate (-11 ± 14%, large, plasma norepinephrine (-12 ± 37%, small and plasma epinephrine peak concentrations (-51 ± 22%, moderate. These blood measures returned to baseline levels at Post. HRR change was negatively correlated to changes in performance, peak HR and peak blood metabolites concentrations.These findings suggest that i a faster HRR is not systematically associated with improved physical performance, ii changes in HRR should be interpreted in the context of the specific training phase, the athletes perceived level of fatigue and the performance response; and, iii the faster HRR associated with f-OR may be induced by a decreased central command and by a lower chemoreflex activity.

  13. Cone-Beam Computed Tomography (CBCT) Versus CT in Lung Ablation Procedure: Which is Faster?

    Science.gov (United States)

    Cazzato, Roberto Luigi; Battistuzzi, Jean-Benoit; Catena, Vittorio; Grasso, Rosario Francesco; Zobel, Bruno Beomonte; Schena, Emiliano; Buy, Xavier; Palussiere, Jean

    2015-10-01

    To compare cone-beam CT (CBCT) versus computed tomography (CT) guidance in terms of time needed to target and place the radiofrequency ablation (RFA) electrode on lung tumours. Patients at our institution who received CBCT- or CT-guided RFA for primary or metastatic lung tumours were retrospectively included. Time required to target and place the RFA electrode within the lesion was registered and compared across the two groups. Lesions were stratified into three groups according to their size (20 mm). Occurrences of electrode repositioning, repositioning time, RFA complications, and local recurrence after RFA were also reported. Forty tumours (22 under CT, 18 under CBCT guidance) were treated in 27 patients (19 male, 8 female, median age 67.25 ± 9.13 years). Thirty RFA sessions (16 under CBCT and 14 under CT guidance) were performed. Multivariable linear regression analysis showed that CBCT was faster than CT to target and place the electrode within the tumour independently from its size (β = -9.45, t = -3.09, p = 0.004). Electrode repositioning was required in 10/22 (45.4 %) tumours under CT guidance and 5/18 (27.8 %) tumours under CBCT guidance. Pneumothoraces occurred in 6/14 (42.8 %) sessions under CT guidance and in 6/16 (37.5 %) sessions under CBCT guidance. Two recurrences were noted for tumours receiving CBCT-guided RFA (2/17, 11.7 %) and three after CT-guided RFA (3/19, 15.8 %). CBCT with live 3D needle guidance is a useful technique for percutaneous lung ablation. Despite lesion size, CBCT allows faster lung RFA than CT.

  14. Cone-Beam Computed Tomography (CBCT) Versus CT in Lung Ablation Procedure: Which is Faster?

    Energy Technology Data Exchange (ETDEWEB)

    Cazzato, Roberto Luigi, E-mail: r.cazzato@unicampus.it; Battistuzzi, Jean-Benoit, E-mail: j.battistuzzi@bordeaux.unicancer.fr; Catena, Vittorio, E-mail: vittoriocatena@gmail.com [Institut Bergonié, Department of Radiology (France); Grasso, Rosario Francesco, E-mail: r.grasso@unicampus.it; Zobel, Bruno Beomonte, E-mail: b.zobel@unicampus.it [Università Campus Bio-Medico di Roma, Department of Radiology and Diagnostic Imaging (Italy); Schena, Emiliano, E-mail: e.schena@unicampus.it [Università Campus Bio-Medico di Roma, Unit of Measurements and Biomedical Instrumentations, Biomedical Engineering Laboratory (Italy); Buy, Xavier, E-mail: x.buy@bordeaux.unicancer.fr; Palussiere, Jean, E-mail: j.palussiere@bordeaux.unicancer.fr [Institut Bergonié, Department of Radiology (France)

    2015-10-15

    AimTo compare cone-beam CT (CBCT) versus computed tomography (CT) guidance in terms of time needed to target and place the radiofrequency ablation (RFA) electrode on lung tumours.Materials and MethodsPatients at our institution who received CBCT- or CT-guided RFA for primary or metastatic lung tumours were retrospectively included. Time required to target and place the RFA electrode within the lesion was registered and compared across the two groups. Lesions were stratified into three groups according to their size (<10, 10–20, >20 mm). Occurrences of electrode repositioning, repositioning time, RFA complications, and local recurrence after RFA were also reported.ResultsForty tumours (22 under CT, 18 under CBCT guidance) were treated in 27 patients (19 male, 8 female, median age 67.25 ± 9.13 years). Thirty RFA sessions (16 under CBCT and 14 under CT guidance) were performed. Multivariable linear regression analysis showed that CBCT was faster than CT to target and place the electrode within the tumour independently from its size (β = −9.45, t = −3.09, p = 0.004). Electrode repositioning was required in 10/22 (45.4 %) tumours under CT guidance and 5/18 (27.8 %) tumours under CBCT guidance. Pneumothoraces occurred in 6/14 (42.8 %) sessions under CT guidance and in 6/16 (37.5 %) sessions under CBCT guidance. Two recurrences were noted for tumours receiving CBCT-guided RFA (2/17, 11.7 %) and three after CT-guided RFA (3/19, 15.8 %).ConclusionCBCT with live 3D needle guidance is a useful technique for percutaneous lung ablation. Despite lesion size, CBCT allows faster lung RFA than CT.

  15. Faster but not smarter: effects of caffeine and caffeine withdrawal on alertness and performance.

    Science.gov (United States)

    Rogers, Peter J; Heatherley, Susan V; Mullings, Emma L; Smith, Jessica E

    2013-03-01

    Despite 100 years of psychopharmacological research, the extent to which caffeine consumption benefits human functioning remains unclear. To measure the effects of overnight caffeine abstinence and caffeine administration as a function of level of habitual caffeine consumption. Medium-high (n = 212) and non-low (n = 157) caffeine consumers completed self-report measures and computer-based tasks before (starting at 10:30 AM) and after double-blind treatment with either caffeine (100 mg, then 150 mg) or placebo. The first treatment was given at 11:15 AM and the second at 12:45 PM, with post-treatment measures repeated twice between 1:45 PM and 3:30 PM. Caffeine withdrawal was associated with some detrimental effects at 10:30 AM, and more severe effects, including greater sleepiness, lower mental alertness, and poorer performance on simple reaction time, choice reaction time and recognition memory tasks, later in the afternoon. Caffeine improved these measures in medium-high consumers but, apart from decreasing sleepiness, had little effect on them in non-low consumers. The failure of caffeine to increase mental alertness and improve mental performance in non-low consumers was related to a substantial caffeine-induced increase in anxiety/jitteriness that offset the benefit of decreased sleepiness. Caffeine enhanced physical performance (faster tapping speed and faster simple and choice reaction times) in both medium-high and non-low consumers. While caffeine benefits motor performance and tolerance develops to its tendency to increase anxiety/jitteriness, tolerance to its effects on sleepiness means that frequent consumption fails to enhance mental alertness and mental performance.

  16. Faster Movement Speed Results in Greater Tendon Strain during the Loaded Squat Exercise

    Science.gov (United States)

    Earp, Jacob E.; Newton, Robert U.; Cormie, Prue; Blazevich, Anthony J.

    2016-01-01

    Introduction: Tendon dynamics influence movement performance and provide the stimulus for long-term tendon adaptation. As tendon strain increases with load magnitude and decreases with loading rate, changes in movement speed during exercise should influence tendon strain. Methods: Ten resistance-trained men [squat one repetition maximum (1RM) to body mass ratio: 1.65 ± 0.12] performed parallel-depth back squat lifts with 60% of 1RM load at three different speeds: slow fixed-tempo (TS: 2-s eccentric, 1-s pause, 2-s concentric), volitional-speed without a pause (VS) and maximum-speed jump (JS). In each condition joint kinetics, quadriceps tendon length (LT), patellar tendon force (FT), and rate of force development (RFDT) were estimated using integrated ultrasonography, motion-capture, and force platform recordings. Results: Peak LT, FT, and RFDT were greater in JS than TS (p < 0.05), however no differences were observed between VS and TS. Thus, moving at faster speeds resulted in both greater tendon stress and strain despite an increased RFDT, as would be predicted of an elastic, but not a viscous, structure. Temporal comparisons showed that LT was greater in TS than JS during the early eccentric phase (10–14% movement duration) where peak RFDT occurred, demonstrating that the tendon's viscous properties predominated during initial eccentric loading. However, during the concentric phase (61–70 and 76–83% movement duration) differing FT and similar RFDT between conditions allowed for the tendon's elastic properties to predominate such that peak tendon strain was greater in JS than TS. Conclusions: Based on our current understanding, there may be an additional mechanical stimulus for tendon adaptation when performing large range-of-motion isoinertial exercises at faster movement speeds. PMID:27630574

  17. Heat Transfer Enhancement by Finned Heat Sinks with Micro-structured Roughness

    Science.gov (United States)

    Ventola, L.; Chiavazzo, E.; Calignano, F.; Manfredi, D.; Asinari, P.

    2014-04-01

    We investigated the benefits of micro-structured roughness on heat transfer performance of heat sinks, cooled by forced air. Heat sinks in aluminum alloy by direct metal laser sintering (DMLS) manufacturing technique were fabricated; values of the average surface roughness Ra from 1 to 25 microns (standard milling leads to roughness around 1 micron) under turbulent regimes (Reynolds number based on heating edge from 3000 to 17000) have been explored. An enhancement of 50% in thermal performances with regards to standard manufacturing was observed. This may open the way for huge boost in the technology of electronic cooling by DMLS.

  18. Heat transfer enhancement by finned heat sinks with micro-structured roughness

    International Nuclear Information System (INIS)

    Ventola, L; Chiavazzo, E; Asinari, P; Calignano, F; Manfredi, D

    2014-01-01

    We investigated the benefits of micro-structured roughness on heat transfer performance of heat sinks, cooled by forced air. Heat sinks in aluminum alloy by direct metal laser sintering (DMLS) manufacturing technique were fabricated; values of the average surface roughness R a from 1 to 25 microns (standard milling leads to roughness around 1 micron) under turbulent regimes (Reynolds number based on heating edge from 3000 to 17000) have been explored. An enhancement of 50% in thermal performances with regards to standard manufacturing was observed. This may open the way for huge boost in the technology of electronic cooling by DMLS.

  19. Pitch-based carbon foam heat sink with phase change material

    Science.gov (United States)

    Klett, James W.; Burchell, Timothy D.

    2004-08-24

    A process for producing a carbon foam heat sink is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications. The foam is encased and filled with a phase change material to provide a very efficient heat sink device.

  20. Experimental investigation of thermoelectric power generation versus coolant pumping power in a microchannel heat sink

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania; Rosendahl, Lasse; Andreasen, Søren Juhl

    2012-01-01

    The coolant heat sinks in thermoelectric generators (TEG) play an important role in order to power generation in the energy systems. This paper explores the effective pumping power required for the TEGs cooling at five temperature difference of the hot and cold sides of the TEG. In addition......, the temperature distribution and the pressure drop in sample microchannels are considered at four sample coolant flow rates. The heat sink contains twenty plate-fin microchannels with hydraulic diameter equal to 0.93 mm. The experimental results show that there is a unique flow rate that gives maximum net-power...

  1. An analytical model for annular flow boiling heat transfer in microchannel heat sinks

    International Nuclear Information System (INIS)

    Megahed, A.; Hassan, I.

    2009-01-01

    An analytical model has been developed to predict flow boiling heat transfer coefficient in microchannel heat sinks. The new analytical model is proposed to predict the two-phase heat transfer coefficient during annular flow regime based on the separated model. Opposing to the majority of annular flow heat transfer models, the model is based on fundamental conservation principles. The model considers the characteristics of microchannel heat sink during annular flow and eliminates using any empirical closure relations. Comparison with limited experimental data was found to validate the usefulness of this analytical model. The model predicts the experimental data with a mean absolute error 8%. (author)

  2. High-voltage integrated linear regulator with current sinking capabilities for portable ultrasound scanners

    DEFF Research Database (Denmark)

    Pausas, Guifre Vendrell; Llimos Muntal, Pere; Jørgensen, Ivan Harald Holger

    2017-01-01

    This paper presents a high-voltage integrated regulator capable of sinking current for driving pulse-triggered level shifters in drivers for ultrasound applications. The regulator utilizes a new topology with a feedback loop and a current sinking circuit to satisfy the requirements of the portable....... The proposed design has been implemented in high-voltage 0.18 μm process whithin an area of 0.11 mm2 and it is suitable for system-on-chip integration due to its low component count and the fully integrated design....

  3. Impact of sink location on hand hygiene compliance for Clostridium difficile infection.

    Science.gov (United States)

    Zellmer, Caroline; Blakney, Rebekah; Van Hoof, Sarah; Safdar, Nasia

    2015-04-01

    Hand hygiene with soap and water after the care of a patient with Clostridium difficile infection is essential to reduce nosocomial transmission in an outbreak situation. Factors that may pose barriers to user completion of infection prevention measures, such as hand hygiene, are of interest. We undertook a quantitative study to evaluate the relationship between sink location and compliance with handwashing among health care workers and visitors in a surgical transplant unit. We found that placement of 2 more easily visible sinks in a surgical transplant unit was associated with improved adherence to handwashing. Published by Elsevier Inc.

  4. Maintenance of C sinks sustains enhanced C assimilation during long-term exposure to elevated [CO2] in Mojave Desert shrubs.

    Science.gov (United States)

    Aranjuelo, Iker; Ebbets, Allison L; Evans, R Dave; Tissue, David T; Nogués, Salvador; van Gestel, Natasja; Payton, Paxton; Ebbert, Volker; Adams, Williams W; Nowak, Robert S; Smith, Stanley D

    2011-10-01

    During the first few years of elevated atmospheric [CO(2)] treatment at the Nevada Desert FACE Facility, photosynthetic downregulation was observed in desert shrubs grown under elevated [CO(2)], especially under relatively wet environmental conditions. Nonetheless, those plants maintained increased A (sat) (photosynthetic performance at saturating light and treatment [CO(2)]) under wet conditions, but to a much lesser extent under dry conditions. To determine if plants continued to downregulate during long-term exposure to elevated [CO(2)], responses of photosynthesis to elevated [CO(2)] were examined in two dominant Mojave Desert shrubs, the evergreen Larrea tridentata and the drought-deciduous Ambrosia dumosa, during the eighth full growing season of elevated [CO(2)] treatment at the NDFF. A comprehensive suite of physiological processes were collected. Furthermore, we used C labeling of air to assess carbon allocation and partitioning as measures of C sink activity. Results show that elevated [CO(2)] enhanced photosynthetic performance and plant water status in Larrea, especially during periods of environmental stress, but not in Ambrosia. δ(13)C analyses indicate that Larrea under elevated [CO(2)] allocated a greater proportion of newly assimilated C to C sinks than Ambrosia. Maintenance by Larrea of C sinks during the dry season partially explained the reduced [CO(2)] effect on leaf carbohydrate content during summer, which in turn lessened carbohydrate build-up and feedback inhibition of photosynthesis. δ(13)C results also showed that in a year when plant growth reached the highest rates in 5 years, 4% (Larrea) and 7% (Ambrosia) of C in newly emerging organs were remobilized from C that was assimilated and stored for at least 2 years prior to the current study. Thus, after 8 years of continuous exposure to elevated [CO(2)], both desert perennials maintained their photosynthetic capacities under elevated [CO(2)]. We conclude that C storage, remobilization

  5. When High-Capacity Readers Slow Down and Low-Capacity Readers Speed Up: Working Memory and Locality Effects.

    Science.gov (United States)

    Nicenboim, Bruno; Logačev, Pavel; Gattei, Carolina; Vasishth, Shravan

    2016-01-01

    We examined the effects of argument-head distance in SVO and SOV languages (Spanish and German), while taking into account readers' working memory capacity and controlling for expectation (Levy, 2008) and other factors. We predicted only locality effects, that is, a slowdown produced by increased dependency distance (Gibson, 2000; Lewis and Vasishth, 2005). Furthermore, we expected stronger locality effects for readers with low working memory capacity. Contrary to our predictions, low-capacity readers showed faster reading with increased distance, while high-capacity readers showed locality effects. We suggest that while the locality effects are compatible with memory-based explanations, the speedup of low-capacity readers can be explained by an increased probability of retrieval failure. We present a computational model based on ACT-R built under the previous assumptions, which is able to give a qualitative account for the present data and can be tested in future research. Our results suggest that in some cases, interpreting longer RTs as indexing increased processing difficulty and shorter RTs as facilitation may be too simplistic: The same increase in processing difficulty may lead to slowdowns in high-capacity readers and speedups in low-capacity ones. Ignoring individual level capacity differences when investigating locality effects may lead to misleading conclusions.

  6. When high-capacity readers slow down and low-capacity readers speed up: Working memory and locality effects

    Directory of Open Access Journals (Sweden)

    Bruno eNicenboim

    2016-03-01

    Full Text Available We examined the effects of argument-head distance in SVO and SOV languages (Spanish and German, while taking into account readers’ working memory capacity and controlling for expectation (Levy, 2008 and other factors. We predicted only locality effects, that is, a slow-down produced by increased dependency distance (Gibson, 2000; Lewis & Vasishth, 2005. Furthermore, we expected stronger locality effects for readers with low working memory capacity. Contrary to our predictions, low-capacity readers showed faster reading with increased distance, while high-capacity readers showed locality effects. We suggest that while the locality effects are compatible with memory-based explanations, the speedup of low-capacity readers can be explained by an increased probability of retrieval failure. We present a computational model based on ACT-R built under the previous assumptions, which is able to give a qualitative account for the present data and can be tested in future research. Our results suggest that in some cases, interpreting longer RTs as indexing increased processing difficulty and shorter RTs as facilitation may be too simplistic: The same increase in processing difficulty may lead to slowdowns in high-capacity readers and speedups in low-capacity ones. Ignoring individual level capacity differences when investigating locality effects may lead to misleading conclusions.

  7. Measuring Greenhouse Gas Emissions and Sinks Across California Land Cover

    Science.gov (United States)

    Fischer, M. L.

    2017-12-01

    Significant reductions in greenhouse gas (GHG) emissions are needed to limit rising planetary temperatures that will otherwise limit Earth's capacity to support life, introducing geopolitical instability. To help mitigate this threat, California has legislated landmark reductions in state-level greenhouse gas (GHG) emissions that set an example for broader action. Beginning with relatively assured reduction of current emissions to 1990 levels by 2020, future goals are much more challenging with 40% and 80% reductions below 1990 emissions by 2030 and 2050, respectively. While the majority of the reductions must focus on fossil fuels, inventory estimates of non-CO2 GHG emissions (i.e., CH4, N2O, and industrial compounds) constitute 15% of the total, suggesting reductions are required across multiple land use sectors. However, recent atmospheric inversion studies show methane and nitrous oxide (CH4 & N2O) emissions exceed current inventory estimates by factors of 1.2-1.8 and 1.6-2.6 (at 95% confidence), respectively, perhaps constituting up to 30% of State total emissions. The discrepancy is likely because current bottom-up models used for inventories do not accurately capture important management or biophysical factors. In the near term, process level experiments and sector-specific inversions are being planned to quantify the factors controlling non-CO2 GHG emissions for several of the dominant emission sectors. For biosphere carbon, California forests lands, which also depend on the combination of management, climate, and weather, lost above ground carbon from 2001-2010, and may be expected to lose soil and root carbon as a longer-term result. Here, it is important to identify and apply the best principles in forestry and agriculture to increase carbon stocks in depleted forest and agricultural areas, focusing on approaches that provide resilience to future climate and weather variations. Taken together, improved atmospheric, plant, and soil observations, together

  8. Terrestrial Carbon Sinks in the Brazilian Amazon and Cerrado Region Predicted from MODIS Satellite Data and Ecosystem Modeling

    Science.gov (United States)

    Potter, C.; Klooster, S.; Huete, A.; Genovese, V.; Bustamante, M.; Ferreira, L. Guimaraes; deOliveira, R. C., Jr.; Zepp, R.

    2009-01-01

    A simulation model based on satellite observations of monthly vegetation cover from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate monthly carbon fluxes in terrestrial ecosystems of Brazilian Amazon and Cerrado regions over the period 2000-2004. Net ecosystem production (NEP) flux for atmospheric CO2 in the region for these years was estimated. Consistently high carbon sink fluxes in terrestrial ecosystems on a yearly basis were found in the western portions of the states of Acre and Rondonia and the northern portions of the state of Par a. These areas were not significantly impacted by the 2002-2003 El Nino event in terms of net annual carbon gains. Areas of the region that show periodically high carbon source fluxes from terrestrial ecosystems to the atmosphere on yearly basis were found throughout the state of Maranhao and the southern portions of the state of Amazonas. As demonstrated though tower site comparisons, NEP modeled with monthly MODIS Enhanced Vegetation Index (EVI) inputs closely resembles the measured seasonal carbon fluxes at the LBA Tapajos tower site. Modeling results suggest that the capacity for use of MODIS Enhanced Vegetation Index (EVI) data to predict seasonal uptake rates of CO2 in Amazon forests and Cerrado woodlands is strong.

  9. Experimental investigation of inserts configurations and PCM type on the thermal performance of PCM based heat sinks

    International Nuclear Information System (INIS)

    Mahmoud, Saad; Tang, Aaron; Toh, Chin; AL-Dadah, Raya; Soo, Sein Leung

    2013-01-01

    Highlights: • Inclusion of PCM can reduce heating rate and peak temperatures of the heat sinks. • Increasing the number of fins can enhance heat transfer to PCM. • Honeycomb inserts can replace machined fin structures in PCM based heat sinks. • PCMs with lower melting points produced lower heat sink operating temperatures. - Abstract: Efficient thermal management in portable electronic devices is necessary to ensure sufficiently low operating temperatures for reliability, increased installed functions, and user comfort. Using Phase Change Materials (PCMs) based heat sinks offers potential in these applications. However, PCMs generally suffer from low thermal conductivities; therefore it is important to enhance their thermal conductivity and improve cooling performance. This study presents experimental investigation of the effects of PCM material, heat sink designs and power levels on PCM based heat sinks performance for cooling electronic devices. Six PCMs were used including paraffin wax (as reference material), two materials based on mixture of inorganic hydrated salts, two materials based on mixture of organic substances and one material based on a mixture of both organic and inorganic materials. Also, six heat sink designs were tested: one with single cavity, two with parallel fin arrangement, two with cross fin arrangement, and one with honeycomb insert inside the single cavity. Heat sinks thermal performance was investigated using paraffin wax type PCM with power inputs ranging from 3 W to 5 W. Results showed that the inclusion of PCM can reduce heating rates and peak temperatures of heat sinks with increasing the number of fins can enhance heat distribution to PCM leading to lower heat sinks peak temperatures. Also, the use of honeycomb inserts to replace machined finned structures has shown comparable thermal performance. Regarding the PCM type, the material with the lowest melting temperature has shown the best performance in terms of lowest

  10. Capacity Maximizing Constellations

    Science.gov (United States)

    Barsoum, Maged; Jones, Christopher

    2010-01-01

    Some non-traditional signal constellations have been proposed for transmission of data over the Additive White Gaussian Noise (AWGN) channel using such channel-capacity-approaching codes as low-density parity-check (LDPC) or turbo codes. Computational simulations have shown performance gains of more than 1 dB over traditional constellations. These gains could be translated to bandwidth- efficient communications, variously, over longer distances, using less power, or using smaller antennas. The proposed constellations have been used in a bit-interleaved coded modulation system employing state-ofthe-art LDPC codes. In computational simulations, these constellations were shown to afford performance gains over traditional constellations as predicted by the gap between the parallel decoding capacity of the constellations and the Gaussian capacity

  11. Dual capacity reciprocating compressor

    Science.gov (United States)

    Wolfe, Robert W.

    1984-01-01

    A multi-cylinder compressor 10 particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor 16 rotation is provided with an eccentric cam 38 on a crank pin 34 under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180.degree. apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons 24 whose connecting rods 30 ride on a crank pin 36 without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation.

  12. Visual attention capacity

    DEFF Research Database (Denmark)

    Habekost, Thomas; Starrfelt, Randi

    2009-01-01

    Psychophysical studies have identified two distinct limitations of visual attention capacity: processing speed and apprehension span. Using a simple test, these cognitive factors can be analyzed by Bundesen's Theory of Visual Attention (TVA). The method has strong specificity and sensitivity......, and measurements are highly reliable. As the method is theoretically founded, it also has high validity. TVA-based assessment has recently been used to investigate a broad range of neuropsychological and neurological conditions. We present the method, including the experimental paradigm and practical guidelines...... to patient testing, and review existing TVA-based patient studies organized by lesion anatomy. Lesions in three anatomical regions affect visual capacity: The parietal lobes, frontal cortex and basal ganglia, and extrastriate cortex. Visual capacity thus depends on large, bilaterally distributed anatomical...

  13. Evaluation of heat sink materials for thermal management of lithium batteries

    Science.gov (United States)

    Dimpault-Darcy, E. C.; Miller, K.

    Aluminum, neopentyl glycol (NPG), and resins FT and KT are evaluated theoretically and experimentally as heat sink materials for lithium battery packs. The thermal performances of the two resins are compared in a thermal vacuum experiment. As solutions to the sublimation property were not immediately apparent, a theoretical comparison of the thermal performance of NPG versus KT, Al, and no material, is presented.

  14. Evaluation of heat sink materials for thermal management of lithium batteries

    Science.gov (United States)

    Dimpault-Darcy, E. C.; Miller, K.

    1988-01-01

    Aluminum, neopentyl glycol (NPG), and resins FT and KT are evaluated theoretically and experimentally as heat sink materials for lithium battery packs. The thermal performances of the two resins are compared in a thermal vacuum experiment. As solutions to the sublimation property were not immediately apparent, a theoretical comparison of the thermal performance of NPG versus KT, Al, and no material, is presented.

  15. Copper matrix composites as heat sink materials for water-cooled divertor target

    Directory of Open Access Journals (Sweden)

    Jeong-Ha You

    2015-12-01

    Full Text Available According to the recent high heat flux (HHF qualification tests of ITER divertor target mock-ups and the preliminary design studies of DEMO divertor target, the performance of CuCrZr alloy, the baseline heat sink material for DEMO divertor, seems to only marginally cover the envisaged operation regime. The structural integrity of the CuCrZr heat sink was shown to be affected by plastic fatigue at 20 MW/m². The relatively high neutron irradiation dose expected for the DEMO divertor target is another serious concern, as it would cause significant embrittlement below 250 °C or irradiation creep above 350 °C. Hence, an advanced design concept of the divertor target needs to be devised for DEMO in order to enhance the HHF performance so that the structural design criteria are fulfilled for full operation scenarios including slow transients. The biggest potential lies in copper-matrix composite materials for the heat sink. In this article, three promising Cu-matrix composite materials are reviewed in terms of thermal, mechanical and HHF performance as structural heat sink materials. The considered candidates are W particle-reinforced, W wire-reinforced and SiC fiber-reinforced Cu matrix composites. The comprehensive results of recent studies on fabrication technology, design concepts, materials properties and the HHF performance of mock-ups are presented. Limitations and challenges are discussed.

  16. Spring feeding by pink-footed geese reduces carbon stocks and sink strength in tundra ecosystems

    NARCIS (Netherlands)

    van der Wal, Rene; Sjogersten, Sofie; Woodin, Sarah J.; Cooper, Elisabeth J.; Jonsdottir, Ingibjorg S.; Kuijper, Dries; Fox, Tony A. D.; Huiskes, A. D.

    Tundra ecosystems are widely recognized as precious areas and globally important carbon (C) sinks, yet our understanding of potential threats to these habitats and their large soil C store is limited. Land-use changes and conservation measures in temperate regions have led to a dramatic expansion of

  17. Spring feeding by pink-footed geese reduces carbon stocks and sink strength in tundra ecosystems

    NARCIS (Netherlands)

    Van der Wal, R.; Sjögersten, S.; Woodin, S.J.; Cooper, E.J.; Jónsdóttir, I.S.; Kuijper, D.; Fox, A.D.; Huiskes, A.H.L.

    2007-01-01

    Tundra ecosystems are widely recognized as precious areas and globally important carbon (C) sinks, yet our understanding of potential threats to these habitats and their large soil C store is limited. Land-use changes and conservation measures in temperate regions have led to a dramatic expansion of

  18. Minimum success criteria at SGTR combined with loss of secondary heat sink

    International Nuclear Information System (INIS)

    Parzer, I.; Petelin, S.

    1993-01-01

    A parametric analysis has been performed investigating minimum success criteria for the hypothetical Steam Generator Tube Rupture (SGTR) accident in a Pressurized Water Reactor (PWR) Nuclear Power Plant, combined with the total loss of secondary heat sink. The analyses have been performed by RELAP5/MOD2 and MOD3 computer codes using Krsko NPP input deck. The Krsko NPP is a 2-loop Westinghouse PWR, 640 MWe, located in Slovenia and operating from 1981. Two break sizes have been chosen for the SGTR event: 2 and 5 double-ended broken tubes have been assumed. Total loss of secondary heat sink has been assumed from the beginning of the calculation. The ways of cooling down the plant after the postulated accident have been investigated, including Bleed ampersand Feed through the primary system. The NPP Krsko Emergency Operating Procedures (EOP) have been verified for this case. Some suggestions have been made, how to improve FR-H.1 procedure (Loss of Secondary Heat Sink), to include some steps, which take into account also SGTR when it is combined with loss of secondary heat sink. Possible misinterpretations of E-0 procedure (Reactor Trip or Safety Injection) have been studied

  19. Source-to-sink transport of sugar and regulation by environmental factors.

    Science.gov (United States)

    Lemoine, Remi; La Camera, Sylvain; Atanassova, Rossitza; Dédaldéchamp, Fabienne; Allario, Thierry; Pourtau, Nathalie; Bonnemain, Jean-Louis; Laloi, Maryse; Coutos-Thévenot, Pierre; Maurousset, Laurence; Faucher, Mireille; Girousse, Christine; Lemonnier, Pauline; Parrilla, Jonathan; Durand, Mickael

    2013-01-01

    Source-to-sink transport of sugar is one of the major determinants of plant growth and relies on the efficient and controlled distribution of sucrose (and some other sugars such as raffinose and polyols) across plant organs through the phloem. However, sugar transport through the phloem can be affected by many environmental factors that alter source/sink relationships. In this paper, we summarize current knowledge about the phloem transport mechanisms and review the effects of several abiotic (water and salt stress, mineral deficiency, CO2, light, temperature, air, and soil pollutants) and biotic (mutualistic and pathogenic microbes, viruses, aphids, and parasitic plants) factors. Concerning abiotic constraints, alteration of the distribution of sugar among sinks is often reported, with some sinks as roots favored in case of mineral deficiency. Many of these constraints impair the transport function of the phloem but the exact mechanisms are far from being completely known. Phloem integrity can be disrupted (e.g., by callose deposition) and under certain conditions, phloem transport is affected, earlier than photosynthesis. Photosynthesis inhibition could result from the increase in sugar concentration due to phloem transport decrease. Biotic interactions (aphids, fungi, viruses…) also affect crop plant productivity. Recent breakthroughs have identified some of the sugar transporters involved in these interactions on the host and pathogen sides. The different data are discussed in relation to the phloem transport pathways. When possible, the link with current knowledge on the pathways at the molecular level will be highlighted.

  20. A new tool that links landscale connectivity and source-sink dynamics to population viability

    Science.gov (United States)

    The importance of connectivity and source-sink dynamics to conservation planning is widely appreciated. But the use of these concepts in practical applications such as the identification of critical habitat has been slowed because few models are designed to identify demographic s...

  1. Estimation of in-canopy ammonia sources and sinks in a fertilized Zea mays field

    Science.gov (United States)

    An analytical model was developed that describes the in-canopy vertical distribution of NH3 source and sinks and vertical fluxes in a fertilized agricultural setting using measured in-canopy concentration and wind speed profiles. This model was applied to quantify in-canopy air-s...

  2. Increased sink strength offsets the inhibitory effect of sucrose on sugarcane photosynthesis.

    Science.gov (United States)

    Ribeiro, Rafael V; Machado, Eduardo C; Magalhães Filho, José R; Lobo, Ana Karla M; Martins, Márcio O; Silveira, Joaquim A G; Yin, Xinyou; Struik, Paul C

    2017-01-01

    Spraying sucrose inhibits photosynthesis by impairing Rubisco activity and stomatal conductance (g s ), whereas increasing sink demand by partially darkening the plant stimulates sugarcane photosynthesis. We hypothesized that the stimulatory effect of darkness can offset the inhibitory effect of exogenous sucrose on photosynthesis. Source-sink relationship was perturbed in two sugarcane cultivars by imposing partial darkness, spraying a sucrose solution (50mM) and their combination. Five days after the onset of the treatments, the maximum Rubisco carboxylation rate (V cmax ) and the initial slope of A-C i curve (k) were estimated by measuring leaf gas exchange and chlorophyll fluorescence. Photosynthesis was inhibited by sucrose spraying in both genotypes, through decreases in V cmax , k, g s and ATP production driven by electron transport (J atp ). Photosynthesis of plants subjected to the combination of partial darkness and sucrose spraying was similar to photosynthesis of reference plants for both genotypes. Significant increases in V cmax , g s and J atp and marginal increases in k were noticed when combining partial darkness and sucrose spraying compared with sucrose spraying alone. Our data also revealed that increases in sink strength due to partial darkness offset the inhibition of sugarcane photosynthesis caused by sucrose spraying, enhancing the knowledge on endogenous regulation of sugarcane photosynthesis through the source-sink relationship. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. Are gas exchange responses to resource limitation and defoliation linked to source:sink relationships?

    Science.gov (United States)

    Pinkard, E A; Eyles, A; O'Grady, A P

    2011-10-01

    Productivity of trees can be affected by limitations in resources such as water and nutrients, and herbivory. However, there is little understanding of their interactive effects on carbon uptake and growth. We hypothesized that: (1) in the absence of defoliation, photosynthetic rate and leaf respiration would be governed by limiting resource(s) and their impact on sink limitation; (2) photosynthetic responses to defoliation would be a consequence of changing source:sink relationships and increased availability of limiting resources; and (3) photosynthesis and leaf respiration would be adjusted in response to limiting resources and defoliation so that growth could be maintained. We tested these hypotheses by examining how leaf photosynthetic processes, respiration, carbohydrate concentrations and growth rates of Eucalyptus globulus were influenced by high or low water and nitrogen (N) availability, and/or defoliation. Photosynthesis of saplings grown with low water was primarily sink limited, whereas photosynthetic responses of saplings grown with low N were suggestive of source limitation. Defoliation resulted in source limitation. Net photosynthetic responses to defoliation were linked to the degree of resource availability, with the largest responses measured in treatments where saplings were ultimately source rather than sink limited. There was good evidence of acclimation to stress, enabling higher rates of C uptake than might otherwise have occurred. © 2011 Blackwell Publishing Ltd.

  4. How costly are carbon offsets : a meta-analysis of forest carbon sinks

    International Nuclear Information System (INIS)

    Van Kooten, G.C.; Eagle, A.J.; Manley, J.; Smolak, T.M.

    2004-01-01

    Carbon terrestrial sinks are one of the many proposed mitigation responses to climate change. Carbon sinks are considered to be a low-cost alternative to fuel switching and reduced fossil fuel consumption for reducing atmospheric carbon dioxide emissions. This study examined the costs of sequestering carbon in terrestrial ecosystems via forestry activities. A meta-regression analysis was used to determine which factors influence the costs of carbon sequestration via forest activities. Important concerns about how the Kyoto Protocol may be implemented were also addressed. The meta-regression analysis was used to examine 981 estimates from 55 studies on the cost of creating carbon offsets using forestry. Baseline cost estimates are US$46.62 to 260.29 per tC. Tree planting and agroforestry increases costs by more than 200 per cent. Costs are lowest when post-harvest storage of carbon in wood products is considered, or when biomass is substituted for fossil fuels in energy production. The meta-analysis also considered land use, land-use change and forestry (LULUCF) policies that increase the carbon sink functions of terrestrial ecosystems. The main motive for using sinks in the accounting process is that they avoid the use of expensive controls for the emission of carbon dioxide and other greenhouse gases. refs., tabs

  5. Estimating sources, sinks and fluxes of reactive atmospheric compounds within a forest canopy

    Science.gov (United States)

    While few dispute the significance of within-canopy sources or sinks of reactive gaseous and particulate compounds, their estimation continues to be the subject of active research and debate. Reactive species undergo turbulent dispersion within an inhomogeneous flow field, and ma...

  6. Thermal conductivity from hierarchical heat sinks using carbon nanotubes and graphene nanosheets.

    Science.gov (United States)

    Hsieh, Chien-Te; Lee, Cheng-En; Chen, Yu-Fu; Chang, Jeng-Kuei; Teng, Hsi-sheng

    2015-11-28

    The in-plane (kip) and through-plane (ktp) thermal conductivities of heat sinks using carbon nanotubes (CNTs), graphene nanosheets (GNs), and CNT/GN composites are extracted from two experimental setups within the 323-373 K temperature range. Hierarchical three-dimensional CNT/GN frameworks display higher kip and ktp values, as compared to the CNT- and GN-based heat sinks. The kip and ktp values of the CNT/GN-based heat sink reach as high as 1991 and 76 W m(-1) K(-1) at 323 K, respectively. This improved thermal conductivity is attributed to the fact that the hierarchical heat sink offers a stereo thermal conductive network that combines point, line, and plane contact, leading to better heat transport. Furthermore, the compression treatment provided an efficient route to increase both kip and ktp values. This result reveals that the hierarchical carbon structures become denser, inducing more thermal conductive area and less thermal resistivity, i.e., a reduced possibility of phonon-boundary scattering. The correlation between thermal and electrical conductivity (ε) can be well described by two empirical equations: kip = 567 ln(ε) + 1120 and ktp = 20.6 ln(ε) + 36.1. The experimental results are obtained within the temperature range of 323-373 K, suitably complementing the thermal management of chips for consumer electronics.

  7. Mapping sources, sinks, and connectivity using a simulation model of Northern Spotted Owls

    Science.gov (United States)

    This is a study of source-sink dynamics at a landscape scale. In conducting the study, we make use of a mature simulation model for the northern spotted owl (Strix occidentalis caurina) that was developed as part of the US Fish and Wildlife Service’s most recent recovery plannin...

  8. Uncovering Offshore Financial Centers: Conduits and Sinks in the Global Corporate Ownership Network.

    Science.gov (United States)

    Garcia-Bernardo, Javier; Fichtner, Jan; Takes, Frank W; Heemskerk, Eelke M

    2017-07-24

    Multinational corporations use highly complex structures of parents and subsidiaries to organize their operations and ownership. Offshore Financial Centers (OFCs) facilitate these structures through low taxation and lenient regulation, but are increasingly under scrutiny, for instance for enabling tax avoidance. Therefore, the identification of OFC jurisdictions has become a politicized and contested issue. We introduce a novel data-driven approach for identifying OFCs based on the global corporate ownership network, in which over 98 million firms (nodes) are connected through 71 million ownership relations. This granular firm-level network data uniquely allows identifying both sink-OFCs and conduit-OFCs. Sink-OFCs attract and retain foreign capital while conduit-OFCs are attractive intermediate destinations in the routing of international investments and enable the transfer of capital without taxation. We identify 24 sink-OFCs. In addition, a small set of five countries - the Netherlands, the United Kingdom, Ireland, Singapore and Switzerland - canalize the majority of corporate offshore investment as conduit-OFCs. Each conduit jurisdiction is specialized in a geographical area and there is significant specialization based on industrial sectors. Against the idea of OFCs as exotic small islands that cannot be regulated, we show that many sink and conduit-OFCs are highly developed countries.

  9. Study of ultimate heat sink to Angra-1,2 and 3 Nuclear Power Plants

    International Nuclear Information System (INIS)

    Moreira, R.M.; Pinto, A.M.F.

    1985-03-01

    This report presents the premises, results and conclusion of study done to ultimate heat sink of Angra 1,2 and 3 units, with base in postulated accidents that generate transient heat discharges to environment. It's explicitily presumed the eventuality of discharging heat water recirculation. (C.M.) [pt

  10. Phenotypic plasticity despite source-sink population dynamics in a long-lived perennial plant.

    Science.gov (United States)

    Anderson, Jill T; Sparks, Jed P; Geber, Monica A

    2010-11-01

    • Species that exhibit adaptive plasticity alter their phenotypes in response to environmental conditions, thereby maximizing fitness in heterogeneous landscapes. However, under demographic source-sink dynamics, selection should favor traits that enhance fitness in the source habitat at the expense of fitness in the marginal habitat. Consistent with source-sink dynamics, the perennial blueberry, Vaccinium elliottii (Ericaceae), shows substantially higher fitness and population sizes in dry upland forests than in flood-prone bottomland forests, and asymmetrical gene flow occurs from upland populations into bottomland populations. Here, we examined whether this species expresses plasticity to these distinct environments despite source-sink dynamics. • We assessed phenotypic responses to a complex environmental gradient in the field and to water stress in the glasshouse. • Contrary to expectations, V. elliottii exhibited a high degree of plasticity in foliar and root traits (specific leaf area, carbon isotope ratios, foliar nitrogen content, root : shoot ratio, root porosity and root architecture). • We propose that plasticity can be maintained in source-sink systems if it is favored within the source habitat and/or a phylogenetic artifact that is not costly. Additionally, plasticity could be advantageous if habitat-based differences in fitness result from incipient niche expansion. Our results illuminate the importance of evaluating phenotypic traits and fitness components across heterogeneous landscapes. © The Authors (2010). Journal compilation © New Phytologist Trust (2010).

  11. A quantitative approach to characterize sink-source relationships during grain filling in contrasting wheat genotypes

    NARCIS (Netherlands)

    Yin, X.; Guo, W.; Spiertz, J.H.J.

    2009-01-01

    We present a simple generic framework to quantify source–sink relationships during grain filling, by using a determinate growth function which has a unique property, namely being able of explicitly describing the time for the end of a growth process. This model framework was applied to analyze these

  12. Sinking of Dense North Atlantic Waters in a Global Ocean Model : Location and Controls

    NARCIS (Netherlands)

    Katsman, C.A.; Drijfhout, SS; Dijkstra, H. A.; Spall, M. A.

    2018-01-01

    We investigate the characteristics of the sinking of dense waters in the North Atlantic Ocean that constitute the downwelling limb of the Atlantic Meridional Overturning Circulation (AMOC) as simulated by two global ocean models: an eddy-permitting model at 1/4° resolution and its coarser 1°

  13. Sinks and sources : a strategy to involve forest communities in Tanzania in global climate policy

    NARCIS (Netherlands)

    Zahabu, E.M.

    2008-01-01

    At present only the sink ability of forest to sequester atmospheric CO2 through establishing new forests is credited under the current UNFCCC climate change mitigation mechanisms in developing countries, i.e. the Clean Development Mechanism (CDM) of the Kyoto Protocol. Other forest practices such as

  14. Optimal geometric structure for nanofluid-cooled microchannel heat sink under various constraint conditions

    International Nuclear Information System (INIS)

    Wang Xiaodong; Bin An; Xu Jinliang

    2013-01-01

    Highlights: ► An inverse geometry optimization method is used to optimize heat sink structure. ► Nanofluid is used as coolant of heat sink. ► Three parameters are simultaneously optimized at various constraint conditions. ► The optimal designs of nanofluid-cooled heat sink are obtained. - Abstract: A numerical model is developed to analyze the flow and heat transfer in nanofluid-cooled microchannel heat sink (MCHS). In the MCHS model, temperature-dependent thermophysical properties are taken into account due to large temperature differences in the MCHS and strong temperature-dependent characteristics of nanofluids, the model is validated by experimental data with good agreement. The simplified conjugate-gradient method is coupled with MCHS model as optimization tool. Three geometric parameters, including channel number, channel aspect ratio, and width ratio of channel to pitch, are simultaneously optimized at fixed inlet volume flow rate, fixed pumping power, and fixed pressure drop as constraint condition, respectively. The optimal designs of MCHS are obtained for various constraint conditions and the effects of inlet volume flow rate, pumping power, and pressure drop on the optimal geometric parameters are discussed.

  15. Values for rooted-tree and sink-tree digraphs games and sharing a river

    NARCIS (Netherlands)

    Khmelnitskaya, Anna Borisovna

    We introduce values for rooted-tree and sink-tree digraph games axiomatically and provide their explicit formula representation. These values may be considered as natural extensions of the lower equivalent and upper equivalent solutions for line-graph games studied in Brink, Laan, and Vasil'ev

  16. Mangrove production and carbon sinks: A revision of global budget estimates

    Science.gov (United States)

    Bouillon, S.; Borges, A.V.; Castaneda-Moya, E.; Diele, K.; Dittmar, T.; Duke, N.C.; Kristensen, E.; Lee, S.-Y.; Marchand, C.; Middelburg, J.J.; Rivera-Monroy, V. H.; Smith, T. J.; Twilley, R.R.

    2008-01-01

    Mangrove forests are highly productive but globally threatened coastal ecosystems, whose role in the carbon budget of the coastal zone has long been debated. Here we provide a comprehensive synthesis of the available data on carbon fluxes in mangrove ecosystems. A reassessment of global mangrove primary production from the literature results in a conservative estimate of ???-218 ?? 72 Tg C a-1. When using the best available estimates of various carbon sinks (organic carbon export, sediment burial, and mineralization), it appears that >50% of the carbon fixed by mangrove vegetation is unaccounted for. This unaccounted carbon sink is conservatively estimated at ??? 112 ?? 85 Tg C a-1, equivalent in magnitude to ??? 30-40% of the global riverine organic carbon input to the coastal zone. Our analysis suggests that mineralization is severely underestimated, and that the majority of carbon export from mangroves to adjacent waters occurs as dissolved inorganic carbon (DIC). CO2 efflux from sediments and creek waters and tidal export of DIC appear to be the major sinks. These processes are quantitatively comparable in magnitude to the unaccounted carbon sink in current budgets, but are not yet adequately constrained with the limited published data available so far. Copyright 2008 by the American Geophysical Union.

  17. Dynamic sink assignment for efficient energy consumption in wireless sensor networks

    KAUST Repository

    Oikonomou, Konstantinos N.; Aissa, Sonia

    2012-01-01

    to the node that is the solution of a suitably formulated 1-median problem. This motivates the introduction of a dynamic environment where link weights change based on the energy level and the aggregate traffic load of the adjacent nodes. Then, the sink

  18. Data Transmission Scheme Using Mobile Sink in Static Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Awais Ahmad

    2015-01-01

    Full Text Available Multihop communication in wireless sensor network (WSN brings new challenges in reliable data transmission. Recent work shows that data collection from sensor nodes using mobile sink minimizes multihop data transmission and improves energy efficiency. However, due to continuous movements, mobile sink has limited communication time to collect data from sensor nodes, which results in rapid depletion of node’s energy. Therefore, we propose a data transmission scheme that addresses the aforementioned constraints. The proposed scheme first finds out the group based region on the basis of localization information of the sensor nodes and predefined trajectory information of a mobile sink. After determining the group region in the network, selection of master nodes is made. The master nodes directly transmit their data to the mobile sink upon its arrival at their group region through restricted flooding scheme. In addition, the agent node concept is introduced for swapping of the role of the master nodes in each group region. The master node when consuming energy up to a certain threshold, neighboring node with second highest residual energy is selected as an agent node. The mathematical analysis shows that the selection of agent node maximizes the throughput while minimizing transmission delay in the network.

  19. Efficient Data Collection by Mobile Sink to Detect Phenomena in Internet of Things

    Directory of Open Access Journals (Sweden)

    Amany Abu Safia

    2017-10-01

    Full Text Available With the rapid development of Internet of Things (IoT, more and more static and mobile sensors are being deployed for sensing and tracking environmental phenomena, such as fire, oil spills and air pollution. As these sensors are usually battery-powered, energy-efficient algorithms are required to extend the sensors’ lifetime. Moreover, forwarding sensed data towards a static sink causes quick battery depletion of the sinks’ nearby sensors. Therefore, in this paper, we propose a distributed energy-efficient algorithm, called the Hilbert-order Collection Strategy (HCS, which uses a mobile sink (e.g., drone to collect data from a mobile wireless sensor network (mWSN and detect environmental phenomena. The mWSN consists of mobile sensors that sense environmental data. These mobile sensors self-organize themselves into groups. The sensors of each group elect a group head (GH, which collects data from the mobile sensors in its group. Periodically, a mobile sink passes by the locations of the GHs (data collection path to collect their data. The collected data are aggregated to discover a global phenomenon. To shorten the data collection path, which results in reducing the energy cost, the mobile sink establishes the path based on the order of Hilbert values of the GHs’ locations. Furthermore, the paper proposes two optimization techniques for data collection to further reduce the energy cost of mWSN and reduce the data loss.

  20. Effect of altered sink:source ratio on photosynthetic metabolism of source leaves

    International Nuclear Information System (INIS)

    Plaut, Z.; Mayoral, M.L.; Reinhold, L.

    1987-01-01

    When seven crop species were grown under identical environmental conditions, decreased sink:source ratio led to a decreased photosynthetic rate within 1 to 3 days in Cucumis sativus L., Gossypium hirsutum L., and Raphanus sativus L., but not in Capsicum annuum L., Solanum melongena L., Phaseolus vulgaris L., or Ricinus communis L. The decrease was not associated with stomatal closure. In cotton and cucumbers, sink removal led to an increase in starch and sugar content, in glucose 6-phosphate and fructose 6-phosphate pools, and in the proportion of 14 C detected in sugar phosphates and UDPglucose following 14 CO 2 supply. When mannose was supplied to leaf discs to sequester cytoplasmic inorganic phosphate, promotion of starch synthesis, and inhibition of CO 2 fixation, were observed in control discs, but not in discs from treated plants. Phosphate buffer reduced starch synthesis in the latter, but not the former discs. The findings suggest that sink removal led to a decreased ratio inorganic phosphate:phosphorylated compounds. In beans 14 C in sugar phosphates increased following sink removal, but without sucrose accumulation, suggesting tighter feedback control of sugar level. Starch accumulated to higher levels than in the other plants, but CO 2 fixation rate was constant for several days

  1. How costly are carbon offsets? A meta-analysis of carbon forest sinks

    NARCIS (Netherlands)

    Kooten, van G.C.; Eagle, A.J.; Manley, J.; Smolak, T.

    2004-01-01

    Carbon terrestrial sinks are seen as a low-cost alternative to fuel switching and reduced fossil fuel use for lowering atmospheric CO2. As a result of agreements reached at Bonn and Marrakech, carbon offsets have taken on much greater importance in meeting Kyoto targets for the first commitment

  2. An Improved Forwarding of Diverse Events with Mobile Sinks in Underwater Wireless Sensor Networks.

    Science.gov (United States)

    Raza, Waseem; Arshad, Farzana; Ahmed, Imran; Abdul, Wadood; Ghouzali, Sanaa; Niaz, Iftikhar Azim; Javaid, Nadeem

    2016-11-04

    In this paper, a novel routing strategy to cater the energy consumption and delay sensitivity issues in deep underwater wireless sensor networks is proposed. This strategy is named as ESDR: Event Segregation based Delay sensitive Routing. In this strategy sensed events are segregated on the basis of their criticality and, are forwarded to their respective destinations based on forwarding functions. These functions depend on different routing metrics like: Signal Quality Index, Localization free Signal to Noise Ratio, Energy Cost Function and Depth Dependent Function. The problem of incomparable values of previously defined forwarding functions causes uneven delays in forwarding process. Hence forwarding functions are redefined to ensure their comparable values in different depth regions. Packet forwarding strategy is based on the event segregation approach which forwards one third of the generated events (delay sensitive) to surface sinks and two third events (normal events) are forwarded to mobile sinks. Motion of mobile sinks is influenced by the relative distribution of normal nodes. We have also incorporated two different mobility patterns named as; adaptive mobility and uniform mobility for mobile sinks. The later one is implemented for collecting the packets generated by the normal nodes. These improvements ensure optimum holding time, uniform delay and in-time reporting of delay sensitive events. This scheme is compared with the existing ones and outperforms the existing schemes in terms of network lifetime, delay and throughput.

  3. Faster algorithms for RNA-folding using the Four-Russians method.

    Science.gov (United States)

    Venkatachalam, Balaji; Gusfield, Dan; Frid, Yelena

    2014-03-06

    The secondary structure that maximizes the number of non-crossing matchings between complimentary bases of an RNA sequence of length n can be computed in O(n3) time using Nussinov's dynamic programming algorithm. The Four-Russians method is a technique that reduces the running time for certain dynamic programming algorithms by a multiplicative factor after a preprocessing step where solutions to all smaller subproblems of a fixed size are exhaustively enumerated and solved. Frid and Gusfield designed an O(n3logn) algorithm for RNA folding using the Four-Russians technique. In their algorithm the preprocessing is interleaved with the algorithm computation. We simplify the algorithm and the analysis by doing the preprocessing once prior to the algorithm computation. We call this the two-vector method. We also show variants where instead of exhaustive preprocessing, we only solve the subproblems encountered in the main algorithm once and memoize the results. We give a simple proof of correctness and explore the practical advantages over the earlier method.The Nussinov algorithm admits an O(n2) time parallel algorithm. We show a parallel algorithm using the two-vector idea that improves the time bound to O(n2logn). We have implemented the parallel algorithm on graphics processing units using the CUDA platform. We discuss the organization of the data structures to exploit coalesced memory access for fast running times. The ideas to organize the data structures also help in improving the running time of the serial algorithms. For sequences of length up to 6000 bases the parallel algorithm takes only about 2.5 seconds and the two-vector serial method takes about 57 seconds on a desktop and 15 seconds on a server. Among the serial algorithms, the two-vector and memoized versions are faster than the Frid-Gusfield algorithm by a factor of 3, and are faster than Nussinov by up to a factor of 20. The source-code for the algorithms is available at http://github.com/ijalabv/FourRussiansRNAFolding.

  4. Value for railway capacity

    DEFF Research Database (Denmark)

    Sameni, Melody Khadem; Preston, John M.

    2012-01-01

    to analyze the efficiency of operators in transforming inputs of allocated capacity of infrastructure and franchise payments into valuable passenger service outputs while avoiding delays. By addressing operational and economic aspects of capacity utilization simultaneously, the paper deviates from existing...... DEA work on the economic efficiency of railways by considering a new combination of input-output that also incorporates quality of service. The constant and variable returns to scale models are applied to the case study of franchised passenger operators in Great Britain. The follow-up Tobit regression...

  5. A Cross-Layered Communication Protocol for Load Balancing in Large Scale Multi-sink Wireless Sensor Networks

    NARCIS (Netherlands)

    Erman-Tüysüz, A.; Mutter, T.; van Hoesel, L.F.W.; Havinga, Paul J.M.

    2008-01-01

    One of the fundamental operations in sensor networks is convergecast which refers to the communication pattern in which data is collected from a set of sensor nodes and forwarded to a common end-point gateway, namely sink node, in the network. In case of multiple sinks within the network, the total

  6. A Cross-Layered Communication Protocol for Load Balancing in Large Scale Multi-sink Wireless Sensor Networks

    NARCIS (Netherlands)

    Erman-Tüysüz, A.; Mutter, T.; van Hoesel, L.F.W.; Havinga, Paul J.M.

    One of the fundamental operations in sensor networks is convergecast which refers to the communication pattern in which data is collected from a set of sensor nodes and forwarded to a common end-point gateway, namely sink node, in the network. In case of multiple sinks within the network, the total

  7. Enhancement of heat dissipation of LED module with cupric-oxide composite coating on aluminum-alloy heat sink

    International Nuclear Information System (INIS)

    Kim, Donghyun; Lee, Junghoon; Kim, Junho; Choi, Chang-Hwan; Chung, Wonsub

    2015-01-01

    Highlights: • We fabricate the CuO/resin composite coating layer on aluminum alloy heat sink. • CuO/resin coating considerably improved the surface emissivity. • The LED junction temperature was reduced by CuO/resin coated heat sink. • The thermal resistance of heat sink was decreased by CuO/resin composite coating at 200 μm thickness. - Abstract: A composite coating composed of cupric oxide (CuO) and silicon-based resin was applied to an aluminum-alloy heat sink for a light emitting diode (LED) module. The purpose of the composite coating is to improve the heat dissipation performance of heat sink by enhancing thermal radiation emission. The heat dissipation performance was investigated in terms of LED junction temperature and thermal resistance using a thermal transient method. The CuO and silicon-based resin composite coating showed higher emissivity, and the lower junction temperature and thermal resistance of the heat sink was achieved. In addition, a continuous operation test of the LED chip with the heat sink revealed that the surface treated with the CuO composite coating stably dissipated heat without degradation. In conclusion, the composite coating proposed here showed a significant improvement of the heat dissipation performance of the aluminum-alloy heat sink due to the enhanced thermal radiation property.

  8. Valuing external effects of carbon sink in ley production for energy use

    International Nuclear Information System (INIS)

    Aengquist, P.

    1997-01-01

    In this study, an attempt is made to calculate the external effects of carbon sink in soil and biomass on land use for ley production. A crop production including ley is compared with the energy obtained from the forest and other crop outputs without ley. Ley production occupies a larger portion of the carbon sink into the soil than the energy obtained either from the forest or from crop production without ley. Considering the amount of energy obtained from living materials, the portion gained from the forest covers a larger sink than the two other crop systems. A carbon sink, which keeps the carbon away from the atmosphere, helps reduce the greenhouse effect. Hence, the value of this effect is calculated by following the overall cost-benefit analysis principles. Furthermore, as the carbon sink will be in use for a very long time, the analysis also covers the issue, importance and choice of discounting rates. Accordingly, it is argued that the social discount rate should be the same as the expected economic growth rate for the actual period in question. For instance, during the last 20 years, the growth rate has been less than 2% per year. From this rate one must subtract environmental costs which were not included in the GDP. Likewise, including the logistic discount rate, the future growth rate may be restricted by environmental legislations. In addition to the choice of social and logistic discount rates, different valuation methods are also discussed. The Swedish Parliament's target for stabilizing the emission rate of carbon dioxide by the year 2000 to the level of 1990 is taken as a basis for valuation. The marginal cost for reaching this target is used as a main valuation method and is calculated at the rate of 0.386 SEK/kg carbon dioxide. 38 refs, 11 figs, 26 tabs

  9. Chemistry of superoxide radical in seawater: CDOM associated sink of superoxide in coastal waters

    Energy Technology Data Exchange (ETDEWEB)

    Goldstone, J.V.; Voelker, B.M.

    2000-03-15

    Colored dissolved organic matter (CDOM) and humic substances contain a nonmetallic redox-cycling component capable of catalyzing superoxide (O{sub 2}{sup {minus}}) dismutation. First-order rate coefficients (k{sub pseudo}) measured for this O{sub 2}{sup {minus}} sink in a number of coastal and Chesapeake Bay water samples range up to 1.4s{sup {minus}1}, comparable in magnitude to catalyzed dismutation by Cu species. A significant (r{sup 2}=0.73) correlation is observed between k{sub pseudo} and the optical absorption and salinity of individual coastal water samples, suggesting an association with non-marine-derived CDOM. The activity of this sink is not changed by acidification or boiling of samples but is removed by photooxidation, indicating that it is an organic compound, but that it is neither enzymatic nor likely to consist of tightly bound metals. The stoichiometry of hydrogen peroxide formation from O{sub 2}{sup {minus}} decay indicates that this sink is capable of a redox cycle catalyzing the dismutation of O{sub 2}{sup {minus}}. This CDOM sink combined with the organic copper sink previously described will produce a steady-state superoxide concentration in coastal waters that is 100--1000-fold lower than that predicted from bimolecular dismutation alone. Catalyzed O{sub 2}{sup {minus}} decay was also observed in a variety of humic and fulvic acid samples, possibly occurring through quinone functionalities. Although the presence of quinone moieties in humic and fulvic acids has been demonstrated, there do not appear to be good correlations between several measures of quinone content and the O{sub 2}{sup {minus}} dismutation rates of these samples.

  10. Energy Efficient Sensor Scheduling with a Mobile Sink Node for the Target Tracking Application

    Directory of Open Access Journals (Sweden)

    Malin Premaratne

    2009-01-01

    Full Text Available Measurement losses adversely affect the performance of target tracking. The sensor network’s life span depends on how efficiently the sensor nodes consume energy. In this paper, we focus on minimizing the total energy consumed by the sensor nodes whilst avoiding measurement losses. Since transmitting data over a long distance consumes a significant amount of energy, a mobile sink node collects the measurements and transmits them to the base station. We assume that the default transmission range of the activated sensor node is limited and it can be increased to maximum range only if the mobile sink node is out-side the default transmission range. Moreover, the active sensor node can be changed after a certain time period. The problem is to select an optimal sensor sequence which minimizes the total energy consumed by the sensor nodes. In this paper, we consider two different problems depend on the mobile sink node’s path. First, we assume that the mobile sink node’s position is known for the entire time horizon and use the dynamic programming technique to solve the problem. Second, the position of the sink node is varied over time according to a known Markov chain, and the problem is solved by stochastic dynamic programming. We also present sub-optimal methods to solve our problem. A numerical example is presented in order to discuss the proposed methods’ performance.

  11. Anaerobic Nitrogen Turnover by Sinking Diatom Aggregates at Varying Ambient Oxygen Levels

    Directory of Open Access Journals (Sweden)

    Peter eStief

    2016-02-01

    Full Text Available In the world’s oceans, even relatively low oxygen (O2 levels inhibit anaerobic nitrogen cycling by free-living microbes. Sinking organic aggregates, however, might provide oxygen-depleted microbial hotspots in otherwise oxygenated surface waters. Here we show that sinking diatom aggregates can host anaerobic nitrogen cycling at ambient O2 levels well above the hypoxic threshold. Aggregates were produced from the ubiquitous diatom Skeletonema marinoi and the natural microbial community of seawater. Microsensor profiling through the center of sinking aggregates revealed internal anoxia at ambient 40% air saturation (~100 µmol O2 L-1 and below. Accordingly, anaerobic nitrate turnover inside the aggregates was evident within this range of ambient O2 levels. In incubations with 15N-labeled nitrate, individual Skeletonema aggregates produced NO2- (up to 10.7 nmol N h-1 per aggregate, N2 (up to 7.1 nmol N h-1, NH4+ (up to 2.0 nmol N h-1, and N2O (up to 0.2 nmol N h-1. Intriguingly, nitrate stored inside the diatom cells served as an additional, internal nitrate source for N2 production, which may partially uncouple anaerobic nitrate turnover by diatom aggregates from direct ambient nitrate supply. Sinking diatom aggregates can contribute directly to fixed-nitrogen loss in low-oxygen environments in the ocean and vastly expand the ocean volume in which anaerobic nitrogen turnover is possible, despite relatively high ambient O2 levels. Depending on the extent of intracellular nitrate consumption during the sinking process, diatom aggregates may also be involved in the long-distance export of nitrate to the deep ocean.

  12. Photosynthesis down-regulation precedes carbohydrate accumulation under sink limitation in Citrus.

    Science.gov (United States)

    Nebauer, Sergio G; Renau-Morata, Begoña; Guardiola, José Luis; Molina, Rosa-Victoria

    2011-02-01

    Photosynthesis down-regulation due to an imbalance between sources and sinks in Citrus leaves could be mediated by excessive accumulation of carbohydrates. However, there is limited understanding of the physiological role of soluble and insoluble carbohydrates in photosynthesis regulation and the elements triggering the down-regulation process. In this work, the role of non-structural carbohydrates in the regulation of photosynthesis under a broad spectrum of source-sink relationships has been investigated in the Salustiana sweet orange. Soluble sugar and starch accumulation in leaves, induced by girdling experiments, did not induce down-regulation of the photosynthetic rate in the presence of sinks (fruits). The leaf-to-fruit ratio did not modulate photosynthesis but allocation of photoassimilates to the fruits. The lack of strong sink activity led to a decrease in the photosynthetic rate and starch accumulation in leaves. However, photosynthesis down-regulation due to an excess of total soluble sugars or starch was discarded because photosynthesis and stomatal conductance reduction occurred prior to any significant accumulation of these carbohydrates. Gas exchange and fluorescence parameters suggested biochemical limitations to photosynthesis. In addition, the expression of carbon metabolism-related genes was altered within 24 h when strong sinks were removed. Sucrose synthesis and export genes were inhibited, whereas the expression of ADP-glucose pyrophosphorylase was increased to cope with the excess of assimilates. In conclusion, changes in starch and soluble sugar turnover, but not sugar content per se, could provide the signal for photosynthesis regulation. In these conditions, non-stomatal limitations strongly inhibited the photosynthetic rate prior to any significant increase in carbohydrate levels.

  13. Minimal vascular flows cause strong heat sink effects in hepatic radiofrequency ablation ex vivo.

    Science.gov (United States)

    Lehmann, Kai S; Poch, Franz G M; Rieder, Christian; Schenk, Andrea; Stroux, Andrea; Frericks, Bernd B; Gemeinhardt, Ole; Holmer, Christoph; Kreis, Martin E; Ritz, Jörg P; Zurbuchen, Urte

    2016-08-01

    The present paper aims to assess the lower threshold of vascular flow rate on the heat sink effect in bipolar radiofrequency ablation (RFA) ex vivo. Glass tubes (vessels) of 3.4 mm inner diameter were introduced in parallel to bipolar RFA applicators into porcine liver ex vivo. Vessels were perfused with flow rates of 0 to 1,500 ml/min. RFA (30 W power, 15 kJ energy input) was carried out at room temperature and 37°C. Heat sink effects were assessed in RFA cross sections by the decrease in ablation radius, area and by a high-resolution sector planimetry. Flow rates of 1 ml/min already caused a significant cooling effect (P ≤ 0.001). The heat sink effect reached a maximum at 10 ml/min (18.4 mm/s) and remained stable for flow rates up to 1,500 ml/min. Minimal vascular flows of ≥1 ml/min cause a significant heat sink effect in hepatic RFA ex vivo. A lower limit for volumetric flow rate was not found. The maximum of the heat sink effect was reached at a flow rate of 10 ml/min and remained stable for flow rates up to 1,500 ml/min. Hepatic inflow occlusion should be considered in RFA close to hepatic vessels. © 2016 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  14. With medium-chain triglycerides, higher and faster oxygen radical production by stimulated polymorphonuclear leukocytes occurs.

    Science.gov (United States)

    Kruimel, J W; Naber, A H; Curfs, J H; Wenker, M A; Jansen, J B

    2000-01-01

    Parenteral lipid emulsions are suspected of suppressing the immune function. However, study results are contradictory and mainly concern the conventional long-chain triglyceride emulsions. Polymorphonuclear leukocytes were preincubated with parenteral lipid emulsions. The influence of the lipid emulsions on the production of oxygen radicals by these stimulated leukocytes was studied by measuring chemiluminescence. Three different parenteral lipid emulsions were tested: long-chain triglycerides, a physical mixture of medium- and long-chain triglycerides, and structured triglycerides. Structured triglycerides consist of triglycerides where the medium- and long-chain fatty acids are attached to the same glycerol molecule. Stimulated polymorphonuclear leukocytes preincubated with the physical mixture of medium- and long-chain triglycerides showed higher levels of oxygen radicals (p triglycerides or structured triglycerides. Additional studies indicated that differences in results of various lipid emulsions were not caused by differences in emulsifier. The overall production of oxygen radicals was significantly lower after preincubation with the three lipid emulsions compared with controls without lipid emulsion. A physical mixture of medium- and long-chain triglycerides induced faster production of oxygen radicals, resulting in higher levels of oxygen radicals, compared with long-chain triglycerides or structured triglycerides. This can be detrimental in cases where oxygen radicals play either a pathogenic role or a beneficial one, such as when rapid phagocytosis and killing of bacteria is needed. The observed lower production of oxygen radicals by polymorphonuclear leukocytes in the presence of parenteral lipid emulsions may result in immunosuppression by these lipids.

  15. Soft robotics: a review and progress towards faster and higher torque actuators (presentation video)

    Science.gov (United States)

    Shepherd, Robert

    2014-03-01

    Last year, nearly 160,000 industrial robots were shipped worldwide—into a total market valued at 26 Bn (including hardware, software, and peripherals).[1] Service robots for professional (e.g., defense, medical, agriculture) and personal (e.g., household, handicap assistance, toys, and education) use accounted for 16,000 units, 3.4 Bn and 3,000,000 units, $1.2 Bn respectively.[1] The vast majority of these robotic systems use fully actuated, rigid components that take little advantage of passive dynamics. Soft robotics is a field that is taking advantage of compliant actuators and passive dynamics to achieve several goals: reduced design, manufacturing and control complexity, improved energy efficiency, more sophisticated motions, and safe human-machine interactions to name a few. The potential for societal impact is immense. In some instances, soft actuators have achieved commercial success; however, large scale adoption will require improved methods of controlling non-linear systems, greater reliability in their function, and increased utility from faster and more forceful actuation. In my talk, I will describe efforts from my work in the Whitesides group at Harvard to prove sophisticated motions in these machines using simple controls, as well capabilities unique to soft machines. I will also describe the potential for combinations of different classes of soft actuators (e.g., electrically and pneumatically actuated systems) to improve the utility of soft robots. 1. World Robotics - Industrial Robots 2013, 2013, International Federation of Robotics.

  16. Sequence-based heuristics for faster annotation of non-coding RNA families.

    Science.gov (United States)

    Weinberg, Zasha; Ruzzo, Walter L

    2006-01-01

    Non-coding RNAs (ncRNAs) are functional RNA molecules that do not code for proteins. Covariance Models (CMs) are a useful statistical tool to find new members of an ncRNA gene family in a large genome database, using both sequence and, importantly, RNA secondary structure information. Unfortunately, CM searches are extremely slow. Previously, we created rigorous filters, which provably sacrifice none of a CM's accuracy, while making searches significantly faster for virtually all ncRNA families. However, these rigorous filters make searches slower than heuristics could be. In this paper we introduce profile HMM-based heuristic filters. We show that their accuracy is usually superior to heuristics based on BLAST. Moreover, we compared our heuristics with those used in tRNAscan-SE, whose heuristics incorporate a significant amount of work specific to tRNAs, where our heuristics are generic to any ncRNA. Performance was roughly comparable, so we expect that our heuristics provide a high-quality solution that--unlike family-specific solutions--can scale to hundreds of ncRNA families. The source code is available under GNU Public License at the supplementary web site.

  17. World oil demand's shift toward faster growing and less price-responsive products and regions

    International Nuclear Information System (INIS)

    Dargay, Joyce M.; Gately, Dermot

    2010-01-01

    Using data for 1971-2008, we estimate the effects of changes in price and income on world oil demand, disaggregated by product - transport oil, fuel oil (residual and heating oil), and other oil - for six groups of countries. Most of the demand reductions since 1973-74 were due to fuel-switching away from fuel oil, especially in the OECD; in addition, the collapse of the Former Soviet Union (FSU) reduced their oil consumption substantially. Demand for transport and other oil was much less price-responsive, and has grown almost as rapidly as income, especially outside the OECD and FSU. World oil demand has shifted toward products and regions that are faster growing and less price-responsive. In contrast to projections to 2030 of declining per-capita demand for the world as a whole - by the U.S. Department of Energy (DOE), International Energy Agency (IEA) and OPEC - we project modest growth. Our projections for total world demand in 2030 are at least 20% higher than projections by those three institutions, using similar assumptions about income growth and oil prices, because we project rest-of-world growth that is consistent with historical patterns, in contrast to the dramatic slowdowns which they project. (author)

  18. In a warmer Arctic, mosquitoes avoid increased mortality from predators by growing faster.

    Science.gov (United States)

    Culler, Lauren E; Ayres, Matthew P; Virginia, Ross A

    2015-09-22

    Climate change is altering environmental temperature, a factor that influences ectothermic organisms by controlling rates of physiological processes. Demographic effects of warming, however, are determined by the expression of these physiological effects through predator-prey and other species interactions. Using field observations and controlled experiments, we measured how increasing temperatures in the Arctic affected development rates and mortality rates (from predation) of immature Arctic mosquitoes in western Greenland. We then developed and parametrized a demographic model to evaluate how temperature affects survival of mosquitoes from the immature to the adult stage. Our studies showed that warming increased development rate of immature mosquitoes (Q10 = 2.8) but also increased daily mortality from increased predation rates by a dytiscid beetle (Q10 = 1.2-1.5). Despite increased daily mortality, the model indicated that faster development and fewer days exposed to predators resulted in an increased probability of mosquito survival to the adult stage. Warming also advanced mosquito phenology, bringing mosquitoes into phenological synchrony with caribou. Increases in biting pests will have negative consequences for caribou and their role as a subsistence resource for local communities. Generalizable frameworks that account for multiple effects of temperature are needed to understand how climate change impacts coupled human-natural systems. © 2015 The Author(s).

  19. A faster numerical scheme for a coupled system modeling soil erosion and sediment transport

    Science.gov (United States)

    Le, M.-H.; Cordier, S.; Lucas, C.; Cerdan, O.

    2015-02-01

    Overland flow and soil erosion play an essential role in water quality and soil degradation. Such processes, involving the interactions between water flow and the bed sediment, are classically described by a well-established system coupling the shallow water equations and the Hairsine-Rose model. Numerical approximation of this coupled system requires advanced methods to preserve some important physical and mathematical properties; in particular, the steady states and the positivity of both water depth and sediment concentration. Recently, finite volume schemes based on Roe's solver have been proposed by Heng et al. (2009) and Kim et al. (2013) for one and two-dimensional problems. In their approach, an additional and artificial restriction on the time step is required to guarantee the positivity of sediment concentration. This artificial condition can lead the computation to be costly when dealing with very shallow flow and wet/dry fronts. The main result of this paper is to propose a new and faster scheme for which only the CFL condition of the shallow water equations is sufficient to preserve the positivity of sediment concentration. In addition, the numerical procedure of the erosion part can be used with any well-balanced and positivity preserving scheme of the shallow water equations. The proposed method is tested on classical benchmarks and also on a realistic configuration.

  20. Emotion, Etmnooi, or Emitoon?--Faster lexical access to emotional than to neutral words during reading.

    Science.gov (United States)

    Kissler, Johanna; Herbert, Cornelia

    2013-03-01

    Cortical processing of emotional words differs from that of neutral words. Using EEG event-related potentials (ERPs), the present study examines the functional stage(s) of this differentiation. Positive, negative, and neutral nouns were randomly mixed with pseudowords and letter strings derived from words within each valence and presented for reading while participants' EEG was recorded. Results indicated emotion effects in the N1 (110-140 ms), early posterior negativity (EPN, 216-320) and late positive potential (LPP, 432-500 ms) time windows. Across valence, orthographic word-form effects occurred from about 180 ms after stimulus presentation. Crucially, in emotional words, lexicality effects (real words versus pseudowords) were identified from 216 ms, words being more negative over posterior cortex, coinciding with EPN effects, whereas neutral words differed from pseudowords only after 320 ms. Emotional content affects word processing at pre-lexical, lexical and post-lexical levels, but remarkably lexical access to emotional words is faster than access to neutral words. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. A light and faster regional convolutional neural network for object detection in optical remote sensing images

    Science.gov (United States)

    Ding, Peng; Zhang, Ye; Deng, Wei-Jian; Jia, Ping; Kuijper, Arjan

    2018-07-01

    Detection of objects from satellite optical remote sensing images is very important for many commercial and governmental applications. With the development of deep convolutional neural networks (deep CNNs), the field of object detection has seen tremendous advances. Currently, objects in satellite remote sensing images can be detected using deep CNNs. In general, optical remote sensing images contain many dense and small objects, and the use of the original Faster Regional CNN framework does not yield a suitably high precision. Therefore, after careful analysis we adopt dense convoluted networks, a multi-scale representation and various combinations of improvement schemes to enhance the structure of the base VGG16-Net for improving the precision. We propose an approach to reduce the test-time (detection time) and memory requirements. To validate the effectiveness of our approach, we perform experiments using satellite remote sensing image datasets of aircraft and automobiles. The results show that the improved network structure can detect objects in satellite optical remote sensing images more accurately and efficiently.

  2. Processing language in face-to-face conversation: Questions with gestures get faster responses.

    Science.gov (United States)

    Holler, Judith; Kendrick, Kobin H; Levinson, Stephen C

    2017-09-08

    The home of human language use is face-to-face interaction, a context in which communicative exchanges are characterised not only by bodily signals accompanying what is being said but also by a pattern of alternating turns at talk. This transition between turns is astonishingly fast-typically a mere 200-ms elapse between a current and a next speaker's contribution-meaning that comprehending, producing, and coordinating conversational contributions in time is a significant challenge. This begs the question of whether the additional information carried by bodily signals facilitates or hinders language processing in this time-pressured environment. We present analyses of multimodal conversations revealing that bodily signals appear to profoundly influence language processing in interaction: Questions accompanied by gestures lead to shorter turn transition times-that is, to faster responses-than questions without gestures, and responses come earlier when gestures end before compared to after the question turn has ended. These findings hold even after taking into account prosodic patterns and other visual signals, such as gaze. The empirical findings presented here provide a first glimpse of the role of the body in the psycholinguistic processes underpinning human communication.

  3. Revisit the faster-is-slower effect for an exit at a corner

    Science.gov (United States)

    Chen, Jun Min; Lin, Peng; Wu, Fan Yu; Li Gao, Dong; Wang, Guo Yuan

    2018-02-01

    The faster-is-slower effect (FIS), which means that crowd at a high enough velocity could significantly increase the evacuation time to escape through an exit, is an interesting phenomenon in pedestrian dynamics. Such phenomenon had been studied widely and has been experimentally verified in different systems of discrete particles flowing through a centre exit. To experimentally validate this phenomenon by using people under high pressure is difficult due to ethical issues. A mouse, similar to a human, is a kind of self-driven and soft body creature with competitive behaviour under stressed conditions. Therefore, mice are used to escape through an exit at a corner. A number of repeated tests are conducted and the average escape time per mouse at different levels of stimulus are analysed. The escape times do not increase obviously with the level of stimulus for the corner exit, which is contrary to the experiment with the center exit. The experimental results show that the FIS effect is not necessary a universal law for any discrete system. The observation could help the design of buildings by relocating their exits to the corner in rooms to avoid the formation of FIS effect.

  4. Resonant Drag Instabilities in protoplanetary disks: the streaming instability and new, faster-growing instabilities

    Science.gov (United States)

    Squire, Jonathan; Hopkins, Philip F.

    2018-04-01

    We identify and study a number of new, rapidly growing instabilities of dust grains in protoplanetary disks, which may be important for planetesimal formation. The study is based on the recognition that dust-gas mixtures are generically unstable to a Resonant Drag Instability (RDI), whenever the gas, absent dust, supports undamped linear modes. We show that the "streaming instability" is an RDI associated with epicyclic oscillations; this provides simple interpretations for its mechanisms and accurate analytic expressions for its growth rates and fastest-growing wavelengths. We extend this analysis to more general dust streaming motions and other waves, including buoyancy and magnetohydrodynamic oscillations, finding various new instabilities. Most importantly, we identify the disk "settling instability," which occurs as dust settles vertically into the midplane of a rotating disk. For small grains, this instability grows many orders of magnitude faster than the standard streaming instability, with a growth rate that is independent of grain size. Growth timescales for realistic dust-to-gas ratios are comparable to the disk orbital period, and the characteristic wavelengths are more than an order of magnitude larger than the streaming instability (allowing the instability to concentrate larger masses). This suggests that in the process of settling, dust will band into rings then filaments or clumps, potentially seeding dust traps, high-metallicity regions that in turn seed the streaming instability, or even overdensities that coagulate or directly collapse to planetesimals.

  5. Detection of vehicle parts based on Faster R-CNN and relative position information

    Science.gov (United States)

    Zhang, Mingwen; Sang, Nong; Chen, Youbin; Gao, Changxin; Wang, Yongzhong

    2018-03-01

    Detection and recognition of vehicles are two essential tasks in intelligent transportation system (ITS). Currently, a prevalent method is to detect vehicle body, logo or license plate at first, and then recognize them. So the detection task is the most basic, but also the most important work. Besides the logo and license plate, some other parts, such as vehicle face, lamp, windshield and rearview mirror, are also key parts which can reflect the characteristics of vehicle and be used to improve the accuracy of recognition task. In this paper, the detection of vehicle parts is studied, and the work is novel. We choose Faster R-CNN as the basic algorithm, and take the local area of an image where vehicle body locates as input, then can get multiple bounding boxes with their own scores. If the box with maximum score is chosen as final result directly, it is often not the best one, especially for small objects. This paper presents a method which corrects original score with relative position information between two parts. Then we choose the box with maximum comprehensive score as the final result. Compared with original output strategy, the proposed method performs better.

  6. Development of Novel Faster-Dissolving Microneedle Patches for Transcutaneous Vaccine Delivery.

    Science.gov (United States)

    Ono, Akihiko; Ito, Sayami; Sakagami, Shun; Asada, Hideo; Saito, Mio; Quan, Ying-Shu; Kamiyama, Fumio; Hirobe, Sachiko; Okada, Naoki

    2017-08-03

    Microneedle (MN) patches are promising for transcutaneous vaccination because they enable vaccine antigens to physically penetrate the stratum corneum via low-invasive skin puncturing, and to be effectively delivered to antigen-presenting cells in the skin. In second-generation MN patches, the dissolving MNs release the loaded vaccine antigen into the skin. To shorten skin application time for clinical practice, this study aims to develop novel faster-dissolving MNs. We designed two types of MNs made from a single thickening agent, carboxymethylcellulose (CMC) or hyaluronan (HN). Both CMC-MN and HN-MN completely dissolved in rat skin after a 5-min application. In pre-clinical studies, both MNs could demonstrably increase antigen-specific IgG levels after vaccination and prolong antigen deposition compared with conventional injections, and deliver antigens into resected human dermal tissue. In clinical research, we demonstrated that both MNs could reliably and safely puncture human skin without any significant skin irritation from transepidermal water loss measurements and ICDRG (International Contact Dermatitis Research Group) evaluation results.

  7. Semantic size does not matter: "bigger" words are not recognized faster.

    Science.gov (United States)

    Kang, Sean H K; Yap, Melvin J; Tse, Chi-Shing; Kurby, Christopher A

    2011-06-01

    Sereno, O'Donnell, and Sereno (2009) reported that words are recognized faster in a lexical decision task when their referents are physically large than when they are small, suggesting that "semantic size" might be an important variable that should be considered in visual word recognition research and modelling. We sought to replicate their size effect, but failed to find a significant latency advantage in lexical decision for "big" words (cf. "small" words), even though we used the same word stimuli as Sereno et al. and had almost three times as many subjects. We also examined existing data from visual word recognition megastudies (e.g., English Lexicon Project) and found that semantic size is not a significant predictor of lexical decision performance after controlling for the standard lexical variables. In summary, the null results from our lab experiment--despite a much larger subject sample size than Sereno et al.--converged with our analysis of megastudy lexical decision performance, leading us to conclude that semantic size does not matter for word recognition. Discussion focuses on why semantic size (unlike some other semantic variables) is unlikely to play a role in lexical decision.

  8. Faster acquisition of laparoscopic skills in virtual reality with haptic feedback and 3D vision.

    Science.gov (United States)

    Hagelsteen, Kristine; Langegård, Anders; Lantz, Adam; Ekelund, Mikael; Anderberg, Magnus; Bergenfelz, Anders

    2017-10-01

    The study investigated whether 3D vision and haptic feedback in combination in a virtual reality environment leads to more efficient learning of laparoscopic skills in novices. Twenty novices were allocated to two groups. All completed a training course in the LapSim ® virtual reality trainer consisting of four tasks: 'instrument navigation', 'grasping', 'fine dissection' and 'suturing'. The study group performed with haptic feedback and 3D vision and the control group without. Before and after the LapSim ® course, the participants' metrics were recorded when tying a laparoscopic knot in the 2D video box trainer Simball ® Box. The study group completed the training course in 146 (100-291) minutes compared to 215 (175-489) minutes in the control group (p = .002). The number of attempts to reach proficiency was significantly lower. The study group had significantly faster learning of skills in three out of four individual tasks; instrument navigation, grasping and suturing. Using the Simball ® Box, no difference in laparoscopic knot tying after the LapSim ® course was noted when comparing the groups. Laparoscopic training in virtual reality with 3D vision and haptic feedback made training more time efficient and did not negatively affect later video box-performance in 2D. [Formula: see text].

  9. Introducing difference recurrence relations for faster semi-global alignment of long sequences.

    Science.gov (United States)

    Suzuki, Hajime; Kasahara, Masahiro

    2018-02-19

    The read length of single-molecule DNA sequencers is reaching 1 Mb. Popular alignment software tools widely used for analyzing such long reads often take advantage of single-instruction multiple-data (SIMD) operations to accelerate calculation of dynamic programming (DP) matrices in the Smith-Waterman-Gotoh (SWG) algorithm with a fixed alignment start position at the origin. Nonetheless, 16-bit or 32-bit integers are necessary for storing the values in a DP matrix when sequences to be aligned are long; this situation hampers the use of the full SIMD width of modern processors. We proposed a faster semi-global alignment algorithm, "difference recurrence relations," that runs more rapidly than the state-of-the-art algorithm by a factor of 2.1. Instead of calculating and storing all the values in a DP matrix directly, our algorithm computes and stores mainly the differences between the values of adjacent cells in the matrix. Although the SWG algorithm and our algorithm can output exactly the same result, our algorithm mainly involves 8-bit integer operations, enabling us to exploit the full width of SIMD operations (e.g., 32) on modern processors. We also developed a library, libgaba, so that developers can easily integrate our algorithm into alignment programs. Our novel algorithm and optimized library implementation will facilitate accelerating nucleotide long-read analysis algorithms that use pairwise alignment stages. The library is implemented in the C programming language and available at https://github.com/ocxtal/libgaba .

  10. Level of headaches after surgical aneurysm clipping decreases significantly faster compared to endovascular coiled patients

    Directory of Open Access Journals (Sweden)

    Athanasios K. Petridis

    2017-04-01

    Full Text Available In incidental aneurysms, endovascular treatment can lead to post-procedural headaches. We studied the difference of surgical clipping vs. endovascular coiling in concern to post-procedural headaches in patients with ruptured aneurysms. Sixtyseven patients with aneurysmal subarachnoidal haemorrhage were treated in our department from September 1st 2015 - September 1st 2016. 43 Patients were included in the study and the rest was excluded because of late recovery or highgrade subarachnoid bleedings. Twenty-two were surgical treated and twenty-one were interventionally treated. We compared the post-procedural headaches at the time points of 24 h, 21 days, and 3 months after treatment using the visual analog scale (VAS for pain. After surgical clipping the headache score decreased for 8.8 points in the VAS, whereas the endovascular treated population showed a decrease of headaches of 3.3 points. This difference was highly statistical significant and remained significant even after 3 weeks where the pain score for the surgically treated patients was 0.68 and for the endovascular treated 1.8. After 3 months the pain was less than 1 for both groups with surgically treated patients scoring 0.1 and endovascular treated patients 0.9 (not significant. Clipping is relieving the headaches of patients with aneurysm rupture faster and more effective than endovascular coiling. This effect stays significant for at least 3 weeks and plays a crucial role in stress relieve during the acute and subacute ICU care of such patients.

  11. Faster-Than-Real-Time Simulation of Lithium Ion Batteries with Full Spatial and Temporal Resolution

    Directory of Open Access Journals (Sweden)

    Sandip Mazumder

    2013-01-01

    Full Text Available A one-dimensional coupled electrochemical-thermal model of a lithium ion battery with full temporal and normal-to-electrode spatial resolution is presented. Only a single pair of electrodes is considered in the model. It is shown that simulation of a lithium ion battery with the inclusion of detailed transport phenomena and electrochemistry is possible with faster-than-real-time compute times. The governing conservation equations of mass, charge, and energy are discretized using the finite volume method and solved using an iterative procedure. The model is first successfully validated against experimental data for both charge and discharge processes in a LixC6-LiyMn2O4 battery. Finally, it is demonstrated for an arbitrary rapidly changing transient load typical of a hybrid electric vehicle drive cycle. The model is able to predict the cell voltage of a 15-minute drive cycle in less than 12 seconds of compute time on a laptop with a 2.33 GHz Intel Pentium 4 processor.

  12. Differentially-Expressed Genes Associated with Faster Growth of the Pacific Abalone, Haliotis discus hannai.

    Science.gov (United States)

    Choi, Mi-Jin; Kim, Gun-Do; Kim, Jong-Myoung; Lim, Han Kyu

    2015-11-18

    The Pacific abalone Haliotis discus hannai is used for commercial aquaculture in Korea. We examined the transcriptome of Pacific abalone Haliotis discus hannai siblings using NGS technology to identify genes associated with high growth rates. Pacific abalones grown for 200 days post-fertilization were divided into small-, medium-, and large-size groups with mean weights of 0.26 ± 0.09 g, 1.43 ± 0.405 g, and 5.24 ± 1.09 g, respectively. RNA isolated from the soft tissues of each group was subjected to RNA sequencing. Approximately 1%-3% of the transcripts were differentially expressed in abalones, depending on the growth rate. RT-PCR was carried out on thirty four genes selected to confirm the relative differences in expression detected by RNA sequencing. Six differentially-expressed genes were identified as associated with faster growth of the Pacific abalone. These include five up-regulated genes (including one specific to females) encoding transcripts homologous to incilarin A, perlucin, transforming growth factor-beta-induced protein immunoglobulin-heavy chain 3 (ig-h3), vitelline envelope zona pellucida domain 4, and defensin, and one down-regulated gene encoding tomoregulin in large abalones. Most of the transcripts were expressed predominantly in the hepatopancreas. The genes identified in this study will lead to development of markers for identification of high-growth-rate abalones and female abalones.

  13. Differentially-Expressed Genes Associated with Faster Growth of the Pacific Abalone, Haliotis discus hannai

    Directory of Open Access Journals (Sweden)

    Mi-Jin Choi

    2015-11-01

    Full Text Available The Pacific abalone Haliotis discus hannai is used for commercial aquaculture in Korea. We examined the transcriptome of Pacific abalone Haliotis discus hannai siblings using NGS technology to identify genes associated with high growth rates. Pacific abalones grown for 200 days post-fertilization were divided into small-, medium-, and large-size groups with mean weights of 0.26 ± 0.09 g, 1.43 ± 0.405 g, and 5.24 ± 1.09 g, respectively. RNA isolated from the soft tissues of each group was subjected to RNA sequencing. Approximately 1%–3% of the transcripts were differentially expressed in abalones, depending on the growth rate. RT-PCR was carried out on thirty four genes selected to confirm the relative differences in expression detected by RNA sequencing. Six differentially-expressed genes were identified as associated with faster growth of the Pacific abalone. These include five up-regulated genes (including one specific to females encoding transcripts homologous to incilarin A, perlucin, transforming growth factor-beta-induced protein immunoglobulin-heavy chain 3 (ig-h3, vitelline envelope zona pellucida domain 4, and defensin, and one down-regulated gene encoding tomoregulin in large abalones. Most of the transcripts were expressed predominantly in the hepatopancreas. The genes identified in this study will lead to development of markers for identification of high-growth-rate abalones and female abalones.

  14. Evaluation of railway capacity

    DEFF Research Database (Denmark)

    Landex, Alex; Kaas, Anders H.; Schittenhelm, Bernd

    2006-01-01

    capacity consumptions. This paper describes the UIC 406 method and how it is expounded in Denmark. The paper describes the importance of choosing the right length of the line sections examined and how line sections with multiple track sections are examined. Furthermore, the possibility of using idle...

  15. Markets and Institutional Capacity

    DEFF Research Database (Denmark)

    Ingemann, Jan Holm

    2010-01-01

    Adequate explanations concerning the introduction of production and consumption of organic food in Denmark imply the necessity to engage a certain understanding of markets. Markets should subsequently not be seen as entities nor places but as complex relations between human actors. Further......, the establishment, maintenance and development of markets are depending on the capacity of the actors to enter into continuous and enhancing interplay....

  16. Modelling of the damaged zone induced by the shaft sinking of the Meuse/Haute-Marne underground laboratory (East argilites)

    International Nuclear Information System (INIS)

    Miehe, Baptiste

    2004-01-01

    From a geomechanical point of view, the safety of an underground storage for the radioactive waste requires to characterize the damaged zone induced by the shaft sinking for the storage cavities. Then, the objective of this thesis is to simulate the hydro-mechanical response of the East argilites to the shaft sinking for the Meuse/Haute-Marne underground laboratory, in order to compare the results to the in situ measurements which will be recorded in 2005 (REP experiment). Firstly we have analysed all the mechanical tests which had been carried out from 1995 to 2001. We have observed that each series has his own coherence, in terms of elastic parameters, mechanical strength or creep capacity. But there are some strong differences between the series. These differences, which are due to the experimental protocols and not to the material itself, have shown three important results: the re-saturation phases imposed by several laboratories have deteriorated the mechanical properties of the East argilites, the existence of an effective stress is not evident for these argilites, and their mechanical strength increases when they are dried. From these tests, we have distinguished three mechanisms that produce irreversible strains: compaction, pre-failure, failure. We have described each of them by a straightforward elasto-plastic model, based on the Mohr-Coulomb or Drucker-Prager criterion, with a linear softening. Thus we obtain a complete rheological model for the East argilites by considering simultaneously the three mechanisms (multi-criterion plasticity). Lastly, from the modelling we carried out, we can conclude that: to take into account the irreversible strains that occur before the failure has a great influence on the seize of the failure zone around the shaft (it is very small with respect to the case where the behaviour is elastic until the failure); the pore pressure diffusion modifies very little the mechanical response of the massif (the plastic strains created

  17. Composition and Realization of Source-to-Sink High-Performance Flows: File Systems, Storage, Hosts, LAN and WAN

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chase Qishi [Univ. of Tennessee, Memphis, TN (United States)

    2016-12-01

    A number of Department of Energy (DOE) science applications, involving exascale computing systems and large experimental facilities, are expected to generate large volumes of data, in the range of petabytes to exabytes, which will be transported over wide-area networks for the purpose of storage, visualization, and analysis. To support such capabilities, significant progress has been made in various components including the deployment of 100 Gbps networks with future 1 Tbps bandwidth, increases in end-host capabilities with multiple cores and buses, capacity improvements in large disk arrays, and deployment of parallel file systems such as Lustre and GPFS. High-performance source-to-sink data flows must be composed of these component systems, which requires significant optimizations of the storage-to-host data and execution paths to match the edge and long-haul network connections. In particular, end systems are currently supported by 10-40 Gbps Network Interface Cards (NIC) and 8-32 Gbps storage Host Channel Adapters (HCAs), which carry the individual flows that collectively must reach network speeds of 100 Gbps and higher. Indeed, such data flows must be synthesized using multicore, multibus hosts connected to high-performance storage systems on one side and to the network on the other side. Current experimental results show that the constituent flows must be optimally composed and preserved from storage systems, across the hosts and the networks with minimal interference. Furthermore, such a capability must be made available transparently to the science users without placing undue demands on them to account for the details of underlying systems and networks. And, this task is expected to become even more complex in the future due to the increasing sophistication of hosts, storage systems, and networks that constitute the high-performance flows. The objectives of this proposal are to (1) develop and test the component technologies and their synthesis methods to

  18. Faster, better, and cheaper” at NASA: Lessons learned in managing and accepting risk

    Science.gov (United States)

    Paxton, Larry J.

    2007-11-01

    Can Earth observing missions be done "better, faster and cheaper"? In this paper I explore the management and technical issues that arose from the attempt to do things "faster, better and cheaper" at NASA. The FBC mantra lead to some failures and, more significantly, an increase in the cadence of missions. Mission cadence is a major enabler of innovation and the driver for the training and testing of the next generation of managers, engineers, and scientists. A high mission cadence is required to maintain and develop competence in mission design, management, and execution and, for an exploration-driven organization, to develop and train the next generation of leaders: the time between missions must be short enough that careers span the complete life of more than a few missions. This process reduces risk because the "lessons learned" are current and widely held. Increasing the cadence of missions has the added benefit of reducing the pressure to do everything on one particular mission thus reducing mission complexity. Since failures are inevitable in such a complex endeavor, a higher mission cadence has the advantage of providing some resiliency to the scientific program the missions support. Some failures are avoidable (often only in hindsight) but most are due to some combination of interacting factors. This interaction is often only appreciated as a potential failure mode after the fact. There is always the pressure to do more with less: the scope of the project may become too ambitious or the management and oversight of the project may be reduced to fit the money allocated, or the project time line may be lengthened due to external factors (launcher availability, budgetary constraints) without a concomitant increase in the total funding. This leads to increased risk. Risks are always deemed acceptable until they change from a "risk" to a "failure mode". Identifying and managing those risks are particularly difficult when the activities are dispersed

  19. QERx- A Faster than Real-Time Emulator for Space Processors

    Science.gov (United States)

    Carvalho, B.; Pidgeon, A.; Robinson, P.

    2012-08-01

    Developing software for space systems is challenging. Especially because, in order to be sure it can cope with the harshness of the environment and the imperative requirements and constrains imposed by the platform were it will run, it needs to be tested exhaustively. Software Validation Facilities (SVF) are known to the industry and developers, and provide the means to run the On-Board Software (OBSW) in a realistic environment, allowing the development team to debug and test the software.But the challenge is to be able to keep up with the performance of the new processors (LEON2 and LEON3), which need to be emulated within the SVF. Such processor emulators are also used in Operational Simulators, used to support mission preparation and train mission operators. These simulators mimic the satellite and its behaviour, as realistically as possible. For test/operational efficiency reasons and because they will need to interact with external systems, both these uses cases require the processor emulators to provide real-time, or faster, performance.It is known to the industry that the performance of previously available emulators is not enough to cope with the performance of the new processors available in the market. SciSys approached this problem with dynamic translation technology trying to keep costs down by avoiding a hardware solution and keeping the integration flexibility of full software emulation.SciSys presented “QERx: A High Performance Emulator for Software Validation and Simulations” [1], in a previous DASIA event. Since then that idea has evolved and QERx has been successfully validated. SciSys is now presenting QERx as a product that can be tailored to fit different emulation needs. This paper will present QERx latest developments and current status.

  20. Faster processing of multiple spatially-heterodyned direct to digital holograms

    Science.gov (United States)

    Hanson, Gregory R [Clinton, TN; Bingham, Philip R [Knoxville, TN

    2008-09-09

    Systems and methods are described for faster processing of multiple spatially-heterodyned direct to digital holograms. A method includes of obtaining multiple spatially-heterodyned holograms, includes: digitally recording a first spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; digitally recording a second spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; Fourier analyzing the recorded first spatially-heterodyned hologram by shifting a first original origin of the recorded first spatially-heterodyned hologram including spatial heterodyne fringes in Fourier space to sit on top of a spatial-heterodyne carrier frequency defined as a first angle between a first reference beam and a first object beam; applying a first digital filter to cut off signals around the first original origin and performing an inverse Fourier transform on the result; Fourier analyzing the recorded second spatially-heterodyned hologram by shifting a second original origin of the recorded second spatially-heterodyned hologram including spatial heterodyne fringes in Fourier space to sit on top of a spatial-heterodyne carrier frequency defined as a second angle between a second reference beam and a second object beam; and applying a second digital filter to cut off signals around the second original origin and performing an inverse Fourier transform on the result, wherein digitally recording the first spatially-heterodyned hologram is completed before digitally recording the second spatially-heterodyned hologram and a single digital image includes both the first spatially-heterodyned hologram and the second spatially-heterodyned hologram.

  1. Faster but Less Careful Prehension in Presence of High, Rather than Low, Social Status Attendees.

    Directory of Open Access Journals (Sweden)

    Carlo Fantoni

    Full Text Available Ample evidence attests that social intention, elicited through gestures explicitly signaling a request of communicative intention, affects the patterning of hand movement kinematics. The current study goes beyond the effect of social intention and addresses whether the same action of reaching to grasp an object for placing it in an end target position within or without a monitoring attendee's peripersonal space, can be moulded by pure social factors in general, and by social facilitation in particular. A motion tracking system (Optotrak Certus was used to record motor acts. We carefully avoided the usage of communicative intention by keeping constant both the visual information and the positional uncertainty of the end target position, while we systematically varied the social status of the attendee (a high, or a low social status in separated blocks. Only thirty acts performed in the presence of a different social status attendee, revealed a significant change of kinematic parameterization of hand movement, independently of the attendee's distance. The amplitude of peak velocity reached by the hand during the reach-to-grasp and the lift-to-place phase of the movement was larger in the high rather than in the low social status condition. By contrast, the deceleration time of the reach-to-grasp phase and the maximum grasp aperture was smaller in the high rather than in the low social status condition. These results indicated that the hand movement was faster but less carefully shaped in presence of a high, but not of a low social status attendee. This kinematic patterning suggests that being monitored by a high rather than a low social status attendee might lead participants to experience evaluation apprehension that informs the control of motor execution. Motor execution would rely more on feedforward motor control in the presence of a high social status human attendee, vs. feedback motor control, in the presence of a low social status attendee.

  2. Sequential search leads to faster, more efficient fragment-based de novo protein structure prediction.

    Science.gov (United States)

    de Oliveira, Saulo H P; Law, Eleanor C; Shi, Jiye; Deane, Charlotte M

    2018-04-01

    Most current de novo structure prediction methods randomly sample protein conformations and thus require large amounts of computational resource. Here, we consider a sequential sampling strategy, building on ideas from recent experimental work which shows that many proteins fold cotranslationally. We have investigated whether a pseudo-greedy search approach, which begins sequentially from one of the termini, can improve the performance and accuracy of de novo protein structure prediction. We observed that our sequential approach converges when fewer than 20 000 decoys have been produced, fewer than commonly expected. Using our software, SAINT2, we also compared the run time and quality of models produced in a sequential fashion against a standard, non-sequential approach. Sequential prediction produces an individual decoy 1.5-2.5 times faster than non-sequential prediction. When considering the quality of the best model, sequential prediction led to a better model being produced for 31 out of 41 soluble protein validation cases and for 18 out of 24 transmembrane protein cases. Correct models (TM-Score > 0.5) were produced for 29 of these cases by the sequential mode and for only 22 by the non-sequential mode. Our comparison reveals that a sequential search strategy can be used to drastically reduce computational time of de novo protein structure prediction and improve accuracy. Data are available for download from: http://opig.stats.ox.ac.uk/resources. SAINT2 is available for download from: https://github.com/sauloho/SAINT2. saulo.deoliveira@dtc.ox.ac.uk. Supplementary data are available at Bioinformatics online.

  3. Faster diffraction-based overlay measurements with smaller targets using 3D gratings

    Science.gov (United States)

    Li, Jie; Kritsun, Oleg; Liu, Yongdong; Dasari, Prasad; Volkman, Catherine; Hu, Jiangtao

    2012-03-01

    Diffraction-based overlay (DBO) technologies have been developed to address the overlay metrology challenges for 22nm technology node and beyond. Most DBO technologies require specially designed targets that consist of multiple measurement pads, which consume too much space and increase measurement time. The traditional empirical approach (eDBO) using normal incidence spectroscopic reflectometry (NISR) relies on linear response of the reflectance with respect to overlay displacement within a small range. It offers convenience of quick recipe setup since there is no need to establish a model. However it requires three or four pads per direction (x or y) which adds burden to throughput and target size. Recent advances in modeling capability and computation power enabled mDBO, which allows overlay measurement with reduced number of pads, thus reducing measurement time and DBO target space. In this paper we evaluate the performance of single pad mDBO measurements using two 3D targets that have different grating shapes: squares in boxes and L-shapes in boxes. Good overlay sensitivities are observed for both targets. The correlation to programmed shifts and image-based overlay (IBO) is excellent. Despite the difference in shapes, the mDBO results are comparable for square and L-shape targets. The impact of process variations on overlay measurements is studied using a focus and exposure matrix (FEM) wafer. Although the FEM wafer has larger process variations, the correlation of mDBO results with IBO measurements is as good as the normal process wafer. We demonstrate the feasibility of single pad DBO measurements with faster throughput and smaller target size, which is particularly important in high volume manufacturing environment.

  4. Slower Perception Followed by Faster Lexical Decision in Longer Words: A Diffusion Model Analysis.

    Science.gov (United States)

    Oganian, Yulia; Froehlich, Eva; Schlickeiser, Ulrike; Hofmann, Markus J; Heekeren, Hauke R; Jacobs, Arthur M

    2015-01-01

    Effects of stimulus length on reaction times (RTs) in the lexical decision task are the topic of extensive research. While slower RTs are consistently found for longer pseudo-words, a finding coined the word length effect (WLE), some studies found no effects for words, and yet others reported faster RTs for longer words. Moreover, the WLE depends on the orthographic transparency of a language, with larger effects in more transparent orthographies. Here we investigate processes underlying the WLE in lexical decision in German-English bilinguals using a diffusion model (DM) analysis, which we compared to a linear regression approach. In the DM analysis, RT-accuracy distributions are characterized using parameters that reflect latent sub-processes, in particular evidence accumulation and decision-independent perceptual encoding, instead of typical parameters such as mean RT and accuracy. The regression approach showed a decrease in RTs with length for pseudo-words, but no length effect for words. However, DM analysis revealed that the null effect for words resulted from opposing effects of length on perceptual encoding and rate of evidence accumulation. Perceptual encoding times increased with length for words and pseudo-words, whereas the rate of evidence accumulation increased with length for real words but decreased for pseudo-words. A comparison between DM parameters in German and English suggested that orthographic transparency affects perceptual encoding, whereas effects of length on evidence accumulation are likely to reflect contextual information and the increase in available perceptual evidence with length. These opposing effects may account for the inconsistent findings on WLEs.

  5. Neuronal discrimination capacity

    International Nuclear Information System (INIS)

    Deng Yingchun; Williams, Peter; Feng Jianfeng; Liu Feng

    2003-01-01

    We explore neuronal mechanisms of discriminating between masked signals. It is found that when the correlation between input signals is zero, the output signals are separable if and only if input signals are separable. With positively (negatively) correlated signals, the output signals are separable (mixed) even when input signals are mixed (separable). Exact values of discrimination capacity are obtained for two most interesting cases: the exactly balanced inhibitory and excitatory input case and the uncorrelated input case. Interestingly, the discrimination capacity obtained in these cases is independent of model parameters, input distribution and is universal. Our results also suggest a functional role of inhibitory inputs and correlated inputs or, more generally, the large variability of efferent spike trains observed in in vivo experiments: the larger the variability of efferent spike trains, the easier it is to discriminate between masked input signals

  6. Seismic capacity of switchgear

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.; Hofmayer, C.; Kassir, M.; Pepper, S.

    1989-01-01

    As part of a component fragility program sponsored by the USNRC, BNL has collected existing information on the seismic capacity of switchgear assemblies from major manufacturers. Existing seismic test data for both low and medium voltage switchgear assemblies have been evaluated and the generic results are presented in this paper. The failure modes are identified and the corresponding generic lower bound capacity levels are established. The test response spectra have been used as a measure of the test vibration input. The results indicate that relays chatter at a very low input level at the base of the switchgear cabinet. This change of state of devices including relays have been observed. Breaker tripping occurs at a higher vibration level. Although the structural failure of internal elements have been noticed, the overall switchgear cabinet structure withstands a high vibration level. 5 refs., 2 figs., 2 tabs

  7. Neuronal discrimination capacity

    Energy Technology Data Exchange (ETDEWEB)

    Deng Yingchun [Department of Mathematics, Hunan Normal University 410081, Changsha (China); COGS, University of Sussex at Brighton, BN1 9QH (United Kingdom); Williams, Peter; Feng Jianfeng [COGS, University of Sussex at Brighton, BN1 9QH (United Kingdom); Liu Feng [COGS, University of Sussex at Brighton, BN1 9QH (United Kingdom); Physics Department, Nanjing University (China)

    2003-12-19

    We explore neuronal mechanisms of discriminating between masked signals. It is found that when the correlation between input signals is zero, the output signals are separable if and only if input signals are separable. With positively (negatively) correlated signals, the output signals are separable (mixed) even when input signals are mixed (separable). Exact values of discrimination capacity are obtained for two most interesting cases: the exactly balanced inhibitory and excitatory input case and the uncorrelated input case. Interestingly, the discrimination capacity obtained in these cases is independent of model parameters, input distribution and is universal. Our results also suggest a functional role of inhibitory inputs and correlated inputs or, more generally, the large variability of efferent spike trains observed in in vivo experiments: the larger the variability of efferent spike trains, the easier it is to discriminate between masked input signals.

  8. GEOSPATIAL ANALYSIS OF ATMOSPHERIC HAZE EFFECT BY SOURCE AND SINK LANDSCAPE

    Directory of Open Access Journals (Sweden)

    T. Yu

    2017-09-01

    Full Text Available Based on geospatial analysis model, this paper analyzes the relationship between the landscape patterns of source and sink in urban areas and atmospheric haze pollution. Firstly, the classification result and aerosol optical thickness (AOD of Wuhan are divided into a number of square grids with the side length of 6 km, and the category level landscape indices (PLAND, PD, COHESION, LPI, FRAC_MN and AOD of each grid are calculated. Then the source and sink landscapes of atmospheric haze pollution are selected based on the analysis of the correlation between landscape indices and AOD. Next, to make the following analysis more efficient, the indices selected before should be determined through the correlation coefficient between them. Finally, due to the spatial dependency and spatial heterogeneity of the data used in this paper, spatial autoregressive model and geo-weighted regression model are used to analyze atmospheric haze effect by source and sink landscape from the global and local level. The results show that the source landscape of atmospheric haze pollution is the building, and the sink landscapes are shrub and woodland. PLAND, PD and COHESION are suitable for describing the atmospheric haze effect by source and sink landscape. Comparing these models, the fitting effect of SLM, SEM and GWR is significantly better than that of OLS model. The SLM model is superior to the SEM model in this paper. Although the fitting effect of GWR model is more unsuited than that of SLM, the influence degree of influencing factors on atmospheric haze of different geography can be expressed clearer. Through the analysis results of these models, following conclusions can be summarized: Reducing the proportion of source landscape area and increasing the degree of fragmentation could cut down aerosol optical thickness; And distributing the source and sink landscape evenly and interspersedly could effectively reduce aerosol optical thickness which represents

  9. Geospatial Analysis of Atmospheric Haze Effect by Source and Sink Landscape

    Science.gov (United States)

    Yu, T.; Xu, K.; Yuan, Z.

    2017-09-01

    Based on geospatial analysis model, this paper analyzes the relationship between the landscape patterns of source and sink in urban areas and atmospheric haze pollution. Firstly, the classification result and aerosol optical thickness (AOD) of Wuhan are divided into a number of square grids with the side length of 6 km, and the category level landscape indices (PLAND, PD, COHESION, LPI, FRAC_MN) and AOD of each grid are calculated. Then the source and sink landscapes of atmospheric haze pollution are selected based on the analysis of the correlation between landscape indices and AOD. Next, to make the following analysis more efficient, the indices selected before should be determined through the correlation coefficient between them. Finally, due to the spatial dependency and spatial heterogeneity of the data used in this paper, spatial autoregressive model and geo-weighted regression model are used to analyze atmospheric haze effect by source and sink landscape from the global and local level. The results show that the source landscape of atmospheric haze pollution is the building, and the sink landscapes are shrub and woodland. PLAND, PD and COHESION are suitable for describing the atmospheric haze effect by source and sink landscape. Comparing these models, the fitting effect of SLM, SEM and GWR is significantly better than that of OLS model. The SLM model is superior to the SEM model in this paper. Although the fitting effect of GWR model is more unsuited than that of SLM, the influence degree of influencing factors on atmospheric haze of different geography can be expressed clearer. Through the analysis results of these models, following conclusions can be summarized: Reducing the proportion of source landscape area and increasing the degree of fragmentation could cut down aerosol optical thickness; And distributing the source and sink landscape evenly and interspersedly could effectively reduce aerosol optical thickness which represents atmospheric haze

  10. PAYMENT CAPACITY SENSITIVITY FACTORS

    OpenAIRE

    Daniel BRÎNDESCU – OLARIU

    2014-01-01

    The current study focuses on the sensitivity of the corporate payment capacity. Through the nature of the subject, the research is based on simulating variations of the forecasted cash-flows of the companies included in the sample. The study employs 391 forecasted yearly cash-flows statements collected from 50 companies from Timis County (Romania), as well as the detailed hypotheses of the forecasts. The results of the study facilitate the determination and classification of the main se...

  11. Options on capacity imbalance

    International Nuclear Information System (INIS)

    Roggen, M.

    2002-01-01

    Since the start of this year, the Dutch energy company Nuon has been using a computer system to formulate real-time responses to national capacity imbalances in the electricity supply market. The work earns Nuon a fixed fee from TenneT (Dutch Transmission System Operator) and ensures a more stable imbalance price for everyone. The key to success has been the decision to start the project from scratch [nl

  12. CSTI High Capacity Power

    International Nuclear Information System (INIS)

    Winter, J.M.

    1989-01-01

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil application. During FY-86 and 87, the NASA SP-100 Advanced Technology Program was devised to maintain the momentum of promising technology advancement efforts started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In FY-88, the Advanced Technology Program was incorporated into NASA's new Civil Space Technology Initiative (CSTI). The CSTI Program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA SP-100 Advanced Technology project, and provides a bridge to NASA Project Pathfinder. The elements of CSTI High Capacity Power development include Conversion Systems, Thermal Management, Power Management, System Diagnostics, and Environmental Interactions. Technology advancement in all areas, including materials, is required to assure the high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems as well as allowing mission independence from solar and orbital attitude requirements. Several recent advancements in CSTI High Capacity power development will be discussed

  13. Functional effects of treadmill-based gait training at faster speeds in stroke survivors: a prospective, single-group study.

    Science.gov (United States)

    Mohammadi, Roghayeh; Ershad, Navid; Rezayinejad, Marziyeh; Fatemi, Elham; Phadke, Chetan P

    2017-09-01

    To examine the functional effects of walking retraining at faster than self-selected speed (SSS). Ten individuals with chronic stroke participated in a 4-week training over a treadmill at walking speeds 40% faster than SSS, three times per week, 30 min/session. Outcome measures assessed before, after, and 2 months after the end of intervention were the Timed Up and Go, the 6-Minute Walk, the 10-Meter Walk test, the Modified Ashworth Scale, SSS, and fastest comfortable speed. After 4 weeks of training, all outcome measures showed clinically meaningful and statistically significant improvements (Ptraining. The results showed that a strategy of training at a speed 40% faster than SSS can improve functional activity in individuals with chronic stroke, with effects lasting up to 2 months after the intervention.

  14. Competence building capacity shortage

    International Nuclear Information System (INIS)

    Doorman, Gerard; Wangensteen, Ivar; Bakken, Bjoern

    2005-02-01

    The objective of the project 'Competence Building Capacity Shortage' has been 'to increase knowledge about central approaches aimed at solving the peaking capacity problem in restructured power systems'. With respect to reserve markets, a model was developed in the project to analyze the relations between reserve requirements and prices in the spot and reserve markets respectively. A mathematical model was also developed and implemented, which also includes the balance market, and has a good ability to predict the relations between these markets under various assumptions. With some further development, this model can be used fore realistic analyses of these markets in a Nordic context. It was also concluded that certain system requirements with respect to frequency and time deviation can be relaxed without adverse effects. However, the requirements to system bias, Frequency Activated Operating Reserves and Frequency Activated Contingency Reserves cannot be relaxed, the latter because they must cover the dimensioning fault in the system. On the other hand, Fast Contingency Reserves can be reduced by removing requirements to national balances. Costs can furthermore be reduced by increasingly adapting a Nordic as opposed to national approach. A model for stepwise power flow was developed in the project, which is especially useful to analyze slow power system dynamics. This is relevant when analysing the effects of reserve requirements. A model for the analysis of the capacity balance in Norway and Sweden was also developed. This model is useful for looking at the future balance under various assumptions regarding e.g. weather conditions, demand growth and the development of the generation system. With respect to the present situation, if there is some price flexibility on the demand side and system operators are able to use reserves from the demand side, the probability for load shedding during the peak load hour is close to zero under the weather conditions after

  15. Linking potential heat source and sink to urban heat island: Heterogeneous effects of landscape pattern on land surface temperature.

    Science.gov (United States)

    Li, Weifeng; Cao, Qiwen; Lang, Kun; Wu, Jiansheng

    2017-05-15

    Rapid urbanization has significantly contributed to the development of urban heat island (UHI). Regulating landscape composition and configuration would help mitigate the UHI in megacities. Taking Shenzhen, China, as a case study area, we defined heat source and heat sink and identified strong and weak sources as well as strong and weak sinks according to the natural and socioeconomic factors influencing land surface temperature (LST). Thus, the potential thermal contributions of heat source and heat sink patches were differentiated. Then, the heterogeneous effects of landscape pattern on LST were examined by using semiparametric geographically weighted regression (SGWR) models. The results showed that landscape composition has more significant effects on thermal environment than configuration. For a strong source, the percentage of patches has a positive impact on LST. Additionally, when mosaicked with some heat sink, even a small improvement in the degree of dispersion of a strong source helps to alleviate UHI. For a weak source, the percentage and density of patches have positive impacts on LST. For a strong sink, the percentage, density, and degree of aggregation of patches have negative impacts on LST. The effects of edge density and patch shape complexity vary spatially with the fragmentation of a strong sink. Similarly, the impacts of a weak sink are mainly exerted via the characteristics of percent, density, and shape complexity of patches. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Micro-structured rough surfaces by laser etching for heat transfer enhancement on flush mounted heat sinks

    International Nuclear Information System (INIS)

    Ventola, L; Scaltrito, L; Ferrero, S; Chiavazzo, E; Asinari, P; Maccioni, G

    2014-01-01

    The aim of this work is to improve heat transfer performances of flush mounted heat sinks used in electronic cooling. To do this we patterned 1.23 cm 2 heat sinks surfaces by microstructured roughnesses built by laser etching manufacturing technique, and experimentally measured the convective heat transfer enhancements due to different patterns. Each roughness differs from the others with regards to the number and the size of the micro-fins (e.g. the micro- fin length ranges from 200 to 1100 μm). Experimental tests were carried out in forced air cooling regime. In particular fully turbulent flows (heating edge based Reynolds number ranging from 3000 to 17000) were explored. Convective heat transfer coefficient of the best micro-structured heat sink is found to be roughly two times compared to the smooth heat sinks one. In addition, surface area roughly doubles with regard to smooth heat sinks, due to the presence of micro-fins. Consequently, patterned heat sinks thermal transmittance [W/K] is found to be roughly four times the smooth heat sinks one. We hope this work may open the way for huge boost in the technology of electronic cooling by innovative manufacturing techniques.

  17. Modelling of the influence of the vacancy source and sink activity and the stress state on diffusion in crystalline solids

    International Nuclear Information System (INIS)

    Svoboda, J.; Fischer, F.D.

    2011-01-01

    Diffusion in solids is a well-known phenomenon that has many consequences in technology and material science. Modelling of diffusion-controlled processes requires both a reliable theory of diffusion and reliable kinetic coefficients, as well as other thermodynamic data. Often the classical Darken theory, valid for stress-free systems with ideal vacancy source and sink activity, is generalized to multicomponent systems with ideal vacancy source and sink activity. Nazarov and Gurov presented a theory for stress-free systems with no vacancy source and sink activity. Recently we published a general theory of diffusion that accounted for the role of non-ideal vacancy source and sink activity, as well as the stress state. Since diffusion theories are tested and diffusion coefficients measured usually on diffusion couples, this paper presents evolution equations based on that general theory for a diffusion couple. In the limit, the equations of the Darken theory and the Nazarov and Gurov theory are valid for ideal vacancy source and sink activity and no vacancy source and sink activity, respectively. Simulations for binary and ternary diffusion couples demonstrate the influence of the vacancy source and sink activity and the stress state on evolution of site fraction profiles of components and vacancies, and on the Kirkendall effect.

  18. Is the superior verbal memory span of Mandarin speakers due to faster rehearsal?

    Science.gov (United States)

    Mattys, Sven L; Baddeley, Alan; Trenkic, Danijela

    2018-04-01

    It is well established that digit span in native Chinese speakers is atypically high. This is commonly attributed to a capacity for more rapid subvocal rehearsal for that group. We explored this hypothesis by testing a group of English-speaking native Mandarin speakers on digit span and word span in both Mandarin and English, together with a measure of speed of articulation for each. When compared to the performance of native English speakers, the Mandarin group proved to be superior on both digit and word spans while predictably having lower spans in English. This suggests that the Mandarin advantage is not limited to digits. Speed of rehearsal correlated with span performance across materials. However, this correlation was more pronounced for English speakers than for any of the Chinese measures. Further analysis suggested that speed of rehearsal did not provide an adequate account of differences between Mandarin and English spans or for the advantage of digits over words. Possible alternative explanations are discussed.

  19. Solving the Single-Sink, Fixed-Charge, Multiple-Choice Transportation Problem by Dynamic Programming

    DEFF Research Database (Denmark)

    Christensen, Tue; Andersen, Kim Allan; Klose, Andreas

    2013-01-01

    This paper considers a minimum-cost network flow problem in a bipartite graph with a single sink. The transportation costs exhibit a staircase cost structure because such types of transportation cost functions are often found in practice. We present a dynamic programming algorithm for solving...... this so-called single-sink, fixed-charge, multiple-choice transportation problem exactly. The method exploits heuristics and lower bounds to peg binary variables, improve bounds on flow variables, and reduce the state-space variable. In this way, the dynamic programming method is able to solve large...... instances with up to 10,000 nodes and 10 different transportation modes in a few seconds, much less time than required by a widely used mixed-integer programming solver and other methods proposed in the literature for this problem....

  20. Solving the Single-Sink, Fixed-Charge, Multiple-Choice Transportation Problem by Dynamic Programming

    DEFF Research Database (Denmark)

    Rauff Lind Christensen, Tue; Klose, Andreas; Andersen, Kim Allan

    important aspects of supplier selection, an important application of the SSFCTP, this does not reflect the real life situation. First, transportation costs faced by many companies are in fact piecewise linear. Secondly, when suppliers offer discounts, either incremental or all-unit discounts, such savings......The Single-Sink, Fixed-Charge, Multiple-Choice Transportation Problem (SSFCMCTP) is a problem with versatile applications. This problem is a generalization of the Single-Sink, Fixed-Charge Transportation Problem (SSFCTP), which has a fixed-charge, linear cost structure. However, in at least two...... are neglected in the SSFCTP. The SSFCMCTP overcome this problem by incorporating a staircase cost structure in the cost function instead of the usual one used in SSFCTP. We present a dynamic programming algorithm for the resulting problem. To enhance the performance of the generic algorithm a number...